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Théorie topologique des
champs quantiques pour la
superalgebre de Lie sl(2|1)

Résumé

Ce texte étudie le groupe quantique L{gHsl(2|1) associé a la superalgebre
de Lie sl(2|1) et une catégorie de ses représentations de dimension finie. L’ob-
jectif est de construire des invariants topologiques de 3-variétés en utilisant
la notion de trace modifiée. D’abord nous prouvons que la catégorie €7 des
modules de poids nilpotents sur U{’s[(2|1) est enrubannée et qu’il existe une
trace modifiée sur son idéal des modules projectifs. De plus €7 possede une
structure relativement G-prémodulaire ce qui est une condition suffisante
pour construire un invariant de 3-variétés a la Costantino-Geer-Patureau.
Cet invariant est le coeur d’'une 1+ 1+ 1-TQFT (Topological Quantum Field
Theory). D’autre part Hennings a proposé a partir d'une algebre de Hopf
de dimension finie une construction d’invariants qui dispense de considérer
la catégorie de ses représentations. Nous montrons que le groupe quantique
déroulé ULTsl(2]1)/ (e, f{) possede une complétion qui est une algebre de
Hopf enrubannée topologique. Nous construisons un invariant de 3-variétés
a la Hennings en utilisant cette structure algébrique, une transformation de
Fourier discrete et la notion de G-intégrales. L’intégrale dans une algebre
de Hopf est centrale dans la construction de Hennings. La notion de trace
modifiée dans une catégorie s’est récemment révélée étre une généralisation
des intégrales dans les algebres de Hopf de dimension finie. Dans un contexte
plus général d’algebre de Hopf de dimension infinie nous prouvons la relation
formulée entre la trace modifiée et la G-intégrale.

Mots clés : group quantique déroulé, algebre topologique localement convexe,
TQFT, super-symétries, invariant de 3-variétés, trace modifiée.
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Topological quantum field
theory for Lie superalgebra
s[(2|1)

Abstract

This text studies the quantum group U{’sl(2|1) associated with the Lie
superalgebra s[(2|1) and a category of finite dimensional representations. The
aim is to construct the topological invariants of 3-manifolds using the notion
of modified trace. We first prove that the category € of the nilpotent weight
modules over Uf5[(2|1) is ribbon and that there exists a modified trace on

its ideal of projective modules. Furthermore, € possesses a relative G-
premodular structure which is a sufficient condition to construct an invariant
of 3-manifolds of Costantino-Geer-Patureau type. This invariant is the heart
ofal+ 1+ 1-TQFT (Topological Quantum Field Theory). Next Hennings
proposed from a finite dimensional Hopf algebra, a construction of invariants
which does not require to consider the category of its representations. We
show that the unrolled quantum group U sl(2[1)/(ef, f{) has a completion
which is a topological ribbon Hopf algebra. We construct an invariant of 3-
manifolds of Hennings type using this algebraic structure, a discrete Fourier
transform, and the notion of G-integrals. The integral in a Hopf algebra is
central in the construction of Hennings. The notion of modified trace in a
category has recently been revealed to be a generalization of the integrals
in a finite dimensional Hopf algebra. In a more general context of infinite
dimensional Hopf algebras we prove the relation formulated between the
modified trace and the G-integral.

Keywords: unrolled quantum group, locally convex topological algebra,
TQFT, super-symmetries, invariant of 3-manifolds, modified trace.
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Chapitre 1

Introduction

1.1 Contexte

Depuis les années 80, la naissance du polynéme de Jones (voir [27]) a
ouvert une nouvelle direction de recherche pour les invariants topologiques
d’entrelacs et de 3-variétés. Quelques années apres, beaucoup d’invariants
d’entrelacs ont été découverts qui sont des généralisations du polynome de
Jones. D’abord le polyndéme a deux variables appelé “HOMFLY” qui est une
généralisation du polynéme de Jones (le nom HOMFLY provient des noms de
six mathématiciens Hoste, Ocneanu, Millett, Freyd, Lickorish, et Yetter qui
découvrent simultanément ce polynéme) (voir [10]). Puis Kauffman a défini
une autre généralisation et a construit un invariant d’entrelacs en bande
indépendant de l'orientation, ... ([37]). Ensuite, dans les deux articles [43] en
1990, et [44] en 1991 N. Reshetikhin, V.G. Turaev et E. Witten ont introduit
une méthode de construction d’invariant d’entrelacs (nommé invariant RT)
et de 3-variétés (nommé invariant WRT). Le premier article a présenté la
construction d’un foncteur F' d’une catégorie des graphes en rubans vers
une catégorie enrubannée %. Ces graphes en rubans sont composés par les
parties élémentaires comme des bandes, des coupons, des anneaux, ... Ils sont
coloriés par des objets et des morphismes de la catégorie €. Le foncteur F
ne dépend que la classe d’isotopie des graphes plongés et il détermine un
invariant des entrelacs. En utilisant des représentations du groupe quantique
U,s!(2) on retrouve le polyndme de Jones. Dans leur deuxieme article, inspiré
par les idées de E. Witten (voir [50]) ils ont utilisé une catégorie modulaire
enrubannée ¢ pour construire un invariant de 3-variétés.

Dans certains contextes, 'invariant RT se révele étre trivial, par exemple
pour les représentations projectives du groupe quantique U,s((2) ol ¢ est une
racine de l'unité. La raison qui cause ce phénomene est la nullité de dimen-
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2 CHAPITRE 1. INTRODUCTION

sion quantique de la représentation (e. g. [15]). Pour trouver des informations
cachées dans cette situation N. Geer, B. Patureau-Mirand et V. Turaev ont
proposé une méthode dont 1'idée principale est le remplacement de la dimen-
sion quantique par la dimension modifiée dans la construction de l'invariant
RT ([17]). La dimension modifiée est déterminée par une famille des formes k-
linéaires nommée une trace modifiée. Ces notions leur permettent de trouver
un invariant £’ non trivial méme lorsque I'invariant RT est trivial. La trace
modifiée et ses techniques fournissent un autre point de vue sur la construc-
tion des invariants topologiques. Avec F. Costantino ([8]) et F. Costantino et
C. Blanchet ([4]) ils généralisent avec ces nouveaux invariants la construction
WRT pour produire des invariants de 3-variétés et des TQFTs (Topological
Quantum Field Theories).

Les superalgebres de Lie ([28]) sont des généralisations des algebres de Lie
utilisées par les physiciens pour décrire les super symétries. Elles admettent,
comme les algebres de Lie une déformation et leurs représentations sont en
partie connues. Par exemple, les représentations irréductibles de U,s((2]1) aux
racines de l'unité sont décrites dans [1]. La construction de Reshetikhin et
Turaev repose sur 'existence d’une catégorie de représentations semi-simples
des groupes quantiques. Cette propriété fait défaut dans le cas des groupes
quantiques associés aux superalgebres de Lie. Ceci suggere d’essayer d’utiliser
des traces modifiées pour contourner cette difficulté et de tenter de développer
une construction similaire a celle de [8].

Dans une autre direction, M. Hennings a présenté une méthode de construc-
tion d’invariants de 3-variétés en utilisant une intégrale sur une algebre de
Hopf enrubannée de dimension finie ([26]). De plus, dans [46] V. G. Turaev
a présenté une structure de m-cogebre de Hopf, i.e. un ensemble d’algebres
indexées par les éléments d’un groupe m avec des applications nommeées le pro-
duit, le coproduit, 'unité, la counité et I'antipode qui satisfont des axiomes
de compatiblité. Puis A. Virelizier a démontré 'existence d’une intégrale et
d’une trace sur m-structure dans [49]. L’intégrale sur une m-cogebre de Hopf
nommée m-intégrale est une généralisation de la notion de I'intégrale sur une
algebre de Hopf utilisée dans la construction de Hennings. En utilisant une
m-cogebre de Hopf unimodulaire enrubannée de type finie et une w-intégrale,
ils ont construit un invariant de 3-variétés dans [48]. Récemment dans [2]
une relation a été trouvé entre l'intégrale sur ’algebre de Hopf H et la trace
modifiée dans la catégorie correspondante H-mod : A. Beliakova, C. Blan-
chet et A. M. Gainutdinov ont notamment établi une formule reliant la trace
modifiée et 'intégrale.
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1.2. PRESENTATION DES OBJECTIFS 3

1.2 Présentation des objectifs

Motivé par la notion de la trace modifiée nous voulons développer ses
techniques dans le contexte des représentations du groupe quantique Ugs((2|1)
décrites dans [1]. On suppose pouvoir construire un invariant de l’entrelacs
coloriés par ses représentations. Cela nous fournit le premier objectif : c’est
la construction des invariants quantiques associés a la super algebre de Lie
5[(2[1). Pour faire cela : d’abord on démontre qu'il existe une structure enru-
bannée dans la catégorie €7 des représentations nilpotentes des modules de
poids sur U{'s[(2[1), ensuite on indique Pexistence de la trace modifiée sur
I'idéal Proj(€*) des modules projectifs dans €. Cette trace modifiée nous
donne un invariant des graphes enrubannés. De plus la catégorie enrubannée
%" a aussi une structure relativement G-prémodulaire, ce qui permet de
construire un invariant de 3-variétés a la Witten-Reshetikhin-Turaev.

A partir d’un invariant de 3-variétés on sait avoir une chance de construire
une famille des TQFTs. Par exemple, en utilisant la construction universelle
présentée par C. Blanchet, N. Habegger, G. Masbaum and P. Vogel dans [5],
une famille de TQF TS est construite dans [4] a partir de I'invariant quantique
trouvé par F. Costantino, N. Geer and B. Patureau-Mirand [8]. Les TQFTs
dans [4] sont construites a partir de I'invariant CGP associé a s[(2) ([8]) qui
est similaire & celui que 'on définit ici avec Us[(2]1). C’est la raison qui a
motivé le deuxieme objectif : la construction de 141+ 1-TQFTs a partir ces
invariants de 3-variétés. Pour appliquer la construction de De Renzi ([42]) on
montre que la catégorie €7 est une catégorie relativement G-modulaire.

M. Hennings dans [26] a proposé une maniére de construire un invariant
de 3-variétés a partir d'une algebre de Hopf enrubannée de dimension finie
a l'aide de l'intégrale. Inspiré par sa méthode, nous désirions construire un
invariant de 3-variétés pour le groupe quantique Z/lgHsl(Q\l). Néanmoins, la
dimension de la superalgebre de Hopf I/{gH s[(2|1) n’est pas finie, cela cause des
difficultés. Les travaux ont été motivés par les réflexions suivantes : Puisqu’il
existe une trace modifiée sur idéal des modules projectifs dans € produisant
un invariant de 3-variétés, nous conjecturons qu’il existe quand méme une
chose analogue pour la superalgebre U = ngHs[(Q\l)/(e‘i, fH). En d’autres
termes, nous pourrions construire un invariant de 3-variétés a la Hennings
avec la superalgebre U™,

Ceci est effectivement réalisé en remplacant 'intégrale par une intégrale
graduée. Donc, a partir de la superalgebre Z/I§Hs[(2|1), on a deux approches
pour construire cet invariant. La premiere maniere utilise la structure de la
catégorie enrubannée € et la trace modifiée en dedans. L’autre maniére
utilise une structure d’algebre topologique U et I'intégrale graduée. Ceci
suggere une relation entre les deux objets : la trace modifiée dans une catégorie
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4 CHAPITRE 1. INTRODUCTION

et I'intégrale graduée d’une algebre de Hopf. Dans un article récent [2] les au-
teurs ont montré que la trace modifiée dans la catégorie H-mod est I'intégrale
symétrisée de ’algebre de Hopf de dimension finie H. Inspiré par la sugges-
tion ci-dessus nous nous fixons deux objectifs supplémentaires. Le troisieme
objectif est de trouver la relation entre la trace modifiée des catégories de
représentations des groupes quantiques et les intégrales des G-cogebres de
Hopf pivotales correspondantes.

Finalement, le dernier objectif est la construction d’un invariant de 3-
variétés de type Hennings associé au groupe quantique déroulé ngHs[(2|1)
malgré que ce soit une algebre de Hopf de dimension infinie. Cet invariant
est construit en trois étapes : 1) I'introduction d’une topologie sur 'algebre
déroulée, 2) une transformation de Fourier discréte et 3) la version G-graduée
de l'invariant de Hennings di a A. Virelizier ([48]).

1.3 Résultats principaux

Le texte est composé de quatre chapitres. Ses résultats principaux sont
présentés dans les trois derniers chapitres. En particulier ils sont la reproduc-
tion des articles [22], [21] et [20]. Dans le deuxiéme chapitre, nous démontrons
que la catégorie paire €7 des modules de poids nilpotents du groupe quan-
tique L{gHs[(2|1) est enrubannée par le théoréme 2.4.4, la proposition 2.4.5 et
qu’il existe une trace modifiée sur idéal des modules projectifs de € par
le théoreme 2.5.4. On construit un invariant de graphes enrubannées dans
S3 par cette trace avec le théoréme 2.5.5. De plus, cette catégorie possede
une structure relativement G-prémodulaire avec G = (C/Z x C/Z,+), cela
implique une construction d’invariants de 3-variétés similaire a celle dans [§]
par le théoreme 2.6.4. Ses résultats sont présentés dans l'article Topologi-
cal invariants from quantum groups Ugsl(2|1) at roots of unity ([22]). Dans
ce chapitre nous rajoutons aussi une partie complémentaire ou on montre
que la catégorie paire €7 des modules de poids nilpotents du groupe quan-
tique L{gHs[(2|1) est relativement GG-modulaire d’apres le sens de De Renzi
([42]) par la proposition 2.7.2. Cela nous permet de construire une famille de
1+ 14 1-TQFTs étendues et graduées par Z x Z x Z./27.

Le troisieme chapitre parle de la relation proche entre trace modifiée et
intégrale. Soit H une algebre de Hopf de dimension finie, il existe un élément
de H* appelé intégrale sur H qui est utilisé pour construire l'invariant de
3-variétés de Hennings (voir [26]). A partir de cette notion on peut définir
la notion d’intégrale symétrisée et prouver une formule ou chaque intégrale
symétrisée sur H correspond a une trace modifiée sur I'idéal H-pmod des
H-modules projectifs dans la catégorie H-mod (voir [2]). Pour généraliser
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1.3. RESULTATS PRINCIPAUX )

ce résultat dans le contexte ou la dimension de l'algebre de Hopt H peut
étre infinie, on a défini la notion d’'une G-cogebre de Hopf pivotale. Une
G-intégrale sur une G-cogebre de Hopf pivotale nous permet de définir une
G-intégrale symétrisée. Elle coincide avec une trace modifiée sur I'idéal des H-
modules projectifs. Autrement dit, si H est une algebre de Hopf (sa dimension
peut étre infinie) et G est un groupe, on peut parfois former une G-cogebre
de Hopf pivotale (Hy)ge & partir de quotients de H. Les relations entre les
G-intégrales sur (H,)geq et les traces modifiées sur I'idéal des H-modules
projectifs de dimension finie sont établies par le théoreme 3.1.1. Ceci nous a
permit une autre approche de construction de l'invariant de 3-variétés [22] a
partir des intégrales symétrisées. Dans cette partie nous donnons aussi une
application (voir Section 3.5) de la relation entre G-intégrale et trace modifiée
par des calculs pour le groupe quantique associé a ’algebre de Lie s(2) et la
catégorie correspondante. Ces résultats sont prépubliés sur arXiv ([21]).

Le quatriéme chapitre revient au groupe quantique déroulé U générant
la catégorie €. Soit W l'espace vectoriel de dimension finie sur C avec une
base {efegegff/fgf/fé" 0<p,o,0,00 <1, 0<p,p <l—1}. Le groupe quan-
tique UM est isomorphe & W®C[kE", k3, hy, hy]. Nous considérons I'injection
de U dans W @H (hy, hy) ot H(hy, hs) est Pespace vectoriel des fonctions ho-
lomorphes sur C?. On peut voir chaque élément de W @ H (hy, hy) comme une
fonction holomorphe a valeurs dans . Puis on peut déterminer une topolo-
gie sur cet espace : c’est la topologie de la convergence uniforme sur les en-
sembles compacts. Nous démontrons que cette superalgebre de Hopf possede
une structure de superalgebre de Hopf enrubannée au sens topologique. C’est
a dire que cette topologie est compatible avec la structure d’algebre de Hopf
(cf. théoréme 4.2.17). Sa bosonization est une algebre de Hopf topologique
enrubannée. Cette algebre nous donne d’abord une construction d’invariant
universel de 'entrelacs par le théoreme 4.3.2 et puis une G-cogebre de Hopf
pivotale de type finie U7 par la proposition 4.4.2 ou chaque composante de
U° est le quotient de 'algebre par 1'idéal engendré par kf — &£ pour i = 1, 2.
Les G-intégrales sur U7, 'invariant universel et une transformation de Fou-
rier discrete nous permettent de construire un invariant de 3-variétés de type
Hennings par le théoreme 4.4.15. La méthode présentée dans ce chapitre
pourrait se généraliser dans le contexte des groupes quantiques déroulés. Ces
résultats sont prépubliés sur arXiv ([20]).

Au début de chaque chapitre, nous redéfinissons les notions nécessaires et
rappelons les résultats préliminaires. En conséquence chaque chapitre pour-
rait étre lu indépendamment des autres.
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Chapter 2

Topological invariants from
quantum group U.sl(2|1) at
roots of unity

This chapter contains two parts, the first one with six sections is the con-
tent of the paper [22] in Abhandlungen aus dem Mathematischen Seminar der
Universitit Hamburg, the second one is to prove the category €7 is relative
G-modular.

RESUME. Dans ce chapitre, nous construisons des invariants d’entrelacs et
des invariants de 3-variétés a partir du groupe quantique associé a la super-
algebre de Lie s[(2]1). La construction est basée sur des représentations nilpo-
tentes irréductibles finies du groupe quantique Uesl(2|1) ot € est une racine de
I'unité d’ordre impair. Ces constructions utilisent la notion de trace modifiée
présentée par Geer, Kujawa et Patureau-Mirand [13] et la catégorie relative-
ment G-modulaire présentée par Costantino, Geer et Patureau-Mirand [8].

ABSTRACT. In this chapter we construct link invariants and 3-manifold
invariants from the quantum group associated with the Lie superalgebra
5[(2[1). The construction is based on nilpotent irreducible finite dimensional
representations of quantum group Uesl(2|1) where ¢ is a root of unity of odd
order. These constructions use the notion of modified trace presented by
Geer, Kujawa and Patureau-Mirand [13] and relative G-modular category
presented by Costantino, Geer and Patureau-Mirand [8].

MSC: 57TM27, 17B37
Key words: Lie superalgebra, quantum group, link invariant, 3-manifold.
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8 CHAPTER 2. INVARIANTS FROM QUANTUM GROUP

2.1 Introduction

The vanishing of the dimension of an object V' in a ribbon category &
is an obstruction when one studies the Reshetikhin-Turaev link invariant. If
the dimension of a simple object V' of € is zero, then the quantum invari-
ants of all (framed oriented) links with components labelled by V' are equal
to zero, i.e. they are trivial. To overcome this difficulty, the authors N.
Geer, B. Patureau-Mirand and V. Turaev introduced the notion of a mod-
ified dimension (see [17]). The modified dimension may be non-zero when
dime (V) = 0. Using the modified dimension, for example on the class of
projective simple objects, they defined an isotopy invariant F' (L) (the renor-
malized Reshetikhin-Turaev link invariant) for any link L whose components
are labelled with objects of € under the only assumption that at least one of
the labels belongs to the set of projective ambidextrous objects. Here F'(L)
is a nontrivial link invariant (see [17]). This modified dimension is used to
construct the quantum invariants in [8], [14].

The existence of the modified dimension generalizes the definition of mod-
ified traces (see [12]). In the article [13], the authors showed that a necessary
and sufficient condition for the existence of a modified trace on an ideal gen-
erated by a simple object J is that J is an ambidextrous object. Recently
the existence of an ambidextrous object has been shown in the context of
factorizable finite tensor categories [11].

The Lie superalgebras (see [28]) are the generalizations of Lie algebras in
the category of super vector spaces. They are used among others by physi-
cists to describe supersymmetry. Deformations of these superalgebras and
their representations are partially known. For the Lie superalgebra s((2[1)
one can define a Hopf superalgebra Ues((2]1) which is a deformation of the
universal enveloping algebra. Its irreducible representations at roots of unity
are described in [1]. Using these representations and developing the idea of
modified traces open up the method for constructing a quantum invariant of
framed links with components labelled by irreducible representations.

The aim of this chapter is to construct a link invariant and a 3-manifold
invariant from quantum group Uesl(2|1) at a root of unity of odd order. Note
that the Lie superalgebra sl(2|1) having superdimension zero, s[(2|1)-weight
functions are trivial. Hence combining them with the Kontsevich integral
or the LMO invariant also give trivial link and 3-manifold invariants. The
chapter contains six sections. In Section 2.2, we recall the monoidal category,
pivotal category, braided category, ribbon category and, Hopf superalgebra
definitions. In Section 2.3 and 2.4, we describe the quantum superalgebra
Uesl(2|1) where € is a root of unity of odd order and by adding two elements
hi,hy to Ugsl(2]1), we have the Hopf superalgebra U's[(2[1). Using this
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extension we can construct a non semi-simple ribbon category €% of the
nilpotent simple finite dimensional representations of ngHsl(2|1). In Section
2.5 we prove that a typical module over U/s[(2|1) is an ambidextrous module
and that a modified trace exists on the ideal of projective modules Proj. This
modified trace will be used to construct a link invariant. In Section 2.6, we
prove that the category € is relative G-premodular ([8]) and we construct
a 3-manifold invariant using this property.

2.2 Preliminaries

2.2.1 Monoidal category

Definition 2.2.1 ([33, 29]). A monoidal category € is a category enhanced
with a bifunctor called tensor product - @ - : € X € — € and a unit object 1
such that there are natural isomorphisms

[ % @I%Mdy and (®)® 2-2(-®-), (2.2.1)
fulfilling the Pentagon Aziom and the Triangle Axiom.

We call strict monoidal category a monoidal category ¥ whose the iso-
morphisms (2.2.1) are identities. In our examples the morphisms in (2.2.1)
are simply the morphisms of the underlying vector spaces and are in the
following regarded as equality. We write V' € % to denote an object V in
the category ¢ and call Homy (V, W) the morphisms in € from V € % to
W € € and Endy (V) = Homeg (V, V).

We say that € is a monoidal C-linear category if for all VW € €, the
morphisms Home (V, W) form a C-vector space and the composition and the
tensor product are bilinear and Endy(I) = C. An object V € ¥ is simple
if and only if Endy (V) = C as a unitary C-algebra. An object W € % is a
direct sum of V3, ..., V,, € € if there is for i = 1,...,n, f; € Homg(V;, W), g; €
Homg (W, V;) such that g;o f; = Idy;, g;of; = 0fori # jand 37 fiog; = Idw.
An object W € € is semi-simple if it is a direct sum of simple objects. The
category € is semi-simple if all objects are semi-simple and Homg (V, W) =
{0} for any pair of non-isomorphic simple objects in €.

2.2.2 Pivotal category

Definition 2.2.2. Let € be a monoidal category and A, B € €. A duality
between A and B is given by a pair of morphisms (o € Homy (I, B® A), B €
Homy (A ® B, 1)) such that

(B®Idy) o (dy®a) =1dy and (Idp®B)o(a®Idg)=Idg. (2.2.2)
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10 CHAPTER 2. INVARIANTS FROM QUANTUM GROUP

A pivotal category (or sovereign) is a strict monoidal category €, with a
unit object I, equipped with the data for each object V' € € of its dual object
V* € € and of four morphisms

vy VEeV =1, coevy: I = V@ V*,
“— % S *
evy: VeV =1 coevy: I - V@V

such that (a/)v, c@vv) and (<e_vv, c%vv) are dualities which induce the same
functor duality and the same natural isomorphism (V' @ W)* = W* @ V*.
Thus, the right and left dual coincide in €: for every morphism h: V — W,
we have

h = (eviy @Idy+) o (Idy+ ®h @ Idy+) o (Idy~ ® coevy)
= (Idy~ ® evy) o (Idy+ ®h @ Idy-) o (coevy @ Idy-) : W* — V*

and for V,W € €, the isomorphisms vy : W* @ V* — (V @ W)* are given
by

yww = (eviw @ Idwew)y) o (Idw- ® evy @ Ildwevew):) o (Idw-gy+ ® coevyew)

= Idwewy ® evy) o Idwewyey @ evi @ Idy-) o (coevyew @ Idy-gy-).
The family of isomorphisms
® = {®y = (evy @Idyw) o (Idy ® coovy:) : V — V¥ yeg
is a monoidal natural isomorphism called the pivotal structure.

Definition 2.2.3. Given a multiplicative group G, we call the category €
pivotal G-graded k-linear if there exists a family of full subcategories (€y)acc
of € such that

1. Te (51.
2. ¥(a,B) € G%, V(V,W) € 6, x €3, Homyx(V,W) # {0} = a = §.

3.VWe¥, IneN, Ia,..,an) € G", IV, € 6, fori=1,...,n such
that V.~V & ...dV,.

4. Y(V,W) €6y x €3, VOW € Cup.
5. Ya € G, 6, does not reduce to null object.
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2.2.3 Ribbon category

A braided category is a tensor category € provided with a braiding ¢ : for
all objects V and W of €, we have an isomorphism

CV,WZV®W—)W®V

These isomorphisms are natural and for all objects U,V and W of &, we
have

CU,V®W = (Idv ®CU,W)O(CU,V®IdW) and CU®V,W = (CUJ/V(X)Idv)O(IdU ®vaw).

If the category % is pivotal and braided, we can define a family of natural
isomorphisms

Oy = ptry(cvy) = (Idy @ evy) o (cyy @ Idy+) o (Idy ® coevy) : V — V.
We say that 6 is a twist if it is compatible with the dual in the following sense
YV e €, 0y = (0y)"

which is equivalent to
0y = ptr;(cvv) = (evy @Idy) o (Idy- @cyy ) o (coevy @Idy) : V — V.
A ribbon category is a braided pivotal category in which the family of

isomorphisms 6 is a twist.

2.2.4 Hopf superalgebras

We recall some notions (see also [15], [39]). A super space is a Z/27Z-
graded vector space V = V5 @ V5 over C. An element x € V is called even
(resp. odd) if z € Vg (resp. = € V5). For the super spaces U,V the set of
the morphisms between them denoted by Hom¢ (U, V') is the super space of
linear maps given by

Home (U, V) = Home (Us, Vi) @ Home (Ut, Vy) and
HomC(U, V)T = HOHI((;(U@ VT) ) HOIIl(C(UT, ‘/5)
Denote ® the usual tensor product in the category Vectc. We call even

category SVecty the category whose the objects are the super spaces and the
morphisms are the even morphisms. Category SVecty is monoidal with the
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operator ®: For U,V &€ SVectj their tensor product is the vector space UV
with the parity given by

(U & V)ﬁ = U,@‘/ﬁ D UT@VT and
(U V)= UV @ UreV;,

for f € Home(U,U’), g € Homc(V, V') the tensor product f ® g is given by

Fog— f@gfn Us®V
(—1)f®g on U@V

This means that f @ g(z @ y) = (—=1)77 f(z) ® g(y).
Further, SVectj is also a symmetric monoidal category with symmetry iso-
morphisms 7y 0 UV ~ V ®U given by yy(u ® v) = (—1)""v ® u.
Note that the category SVect of the super spaces with all morphisms is
not a symmetric monoidal category because in general (Id ®g) o (f ® Id) #
(f®@1d) o (Id®g).

We call Hopf superalgebra a Hopf algebra object in SVectg. That is a super
C-vector space H endowed with five even C-linear maps called product, unit,
coproduct, counit and antipode

m:HH—-H n:C—H A-H—-H®H ¢:H—-Cand S:H —>H

satisfying the axioms:
1. the product m is associative on H admitting 15 = n(1) as unity.

2. the coproduct A is coassociative, i.e. (A ®Idy)o A = (Idg ®A)o A
and (e ® Idy) o A = (Idy ®e) o A = Idy.

3. A and € are algebra morphisms where the associative product in H @ H
is determined by (m ® m) o (Idy @7pp ® Idy).

4. mo(S®Idy)oA=mo(ldg®S)oA=noec.

Let H be a Hopf superalgebra. An even grouplike element ¢ € H is said a
pivotal element if A(¢) = ¢ ®R¢, e(¢) =1 and for all h € H, S?(h) = pho™".
The pair (H, ¢) of a Hopf superalgebra and a pivot ¢ is called a pivotal Hopf
superalgebra (see [39]).

Let (H, ¢) be a Hopf superalgebra, let H-modg be the even category of finite
dimensional modules over H. If V is an object of H-mod; we denote by
pv i H — End¢ (V) the representation of H in the module V.
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Proposition 2.2.4 ([39]). The category H-mody has the structure of a piv-
otal category with dual morphisms given by

— i —
evy: ef ®e; > ef(e;) =07, coevy: 1= > e ®@ef,
i

evy:ej @ el i (—1)%B%el (go.e;), coevyr L Y (—1)%%%er @ (¢ e;)

where (e;); is a basis of V' and (e}); is its basis dual.
Proof. Let V' be an object of H-modg. Its dual is a C-vector space V* =
Homc(V, C) provided with the action of h € H given by

(h, ) = (1) 9520 0 py (S(h)).

First we show that four morphisms @V, c@vv, EV, coevy are invariant
morphisms of H-modg. It is clear for evy, coevy, we prove evy is invariant
morphism. The invariant of the morphism coevy is proved similarly.
For h € H, using the Sweedler notation A(h) = huy ® h) and denote
degx = |x|, one computes
evy (h(e; ®e})) = (—D)rellal ovy (haye; @ hel)
= (—1)Pelsttel &y (e, @ e 0 S(hiy))
( 1)|h(2)||eg\+|€ [1h(2y [+ (ejl+Ihay D (hy +lef |)€;’< (S<h(2))¢h(1)ej)
( 1)|h<2)||e IHlejllef I +lhqyllhe) [+ llef | o (¢S—1(h(2))h(l)ej)
= (=1)lP@lleflleslies R llef] (¢S (S(h(l))h@))ej)
= (— 1)|h(2)||6 IHlejllef I +lheylles] e(h)e;(de;)
= (1)t el (p)e *(¢e;)
= (—)Ple(h) evy (e; @ €).
If |h| =1 then e(h) = 0. This implies that

«—

evy (h.(e; @el)) =e(h) evy (¢; @ €l).

The duality of the pair (evy,coevy ) is clear by definition. For (evy, coevy),

one checks
((e_VV X Idv) @) (Idv X C&VV) = Idv .

For each e; we have
(EV ®1dy) o (Idy ® c%vv)(ej ®1) = Z(_1)2Iez\ (pv(d)ej) ® pv(¢’1)ei

_Ze pv(9)e;) @ pv (¢~ es.
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Suppose A = (ag)s, is the matrix of py(¢) then the matrix of py(¢~1) is
A~ = (by)s+ in the basis (e;);, one gets

S eilpr(o)e) @ (07 = T (z ) ® 3 b

= (Z asje;“(es)> ® > bue
) s t

= a; ® Y bue
) t

= Z (Z btiaij> €t
t \ i
= Z (5;-613
t
= Gj.
By similar calculations one gets the equality
(Idy+ ® evy) o (coevy @ Idy-) = Idy-.

Thus the pair of morphisms (<e_vv, C%Vv) are dualities. ]

2.3 Quantum superalgebra Usl(2|1)

In this section we define the superalgebra Us((2]1) and we prove that it
is a pivotal Hopf superalgebra. We also show that the Borel part of Uesl(2|1)
is a Nichols algebra.

2.3.1 Hopf superalgebra Us((2]1)

Definition 2.3.1. Let { > 3 be an odd integer and & = exp(*5*). The
superalgebra Uesl(2|1) is an associative superalgebra on C generated by the
elements ky, ko, kit kyt,eq, e, f1, fo and the relations

kike = ok, (2.3.1)

kiki =1, i=1,2, (2.3.2

kiejki ' = &% e kifskit =€ f; 4,5 =1,2, (2.3.3)
ko — kit ky — kyt

erfr — fien = £ 5 ————6fa+ faen = ;_5_21 , (2.3.4)

[e1, 2] = 0, [e2, f1] = (2.3.5)
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= f2 =0, (2.3.6)

eleg — (€ + € Dejese + et = 0, (2.3.7)

fifa=E+ENARA+ f2ff =0. (2.3.8)

The last two relations are called the Serre relations. The matriz (a;;) is
given by a;1 = 2,a12 = as; = —1,a99 = 0. The odd generators are ey, fs.

We define &% := eXp(Q”Z””), afterwards we will use the concepts

&=

-t

Let define the odd elements e3 = ejeq — £ teger, f3 = fofi — Efifo. The

Serre relations become

{e}=¢" =€, o] =

eres = Eezen, fafi =€ fufs. (2.3.9)

Furthermore
eses = —Eesey, fafo = —E 1 fofs, (2.3.10)
%ﬁ+ﬁ@:h%:??;, (2.3.11)
ez =f2=0. (2.3.12)

According to [31], Uesl(2]1) is a Hopf superalgebra with the coproduct, counit
and antipode as below

Alg))=e; @1+ k' ®e;i=1,2,
Alf)=fi®k+1® fii=1,2,
Alk) =k ok i=1,2,
S(e:) = k&,(ﬁ) — ikt S(k) =k i=1,2,
e(ki) = Le(e) =e(fi)) =0i=1,2.
The center and representations of Ues((2|1) were studied by B. Abdesselam,

D. Arnaudon and M. Bauer [1]. We focus on the case of nilpotent represen-
tations of type B with the condition ¢ odd.

Remark 2.3.2. 1. Because (e, ®@1)(k;' ®@e1) = (k' ®@e1)(e; ®1) and
l), = 11&@ =0 then
3 1-¢

¢
4
::§:<m>(q@uW%@4®eg“m=4{®1+k#@mf(231@
= £
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We have AP(ef) = 1@¢f + et @ ki at the same time. It is known that
el, fi, kY € Z where Z is the center of Ugsl(2]1), so A(eb) € Z® Z. Tt
follows that there exists no element R € Ugsl(2|1) @ Uesl(2|1) such that
A(z) = RA(x)R™' Va € Uesl(2|1), i.e. the superalgebra Ugsl(2|1) is
not quasitriangular.

2. We think that the quotient superalgebra Ugsl(2|1)/(ef, f{) is not quasi-
triangular but a quotient like Uesl(2|1)/(el, f1, kE — 1, k5 — 1) could be,
a proof of this might be found along the lines of [35]. This is not the
quotient that interests us in this chapter.

3. The unrolled version Uf'sl(2|1) (defined in Section 2.4) seems to be
quasitriangular only in a topological sense (see [20]). However, we will
show in Theorem 2./.4 and Proposition 2.4.5 that some representations
(the weight modules) form a ribbon category.

It is commonly admitted that the superalgebra Uesl(2]1)/(ef, f{) has a
Poincaré-Birkhoff-Witt basis {egegeﬁ’kfkéfflfglff/,p, o,p,0" € {0,1},p,p €
{0,1,...,0 — 1},s,t € Z} (see [1]). Nevertheless, we give in Appendix A.1
an elementary proof of this fact stated in Lemma 2.3.3. Its Borel part is a
superalgebra U (n;) which has a vector space basis {e5eel p,o € {0,1},p €
{0,1,...,£—1}}. Tt is well known that U (n) is a Nichols algebra of diagonal
type associated with the generalized Dynkin diagram £ <™* 1 (see [25]). We
now explain this point of view. We consider the group algebra B = CG
in which G is an abelian group generated by ki, ko, a vector space V on C
generated by e, es. Here B is a Hopf algebra and (V -, ) is a Yetter-Drinfeld
module on B [25], where the action - : B®& V — V of B on V is determined
by

ki-en=E%, ki-eqg =& ey,

-1
k2'€1=§ e1, ko ey = —es,

the matrix determining the bicharacter is (qij)ax2,q;; = (—1)Fl¢%i where
|1] =0, |2] =1 and the coaction 6 : V. — B® V of B on V is given by

It is clear that 6(b-v) = bayv(—1)S(be)) @ b2y - Vo) = v(—1) ® b - v(g) for all
b€ B,v € V. Here we use the Sweedler notation and write (A ® Id)A(b) =
b(l) X b(g) X b(g), (5(1]) = U(-1) X V(0) for b € B, veV.

Using Hopf algebra B and Yetter-Drinfeld module V' we can determine the
Nichols algebra B(V) = T'(V)/J (V) where T'(V) = @;2, V" is the tensor
algebra of V' with the braided copoduct A(v) = 1 ® v+ v ® 1 and counit
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e(v) =0forv eV, J(V) is the maximal coideal in degree > 2 of T'(V'). We

now check that e and the Serre relation w = eje3 — £ese; are in J (V). We

have A(e2) = Aes)Aer) = (1@ es+es@1) (1@ ey +es 1) =1® €2+ (ks -
e)Reyst+eaRest+es®@1=10e3+e2@1,s50€e3 e T(V).

We calculate
Afes) = Aer)A(es) — £ A(ea)Afen)
=(1®ea+e®)(1®e+tea®l) - (1Qe+e®@)(1®e +e6®1)
=1®eea+ (k1) ®e;+e1 Qe+ e1ea®1

—5_1(1(8)6261+(k2'€1)®€2+62®61+6261®1)

:1®€3+€3®1+(1_£72)€1®€2-

And a similar calculation gives us

A(Gl)A(G;J,) = 1 ® €1€3 + 563 ® (&) + (]_ — 5_2>§2€1 ® €1€9
+er®ezteez®1+(1—E2)el @ey,

and

A(eg)A(el) =1 & eseq + 561 & ez + e3 (024 e1 + ezeq (024 1
+(1- {‘2)61 ® eger + (1 — 6_2)6_16% R e,.
Thus we have
A(w) = Aler)A(es) — EA(e3) Aler)
=1Quw+w®1L+ (2 —1e;®erey +e1 e

—5261@)63—(5—5_1)61@6261
=1uwtwxl.

By maximality of J(V'), this implies that w € J(V'). The bosonization of
B(V) is then isomorphic to a Hopf subalgebra of the bosonization of the Hopf
superalgebra Uesl(2]1).

Lemma 2.3.3. The set of vectors {egege’fkszgfgfg/ff/ p,o,p,0 €{0,1}, p,p' €
{0,1,...,0 — 1}, s,t € Z} is a basis of Ugsl(2|1)/(e, f1).

Proof. See in Appendix A.1. ]

2.3.2 Pivotal Hopf superalgebra U.sl(2|1)

Recall that the even category of representations of a superalgebra is the
category of representations in which one restricts to the morphisms of even
degree.

Théorie quantique des champs topologiques pour la superalgebre de Lie sl(2/1) Ngoc-Phu Ha 2018



18 CHAPTER 2. INVARIANTS FROM QUANTUM GROUP

Proposition 2.3.4. Given ¢y = ky k32, so Yu € Uesl(2|1), S?(u) = pougy .
Proof. This can be verified for generator elements k;, e;, f;, 1 = 1, 2. O

It follows that the Hopf superalgebra Ues((2]1) provided with the pivotal
element ¢y = ki ‘ky 2 is pivotal superalgebra (see [39]).

Let Uesl(2|1)-modg be the category of finite dimensional modules over
Uesl(2|1) with even morphisms then Uesl(2|1)-modg is a pivotal category
thanks to Proposition 2.2.4. If V is an object of Uesl(2|1)-modg, its dual
is a C-vector space V* = Homg¢(V,C) provided with the action of u given
by (u,p) — (—1)%eudeey 0 oy, (S(u)) where py : Uesl(2|1) — Endc(V) is
the representation of Ues((2|1). The unit element of category Uesl(2[1)-modg
is the module C provided with the representation e : Uesl(2|]1) — C =
End(c((C)

If one has a basis (e;); of V' with dual basis (e});, recall that the dual
morphisms given by

— ] —
evy: € @ej — el(e;) =07, coevy: 1= > e; @ef,
5

evyie; @l (—1)% B9l (gg.e;), coevy: 1 Y (—1)%%%er @ (¢p'ey).

2.4 Category of nilpotent weight modules

This section allows to define the superalgebra Us[(2|1) from Ues(2]1).
Then we define the even category ¢’ of nilpotent finite dimensional weight
modules over U{sl(2|1) and prove that this category is G-graded and rib-
bon. The category €7 is used to construct the topological invariants in next
sections.

2.4.1 Typical module

We call nilpotent weight Ues[(2]1)-module an object of Ues((2]1)-modg on
which ef = ff = 0 and ky, ko are diagonalizable. Let % be the full subcate-
gory of Uesl(2]1)-modg formed by all nilpotent weight modules over Ugs((2]1).
One can check, for example see Equation (2.3.13) that the tensor product
and the dual of nilpotent weight modules are nilpotent weight modules.

Each nilpotent simple weight module (called “of type B” in Section 5.2
[1]) is determined by the highest weight p = (1, o) € C? and is denoted by
Ve o V. Its highest weight vector wq o satisfies

6111)0’0’0 = O, 6211)0’070 = 0,

klwo,o,o = >\1w0,0,0> /f2w0,0,0 = )\2w0,0,0
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2.4. CATEGORY OF NILPOTENT WEIGHT MODULES 19

where \; = &* with ¢ =1, 2.

For p = (p1, p12) € C? we say that Uesl(2|1)-module V, is typical if it is a
simple module of dimension 4¢. Other simple modules are said to be atypical.
The basis of a typical module is formed by vectors w, ., = f§ f§ fwo 0,0 where
p,o € {0,1},0 < p < £. The odd elements are wy 1, and w;,, others are
even. The representation of typical Ues((2|1)-module V,,, ,, is determined by

1Woop = METT Wy 0, (2.4.1)
koWp.op = A&7 W) 5, (2.4.2)
J1Wpop =& PWpopr1 — p(1— O_)giawpfl,UJrl,pa (2.4.3)
fowpop = (1= p)Wpi1,op, (2.4.4)
e1Wpop = —0(1 = P)M& P wpr1oo1p + [Pl — P+ Nwpopo1,  (2.4.5)
€2Wpop = p[M2 +p+ U]wp—l,o,p + U(_l)p)\f;lf_pwp,a—l,p-rl- (2-4-6)

where p,o € {0,1} and p € {0,1,...,¢ — 1}.
We also have V, >~ V.9 & 0 € ((Z)*.

Remark 2.4.1. The module V,, is typical if [y —p+1] #0Vp e {1,....,0 —

1} (i #p—1+32p € {1,...0 = 1}) and [ps]lp + p2 + 1] # 0 (no #
$Z, 1+ p2 # =14 §Z) (see [1]).

We call U{'s[(2|1) the C-superalgebra generated by e;, fi, ki, k; Uand h;
for i = 1,2 with Relations (2.3.1) - (2.3.8) plus the relations

(i €] = aijej, [hi, f3] = —ai fj, [hihy] =0, [hi k] =04,5 =1,2.

The superalgebra Us[(2|1) is a Hopf superalgebra where A, S and ¢ are
determined as in Uesl(2|1) and by

Note that U s[(2|1) can be seen as a semidirect product of C[hy, ho] acting
on Uesl(2[1).

Let Uf's1(2|1)-modg be the category of finite dimensional modules over
U{s[(2]1) with even morphisms then U s[(2|1)-mody is a pivotal category
thanks also to Proposition 2.2.4. We call nilpotent weight ¢//s[(2|1)-module
an object of U{'sl(2|1)-modg on which ef = ff = 0 and " = k; for i = 1,2
are diagonalizable. Let €' be the full subcategory of U{’s[(2|1)-mod; formed
by all nilpotent weight modules over U/'s[(2|1). The category " is pivotal
similar to € (see Section 2.3.2).
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20 CHAPTER 2. INVARIANTS FROM QUANTUM GROUP

We define the actions of h;,% = 1,2 on the basis of V,, ,, by

hlwp,a,p = (,ul + p—0— 2p)wp,a,p7 thp,cf,p = (,u2 + o0+ p)wp,a,p-

Thus V,,, ,., is a weight module of €#. A module in € is said to be typical
if, seen as a Uesl(2|1)-module, it is typical. For each module V' we denote V
the same module with the opposite parity. We set G = C/Z x C/Z and for
each 1 € G we define CKEH as the subcategory of weight modules which have
their weights in the coset 7z (modulo Z x Z). So {€ }zcc is a G-graduation

(where G is an additive group): let V' € CKEH Ve %ﬁff , then the weights of

V ® V' are congruent to 7i+ 77 (modulo Z x Z). Furthermore, if 7i # 7’ then
Homeu (V, V’) = 0 because a morphism preserves weights.
We also define

Gs ={g € G such that 3V € %gH simple and atypical}.
It follows from [1] that

G, = {0,;} x C/ZUC/Z x {0,;} U {(m,ua) D+ iz € {0;}}

2.4.2 Character of representations of L{gHs[(2|1)
Definition 2.4.2. The character of a weight module V' is
xv =D dim(E,(V))X{" X§*
o

where E, (V) is the proper subspace of the proper value p = (1, p12) of
(h1, ha).

Note that we do not use the concept of a super-character defined as above
by replacing the dimension by the super-dimension.
A finite dimensional representation of Uegl(2), subalgebra generated by
e1, f1, k; is defined by V' = Spanc{vo, ..., ve_1} [1]
kv, = ME v, with p € {0,1,...,0 — 1},
fiv, = vy with p € {0,1,...,¢ — 2} and fiv,_; =0,
€1Vp = [p] [/h —p+ 1]Up—17 &M= A,
kov, = Xo&Pv, with p € {0,1,...,¢ — 1}.
It extends to the generators hy, hy by

hiv, = (y — 2p)v, with p € {0,1,...,0 — 1},
hov, = (2 + p)v, with p € {0,1,...,0 — 1}
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2.4. CATEGORY OF NILPOTENT WEIGHT MODULES 21

so that &% = k;,;i = 1,2 on V. We have the character of representation of

Uegl(2)
M1y p2 1 -2 -2
Xyai = X7 X T where z = X Xs.

K1,H2 —

In the case of a typical representation, the nilpotent representation V,,, ,,
of Uesl(2|1) with highest weight (g1, p12) is determined by

—0—2
kiwpop = A&’ PWwp.0ps

_ o+
kowpop = X287 P Wy 5

with hiw,ep = (1 +p — 0 — 2D)W, 5 a0d how, 5, = (fo + 0 + P)W,5p. SO
the nilpotent representation V,,, ,, has the following character

Xvsl(2\1) - lefll(i)z P + X Hg1[ i)z .00 + XV;i{i)z,pzo,g ) + X Mgl[(iz J—
1 -2t
= X1 X5" (1+X)(1+ Xy2). (2.4.7)
— X

2.4.3 Braided category ¢

Let U,s1(2|1) be the C(g)-subsuperalgebra of the h-adic quantized en-
veloping superalgebra of s[(2|1) generated by the elements e;, f;, ki, k; ' for
1 < i < 2 where ¢ = e € C[[h]][h7Y]. Let A = Clg,q7 ", (£ —1),!7"]. Let
U4s1(2]1) be the A-subsuperalgebra of U,sl(2|1) generated by the elements
ei, fi, ki, kit for 1 < i < 2 and the relations (2.3.1) - (2.3.12) in which ¢ is
replaced by q.

The C-superalgebra Ues[(2|1) can be seen as the specialisation at ¢ = ¢
of Uysl(2]1), i.e. Uesl(2]1) = Uasl(2]|1)/ (¢ — &) Uasl(2]1) (see also [6]). Then
Uesl(2|1) is a superalgebra over C with generators e;, f;, ki, ki * for 1 <i <2
and relations (2.3.1) - (2.3.12).

In articles [31, 51] the authors showed that RY = RIK, where

= (Yo {1}ﬂe3®f3 ({1 @ £
R Z NI SR (S

(0)g! =1, (n)g! := (1)g(2)g - - (n)g; (k)q = % and IO, = ¢~ M®heha@h=2ha@hs

1
is a universal R-matrix element of superalgebra U sl(2|1). That is, we have

the following relations in the h-adic completion of these algebras
(A®@Id)(RY) = Ri3R33, (Id®A)(RY) = RizRi;, A%(2)R? = RIA(z)

for all x € Mq5[(2|1) The superalgebra U,s((2|1) has a Poincaré-Birkhoff-
Witt basis {el eg ef hslhszf S, € Nop,o,p,0" € {0,1}, 81,52 € N},
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22 CHAPTER 2. INVARIANTS FROM QUANTUM GROUP

Using this basis we can write U,s((2|1) as a direct sum Usl(2]1) =U~ ]
where U< is a C(g)-module generated by the elements eﬁ’/egleglhflhzg EUEYi
for 0 < p,p' < t;p,0,p,0" €{0,1}, 1,59 € Nand [ is generated by the other
monomials. Set p : U,sl(2|1) — U< the projection with kernel 7. We define

RS =p®@p(RY) =pId(R?) = Id@p(RY).

The proposition below shows that the “truncated R-matrix” R< satisfies the
properties of an R-matrix “modulo truncation”.

Proposition 2.4.3. R< satisfies:

1 (p@p@p)(A®I(RY)) = (p®p@p)REHRE,

2. (p@p@p)(ldOA(RY)) = (p©p © p)REHRY,

3. (p@p)(R=AP(x)) = (p @ p)(A(x)R™) for all x € Uysl(2]1).
Proof. The above relations and pop =p give us (p @ p ® p)(A @ Id(RY)) =
(pRpep)(A®I1d)(Id@p(R?)) = (p@p@p)(A®Id)(R<). At the same time

(p@p®p)(RizRY) = (p@pp)((peldeId)(Ri;)(Id®p ® Id)(R3;)) =
(p@p®p)(RHR53)- So

PRpep)(A®Id(RY)) = (p@p®pIRER3;. (2.4.8)
Similarly we also have
(P@p@p)Id®A)(R™) = (p@p®@p)(RERL). (2.4.9)

For the third equality, it is enough to check on the generator elements.

It is true when = = h; because A(h;) is symmetric and A(h;)(e; @ f;) =
e; @ hifj+hie; @ f; = €; ® fi(hi — ai;) + €;(hi + a;j) ® f; = ;@ f;(1® (hi —
i) + (hi +a;) @ 1) = (6]®f]) (ha).
A%(e;))R?) = (p@p)(1®@ei +e @k

For x = e; we have (p ® p)( DRI =
(p@p)((1®e)RY) + (p@p)((e; ® k7 RY) = (p@p)(1® )R) + (p &
p)((e;@k; " YR) = (p@p)(A%P(e;)R ) On the other side (p®p)(RIA(e;)) =
(p ® p)(R=A(e;)). So we have (p @ p)(A”?(e;)R7) = (p @ p)(R=A(e:)).

For x = f; we proceed analogously. So we deduce that

(p@p)(AP(2)R™) = (p @ p)(RTA(x)) Vo € Ugsl(2[1).
[

Let K be the operator in € @ € defined by

K = £*h1®h2*h2®h1*2h2®h2
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2.4. CATEGORY OF NILPOTENT WEIGHT MODULES 23

that isVV, W € ¢t ’CV®W = exp (pV®W( ( hi ® hg — hy @ h1 — 2hy ® hg)))
is a linear map on the finite dimensional vector space V @ W. For example,
if wyop @ Wy oy €V, @V, one has

Kvew (Woop @ Wy o)
- 5—(M1+p—0—2p)(u’2+0’+p’)—(u2+0+p)(u’1+p’—0’—2p’)—2(u2+a+p)(u’g+0’+p’)wpp’p@wp,ﬂ,’p,'
We have
A ® Id(K) = ’ClglCQg, Id ®A(’C) == IC13,C12. (2410)

Let R< be the universal truncated quasi R-matrix of U,sl(2]|1),q = e" €
C[[h]] given by R< = p @ p(R?) = Id @p(RY) = p ® Id(RY), i.e

Z{l}ze’§®fz {1} 63®f32 {1}<))q!®f2'

q* )f]

Set 7é = 7é<|q:£, ie.

R = Z{l} Z {1};€3®f3z {1}2) ®fgeugfs[(2|1)®ugfs[(2|1).
J)¢: 6-

Theorem 2.4.4. The operator R = RK led to a braiding {cyw} in the
category €H where cyyw VW — W @V is determined by v @ w +
T(Rv®@w)). Here 7 : VW =W RV, v@w s (—1)d8vdesvy @y,

Proof. 1t is sufficient to prove that the operator R satisfies
A ® Id(R) = R13R23, Id ®A(R> = R13R12, RAOP(Q?) = A(.T)R (2411)

for all z € Ufs1(2[1).

Let xq : Uysl(2]1)@U,s1(2]1) — U,sl(2|1) @U,sI(2|1) be the automorphism
determined by z @ y — K,(z ® y)qu_l, this one induces an automorphism
Xe : UFsI(2]1)@UI s1(2[1) — UF s1(2]1) U 5(2]1). We consider the element
R of U,sl(2|1) @ U,sl(2|1), Proposition 2.4.3 implies the relations

A®IA(R) = Riz (Xe)1s (Ras), (2.4.12)
[d®A(R) = Ri3 (Xg)s(v 2), (2.4.13)
R (xe) (AP(x)) = A(z)R for all = € Us1(2]1). (2.4.14)

We will prove the equality (2.4.12), and that the other two are similar. From
the first equality of the Proposition 2.4.3, we deduce that (A ®Id)(R<K,) =
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R5(K)15R53(K,)2s. The term in the left of this equality is equal to (A ®
Id)(R<)(A @ Id)(K,) = A @ IA(R<)(Ky)13(Ky)2s. The right one is equal
to Ri5(Ke)13R33(Kq)2s = Rz (Xg)13 (R35)(Kg)13(Kg)2s. Now because Ky is
invertible, the result is A @ Id(R<) = R (xq)15 (Riy)-

The element R< has no pole when ¢ is a root of unity of order ¢. Hence
we can specialize this relation at ¢ = € and A ® Id(R) = Rys (Xe) 13 (Ras).
Finally, as operators on V; ® Vo ® V5 in which Vi, Vs, Vs € €1, Equation
(2.4.10) implies that

~

ARIAR)=(A®Id)(R)(A®I1d)(K)
= 7213 (Xg)lg (7223)’C13IC23
= R3K13R23K 13 K133
= R13K13R23K 03
= R13Ra3.

Thus the relations of equation (2.4.11) hold. O

The category €’ is pivotal and braided with the braiding cy.y : VQW —
WeV, v@w— 70oR(v®w) where V,W € €.

2.4.4 Ribbon category ¢’

To prove the next proposition we will use the semi-simplicity of 6, (g €
G\ G) which is proven later in Theorem 2.4.14.

Proposition 2.4.5. The family of isomorphisms 0y : V. — V' determined by
Oy = (Idy ® gv)(cvy ® Idy+)(Idy ® C&)vv), V € €% is a twist. That is
Oy = 0, YV € €7 where 6, = (evy @1dy)(Idy- @cyy)(coevy @1dy).

Proof. Firstly, if V is a typical module of highest weight u = (u1, u2),V €
/ —

CKQH,g € G\Gs, we have 0, = (Wv ® Idy)(Idy+ ®cyv)(coevy @1Idy) =

X1 X0 X5.

We use the vector of lowest weight (111 — 2042, g +£) of V, wy 101 1= Weo,

to calculate.

p707p

— _1\,Ptoclpi+2pe+20+2p, *

- Z ( 1) 5 wp,a,p ® wPJ,P ® Woo-
p?o.7p
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XX (woo) — pr,p(—l)p+‘7§@“+2“2+20+2pw;70’p ® (7— o R) (wp,o,p ® woo),

—h1®hg—ha®h1—2ha@h
K(wWp,op @ Wog) = §TMEMTHEMTEER Y, ) @ e,

_ e +ot+pt+l)— +2p2+o+p+2)—2(0+
=¢ p1(p2to+p+e)—pe(p1+2p2+o+p+2)—2(c p)wpﬁ’p@woo_
X2X3(’woo)
_ _1\pto cbpri+2p0 ¢ —pi (p2t+o+p+l) —po (1 +2p2+o+p+2),
- Z( 1) é 5 wp,a,p ® Woo ® wP,U,p
P05
— _1\pto g—pa(peto+p)—p2(pi+2u2+o+p), *
= > (=1)r¢ Wpop @ Woo @ Wp,gp-
p70'7p
So
— _1\pt+o ¢c—pi(peto+p)—p2(p1+2ueto+p), *
X1 X Xg(wee) = Y (=1)P+7¢ Whp(Weo) @ Wpop

p7U7p
— ¢—H1(p2+0)—p2(u1+2p2+2)
- 6 Weo

Secondly, we have
9\/ = (Idv X EV)(CV,V X Idv*)(ldv X C@}Vv) = leyvgyvg

Y3(w0,00) = X pop W0,00 @ Wpop @ WS,y

Y2 Y3(wo,00) = X p0p(T 0 R) (w000 @ Wpop) @ wy, ., where

]C<w0’070 ® wpvg’p) — g—m(u2+0+p)—uz(u1+p—ff—2p)—2u2(uz+o—+p)wo,o’o ® Wy o and
R(wo,o,o ® wp,a,p) — g—m(u2+0+p)—u2(M1+p—a—2p)—2u2(u2+a+p)w0’070 ® Wpop-

— - +o+p)— +p—0—2p)—2 +o+ *
YaYs(wo,0) = X0 & W2t ot eI mp2lintomom2p) = 2uluatotoly 0 @i 60 Qw

p70-7p'
Y1Y2Y3(wo,0,0)
_ Z éfm(u2+o+p)*,u2(u1+p*0*2p)*2ﬂ2(u2+0+z’)wp,gyp ® w;,a,p(<_1)p+g¢0w0,0,0)
p’o-?p

_ Z (_1)p+ff§—u1(u2+0+p)—u2(u1+p—ff—2p)—2uz(uz+a+p)wp7oyp Q w (£—€u1—2uzw07070)

P,0,p
p70'7p

_ 5—2u1u2—2u§—2u2—5u1w0 0.0

— 5*#1(u2+f)*u2(m+2u2+2)wo 0.0-

We can deduce that 6y = 6, for every typical module V with highest weight
p=(p1,p12),V € €)', g € G\G,. Note that the calculation does not change
if we reverse the parity of vectors. So we have the affirmation for a semi-
simple module in degree g € G\G,. Let a module W € %QH,g € G. By
Theorem 2.4.14 it exists h € G such that €7, €)1, are semi-simple. For a
module V' € €)' we have W @ V € €)1, is semi-simple.

Because Oygy = (0w ® Ov)cvwewy = 9;/1/@‘/ = (ngv & QQ/)CVJ/VCW,V and
Oy = 0y, we deduce that Oy = 0, YW € €7, ie. the family 6y is a
twist. [
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Lemma 2.4.6. Let 1 = (11, p12) € C x C, then the value of the twist Oy, on
a simple module V,, with highest weight p is =4 =2r2(tmtu2)1d,, . That s,
9V — 5*5M172u2(1+u1+u2) IdV _ _672(a§+a1a2) Idv

"

7 3

where o = (ay, a0) = (1 — €+ 1, pa + £).
Proof. By the proof of Proposition 2.4.5, O, = ¢t -2re(tmti)]q, = O

The category ¢ is a braided pivotal category with a twist, i.e. €7 is a
ribbon category.

Let 7 be the ribbon category of ¢ -colored oriented ribbon graphs in
the sense of Turaev [47].
The set of morphisms 7 (((Vi, +), ..., (V,, £)), (Wi, £), ..., (W,, £))) is a space
of linear combinations of %-colored ribbon graphs. The ribbon Reshetikhin-
Turaev functor F : T — € is defined by the Penrose graphical calculus.

Definition 2.4.7. If T € T((V,,+), (Vy,+)) where V,, is a simple weight
module of U's\(2|1), then F(T) = x.1dy, € Endugs[(m)(vu) forxz e C. We
define the bracket of T by (T) = x. For ezample, if V,,,V,y € €, we define

w!

S'(V,, Vi) = <Q>

K

We write S’(, p') for S"(V,,, Viy).

|
Another example is the bracket of the twist <f> = —¢2ogtmaz) (o, 0) =

Vi

(o — 0+ 1,0+ 2).

Proposition 2.4.8. Let V =V, be a typical module, V' = Ve be a simple
module, then

S’ (/L M/) _ £f4a2a’272(a2a’1+a1a/2) {60/1}{0/2}{0/2 + O/l}
{1}
where o = (a1, 00) = (pn =0+ 1, o+ 5), 0 = (af, af) = (p) —(+ 1, ph+%).
Proof. Let S = S(u, pt') € Endc (V) be the endomorphism determined by

VM/

the diagram %) . We have
Vi

= X1X2X3X4.
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The definition gives us

X4(w6,0,0) = Zp,a,p w6,0,0 & Wp,,p @ w:,a,p and

X3Xy (w6,0,0) = Zp,a,p(T © R) (w6,0,0 ® wﬂagvp) & w;,a,p'
]C(w(f),w ® wpp’p) - é—u’l (N2+O'+p)_ﬂ/2(ﬂ1+p_U_2p)_2l/2(N2+0'+p)w670’0 ® Wpop-
R(w{),o,o R Wpop) = 5-#'1(H2+0+P)—#/2(H1+P—U—2p)—2#'2(u2+0+17)w670,0 ® Wp.op-

So

X3X4(w600) — Z 5—#/1(H2+U+P)—#/2(H1+P—U—2p)—2#§(#2+U+P)‘
p70-7p

/ *
Wp,op @ Wp oo O W, ;0

Xo X3 Xy(whoo) = > g+ lpatotp) s (i +p—0—2p) =24t (pato+p)
PP

(T © R) (wP:@p ® w6,0,0> ® w;,a,p'

v

Furthermore, the element (R — 1)(w,0p @ wh o) € Viyus @ Vi is @ sum
of vectors of the form v" ® w" where w' is a weight vector of V,r ,, and v' is

a weight vector of V,,, ,,, which has a higher weight than w,, .

XoX3X, <w6 00) = Z (gfu’l (B2+0+p)—py (1+p—0—2p)—2u (n2+o+p)

p7g7p
/ * / /
W00 ® Wpop QWS 5, + > Wy, @ V), ® z1).
k
/
X1X2X3X4(w0’0’0)
— —py (H2+0o+p) —py (1 +p—0—2p)—2u5 (H2+0+p) , / _1)Pto,x
- Z 5 ! 2 ? w0,0,0 ® ( 1) wp,a,p(ﬁsow%ayp)
p70.?p

— Z 5—#’1(u2+a+p)—u’g(m+p—0—2p)—2u’2(uz+a+p)—éu1—2(u2+a+p)w6

p70.?p

"y

gt ) 2y ) (1) (1) = +1) {0y + D) H{pa H{ps + py + 13
{1 +1}

_ €f4a2a’272(a2a’1+a1a’2) {Eall}{aé}{o‘é + O/l}w/
- (o)

By the definition S(u, 1) (wh o) = S (1, 1 )wh g, we deduce the propo-
sition. [
Definition 2.4.9. If o = (i1, p2) € (C\JZU (=1 + §Z)) x C\4Z and pip +
m+1e C\%Z, we define

_ {p + 1} _ {a1}
Clpr H{po e +pn + 1} {lagH{aoH{an + ag}’

d(p)
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so there is a symmetry
d(p')S" (p, 1) = d(p) S (', 1)

2.4.5 Semi-simplicity of category ¢’
Remember that G = C/Z x C/Z and G5 = {g € G such that 3V €

‘KQH simple and atypical}. Recall that we denote with a bar a module with

opposite parity. Then if Ve €%, V~V oL

Lemma 2.4.10. If %EH s semi-simple, then a module of CKEH is determined
up to an isomorphism and parity by its character: let V =V, & ... &V, be
a decomposition of V into simple modules and let V' be a module with the
same character then

VeV ®e®..0V,Qen
where e; € {I,T} for 1 <i < m.

The above lemma and the character of representation V,, ., ® V1 ./ gives
us the following theorem.

Theorem 2.4.11. Let V,, Vs be two typical modules. If jp+ 1/ ¢ Gy then

-1 7
Vi s @ Vu’l,ug - @k:O(VH1+M3—2k7M2+M§+k ® Vﬂ1+u’1—2k+l,u2+u§+k

DV it —2k oty kil D Vit —2k—1 ot piyrkrr)  (2.4.15)
where V' is the module V with opposite parity.

Proof. According to the formula (2.4.7), we have

XV4[(2|1)®VJ[(2\1) = Xvat(zu)xvsr(zu)
2 2
/-1
T+ X)(1+X12) Y (X2 X) (L4 Xy + X + X' X0)
k=0

X{“ +uf Xuz +ply 11

1-— _ _
_ : ZE (1 4 Xl)(]_ i Xll’ ZX;L1+M1 Qqu2+u2+k + XM1+;L1 2k+lX/L2+/L2+k
B k=0
+ Xm+u1 X5u+u2+k+1 + Xu1+u1 Xu2+u2+k+1

The analysis of parity of highest weight vectors allows to conclude. O]

Remark 2.4.12. Not all terms in the decomposition of the above theorem
are distinct.
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We defined a graduation €7 = @c; €F'. Let Proj be the subcategory
of € containing projective modules, Proj is an ideal (see [12]), i.e. Proj
is closed under retracts and absorbent for the tensor product. We have the
following proposition.

Proposition 2.4.13. For i € G, the three conditions below are equivalent

1. All the simple Ues(2|1)-modules of €z are projective.

2. The category €y is semi-simple.

3. The C-superalgebra of finite dimension U /(kt — 91 kS — £%2) is semi-

simple where U = Ugs!(2]1)/(ef, f1).

Proof. The equivalence is classic knowing that ¢7 is also a category of the
UJ(KE — ¢ kS — €2)-modules. O
Theorem 2.4.14. 1. If i € G\Gs then %EH is semi-simple.

2. A typical U sI(2]1)-module is projective.

We select and fix a @ € G\ Gy, denote p; = (p1 + i1, po +i2) € @, i1,y =
0,1,....,0—1, that is p; € {(1 + 1, pro + 1) : 41,49 = 0,1,...,¢ —1}. We have
the two following lemmas.

Lemma 2.4.15. For all pi;, pu; € i : i # b, there exists z;; € Z such that
Xui (2i5) 7# Xy, (2i5) where x,,(zi;) € C s defined by py, (i) = xu,(2i5) Idy,.

Proof. We consider p = (1, pi2), ' = (ptx + K, pio +m) k,m =0,1,...,0 — 1.
We suppose that V z € Z : x,(2) = x,v(2). Consider the central elements C,
where p € Z (see [1]). We have

Xu(Cp) = (& = E71)2BP D022 1o [0y 4 iy + 1,
X (Cp) = (€ — €712 Dlnt2uatht2m) o ] [y + g + k +m + 1].

Because x,(Cp) = xw(Cp) and [pa][p2 + p1 + 1] # 0, we deduce that

xu(Cp) XH/(Cp)

{ Xu(Cpy1) _ Xu’(cp+1)
Xu(Cp) = X (Chp).

This is equivalent to

52(u1+2u2) — 52(u1+2u2+k+2m)
EEPIat2h) [45][10g + g + 1] = EEP7DUF2t B2 [y ][ + py + K +m + 1],

which implies
2(k +2m) = 0 (modulo (Z) (2.4.16)
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and
(o) [po + p1 + 1) = 2 g + m[po + 1 + k +m +1]. (2.4.17)

Because ¢ odd, Equation (2.4.16) implies k& + 2m = 0 (modulo (Z) <
k+m = —m (modulo ¢Z). On the other hand, Equation (2.4.17) is equivalent
to [a][b] = [a+m]lb—m] & —[a—b+m|m] =0 & [—u; — 1+ m]m] =
0 = m = 0 where a = us,b = puy + po + 1. Because m = 0, we have
k =0 (modulo ¢Z) = k = 0. O

Lemma 2.4.16. Let V be a vector space over C, I be a finite set and consider
a family of C-linear functions a; : V — C, v € I. If for allt # j Fw;; €V
such that a;(u;j) # a;(u;j), then it exists ug € V such that ¥V i # j a;(ug) #
Q; (Uo)

Proof. We set u = 3, wvu;; € V with x; € C, 4,57 € I. We denote
x = (x;;) € CN. We consider the set X = {& € CV Ji # j a;(u) =
aj(u)} = {z e CV 1 ,.(a;(ui;) — a;(uy;))x;; = 0}, this is a finite reunion
of hyperplanes of CV. This proves that 3z ¢ X and this o does not have the
above property. That is, it exists ug € V such that a;(ug) # a;j(ug) for all
i# . =

Now we introduce a new basis of module V,,. This basis diagonalize the
operator €2 in the proof of Theorem 2.4.14. We set

Wpop itp=0=0,1
o) e _
pr’p = fl W1,0,0 if P = 1, o =
—1)— :
el Pwor,1 ifp=0,0=1
where p = 0,...,£ — 1. For the basis {w), , ,} we have the actions
/ __ p1tp—o—2p, 1
i, g =€ Wo,op>
! — ¢p2+o+p, /)
kaP,U,p =¢ Wo,op>

e1wl g, = [Pl +2 — plwy g1,

flw/1,0,p = wi,O,p+1?

elwé),l,p = w6,1,p_1a

f1w</),1,p =[p+ 1 —(p+ 1)]w6,1,p+1~
Proof of Theorem 2.4.14. We begin to show that €7 is semi-simple. We set
A =U/(KE — 71 kS — €%2). The density theorem implies that the appli-

cation p : A — [],, End(V,,) = [1%, My(C) is surjective. We give here an
elementary proof.
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By Lemma 2.4.15 and 2.4.16, it exists an element z € Z such that V p; #
1 Xu;(2) # Xy, (2) and we set z; = x,,,(2) @ = 1,...,£%> and we introduce the

ideal J =12, (z — z)A.
Firstly, we consider the representation p : A/(z — z;) — Endc¢(V,,). We

i

will prove that p is a surjection. We have Endc(V,,) = My (C). We con-

—1,1 1, -1
sider the elements ) = % + fier = % +eifi,c = kik2 ky in

Uesl(2|1). The actions of these elements on the basis wj, , , are defined by

1 —p1—1 1 —p1—1
Qw(l),OJ) - (€H1+ +£ - )w()ﬂ,p? Qwi,l,p = (§M1+ +€ - )wil,p?

_gmtem N i S

Qwé,l,p - Twé,l,;ﬂ Qwi,o,p - {1}2 wl,O,p?

Cw;)@p _ €u1+2u2+p+aw/ o

bt = €757,
We now check that for all w),, . # w,,; 3 u € {Qck} such that
X0o™ (u) # Xﬁ;"’/’j(u) where p(u)w;’g’m = Xﬁf’m(u)w;’g,m for p,o,p',0 €

{0,1}, m,j € {0,...,£ — 1}. Indeed, if p+ o # p' + o’ then we select u = ¢
and we have cw), , . # cw, ,, ;. If p+0 = p’+ 0’ then we consider two cases:
if (p,0) # (p',0') we select u = Q and Qu,, , . # Qu), , ;; if (p,0) = (¢, 0')
we select u = ky and we have kywj, . # kyw), ., ; because m # j.

By Lemma 2.4.16 it exists a vector ug € C(€, ¢, k1)-space generated by
the elements €, ¢, k; such that x™(ug) # Xﬁ;"’/’j(u()) for all wy, , . # w, 1 ;.
The matrix B determined by the application p(ug) is a diagonal matrix
which has 4/ different eigenvalues. The image of the projection on the i-
th eigenspace of B is the matrix F;;, ¢ = 1,...,4¢. Hence the matrix E; is in
the image of p.

For i € {1,...,0%},j € {1,...,4¢} we have p(A/(z — z))(v;) C V,, (here
we denote v; the j-th vector of the basis) and V), is simple. Thus we deduce
p(A/(z = 2z))(v;) = V,,. This proves that it exists ay € A/(z — z;) such that
plag)(v;) = v, Vn € {1, ..., 4¢}.

The endomorphism p(ag) determines the matrix (p(ag)) where p(ag);n, =
1. The matrix Ej, is equal to Ej;p(ao)jnEnn, i.e. the matrix £, is the image
of an element in A/(z— z;). So the application p is a surjection. This implies
that the application [T%, A/(z — z) — [1%., My (C) is surjective.

Secondly, the composition [T%, A/(z — z) = A/J — [14, A/(z — z) is
the identity. Thus, the application A/J — [12, A/(z — %) is surjective. We
deduce a series of surjections A — A/J — [15, A/(z — z) — [1%, My(C),
this sequence determines the surjection A — [T%; My (C).
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Furthermore, the two algebras A and Hf; My (C) have the same di-
mension 16¢*. This implies that this surjection is an isomorphism. This
demonstrates that A is semi-simple. The category €7 is also semi-simple.

Now we prove that ‘KEH is semi-simple. Let V' be a module in ‘KEH . Set
W = Ker ey NKer esNKer e, it is a vector space of the highest weight vectors
(the weights for (hy, hy)). We call {v;}7_, a basis of weight vectors of W, we
have h;v; = pfv;,i = 1,2. So each v; generates a U{'sl(2]1)-module V;,

Vi = U sI(2]1).05 = Uesl(2]1).0; = U_.v;

where U_ = Alg(fi, fo, f3) C Uesl(2]1) and dim(U_) = 4¢. Thus dim(V;) <
4¢ and Vj is simple (because there is no module in €' of dimension strictly
between 0 and 4¢).

Set V' = 7", Vi € VH. We can write VH = V' @ V" as a Ugsl(2|1)-
module. However W C V' which implies V' = 0 (because there is no highest
weight vector in V”) and VI =V = > Vi. Because the V; are simple, so
VH = @,.; Vi where I C {1,...,n}. Thus V¥ is semi-simple.

For the second assertion (2), if V € CKEH and ‘KEH is semi-simple, then V' is
projective. If not, (2) follows from S'(V,, V) # 0 where V), is any projective
typical module which implies that V" is a direct factor of V,,@ V@V € Proj.
This implies that V' is a projective module. O

2.5 Modified traces on projective modules

In this section we recall the definition of an ambidextrous module pre-
sented by N. Geer, B. Patureau-Mirand and V. Turaev in [17] and of a mod-
ified trace on an ideal in a category introduced by N. Geer, J. Kujawa and
B. Patureau-Mirand in [12]. We prove there exists a modified trace on the
ideal of projective modules of the category €”. The modified trace allows
us to construct an invariant of embedded graphs in Theorem 2.5.5.

2.5.1 Ambidextrous modules

For each object V' of the category ¥ and any endomorphism f of V ®@ V'
set

ptre(f) = (Idy ® evy) o (f ® Idy-) o (Idy ® coevy) € End(V),
ptr,(f) = (evy @1dy) o (Idy+ @f) o (coevy @ Idy) € End(V).

In the ribbon category € of nilpotent weight L{gHﬁ[(2|1)-modules, we say
that a module V' is ambideztrous if V' simple and ptr;(f) = ptrg(f) for all
feEnd(V®V) (see [17]).
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Theorem 2.5.1. Each typical module V,, of category € is an ambidextrous
module.

Proof. We will prove this theorem in two steps:
Step 1. Proving the existence of two nonzero U{'sl(2|1)-invariant vectors
r_wy and riw_.
Step 2. Applying Theorem 3.1.3 [13] gives us the affirmation that V), is
ambidextrous.

Call vy, v, the highest weight vectors of V,,, V" and v_,v" the lowest

weight vectors of V,,, V', Set z_ = = fofsfi oy = eesel T wy = v ®
v, wo =v_ ®@v_. We will prove that the two vectors z_w, and z w_ are

Ul's((2[1)-invariant.

We consider the actions of generator elements e;, h;, f; on z_w,. The
highest weight vector (resp. lowest) of V,, is v4 = w0 (resp. v— = wy1,-1).
The highest weight vector (resp. lowest) of V' is v/, = wy,, ; (vesp. v/ =
WG,0,0)-

The weight of vector wy = vy ® v/, is equal to the sum of the weights
of vy and v}. That is weight(w;) = (p1,p2) + (—p1 + 20 — 2, —py —
() = (2¢ — 2,—¢). Furthermore, weight(z_w,) = weight(fofsfi twy) =
weight (fof1fofi  wy) = —fweight(e;)—2weight (ep)+weight (wy) = —£(2, —1)—
2(—=1,0) 4+ (20 — 2,—¢) = (0,0). It implies that h;x_w, = 0.

We also have the relations below between the generator elements in
Usl(2[1) (see (B1) [1]):

AL =& fLfS 1T — p(L = o) P fE7 fSH 1T,

LSS 1= (L= p) S5 f1

len, fE15 f7] = o(1 = p)(=1)7 f5F f5 =1 fREm=2r s [pl L £ 27 ha — p + 1],
€2f§f§ff—(_1)p+af5f3f1€2 :pfz f3f1 [hz +p+0]+0<_1)pf2p g_l p+15 h2=p

where (p,p,0) € N x {0,1} x {0,1}. With the above relations, it is easy to
check fix_w, = 0.

The fourth relation above gives us ey fo fsfi ' — fafsfi tes = fafi  ha+1].
Because ex(vy ® v',) = 0 and [hy + ¢](vy ®@ vy) = 0, we deduce e;z_w,; = 0.

The third relation gives [eq, fofsfi '] = [(—1]fofsfi 2 [hi—£+2]. Because
e1(vy ® ) =0 and [~y — €+ 2](vy @) = 0, we deduce eyz_w, = 0.

Consequently, we conclude that z_w, is an U}'s[(2[1)-invariant vector.
The demonstration that the vector zyw_ is U sl(2|1)-invariant is analo-
gous using the relations obtained by applying the automorphism w of su-
peralgebra UL s[(2]1) where w(e;) = (—1)%8% f;, w(fi) = (1) fie;, w(k;) =
kit w(hy) = —hi,i=1,2.
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Furthermore Az_ = z_ ® 1+ a sum of tensor products of two elements of
L[§H§[(2|1) with negative weight. Thus Az_w, contains the nonzero vector
rT_vy QU = fofsfi vy ® v, = w101 ® 0. We conclude that the vector
x_w, is nonzero. Similarly, the vector x,w_ is nonzero.

For step 2, we use the following results:

The decomposition of the tensor product V ® V* is a direct sum of inde-
composable modules

VoV =P & ..0P,.

The set of invariant vectors w € V ® V* is in bijection with coevy (C)
because Home(C,V ® V*) = Homy (V,V) = C.

The vector w, (resp. w_) is the highest weight vector (resp. lowest weight
vector) of V' ® V*. Then there exists a unique integer k (resp. [) such that
wy € Py (resp. w_ € P)). The weight of wy (resp. w_) is Ay = (2¢ — 2, /)
(resp. A_ = (=20 +2,()). Because A\_ = —A; and (V@ V*)* ~ (V@ V*),
this implies P} ~ F).

In addition, coevy (1) € By, coevy (1) € Py because z, P, C P,xz_P, C
Py, then P, = F,. That is P, = P}. By Theorem 3.1.3 [13], it gives us the
affirmation that V,, ambidextrous. [l

Remark 2.5.2. All typical modules are projective and ambidextrous.

2.5.2 DModified traces on the projective modules

Definition 2.5.3. Let Z be an ideal of € (see [12]). The family of linear
applications t = (ty : Endg (V) — K)yez is a trace (modified trace) on Z if
it satisfies:

YU,V e ZVW € €,

Vf € Homg(U,V),Vg € Homg(V,U), ty(f o g) = tu(go f)
Vf € Endg (V@ W), tvew(f) = tv(ptrg(f)).
We also have
Vf € Ende(W @ V), twev(f) = tv(ptr,(f))-
Given V as a typical module. The module V' is ambidextrous and pro-
jective. This implies that the ideal generated by this module is Z, = Proj

(see [12]). Hence the modified trace is also defined on non simple projective
modules:
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Theorem 2.5.4. There exists a unique modified trace t = {tp}pcpro; on the
ideal Proj of projective modules of €1,

p: End(P) — C, P € Proj.

If P =V, is a typical module, then ty, (f) = (f)d(un),f € End(V,),
d(p) = ty,(Idy,) is determined by Definition 2.4.9.

2.5.3 Invariants of embedded graphs

Recall that € is the C-linear ribbon category of nilpotent weight mod-
ules over U's[(2|1), Proj is the ideal of projective modules and ¢ is a trace
on Proj.

We call 4 the set of € -colored closed ribbon graphs, that are the -
colored ribbon graphs in S*. We have ¢ = End7(0).

We use the concept of a cutting presentation of 6*-colored closed rib-
bon graph: If a diagram T represents a ¢'-colored ribbon graph which is
an endomorphism of 7, its lower and upper parts are formed by the same
sequences of k vertical colored strands. It is then possible, as for a braid of
k strands, to consider the closure T' obtained by joining its k top vertices to
its k£ bottom vertices by k parallel strands. This construction is actually the
categorical trace in 7: we have T = trr(T) € End, (D). We say that T is a
cutting presentation with & strands of the closed graph T and that T is the
closure of T' (see [39]).

A closed graph T of T is said to be €*-colored admissible if there is at
least one strand of T colored by P € Proj. Let ¢, be the set of isotopy
classes of €"-colored admissible ribbon graphs.

From the trace ¢ on Proj we have the theorem below.

Theorem 2.5.5. The application

F':949, —C
T — tp(F(T))

is well defined. Here, P € Proj,T € Endr((P,+)) is a cutting presentation
with one strand of T. That is to say the complex number tp(F(T)) does not
depend on the choice of T but only of the isotopy class of the €M -colored
graph T.

Proof. First, we select an edge of T and cut, we have the graph T'. Then,
we select and cut a second edge of T', we have the graph 7”. By cutting 7 in
both these places, one obtains a graph T» € Endg, ((P,+), (P, +)) which is a
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presentation with two strands of T and such that 7' = , T = .

Finally we use the properties of the compatibility of trace t:

tp(F(T)) = tp(ptrp(F(T2))) = tpop(F(T3))
— tp(ptry (F(T3))) = tpr (F(T").

Remark 2.5.6. In the case P =V, typical, we have

()l

The affirmation of the above theorem gives us a link invariant in the
following corollary.

Corollary 2.5.7. Let L be an oriented link with n ordered components then
the application F' : {admissible C*-coloring of L} — C determines a mero-
morphic function fr : C* — C of the 2n complex parameters defining the
coloring.

2.6 Invariant of 3-manifolds

In the article [8] the authors constructed &-decorated 3-manifold invari-
ants where % is a ribbon category. In the previous section, it was proven
that €7 is a ribbon category, this suggests we construct an invariant of €*-
decorated 3-manifolds. We recall some concepts, definitions and results from

).

2.6.1 Relative G-(pre)modular categories

Let € be a k-linear ribbon category where k is a field. A set of objects of
% is said to be commutative if for any pair {V; W} of these objects, we have
cyw o cwy = ldwgy and 6y = Idy. Let (Z,4) be a commutative group.
A realization of Z in € is a commutative set of objects {c'};c such that
e =T,qdim(e") = 1 and &' ® ¥’ = &** for all ¢, € Z.

A realization of Z in % induces an action of Z on isomorphism classes
of objects of € by (t,V) — &' @ V. We say that {¢'}icz is a free realization
of Z in ¢ if this action is free. This means that V¢t € Z\{0} and for any
simple object V € €,V ® ¢t 2 V. We call simple Z-orbit the reunion of
isomorphism classes of an orbit for this action.
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l

—
F QC@O =A_Idy, F nd\/\j = A, Idy

¥ :

Figure 2.1 -~V € €, and Qy is a Kirby color of degree p.

Definition 2.6.1 ([8]). Let (G, x) and (Z,+) be two commutative groups.
A k-linear ribbon category € is G-modular relative to X with modified di-
mension d and periodicity group Z if

1. the category € has a G-grading {€,}qec,

2. the group Z has a free realization {e'}iez in €1 (where 1 € G is the
unit),

3. there is a Z-bilinear application G x Z — k*,(g,t) — ¢* such that
VYV € €,,Vt € Z,cyet 0 cay = g% Idatgy,

4. there exists X C G such that X! = X and G cannot be covered by
a finite number of translated copies of X, in other words Vg, ..., g, €
G, U (9:X) # G,

5. forall g € G\ X, the category 6, is semi-simple and its simple objects
are in the reunion of a finite number of simple Z-orbits,

6. there exists a monzero trace t on ideal Proj of projective objects of €
and d is the associated modified dimension,

7. there exists an element g € G\ X and an object V € €, such that
the scalar A, defined in Figure 2.1 is nonzero; similarly, there ezists
an element g € G\ X and an object V' € 6, such that the scalar A_
defined in Figure 2.1 is nonzero,

8. the morphism S(U,V) = F(H(U,V)) # 0 € Endg(V), for all simple
objects U,V € Proj, where

v

l

The category €™ of Ul's((2|1)-modules is G-modular relative to X. In-
deed, we have €% being G-graded by G = C/Z x C/Z. We set Z = 7 x 7.
and {€"}ncz the set of simple highest weight modules n = (n,¢, nyl), i.e. €"
is a Ul'sl(2[1)-module of dimension 1 (with the basis {w}) determined by

H(U,V) = (L) € Bnde (v, +)).
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hiw = nilw, hyw = nolw, e;w = fiw = 0. Because com on = 7 and 0.0 = Id,
the two conditions (1) and (2) of Definition 2.6.1 are satisfied.

We consider a typical module V,,. We have cony, (w ® wy,,) = 70

R(w ® wp@p) = f—mfm—mfm—2n2€u2wp7a7p ® w. Next CY,en O Ceny, (w &
- - -2 -2 —2 -4

,ijmp) — CV#,5"<€ nilps—noluy n2€u2wp,gjp ® w) — é n1lpuz—2n2pu1 ngﬁ,ug,w ®

Wy = E2HHamHF202)m2)0y @ 4y, - So we can determine the Z-bilinear
application G x Z — C*, (@, n) s {2 mtn+2m)n2) which satisfies cy, on 0
Con v, (W @ W) ) = E 2 2mA4202)n2) [d o (0 @ W)y ). This means that
we have condition (3) of the definition. Condition (4) is also satisfied with
X =G ={01}xc/zuc/zx {03} u{(mm) m+me{01}} It
was proven that € is semi-simple for g € G\ Gy (Theorem 2.4.14) and
V,®e" >~ V4, ie. the condition (5) is satisfied. Theorem 2.5.4 implies
that condition (6) is true.
To compute A_, we first use the graphical calculus

F (’\f? =Y dpF (’?

l s,t=0 l
—1 Vi
- £ o (1) (5L, ()
s,t=0 Bt
-1
=D d(ps) <Q17:> <9\735t> S (pst, 1) 1dy,, -
s,t=0

We have
- o2+aa — a 2 (o ts) (o
<9V:> = _62( 5toa 2)7 <9V1 > _ _52(( 2+t) 2+ (a1 +5) (ae+t))

Hst

1
dSl \ _ —4ag(az+t)—2(az(ar+s)+ai(az+t)) )
an (M ty ILL) 5 Ed(,u)
Thus
!
Ia sg? — § d(ﬂst)£2(t2+st) Id
| oo Ld(p) g
VH
1 . {a1 + s}

_ 62(t2+st) Idy
fd(u){ﬁozl} ,6=0 {Ozg + t}{oq + g+ s+ t} .

1 -1 é——(az—i-t) é‘-(al+a2+8+t)
() {lan} S <{a2 +t} {ar+as+s+i}

> 52(t2+5t) IdV )
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Because

-1 gf(ag +t) 52(t2+st) ¢

s,t=0 {a2 + t}

1 (ag+t) £—1
21;25 2+)

{Q/Q " t} Z §2$t

t:O
§£ 22 & o+t
B t=0 {ag + 1t}
(=2

It
Q

n

——

-1 ff(oz1+a2+s+t)f2(t2+st) 22 st) 1
{on+az+s+t} 5:05 1 — g2artazts+t)
_ _ Z 52(t2+st) Z €2k(a1+o¢2+s+t)
s,t=0
oo f—1
_ _ Z Z 52 (2 +kar+kaz+kt) Zg (k+t)s
k=01t=0
- 2(t2+kag +kas+kt
== Z Zf Fhaithazt )€5t+k mod ¢N
k=0t=0
/-1 )
— (|14 Z §2t2 Z 52(€j—t)(a1+a2+t)
t=0 j=1
, ( 52*:15 2t(en +ac2) 52@((114-0:2) )
— 1 + —2tl1+a2) >SS
= 1 _ 52[(&1-&-0&2)
gé“al—&-az
=0+
{ag + s}

Q@ _ 1 1 B €a1+a2
' “% - d{lan} <§az{042} {ag + ay} + 1) Idy,

- {0411} ({041 + o} — {a )2 + {an Han + O‘Q}) Idy,

1
= @{&1} = Iqu .

This means that A_ = 1.

By using the automorphism w of superalgebra Uesl(2|1) where w(e;) =
(=1)desei £ w(fi) = (=18 Fie;, w(k;) = k' w(hy) = —h,i = 1,2 and com-
puting we also have A, = 1. Condition (8) is obviously true.
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Hence category ¢ is relatively G-modular.

2.6.2 Invariants of 3-manifolds

Definition 2.6.2. Let (M, T,w) be a triple where M is a compact connected
oriented 3-manifold, T C M is a € -colored ribbon graph (possibly empty)
andw € HY(M\ T, G).
1. The triple (M, T,w) is compatible if each edge e of T is colored by an
element of €,(m.) where m. is an oriented meridian of the edge e.

2. Let LUT C S® where L is an oriented link in S*\ T which gives a pre-
sentation of (M, T) by surgery. The presentation L UT is computable
if for each component L; of L whose meridian is denoted m;, we have

w(m;) ¢ X.
We suppose that (M, T,w) is a compatible triple.

Definition 2.6.3. The formal linear combination Qz = 3, ez d(V,,,)Vy, is a
Kirby color of degree i € G\ Gy if {V},,;} is a set of representatives of simple
Z-orbits of €.

Theorem 2.6.4. Let (M,T,w) a compatible triple admitting a computable
presentation L UT C S® then

N(M,T,w)=F (L,UT)

is a well defined topological invariant, i.e. depends only on the diffeomor-
phism class of the triple (M, T, w) where Ly, is obtained as the link L in which
we have colored the i-th component L; by a Kirby color of degree w(m;) where
m; s a meridian of L;.

2.6.3 Example

We consider an example in the case ¢ = 3. Let M be the lens space
L(5,2) which is given by surgery presentation on the Hopf link L (Figure
2.2). It has two oriented components L;,i = 1,2 with framings 3,2 and let
m; be an oriented meridian of L;. The linking matrix of L with respect to

the components L; is
31
)

Let w € HY(M\T, G) and suppose that the triple (M, ), w) is computable.
We compute the values w = (w!',w?) where i = w! = w(my), @ = w? =
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Figure 2.2 — Surgery presentation of L(5,2)

w(my) from the equations 37 + 7' = 0 and 77 + 27" = 0 (in C/Z x C/Z)

Hence = (£, %), = (2, %),k = 1, ..., 4. Here we set wy, = (w},w?), w} =
(£,%), wi = (%,%),k=1,..,4 We have w; = —w;, w3 = —w,. Using

variables as in Lemma 2.4.6 we have (aq,a0) =i+ (—(+1,%) = (-2, 2 4
2o 0h) =7+ (=0+1,5)=(F -2, F+3).

We color the i-th component L; by a Kirby color of degree w(m;), i.e.
Quoimy) = U = 27— () Ve, and Qumy) = O = Z” Od(agj)va;j where
g = (a1 + 5,09 + 1), a5 = (o) +1,05 + j). By Lemma 2.4.6, Proposition
2.4.8 we have

N(M,0,w) = Y Y d(aw)d(aly) (0., ) <9va;j>2d(ast>8’<%,ast>

st i
in which
d(aw) = (hay ,
Hllag + s)Hag +tH{ar + as + s+ t}
<0Vast> _ _572((a2+t)2+(a1+s)(a2+t))’
<9Va, > = g2 e ) @)
i
S (ol ) = €d(}xst) —4(alytg) (@) ~2( (o +5) (a1-+s)+ (0] +) (@2 +) )

Using computer algebra software Sagemath, we have (£ 1 has degree 8 over

Q)

1
N(M, 0, ) = 35 (—2610 — 265 — 267 4 2¢5 + 5610 4 2670

1 1 2 1
N(M, D, +ws) = = (—75% — 265 + 4€3 4 4EF 4 2610 4 5ET0 _4),

In this case, the result N(M, ), w) = N (M, D, —w) is consistent with (M, ), w) ~
(M, 0, —w).
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Figure 2.3 — Morphism of the relative modularity condition

2.7 Relative G-modular category ¢’

This section proves the category € has a relative G-modular structure.
Following M. De Renzi [42] this implies the invariant N in Section 2.6 extends
to a family of 1 + 1 + 1-TQFTs.

Definition 2.7.1 ([42]). A pre-modular G-category € relative to X with
modified dimension d and periodicity group Z is said a modular G-category
relative to (G, Z) if it satisfies the modular condition, i.e. it exists a relative
modularity parameter ¢ € C* such that

P C(coevy. o evy,) ifi=j,
Yoo ifi#j
for all @, v € G\ X and for all i,j € U which V;,V; are not in the same Z-

orbit, where fg is the morphism determined by the € -colored ribbon tangle
depicted in Figure 2.3 under Reshetikhin-Turaev functor F'.

(Vi)

Proposition 2.7.2. The category 6" of nilpotent weight modules over L{EHs[(2| 1)
is modular G-category relative to (G, Z) where G = C/Z x C/Z and Z =
7 X7 XZL]2Z.

Proof. In Section 2.6 we proven that the category ¢ of nilpotent weight
modules over U{'s[(2[1) is G-premodular category relative to (G, Z). Now
we show that this category is a relative G-modular category. It is necessary
to verify the relative modularity condition. We consider the morphism f
which is represented by the diagram

s

e
By the handle-slide the circle colored by V) along the circle of E and an
isotopy we have two equalities given by the diagrams as in Figure 2.4. It
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Qriw

&b

Figure 2.4 — Second Kirby’s move on f

follows that
S' (V. V)f =S (Vi, J)f“+u for all Vj, € 6.

It implies

S Vi, Vi) - S (Viy, Vi)
ety 19 [ 2 for Vo VA cgﬁ.
fl] SI(Vk17 V}) & Sl(Vk2> )f OF Vias Vha <

We denote the highest weights of V;, V;, Vi, and Vi, by (11 + i1, v2 +12), (11 +
J1, Vatja), (M1+s1, ats2) and (v1+t1, va+ty) for 0 < iy, da, j1, J2, 51, 82, t1, ta <
¢ — 1. By Proposition 2.4.8 we have

Sl(wﬂ’ V) _ 5—4(112-&-82)(l/2+i2)—2((l/2+52)(V1+i1)+(l/1+81)(V2+i2)) Ed(lv) :
. 1
S (‘/kla V;) _ 5 (va+s2)(va+i2) ((V2+82)(V1+]1)+(V1+81)(V2+]2))gd(v,)’
J
S,(‘/}{;27 V) _ 5—4(1/2-&-752)(V2+i2)—2((V2+t2)(V1+i1)+(ll1+t1)(vg+i2)) gd(lv) ’
S' (Viy, Vi) = 5_4(1/2+t2)(V2+j2)_2((V2+t2)(V1+j1)+(yl+tl)(y2+j2))€d<1V,>‘
J
Hence
S WVias Vi) _ emttonton)iams)-2(wbsn)in—0) +Hon +on) 23 UV5)
S5' (Vs Vj) (Vi)
S WVear Vi) _ emttontta)ia—ia)-2((vartia) (1= + o)z —52)) EV3).
5'(Via, V5) d(V;)
We see that

S Vi, Vi) 5" Wias Vi) matoa—t2)iams)-2((s2-ta) 1=+ (51— 2—52)
S/(anvj) S/(ka%)
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and the term —4(sy — t3)(i2 — jo) — 2 ((s2 — t2) (i1 — J1) + (51 — t1) (42 —]2))
is determined by a symmetric bilinear non-degenerate B from (Z/EZ)

(Z/07)? to Z/0Z which has the matrix B = (b;;)2x2 where by = 0, byy =
byy = —2 and byy = —4. It deduces that for all i # j € (Z/EZ)2 it exists
ki # ky € (ZJ0Z) such that B(i — j, ki — ks) # 0. Thus for all i # j € 7 it
S,<Vk17 VZ) S/(Vk27 V)
T Vi) 7 SV, Vi)

exists ki # ko € U such that
if i ],

If i = j we have f! = fi7 for ;v € G\ G,. We see that f5 €
Endyu (V;@V*) and W = V;®@V;* has a vector U -invariant y. As Homyu (V;®
VvV, C) ~ HomuH(C Vi ® V*) o~ Endz/{H (V;) ~ Cldy, then these imply that
two morphlsms and coevv o evV are proportional, i. e. thereisa A € C*
such that = /\ coevv o EV

First, we show the existence of vector invariant y. Let V), € %5, by Lemma
4.9 of [8] we can do a handle-slide move on the circle component of the graph
representing f= @ Idy, to obtain the equality

it implies that “ =0

Cw,v;, © (fg ® Ide) = CVk (f/H_V & Ide) = C\;kl,W o (fg ® Ide)

The braidings cyw v, C\_/:,W W@V, =V, ®W are given by ¢y, = 7°0R
and c(/klw = R 1o7® where R = RK with

Z{l} ®f1 —e3® f3)(1—e2 @ fa),

1 ¢k
1=¢

(0)e! =1, (0)e! = (1)e(2)e -+ (i), (k)e =

and K = £*h1®h2*h2®h1*2h2®h2'

Let x # 0 be a weight vector of weight 0 of W and v € V}, be an even weight
vector of weight v = (v1,15), set y = fH(x) € W.

Let W be the vector space generated by {elrelel2y | iy +ig+is > 1for 0 <
iy < 0—1, 0 <iy,i3 < 1}, W’ be the vector space generated by { f{* f+* fa*v | i1+
ig+ig>1for 0<iy <l—1, 0<iy,iz <1}, V+' be the vector space gener-
ated by {el'efeRv | iy +iy+ig > 1for 0 <iy <l—1, 0 <iy,i3 <1} and V'
be the vector space generated by {fi' fi8 fa2y | iy +io + i3 > 1 for 0 < iy <
¢ —1, 0 <iy,i3 < 1}. Because the weight of z is 0 then K(y ® v) = y ® v.
Hence

cwy(y ©v) = 7° o RK(y @ v)
:v®y+(£—5_1)f1v®ely—|—f3v®e3y+f2v®62y+Wl_®WJIF
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and

Gew(y®@v) =R o (y@v) = (S ldyn)(R)(v @ y)
:(S®IduH)<U®y+(5—5_1)€1U®f1y—63v®fsy—€2U®f2y—l-V,®V,)
=vRy—(§—-& )k1€1v®f1y+k1k’2€3v®f3y+k26211®f2y+5( )®V

Setting the above equations equal We have ey = fiy = O and esy = foy = 0.

By the relations ey f; — fie; = 5 g — ,62f2 + foeg = 5 521 , it implies that
k}y =y for i = 1,2 and also since k; act as £ and the weights of T are in
7. x 7., we have that the eigenvalues of k; are in €% which does not contain —1
(note that ¢ is odd). Thus k;y = y for i« = 1,2 and y is an invariant vector of
w.

Second, we compute A in I = A coevV o evV We consider the value F’
of the braid closure of the graphs in this equality.

Rl C/Q@

=S d(Vy) S’ Vi, Vi s’ Vi, Vi
k

= > (V)" (Vi, Vi) 8" (Vi V)
k

where Qp = >c; d(Vi)Vi and the second equality by
F'(Li#tvLy) = d Y (V)F' (L) F'(Ly).
Furthermore

SUVF V) = gilvzts)(vetiz)+2((vatsz) (itin)+(nits1)(vatiz)) _ =
( k17 ) é— ed(‘/;)7
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it implies that

- -1
1
F’ @ =Y =1
g s1,52=0 62
Vi

For the graph of c@vvi o <e_vvi, the value F” of its closure is

F —F — d(V)).
% Vi
Hence A = d~1(V;) and it proves that d(V;)f# =coevy. o evy,. O

We see that the relative modularity parameter ( = A_A, = 1.
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Chapter 3

Modified trace from pivotal
Hopf G-coalgebra

This chapter is the content of the paper [21] available in
https://arxiv.org/abs/1804.02416.

RESUME. Dans un article récent, les auteurs A. Beliakova, C. Blanchet et A.
M. Gainutdinov ont montré que la trace modifiée sur la catégorie H-pmod des
modules projectifs correspond a l'intégrale symétrisée sur I’algebre de Hopf
pivotale de dimension finie H. Nous généralisons ce théoreme au contexte des
catégories G-graduées et G-cogebre de Hopf étudiée par Turaev-Virelizier.
Nous montrons que la G-intégrale symétrisée sur une G-cogebre de Hopf
pivotale de type fini induit une trace modifiée dans la catégorie G-graduée
associée.

ABSTRACT. In a recent paper the authors A. Beliakova, C. Blanchet and
A. M. Gainutdinov have shown that the modified trace on the category H-
pmod of the projective modules corresponds to the symmetrised integral on
the finite dimensional pivotal Hopf algebra H. We generalize this fact to
the context of G-graded categories and Hopf G-coalgebra studied by Turaev-
Virelizier. We show that the symmetrised G-integral on a finite type pivotal
Hopf G-coalgebra induces a modified trace in the associated G-graded cate-

gory.

MSC: 57M27, 17B37

Key words: modified trace, G-integral, symmetrised G-integral, pivotal
Hopf G-coalgebra.
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3.1 Introduction

The notion of a modified trace was introduced by N. Geer, J. Kujawa and
B. Patureau-Mirand in the article [13]. This is one of the topological tools
which can be used first to renormalize the Reshetikhin-Turaev invariant of
links. Later F. Costantino, N. Geer and B. Patureau-Mirand used the mod-
ified trace to construct a class of invariants of 3-manifolds (CGP invariant)
via link surgery presentations (see [8]). The modified trace is also used to
construct invariants of 3-manifolds of Reshetikhin-Turaev type from quan-
tum group associated to the Lie superalgebra s[(2|1) (see Chapter 2) and for
constructing the logarithmic invariant of Hennings type (see [3]). In order
to construct invariant of 3-manifolds, M. Hennings proposed a method based
on the theory of integral for a finite dimensional Hopf algebra (see [26]). The
notion of integral was introduced by R. G. Larson and M. E. Sweedler in
[34] and is studied in the book [41] of Radford. It is known that under some
assumption, both the space of modified trace and that of integral are one
dimensional (see [11, 41]). A close relation between the modified trace and
the integral has been established recently in [2]. The authors proved that
a symmetrised integral for a finite dimensional pivotal Hopf algebra gives
a modified trace t on H-pmod with an explicit formula. We would like to
adapt these results to the unrestricted quantum groups at roots of unity.
They are infinite dimensional Hopf algebra but can be understood as a Hopf
G-coalgebra organized into a bundles of algebra over a Lie group. For a finite
type Hopf G-coalgebra H = (H,), . there exists a family of linear forms on
H,, called G-integral (see [49]). The aim of this chapter is to establish a
correspondence between the G-integral for the finite type unimodular piv-
otal Hopf G-coalgebra H and the modified trace in the associated G-graded
category H-mod. We introduce now these two notions.

G-integral

Let H = ({Ha, ma, 10}, A, €,S) be a Hopf G-coalgebra over a field k (see
in Section 3.2). A right G-integral for the Hopf G-coalgebra H is a family of
k-linear forms p = (fio : Hao — K)aeq satistying

(ta @ 1dp,)Aap(7) = pap(x)1p for any @ € Hyp. (3.1.1)
Similarly, a left G-integral iil, € [1pe: H satisfies
(Idp, ®us) A s(x) = pib ()1, for any x € Hag.

The linear form g4 is an usual right integral for the Hopf algebra H; (see e.g
[41]). If H is a finite type Hopf G-coalgebra, i.e. a Hopf G-coalgebra in which
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dim(H,) < +oo for any o € G, the space of right (resp. left) G-integral is
known to be 1-dimensional (see e.g [49]).

A pivotal Hopf G-coalgebra is a pair (H,g), where the pivot is the family
g = (9a)acc € Ilaeq Ha satistying A, 5(gas) = ga @ gs for any o, €
G, e(g1) = 1i, and S,-1S4(7) = goxg,! for any x € H,. Note that g7! =
(Sa-1(ga-1))aca, i-e. gzt = Sa-1(ga-1) (see e.g [49]). In particular, g; is a
pivotal element for H; and g; is invertible with g;* = Si(g1), €(g1) = 0 (see
e.g [29]).

The symmetrised right G-integral on (H, g) associated with p is the family
fi = (fa)aec € llace Hyy defined by

fia(@) = fta(gaz) for any « € H,

Similarly, a symmetrised left G-integral on (H, g) is

it (x) := pl (g7 ) for any = € H,. (3.1.2)
A pivotal Hopf G-coalgebra is G-unibalanced if its symmetrised right G-
integral is also symmetrised left G-integral, i.e. fi, = fil, for any o € G.

In the case (H,g) is unimodular, i.e. H; is unimodular, we show that the
symmetrised G-integrals are symmetric linear forms on H and they are non-
degenerate (see Proposition 3.2.7).

Modified trace

Let C be a pivotal k-linear category [39]. Let Proj(C) be the tensor ideal
of projective objects of C. A modified trace on ideal Proj(C) is a family
of k-linear forms t = {tp : Endc(P) — k}pcprojc) satisfying the cyclicity
property and the partial trace property (see in Section 3.3.2).

Main results

Let (H,g9) = ({Ha, ma, 1o}, A, €,S, g) be a finite type unimodular pivotal
Hopf G-coalgebra. If t is a right (resp. left) modified trace on H-pmod,
it defines a family of linear forms A* = (A})acc € [laeg Hys by AL(R) =
ty, (Ry) for h € H,, H, is a projective object of H-mod and R}, is the right
multiplication of H,.

Theorem 3.1.1. The application t — A' defined above gives a bijection
between the space of right (resp. left) modified traces and the space of sym-
metrised right (resp. left) G-integrals.

Furthermore, (H,g) is G-unibalanced if and only if the right modified trace
is also left.
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The chapter contains five section. In Section 3.2 we recall some definitions
and results for a Hopf G-coalgebra, we also define a pivotal Hopf G-coalgebra,
a symmetrised G-integral for a pivotal Hopf G-coalgebra H and prove that
the symmetrised G-integrals are symmetric non-degenerate forms on H. Sec-
tion 3.3 recall some results about modified traces and the proof of Reduction
Lemma in the context of G-graded categories. In Section 3.4 we present the
decomposition of tensor product H, ® Hg and the proof of the main theo-
rem. In Section 3.5 we give an application of the main theorem in the case
associated to a quantization of the Lie algebra sl(2).

3.2 Pivotal Hopf G-coalgebra

In this section, we recall some facts about Hopf G-coalgebra. For details
see [46, 49]. We then define a pivotal Hopf G-coalgebra, a symmetrised
G-integral and give some of its properties.

3.2.1 Pivotal Hopf G-coalgebra

Hopf G-coalgebra

Definition 3.2.1. Let G be a multiplicative group. A G-coalgebra over a field
k is a family C = {Cy}acc of k-spaces endowed with a family A = {A, 3 :
Cap — Co @ Cgtapec of k-linear maps (the coproduct) and a k-linear map
e: Cy =k (the counit) such that

1. A is coassociative, i.e. for any a, 3,7 € G,
(Ao @ lde, ) Aapy = (Ido, ®Ag)Ad sy,

2. foralla € G, (Idg, ®e)An1 =1de, = (e ®1de, ) At a.

A Hopf G-coalgebra is a G-coalgebra H = ({Hga}aca, A, €) endowed with a
family S = {Ss : Ho — Hu-1}aeq of k-linear maps (the antipode) such that

1. each H, is an algebra with product m, and unit element 1, € H,,

2.¢: Hi —kand Anp: Hop — H, ® Hg are algebra homomorphisms
for all o, p € G,

3. for any a € G
ma(Sa_l & IdHOL)AOé—l706 =cl, = ma(IdHa ®Sa—1)Aa7a—1.

The antipode automatically satisfies additional property:

Lemma 3.2.2. Given a Hopf G-coalgebra H = ({Hga}aca, A, €, S), then
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Figure 3.1 — The structural maps
a B a B Y I B [ B
pu— y = .
aBy afy af af apB af

Figure 3.2 — The coassociativity and algebra homomorphism A, g

1. So(zy) = Saly)Sa(z) for any x,y € H,,
2. So(1y) = 141,

3. Apg-14-1S0p = T(Sa ®Sp) Ao g where 71 Hy1 @ Hg-1 — Hg—1 @ Hy
is the flip switching the two factors of Ho—1 X Hg-1,

4. eS1 =¢.

Graphical axioms for Hopf G-coalgebras

We will use the diagrams for the structural maps and the identities cor-
responding to the Hopf G-coalgebra H = (H,)aeq- For simplicity we write
« instead of H, in the diagrams. Figure 3.1 presents the structural maps
of the Hopf G-coalgebra which are the product, coproduct, unit, counit and
the antipode, respectively. Note that these maps are in the category Vecty
of finite dimensional vector spaces over a field k.

The identity of the coassociativity and the algebra homomorphism A, g
are defined as in Figure 3.2. The antipode properties are shown in Figure
3.3.  Finally, the compatibility between the antipode and the unit, counit
are illustrated in Figure 3.4.

Example 3.2.3. Let H be a possibly infinite dimensional pivotal Hopf algebra
with the pivot ¢. Suppose there is a commutative Hopf subalgebra C' contained
in the center of H (for ezample H can be the unrestricted quantum group in
[7]; an other example will be detailed in Section 3.5). Let G = Hom 4;,(C, k)
be the group of characters on C' with multiplication given by gh = (g®@h)o A
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a1 a~?t «@ a «@ a1 ﬂ71 a~ ! ,871
A pu— % % y pum T pu— 3 %} == f f .
« e o a 1 1 1 af apB

Figure 3.3 — The antipode properties

«a a a
- Y - - Y
a
a a a
o o

Figure 3.4 — The unit and counit

forg,h € G and g=' = goS|c. Forg € G we define Hy = H®,.cxk = H/I,
where I, is the ideal generated by elements z — g(z) for z € C. Assume
g = q192 for g1, 9> € G, then

Az - g(2) = A=) — (91 © @)(A(2))

= 2) @ 22) = 91(2(1) ® 92 (2(2))

= (2(1) - 91(2(1))) ® 2(2) + g1(21)) ® (2(2) - 92(2(2)))
where we used the Sweedler’s notation A(z) = z1) ® 2(2). This implies that

A(ly) Cc 1, ® H+H®1,,. We thus have that a well defined coproduct A, ,,
given by the commutative diagram below

A

H H®H

Pgigo Dg1 @ Dg,

A
HQIQQ s Hgl ® HgQ

where p, : H — H, is the projective morphism. The family {H,},ec with
coproduct Ay, is a G-coalgebra. It is also a Hopf G-coalgebra with the family
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of antipode given by the commutative diagram

S
H H
Py Dbg—1
S
H, I e Hyr.

The family S, for g € G is well defined since S(z — g(2)) = S(z) — g(2) =
S(z) =g Y (S(2)) € Iy-1.

We say a Hopf G-coalgebra H is of finite type if H, is finite dimensional
over k for all a € G.

Pivotal structure

We recall that a G-grouplike element of a Hopf G-coalgebra H is a family
9 = (9a)acc € Ila Ho such that A, 5(gas) = go @ gp for any o, f € G and
£(g1) = 1x. Note that gy is a grouplike element of the Hopf algebra H;. It
follows [49] that the set of the G-grouplike elements of H is a group and if

g = (ga)a€G7 then g_l = (Sofl(gofl))aEG‘

Definition 3.2.4. A G-grouplike element g € H is called a pivot if Su-1S4(x) =
99yt for all x € H,. The pair (H,g) of a Hopf G-coalgebra H and a pivot
g is called a pivotal Hopf G-coalgebra.

Remark that for a pivotal Hopf G-coalgebra H = ({Ha}aeca, A, €, 5, 9),
H, is a pivotal Hopf algebra.

Example 3.2.5. Let H be a Hopf G-coalgebra as in Example 3.2.5. Let ¢,
be the image of ¢ in the quotient Hy,. Then H is a pivotal Hopf G-coalgebra.

3.2.2 Symmetrised right and left G-integrals

Let H = ({Ha}aca, A, e,S) be a finite type pivotal Hopf G-coalgebra
with right G-integral p. The symmetrised right G-integral associated with
pis a family i = (fia)aca € [acq HE defined by [in(2) := pa(gax) for any
r € H,.

Using the definition of the right G-integral, see Equation (3.1.1) and replacing
x € Hup by gapr we get:

(fla ® 98)Aa,p(2) = [ap(T)lp. (3.2.1)

Théorie quantique des champs topologiques pour la superalgebre de Lie sl(2/1) Ngoc-Phu Ha 2018



o4 CHAPTER 3. MODIFIED TRACE FROM G-COALGEBRA

ﬁ 7
Hap )
af apf

Figure 3.5 — The graphical representation of the relation for the right sym-
metrised G-integral

Similarly, the symmetrised left G-integral is defined by fl (z) := p (g, ')
for any x € H,. Applying (3.1.2) for ggﬁlx, r € H,p we get the defining
relation for the symmetrised left G-integral:

(92" ® fi5) Aa5() = fing()La- (3.2.2)

The graphical representation for Equality (3.2.1) is given in Figure 3.5. The
graphical representation of the relation for the left symmetrised G-integral
is similar.

Since the pivot is invertible Equation (3.2.1) for g is equivalent to Equa-
tion (3.1.1) for u. As the space of right G-integrals is one-dimensional, re-
lation (3.2.1) defines fi uniquely (up to a scalar). Similarly the symmetrised
left G-integral fi' defined by (3.2.2) is unique. Note also that the symmetrised
G-integral for H; is the one in the sense of [2].

Recall that a left (resp. right) cointegral in Hy is an element A € H; such
that A = e(z)A (resp. Ax = ¢(z)A) for all x € Hy ([2]).

Definition 3.2.6. 1. A Hopf G-coalgebra H is unimodular if the Hopf
algebra Hy is unimodular, this means that the spaces of left and right
cointegrals in Hy coincide.

2. A family of linear forms ¢, € H for a € G is symmelric non-
degenerate if for any o € G the associated bilinear forms (z,y) —
volzy), x,y € H, is.

Proposition 3.2.7. Assume (H,g) is unimodular, then the symmetrised
right (resp. left) G-integral for (H,g) is symmetric and non-degenerate.

Proof. For any o € G, z,y € H,, by [49, Lemma 7.1] we have

o (Y) = f1a(9a®y) = 1a(Sa-15a(Y)gaT) = HalgayT) = fa(yr)

Théorie quantique des champs topologiques pour la superalgebre de Lie sl(2/1) Ngoc-Phu Ha 2018



3.2. PIVOTAL HOPF G-COALGEBRA %)

and by [49, Corollary 3.7] H is free left module rank one over H, with basis
{pa} when the action is defined by

(h = pa)(x) := po(xh) for hyz € H,.

If fia(7y) = pa(gay) = pa(TYga) = (Yga — pa)(x) = 0 for all x € H,, then
Yga — Ho = 0. It follows thus y = 0.
For the symmetrised left G-integral the proof is similar. O

Also note that the spaces of left and right G-integrals are not equal in
general. We have a lemma.

Lemma 3.2.8. The left G-integral for H can be chosen as i, (x) = pia-1(Sa())
for any x € H,.

Proof. By (3.1.1) we have

(o= ®1da, ) Aa1,5-1(Spa (7)) = figa)-1 (Spa(2)) 151 for any z € Hga.
Using Lemma 3.2.2 (3) Ay-1,53-1(55a(7)) = (S0 @ Sp)AF, (7) we get

(Ha=1 0 Sa ® 55) A, (%) = (S8 @ pra—1 0 5a) Ap.a(t) = figa)-1(Spalr))15-1.

Applying S/}l to both sides of the last equality and Sgl(l g-1) = lg, we obtain
that (Idu, ®pa-1 0 54)As.a(T) = (H(ay-1 © Spa)(7)1g, i.6. a1 0.5, satisfies
the definition of the left G-integral. [

3.2.3 (G-unibalanced Hopf algebras

Let H = ({Ha}aca, A, e,S) be a finite type Hopf G-coalgebra with right
G-integral p. We call a distinguished G-grouplike of H (see e.g [49]) or G-
comodulus of H a G-grouplike element a = (a4)ace € [lacq Ha satisfying

(Idg, @pp)Aas(z) = pias(z)as for any x € H,p. (3.2.3)

Note that a; is the comodulus element of the Hopf algebra H; (see [2]). By
multiplying (3.2.3) with a=! and replacing x by a,sz we have

(Idm, ®us(as?))Aas(2) = pag(aasz)la (3.2.4)

where denote by pgs(ag?) the linear map = — pug(agx) for x € Hgz. This
equality implies that p5(as?) is a left G-integral for H, i.e.

p() = ps(age). (3.2.5)

This is another choice for left G-integral from right G-integral. This choice
of the left G-integral is the same with the one in Lemma 3.2.8 by following
proposition.
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Proposition 3.2.9. We have the relation pio-1(Sa(x)) = pa(anx) for any
r e H,.
Proof. By (3.2.4) we get
(Idg, ®p1(a1?)) Mg () = palaax)l, for x € H,.
By Lemma 3.2.8 we get
(Idg, ®u1 0 S1) Ap1(x) = (fta-1 0 Sa) ()1, for x € H,.

Furthermore, Proposition 4.7 [2] gives 1 (S1(z)) = p1(a1z) for x € Hy. This
implies that po(aar)1le = (fta-105,)(x)1, for all z € H,, ie. po-1(S4(2)) =
to(aqx) for any x € H,. O

Recall that a finite type pivotal Hopf G-coalgebra (H, g) is G-unibalanced
if its symmetrised right G-integral is also left.

Lemma 3.2.10. Assume (H,g) is a unimodular pivotal Hopf G-coalgebra.
Then (H, g) is G-unibalanced if and only if a, = g2 for any a € G.

Proof. First, we assume that a, = ¢g2. Applying (3.2.3) on g,sz we have

(90 © fp) A () = flap()1a.

This equality states that fig is a symmetrised left G-integral, i.e. fig = ﬁg.
Second, we assume that (H, g) is G-unibalanced. By applying the equality
(3.2.5) on g,'x and the G-unibalanced condition one gets

Ho (95 %) = fig(2) = fia(2) = p1a(gat) = fla(aagy )

for any x € H,. The last equality gives
Lo ((aag;I - ga)x) =0 for any = € H,.

By Proposition 3.2.7, u, is non-degenerate. Therefore, the above equality
holds if and only if a, = g2. O

3.3 Traces on finite G-graded categories

In this section we recall some notions and results from [2]. Let (H, g) be a
finite type unimodular pivotal Hopf G-coalgebra. We determine the pivotal
structure in pivotal G-graded category H-mod. We also prove the Reduction
Lemma in the context of G-graded categories and recall the close relation
between a modified trace on H;-pmod and a symmetrised integral for H; [2].

Théorie quantique des champs topologiques pour la superalgebre de Lie sl(2/1) Ngoc-Phu Ha 2018



3.3. TRACES ON FINITE G-GRADED CATEGORIES 57

3.3.1 Cyclic traces

Let C be a k-linear category. We call cyclic trace on C a family of k-linear
maps
t= {tp : Endc(P) — k}PEC (331)
satisfying cyclicity property, i.e. ty(gh) = ty(hg) for g € Home(U, V') and
h € Home(V,U) with U,V € C. We say that a cyclic trace t is non-degenerate
if the pairings

Home (M, P) x Home(P, M) =k, (f,9) — tp(fg) (3.3.2)

are non-degenerate for all P, M € C.

For a finite dimensional algebra A, let A-pmod be the category of pro-
jective A-modules. There is a bijection from the space of cyclic traces on
A-pmod to the space of symmetric linear forms on A:

Lemma 3.3.1. There is an isomorphism of algebras
R: A — Endy(A)
given by
R(h) =Ry, R7'(f)=f(1)

where Ry, denotes the right multiplication with h, i.e. Ry(z) = xh for any
x € A

Lemma 3.3.1 implies that if ¢ is a cyclic trace on A-pmod then
Ah) = ta(Ry) (3.3.3)
defines a symmetric linear form on A.

Proposition 3.3.2. [2, Proposition 2.4] A symmetric linear form A on a
finite dimensional algebra A extends uniquely to a family of cyclic traces
{tp: Enda(P) — k} peapmoa which satisfies Equality (3.3.3).

If f € Enda(P), one can find a; € Hom(A, P), b, € Hom(P,A) i € I
for some finite set I such that f = Y ,c;a;b; (see [2]). Then the cyclicity
property of ¢ implies that

tp(f) =D _talbia;) =Y A(bai(1)). (3.3.4)

iel icl
Furthermore, the non-degeneracy of the form linear A is equivalent to
the one of the pairings (3.3.2) determined by (tp)pcpmoq i (3.3.4) (see

[2], Theorem 2.6 where a stronger non-degeneracy condition for traces is
considered).
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3.3.2 Modified trace in pivotal category

Let C be a pivotal k-linear category [39]. Then C is a strict monoidal k-
linear category, with a unit object I, equipped with the data for each object
V' € C of its dual object V* € C and of four morphisms

evy: VFeV =1, coevy: 1= VeV,
— * — *
evy: VVs =1, coevy: =V @V

such that (@V, c@vv) and (EV, cf%vv) are dualities which induce the same
functor duality which is monoidal. In the category C there is a family of
isomorphisms

¢ = {(DV - (gv ®IdV**)(IdV X C@VV*) P VAN V**}Vec

which is a monoidal natural isomorphism called the pivotal structure.

We recall the notion of a modified trace on ideal in a pivotal category C which
be introduced in [13, 18]. Given U,V,W € C and f € End¢(W @ V). The
left partial trace (with respect to W) is the map

trly, : Home(W @ U,W ® V) — Home(U, V)
defined for f € Home(W @ U,W ® V') by
w

trly (f) = (eviy @ Idy)(Idy- ®@f)(coevy @ Idy) = s ] € Home (U, V).

U

The right partial trace (with respect to W) is the map
tryy, : Home(U @ W,V @ W) — Home(U, V)
defined for f € Home(U @ W,V @ W) by

|4
w

trfy (f) = (Idy ® evy)(f @ Idy-)(Idy ® coevy) = [ s € Home (U, V).

U

(3.3.5)
Let Proj(C) be the tensor ideal of projective objects of C. A left modified
trace on Proj(C) is a cyclic trace t on Proj(C) satisfying

twer(f) = tp(trly (f))
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for any f € Ende(W ® P) with P € Proj(C) and W € C.
A right modified trace on Proj(C) is a cyclic trace t on Proj(C) satisfying

trew (f) = te(try (f))

for any f € Ende(P ® W) with P € Proj(C) and W € C.

A modified trace on ideal Proj(C) is a cyclic trace t on Proj(C) which is
both a left and right trace on Proj(C).

Next we define the category of H-mod which is a pivotal G-graded cate-
gory.

3.3.3 Pivotal structure on H-mod
G-graded category

Given a multiplicative group G, we call the category C pivotal G-graded
k-linear if there exists a family of full subcategories (C,)acq of C such that

1. Ted,.
2. Va, B) € G2, Y(V.W) € C x Cp, Home(V, W) £ {0} = a = B,

3. VW e C, In € N, F(ay,...,a,) € G, IV, € C,, for i = 1,...,n such
that V Vi ..dV,.

4. V(V,W) €Ca X Cs, VOW € Cap.

5. Va € G, C, does not reduce to null object.

Pivotal structure on H-mod

Let (H,g) = ({Ha}aca, A, €, S, g) be a finite type pivotal Hopf G-coalgebra,
let C be the k-linear category @,cqCn in which C, is H,-mod the cate-
gory of finite dimensional H,-modules. An object V of C is a finite di-
rect sum V,,, ® ... ® V,, where V,, € C,,. Each object V in H,-mod has
a dual V* = Homg(V,k) in H,-1-mod with the H,-1 action defined by
(hf)(x) = f(Sq-1(h)x) for h € Hy—1, f € V* and x € V. The category
C is a G-graded tensor category, i.e. for V, € C,, V3 € C3 V,® V3 € Cop and
for ae #  Home(V,, V) = 0.

Then C is a pivotal category with pivotal structure given by the left and
right duality morphisms as follows. Assume that {v; | j € J} is a basis of
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V € H,-mod and {v? | j € J} is the dual basis of V*, then

vy VRV ok foue f), (3.3.6)
coovy: k= V@V, 1>—>Zvj®vj,

jeJ
vy VoV =k v®f e flgav), (3.3.7)
coevy: k> VeV, 1>—>Zvi®g;1vi.

e

We call H-pmod or Proj(C) the ideal of projective H-modules. As C =
@D.cc Ca, the projective modules of C, are in H-pmod NC, = H,-pmod.

Lemma 3.3.3. Let (H,g) be a finite type pivotal Hopf G-coalgebra. Let t be
a cyclic trace on H-pmod. Let V € H-pmod and -W € Hi-mod be endowed
with the trivial action p_w = €Id_w. Then

Vf € EndH_mod(V X EW), tve Sw(f) = tv(tr:W(f)) (338)

and
Vf € Endpmea W ®@ V), twev(f) = tv(trly (f)). (3.3.9)

Proof. Consider a decomposition of Id_p

Id.w = Zeigpi where ¢, : W =k, e, k= W, p;(e;) =6;;. (3.3.10)

icl
By setting ¢; = Ildy ®e; : V=2V ® Wand ¢;=Idy®¢;: V& W =V
one gets
dye w="3 &3 (3.3.11)
i€l
For f € Endg.mea(V ® W), on the one hand we have
tve w(f) = tve w(fe@) =Y tv(@ife) =Y tv(fu)
iel icl icl

where f;; = @;fé; € Endy.moa(V). In the above calculations, we use Equation
(3.3.11) in the first equality and the cyclicity property in the second equality.
On the other hand, each map f € Endpy_meq(V ® W) is presented by graph
below

= > [iy ® (eip;) Td.w

i,J€1
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where fi; = ¢;f€; € Endgmoa(V). From this graphical representation im-
plies

tv(trly () = X tv

igel

Therefore Equality (3.3.8) holds.
Remark that the pivotal element acts trivially on .W so the evaluation EEW
in H-mod is just the usual evaluation of Vecty.

For Equality (3.3.9) the proof is similar. O

Reduction Lemma

We have a graded version of Reduction Lemma [2, Lemma 3.2]

Lemma 3.3.4. Let (H, g) be a finite type unimodular pivotal Hopf G-coalgebra
and A = (A)acc € [aecq HE be a family of symmetric linear forms and
t = (t*)aecq be the associated cyclic traces. Then t is a right modified trace
on H-pmod if and only if for all o, B € G and for all f € Endy,,(H,® Hpg)

o, (f) = t, (trf, (F)- (3.3.12)

Similarly, t is a left modified trace on H-pmod if and only if for all f €
Endy,,(Ho ® Hpg)

8 e, (f) = th, (trhy, ().

Proof. The proof strictly follows the line of Reduction Lemma 3.2 [2]. The
necessity is obvious. We now prove the sufficiency of the condition. By
Proposition 3.3.2 for each a € G the symmetric linear form A® induces the
cyclic trace {t% : Endpy, (P) — k}pen,-pmoa. We then prove that the cyclic
trace t* satisfies the right partial trace property.

First, let P € H,-pmod, P’ € Hg-pmod and f € Endy,_,(P ® P'). Suppose
that Idp and Idp: have the decomposition

Idp = Zai 9] bi, Idp/ = Zai/ o bi/ (3313)
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where a; : Hy, — P, b;: P — H, and ay : Hg — P', by : P' — Hz. The
modified trace of f is calculated as follows:

(3.3.14)

In this calculation, one uses (3.3.13) in the first equality, in the second
equality one uses the cyclicity property of cyclic traces, the third equality
thanks to (3.3.12) and finally one uses the duality morphisms to move by
around the loop then applying again (3.3.13) and the cyclicity property.
Second, let P € H,-pmod, V' € Hg-mod and f € Endy,_,(P® V). Set Q =
P®V, note that Q € H,s-pmod and P® P*, Q ® Q* € H;-pmod. Consider
two morphisms A € Homp, meqa(P ® P*,Q ® Q*) and B € Hompy, 1mod(Q ®
Q*, P ® P*) are given by

According to (3.3.14) one gets

thep- (B o A) = t (tr}. (B o A))
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In above calculation, one applies the definition of the partial trace in second
equality, in the third equality one uses the properties of the pivotal structure.
Similarly we also have

tlQ@Q*<AOB) = tQ (trQ* AO B )

= tgﬁ ! = t%%v(f)

Since the cyclicity property tpyp.(B o A) = thgo-(A o B), it follows that
thov () =t (t}.(f)).

The proof in the case of the left modified trace is similar. ]

3.3.4 Applications of Theorem 3.1.1

Theorem 3.1.1 has two immediate consequences when G = {1} or H
is semi-simple. First, in degree 1 the symmetrised G-integral is also the
symmetrised integral of H; and Theorem 3.1.1 recovers the main theorem of
[2] that we recall here:

Theorem 3.3.5 ([2]). Let (H,g) be a finite dimensional unimodular pivotal
Hopf algebra over a field k. Then the space of right (left) modified traces
on H-pmod is equal to the space of symmetrised right (left) integrals, and
hence is 1-dimensional. Moreover, the right modified trace on H-pmod is
non-degenerate and determined by the cyclicity property and by

tu(f) = n(gf (1)) for any [ € Endy(H) .
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Similarly, the left modified trace is non degenerate and determined by

tu(f) = p' (g7 f(1)) for any f € Endpu(H) .

In particular, H is unibalanced if and only if the right modified trace is also

left.

Second, for a finite type unimodular pivotal Hopf G-coalgebra (H, g), if H
is semi-simple, i.e. H, is semi-simple for all &« € G then H-pmod = C. Then
the categorical trace generates the space of modified traces on H-pmod: for
any f € Ende(V), the right and left categorical trace are

tr‘c/(f) 2:<€‘VV (f X Idv) C@Vve k,
“try(f) =evy (Idy~ ®f) coevy € k.

As a corollary of Theorem 3.1.1 we then have the proposition.

Proposition 3.3.6. Let (H,g) be a finite type unimodular pivotal Hopf G-
coalgebra over a field k. The right categorical trace tr%a and its left version
Ctry, are non-zero if and only if H,-mod is semi-simple and in this case
coincide up to a scalar with the trace maps

f e fa(f(1a) and f o fig(f(1a))

respectively, where f € Endp, (H,).

3.4 Proof of the main theorem

3.4.1 Decomposition of tensor products of the regular
representations

We denote by H, the left H,-module given by the left regular action.
Let us denote by .Hg the vector space underlying Hg equipped with the
H,-module structure given by

h.m = e(h)m for m € .Hg, h € H;.

We will use Sweedler’s notation: Aq g(h) = hay ® h) for h € Hup, hay €
Ha, h(z) € Hﬂ.

Theorem 3.4.1. Let H = (H,)acc be a finite type Hopf G-coalgebra. Then
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Iy B o B af B af eB
¢a,{3 = y 7/)0,‘/5 =
af eB ap eB [e B @ B

Figure 3.6 — The graphical representations of ¢, 3 and ¥, s

(1) the map
(ba,ﬁ . Haﬁ@ EH,B — HQ@HB
h®@m — h(l) X h(g)m

is an isomorphism of H,g-modules whose inverse is

waﬁ: Ha®Hﬁ — Ha5® EHB
rTRY x(1)®55_1(x(2))y.

(2) the map
la,ﬁ : 6I‘Ioé(gl‘foé@ — HQ(X)H@
mh — h(l)m® h(g)

is an isomorphism of H,g-modules whose inverse is

51,6: Ho®Hg — Hy® Hug
@y — SE(ya)z ® ye).

We prove the theorem using graphical calculus with the graphical repre-
sentations for Hopf G-coalgebras given in Section 3.2.1. The maps ¢, and
Ya,p are presented in Figure 3.6. The graphical representations for (blaﬂ and

la’ 5 are similar.

Proof. In order to prove part (1), we first check that ¢, is left inverse to
a8, by computing the composition one gets

af eB afB B aff B aB B

Va8 0 Pa,p =

- - = IdHaﬁ@ EH[-}
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where the associativity of the product mg is used in the first equality, then we
use the coassociativity of the coproduct in the second equality, and finally we
use the antipode properties in the last equality. Similarly we have ¢, 3014 5 =

ldu,omH,-
Next we prove the map ¢, s is Hyg-linear by diagrammic calculus:
@ B a B e B [e3 B
p—
| ba,B | — — — ba,B
af af B af ap -5 af  ap e af B B

where we used the property of the algebra homomorphism A, 3 in the second
equality and the associativity of multiplication in the third equality. The map
Ya,p is also H,p-linear by:

af B aff B af B aff B af B
' frd = frd — Ya,B
af « B af  « B af « B af @ B af @ B

where we used the property of the algebra homomorphism A, 3 in the first
equality, the coassociativity of coproduct and the antipode properties are
used in the second equality, the associativity of multiplication and the an-
tipode properties are used in the third equality, and we used the antipode
properties in the last equality.

The proof of the part (2) is similar way. O

Proposition 3.4.2. Let H = (H,)aeg be a finite type pivotal Hopf G-
coalgebra. Then we have the equalities of linear maps:
(1) ¢ap(lap@m)=1,®m form e Hp,
(2) (fag ®1d}) 0o s = fia ® g Iy where Id; : Hg — -Hg is the identity
map in Vecty.
Proof. The equality (1) holds by the definition of the map ¢, 5. Part (2)
follows from the diagrammic calculus in Vecty:

()7 .
Yo | T @ = ? = (3.4.1)
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where in the second equality of (3.4.1) we used the relation of the right
symmetrised G-integral in Figure 3.5. [

3.4.2 Proof of Theorem 3.1.1

Let (H, g) be a finite type unimodular pivotal Hopf G-coalgebra, C be the
pivotal G-graded category of H-modules. The existence of modified trace on
Proj(C) follows from: 1) the existence of non-zero integral on H; 2) the
existence of modified trace in C; by applying the results of [2] for H; and
3) the existence of the extension of ambidextrous trace in [18, Theorem 3.6].
Nevertheless we choose to give a direct proof of this fact following the lines
of [2]. Furthermore, Theorem 3.1.1 also gives an explicit formula to compute
the modified trace t from the integral and conversely.

Proof of Theorem 3.1.1. First, we show that a right symmetrised G-integral
provides a modified trace. Suppose that i = (fiq)acc is the right symmetrised
G-integral for H. By Proposition 3.3.2 the family of the symmetric forms
associated with i induces the family of cyclic traces t = (t%),eq of H-pmod.
Here t* = {t% : Endy, (P) — k} pen,-pmod is determined by

tir, (f) = fia(f(1a)) for f € Endpy, (Ha). (3.4.2)
To show t is a modified trace, it is enough to check
ti’i@ﬂﬂ(f) = tf, (trfy, (f)) for any f € Endp,,(Ho ® Hp) (3.4.3)

thanks to Reduction Lemma 3.3.4. The value of t?,i o, ([) in Equality (3.4.3)
is calculated

of
tHa®H5 !
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a B
; &
af B

Figure 3.7 — The graphical representation of the map k

In the above calculation, we use Theorem 3.4.1 in the first equality; the
cyclicity property of trace in the second equality; Lemma 3.3.3 in the third
equality; Equation (3.4.2) in the fourth equality and in the fifth equality we
use the two equalities in Proposition 3.4.2.

Second, assume that we have a right modified trace, and hence the sym-
metric form t% on Endg, (P) for any projective module P and any o € G.
In particular for any «, 3 € G the symmetric forms t3; on Endg, (H,) and

t?}i@)Hﬁ on Endy,,(H, ® Hg) satisfy

0 o, (f) = 5, (tr} () for any f € Endy,,(Ho ® Hg).  (3.4.4)

Let () = t3_(Ry) for Ry € Endy, (H,) with h € H,. Then 7(f(1)) =
t3 (f) for f € Endp,(H,) (see Lemma 3.3.1). We prove that the family
UV = (Va)acq satisfies the relation of the right symmetrised G-integral.

Consider the maps k = A,po (R, ® ¢) : Hop ® Hg — H, ® Hp for
h € Hop and ¢ € _Hj. Then k is a morphism of H,g-modules. The
graphical representation of the map k is given in Figure 3.7. Let f = kot :
H,®Hs — H,®@Hg then f € Endy,,(Ho®Hg). We now calculate the values

of the modified trace for f € Endy,,(H, ® Hg) and tr’“Hﬂ(f) € Endy_(H,).
On the one hand, we have

t%{i@Hﬁ (f) = t?{i@Hﬁ(k 0 Ya,p) = t?[i;;@ -Hp (Va0 k)
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aB B
@)
= tﬁiﬁ@ cHp = tﬁ‘fiﬁ@ cHp
? Rh
|
aB eB

_ sap _ ap
= tHaB® cHg k{ ? - tHaB® cHg Ry,

t?{iﬁ Ry,
= Daﬂ(h)gp(]'ﬁ)

In the above calculations, we use the cyclicity property in the second equal-

ity; the coassociativity of the coproduct in the fourth equality; the antipode
properties in the fifth equality and finally we use the partial trace property.
On the other hand, we have

th, (00, () = th, (tr, (K 0 Yo p))

«

a Ry,
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where we use the left evaluation ev with the pivot gz and the right coeval-
uation coev in the second equality and A, g(h) = hay ® h).

By Equality (3.4.4) one has t?}i o, (f) = ti, (tr,(f)). This equality means
that

Vap(h)o(1s) = Val(h))(gshe)) for any o € Hj, h € Hag.

This equality holds for any ¢ € Hj implies that Uag(h)1s = Ua(h1))9gsh(2),
ie. (Ua ® gg)Anp(h) = Uap(h)ls for any h € H,z. Therefore the family
UV = (Va)acg is the right symmetrised G-integral for H.

For the case of the left modified trace the proof is similar. O

3.5 Modified trace for G-graded quantum sl((2)

In this section we present the symmetrised G-integral for the quantization
of 5l(2) and the modified trace on ideal of projective modules of category of
the weight modules over U sl(2). It explains clearly the relation between
the symmetrised G-integral for a pivotal Hopf G-coalgebra and the modified
trace in associated category U,sl(2)-mod.

3.5.1 Unrestricted quantum ,sl(2)

Let U,s1(2) be the C-algebra given by generators F, F, K, K~! and rela-
tions:

-1 -1 12 1 _9 K—-K!
KK'=K'K=1, KEK'=¢E, KFK'=¢*F, [E,F]=———
q—4q

where ¢ = e is a 2r"-root of unity. The algebra U,s1(2) is a Hopf algebra
where the coproduct, counit and antipode are defined by

A(F)=1 F+ E®K, e(E) =0, S(E)=—-EK™,
AF)=K'9F+F®l, e(F) =0, S(F)=—KF,
AK)=K®K £(K) =1, S(K) =K.
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Let U = U,s1(2) be the algebra U,s[(2) modulo the relations E” = F" =
0 and C' = C[K®*"] be the commutative Hopf subalgebra in the center of
U,s1(2). The algebra U is a pivotal Hopf algebra with the pivot g = K",
Let G = (C/2Z,+) = Hom,,(C,C), @ (K" — ¢ := €™) and let U be
the algebra ,s1(2) modulo the relations K™ = ¢" for @ € G. By applying
Example 3.2.3 it follows that U = {Uz}zec is the Hopf G-coalgebra with the
coproduct and the antipode are determined by the commutative diagrams:

A s
u Uol u u
Paid Pa ® pg Pa P-a
Aa SE
Uz — L Uz DU Us Uz

where py : U — Uy is the projective morphism from U to Uy. The Hopf
G-coalgebra U = {Uz}zec has the pivotal structure given by gz = ¢ ™K.
For @ = 0 the Hopf algebra U is called the restricted quantum sl((2), i.e. the
algebra U,sl(2) modulo the relations E” = F" = 0 and K" = 1. The right
0O-integral is the usual right integral given by

Mﬁ(EanKl) = n(sm,r—l(smr—l(sl,l
where 7 is a constant. By definition of right G-integral (3.1.1) we get
Ma(EanKl) = qm775m,r—15n,r—151,1~

One can show that the Hopf G-coalgebra {Us}zcq is G-unibalanced.
The symmetrised right G-integral for {Uz}geq is determined by

fiw(E™F"K") = 10— 10nr—1010. (3.5.1)

3.5.2 Modified trace

Let C be the category of representations of the Hopf G-coalgebra U (see
Section 3.3.3). Then C is equal to the G-graded category of finite dimensional
weight modules over U,s1(2) (module in which K has a diagonalizable action).
For a € C let V,, be a r-dimensional highest weight module of highest weight
a+r—1in C (see [9]). Recall the modified dimension d(V,) of V, for
a € (C\ Z)UrZ was computed:

d(V,) =ty (Idy,,) doh n Jr{f}_ 5o ;‘EZ{ (3.5.2)
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where t is the modified trace on ideal Proj(C) of projective modules and d,
is a non-zero complex number. In [9] for the analogous unrolled category,
it is normalized by dy = (—1)""!. We now present the way to compute the
modified dimension of V,, using the symmetrised G-integral.

By density theorem we have the isomorphism of algebras

u& i> @ End(va-i-Qk)

keH,

where H, = {—(r —1),—(r — 3),...,r — 1}. Hence we have the isomorphism
of left Usz-modules:

Uz = @ End (Vo ior) = EB Voror ® < ;+2k ’

keH, keH,

Consider the quantum Casimir element of &/ defined by

Kqg+ K¢t Kqg '+ K1

Kg+ K'q' o K+ K
{12 {12

For k € N, by induction one gets

k—1 722’71K 2i+1K71
11 <Q _ 9 {T}Z ) — EFER, (3.5.3)
1=0

Q=FF+

Lemma 3.5.1. For k € N then
QF — B*F* € Spanc{F'F'K" | j <k, i € Z}.

Proof. The proof is by induction on k. Indeed, by (3.5.3) QF — EFF* ¢
Spanc{¥ K" | j < k, i € Z} which by the induction hypothesis is contained
in Spanc{E'F'K' | j <k, i € Z}. O

Following (3.5.1) we have the corollary.

Corollary 3.5.2. For all k € {0,...,r — 2} we have [iz (Qk) = 0. For
k=r—1 then g (Q1) =n.

Proof. Tt follows from (3.5.1) that Spanc{F'F'K" | j < k, 1 € Z} is con-
tained in the kernel of jiz for k € {0,...,r — 2}. O

For a € C\ Z, Q acts on V, by the scalar w, which is calculated as
follows: Let v be a highest weight vector of V,. The action of K on v

defined by Kv = ¢®™~'v. This implies that Qv = Mv, ie. w, =

{132
a—+r —a—r . :
%. The elements wq2k, 0 < k < r—1 are distinct as wa42i—Wat2; =
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w £ 0 for i # .
We consider in Uy the element

La(Q) = 1

This element is the projector on V, @ V¥ ~ @) _; Vi, as Lo(wator) = 0o k-
The value of symmetrised right G-integral on L, () is

1 r—1
NE Q- W .
HZ;% (wa o wa+2k) lu <kH1( +2k>>

Corollary 3.5.2 implies that

fi (La(2)) =

fiz (rf(ﬁ - wa+2k>> = fia (271) =1,

k=1

The equality T} (e — wigar) = (~1) TTizj PG gives
r—1 {1}2
o AkHa+ K}

_ {1}2 1T S U R £
”H LY e g

where we used the identity []j_ {k}2 (—1)""'72 in the last equality.
It is clear that the coefficient 17 } *1 does not depend on «. This proves that

fz (La(S2)) = rd(V,) with the ch01ce dy = {1}i; 1 where n = jig (E"1FY.

fi (La(@) = (-1
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Chapter 4

A Hennings type invariant of
3-manifolds from a topological
Hopf superalgebra

This chapter is the content of the paper [20] available in
https://arxiv.org/abs/1806.08277.

RESUME. Nous prouvons que la superalgeébre quantique déroulée associée a
la superalgebre de Lie s[(2]1) a une complétion qui est une superalgebre enru-
bannée au sens topologique. En utilisant cette superalgebre topologique enru-
bannée, nous construisons un invariant universel d’entrelacs. Nous 1'utilisons
pour construire un invariant de 3-variétés de type Hennings.

ABSTRACT. We prove the unrolled quantum superalgebra associated with
the super Lie algebra s[(2|1) has a completion which is a ribbon superalgebra
in a topological sense. Using this topological ribbon superalgebra we con-
struct its universal invariant of links. We use it to construct an invariant of
3-manifolds of Hennings type.

MSC: 57TM27, 17B37
Key words: Lie superalgebra, unrolled quantum group, G-integral, invari-
ant of 3-manifolds, Hennings invariant, topological Hopf superalgebra.

4.1 Introduction

The notion of an unrolled quantum group is introduced in [16] by N.
Geer and B. Patureau-Mirand. Then an unrolled quantum group is a quan-

75
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tum group with some additional generators which should be thought of the
logarithms of some other generators, for example in Ufﬁ[(?) the additional
generator is an element H with the relation ¢! = K (see [9, 16, 17]). This
element H is a tool to construct a ribbon structure on representations of
Us1(2). The category of weight modules of ¢4s(2) is ribbon and not semi-
simple but the Hopf algebra is not ribbon. With this category U} sl(2)-mod
one constructed the invariants of links and of 3-manifolds (see [9, 39]). For
the Lie superalgebra s[(2|1), the associated unrolled quantum group is de-
noted by L{gH s[(2|1) with two additional generators hy, hy from the quantum
group Uesl(2|1). Using this unrolled quantum group in Chapter 2 one has
shown that the category € of nilpotent weight modules over U{'s[(2|1) is
ribbon and relative G-(pre)modular and leads to an invariant of links and of
3-manifolds. The category ¢! is ribbon thanks to the role of the additional
elements hy, hs which should be thought as the logarithms of ki, ko, i.e.
&hi = k; for i = 1,2. They help to construct quasitriangular ribbon structure
in €. The relations " = k; for i = 1,2 also suggest that ki, ks can be
consider as holomorphic functions of h; and hy on C?. Following this idea we
extend the superalgebra U” = Us1(2]1)/(ef, f{) to a ribbon superalgebra

UH in a topological sense, the topology determmed by the norm of uniform

convergence on compact sets. Its bosonization UH” is a ribbon algebra (see
in Section 4.2.3).

It is known that for each ribbon Hopf algebra one can construct a univer-
sal link invariant (all links are framed and oriented) (see [23], [38]). In fact,
one can show (see [3]) that a double braiding in a Hopf algebra is enough
to construct a universal invariant for string links or bottom tangles. From
some universal link invariants one could construct a 3-manifold invariant.
There are many ways to do this. In [26], M. Hennings introduced a method
of building an invariant of 3-manifolds by using a universal link invariant
and a right integral. He worked with a finite dimensional ribbon algebra and
this condition guarantees the existence of a right integral. In other way, A.
Virelizier and V. Turaev constructed the invariants which called invariants
of m-links and invariants of m-manifolds, the invariants of equivalence class
of m-bundles or equivalently of manifolds equipped with a map from the fun-
damental group to 7 (see [48]). They began with a ribbon Hopf 7-coalgebra
of finite type to construct the invariants of w-links, after that they renor-
malized the invariant to invariant of m-manifolds by using m-integrals (see
Chapter 3). Note that the m-integrals exist if and only if the group-coalgebra
is of finite type (see [49]). From a Hopf algebra one can construct a Hopf
group-coalgebra (see Chapter 3). In our case m = G = (C/Z x C/Z,+) is
commutative, therefor a G-structure on a manifold M is a cohomology class
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w € H'(M,G) and a G-link is a G-structure on the complement of a link.

The Hopf G-coalgebra associated with the ribbon algebra UH’ consists of
quotients of UZ by the ideal (kf — £, i = 1,2) is ribbon but is not of
finite type, i.e. the method of construction /t\he invariant of 3-manifolds in
[48] does not work here. We show that for UH ” there is an associated Hopf
G-coalgebra U (see in Section 4.4) which is of finite type but is not ribbon.
We Wi/ll\ present an another approach to construct an invariant of /3—\manif01ds
from UH°. We will use first the topological ribbon structure of U ” to con-
struct a universal invariant of links. The value of this invariant is represented
by a product of a part which is a holomorphic function of variables hy, ho
and a part of elements in copies of 7. Assume the link is a surgery link in
S3 that produces a closed 3-manifold M. Next we use a cohomology class
w € HY(M,G) and a discrete Fourier transform to reduce this element. This
universal invariant of links allows to construct an invariant of 3-manifolds
(M,w) of Hennings type.

The chapter contains four sections. In Section 4.2 we construct the topo-
logical ribbon structure of U/ whose bosonization is a topological ribbon
algebra. Section 4.3 builds the universal invariant of links from the topolog-
ical ribbon superalgebra UH and a factorization of the invariant. Finally, in
Section 4.4 we define discrete Fourier transforms from the topological ribbon
superalgebra to a finite type Hopf G-coalgebra. This leads to definition in
Theorem 4.4.15 of an invariant of pair (M, w) as above.

4.2 Topological ribbon Hopf superalgebra uH

In this section we recall the definition of Hopf superalgebra U4s((2]1)

and we construct a topological ribbon Hopf superalgebra UH which is a
completion of . The topology used in the present chapter is the one of
uniform convergence on compact sets for the vector space of holomorphic
functions on C?. This topology defined for ¢ a root of unity is very different
from the widely studied h-adic topology used with ¢ = " € C[[h]]. For
example, a topological completion of the U,s((2) over C(q) can be seen in
[24, 38].

4.2.1 Hopf superalgebra Ut
Hopf superalgebra 4sl(2|1)

We recall here Definition 2.3.1 of the Hopf superalgebra LlstI(le).
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Definition 4.2.1. Let { > 3 be an odd integer and & = exp(%*). The
superalgebra Uesl(2|1) is an associative superalgebra on C generated by the
elements ky, ko, kit kst eq, e, f1, fo and the relations

klkz = k‘Qk’l, (421)

kikit=1,i=1,2, (4.2.2)

kiejky b = E%e;, kifik =€ f; 4,5 =1,2, (4.2.3)
by — kit ky — by !

e1fi — frer = = eofo + foeg = ———2 42.4

-1 -t (4.24)
[e1, fo] =0, [e2, f1] =0, ( )
e5=f;=0, (4.2.6)
eteq — (€ + & Hejeger + egel =0, ( )
fifo =€+ fifafi + foff = 0. (4.2.8)
The last two relations are called the Serre relations. The matriz (a;;) is given
by a;1 = 2, a1a = as; = —1, asn = 0. The odd generators are ey, fs.

We define £7 := exp(#5£), afterwards we will use the notation
{z}=¢"—¢

According to [31], Uesl(2]1) is a Hopf superalgebra with the coproduct, counit
and the antipode as below

Ale))=e; @1+ k' '@e i=1,2,
Ak) =k @k i=12,
S(e:) = —kies, S(fi) = —fiki ', S(k) =k i=1,2,
e(ki) =1, e(e;) =e(f;) =0 i=12
We call Z/{EH sl(2[1) the C-superalgebra generated by e;, f;, ki, k; ' and h;
for i = 1,2 with Relations (4.2.1) - (4.2.8) plus the relations
[hiaej] = Q;j€5, [hiafj] = _aijfja [hiahj] =0, [hiakj] =04,j5=12

The superalgebra Z/{§Hs[(2|1) is a Hopf superalgebra where A, S and ¢ are
determined as in Ues((2|1) and by

Note that 24s[(2|1) can be seen as a semidirect product of C[hy, ho] acting
on Uesl(2[1).
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Define the odd elements ez = ejes — £ teger, f3 = fofi — Ef1fo. Denote
by

B, = {elefes, pe {0,1,...,0 -1}, p,o0 € {0,1}},

B_={fF e pefo1,..,0-1}, o €{0,1}},
By = {kk2, 51,50 € Z} and B, = {hI'hR, 11,1, € N}.

Let U™ = UfsI(2[1)/(ef, f1), this is a Hopf superalgebra.

Lemma 4.2.2. The set of vectors B B¢B,B_ is a Poincaré-Birkhoff-Witt
basis of U™

Proof. A proof of this lemma similar to that of Lemma 2.3.3 can be obtained
by replacing C[ki, k'] with C[E!, k3, by, hel. O

Topological Hopf superalgebra us

We recall some notions of topological tensor product and nuclear spaces
in [40, 19]. A locally convex space E is called nuclear, if all the compatible
topologies on ' ® F' agree for all locally convex spaces F', i.e. the topology
on F ® I compatible with ® is unique. A topology is compatible with ®
ift 1) ® : Ex F — E® F is continuous and 2) for all (e, f) € E' x F'
the linear forme® f: F® F — C, z ® y — e(x)f(y) is continuous [40].
For two nuclear spaces E' and F' the completion of the tensor product £ ® F
endowed with its compatible topology is denoted EQF. A finite dimensional
space is nuclear, the tensor product of two nuclear spaces is nuclear space
and a space is nuclear if only if its completion is nuclear [19]. The complete
nuclear spaces form a symmetric monoidal category Nuc with the product
® (see [40]).

A super nuclear space E is a Z/2Z-graded nuclear E = E5® E7 where both
FEg and Fy are closed in E. As for SVectg one can form the monoidal category
SNucg of super complete nuclear spaces with even morphisms. We call
topological Hopf superalgebra a Hopf algebra object in the monoidal category
SNucg. That is a super complete nuclear C-space H endowed with the even
C-linear continuous maps called the product, unit, coproduct, counit and
antipode

m:HRH - H, n:C—H A:H - H®XH, ¢:H—-Cand S: H —» H

satisfy the axioms:

1. the product m is associative on H admitting 15 = n(1) as unity.
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2. the coproduct A is coassociative, i.e. (A®Idy)o A = (Idy ®A) o A

and (e®1dy) o A = (Idy ®e) o A = Idy.

3. A and ¢ are algebra morphisms where the associative product in H®H

determined by (m@m) o (Idy ®7® Idy).

4. mo (S®Idy) oA =mo (Idg ®S)oA=noe.

The notion of a topological Hopf algebra is defined similarly.

If V is a finite dimensional C-vector space we denote by H(V') the space
of holomorphic functions on V' endowed with the topology of uniform con-
vergence on compact sets, it is nuclear space. We will also use the notation
H(hy, .., hyp) :=H(V)if hy, ..., h, are coordinate functions on V. Re-
mark that we have H(V})® H(Vs) ~ H(V; x V3) (Theorem 51.6 [45]) where
Vi, Vs are finite dimensional C-vector spaces. For a quantum group, if $ is
generated by Cartan generators and W is a finite dimensional vector space
generated by other generators then elements of W® H($*) can be seen as
W-valued holomorphic functions. We have the proposition.

Proposition 4.2.3. Let §; be C-vector spaces of dimension n; and let W; be
finite dimensional vector spaces on C for1=1,2. Then

(W1 @ H($H)R(Ws @ H(H3)) =~ (W1 @ Wa) @ H(HT X 7).
Proof. By the symmetric and associative properties of ® we have
(Wi H(H7))D(Wo@ H(HF)) = (W1 QW)@ H(H])Q H($H3).
Furthermore, by Theorem 51.6 [45] H($H1)@ H($H3) ~ H(H} x H3). It implies
(Wi H(H]))D(Wa® H(H5)) =~ (W1QW2)R H(H] x H3).

Since the spaces W;, H($}) for i = 1,2 are complete then W;® H(9}) =~
W; @ H($F). Thus we get

(W1 @ H(H))D(W2 @ H(8H3)) = (W1 @ W) @ H(HT x H3).
O

The space of entire functions is a nuclear space obtained as the completion
of polynomial functions for the topology of uniform convergence on compact
sets. We use a similar completion to define a topological ribbon Hopf superal-
gebra from U*. That is a topological ribbon Hopf superalgebra U where the
topology is constructed as follow. We consider U ~ W @¢ C[hy, hy, k', k3]
as a vector space on C where W is a finite dimensional vector space on C
with the basis

B=B.B_.
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Let $ be C-vector space with basis {hy, ho} and $* be its dual, let H(hq, hs)
be the vector space of holomorphic functions on C? ~ $*. Now Clhy, ha, kit k;gﬂ]
embeds in H(hy, he) by sending k; to £ = exp (25h;).
Furthermore C[hy, hy, k', k3°'] is dense in H (hy, hy) equipped with the topol-
ogy of uniform convergence on compact sets. Thus U is embedded in
W&c H(hy, hy) ~ W®¢ H(hi, ha), in particular k; = 10&% € W®c H(hy, hs)
for i = 1,2. This space is nuclear. As W & H(h1, hs) is complete and U is
dense in it then the completion UH of U is isomorphic to W®c H(hq, hs),
ie. UH ~ W H(hy, ha).

In the following, we show that the completion UH has the topological
Hopf algebraic structure continuously extended from U with the coproduct

A UT S U UM,

Remark 4.2.4. For each w; € B there exists |w;| = (w1, |wil2) € Z* such
that

hyw; = w;(hy, + |w;|x) and
Vwi,wj €8 W;W; = Zwmcg‘b(h‘la h2)7

here |w;|x € Z is the weight of w; for hy with k = 1,2.

Remark 4.2.5. As UH ~ W®c H(hy, ha) then each u € U can be written
uniquely

u= > wQij(h, ha)v;
1<i,j<4f
where u; € B_, v; € By, Qij(hy, he) € H(hi, he) for 1 <i,j < 4L.

—

Furthermore, by Remark 4.2.4 each u € UH can be also written
u = Z uivjpij<h17 h2> = Z Q;j(hla hg)Uﬂ)j (429)
i,

1<4,j<40

where u; € B_, v; € By, Pij(hy, hy), ng(hlahQ) € H(hy, hy) for 1 <i,j <
4/,

Let K be a compact set in H*. If ¢ € K and x(hy, hy) € H(hy, hy) then
¢sx(hy, he) is the evaluation of z at ¢, that is ¢.x(hy, he) = z(p(hy1), ¢(hs)) €
C. For x = Y, wixk(hy, hy) € UH, define a norm associated to K on U as
follow

2l = 1| D wier(hn, ha) [ = Sup sup |6 (zk(ha, ha))| (4.2.10)
k €

= sup sup |z, (¢ (1), ¢(hs))| = sup [|p.z 3
k ¢eK pEK
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where ¢,x = > wrpdxp € W.

Remark that all norms on W are equivalent so the choice above of the

norm ||.|[2 in the basis B does not matter. In particular, ||z||x = 1 when
x € B. The set {||.||x} x compact induce the topology of uniform convergence
on compact sets.
If E is a nuclear space, it is a locally convex space and its topology is
generated by the open balls of the continuous semi-norms. A linear map
f: E — F between nuclear spaces is continuous if and only if for any con-
tinuous semi-norm ||.||r on F there exists a continuous semi-norm ||.|z on E
and a constant 77 € R* such that

Ve € E ||f(x)|r < nllz|e-

The following three propositions show that the Hopf algebra maps on U are
continuous. This implies that these maps induce a topological Hopf algebra
structure on UH,

Proposition 4.2.6. For each compact set K C $*, there exists a compact
set K' and a A\x € R such that ¥ =,y € U", we have

leyllx < Axcllzllwer [yl -

Proof. Given x = Y-, wiz;(h1, ha), y = > w;y;(hi, hy) then
vy =Y wiri(hi, ho) Y wjy;(ha, he)
{ J

=Y wiw;zi(hy + [w;|1, he + [w;]2)y; (b, ha)
1,J

=> wkcﬁj(hla ho)xi(hy + |w;|1, he + |w;|2)y;(h1, ha).

Z'7j7k

eyl x

= supsup | > ¢ (¢(h), p(h2))ai(d(h1) + lwslr, d(ha) + |wil2)y; (d(hr), ¢(hs))]

k ¢eK i

< supsup | > ¢ (¢(h1), d(hs))| sup Sup |2i(p(h1) + w;li, (he) + [w;l2)]

k ¢eK ij

sup sup |y;(¢(h1), ¢(ha))|
seK

J

= Azl rellylx

where A = supy, supgeg | X ¢r;(0(h1), d(he))| and C' C $H* is the convex
hull of weights of elements of B. n
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Proposition 4.2.6 implies that the product on U is continuous but there
does not seem to exist multiplicative seminorms on U*.
By Proposition 4.2.3 we have UT QU ~ W®? @ H(h;;) where h;; = h; ®
1, his =1® h; for ¢ = 1,2 and the h; ; are seen as coordinates functions on
H* x H*. Thus we can write each z € UT QU form z = ¥, wyak(hi ;) where
wy € B @B and zi(hi ;) € H(hij). We can define a norm of x € U QUY
associated to a compact set Ky C $H* X H* by

|||k, = sup sup |z (hi ;)| = sup sup |xk(d(hi;))l- (4.2.11)
k ¢€K2 k ¢€K2

Proposition 4.2.7. For each compact set Ko C C*, there exists a compact
set K C C? and a A\, € R such that ¥V x € U, we have

1Az ke, < Ar ]| k-

Proof. Let U be a compact set, U = U; x Uy C H* x §* ~ C*. First there
exists Ay € R such that for any a,a’,b,b € U" we have

l(a ®b)(a' @ V) lvyxv, = llad’ @ b ||ty xv, = [laa' || 0V ||, (4.2.12)
< v llallvy+en @ oy Avs |10llws+c 16 ([
= Ay Aw | al|oy+ e 10l varca o 16|
= Mvlla @blluie xe,lld @V |lu
= Avlla @ bl|vr[|la’ ® V|

where \y = Ay, Ay, and U’ = U + C; x Cy. Second let a compact set
Ky C $* x $H* and let K C $* be the compact set {p + | (¢,9) € Ky}. For
zeU, x =Y, wzj(h, hy), we have

[Az||k, = || ZijAl'j(hb%)HKz < Z |Aw;Ax;(h, he) |k,
J J

= Z I Zw;’s 03¢ w?’5$j(h1,1 + h12,ho1 + ha2)|lk,

J

< Z Z ijl-’s & w?’sxj(hl,l + hi2, ho1 + ho2)l ks
j S

1, 2,
<IN Al @ 0| ks cn,om @i (g + hag, hoy + hoo) |k,
] S

J

< Z Aol (hag + hag, hog + hop) |k,

J

where the sums are finite and Mg, s, Ak, ; are constants and in the fifth
inequality one used Inequality (4.2.12). Furthermore, let $ be vector space
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on C with basis {hy, ho}. The symmetric algebra S($) x ) ~ S(H D H) ~
SH @ SH (see [29]), it is a commutative algebra on C generated by h; ®
1, ha®1, 1®hy, 1@hy and Hom 4;4(SH® .59, C) >~ Hom 45, (S(H x H),C) ~
Homy . ($ % H,C) ~ (H x H)* ~ H* x H*. This isomorphism allows that for
(p,1) € H" x H” one has (¢, ¥)(h; ® 1) = ¢(hs) and (¢, ¥)(1 ® h;) = ¢ (hi)
for ¢ = 1,2. It implies that

||$j(h1,1+h1,2, ha1 + hao)l K,
= sup (¢, w)ﬂj (hi1+ h12,hoq + ho2) |

(%WEKz
= sup |[(@+ )z (b, he) | = [J(ha, ho)| k-
(p,)EK2
Hence
1Az, <D Aryjllz(hes ho)llx < A llzllx
J
where Ak, is a constant. ]

This proposition implies that the coproduct is continuous. The antipode
S is also continuous by proposition below.

Proposition 4.2.8. For each compact set K C $H* there exists a compact
set K" C $* and a constant \x such that

1S(@)lx < Acll@llser for x € U™
Proof. For x =Y, w;x;j(hi, hy) € UM we have
15 ()|l = ||ZS i (h1, he))S(w;)| x = ||Zl’; —ha1, —ha) S(w;) | x
= Z [ (—h1, —h2)S(w;) || x
= Z)‘Kj|’17j<_h1, —ha)|l 15 (w;) ||

=< Z/\ jllzi(he, ho)ll-kr < Akl e

where Ak j, N ; and A\g are constants. ]

It is clear that the unit and counit are continuous. Hence the maps
product, coproduct, unit, counit and the antipode of U are continuous (with
the topology of uniform convergence on compact sets). Thus the topology of
uniform convergence on compact sets of U is compatible with its algebraic
structure. The maps product, coproduct, unit, counit and the antipode of

Théorie quantique des champs topologiques pour la superalgebre de Lie sl(2/1) Ngoc-Phu Ha 2018



4.2. TOPOLOGICAL RIBBON HOPF SUPERALGEBRA UH 85

U" continuously extend to the completion UH. Note that the coproduct
U — U @ U extends to UH — UTRUT. The space UH endows with
these continuous maps is a topological Hopf superalgebra.

Similarly, for n > 2 denote

hij=1®.0hL®..®1 (4.2.13)

where h; is in j-th position for 1 <7 < 2and 1 < j < n. Then the completion
of UH®™ is topological vector space UHE" ~ W @H(h, ;) with the topology
of uniform convergence on compact sets. Here W®" is the tensor product of
n copies of W and H(h; ;) is the vector space of holomorphic functions of

2n variables {h;;}/2)5 " in C?". Note also that the maps Al yHen
UHO™+D) and M yHen _y yHO(=1) continuously extend to UHE", here
Al and el™ determined by

A —1d®. . ®ldeA®lde.. ®1d

i—1 n—1i

and
M =ld®..®ldecold®...®Id

i—1 n—i

where A, ¢ are in i-th position. It follows that

[deAl" = Al Al @ 1d = Al

and we denote A["](a:) =>21) X ... Ty for v € U™, Hence, each element
¢ of UM®" can be written z — >k Wiy (i ;) where wy € B, xy(h; ;) €
H(hi;) == H(H*"). In particular, the element k;; == 1® ...®k ®..®1
where k; is in j-th position is equal to " = 1® ... ® " ® ... ® 1 for
i=1,27=1,..,n. Let K be a compact set in C** ~ Spanc{h;;}*. As in
Definition (4.2.10) we define

[2]lx = supsup [p.(zx(hi;))| = sup sup |z ((hi;))]-
k ¢eK k ¢k

Recall that €7 is the even category of finite dimensional nilpotent modules
over UM (see in Chapter 2).

Proposition 4.2.9. For any Vi,...,V, € € the representation PVi®.. 0V, -

Uen — Ende(V1®...0V,,) continuously extends to a representation UHE™ —
Ende(Vi ® ... @ V,).
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Proof. Let K be the compact set containing the weights of V =V, ®...®V,,.
We have py : UH®" — End(V) be continuous on compact set K. Indeed,
let z € UH®™ and write x = Y, wirk(h; ;). On the subspace of weights ¢ €

K, py (g wik(hi;)) acts as ||py (Zx weze(@(hig) | < Xpllwellrllzell e <
Ak ||z]|x with Ak is a constant. It implies that py is continuous. This prove

that it exists a continuous representation py : YH®n _, End¢ (V). ]

4.2.2 Topological ribbon superalgebra ur
It is known in Chapter 2 that the operator R = RK on € where

7?/ %{1}(61®f Z {1} p€3® Z {1} ®f2 UH ®uH’
=0 f
O)d =1, () = (Ve Wy (e = 11__2

K = ¢~h®ha—ha®hi—2ho®ha o YH®? (4.2.14)

and

satisfies these conditions below
A ® Id(R) - R13R23,
Id®A(R) = Ri3R2,
RAP(z) = A(x)R for all z € U".

This operator is given by action of an element R is in the completion U @2,
so the proof of the lemma below follows the line of Theorem VIII.2.4 [29].

Lemma 4.2.10. The element R :EIC is a topological universal R-matriz
of the topological Hopf superalgebra UH .

The element R satisfies the properties
R12R13R23 = RazR13R12,
(e® IdL/I;I)(R) =1= (Idg,\{ ®e)(R),
(S©ld5)(R) =R = (Id5 @5 ') (R),
(S®9S)(R)=R.

The completion U of UM is a Hopf C-superalgebra which has a pivotal
element ¢y = k;‘ky? (see Proposition 2.3.4). We define an even element 6,

invertible and in the center of 2/H by

0 = ¢o.(mo7°o(Id®S)(R))™* (4.2.15)
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where 7% : UTQUT — UTQUT, 2 @y — (—1)de2deyy @ 7 is super-flip of
UTQUM, -

We now show that the completion U with the element 6 will be a ribbon
Hopf superalgebra.

Proposition 4.2.11. The 0 is a twist, i.e. the element 0 satisfies

1. ¢(0) =1,
2. A(f) =71(R).R.(0®0),
3. 5(8) = 6.

Equalities (1) and (2) follow from the definition of 6. To prove (3), we
need the following lemmas. -
Let U" be the sub-superalgebra of U of all elements commuting with h, hy
we have the lemma.

Lemma 4.2.12. Foru € Zj{T{, u € U" if and only if u has the form

U= Z Yp.op@pop(hi, ha)eses el (4.2.16)

where weight(y,.s,) + weight(ehefel) =0 and Q,qp(h1, ha) € H(h1, ha).

Proof. By Remark 4.2.5 each u € U can be written uniquely

u = Z Uz’Qij(hlah2)Uj

1<4,j<40

where u; € B_, v € B, Qij(hl,hg) S H(hl, hQ) for 1 <i,j < 4.
For each hy, for k = 1,2 we have

uhy, = Z UiQij(h17h2>Ujhk

1<i,j<4f

= Y wQi(h, ho)(hy + |v|k)v;
1<i,j<4¢

= > il + vl)Qij (R, ho)v;
1<4,5<4¢

= > (e + il + 0510w Qij (ha, ho)v;
1<i,j<4f

= hpu + Z (Jwilw + |vj]k)uiQis (R, ho)v;.

1<i,j<4¢

It implies that u commutes with h; if and only if the sum of the weights of
u; and v; is zero. O

Théorie quantique des champs topologiques pour la superalgebre de Lie sl(2/1) Ngoc-Phu Ha 2018



88 CHAPTER 4. A HENNINGS TYPE INVARIANT

Let T+ be a left ideal of U7 generated by e, ey and eg, set Z = Zt NU".

Lemma 4.2.13. We have Z=Z N U" =T N U" andU" = H(h1,hs) DL
where L~ 1is right ideal generated by fi, fo and fs.

Hence, 7 is a two-sided ideal and the projection ¢ : U" — H(hy, ho) is a
homomorphism of algebras called the Harish-Chandra homomorphism.

Proposition 4.2.14. Let V), be a simple highest weight U -module with high-
est weight 1 = (p1, p2). Then for any z € Z(UH) and any v € V,

zv = p(2)(p)v
where ¢(z) is in H(H*) and ¢(2)(1) is its value at @ = (u1, pia).

Proof. Let wpoo be a highest weight vector generating V,, and 2z a central
element of ¥ . Following the lemmas above, z can be written

Z = QO(Z> + Z yp,a,p@p,a,p(hh h2)65€§€€-
(p,0,p)7(0,0,0)

Since egegeszo,o,o = 0 for (p,o,p) # (0,0,0) and h;wopp = pswo0 @ = 1,2,
we get 2wo 0,0 = ©(2) (11, p2)Wo,0,0- If v is an arbitrary vector of V,,, we have

v = Twppp for some z in UH. It implies that zv = zxwog = x2ZW 00 =
@(2) (1, p2)zwo00 = @(2) (p, p2)v. O

By using this proposition, we have

Proposition 4.2.15. Let u be a central element of UH. If p(u) = 0 then
u = 0 where ¢ is Harish-Chandra homomorphism.

Proof. Let u be a central element of U# such that o(u) = 0. Assume u is
non-zero can be written as

u= Z Ypop@pop(h, ha)ehes ey
(p,U,p)#(0,0,0)

where @,,p(h1, ha) are non-zero functions in H(hy, he), 0 < p,o0 <1, 0 <
p<{—1and (p,o,p) # (0,0,0).

Consider a typical highest weight «#-module V,, generated by highest weight
vector wo,o,0. It is known that the set of 47 vectors B* = {S™'(ehe§el)wg oo}
forms a basis of V; where 0 < p,o <1, 0 < p < {1, {w;,,} is the
dual basis of {w,,,} of V,. In fact, the elements S~'(efee}) form up to
multiplication by k%kS a,b € 7Z a basis of the subalgebra Ut of U gener-

ated by efegef 0 < p,o < 1, 0 < p < £ —1. Since U wgo, = Cuwggg
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where U~ is subalgebra of ua generated by f5f9f70<p,0 <1, 0<p<
{1, we have Spanc(B*) ~ UTwsoo = UTUU Wi ~ UM wg gy ~ V)
where U° is subalgebra of U topologically generated by hy, hy. Furthermore
card(B*) = dim V};, hence B* is a basis of V7. It exists in V, a dual basis
B={,sp 0<p,0 <1, 0<p<{—1}of B in V7, ie. given (p,0,p), for
any e eg el , who(eh €3 el Wy,p,) = 0567 0F .

On the one hand, Proposition 4.2.14 implies that uw,,, = 0 for all 0 <
p,0 <1, 0 <p<{—1. On the other hand, we have that e5°e3°e}® is an
element having minimal weight of ones in the items of sum

Z yp,o,prvcr,p(hlv h2)€§€§‘3117
(p,0,p)#(0,0,0)

such that Qpy.00p0(P1,h2) # 0. Tt is clear that efeel W,y o0p, = 0 for

P o P : : - po 00 PO P o D _
ehege; having the weight higher than one of e5’e3%e}” and eheelw g oo py =
6h06700F0w 0,0 for efege] having the weight equal one of e5’e3el”. Hence we

have

p_o_ P~
Z yp,o,pr,a,pwl, hy)ehes €1Wpq,00,po
(p70-7p)#(070?0)

= > Ypop@pop(1, ha)85° 87000 wo 0,0

weight(efeg el )=weight(e50e50er?)

= Ypo,00,p0 QPO,UOJDO (hl’ h2)w0,070
= Qﬂo,ao,po (M)w/)o,ao,po =0.

This result prove that @, s0.p(P1,h2) = 0. Thus v = 0. O

Lemma 4.2.16. Let py : U" — End(V) be a nilpotent finite dimensional
representation of UM . We have

pv (5(6)) = py ().

Proof. Recall that the category € of nilpotent representations of legH s[(2|1)
is a ribbon category having the twist is the family of isomorphisms 6y : V —
V, YV e €8, 0y = py(0) where py : U — End(V) is a representation of
UM (see Chapter 2). It follows that (8y)* = Oy« YV € €H. In fact (6y)* =
(pv(0))* = (evy @Idy+)(Idy- ®8y @ Idy-)(Idy- ® coevy) : V* — V* has
matrix (py(6))" where (py(6)) is the matrix of the endomorphism py (6).
Furthermore 6y« = py+(#) has matrix (py(S(0)))!, so we have

ov(60) = pr (S(0)). (4.2.17)
]
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Proof of Proposition 4.2.11. Set z = S(0) — 0, z is in the center of UH . Let
a weight module V,, in € of weight p and v is a weight vector of V,,. By
Proposition 4.2.14 and Equality (4.2.17) we have p(2)(u)v = zv = 0. It
implies that ¢(z)(x) = 0. Furthermore ¢(z) € H(H*), this deduces that
©(z) =0, so z =0 by Proposition 4.2.15, i.e. S(f) = 6. O

Hence the results above give us the theorem.

Theorem 4.2.17. The completion un of UM is a topological ribbon super-
algebra.

4.2.3 Bosonization ofljﬁ

It is known that each ribbon superalgebra has an associated ribbon alge-
bra, namely its bosonization (see [36]). For the ribbon superalgebra UH | its

bosonization denoted by Ui’ , is a topologlcal ribbon algebra by adding an

clement o from UH , i.e. as an algebra, U 41° is the semi-direct product of U (1
with Z/27Z = {1, 0} where the action of ¢ is given by

ox = (—1)%*8%zs  for x € UH. (4.2.18)

The coproduct A?, the counit €7 and the antipode S? on ua’ given by
L A% =o0®0, A%(z) =% 1;098% @ 2} where A(z) = ¥, 2; ® o for
el
2. €%(0) =1, €%(x) =¢(x) for x € UH and
3. 57(0) =0, 57(x) = 095 (x) for x € UM

The universal R-matrix R” in &#  determined by

R =Ry Rlo“*" @ R

1
where R :§(I®1+0®1+1®0—0®0) and R = 3, Rl ® R? is the

universal R-matrix in L/{FI . Note that the universal R-matrix R° can be
written by

( J

where the terms a;, b; do not contain hy, hy for all i and K = 3, K} ® K2
is the Cartan part which contains only hq, hy (see Equation (4.2.14)). Its
inverse denotes

=YK, 0K Y @b (4.2.20)
7 7
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The pivotal element of the ribbon algebra Ui’ s @5 = o¢y. We denote U
the Hopf subalgebra of U generated by elements e;, f;, k;, k; * for i = 1,2

and o. It is a pivotal Hopf algebra with a pivotal element ¢§.

4.3 Universal invariant of link diagrams

It is well known that from a ribbon algebra one can construct a universal
invariant of oriented framed links, for example one can see these constructions
presented by K. Habiro (see [23]), M. Hennings (see [26]), L. Kauffman and D.
E. Radford (see [30]), T. Ohtsuki (see [38]), ... In previous section we proved
that U is a ribbon superalgebra in the topological sense so its bosonization
is a topological ribbon algebra. This topological ribbon algebra allows to
construct a universal invariant of oriented framed links. In this section we
apply the methods above to reconstruct a universal invariant of oriented
framed links associated with the unrolled quantum group U*. Then we will
use this invariant to construct an invariant of 3-manifolds in the next section.

4.3.1 Category of tangles

We recall the category T of framed, oriented tangles (see [23], [29]). The
objets are the tensor words of symbols | and 7, i.e. each word forms z; ®...®
x, with xq,...,2, € {},7},n > 0. The tensor word of length 0 is denoted by
1 = 17. The morphisms 7' : w — w’ between w,w" € Ob(T) are the isotopy
classes of framed, oriented tangles in a cube [0, 1]> such that the endpoints
at the bottom are descriped by w and those at the top by w'.

The composition g f of a composable pair (f, g) of morphisms in 7 is obtained
by placing g above f, and the tensor product f ® g of two morphisms f and
g is obtained by placing ¢ on the right of f.

The braiding ¢, @ w ® W' — w @ w for w,w’ € Ob(T) is the positive
braiding of parallel of strings. The dual w* € Ob(T) of w € Ob(T) is defined
by 1*=1, [* =1, 1" =] and

(1@ ..Qwm,)" =z, ®.z] forz,..,z, €{]l,1}, n>2.
For w € Ob(T), let
eV w'Rw — 1, coovy: 1 — w® w*

denote the duality morphisms. For each object w in T, let ¢, : w — w
denote the positive full twist defined by

ty = (WS eV ) (Cyw @ W) (WD COEV,,).
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XX M M

Figure 4.1 — The morphisms c| |, cji, ev), COev|, evy, Coevy

KX MY Y A

Figure 4.2 — Place elements on the strings

It is well known that 7T is generated as a monoidal category by the objects
4, T and the morphisms

1 — — — —
Clls €|y €Vy, COEV|, eVy, COevy

which are represented in Figure 4.1.
A string link is a tangle without closed component whose arcs end at the
same order as they start, with downwards orientation.

4.3.2 Universal invariant of link diagrams

We recall the notion of the 0*'-Hochschild homology for an algebra A,
that is HHo(A) := A/[A, A] where [A, A] = Span{zy — yz : =,y € A}. Let
L =L,U...UL, be a (framed, oriented) link diagram consisting of n ordered
circle components Ly, ..., L, with n > 0. We use the method in Ohtsuki’s
book [38] to construct the universal invariant. It can be described by using
the generators of T (see Figure 4.1).

We can put elements of U1 on the strings of L according to the rule
depicted in Figure 4.2 or in two Figures 4.2 and 4.3. For each j =1,...,n, we
define Jr, by first obtaining a word 7, fj to be the product of the elements
put on the component L; where these elements are read along the orientation
of L; starting from any point (base point) in L;. Then set

‘-/7\Lj = tru(ijj)

where tr, : L/ll\{ M HH, (L/{I\{ o) is the universal trace and HH, (Zﬁ U) is the
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S<a 5(8) S(a 5(8)
\ / / ) S(a )

Figure 4.3 — The cases of crossings with upwards strings where R =Y a®
and (RO) ' =Y a®j.

0*-Hochschild homology for the algebra U, We define

T =T, ®..0F, H (L?f ®”> (4.3.1)

Remark 4.3.1. 1. There is a similar way to define the universal in-
variant by using the quantum trace tr, : A — A/N where N =

Spanc{xy — yS?*(x)| x,y € A} (see [23]).
2. Product by g=' (g is pivotal element in A) induces an isomorphism
HHy(A) = A/N which gives a correspondence between Ohtsuki ([38])

and Habiro ([23]) universal invariant.

Theorem 4.3.2 (see also Theorem 4.5 [38]). 7, is a topological invariant of
framed links.

Proof. The proof in the finite dimensional setting apply without change. One
can show that J, I does not depend on where we start reading the element

on the closed components, and :72 is invariant under the Reidemeister moves
for oriented links. This proves [J;, is an invariant of framed links. O]

We can similarly define the invariant of the string links by
— — — ——oQ®n
TJr=> In®..0 I, €UH (4.3.2)

where T is a string link consisting of n components 7; and :7} is determined
by reading the elements along the orientation of T; for 1 < ¢ < n. The relation
between the invariant of tangles and of its closure is similar as Proposition
7.3 in [23]:

Proposition 4.3.3. If T is a string link, then we have

Jary = 05" (60 ® . ® ¢0)(Tr)) = 05" (657 @ . ® 65)(Tr))

where cl(T') is the closure of T'.
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4.3.3 Value of universal invariant of link diagrams

For z,y € C* x C?, call Q(z,y) the polarization of the quadratic form
determined by the matrix B = (b;;) which is given by by; = 0, bjg = by =
—1, bys = —2. Recall that h;; = 1® ... ® h; ® ... ® 1 where h; is in j-th
position for i = 1,2 and j = 1,...,n. Let §™ = Spanc{h;;} C U™ and
Qi; be the quadratic form on $H™" defined by

Qij(h) = Q(hyy, hyy) = hiyBhy

Zl’i> for i =1, ...,n. Recall also the formula
2,

for the universal R-matrix and its inverse in Equations (4.2.19) and (4.2.20).
Let L be a link diagram consisting of n ordered circle components L, ..., L.

Denote by lk = (lk;;) the linking matrix of the link diagram L and set

Qr(h) = Yi<ij<nlki Qij(h). We consider the algebraic automorphisms

where hjy; is the column matrix (

©ij, pq, of Zjﬁagm given by
pij(a) = £ QWM g, () = €M™ for v € ui”", (4.3.3)

Remark that ¢;; and ¢g, restrict to an automorphism of ¢7®". Indeed, we
denote the weight of an element x € U™ for h; by |z];, i = 1,2, we have that
|z|; € Z. We also recall that

hix = x(h; + |z|;), zhi = (h; — |z|;)2 for x € U*.

These equalities imply that for z = Q}_, xx € U7®" we have

® Ikghuhz,j — €1®---®(h1—|$i|1)®--.®(h2—lzj|2)®-.-®1 ® T (434)
k=1 k=1

Then &% = k; € U implies that x&Mih2i = ¢hihzig! with o' € U7®". This

deduces that ¢;;(U7®") =U®" for 1 < i,j < n and @g, (UT7®") =U".
Recall that 7, = tr®"(J2) = JP + [ﬁf\{ U®n, Ui U(Xm] where J? depends

on the choice of the base points. We have the theorem.

Theorem 4.3.4. We have 9t 70 c Y7®" and if V' is an other choice of
base points then

£-Qr®) b _¢=Qr 7Y ¢ N, where No, = & QM ya”™"

L ut” M Ay,

Proof. We fix the base points and represent the value of J? by the product
of two parts, the first one is in H($*) and the second one is in the tensor

Théorie quantique des champs topologiques pour la superalgebre de Lie sl(2/1) Ngoc-Phu Ha 2018



4.3. UNIVERSAL INVARIANT OF LINK DIAGRAMS 95

Figure 4.4 — Separation of elements

product of copies of U7 as follow. For j = 1,...,n we first put the element of
UA° on the strands L; following the rule deplcted in Figure 4.2. By Equality

(4.2.19)
=Y a®f=>) a0by KoK

we can separate the elements coming from the Cartan part from the rest.
Second, we fix the Cartan parts of the elements at the cross points and then
push the rest of the elements to the base point of strand (along the orientation
of L;), see illustration in Figure 4.4 (w and w' related as in Equation (4.3.4)).
The product of this part gives an element w; € U for j = 1,...,n. At each
point of crossing (i,7) between the i-strand and j-strand of L, its Cartan
part gives us the element

Ko — ffij(—hl,ihm—h2,ih1,j—2h2,ih2,j) — gé‘ijQij(h)
ij

where £;; = +1 is the sign of the crossing (4,7). Hence the value of J? can
be written as a product of £92(") and an element of &°®". This means that
f_QL(h)j£ e UYoen.

By the definition of the J1, one has

Ty —TJY et un’.

It implies that

gL b _ e=Qu() gV ¢ e=Qui " "
odn ——o®

We have thus &~@e(0) b — ¢=Qut) 7 ¢ ¢=Quya”™™"  ygA”"" | om0

We denote by J1, any elements 77 which is well defined modulo an element
of fQL NQ
—o®n ——0o@n ——o0®n
Remark 4.3.5. As [UH | U? | = Spanc{zry — yz| z,y € UH '}
then €M™ Y™™ = Spane{e= 9 W (ay — ya)| x,y € UL} =
Spanc{zy — g, (y)x | x,y € UHU@H}. I do not know if the following is true:
is Ng, equal to Spanc{zy — ¢q, (y)x | x,y € UT®"}.
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—oQ@n Z;I\{a
Note also that 7, belongs in <L{H > where

——o®n Zﬁo —=oQn =i
(L{H ? ) = {u eyt N luAl (z) = A[”](x)u} for all x € U . A proof

of this assertion can be seen in Lemma 6 [3].

4.4 Invariant of 3-manifolds of Hennings type

In the article [26], Hennings proposed a method to construct an invariant
of 3-manifolds from a universal invariant of links by using a finite dimensional
ribbon algebra with its right integral. The invariant of 3-manifolds is com-
puted from the universal invariant of links. The key point of the construction
is the role of a right integral of the Hopf algebra [26]. It is well known that
it always exists a right integral on a finite dimensional Hopf algebra. Vire-
lizier generalised this fact by using the notions of a finite type unimodular
ribbon Hopf m-coalgebra and the right m-integral to construct an invariant of
3-manifolds with m-structure. Here 7 is a group and the structure is given
by representation of the fundamental group in 7 (see [48]). When 7 = G is
commutative a G-structure reduces to a G-valued cohomology class. In the
case of the unrolled quantum algebra U*, the associated Hopf G-coalgebra
can be ribbon but not finite type. However, we show that the associated Hopf
G-coalgebra induces a finite type Hopf G-coalgebra by forgetting hq, ho. We
show that we can still construct an invariant of 3-manifolds of Hennings type
by working on the pairs (M, w) in which M is a 3-manifold and w is a coho-
mology class in H*(M, G). The construction of the invariant uses the discrete
Fourier transform and the G-integral for the finite type Hopf G-coalgebra as-
sociated with U7 (see in Section 4.4.1). This invariant is a generalisation of
the one in [49] that apply to U. We recall some definitions from [37, 49].

4.4.1 Hopf G-coalgebra from pivotal Hopf algebra U/°

Definition 4.4.1. Let w be a group. A w-coalgebra over C is a family C =
{Cs}aer of C-spaces endowed with a family A = {Ayp : Cop — Cy ®
Cstaper of C-linear maps (the coproduct) and a C-linear map € : C; — C
(the counit) such that

1. A is coassociative, i.e. for any o, 3,y € T,
(Ao ®Ide, ) Ay = (Ide, @A) Ad sy,

2. for all a € w, (Ide, ®)An1 =1de, = (e ® Ide, ) A1 4.
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A Hopf m-coalgebra is a m-coalgebra H = ({Ha}aer, A, €) endowed with
a family S = {S, : H, — Hy-1}aer of C-linear maps (the antipode) such
that
1. each H, is an algebra with product m, and unit element 1, € H,,
2.¢e: HH -+ Cand A,p: Hyp — H, ® Hg are algebra homomorphisms
for all o, 5 € m,

3. for any a € m,
ma(Safl X IdHa>Aa—17a = Ela = ma(IdHa ®Sa—1)Aa7a71.

A Hopf m-coalgebra is of finite type if H, is finite dimensional algebra for
any o € m.

Recall that C' = C[k{, k3] is the commutative Hopf subalgebra in the
center of U?. Let G = (C/Z x C/Z,+) = Homu,(C,C), (aj,az)
(kf — g’fai) for ¢ = 1,2 and let Uz be the algebra U4” modulo the relations
kf = ¢ fora = (qy, ) € G, i = 1,2.

Proposition 4.4.2. The family U° = {Uz}taec is a finite type Hopf G-

coalgebra.

Proof. By applying Example 3.2.3 it follows that {Uz}gee is the Hopf G-
coalgebra with the coproduct and the antipode determined by the commu-
tative diagrams:

AO’ SO’

u° U U° u° u’
PayB Pa @ p3 Pa P-a
Aa,B Sa
uaJrB — UE ® Z/{B Z/{a Z/{_a

where pz : U7 — Uz, x© — [z] is the projection from U7 to Uz. For a@ =0
the Hopf algebra Uj is called the restricted quantum sl(2[1), i.e. the algebra
U° modulo the relations kf = 1 for i = 1,2. Furthermore dim(Uy) = 32¢* for
@ € (G. This finished the proof. [

Proposition 4.4.3. The small quantum group Us is unimodular.

Proof. Call € the even category of finite dimensional nipotent representa-
tions of Uesl(2[1). We claim that the projective cover P¢ of the trivial module
is self dual: Pc ~ P{. The proof is analogous to Theorem 2.5.1. Furthermore
Pc € Uyz-mod so the category Uyg-mod is unimodular. By [13, Lemma 4.2.1]
confirms that {5 is unimodular. O
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A consequence of the proposition above is that the Hopf G-coalgebra U°
is unimodular finite type.

Definition 4.4.4. A w-trace for a Hopf m-coalgebra H = { Hy }aer is a family
of C-linear forms tr = {tr* : H, — C},er which verifies

tr(zy) = tr(yz), 1% (Sa(x)) = tr(x)
forall o € ™ and x,y € H,.

It is known that for each finite type Hopf m-coalgebra, there exists a family
of linear forms called a family of the right 7-integrals ([49]). Call (Az)zec the
family of right G-integral for the finite type Hopf G-coalgebra U7 = {Uz}zeq-
This means that the family of C-linear forms A = (A\g)aece € [laeq Us satisfies

(Om @ Idi) A5 = Ayy515 (4.4.1)

for all @, 8 € G (see in Section 3 [49]). Note that \g is an usual right integral
for the Hopf algebra Us. We define a family of C-linear forms {tr®}zce on
U’ determined by

tr%(z) := \g(Gax) for z € Uy
where G = U¢0’kf:££ai for i = 1,2, i.e. Gg = £ *0ky? mod k! — €% for
1 = 1,2. This family determines a G-trace by proposition below.

Proposition 4.4.5. The family {tr*}geq above is a G-trace for the unimod-
ular finite type Hopf G-coalgebra U = {Uz}zec-

Proof. As U° = {Uz}aec is a unimodular finite type Hopf G-coalgebra, by
Theorem 4.2 and Lemma 6.8 [49] for U one gets

[
Aa(ry) = Aa (9-aSx(y)r),
5 (Sx()) = Az (G2x) and
S,aSa(ac) = GazGZ' for z,y € Us.
By the definition of {tr*}zeq we have
tr(yz) = Aa(Gayr) = Aa (S-aSa(r)Gay)
= Aa(Ggry) = tr*(zy).

Furthermore, for x € Us
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and Az (GZr) = tr%(Ggz) so tr=%(Sz(z)) = tr®(x). This implies that the
family tr = (tr%)zec is a G-trace for U°. O

Note that, since S_557(Gz) = Gz for x € Ug then

Thus we also have tr®(z) = A\z(2Gg) for x € Uy.

4.4.2 Discrete Fourier transform

For a (partial) map f : C" — C we define t;(f) by t;(f)(h1,....,hn) =
f(hyyooshi + 1,0hy,) for 1 < i < n. Let Lz = {(a,...,a,) + Z"} be
the lattice of C" corresponding to @ = @ = (ay,...,@,) € (C/Z)". A
function f(hy,..., h,) € H(hq, ..., hy) is called ¢-periodic in h; on the lattice
Ly if it satisfies f_ = tt (f‘a) where f_ = f|£a' A function f(hy,...,h,) €
H(hi, ..., hy) is L-periodic on Lz if it is in all variables on Lz. The functions
{gmhi}i=loo™ are (-periodic and €% — £/ are zero on @. Let I be the ideal
in the ring R = C[¢*" | ..., €] generated by ¢ — ¢ for 1 < i < n. Then
an element of R/I defines a (-periodic map in all variables on L3.

Proposition 4.4.6 (Discrete Fourier transform). Let f = f(hy,...,h,) €
H(hi, ..., hy) be a L-periodic function on Lg. Then there is a unique element
Fz(f) € R/I which coincides with f on Lg and is given by

/-1
Fz(f)= D mym, Mt tmnl, (4.4.2)

The coefficients a,,..m, (Fourier coefficients) are determined by

1S N . _ ,
ooy = ETZ Z 3 my(ar+ir)—... m"(a"+7’")f(061 g, e, + Zn)~
21,eeeytn=0

Proof. We consider first the function f(hy) € H(hy) is ¢-periodic on Lz,
for @ € C/Z which is denoted by f|al. The set of such functions is a /-

dimensional vector space. The family {¢™M}E L of linearly independent
(-periodic functions on Lz, is a basis of this space, so we can write

-1
f\al - Z amlgmlhl'

m1=0
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To determine (a,,, )m, we evaluate the function at o +1i; for iy = 0,...,0—1,
we have a linear system of ¢ variables a,,, with m; =0,..,¢ —1

-1
Z am1£m1(a1+i1) = f(CYl + 21) for 1= 0, ,f — 1.

m1=0

The matrix of this linear system is

il £ .. gD 7

1 gt L 5(5*1)(041“)
A= etk D@

1 €a1+€—1 L. 6(2—1)(041—%—1)

Note that Y f_b £F—9) = (6%, so we have

1 1 . 1
e 1 £ 5*(041+1) e f*(aﬁrf*l)
é N : “ e :
g-(EDar g=(E-Dert)) .. g-(-D(@+-)
This implies that am,, = § 552 &™) faq + ky) for my = 0,.., 0 — 1.
Then by induction on ¢ for 1 < ¢ < n we have a similar affirmation for the
(-periodic functions on L with @ € (C/Z)" . O

Denote Uyz = Us, @ ... @ Uy, for @ € ((C/Z)*)" in which @; =
(@15, @y;) € (C/Z)? and U 5 the subalgebra of Uy z generated by k’zijl = (Fhig
fori=1,2and j =1,...,n (see Equation (4.2.13)).

Corollary 4.4.7. Let f = f(h;;) € H(h;;) be a {-periodic function on Lz.
Then there is a unique element ofl/{gﬁ which coincides with f on Lg and it
is given by

/—1 n

Fz(f) = Z @iy iy n H /ﬁsskéss € Z/{gﬁ

il:"'ﬂ”l’ﬁ j17"'7jn:0 s=1
where

1 /—1
ail---injl---jn = €2n Z

S1yee0ySny t1yeenytn=0

floar + 51,01 +t1, ooy Q1 + Sp, o + 1).

£ 2y im (@t sm) i (G2 +tm)
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Proof. By Proposition 4.4.6 we have

-1

n . .
fﬁ(f) _ Z ail,,,injl,,,jngzszl ’Lshl,s"l‘]shQ,S.

1yeensing J1rerjn=0
Since ¢hii =k, fori =1,2 and j = 1,...,n then
)] ) ) )
-1

n
Fa(f) = Z Qi iy jn H Ky ko € U(%a-
s=1

U5eeslny J150e05dn=0

Proposition 4.4.6 gives the formula determining the coefficients a;, i, .-

(]
Example 4.4.8. The function K = £-m®h2=ha®h=2ha&h g ¢_periodic on L5
and we have
1 1 o o
Fg(K) = — Z ghiztii =2z phpdl @ L2 ¢ s @ Us. (4.4.3)
11,12,71,j2=0

Indeed, by Corollary 4.4.7 one has

fﬁ’(K) = Z ailizjljzkilkél ® k?k%Q

11,82,J1,J2=0

The coefficients a;,i,j,;, are computed as below

/-1
L = —t1s1—j1t1—i2sp—jata ¢ —s1ta—t152 =212
Airigjije = /4 Z 3 3
51,82,t1,t2=0
1 & -1
— —Jit1—jata—2t1t2 —1181—1282—S1t2—t182
Cp4 Z f Z 5
t1,t2=0 s1,52=0
1 /-1 /-1
_ —j1t1—jato—2t1t2 —(i1+t2)s1—(i2+1t1)s2
DI > ¢
t1,t2=0 s1,52=0
1 -1 /-1 -1
_ —Jj1t1—jata—2t1t2 —(i1+t2)s1 —(i2+t1)s2
g4 Z £ Z 3 Z §
t1,t2=0 s1=0 52=0
1 -1
- —Jjit1—jata—2t1t2 p <O 0
— 4 Z S 6521 +to mod€Z€5i2+t1 mod {7
t1,t2=0
1 =1 -1
_ —7J1t1 50 —Jata—2t1t2 50
- 62 Z 6 5i2+t1 mod 7 Z 5 6i1+t2 mod {7,
t1=0 to=0
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1[1

jit1 50 Ja2(—i1)—2t1(—11)
2 Z 6 622+t1 modZZg
t1=0

_ 72€*J1(*i2)€*j2(*il)*Z(*iz)(*il)
1
g2

5]112+3211 21112

For o; € (C/Z)* we call Zjﬁ{;jr the subalgebra of UH generated by el-
ements forms u = 33; fi;(h1, ho)w; where w; € 0™B,B_ for m = 0,1 and
fw(hth) € H(hy, he) are (-periodic on Lg, Denote Z/{H®a> = quer

. ® L{H . We extend linearly Fz to a map Z/{H = — Ugg by the rule
Z fm(hl,m hoj)wm = 3 Fg (fm(hi, hoj))wm

Lemma 4.4.9. The map F5 : ﬁl\{g% — Ugyg 1s an algebra map.

Proof. By the unicity in Proposition 4.4.6, as fg|.. = Fz(f)Fz(g9) we have

Fz(fg) = Fz(f)Falg)

for the ¢-periodic functions f, g on Lg.

Consider the elements f(hy, ho)wy, g(hy, ho)ws € Zj{?*’gfr where f,g are (-
periodic on Lz, and wy,wy € o™B B_ for m = 0,1. By Remark 4.2.4
one has

(f(hy, ho)wy)(g(hy, ha)wz) = f(hy, ha)(wig(ha, he))w:
f(h1, ha)g(hy + w1, he + Jwi]2)w,

where (|wi|1, |wi]2) is the weight of wy for (hy, hs). So we have

Fz (fwigws) = Fz (f(h1, ha)g(hi + [wil1, ha + [wi|a)wiws)

g(ha + Jwil1, he + |wi2) ) wiws

Fz(g(hy + |wi]1, he + |w1]2))wiws

w1 Fz(g(h + [wil = [wif1, he + |wi2 — wi2))ws
w1 Fg (g)ws

w1) Fz (gws).

~— — ~—r

]

—— per

o@n
Lemma 4.4.10. Assume x € L{H®a> is a commutator in U then Fz(x)
is a commutator in Ugg .
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Proof. We consider an extension of the discrete Fourier transform on the
lattice Lz which denoted by F’. The extension will depend on (o;); € C*" and
coincide with F% on elements /-periodic on Lz. The transformation is defined
as follow: let f = f(hy, ho ) be a holomorphic function of H(hy ;, ha ;) then
if f is (-periodic on Lz we define F'z(f) = Fz(f); if f is not ¢-periodic on
Lz we define F'(f) = Fz(f |rec) given by the right hand of Equation (4.4.2)
where Rec = {(aq +i1, ..., an+in), 0<iy,..., i, < €}. Then F'(f) is the
unique element of R/I (see Section 4.4.2) which coincides with f on Rec.

The map F' is also an algebra map. A proof is similar as the one of Lemma

. . Sodn .
4.4.9. As x is a commutator in UH we write

T = fri9x9 — graf1

where f, g € H(hi;, haj) and 21,29 € Ugyg. Applying F' to the above
equality one gets

F(z) = F(f)o1F (g)xe — F(g)x2F (f )1 € Uz, Uga]-

Furthermore x € Zjlﬁgé then Fz(x) = F'(z). Thus Fz(x) is a commutator
in Ugpz- O

Lemma 4.4.11. Let 3,7 € (C/Z)? and let @ =@ = f+7. Assume f(hi, hy)
s (-

is a C-periodic entire function on Lg. Then A(f) i pemodzc on C @) and
Agﬁfﬁ(f) = ‘F(Bﬁ) (A(f))-

Proof. First, by Proposition 4.4.6 we have

-1
Fﬁ(f) — Z am1m2€m1h1+m2h2
m1,ma2=0
where Gy, m, = Z“ L &Tmilentiymmalaati) £y 4y qp +dp). Then
/—1
— h1®1+1®h1)+ ha®@1+1®h
ABW‘FH(JC) - Z Oam1m2€m1( ! Dtmalhs 2)'
mi,ma=

Second, the algebra homomorphism A gives us Af(hy, hy) = f(hi @1+ 1®
hi,he ® 1 +1® hy). Applying the discrete Fourier transform one gets

-1
L ENE) R S S

n1,m2,n3,n4=0
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where the Fourier coefficient

/-1
_ 1 Z g_nl(51+i1)_n2(/82"!‘1'2)_77/3(714‘]'1)_n4(72+]'2).

bn1n2n3n4 — 74
i1,02,51,j2=0

f(Br 41+ 7+ i, B2 +i2 + 72 + Ja)-
By @ = 3 + 7, one has
1 -1
b — 75*71151*71252*11371*”4’72 Z £*n111*n2i2*n3j1*n4j2
ninaonsng 1 .
¢ 11,82,71,J2=0

floa +i1 + j1, 00 + ia + Jo).

Since f(hy, hy) is f-periodic on Lz, setting s =iy + j; and t = iy + jo then

1 -1
—MN —nN —nN, —n.
bninangng = gjg 1oy e Z f(al + 5,00 + t)-
11,12,8,t=0
é——nlil—nzig—n3(s—i1)—n4(t—i2)
1 /-1
— —n1B1—n2B2—n3y1—nay2 —n3s—nal
bn1n2n3n4 = gjg Z f(Oél +s,a + t)f .
s,t=0
-1
Z €(n37n1)1'1+(n47n2)i2.
11,i2=0
Since
/—1 -1 -1 )
Z g(ngfnl)i1+(n4fn2)i2 _ Z £(n3*n1)i1 Z 5(”4*”2 2
i1,2=0 i1=0 i2=0
__ p25n1 SN2
= {70,20,7

then by nonsn, = 0 if (n1,n2) # (n3,ny) and when (nq,ny) = (ng,n4) then
bnynonin, 18 computed

1 -1
Dryingning = ﬁg—m(ﬁﬁﬂ)—nz(ﬂﬁw) S° flag + s, g 4 1)
s,t=0
1 i —na2ag S —ni1s—not
:[25 > floa +s,a0 +1)E
s,t=0
1 /—1
= ﬁ Z §—n1(a1+s)—n2(a2+t)f(a1 15+ t)
s,t=0
= Qpqny-
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Hence

-1
oy (AU = 3 b S0 16k ot

ni,n2=0

/-1
_ n1(h1®1+1®h1)+n2(h2®@1+1®h2)
Unyns§

ni,n2=0

= Agﬁfg (f) .
]

Remark 4.4.12. As S(h;) = —h; fori = 1,2, by the similar calculations as
in Lemma /.4.11 then

F_aS5(f) = SaFa(f)

A consequence of Lemma 4.4.11 is that R0 = Rﬂé}"ﬁ (K) is the universal
R-matrix of Uy with R® = F3(R,) is given by

Rﬁ = lRl § 1 {1}1(—{1})P+5 i1j2+i2j1*2i1i2'
G i =0 im0 (Del(p)el(9)e!
ek k) o @ fifEFIRERY  (4.4.4)

1
where R; = 3 (I1®1+0®1+1®0c—0®0) (see Section 4.2.3). Indeed

the relations satisfied by the R-matrix R, (see [31], [51]) translate to the
relations for R°.

4.4.3 Invariant of 3-manifolds of Hennings type

Let L be a framed link in S® consisting of n components (still denote by
L its link diagram), M be a 3-manifold obtained by surgery along the link
L. Let w be an element of the cohomology group H'(M,G) (see Section
2 [8]). The value of the invariant of link J? is in £9LWyo®n. Let @; =
w(m;) = (@}, ;) here m; is a meridian of the j-th component of L. Denote
@ = (ajy,...,@,). Since w is an element of the cohomology group H'(M, G) it
vanishes on longitudes of L, this implies the relation 2?11 k;;a; =0, Vi =
1,...,n. We have

Proposition 4.4.13. The function f(hi;, haj) = £9LM) is (-periodic on Ly.

Théorie quantique des champs topologiques pour la superalgebre de Lie sl(2/1) Ngoc-Phu Ha 2018



106 CHAPTER 4. A HENNINGS TYPE INVARIANT

Proof. We denote hy; +(=1®..® (hy +{) ® ... ® 1 where h; + ¢ is in i-th
position. We have

f(hl,i + f’ h2,j> _ fi szzllkij((hl+£)ih2,j+h2,ih1,j+2h2,ih2,j)
— gZ:jzl Iki; Qz‘j(h)g— Do tkij tha
= J (o ha ) 2o 00,

The equalities >°7_; lky; @; = 0 imply that 7, Ik;; ap; € Z. Hence we get
f(h1;+ £, hej) = f(h1;, hoj). The computation is similar for the variables
hg,j. ]

Lemma 4.4.6 implies that F4 (ﬁQL(h)> € Ugg. We define
Jr = Fz (J1) € Ho(Uyz) (4.4.5)

thanks to Theorem 4.3.4 and Lemma 4.4.10. Let 65 be the ribbon element
of the small quantum group Uj.

Lemma 4.4.14. There exists a normalization of (A\g)zeq such that

Proof. The proof is thanks to Lemma 4.4.20. m

Theorem 4.4.15. .
J(M,w) = Q) tr™ (J}) (4.4.6)
j=1

is a topological invariant of the pairs (M,w) where n is the number of com-
ponents of the surgery link L.

Remark 4.4.16. Usual quantum surgery invariants are renormalized thanks
to the signature. There is no need of renormalisation here thanks to Lemma

4.4.14.

We use a result on the equivalence of 3-manifolds obtained by surgery
along a link to prove Theorem 4.4.15, that is the theorem below.

Theorem 4.4.17 ([32]). Let My and My be oriented 3-manifolds and f :
M, — My be an orientation preserving diffeomorphism. Any two surgery
presentations Ly and Lo of My and M,y, respectively can be connected by a
sequence of handle-slides, blow-up moves and blow-down moves such that the
induced diffeomorphism between M, = S%l and My = S%Q is isotopic to f.
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aw W eo
©

Figure 4.5 — Second Kirby’s move

Proof of Theorem 4.4.15. We need to show that J(M,w) does not change
under two Kirby’s moves. In the case of handle slide (the second Kirby’s
move), we can assume that the algebraic element on the strands are already
concentrated as illustrated in the first component of Figure 4.5 where x €
Us, y € Uz ate given by the discrete Fourier transform (see Equation (4.4.5)).
The associated invariant of 3-manifolds will be computed by

tr¥(2)y = Ma(Gar)y = € Us,y € Us.

After sliding, by the commutativity of the Fourier transform with the co-
product in Lemma 4.4.11 and by the property of the element R-matrix
we replace z by Aa’,ﬁ(x) =11 ®ay for x € Uy, 1 € Uy, 19 € L{E
as in the second and third component of Figure 4.5. Note that the rela-
tion between the homology classes of the meridians is mg,, +m, = m,, i.e.
w(my,) +w(my,) = w(m,) < @ + B =a@. The invariant is determined by

tra/(xl)nyGE = )\a/ (Ga,xl)yIQGﬁ
Furthermore, the definition of the right G-integral (Az)zeq implies that
(Aa’ ® Id“g) Aa’,ﬁ(xGa) = Aa(2Gg) 1z

then
Ao (211G )22G5 = Aa(2Ga)l5
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and finally
A (lea’)nyGﬁ = Aa(zGa)y,

ie. J(M,w) does not change under the second Kirby’s move. Changing the
orientation of a component changes [J;, by applying an antipode (see [38]),
Proposition 4.4.5 and Remark 4.4.12 imply J (M, w) does not depend on the
orientation. For the first Kirby’s move, the blowing up and blowing down, it
is easy to see that w(m) = 0 for m the meridian of +1-framed loops and the
two +1-framed loops evaluate as \5(f5) and A5(65 1), respectively. O

Recall that the Hopf algebra Us has a PBW basis { fi f£ foei' et €3 k' ki o™
0<pdp,0,m<1 0<i,i, ji,jo <{¢—1}. To prove Lemma 4.4.14 we
need the proposition below.

Proposition 4.4.18. The linear form X\g: Uy — C determined by
No(SLS L3k e 5 K K o™) = ndi 07076, 10F o7 007 05 (4.4.7)

is a right integral of Uy where n € C* is a constant and (5} is Kronecker
symbol.

Proof. See in Appendix A.2. m
By Equation (4.4.1) we have the remark.
Remark 4.4.19. For a = (a;,@s) € C/Z x C/Z then
NalfLf5 fe ef e ki k™) = metleatonsy 606767, 6f 67 6 672 107"
is a right G-integral for the Hopf G-coalgebra {Uz}zecc-
By using Proposition 4.4.18 one gets the lemma.

Lemma 4.4.20. We have

soltp) = agtot) = L2y

Proof. See in Appendix A.3. O
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Computations in Ugsl(2[1)

A.1 Proof of Lemma 2.3.3

To prove Lemma 2.3.3 we need the lemma below. Set €. = 626361 U fonax =

fafsfi

Lemma A.1.1. 1. emarfmar # 0.
2. The set {€makikl finas s, € L} is free over C.

Proof. First, let V, be a typical module with the highest weight p = (11, p2).
We show emax fmax 7 0 by considering its action on V. We have

-1
emaxfmawaOO = 626361 f2f3f1 Wo,0,0 = €2€3€7 W1,10-1-

Using the representation of V,, determined in (2.4.5) one gets

€€_1w1,175_1 — €M1+/L2+2 H[l] [Ml +1— Z-]le’o

and by (2.4.6)

—1
62€3€§_1w1,1,e—1 = gHathat? < i) [ +1 — l]) €2€1€2W1 10
=1
-1
= gt (H[ Il +1— z’]) (=& a2 + 1 [p1a) — €772 1] 1a]) wo00

g (T +1— i)l 2]) (6 ua + 1] + €72 1] ) w0

—_

=

_ _E}H +p2+3

=By

§—¢

AAII

m + 1 — Z [/~L2]_1> (£M1+N2+1 o é-*,ulﬁqul) Wo,0,0

109
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— _€M1+M2+3 (1:[[2] [,ul +1-— Z]) [ug][,ul + o + 1]w07070.

i=1
As V, is the typical module then [T{Z1 [p1 4+ 1 — ][] [pe1 + po + 1] # 0 (see
Remark 2.4.1). This implies that emax fmaxWo0,00 7 0, i.e. €max fmax 7 0.
Second, one has esesel “lEm = 5_2’”""2]@”626365’1 where (a;;)1<; <2 is the
Cartan matrix in Definition 2.3.1, then one can write
esesey kK fafsfi Tt = € kikhesesel  fofafi
By (2.4.1) and (2.4.2) we get
kfkéemaxfmaxwo,o,o = fsmﬂmc(/ﬁh Mz)wo,o,o

where c(pn, pia) = —€M2 03 ) [y 4 pio + 1 T [i] (11 + 1 — ).

The expression £5#1 %2 ¢(uy ) 1o) determines a complex function fo(py, p12)
of two variables pi, pto. As the set of the functions {fs : s,t € Z} is linearly
independent then the set {k{klemaxfmax : S, € Z} is free over C. Thus we
have the second affirmation. O

Proof of Lemma 2.3.3. We consider the Superalgebra U = Uesl(2]1)/ (4, f1)
as the one generated by generators e;, fz, +, k1 and the relations as in Def-
1n1t10n 2.3.1 with additional relations el fl 0. From e3 = ejeq —

Eleser, fs = foft — Ef1f2 one gets
le1, f3] = =& faka, [es, fi] = —ezkfl
eafs+ faea = € fiky !, eafo+ faes = £ erks.
Define the length on generators by
le;)) =1(f;) =1, I(k;) =0fori=1,2

then the above relations imply that one can reorder the monomials in & up
to elements of smaller length. This implies by induction on length that the
set {ehegelkskifs 15 17 poo,p o’ € {0,1}, p,p € {0,1,....0 — 1}, st € Z}
is a generating set for U (see [6]).

To prove the linear independence of the vectors we consider the relation

pr,a,p,s,t,p’,a webesetkiky f3 f3 f1 =0 (A.1.1)
where p,o0,p,0" € {0,1}, p,p’ € {0,1,...,0 — 1}, s,t € Z. The sum in
Equation (A.1.1) contains four blocs associated with (p, o) and can rewrite

LHS of (A.1.1) =" 200psrpopmeikikb 5 1 1 (A.1.2)
+ Y r0psngpeaikiks 1 1Y (A13)
+ Y B0t o wesch kiR ff 5 1Y (A.14)
+ s peaese R ST (ALD)
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As €3 = €2 = 0 then the three last blocs (A.1.3) - (A.1.5) are zero after the
left multiplication at Equation (A.1.1) by eses and one gets

/ / ’
Z w0707p757t7p/70—l7p/62636€kik§f2p fg ff = 0 (A16)

v (eze3)e; = eq(eqges) and ef = 0, using the left multiplication at Equation
(A 1.6) by ™! we get

ZxO,O,O,s,t,p’,U’,p'e2€3€§7lkfk§f2p fglff = 0. (A.L.7)
Using the right multiplication Equation (A.1.7) by f{~! one gets

Z$0,07075,t7p 0/0626361 lk‘sszz f3 =0. (A18)

Now we write the left hand side of Equation (A.1.8) as the sum of four blocs.

LHS of (A.1.8) Z 20,00 5t07070€2€3€€_1k’ik§ f_l (A.1.9)
+ Z wo,o,o,s,t,1,0,0€2€3€€_lkfkéﬁff_l (A.1.10)
+ Z x0,070,5,t70,17062636f’1kfkéf;;ff’l (A.1.11)
+ Z 1’0,0,0,5,@1,1,062636?71kigkéfzf:%fffl- (A.1.12)

As fi(fofs) = (fof3)f1 and f3 = f2 = 0 then Equation (A.1.8) gives
Y wo00st00062es€] Kk fafsfi =

By second statement of Lemma A.1.1 one deduces that 0,000 = 0 for
s,t € Z. Now the left hand side of Equation (A.1.8) remains three blocs
(AllO) - (A112) Slmllarly, we deduce that 20,0,0,s,t,1,0,0 = 20,0,0,s,t,0,1,0 —

L0,0,0,5,t,1,1,0 = 0.
Thus we see that from Equation (A.1.7) we get zo00.s1t,000 = 0 for 0 <
pl,o’ <1, s,t € Z. Repeating the calculations gives (005,06 = 0 for
0<p, o<1, 1<p <l—-1, s,teZ.

Applying similar calculations we get

Tpopsitp ol =0
for 0 < p,o,p,0 <1, 1<p,p <Ll—-1, s,t €.

Hence, {egegefkfkéfflfg"/ff/ p,o,p 0" €{0,1}, p,p €{0,1,....0 — 1}, s,t €
Z} is a basis of U. O

Théorie quantique des champs topologiques pour la superalgebre de Lie sl(2/1) Ngoc-Phu Ha 2018



112 APPENDIX A. COMPUTATIONS IN U;&S£(2|1)

A.2 Proof of Proposition 4.4.18

It is necessary to check Ay satisfies the condition (4.4.1), i.e
(A5 ® Idi ) A(x) = Ag(w)1 (A.2.1)

for all © € Uz. We check Equation (A.2.1) for the elements in PBW basis.
This equation holds true for all elements fif§fJe! e 62 'k ko™ in which
(ia P, 57 ilapl7 5l7j1aj27 m) 7£ (E - 17 17 1a£ - 17 17 1a O f 2 O)
For (i,p,0,4,0',0', 41, j2,m) = (£ —1,1,1,£ —1,1,1,0,¢ — 2,0) we have the
right hand side of Equation (A.2.1) at w = f{ ' fsfael tesesk’ ™ is equal to
nl. The left hand side of Equation (A.2.1) at w is computed as follows. First,
one has

Ales) = es @14k thyto @ eg + (€ — € eaky ' @ ey,

A(fs) = fs@kika+ 0@ fs+ (£ =€) fio @k fa

and one can write
-1 -1 -1 -1 -
Ale) P =el " @1+k' Qe+ > cwelkit @,
u,v<l—1

Af) T =k H1e i+ Y Aok

u’ v’ <l—1
where ¢y, ¢, are the coefficients in C and the powers of ey, fi and ky are
less then ¢ — 1.
Then we have the decomposition
Aw) = A(f1) T Af3)A(f2) Aler)  Ales)Aea) Ak ?)
= ([T @k fs @ kika)(fo ® kQ)( 1) (es® 1)<e2 ® )(zcH ® k57?)
i',p1,01,5",p1,01,31,95 m 01101 1,95
+ Z zppgg p’j5’pj1 jgjm] flfSpf 6163 e2 kjlkpo- ® fl 2 61 63 €2 kj kj
where the terms in the sum satisfy (¢, p, 9,7, 0,8, j1,J2,m) # (£ —1,1,1,¢ —
1,1,1,0,¢/ — 2,0). By Equation (4.4.7) and k! = 1 for i = 1,2 the decompo-
sition above implies that

(Ao ® Tde ) A(w) = (Ag @ Tde ) (f{H @ k{1 (fs @ knka) (f2 © Ka).
(e @ 1)(es @ 1)(e2 @ 1)(ky > ® Ky %))
= (Ao @ Idy ) (f1 " fafoe eseaks ® @ Ky kakokoks™?),
i.e.
(N @ Idy ) A(w) = (A @ Idy ) (ff " fafaei  eseaks > @ 1)
= Mg(fi " fafeei teseaky %)l
=nl.
Thus the linear form Aj is a right integral of U4.
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A.3 Proof of Lemma 4.4.20

Firstly, we represent the decomposition of 05 1'in a PBW basis of Us. By
Equation (4.2.15) the ribbon element 65 of U is determined by

= gbg(m o150 (Id ®Sﬁ)(7—\’,6))_1,

i.e.

6=' =mor o (Id®S5)(R°).(65) " (A3.1)
In Equation (A.3.1) the terms are determined by
(65) " =@ 0" =kzo

and

-1 1 i 5
R —Rl Z {1} (_{1})p+ §i1j2+i2j1—2i1i2'
G s a0 pamo (Del(p)e!(9)e!
e 6362]{“/{]1 er‘$®f1 fgk?k%é

where By = $(1®0140®14+1Q0—-0®0) = §3,, ,—(—1)"0™ @ 0™,
le.

'R,6 1 % zl: (_1 mn{1}i(_{1})p+6£i1j2+i2j1*2i1i2.

& ,11,12,J1,72=0 m,n,p,6=0 (Z)€'<p)§'(6)£'

m i P, 01.417.J1 p+0 n pi £p £0 702 1,92
omejeserki ky' o @ 0" f1f5 fo kP ky®.

Since
Salo™ fif5 FaKERS?)

= S5(k3")S5(ki*) Sg( f2)S5(f5) Sl f1)S(0™)

= by k(- 1)°0° [y 00f (<16 f5 4 (€% — D) FLST) i "k (— fuby o™

= (=1)" Tk 2k 200 fky 2o ((—1)P6 20 f5 + (€72 — 1) FEfL) ki ks P60 fiky o™
where in the second equality we used

So(f5) = o ((=1)P& 20 f5 + (€72 = ) fEFL) ki ks,

then
(Id ®S5) (™ et efedkik) oPt0 @ o™ fi f8 foki2k5?)
= (—1)HrHigi=1=205m el oh S L |1 P10 @ Ky P kT20° fl ks 0P ke Phy P fikT o

+ (_1)6“(57% - 1)5i(1 Vo 31636%?%10%6 ® ky ]le wUéfz ky Upf2 frE Py pfikfian-
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We have

mo 7o (Id®S;)(o™el ehedki k) o? 0 @ o™ fi 15 foki2 k)
= (1) Ik kS P ik 0 el e 0
()R DD g riag® [T 00 18 FE R FikT e ek o
= (- )5“ Y 2% jzk'_zz 5f2 a”j}f’kl Py pf1k_Z ernelleza%kf‘”khgﬁ(s
()€ — DGR k0 £k 0? P PR ik o™ e el ko
= X7 + Xs.
Since kif; = &% fiki, kie; = E%ejk;, kifs = £t faly o ke =
gantaizesk. for 4,5 = 0,1 and ox = (—1)%8%zo then
X, = (_1)1‘51‘(1‘—1)—206—(jz+6)p—(jg+6+p)i+(jz+6+p)z‘+(j2+6+p)p'
5—2‘25+i20+2(i2+P)i—2(i+i2+ﬂ)i—(i+i2+/))p+(i+i2+ﬂ)5
0 f307 f8 Fio e kit g R g

:( )571 i2—ip+id+pd— 2p0,6f60,pfpfz m+nezle362k21 ig—i— Pk]l —Jo—0— P0.p+5

_ (_1)z+56+(p+§)p+(p+6+m+n)(p+5 é-fzfz 2 —ip+id+pS—2p

—5—
f2f3f1616362]€“ i2—i— Pk]l —Jj2—0—p 2(p+6)+m+n

:( 1)z+6p+(m+n (6+p) g—z i2—ip+id+pd— 2pf2f3f1 kll lg—i— Pk]l —j2—0—p m+n
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and

X2 — (_1)i+p+p5 <§f2p - 1)§i(ifl)+ipk;j2 k;’LQ 06k560pf2p+6ff+ik;pk;i—p.
0_m+n€z1 63€g k,111 k%l 0.p+5
_ (_1)i+p+p6+(m+n)(p+o) <§—2p . )f—z’—i2—z’p+p5+z’5

0 0
2p+ p+26116362k11 ig—i— pkh —Jj2—p— m+n

Thus we have

0" =mo7°o(Id @S5)(R°)(47) "

1 & ! {1y(={1ye+d
= — (_1)mn : 511]2—&—12]1—21112()(1+X2)k20_
202 ,41,42,J1,52=0 m,n%:(] (Z)E'(p)ﬁ'(é)f‘ 2
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then by Proposition 4.4.18 implies that A\j(X2k30) = 0. Hence we have

J " L {1} 1( {1}t N
/\*(0:1) = — ( 1)mn§—1+2132+%2h—2%112
0o 2€2 i1 12%:]2 Omzn:o é - 1 ) (1)5‘
=1 ,0-1 i1—ig—({—1)—17 j1—jo—1—142 g+l
(f2f3f €1 €362 ky ks, )
1 1 €+1£ 1 -1 ; . .
o =R

11,12,71,J2=0 m,n=0

50 52 50
i1—i2 mod £Z" j1 —j2 mod £Z” m+n+1 mod 2Z

where 7 = Ag(fofsfi el eseakt™?), ie.

-1 1 {1}@+1§ ! — i9j2+i2(jo+0—2)—2i2is . mn <0
)‘6(96 )Z 2€2 (E— )5' Z g Z()( ) 5m+n+1mod2Z
: 12,52=0 m,n=
— %{1}€+1§ ! ié— 2@27212 Z 5212]2
2£ ( - i19=0 72=0
{1 S8, o
g? (E_ ) | Zog 22 2265@Qm0d€Z
12

_{1}6—&-15 1 ,

(0= 1)l "

To computer \j(f5) we use the equality

05 = ¢5.(m o 7° o (S2 @ 1d)(RY)).

Since
S3(eh) = ¢gei(9g) ™! = oky *etkjo = E¥el,
S3(ef) = (—1)PE>ef,
S5(e5) = (—1)°e,
04 = K,
S5(k3') = K,
S%(Up-i-é) p+0
then

S5(o™ereheaki k' o”*?) = S3(0™) S5 (e1) S5 (e5) S5 (e2) S5 (k) S5 (3! ) S5 (07 *)

= (—1)PHog2iHR gmet eh el ki It o P +o.
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It implies that
(S§ ®1d) (o™ eiehesk! k' 0" @ o™ fLf5 fokikE?)
= (1) g e bk kS ot @ o i ff [k RS
then
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By Proposition 4.4.18 one has
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1 {1 D e
—r = !77 Z 2 i %zlmodez

i1=0
{1}64—1
-1

On the other hand

fofsfi = fafifs = (s + Ef1fo) [3 = fifafs.

Since fafs = —{f3f2 we get

(f2fsfZ ! i 16362]55_2)
= —f)\ﬁ( [ fafael tegeaky?)
= —&n.

Thus we have

{1}£+1571 ;o {1}£+1

(=1 — _ = = \z(65).
Since (f - 1) Hz % 1755 = (- 5 e I then Ag (0 ) W
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