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Théorie topologique des
champs quantiques pour la
superalgèbre de Lie sl(2|1)

Résumé
Ce texte étudie le groupe quantique UHξ sl(2|1) associé à la superalgèbre

de Lie sl(2|1) et une catégorie de ses représentations de dimension finie. L’ob-
jectif est de construire des invariants topologiques de 3-variétés en utilisant
la notion de trace modifiée. D’abord nous prouvons que la catégorie CH des
modules de poids nilpotents sur UHξ sl(2|1) est enrubannée et qu’il existe une
trace modifiée sur son idéal des modules projectifs. De plus CH possède une
structure relativement G-prémodulaire ce qui est une condition suffisante
pour construire un invariant de 3-variétés à la Costantino-Geer-Patureau.
Cet invariant est le coeur d’une 1+1+1-TQFT (Topological Quantum Field
Theory). D’autre part Hennings a proposé à partir d’une algèbre de Hopf
de dimension finie une construction d’invariants qui dispense de considérer
la catégorie de ses représentations. Nous montrons que le groupe quantique
déroulé UHξ sl(2|1)/(e`1, f `1) possède une complétion qui est une algèbre de
Hopf enrubannée topologique. Nous construisons un invariant de 3-variétés
à la Hennings en utilisant cette structure algébrique, une transformation de
Fourier discrète et la notion de G-intégrales. L’intégrale dans une algèbre
de Hopf est centrale dans la construction de Hennings. La notion de trace
modifiée dans une catégorie s’est récemment révélée être une généralisation
des intégrales dans les algèbres de Hopf de dimension finie. Dans un contexte
plus général d’algèbre de Hopf de dimension infinie nous prouvons la relation
formulée entre la trace modifiée et la G-intégrale.

Mots clés : group quantique déroulé, algèbre topologique localement convexe,
TQFT, super-symétries, invariant de 3-variétés, trace modifiée.
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Topological quantum field
theory for Lie superalgebra
sl(2|1)

Abstract
This text studies the quantum group UHξ sl(2|1) associated with the Lie

superalgebra sl(2|1) and a category of finite dimensional representations. The
aim is to construct the topological invariants of 3-manifolds using the notion
of modified trace. We first prove that the category CH of the nilpotent weight
modules over UHξ sl(2|1) is ribbon and that there exists a modified trace on
its ideal of projective modules. Furthermore, CH possesses a relative G-
premodular structure which is a sufficient condition to construct an invariant
of 3-manifolds of Costantino-Geer-Patureau type. This invariant is the heart
of a 1 + 1 + 1-TQFT (Topological Quantum Field Theory). Next Hennings
proposed from a finite dimensional Hopf algebra, a construction of invariants
which does not require to consider the category of its representations. We
show that the unrolled quantum group UHξ sl(2|1)/(e`1, f `1) has a completion
which is a topological ribbon Hopf algebra. We construct an invariant of 3-
manifolds of Hennings type using this algebraic structure, a discrete Fourier
transform, and the notion of G-integrals. The integral in a Hopf algebra is
central in the construction of Hennings. The notion of modified trace in a
category has recently been revealed to be a generalization of the integrals
in a finite dimensional Hopf algebra. In a more general context of infinite
dimensional Hopf algebras we prove the relation formulated between the
modified trace and the G-integral.

Keywords: unrolled quantum group, locally convex topological algebra,
TQFT, super-symmetries, invariant of 3-manifolds, modified trace.
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Chapitre 1

Introduction

1.1 Contexte

Depuis les années 80, la naissance du polynôme de Jones (voir [27]) a
ouvert une nouvelle direction de recherche pour les invariants topologiques
d’entrelacs et de 3-variétés. Quelques années après, beaucoup d’invariants
d’entrelacs ont été découverts qui sont des généralisations du polynôme de
Jones. D’abord le polynôme à deux variables appelé “HOMFLY” qui est une
généralisation du polynôme de Jones (le nom HOMFLY provient des noms de
six mathématiciens Hoste, Ocneanu, Millett, Freyd, Lickorish, et Yetter qui
découvrent simultanément ce polynôme) (voir [10]). Puis Kauffman a défini
une autre généralisation et a construit un invariant d’entrelacs en bande
indépendant de l’orientation, ... ([37]). Ensuite, dans les deux articles [43] en
1990, et [44] en 1991 N. Reshetikhin, V.G. Turaev et E. Witten ont introduit
une méthode de construction d’invariant d’entrelacs (nommé invariant RT)
et de 3-variétés (nommé invariant WRT). Le premier article a présenté la
construction d’un foncteur F d’une catégorie des graphes en rubans vers
une catégorie enrubannée C . Ces graphes en rubans sont composés par les
parties élémentaires comme des bandes, des coupons, des anneaux, ... Ils sont
coloriés par des objets et des morphismes de la catégorie C . Le foncteur F
ne dépend que la classe d’isotopie des graphes plongés et il détermine un
invariant des entrelacs. En utilisant des représentations du groupe quantique
Uqsl(2) on retrouve le polynôme de Jones. Dans leur deuxième article, inspiré
par les idées de E. Witten (voir [50]) ils ont utilisé une catégorie modulaire
enrubannée C pour construire un invariant de 3-variétés.

Dans certains contextes, l’invariant RT se révèle être trivial, par exemple
pour les représentations projectives du groupe quantique Uqsl(2) où q est une
racine de l’unité. La raison qui cause ce phénomène est la nullité de dimen-
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2 CHAPITRE 1. INTRODUCTION

sion quantique de la représentation (e. g. [15]). Pour trouver des informations
cachées dans cette situation N. Geer, B. Patureau-Mirand et V. Turaev ont
proposé une méthode dont l’idée principale est le remplacement de la dimen-
sion quantique par la dimension modifiée dans la construction de l’invariant
RT ([17]). La dimension modifiée est déterminée par une famille des formes k-
linéaires nommée une trace modifiée. Ces notions leur permettent de trouver
un invariant F ′ non trivial même lorsque l’invariant RT est trivial. La trace
modifiée et ses techniques fournissent un autre point de vue sur la construc-
tion des invariants topologiques. Avec F. Costantino ([8]) et F. Costantino et
C. Blanchet ([4]) ils généralisent avec ces nouveaux invariants la construction
WRT pour produire des invariants de 3-variétés et des TQFTs (Topological
Quantum Field Theories).

Les superalgèbres de Lie ([28]) sont des généralisations des algèbres de Lie
utilisées par les physiciens pour décrire les super symétries. Elles admettent,
comme les algèbres de Lie une déformation et leurs représentations sont en
partie connues. Par exemple, les représentations irréductibles de Uqsl(2|1) aux
racines de l’unité sont décrites dans [1]. La construction de Reshetikhin et
Turaev repose sur l’existence d’une catégorie de représentations semi-simples
des groupes quantiques. Cette propriété fait défaut dans le cas des groupes
quantiques associés aux superalgèbres de Lie. Ceci suggère d’essayer d’utiliser
des traces modifiées pour contourner cette difficulté et de tenter de développer
une construction similaire à celle de [8].

Dans une autre direction, M. Hennings a présenté une méthode de construc-
tion d’invariants de 3-variétés en utilisant une intégrale sur une algèbre de
Hopf enrubannée de dimension finie ([26]). De plus, dans [46] V. G. Turaev
a présenté une structure de π-cogèbre de Hopf, i.e. un ensemble d’algèbres
indexées par les éléments d’un groupe π avec des applications nommées le pro-
duit, le coproduit, l’unité, la counité et l’antipode qui satisfont des axiomes
de compatiblité. Puis A. Virelizier a démontré l’existence d’une intégrale et
d’une trace sur π-structure dans [49]. L’intégrale sur une π-cogèbre de Hopf
nommée π-intégrale est une généralisation de la notion de l’intégrale sur une
algèbre de Hopf utilisée dans la construction de Hennings. En utilisant une
π-cogèbre de Hopf unimodulaire enrubannée de type finie et une π-intégrale,
ils ont construit un invariant de 3-variétés dans [48]. Récemment dans [2]
une relation a été trouvé entre l’intégrale sur l’algèbre de Hopf H et la trace
modifiée dans la catégorie correspondante H-mod : A. Beliakova, C. Blan-
chet et A. M. Gainutdinov ont notamment établi une formule reliant la trace
modifiée et l’intégrale.
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1.2. PRÉSENTATION DES OBJECTIFS 3

1.2 Présentation des objectifs
Motivé par la notion de la trace modifiée nous voulons développer ses

techniques dans le contexte des représentations du groupe quantique Uξsl(2|1)
décrites dans [1]. On suppose pouvoir construire un invariant de l’entrelacs
coloriés par ses représentations. Cela nous fournit le premier objectif : c’est
la construction des invariants quantiques associés à la super algèbre de Lie
sl(2|1). Pour faire cela : d’abord on démontre qu’il existe une structure enru-
bannée dans la catégorie CH des représentations nilpotentes des modules de
poids sur UHξ sl(2|1), ensuite on indique l’existence de la trace modifiée sur
l’idéal Proj(CH) des modules projectifs dans CH . Cette trace modifiée nous
donne un invariant des graphes enrubannés. De plus la catégorie enrubannée
CH a aussi une structure relativement G-prémodulaire, ce qui permet de
construire un invariant de 3-variétés à la Witten-Reshetikhin-Turaev.

À partir d’un invariant de 3-variétés on sait avoir une chance de construire
une famille des TQFTs. Par exemple, en utilisant la construction universelle
présentée par C. Blanchet, N. Habegger, G. Masbaum and P. Vogel dans [5],
une famille de TQFTs est construite dans [4] à partir de l’invariant quantique
trouvé par F. Costantino, N. Geer and B. Patureau-Mirand [8]. Les TQFTs
dans [4] sont construites à partir de l’invariant CGP associé à sl(2) ([8]) qui
est similaire à celui que l’on définit ici avec UHξ sl(2|1). C’est la raison qui a
motivé le deuxième objectif : la construction de 1 + 1 + 1-TQFTs à partir ces
invariants de 3-variétés. Pour appliquer la construction de De Renzi ([42]) on
montre que la catégorie CH est une catégorie relativement G-modulaire.

M. Hennings dans [26] a proposé une manière de construire un invariant
de 3-variétés à partir d’une algèbre de Hopf enrubannée de dimension finie
à l’aide de l’intégrale. Inspiré par sa méthode, nous désirions construire un
invariant de 3-variétés pour le groupe quantique UHξ sl(2|1). Néanmoins, la
dimension de la superalgèbre de Hopf UHξ sl(2|1) n’est pas finie, cela cause des
difficultés. Les travaux ont été motivés par les réflexions suivantes : Puisqu’il
existe une trace modifiée sur idéal des modules projectifs dans CH produisant
un invariant de 3-variétés, nous conjecturons qu’il existe quand même une
chose analogue pour la superalgèbre UH = UHξ sl(2|1)/(e`1, f `1). En d’autres
termes, nous pourrions construire un invariant de 3-variétés à la Hennings
avec la superalgèbre UH .

Ceci est effectivement réalisé en remplaçant l’intégrale par une intégrale
graduée. Donc, à partir de la superalgèbre UHξ sl(2|1), on a deux approches
pour construire cet invariant. La première manière utilise la structure de la
catégorie enrubannée CH et la trace modifiée en dedans. L’autre manière
utilise une structure d’algèbre topologique UH et l’intégrale graduée. Ceci
suggère une relation entre les deux objets : la trace modifiée dans une catégorie
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4 CHAPITRE 1. INTRODUCTION

et l’intégrale graduée d’une algèbre de Hopf. Dans un article récent [2] les au-
teurs ont montré que la trace modifiée dans la catégorie H-mod est l’intégrale
symétrisée de l’algèbre de Hopf de dimension finie H. Inspiré par la sugges-
tion ci-dessus nous nous fixons deux objectifs supplémentaires. Le troisième
objectif est de trouver la relation entre la trace modifiée des catégories de
représentations des groupes quantiques et les intégrales des G-cogèbres de
Hopf pivotales correspondantes.

Finalement, le dernier objectif est la construction d’un invariant de 3-
variétés de type Hennings associé au groupe quantique déroulé UHξ sl(2|1)
malgré que ce soit une algèbre de Hopf de dimension infinie. Cet invariant
est construit en trois étapes : 1) l’introduction d’une topologie sur l’algèbre
déroulée, 2) une transformation de Fourier discrète et 3) la version G-graduée
de l’invariant de Hennings dû à A. Virelizier ([48]).

1.3 Résultats principaux
Le texte est composé de quatre chapitres. Ses résultats principaux sont

présentés dans les trois derniers chapitres. En particulier ils sont la reproduc-
tion des articles [22], [21] et [20]. Dans le deuxième chapitre, nous démontrons
que la catégorie paire CH des modules de poids nilpotents du groupe quan-
tique UHξ sl(2|1) est enrubannée par le théorème 2.4.4, la proposition 2.4.5 et
qu’il existe une trace modifiée sur idéal des modules projectifs de CH par
le théorème 2.5.4. On construit un invariant de graphes enrubannées dans
S3 par cette trace avec le théorème 2.5.5. De plus, cette catégorie possède
une structure relativement G-prémodulaire avec G = (C/Z × C/Z,+), cela
implique une construction d’invariants de 3-variétés similaire à celle dans [8]
par le théorème 2.6.4. Ses résultats sont présentés dans l’article Topologi-
cal invariants from quantum groups Uξsl(2|1) at roots of unity ([22]). Dans
ce chapitre nous rajoutons aussi une partie complémentaire où on montre
que la catégorie paire CH des modules de poids nilpotents du groupe quan-
tique UHξ sl(2|1) est relativement G-modulaire d’après le sens de De Renzi
([42]) par la proposition 2.7.2. Cela nous permet de construire une famille de
1 + 1 + 1-TQFTs étendues et graduées par Z× Z× Z/2Z.

Le troisième chapitre parle de la relation proche entre trace modifiée et
intégrale. Soit H une algèbre de Hopf de dimension finie, il existe un élément
de H∗ appelé intégrale sur H qui est utilisé pour construire l’invariant de
3-variétés de Hennings (voir [26]). À partir de cette notion on peut définir
la notion d’intégrale symétrisée et prouver une formule où chaque intégrale
symétrisée sur H correspond à une trace modifiée sur l’idéal H-pmod des
H-modules projectifs dans la catégorie H-mod (voir [2]). Pour généraliser
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ce résultat dans le contexte où la dimension de l’algèbre de Hopf H peut
être infinie, on a défini la notion d’une G-cogèbre de Hopf pivotale. Une
G-intégrale sur une G-cogèbre de Hopf pivotale nous permet de définir une
G-intégrale symétrisée. Elle cöıncide avec une trace modifiée sur l’idéal desH-
modules projectifs. Autrement dit, si H est une algèbre de Hopf (sa dimension
peut être infinie) et G est un groupe, on peut parfois former une G-cogèbre
de Hopf pivotale (Hg)g∈G à partir de quotients de H. Les relations entre les
G-intégrales sur (Hg)g∈G et les traces modifiées sur l’idéal des H-modules
projectifs de dimension finie sont établies par le théorème 3.1.1. Ceci nous a
permit une autre approche de construction de l’invariant de 3-variétés [22] à
partir des intégrales symétrisées. Dans cette partie nous donnons aussi une
application (voir Section 3.5) de la relation entre G-intégrale et trace modifiée
par des calculs pour le groupe quantique associé à l’algèbre de Lie sl(2) et la
catégorie correspondante. Ces résultats sont prépubliés sur arXiv ([21]).

Le quatrième chapitre revient au groupe quantique déroulé UH générant
la catégorie CH . Soit W l’espace vectoriel de dimension finie sur C avec une
base {ep1eρ3eσ2f

p′

1 f
ρ′

3 f
σ′
2 0 ≤ ρ, σ, ρ′, σ′ ≤ 1, 0 ≤ p, p′ ≤ `− 1}. Le groupe quan-

tique UH est isomorphe à W⊗C[k±1
1 , k±1

2 , h1, h2]. Nous considérons l’injection
de UH dans W⊗H(h1, h2) oùH(h1, h2) est l’espace vectoriel des fonctions ho-
lomorphes sur C2. On peut voir chaque élément de W⊗H(h1, h2) comme une
fonction holomorphe à valeurs dans W . Puis on peut déterminer une topolo-
gie sur cet espace : c’est la topologie de la convergence uniforme sur les en-
sembles compacts. Nous démontrons que cette superalgèbre de Hopf possède
une structure de superalgèbre de Hopf enrubannée au sens topologique. C’est
à dire que cette topologie est compatible avec la structure d’algèbre de Hopf
(cf. théorème 4.2.17). Sa bosonization est une algèbre de Hopf topologique
enrubannée. Cette algèbre nous donne d’abord une construction d’invariant
universel de l’entrelacs par le théorème 4.3.2 et puis une G-cogèbre de Hopf
pivotale de type finie Uσ par la proposition 4.4.2 où chaque composante de
Uσ est le quotient de l’algèbre par l’idéal engendré par k`i −ξ`αi pour i = 1, 2.
Les G-intégrales sur Uσ, l’invariant universel et une transformation de Fou-
rier discrète nous permettent de construire un invariant de 3-variétés de type
Hennings par le théorème 4.4.15. La méthode présentée dans ce chapitre
pourrait se généraliser dans le contexte des groupes quantiques déroulés. Ces
résultats sont prépubliés sur arXiv ([20]).

Au début de chaque chapitre, nous redéfinissons les notions nécessaires et
rappelons les résultats préliminaires. En conséquence chaque chapitre pour-
rait être lu indépendamment des autres.
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Chapter 2

Topological invariants from
quantum group Uξsl(2|1) at
roots of unity

This chapter contains two parts, the first one with six sections is the con-
tent of the paper [22] in Abhandlungen aus dem Mathematischen Seminar der
Universität Hamburg, the second one is to prove the category CH is relative
G-modular.

Résumé. Dans ce chapitre, nous construisons des invariants d’entrelacs et
des invariants de 3-variétés à partir du groupe quantique associé à la super-
algèbre de Lie sl(2|1). La construction est basée sur des représentations nilpo-
tentes irréductibles finies du groupe quantique Uξsl(2|1) où ξ est une racine de
l’unité d’ordre impair. Ces constructions utilisent la notion de trace modifiée
présentée par Geer, Kujawa et Patureau-Mirand [13] et la catégorie relative-
ment G-modulaire présentée par Costantino, Geer et Patureau-Mirand [8].

Abstract. In this chapter we construct link invariants and 3-manifold
invariants from the quantum group associated with the Lie superalgebra
sl(2|1). The construction is based on nilpotent irreducible finite dimensional
representations of quantum group Uξsl(2|1) where ξ is a root of unity of odd
order. These constructions use the notion of modified trace presented by
Geer, Kujawa and Patureau-Mirand [13] and relative G-modular category
presented by Costantino, Geer and Patureau-Mirand [8].

MSC: 57M27, 17B37
Key words: Lie superalgebra, quantum group, link invariant, 3-manifold.
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8 CHAPTER 2. INVARIANTS FROM QUANTUM GROUP

2.1 Introduction
The vanishing of the dimension of an object V in a ribbon category C

is an obstruction when one studies the Reshetikhin-Turaev link invariant. If
the dimension of a simple object V of C is zero, then the quantum invari-
ants of all (framed oriented) links with components labelled by V are equal
to zero, i.e. they are trivial. To overcome this difficulty, the authors N.
Geer, B. Patureau-Mirand and V. Turaev introduced the notion of a mod-
ified dimension (see [17]). The modified dimension may be non-zero when
dimC (V ) = 0. Using the modified dimension, for example on the class of
projective simple objects, they defined an isotopy invariant F ′(L) (the renor-
malized Reshetikhin-Turaev link invariant) for any link L whose components
are labelled with objects of C under the only assumption that at least one of
the labels belongs to the set of projective ambidextrous objects. Here F ′(L)
is a nontrivial link invariant (see [17]). This modified dimension is used to
construct the quantum invariants in [8], [14].

The existence of the modified dimension generalizes the definition of mod-
ified traces (see [12]). In the article [13], the authors showed that a necessary
and sufficient condition for the existence of a modified trace on an ideal gen-
erated by a simple object J is that J is an ambidextrous object. Recently
the existence of an ambidextrous object has been shown in the context of
factorizable finite tensor categories [11].

The Lie superalgebras (see [28]) are the generalizations of Lie algebras in
the category of super vector spaces. They are used among others by physi-
cists to describe supersymmetry. Deformations of these superalgebras and
their representations are partially known. For the Lie superalgebra sl(2|1)
one can define a Hopf superalgebra Uξsl(2|1) which is a deformation of the
universal enveloping algebra. Its irreducible representations at roots of unity
are described in [1]. Using these representations and developing the idea of
modified traces open up the method for constructing a quantum invariant of
framed links with components labelled by irreducible representations.

The aim of this chapter is to construct a link invariant and a 3-manifold
invariant from quantum group Uξsl(2|1) at a root of unity of odd order. Note
that the Lie superalgebra sl(2|1) having superdimension zero, sl(2|1)-weight
functions are trivial. Hence combining them with the Kontsevich integral
or the LMO invariant also give trivial link and 3-manifold invariants. The
chapter contains six sections. In Section 2.2, we recall the monoidal category,
pivotal category, braided category, ribbon category and, Hopf superalgebra
definitions. In Section 2.3 and 2.4, we describe the quantum superalgebra
Uξsl(2|1) where ξ is a root of unity of odd order and by adding two elements
h1, h2 to Uξsl(2|1), we have the Hopf superalgebra UHξ sl(2|1). Using this
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extension we can construct a non semi-simple ribbon category CH of the
nilpotent simple finite dimensional representations of UHξ sl(2|1). In Section
2.5 we prove that a typical module over UHξ sl(2|1) is an ambidextrous module
and that a modified trace exists on the ideal of projective modules Proj. This
modified trace will be used to construct a link invariant. In Section 2.6, we
prove that the category CH is relative G-premodular ([8]) and we construct
a 3-manifold invariant using this property.

2.2 Preliminaries

2.2.1 Monoidal category
Definition 2.2.1 ([33, 29]). A monoidal category C is a category enhanced
with a bifunctor called tensor product · ⊗ · : C × C → C and a unit object I
such that there are natural isomorphisms

I⊗ · ∼= · ⊗ I ∼= IdC and (· ⊗ ·)⊗ · ∼= · ⊗ (· ⊗ ·), (2.2.1)

fulfilling the Pentagon Axiom and the Triangle Axiom.
We call strict monoidal category a monoidal category C whose the iso-

morphisms (2.2.1) are identities. In our examples the morphisms in (2.2.1)
are simply the morphisms of the underlying vector spaces and are in the
following regarded as equality. We write V ∈ C to denote an object V in
the category C and call HomC (V,W ) the morphisms in C from V ∈ C to
W ∈ C and EndC (V ) = HomC (V, V ).

We say that C is a monoidal C-linear category if for all V,W ∈ C , the
morphisms HomC (V,W ) form a C-vector space and the composition and the
tensor product are bilinear and EndC (I) ∼= C. An object V ∈ C is simple
if and only if EndC (V ) ∼= C as a unitary C-algebra. An object W ∈ C is a
direct sum of V1, ..., Vn ∈ C if there is for i = 1, ..., n, fi ∈ HomC (Vi,W ), gi ∈
HomC (W,Vi) such that gi◦fi = IdVi , gi◦fj = 0 for i 6= j and∑n

i=1 fi◦gi = IdW .
An object W ∈ C is semi-simple if it is a direct sum of simple objects. The
category C is semi-simple if all objects are semi-simple and HomC (V,W ) =
{0} for any pair of non-isomorphic simple objects in C .

2.2.2 Pivotal category
Definition 2.2.2. Let C be a monoidal category and A,B ∈ C . A duality
between A and B is given by a pair of morphisms (α ∈ HomC (I, B ⊗A), β ∈
HomC (A⊗B, I)) such that

(β ⊗ IdA) ◦ (IdA⊗α) = IdA and (IdB ⊗β) ◦ (α⊗ IdB) = IdB . (2.2.2)
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A pivotal category (or sovereign) is a strict monoidal category C , with a
unit object I, equipped with the data for each object V ∈ C of its dual object
V ∗ ∈ C and of four morphisms

−→evV : V ∗ ⊗ V → I, −→coevV : I→ V ⊗ V ∗,
←−evV : V ⊗ V ∗ → I, ←−coevV : I→ V ∗ ⊗ V

such that (−→evV ,
−→coevV ) and (←−evV ,

←−coevV ) are dualities which induce the same
functor duality and the same natural isomorphism (V ⊗W )∗ ∼= W ∗ ⊗ V ∗.
Thus, the right and left dual coincide in C : for every morphism h : V → W ,
we have

h∗ = (−→evW ⊗ IdV ∗) ◦ (IdW ∗ ⊗h⊗ IdV ∗) ◦ (IdW ∗ ⊗
−→coevV )

= (IdV ∗ ⊗
←−evW ) ◦ (IdV ∗ ⊗h⊗ IdW ∗) ◦ ( ←−coevV ⊗ IdW ∗) : W ∗ → V ∗

and for V,W ∈ C , the isomorphisms γV,W : W ∗ ⊗ V ∗ → (V ⊗W )∗ are given
by

γV,W = (−→evW ⊗ Id(V⊗W )∗) ◦ (IdW ∗ ⊗
−→evV ⊗ IdW⊗(V⊗W )∗) ◦ (IdW ∗⊗V ∗ ⊗

−→coevV⊗W )
= (Id(V⊗W )∗ ⊗

←−evV ) ◦ (Id(V⊗W )∗⊗V ⊗
←−evW ⊗ IdV ∗) ◦ ( ←−coevV⊗W ⊗ IdW ∗⊗V ∗).

The family of isomorphisms

Φ = {ΦV = (←−evV ⊗ IdV ∗∗) ◦ (IdV ⊗
−→coevV ∗) : V → V ∗∗}V ∈C

is a monoidal natural isomorphism called the pivotal structure.

Definition 2.2.3. Given a multiplicative group G, we call the category C
pivotal G-graded k-linear if there exists a family of full subcategories (Cα)α∈G
of C such that

1. I ∈ C1.

2. ∀(α, β) ∈ G2, ∀(V,W ) ∈ Cα × Cβ, HomC (V,W ) 6= {0} ⇒ α = β.

3. ∀V ∈ C , ∃n ∈ N, ∃(α1, ..., αn) ∈ Gn, ∃Vi ∈ Cαi for i = 1, ..., n such
that V ' V1 ⊕ ...⊕ Vn.

4. ∀(V,W ) ∈ Cα × Cβ, V ⊗W ∈ Cαβ.

5. ∀α ∈ G, Cα does not reduce to null object.
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2.2.3 Ribbon category
A braided category is a tensor category C provided with a braiding c : for

all objects V and W of C , we have an isomorphism

cV,W : V ⊗W → W ⊗ V.

These isomorphisms are natural and for all objects U, V and W of C , we
have

cU,V⊗W = (IdV ⊗cU,W )◦(cU,V ⊗IdW ) and cU⊗V,W = (cU,W⊗IdV )◦(IdU ⊗cV,W ).

If the category C is pivotal and braided, we can define a family of natural
isomorphisms

θV = ptrR(cV,V ) = (IdV ⊗
←−evV ) ◦ (cV,V ⊗ IdV ∗) ◦ (IdV ⊗

−→coevV ) : V → V.

We say that θ is a twist if it is compatible with the dual in the following sense

∀V ∈ C , θV ∗ = (θV )∗

which is equivalent to

θV = ptrL(cV,V ) = (−→evV ⊗ IdV ) ◦ (IdV ∗ ⊗cV,V ) ◦ ( ←−coevV ⊗ IdV ) : V → V.

A ribbon category is a braided pivotal category in which the family of
isomorphisms θ is a twist.

2.2.4 Hopf superalgebras
We recall some notions (see also [15], [39]). A super space is a Z/2Z-

graded vector space V = V0 ⊕ V1 over C. An element x ∈ V is called even
(resp. odd) if x ∈ V0 (resp. x ∈ V1). For the super spaces U, V the set of
the morphisms between them denoted by HomC(U, V ) is the super space of
linear maps given by

HomC(U, V )0 = HomC(U0, V0)⊕ HomC(U1, V1) and
HomC(U, V )1 = HomC(U0, V1)⊕ HomC(U1, V0).

Denote ⊗ the usual tensor product in the category VectC. We call even
category SVect0 the category whose the objects are the super spaces and the
morphisms are the even morphisms. Category SVect0 is monoidal with the
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operator ⊗: For U, V ∈ SVect0 their tensor product is the vector space U⊗V
with the parity given by

(U ⊗ V )0 = U0⊗V0 ⊕ U1⊗V1 and
(U ⊗ V )1 = U0⊗V1 ⊕ U1⊗V0,

for f ∈ HomC(U,U ′), g ∈ HomC(V, V ′) the tensor product f ⊗ g is given by

f ⊗ g =

f⊗g on U0⊗V
(−1)gf⊗g on U1⊗V

.

This means that f ⊗ g(x⊗ y) = (−1)g.xf(x)⊗ g(y).
Further, SVect0 is also a symmetric monoidal category with symmetry iso-
morphisms τU,V : U ⊗ V ' V ⊗ U given by τU,V (u ⊗ v) = (−1)u.vv ⊗ u.
Note that the category SVect of the super spaces with all morphisms is
not a symmetric monoidal category because in general (Id⊗g) ◦ (f ⊗ Id) 6=
(f ⊗ Id) ◦ (Id⊗g).

We call Hopf superalgebra a Hopf algebra object in SVect0. That is a super
C-vector space H endowed with five even C-linear maps called product, unit,
coproduct, counit and antipode

m : H ⊗H → H, η : C→ H, ∆ : H → H ⊗H, ε : H → C and S : H → H

satisfying the axioms:

1. the product m is associative on H admitting 1H = η(1) as unity.
2. the coproduct ∆ is coassociative, i.e. (∆ ⊗ IdH) ◦ ∆ = (IdH ⊗∆) ◦ ∆

and (ε⊗ IdH) ◦∆ = (IdH ⊗ε) ◦∆ = IdH .
3. ∆ and ε are algebra morphisms where the associative product in H⊗H

is determined by (m⊗m) ◦ (IdH ⊗τH,H ⊗ IdH).
4. m ◦ (S ⊗ IdH) ◦∆ = m ◦ (IdH ⊗S) ◦∆ = η ◦ ε.

Let H be a Hopf superalgebra. An even grouplike element φ ∈ H is said a
pivotal element if ∆(φ) = φ⊗φ, ε(φ) = 1 and for all h ∈ H, S2(h) = φhφ−1.
The pair (H,φ) of a Hopf superalgebra and a pivot φ is called a pivotal Hopf
superalgebra (see [39]).
Let (H,φ) be a Hopf superalgebra, let H-mod0 be the even category of finite
dimensional modules over H. If V is an object of H-mod0 we denote by
ρV : H → EndC(V ) the representation of H in the module V .
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Proposition 2.2.4 ([39]). The category H-mod0 has the structure of a piv-
otal category with dual morphisms given by
−→evV : e∗i ⊗ ej 7→ e∗i (ej) = δji ,

−→coevV : 1 7→
∑
i

ei ⊗ e∗i ,

←−evV : ej ⊗ e∗i 7→ (−1)deg eje∗i (φ0.ej),
←−coevV : 1 7→

∑
i

(−1)deg eie∗i ⊗ (φ−1
0 .ei)

where (ei)i is a basis of V and (e∗i )i is its basis dual.
Proof. Let V be an object of H-mod0. Its dual is a C-vector space V ∗ =
HomC(V,C) provided with the action of h ∈ H given by

(h, ϕ) 7→ (−1)deg hdegϕϕ ◦ ρV (S(h)).

First we show that four morphisms −→evV ,
−→coevV ,

←−evV ,
←−coevV are invariant

morphisms of H-mod0. It is clear for −→evV ,
−→coevV , we prove ←−evV is invariant

morphism. The invariant of the morphism ←−coevV is proved similarly.
For h ∈ H, using the Sweedler notation ∆(h) = h(1) ⊗ h(2) and denote
deg x = |x|, one computes
←−evV (h.(ej ⊗ e∗i )) = (−1)|h(2)||ej | ←−evV (h(1)ej ⊗ h(2)e

∗
i )

= (−1)|h(2)||ej |+|e∗i ||h(2)| ←−evV (h(1)ej ⊗ e∗i ◦ S(h(2)))
= (−1)|h(2)||ej |+|e∗i ||h(2)|+(|ej |+|h(1)|)(|h(2)|+|e∗i |)e∗i

(
S(h(2))φh(1)ej

)
= (−1)|h(2)||e∗i |+|ej ||e

∗
i |+|h(1)||h(2)|+|h(1)||e∗i |e∗i

(
φS−1(h(2))h(1)ej

)
= (−1)|h(2)||e∗i |+|ej ||e

∗
i |+|h(1)||e∗i |e∗i

(
φS−1(S(h(1))h(2))ej

)
= (−1)|h(2)||e∗i |+|ej ||e

∗
i |+|h(1)||e∗i |ε(h)e∗i (φej)

= (−1)|h||e∗i |+|ej ||e∗i |ε(h)e∗i (φej)
= (−1)|h||e∗i |ε(h) ←−evV (ej ⊗ e∗i ).

If |h| = 1 then ε(h) = 0. This implies that
←−evV (h.(ej ⊗ e∗i )) = ε(h) ←−evV (ej ⊗ e∗i ).

The duality of the pair (−→evV ,
−→coevV ) is clear by definition. For (←−evV ,

←−coevV ),
one checks

(←−evV ⊗ IdV ) ◦ (IdV ⊗
←−coevV ) = IdV .

For each ej we have

(←−evV ⊗ IdV ) ◦ (IdV ⊗
←−coevV )(ej ⊗ 1) =

∑
i

(−1)2|ei|e∗i (ρV (φ)ej)⊗ ρV (φ−1)ei

=
∑
i

e∗i (ρV (φ)ej)⊗ ρV (φ−1)ei.
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Suppose A = (ast)s,t is the matrix of ρV (φ) then the matrix of ρV (φ−1) is
A−1 = (bst)s,t in the basis (ei)i, one gets

∑
i

e∗i (ρV (φ)ej)⊗ ρV (φ−1)ei =
∑
i

e∗i

(∑
s

asjes

)
⊗
∑
t

btiet

=
∑
i

(∑
s

asje
∗
i (es)

)
⊗
∑
t

btiet

=
∑
i

aij ⊗
∑
t

btiet

=
∑
t

(∑
i

btiaij

)
et

=
∑
t

δtjet

= ej.

By similar calculations one gets the equality

(IdV ∗ ⊗
←−evV ) ◦ ( ←−coevV ⊗ IdV ∗) = IdV ∗ .

Thus the pair of morphisms (←−evV ,
←−coevV ) are dualities.

2.3 Quantum superalgebra Uξsl(2|1)
In this section we define the superalgebra Uξsl(2|1) and we prove that it

is a pivotal Hopf superalgebra. We also show that the Borel part of Uξsl(2|1)
is a Nichols algebra.

2.3.1 Hopf superalgebra Uξsl(2|1)
Definition 2.3.1. Let ` ≥ 3 be an odd integer and ξ = exp(2πi

`
). The

superalgebra Uξsl(2|1) is an associative superalgebra on C generated by the
elements k1, k2, k

−1
1 , k−1

2 , e1, e2, f1, f2 and the relations

k1k2 = k2k1, (2.3.1)
kik
−1
i = 1, i = 1, 2, (2.3.2)

kiejk
−1
i = ξaijej, kifjk

−1
i = ξ−aijfj i, j = 1, 2, (2.3.3)

e1f1 − f1e1 = k1 − k−1
1

ξ − ξ−1 , e2f2 + f2e2 = k2 − k−1
2

ξ − ξ−1 , (2.3.4)

[e1, f2] = 0, [e2, f1] = 0, (2.3.5)
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e2
2 = f 2

2 = 0, (2.3.6)
e2

1e2 − (ξ + ξ−1)e1e2e1 + e2e
2
1 = 0, (2.3.7)

f 2
1 f2 − (ξ + ξ−1)f1f2f1 + f2f

2
1 = 0. (2.3.8)

The last two relations are called the Serre relations. The matrix (aij) is
given by a11 = 2, a12 = a21 = −1, a22 = 0. The odd generators are e2, f2.

We define ξx := exp(2πix
`

), afterwards we will use the concepts

{x} = ξx − ξ−x, [x] = ξx − ξ−x

ξ − ξ−1 .

Let define the odd elements e3 = e1e2 − ξ−1e2e1, f3 = f2f1 − ξf1f2. The
Serre relations become

e1e3 = ξe3e1, f3f1 = ξ−1f1f3. (2.3.9)

Furthermore

e2e3 = −ξe3e2, f3f2 = −ξ−1f2f3, (2.3.10)

e3f3 + f3e3 = k1k2 − k−1
1 k−1

2
ξ − ξ−1 , (2.3.11)

e2
3 = f 2

3 = 0. (2.3.12)

According to [31], Uξsl(2|1) is a Hopf superalgebra with the coproduct, counit
and antipode as below

∆(ei) = ei ⊗ 1 + k−1
i ⊗ ei i = 1, 2,

∆(fi) = fi ⊗ ki + 1⊗ fi i = 1, 2,
∆(ki) = ki ⊗ ki i = 1, 2,
S(ei) = −kiei, S(fi) = −fik−1

i , S(ki) = k−1
i i = 1, 2,

ε(ki) = 1, ε(ei) = ε(fi) = 0 i = 1, 2.

The center and representations of Uξsl(2|1) were studied by B. Abdesselam,
D. Arnaudon and M. Bauer [1]. We focus on the case of nilpotent represen-
tations of type B with the condition ` odd.

Remark 2.3.2. 1. Because (e1⊗ 1)(k−1
1 ⊗ e1) = ξ2(k−1

1 ⊗ e1)(e1⊗ 1) and
(`)ξ := 1−ξ`

1−ξ = 0 then

∆(e`1) =
∑̀
m=0

(
`

m

)
ξ

(e1⊗1)m(k−1
1 ⊗e1)`−m = e`1⊗1+k−`1 ⊗e`1. (2.3.13)
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We have ∆op(e`1) = 1⊗ e`1 + e`1⊗k−`1 at the same time. It is known that
e`1, f

`
1 , k

`
1 ∈ Z where Z is the center of Uξsl(2|1), so ∆(e`1) ∈ Z ⊗Z. It

follows that there exists no element R ∈ Uξsl(2|1)⊗Uξsl(2|1) such that
∆op(x) = R∆(x)R−1 ∀x ∈ Uξsl(2|1), i.e. the superalgebra Uξsl(2|1) is
not quasitriangular.

2. We think that the quotient superalgebra Uξsl(2|1)/(e`1, f `1) is not quasi-
triangular but a quotient like Uξsl(2|1)/(e`1, f `1 , k`1 − 1, k`2 − 1) could be,
a proof of this might be found along the lines of [35]. This is not the
quotient that interests us in this chapter.

3. The unrolled version UHξ sl(2|1) (defined in Section 2.4) seems to be
quasitriangular only in a topological sense (see [20]). However, we will
show in Theorem 2.4.4 and Proposition 2.4.5 that some representations
(the weight modules) form a ribbon category.

It is commonly admitted that the superalgebra Uξsl(2|1)/(e`1, f `1) has a
Poincaré-Birkhoff-Witt basis {eρ2eσ3e

p
1k

s
1k

t
2f

ρ′

2 f
σ′
3 f

p′

1 , ρ, σ, ρ
′, σ′ ∈ {0, 1}, p, p′ ∈

{0, 1, ..., ` − 1}, s, t ∈ Z} (see [1]). Nevertheless, we give in Appendix A.1
an elementary proof of this fact stated in Lemma 2.3.3. Its Borel part is a
superalgebra Uξ(n+) which has a vector space basis {eρ2eσ3e

p
1 ρ, σ ∈ {0, 1}, p ∈

{0, 1, ..., `−1}}. It is well known that Uξ(n+) is a Nichols algebra of diagonal
type associated with the generalized Dynkin diagram −1ξ2

ξ−2 (see [25]). We
now explain this point of view. We consider the group algebra B = CG
in which G is an abelian group generated by k1, k2, a vector space V on C
generated by e1, e2. Here B is a Hopf algebra and (V, ·, δ) is a Yetter-Drinfeld
module on B [25], where the action · : B ⊗ V → V of B on V is determined
by

k1 · e1 = ξ2e1, k1 · e2 = ξ−1e2,

k2 · e1 = ξ−1e1, k2 · e2 = −e2,

the matrix determining the bicharacter is (qij)2×2, qij = (−1)|i||j|ξaij where
|1| = 0, |2| = 1 and the coaction δ : V → B ⊗ V of B on V is given by

δ(ei) = ki ⊗ ei i = 1, 2.

It is clear that δ(b · v) = b(1)v(−1)S(b(3)) ⊗ b(2) · v(0) = v(−1) ⊗ b · v(0) for all
b ∈ B, v ∈ V . Here we use the Sweedler notation and write (∆⊗ Id)∆(b) =
b(1) ⊗ b(2) ⊗ b(3), δ(v) = v(−1) ⊗ v(0) for b ∈ B, v ∈ V .
Using Hopf algebra B and Yetter-Drinfeld module V we can determine the
Nichols algebra B(V ) = T (V )/J (V ) where T (V ) = ⊕∞

n=0 V
⊗n is the tensor

algebra of V with the braided copoduct ∆̃(v) = 1 ⊗ v + v ⊗ 1 and counit
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2.3. QUANTUM SUPERALGEBRA UξSL(2|1) 17

ε(v) = 0 for v ∈ V , J (V ) is the maximal coideal in degree ≥ 2 of T (V ). We
now check that e2

2 and the Serre relation w = e1e3 − ξe3e1 are in J (V ). We
have ∆̃(e2

2) = ∆̃(e2)∆̃(e2) = (1⊗ e2 + e2⊗ 1)(1⊗ e2 + e2⊗ 1) = 1⊗ e2
2 + (k2 ·

e2)⊗ e2 + e2 ⊗ e2 + e2
2 ⊗ 1 = 1⊗ e2

2 + e2
2 ⊗ 1, so e2

2 ∈ J (V ).
We calculate

∆̃(e3) = ∆̃(e1)∆̃(e2)− ξ−1∆̃(e2)∆̃(e1)
= (1⊗ e1 + e1 ⊗ 1)(1⊗ e2 + e2 ⊗ 1)− ξ−1(1⊗ e2 + e2 ⊗ 1)(1⊗ e1 + e1 ⊗ 1)
= 1⊗ e1e2 + (k1 · e2)⊗ e1 + e1 ⊗ e2 + e1e2 ⊗ 1

− ξ−1 (1⊗ e2e1 + (k2 · e1)⊗ e2 + e2 ⊗ e1 + e2e1 ⊗ 1)
= 1⊗ e3 + e3 ⊗ 1 + (1− ξ−2)e1 ⊗ e2.

And a similar calculation gives us

∆̃(e1)∆̃(e3) = 1⊗ e1e3 + ξe3 ⊗ e1 + (1− ξ−2)ξ2e1 ⊗ e1e2

+ e1 ⊗ e3 + e1e3 ⊗ 1 + (1− ξ−2)e2
1 ⊗ e2,

and

∆̃(e3)∆̃(e1) = 1⊗ e3e1 + ξe1 ⊗ e3 + e3 ⊗ e1 + e3e1 ⊗ 1
+ (1− ξ−2)e1 ⊗ e2e1 + (1− ξ−2)ξ−1e2

1 ⊗ e2.

Thus we have

∆̃(w) = ∆̃(e1)∆̃(e3)− ξ∆̃(e3)∆̃(e1)
= 1⊗ w + w ⊗ 1 + (ξ2 − 1)e1 ⊗ e1e2 + e1 ⊗ e3

− ξ2e1 ⊗ e3 − (ξ − ξ−1)e1 ⊗ e2e1

= 1⊗ w + w ⊗ 1.

By maximality of J (V ), this implies that w ∈ J (V ). The bosonization of
B(V ) is then isomorphic to a Hopf subalgebra of the bosonization of the Hopf
superalgebra Uξsl(2|1).

Lemma 2.3.3. The set of vectors {eρ2eσ3e
p
1k

s
1k

t
2f

ρ′

2 f
σ′
3 f

p′

1 ρ, σ, ρ′, σ′ ∈ {0, 1}, p, p′ ∈
{0, 1, ..., `− 1}, s, t ∈ Z} is a basis of Uξsl(2|1)/(e`1, f `1).

Proof. See in Appendix A.1.

2.3.2 Pivotal Hopf superalgebra Uξsl(2|1)
Recall that the even category of representations of a superalgebra is the

category of representations in which one restricts to the morphisms of even
degree.
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Proposition 2.3.4. Given φ0 = k−`1 k−2
2 , so ∀u ∈ Uξsl(2|1), S2(u) = φ0uφ

−1
0 .

Proof. This can be verified for generator elements ki, ei, fi, i = 1, 2.

It follows that the Hopf superalgebra Uξsl(2|1) provided with the pivotal
element φ0 = k−`1 k−2

2 is pivotal superalgebra (see [39]).
Let Uξsl(2|1)-mod0 be the category of finite dimensional modules over

Uξsl(2|1) with even morphisms then Uξsl(2|1)-mod0 is a pivotal category
thanks to Proposition 2.2.4. If V is an object of Uξsl(2|1)-mod0, its dual
is a C-vector space V ∗ = HomC(V,C) provided with the action of u given
by (u, ϕ) 7→ (−1)deg udegϕϕ ◦ ρV (S(u)) where ρV : Uξsl(2|1) → EndC(V ) is
the representation of Uξsl(2|1). The unit element of category Uξsl(2|1)-mod0
is the module C provided with the representation ε : Uξsl(2|1) → C ∼=
EndC(C).

If one has a basis (ei)i of V with dual basis (e∗i )i, recall that the dual
morphisms given by
−→evV : e∗i ⊗ ej 7→ e∗i (ej) = δji ,

−→coevV : 1 7→
∑
i

ei ⊗ e∗i ,

←−evV : ej ⊗ e∗i 7→ (−1)deg eje∗i (φ0.ej),
←−coevV : 1 7→

∑
i

(−1)deg eie∗i ⊗ (φ−1
0 .ei).

2.4 Category of nilpotent weight modules
This section allows to define the superalgebra UHξ sl(2|1) from Uξsl(2|1).

Then we define the even category CH of nilpotent finite dimensional weight
modules over UHξ sl(2|1) and prove that this category is G-graded and rib-
bon. The category CH is used to construct the topological invariants in next
sections.

2.4.1 Typical module
We call nilpotent weight Uξsl(2|1)-module an object of Uξsl(2|1)-mod0 on

which e`1 = f `1 = 0 and k1, k2 are diagonalizable. Let C be the full subcate-
gory of Uξsl(2|1)-mod0 formed by all nilpotent weight modules over Uξsl(2|1).
One can check, for example see Equation (2.3.13) that the tensor product
and the dual of nilpotent weight modules are nilpotent weight modules.

Each nilpotent simple weight module (called “of type B” in Section 5.2
[1]) is determined by the highest weight µ = (µ1, µ2) ∈ C2 and is denoted by
Vµ1,µ2 or Vµ. Its highest weight vector w0,0,0 satisfies

e1w0,0,0 = 0, e2w0,0,0 = 0,
k1w0,0,0 = λ1w0,0,0, k2w0,0,0 = λ2w0,0,0
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2.4. CATEGORY OF NILPOTENT WEIGHT MODULES 19

where λi = ξµi with i = 1, 2.
For µ = (µ1, µ2) ∈ C2 we say that Uξsl(2|1)-module Vµ is typical if it is a
simple module of dimension 4`. Other simple modules are said to be atypical.
The basis of a typical module is formed by vectors wρ,σ,p = fρ2 f

σ
3 f

p
1w0,0,0 where

ρ, σ ∈ {0, 1}, 0 ≤ p < `. The odd elements are w0,1,p and w1,0,p, others are
even. The representation of typical Uξsl(2|1)-module Vµ1,µ2 is determined by

k1wρ,σ,p = λ1ξ
ρ−σ−2pwρ,σ,p, (2.4.1)

k2wρ,σ,p = λ2ξ
σ+pwρ,σ,p, (2.4.2)

f1wρ,σ,p = ξσ−pwρ,σ,p+1 − ρ(1− σ)ξ−σwρ−1,σ+1,p, (2.4.3)
f2wρ,σ,p = (1− ρ)wρ+1,σ,p, (2.4.4)
e1wρ,σ,p = −σ(1− ρ)λ1ξ

−2p+1wρ+1,σ−1,p + [p][µ1 − p+ 1]wρ,σ,p−1, (2.4.5)
e2wρ,σ,p = ρ[µ2 + p+ σ]wρ−1,σ,p + σ(−1)ρλ−1

2 ξ−pwρ,σ−1,p+1. (2.4.6)

where ρ, σ ∈ {0, 1} and p ∈ {0, 1, ..., `− 1}.

We also have Vµ ' Vµ+ϑ ⇔ ϑ ∈ (`Z)2.

Remark 2.4.1. The module Vµ is typical if [µ1 − p+ 1] 6= 0 ∀p ∈ {1, ..., `−
1} (µ1 6= p − 1 + `

2Z ∀p ∈ {1, ..., ` − 1}) and [µ2][µ1 + µ2 + 1] 6= 0 (µ2 6=
`
2Z, µ1 + µ2 6= −1 + `

2Z) (see [1]).

We call UHξ sl(2|1) the C-superalgebra generated by ei, fi, ki, k−1
i and hi

for i = 1, 2 with Relations (2.3.1) - (2.3.8) plus the relations

[hi, ej] = aijej, [hi, fj] = −aijfj, [hi, hj] = 0, [hi, kj] = 0 i, j = 1, 2.

The superalgebra UHξ sl(2|1) is a Hopf superalgebra where ∆, S and ε are
determined as in Uξsl(2|1) and by

∆(hi) = hi ⊗ 1 + 1⊗ hi, S(hi) = −hi, ε(hi) = 0 i = 1, 2.

Note that UHξ sl(2|1) can be seen as a semidirect product of C[h1, h2] acting
on Uξsl(2|1).

Let UHξ sl(2|1)-mod0 be the category of finite dimensional modules over
UHξ sl(2|1) with even morphisms then UHξ sl(2|1)-mod0 is a pivotal category
thanks also to Proposition 2.2.4. We call nilpotent weight UHξ sl(2|1)-module
an object of UHξ sl(2|1)-mod0 on which e`1 = f `1 = 0 and ξhi = ki for i = 1, 2
are diagonalizable. Let CH be the full subcategory of UHξ sl(2|1)-mod0 formed
by all nilpotent weight modules over UHξ sl(2|1). The category CH is pivotal
similar to C (see Section 2.3.2).
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We define the actions of hi, i = 1, 2 on the basis of Vµ1,µ2 by

h1wρ,σ,p = (µ1 + ρ− σ − 2p)wρ,σ,p, h2wρ,σ,p = (µ2 + σ + p)wρ,σ,p.

Thus Vµ1,µ2 is a weight module of CH . A module in CH is said to be typical
if, seen as a Uξsl(2|1)-module, it is typical. For each module V we denote V
the same module with the opposite parity. We set G = C/Z× C/Z and for
each µ ∈ G we define CH

µ as the subcategory of weight modules which have
their weights in the coset µ (modulo Z×Z). So {CH

µ }µ∈G is a G-graduation
(where G is an additive group): let V ∈ CH

µ , V
′ ∈ CH

µ′ , then the weights of
V ⊗V ′ are congruent to µ+µ′ (modulo Z×Z). Furthermore, if µ 6= µ′ then
HomCH (V, V ′) = 0 because a morphism preserves weights.

We also define

Gs = {g ∈ G such that ∃ V ∈ CH
g simple and atypical}.

It follows from [1] that

Gs =
{

0, 1
2

}
× C/Z ∪ C/Z×

{
0, 1

2

}
∪
{

(µ1, µ2) : µ1 + µ2 ∈
{

0, 1
2

}}
.

2.4.2 Character of representations of UHξ sl(2|1)
Definition 2.4.2. The character of a weight module V is

χV =
∑
µ

dim(Eµ(V ))Xµ1
1 Xµ2

2

where Eµ(V ) is the proper subspace of the proper value µ = (µ1, µ2) of
(h1, h2).

Note that we do not use the concept of a super-character defined as above
by replacing the dimension by the super-dimension.

A finite dimensional representation of Uξgl(2), subalgebra generated by
e1, f1, ki is defined by V = SpanC{v0, ..., v`−1} [1]

k1vp = λ1ξ
−2pvp with p ∈ {0, 1, ..., `− 1},

f1vp = vp+1 with p ∈ {0, 1, ..., `− 2} and f1v`−1 = 0,
e1vp = [p][µ1 − p+ 1]vp−1, ξ

µ1 = λ1,

k2vp = λ2ξ
pvp with p ∈ {0, 1, ..., `− 1}.

It extends to the generators h1, h2 by

h1vp = (µ1 − 2p)vp with p ∈ {0, 1, ..., `− 1},
h2vp = (µ2 + p)vp with p ∈ {0, 1, ..., `− 1}
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so that ξhi = ki, i = 1, 2 on V . We have the character of representation of
Uξgl(2)

χ
V

gl(2)
µ1,µ2

= Xµ1
1 Xµ2

2
1− x`
1− x where x = X−2

1 X2.

In the case of a typical representation, the nilpotent representation Vµ1,µ2

of Uξsl(2|1) with highest weight (µ1, µ2) is determined by

k1wρ,σ,p = λ1ξ
ρ−σ−2pwρ,σ,p,

k2wρ,σ,p = λ2ξ
σ+pwρ,σ,p

with h1wρ,σ,p = (µ1 + ρ− σ − 2p)wρ,σ,p and h2wρ,σ,p = (µ2 + σ + p)wρ,σ,p. So
the nilpotent representation Vµ1,µ2 has the following character

χ
V

sl(2|1)
µ1,µ2

= χ
V

gl(2)
µ1,µ2,ρ=σ=0

+ χ
V

gl(2)
µ1,µ2,ρ=1,σ=0

+ χ
V

gl(2)
µ1,µ2,ρ=0,σ=1

+ χ
V

gl(2)
µ1,µ2,ρ=σ=1

= Xµ1
1 Xµ2

2
1− x`
1− x (1 +X1)(1 +X1x). (2.4.7)

2.4.3 Braided category CH

Let Uqsl(2|1) be the C(q)-subsuperalgebra of the h-adic quantized en-
veloping superalgebra of sl(2|1) generated by the elements ei, fi, ki, k−1

i for
1 ≤ i ≤ 2 where q = eh ∈ C[[h]][h−1]. Let A = C[q, q−1, (` − 1)q!−1]. Let
UAsl(2|1) be the A-subsuperalgebra of Uqsl(2|1) generated by the elements
ei, fi, ki, k

−1
i for 1 ≤ i ≤ 2 and the relations (2.3.1) - (2.3.12) in which ξ is

replaced by q.
The C-superalgebra Uξsl(2|1) can be seen as the specialisation at q = ξ

of UAsl(2|1), i.e. Uξsl(2|1) = UAsl(2|1)/ (q − ξ)UAsl(2|1) (see also [6]). Then
Uξsl(2|1) is a superalgebra over C with generators ei, fi, ki, k−1

i for 1 ≤ i ≤ 2
and relations (2.3.1) - (2.3.12).

In articles [31, 51] the authors showed that Rq = ŘqKq where

Řq =
∞∑
i=0

{1}iei1 ⊗ f i1
(i)q!

1∑
j=0

(−{1})jej3 ⊗ f j3
(j)q!

1∑
k=0

(−{1})kek2 ⊗ fk2
(k)q!

,

(0)q! = 1, (n)q! := (1)q(2)q . . . (n)q, (k)q = 1−qk
1−q andKq = q−h1⊗h2−h2⊗h1−2h2⊗h2

is a universal R-matrix element of superalgebra Uqsl(2|1). That is, we have
the following relations in the h-adic completion of these algebras

(∆⊗ Id)(Rq) = Rq
13R

q
23, (Id⊗∆)(Rq) = Rq

13R
q
12, ∆op(x)Rq = Rq∆(x)

for all x ∈ Uqsl(2|1). The superalgebra Uqsl(2|1) has a Poincaré-Birkhoff-
Witt basis {ep

′

1 e
σ′
3 e

ρ′

2 h
s1
1 h

s2
2 f

ρ
2 f

σ
3 f

p
1 , p, p

′ ∈ N, ρ, σ, ρ′, σ′ ∈ {0, 1}, s1, s2 ∈ N}.
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Using this basis we can write Uqsl(2|1) as a direct sum Uqsl(2|1) = U< ⊕ I
where U< is a C(q)-module generated by the elements ep

′

1 e
σ′
3 e

ρ′

2 h
s1
1 h

s2
2 f

σ
3 f

ρ
2 f

p
1

for 0 ≤ p, p′ < `; ρ, σ, ρ′, σ′ ∈ {0, 1}, s1, s2 ∈ N and I is generated by the other
monomials. Set p : Uqsl(2|1)→ U< the projection with kernel I. We define

R< = p⊗ p(Rq) = p⊗ Id(Rq) = Id⊗p(Rq).

The proposition below shows that the “truncated R-matrix” R< satisfies the
properties of an R-matrix “modulo truncation”.

Proposition 2.4.3. R< satisfies:
1. (p⊗ p⊗ p)(∆⊗ Id(R<)) = (p⊗ p⊗ p)R<

13R<
23,

2. (p⊗ p⊗ p)(Id⊗∆(R<)) = (p⊗ p⊗ p)R<
13R<

12,
3. (p⊗ p)(R<∆op(x)) = (p⊗ p)(∆(x)R<) for all x ∈ Uqsl(2|1).

Proof. The above relations and p ◦ p = p give us (p⊗ p⊗ p)(∆⊗ Id(Rq)) =
(p⊗p⊗p)(∆⊗ Id)(Id⊗p(Rq)) = (p⊗p⊗p)(∆⊗ Id)(R<). At the same time
(p ⊗ p ⊗ p)(Rq

13R
q
23) = (p ⊗ p ⊗ p)((p ⊗ Id⊗ Id)(Rq

13)(Id⊗p ⊗ Id)(Rq
23)) =

(p⊗ p⊗ p)(R<
13R<

23). So

(p⊗ p⊗ p)(∆⊗ Id(R<)) = (p⊗ p⊗ p)R<
13R<

23. (2.4.8)

Similarly we also have

(p⊗ p⊗ p)(Id⊗∆)(R<) = (p⊗ p⊗ p)(R<
13R<

12). (2.4.9)

For the third equality, it is enough to check on the generator elements.
It is true when x = hi because ∆(hi) is symmetric and ∆(hi)(ej ⊗ fj) =

ej ⊗ hifj + hiej ⊗ fj = ej ⊗ fj(hi− aij) + ej(hi + aij)⊗ fj = ej ⊗ fj(1⊗ (hi−
aij) + (hi + aij)⊗ 1) = (ej ⊗ fj)∆(hi).

For x = ei we have (p⊗ p)(∆op(ei)Rq) = (p⊗ p)(1⊗ ei + ei ⊗ k−1
i )Rq =

(p ⊗ p)((1 ⊗ ei)Rq) + (p ⊗ p)((ei ⊗ k−1
i )Rq) = (p ⊗ p)((1 ⊗ ei)R<) + (p ⊗

p)((ei⊗k−1
i )R<) = (p⊗p)(∆op(ei)R<). On the other side (p⊗p)(Rq∆(ei)) =

(p⊗ p)(R<∆(ei)). So we have (p⊗ p)(∆op(ei)R<) = (p⊗ p)(R<∆(ei)).
For x = fi we proceed analogously. So we deduce that

(p⊗ p)(∆op(x)R<) = (p⊗ p)(R<∆(x)) ∀x ∈ Uqsl(2|1).

Let K be the operator in CH ⊗ CH defined by

K = ξ−h1⊗h2−h2⊗h1−2h2⊗h2
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that is ∀V,W ∈ CH ,KV⊗W = exp (ρV⊗W (2iπ
`

(−h1 ⊗ h2 − h2 ⊗ h1 − 2h2 ⊗ h2)))
is a linear map on the finite dimensional vector space V ⊗W . For example,
if wρ,σ,p ⊗ wρ′,σ′,p′ ∈ Vµ ⊗ Vµ′ , one has

KV⊗W (wρ,σ,p ⊗ wρ′,σ′,p′)
= ξ−(µ1+ρ−σ−2p)(µ′2+σ′+p′)−(µ2+σ+p)(µ′1+ρ′−σ′−2p′)−2(µ2+σ+p)(µ′2+σ′+p′)wρ,σ,p⊗wρ′,σ′,p′ .

We have
∆⊗ Id(K) = K13K23, Id⊗∆(K) = K13K12. (2.4.10)

Let Ř< be the universal truncated quasi R-matrix of Uqsl(2|1), q = eh ∈
C[[h]] given by Ř< = p⊗ p(Řq) = Id⊗p(Řq) = p⊗ Id(Řq), i.e.

Ř< =
`−1∑
i=0

{1}iei1 ⊗ f i1
(i)q!

1∑
j=0

(−{1})jej3 ⊗ f j3
(j)q!

1∑
k=0

(−{1})kek2 ⊗ fk2
(k)q!

.

Set Ř = Ř<|q=ξ, i.e.

Ř =
`−1∑
i=0

{1}iei1 ⊗ f i1
(i)ξ!

1∑
j=0

(−{1})jej3 ⊗ f j3
(j)ξ!

1∑
k=0

(−{1})kek2 ⊗ fk2
(k)ξ!

∈ UHξ sl(2|1)⊗UHξ sl(2|1).

Theorem 2.4.4. The operator R = ŘK led to a braiding {cV,W} in the
category CH where cV,W : V ⊗ W → W ⊗ V is determined by v ⊗ w 7→
τ(R(v ⊗ w)). Here τ : V ⊗W → W ⊗ V, v ⊗ w 7→ (−1)deg v degww ⊗ v.

Proof. It is sufficient to prove that the operator R satisfies

∆⊗ Id(R) = R13R23, Id⊗∆(R) = R13R12,R∆op(x) = ∆(x)R (2.4.11)

for all x ∈ UHξ sl(2|1).
Let χq : Uqsl(2|1)⊗Uqsl(2|1)→ Uqsl(2|1)⊗Uqsl(2|1) be the automorphism

determined by x ⊗ y 7→ Kq(x ⊗ y)K−1
q , this one induces an automorphism

χξ : UHξ sl(2|1)⊗UHξ sl(2|1)→ UHξ sl(2|1)⊗UHξ sl(2|1). We consider the element
Ř< of Uqsl(2|1)⊗ Uqsl(2|1), Proposition 2.4.3 implies the relations

∆⊗ Id(Ř) = Ř13 (χξ)13 (Ř23), (2.4.12)
Id⊗∆(Ř) = Ř13 (χξ)13 (Ř12), (2.4.13)
Ř (χξ) (∆op(x)) = ∆(x)Ř for all x ∈ UHξ sl(2|1). (2.4.14)

We will prove the equality (2.4.12), and that the other two are similar. From
the first equality of the Proposition 2.4.3, we deduce that (∆⊗ Id)(Ř<Kq) =
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Ř<
13(Kq)13Ř<

23(Kq)23. The term in the left of this equality is equal to (∆ ⊗
Id)(Ř<)(∆ ⊗ Id)(Kq) = ∆ ⊗ Id(Ř<)(Kq)13(Kq)23. The right one is equal
to Ř<

13(Kq)13Ř<
23(Kq)23 = Ř<

13 (χq)13 (Ř<
23)(Kq)13(Kq)23. Now because Kq is

invertible, the result is ∆⊗ Id(Ř<) = Ř<
13 (χq)13 (Ř<

23).
The element Ř< has no pole when q is a root of unity of order `. Hence

we can specialize this relation at q = ξ and ∆ ⊗ Id(Ř) = Ř13 (χξ)13 (Ř23).
Finally, as operators on V1 ⊗ V2 ⊗ V3 in which V1, V2, V3 ∈ CH , Equation
(2.4.10) implies that

∆⊗ Id(R) = (∆⊗ Id)(Ř)(∆⊗ Id)(K)
= Ř13 (χξ)13 (Ř23)K13K23

= Ř13K13Ř23K−1
13 K13K23

= Ř13K13Ř23K23

= R13R23.

Thus the relations of equation (2.4.11) hold.

The category CH is pivotal and braided with the braiding cV,W : V⊗W →
W ⊗ V, v ⊗ w 7→ τ ◦ R(v ⊗ w) where V,W ∈ CH .

2.4.4 Ribbon category CH

To prove the next proposition we will use the semi-simplicity of Cg (g ∈
G\Gs) which is proven later in Theorem 2.4.14.

Proposition 2.4.5. The family of isomorphisms θV : V → V determined by
θV = (IdV ⊗

←−evV )(cV,V ⊗ IdV ∗)(IdV ⊗
−→coevV ), V ∈ CH is a twist. That is

θV = θ
′
V ∀V ∈ CH where θ′V = (−→evV ⊗ IdV )(IdV ∗ ⊗cV,V )( ←−coevV ⊗ IdV ).

Proof. Firstly, if V is a typical module of highest weight µ = (µ1, µ2), V ∈
CH
g , g ∈ G\Gs, we have θ

′
V = (−→evV ⊗ IdV )(IdV ∗ ⊗cV,V )( ←−coevV ⊗ IdV ) =

X1X2X3.
We use the vector of lowest weight (µ1− 2`+ 2, µ2 + `) of V, w1,1,`−1 := w∞,
to calculate.

X3(w∞) =
∑
ρ,σ,p

(−1)ρ+σw∗ρ,σ,p ⊗ φ−1
0 wρ,σ,p ⊗ w∞

=
∑
ρ,σ,p

(−1)ρ+σξ`µ1+2µ2+2σ+2pw∗ρ,σ,p ⊗ wρ,σ,p ⊗ w∞.
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X2X3(w∞) = ∑
ρ,σ,p(−1)ρ+σξ`µ1+2µ2+2σ+2pw∗ρ,σ,p ⊗ (τ ◦ R)(wρ,σ,p ⊗ w∞).

K(wρ,σ,p ⊗ w∞) = ξ−h1⊗h2−h2⊗h1−2h2⊗h2wρ,σ,p ⊗ w∞
= ξ−µ1(µ2+σ+p+`)−µ2(µ1+2µ2+σ+ρ+2)−2(σ+p)wρ,σ,p ⊗ w∞.

X2X3(w∞)
=
∑
ρ,σ,p

(−1)ρ+σξ`µ1+2µ2ξ−µ1(µ2+σ+p+`)−µ2(µ1+2µ2+σ+ρ+2)w∗ρ,σ,p ⊗ w∞ ⊗ wρ,σ,p

=
∑
ρ,σ,p

(−1)ρ+σξ−µ1(µ2+σ+p)−µ2(µ1+2µ2+σ+ρ)w∗ρ,σ,p ⊗ w∞ ⊗ wρ,σ,p.

So

X1X2X3(w∞) =
∑
ρ,σ,p

(−1)ρ+σξ−µ1(µ2+σ+p)−µ2(µ1+2µ2+σ+ρ)w∗ρ,σ,p(w∞)⊗ wρ,σ,p

= ξ−µ1(µ2+`)−µ2(µ1+2µ2+2)w∞.

Secondly, we have

θV = (IdV ⊗
←−evV )(cV,V ⊗ IdV ∗)(IdV ⊗

−→coevV ) = Y1Y2Y3.

Y3(w0,0,0) = ∑
ρ,σ,pw0,0,0 ⊗ wρ,σ,p ⊗ w∗ρ,σ,p,

Y2Y3(w0,0,0) = ∑
ρ,σ,p(τ ◦ R)(w0,0,0 ⊗ wρ,σ,p)⊗ w∗ρ,σ,p where

K(w0,0,0 ⊗ wρ,σ,p) = ξ−µ1(µ2+σ+p)−µ2(µ1+ρ−σ−2p)−2µ2(µ2+σ+p)w0,0,0 ⊗ wρ,σ,p and
R(w0,0,0 ⊗ wρ,σ,p) = ξ−µ1(µ2+σ+p)−µ2(µ1+ρ−σ−2p)−2µ2(µ2+σ+p)w0,0,0 ⊗ wρ,σ,p.
Y2Y3(w0,0,0) = ∑

ρ,σ,p ξ
−µ1(µ2+σ+p)−µ2(µ1+ρ−σ−2p)−2µ2(µ2+σ+p)wρ,σ,p⊗w0,0,0⊗w∗ρ,σ,p.

Y1Y2Y3(w0,0,0)
=
∑
ρ,σ,p

ξ−µ1(µ2+σ+p)−µ2(µ1+ρ−σ−2p)−2µ2(µ2+σ+p)wρ,σ,p ⊗ w∗ρ,σ,p((−1)ρ+σφ0w0,0,0)

=
∑
ρ,σ,p

(−1)ρ+σξ−µ1(µ2+σ+p)−µ2(µ1+ρ−σ−2p)−2µ2(µ2+σ+p)wρ,σ,p ⊗ w∗ρ,σ,p(ξ−`µ1−2µ2w0,0,0)

= ξ−2µ1µ2−2µ2
2−2µ2−`µ1w0,0,0

= ξ−µ1(µ2+`)−µ2(µ1+2µ2+2)w0,0,0.

We can deduce that θV = θ
′
V for every typical module V with highest weight

µ = (µ1, µ2), V ∈ CH
g , g ∈ G\Gs. Note that the calculation does not change

if we reverse the parity of vectors. So we have the affirmation for a semi-
simple module in degree g ∈ G\Gs. Let a module W ∈ CH

g , g ∈ G. By
Theorem 2.4.14 it exists h ∈ G such that CH

h ,C
H
g+h are semi-simple. For a

module V ∈ CH
h we have W ⊗ V ∈ CH

g+h is semi-simple.
Because θW⊗V = (θW ⊗ θV )cV,W cW,V = θ

′
W⊗V = (θ′W ⊗ θ

′
V )cV,W cW,V and

θV = θ
′
V , we deduce that θW = θ

′
W ∀W ∈ CH , i.e. the family θV is a

twist.
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Lemma 2.4.6. Let µ = (µ1, µ2) ∈ C× C, then the value of the twist θVµ on
a simple module Vµ with highest weight µ is ξ−`µ1−2µ2(1+µ1+µ2) IdVµ. That is,

θVµ = ξ−`µ1−2µ2(1+µ1+µ2) IdVµ = −ξ−2(α2
2+α1α2) IdVµ

where α = (α1, α2) = (µ1 − `+ 1, µ2 + `
2).

Proof. By the proof of Proposition 2.4.5, θVµ = ξ−`µ1−2µ2(1+µ1+µ2) IdVµ .

The category CH is a braided pivotal category with a twist, i.e. CH is a
ribbon category.

Let T be the ribbon category of CH-colored oriented ribbon graphs in
the sense of Turaev [47].
The set of morphisms T (((V1,±), ..., (Vn,±)), ((W1,±), ..., (Wn,±))) is a space
of linear combinations of C -colored ribbon graphs. The ribbon Reshetikhin-
Turaev functor F : T → CH is defined by the Penrose graphical calculus.

Definition 2.4.7. If T ∈ T ((Vµ,+), (Vµ,+)) where Vµ is a simple weight
module of UHξ sl(2|1), then F (T ) = x. IdVµ ∈ EndUH

ξ
sl(2|1)(Vµ) for x ∈ C. We

define the bracket of T by 〈T 〉 = x. For example, if Vµ, Vµ′ ∈ CH , we define

S ′(Vµ, Vµ′) =
〈

Vµ

Vµ′〉
.

We write S ′(µ, µ′) for S ′(Vµ, Vµ′).

Another example is the bracket of the twist
〈

Vµ

〉
= −ξ−2(α2

2+α1α2), (α1, α2) =

(µ1 − `+ 1, µ2 + `
2).

Proposition 2.4.8. Let V = Vµ be a typical module, V ′ = Vµ′ be a simple
module, then

S
′(µ, µ′) = ξ−4α2α′2−2(α2α′1+α1α′2){`α′1}{α′2}{α′2 + α′1}

{α′1}

where α = (α1, α2) = (µ1− `+ 1, µ2 + `
2), α′ = (α′1, α′2) = (µ′1− `+ 1, µ′2 + `

2).

Proof. Let S = S(µ, µ′) ∈ EndC(Vµ′1,µ′2) be the endomorphism determined by

the diagram
Vµ

Vµ′

. We have

S ′(µ, µ′) IdVµ′ = (IdV ′ ⊗
←−evV )(cV,V ′ ⊗ IdV ∗)(cV ′ ,V ⊗ IdV ∗)(IdV ′ ⊗

−→coevV )
= X1X2X3X4.
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The definition gives us
X4(w′0,0,0) = ∑

ρ,σ,pw
′
0,0,0 ⊗ wρ,σ,p ⊗ w∗ρ,σ,p and

X3X4(w′0,0,0) = ∑
ρ,σ,p(τ ◦ R)(w′0,0,0 ⊗ wρ,σ,p)⊗ w∗ρ,σ,p.

K(w′0,0,0 ⊗ wρ,σ,p) = ξ−µ
′
1(µ2+σ+p)−µ′2(µ1+ρ−σ−2p)−2µ′2(µ2+σ+p)w′0,0,0 ⊗ wρ,σ,p.

R(w′0,0,0 ⊗ wρ,σ,p) = ξ−µ
′
1(µ2+σ+p)−µ′2(µ1+ρ−σ−2p)−2µ′2(µ2+σ+p)w′0,0,0 ⊗ wρ,σ,p.

So

X3X4(w′0,0,0) =
∑
ρ,σ,p

ξ−µ
′
1(µ2+σ+p)−µ′2(µ1+ρ−σ−2p)−2µ′2(µ2+σ+p).

wρ,σ,p ⊗ w′0,0,0 ⊗ w∗ρ,σ,p.

X2X3X4(w′0,0,0) =
∑
ρ,σ,p

ξ−µ
′
1(µ2+σ+p)−µ′2(µ1+ρ−σ−2p)−2µ′2(µ2+σ+p).

(τ ◦ R)(wρ,σ,p ⊗ w′0,0,0)⊗ w∗ρ,σ,p.

Furthermore, the element (Ř − 1)(wρ,σ,p ⊗ w′0,0,0) ∈ Vµ1,µ2 ⊗ Vµ′1,µ′2 is a sum
of vectors of the form v′ ⊗ w′ where w′ is a weight vector of Vµ′1,µ′2 and v′ is
a weight vector of Vµ1,µ2 which has a higher weight than wρ,σ,p.

X2X3X4(w′0,0,0) =
∑
ρ,σ,p

(ξ−µ′1(µ2+σ+p)−µ′2(µ1+ρ−σ−2p)−2µ′2(µ2+σ+p).

w′0,0,0 ⊗ wρ,σ,p ⊗ w∗ρ,σ,p +
∑
k

w′k ⊗ v′k ⊗ zk).

X1X2X3X4(w′0,0,0)
=
∑
ρ,σ,p

ξ−µ
′
1(µ2+σ+p)−µ′2(µ1+ρ−σ−2p)−2µ′2(µ2+σ+p)w′0,0,0 ⊗ (−1)ρ+σw∗ρ,σ,p(φ0wρ,σ,p)

=
∑
ρ,σ,p

ξ−µ
′
1(µ2+σ+p)−µ′2(µ1+ρ−σ−2p)−2µ′2(µ2+σ+p)−`µ1−2(µ2+σ+p)w′0,0,0

= ξ−(2µ2+µ1+1)(2µ′2+µ′1+1)+(µ1+1)(µ′1+1)−`(µ′1+µ1+1){`(µ′1 + 1)}{µ′2}{µ′2 + µ′1 + 1}
{µ′1 + 1} w′0,0,0

= ξ−4α2α′2−2(α2α′1+α1α′2){`α′1}{α′2}{α′2 + α′1}
{α′1}

w′0,0,0.

By the definition S(µ, µ′)(w′0,0,0) = S
′(µ, µ′)w′0,0,0, we deduce the propo-

sition.

Definition 2.4.9. If µ = (µ1, µ2) ∈
(
C\1

2Z ∪ (−1 + `
2Z)

)
× C\ `2Z and µ2 +

µ1 + 1 ∈ C\ `2Z, we define

d(µ) = {µ1 + 1}
`{`µ1}{µ2}{µ2 + µ1 + 1} = {α1}

`{`α1}{α2}{α1 + α2}
,
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so there is a symmetry

d(µ′)S ′(µ, µ′) = d(µ)S ′(µ′, µ).

2.4.5 Semi-simplicity of category CH

Remember that G = C/Z × C/Z and Gs = {g ∈ G such that ∃ V ∈
CH
g simple and atypical}. Recall that we denote with a bar a module with

opposite parity. Then if V ∈ CH , V ' V ⊗ I.

Lemma 2.4.10. If CH
µ is semi-simple, then a module of CH

µ is determined
up to an isomorphism and parity by its character: let V = V1 ⊕ ... ⊕ Vm be
a decomposition of V into simple modules and let V ′ be a module with the
same character then

V ′ ' V1 ⊗ ε1 ⊕ ...⊕ Vm ⊗ εm

where εi ∈ {I, I} for 1 ≤ i ≤ m.

The above lemma and the character of representation Vµ1,µ2⊗Vµ′1,µ′2 gives
us the following theorem.

Theorem 2.4.11. Let Vµ, Vµ′ be two typical modules. If µ+ µ′ /∈ Gs then

Vµ1,µ2 ⊗ Vµ′1,µ′2 = ⊕`−1
k=0(Vµ1+µ′1−2k,µ2+µ′2+k ⊕ V µ1+µ′1−2k+1,µ2+µ′2+k

⊕ V µ1+µ′1−2k,µ2+µ′2+k+1 ⊕ Vµ1+µ′1−2k−1,µ2+µ′2+k+1) (2.4.15)

where V is the module V with opposite parity.

Proof. According to the formula (2.4.7), we have

χ
V

sl(2|1)
µ1,µ2 ⊗V

sl(2|1)
µ′1,µ

′
2

= χ
V

sl(2|1)
µ1,µ2

χ
V

sl(2|1)
µ′1,µ

′
2

= X
µ1+µ′1
1 X

µ2+µ′2
2

1− x`
1− x (1 +X1)(1 +X1x)

`−1∑
k=0

(X−2
1 X2)k(1 +X1 +X2 +X−1

1 X2)

= 1− x`
1− x (1 +X1)(1 +X1x)

`−1∑
k=0

X
µ1+µ′1−2k
1 X

µ2+µ′2+k
2 +X

µ1+µ′1−2k+1
1 X

µ2+µ′2+k
2

+X
µ1+µ′1−2k
1 X

µ2+µ′2+k+1
2 +X

µ1+µ′1−2k−1
1 X

µ2+µ′2+k+1
2 .

The analysis of parity of highest weight vectors allows to conclude.

Remark 2.4.12. Not all terms in the decomposition of the above theorem
are distinct.
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We defined a graduation CH = ⊕
µ∈G CH

µ . Let Proj be the subcategory
of CH containing projective modules, Proj is an ideal (see [12]), i.e. Proj
is closed under retracts and absorbent for the tensor product. We have the
following proposition.

Proposition 2.4.13. For µ ∈ G, the three conditions below are equivalent
1. All the simple Uξsl(2|1)-modules of Cµ are projective.
2. The category Cµ is semi-simple.
3. The C-superalgebra of finite dimension U/(k`1− ξ`µ1 , k`2− ξ`µ2) is semi-

simple where U = Uξsl(2|1)/(e`1, f `1).

Proof. The equivalence is classic knowing that Cµ is also a category of the
U/(k`1 − ξ`µ1 , k`2 − ξ`µ2)-modules.

Theorem 2.4.14. 1. If µ ∈ G\Gs then CH
µ is semi-simple.

2. A typical UHξ sl(2|1)-module is projective.

We select and fix a µ ∈ G\Gs, denote µi = (µ1 + i1, µ2 + i2) ∈ µ, i1, i2 =
0, 1, ..., `− 1, that is µi ∈ {(µ1 + i1, µ2 + i2) : i1, i2 = 0, 1, ..., `− 1}. We have
the two following lemmas.

Lemma 2.4.15. For all µi, µj ∈ µ : µi 6= µj there exists zij ∈ Z such that
χµi(zij) 6= χµj(zij) where χµi(zij) ∈ C is defined by ρµi(zij) = χµi(zij) IdVµi .

Proof. We consider µ = (µ1, µ2), µ′ = (µ1 + k, µ2 + m) k,m = 0, 1, ..., ` − 1.
We suppose that ∀ z ∈ Z : χµ(z) = χµ′(z). Consider the central elements Cp
where p ∈ Z (see [1]). We have

χµ(Cp) = (ξ − ξ−1)2ξ(2p−1)(µ1+2µ2)[µ2][µ2 + µ1 + 1],
χµ′(Cp) = (ξ − ξ−1)2ξ(2p−1)(µ1+2µ2+k+2m)[µ2 +m][µ2 + µ1 + k +m+ 1].

Because χµ(Cp) = χµ′(Cp) and [µ2][µ2 + µ1 + 1] 6= 0, we deduce that
χµ(Cp+1)
χµ(Cp) = χµ′ (Cp+1)

χµ′ (Cp)

χµ(Cp) = χµ′(Cp).

This is equivalent toξ2(µ1+2µ2) = ξ2(µ1+2µ2+k+2m)

ξ(2p−1)(µ1+2µ2)[µ2][µ2 + µ1 + 1] = ξ(2p−1)(µ1+2µ2+k+2m)[µ2 +m][µ2 + µ1 + k +m+ 1],

which implies
2(k + 2m) = 0 (modulo `Z) (2.4.16)
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and

[µ2][µ2 + µ1 + 1] = ξk+2m[µ2 +m][µ2 + µ1 + k +m+ 1]. (2.4.17)

Because ` odd, Equation (2.4.16) implies k + 2m = 0 (modulo `Z) ⇔
k+m = −m (modulo `Z). On the other hand, Equation (2.4.17) is equivalent
to [a][b] = [a + m][b − m] ⇔ −[a − b + m][m] = 0 ⇔ [−µ1 − 1 + m][m] =
0 ⇒ m = 0 where a = µ2, b = µ1 + µ2 + 1. Because m = 0, we have
k = 0 (modulo `Z)⇒ k = 0.

Lemma 2.4.16. Let V be a vector space over C, I be a finite set and consider
a family of C-linear functions ai : V → C, i ∈ I. If for all i 6= j ∃ uij ∈ V
such that ai(uij) 6= aj(uij), then it exists u0 ∈ V such that ∀ i 6= j ai(u0) 6=
aj(u0).

Proof. We set u = ∑
i6=j xijuij ∈ V with xij ∈ C, i, j ∈ I. We denote

x = (xij) ∈ CN . We consider the set X = {x ∈ CN ∃i 6= j ai(u) =
aj(u)} = {x ∈ CN : ∑

i6=j(ai(uij) − aj(uij))xij = 0}, this is a finite reunion
of hyperplanes of CN . This proves that ∃x /∈ X and this x does not have the
above property. That is, it exists u0 ∈ V such that ai(u0) 6= aj(u0) for all
i 6= j.

Now we introduce a new basis of module Vµ. This basis diagonalize the
operator Ω in the proof of Theorem 2.4.14. We set

w′ρ,σ,p =


wρ,σ,p if ρ = σ = 0, 1
fp1w1,0,0 if ρ = 1, σ = 0
e

(`−1)−p
1 w0,1,r−1 if ρ = 0, σ = 1

where p = 0, ..., `− 1. For the basis {w′ρ,σ,p} we have the actions

k1w
′
ρ,σ,p = ξµ1+ρ−σ−2pw′ρ,σ,p,

k2w
′
ρ,σ,p = ξµ2+σ+pw′ρ,σ,p,

e1w
′
1,0,p = [p][µ1 + 2− p]w′1,0,p−1,

f1w
′
1,0,p = w′1,0,p+1,

e1w
′
0,1,p = w′0,1,p−1,

f1w
′
0,1,p = [p+ 1][µ1 − (p+ 1)]w′0,1,p+1.

Proof of Theorem 2.4.14. We begin to show that Cµ is semi-simple. We set
A = U/(k`1 − ξ`µ1 , k`2 − ξ`µ2). The density theorem implies that the appli-
cation ρ : A → ∏

µi End(Vµi) ∼=
∏`2

i=1M4`(C) is surjective. We give here an
elementary proof.
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By Lemma 2.4.15 and 2.4.16, it exists an element z ∈ Z such that ∀ µi 6=
µj χµi(z) 6= χµj(z) and we set zi = χµi(z) i = 1, ..., `2 and we introduce the
ideal J = ∏`2

i=1(z − zi)A.

Firstly, we consider the representation ρ : A/(z − zi) → EndC(Vµi). We
will prove that ρ is a surjection. We have EndC(Vµi) ∼= M4`(C). We con-

sider the elements Ω = k1ξ+k−1
1 ξ−1

{1}2 + f1e1 = k1ξ−1+k−1
1 ξ

{1}2 + e1f1, c = k1k
2
2, k1 in

Uξsl(2|1). The actions of these elements on the basis w′ρ,σ,p are defined by

Ωw′0,0,p = (ξµ1+1 + ξ−µ1−1)w′0,0,p,Ωw′1,1,p = (ξµ1+1 + ξ−µ1−1)w′1,1,p,

Ωw′0,1,p = ξµ1 + ξ−µ1

{1}2 w′0,1,p,Ωw′1,0,p = ξµ1+2 + ξ−µ1−2

{1}2 w′1,0,p,

cw′ρ,σ,p = ξµ1+2µ2+ρ+σw′ρ,σ,p,

k1w
′
ρ,σ,p = ξµ1+ρ−σ−2pw′ρ,σ,p.

We now check that for all w′ρ,σ,m 6= w′ρ′,σ′,j ∃ u ∈ {Ω, c, k1} such that
χρ,σ,mµi

(u) 6= χρ
′,σ′,j
µi

(u) where ρ(u)w′ρ,σ,m = χρ,σ,mµi
(u)w′ρ,σ,m for ρ, σ, ρ′, σ′ ∈

{0, 1}, m, j ∈ {0, ..., ` − 1}. Indeed, if ρ + σ 6= ρ′ + σ′ then we select u = c
and we have cw′ρ,σ,m 6= cw′ρ′,σ′,j. If ρ+σ = ρ′+σ′ then we consider two cases:
if (ρ, σ) 6= (ρ′, σ′) we select u = Ω and Ωw′ρ,σ,m 6= Ωw′ρ′,σ′,j; if (ρ, σ) = (ρ′, σ′)
we select u = k1 and we have k1w

′
ρ,σ,m 6= k1w

′
ρ′,σ′,j because m 6= j.

By Lemma 2.4.16 it exists a vector u0 ∈ C〈Ω, c, k1〉-space generated by
the elements Ω, c, k1 such that χρ,σ,mµi

(u0) 6= χρ
′,σ′,j
µi

(u0) for all w′ρ,σ,m 6= w′ρ′,σ′,j.
The matrix B determined by the application ρ(u0) is a diagonal matrix
which has 4` different eigenvalues. The image of the projection on the i-
th eigenspace of B is the matrix Eii, i = 1, ..., 4`. Hence the matrix Eii is in
the image of ρ.

For i ∈ {1, ..., `2}, j ∈ {1, ..., 4`} we have ρ(A/(z − zi))(vj) ⊂ Vµi (here
we denote vj the j-th vector of the basis) and Vµi is simple. Thus we deduce
ρ(A/(z − zi))(vj) = Vµi . This proves that it exists a0 ∈ A/(z − zi) such that
ρ(a0)(vj) = vn ∀n ∈ {1, ..., 4`}.

The endomorphism ρ(a0) determines the matrix (ρ(a0)) where ρ(a0)jn =
1. The matrix Ejn is equal to Ejjρ(a0)jnEnn, i.e. the matrix Ejn is the image
of an element in A/(z−zi). So the application ρ is a surjection. This implies
that the application ∏`2

i=1A/(z − zi)→
∏`2

i=1M4`(C) is surjective.
Secondly, the composition ∏`2

i=1A/(z − zi) → A/J →
∏`2

i=1A/(z − zi) is
the identity. Thus, the application A/J → ∏`2

i=1A/(z − zi) is surjective. We
deduce a series of surjections A� A/J �

∏`2

i=1A/(z − zi) �
∏`2

i=1M4`(C),
this sequence determines the surjection A�

∏`2

i=1M4`(C).
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Furthermore, the two algebras A and ∏`2

i=1M4`(C) have the same di-
mension 16`4. This implies that this surjection is an isomorphism. This
demonstrates that A is semi-simple. The category Cµ is also semi-simple.

Now we prove that CH
µ is semi-simple. Let V H be a module in CH

µ . Set
W = Ker e1∩Ker e2∩Ker e3, it is a vector space of the highest weight vectors
(the weights for (h1, h2)). We call {vj}nj=1 a basis of weight vectors of W , we
have hivj = µijvj, i = 1, 2. So each vj generates a UHξ sl(2|1)-module Vj,

Vj = UHξ sl(2|1).vj = Uξsl(2|1).vj = U−.vj
where U− = Alg〈f1, f2, f3〉 ⊂ Uξsl(2|1) and dim(U−) = 4`. Thus dim(Vj) ≤
4` and Vj is simple (because there is no module in CH

µ of dimension strictly
between 0 and 4`).

Set V ′ = ∑n
i=1 Vi ⊂ V H . We can write V H = V

′ ⊕ V
′′ as a Uξsl(2|1)-

module. However W ⊂ V
′ which implies V ′′ = 0 (because there is no highest

weight vector in V
′′) and V H = V

′ = ∑n
i=1 Vi. Because the Vi are simple, so

V H = ⊕
i∈I Vi where I ⊂ {1, ..., n}. Thus V H is semi-simple.

For the second assertion (2), if V ∈ CH
µ and CH

µ is semi-simple, then V is
projective. If not, (2) follows from S ′(Vµ, V ) 6= 0 where Vµ is any projective
typical module which implies that V is a direct factor of Vµ⊗V ⊗V ∗µ ∈ Proj.
This implies that V is a projective module.

2.5 Modified traces on projective modules
In this section we recall the definition of an ambidextrous module pre-

sented by N. Geer, B. Patureau-Mirand and V. Turaev in [17] and of a mod-
ified trace on an ideal in a category introduced by N. Geer, J. Kujawa and
B. Patureau-Mirand in [12]. We prove there exists a modified trace on the
ideal of projective modules of the category CH . The modified trace allows
us to construct an invariant of embedded graphs in Theorem 2.5.5.

2.5.1 Ambidextrous modules
For each object V of the category C and any endomorphism f of V ⊗ V

set

ptrR(f) = (IdV ⊗
←−evV ) ◦ (f ⊗ IdV ∗) ◦ (IdV ⊗

−→coevV ) ∈ End(V ),
ptrL(f) = (−→evV ⊗ IdV ) ◦ (IdV ∗ ⊗f) ◦ ( ←−coevV ⊗ IdV ) ∈ End(V ).

In the ribbon category CH of nilpotent weight UHξ sl(2|1)-modules, we say
that a module V is ambidextrous if V simple and ptrL(f) = ptrR(f) for all
f ∈ End(V ⊗ V ) (see [17]).
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Theorem 2.5.1. Each typical module Vµ of category CH is an ambidextrous
module.

Proof. We will prove this theorem in two steps:
Step 1. Proving the existence of two nonzero UHξ sl(2|1)-invariant vectors
x−w+ and x+w−.
Step 2. Applying Theorem 3.1.3 [13] gives us the affirmation that Vµ is
ambidextrous.

Call v+, v
′
+ the highest weight vectors of Vµ, V ∗µ and v−, v

′
− the lowest

weight vectors of Vµ, V ∗µ . Set x− = f2f3f
`−1
1 , x+ = e2e3e

`−1
1 , w+ = v+ ⊗

v′+, w− = v− ⊗ v′−. We will prove that the two vectors x−w+ and x+w− are
UHξ sl(2|1)-invariant.

We consider the actions of generator elements ei, hi, fi on x−w+. The
highest weight vector (resp. lowest) of Vµ is v+ = w0,0,0 (resp. v− = w1,1,`−1).
The highest weight vector (resp. lowest) of V ∗µ is v′+ = w∗1,1,`−1 (resp. v′− =
w∗0,0,0).

The weight of vector w+ = v+ ⊗ v′+ is equal to the sum of the weights
of v+ and v′+. That is weight(w+) = (µ1, µ2) + (−µ1 + 2` − 2,−µ2 −
`) = (2` − 2,−`). Furthermore, weight(x−w+) = weight(f2f3f

`−1
1 w+) =

weight(f2f1f2f
`−1
1 w+) = −`weight(e1)−2weight(e2)+weight(w+) = −`(2,−1)−

2(−1, 0) + (2`− 2,−`) = (0, 0). It implies that hix−w+ = 0.
We also have the relations below between the generator elements in

UHξ sl(2|1) (see (B1) [1]):

f1f
ρ
2 f

σ
3 f

p
1 = ξρ−σfρ2 f

σ
3 f

p+1
1 − ρ(1− σ)ξ−ρfρ−1

2 fσ+1
3 fp1 ,

f2f
ρ
2 f

σ
3 f

p
1 = (1− ρ)fρ+1

2 fσ3 f
p+1
1 ,

[e1, f
ρ
2 f

σ
3 f

p
1 ] = σ(1− ρ)(−1)σfρ+1

2 fσ−1
3 fp1 ξ

h1−2p+1 + [p]fρ2 fσ3 f
p−1
1 [h1 − p+ 1],

e2f
ρ
2 f

σ
3 f

p
1 − (−1)ρ+σfρ2 f

σ
3 f

p
1 e2 = ρfρ−1

2 fσ3 f
p
1 [h2 + p+ σ] + σ(−1)ρfρ2 fσ−1

3 fp+1
1 ξ−h2−p

where (p, ρ, σ) ∈ N × {0, 1} × {0, 1}. With the above relations, it is easy to
check fix−w+ = 0.

The fourth relation above gives us e2f2f3f
`−1
1 −f2f3f

`−1
1 e2 = f3f

`−1
1 [h2+`].

Because e2(v+ ⊗ v′+) = 0 and [h2 + `](v+ ⊗ v′+) = 0, we deduce e2x−w+ = 0.
The third relation gives [e1, f2f3f

`−1
1 ] = [`−1]f2f3f

`−2
1 [h1−`+2]. Because

e1(v+ ⊗ v′+) = 0 and [h1 − `+ 2](v+ ⊗ v′+) = 0, we deduce e1x−w+ = 0.
Consequently, we conclude that x−w+ is an UHξ sl(2|1)-invariant vector.

The demonstration that the vector x+w− is UHξ sl(2|1)-invariant is analo-
gous using the relations obtained by applying the automorphism ω of su-
peralgebra UHξ sl(2|1) where ω(ei) = (−1)deg eifi, ω(fi) = (−1)deg fiei, ω(ki) =
k−1
i , ω(hi) = −hi, i = 1, 2.
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Furthermore ∆x− = x−⊗1+ a sum of tensor products of two elements of
UHξ sl(2|1) with negative weight. Thus ∆x−w+ contains the nonzero vector
x−v+ ⊗ v′+ = f2f3f

`−1
1 v+ ⊗ v′+ = w1,1,`−1 ⊗ v′+. We conclude that the vector

x−w+ is nonzero. Similarly, the vector x+w− is nonzero.
For step 2, we use the following results:
The decomposition of the tensor product V ⊗ V ∗ is a direct sum of inde-

composable modules
V ⊗ V ∗ = P1 ⊕ ...⊕ Pm.

The set of invariant vectors w ∈ V ⊗ V ∗ is in bijection with −→coevV (C)
because HomC (C, V ⊗ V ∗) ∼= HomC (V, V ) ∼= C.

The vector w+ (resp. w−) is the highest weight vector (resp. lowest weight
vector) of V ⊗ V ∗. Then there exists a unique integer k (resp. l) such that
w+ ∈ Pk (resp. w− ∈ Pl). The weight of w+ (resp. w−) is λ+ = (2`− 2,−`)
(resp. λ− = (−2` + 2, `)). Because λ− = −λ+ and (V ⊗ V ∗)∗ ' (V ⊗ V ∗),
this implies P ∗k ' Pl.

In addition, −→coevV (1) ∈ Pl,
−→coevV (1) ∈ Pk because x+Pl ⊂ Pl, x−Pk ⊂

Pk, then Pk = Pl. That is Pk = P ∗k . By Theorem 3.1.3 [13], it gives us the
affirmation that Vµ ambidextrous.

Remark 2.5.2. All typical modules are projective and ambidextrous.

2.5.2 Modified traces on the projective modules
Definition 2.5.3. Let I be an ideal of C (see [12]). The family of linear
applications t = (tV : EndC (V ) → k)V ∈I is a trace (modified trace) on I if
it satisfies:
∀U, V ∈ I,∀W ∈ C ,

∀f ∈ HomC (U, V ),∀g ∈ HomC (V, U), tV (f ◦ g) = tU(g ◦ f)

∀f ∈ EndC (V ⊗W ), tV⊗W (f) = tV (ptrR(f)).

We also have

∀f ∈ EndC (W ⊗ V ), tW⊗V (f) = tV (ptrL(f)).

Given V as a typical module. The module V is ambidextrous and pro-
jective. This implies that the ideal generated by this module is IV = Proj
(see [12]). Hence the modified trace is also defined on non simple projective
modules:
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Theorem 2.5.4. There exists a unique modified trace t = {tP}P∈Proj on the
ideal Proj of projective modules of CH ,

tP : End(P )→ C, P ∈ Proj.

If P = Vµ is a typical module, then tVµ(f) = 〈f〉d(µ), f ∈ End(Vµ),
d(µ) = tVµ(IdVµ) is determined by Definition 2.4.9.

2.5.3 Invariants of embedded graphs
Recall that CH is the C-linear ribbon category of nilpotent weight mod-

ules over UHξ sl(2|1), Proj is the ideal of projective modules and t is a trace
on Proj.

We call G the set of CH-colored closed ribbon graphs, that are the CH-
colored ribbon graphs in S3. We have G ∼= EndT (∅).

We use the concept of a cutting presentation of CH-colored closed rib-
bon graph: If a diagram T represents a CH-colored ribbon graph which is
an endomorphism of T , its lower and upper parts are formed by the same
sequences of k vertical colored strands. It is then possible, as for a braid of
k strands, to consider the closure T̂ obtained by joining its k top vertices to
its k bottom vertices by k parallel strands. This construction is actually the
categorical trace in T : we have T̂ = trT (T ) ∈ EndT (∅). We say that T is a
cutting presentation with k strands of the closed graph T̂ and that T̂ is the
closure of T (see [39]).

A closed graph T of T is said to be CH-colored admissible if there is at
least one strand of T colored by P ∈ Proj. Let Ga be the set of isotopy
classes of CH-colored admissible ribbon graphs.

From the trace t on Proj we have the theorem below.

Theorem 2.5.5. The application

F ′ : Ga → C
T̂ 7→ tP (F (T ))

is well defined. Here, P ∈ Proj, T ∈ EndT ((P,+)) is a cutting presentation
with one strand of T̂ . That is to say the complex number tP (F (T )) does not
depend on the choice of T but only of the isotopy class of the CH-colored
graph T̂ .

Proof. First, we select an edge of T̂ and cut, we have the graph T . Then,
we select and cut a second edge of T̂ , we have the graph T ′. By cutting T̂ in
both these places, one obtains a graph T2 ∈ EndGa((P,+), (P ′,+)) which is a
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presentation with two strands of T̂ and such that T = T2 , T ′ = T2 .

Finally we use the properties of the compatibility of trace t:

tP (F (T )) = tP (ptrR(F (T2))) = tP⊗P ′(F (T2))
= tP ′(ptrL(F (T2))) = tP ′(F (T ′)).

Remark 2.5.6. In the case P = Vµ typical, we have

F ′

 T

 = d(µ)
〈

T

〉
.

The affirmation of the above theorem gives us a link invariant in the
following corollary.

Corollary 2.5.7. Let L be an oriented link with n ordered components then
the application F ′ : {admissible C2-coloring of L} → C determines a mero-
morphic function fL : C2n → C of the 2n complex parameters defining the
coloring.

2.6 Invariant of 3-manifolds
In the article [8] the authors constructed C -decorated 3-manifold invari-

ants where C is a ribbon category. In the previous section, it was proven
that CH is a ribbon category, this suggests we construct an invariant of CH-
decorated 3-manifolds. We recall some concepts, definitions and results from
[8].

2.6.1 Relative G-(pre)modular categories
Let C be a k-linear ribbon category where k is a field. A set of objects of

C is said to be commutative if for any pair {V,W} of these objects, we have
cV,W ◦ cW,V = IdW⊗V and θV = IdV . Let (Z,+) be a commutative group.
A realization of Z in C is a commutative set of objects {εt}t∈Z such that
ε0 = I, qdim(εt) = 1 and εt ⊗ εt′ = εt+t

′ for all t, t′ ∈ Z.
A realization of Z in C induces an action of Z on isomorphism classes

of objects of C by (t, V ) 7→ εt ⊗ V . We say that {εt}t∈Z is a free realization
of Z in C if this action is free. This means that ∀t ∈ Z\{0} and for any
simple object V ∈ C , V ⊗ εt 6' V . We call simple Z-orbit the reunion of
isomorphism classes of an orbit for this action.
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F

Ωµ

V

 = ∆− IdV , F

Ωµ

V

 = ∆+ IdV

Figure 2.1 – V ∈ Cg and Ωµ is a Kirby color of degree µ.

Definition 2.6.1 ([8]). Let (G,×) and (Z,+) be two commutative groups.
A k-linear ribbon category C is G-modular relative to X with modified di-
mension d and periodicity group Z if

1. the category C has a G-grading {Cg}g∈G,
2. the group Z has a free realization {εt}t∈Z in C1 (where 1 ∈ G is the

unit),
3. there is a Z-bilinear application G × Z → k×, (g, t) 7→ g•t such that
∀V ∈ Cg,∀t ∈ Z, cV,εt ◦ cεt,V = g•t Idεt⊗V ,

4. there exists X ⊂ G such that X−1 = X and G cannot be covered by
a finite number of translated copies of X , in other words ∀g1, ..., gn ∈
G,∪ni=1(giX ) 6= G,

5. for all g ∈ G \X , the category Cg is semi-simple and its simple objects
are in the reunion of a finite number of simple Z-orbits,

6. there exists a nonzero trace t on ideal Proj of projective objects of C
and d is the associated modified dimension,

7. there exists an element g ∈ G \ X and an object V ∈ Cg such that
the scalar ∆+ defined in Figure 2.1 is nonzero; similarly, there exists
an element g ∈ G \ X and an object V ∈ Cg such that the scalar ∆−
defined in Figure 2.1 is nonzero,

8. the morphism S(U, V ) = F (H(U, V )) 6= 0 ∈ EndC (V ), for all simple
objects U, V ∈ Proj, where

H(U, V ) =
U

V

∈ EndC ((V,+)).

The category CH of UHξ sl(2|1)-modules is G-modular relative to X . In-
deed, we have CH being G-graded by G = C/Z × C/Z. We set Z = Z × Z
and {εn}n∈Z the set of simple highest weight modules n = (n1`, n2`), i.e. εn
is a UHξ sl(2|1)-module of dimension 1 (with the basis {w}) determined by
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h1w = n1`w, h2w = n2`w, eiw = fiw = 0. Because cεm,εn = τ and θεn = Id,
the two conditions (1) and (2) of Definition 2.6.1 are satisfied.

We consider a typical module Vµ. We have cεn,Vµ(w ⊗ wρ,σ,p) = τ ◦
R(w ⊗ wρ,σ,p) = ξ−n1`µ2−n2`µ1−2n2`µ2wρ,σ,p ⊗ w. Next cVµ,εn ◦ cεn,Vµ(w ⊗
wρ,σ,p) = cVµ,εn(ξ−n1`µ2−n2`µ1−2n2`µ2wρ,σ,p ⊗ w) = ξ−2n1`µ2−2n2`µ1−4n2`µ2w ⊗
wρ,σ,p = ξ−2`(µ2n1+(µ1+2µ2)n2)w ⊗ wρ,σ,p. So we can determine the Z-bilinear
application G×Z → C×, (µ, n) 7→ ξ−2`(µ2n1+(µ1+2µ2)n2) which satisfies cVµ,εn ◦
cεn,Vµ(w⊗wρ,σ,p) = ξ−2`(µ2n1+(µ1+2µ2)n2) Idεn⊗Vµ(w⊗wρ,σ,p). This means that
we have condition (3) of the definition. Condition (4) is also satisfied with
X = Gs =

{
0, 1

2

}
× C/Z ∪ C/Z ×

{
0, 1

2

}
∪
{

(µ1, µ2) : µ1 + µ2 ∈
{

0, 1
2

}}
. It

was proven that CH
g is semi-simple for g ∈ G \ Gs (Theorem 2.4.14) and

Vµ ⊗ εn ' Vµ+`n, i.e. the condition (5) is satisfied. Theorem 2.5.4 implies
that condition (6) is true.

To compute ∆−, we first use the graphical calculus

F

Ωµ

Vµ

 =
`−1∑
s,t=0

d(µst)F

Vµst
Vµ


=

`−1∑
s,t=0

d(µst)
〈
θ−1
Vµ

〉 〈
θ−1
V ∗µst

〉
F


Vµst

Vµ


=
`−1∑
s,t=0

d(µst)
〈
θ−1
Vµ

〉 〈
θ−1
V ∗µst

〉
S
′(µst, µ) IdVµ .

We have 〈
θ−1
Vµ

〉
= −ξ2(α2

2+α1α2),
〈
θ−1
V ∗µst

〉
= −ξ2((α2+t)2+(α1+s)(α2+t))

and S
′(µst, µ) = ξ−4α2(α2+t)−2(α2(α1+s)+α1(α2+t)) 1

`d(µ) .
Thus

F

Ωµ

Vµ

 =
`−1∑
s,t=0

d(µst)
`d(µ) ξ

2(t2+st) IdVµ

= 1
`d(µ){`α1}

`−1∑
s,t=0

{α1 + s}
{α2 + t}{α1 + α2 + s+ t}

ξ2(t2+st) IdVµ

= 1
`d(µ){`α1}

`−1∑
s,t=0

(
ξ−(α2+t)

{α2 + t}
− ξ−(α1+α2+s+t)

{α1 + α2 + s+ t}

)
ξ2(t2+st) IdVµ .
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Because
`−1∑
s,t=0

ξ−(α2+t)ξ2(t2+st)

{α2 + t}
=

`−1∑
t=0

ξ2t2 ξ
−(α2+t)

{α2 + t}

`−1∑
s=0

ξ2st

=
`−1∑
t=0

ξ2t2 ξ
−(α2+t)

{α2 + t}
`δ0
t

= `ξ−α2

{α2}
,

`−1∑
s,t=0

ξ−(α1+α2+s+t)ξ2(t2+st)

{α1 + α2 + s+ t}
= −

`−1∑
s,t=0

ξ2(t2+st) 1
1− ξ2(α1+α2+s+t)

= −
`−1∑
s,t=0

ξ2(t2+st)
∞∑
k=0

ξ2k(α1+α2+s+t)

= −
∞∑
k=0

`−1∑
t=0

ξ2(t2+kα1+kα2+kt)
`−1∑
s=0

ξ2(k+t)s

= −
∞∑
k=0

`−1∑
t=0

ξ2(t2+kα1+kα2+kt)`δ0
t+k mod `N

= −`
1 +

`−1∑
t=0

ξ2t2
∞∑
j=1

ξ2(`j−t)(α1+α2+t)


= −`

(
1 +

`−1∑
t=0

ξ−2t(α1+α2) ξ2`(α1+α2)

1− ξ2`(α1+α2)

)

= −`+ `ξα1+α2

{α1 + α2}
then

F

Ωµ

Vµ

 = 1
d(µ){`α1}

(
1

ξα2{α2}
− ξα1+α2

{α1 + α2}
+ 1

)
IdVµ

= 1
{α1}

(
{α1 + α2}ξ−α2 − {α2}ξα1+α2 + {α2}{α1 + α2}

)
IdVµ

= 1
{α1}

{α1} = IdVµ .

This means that ∆− = 1.
By using the automorphism ω of superalgebra Uξsl(2|1) where ω(ei) =

(−1)deg eifi, ω(fi) = (−1)deg fiei, ω(ki) = k−1
i , ω(hi) = −hi, i = 1, 2 and com-

puting we also have ∆+ = 1. Condition (8) is obviously true.
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Hence category CH is relatively G-modular.

2.6.2 Invariants of 3-manifolds
Definition 2.6.2. Let (M,T, ω) be a triple where M is a compact connected
oriented 3-manifold, T ⊂ M is a CH-colored ribbon graph (possibly empty)
and ω ∈ H1(M \ T,G).

1. The triple (M,T, ω) is compatible if each edge e of T is colored by an
element of Cω(me) where me is an oriented meridian of the edge e.

2. Let L∪T ⊂ S3 where L is an oriented link in S3 \T which gives a pre-
sentation of (M,T ) by surgery. The presentation L ∪ T is computable
if for each component Li of L whose meridian is denoted mi, we have
ω(mi) /∈ X .

We suppose that (M,T, ω) is a compatible triple.

Definition 2.6.3. The formal linear combination Ωµ = ∑
µi∈µ d(Vµi)Vµi is a

Kirby color of degree µ ∈ G \Gs if {Vµi} is a set of representatives of simple
Z-orbits of Cµ.

Theorem 2.6.4. Let (M,T, ω) a compatible triple admitting a computable
presentation L ∪ T ⊂ S3 then

N(M,T, ω) = F
′(Lω ∪ T )

is a well defined topological invariant, i.e. depends only on the diffeomor-
phism class of the triple (M,T, ω) where Lω is obtained as the link L in which
we have colored the i-th component Li by a Kirby color of degree ω(mi) where
mi is a meridian of Li.

2.6.3 Example
We consider an example in the case ` = 3. Let M be the lens space

L(5, 2) which is given by surgery presentation on the Hopf link L (Figure
2.2). It has two oriented components Li, i = 1, 2 with framings 3, 2 and let
mi be an oriented meridian of Li. The linking matrix of L with respect to
the components Li is

lk =
(

3 1
1 2

)
.

Let ω ∈ H1(M\T,G) and suppose that the triple (M, ∅, ω) is computable.
We compute the values ω = (ω1, ω2) where µ = ω1 = ω(m1), µ′ = ω2 =
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Ωµ Ωµ′

3 2

Figure 2.2 – Surgery presentation of L(5,2)

ω(m2) from the equations 3µ + µ′ = 0 and µ + 2µ′ = 0 (in C/Z × C/Z).
Hence µ = (k5 ,

2k
5 ), µ′ = (2k

5 ,
4k
5 ), k = 1, ..., 4. Here we set ωk = (ω1

k, ω
2
k), ω1

k =
(k5 ,

2k
5 ), ω2

k = (2k
5 ,

4k
5 ), k = 1, ..., 4. We have ω4 = −ω1, ω3 = −ω2. Using

variables as in Lemma 2.4.6 we have (α1, α2) = µ+ (−`+ 1, `2) = (k5 − 2, 2k
5 +

3
2), (α′1, α′2) = µ′ + (−`+ 1, `2) = (2k

5 − 2, 4k
5 + 3

2).
We color the i-th component Li by a Kirby color of degree ω(mi), i.e.

Ωω(m1) = Ωµ = ∑2
s,t=0 d(αst)Vαst and Ωω(m2) = Ωµ′ = ∑2

i,j=0 d(α′ij)Vα′ij where
αst = (α1 + s, α2 + t), α′ij = (α′1 + i, α′2 + j). By Lemma 2.4.6, Proposition
2.4.8 we have

N(M, ∅, ω) =
∑
s,t

∑
i,j

d(αst)d(α′ij)
〈
θVαst

〉3
〈
θVα′

ij

〉2
d(αst)S

′(α′ij, αst)

in which

d(αst) = {α1 + s}
`{`(α1 + s)}{α2 + t}{α1 + α2 + s+ t}

,〈
θVαst

〉
= −ξ−2((α2+t)2+(α1+s)(α2+t)),〈

θVα′
ij

〉
= −ξ−2((α′2+j)2+(α′1+i)(α′2+j)),

S
′(α′ij, αst) = 1

`d(αst)
ξ−4(α′2+j)(α2+t)−2((α′2+j)(α1+s)+(α′1+i)(α2+t)).

Using computer algebra software Sagemath, we have (ξ 1
10 has degree 8 over

Q)

N(M, ∅,±ω1) = 1
15
(
−2ξ 7

10 − 2ξ 3
5 − 2ξ 1

2 + 2ξ 2
5 + 5ξ 3

10 + 2ξ 1
10
)
,

N(M, ∅,±ω2) = 1
15
(
−7ξ 7

10 − 2ξ 3
5 + 4ξ 1

2 + 4ξ 2
5 + 2ξ 3

10 + 5ξ 1
10 − 4

)
.

In this case, the resultN(M, ∅, ω) = N(M, ∅,−ω) is consistent with (M, ∅, ω) '
(M, ∅,−ω).
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Ωµ

Vi Vj

Figure 2.3 – Morphism of the relative modularity condition

2.7 Relative G-modular category CH

This section proves the category CH has a relative G-modular structure.
Following M. De Renzi [42] this implies the invariant N in Section 2.6 extends
to a family of 1 + 1 + 1-TQFTs.

Definition 2.7.1 ([42]). A pre-modular G-category C relative to X with
modified dimension d and periodicity group Z is said a modular G-category
relative to (G, Z) if it satisfies the modular condition, i.e. it exists a relative
modularity parameter ζ ∈ C∗ such that

d(Vi)fµij =

ζ( −→coevVi ◦
←−evVi) if i = j,

0 if i 6= j

for all µ, ν ∈ G \ X and for all i, j ∈ ν which Vi, Vj are not in the same Z-
orbit, where fµij is the morphism determined by the C -colored ribbon tangle
depicted in Figure 2.3 under Reshetikhin-Turaev functor F .

Proposition 2.7.2. The category CH of nilpotent weight modules over UHξ sl(2|1)
is modular G-category relative to (G, Z) where G = C/Z × C/Z and Z =
Z× Z× Z/2Z.

Proof. In Section 2.6 we proven that the category CH of nilpotent weight
modules over UHξ sl(2|1) is G-premodular category relative to (G, Z). Now
we show that this category is a relative G-modular category. It is necessary
to verify the relative modularity condition. We consider the morphism f
which is represented by the diagram

Ωµ

Vk

Vi Vj

.

By the handle-slide the circle colored by Vk along the circle of fµij and an
isotopy we have two equalities given by the diagrams as in Figure 2.4. It
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Ωµ

Vk

Vi Vj

.= Ωµ+ν

Vk

Vi Vj

.=
Ωµ+ν

Vk

Vi Vj

Figure 2.4 – Second Kirby’s move on f

follows that

S ′(Vk, Vi)fµij = S ′(Vk, Vj)fµ+ν
ij for all Vk ∈ Cν .

It implies

fµ+ν
ij = S ′(Vk1 , Vi)

S ′(Vk1 , Vj)
fµij = S ′(Vk2 , Vi)

S ′(Vk2 , Vj)
fµij for Vk1 , Vk2 ∈ Cν .

We denote the highest weights of Vi, Vj, Vk1 and Vk2 by (ν1 + i1, ν2 + i2), (ν1 +
j1, ν2+j2), (ν1+s1, ν2+s2) and (ν1+t1, ν2+t2) for 0 ≤ i1, i2, j1, j2, s1, s2, t1, t2 ≤
`− 1. By Proposition 2.4.8 we have

S ′(Vk1 , Vi) = ξ−4(ν2+s2)(ν2+i2)−2((ν2+s2)(ν1+i1)+(ν1+s1)(ν2+i2)) 1
`d(Vi)

,

S ′(Vk1 , Vj) = ξ−4(ν2+s2)(ν2+j2)−2((ν2+s2)(ν1+j1)+(ν1+s1)(ν2+j2)) 1
`d(Vj)

,

S ′(Vk2 , Vi) = ξ−4(ν2+t2)(ν2+i2)−2((ν2+t2)(ν1+i1)+(ν1+t1)(ν2+i2)) 1
`d(Vi)

,

S ′(Vk2 , Vj) = ξ−4(ν2+t2)(ν2+j2)−2((ν2+t2)(ν1+j1)+(ν1+t1)(ν2+j2)) 1
`d(Vj)

.

Hence
S ′(Vk1 , Vi)
S ′(Vk1 , Vj)

= ξ−4(ν2+s2)(i2−j2)−2((ν2+s2)(i1−j1)+(ν1+s1)(i2−j2))d(Vj)
d(Vi)

,

S ′(Vk2 , Vi)
S ′(Vk2 , Vj)

= ξ−4(ν2+t2)(i2−j2)−2((ν2+t2)(i1−j1)+(ν1+t1)(i2−j2))d(Vj)
d(Vi)

.

We see that
S ′(Vk1 , Vi)
S ′(Vk1 , Vj)

: S
′(Vk2 , Vi)

S ′(Vk2 , Vj)
= ξ−4(s2−t2)(i2−j2)−2((s2−t2)(i1−j1)+(s1−t1)(i2−j2))
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and the term −4(s2 − t2)(i2 − j2) − 2 ((s2 − t2)(i1 − j1) + (s1 − t1)(i2 − j2))
is determined by a symmetric bilinear non-degenerate B from (Z/`Z)2 ×
(Z/`Z)2 to Z/`Z which has the matrix B = (bij)2×2 where b11 = 0, b12 =
b21 = −2 and b22 = −4. It deduces that for all i 6= j ∈ (Z/`Z)2 it exists
k1 6= k2 ∈ (Z/`Z)2 such that B(i− j, k1 − k2) 6= 0. Thus for all i 6= j ∈ ν it

exists k1 6= k2 ∈ ν such that S
′(Vk1 , Vi)

S ′(Vk1 , Vj)
6= S ′(Vk2 , Vi)
S ′(Vk2 , Vj)

, it implies that fµij = 0

if i 6= j.
If i = j we have fµii = fµ+ν

ii for µ, ν ∈ G \ Gs. We see that fµii ∈
EndUH (Vi⊗V ∗i ) andW = Vi⊗V ∗i has a vector UH-invariant y. As HomUH (Vi⊗
V ∗i ,C) ' HomUH (C, Vi ⊗ V ∗i ) ' EndUH (Vi) ' C IdVi then these imply that
two morphisms fµii and −→coevVi ◦

←−evVi are proportional, i. e. there is a λ ∈ C∗
such that fµii = λ

−→coevVi ◦
←−evVi .

First, we show the existence of vector invariant y. Let Vk ∈ Cν , by Lemma
4.9 of [8] we can do a handle-slide move on the circle component of the graph
representing fµii ⊗ IdVk to obtain the equality

cW,Vk ◦ (fµii ⊗ IdVk) = c−1
Vk,W

◦ (fµ+ν
ii ⊗ IdVk) = c−1

Vk,W
◦ (fµii ⊗ IdVk).

The braidings cW,Vk , c−1
Vk,W

: W ⊗ Vk → Vk ⊗W are given by cW,Vk = τ s ◦ R
and c−1

Vk,W
= R−1 ◦ τ s where R = ŘK with

Ř =
`−1∑
i=0

{1}iei1 ⊗ f i1
(i)ξ!

(1− e3 ⊗ f3)(1− e2 ⊗ f2),

(0)ξ! = 1, (i)ξ! = (1)ξ(2)ξ · · · (i)ξ, (k)ξ = 1− ξk
1− ξ

and K = ξ−h1⊗h2−h2⊗h1−2h2⊗h2 .

Let x 6= 0 be a weight vector of weight 0 of W and v ∈ Vk be an even weight
vector of weight ν = (ν1, ν2), set y = fµii(x) ∈ W .
Let W ′

+ be the vector space generated by {ei11 ei33 ei22 y | i1 + i2 + i3 > 1 for 0 ≤
i1 ≤ `−1, 0 ≤ i2, i3 ≤ 1}, W ′

− be the vector space generated by {f i11 f
i3
3 f

i2
2 v | i1+

i2 + i3 > 1 for 0 ≤ i1 ≤ `− 1, 0 ≤ i2, i3 ≤ 1}, V ′+ be the vector space gener-
ated by {ei11 ei33 ei22 v | i1 + i2 + i3 > 1 for 0 ≤ i1 ≤ `− 1, 0 ≤ i2, i3 ≤ 1} and V ′−
be the vector space generated by {f i11 f

i3
3 f

i2
2 y | i1 + i2 + i3 > 1 for 0 ≤ i1 ≤

` − 1, 0 ≤ i2, i3 ≤ 1}. Because the weight of x is 0 then K(y ⊗ v) = y ⊗ v.
Hence

cW,Vk(y ⊗ v) = τ s ◦ ŘK(y ⊗ v)
= v ⊗ y + (ξ − ξ−1)f1v ⊗ e1y + f3v ⊗ e3y + f2v ⊗ e2y +W

′

− ⊗W
′

+
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and

c−1
Vk,W

(y ⊗ v) = R−1 ◦ τ s(y ⊗ v) = (S ⊗ IdUH )(R)(v ⊗ y)
= (S ⊗ IdUH )

(
v ⊗ y + (ξ − ξ−1)e1v ⊗ f1y − e3v ⊗ f3y − e2v ⊗ f2y + V

′

+ ⊗ V
′

−

)
= v ⊗ y − (ξ − ξ−1)k1e1v ⊗ f1y + k1k2e3v ⊗ f3y + k2e2v ⊗ f2y + S

(
V
′

+

)
⊗ V ′−.

Setting the above equations equal we have e1y = f1y = 0 and e2y = f2y = 0.
By the relations e1f1 − f1e1 = k1−k−1

1
ξ−ξ−1 , e2f2 + f2e2 = k2−k−1

2
ξ−ξ−1 , it implies that

k2
i y = y for i = 1, 2 and also since ki act as ξhi and the weights of W are in

Z×Z, we have that the eigenvalues of ki are in ξZ which does not contain −1
(note that ` is odd). Thus kiy = y for i = 1, 2 and y is an invariant vector of
W .

Second, we compute λ in fµii = λ
−→coevVi ◦

←−evVi . We consider the value F ′
of the braid closure of the graphs in this equality.

F ′

Ωµ

Vi

Vi

 =
∑
k

F ′

d(Vk)
Vk

Vi Vi



=
∑
k

F ′

d(Vk) #

VkVi Vk Vi



=
∑
k

F ′


Vk Vi

F ′


Vk Vi


=
∑
k

d(Vi)S ′ (Vk, Vi) d(Vi)S ′ (V ∗k , Vi)

=
∑
k

d2(Vi)S ′ (Vk, Vi)S ′ (V ∗k , Vi)

where Ωµ = ∑
k∈µ d(Vk)Vk and the second equality by

F ′(L1#VL2) = d−1(V )F ′(L1)F ′(L2).

Furthermore

S ′(V ∗k1 , Vi) = ξ4(ν2+s2)(ν2+i2)+2((ν2+s2)(ν1+i1)+(ν1+s1)(ν2+i2)) 1
`d(Vi)

,
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it implies that

F ′

Ωµ

Vi

Vi

 =
`−1∑

s1,s2=0

1
`2 = 1.

For the graph of −→coevVi ◦
←−evVi , the value F ′ of its closure is

F ′


Vi

 = F ′


Vi

 = d(Vi).

Hence λ = d−1(Vi) and it proves that d(Vi)fµii = −→coevVi ◦
←−evVi .

We see that the relative modularity parameter ζ = ∆−∆+ = 1.
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Chapter 3

Modified trace from pivotal
Hopf G-coalgebra

This chapter is the content of the paper [21] available in
https://arxiv.org/abs/1804.02416.

Résumé. Dans un article récent, les auteurs A. Beliakova, C. Blanchet et A.
M. Gainutdinov ont montré que la trace modifiée sur la catégorie H-pmod des
modules projectifs correspond à l’intégrale symétrisée sur l’algèbre de Hopf
pivotale de dimension finie H. Nous généralisons ce théorème au contexte des
catégories G-graduées et G-cogèbre de Hopf étudiée par Turaev-Virelizier.
Nous montrons que la G-intégrale symétrisée sur une G-cogèbre de Hopf
pivotale de type fini induit une trace modifiée dans la catégorie G-graduée
associée.

Abstract. In a recent paper the authors A. Beliakova, C. Blanchet and
A. M. Gainutdinov have shown that the modified trace on the category H-
pmod of the projective modules corresponds to the symmetrised integral on
the finite dimensional pivotal Hopf algebra H. We generalize this fact to
the context of G-graded categories and Hopf G-coalgebra studied by Turaev-
Virelizier. We show that the symmetrised G-integral on a finite type pivotal
Hopf G-coalgebra induces a modified trace in the associated G-graded cate-
gory.

MSC: 57M27, 17B37
Key words: modified trace, G-integral, symmetrised G-integral, pivotal

Hopf G-coalgebra.

47
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3.1 Introduction
The notion of a modified trace was introduced by N. Geer, J. Kujawa and

B. Patureau-Mirand in the article [13]. This is one of the topological tools
which can be used first to renormalize the Reshetikhin-Turaev invariant of
links. Later F. Costantino, N. Geer and B. Patureau-Mirand used the mod-
ified trace to construct a class of invariants of 3-manifolds (CGP invariant)
via link surgery presentations (see [8]). The modified trace is also used to
construct invariants of 3-manifolds of Reshetikhin-Turaev type from quan-
tum group associated to the Lie superalgebra sl(2|1) (see Chapter 2) and for
constructing the logarithmic invariant of Hennings type (see [3]). In order
to construct invariant of 3-manifolds, M. Hennings proposed a method based
on the theory of integral for a finite dimensional Hopf algebra (see [26]). The
notion of integral was introduced by R. G. Larson and M. E. Sweedler in
[34] and is studied in the book [41] of Radford. It is known that under some
assumption, both the space of modified trace and that of integral are one
dimensional (see [11, 41]). A close relation between the modified trace and
the integral has been established recently in [2]. The authors proved that
a symmetrised integral for a finite dimensional pivotal Hopf algebra gives
a modified trace t on H-pmod with an explicit formula. We would like to
adapt these results to the unrestricted quantum groups at roots of unity.
They are infinite dimensional Hopf algebra but can be understood as a Hopf
G-coalgebra organized into a bundles of algebra over a Lie group. For a finite
type Hopf G-coalgebra H = (Hα)α∈G there exists a family of linear forms on
Hα, called G-integral (see [49]). The aim of this chapter is to establish a
correspondence between the G-integral for the finite type unimodular piv-
otal Hopf G-coalgebra H and the modified trace in the associated G-graded
category H-mod. We introduce now these two notions.

G-integral
Let H = ({Hα,mα, 1α},∆, ε, S) be a Hopf G-coalgebra over a field k (see

in Section 3.2). A right G-integral for the Hopf G-coalgebra H is a family of
k-linear forms µ = (µα : Hα → k)α∈G satisfying

(µα ⊗ IdHβ)∆α,β(x) = µαβ(x)1β for any x ∈ Hαβ. (3.1.1)

Similarly, a left G-integral µlα ∈
∏
α∈GH

∗
α satisfies

(IdHα ⊗µlβ)∆α,β(x) = µlαβ(x)1α for any x ∈ Hαβ.

The linear form µ1 is an usual right integral for the Hopf algebra H1 (see e.g
[41]). If H is a finite type Hopf G-coalgebra, i.e. a Hopf G-coalgebra in which
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dim(Hα) < +∞ for any α ∈ G, the space of right (resp. left) G-integral is
known to be 1-dimensional (see e.g [49]).
A pivotal Hopf G-coalgebra is a pair (H, g), where the pivot is the family
g = (gα)α∈G ∈

∏
α∈GHα satisfying ∆α,β(gαβ) = gα ⊗ gβ for any α, β ∈

G, ε(g1) = 1k, and Sα−1Sα(x) = gαxg
−1
α for any x ∈ Hα. Note that g−1 =

(Sα−1(gα−1))α∈G, i.e. g−1
α = Sα−1(gα−1) (see e.g [49]). In particular, g1 is a

pivotal element for H1 and g1 is invertible with g−1
1 = S1(g1), ε(g1) = 0 (see

e.g [29]).
The symmetrised right G-integral on (H, g) associated with µ is the family
µ̃ = (µ̃α)α∈G ∈

∏
α∈GH

∗
α defined by

µ̃α(x) := µα(gαx) for any x ∈ Hα.

Similarly, a symmetrised left G-integral on (H, g) is

µ̃lα(x) := µlα(g−1
α x) for any x ∈ Hα. (3.1.2)

A pivotal Hopf G-coalgebra is G-unibalanced if its symmetrised right G-
integral is also symmetrised left G-integral, i.e. µ̃α = µ̃lα for any α ∈ G.
In the case (H, g) is unimodular, i.e. H1 is unimodular, we show that the
symmetrised G-integrals are symmetric linear forms on H and they are non-
degenerate (see Proposition 3.2.7).

Modified trace
Let C be a pivotal k-linear category [39]. Let Proj(C) be the tensor ideal

of projective objects of C. A modified trace on ideal Proj(C) is a family
of k-linear forms t = {tP : EndC(P ) → k}P∈Proj(C) satisfying the cyclicity
property and the partial trace property (see in Section 3.3.2).

Main results
Let (H, g) = ({Hα,mα, 1α},∆, ε, S, g) be a finite type unimodular pivotal

Hopf G-coalgebra. If t is a right (resp. left) modified trace on H-pmod,
it defines a family of linear forms λt = (λt

α)α∈G ∈
∏
α∈GH

∗
α by λt

α(h) =
tHα(Rh) for h ∈ Hα, Hα is a projective object of H-mod and Rh is the right
multiplication of Hα.

Theorem 3.1.1. The application t 7→ λt defined above gives a bijection
between the space of right (resp. left) modified traces and the space of sym-
metrised right (resp. left) G-integrals.
Furthermore, (H, g) is G-unibalanced if and only if the right modified trace
is also left.
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The chapter contains five section. In Section 3.2 we recall some definitions
and results for a Hopf G-coalgebra, we also define a pivotal Hopf G-coalgebra,
a symmetrised G-integral for a pivotal Hopf G-coalgebra H and prove that
the symmetrised G-integrals are symmetric non-degenerate forms on H. Sec-
tion 3.3 recall some results about modified traces and the proof of Reduction
Lemma in the context of G-graded categories. In Section 3.4 we present the
decomposition of tensor product Hα ⊗ Hβ and the proof of the main theo-
rem. In Section 3.5 we give an application of the main theorem in the case
associated to a quantization of the Lie algebra sl(2).

3.2 Pivotal Hopf G-coalgebra
In this section, we recall some facts about Hopf G-coalgebra. For details

see [46, 49]. We then define a pivotal Hopf G-coalgebra, a symmetrised
G-integral and give some of its properties.

3.2.1 Pivotal Hopf G-coalgebra
Hopf G-coalgebra

Definition 3.2.1. Let G be a multiplicative group. A G-coalgebra over a field
k is a family C = {Cα}α∈G of k-spaces endowed with a family ∆ = {∆α,β :
Cαβ → Cα ⊗ Cβ}α,β∈G of k-linear maps (the coproduct) and a k-linear map
ε : C1 → k (the counit) such that

1. ∆ is coassociative, i.e. for any α, β, γ ∈ G,

(∆α,β ⊗ IdCγ )∆αβ,γ = (IdCα ⊗∆β,γ)∆α,βγ,

2. for all α ∈ G, (IdCα ⊗ε)∆α,1 = IdCα = (ε⊗ IdCα)∆1,α.
A Hopf G-coalgebra is a G-coalgebra H = ({Hα}α∈G,∆, ε) endowed with a
family S = {Sα : Hα → Hα−1}α∈G of k-linear maps (the antipode) such that

1. each Hα is an algebra with product mα and unit element 1α ∈ Hα,
2. ε : H1 → k and ∆α,β : Hαβ → Hα ⊗Hβ are algebra homomorphisms

for all α, β ∈ G,
3. for any α ∈ G

mα(Sα−1 ⊗ IdHα)∆α−1,α = ε1α = mα(IdHα ⊗Sα−1)∆α,α−1 .

The antipode automatically satisfies additional property:

Lemma 3.2.2. Given a Hopf G-coalgebra H = ({Hα}α∈G,∆, ε, S), then
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mα =

αα

α

, ∆α,β =

βα

αβ

, ηα =
α

, ε =
1

, Sα =

α

α−1

.

Figure 3.1 – The structural maps

αβγ

γα β

=

αβγ

α β γ

,

αβ αβ

α β

=

αβ αβ

α β

α β
α β

.

Figure 3.2 – The coassociativity and algebra homomorphism ∆α,β

1. Sα(xy) = Sα(y)Sα(x) for any x, y ∈ Hα,
2. Sα(1α) = 1α−1,
3. ∆β−1,α−1Sαβ = τ(Sα⊗Sβ)∆α,β where τ : Hα−1 ⊗Hβ−1 → Hβ−1 ⊗Hα−1

is the flip switching the two factors of Hα−1 ×Hβ−1,
4. εS1 = ε.

Graphical axioms for Hopf G-coalgebras

We will use the diagrams for the structural maps and the identities cor-
responding to the Hopf G-coalgebra H = (Hα)α∈G. For simplicity we write
α instead of Hα in the diagrams. Figure 3.1 presents the structural maps
of the Hopf G-coalgebra which are the product, coproduct, unit, counit and
the antipode, respectively. Note that these maps are in the category Vectk
of finite dimensional vector spaces over a field k.

The identity of the coassociativity and the algebra homomorphism ∆α,β

are defined as in Figure 3.2. The antipode properties are shown in Figure
3.3. Finally, the compatibility between the antipode and the unit, counit
are illustrated in Figure 3.4.

Example 3.2.3. Let H be a possibly infinite dimensional pivotal Hopf algebra
with the pivot φ. Suppose there is a commutative Hopf subalgebra C contained
in the center of H (for example H can be the unrestricted quantum group in
[7]; an other example will be detailed in Section 3.5). Let G = HomAlg(C, k)
be the group of characters on C with multiplication given by gh = (g⊗h)◦∆
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α α

α−1

=

α α

α−1

,

α

1

=

α

1

=

α

1

,

α−1 β−1

αβ

=

αβ

α−1 β−1

.

Figure 3.3 – The antipode properties
α

α

α

=

α

α

=

α

α

α

,

α

α

=

α

α

=

α

α

,

=
α−1

α α

,

1

=

1

.

Figure 3.4 – The unit and counit

for g, h ∈ G and g−1 = g◦S|C. For g ∈ G we define Hg = H⊗g:C→kk = H/Ig
where Ig is the ideal generated by elements z − g(z) for z ∈ C. Assume
g = g1g2 for g1, g2 ∈ G, then

∆(z − g(z)) = ∆(z)− (g1 ⊗ g2)(∆(z))
= z(1) ⊗ z(2) − g1(z(1))⊗ g2(z(2))
=
(
z(1) − g1(z(1))

)
⊗ z(2) + g1(z(1))⊗

(
z(2) − g2(z(2))

)
where we used the Sweedler’s notation ∆(z) = z(1) ⊗ z(2). This implies that
∆(Ig) ⊂ Ig1⊗H+H⊗ Ig2. We thus have that a well defined coproduct ∆g1,g2

given by the commutative diagram below

H
∆

- H ⊗H

Hg1g2

pg1g2

? ∆g1,g2- Hg1 ⊗Hg2

pg1 ⊗ pg2

?

where pg : H → Hg is the projective morphism. The family {Hg}g∈G with
coproduct ∆g,h is a G-coalgebra. It is also a Hopf G-coalgebra with the family
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of antipode given by the commutative diagram

H
S

- H

Hg

pg

? Sg - Hg−1 .

pg−1

?

The family Sg for g ∈ G is well defined since S(z − g(z)) = S(z) − g(z) =
S(z)− g−1(S(z)) ∈ Ig−1.

We say a Hopf G-coalgebra H is of finite type if Hα is finite dimensional
over k for all α ∈ G.

Pivotal structure

We recall that a G-grouplike element of a Hopf G-coalgebra H is a family
g = (gα)α∈G ∈

∏
αHα such that ∆α,β(gαβ) = gα ⊗ gβ for any α, β ∈ G and

ε(g1) = 1k. Note that g1 is a grouplike element of the Hopf algebra H1. It
follows [49] that the set of the G-grouplike elements of H is a group and if
g = (gα)α∈G, then g−1 = (Sα−1(gα−1))α∈G.

Definition 3.2.4. A G-grouplike element g ∈ H is called a pivot if Sα−1Sα(x) =
gαxg

−1
α for all x ∈ Hα. The pair (H, g) of a Hopf G-coalgebra H and a pivot

g is called a pivotal Hopf G-coalgebra.

Remark that for a pivotal Hopf G-coalgebra H = ({Hα}α∈G,∆, ε, S, g),
H1 is a pivotal Hopf algebra.

Example 3.2.5. Let H be a Hopf G-coalgebra as in Example 3.2.3. Let φg
be the image of φ in the quotient Hg. Then H is a pivotal Hopf G-coalgebra.

3.2.2 Symmetrised right and left G-integrals
Let H = ({Hα}α∈G,∆, ε, S) be a finite type pivotal Hopf G-coalgebra

with right G-integral µ. The symmetrised right G-integral associated with
µ is a family µ̃ = (µ̃α)α∈G ∈

∏
α∈GH

∗
α defined by µ̃α(x) := µα(gαx) for any

x ∈ Hα.
Using the definition of the right G-integral, see Equation (3.1.1) and replacing
x ∈ Hαβ by gαβx we get:

(µ̃α ⊗ gβ)∆α,β(x) = µ̃αβ(x)1β. (3.2.1)
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µ̃α

αβ

gβ

β

=
µ̃αβ

αβ

β

.

Figure 3.5 – The graphical representation of the relation for the right sym-
metrised G-integral

Similarly, the symmetrised left G-integral is defined by µ̃lα(x) := µlα(g−1
α x)

for any x ∈ Hα. Applying (3.1.2) for g−1
αβx, x ∈ Hαβ we get the defining

relation for the symmetrised left G-integral:

(g−1
α ⊗ µ̃lβ)∆α,β(x) = µ̃lαβ(x)1α. (3.2.2)

The graphical representation for Equality (3.2.1) is given in Figure 3.5. The
graphical representation of the relation for the left symmetrised G-integral
is similar.

Since the pivot is invertible Equation (3.2.1) for µ̃ is equivalent to Equa-
tion (3.1.1) for µ. As the space of right G-integrals is one-dimensional, re-
lation (3.2.1) defines µ̃ uniquely (up to a scalar). Similarly the symmetrised
left G-integral µ̃l defined by (3.2.2) is unique. Note also that the symmetrised
G-integral for H1 is the one in the sense of [2].

Recall that a left (resp. right) cointegral in H1 is an element Λ ∈ H1 such
that xΛ = ε(x)Λ (resp. Λx = ε(x)Λ) for all x ∈ H1 ([2]).

Definition 3.2.6. 1. A Hopf G-coalgebra H is unimodular if the Hopf
algebra H1 is unimodular, this means that the spaces of left and right
cointegrals in H1 coincide.

2. A family of linear forms ϕα ∈ H∗α for α ∈ G is symmetric non-
degenerate if for any α ∈ G the associated bilinear forms (x, y) 7→
ϕα(xy), x, y ∈ Hα is.

Proposition 3.2.7. Assume (H, g) is unimodular, then the symmetrised
right (resp. left) G-integral for (H, g) is symmetric and non-degenerate.

Proof. For any α ∈ G, x, y ∈ Hα, by [49, Lemma 7.1] we have

µ̃α(xy) = µα(gαxy) = µα(Sα−1Sα(y)gαx) = µα(gαyx) = µ̃α(yx)
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and by [49, Corollary 3.7] H∗α is free left module rank one over Hα with basis
{µα} when the action is defined by

(h ⇀ µα)(x) := µα(xh) for h, x ∈ Hα.

If µ̃α(xy) = µα(gαxy) = µα(xygα) = (ygα ⇀ µα)(x) = 0 for all x ∈ Hα, then
ygα ⇀ µα = 0. It follows thus y = 0.
For the symmetrised left G-integral the proof is similar.

Also note that the spaces of left and right G-integrals are not equal in
general. We have a lemma.
Lemma 3.2.8. The left G-integral for H can be chosen as µlα(x) = µα−1(Sα(x))
for any x ∈ Hα.
Proof. By (3.1.1) we have

(µα−1 ⊗ IdHβ−1 )∆α−1,β−1(Sβα(x)) = µ(βα)−1(Sβα(x))1β−1 for any x ∈ Hβα.

Using Lemma 3.2.2 (3) ∆α−1,β−1(Sβα(x)) = (Sα ⊗ Sβ)∆op
β,α(x) we get

(µα−1 ◦ Sα ⊗ Sβ)∆op
β,α(x) = (Sβ ⊗ µα−1 ◦ Sα)∆β,α(x) = µ(βα)−1(Sβα(x))1β−1 .

Applying S−1
β to both sides of the last equality and S−1

β (1β−1) = 1β, we obtain
that (IdHβ ⊗µα−1 ◦ Sα)∆β,α(x) = (µ(βα)−1 ◦ Sβα)(x)1β, i.e. µα−1 ◦ Sα satisfies
the definition of the left G-integral.

3.2.3 G-unibalanced Hopf algebras
Let H = ({Hα}α∈G,∆, ε, S) be a finite type Hopf G-coalgebra with right

G-integral µ. We call a distinguished G-grouplike of H (see e.g [49]) or G-
comodulus of H a G-grouplike element a = (aα)α∈G ∈

∏
α∈GHα satisfying

(IdHα ⊗µβ)∆α,β(x) = µαβ(x)aα for any x ∈ Hαβ. (3.2.3)
Note that a1 is the comodulus element of the Hopf algebra H1 (see [2]). By
multiplying (3.2.3) with a−1 and replacing x by aαβx we have

(IdHα ⊗µβ(aβ?))∆α,β(x) = µαβ(aαβx)1α (3.2.4)

where denote by µβ(aβ?) the linear map x 7→ µβ(aβx) for x ∈ Hβ. This
equality implies that µβ(aβ?) is a left G-integral for H, i.e.

µlβ(x) = µβ(aβx). (3.2.5)

This is another choice for left G-integral from right G-integral. This choice
of the left G-integral is the same with the one in Lemma 3.2.8 by following
proposition.
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Proposition 3.2.9. We have the relation µα−1(Sα(x)) = µα(aαx) for any
x ∈ Hα.

Proof. By (3.2.4) we get

(IdHα ⊗µ1(a1?)) ∆α,1(x) = µα(aαx)1α for x ∈ Hα.

By Lemma 3.2.8 we get

(IdHα ⊗µ1 ◦ S1) ∆α,1(x) = (µα−1 ◦ Sα)(x)1α for x ∈ Hα.

Furthermore, Proposition 4.7 [2] gives µ1(S1(x)) = µ1(a1x) for x ∈ H1. This
implies that µα(aαx)1α = (µα−1 ◦Sα)(x)1α for all x ∈ Hα, i.e. µα−1(Sα(x)) =
µα(aαx) for any x ∈ Hα.

Recall that a finite type pivotal Hopf G-coalgebra (H, g) is G-unibalanced
if its symmetrised right G-integral is also left.

Lemma 3.2.10. Assume (H, g) is a unimodular pivotal Hopf G-coalgebra.
Then (H, g) is G-unibalanced if and only if aα = g2

α for any α ∈ G.

Proof. First, we assume that aα = g2
α. Applying (3.2.3) on gαβx we have

(g−1
α ⊗ µ̃β)∆α,β(x) = µ̃αβ(x)1α.

This equality states that µ̃β is a symmetrised left G-integral, i.e. µ̃β = µ̃lβ.
Second, we assume that (H, g) is G-unibalanced. By applying the equality
(3.2.5) on g−1

α x and the G-unibalanced condition one gets

µlα(g−1
α x) = µ̃lα(x) = µ̃α(x) = µα(gαx) = µα(aαg−1

α x)

for any x ∈ Hα. The last equality gives

µα
(
(aαg−1

α − gα)x
)

= 0 for any x ∈ Hα.

By Proposition 3.2.7, µα is non-degenerate. Therefore, the above equality
holds if and only if aα = g2

α.

3.3 Traces on finite G-graded categories
In this section we recall some notions and results from [2]. Let (H, g) be a

finite type unimodular pivotal Hopf G-coalgebra. We determine the pivotal
structure in pivotal G-graded category H-mod. We also prove the Reduction
Lemma in the context of G-graded categories and recall the close relation
between a modified trace on H1-pmod and a symmetrised integral for H1 [2].

Théorie quantique des champs topologiques pour la superalgèbre de Lie sl(2/1) Ngoc-Phu Ha 2018



3.3. TRACES ON FINITE G-GRADED CATEGORIES 57

3.3.1 Cyclic traces
Let C be a k-linear category. We call cyclic trace on C a family of k-linear

maps
t = {tP : EndC(P )→ k}P∈C (3.3.1)

satisfying cyclicity property, i.e. tV (gh) = tU(hg) for g ∈ HomC(U, V ) and
h ∈ HomC(V, U) with U, V ∈ C. We say that a cyclic trace t is non-degenerate
if the pairings

HomC(M,P )× HomC(P,M)→ k, (f, g) 7→ tP (fg) (3.3.2)

are non-degenerate for all P,M ∈ C.
For a finite dimensional algebra A, let A-pmod be the category of pro-

jective A-modules. There is a bijection from the space of cyclic traces on
A-pmod to the space of symmetric linear forms on A:

Lemma 3.3.1. There is an isomorphism of algebras

R : Aop → EndA(A)

given by
R(h) = Rh, R−1(f) = f(1)

where Rh denotes the right multiplication with h, i.e. Rh(x) = xh for any
x ∈ A.

Lemma 3.3.1 implies that if t is a cyclic trace on A-pmod then

λ(h) = tA(Rh) (3.3.3)

defines a symmetric linear form on A.

Proposition 3.3.2. [2, Proposition 2.4] A symmetric linear form λ on a
finite dimensional algebra A extends uniquely to a family of cyclic traces
{tP : EndA(P )→ k}P∈A-pmod which satisfies Equality (3.3.3).

If f ∈ EndA(P ), one can find ai ∈ Hom(A,P ), bi ∈ Hom(P,A) i ∈ I
for some finite set I such that f = ∑

i∈I aibi (see [2]). Then the cyclicity
property of t implies that

tP (f) =
∑
i∈I

tA(biai) =
∑
i∈I

λ (biai(1)) . (3.3.4)

Furthermore, the non-degeneracy of the form linear λ is equivalent to
the one of the pairings (3.3.2) determined by (tP )P∈A-pmod in (3.3.4) (see
[2], Theorem 2.6 where a stronger non-degeneracy condition for traces is
considered).
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3.3.2 Modified trace in pivotal category
Let C be a pivotal k-linear category [39]. Then C is a strict monoidal k-

linear category, with a unit object I, equipped with the data for each object
V ∈ C of its dual object V ∗ ∈ C and of four morphisms

−→evV : V ∗ ⊗ V → I, −→coevV : I→ V ⊗ V ∗,
←−evV : V ⊗ V ∗ → I, ←−coevV : I→ V ∗ ⊗ V

such that (−→evV ,
−→coevV ) and (←−evV ,

←−coevV ) are dualities which induce the same
functor duality which is monoidal. In the category C there is a family of
isomorphisms

Φ = {ΦV = (←−evV ⊗ IdV ∗∗)(IdV ⊗
−→coevV ∗) : V → V ∗∗}V ∈C

which is a monoidal natural isomorphism called the pivotal structure.
We recall the notion of a modified trace on ideal in a pivotal category C which
be introduced in [13, 18]. Given U, V,W ∈ C and f ∈ EndC(W ⊗ V ). The
left partial trace (with respect to W ) is the map

trlW : HomC(W ⊗ U,W ⊗ V )→ HomC(U, V )

defined for f ∈ HomC(W ⊗ U,W ⊗ V ) by

trlW (f) = (−→evW ⊗ IdV )(IdW ∗ ⊗f)( ←−coevW ⊗ IdU) = f

V
W

U

∈ HomC(U, V ).

The right partial trace (with respect to W ) is the map

trrW : HomC(U ⊗W,V ⊗W )→ HomC(U, V )

defined for f ∈ HomC(U ⊗W,V ⊗W ) by

trrW (f) = (IdV ⊗
←−evW )(f ⊗ IdW ∗)(IdU ⊗

−→coevW ) = f

W
V

U

∈ HomC(U, V ).

(3.3.5)
Let Proj(C) be the tensor ideal of projective objects of C. A left modified
trace on Proj(C) is a cyclic trace t on Proj(C) satisfying

tW⊗P (f) = tP (trlW (f))
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for any f ∈ EndC(W ⊗ P ) with P ∈ Proj(C) and W ∈ C.
A right modified trace on Proj(C) is a cyclic trace t on Proj(C) satisfying

tP⊗W (f) = tP (trrW (f))

for any f ∈ EndC(P ⊗W ) with P ∈ Proj(C) and W ∈ C.
A modified trace on ideal Proj(C) is a cyclic trace t on Proj(C) which is

both a left and right trace on Proj(C).
Next we define the category of H-mod which is a pivotal G-graded cate-

gory.

3.3.3 Pivotal structure on H-mod

G-graded category

Given a multiplicative group G, we call the category C pivotal G-graded
k-linear if there exists a family of full subcategories (Cα)α∈G of C such that

1. I ∈ C1.

2. ∀(α, β) ∈ G2, ∀(V,W ) ∈ Cα × Cβ, HomC(V,W ) 6= {0} ⇒ α = β.

3. ∀V ∈ C, ∃n ∈ N, ∃(α1, ..., αn) ∈ Gn, ∃Vi ∈ Cαi for i = 1, ..., n such
that V ' V1 ⊕ ...⊕ Vn.

4. ∀(V,W ) ∈ Cα × Cβ, V ⊗W ∈ Cαβ.

5. ∀α ∈ G, Cα does not reduce to null object.

Pivotal structure on H-mod

Let (H, g) = ({Hα}α∈G,∆, ε, S, g) be a finite type pivotal HopfG-coalgebra,
let C be the k-linear category ⊕

α∈G Cα in which Cα is Hα-mod the cate-
gory of finite dimensional Hα-modules. An object V of C is a finite di-
rect sum Vα1 ⊕ ... ⊕ Vαn where Vαi ∈ Cαi . Each object V in Hα-mod has
a dual V ∗ = Homk(V, k) in Hα−1-mod with the Hα−1 action defined by
(hf)(x) = f(Sα−1(h)x) for h ∈ Hα−1 , f ∈ V ∗ and x ∈ V . The category
C is a G-graded tensor category, i.e. for Vα ∈ Cα, Vβ ∈ Cβ Vα⊗Vβ ∈ Cαβ and
for α 6= β HomC(Vα, Vβ) = 0.
Then C is a pivotal category with pivotal structure given by the left and
right duality morphisms as follows. Assume that {vj | j ∈ J} is a basis of
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V ∈ Hα-mod and {vj | j ∈ J} is the dual basis of V ∗, then
−→evV : V ∗ ⊗ V → k, f ⊗ v 7→ f(v), (3.3.6)
−→coevV : k→ V ⊗ V ∗, 1 7→

∑
j∈J

vj ⊗ vj,

←−evV : V ⊗ V ∗ → k, v ⊗ f 7→ f(gαv), (3.3.7)
←−coevV : k→ V ∗ ⊗ V, 1 7→

∑
i∈J

vi ⊗ g−1
α vi.

We call H-pmod or Proj(C) the ideal of projective H-modules. As C =⊕
α∈G Cα, the projective modules of Cα are in H-pmod ∩ Cα = Hα-pmod.

Lemma 3.3.3. Let (H, g) be a finite type pivotal Hopf G-coalgebra. Let t be
a cyclic trace on H-pmod. Let V ∈ H-pmod and εW ∈ H1-mod be endowed
with the trivial action ρεW = ε IdεW . Then

∀f ∈ EndH-mod(V ⊗ εW ), tV⊗ εW (f) = tV (trr
εW (f)) (3.3.8)

and
∀f ∈ EndH-mod(εW ⊗ V ), tεW⊗V (f) = tV (trl

εW (f)). (3.3.9)
Proof. Consider a decomposition of IdεW

IdεW =
∑
i∈I

eiϕi where ϕi : εW → k, ei : k→ εW, ϕi(ej) = δij. (3.3.10)

By setting ẽi = IdV ⊗ei : V → V ⊗ εW and ϕ̃i = IdV ⊗ϕi : V ⊗ εW → V
one gets

IdV⊗ εW =
∑
i∈I

ẽiϕ̃i. (3.3.11)

For f ∈ EndH-mod(V ⊗ εW ), on the one hand we have

tV⊗ εW (f) =
∑
i∈I

tV⊗ εW (f ẽiϕ̃i) =
∑
i∈I

tV (ϕ̃if ẽi) =
∑
i∈I

tV (fii)

where fii = ϕ̃if ẽi ∈ EndH-mod(V ). In the above calculations, we use Equation
(3.3.11) in the first equality and the cyclicity property in the second equality.
On the other hand, each map f ∈ EndH-mod(V ⊗ εW ) is presented by graph
below

f

V

V εW

εW

=
∑
i,j∈I

f

ei

ϕi

ϕj

ej

=
∑
i,j∈I

f

ϕi

ej

ei

ϕj

=
∑
i,j∈I

fij ⊗ (eiϕj) IdεW
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where fij = ϕ̃if ẽj ∈ EndH-mod(V ). From this graphical representation im-
plies

tV (trr
εW (f)) =

∑
i,j∈I

tV




f

ϕi

ej

ei

ϕj

V εW

=
∑
i∈I

tV (fii).

Therefore Equality (3.3.8) holds.
Remark that the pivotal element acts trivially on εW so the evaluation ←−ev εW

in H-mod is just the usual evaluation of Vectk.
For Equality (3.3.9) the proof is similar.

Reduction Lemma

We have a graded version of Reduction Lemma [2, Lemma 3.2]

Lemma 3.3.4. Let (H, g) be a finite type unimodular pivotal Hopf G-coalgebra
and λ = (λα)α∈G ∈

∏
α∈GH

∗
α be a family of symmetric linear forms and

t = (tα)α∈G be the associated cyclic traces. Then t is a right modified trace
on H-pmod if and only if for all α, β ∈ G and for all f ∈ EndHαβ(Hα⊗Hβ)

tαβHα⊗Hβ(f) = tαHα(trrHβ(f)). (3.3.12)

Similarly, t is a left modified trace on H-pmod if and only if for all f ∈
EndHαβ(Hα ⊗Hβ)

tαβHα⊗Hβ(f) = tβHβ(trlHα(f)).

Proof. The proof strictly follows the line of Reduction Lemma 3.2 [2]. The
necessity is obvious. We now prove the sufficiency of the condition. By
Proposition 3.3.2 for each α ∈ G the symmetric linear form λα induces the
cyclic trace {tαP : EndHα(P ) → k}P∈Hα-pmod. We then prove that the cyclic
trace tα satisfies the right partial trace property.
First, let P ∈ Hα-pmod, P ′ ∈ Hβ-pmod and f ∈ EndHαβ(P ⊗ P ′). Suppose
that IdP and IdP ′ have the decomposition

IdP =
∑

ai ◦ bi, IdP ′ =
∑

ai′ ◦ bi′ (3.3.13)
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where ai : Hα → P, bi : P → Hα and ai′ : Hβ → P ′, bi′ : P ′ → Hβ. The
modified trace of f is calculated as follows:

tαβP⊗P ′(f) = tαβP⊗P ′




f

ai

bi

ai′

bi′

= tαβHα⊗Hβ


f

ai
ai′

bi bi′

(3.3.14)

= tαHα



f

ai ai′

bi
bi′

= tαP



f

= tαP (trrP ′(f)) .

In this calculation, one uses (3.3.13) in the first equality, in the second
equality one uses the cyclicity property of cyclic traces, the third equality
thanks to (3.3.12) and finally one uses the duality morphisms to move bi′
around the loop then applying again (3.3.13) and the cyclicity property.
Second, let P ∈ Hα-pmod, V ∈ Hβ-mod and f ∈ EndHαβ(P ⊗ V ). Set Q =
P ⊗V , note that Q ∈ Hαβ-pmod and P ⊗P ∗, Q⊗Q∗ ∈ H1-pmod. Consider
two morphisms A ∈ HomH1-mod(P ⊗ P ∗, Q ⊗ Q∗) and B ∈ HomH1-mod(Q ⊗
Q∗, P ⊗ P ∗) are given by

A =

P P

Q Q

, B =

P P

Q Q

f

Id

Id

V .

According to (3.3.14) one gets

t1
P⊗P ∗(B ◦ A) = tαP (trrP ∗(B ◦ A))
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= tαP





f

Id

Id

VQ

P

P

= tαP



f

P

P

V

= tαP (trrV (f)) .

In above calculation, one applies the definition of the partial trace in second
equality, in the third equality one uses the properties of the pivotal structure.
Similarly we also have

t1
Q⊗Q∗(A ◦B) = tαβQ

(
trrQ∗(A ◦B)

)

= tαβQ





f

Id

Id

V

Q

Q

P

= tαβQ



f

Q

Q

= tαβP⊗V (f).

Since the cyclicity property t1
P⊗P ∗(B ◦ A) = t1

Q⊗Q∗(A ◦ B), it follows that
tαβP⊗V (f) = tαP (trrV (f)).
The proof in the case of the left modified trace is similar.

3.3.4 Applications of Theorem 3.1.1
Theorem 3.1.1 has two immediate consequences when G = {1} or H

is semi-simple. First, in degree 1 the symmetrised G-integral is also the
symmetrised integral of H1 and Theorem 3.1.1 recovers the main theorem of
[2] that we recall here:

Theorem 3.3.5 ([2]). Let (H, g) be a finite dimensional unimodular pivotal
Hopf algebra over a field k. Then the space of right (left) modified traces
on H-pmod is equal to the space of symmetrised right (left) integrals, and
hence is 1-dimensional. Moreover, the right modified trace on H-pmod is
non-degenerate and determined by the cyclicity property and by

tH(f) = µ(gf(1)) for any f ∈ EndH(H) .
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Similarly, the left modified trace is non degenerate and determined by

tH(f) = µl(g−1f(1)) for any f ∈ EndH(H) .

In particular, H is unibalanced if and only if the right modified trace is also
left.

Second, for a finite type unimodular pivotal Hopf G-coalgebra (H, g), if H
is semi-simple, i.e. Hα is semi-simple for all α ∈ G then H-pmod = C. Then
the categorical trace generates the space of modified traces on H-pmod: for
any f ∈ EndC(V ), the right and left categorical trace are

trCV (f) :=←−evV (f ⊗ IdV ) −→coevV∈ k,
C trV (f) :=−→evV (IdV ∗ ⊗f) ←−coevV∈ k.

As a corollary of Theorem 3.1.1 we then have the proposition.

Proposition 3.3.6. Let (H, g) be a finite type unimodular pivotal Hopf G-
coalgebra over a field k. The right categorical trace trCHα and its left version
C trHα are non-zero if and only if Hα-mod is semi-simple and in this case
coincide up to a scalar with the trace maps

f 7→ µ̃α(f(1α)) and f 7→ µ̃lα(f(1α))

respectively, where f ∈ EndHα(Hα).

3.4 Proof of the main theorem

3.4.1 Decomposition of tensor products of the regular
representations

We denote by Hα the left Hα-module given by the left regular action.
Let us denote by εHβ the vector space underlying Hβ equipped with the
H1-module structure given by

h.m = ε(h)m for m ∈ εHβ, h ∈ H1.

We will use Sweedler’s notation: ∆α,β(h) = h(1) ⊗ h(2) for h ∈ Hαβ, h(1) ∈
Hα, h(2) ∈ Hβ.

Theorem 3.4.1. Let H = (Hα)α∈G be a finite type Hopf G-coalgebra. Then
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φα,β

αβ

α β

εβ

=

αβ

α β

εβ

, ψα,β

α

αβ εβ

β

=

α

αβ εβ

β

Figure 3.6 – The graphical representations of φα,β and ψα,β

(1) the map
φα,β : Hαβ ⊗ εHβ → Hα ⊗Hβ

h⊗m 7→ h(1) ⊗ h(2)m

is an isomorphism of Hαβ-modules whose inverse is

ψα,β : Hα ⊗Hβ → Hαβ ⊗ εHβ

x⊗ y 7→ x(1) ⊗ Sβ−1(x(2))y.

(2) the map
φlα,β : εHα ⊗Hαβ → Hα ⊗Hβ

m⊗ h 7→ h(1)m⊗ h(2)

is an isomorphism of Hαβ-modules whose inverse is

ψlα,β : Hα ⊗Hβ → εHα ⊗Hαβ

x⊗ y 7→ S−1
α−1(y(1))x⊗ y(2).

We prove the theorem using graphical calculus with the graphical repre-
sentations for Hopf G-coalgebras given in Section 3.2.1. The maps φα,β and
ψα,β are presented in Figure 3.6. The graphical representations for φlα,β and
ψlα,β are similar.

Proof. In order to prove part (1), we first check that φα,β is left inverse to
ψα,β, by computing the composition one gets

ψα,β ◦ φα,β =

αβ εβ

αβ εβ

α β

=

αβ εβ

αβ εβ

α β

=

αβ εβ

αβ εβ

αβ 1

=

αβ εβ

αβ εβ

1

= IdHαβ⊗ εHβ
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where the associativity of the product mβ is used in the first equality, then we
use the coassociativity of the coproduct in the second equality, and finally we
use the antipode properties in the last equality. Similarly we have φα,β◦ψα,β =
IdHα⊗Hβ .
Next we prove the map φα,β is Hαβ-linear by diagrammic calculus:

φα,β

αβ αβ εβ

α β

=

αβ αβ εβ

α β

=

αβ αβ εβ

α β

=

αβ αβ εβ

φα,β

α β

where we used the property of the algebra homomorphism ∆α,β in the second
equality and the associativity of multiplication in the third equality. The map
ψα,β is also Hαβ-linear by:

ψα,β

αβ α β

αβ εβ

=

αβ α β

αβ εβ

=

αβ α β

αβ εβ

=

αβ α β

αβ εβ

=

αβ α β

αβ εβ

ψα,β

where we used the property of the algebra homomorphism ∆α,β in the first
equality, the coassociativity of coproduct and the antipode properties are
used in the second equality, the associativity of multiplication and the an-
tipode properties are used in the third equality, and we used the antipode
properties in the last equality.

The proof of the part (2) is similar way.
Proposition 3.4.2. Let H = (Hα)α∈G be a finite type pivotal Hopf G-
coalgebra. Then we have the equalities of linear maps:

(1) φα,β(1αβ ⊗m) = 1α ⊗m for m ∈ εHβ,
(2) (µ̃αβ ⊗ Id′β) ◦ψα,β = µ̃α⊗ gβ Id′β where Id′β : Hβ → εHβ is the identity

map in Vectk.
Proof. The equality (1) holds by the definition of the map φα,β. Part (2)
follows from the diagrammic calculus in Vectk:

ψα,β

µ̃αβ

α β

εβ

= µ̃αβ = µ̃α

g−1
β−1

=
µ̃α

gβ

(3.4.1)
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where in the second equality of (3.4.1) we used the relation of the right
symmetrised G-integral in Figure 3.5.

3.4.2 Proof of Theorem 3.1.1
Let (H, g) be a finite type unimodular pivotal Hopf G-coalgebra, C be the

pivotal G-graded category of H-modules. The existence of modified trace on
Proj(C) follows from: 1) the existence of non-zero integral on H1 2) the
existence of modified trace in C1 by applying the results of [2] for H1 and
3) the existence of the extension of ambidextrous trace in [18, Theorem 3.6].
Nevertheless we choose to give a direct proof of this fact following the lines
of [2]. Furthermore, Theorem 3.1.1 also gives an explicit formula to compute
the modified trace t from the integral and conversely.

Proof of Theorem 3.1.1. First, we show that a right symmetrised G-integral
provides a modified trace. Suppose that µ̃ = (µ̃α)α∈G is the right symmetrised
G-integral for H. By Proposition 3.3.2 the family of the symmetric forms
associated with µ̃ induces the family of cyclic traces t = (tα)α∈G of H-pmod.
Here tα = {tαP : EndHα(P )→ k}P∈Hα-pmod is determined by

tαHα(f) = µ̃α(f(1α)) for f ∈ EndHα(Hα). (3.4.2)
To show t is a modified trace, it is enough to check

tαβHα⊗Hβ(f) = tαHα(trrHβ(f)) for any f ∈ EndHαβ(Hα ⊗Hβ) (3.4.3)

thanks to Reduction Lemma 3.3.4. The value of tαβHα⊗Hβ(f) in Equality (3.4.3)
is calculated

tαβHα⊗Hβ



f

α

α

β

β

= tαβHα⊗Hβ




φα,β

ψα,β

f

α

α

β

β

= tαβHαβ⊗ εHβ



φα,β

ψα,β

f

αβ

αβ

εβ

εβ

= tαβHαβ



φα,β

ψα,β

f

αβ

αβ
εβ

=

φα,β

ψα,β

f

µ̃αβ

αβ
εβ

Théorie quantique des champs topologiques pour la superalgèbre de Lie sl(2/1) Ngoc-Phu Ha 2018



68 CHAPTER 3. MODIFIED TRACE FROM G-COALGEBRA

Rh

ϕ

εβαβ

α β

Figure 3.7 – The graphical representation of the map k

= f

µ̃α

α

gβ

εβ

= tαHα(trrHβ(f)) .

In the above calculation, we use Theorem 3.4.1 in the first equality; the
cyclicity property of trace in the second equality; Lemma 3.3.3 in the third
equality; Equation (3.4.2) in the fourth equality and in the fifth equality we
use the two equalities in Proposition 3.4.2.

Second, assume that we have a right modified trace, and hence the sym-
metric form tαP on EndHα(P ) for any projective module P and any α ∈ G.
In particular for any α, β ∈ G the symmetric forms tαHα on EndHα(Hα) and
tαβHα⊗Hβ on EndHαβ(Hα ⊗Hβ) satisfy

tαβHα⊗Hβ(f) = tαHα(trrHβ(f)) for any f ∈ EndHαβ(Hα ⊗Hβ). (3.4.4)

Let ν̃α(h) = tαHα(Rh) for Rh ∈ EndHα(Hα) with h ∈ Hα. Then ν̃α(f(1α)) =
tαHα(f) for f ∈ EndHα(Hα) (see Lemma 3.3.1). We prove that the family
ν̃ = (ν̃α)α∈G satisfies the relation of the right symmetrised G-integral.
Consider the maps k = ∆α,β ◦ (Rh ⊗ ϕ) : Hαβ ⊗ εHβ → Hα ⊗ Hβ for
h ∈ Hαβ and ϕ ∈ εH

∗
β. Then k is a morphism of Hαβ-modules. The

graphical representation of the map k is given in Figure 3.7. Let f̃ = k◦ψα,β :
Hα⊗Hβ → Hα⊗Hβ then f̃ ∈ EndHαβ(Hα⊗Hβ). We now calculate the values
of the modified trace for f̃ ∈ EndHαβ(Hα ⊗Hβ) and trrHβ(f̃) ∈ EndHα(Hα).
On the one hand, we have

tαβHα⊗Hβ(f̃) = tαβHα⊗Hβ(k ◦ ψα,β) = tαβHαβ⊗ εHβ
(ψα,β ◦ k)
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= tαβHαβ⊗ εHβ



Rh

αβ εβ

ϕ

αβ εβ

= tαβHαβ⊗ εHβ



Rh

ϕ

= tαβHαβ⊗ εHβ



Rh

ϕ = tαβHαβ⊗ εHβ




Rh ϕ

= tαβHαβ




Rh ϕ

= ν̃αβ(h)ϕ(1β).

In the above calculations, we use the cyclicity property in the second equal-
ity; the coassociativity of the coproduct in the fourth equality; the antipode
properties in the fifth equality and finally we use the partial trace property.
On the other hand, we have

tαHα(trrHβ(f̃)) = tαHα(trrHβ(k ◦ ψα,β))

= tαHα




Rh

ϕ

α β

α

gβ

=
Rh

ϕ

ν̃α

gβ

α
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=

ν̃α

gβ

ϕ

αβ

Rh

= ν̃α(h(1))ϕ(gβh(2))

where we use the left evaluation ←−ev with the pivot gβ and the right coeval-
uation −→coev in the second equality and ∆α,β(h) = h(1) ⊗ h(2).
By Equality (3.4.4) one has tαβHα⊗Hβ(f̃) = tαHα(trrHβ(f̃)). This equality means
that

ν̃αβ(h)ϕ(1β) = ν̃α(h(1))ϕ(gβh(2)) for any ϕ ∈ εH
∗
β, h ∈ Hαβ.

This equality holds for any ϕ ∈ εH
∗
β implies that ν̃αβ(h)1β = ν̃α(h(1))gβh(2),

i.e. (ν̃α ⊗ gβ)∆α,β(h) = ν̃αβ(h)1β for any h ∈ Hαβ. Therefore the family
ν̃ = (ν̃α)α∈G is the right symmetrised G-integral for H.

For the case of the left modified trace the proof is similar.

3.5 Modified trace for G-graded quantum sl(2)
In this section we present the symmetrised G-integral for the quantization

of sl(2) and the modified trace on ideal of projective modules of category of
the weight modules over U qsl(2). It explains clearly the relation between
the symmetrised G-integral for a pivotal Hopf G-coalgebra and the modified
trace in associated category U qsl(2)-mod.

3.5.1 Unrestricted quantum U qsl(2)
Let Uqsl(2) be the C-algebra given by generators E,F,K,K−1 and rela-

tions:

KK−1 = K−1K = 1, KEK−1 = q2E, KFK−1 = q−2F, [E,F ] = K −K−1

q − q−1

where q = e
iπ
r is a 2rth-root of unity. The algebra Uqsl(2) is a Hopf algebra

where the coproduct, counit and antipode are defined by

∆(E) = 1⊗ E + E ⊗K, ε(E) = 0, S(E) = −EK−1,

∆(F ) = K−1 ⊗ F + F ⊗ 1, ε(F ) = 0, S(F ) = −KF,
∆(K) = K ⊗K ε(K) = 1, S(K) = K−1.
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Let U := U qsl(2) be the algebra Uqsl(2) modulo the relations Er = F r =
0 and C = C[K±r] be the commutative Hopf subalgebra in the center of
U qsl(2). The algebra U is a pivotal Hopf algebra with the pivot g = K1−r.
Let G = (C/2Z,+) ∼−→ HomAlg(C,C), α 7→ (Kr 7→ qrα := eiπα) and let Uα be
the algebra U qsl(2) modulo the relations Kr = qrα for α ∈ G. By applying
Example 3.2.3 it follows that U = {Uα}α∈G is the Hopf G-coalgebra with the
coproduct and the antipode are determined by the commutative diagrams:

U
∆

- U ⊗ U

Uα+β

pα+β

? ∆α,β- Uα ⊗ Uβ

pα ⊗ pβ
?

U
S

- U

Uα

pα

? Sα - U−α

p−α

?

where pα : U → Uα is the projective morphism from U to Uα. The Hopf
G-coalgebra U = {Uα}α∈G has the pivotal structure given by gα = q−rαK.
For α = 0 the Hopf algebra U0 is called the restricted quantum sl(2), i.e. the
algebra Uqsl(2) modulo the relations Er = F r = 0 and Kr = 1. The right
0-integral is the usual right integral given by

µ0(EmF nK l) = ηδm,r−1δn,r−1δl,1

where η is a constant. By definition of right G-integral (3.1.1) we get

µα(EmF nK l) = qrαηδm,r−1δn,r−1δl,1.

One can show that the Hopf G-coalgebra {Uα}α∈G is G-unibalanced.
The symmetrised right G-integral for {Uα}α∈G is determined by

µ̃α(EmF nK l) = ηδm,r−1δn,r−1δl,0. (3.5.1)

3.5.2 Modified trace
Let C be the category of representations of the Hopf G-coalgebra U (see

Section 3.3.3). Then C is equal to the G-graded category of finite dimensional
weight modules over U qsl(2) (module in whichK has a diagonalizable action).
For α ∈ C let Vα be a r-dimensional highest weight module of highest weight
α + r − 1 in C (see [9]). Recall the modified dimension d(Vα) of Vα for
α ∈ (C \ Z) ∪ rZ was computed:

d(Vα) = tVα(IdVα) = d0

r−1∏
k=1

{k}
{α + r − k}

= d0
r{α}
{rα}

(3.5.2)
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where t is the modified trace on ideal Proj(C) of projective modules and d0
is a non-zero complex number. In [9] for the analogous unrolled category,
it is normalized by d0 = (−1)r−1. We now present the way to compute the
modified dimension of Vα using the symmetrised G-integral.
By density theorem we have the isomorphism of algebras

Uα
∼−→

⊕
k∈Hr

End(Vα+2k)

where Hr = {−(r − 1),−(r − 3), ..., r − 1}. Hence we have the isomorphism
of left Uα-modules:

Uα
∼−→

⊕
k∈Hr

End(Vα+2k) ∼−→
⊕
k∈Hr

Vα+2k ⊗ εV
∗
α+2k .

Consider the quantum Casimir element of U defined by

Ω = FE + Kq +K−1q−1

{1}2 = EF + Kq−1 +K−1q

{1}2 .

For k ∈ N, by induction one gets
k−1∏
i=0

(
Ω− q−2i−1K + q2i+1K−1

{1}2

)
= EkF k. (3.5.3)

Lemma 3.5.1. For k ∈ N then

Ωk − EkF k ∈ SpanC{EjF jKi | j < k, i ∈ Z}.

Proof. The proof is by induction on k. Indeed, by (3.5.3) Ωk − EkF k ∈
SpanC{ΩjKi | j < k, i ∈ Z} which by the induction hypothesis is contained
in SpanC{EjF jKi | j < k, i ∈ Z}.

Following (3.5.1) we have the corollary.

Corollary 3.5.2. For all k ∈ {0, ..., r − 2} we have µ̃α
(
Ωk
)

= 0. For
k = r − 1 then µ̃α (Ωr−1) = η.

Proof. It follows from (3.5.1) that SpanC{EjF jKi | j < k, i ∈ Z} is con-
tained in the kernel of µ̃α for k ∈ {0, ..., r − 2}.

For α ∈ C \ Z, Ω acts on Vα by the scalar wα which is calculated as
follows: Let v be a highest weight vector of Vα. The action of K on v
defined by Kv = qα+r−1v. This implies that Ωv = qα+r+q−α−r

{1}2 v, i.e. wα =
qα+r+q−α−r
{1}2 . The elements wα+2k, 0 ≤ k < r−1 are distinct as wα+2i−wα+2j =

Théorie quantique des champs topologiques pour la superalgèbre de Lie sl(2/1) Ngoc-Phu Ha 2018



3.5. MODIFIED TRACE FOR G-GRADED QUANTUM SL(2) 73

{i−j}{α+r+i+j}
{1}2 6= 0 for i 6= j.

We consider in Uα the element

Lα(Ω) =
∏r−1
k=1(Ω− wα+2k)∏r−1
k=1(wα − wα+2k)

.

This element is the projector on Vα ⊗ εV
∗
α '

⊕r
k=1 Vα as Lα(wα+2k) = δ0,k.

The value of symmetrised right G-integral on Lα(Ω) is

µ̃α (Lα(Ω)) = 1∏r−1
k=1(wα − wα+2k)

µ̃α

(
r−1∏
k=1

(Ω− wα+2k)
)
.

Corollary 3.5.2 implies that

µ̃α

(
r−1∏
k=1

(Ω− wα+2k)
)

= µ̃α
(
Ωr−1

)
= η.

The equality ∏r−1
k=1(wα − wα+2k) = (−1)r−1∏r−1

k=1
{k}{α+k}
{1}2 gives

µ̃α (Lα(Ω)) = (−1)r−1η
r−1∏
k=1

{1}2

{k}{α + k}

= η
r−1∏
k=1

{1}2

{k}2 (−1)r−1
r−1∏
k=1

{k}
{α + r − k}

= {1}
2r−2η

r3d0
rd(Vα)

where we used the identity ∏r−1
k=1{k}2 = (−1)r−1r2 in the last equality.

It is clear that the coefficient {1}
2r−2η
r3d0

does not depend on α. This proves that
µ̃α (Lα(Ω)) = rd(Vα) with the choice d0 = {1}2r−2η

r3 where η = µ̃α (Er−1F r−1).
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Chapter 4

A Hennings type invariant of
3-manifolds from a topological
Hopf superalgebra

This chapter is the content of the paper [20] available in
https://arxiv.org/abs/1806.08277.

Résumé. Nous prouvons que la superalgèbre quantique déroulée associée à
la superalgèbre de Lie sl(2|1) a une complétion qui est une superalgèbre enru-
bannée au sens topologique. En utilisant cette superalgèbre topologique enru-
bannée, nous construisons un invariant universel d’entrelacs. Nous l’utilisons
pour construire un invariant de 3-variétés de type Hennings.

Abstract. We prove the unrolled quantum superalgebra associated with
the super Lie algebra sl(2|1) has a completion which is a ribbon superalgebra
in a topological sense. Using this topological ribbon superalgebra we con-
struct its universal invariant of links. We use it to construct an invariant of
3-manifolds of Hennings type.

MSC: 57M27, 17B37
Key words: Lie superalgebra, unrolled quantum group, G-integral, invari-

ant of 3-manifolds, Hennings invariant, topological Hopf superalgebra.

4.1 Introduction
The notion of an unrolled quantum group is introduced in [16] by N.

Geer and B. Patureau-Mirand. Then an unrolled quantum group is a quan-

75
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tum group with some additional generators which should be thought of the
logarithms of some other generators, for example in UHq sl(2) the additional
generator is an element H with the relation qH = K (see [9, 16, 17]). This
element H is a tool to construct a ribbon structure on representations of
UHq sl(2). The category of weight modules of UHq sl(2) is ribbon and not semi-
simple but the Hopf algebra is not ribbon. With this category UHq sl(2)-mod
one constructed the invariants of links and of 3-manifolds (see [9, 39]). For
the Lie superalgebra sl(2|1), the associated unrolled quantum group is de-
noted by UHξ sl(2|1) with two additional generators h1, h2 from the quantum
group Uξsl(2|1). Using this unrolled quantum group in Chapter 2 one has
shown that the category CH of nilpotent weight modules over UHξ sl(2|1) is
ribbon and relative G-(pre)modular and leads to an invariant of links and of
3-manifolds. The category CH is ribbon thanks to the role of the additional
elements h1, h2 which should be thought as the logarithms of k1, k2, i.e.
ξhi = ki for i = 1, 2. They help to construct quasitriangular ribbon structure
in CH . The relations ξhi = ki for i = 1, 2 also suggest that k1, k2 can be
consider as holomorphic functions of h1 and h2 on C2. Following this idea we
extend the superalgebra UH = UHξ sl(2|1)/(e`1, f `1) to a ribbon superalgebra
ÛH in a topological sense, the topology determined by the norm of uniform
convergence on compact sets. Its bosonization ÛH

σ
is a ribbon algebra (see

in Section 4.2.3).

It is known that for each ribbon Hopf algebra one can construct a univer-
sal link invariant (all links are framed and oriented) (see [23], [38]). In fact,
one can show (see [3]) that a double braiding in a Hopf algebra is enough
to construct a universal invariant for string links or bottom tangles. From
some universal link invariants one could construct a 3-manifold invariant.
There are many ways to do this. In [26], M. Hennings introduced a method
of building an invariant of 3-manifolds by using a universal link invariant
and a right integral. He worked with a finite dimensional ribbon algebra and
this condition guarantees the existence of a right integral. In other way, A.
Virelizier and V. Turaev constructed the invariants which called invariants
of π-links and invariants of π-manifolds, the invariants of equivalence class
of π-bundles or equivalently of manifolds equipped with a map from the fun-
damental group to π (see [48]). They began with a ribbon Hopf π-coalgebra
of finite type to construct the invariants of π-links, after that they renor-
malized the invariant to invariant of π-manifolds by using π-integrals (see
Chapter 3). Note that the π-integrals exist if and only if the group-coalgebra
is of finite type (see [49]). From a Hopf algebra one can construct a Hopf
group-coalgebra (see Chapter 3). In our case π = G = (C/Z × C/Z,+) is
commutative, therefor a G-structure on a manifold M is a cohomology class
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ω ∈ H1(M,G) and a G-link is a G-structure on the complement of a link.
The Hopf G-coalgebra associated with the ribbon algebra ÛH

σ
consists of

quotients of UHα by the ideal (k`i − ξ`αi , i = 1, 2) is ribbon but is not of
finite type, i.e. the method of construction the invariant of 3-manifolds in
[48] does not work here. We show that for ÛH

σ
there is an associated Hopf

G-coalgebra Uσ(see in Section 4.4) which is of finite type but is not ribbon.
We will present an another approach to construct an invariant of 3-manifolds
from ÛH

σ
. We will use first the topological ribbon structure of ÛH

σ
to con-

struct a universal invariant of links. The value of this invariant is represented
by a product of a part which is a holomorphic function of variables h1, h2
and a part of elements in copies of Uσ. Assume the link is a surgery link in
S3 that produces a closed 3-manifold M . Next we use a cohomology class
ω ∈ H1(M,G) and a discrete Fourier transform to reduce this element. This
universal invariant of links allows to construct an invariant of 3-manifolds
(M,ω) of Hennings type.

The chapter contains four sections. In Section 4.2 we construct the topo-
logical ribbon structure of UH whose bosonization is a topological ribbon
algebra. Section 4.3 builds the universal invariant of links from the topolog-
ical ribbon superalgebra ÛH and a factorization of the invariant. Finally, in
Section 4.4 we define discrete Fourier transforms from the topological ribbon
superalgebra to a finite type Hopf G-coalgebra. This leads to definition in
Theorem 4.4.15 of an invariant of pair (M,ω) as above.

4.2 Topological ribbon Hopf superalgebra ÛH

In this section we recall the definition of Hopf superalgebra UHξ sl(2|1)
and we construct a topological ribbon Hopf superalgebra ÛH which is a
completion of UH . The topology used in the present chapter is the one of
uniform convergence on compact sets for the vector space of holomorphic
functions on C2. This topology defined for q a root of unity is very different
from the widely studied h-adic topology used with q = eh ∈ C[[h]]. For
example, a topological completion of the Uqsl(2) over C(q) can be seen in
[24, 38].

4.2.1 Hopf superalgebra ÛH

Hopf superalgebra UHξ sl(2|1)

We recall here Definition 2.3.1 of the Hopf superalgebra UHξ sl(2|1).
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Definition 4.2.1. Let ` ≥ 3 be an odd integer and ξ = exp(2πi
`

). The
superalgebra Uξsl(2|1) is an associative superalgebra on C generated by the
elements k1, k2, k

−1
1 , k−1

2 , e1, e2, f1, f2 and the relations

k1k2 = k2k1, (4.2.1)
kik
−1
i = 1, i = 1, 2, (4.2.2)

kiejk
−1
i = ξaijej, kifjk

−1
i = ξ−aijfj i, j = 1, 2, (4.2.3)

e1f1 − f1e1 = k1 − k−1
1

ξ − ξ−1 , e2f2 + f2e2 = k2 − k−1
2

ξ − ξ−1 , (4.2.4)

[e1, f2] = 0, [e2, f1] = 0, (4.2.5)
e2

2 = f 2
2 = 0, (4.2.6)

e2
1e2 − (ξ + ξ−1)e1e2e1 + e2e

2
1 = 0, (4.2.7)

f 2
1 f2 − (ξ + ξ−1)f1f2f1 + f2f

2
1 = 0. (4.2.8)

The last two relations are called the Serre relations. The matrix (aij) is given
by a11 = 2, a12 = a21 = −1, a22 = 0. The odd generators are e2, f2.

We define ξx := exp(2πix
`

), afterwards we will use the notation

{x} = ξx − ξ−x.

According to [31], Uξsl(2|1) is a Hopf superalgebra with the coproduct, counit
and the antipode as below

∆(ei) = ei ⊗ 1 + k−1
i ⊗ ei i = 1, 2,

∆(fi) = fi ⊗ ki + 1⊗ fi i = 1, 2,
∆(ki) = ki ⊗ ki i = 1, 2,
S(ei) = −kiei, S(fi) = −fik−1

i , S(ki) = k−1
i i = 1, 2,

ε(ki) = 1, ε(ei) = ε(fi) = 0 i = 1, 2.

We call UHξ sl(2|1) the C-superalgebra generated by ei, fi, ki, k−1
i and hi

for i = 1, 2 with Relations (4.2.1) - (4.2.8) plus the relations

[hi, ej] = aijej, [hi, fj] = −aijfj, [hi, hj] = 0, [hi, kj] = 0 i, j = 1, 2.

The superalgebra UHξ sl(2|1) is a Hopf superalgebra where ∆, S and ε are
determined as in Uξsl(2|1) and by

∆(hi) = hi ⊗ 1 + 1⊗ hi, S(hi) = −hi, ε(hi) = 0 i = 1, 2.

Note that UHξ sl(2|1) can be seen as a semidirect product of C[h1, h2] acting
on Uξsl(2|1).
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Define the odd elements e3 = e1e2 − ξ−1e2e1, f3 = f2f1 − ξf1f2. Denote
by

B+ = {ep1eρ3eσ2 , p ∈ {0, 1, ..., `− 1}, ρ, σ ∈ {0, 1}},
B− = {fp

′

1 f
ρ′

3 f
σ′

2 , p
′ ∈ {0, 1, ..., `− 1}, ρ′, σ′ ∈ {0, 1}},

B0 = {ks11 k
s2
2 , s1, s2 ∈ Z} and Bh = {ht11 ht22 , t1, t2 ∈ N}.

Let UH = UHξ sl(2|1)/(e`1, f `1), this is a Hopf superalgebra.

Lemma 4.2.2. The set of vectors B+B0BhB− is a Poincaré-Birkhoff-Witt
basis of UH .

Proof. A proof of this lemma similar to that of Lemma 2.3.3 can be obtained
by replacing C[k±1

1 , k±1
2 ] with C[k±1

1 , k±1
2 , h1, h2].

Topological Hopf superalgebra ÛH

We recall some notions of topological tensor product and nuclear spaces
in [40, 19]. A locally convex space E is called nuclear, if all the compatible
topologies on E ⊗ F agree for all locally convex spaces F , i.e. the topology
on E ⊗ F compatible with ⊗ is unique. A topology is compatible with ⊗
if: 1) ⊗ : E × F → E ⊗ F is continuous and 2) for all (e, f) ∈ E ′ × F ′

the linear form e ⊗ f : E ⊗ F → C, x ⊗ y 7→ e(x)f(y) is continuous [40].
For two nuclear spaces E and F the completion of the tensor product E⊗F
endowed with its compatible topology is denoted E⊗̂F . A finite dimensional
space is nuclear, the tensor product of two nuclear spaces is nuclear space
and a space is nuclear if only if its completion is nuclear [19]. The complete
nuclear spaces form a symmetric monoidal category Nuc with the product
⊗̂ (see [40]).

A super nuclear space E is a Z/2Z-graded nuclear E = E0⊕E1 where both
E0 and E1 are closed in E. As for SVect0 one can form the monoidal category
SNuc0 of super complete nuclear spaces with even morphisms. We call
topological Hopf superalgebra a Hopf algebra object in the monoidal category
SNuc0. That is a super complete nuclear C-space H endowed with the even
C-linear continuous maps called the product, unit, coproduct, counit and
antipode

m : H⊗̂H → H, η : C→ H, ∆ : H → H⊗̂H, ε : H → C and S : H → H

satisfy the axioms:
1. the product m is associative on H admitting 1H = η(1) as unity.
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2. the coproduct ∆ is coassociative, i.e. (∆⊗̂ IdH) ◦ ∆ = (IdH ⊗̂∆) ◦ ∆
and (ε⊗̂ IdH) ◦∆ = (IdH ⊗̂ε) ◦∆ = IdH .

3. ∆ and ε are algebra morphisms where the associative product in H⊗̂H
determined by (m⊗̂m) ◦ (IdH ⊗̂τ⊗̂ IdH).

4. m ◦ (S⊗̂ IdH) ◦∆ = m ◦ (IdH ⊗̂S) ◦∆ = η ◦ ε.
The notion of a topological Hopf algebra is defined similarly.

If V is a finite dimensional C-vector space we denote by H(V ) the space
of holomorphic functions on V endowed with the topology of uniform con-
vergence on compact sets, it is nuclear space. We will also use the notation
H(h1, . . . , hn) := H(V ) if h1, . . . , hn are coordinate functions on V . Re-
mark that we have H(V1)⊗̂H(V2) ' H(V1 × V2) (Theorem 51.6 [45]) where
V1, V2 are finite dimensional C-vector spaces. For a quantum group, if H is
generated by Cartan generators and W is a finite dimensional vector space
generated by other generators then elements of W ⊗̂H(H∗) can be seen as
W -valued holomorphic functions. We have the proposition.

Proposition 4.2.3. Let Hi be C-vector spaces of dimension ni and let Wi be
finite dimensional vector spaces on C for i = 1, 2. Then

(W1 ⊗H(H∗1))⊗̂(W2 ⊗H(H∗2)) ' (W1 ⊗W2)⊗H(H∗1 × H∗2).

Proof. By the symmetric and associative properties of ⊗̂ we have

(W1⊗̂H(H∗1))⊗̂(W2⊗̂H(H∗2)) ' (W1⊗̂W2)⊗̂H(H∗1)⊗̂H(H∗2).

Furthermore, by Theorem 51.6 [45] H(H∗1)⊗̂H(H∗2) ' H(H∗1×H∗2). It implies

(W1⊗̂H(H∗1))⊗̂(W2⊗̂H(H∗2)) ' (W1⊗̂W2)⊗̂H(H∗1 × H∗2).

Since the spaces Wi,H(H∗i ) for i = 1, 2 are complete then Wi⊗̂H(H∗i ) '
Wi ⊗H(H∗i ). Thus we get

(W1 ⊗H(H∗1))⊗̂(W2 ⊗H(H∗2)) ' (W1 ⊗W2)⊗H(H∗1 × H∗2).

The space of entire functions is a nuclear space obtained as the completion
of polynomial functions for the topology of uniform convergence on compact
sets. We use a similar completion to define a topological ribbon Hopf superal-
gebra from UH . That is a topological ribbon Hopf superalgebra ÛH where the
topology is constructed as follow. We consider UH ' W⊗CC[h1, h2, k

±1
1 , k±1

2 ]
as a vector space on C where W is a finite dimensional vector space on C
with the basis

B = B+B−.
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Let H be C-vector space with basis {h1, h2} and H∗ be its dual, let H(h1, h2)
be the vector space of holomorphic functions on C2 ' H∗. Now C[h1, h2, k

±1
1 , k±1

2 ]
embeds in H(h1, h2) by sending ki to ξhi = exp (2iπ

`
hi).

Furthermore C[h1, h2, k
±1
1 , k±1

2 ] is dense inH(h1, h2) equipped with the topol-
ogy of uniform convergence on compact sets. Thus UH is embedded in
W ⊗̂CH(h1, h2) ' W⊗CH(h1, h2), in particular ki = 1⊗ξhi ∈ W⊗CH(h1, h2)
for i = 1, 2. This space is nuclear. As W ⊗H(h1, h2) is complete and UH is
dense in it then the completion ÛH of UH is isomorphic to W⊗CH(h1, h2),
i.e. ÛH ' W⊗CH(h1, h2).

In the following, we show that the completion ÛH has the topological
Hopf algebraic structure continuously extended from UH with the coproduct
∆ : UH → UH⊗̂ UH .

Remark 4.2.4. For each wi ∈ B there exists |wi| = (|wi|1, |wi|2) ∈ Z2 such
that

hkwi = wi(hk + |wi|k) and
∀wi, wj ∈ B wiwj =

∑
m

wmc
m
ij (h1, h2),

here |wi|k ∈ Z is the weight of wi for hk with k = 1, 2.

Remark 4.2.5. As ÛH ' W⊗CH(h1, h2) then each u ∈ ÛH can be written
uniquely

u =
∑

1≤i,j≤4`
uiQij(h1, h2)vj

where ui ∈ B−, vj ∈ B+, Qij(h1, h2) ∈ H(h1, h2) for 1 ≤ i, j ≤ 4`.
Furthermore, by Remark 4.2.4 each u ∈ ÛH can be also written

u =
∑

1≤i,j≤4`
uivjPij(h1, h2) =

∑
i,j

Q′ij(h1, h2)uivj (4.2.9)

where ui ∈ B−, vj ∈ B+, Pij(h1, h2), Q′ij(h1, h2) ∈ H(h1, h2) for 1 ≤ i, j ≤
4`.

Let K be a compact set in H∗. If φ ∈ K and x(h1, h2) ∈ H(h1, h2) then
φ∗x(h1, h2) is the evaluation of x at φ, that is φ∗x(h1, h2) = x(φ(h1), φ(h2)) ∈
C. For x = ∑

k wkxk(h1, h2) ∈ ÛH , define a norm associated to K on ÛH as
follow

‖x‖K = ‖
∑
k

wkxk(h1, h2)‖K = sup
k

sup
φ∈K
|φ∗(xk(h1, h2))| (4.2.10)

= sup
k

sup
φ∈K
|xk(φ(h1), φ(h2))| = sup

φ∈K
‖φ∗x‖B∞
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where φ∗x = ∑
k wkφ∗xk ∈ W .

Remark that all norms on W are equivalent so the choice above of the
norm ‖.‖B∞ in the basis B does not matter. In particular, ‖x‖K = 1 when
x ∈ B. The set {‖.‖K}K compact induce the topology of uniform convergence
on compact sets.
If E is a nuclear space, it is a locally convex space and its topology is
generated by the open balls of the continuous semi-norms. A linear map
f : E → F between nuclear spaces is continuous if and only if for any con-
tinuous semi-norm ‖.‖F on F there exists a continuous semi-norm ‖.‖E on E
and a constant η ∈ R+ such that

∀x ∈ E ‖f(x)‖F ≤ η‖x‖E.

The following three propositions show that the Hopf algebra maps on UH are
continuous. This implies that these maps induce a topological Hopf algebra
structure on ÛH .

Proposition 4.2.6. For each compact set K ⊂ H∗, there exists a compact
set K ′ and a λK ∈ R such that ∀ x, y ∈ UH , we have

‖xy‖K ≤ λK‖x‖K′‖y‖K .

Proof. Given x = ∑
iwixi(h1, h2), y = ∑

j wjyj(h1, h2) then

xy =
∑
i

wixi(h1, h2)
∑
j

wjyj(h1, h2)

=
∑
i,j

wiwjxi(h1 + |wj|1, h2 + |wj|2)yj(h1, h2)

=
∑
i,j,k

wkc
k
i,j(h1, h2)xi(h1 + |wj|1, h2 + |wj|2)yj(h1, h2).

‖xy‖K
= sup

k
sup
φ∈K
|
∑
i,j

cki,j(φ(h1), φ(h2))xi(φ(h1) + |wj|1, φ(h2) + |wj|2)yj(φ(h1), φ(h2))|

≤ sup
k

sup
φ∈K
|
∑
i,j

cki,j(φ(h1), φ(h2))| sup
i

sup
φ∈K
|xi(φ(h1) + |wj|1, φ(h2) + |wj|2)|

sup
j

sup
φ∈K
|yj(φ(h1), φ(h2))|

= λK‖x‖K+C‖y‖K

where λK = supk supφ∈K |
∑
i,j c

k
i,j(φ(h1), φ(h2))| and C ⊂ H∗ is the convex

hull of weights of elements of B.
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Proposition 4.2.6 implies that the product on UH is continuous but there
does not seem to exist multiplicative seminorms on UH .
By Proposition 4.2.3 we have UH⊗̂UH ' W⊗2 ⊗ H(hi,j) where hi,1 = hi ⊗
1, hi,2 = 1⊗ hi for i = 1, 2 and the hi,j are seen as coordinates functions on
H∗×H∗. Thus we can write each x ∈ UH⊗̂UH form x = ∑

k wkxk(hi,j) where
wk ∈ B ⊗B and xk(hi,j) ∈ H(hi,j). We can define a norm of x ∈ UH⊗̂UH
associated to a compact set K2 ⊂ H∗ × H∗ by

‖x‖K2 = sup
k

sup
φ∈K2

|φ∗xk(hi,j)| = sup
k

sup
φ∈K2

|xk(φ(hi,j))|. (4.2.11)

Proposition 4.2.7. For each compact set K2 ⊂ C4, there exists a compact
set K ⊂ C2 and a λK2 ∈ R such that ∀ x ∈ UH , we have

‖∆x‖K2 ≤ λK2‖x‖K .

Proof. Let U be a compact set, U = U1 × U2 ⊂ H∗ × H∗ ' C4. First there
exists λU ∈ R such that for any a, a′, b, b′ ∈ UH we have

‖(a⊗ b)(a′ ⊗ b′)‖U1×U2 = ‖aa′ ⊗ bb′‖U1×U2 = ‖aa′‖U1‖bb′‖U2 (4.2.12)
≤ λU1‖a‖U1+C1‖a′‖U1λU2‖b‖U2+C2‖b′‖U2

= λU1λU2‖a‖U1+C1‖b‖U2+C2‖a′‖U1‖b′‖U2

= λU‖a⊗ b‖U+C1×C2‖a′ ⊗ b′‖U
= λU‖a⊗ b‖U ′‖a′ ⊗ b′‖U

where λU = λU1λU2 and U ′ = U + C1 × C2. Second let a compact set
K2 ⊂ H∗×H∗ and let K ⊂ H∗ be the compact set {ϕ+ψ| (ϕ, ψ) ∈ K2}. For
x ∈ UH , x = ∑

j wjxj(h1, h2), we have

‖∆x‖K2 = ‖
∑
j

∆wj∆xj(h1, h2)‖K2 ≤
∑
j

‖∆wj∆xj(h1, h2)‖K2

=
∑
j

‖
∑
s

w1,s
j ⊗ w

2,s
j xj(h1,1 + h1,2, h2,1 + h2,2)‖K2

≤
∑
j

∑
s

‖w1,s
j ⊗ w

2,s
j xj(h1,1 + h1,2, h2,1 + h2,2)‖K2

≤
∑
j

∑
s

λK2,j,s‖w
1,s
j ⊗ w

2,s
j ‖K2+(C1,C2)‖xj(h1,1 + h1,2, h2,1 + h2,2)‖K2

≤
∑
j

λK2,j‖xj(h1,1 + h1,2, h2,1 + h2,2)‖K2

where the sums are finite and λK2,j,s, λK2,j are constants and in the fifth
inequality one used Inequality (4.2.12). Furthermore, let H be vector space
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on C with basis {h1, h2}. The symmetric algebra S(H × H) ' S(H ⊕ H) '
SH ⊗ SH (see [29]), it is a commutative algebra on C generated by h1 ⊗
1, h2⊗1, 1⊗h1, 1⊗h2 and HomAlg(SH⊗SH,C) ' HomAlg(S(H×H),C) '
HomV ect(H×H,C) ' (H×H)∗ ' H∗×H∗. This isomorphism allows that for
(ϕ, ψ) ∈ H∗ × H∗ one has (ϕ, ψ)(hi ⊗ 1) = ϕ(hi) and (ϕ, ψ)(1 ⊗ hi) = ψ(hi)
for i = 1, 2. It implies that

‖xj(h1,1+h1,2, h2,1 + h2,2)‖K2

= sup
(ϕ,ψ)∈K2

|(ϕ, ψ)∗xj (h1,1 + h1,2, h2,1 + h2,2) |

= sup
(ϕ,ψ)∈K2

|(ϕ+ ψ)∗xj (h1, h2) | = ‖xj(h1, h2)‖K .

Hence
‖∆x‖K2 ≤

∑
j

λK2,j‖xj(h1, h2)‖K ≤ λK2‖x‖K

where λK2 is a constant.

This proposition implies that the coproduct is continuous. The antipode
S is also continuous by proposition below.

Proposition 4.2.8. For each compact set K ⊂ H∗ there exists a compact
set K ′′ ⊂ H∗ and a constant λK such that

‖S(x)‖K ≤ λK‖x‖K′′ for x ∈ UH .

Proof. For x = ∑
j wjxj(h1, h2) ∈ UH we have

‖S(x)‖K = ‖
∑
j

S(xj(h1, h2))S(wj)‖K = ‖
∑
j

xj(−h1,−h2)S(wj)‖K

≤
∑
j

‖xj(−h1,−h2)S(wj)‖K

≤
∑
j

λK,j‖xj(−h1,−h2)‖K′‖S(wj)‖K

≤
∑
j

λ′K,j‖xj(h1, h2)‖−K′ ≤ λK‖x‖−K′

where λK,j, λ′K,j and λK are constants.

It is clear that the unit and counit are continuous. Hence the maps
product, coproduct, unit, counit and the antipode of UH are continuous (with
the topology of uniform convergence on compact sets). Thus the topology of
uniform convergence on compact sets of UH is compatible with its algebraic
structure. The maps product, coproduct, unit, counit and the antipode of
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UH continuously extend to the completion ÛH . Note that the coproduct
UH → UH ⊗ UH extends to ÛH → UH⊗̂UH . The space ÛH endows with
these continuous maps is a topological Hopf superalgebra.

Similarly, for n ≥ 2 denote

hi,j = 1⊗ ...⊗ hi ⊗ ...⊗ 1 (4.2.13)

where hi is in j-th position for 1 ≤ i ≤ 2 and 1 ≤ j ≤ n. Then the completion
of UH⊗n is topological vector space UH⊗̂n ' W⊗n⊗H(hi,j) with the topology
of uniform convergence on compact sets. Here W⊗n is the tensor product of
n copies of W and H(hi,j) is the vector space of holomorphic functions of
2n variables {hi,j}j=1, ...,n

i=1,2 in C2n. Note also that the maps ∆[n]
i : UH⊗n →

UH⊗(n+1) and ε
[n]
i : UH⊗n → UH⊗(n−1) continuously extend to UH⊗̂n, here

∆[n]
i and ε

[n]
i determined by

∆[n]
i = Id⊗...⊗ Id︸ ︷︷ ︸

i−1

⊗∆⊗ Id⊗...⊗ Id︸ ︷︷ ︸
n−i

and
ε

[n]
i = Id⊗...⊗ Id︸ ︷︷ ︸

i−1

⊗ε⊗ Id⊗...⊗ Id︸ ︷︷ ︸
n−i

where ∆, ε are in i-th position. It follows that

Id⊗∆[n]
i = ∆[n+1]

i+1 ,∆[n]
i ⊗ Id = ∆[n+1]

i ,

∆[n+1]
i ◦∆[n]

i = ∆[n+1]
i+1 ◦∆[n]

i ,

∆[n+1]
j ◦∆[n]

i = ∆[n+1]
i ◦∆[n]

j i 6= j

and we denote ∆[n](x) = ∑
x(1) ⊗ ...⊗ x(n) for x ∈ UH . Hence, each element

x of UH⊗̂n can be written x = ∑
k wkxk(hi,j) where wk ∈ B⊗n, xk(hi,j) ∈

H(hi,j) := H(H∗n). In particular, the element ki,j := 1 ⊗ ... ⊗ ki ⊗ ... ⊗ 1
where ki is in j-th position is equal to ξhi,j = 1 ⊗ ... ⊗ ξhi ⊗ ... ⊗ 1 for
i = 1, 2 j = 1, ..., n. Let K be a compact set in C2n ' SpanC{hi,j}∗. As in
Definition (4.2.10) we define

‖x‖K = sup
k

sup
φ∈K
|φ∗(xk(hi,j))| = sup

k
sup
φ∈K
|xk(φ(hi,j))|.

Recall that CH is the even category of finite dimensional nilpotent modules
over UH (see in Chapter 2).

Proposition 4.2.9. For any V1, ..., Vn ∈ CH the representation ρV1⊗...⊗Vn :
UH⊗n → EndC(V1⊗...⊗Vn) continuously extends to a representation UH⊗̂n →
EndC(V1 ⊗ ...⊗ Vn).

Théorie quantique des champs topologiques pour la superalgèbre de Lie sl(2/1) Ngoc-Phu Ha 2018



86 CHAPTER 4. A HENNINGS TYPE INVARIANT

Proof. Let K be the compact set containing the weights of V = V1⊗ ...⊗Vn.
We have ρV : UH⊗n → End(V ) be continuous on compact set K. Indeed,
let x ∈ UH⊗n and write x = ∑

k wkxk(hi,j). On the subspace of weights φ ∈
K, ρV (∑k wkxk(hi,j)) acts as ‖ρV (∑k wkxk(φ(hi,j))) ‖ ≤

∑
k ‖wk‖K‖xk‖K ≤

λK‖x‖K with λK is a constant. It implies that ρV is continuous. This prove
that it exists a continuous representation ρ̂V : UH⊗̂n → EndC(V ).

4.2.2 Topological ribbon superalgebra ÛH

It is known in Chapter 2 that the operator R = ŘK on CH where

Ř =
`−1∑
i=0

{1}iei1 ⊗ f i1
(i)ξ!

1∑
ρ=0

(−{1})ρeρ3 ⊗ fρ3
(ρ)ξ!

1∑
δ=0

(−{1})δeδ2 ⊗ f δ2
(δ)ξ!

∈ UH ⊗ UH ,

(0)ξ! = 1, (i)ξ! = (1)ξ(2)ξ · · · (i)ξ, (k)ξ = 1− ξk
1− ξ and

K = ξ−h1⊗h2−h2⊗h1−2h2⊗h2 ∈ UH⊗̂2 (4.2.14)

satisfies these conditions below

∆⊗ Id(R) = R13R23,

Id⊗∆(R) = R13R12,

R∆op(x) = ∆(x)R for all x ∈ UH .

This operator is given by action of an element R is in the completion UH⊗̂2,
so the proof of the lemma below follows the line of Theorem VIII.2.4 [29].

Lemma 4.2.10. The element R = ŘK is a topological universal R-matrix
of the topological Hopf superalgebra ÛH .

The element R satisfies the properties

R12R13R23 = R23R13R12,

(ε⊗ IdÛH )(R) = 1 = (IdÛH ⊗ε)(R),
(S ⊗ IdÛH )(R) = R−1 = (IdÛH ⊗S

−1)(R),
(S ⊗ S)(R) = R.

The completion ÛH of UH is a Hopf C-superalgebra which has a pivotal
element φ0 = k−`1 k−2

2 (see Proposition 2.3.4). We define an even element θ,
invertible and in the center of ÛH by

θ = φ0.(m ◦ τ s ◦ (Id⊗S)(R))−1 (4.2.15)
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where τ s : UH⊗̂UH → UH⊗̂UH , x⊗ y 7→ (−1)deg x deg yy ⊗ x is super-flip of
UH⊗̂UH .
We now show that the completion ÛH with the element θ will be a ribbon
Hopf superalgebra.

Proposition 4.2.11. The θ is a twist, i.e. the element θ satisfies
1. ε(θ) = 1,
2. ∆(θ) = τ s(R).R.(θ ⊗ θ),
3. S(θ) = θ.

Equalities (1) and (2) follow from the definition of θ. To prove (3), we
need the following lemmas.
Let Uh be the sub-superalgebra of ÛH of all elements commuting with h1, h2
we have the lemma.

Lemma 4.2.12. For u ∈ ÛH , u ∈ Uh if and only if u has the form

u =
∑

0≤ρ,σ≤1, 0≤p≤`−1
yρ,σ,pQρ,σ,p(h1, h2)eρ2eσ3e

p
1 (4.2.16)

where weight(yρ,σ,p) + weight(eρ2eσ3e
p
1) = 0 and Qρ,σ,p(h1, h2) ∈ H(h1, h2).

Proof. By Remark 4.2.5 each u ∈ ÛH can be written uniquely

u =
∑

1≤i,j≤4`
uiQij(h1, h2)vj

where ui ∈ B−, vj ∈ B+, Qij(h1, h2) ∈ H(h1, h2) for 1 ≤ i, j ≤ 4`.
For each hk for k = 1, 2 we have

uhk =
∑

1≤i,j≤4`
uiQij(h1, h2)vjhk

=
∑

1≤i,j≤4`
uiQij(h1, h2)(hk + |vj|k)vj

=
∑

1≤i,j≤4`
ui(hk + |vj|k)Qij(h1, h2)vj

=
∑

1≤i,j≤4`
(hk + |ui|k + |vj|k)uiQij(h1, h2)vj

= hku+
∑

1≤i,j≤4`
(|ui|k + |vj|k)uiQij(h1, h2)vj.

It implies that u commutes with hi if and only if the sum of the weights of
ui and vj is zero.
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Let I+ be a left ideal of ÛH generated by e1, e2 and e3, set I = I+ ∩Uh.

Lemma 4.2.13. We have I = I+∩ Uh = I−∩ Uh and Uh = H(h1, h2)⊕ I
where I− is right ideal generated by f1, f2 and f3.

Hence, I is a two-sided ideal and the projection ϕ : Uh → H(h1, h2) is a
homomorphism of algebras called the Harish-Chandra homomorphism.

Proposition 4.2.14. Let Vµ be a simple highest weight UH-module with high-
est weight µ = (µ1, µ2). Then for any z ∈ Z(ÛH) and any v ∈ Vµ

zv = ϕ(z)(µ)v

where ϕ(z) is in H(H∗) and ϕ(z)(µ) is its value at µ = (µ1, µ2).

Proof. Let w0,0,0 be a highest weight vector generating Vµ and z a central
element of ÛH . Following the lemmas above, z can be written

z = ϕ(z) +
∑

(ρ,σ,p)6=(0,0,0)
yρ,σ,pQρ,σ,p(h1, h2)eρ2eσ3e

p
1.

Since eρ2eσ3e
p
1w0,0,0 = 0 for (ρ, σ, p) 6= (0, 0, 0) and hiw0,0,0 = µiw0,0,0 i = 1, 2,

we get zw0,0,0 = ϕ(z)(µ1, µ2)w0,0,0. If v is an arbitrary vector of Vµ, we have
v = xw0,0,0 for some x in ÛH . It implies that zv = zxw0,0,0 = xzw0,0,0 =
ϕ(z)(µ1, µ2)xw0,0,0 = ϕ(z)(µ1, µ2)v.

By using this proposition, we have

Proposition 4.2.15. Let u be a central element of ÛH . If ϕ(u) = 0 then
u = 0 where ϕ is Harish-Chandra homomorphism.

Proof. Let u be a central element of ÛH such that ϕ(u) = 0. Assume u is
non-zero can be written as

u =
∑

(ρ,σ,p)6=(0,0,0)
yρ,σ,pQρ,σ,p(h1, h2)eρ2eσ3e

p
1

where Qρ,σ,p(h1, h2) are non-zero functions in H(h1, h2), 0 ≤ ρ, σ ≤ 1, 0 ≤
p ≤ `− 1 and (ρ, σ, p) 6= (0, 0, 0).
Consider a typical highest weight UH-module Vµ generated by highest weight
vector w0,0,0. It is known that the set of 4r vectors B∗ = {S−1(eρ2eσ3e

p
1)w∗0,0,0}

forms a basis of V ∗µ where 0 ≤ ρ, σ ≤ 1, 0 ≤ p ≤ ` − 1, {w∗ρ,σ,p} is the
dual basis of {wρ,σ,p} of Vµ. In fact, the elements S−1(eρ2eσ3e

p
1) form up to

multiplication by ka1k
b
2 a, b ∈ Z a basis of the subalgebra U+ of UH gener-

ated by eρ2e
σ
3e
p
1 0 ≤ ρ, σ ≤ 1, 0 ≤ p ≤ ` − 1. Since U−w∗0,0,0 = Cw∗0,0,0
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where U− is subalgebra of ÛH generated by fρ2 f
σ
3 f

p
1 0 ≤ ρ, σ ≤ 1, 0 ≤ p ≤

` − 1, we have SpanC(B∗) ' U+w∗0,0,0 ' U+U0U−w∗0,0,0 ' UHw∗0,0,0 ' V ∗µ
where U0 is subalgebra of ÛH topologically generated by h1, h2. Furthermore
card(B∗) = dim V ∗µ , hence B∗ is a basis of V ∗µ . It exists in Vµ a dual basis
B = {w̃ρ,σ,p 0 ≤ ρ, σ ≤ 1, 0 ≤ p ≤ `− 1} of B∗ in V ∗µ , i.e. given (ρ, σ, p), for
any eρ

′

2 e
σ′
3 e

p′

1 , w
∗
0,0,0(eρ

′

2 e
σ′
3 e

p′

1 w̃ρ,σ,p) = δρ
′
ρ δ

σ′
σ δ

p′
p .

On the one hand, Proposition 4.2.14 implies that uw̃ρ,σ,p = 0 for all 0 ≤
ρ, σ ≤ 1, 0 ≤ p ≤ ` − 1. On the other hand, we have that eρ0

2 e
σ0
3 e

p0
1 is an

element having minimal weight of ones in the items of sum∑
(ρ,σ,p)6=(0,0,0)

yρ,σ,pQρ,σ,p(h1, h2)eρ2eσ3e
p
1

such that Qρ0,σ0,p0(h1, h2) 6= 0. It is clear that eρ2e
σ
3e
p
1w̃ρ0,σ0,p0 = 0 for

eρ2e
σ
3e
p
1 having the weight higher than one of eρ0

2 e
σ0
3 e

p0
1 and eρ2e

σ
3e
p
1w̃ρ0,σ0,p0 =

δρ0
ρ δ

σ0
σ δ

p0
p w0,0,0 for eρ2eσ3e

p
1 having the weight equal one of eρ0

2 e
σ0
3 e

p0
1 . Hence we

have ∑
(ρ,σ,p)6=(0,0,0)

yρ,σ,pQρ,σ,p(h1, h2)eρ2eσ3e
p
1w̃ρ0,σ0,p0

=
∑

weight(eρ2eσ3 e
p
1)=weight(eρ02 e

σ0
3 e

p0
1 )

yρ,σ,pQρ,σ,p(h1, h2)δρ0
ρ δ

σ0
σ δ

p0
p w0,0,0

= yρ0,σ0,p0Qρ0,σ0,p0(h1, h2)w0,0,0

= Qρ0,σ0,p0(µ)wρ0,σ0,p0 = 0.

This result prove that Qρ0,σ0,p0(h1, h2) = 0. Thus u = 0.

Lemma 4.2.16. Let ρV : UH → End(V ) be a nilpotent finite dimensional
representation of UH . We have

ρV (S(θ)) = ρV (θ).

Proof. Recall that the category CH of nilpotent representations of UHξ sl(2|1)
is a ribbon category having the twist is the family of isomorphisms θV : V →
V, ∀V ∈ CH , θV = ρV (θ) where ρV : UH → End(V ) is a representation of
UH (see Chapter 2). It follows that (θV )∗ = θV ∗ ∀V ∈ CH . In fact (θV )∗ =
(ρV (θ))∗ = (−→evV ⊗ IdV ∗)(IdV ∗ ⊗θV ⊗ IdV ∗)(IdV ∗ ⊗

−→coevV ) : V ∗ → V ∗ has
matrix (ρV (θ))t where (ρV (θ)) is the matrix of the endomorphism ρV (θ).
Furthermore θV ∗ = ρV ∗(θ) has matrix (ρV (S(θ)))t, so we have

ρV (θ) = ρV (S(θ)). (4.2.17)
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Proof of Proposition 4.2.11. Set z = S(θ)− θ, z is in the center of ÛH . Let
a weight module Vµ in CH of weight µ and v is a weight vector of Vµ. By
Proposition 4.2.14 and Equality (4.2.17) we have ϕ(z)(µ)v = zv = 0. It
implies that ϕ(z)(µ) = 0. Furthermore ϕ(z) ∈ H(H∗), this deduces that
ϕ(z) = 0, so z = 0 by Proposition 4.2.15, i.e. S(θ) = θ.

Hence the results above give us the theorem.

Theorem 4.2.17. The completion ÛH of UH is a topological ribbon super-
algebra.

4.2.3 Bosonization of ÛH

It is known that each ribbon superalgebra has an associated ribbon alge-
bra, namely its bosonization (see [36]). For the ribbon superalgebra ÛH , its
bosonization denoted by ÛH

σ
, is a topological ribbon algebra by adding an

element σ from ÛH , i.e. as an algebra, ÛH
σ

is the semi-direct product of ÛH
with Z/2Z = {1, σ} where the action of σ is given by

σx = (−1)deg xxσ for x ∈ ÛH . (4.2.18)

The coproduct ∆σ, the counit εσ and the antipode Sσ on ÛH
σ

given by
1. ∆σσ = σ ⊗ σ, ∆σ(x) = ∑

i xiσ
deg x′i ⊗ x′i where ∆(x) = ∑

i xi ⊗ x′i for
x ∈ ÛH ,

2. εσ(σ) = 1, εσ(x) = ε(x) for x ∈ ÛH and
3. Sσ(σ) = σ, Sσ(x) = σdeg xS(x) for x ∈ ÛH .

The universal R-matrix Rσ in ÛH
σ

determined by

Rσ = R1
∑
i

R1
iσ

degR2
i ⊗R2

i

where R1 = 1
2 (1⊗ 1 + σ ⊗ 1 + 1⊗ σ − σ ⊗ σ) and R = ∑

iR
1
i ⊗ R2

i is the

universal R-matrix in ÛH . Note that the universal R-matrix Rσ can be
written by

Rσ =
∑
i

ai ⊗ bi
∑
j

K1
j ⊗K2

j (4.2.19)

where the terms ai, bi do not contain h1, h2 for all i and K = ∑
j K1

j ⊗ K2
j

is the Cartan part which contains only h1, h2 (see Equation (4.2.14)). Its
inverse denotes

(Rσ)−1 =
∑
j

K1
j ⊗K

2
j

∑
i

ai ⊗ bi. (4.2.20)
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The pivotal element of the ribbon algebra ÛH
σ

is φσ0 = σφ0. We denote Uσ
the Hopf subalgebra of ÛH

σ
generated by elements ei, fi, ki, k−1

i for i = 1, 2
and σ. It is a pivotal Hopf algebra with a pivotal element φσ0 .

4.3 Universal invariant of link diagrams
It is well known that from a ribbon algebra one can construct a universal

invariant of oriented framed links, for example one can see these constructions
presented by K. Habiro (see [23]), M. Hennings (see [26]), L. Kauffman and D.
E. Radford (see [30]), T. Ohtsuki (see [38]), ... In previous section we proved
that ÛH is a ribbon superalgebra in the topological sense so its bosonization
is a topological ribbon algebra. This topological ribbon algebra allows to
construct a universal invariant of oriented framed links. In this section we
apply the methods above to reconstruct a universal invariant of oriented
framed links associated with the unrolled quantum group UH . Then we will
use this invariant to construct an invariant of 3-manifolds in the next section.

4.3.1 Category of tangles
We recall the category T of framed, oriented tangles (see [23], [29]). The

objets are the tensor words of symbols ↓ and ↑, i.e. each word forms x1⊗ ...⊗
xn with x1, ..., xn ∈ {↓, ↑}, n ≥ 0. The tensor word of length 0 is denoted by
1 = 1T . The morphisms T : w → w′ between w,w′ ∈ Ob(T ) are the isotopy
classes of framed, oriented tangles in a cube [0, 1]3 such that the endpoints
at the bottom are descriped by w and those at the top by w′.
The composition gf of a composable pair (f, g) of morphisms in T is obtained
by placing g above f , and the tensor product f ⊗ g of two morphisms f and
g is obtained by placing g on the right of f .
The braiding cw,w′ : w ⊗ w′ → w′ ⊗ w for w,w′ ∈ Ob(T ) is the positive
braiding of parallel of strings. The dual w∗ ∈ Ob(T ) of w ∈ Ob(T ) is defined
by 1∗ = 1, ↓∗ = ↑, ↑∗ = ↓ and

(x1 ⊗ ...⊗ xn)∗ = x∗n ⊗ ...⊗ x∗1 for x1, ..., xn ∈ {↓, ↑}, n ≥ 2.

For w ∈ Ob(T ), let
−→evw: w∗ ⊗ w → 1, −→coevw: 1→ w ⊗ w∗

denote the duality morphisms. For each object w in T , let tw : w → w
denote the positive full twist defined by

tw = (w⊗ −→evw∗)(cw,w ⊗ w∗)(w⊗
−→coevw).

Théorie quantique des champs topologiques pour la superalgèbre de Lie sl(2/1) Ngoc-Phu Ha 2018



92 CHAPTER 4. A HENNINGS TYPE INVARIANT

Figure 4.1 – The morphisms c↓,↓, c−1
↓,↓,

−→ev↓,
−→coev↓,

−→ev↑,
−→coev↑

α β

α β

1 1
φσ0

φσ0
−1

Figure 4.2 – Place elements on the strings

It is well known that T is generated as a monoidal category by the objects
↓, ↑ and the morphisms

c↓,↓, c
−1
↓,↓,

−→ev↓,
−→coev↓,

−→ev↑,
−→coev↑

which are represented in Figure 4.1.
A string link is a tangle without closed component whose arcs end at the

same order as they start, with downwards orientation.

4.3.2 Universal invariant of link diagrams
We recall the notion of the 0th-Hochschild homology for an algebra A,

that is HH0(A) := A/[A,A] where [A,A] = Span{xy − yx : x, y ∈ A}. Let
L = L1∪ ...∪Ln be a (framed, oriented) link diagram consisting of n ordered
circle components L1, ..., Ln with n ≥ 0. We use the method in Ohtsuki’s
book [38] to construct the universal invariant. It can be described by using
the generators of T (see Figure 4.1).

We can put elements of ÛH
σ

on the strings of L according to the rule
depicted in Figure 4.2 or in two Figures 4.2 and 4.3. For each j = 1, ..., n, we
define ĴLj by first obtaining a word J b

Lj
to be the product of the elements

put on the component Lj where these elements are read along the orientation
of Lj starting from any point (base point) in Lj. Then set

ĴLj = tru(J b
Lj

)

where tru : ÛH
σ
→ HH0

(
ÛH

σ)
is the universal trace and HH0

(
ÛH

σ)
is the
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S(α) β α S(β) S(α) S(β)

S(α) β α S(β) S(α) S(β)

Figure 4.3 – The cases of crossings with upwards strings where Rσ = ∑
α⊗β

and (Rσ)−1 = ∑
α⊗ β.

0th-Hochschild homology for the algebra ÛH
σ
. We define

ĴL =
∑
ĴL1 ⊗ ...⊗ ĴLn ∈ HH0

(
ÛH

σ⊗n
)
. (4.3.1)

Remark 4.3.1. 1. There is a similar way to define the universal in-
variant by using the quantum trace trq : A → A/N where N =
SpanC{xy − yS2(x)| x, y ∈ A} (see [23]).

2. Product by g−1 (g is pivotal element in A) induces an isomorphism
HH0(A) ∼−→ A/N which gives a correspondence between Ohtsuki ([38])
and Habiro ([23]) universal invariant.

Theorem 4.3.2 (see also Theorem 4.5 [38]). ĴL is a topological invariant of
framed links.

Proof. The proof in the finite dimensional setting apply without change. One
can show that ĴLj does not depend on where we start reading the element
on the closed components, and ĴL is invariant under the Reidemeister moves
for oriented links. This proves ĴL is an invariant of framed links.

We can similarly define the invariant of the string links by

ĴT =
∑
ĴT1 ⊗ ...⊗ ĴTn ∈ ÛH

σ⊗n
(4.3.2)

where T is a string link consisting of n components Ti and ĴTi is determined
by reading the elements along the orientation of Ti for 1 ≤ i ≤ n. The relation
between the invariant of tangles and of its closure is similar as Proposition
7.3 in [23]:

Proposition 4.3.3. If T is a string link, then we have

Ĵcl(T ) = tr⊗nu
(
(φ0 ⊗ ...⊗ φ0)(ĴT )

)
= tr⊗nu

(
(φ−1

0 ⊗ ...⊗ φ−1
0 )(ĴT )

)
where cl(T ) is the closure of T .
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4.3.3 Value of universal invariant of link diagrams
For x, y ∈ C2 × C2, call Q(x, y) the polarization of the quadratic form

determined by the matrix B = (bij) which is given by b11 = 0, b12 = b21 =
−1, b22 = −2. Recall that hi,j = 1 ⊗ ... ⊗ hi ⊗ ... ⊗ 1 where hi is in j-th
position for i = 1, 2 and j = 1, ..., n. Let H(n) = SpanC{hi,j} ⊂ UH⊗n and
Qij be the quadratic form on H(n)∗ defined by

Qij(h) = Q(h[i], h[j]) = ht[i]Bh[j]

where h[i] is the column matrix
(
h1,i
h2,i

)
for i = 1, ..., n. Recall also the formula

for the universal R-matrix and its inverse in Equations (4.2.19) and (4.2.20).
Let L be a link diagram consisting of n ordered circle components L1, ..., Ln.

Denote by lk = (lkij) the linking matrix of the link diagram L and set
QL(h) = ∑

1≤i,j≤n lkij Qij(h). We consider the algebraic automorphisms
ϕij, ϕQL of ÛH

σ⊗n
given by

ϕij(x) = ξ−Qij(h)xξQij(h), ϕQL(x) = ξ−QL(h)xξQL(h) for x ∈ ÛH
σ⊗n

. (4.3.3)

Remark that ϕij and ϕQL restrict to an automorphism of Uσ⊗n. Indeed, we
denote the weight of an element x ∈ UH for hi by |x|i, i = 1, 2, we have that
|x|i ∈ Z. We also recall that

hix = x(hi + |x|i), xhi = (hi − |x|i)x for x ∈ UH .

These equalities imply that for x = ⊗n
k=1 xk ∈ Uσ⊗n we have

n⊗
k=1

xkξ
h1,ih2,j = ξ1⊗...⊗(h1−|xi|1)⊗...⊗(h2−|xj |2)⊗...⊗1

n⊗
k=1

xk. (4.3.4)

Then ξhi = ki ∈ Uσ implies that xξh1,ih2,j = ξh1,ih2,jx′ with x′ ∈ Uσ⊗n. This
deduces that ϕij(Uσ⊗n) = Uσ⊗n for 1 ≤ i, j ≤ n and ϕQL(Uσ⊗n) = Uσ⊗n.

Recall that ĴL = tr⊗nu (J b
L) = J b

L + [ÛH
σ⊗n

, ÛH
σ⊗n

] where J b
L depends

on the choice of the base points. We have the theorem.

Theorem 4.3.4. We have ξ−QL(h)J b
L ∈ Uσ⊗n and if b′ is an other choice of

base points then
ξ−QL(h)J b

L− ξ−QL(h)J b′
L ∈ NQL where NQL = ξ−QL(h)[ÛH

σ⊗n
, ÛH

σ⊗n
]∩Uσ⊗n.

Proof. We fix the base points and represent the value of J b
L by the product

of two parts, the first one is in H(H∗) and the second one is in the tensor
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α β

≡ ,

ai bi

K1
j K2

j

w

K+
ij

≡ w′

K+
ij

Figure 4.4 – Separation of elements

product of copies of Uσ as follow. For j = 1, ..., n we first put the element of
ÛH

σ
on the strands Lj following the rule depicted in Figure 4.2. By Equality

(4.2.19)
Rσ =

∑
α⊗ β =

∑
ai ⊗ bi

∑
K1
j ⊗K2

j

we can separate the elements coming from the Cartan part from the rest.
Second, we fix the Cartan parts of the elements at the cross points and then
push the rest of the elements to the base point of strand (along the orientation
of Lj), see illustration in Figure 4.4 (w and w′ related as in Equation (4.3.4)).
The product of this part gives an element wj ∈ Uσ for j = 1, ..., n. At each
point of crossing (i, j) between the i-strand and j-strand of L, its Cartan
part gives us the element

Kεijij = ξεij(−h1,ih2,j−h2,ih1,j−2h2,ih2,j) = ξεijQij(h)

where εij = ±1 is the sign of the crossing (i, j). Hence the value of J b
L can

be written as a product of ξQL(h) and an element of Uσ⊗n. This means that
ξ−QL(h)J b

L ∈ Uσ⊗n.
By the definition of the ĴL one has

J b
L − J b′

L ∈ [ÛH
σ⊗n

, ÛH
σ⊗n

].

It implies that

ξ−QL(h)J b
L − ξ−QL(h)J b′

L ∈ ξ−QL(h)[ÛH
σ⊗n

, ÛH
σ⊗n

].

We have thus ξ−QL(h)J b
L − ξ−QL(h)J b′

L ∈ ξ−QL(h)[ÛH
σ⊗n

, ÛH
σ⊗n

]∩ Uσ⊗n.

We denote by JL any elements J b
L which is well defined modulo an element

of ξQL(h)NQL .

Remark 4.3.5. As [ÛH
σ⊗n

, ÛH
σ⊗n

] = SpanC{xy − yx| x, y ∈ ÛH
σ⊗n
}

then ξ−QL(h)[ÛH
σ⊗n

, ÛH
σ⊗n

] = SpanC{ξ−QL(h)(xy − yx)| x, y ∈ ÛH
σ⊗n
} =

SpanC{xy−ϕQL(y)x | x, y ∈ ÛH
σ⊗n
}. I do not know if the following is true:

is NQL equal to SpanC{xy − ϕQL(y)x | x, y ∈ Uσ⊗n}.
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Note also that JL belongs in
(
ÛH

σ⊗n
)ÛHσ

where(
ÛH

σ⊗n
)ÛHσ

=
{
u ∈ ÛH

σ⊗n
|u∆[n](x) = ∆[n](x)u

}
for all x ∈ ÛH

σ
. A proof

of this assertion can be seen in Lemma 6 [3].

4.4 Invariant of 3-manifolds of Hennings type
In the article [26], Hennings proposed a method to construct an invariant

of 3-manifolds from a universal invariant of links by using a finite dimensional
ribbon algebra with its right integral. The invariant of 3-manifolds is com-
puted from the universal invariant of links. The key point of the construction
is the role of a right integral of the Hopf algebra [26]. It is well known that
it always exists a right integral on a finite dimensional Hopf algebra. Vire-
lizier generalised this fact by using the notions of a finite type unimodular
ribbon Hopf π-coalgebra and the right π-integral to construct an invariant of
3-manifolds with π-structure. Here π is a group and the structure is given
by representation of the fundamental group in π (see [48]). When π = G is
commutative a G-structure reduces to a G-valued cohomology class. In the
case of the unrolled quantum algebra UH , the associated Hopf G-coalgebra
can be ribbon but not finite type. However, we show that the associated Hopf
G-coalgebra induces a finite type Hopf G-coalgebra by forgetting h1, h2. We
show that we can still construct an invariant of 3-manifolds of Hennings type
by working on the pairs (M,ω) in which M is a 3-manifold and ω is a coho-
mology class in H1(M,G). The construction of the invariant uses the discrete
Fourier transform and the G-integral for the finite type Hopf G-coalgebra as-
sociated with Uσ (see in Section 4.4.1). This invariant is a generalisation of
the one in [49] that apply to UH . We recall some definitions from [37, 49].

4.4.1 Hopf G-coalgebra from pivotal Hopf algebra Uσ

Definition 4.4.1. Let π be a group. A π-coalgebra over C is a family C =
{Cα}α∈π of C-spaces endowed with a family ∆ = {∆α,β : Cαβ → Cα ⊗
Cβ}α,β∈π of C-linear maps (the coproduct) and a C-linear map ε : C1 → C
(the counit) such that

1. ∆ is coassociative, i.e. for any α, β, γ ∈ π,

(∆α,β ⊗ IdCγ )∆αβ,γ = (IdCα ⊗∆β,γ)∆α,βγ,

2. for all α ∈ π, (IdCα ⊗ε)∆α,1 = IdCα = (ε⊗ IdCα)∆1,α.
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A Hopf π-coalgebra is a π-coalgebra H = ({Hα}α∈π,∆, ε) endowed with
a family S = {Sα : Hα → Hα−1}α∈π of C-linear maps (the antipode) such
that

1. each Hα is an algebra with product mα and unit element 1α ∈ Hα,
2. ε : H1 → C and ∆α,β : Hαβ → Hα ⊗Hβ are algebra homomorphisms

for all α, β ∈ π,
3. for any α ∈ π,

mα(Sα−1 ⊗ IdHα)∆α−1,α = ε1α = mα(IdHα ⊗Sα−1)∆α,α−1 .

A Hopf π-coalgebra is of finite type if Hα is finite dimensional algebra for
any α ∈ π.

Recall that C = C[k±`1 , k±`2 ] is the commutative Hopf subalgebra in the
center of Uσ. Let G = (C/Z × C/Z,+) ∼−→ HomAlg(C,C), (α1, α2) 7→(
k`i 7→ ξ`αi

)
for i = 1, 2 and let Uα be the algebra Uσ modulo the relations

k`i = ξ`αi for α = (α1, α2) ∈ G, i = 1, 2.

Proposition 4.4.2. The family Uσ = {Uα}α∈G is a finite type Hopf G-
coalgebra.

Proof. By applying Example 3.2.3 it follows that {Uα}α∈G is the Hopf G-
coalgebra with the coproduct and the antipode determined by the commu-
tative diagrams:

Uσ
∆σ

- Uσ ⊗ Uσ

Uα+β

pα+β

? ∆α,β- Uα ⊗ Uβ

pα ⊗ pβ
?

Uσ
Sσ

- Uσ

Uα

pα

? Sα - U−α

p−α

?

where pα : Uσ → Uα, x 7→ [x] is the projection from Uσ to Uα. For α = 0
the Hopf algebra U0 is called the restricted quantum sl(2|1), i.e. the algebra
Uσ modulo the relations k`i = 1 for i = 1, 2. Furthermore dim(Uα) = 32`4 for
α ∈ G. This finished the proof.

Proposition 4.4.3. The small quantum group U0 is unimodular.

Proof. Call C the even category of finite dimensional nipotent representa-
tions of Uξsl(2|1). We claim that the projective cover PC of the trivial module
is self dual: PC ' P ∗C. The proof is analogous to Theorem 2.5.1. Furthermore
PC ∈ U0-mod so the category U0-mod is unimodular. By [13, Lemma 4.2.1]
confirms that U0 is unimodular.
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A consequence of the proposition above is that the Hopf G-coalgebra Uσ
is unimodular finite type.
Definition 4.4.4. A π-trace for a Hopf π-coalgebra H = {Hα}α∈π is a family
of C-linear forms tr = {trα : Hα → C}α∈π which verifies

trα(xy) = trα(yx), trα−1(Sα(x)) = trα(x)
for all α ∈ π and x, y ∈ Hα.

It is known that for each finite type Hopf π-coalgebra, there exists a family
of linear forms called a family of the right π-integrals ([49]). Call (λα)α∈G the
family of right G-integral for the finite type Hopf G-coalgebra Uσ = {Uα}α∈G.
This means that the family of C-linear forms λ = (λα)α∈G ∈

∏
α∈G U∗α satisfies

(λα ⊗ IdU
β
)∆α,β = λα+β1β (4.4.1)

for all α, β ∈ G (see in Section 3 [49]). Note that λ0 is an usual right integral
for the Hopf algebra U0. We define a family of C-linear forms {trα}α∈G on
Uσ determined by

trα(x) := λα(Gαx) for x ∈ Uα
where Gα = σφ0|k`i=ξ`αi for i = 1, 2, i.e. Gα = ξ−`α1σk−2

2 mod k`i − ξ`αi for
i = 1, 2. This family determines a G-trace by proposition below.
Proposition 4.4.5. The family {trα}α∈G above is a G-trace for the unimod-
ular finite type Hopf G-coalgebra Uσ = {Uα}α∈G.
Proof. As Uσ = {Uα}α∈G is a unimodular finite type Hopf G-coalgebra, by
Theorem 4.2 and Lemma 6.8 [49] for Uσ one gets

λα(xy) = λα (S−αSα(y)x) ,
λ−α (Sα(x)) = λα

(
G2
αx
)

and
S−αSα(x) = GαxG

−1
α for x, y ∈ Uα.

By the definition of {trα}α∈G we have
trα(yx) = λα(Gαyx) = λα (S−αSα(x)Gαy)

= λα(Gαxy) = trα(xy).
Furthermore, for x ∈ Uα

λ−α (Sα(x)) = λ−α (Sα(x)Sα(Gα)G−α)
= λ−α (Sα(Gαx)G−α)
= λ−α (SαS−α(G−α)Sα(Gαx))
= λ−α (G−αSα(Gαx))
= tr−α (Sα(Gαx))
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and λα (G2
αx) = trα(Gαx) so tr−α(Sα(x)) = trα(x). This implies that the

family tr = (trα)α∈G is a G-trace for Uσ.

Note that, since S−αSα(Gα) = Gα for x ∈ Uα then

λα(Gαx) = λα(S−αSα(Gα)x) = λα(xGα).

Thus we also have trα(x) = λα(xGα) for x ∈ Uα.

4.4.2 Discrete Fourier transform
For a (partial) map f : Cn → C we define ti(f) by ti(f)(h1, ..., hn) =

f(h1, ..., hi + 1, ..., hn) for 1 ≤ i ≤ n. Let Lα = {(α1, ..., αn) + Zn} be
the lattice of Cn corresponding to −→α = α = (α1, ..., αn) ∈ (C/Z)n. A
function f(h1, ..., hn) ∈ H(h1, ..., hn) is called `-periodic in hi on the lattice
Lα if it satisfies f|α = t`i

(
f|α

)
where f|α := f|Lα . A function f(h1, ..., hn) ∈

H(h1, ..., hn) is `-periodic on Lα if it is in all variables on Lα. The functions
{ξmhi}i=1,...,n

m∈Z are `-periodic and ξ`hi − ξ`αi are zero on α. Let I be the ideal
in the ring R = C[ξ±h1 , ..., ξ±hn ] generated by ξ`hi − ξ`αi for 1 ≤ i ≤ n. Then
an element of R/I defines a `-periodic map in all variables on Lα.

Proposition 4.4.6 (Discrete Fourier transform). Let f = f(h1, ..., hn) ∈
H(h1, ..., hn) be a `-periodic function on Lα. Then there is a unique element
F−→α (f) ∈ R/I which coincides with f on Lα and is given by

F−→α (f) =
`−1∑

m1,...,mn=0
am1...mnξ

m1h1+...+mnhn . (4.4.2)

The coefficients am1...mn (Fourier coefficients) are determined by

am1...mn = 1
`n

`−1∑
i1,...,in=0

ξ−m1(α1+i1)−...−mn(αn+in)f(α1 + i1, ..., αn + in).

Proof. We consider first the function f(h1) ∈ H(h1) is `-periodic on Lα1

for α1 ∈ C/Z which is denoted by f|α1
. The set of such functions is a `-

dimensional vector space. The family {ξm1h1}`−1
m1=0 of linearly independent

`-periodic functions on Lα1 is a basis of this space, so we can write

f|α1
=

`−1∑
m1=0

am1ξ
m1h1 .
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To determine (am1)m1 we evaluate the function at α1 + i1 for i1 = 0, ..., `− 1,
we have a linear system of ` variables am1 with m1 = 0, .., `− 1

`−1∑
m1=0

am1ξ
m1(α1+i1) = f(α1 + i1) for i1 = 0, ..., `− 1.

The matrix of this linear system is

A =



1 ξα1 · · · ξ(`−1)α1

1 ξα1+1 · · · ξ(`−1)(α1+1)

· · · · · · · · ·
1 ξα1+k · · · ξ(`−1)(α1+k)

· · · · · · · · ·
1 ξα1+`−1 · · · ξ(`−1)(α1+`−1)


.

Note that ∑`−1
k=0 ξ

k(i−j) = `δij, so we have

A−1 = 1
`


1 1 · · · 1

ξ−α1 ξ−(α1+1) · · · ξ−(α1+`−1)

... ... · · · ...
ξ−(`−1)α1 ξ−(`−1)(α1+1) · · · ξ−(`−1)(α1+`−1)

 .

This implies that am1 = 1
`

∑`−1
i1=0 ξ

−m1(α1+i1)f(α1 + k1) for m1 = 0, .., ` − 1.
Then by induction on i for 1 ≤ i ≤ n we have a similar affirmation for the
`-periodic functions on Lα with α ∈ (C/Z)n .

Denote U⊗−→α := Uα1 ⊗ ... ⊗ Uαn for −→α ∈ ((C/Z)2)n in which αj =
(α1j, α2j) ∈ (C/Z)2 and U0

⊗−→α the subalgebra of U⊗−→α generated by k±1
i,j = ξ±hi,j

for i = 1, 2 and j = 1, ..., n (see Equation (4.2.13)).

Corollary 4.4.7. Let f = f(hi,j) ∈ H(hi,j) be a `-periodic function on Lα.
Then there is a unique element of U0

⊗−→α which coincides with f on Lα and it
is given by

F−→α (f) =
`−1∑

i1,...,in, j1,...,jn=0
ai1...inj1...jn

n∏
s=1

kis1,sk
js
2,s ∈ U0

⊗−→α

where

ai1...inj1...jn = 1
`2n

`−1∑
s1,...,sn, t1,...,tn=0

ξ−
∑n

m=1 im(α1m+sm)+jm(α2m+tm).

f(α11 + s1, α21 + t1, ..., α1n + sn, α2n + tn).
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Proof. By Proposition 4.4.6 we have

F−→α (f) =
`−1∑

i1,...,in, j1,...,jn=0
ai1...inj1...jnξ

∑n

s=1 ish1,s+jsh2,s .

Since ξhi,j = ki,j for i = 1, 2 and j = 1, ..., n then

F−→α (f) =
`−1∑

i1,...,in, j1,...,jn=0
ai1...inj1...jn

n∏
s=1

kis1,sk
js
2,s ∈ U0

⊗−→α .

Proposition 4.4.6 gives the formula determining the coefficients ai1...inj1...jn .

Example 4.4.8. The function K = ξ−h1⊗h2−h2⊗h1−2h2⊗h2 is `-periodic on L0
and we have

F−→0 (K) = 1
`2

`−1∑
i1,i2,j1,j2=0

ξi1j2+i2j1−2i1i2ki11 k
j1
2 ⊗ ki21 k

j2
2 ∈ U0 ⊗ U0. (4.4.3)

Indeed, by Corollary 4.4.7 one has

F−→0 (K) =
`−1∑

i1,i2,j1,j2=0
ai1i2j1j2k

i1
1 k

j1
2 ⊗ ki21 k

j2
2 .

The coefficients ai1i2j1j2 are computed as below

ai1i2j1j2 = 1
`4

`−1∑
s1,s2,t1,t2=0

ξ−i1s1−j1t1−i2s2−j2t2ξ−s1t2−t1s2−2t1t2

= 1
`4

`−1∑
t1,t2=0

ξ−j1t1−j2t2−2t1t2
`−1∑

s1,s2=0
ξ−i1s1−i2s2−s1t2−t1s2

= 1
`4

`−1∑
t1,t2=0

ξ−j1t1−j2t2−2t1t2
`−1∑

s1,s2=0
ξ−(i1+t2)s1−(i2+t1)s2

= 1
`4

`−1∑
t1,t2=0

ξ−j1t1−j2t2−2t1t2
`−1∑
s1=0

ξ−(i1+t2)s1
`−1∑
s2=0

ξ−(i2+t1)s2

= 1
`4

`−1∑
t1,t2=0

ξ−j1t1−j2t2−2t1t2`δ0
i1+t2 mod `Z`δ

0
i2+t1 mod `Z

= 1
`2

`−1∑
t1=0

ξ−j1t1δ0
i2+t1 mod `Z

`−1∑
t2=0

ξ−j2t2−2t1t2δ0
i1+t2 mod `Z
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= 1
`2

`−1∑
t1=0

ξ−j1t1δ0
i2+t1 mod `Zξ

−j2(−i1)−2t1(−i1)

= 1
`2 ξ
−j1(−i2)ξ−j2(−i1)−2(−i2)(−i1)

= 1
`2 ξ

j1i2+j2i1−2i1i2 .

For αi ∈ (C/Z)2 we call ÛH
per
αi

the subalgebra of ÛH
σ

generated by el-
ements forms u = ∑

j fij(h1, h2)wj where wj ∈ σmB+B− for m = 0, 1 and
fij(h1, h2) ∈ H(h1, h2) are `-periodic on Lαi . Denote ÛH

per
⊗−→α = ÛH

per
α1 ⊗

... ⊗ ÛH
per
αn . We extend linearly F−→α to a map ÛH

per
⊗−→α → U⊗−→α by the rule∑

m fm(h1,i, h2,j)wm 7→
∑F−→α (fm(h1,i, h2,j))wm.

Lemma 4.4.9. The map F−→α : ÛH
per
⊗−→α → U⊗−→α is an algebra map.

Proof. By the unicity in Proposition 4.4.6, as fg|Lα = F−→α (f)F−→α (g) we have

F−→α (fg) = F−→α (f)F−→α (g)

for the `-periodic functions f, g on Lα.
Consider the elements f(h1, h2)w1, g(h1, h2)w2 ∈ ÛH

per
αi

where f, g are `-
periodic on Lαi and w1, w2 ∈ σmB+B− for m = 0, 1. By Remark 4.2.4
one has

(f(h1, h2)w1)(g(h1, h2)w2) = f(h1, h2)(w1g(h1, h2))w2

= f(h1, h2)g(h1 + |w1|1, h2 + |w1|2)w2

where (|w1|1, |w1|2) is the weight of w1 for (h1, h2). So we have

F−→α (fw1gw2) = F−→α (f(h1, h2)g(h1 + |w1|1, h2 + |w1|2)w1w2)
= F−→α (fg(h1 + |w1|1, h2 + |w1|2))w1w2

= F−→α (f)F−→α (g(h1 + |w1|1, h2 + |w1|2))w1w2

= F−→α (f)w1F−→α (g(h1 + |w1|1 − |w1|1, h2 + |w1|2 − |w1|2))w2

= F−→α (f)w1F−→α (g)w2

= F−→α (fw1)F−→α (gw2).

Lemma 4.4.10. Assume x ∈ ÛH
per
⊗−→α is a commutator in ÛH

σ⊗n
then F−→α (x)

is a commutator in U⊗−→α .
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Proof. We consider an extension of the discrete Fourier transform on the
lattice Lα which denoted by F ′. The extension will depend on (αi)i ∈ C2n and
coincide with F−→α on elements `-periodic on Lα. The transformation is defined
as follow: let f = f(h1,i, h2,j) be a holomorphic function of H(h1,i, h2,j) then
if f is `-periodic on Lα we define F ′−→α (f) = F−→α (f); if f is not `-periodic on
Lα we define F ′(f) = F−→α (f |Rec) given by the right hand of Equation (4.4.2)
where Rec = {(α1 + i1, . . . , αn+ in), 0 ≤ i1, . . . , in < `}. Then F ′(f) is the
unique element of R/I (see Section 4.4.2) which coincides with f on Rec.
The map F ′ is also an algebra map. A proof is similar as the one of Lemma
4.4.9. As x is a commutator in ÛH

σ⊗n
we write

x = fx1gx2 − gx2fx1

where f, g ∈ H(h1,i, h2,j) and x1, x2 ∈ U⊗−→α . Applying F ′ to the above
equality one gets

F ′(x) = F ′(f)x1F ′(g)x2 −F ′(g)x2F ′(f)x1 ∈ [U⊗−→α , U⊗−→α ].

Furthermore x ∈ ÛH
per
⊗−→α then F−→α (x) = F ′(x). Thus F−→α (x) is a commutator

in U⊗−→α .

Lemma 4.4.11. Let β, γ ∈ (C/Z)2 and let −→α = α = β+γ. Assume f(h1, h2)
is a `-periodic entire function on Lα. Then ∆(f) is `-periodic on L(β,γ) and

∆β,γF−→α (f) = F(β,γ) (∆(f)) .

Proof. First, by Proposition 4.4.6 we have

F−→α (f) =
`−1∑

m1,m2=0
am1m2ξ

m1h1+m2h2

where am1m2 = 1
`2
∑`−1
i1,i2=0 ξ

−m1(α1+i1)−m2(α2+i2)f(α1 + i1, α2 + i2). Then

∆β,γF−→α (f) =
`−1∑

m1,m2=0
am1m2ξ

m1(h1⊗1+1⊗h1)+m2(h2⊗1+1⊗h2).

Second, the algebra homomorphism ∆ gives us ∆f(h1, h2) = f(h1 ⊗ 1 + 1⊗
h1, h2 ⊗ 1 + 1⊗ h2). Applying the discrete Fourier transform one gets

F(β,γ) (∆(f)) =
`−1∑

n1,n2,n3,n4=0
bn1n2n3n4ξ

n1(h1⊗1)+n2(h2⊗1)+n3(1⊗h1)+n4(1⊗h2)
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where the Fourier coefficient

bn1n2n3n4 = 1
`4

`−1∑
i1,i2,j1,j2=0

ξ−n1(β1+i1)−n2(β2+i2)−n3(γ1+j1)−n4(γ2+j2).

f(β1 + i1 + γ1 + j1, β2 + i2 + γ2 + j2).

By α = β + γ, one has

bn1n2n3n4 = 1
`4 ξ
−n1β1−n2β2−n3γ1−n4γ2

`−1∑
i1,i2,j1,j2=0

ξ−n1i1−n2i2−n3j1−n4j2 .

f(α1 + i1 + j1, α2 + i2 + j2).

Since f(h1, h2) is `-periodic on Lα, setting s = i1 + j1 and t = i2 + j2 then

bn1n2n3n4 = 1
`4 ξ
−n1β1−n2β2−n3γ1−n4γ2

`−1∑
i1,i2,s,t=0

f(α1 + s, α2 + t).

ξ−n1i1−n2i2−n3(s−i1)−n4(t−i2).

bn1n2n3n4 = 1
`4 ξ
−n1β1−n2β2−n3γ1−n4γ2

`−1∑
s,t=0

f(α1 + s, α2 + t)ξ−n3s−n4t.

`−1∑
i1,i2=0

ξ(n3−n1)i1+(n4−n2)i2 .

Since
`−1∑

i1,i2=0
ξ(n3−n1)i1+(n4−n2)i2 =

`−1∑
i1=0

ξ(n3−n1)i1
`−1∑
i2=0

ξ(n4−n2)i2

= `2δn1
n3δ

n2
n4

then bn1n2n3n4 = 0 if (n1, n2) 6= (n3, n4) and when (n1, n2) = (n3, n4) then
bn1n2n1n2 is computed

bn1n2n1n2 = 1
`2 ξ
−n1(β1+γ1)−n2(β2+γ2)

`−1∑
s,t=0

f(α1 + s, α2 + t)ξ−n1s−n2t

= 1
`2 ξ
−n1α1−n2α2

`−1∑
s,t=0

f(α1 + s, α2 + t)ξ−n1s−n2t

= 1
`2

`−1∑
s,t=0

ξ−n1(α1+s)−n2(α2+t)f(α1 + s, α2 + t)

= an1n2 .
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Hence

F(β,γ) (∆(f)) =
`−1∑

n1,n2=0
bn1n2n1n2ξ

n1(h1⊗1)+n2(h2⊗1)+n1(1⊗h1)+n2(1⊗h2)

=
`−1∑

n1,n2=0
an1n2ξ

n1(h1⊗1+1⊗h1)+n2(h2⊗1+1⊗h2)

= ∆β,γF−→α (f).

Remark 4.4.12. As S(hi) = −hi for i = 1, 2, by the similar calculations as
in Lemma 4.4.11 then

F−−→αS(f) = SαF−→α (f).

A consequence of Lemma 4.4.11 is that R0 = R1ŘF−→0 (K) is the universal
R-matrix of U0 with R0 = F−→0 (Rq) is given by

R0 = 1
`2R1

`−1∑
i,i1,i2,j1,j2=0

1∑
ρ,δ=0

{1}i(−{1})ρ+δ

(i)ξ!(ρ)ξ!(δ)ξ!
ξi1j2+i2j1−2i1i2 .

ei1e
ρ
3e
δ
2k

i1
1 k

j1
2 σ

ρ+δ ⊗ f i1f
ρ
3 f

δ
2k

i2
1 k

j2
2 (4.4.4)

where R1 = 1
2 (1⊗ 1 + σ ⊗ 1 + 1⊗ σ − σ ⊗ σ) (see Section 4.2.3). Indeed

the relations satisfied by the R-matrix Rq (see [31], [51]) translate to the
relations for R0.

4.4.3 Invariant of 3-manifolds of Hennings type

Let L be a framed link in S3 consisting of n components (still denote by
L its link diagram), M be a 3-manifold obtained by surgery along the link
L. Let ω be an element of the cohomology group H1(M,G) (see Section
2 [8]). The value of the invariant of link J b

L is in ξQL(h)Uσ⊗n. Let αj =
ω(mj) = (α1j, α2j) here mj is a meridian of the j-th component of L. Denote
α = (α1, ..., αn). Since ω is an element of the cohomology group H1(M,G) it
vanishes on longitudes of L, this implies the relation ∑n

j=1 lkij αj = 0, ∀i =
1, ..., n. We have

Proposition 4.4.13. The function f(h1,i, h2,j) = ξQL(h) is `-periodic on Lα.
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Proof. We denote h1,i + ` = 1⊗ ...⊗ (h1 + `)⊗ ...⊗ 1 where h1 + ` is in i-th
position. We have

f(h1,i + `, h2,j) = ξ−
∑n

i,j=1 lkij((h1+`)ih2,j+h2,ih1,j+2h2,ih2,j)

= ξ
∑n

i,j=1 lkij Qij(h)ξ−
∑n

i,j=1 lkij `h2,j

= f(h1,i, h2,j)ξ−`
∑n

i,j=1 lkij α2j .

The equalities ∑n
j=1 lkij αj = 0 imply that ∑n

i,j=1 lkij α2j ∈ Z. Hence we get
f(h1,i + `, h2,j) = f(h1,i, h2,j). The computation is similar for the variables
h2,j.

Lemma 4.4.6 implies that F−→α
(
ξQL(h)

)
∈ U⊗−→α . We define

J ω
L = F−→α (JL) ∈ HH0(U⊗−→α ) (4.4.5)

thanks to Theorem 4.3.4 and Lemma 4.4.10. Let θ0 be the ribbon element
of the small quantum group U0.

Lemma 4.4.14. There exists a normalization of (λα)α∈G such that

λ0(θ0) = λ0(θ−1
0 ) = 1.

Proof. The proof is thanks to Lemma 4.4.20.

Theorem 4.4.15.
J (M,ω) =

n⊗
j=1

trαj (J ω
L ) (4.4.6)

is a topological invariant of the pairs (M,ω) where n is the number of com-
ponents of the surgery link L.

Remark 4.4.16. Usual quantum surgery invariants are renormalized thanks
to the signature. There is no need of renormalisation here thanks to Lemma
4.4.14.

We use a result on the equivalence of 3-manifolds obtained by surgery
along a link to prove Theorem 4.4.15, that is the theorem below.

Theorem 4.4.17 ([32]). Let M1 and M2 be oriented 3-manifolds and f :
M1 → M2 be an orientation preserving diffeomorphism. Any two surgery
presentations L1 and L2 of M1 and M2, respectively can be connected by a
sequence of handle-slides, blow-up moves and blow-down moves such that the
induced diffeomorphism between M1 = S3

L1 and M2 = S3
L2 is isotopic to f .
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y x slide−−→
y

∆
α′,β(x)

G
β

=
y

x1

x2

G
β

Figure 4.5 – Second Kirby’s move

Proof of Theorem 4.4.15. We need to show that J (M,ω) does not change
under two Kirby’s moves. In the case of handle slide (the second Kirby’s
move), we can assume that the algebraic element on the strands are already
concentrated as illustrated in the first component of Figure 4.5 where x ∈
Uα, y ∈ Uβ are given by the discrete Fourier transform (see Equation (4.4.5)).
The associated invariant of 3-manifolds will be computed by

trα(x)y = λα(Gαx)y x ∈ Uα, y ∈ Uβ.

After sliding, by the commutativity of the Fourier transform with the co-
product in Lemma 4.4.11 and by the property of the element R-matrix
we replace x by ∆α′,β(x) = x1 ⊗ x2 for x ∈ Uα, x1 ∈ Uα′ , x2 ∈ Uβ
as in the second and third component of Figure 4.5. Note that the rela-
tion between the homology classes of the meridians is mx1 + my = mx, i.e.
ω(mx1) + ω(my) = ω(mx)⇔ α′ + β = α. The invariant is determined by

trα′(x1)yx2Gβ = λα′(Gα′x1)yx2Gβ.

Furthermore, the definition of the right G-integral (λα)α∈G implies that(
λα′ ⊗ IdU

β

)
∆α′,β(xGα) = λα(xGα)1β

then
λα′(x1Gα′)x2Gβ = λα(xGα)1β
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and finally
λα′(x1Gα′)yx2Gβ = λα(xGα)y,

i.e. J (M,ω) does not change under the second Kirby’s move. Changing the
orientation of a component changes JL by applying an antipode (see [38]),
Proposition 4.4.5 and Remark 4.4.12 imply J (M,ω) does not depend on the
orientation. For the first Kirby’s move, the blowing up and blowing down, it
is easy to see that ω(m) = 0 for m the meridian of ±1-framed loops and the
two ±1-framed loops evaluate as λ0(θ0) and λ0(θ−1

0 ), respectively.

Recall that the Hopf algebra U0 has a PBW basis {f i1f
ρ
3 f

δ
2e

i′
1 e

ρ′

3 e
δ′
2 k

j1
1 k

j2
2 σ

m :
0 ≤ ρ, δ, ρ′, δ′,m ≤ 1, 0 ≤ i, i′, j1, j2 ≤ ` − 1}. To prove Lemma 4.4.14 we
need the proposition below.

Proposition 4.4.18. The linear form λ0 : U0 → C determined by

λ0(f i1f
ρ
3 f

δ
2e

i′

1 e
ρ′

3 e
δ′

2 k
j1
1 k

j2
2 σ

m) = ηδi`−1δ
ρ
1δ
σ
1 δ

i′

`−1δ
ρ′

1 δ
σ′

1 δ
j1
0 δ

j2
`−2δ

m
0 (4.4.7)

is a right integral of U0 where η ∈ C∗ is a constant and δij is Kronecker
symbol.

Proof. See in Appendix A.2.

By Equation (4.4.1) we have the remark.

Remark 4.4.19. For α = (α1, α2) ∈ C/Z× C/Z then

λα(f i1f
ρ
3 f

δ
2e

i′

1 e
ρ′

3 e
δ′

2 k
j1
1 k

j2
2 σ

m) = ηξ`(α1+α2)δi`−1δ
ρ
1δ
σ
1 δ

i′

`−1δ
ρ′

1 δ
σ′

1 δ
j1
0 δ

j2
`−2δ

m
0

is a right G-integral for the Hopf G-coalgebra {Uα}α∈G.

By using Proposition 4.4.18 one gets the lemma.

Lemma 4.4.20. We have

λ0(θ0) = λ0(θ−1
0 ) = {1}

`+1(1− ξ)`−1

`(`− 1) η.

Proof. See in Appendix A.3.
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Appendix A

Computations in Uξsl(2|1)

A.1 Proof of Lemma 2.3.3
To prove Lemma 2.3.3 we need the lemma below. Set emax = e2e3e

`−1
1 , fmax =

f2f3f
`−1
1 .

Lemma A.1.1. 1. emaxfmax 6= 0.
2. The set {emaxk

s
1k

t
2fmax s, t ∈ Z} is free over C.

Proof. First, let Vµ be a typical module with the highest weight µ = (µ1, µ2).
We show emaxfmax 6= 0 by considering its action on Vµ. We have

emaxfmaxw0,0,0 = e2e3e
`−1
1 f2f3f

`−1
1 w0,0,0 = e2e3e

`−1
1 w1,1,`−1.

Using the representation of Vµ determined in (2.4.5) one gets

e`−1
1 w1,1,`−1 = ξµ1+µ2+2

`−1∏
i=1

[i][µ1 + 1− i]w1,1,0

and by (2.4.6)

e2e3e
`−1
1 w1,1,`−1 = ξµ1+µ2+2

(
`−1∏
i=1

[i][µ1 + 1− i]
)
e2e1e2w1,1,0

= ξµ1+µ2+2
(
`−1∏
i=1

[i][µ1 + 1− i]
)(
−ξµ1+1[µ2 + 1][µ2]− ξ−µ2 [µ1][µ2]

)
w0,0,0

= −ξµ1+µ2+2
(
`−1∏
i=1

[i][µ1 + 1− i][µ2]
)(

ξµ1+1[µ2 + 1] + ξ−µ2 [µ1]
)
w0,0,0

= −ξµ1+µ2+3
(
`−1∏
i=1

[i][µ1 + 1− i] [µ2]
ξ − ξ−1

)(
ξµ1+µ2+1 − ξ−µ1−µ2−1

)
w0,0,0
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= −ξµ1+µ2+3
(
`−1∏
i=1

[i][µ1 + 1− i]
)

[µ2][µ1 + µ2 + 1]w0,0,0.

As Vµ is the typical module then ∏`−1
i=1 [µ1 + 1− i].[µ2][µ1 + µ2 + 1] 6= 0 (see

Remark 2.4.1). This implies that emaxfmaxw0,0,0 6= 0, i.e. emaxfmax 6= 0.
Second, one has e2e3e

`−1
1 kmi = ξ−2mai2kmi e2e3e

`−1
1 where (aij)1≤i,j≤2 is the

Cartan matrix in Definition 2.3.1, then one can write
e2e3e

`−1
1 ks1k

t
2f2f3f

`−1
1 = ξ2sks1k

t
2e2e3e

`−1
1 f2f3f

`−1
1 .

By (2.4.1) and (2.4.2) we get
ks1k

t
2emaxfmaxw0,0,0 = ξsµ1+tµ2c(µ1, µ2)w0,0,0

where c(µ1, µ2) = −ξµ1+µ2+3[µ2][µ1 + µ2 + 1]∏`−1
i=1 [i][µ1 + 1− i].

The expression ξsµ1+tµ2c(µ1, µ2) determines a complex function fst(µ1, µ2)
of two variables µ1, µ2. As the set of the functions {fst : s, t ∈ Z} is linearly
independent then the set {ks1kt2emaxfmax : s, t ∈ Z} is free over C. Thus we
have the second affirmation.

Proof of Lemma 2.3.3. We consider the superalgebra U = Uξsl(2|1)/(e`1, f `1)
as the one generated by generators ei, fi, ki, k−1

i and the relations as in Def-
inition 2.3.1 with additional relations e`1 = f `1 = 0. From e3 = e1e2 −
ξ−1e2e1, f3 = f2f1 − ξf1f2 one gets

[e1, f3] = −ξf2k1, [e3, f1] = −e2k
−1
1

e2f3 + f3e2 = ξ−1f1k
−1
2 , e3f2 + f2e3 = ξ−1e1k2.

Define the length on generators by
l(ei) = l(fi) = 1, l(ki) = 0 for i = 1, 2

then the above relations imply that one can reorder the monomials in U up
to elements of smaller length. This implies by induction on length that the
set {eρ2eσ3e

p
1k

s
1k

t
2f

ρ′

2 f
σ′
3 f

p′

1 ρ, σ, ρ′, σ′ ∈ {0, 1}, p, p′ ∈ {0, 1, ..., `− 1}, s, t ∈ Z}
is a generating set for U (see [6]).

To prove the linear independence of the vectors we consider the relation∑
xρ,σ,p,s,t,ρ′,σ′,p′e

ρ
2e
σ
3e
p
1k

s
1k

t
2f

ρ′

2 f
σ′

3 f
p′

1 = 0 (A.1.1)
where ρ, σ, ρ′, σ′ ∈ {0, 1}, p, p′ ∈ {0, 1, ..., ` − 1}, s, t ∈ Z. The sum in
Equation (A.1.1) contains four blocs associated with (ρ, σ) and can rewrite

LHS of (A.1.1) =
∑

x0,0,p,s,t,ρ′,σ′,p′e
p
1k

s
1k

t
2f

ρ′

2 f
σ′

3 f
p′

1 (A.1.2)
+
∑

x1,0,p,s,t,ρ′,σ′,p′e2e
p
1k

s
1k

t
2f

ρ′

2 f
σ′

3 f
p′

1 (A.1.3)
+
∑

x0,1,p,s,t,ρ′,σ′,p′e3e
p
1k

s
1k

t
2f

ρ′

2 f
σ′

3 f
p′

1 (A.1.4)
+
∑

x1,1,p,s,t,ρ′,σ′,p′e2e3e
p
1k

s
1k

t
2f

ρ′

2 f
σ′

3 f
p′

1 . (A.1.5)
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As e2
2 = e2

3 = 0 then the three last blocs (A.1.3) - (A.1.5) are zero after the
left multiplication at Equation (A.1.1) by e2e3 and one gets

∑
x0,0,p,s,t,ρ′,σ′,p′e2e3e

p
1k

s
1k

t
2f

ρ′

2 f
σ′

3 f
p′

1 = 0. (A.1.6)

By (e2e3)e1 = e1(e2e3) and e`1 = 0, using the left multiplication at Equation
(A.1.6) by e`−1

1 we get
∑

x0,0,0,s,t,ρ′,σ′,p′e2e3e
`−1
1 ks1k

t
2f

ρ′

2 f
σ′

3 f
p′

1 = 0. (A.1.7)

Using the right multiplication Equation (A.1.7) by f `−1
1 one gets

∑
x0,0,0,s,t,ρ′,σ′,0e2e3e

`−1
1 ks1k

t
2f

ρ′

2 f
σ′

3 f
`−1
1 = 0. (A.1.8)

Now we write the left hand side of Equation (A.1.8) as the sum of four blocs.

LHS of (A.1.8) =
∑

x0,0,0,s,t,0,0,0e2e3e
`−1
1 ks1k

t
2f

`−1
1 (A.1.9)

+
∑

x0,0,0,s,t,1,0,0e2e3e
`−1
1 ks1k

t
2f2f

`−1
1 (A.1.10)

+
∑

x0,0,0,s,t,0,1,0e2e3e
`−1
1 ks1k

t
2f3f

`−1
1 (A.1.11)

+
∑

x0,0,0,s,t,1,1,0e2e3e
`−1
1 ks1k

t
2f2f3f

`−1
1 . (A.1.12)

As f1(f2f3) = (f2f3)f1 and f 2
2 = f 2

3 = 0 then Equation (A.1.8) gives
∑

x0,0,0,s,t,0,0,0e2e3e
`−1
1 ks1k

t
2f2f3f

`−1
1 = 0.

By second statement of Lemma A.1.1 one deduces that x0,0,0,s,t,0,0,0 = 0 for
s, t ∈ Z. Now the left hand side of Equation (A.1.8) remains three blocs
(A.1.10) - (A.1.12). Similarly, we deduce that x0,0,0,s,t,1,0,0 = x0,0,0,s,t,0,1,0 =
x0,0,0,s,t,1,1,0 = 0.
Thus we see that from Equation (A.1.7) we get x0,0,0,s,t,ρ′,σ′,0 = 0 for 0 ≤
ρ′, σ′ ≤ 1, s, t ∈ Z. Repeating the calculations gives x0,0,0,s,t,ρ′,σ′,p′ = 0 for
0 ≤ ρ′, σ′ ≤ 1, 1 ≤ p′ ≤ `− 1, s, t ∈ Z.

Applying similar calculations we get

xρ,σ,p,s,t,ρ′,σ′,p′ = 0

for 0 ≤ ρ, σ, ρ′, σ′ ≤ 1, 1 ≤ p, p′ ≤ `− 1, s, t ∈ Z.
Hence, {eρ2eσ3e

p
1k

s
1k

t
2f

ρ′

2 f
σ′
3 f

p′

1 ρ, σ, ρ′, σ′ ∈ {0, 1}, p, p′ ∈ {0, 1, ..., `− 1}, s, t ∈
Z} is a basis of U .
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A.2 Proof of Proposition 4.4.18
It is necessary to check λ0 satisfies the condition (4.4.1), i.e.

(λ0 ⊗ IdU0
)∆(x) = λ0(x)1 (A.2.1)

for all x ∈ U0. We check Equation (A.2.1) for the elements in PBW basis.
This equation holds true for all elements f i1f

ρ
3 f

δ
2e

i′
1 e

ρ′

3 e
δ′
2 k

j1
1 k

j2
2 σ

m in which
(i, ρ, δ, i′, ρ′, δ′, j1, j2,m) 6= (`− 1, 1, 1, `− 1, 1, 1, 0, `− 2, 0).
For (i, ρ, δ, i′, ρ′, δ′, j1, j2,m) = (` − 1, 1, 1, ` − 1, 1, 1, 0, ` − 2, 0) we have the
right hand side of Equation (A.2.1) at w = f `−1

1 f3f2e
`−1
1 e3e2k

`−2
2 is equal to

η1. The left hand side of Equation (A.2.1) at w is computed as follows. First,
one has

∆(e3) = e3 ⊗ 1 + k−1
1 k−1

2 σ ⊗ e3 + (ξ − ξ−1)e2k
−1
1 ⊗ e1,

∆(f3) = f3 ⊗ k1k2 + σ ⊗ f3 + (ξ−1 − ξ)f1σ ⊗ k1f2

and one can write
∆(e1)`−1 = e`−1

1 ⊗ 1 + k`−1
1 ⊗ e`−1

1 +
∑

u,v<`−1
cuve

u
1k
−v
1 ⊗ ev1,

∆(f1)`−1 = f `−1
1 ⊗ k`−1

1 + 1⊗ f `−1
1 +

∑
u′,v′<`−1

c′u′v′f
u′

1 ⊗ ku
′

1 f
v′

1

where cuv, c′u′v′ are the coefficients in C and the powers of e1, f1 and k1 are
less then `− 1.
Then we have the decomposition
∆(w) = ∆(f1)`−1∆(f3)∆(f2)∆(e1)`−1∆(e3)∆(e2)∆(k`−2

2 )
= (f `−1

1 ⊗ k`−1
1 )(f3 ⊗ k1k2)(f2 ⊗ k2)(e`−1

1 ⊗ 1)(e3 ⊗ 1)(e2 ⊗ 1)(k`−2
2 ⊗ k`−2

2 )

+
∑

c
i′,ρ1,δ1,j′,ρ′1,δ

′
1,j
′
1,j
′
2

i,ρ,δ,j,ρ′,δ′,j1,j2,m
f i1f

ρ
3 f

δ
2e

j
1e
ρ′

3 e
δ′

2 k
j1
1 k

j2
2 σ

m ⊗ f i′1 f
ρ1
3 f δ12 e

j′

1 e
ρ′1
3 e

δ′1
2 k

j′1
1 k

j′2
2

where the terms in the sum satisfy (i, ρ, δ, j, ρ′, δ′, j1, j2,m) 6= (`− 1, 1, 1, `−
1, 1, 1, 0, `− 2, 0). By Equation (4.4.7) and k`i = 1 for i = 1, 2 the decompo-
sition above implies that

(λ0 ⊗ IdU0
)∆(w) = (λ0 ⊗ IdU0

)((f `−1
1 ⊗ k`−1

1 )(f3 ⊗ k1k2)(f2 ⊗ k2).
(e`−1

1 ⊗ 1)(e3 ⊗ 1)(e2 ⊗ 1)(k`−2
2 ⊗ k`−2

2 ))
= (λ0 ⊗ IdU0

)(f `−1
1 f3f2e

`−1
1 e3e2k

`−2
2 ⊗ k`−1

1 k1k2k2k
`−2
2 ),

i.e.
(λ0 ⊗ IdU0

)∆(w) = (λ0 ⊗ IdU0
)(f `−1

1 f3f2e
`−1
1 e3e2k

`−2
2 ⊗ 1)

= λ0(f `−1
1 f3f2e

`−1
1 e3e2k

`−2
2 )1

= η1.
Thus the linear form λ0 is a right integral of U0.
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A.3 Proof of Lemma 4.4.20
Firstly, we represent the decomposition of θ−1

0 in a PBW basis of U0. By
Equation (4.2.15) the ribbon element θ0 of U0 is determined by

θ0 = φσ0 .(m ◦ τ s ◦ (Id⊗S0)(R0))−1,

i.e.
θ−1

0 = m ◦ τ s ◦ (Id⊗S0)(R0).(φσ0 )−1. (A.3.1)
In Equation (A.3.1) the terms are determined by

(φσ0 )−1 = φ−1
0 σ−1 = k2

2σ

and

R0 = 1
`2R1

`−1∑
i,i1,i2,j1,j2=0

1∑
ρ,δ=0

{1}i(−{1})ρ+δ

(i)ξ!(ρ)ξ!(δ)ξ!
ξi1j2+i2j1−2i1i2 .

ei1e
ρ
3e
δ
2k

i1
1 k

j1
2 σ

ρ+δ ⊗ f i1f
ρ
3 f

δ
2k

i2
1 k

j2
2

where R1 = 1
2 (1⊗ 1 + σ ⊗ 1 + 1⊗ σ − σ ⊗ σ) = 1

2
∑1
m,n=0(−1)mnσm ⊗ σn,

i.e.

R0 = 1
2`2

`−1∑
i,i1,i2,j1,j2=0

1∑
m,n,ρ,δ=0

(−1)mn{1}
i(−{1})ρ+δ

(i)ξ!(ρ)ξ!(δ)ξ!
ξi1j2+i2j1−2i1i2 .

σmei1e
ρ
3e
δ
2k

i1
1 k

j1
2 σ

ρ+δ ⊗ σnf i1f
ρ
3 f

δ
2k

i2
1 k

j2
2 .

Since

S0(σnf i1f
ρ
3 f

δ
2k

i2
1 k

j2
2 )

= S0(kj22 )S0(ki21 )S0(f δ2 )S0(fρ3 )S0(f i1)S0(σn)
= k−j22 k−i21 (−1)δσδf δ2k−δ2 σρ

(
(−1)ρξ−2ρfρ3 + (ξ−2ρ − 1)fρ2 fρ1

)
k−ρ1 k−ρ2 (−f1k

−1
1 )iσn

= (−1)δ+ik−j22 k−i21 σδf δ2k
−δ
2 σρ

(
(−1)ρξ−2ρfρ3 + (ξ−2ρ − 1)fρ2 fρ1

)
k−ρ1 k−ρ2 ξi(i−1)f i1k

−i
1 σn

where in the second equality we used

S0(fρ3 ) = σρ
(
(−1)ρξ−2ρfρ3 + (ξ−2ρ − 1)fρ2 fρ1

)
k−ρ1 k−ρ2 ,

then

(Id⊗S0)(σmei1e
ρ
3e
δ
2k

i1
1 k

j1
2 σ

ρ+δ ⊗ σnf i1f
ρ
3 f

δ
2k

i2
1 k

j2
2 )

= (−1)δ+ρ+iξi(i−1)−2ρσmei1e
ρ
3e
δ
2k

i1
1 k

j1
2 σ

ρ+δ ⊗ k−j22 k−i21 σδf δ2k
−δ
2 σρfρ3 k

−ρ
1 k−ρ2 f i1k

−i
1 σn

+ (−1)δ+i(ξ−2ρ − 1)ξi(i−1)σmei1e
ρ
3e
δ
2k

i1
1 k

j1
2 σ

ρ+δ ⊗ k−j22 k−i21 σδf δ2k
−δ
2 σρfρ2 f

ρ
1 k
−ρ
1 k−ρ2 f i1k

−i
1 σn.
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We have

m ◦ τ s ◦ (Id⊗S0)(σmei1e
ρ
3e
δ
2k

i1
1 k

j1
2 σ

ρ+δ ⊗ σnf i1f
ρ
3 f

δ
2k

i2
1 k

j2
2 )

= (−1)δ+ρ+iξi(i−1)−2ρ(−1)ρ+δk−j22 k−i21 σδf δ2k
−δ
2 σρfρ3 k

−ρ
1 k−ρ2 f i1k

−i
1 σm+nei1e

ρ
3e
δ
2k

i1
1 k

j1
2 σ

ρ+δ

+ (−1)δ+i+δ+ρ(ξ−2ρ − 1)ξi(i−1)k−j22 k−i21 σδf δ2k
−δ
2 σρfρ2 f

ρ
1 k
−ρ
1 k−ρ2 f i1k

−i
1 σm+nei1e

ρ
3e
δ
2k

i1
1 k

j1
2 σ

ρ+δ

= (−1)iξi(i−1)−2ρk−j22 k−i21 σδf δ2k
−δ
2 σρfρ3 k

−ρ
1 k−ρ2 f i1k

−i
1 σm+nei1e

ρ
3e
δ
2k

i1
1 k

j1
2 σ

ρ+δ

+ (−1)i+ρ(ξ−2ρ − 1)ξi(i−1)k−j22 k−i21 σδf δ2k
−δ
2 σρfρ2 f

ρ
1 k
−ρ
1 k−ρ2 f i1k

−i
1 σm+nei1e

ρ
3e
δ
2k

i1
1 k

j1
2 σ

ρ+δ

= X1 +X2.

Since kifj = ξ−aijfjki, kiej = ξaijejki, kif3 = ξ−(ai1+ai2)f3ki, kie3 =
ξai1+ai2e3ki for i, j = 0, 1 and σx = (−1)deg xxσ then

X1 = (−1)iξi(i−1)−2ρξ−(j2+δ)ρ−(j2+δ+ρ)i+(j2+δ+ρ)i+(j2+δ+ρ)ρ.

ξ−i2δ+i2ρ+2(i2+ρ)i−2(i+i2+ρ)i−(i+i2+ρ)ρ+(i+i2+ρ)δ.

σδf δ2σ
ρfρ3 f

i
1σ

m+nei1e
ρ
3e
δ
2k

i1−i2−i−ρ
1 kj1−j2−δ−ρ2 σρ+δ

= (−1)iξ−i−i2−iρ+iδ+ρδ−2ρσδf δ2σ
ρfρ3 f

i
1σ

m+nei1e
ρ
3e
δ
2k

i1−i2−i−ρ
1 kj1−j2−δ−ρ2 σρ+δ

= (−1)i+δδ+(ρ+δ)ρ+(ρ+δ+m+n)(ρ+δ)ξ−i−i
2−iρ+iδ+ρδ−2ρ.

f δ2f
ρ
3 f

i
1e
i
1e
ρ
3e
δ
2k

i1−i2−i−ρ
1 kj1−j2−δ−ρ2 σ2(ρ+δ)+m+n

= (−1)i+δρ+(m+n)(δ+ρ)ξ−i−i
2−iρ+iδ+ρδ−2ρf δ2f

ρ
3 f

i
1e
i
1e
ρ
3e
δ
2k

i1−i2−i−ρ
1 kj1−j2−δ−ρ2 σm+n

and

X2 = (−1)i+ρ+ρδ(ξ−2ρ − 1)ξi(i−1)+iρk−j22 k−i21 σδk−δ2 σρfρ+δ
2 fρ+i

1 k−ρ2 k−i−ρ1 .

σm+nei1e
ρ
3e
δ
2k

i1
1 k

j1
2 σ

ρ+δ

= (−1)i+ρ+ρδ+(m+n)(ρ+σ)(ξ−2ρ − 1)ξ−i−i2−iρ+ρδ+iδ.

fρ+δ
2 fρ+i

1 ei1e
ρ
3e
δ
2k

i1−i2−i−ρ
1 kj1−j2−ρ−δ2 σm+n.

Thus we have

θ−1
0 = m ◦ τ s ◦ (Id⊗S0)(R0)(φσ0 )−1

= 1
2`2

`−1∑
i,i1,i2,j1,j2=0

1∑
m,n,ρ,δ=0

(−1)mn{1}
i(−{1})ρ+δ

(i)ξ!(ρ)ξ!(δ)ξ!
ξi1j2+i2j1−2i1i2(X1 +X2)k2

2σ.

Since

X2k
2
2σ = (−1)i+ρ+ρδ+(m+n)(ρ+σ)(ξ−2ρ − 1)ξ−i−i2−iρ+ρδ+iδ.

fρ+δ
2 fρ+i

1 ei1e
ρ
3e
δ
2k

i1−i2−i−ρ
1 kj1−j2−ρ−δ+2

2 σm+n+1
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then by Proposition 4.4.18 implies that λ0(X2k
2
2σ) = 0. Hence we have

λ0(θ−1
0 ) = − 1

2`2

`−1∑
i1,i2,j1,j2=0

1∑
m,n=0

{1}`−1(−{1})1+1

(`− 1)ξ!(1)ξ!(1)ξ!
(−1)mnξ−1+i1j2+i2j1−2i1i2

λ0(f2f3f
`−1
1 e`−1

1 e3e2k
i1−i2−(`−1)−1
1 kj1−j2−1−1+2

2 σm+n+1)

= − 1
2`2
{1}`+1ξ−1

(`− 1)ξ!
η′

`−1∑
i1,i2,j1,j2=0

1∑
m,n=0

ξi1j2+i2j1−2i1i2 .

δ0
i1−i2 mod `Zδ

`−2
j1−j2 mod `Zδ

0
m+n+1 mod 2Z

where η′ = λ0(f2f3f
`−1
1 e`−1

1 e3e2k
`−2
2 ), i.e.

λ0(θ−1
0 ) = − 1

2`2
{1}`+1ξ−1

(`− 1)ξ!
η′

`−1∑
i2,j2=0

ξi2j2+i2(j2+`−2)−2i2i2
1∑

m,n=0
(−1)mnδ0

m+n+1 mod 2Z

= −2 1
2`2
{1}`+1ξ−1

(`− 1)ξ!
η′

`−1∑
i2=0

ξ−2i22−2i2
`−1∑
j2=0

ξ2i2j2

= − 1
`2
{1}`+1ξ−1

(`− 1)ξ!
η′

`−1∑
i2=0

ξ−2i22−2i2`δ0
i2 mod `Z

= −{1}
`+1ξ−1

`(`− 1)ξ!
η′.

To computer λ0(θ0) we use the equality

θ0 = φσ0 .(m ◦ τ s ◦ (S2
0 ⊗ Id)(R0)).

Since

S2
0(ei1) = φσ0e

i
1(φσ0 )−1 = σk−2

2 ei1k
2
2σ = ξ2iei1,

S2
0(eρ3) = (−1)ρξ2ρeρ3,

S2
0(eδ2) = (−1)δeδ2,
S2

0(ki11 ) = ki11 ,

S2
0(kj12 ) = kj12 ,

S2
0(σρ+δ) = σρ+δ

then

S2
0(σmei1e

ρ
3e
δ
2k

i1
1 k

j1
2 σ

ρ+δ) = S2
0(σm)S2

0(ei1)S2
0(eρ3)S2

0(eδ2)S2
0(ki11 )S2

0(kj12 )S2
0(σρ+δ)

= (−1)ρ+δξ2(i+ρ)σmei1e
ρ
3e
δ
2k

i1
1 k

j1
2 σ

ρ+δ.
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It implies that

(S2
0 ⊗ Id)(σmei1e

ρ
3e
δ
2k

i1
1 k

j1
2 σ

ρ+δ ⊗ σnf i1f
ρ
3 f

δ
2k

i2
1 k

j2
2 )

= (−1)ρ+δξ2(i+ρ)σmei1e
ρ
3e
δ
2k

i1
1 k

j1
2 σ

ρ+δ ⊗ σnf i1f
ρ
3 f

δ
2k

i2
1 k

j2
2

then

m ◦ τ s ◦ (S2
0 ⊗ Id)(σmei1e

ρ
3e
δ
2k

i1
1 k

j1
2 σ

ρ+δ ⊗ σnf i1f
ρ
3 f

δ
2k

i2
1 k

j2
2 )

= (−1)ρ+δ+ρ+δξ2(i+ρ)σnf i1f
ρ
3 f

δ
2k

i2
1 k

j2
2 σ

mei1e
ρ
3e
δ
2k

i1
1 k

j1
2 σ

ρ+δ

= ξ2(i+ρ)ξi2(2i+ρ−δ)ξ−j2(i+ρ)σnf i1f
ρ
3 f

δ
2σ

mei1e
ρ
3e
δ
2k

i1+i2
1 kj1+j2

2 σρ+δ

= (−1)(2n+m)(ρ+δ)ξ2(i+ρ)+i2(2i+ρ−δ)−j2(i+ρ)f i1f
ρ
3 f

δ
2e

i
1e
ρ
3e
δ
2k

i1+i2
1 kj1+j2

2 σm+m+ρ+δ

= (−1)m(ρ+δ)ξ2(i+ρ)+i2(2i+ρ−δ)−j2(i+ρ)f i1f
ρ
3 f

δ
2e

i
1e
ρ
3e
δ
2k

i1+i2
1 kj1+j2

2 σm+m+ρ+δ.

So we have

θ0 = σk−2
2

1
2`2

`−1∑
i,i1,i2,j1,j2=0

1∑
m,n,ρ,δ=0

(−1)mn{1}
i(−{1})ρ+δ

(i)ξ!(ρ)ξ!(δ)ξ!
ξi1j2+i2j1−2i1i2 .

(−1)m(ρ+δ)ξ2(i+ρ)+i2(2i+ρ−δ)−j2(i+ρ)f i1f
ρ
3 f

δ
2e

i
1e
ρ
3e
δ
2k

i1+i2
1 kj1+j2

2 σm+m+ρ+δ

= 1
2`2

`−1∑
i,i1,i2,j1,j2=0

1∑
m,n,ρ,δ=0

{1}i(−{1})ρ+δ

(i)ξ!(ρ)ξ!(δ)ξ!
ξ2(i+ρ)+i2(2i+ρ−δ)−j2(i+ρ).

(−1)m(ρ+δ)+mnξi1j2+i2j1−2i1i2f i1f
ρ
3 f

δ
2e

i
1e
ρ
3e
δ
2k

i1+i2
1 kj1+j2−2

2 σm+n+ρ+δ+1.

By Proposition 4.4.18 one has

λ0(θ0) = 1
2`2

`−1∑
i1,i2,j1,j2=0

1∑
m,n=0

{1}`−1(−{1})1+1

(`− 1)ξ!
(−1)mnξ−2i2+i1j2+i2j1−2i1i2η.

δ0
i1+i2 mod `Zδ

0
j1+j2−2 mod `Zδ

0
m+n+1 mod 2Z

= 1
2`2
{1}`+1

(`− 1)ξ!
η

`−1∑
i1,i2,j1,j2=0

ξ−2i2+i1j2+i2j1−2i1i2δ0
i1+i2 mod `Zδ

0
j1+j2−2 mod `Z.

1∑
m,n=0

(−1)mnδ0
m+n+1 mod 2Z

where η = λ0(f `−1
1 f3f2e

`−1
1 e3e2k

`−2
2 ), i.e.

λ0(θ0) = 1
`2
{1}`+1

(`− 1)ξ!
η

`−1∑
i1,j1=0

ξ−2(`−i1)+i1(`−j1+2)+(`−i1)j1−2i1(`−i1)

= 1
`2
{1}`+1

(`− 1)ξ!
η
`−1∑
i1=0

ξ2i21+4i1
`−1∑
j1=0

ξ−2i1j1
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= 1
`2
{1}`+1

(`− 1)ξ!
η
`−1∑
i1=0

ξ2i21+4i1`δ0
i1 mod `Z

= {1}`+1

`(`− 1)ξ!
η.

On the other hand

f2f3f1 = ξ−1f2f1f3 = ξ−1(f3 + ξf1f2)f3 = f1f2f3.

Since f2f3 = −ξf3f2 we get

η′ = λ0(f2f3f
`−1
1 e`−1

1 e3e2k
`−2
2 )

= −ξλ0(f `−1
1 f3f2e

`−1
1 e3e2k

`−2
2 )

= −ξη.

Thus we have

λ0(θ−1
0 ) = −{1}

`+1ξ−1

`(`− 1)ξ!
η′ = {1}`+1

`(`− 1)ξ!
η = λ0(θ0).

Since (`− 1)ξ! = ∏`−1
i=1

1−ξi
1−ξ = `−1

(1−ξ)`−1 then λ0(θ0) = {1}`+1(1−ξ)`−1

`(`−1) η.
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[24] K. Habiro and Thang T Q. Lê. Unified quantum invariants for integral
homology spheres associated with simple Lie algebras. Geometry &
Topology, 20:2687–2835, 2006.

[25] I. Heckenberger. Nichols algebras of diagonal type and arithmetic root
systems. Habilitationsarbeit, Leipzig, Dezember 2005.

[26] M. Hennings. Invariants of links and 3-manifolds obtained from Hopf
algebras. Journal of the London Mathematical Society, 54:594–624, 1996.

[27] V. Jones. A polynomial invariant for knots via von Neumann algebras.
Bull. Amer. Math. Soc., (N.S.) 12, no. 1:103–111, 1985.

Théorie quantique des champs topologiques pour la superalgèbre de Lie sl(2/1) Ngoc-Phu Ha 2018



BIBLIOGRAPHY 121

[28] V. G. Kac. Lie superalgebra. Advances Math., pages 8–96, 1977.
[29] C. Kassel. Quantum Groups. Springer-Verlag, 1995.
[30] L. Kauffman and D. E. Radford. Oriented quantum algebras, categories

and invariants of knots and links. Journal of Knot Theory and Its Ram-
ifications, 10(07):1047–1084, 2001.

[31] S. M. Khoroshkin and V. N. Tolstoy. Universal R-matrix for quantized
(super)algebras. Commun. Math., pages 599–617, 1991.

[32] R. Kirby. A calculus for framed links. Invent. Math., 45:35–56, 1978.
[33] S. Mac Lane. Categories for the Woking Mathematician. Springer, 1998.
[34] R. G. Larson and M. E. Sweedler. An associative orthogonal bilinear

form for Hopf algebras. American Journal of Mathematics, Vol. 91, No.
1 (Jan.):75–94, 1969.

[35] S. Lentner and D. Nett. New R-matrices for small quantum groups.
Algebras and Representation Theory, 18(6):1649–1673, 2015.

[36] S. Majid. Cross products by braided groups and bosonization. Journal
of algebra, 163:165–190, 1994.

[37] T. Ohtsuki. Colored ribbon Hopf algebras and universal invariants of
framed links. J. Knot Theory Ramifications 2 (2), pages 211–232, 1993.

[38] T. Ohtsuki. Quantum invariants. World Scientific Publishing Co. Pte.
Ltd, 2002.

[39] B. Patureau-Mirand. Invariants topologiques quantiques non semi-
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