

coupling slot design scheme in this study has two coupling slots between two units. The two coupling slots between adjacent units are distributed vertically at 90 degrees to reduce their sub-near-field coupling to the next unit. This design scheme can effectively achieve power coupling between units and improve the performance and stability of the accelerator [1]. In this design scheme, the coupling coefficient k_c is an important parameter. We use the following formula to calculate the coupling coefficient k_c :

$$k_c = \frac{f_m^2 - f_p^2}{f_m^2 \cdot \cos\left(\frac{m\pi}{N}\right) - f_p^2 \cdot \cos\left(\frac{p\pi}{N}\right)}$$

m, p represents the number of modes, and f is the frequency, $N=7$.

The coupling coefficient k_c and effective shunt impedance $Z_{eff}=ZT^2$ are the two most important indicators for optimizing the coupling space. In a PI-mode high-frequency cavity, the coupling coefficient k_c describes the strength of energy transfer between adjacent cavities, and its magnitude affects the energy transfer and phase relationship between cavities, thereby affecting the performance of the accelerator. The effective shunt impedance Z_{eff} represents how much energy gain the structure can provide to ions under a given high power loss, directly describing the efficiency of converting high-frequency power into particle energy in the structure. Both of these parameters are related to the unloaded quality factor Q , which is an important parameter describing the rate of energy decay inside the cavity. By optimizing the shape of the coupling slot, the energy transfer and decay inside the cavity can be improved, thereby improving the unloaded quality factor Q of the cavity, which is crucial for the stability and continuous operation of the accelerator.

In this study, three shapes were analysed based on a three-cell model, as shown in Fig. 3 for the standard slot and previous optimized slot, and Fig. 4 for the comparison between the previous optimized slot and the newly designed optimized slot in this article. Two shapes were analysed based on a seven-cell model after optimization. After optimization, a new coupling slot shape was obtained, whose coupling coefficient k_c and effective shunt impedance Z_{eff} were both superior to those of the standard slot and modified slot. This new shape can improve the performance and stability of the accelerator. By optimizing the coupling coefficient k_c and effective shunt impedance Z_{eff} , the energy transfer and particle acceleration efficiency of the high-frequency cavity can be improved.

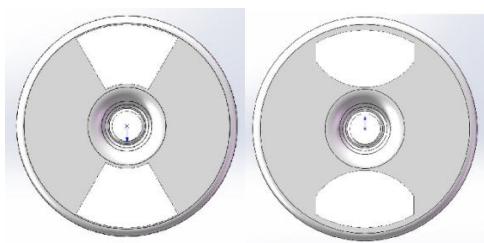


Figure 3: The standard slot and the previous optimized slot.

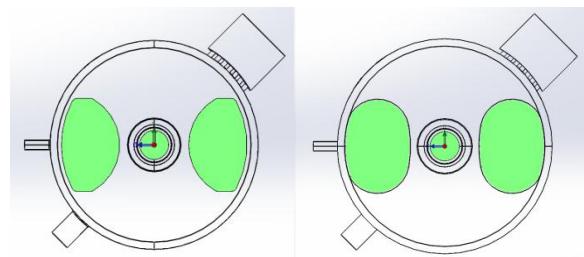


Figure 4: The previous optimized slot and the new optimized slot.

To optimize the design of coupling slots, this paper used SolidWorks and CST software for model building and simulation calculation. Specifically, we first used SolidWorks to build a 3-cell model and set the parameters of the coupling slots as variables for subsequent simulation calculations. Then, we adopted a design method based on the deformation of standard slots, as shown in Fig. 5. By finding a suitable annular slot and retaining the central angle and radius of the outer arc AD, as well as the endpoints B and C of the inner arc BC, we connected the endpoints of the outer and inner arcs with three tangent arcs to achieve a more complex and accurate coupling effect, as shown in Fig. 5.

This design method can make the shape of the coupling slots more complex, thus achieving a more accurate coupling effect. By importing the SolidWorks model into CST for simulation calculation, we can predict the coupling effect more accurately and optimize the design of the coupling slots.

To gain a deeper understanding of the performance of the coupling slots, we further investigated the mechanism of different parameters on their performance. We found as the central angle α of arc AB increases, k_c and Z_{eff} exhibit opposite characteristics, i.e., an increase in α leads to an increase in k_c and a decrease in Z_{eff} , as demonstrated in Fig. 6. Additionally, we observed that the distance of OB also has an impact on k_c and Z_{eff} , where an increase in OB distance leads to a decrease in k_c and Z_{eff} values. Therefore, selecting an appropriate central angle α of arc AB is crucial for achieving optimal coupling efficiency in the design of the coupling slot. At the same time, attention should be paid to the distance of OB to ensure that the values of k_c and Z_{eff} can reach a good level.

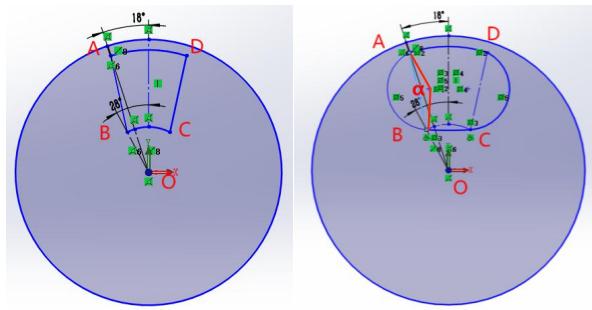


Figure 5: A design method based on the deformation of standard slots.

By using this method, we can easily achieve the dual optimization of $Z_{eff} > 28$ and $k_c > 5\%$ for the cavity. We applied this type of coupling slots to the 7-cell cavity and conducted CST simulation. Compared with the original modification method, the simulation results showed that the TS parameter (tilt sensitivity) of this type of coupling slots was smaller, at 192.88%, while the TS parameter of the original coupling slots for the entire cavity was 228.70% [2]. In addition, simulation data also indicated that in the new design, the frequency interval between the various modes was larger than before, which means that the modes were less likely to interfere with each other.

To meet the requirements of injection phase and energy spread expansion in the fast cycling synchrotron, the beam aperture in the downstream debuncher will be enlarged to achieve higher momentum jitter compression ratio. This new coupling hole design can achieve the required Z_{eff} and k_c values with a smaller aperture area. This feature is very important for optimizing the performance and stability control of high-frequency cavities in the accelerator and neutron source fields.

CONCLUSION

Using SolidWorks and CST software, we employed a design method based on standard slot deformation to enhance coupling slot complexity, achieving accurate coupling effects. We investigated parameter effects on slot performance and found that selecting an appropriate arc AB central angle α achieves optimal coupling. Attention to OB distance ensures favorable k_c and Z_{eff} values. This method enables dual optimization for the entire cavity. When applied to a 7-cell cavity, the new slot design exhibited a smaller TS parameter and larger frequency interval between modes, indicating reduced interference. Thus, this method effectively optimizes coupling slot performance and cavity efficiency.

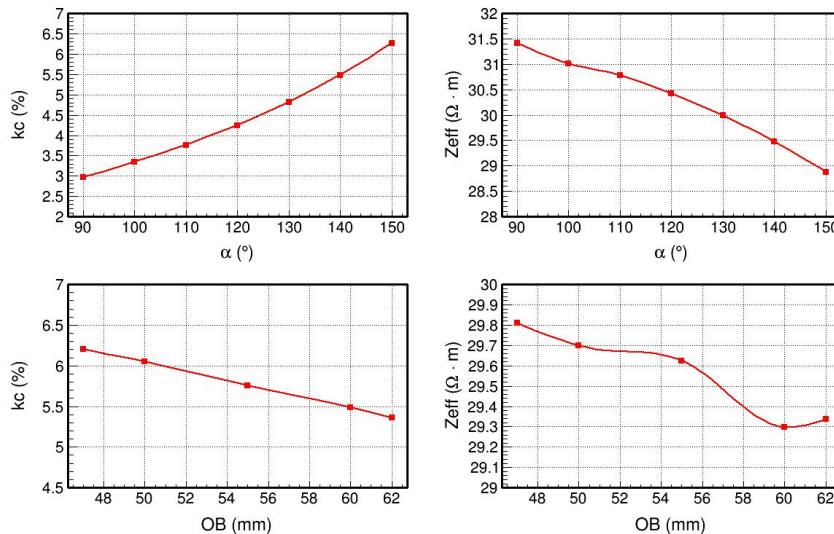


Figure 6: The trend of k_c and Z_{eff} .

ACKNOWLEDGEMENTS

Acknowledgments This work was supported by the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2020A1515110579). We would like to express our sincere gratitude to the foundation for their financial support.

REFERENCES

- [1] P. Qu, H. Liu, J. Peng, Y. Wang, M. Fan and A. Li, “Electromagnetic Design and Analysis of Pi-Mode Structure for CSNS*”, High Power Laser and Particle Beams, vol. 30, p. 055101, 2018. doi:10.11884/HPLPB201830.170384
- [2] H. Kim, “Slug Tuner Effect on the Field Stabilization of the Drift Tube Linac”, J. Korean Phys. Soc., vol. 66, pp. 378-383, Feb. 2015. doi:10.3938/jkps.66.37