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Chapter 1

Introduction

The first part of this thesis deals with the construction of the gauge theory living
on a single D-brane and supergravity theories that can arise as low-energy effective
descriptions of string theory and M-theory. The latter are thought to be consistent
theories of quantum gravity, which unify the four different forces and thus reconcile
quantum field theory (QFT) and general relativity (GR). The second part of the
thesis is concerned with deriving brane solutions of (super)gravity theories, which
have turned out to play an essential role in strengthening our belief in dualities in the
non-perturbative limit. To fully appreciate the emergence and the merit of string and
M-theory; and the discovery of dualities, we will first sketch the historical development
of particle and high-energy physics.

1.1 Historical Remarks and Motivation

The larger part of 20th century theoretical physics has been dominated by two major
achievements which both brought about a radical change in physics: quantum me-
chanics and general relativity.

In the nineteen twenties and thirties quantum mechanics was formulated as the
theory that describes the behavior of particles at (sub)-atomic scales, and is therefore
the theory to be used if one is dealing with elementary particles. Based on experi-
ments it was noticed that all particles in nature have a fundamental property called
spin, the value of which divides them into two categories: bosons and fermions. The
fermionic sector contains all matter and consists of three generations, each comprising
two quarks and two leptons (an electron and a neutrino). The lightest of these three
generations makes up for nearly all known matter.

Between 1905 and 1916 Einstein proposed his theory of relativity. He states that
the laws of physics should be the same for all observers and must therefore be formu-
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lated in an observer-independent way (covariantly). The theory of relativity consists
of two parts: the theory of special relativity, which radically changed our notions of
space and time and showed how these concepts are intricately connected, and the the-
ory of general relativity (GR) which describes spacetime itself as a dynamical entity,
the metric field. In GR gravity manifests itself through the curvature of spacetime,
which in turn is caused by the presence of mass and energy.

A combination of special relativity and quantum mechanics finally led to the stan-
dard model (SM) around 1970, which quite successfully describes the interaction be-
tween the elementary particles. The standard model is a particular quantum field
theory (QFT) of infinitely many possible ones. Here the concept of gauge symmetry
plays an important role. By making symmetry transformations local, i.e. introducing
coordinate dependent transformation parameters, spin one gauge bosons are intro-
duced that mediate the force between particles. Actually the matter particles men-
tioned above interact by exchanging bosons: the electromagnetic, weak and strong
force are described by the exchange of photons, W/Z intermediate vector bosons and
gluons, respectively. The group of SM is SU(3) x SU(2) x U(1). The experimental
confirmation of the SM is excellent up to 10> GeV, however, some problems remain.
Firstly the Higgs sector which is responsible for giving masses to the other fundamen-
tal particles, has eluded discovery so far!. Secondly, there are compelling theoretical
arguments to consider possible extensions: first of all the SM contains nineteen fine-
tuned parameters? that can not be predicted, and hence it is not a fundamental
theory. Furthermore, it is difficult to explain the smallness of the Higgs mass (with
my < 1TeV/c?), which goes under the name of the hierarchy problem. Also, the
occurrence of three generations of matter particles has not been understood yet. It
moreover turns out that the three running coupling constants that are associated with
the SM gauge group become approximately equal at the enormously high energy of
1015 GeV. This suggests that at this energy the three forces become unified in a single
‘grand unified theory’ (GUT) based on a simple gauge group. Note that the SM does
not contain the fourth fundamental force, gravity, since the strengths of the other
three forces are much stronger than gravity.

Let us get back to GR. The experimental and theoretical successes of GR are as
impressive as those of SM. For example, GR accounts for the bending of light by mas-
sive objects like our sun. GR also predicts the occurrence of spacetime singularities
inside black holes®. It also plays a pivotal role in contemporary cosmology, where it
explains for instance the observed cosmological redshift of the light of distant galaxies
as a consequence of the expansion of the universe. So far GR is used as a classical
field theory. An attempt to describe gravity by using similar quantization techniques

IThis is one of the primary goals of the new LHC accelerator of CERN, which raises the experi-
mental scale up to ~ 10* GeV.

2For example the parameters which correspond to masses of elementary particles.

3Black holes are objects that are so massive that they are hidden behind an event horizon, a
surface from which even light can not escape (at least classically).
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as used for the SM failed. The theory suffers from infinities, which, contrary to SM
(’t Hooft and Veltman [1]), cannot be controlled. This can be seen from the fact
that the gravitational coupling constant k = 87G/c* is not dimensionless, and it is
therefore unsuitable to be used for performing perturbative expansions. The scale at
which quantum gravity becomes important is the Planck scale given by

hc®
8rG

8rGh _
lpranck = e 4.1 x 107%5 m, Mpianck = (

1/2
) ~10'8GeV, (1.1.1)

with h Planck’s constant. As one can see the Planck scale is very close to the GUT
scale ( 10'® GeV). This observation shows the need for a theory of “quantum gravity”
that can handle all four fundamental forces simultaneously.

As a first attempt, physicists were thinking about a theoretical improvement of
SM by introducing a different type of symmetry, called supersymmetry. This is a
symmetry between bosons and fermions that predicts that for every boson in nature
there exists a corresponding fermionic partner, and vice versa. The first motivation
for using such a symmetry was to avoid the hierarchy problem; it has been shown that
the Higgs mass is protected from quantum corrections by supersymmetry. However,
supersymmetry transformations also introduce many new particles—sparticles— which
have not been observed®. A partial success in unifying all fundamental forces was
reached in 1976 by considering theories based on local supersymmetry. Such theories
are called supergravities, extensions of GR theory that behaved better at high ener-
gies, namely the infinities partially canceled. The spin 2 gauge boson responsible for
mediating the gravitational force is called the graviton. Its supersymmetric partner
is the gravitino®.

String theory is the most promising proposal that can deal with quantum grav-
ity. String theory replaces particles by the oscillation modes of relativistic strings®.
Remarkably, the graviton and (non)abelian gauge fields are necessarily part of the
spectrum. Thus string theory naturally unifies the gravitational interaction with
Yang-Mills theory (nonabelian version of Maxwell theory). In addition, string theory
provides a discrete but infinite tower of massive vibration modes. Their mass scale is
of the order of the Planck mass. In supersymmetric versions of string theory (super-
string theories), the graviton is at the massless level accompanied by the supergravity
field content. Indeed, it was found that the low-energy limit of superstring theory
is given by supergravity. There is an intuitive reason why superstring theory is free
of infinities. These infinities usually appear at singular points, but a string moves
in a spacetime tracing out a two dimensional surface. This fact exactly causes the

4If supersymmetry exists, it must therefore be spontaneously broken, yielding super-particles of
higher mass. It is strongly hoped that these will be discovered at LHC.

5In order to measure these particles energies would be needed that are way out of the range of
our present accelerators.

6Note that string has a typical length Is of the order of the Planck length I,.
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interactions not to occur at one single point, but to be spread out over a small area.
It turns out that the perturbative string interactions are UV finite”.

String theory needs besides supersymmetry six extra dimensions to be set up con-
sistently. One can take this as a virtue rather than a vice. It has been known for a
long time that higher-dimensional theories have a number of attractive features. In
the 1920’s, Kaluza and Klein [2,3] tried to unify Einstein and Maxwell theories by
embedding four-dimensional gravity and electromagnetism in five-dimensional space-
time. By the same token, in string theory, we take the internal six dimensions to be
very small and therefore invisible to the present-day experiments. This procedure is
called Kaluza-Klein dimenstonal reduction.

Unfortunately, string theory has also its disadvantages. It is only defined per-
turbatively, namely scattering amplitudes are expressed as an infinite expansion in
powers of the string coupling gs, associated with the Feynman-diagrams of string
theory. The main setback however became apparent where there seemed to be five
different superstring theories, whereas we hoped to obtain one unique theory of quan-
tum gravity. This means that perturbative string theories only provide part of the
whole picture.

Fortunately, a lot of progress has been made on this point. The major step for-
ward was the discovery of dualities, that are symmetry transformations that link the
different string theories. They relate in some cases weak coupling regime to strong
coupling regime so that perturbative calculations in the first theory provide non-
perturbative information on the second theory (called S-duality). In addition, string
theories on different backgrounds were found to be equivalent (called T-duality). An
important role was played by the so-called “brane” solutions of string theory. These
are solitonic objects that can be seen as higher-dimensional generalizations of strings
8. An important class of branes are Dirichlet branes, D-branes. These are special,
since they arise on one hand as hyperplanes on which strings can end, and on the
other hand as stationary solutions of (super)gravity theories. There is another class
of brane solutions, S-branes (spacelike branes) which are time-dependent solutions of
(super)gravities. The five apparently distinct theories and their brane solutions are
related by a web of dualities. During the 1990’s, it became gradually understood that
these five theories all represented different limits in the parameter space of a single
eleven-dimensional underlying theory, called M-theory. The fundamental degrees of
freedom of M-theory remain largely unknown. Rather than being a completed theory,
M-theory remains very much work in progress.

Thus we have gained some insights and had a better understanding of perturbative
and non-perturbative string theory. However, there are still many interesting open
issues. First there is the lack of experimental evidence. Indeed, despite all of the

"There is no need for introducing an ultraviolet cut-off and the theory is consistent up to high
energy scales and hence is fundamental.
8Branes can also be considered as higher-dimensional generalizations of black holes.
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promises string theory does not make a single hard verifiable prediction. Neither do
rival theories of quantum gravity. It is possible to construct configurations in string
theory that resemble to a high extent the SM, for instance by using intersecting D-
branes. However, as of yet there is no way to single out these models as a preferred
vacuum. In addition, since string theory leans heavily on supersymmetry, and super-
symmetry is shared with many other theories, most notably the supersymmetric SM,
the experimental discovery of supersymmetry would hardly be a full confirmation of
string theory. Because of the extremely high energies involved, perhaps the future
of experimental verification lies not in particle accelerators but in astrophysical and
cosmological developments. Note that string theory has already passed an important
test in partially solving a problem that arises when describing a typical general rela-
tivistic object, a black hole, in a quantum mechanical way: it succeeds in computing
the semiclassically predicted entropy of a supersymmetric black hole by counting its
microstates. Unfortunately, many tough nuts remain to be cracked in these domains
such as the explanation of the observed small positive cosmological constant and the
construction of string theory in time-dependent backgrounds (e.g. S-brane solutions).

However, the discussion so far left out that string theory is sometimes an incred-
ibly powerful tool in other fields of physics and mathematics. In this small space
we can only give a few examples. Most successfully there is the connection with
gauge theories. It turns out that many properties of gauge theory have a geometric
interpretation in terms of D-branes. Some time ago 't Hooft argued that the large
N limit of gauge theories [4] very much looked like a string theory. A first concrete
realization of such a connection was the AdS/CFT duality”?. Other examples are the
incorporation of Montonen-Olive duality [6] of gauge theory in the larger S-duality
of string theory and the recent advances in the non-perturbative calculation of the
chiral sector of N = 1 Super-Yang-Mills theory [7]. Nonetheless, many of these links
are not established in a strict mathematical sense. Indeed, for instance the AdS/CFT
correspondence and S-duality are in fact conjectures, but meanwhile an impressive
amount of indirect evidence has been found.

The low-energy limit (field theory limit) of string theory, remains an important
tool to study the different phenomena in string theory. Many features of string and
M-theory are also present in its low-energy limit, such as D-branes and dualities, and
therefore it is interesting to study this effective description.

In this thesis we will study first the low-energy limit of string theory. In particular
we will show how the strings manifest themselves as a gauge theory that lives on the
D-brane. We will see how the corrections to the leading order of the Maxwell action
provide interesting information about the ‘stringy’ aspects of D-brane physics. We
will then try to constrain these corrections, using the electromagnetic duality sym-
metry. Also supergravity actions will be presented in this thesis as the low energy

9This correspondence states that N = 4 Super-Yang-Mills theory is dual to string theory on
AdS® x S5 [5].
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tree-level effective action of string theory for slowly varying curvature. Derivative
corrections, in particular corrections of order o' to heterotic string!'?, will be studied.

Back to brane solutions. The second goal of this thesis is to study branes that are
solutions of (super)gravity theories. As we will see, the dimensions of the extended
object form the worldvolume of the brane. The remaining spacetime dimensions form
the transverse space. We distinguish between two types of branes: if time is part of
the worldvolume the brane is called “timelike” p-brane. Here the p stands for the
number of spatial wordvolume directions. The total number of dimensions of the
worldvolume is p + 1. If time is not included in the worldvolume the brane is called
“spacelike” Sp-brane. For such a brane the total number of dimensions is p+ 1 which
are all spatial. Thus in both cases p refers to a p + 1-dimensional worldvolume.

Investigating brane solutions by directly solving the equations of motion that fol-
low from the (super)gravity action is highly non-trivial. Instead we are going to look
at brane solutions whose dynamics depend only on one parameter (particle-like so-
lution). We will see that this parameter is one of the coordinates of the transverse
space. This means that the worldvolume coordinates will not explicitly enter in the
solutions. This implies that one can effectively dimensionally reduce the solution
over the worldvolume!!. This maps a p-brane to a (—1)-brane solution. If we reduce
over an Kuclidean torus, the resulting lower-dimensional theory is a Minkowskian
theory and the corresponding solution is a S(—1)-brane. If the reduction is over a
Minkowskian torus (having a timelike direction), the lower-dimensional theory lives
in an Euclidean spacetime, and has a (—1)-brane (instanton) as a solution!Z.

The number of global symmetries becomes larger and larger as one goes down
in dimensions. This can be used to simplify further our quest for brane solutions.
The (—1)-brane solutions of the lower-dimensional theory are carried by the metric
and the scalar fields. We will show that one can decouple the gravity field equations
from the scalar field equations. As a result, one can solve for the metric and the
scalar fields independently. The solution-generating technique will enable us to find
the most general scalar field solutions.

10Heterotic string is one of the five perturbative superstring theories mentioned before.

11 The reduction over the worldvolume of the brane gives rise to a massless lower dimensional theory,
while the reduction over the transverse directions of the brane will generate a scalar potential in the
lower dimensional theory. If the lower dimensional massive theory lives in a Minkowski spacetime,
one then has two distinct solutions: time-dependent solutions (cosmology) and time-independent
solutions (domain-walls).

121n this analysis we only consider consistent reductions. This means that one can always undo
the steps of the reduction in such a way that we are guaranteed that we also have a solution of
the action we started with. Thus one might construct a higher-dimensional solution via uplifting
(oxidation) a lower-dimensional solution.
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1.2 Outline

We have structured the material into several chapters:

Chapter 2 opens with an overview of string theory. It glances over perturbative
string theories first and then turns to non-perturbative effects with an emphasis on
D-branes. The last part of the chapter introduces the low-energy effective action of
a single D-brane (abelian). It gives an overview of past attempts and successes in
constructing this effective action.

Chapter 3 can be considered as a natural extension of chapter two. It starts with
an introduction of supergravity theory, outlining various approaches that have been
pursued to construct the corresponding low-energy effective action and its derivative
corrections. The second part summarizes paper [C], where the effective action of
the heterotic string to order o’ has been analyzed, establishing that the supersym-
metric R? effective action, computed from the supersymmetrization of the Lorentz
Chern-Simons term, is equivalent modulo field redefinitions to heterotic string effec-
tive actions obtained by different methods.

Chapter 4 treats the approach of [B] to constrain the derivative corrections of the
4-dimensional abelian Born-Infeld action from the requirement that those terms to-
gether with the Born-Infeld action should admit electromagnetic duality symmetry.
In the rest of the chapter we review the properties of interacting field theories which
are invariant under electromagnetic duality rotations (selfduality) which transform
a vector field strength into its dual. The focus will be on introducing the relevant
ingredients one needs for formulating a theory as a nonlinear realization of the dual-
ity group. We show that the invariance of the equations of motion requires that the
Lagrangian changes in a particular way under duality. We use this property in the
general construction of the supergravity Lagrangian.

In chapter 5 the concept of nonlinear o- models is introduced. We exhibit how
such models arise in Kaluza-Klein theories and extended supergravities. We restrict to
reductions over tori that are relevant for studying brane solutions in (super)gravity.

Chapter 6 starts with reviewing brane solutions that appear in (super)gravity
theories. In particular we spend some time on p- and Sp-brane solutions. Then we
illustrate the power of nonlinear sigma-model techniques in finding brane solutions in
a purely algebraic way. We look for time-dependent Sp-branes via reducing over their
worldvolumes. By means of the solution-generating technique and the coset sym-
metry we will be able to construct the most general S-brane vacuum solution (pure
Einstein-gravity solution) with deformed worldvolume. We also consider solutions for
an Euclidean theory, i.e. instantons. We show that those solutions can be obtained
from timelike dimensional reductions of ordinary Lorentzian (super)gravities. The
focus will mainly be on finding the generating Euclidean brane solutions that can be
seen as a generating geodesic on non-Riemannian moduli spaces.

Note that all papers that I co-authored are indicated by capital letters in contrast
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to all other referred articles which are labeled by numbers.



Chapter 2

String Theory, D-brane and
Derivative Corrections

In this chapter the basic definitions and foundations of string theory and D-brane
physics will be given. We will discuss the equally famous dualities that exist between
different string theories and in some cases relate strong coupling to weak coupling
so that the scope of the perturbative analysis can be extended to strong coupling
regimes through calculations in the dual weak coupling regimes. Then we proceed
discussing the low-energy approximation of string theory, i.e., effective description.
This explains how Born-Infeld theory together with its derivative corrections arise
as the tree-level low-energy effective action of an underlying theory, namely string
theory. Also we will give a definition and outline the possible ways of calculating it.
The chapter will be closed with a small illustration showing how the extensions to
Maxwell theory smear out the singularity of the point-charge at the origin.

2.1 Introduction to String Theory

This section introduces the simplest string theory, called the bosonic string. We start
by describing the free bosonic string for both classical and quantum levels. We also
talk about the superstring and its corresponding spectrum. Then we briefly discuss
some aspects of interacting strings. For an account that really does justice to the
subject of string and superstring theories, the reader is referred to [8-12].

2.1.1 Actions of Free Strings

Perturbative string theories are field theories on the worldsheet of the string, which is
the two-dimensional surface swept out when the string moves in D-dimensional space-
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time!. Thinking about the analogous situation of a particle in relativistic mechanics,
the most natural Poincaré-invariant action that springs to mind is to take the area of
the worldsheet. This leads to the Nambu-Gato action

Sy = —T/do—df\/(X X)) - X2X"2, (2.1.1)

where X#(o,7) represents the embedding of the worldsheet into the spacetime, and
XK = 85(: and X'* = %. This action is cumbersome to quantize as it contains
a square-root. Fortunately, by introducing an auxiliary worldsheet metric hgp, it is
possible to construct quadratic action, the Polyakov action?® [15,16]. Integrating out

the auxiliary metric, one recovers the Nambu-Goto action. The polyakov action reads

Sp = _g / dodrv/—hh™9, X 9, X, (2.1.2)

where h = dethy, and the metric hy, has a negative eigenvalue along the timelike
direction. T is the string tension given by 1/2ma’ with o’ = [2 the so-called Regge-
slope.

Let’s now write down and solve the equations of motion of the Polyakov action
2.1.2. Varying the string embeddings X*, we obtain

1
6SP = _W /dO’dTaa[V —hhababX‘u](SXH
i

1 _
+o— / ATV —hd, X"5X |52}, (2.1.3)

To make this variation zero both terms must vanish independently. The first term
gives the 2-dimensional X* equations of motion to satisfy. The vanishing of the second
term results in three possibilities for boundary conditions:

e Open string Neumann boundary condition; 9, X#(7,0) = 9, X*(7,1) = 0.
These boundary conditions imply that no momentum flows in or out through
the string endpoints, and hence that these move freely.

e Open string Dirichlet Boundary condition: §X*#(r,0) = 6X*(r,1) = 0.
These conditions mean that we are fixing the string endpoints and no longer
consider them as dynamical. This means that the string endpoints are stuck
to an hyperplane. The hyperplanes on which open string can end are called

I Throughout this chapter we adopt the Greek indices p,v = 0--- D — 1 for spacetime and a,b- - -
for the 2-dimensional worldsheet. The worldsheet is parameterizing by the spacelike variable o(0 <
o <), the coordinate along the string of length I, and timelike variable 7.

2This action found first by Deser and Zumino [13] and by Brink, Di Vecchia and Howe [14].
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D-branes® [17]. D-branes are an important class of extended objects in string
theory as they appear as excitations in non-perturbative spectrum of string
theory. Therefore they are presently the cornerstone in understanding the non-
perturbative structure of string theory. Extended objects are in general called p-
branes, where “p” stands for the number of spatial directions in the worldvolume
of such objects. For instance 0-brane is a particle and string is 1-brane. From
the point of view of an open string ending on Dp-brane, there are D —p — 1
directions that satisfy the Dirichlet boundary conditions and p + 1 directions
are subject to Newmann boundary conditions. In fact the Newmann boundary
conditions are the only conditions that are consistent with Poincaré invariance,
whereas the Dirichlet ones explicitly break it.

e Closed string periodic boundary condition: X*(7,0) = X*(7,1).
This is the requirement that the string be closed, namely that has no endpoints.

Classically strings wave. For closed strings the left- and right-moving waves are
independent while for open strings the boundary conditions force the left- and right-
moving modes to combine into standing waves. Projecting onto states that are in-
variant under the worldwheet parity introduces two more types of strings: unoriented
open and closed strings.

Symmetries of the Action

The Polyakov action is not only invariant under worldsheet general coordinate trans-
formations, but also under a rescaling of the worldsheet metric hqp — Ahgp, called
Weyl transformation. The latter property is unique to two worldsheet dimensions,
i.e. it would not be true for higher-dimensional membranes. These three local sym-
metries, reparameterizations of the two coordinates and Weyl symmetry, can, barring
topological subtleties, be used to put h., = 74. Even after choosing this conformal
gauge, a combination of Weyl and reparameterization invariance remains as a classical
symmetry: the conformal symmetry, which is generated by the infinite dimensional
Virasoro algebra . As such, perturbative string theory belongs to the class of confor-
mally invariant field theories CFT in two dimensions, which are in some cases exactly
solvable because of their high amount of symmetries. Due to subtleties of normal
ordering the quantum Virasoro will in general differ from its classical counterpart
by the introduction of a central charge (for a review on conformal field theory with
applications to string theory see [18]).

34D” in D-brane stands for for Dirichlet and “brane” generalizes the notion of membrane. Note
that imposing a Dirichlet condition on the time direction X° lead to what is called spacelike D-brane;
for short S-brane; or one can even goes further and impose it on all directions, thereby one obtain
the D-instaton: the analogue of Yang-Mills instanton in string theory.
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State | Physical Conditions | (Mass)? Field
10: k) M=k =-L| 1
Cokt =0
ik ~ M?=—-k?>=0 A
¢G5 k) Cu G+ ky n

Table 2.1.1: In the critical dimension the ground state |0, k) is a tachyon, it can be
represented by a scalar field Ty. The first excited state can be represented by a vector
field A,,.

2.1.2 Bosonic Spectrum

A first interesting result of quantizing the Polyakov action is the spectrum of phys-
ical states and their masses. Indeed, the quantized oscillation modes of the string
determine the particle content. As usual in theories with local symmetries the spec-
trum contains unphysical states, which have to be separated from the physical ones.
Actually this requires some technical machinery (light-cone gauge, old covariant quan-
tization or BRST quantization) that we will not delve into. Accordingly, it has been
found that bosonic string theory is living in 26 dimensions.

The lowest mass levels for the open bosonic string are summarized in table 2.1.1.
To each of the particles in the table a field is associated in the low-energy limit. In
the first line one finds a scalar particle with negative mass-squared, the tachyon. The
presence of such a particle indicates, just as in the case of Higgs field, that one is per-
turbing around an unstable vacuum. If there is no other -stable- vacuum, the energy
is unbounded from below and the theory is inconsistent. For the open bosonic string
theory it is conjectured that a true vacuum exists. Indeed, in modern langauge, there
is a space-filling D-brane present on which open string can end. We will elaborate
on D-branes in section 2.3. The tachyon indicates that this D-brane is unstable: it
can decay such that a closed string vacuum results. The difference in energy density
between the two vacua is thus equal the brane tension. In any case, in supersym-
metric string (superstring) theory the tachyon can consistently be removed from the
spectrum by Gliozzi-Scherk-Olive (GSO)-projection [19].

Of more interest to us is the second particle, which has all the properties of an
abelian gauge boson A, i.e. it is massless and gauge symmetry is implemented as in
the Gupta-Bleuder treatment of electrodynamics: (,k* = 0 is the Lorentz gauge and
Cu — Cu + Kk, is the residual symmetry. In fact, the simplest way to handle the local
symmetries of the Polyakov action and obtain these conditions for physical states, old
covariant quantization, is very similar to Gupta-Bleuder quantization.

By assigning n different labels to the endpoints of open strings, Chan-Paton fac-
tors [20], it is possible to introduce a U(n) gauge group. Indeed, labelling the end-
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State Physical Conditions (Mass)? Field(s)
|0; k) M? = —k?=-2% To

Cukt = (uwk” =0
|C; k> <Mu = CHV + mukV + kunu M2 = —k2 =0 G
mykt =n,k* =0

B,,,®

Nz

Table 2.1.2: The lowest mass states for the closed bosonic string. We obtain a tachyon
with field Ty and a reducible tensor representation resulting in the fields G, B,
and ®. (,, is the polarization tensor.

points of open strings that way, one introduces n? different types of string filling out
the adjoint representation of U(n). In modern language this amounts to introducing
n D-branes (see section 2.3). Note that besides the tachyon and the gauge field the
open string spectrum comprises an infinite tower of massive states with high spin.
For completeness we state the bosonic closed string spectrum in table 2.1.2. The
first particle is again a tachyon Ty, but this time there is no other stable vacuum
known. The second line contains a scalar and the three massless fields, of which
the scalar ® called the dilaton. The two other massless states are realized by fields
of spin higher than zero, which therefore have an associated gauge invariance. The
antisymmetric 2-tensor B,,, of the little group SO(D — 2) can be obtained from a
2-form field B, often called the Kalb-Ramond field, with gauge transformation

By — By + 20|,k (2.1.4)

It contains (D — 2)(D — 3)/2 on-shell degrees of freedom. The symmetric traceless
tensor is obtained from a symmetric field G, which transforms as

G#V — G#V =+ 28(H’I7,j). (215)

and contains D(D — 3)/2 on-shell degrees of freedom. This field is the graviton
mediating the gravitational force, and is of course what got this whole business started
in the first place.

2.1.3 Supersymmetric Spectrum

It is natural that any unified theory of elementary particle physics should contain
fermions. It turns out that including fermions in our theory will provide us with a
way, as formerly mentioned, to eliminate the tachyon, and also the consistency of the
theory will restrict the number of dimensions to ten.

We can add fermions to Polyakov action by again choosing conformal gauge and
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i

o ) transforming

adding a kinetic term for a two-component Majorana spinor 9, = (

as vectors under the spacetime Lorentz group, giving [21]
T -
S = —3 dodr (0, X0 X, — iHy*01by), (2.1.6)

where v* is a two dimensional representation of the Clifford algebra. This action turns
out to have a worldsheet symmetry termed supersymmetry, mapping the fermions to
bosons and vice versa. Just as in the bosonic case we can have two types of boundary
conditions for the open string:

e Ramond Boundary condition (R):

P (0,7) =M (0,7),  Yh(ls,7) =" (s, 7). (2.1.7)
e Neveu-Schwarz (NS) boundary condition:

PE0,7) =92(0,7), (s, ) == (15, 7). (2.1.8)

For the closed string the periodic Ramond or anti-periodic Neveu- Schwarz boundary
conditions for left and right moving modes can be chosen independently, resulting
in four different sectors; R-R, NS-NS, R-NS and NS-R. This theory, having manifest
worldsheet supersymmetry, is called the Neveu-Schwarz-Ramond (NSR) formalism.
A GSO projection is needed to obtain the spacetime supersymmetry. Note that the
GSO projection plays a crucial role in preserving the spin-statistics theorem.

There is another formulation of superstring theory, the Green-Schwarz (GS) for-
malism. The advantage of working in such a formulation is to have a theory with
manifest spacetime supersymmetry. Nevertheless, quantization of this theory, till the
time of writing, was only possible in light-cone gauge [22,23]. Using either the (NSR)
or (GS) formalism, and choosing various combinations of the boundary conditions in
the open and closed string case turns out to yield five different supersymmetric string
theories: type IIA, type IIB, type I, Heterotic Eg x Eg and Heterotic SO(32). They all
live in ten spacetime dimensions. More precisely, choosing NS boundary conditions
in both the right-moving and the left-moving sector (NS-NS) leads for type II string
theories to the same spectrum as the bosonic closed string (see table 2.1.3): G, B
and ®. Choosing R-R boundary conditions, one can obtain antisymmetric tensors of
different dimensions; C,), where the sub-index represents the rank of the tensors, n is
even in type IIB and odd in type IIA. As an unoriented theory does not contain By,
but adds an antisymmetric 2-tensor C(3) from the R-R sector instead. It introduces
the gauge boson A with gauge group SO(32) via Chan-Patton factors. Heterotic
string theories [24,25] combine the left-moving side from bosonic string theory with
the right moving side from supersymmetry string theory. Notice that both heterotic
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Name Type of Strings Bosonic Spectrum Supercharges

Type I closed+unoriented open G, @, A, C N=1
Type ITA closed strings Gy B, ®,C,, Cpup N=2
Type IIB closed strings Gvs B, ©,Co, Cpu, Cf oy N=2
Type HE | heterotic closed strings G, B, @, AES N=1
Type HSO | heterotic closed strings Gy, Buw, @, AjY N =

Table 2.1.3: The bosonic particle spectrum of the five perturbative superstring theo-
ries.

theories have N = 1 and differ by their gauge groups, under which the massless vector
transform. We will elaborate a bit more on the fields of table 2.1.3 in the context of
supergravity in chapter 3.

Spacetime fermions originate from the mixed sector, NS-R or R-NS, of the closed
string or from the R sector of open string. The heterotic and type I theories comprise
one gravitino and one spinor, while type II theories have two gravitinos, two spinors
and a double amount of supersymmetry.

2.1.4 Interacting Strings

Apart from the Polyakov action which describes a single string, there is no action
which governs the dynamics of interacting strings. Of course there are some tentative
approaches pursued by number of string field theorists, endeavoring to find a string
theory action analog of the quantum field theory QFT action. The situation turns
out to be more involved than one expects. Finding such an action requires an age to
identify the physical degrees of freedom. However, without knowing the underlying
action one can still obtain the spectrum of the string, and therefore one can write
down all the excited states in terms of a perturbation series of string S-matrix.

The attractiveness of string theory lies in the fact that all the string amplitudes
are at each order UV finite [26]. The amplitudes will contain divergences but they can
be related to poles of intermediate particles going on-shell, which means that these
particles propagate over long distances. So these divergences are in fact IR effects.
Only UV divergences would signify a break-down of the theory while IR divergences
can be dealt with precisely as in QFT.

As in QFT there are Feynman diagram-like graphs in string theory, where the
expansion of the S-matrix is expressed in terms of compact punctured surfaces. In
other words, one can organize the series in terms of the topology of the diagrams which
are controlled by a coupling constant A in the sense that for each diagram we assign
a factor e X, where y is the so-called Euler characteristic of the worldsheet defined
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below. In addition, with each string state momentum £k, we associate the vertex
operator V (k) constructed from 2-dimensional CFT of the worldsheet. For example
in bosonic string theory, the vertex operator corresponding to the tachyon field Ty
reads Vg, ~ [, a5 dse™ X Therefore the N-point amplitude is given schematically by

the following path integral over the coordinates X (7,0) and the worldsheet metric
h(r,0)!

[dX dh)
Sreemy (k1o k) = > / . exp(=Splh, X]=AX) Vi, (k1) - - - Vi (k).

%
topologies diffx Weyl

(2.1.9)
where x depends on the topology of the world sheet. It is the so-called Euler number
given by

X=2-2a—b, (2.1.10)

where a is the number of handles and b the number of holes in the worldsheet. In
2.1.9 we have to divide out the local symmetries to avoid overcounting equivalent
configurations. Taking the string coupling constant to be gs = e*, the different
topologies are weighted with ¢g2¢+=2., In other words, each closed string loop-a handle-
introduces a factor g2 and each open string loop-a hole-introduces a factor of g,. It
follows that g. ~ g2 ~ gs where g. is the closed string coupling constant and g, the
open string coupling constant. From the last term of the action 3.2.1 we see that the
constant part of the dilaton, ®¢, sets gs = exp®y. Therefore, the string coupling g; is
not a fundamental constant, but instead set by the vacuum expectation value of the
dilaton.

Perturbative string theories suffer from some problems [10]. We only mention
the most important two. The first problem could be summarized by saying that we
lack a background independent formulation. the second problem has to do with the
perturbative definition of string theory: the most severe objection actually is that for
a quantum field theory a perturbative definition is hardly enough. Indeed, for string
theories it can be shown that the perturbative expansion looks like [27]

igiO(lD, (2.1.11)
=0

and diverges. This means that the sum cannot be unambiguously evaluated with-
out non-perturbative information. One expects non-perturbative effects of the order
exp(—0O(1/gs)). Obviously, the perturbative expansion is not a good description any-
more when g; — oo. This kind of behaviour is in fact very common in quantum field
theory where effects of the order exp(—O(1/g?)) are typically encountered. There the
perturbative approach can be saved by introducing classical instanton backgrounds

4Sp[h, X] is the Euclideanized version of the 2.1.2 where we have Wick rotated the time direction
of the worldsheet.
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around which to perturb and then summing over all possible instantons.
The first problem, together with the second one strongly suggest that perturbative
string theory is only a tool that can probe aspects of a more fundamental theory.

2.2 T-duality

Surprisingly, it is possible that two string theories of different perturbative type and/or
in different backgrounds are completely equivalent. These transformations between
equivalent theories that generally define a discrete group are called dualities. A promi-
nent example is T-duality [28], which relates spacetime geometries possessing a com-
pact isometry group. T-duality is a perturbative duality in the sense that it is valid
order per order in the loop expansion in gs.

We consider the simplest case, bosonic theory in flat space with one dimension,
say the rth, compactified on a circle with radius R,

X"~ X" +27R. (2.2.1)

The compact isometry is of course translation along X”. The mass-shell condition for
the open string now reads

5 2
M?* = (%) + <£> + contribution from the oscillators. (2.2.2)
«

As seen before, when we calculated the spectrum the oscillation contribution depends
on which quantum state of the string is excited, namely which particle it represents.
As for the particle there is moreover a contribution from the center of mass momen-
tum, which is discretized because of the periodic boundary conditions. Indeed, the
operator e?™fPr translates the string once around the periodic dimension and must
leave the states invariant so that

= 2.2
pr=5 (2.2.3)

The states labelled by n are called the Kaluza-Klein states. Since strings have a
tension, there is an additional contribution proportional to the length of the string.
Closed strings can wrap around the compactified dimension. The states labelled by
w, the winding number, correspond to strings winding w times around the compact
direction. The winding number is conserved as the closed string can not unwind
without breaking. The mass-shell condition 2.2.2 is inert under the following actions

Oél

R +—— E’ n < w. (2.2.4)
It is quite remarkable that the invariance of 2.2.2 continues to hold even when one
adds the oscillations modes. Therefore we found a duality of the full worldsheet CF'T,
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which means that the theory on R and the one on R’ = 2 are entirely equivalent.

R
This means that the closed string can not probe distances smaller than a/1/2.

For open strings the situation is slightly different. In this case the momentum in
the compactified dimension is still quantized. On the other hand, because of their ten-
sion open strings will contract as much as possible and unlike wrapped closed strings,
there is nothing to prevent that. Thus there are Kaluza Klein states, but there is only
zero winding. Performing T-duality as for the closed string, interchanging winding
and momentum, one finds winding states with zero momentum. Since open strings
differ only at the endpoints from closed strings, we want to explain this using only
the endpoints: fixing the endpoints at a certain position X", the string can not have
center of mass momentum in this direction anymore. On the other hand, fixing the
endpoints prevents the open string from contracting and winding is possible. In this
interpretation the endpoints of the open string are in the T-dual picture constrained to
a hyperplane X" = z". Put it another way, T-duality interchanges Neumann bound-
ary conditions, allowing the ends to move freely, with Dirichlet boundary conditions,
constraining the ends. The hyperplanes on which strings end were given the name
D(irichlet)-branes in [17].

In order to have better understanding we discuss in more detail the case of open
strings in a constant diagonal M x M background:

9A } _ —i)\71 o))

. "~ 04
A, = diagy [ 5 R X AMXT) = diagy [exp <_ﬁ> }, (2.2.5)

where 64 are constants and diag, indicates a diagonal matrix of which the element
at the position AA is given in square brackets and A runs from 1 to M. Locally this
is pure gauge, but not globally since the gauge parameter picks up a phase

diag 4[—i64], under X" — X" + 27R. (2.2.6)

The canonical momentum p, conjugate to the center of mass position of the string is
given by

T oL 1 T
= do—— = do 0: X, + Arlz — Arlo, 2.2.7

P /0 U(’“)X r o 2ma /0 ’ A o ( )
where we have used the Polyakov action with the boundary term. The momentum
is quantized as before. Now consider in the T-dual picture a string stretching from
D-brane A to D-brane B. The momentum k, appearing in the mode expansion of the
string reads

by = L/ do 0. X, (2.2.8)
2ma Jy
so that 1
ky = =+ Aaa — App = ——(2mn+ 65 — 04)R. (2.2.9)

R 2mal
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The distance in the rth direction between the endpoints is
X'(m)—X"(0) = / do 0, X = / do 0. X, = 2nd’'k, = 2mn+0p—04)R’, (2.2.10)
0 0

where the prime denotes the quantities in the T-dual picture and we have made use of
the fact that T-dualizing interchanges Neumann and Dirichlet boundary conditions:

0o X = 0: X, (2.2.11)

Actually the distance between the two endpoints A and B is fixed; they are really
stuck to hyperplanes at positions 84 and 6p respectively. In the T-dual picture n
becomes the winding number. The open string analog of eq. 2.2.2 reads

(2mn 4+ 0p — 9A)2RI2
(2ma’)?

M? = k? + (oscillator contr.) = + (oscillator contr.). (2.2.12)
If the oscillators do not contribute, i.e. for the lowest lying modes, the mass is
proportional to the string length. The minimal mass is attained when n = 0 and is
then proportional to the distance between the branes.

2.3 D-brane

In order to obtain a p-dimensional D-brane, we perform T-duality in 9 —p dimensions.
Consequently, one has next to Neumann boundary conditions in p + 1 dimensions,
Dirichlet boundary conditions in the remaining 9 — p dimensions

8UXIU‘:O ,U:O,,p
Xt =gt i=p+1,---,9. (2.3.1)

Since T-duality interchanges Neumann and Dirichlet boundary conditions, it is now
obvious that T-duality in a direction perpendicular to a Dp-brane results in a D(p+1)-
brane, while T-duality in a longitudinal direction results in D(p — 1)-brane. The pres-
ence of Dp-brane will break translation invariance in the 9 — p transversal directions
and it will break Lorentz invariance SO(9, 1) to SO(p, 1) x SO(9—p). As a consequence
the spectrum of massless states from table 2.1.1 is deformed as

_ Aaa CL:O,"',p
A, /J,_O7...,9—>{(I)i7 PO (2.3.2)

A, describes a p-dimensional gauge theory on the brane, while the ®; are the Gold-
stone bosons associated with breaking of translational symmetry. They are collective
cooredinates describing the position of the branes consistent with the fact that D-
branes are in fact dynamical objects. Indeed, we have already seen that background
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value A, has in the T-dual picture the interpretation of the position of the D-brane.

Although D-branes were already discovered from the above T-duality argument,
in [17], it was not until [29] that it was realized that D-branes were in fact a miss-
ing link as they can act as sources for the R-R fields C(,,), which fundamental string
(p = 1) can not. Indeed, the worldvolume of a p-brane couples in a natural way to
(p + 1)-form potential as follows

Clpi1)s (2.3.3)

Vp+1

where the integral is over the D-brane worldvolume V1. In fact, this is an electric
coupling, but the same potential C(, 1) can couple magnetically to a D(6 — p)-brane
as follows: the Hodge dual of the field strength F(, o) = dC(,41) in 10 dimensions

is a (8 — p)-form (F')s_p), which has a (7 — p)-form C(7_,y as potential; the latter
(7 — p)-form is suitable for coupling to a D(6 — p) brane.

Considering the possible R-R forms in table 2.1.3, we see that IIB theories should
contain D(-1) (a.k.a D-instanton) D1-, D3-, D5- and D7-branes, while ITA theories
involve DO-, D2-, D4- and D6-branes. Since T-duality sends a Dp-brane to D(p + 1)-
or a D(p—1)-brane, we must conclude that it also interchanges type ITA and type IIB
theories, which indeed the case. We learn in addition that there must be a D9-brane
in IIB, and a D8-brane in ITA. These are not associated to propagating states, so they
do not appear in the spectrum.

Labelling the endpoints of open strings by introducing n Chan-Paton labels trans-
lates in the new language into introducing n D-branes. For each brane, we have a
copy of the gauge sector originating in strings beginning and ending on that brane.
In this way we end up with the gauge group U(1)™. As seen in eq.2.2.12 the low lying
modes of a string have masses proportional to the length of the string so that if the
D-branes coincide there are extra massless sates coming from strings beginning and
ending on different coinciding D-branes. Keeping track of the orientation of strings
we count a total of n? massless states making up the adjoint representation of U(n),
which will be the new gauge group. All this is pictured in figure 2.3.1 for n = 2.
Giving a vacuum expectation value (vev) to some or all of the diagonal element of ®;
lets the branes move apart and breaks the U(n) gauge group. This provides us with
a geometrical picture of the Higgs effect. This shows the power of string theory and
D-branes as a tool to study (non)-abelian gauge theories.

From our discussion about T-duality and D-brane, it becomes clear that introduc-
ing open strings with free endpoints into the theory is actually equivalent to inserting
a D9-brane. Obviously, when there are n space-filling D9-branes, they are always
coinciding.

The tension 7p, of a D-brane is of order e~® = g1 as could be seen from the way
how it couples to graviton. Consequently, plugging in a D-brane background in the
path integral will lead to non-perturbative effects of the order exp(—1/gs). To have
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[AA]

[AA]

B | A

N—"1 [AB] (BA]

[AB]

(4) (B) %

Figure 2.3.1: We have two parallel D-branes. The spectrum of [AA] and [BB] always
comprise a U(1) gauge field. When the D-branes coincide, The [AB] and [BA] strings
give rise to additional gauge fields which enhance the gauge symmetry from U(1)? to
U(2).

a non-zero contribution these D-branes have to be localized in both time and space:
D(—1)-branes, namely D-instanton or wrapped Dp-branes in Euclidean spacetime. In
the end we point out that besides the microscopic description of D-branes as hyper-
planes on which strings can end, they also possess a description as solutions of the
equations of motion of the low-energy effective action of string theory: ITA or IIB su-
pergravity (see chapters 3 and 6), where they look like higher-dimensional extensions
of charged black holes, black p-branes [30]. It is worth noting that a D-brane breaks
half of the supersymmetry. The fact that it does not break all suppersymmetry makes
it a BPS (Bogomolny-Prasad-Sommerfield)-state (more about BPS states in chapter
6).

2.4 Non-perturbative Duality: S-duality

Up to now we have encountered a perturbative duality, to wit, T-duality which relates
type ITA to type IIB. Actually T-duality also relates the two heterotic string theories.
Still these are perturbative dualities. Nonetheless, there are also non-perturbative
dualities relating a strongly coupled theory to a weakly coupled theory [31,32]. One
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example is electromagnetic duality in Yang-Mills theory, which interchanges light
electric charges with heavy magnetic monopoles [6]. In fact, this only works out well
if there is enough supersymmetry, namely in N = 4 Super-Yang-Mills [33]. In that
case it turns out that such a duality is a part of the discrete SL(2,7Z) group dualities,
S-duality.

The type IIB string theory is self-dual under the duality group SL(2,7). Under
this duality strings and D1-branes are interchanged. One of the nice features of type
IIB is that it contains a non-abelian gauge theory-N = 4 Super-Yang-Mills-on a D3-
brane. Thus, it enjoys the S-duality of Yang-Mills [34, 35] (see subsection 4.3.2 for
the abelian case). Type I SO(32) and heterotic SO(32) also turn out to be related by
S-duality.

Special cases are the strong coupling limit of type IIA and heterotic Eg x FEg
theory. Sticking to type IIA, one can take gs — oo and realize that the lowest mass
states are actually DO-branes with tension 7y. If one considers n bound DO-branes,
the mass of the system is

(2.4.1)

This evenly spaced spectrum looks like a Kaluza-Klein spectrum with periodic di-
mension Rig = gS\/J . So one could make the bold assumption that as g; — 0 this
dimension is decompactified and one ends up with a 11-dimensional theory. As we
will see in chapter 3 the low-energy effective theory would be then nothing but 11-
dimensional supergravity. Eleven dimensions is the maximum number of dimensions
allowing a locally supersymmetric field theory and this theory is unique. We have
seen that string in 11 dimensions is not consistent, but in fact the strong coupling
limit of type IIA is not a string theory anymore! In fact little is known about this
theory and its fundamental degrees of freedom beyond the low-energy limit and its
ties to type ITA. It has been given the name M-theory. From considerations about
D-branes physics it became clear that all the five string theories can be understood as
perturbative descriptions around five different points in the moduli space of M-theory,
see figure 2.4.1.

After all we have learned, over last three decades, about non-perturbative string
theory the question arises whether we have made any progress in solving the two
problems stated in the end of section 2.1.4. As for the second problem we know now
the nature of some of non-perturbative instanton effects: these are the D-instantons
or wrapped Euclidean D-branes. Moreover, we have become more convinced that
there indeed exists an underlying description, M-theory although we do not know the
details. The background problem still stands. We know now some backgrounds are
related by perturbative or non-perturbative dualities to other backgrounds, but the
multitude of different backgrounds remains.
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Figure 2.4.1: The M-theory moduli space.

2.5 Born-Infeld Theory and Derivative Corrections

In this section we will sketch the definition of the low-energy effective action, showing
that the Born-Infeld theory arises as the low-energy approximation of open superstring
theory, the worldvolume action of D9-brane, for slowly varying fields. Then we turn
to the derivative corrections terms of the Born-Infeld action, listing some powerful
methods for constructing such terms.

2.5.1 Effective Theory in Words: Low-Energy Approximation

One can think of string theory as a field theory with an infinite number of degrees of
freedom. Indeed, every particle in the spectrum, massless or massive, corresponds to
a field. Massive particles can only be detected at high energies, characterized by the
string scale [ 1. For phenomenology we will be exclusively interested in the massless
particles of which, fortunately, there is a finite number. For instance, for the open
superstring we have the massless particles A, and their fermionic superpartners. Also
we have seen in section 2.1.4 that the S-matrix perturbative series captures most of
the perturbative effects of string theory. However, we would like to know more about
the non-perturbative structure of string theories. In particular, we want to know what
kind of solitons a given string theory contains. This implies that we need solutions to
the classical equations of motion of the string. We do not have these equations, but
we do know how these equations look like at low energies (energies below I 1); they
are field theory equations.

Accordingly, a low-energy effective action is defined as the result of integrating
out all the massive and massless modes circulating in loops. Furthermore, we only
allow the massless modes as external states. This means that the effective action
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should generate at tree-level an S-matrix, which reproduces the string S-matrix for
massless external states. This action is called the Wilsonian effective action (WEA)
(we refer the reader to [36,37] for elementary treatments, and [38] for a non-technical
review). We can expect the effective action to be nonlocal®, i.e. it will contain an
infinite number of derivatives, and we can expect it to be highly complicated.

The WEA action is not the only “effective action” that occurs in quantum field
theory. There also exists an object called quantum effective action (QEA) [39], which
is by definition the generating functional of the amputated one particle irreducible
diagram (1PI) of a generic field theory,

Wigl=>" § /ddxl e dtr WS (g, ) dlan) - as). (2.5.1)

The QEA W{¢] can therefore be viewed as a classical field theory that encodes all
the quantum information of the underlying field theory®. Note that this object is not
equal to the Wilsonian action! Indeed, the QEA incorporates the effects of loops of all
fields ( and is hence infrared divergent due to the massless particle loops), whereas
the WEA only contains the effects of loops involving massive particles. However,
the moment we stick to the tree-level or classical approximation, we do not see the
effects of loops. Therefore the tree-approximation of the Wilsonian effective action
is equal to the low-energy approximation of the tree-level quantum effective action
for massless modes. We recommend the recent review of Burgess [40] for a thorough
explanation on various effective theories.

An inconvenient property of the effective is its ambiguity. Indeed, in field theory
the following equivalence theorem exists: different Lagrangians lead to the same on-
shell S-matrix, in our case equal to string S-matrix, if there exists a field redefinition

¢=¢ + R(¢) (2.5.2)

transforming these Lagrangians into each other. Hence one should be prudent when
comparing results that look at first sight different. Field redefinitions will be discussed
in more detail, in the context of supergravity, in chapter 3.

2.5.2 D-brane Action

We restrict ourselves to the abelian case and take the limit of constant gauge field
strengths. Under these conditions the bosonic part of the effective action for the fields

5Since string theories are extended objects, their interactions are intrinsically nonlocal. This
nonlocality manifests itself in the infinite tower of massive string excitations, an phenomenon that
does not occur in local field theories.

61f we consider a generic theory with an action I(¢), the interaction vertices stemmed from 2.5.1
are the 1PI diagrams of I[¢], reproducing thus already at tree-level all the amplitudes of I[¢].



2.5 Born-Infeld Theory and Derivative Corrections 25

coupling to D-brane can be found to all orders in o’ and consists of two parts: The
Dirac-Born-Infeld term and the Wess-zumino term,

Spp—brane = SpBI + Swz. (2.5.3)

The Dirac-Born-Infeld action [41,42] takes on the form

Sppr = —7p, /dpﬂa exp(—®)+/—det(5*[G + Blap + 27a’ Fup), (2.5.4)

where 7p, is the tension of D-brane, G' the metric, B the NS-NS 2-form, ® is the
dilaton (see table 2.1.2) and F is the field strength of the gauge potential A, F' = dA,
existing in table 2.1.1. In addition one has in 2.5.4 the pullback j*, from the target
space to the worldvolume of the brane, which acts on an arbitrary tensor L as

HX M1 X Hn
= coo—L (2.5.5)

- Hoat Hoan M1 fon

T Layan

But we have also seen that D-brane couples to R-R fields C(,). These interactions
are described by the Wess-Zumino term” which has been introduced first in [44]:

Swz = Spp Z /j* [Cinye®] A 2o’ (2.5.6)

where ¢p,, is the charge of the Dp-brane. Here all the multiplications are in fact wedges
of forms (appendix A.2.2). The formula 2.5.6 should be interpreted as follows: take
allowed R-R fields C,), i.e. even for type IIB and odd for type IIA, then select from
the expansions of the exponentials a form with the appropriate dimension p+1—n
so that we can integrate over the worldvolume of the D-brane. In this way, one finds
the coupling considered in 2.3.3 as the leading term.

The Dp-brane action is invariant under a number of local symmetries. First of all,
there is the freedom to reparameterize worldvolume as well as spacetime coordinates,
there is not only the gauge symmetry of A, but also the gauge symmetries of B and
C(n)- The latter are realized as follows. The bulk field and the boundary field A
appear in the combination F = 7*[B] 4+ 2ra/F in the worldsheet action. From the
string worldsheet action, one can easily see that the tensor gauge symmetry associated
to B

B — B+ dy, (2.5.7)
where x is a 1-form, must because of the boundary be completed with
7N
A—A . 2.5.8
—AT 2ol ( )

"The reason behind the appearance of such a term is traced back to the fact that this term has
been necessary to cancel the anomaly of chiral fermions on the intersection of branes [43].
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Indeed, the combination F is then invariant under the tensor gauge symmetry and
it is this combination that must appear in the action as well. In addition, the Wess-
Zumino action is invariant under the following collective gauge transformations of the
R-R fields [45]

C — C+dr+ HAk+ 05, (2.5.9)

where C' = %" C(,), H = dB and both x =} f[,_1] and the scalar § generate the
gauge transformation. It is understood that forms of the appropriate dimensions are
selected to match the dimensions on both sides.

In the upcoming sections the assumption of slowly varying fields will be loosened
and we try to discuss the effective D-brane action in the abelian case with derivative
corrections and say some words on non-abelian case. We emphasize here that in the
non-abelian case there is no analogue of the slowly varying field strength approxima-
tion. Therefore the inclusion of derivative corrections must be mandatory.

As the dependence on B can be found from the dependence on F, we will put
B = 0. Moreover, we will work in a flat background G, = 1,,, and we will not study
corrections involving derivatives of the pullbacks of the bulk fields (for more about
this subject we refer the reader to [46].) Next, we first employ spacetime diffeomor-
phism to align the worldvolume of the D-brane along X’ =0 withi =p+1,---,9.
and then the worldvolume diffeomorphisms to match the worldvolume coordinates
with the remaining spacetime coordinates, X* = z®. This gauge is called the static
gauge. Consequently, it follows that the induced metric is expressed as

]* [G]ab = Nab + aaq)iabq)iu (2510)

where the scalars ®° are equal X?, describing the transverse position of the D-brane.
Moreover, we will usually deal with D9-brane or Dp-branes, setting all ®* to zero.
Thus, the pullbacks become trivial and hence Dirac-Born-Infeld action reduces to the
Born-Infeld action. The expression of lower-dimensional D-branes including the ®;
can be derived by dimensionally reducing expression for the D9-brane.

2.5.3 Open Superstring Effective Action: D9-brane Action

Remarkably enough, for the abelian open superstring-in modern language the space-
time filling D9-brane action®- there exists a relatively simple closed expression valid
to all orders in o', the Born-Infeld action. The catch is that this expression is
only valid in the slowly varying field strength limit. This action was first obtained
in [47] and [48]. The supersymmetric version of D9-brane Born-Infeld action has been
achieved in [49-53]. In flat background, The Born-Infeld action is expressed as

Spg = —Tpg / d"z\/—det(nap + 270’ Fop), (2.5.11)

8In [29] it was realized that D-branes take a prominent place as non-perturbative solitons, which
led to a renewed interest in D-brane effective action.
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where Tpg is the D9-brane tension related to the string coupling constant gs and string
length I, via 7pg = 1/gs(27)°119, and F,; is the field strength of the gauge potential
A, living on the worldvolume of D9-brane. The o/-expansion of the Born-Infeld
effective action reads

/\2
S = giz/dl%{ - iFabF“b + % (trF4 - i(trF2)2> +oe (2.5.12)
where for D9-brane the coupling constant is g2 = g4(2m)716.

However, as has been argued in [54], physically it is very hard to say that one is
working in the limit of large and slowly varying fields; the restriction to slowly varying
fields actually implies that gravitational effects are large, invalidating the restriction to
flat backgrounds. The reasoning of [54] goes roughly as follows: negligible derivative
implies that the field stay large over a wide region of spacetime. An estimate of total
energy indicates that gravitational effects can no longer be neglected and the system
is at risk of collapsing to a black hole. Thus the derivative corrections should be taken
into account.

In discussing the derivative corrections, it is useful to introduce some notation.
The generic term in the effective action can be written schematically as

1
Leg = ? Zﬁ(m,n)v with L(m,n) = alm(aan), (2.5.13)

the powers in 2.5.13 are related, by dimensional analysis, 2p —2m +n —4 = 0. The
terms at order o™ with n derivative are denoted by Ly, ny. Lot €njoys two symme-
tries which are inherited from the underlying string theory: Poincaré symmetry, from
which follows that n is even, and the U(1) gauge invariance of massless fields. The
term L, 0y is the Born-Infeld term mentioned above. It is well-known from string
S-matrix calculation that the contributions with an odd number of massless fields
vanish and hence terms with p odd in 2.5.13 are absent in the open string effective
action (there are some terms which can be removed a by field redefinition).
Derivative corrections were first studied in [55]. In this article it has been demon-
strated that for the sector L, 2y = 0, Vm so that the first correction has four deriva-
tives. Note that the contribution L4 4) to the Born-Infeld part was also calculated
in the same article. Only much later all terms with four derivatives, Efno: 4 Lima)
were constructed in [56] and a conjecture has been made for terms with more deriva-
tives [57]. Wyllard in this conjecture gives the recipe to calculate derivative correc-
tions to the Born-Infeld sector from the derivative corrections of the Wess-Zumino
sector. However, the conjecture is suffering from ordering ambiguities, therefore it is
not well-defined since the terms following from Wess-Zumino term with n > 4, which
have been found in [56], are not complete. Hence only partial results originated from
the conjecture for the Born-Infeld term. The terms L, 21 —4), i.e. terms with p = 4,
were found in [58] and the prescription therein has been generalized to non-abelian
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case in [59], again there with only partial results. Although the conjecture in [56] has
some limitations, the results predicted by this conjecture regarding the terms with
six derivatives and four fields agree with [58].

Let’s say some words about non-abelian version of open superstring effective ac-
tion. The coincidence of a stack of D-branes results in a non-abelian gauge theory
where the zeroth order in ' is the Yang-Mills action. In order to obtain the effective
action for a stack of D9-branes, we calculate o/-corrections to the effective action for
open superstring with Neumann boundary conditions in all directions and non-trivial
Chan-Paton factors.

Compared to the abelian case, much less progress has been made for non-abelian
effective action. Up to now there is no an all-orders result in o’ at hand. Firstly, it is
not known how to order-now non-commuting- field strengths and covariant derivatives
and secondly new identities of the form

[Da, Dy|Fea = [Fap, Fed), (2.5.14)

appear, relating commutators of covariant derivatives to commutators of field strengths.
Consequently, there is no clear way how to deal with the limit of slowly varying field
strength without considering at the same time the abelian case. Some results, up to
order a’2, have been found for non-abelian effective action through the abelian one
by symmetrizing over the gauge indices [60,61]. Tseytlin in [62] has made a proposal,
the symmetrized trace proposal, where a truncation of the non-abelian effective action
has been performed, and only terms that come from symmetrizing over the gauge in-
dices have been kept. Unfortunately, soon it was found out that this proposal missed
essential physics. The problem starts at o/*. In fact, in [63] it was revealed that
already at order o3 there is a contradiction with the symmetrized trace prescription
that only produces terms at even order in o/ due to the antisymmetric property of
Fup.

2.5.4 Obtaining Open Superstring Effective Action

After this brief overview of the developments, let us now list some approaches to
construct the abelian and non-abelian open superstring effective actions. We have
first the partition function approach. This method was developed in [64-66] where
it was realized that the Polyakov path-integral with background fields produced the
effective action. The boundary state formalism was used in [56] to construct all terms
with four derivatives in both the Born-Infeld and the Wess-Zumino part in the abelian
case. Another method is based on requiring Weyl invariance of the nonlinear sigma
model; here one looks at the action for open string in curved backgrounds. Then one
requires the Weyl anomaly of the o-model to vanish, which amounts to putting the (-
function to zero. The resulting equations are equivalent to equations of motion derived
from an effective action (see for example [48,67] and also a quite recent paper [68]
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and references therein). We have been particularly interested in the string S-matrix
method [69-71]. This approach follows immediately from the definition of the effective
action. The idea is to calculate N-point scattering amplitudes in perturbative string
theory. Then the most general gauge-invariant Lagrangian at the appropriate order
is constructed or an appropriate Ansatz is made. Next its unknown coefficients are
fixed by comparing the on-shell scattering amplitudes with the result of string theory.
Since an N-point amplitude can only probe terms in the effective action involving up
to IV gauge potential A, and thus IV field strengths F},,, the method is perturbative in
the number of field strengths although with a good Ansatz it is possible to construct
an infinite series of derivative corrections. With an Ansatz based on supersymmetry,
in [58] the maximum information was extracted from the 4-point amplitude. In view
of its perturbative nature in F', the method is not powerful enough even to produce
the complete abelian effective action. A general property for an amplitude with p
external massless open string fields can be derived as follows:

A(1,2,---,p—1,p) = (-1)PA(p,p—1,---,2,1). (2.5.15)
The complete amplitude

A1,2,,p) =D A(L0(2),-+,0(p) = (~1)PA(1,2,--+ ,p), (2.5.16)

where the latter equality follows from 2.5.15 and cyclic invariance. Here we want to
point out the consequences of the invariance of string theory under the worldsheet
twist operation  [8]. It is known that Q changes the orientation of the worldsheet,
thus it reverses the order of the vertex operators on the boundary of the disk ampli-
tude. In addition, Q acts on the vertex operators, giving extra factor of (—1)~, where
N counts the number of oscillators involved. We conclude that indeed the S-matrix
elements involving an odd number of massless fields vanish. Note that in non-abelian
case the S-matrix approach has been more successful mostly because in that case the
other available methods are not as powerful either.

There are some other indirect methods which use a symmetry or other property
the action would have. The disadvantage of the indirect methods is that in most
cases the action is not completely fixed by requiring the desired property and typi-
cally unknown coefficients remain. In particular we mention; the Noether method [72]
which is an iterative method based on supersymmetry. Also the existence of certain
BPS solutions used in [73,74] helps to a great extent with fixing some coefficients
of the non-abelian effective action. A method which is of our interest is the one we
shall discuss in chapter 4, namely using electromagnetic duality invariance as a con-
dition on the abelian effective action in the hope that we can constrain the derivative
corrections terms [B].
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2.5.5 The 4-point Function of Open Superstring Effective Ac-
tion

The matching procedure based on the calculation of S-matrix has been used in [58]
to derive the terms L, 2m—4), i.e. the terms with p = 4. The authors of [58] are
able to write down a closed form for the effective action because the open string four-
point function factorizes in a product of two terms: the first term (K) depending on
polarization vectors and wave functions, the second term (G) depending only on the
momenta. The first term determines how the fields should appear in the effective
action. The second term expands into an infinite series in o/, and determines how
derivatives should be distributed over the fields. The 4-point function is given by [75]

A(1,2,3,4) = —16ig 202 (2m) 1060 (ky + kg + k3 + kq) x
G(ky, ko, k3, ka) K (1,2,3,4), (2.5.17)

where G contains the o’ dependence and behaves as

g(kl,k27k3,/€4) G(S,t) —l—G(t,u) +G(U,S)
N(—a/s)T'(—=a't)  T(—dt)I(—ad'u) T(—a's)[(—a'u)
Fl—-ao/s—a't) TA-at—au) T(1-as—au)

(2.5.18)

The Mandelstam variables s, ¢, and u are defined, up to momentum conservation
and the mass-shell condition, in such a way that G is manifestly symmetric in the
momentum k;. They have been chosen to be

s = —kl'kg—kg'k4, t:—kl'k3—/€2'k4 (2519)
u = —kl'k4—k2'k3, with s +t+u = 0. (2520)

It is easy to see by expanding in o’ 2.5.18 that G is regular. The leading term of this
expansion is written as

2
Gk, ko, k3, k) = —% +0(a’?). (2.5.21)

The momenta and the wave function dependence are encoded in K which, for 4-
massless vector fields amplitude, has been found to be elegantly expressed in terms
of k;, the polarization vector (; of the ith incoming field, and a tensor of rank eight,
i.e. tg. Thus we have

K(1,2,3,4) = tabede ranki CLRSCIREC KICE, (2.5.22)
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with tg satisfying”

tabede fgn M MSIMET MI" = —2(tr My Motr Ms My + tr M, Mstr My M,
+ tI‘MlM4tI‘M2M3) + 8(trM1M2M3M4 + trM1M3M2M4
+ trM1M3M4M2), (2523)

where the M; are antisymmetric tensors. tgpedefgn 1S antisymmetric in the pairs (ab),
(cd), ete., and is symmetric under the exchange of such pairs. Now, we will summarize
the technique.

The leading order contribution to the amplitude is just the expression of K 2.5.22
times a constant. This term is reproduced by L3 ) contribution to the effective
action, namely

2
_ a(zvo)a/ i ab red pef mgh
5(2,0) =" s (24> tabedefgn B FCOFYF
12
1
= a(27(;)a (tI’F4 . Z(th2)2> , (2524)

where a3 o) has been fixed to be (27)? which agrees with the expansion of the Born-
Infeld action in 2.5.12.

In [58] it has been observed that every factor of momentum k; in K is reproduced
by a derivative acting on the appropriate field in 2.5.24. Notice that the complete
amplitude 2.5.17 differs from the leading order contribution by extra factors of mo-
mentum, i.e. by G. Therefore in order to reproduce these factors, one simply needs
to act with derivatives on the appropriate fields. This can be done by first defining
the four fields at different points in spacetime, giving rise to non-local action. That
is, one considers the fields A, (z;), where i = 1,--- ,4, and then replace the momenta
k; in the amplitude by differentiations with respect to the appropriate coordinate
in the effective action, i.e. k;, — —i0/0z¢. Certainly, one needs to multiply the
resulting expression by delta functions and then integrate over the z; to render the
action local, which we denote by Sef¢[A,]'". Now, one can expand G in o/, and then
by substituting derivatives for momenta in this expansion and inserting the resulting
expression in Seyr[Aq], one can straightforwardly construct the contribution to the
4-point effective action at any desired order in o/. For example, for m = 4, i.e. at

9Explicit expression of tg is given first in [75].
10A detailed derivation for the complete 4-fields effective action which reproduces the 4-point
amplitude can be found in [58].
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4

order a’*, one obtains

L1,4) = aa,0)0  tapede fgn O F*POF PO FT 0! P9
= 8a(q,4) [(akFabalFbcakchalea + 201, F 0% Fye 0, F g0 Fug)

1
- Z(akFabakFabalzrcdachd + 204 Fop 01 F 0¥ FLq0' FLg) |, (2.5.25)

where a4 4) is determined to be % by string theory methods.

2.6 Illustration: Regularity of the Point-charge

This section is mainly based on [76]. There is a wide belief that o'-corrections are
responsible for smearing out some singularities. The example of the open string
that we will discuss below suggests that a’-corrections smooth out singularity of the
leading order solution. In other words, we shall show that the point-charge singularity
of Maxwell theory is absent in the open string theory. As seen before, the tree-level
abelian vector field effective action of the open superstring theory takes schematically
the form

Lo ~ \/—det(nab + 27wa’ Fyp) + derivative terms, (2.6.1)

where we ignore all the field strengths derivative terms and consider only the Born-
Infeld sector. Since the open string is charged at its ends, a charged open string
source can be added to the action 2.6.1, namely a point-particle source proportional
to QAo (x)d0P~1(x) where @ is the charge. Therefore the corresponding electric field
might be calculated.

One of the nice features of the Born-Infeld Lagrangian is that while in the Maxwell
theory the point-like charge is singular at the origin and has an infinite self-energy, in
the nonlinear Born-Infeld case the field is regular at » = 0 [41] (in spherical coordi-
nates) where the field strength takes its maximal value and its total energy is finite.
For example, in D = 4 and with only electric fields, the Born-Infeld Lagrangian
recasts into

Lpr ~\/—det(nay + 21’ Fup) = /1 — 21/ E)2. (2.6.2)

The analogue of the Maxwell equation is

o(r’D) E
~ Qd(r), with D = ———. 2.6.3
or Qdtr) 1 - (2nd’'E)? ( )
The solution is
D= Q ly E=F,; = @ 2.6.4
- 2 namely = L'rt — ( .0. )

r
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with 72 = 27ra/Q. The distribution of the electric field, i.e. divE = 27p, gives rise to
the fact that the source is no longer point-like, but has an effective radius rg ~ 1/a’Q.
To illustrate the effective description discussed above we distinguish:

e In the region 0 < r < ry, the electric field is approximately constant, i.e.,

E~ % ~=. (2.6.5)

e At r = 0, the derivative vanishes.

e Near r ~ ¢, the derivative is suppressed by a power of Q)

0E Qs .,
R AN 3 . 2.6.
ar @@ (2.6.6)

That means that the effect of the derivative terms in 2.6.1 must be small, i.e., the
conclusion about the regularity of the static spherically symmetric point source solu-
tion applies to the full effective action of the open string theory. We close this section
with the observation that if @ is large the derivative corrections to the effective action
do not affect significantly the form of the Born-Infeld solution 2.6.4.
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Chapter 3

Heterotic Supergravity,
Chern-Simons Terms and
Field Redefinitions

In this chapter we will introduce the supergravity action as the low-energy effective
action of superstring theories. We shall also outline various approaches that have been
used to construct such an action and the corresponding higher derivative corrections.
Field redefinitions and equivalent effective actions will be studied for the heterotic
string to order o/, having the Chern-Simons terms included. Also some comments on
higher order terms in o’ will be made.

3.1 Supergravity Theory

3.1.1 Preliminary

Supergravity theories were first presented as extensions of general relativity with
fermionic and bosonic matter fields [77]. Such extensions have been performed in
a way that the theory has a local supersymmetry which can be considered as an
extension of Poincaré symmetry of general relativity. The Poincaré Lie algebra is
formulated as a semi direct product of spacetime translations with generators P,
and Lorentz rotations J,,, such that

[Pmapn] :Oa [PmaJnk] :nmnpk _nmkpna (3113)

[Jmn7 Jkl] = nnkJml - nkanl - nnlJmk + nmlJnk (311b)
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Adding extra fermionic generators @), to the Poincaré algebra leads to the well-
known super Poincaré algebra. The generators @), are fermionic in the sense that
they transform in spinor representations of the Lorentz group where « is the spinor
index. Therefore the super Poincaré algebra must contain anti-commutation relations
along with the commutation relations. We consider the example of the minimal super
algebral!

s Qa) = ()@, (@ Pl =0 (3.1.2)
{Qa: Qs} ~ Vo Pm- (3.1.2b)

It is clear from these relations that the job of the @,-generator is to rotate fermion
and boson fields to each other.

Local supersymetric invariant equations of motion and a set of fields that lie in
irreducible representations of a super algebra lead to a supergravity theory. In order
to construct the supergravity multiplet one has to associate to every generator a
vector field. In other words, the gauge fields that correspond to P,, are the vielbein
e, and for Jp,, the gauge fields are the spin connection 1-form wy"" which due to the
equations of motion is considered as a variable dependent on the vielbein, i.e. wﬂm(e).
On the other hand, the gauge field corresponding to a supersymmetry generator is the
gravitino denoted by ¢y, spin 3/2-field. The supergravity multiplet is then defined
as the smallest set of fields involving the vielbein and the gravitino that form an
irreducible representation of the super algebra?. Note that the number of boson and
fermion degrees of freedom in any multiplet should be equal. This can be seen from the
fact that Q|Boson) = |Fermion). Acting again with the operator @, one finds from
the algebra that Q?|Boson) ~ P|Boson) = |Boson'), where |Boson') is a translated
boson. Now if translations are invertible the dimension of the bosonic space is equal
that of the fermionic.

Besides the supergravity multiplet one can out of the representations of super
algebra construct multiplets that do not describe gravity, namely do not contain
graviton and gravitino. These multiplets are representations of rigid supersymmetry,
and are called the scalar, vector and tensor multiplets. It is worth noting that a rigid
supersymmetry can be converted to local by coupling the multiplet to the supergravity
multiplet.

So far we have just mentioned what we have called minimal super algebra, i.e.,
super algebra with one spinor Q,. One can also generalize this to more supersymmetry
generators Q., with I runs from 1---N. The supergravity theories that have been

(2]

IThe Gamma matrices (ﬁ/m)aﬁ obey the relation {ym,¥n} = 29mn. The matrices ymn are the
antisymmetric products Ymn = Y[m7Yn]- The charge conjugation matrix is playing the role of the
metric on spinor space; It satisfies the relations CT = kC and %7; = eCymC~1 with k and e take
the values +1 or -1.

20ften one has to add scalars such as dilaton, vectors, e.g. graviphoton, and fermions (dilatini)
etc...
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Superstring theory Low-energy approximation

Type ITA N = 2 type IIA supergravity

Type IIB N = 2 type IIB supergravity

Type I N =1 supergravity coupled to SO(32) YM multiplet
Heterotic SO(32) N = 1 supergravity coupled to SO(32) YM multiplet
Heterotic Eg x Eg N =1 supergravity coupled to Eg x Eg YM multiplet

Table 3.1.1: Superstring theories and their low-energy limits.

found so far are labelled by the number of supersymmetries N and the spacetime
dimension D where they live. The number of components of the irreducible spinors
Q! is known as supercharges. The maximal number of supercharges that a field
theory (theory that does not contain fields with spin higher than two) can have is 32
or less. For example in D = 4, a spinor has four real components, then the maximal
number of supersymmetries is N = 8, e.g. maximal supergravity in D = 4. One
special example is 11 dimensional supergravity where the spinor has 32 supercharges
and hence N = 1. In 11 dimensions, the supergravity theory is unique and there is
only one supergravity multiplet consisting out of the 11-bein e}}', gravitino ¢} and
the 3-form gauge potential A,,,.

3.1.2 Supergravity Effective Actions

Although supergravity theory was not shown to be a finite perturbation theory to
all orders, their effective actions are still crucial for many applications, especially be-
cause of the remarkable fact that they turned out to describe the low-energy effective
behavior of superstring theories see table 3.1.1. Several different methods can be used
to formulate supergravity theories and their derivative corrections.

One straightforward approach is to directly gauge the supersymmetry algebra the
way we described above. In addition, most of the methods that have been pursued to
construct the low-energy effective actions Leg of superstring theories containing closed
strings- supergravity actions with derivative corrections- are to some extent the same
approaches mentioned in chapter two for constructing the open superstring effective
actions. The first method, already outlined in chapter 2, is to simply construct the
first quantized string theory in a background field (see for example [78-82]). The
consistency requirements on the string theory then lead to constraints on the back-
ground fields, which can be promoted to be the equations of motion. In other words
a consistent string theory can be constructed whenever the corresponding o-model3

3To remind the reader, the nonlinear sigma model is a scalar field theory in which the scalar field
takes values in some non-trivial manifold M, the target space.
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is conformally invariant and the requirement of conformal invariance yields the clas-
sical equations of motion- which are identified with the g function, renormalization
group coefficients- for the background fields. This method has the advantage that
the 10-dimensional symmetries of superstring theory can be made explicitly and that
one may have the ability to get results that are valid to all orders in perturbation
theory. This method has the drawback of demanding an n-loop computation of the
0 functions in order to obtain the nth order term in the effective action Leg-.

We have also seen in chapter 2 that there exists another method, which is in
practice somewhat simpler, for constructing the effective action for open superstring
theory. Here one can also use closed string theory to calculate the scattering ampli-
tudes of its massless particles in the tree-level approximation. One then constructs an
effective Lagrangian which reproduces the closed superstring S-matrix [83,84]. Prac-
tically, S-matrix method, can be implemented as well in a perturbative fashion (in
analogy with open string case) in a sense that one first constructs a 2-point function
Lo that encodes the massless free particle of the closed superstring theory. We then
incorporate cubic terms, i.e. the 3-point interactions, thus yielding L£3. The 4-point
function string scattering amplitudes can then be added*. The pole corresponding to
the intermediate massive particles having no singularities for small values of momen-
tum and can therefore be expanded in a power in o’. On the other hand, each term
in this expansion can be reproduced by the local vertex operator, defined in section
2.1.4, namely the 4-point vertex operator V4 which actually starts out quartic in the
massless fields. Thus the 4-point sector L4 is constructed, the effective action for
theories with closed superstring correct through quartic order. This machinery can
be repeated for higher point amplitude, e.g. five, six and so forth, thereby yielding,
in principle to all orders. In fact, by exploiting the local and global symmetries of
the theory, the task of constructing the effective action Leg can be greatly simplified.
Roughly speaking, these symmetries help with generating terms at a given order that
must appear in higher orders as a result of such symmetries.

3.1.3 Field Redefinitions Ambiguity

The effective action constructed this way, namely following either of the methods out-
lined above, will not be unique. That is because the scattering amplitude is unaffected
by a field redefinition. In other words if we construct an action L][®,] to yield the
S-matrix for particles represented by the fields ®,, the Lagrangian

L]®,(9')] = L/[@")] (3.1.3)

4Through unitarity one might guarantee that the massless poles will be those follow from the tree
diagrams of Ls3.
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will give the same S-matrix. Field redefinition can be performed order by order in
perturbation theory provided that the field redefinition transformation

P — (D) = D' + ay®? + az® + - - (3.1.4)

is nonsingular.

To illustrate the field redefinition ambiguity in S-matrix method, let us imagine
that we have calculated the 3-point sector L3 for one of the string theories. Now,
we wish to find £4. This will involve new 4-point terms, to account for the pieces of
the 4-point function which are not implied by L3. In order to obtain these we first
denote by L the Lagrangian which reproduces all string theory 4-point amplitudes
to desired order, i.e., L encodes a set of quartic terms. Then one can find a similar
set of terms which we call L, reproducing all the 4-point amplitudes coming from
L3. Subtracting £ from L, one then obtain the terms that should be added to L3 to
yield £4. For the sake of simplicity, let’s calculate £4 for a toy model having £, = 0
and

Ly = —%au@af@ + £(0,0,20" D" D). (3.1.5)

The only contribution to the 4-point function following from L3 is the diagram con-
sisting of the exchange of ®. Therefore the vertex to which ® couples can be obtained
by varying the action L3 w.r.t the field, i.e.,

Vo = Iia% (0,0, 00" 9" @) = —k(0,0, 00" 0" ®) + K(0*PI*®), (3.1.6)

where we have made use of momentum conservation to move the derivatives from
the ® of intermediate state (virtual) to the physical ones. The expression 3.1.6 is
evaluated on-shell. Therefore it is allowed to add terms to 3.1.6 that vanish on-shell.
The term that we should add is

Vi =—r (23%3#32@ + 3(8%)2 + %@(82)%) . (3.1.7)

The expression 3.1.6 becomes
1
Vo = —Zﬁ(a%?(@?). (3.1.8)

We have done this in order to have the momenta in the vertex operator Vo emerge in
the form of an inverse of propagator, that cancel with the propagators to which it is
attached.

The Lagrangian L representing the scattering amplitude behaves as

L;=VaPVs
=~ R107)(97)] 2 [(0°)%(a7)] (3.1.9)
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where P is the ® propagator. Again, one can add terms involving 92®, that vanish
on-shell, to obtain the following expression®

L= &ﬁapa%apag@a%ag@. (3.1.10)

Since L vanishes, we have L4 = L3 —L¢. Then the 4-point effective Lagrangian, after
integrating by parts, takes on the form

1
L4 = —58‘“1)8#(1) + k0"0" 20,920,
1
- Efq?(apa”cbap@a‘sag@ag@). (3.1.11)
Performing the following field redefinition
' =3 1 oH®9, P
=0-ok P, (3.1.12)
one can then realize that 3.1.11 is equivalent to a free theory with
1 /! /
Ly = —58 ®'0,9". (3.1.13)

This agrees with the fact that the 3 and 4-point scattering amplitudes for our model
and for the free field theory are identical; they are all zero, and that the S-matrix
does not change under field redefinitions.

The same ambiguity exists in the previously discussed o-model approach to the
string equations of motion. Indeed, the S-functions of a renormalizable field theory
with couplings ®, are not unique. They depend upon the definition of the coupling
constant and the renormalization prescription. Using the definition 3.1.3 and the
transformation 3.1.4, we find that the equations of motion have the same content
since the extrema of £ and L' are equal

sCl@] 6 , 5L 5P,

L[ (@) = 557 3 (3.1.14)
b a

0P, 0P,

as long as the Jacobian §®}/0®,, is nonsingular. Now, if we redefine the couplings,
namely the fields, & — &(P’), the S-functions

Ba(®) = 1 (g—i) : (3.1.15)

5Naively £ s seemed to have a pole due to the propagator, however this pole cancelled by the
inverse propagator in the vertex, leaving a contact term.
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transform under a field redefinition as

Ba(®) = ua%%(‘i") — BL(@)

. (3.1.16)
0P,

Nonetheless, The zeroes of (3,, identified with the equations of motion, are invari-
ant under a non-singular field redefinition. In order to avoid having the fields over-
constrained, both sets of equations 3, and % = 0 have to be satisfied and coincide.
The properties of 3.1.4 suggests that they are related by a metric in the field space

oL

ﬂa(q)) = Gabﬁ-

(3.1.17)
A direct connection between the § functions and the equations of motion is argued
for in [85].

3.2 Strings in Background Fields: Nonlinear Sigma
Model

Let’s now make use of the g-model approach and derive the bosonic sector of the
supergravity action. We restrict ourselves to the bososnic string and try to describe
a string moving in a more general spacetime than the Minkowski space we have
considered in chapter 2. The most general covariant action we can write down with
two worldsheet derivatives and appropriate symmetries, i.e. gauge invariance and
local Weyl invariance, is the nonlinear sigma model action

1

4ral

/ drdo(v/—hh™ G, (X) — B, (X))0, X" 0, X" + S[®],  (3.2.1)
b

where €9 is the fully antisymmetric tensor in two dimensions, and the integral® is
over the worldsheet 3.

Actually, one can think of this action as a string moving in coherent backgrounds,
G, an antisymmetric tensor B, called an axion, and a scalar field ®, i.e. the
dilaton. The sector S[®] of the action represents the coupling of string to the dilaton

S[®] = —i/zdodT\/—_hR(z)q)(X)— 2i/az dsK®(X), (3.2.2)

™

Where R(® is the two-dimensional Ricci scalar of the two-dimensional worldsheet
metric hgp, and K is an extrinsic curvature and is added to cancel the total derivative

6The integral over 3 reflects the fact that closed string vertex operators are inserted in the bulk
of .
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that is obtained by varying R(?) [86]. Note that by setting the dilaton to a constant
mode ®g, the first term of 3.2.2 is proportional to a topological invariant quantity
from the worldsheet viewpoint, the Euler characteristic

1
X=1 /E dodrv/—hR? =2 — 2b, (3.2.3)

where b is the genus, i.e. number of holes, of the Riemann surface ¥. This means that
the first term in 3.2.2 provides us with information about the number of loops in string
S-matrix. Therefore one can easily notice that the different topologies in the path
integral representation of Euclideanized version of S are weighted with ¢g2=2* where
the string coupling constant identified with the vev value of e®. We know that the
symmetries of the free field theory action 2.1.2 are crucial in obtaining a consistent
quantization of the string since they are actually responsible for the decoupling of
unphysical degrees of freedom. However, now we are dealing with an interacting
field theory which does not turn into the Polyakov action in the conformal gauge
hab = Angp, which makes it a non-trivial 2-dimensional field theory. As a result, if we
want to do quantum calculations we are forced to a perturbation expansion in o/. In
other words, the Weyl symmetry is ruined at quantum level unless the renormalization
group [B-functions for the field dependent couplings G, B, and ® vanish. At first

vy
non-trivial order in o’ and tree-level in the loop expansion one obtains
9 o
Ev =R, —2V,0,0 + ZHupova +0()=0
D =V, H W — 2H?,,,0,® + O(a/) = 0 (3.2.4)

3
B® = (D —26) + 3a/ (R + 4(09)* — 4V?® + ZHW,,H‘“’P) +0(d) =0,
where R, and R are respectively the Ricci tensor and Ricci scalar associated to the
background metric G, and V,, is the spacetime covariant derivative. H,,, is the
field strength of the Kalb-Ramond background B, defined by

1
Hywp = OBy = g(auBup + O0vBpp + 0pBuy). (3.2.5)

Note that H is invariant under the gauge transformation assigned to B, .

The constraints 3.2.4 can be interpreted as target spacetime equations of motion
and one can wonder whether they could be derived from an action principle. Indeed,
the action has been found to be

S = % /dDa:\/ée*m [ - % — R+ 4(00)* — gHWpH‘“’p} +0(d). (3.2.6)

The action 3.2.6 is known as the low-energy effective action; it describes the massless
modes of slowly varying embedding coordinates X* in the target space in which the
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string moves. In the critical dimensions, i.e. D = 26, the dimension dependent terms
in 3.2.4 and 3.2.6 drop out.

The appearance of G, in the low-energy action 3.2.6 adds additional evidence to
the argument that string theory would be the theory of quantum gravity. Of course,
one can alternatively view the action 3.2.6 differently; it can be seen as the action
of 26-dimensional gravity coupled to tensor and scalar fields. The action 3.2.6 can
receive higher order terms in o’ or string loops, namely stringy corrections to general
relativity. This is a good place to point out to the reader that two coupling constants
for two entirely different quantum theories were actually introduced:

e o' coupling constant: it controls the auxiliary two dimensional theory living
on the worldsheet. For some special backgrounds, flat and some curved ones,
the 2-dimensional theory can be found completely to all orders in o/. While
for a generic background this is not plausible anymore. One has to evaluate
(B-function order by order in o’. This gives rise to higher derivative terms in the
effective action.

e The string coupling g¢s : dictates the loop expansion in the underlying target
space theory.

The analysis of higher orders corrections in o', particularly to heterotic string, will
come later.

This mechanism of calculating the low-energy effective action might be applied as
well for supersymmetric string, i.e. superstring theory. Indeed, it has been shown
that the low-energy approximation of superstring is the 10-dimensional supergravity,
locally supersymmetric quantum field theory. As mentioned in chapter 2, the N =1
worldsheet supersymmetry induces N = 2 spacetime supersymmetry. The way that
these supersymmetries enter in the theory determines the types of superstring theories
and the corresponding low-energy effective actions see table 3.1.1.

Type 1

Although this theory is a theory of open strings, closed strings are also involved in
type I and that is due to the fact that a closed string can split up into two interacting
open strings. For such a theory, the boundary conditions of open string break the
original N = 2 to N = 1 supersymmetry. We recall from chapter 2 that there is a
non-abelian group (Yang-Mills) with charges attached at the endpoints of open string.
The gauge group which is allowed by the consistency at the quantum level, is SO(32).
According to [87-89] the bosonic part of N = 1, D = 10 supergravity reads

3
4

1 1
Stypel:§/d10:v\/a{e_2q’(—R+4(f)<I>)2)— H(23)+Ze_‘1’F21F21 : (3.2.7)
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where the subscripts (3) and (2) are to indicate the rank of the field strength. The
gauge field associated to the gauge group SO(32) is represented by the field strength
of the vector field which lies in the adjoint representation of SO(32).

Type ITA

The type ITA theory contains only closed strings. The theory is non-chiral in the sense
that the two spacetime supersymmetries of the theory show up with two opposite
chiralities. Contrary to type I, type IIA does not have a gauge group. The bosonic
field content of this theory comprises, besides the metric, axion and dilaton of type I,
a one-form field C(yy and 3-form gauge field Cs) (see table 2.1.3 in chapter 2). The
type ITA supergravity action [90-92] behaves as

1 3
Stype 114 = > /dl%\/é[e—”’ (—R—i— 4(0®)? — ZH(23)>

1 3 1 1
ZG%z) + ZG%@ + a(G)_féloac%aCéB(z)}, (3.2.8)

with G(3) and G(4) are the field strengths of the R-R gauge fields C(;y and C3)
respectively, and €19 is the 10-dimensional fully antisymmetric tensor. Notice that
the fields of NS-NS sector have an explicit dilaton coupling via the factor e~ 2%,
whereas the R-R fields are not multiplied by this factor. The appearance of the
coupling as such reflects the fact that R-R fields correspond to a higher order in
string coupling constant. The existence of R-R fields, bosonic fields, in type ITA
action 3.2.8 is necessitated by the extension of supersymmetry from N =1 to N = 2.
It is worth recalling that the solutions-p-brane- that couple to these R-R fields belong
to non-perturbative spectrum.

Type IIB

The type IIB theory is a theory of closed strings as well, having N = 2 supersymmetry,
though for this theory the two-supersymmetries have the same chirality, i.e., it is a
chiral theory. Similarly to type IIA, there is no possibility for non-abelian gauge
groups, and besides the NS-NS fields, one has R-R sector consisting of a scalar Cy,
2-form field C(3) and a selfdual 4-form gauge field C;r LA table 2.1.3. The selfduality
property of the 4-form prohibits writing down an effective action of type IIB in a
covariant way. An action has been found in [93] wherein there has not been made use

of the selduality condition, but is added as an extra condition on the 4-form. The
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type IIB supergravity action is

! 3
Stype I1B = 5 /dlox\/a[e*m (—R—l— 4(09)? — ZH(23)>

1 3 5
- 5(300)2 - Z(G(3) — CoHz)* — EG%@

€10
— Ciy NGi3y N Hzy |, 3.2.9
ssvgC@ NG <3>} (3.2.9)
with

The above IIB action is called the non-selfdual action, as we pointed out before the
selfduality condition of 4-form does not follow from the action. The equations of
motion have to be supplemented by

1
G(5)M1"'M5 = meﬂl“'#mGéﬁ) Ho, (3.2.11)

Heterotic String

The structure of heterotic string theory rests upon the fact that closed strings which
form this theory have independent the right and left moving sectors. In heterotic
string, one sector is supersymmetric, namely the theory has N = 1 supersymmetry
(which is enough to remove the tachyon from the spectrum). This can be seen from the
fact that the left moving sector can coincide with a purely bosonic strings, contrasting
with a right moving sector which consists of modes of a superstring. In heterotic string
theory we do have a non-abelian (Yang-Mills) gauge theory which results from the
compactification of the bosonic sector on a 16-dimensional compact internal space,
yielding 10-dimensional superstring theory. Due to quantum consistency, the gauge
group turns out to be SO(32) or Eg x FEg. Therefore the bosonic part of the low-energy
effective action, i.e., the bosonic sector of heterotic supergravity [94] is written as
1 10 -2 > 3. Lo
SHet = 3 /d vV Ge — R+ 4(09)° — ZH(3) + ZF@)F@) 1] (3.2.12)
Note that the metric G, the dilaton ® and the axion B appear in the same way
in all string theories, except type I. This has been referred to as the common sector
in supergravity.

11-dimensional Supergravity

We pointed out in chapter 2 that in spite of the fact that superstring theory lives
in D = 10, there is also a supergravity theory living in 11 dimensions. Despite the
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intimate relation between superstring and supergravity theories, the 11-dimensional
supergravity does not follow from a low-energy effective action of superstring the-
ory. However, 11-dimensional supergravity is still interesting by itself. It plays a
crucial role in unifying the above five superstring theories. It is well-known that the
higher number of dimensions that supergravity can live in is eleven’. Therefore 11-
dimensional supergravity is a unique theory with N = 1 supersymmetry. The bosonic
sector of 11-dimensional supergravity action [96] is expressed as

1 3 1
B A e . ] 21
St1-sup. = 5 / VG| - R+ Gt + 384\/661103030 , (3.2.13)
where the field contents of eleven dimensional supergravity are the metric G and the
3-form gauge field C),,, with G(4) = dC. €(11) is a fully anti-symmetric tensor in 11
dimensions.

3.3 String Effective Action and Chern-Simons Terms

The low-energy effective action of string theory often involves Chern-Simons forms,
which are totally antisymmetric tensors O, ...,.,,. They depend on one or more lower
rank gauge fields or spin connections/Christoffel symbols rather than just the field
strength. Consequently, O is not invariant under the gauge transformation associated
with these lower rank gauge fields. However O has a peculiar property that the
variations of O under various gauge transformations are exact forms:

00y i = Oy P i) » (3.3.1)

for some quantity . Therefore the curvature 9, O,,......,,,] is a covariant tensor.
Let us give an example of such a Chern-Simons term. Assume the theory has a

r-form gauge field Bé‘ll)”'“ " and a s-form gauge field B(*g)'”” * with associated gauge

transformations of the form

5A,u1---,ur = (9““6“2...;“], 5B#1...#s = 8[#17112"'#3]' (3.3.2)
Then the r + s + 1-form

0 = Ay 0

Hr+1

B (3.3.3)

H1 Mg s 1 1o Hrg2 Prtst1)

transforms by a total derivative of the form 3.3.1 under the gauge transformation
induced by . Thus Oy,...., ., defined in 3.3.3 is a Chern-Simons (r + s 4 1)-form.

It may happen that the Chern-Simons terms show up in the expression of low-
energy effective action of string theory in two different ways:

"For supergravity theories in dimensions higher than eleven, fields with spin greater than two
appear [95], and it is not clear how to deal with these higher spin fields in an adequate way
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e The action itself might contain a Chern-Simons term of the form

/ dPxe" PO g (3.3.4)

Since 0O is total derivative, an action of this form is gauge invariant up to
surface terms.

e In some theories the gauge invariant field strength associated with an antisym-
metric tensor field B,,...,,,_, is given by

Hy, oo, = a[mBuzmun] + Ousp (3.3.5)

for some Chern-Simons n-form O constructed out of lower dimensional gauge
fields and spin connection. Under the gauge transformation 3.3.1, By, ...,.,,_, is
assigned the transformation

5BH1”'Hn71 = —Pur-pin_1s (336)

such that
0Hu, ., =0. (3.3.7)

A typical example of such a term is the 3-form field strength associated with
the NS sector 2-form gauge field of heterotic string theory. The definition of
the three form field strength comprises both gauge and Lorentz Chern-Simons
LCS 3-forms. In such cases the low-energy effective action being a function of
H,,, oy, is invariant under the gauge transformation 3.3.1 and 3.3.6 for n = 3.

3.4 o/-Corrections to Heterotic Supergravity

The heterotic supergravity action defined above has received higher curvature cor-
rections as it is the low-energy effective actions of heterotic superstring theory. In
this section we are going to clarify the relation between two formulations of the order
o heterotic string effective action. One formulation follows from the methods dis-
cussed in section 3.1, namely the string S-matrix calculations [84,97] and the require-
ment of conformal symmetry of the corresponding sigma model to the appropriate
order [97,98], the other formulation [99,100] is based on the supersymmetrization of
Lorentz Chern-Simon forms. In [C] it has been argued that the bosonic expression
for the order o’ corrections constructed in [97] has to be part of a supersymmetric
invariant. It has been proved a long time ago [99] that the heterotic string effective
action is supersymmetric through order o/. A few months later, in [100], the super-
symmetry of the action has been established to order /> and o’®. In [C] we have
shown that to order o' [99] agrees with [97], demonstrating in a direct way that the
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action of [97] is indeed part of a supersymmetric invariant. The field redefinitions
required to establish this correspondence generate additional terms at higher orders
in o

In what follows we will try to establish that the two actions are equivalent [C].
We relegate the reader to appendix B for necessary material and conventions. Then
we discuss the terms of order o/ and /3.

The heterotic string effective action to order o/, as found in [97], is

2 1
N — _Eee*” R(T) — EHMUPH“VP+46H<I>6“<I> (3.4.1)
1 1
+§a’{wa(r)RW“b(r) — 5wa(P)HW%I‘“’C
1 w1
S (H) () + - HY, (34.2)
where we have
Hywp = 30,,B,,), H? = Hy H™,
(H®ap = HoeaHp*d,  H* = HYH, Y H,* H %, (3.4.3)

normalisations are as in [97].

On the other hand there is the result of supersymmetrising the LCS of [99,100]. In
this section we only discuss the bosonic contributions to the effective action. Fermionic
contributions can be found in [100]. Thus the bosonic terms take on the form

Lpr = %ee_w[{—R(w)—1—12fluyp]§””p+4ﬁutl>6”fl>} (3.4.4)
1 rva
—50Ruwan ()R b)) (3.4.5)

With respect to [100] we have redefined the dilaton and the normalisation of B,,, (see
Appendix B.1). In 3.4.4 H contains the LCS terms with H-torsion:

H,ul/p = H,ul/p - GQOpup(Qf), (346)
a 2 a ac c
Osp(R-) = Q_1,abd,Q_,"" — 3w b0, 0, (3.4.7)
a a 1~ a
Q" = w, - 5 Ha b, (3.4.8)

The coeflicient « is proportional to o', notice that the relative normalization between
the LCS term and the R? action is fixed.

In order to show that the two actions (3.4.1,3.4.2) and (3.4.4, 3.4.5) are equiv-
alent we expand R(2_) in 3.4.5, perform the required field redefinitions and fix the
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normalisations.
To start with, we have

a a 1 T a T a 1~ac~c T ac iy c
R™(Q-) =R, b(w)—i(D#Hl, *-D,H, b)—g(H# H,**—H,"H,®). (3.4.9)

where the derivatives D are covariant with respect to local Lorentz transformations.
Obviously the substitution of 3.4.9 in 3.4.5 gives terms similar to those in 3.4.2,
additional terms come from expanding H (see Appendix B.3) in 3.4.4. The effect of
these substitutions is, to order « :

1 1

Lpr = 568_24)[—3(60) - EHWPHWP +40,90"®

1 1 1
+o¢{§H””p8# (w, " H %) — QRW“b (w)H " H"P 4 ZH“””H#“‘)DUHP“‘)

1
——f* 3.4.10
SHY} (3.4.10)
1 ab vab
—§a{RW (w)RM**(w) (3.4.11)
—2RM(W)D, Hyap (3.4.12)
1 a a rva
+5(DuHy b~ D,H,"")DFH* (3.4.13)
— Ry, (w)HI e et (3.4.14)
1
+§(D#Hl,ab — D, H,")H [ (3.4.15)
1
+§((H2)ab(H2)“b — HY}. (3.4.16)
Here H contains the LCS term without H-torsion:
Hywp = H,p — 6003 40, (w). (3.4.17)

We now rewrite the terms (3.4.11-3.4.16) in Lpg, see Appendix B.4 for details. The
result, keeping only contributions to order «, is

1 1 - —
Lpr = 566_%[_}3(“}) o EHW,,H“”P + 40, 20" ®
1 a va 1 a a 14
~g B (@) R (W) 5 Ry () H, " H
1 1
+§(H2)ab(H2)“b + ﬂH‘*} (3.4.18)

1
- ga{Ruc(W)H'uabHabc + e'LLceud,DvI{abdD,uI{abc
+20.® HapgDaHape — 204 HapaDe Hape}).- (3.4.19)
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The term proportional to the Ricci tensor in 3.4.19 contributes through a field re-
definition to the terms quartic in H, and gives an additional contribution involving
derivatives of @ (see B.2.4). Making use of B.2.2 and integrating by parts all remain-
ing terms can be made to cancel.

The final result is then

1 1 - _
Lpr = 566_2@[_1?(“}) - EHMUPHMUP + 40,00" @
1 1
_504{Rm,ab(w)R“Vab(w) + iRuyab(w)HpabH“UP
Lo ovab . 1 g4
g (H ) (H7)™ + o H Y], (3.4.20)
in agreement with [97] if we set R(I') = —R(w) and o = —1a/, and adjust the overall

normalisation. Of course [97] also includes the LCS term in H? for the heterotic string
effective action, see the footnote in [97], page 400.

3.4.1 Higher Orders and Field Redefinitions

It has been shown in [100] that the effective action to order a? consists of terms which
are bilinear in the fermions (3.4.4, 3.4.5). This is no longer true when the effective
action at order « is in the form 3.4.20.

Since the steps to go from (3.4.4, 3.4.5) to 3.4.20 have all been explicitly deter-
mined, the effective action at order a? can in principle be constructed. Let us identify
the sources of bosonic terms of order a? that we have encountered:

1. From the action 3.4.4 there are contributions outlined in Appendix B.3. We
should now expand H to order o2, which means that in A B.3.2 also terms of
order « should be considered. Then one should calculate H?2.

2. H contains the LCS term of order a. These should now also be kept in the
higher order contributions.

3. In a number of places we have used the identity B.4.1, the resulting R? terms
contribute to order o?.

4. We have used field redefinitions to modify the effective action at order a.. A field
redefinition is of the form

et — e, +alj, (3.4.21)

and is applied to the order a® action. This has the effect of giving an extra
contribution

alLEr, (3.4.22)
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to the action, where £#, is the Einstein equation at order a®. Thus one can
eliminate a term

—alAEr,, (3.4.23)

at order a. Contributions of order o arise because the transformation should
also be applied to the order a action.

Accordingly, the bosonic part of terms with six derivatives in the effective action at
order a2, corresponding to the order o action 3.4.2, can be obtained, including the
complete dependence on H.

At order o? the situation is different. In [100] an invariant related to the super-
symmetrisation of the LCS terms was constructed. The status of R* invariants was
discussed in [101], with extensive reference to the earlier work.

3.5 Conclusion

We have devoted this chapter to introduce a supergravity action as the low-energy
effective action of a superstring theory, outlining the most powerful methods that
have been pursued for constructing such an action and the derivative corrections (o
corrections) contributions to them. We found out that the heterotic string actions
(with Chern-Simons forms) which follow from the o-model approach and the string
S-matrix calculation- note that it has been established in [97] that those two actions
are equivalent to order o’ modulo field redefinitions- are equivalent to order o’ to the
heterotic string action constructed in [100], i.e. through the supersymmetrisation of
LCS. Actually, our interest in the relation between these results was triggered by a
remark in a paper of Sahoo and Sen [102] in which the entropy of a supersymmetric
black hole was obtained using the method of [103], with [97] for the derivative cor-
rections to the action. The result was found to agree with that obtained by several
other methods, which was taken by [102] as an indirect indication that the bosonic
expression for the order o’ corrections given [97] must be part of a supersymmetric
invariant.






Chapter 4

Duality Symmetries for
Interacting Fields

In chapter 2 we have pointed out that one of the indirect methods for constructing the
higher derivative terms of Born-Infeld theory is to maximize the usefulness of duality
symmetries. It has been shown a long time ago that most of the four dimensional
nonlinear electrodynamics models, including Born-Infeld theory, are electromagnetic
dual invariant (selfdual) theories. In this chapter we will start our discussion with
introducing and defining electromagnetic duality in (non)-linear electromagnetism.
Then we will try to make contact with the previous chapter by including higher
derivative corrections of the field strength F,,. The investigation of electromagnetic
duality invariance in the presence of scalar fields is of great interest for us, since such
symmetries are going to play a crucial role in constructing the nonlinear sigma models
that we will study in chapter 5. We also find it useful to derive the Noether charges
associated with the duality symmetries since those charges will form the cornerstone
in chapter 6 for classifying solutions in (super)gravity theories. Selfdual invariant
quantities will be briefly mentioned, and the chapter will be closed with a discussion.

4.1 Electro-Magnetic Duality: Overview

It has been established a long time ago that the Hodge duality operation ~ (defined
in A.2.2) is the duality symmetry of the four dimensional Maxwell theory. In terms
of the electric field E and magnetic field B, Hodge duality symmetry is a SO(2)*

LAll the group theory notions and definitions that will be used in this thesis are reviewed in
appendix C.



54 Duality Symmetries for Interacting Fields

rotation written in matrix form as

E cosa —sina E
(B) - (sina CcoS v ) (B) ’ (41.1)

In differential form notation on Minkowski spacetime?, the transformation is expressed
in terms of a field strength Fy, = 054, — Op A4 so that the duality symmetry ~ takes
on the form B

F,, — cosaFy,, +sinaF,y. (4.1.2)

The sourceless linear Maxwell’s equations read

0B
V.D=0, VxH:+%—lt), (4.1.4)

where D is the electric induction and H the magnetic intensity, which are simply
equivalent in forms notation to the combined field equations system of the Bianchi
identity and the equations of motion

0. F™ =0,  0,F®=0. (4.1.5)

What is meant by electro-magnetic E-M duality symmetry is the symmetry of the
Maxwell equations not of their corresponding Lagrangian which is expressed by

1 1
Lrfazwell. = _Z abFab = _§(B2 - Ez) (416)

Notice that only for the case of Maxwell theory in vacuum for which £ = D and
B = H, E-M duality breaks down to Hodge duality. For more general cases, namely
the nonlinear electrodynamics models, E-M duality has a slightly different interpre-
tation which is the topic of the next section.

4.2 (Self)duality Rotations: the Gaillard-Zumino
Model
In this section we review some results of Gaillard and Zumino [104-106] from the

early 80’s and developed further by Gibbons and Rasheed later in the 90’s [107,108].
First of all, it is well-known that E-M duality transformation is implemented via

2We adopt in this chapter the following conventions; Minkowski metric 745 with diag(—, +,+, +)

signature, where F= —F, and often we make use of the notation trFG = —F,;, G®.
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the transformation of the field strength F; rather than the fundamental variable, the
vector gauge potential A,. Therefore E-M duality can be realized only on the level
of equations of motion. The reason is that the duality transformations are consistent
only on-shell. Since the independent variable of the theory is A,, dFy in eq.4.1.2
should be derived from §.A4,;

820 Ay — Op0 Ay = cos aFyp + sin aF . (4.2.1)

The integrability of this equation requires 9,(cos oF + sin aﬁ) =0, i.e., 0, F% = 0.
Thus the equations of motion must be satisfied. Even if we ignore this point and for-
mally consider the transformation 4.1.2 off-shell, the lagrangian 4.1.6 is not invariant.
Therefore in order to construct theories invariant under E-M duality transformations,
it is easier to study the covariance of equations of motion.

The off-shell realization of manifestly E-M duality invariance on the level of the
action has been exhaustively investigated by a handful of researchers. We mention
in particular results by [109], in which they found a formalism that helps with uplift-
ing duality invariance to the action. In such avenues, E-M duality transformations
are basically defined through the off-shell gauge potential A,. This thus generates
non-local terms in the action in the light of the relation F' = d.A. However, in order
to circumvent the locality violation, all one needs is to double the number of gauge
fields [109](and references therein)- Sen-Schwarz model- in the sense that the gauge
fields and their duals appear on a par in the action. In doing so, there is a price
one should pay; doubling gauge fields actually ruins Lorentz covariance which Pasti
et al. [110] have managed to restore afterwards. However, the manifest E-M duality
invariant actions are out of the scope of this thesis. In what follows we are going to
focus on some aspects of E-M dualities which are only symmetries of the equations
of motions.

To end this short introduction we remind the reader that all our considerations
are classical. The systems we study should be regarded as effective theories, in ac-
cordance with the appearance of the Born-Infeld action as the worldvolume action of
the D-brane (see chapter 2).

4.2.1 Gaillard-Zumino Condition: Selfduality Condition

In order to gain some insights into the significance of duality invariance® (selfduality),
we start our analysis by considering nonlinear extensions of Maxwell theory, i.e.,
nonlinear electrodynamics models. The nonlinearity of such a model can be obtained
by adding polynomial higher order terms of the field strength Fj; to the Lagrangian
of the Maxwell theory. For physical reasons we restrict ourselves to nonlinear models

3Throughout this chapter notions like duality invariance, selfduality and duality symmetry all
refer to the same concept.
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which coincide with the Maxwell model at weak field limits, i.e. L(F) = —1F.,F’ +
O(F*). The equations of motion and the Bianchi identity are

0,G? =0,  9,F* =0, (4.2.2)

where G is the dual* of F defined by the following constitutive relation

OL(F) OF .

ab .
¢ (F) B aF‘ab , 8ch

= (8568 — 5¢09). (4.2.3)

Note that Fy;, and Ggp are not independent of one another but nonlinearly related by
4.2.3. A pair (G, F) can be mapped to (G’, F') via transformations S such that

(G s () 420

with S € GL(2,R). This means that one can solve 4.2.4 for (G,F) in terms of
(G',F’) and then use the equations 4.2.2-4.2.3 to find the transformed version of
the field equations and the Lagrangian. Thus, the transformed Lagrangian £’ does

exist and must satisfy G’ (F’) = — aggf’)' In general, the Lagrangian £'(F') differs
ab

from —1F,, F*° + O(F*). Therefore the shift in the functional form of the Lagrangian
behaves as

AL(F) = L'(F) = L(F) = 6L(F) — tr(5F§—§,),

where § is the infinitesimal form of 4.2.4, and the variation of the Lagrangian under
such a transformation is defined by §L(F) = L' (F') — L(F).

The requirement of selfduality or the E-M duality invariance of the equations of
motion comes down to setting A to zero. Consequently, the possible functional form
of L is severely constrained

(4.2.5)

L/(F) = L(F). (4.2.6)

Models which obey 4.2.6 are called selfdual models.
The selfduality requirement has many implications which follow from 4.2.6:

e The invariance of the constitutive relation 4.2.3.

e The Lagrangian £ solves a second order partial differential equation in the six
variables of F, B _
trGG = trF'F. (4.2.7)

4From the viewpoint of Hamiltonian formalism, there is a geometric interpretation for G. F
together with G form respectively the coordinates and the dual coordinates of the 2-form space
V = A2(R%) and its dual V*. From this one can obtain the symplectic phase space V @ V* where
the Lagrangian £ plays the role of the generating functional. That is where the word dual comes
from.
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This is the necessary and sufficient condition on the Lagrangian £(F') so that
its corresponding field equations admit E-M duality invariance. For the deriva-
tion of 4.2.7 we refer the reader to the ensuing sections where we shall do the
calculations for more general cases.

e For purely nonlinear electrodynamics models, the E-M duality symmetry is
described and represented by the compact abelian group U(1) 2 SO(2).

e The combination £(F) — 2trFG is duality invariant.

As mentioned before, we do not impose the invariance of the Lagrangian itself; we
shall see that the system of the equations of motion can be invariant only if §£ does
not vanish. Instead the variation of £ is required to have a specific form.

4.2.2 Solutions of Selfduality Condition

An interesting solution of 4.2.7 is the Born-Infeld Lagrangian defined in chapter 2. It
is given in four dimensions by the Lagrangian®

L(F)pr = (-D%(F) + 1), (4.2.8)
where
1, 1 ~
D(F) = —det(nap + Fup) = 1 = SteF? — = (trF'F) (4.2.9)
_ 1 1 2
=1+ 5P = Q%

with P = —trF'F and Q = —trF F are the only two independent Lorentz invariants
of electromagnetism in four dimensions.

Then

oD 1~ oL 1 1~

oF _2F—2F, G——aF_D 2(—F+4F). (4.2.10)
Using 4.2.10, one can verify that trGG = trFF, and hence the Born-Infeld theory is
duality invariant [111].

It is quite natural to ask whether the Born-Infeld theory is the most general
physically acceptable solution of 4.2.7. This has been investigated intensively in [104,
105,108,112] where a negative answer has been reached.

More general solutions of the differential equation 4.2.7 have been studied in [105,
113] and a prescription to obtain solutions, corresponding to selfdual models, has been

5We set the fundamental (scale)?, T—! = 2ma’ in string theory context, equal to one.
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presented. The derivation of such solutions goes as follows: first we consider £ to be
a function of (P, Q), namely L(P, Q). It follows that the dual tensor G is written as

G=—A(LpF +LoF), G=—4(LpF —LoF) (4.2.11)

where Lp and Lg are the derivatives of £ w.r.t P and @ respectively. Substituting
4.2.11 into 4.2.7 leads to

[16((Lqg)* — (Lp)*) +1] Q +32PLpLg = 0. (4.2.12)

This may be simplified further by considering another change of variables

1 1
U=g(P+VPI+QY),  V=o(P-VP2+Qd) (4.2.13)
Then 4.2.12 is reduced to [108]
LuLy = 16. (4.2.14)

This is a familiar nonlinear differential equation which has been studied extensively in
mathematics. In our case we must also impose the boundary condition which makes
L(U, V) approaches the Maxwell Lagrangian £L;(U,V) = —P/4 = —U — V when the
field strength F is small. According to [114], the general solution solving 4.2.14 is
expressed explicitly in terms of an arbitrary function F(T') determined by the initial
values £(0,V) = F(V) and Ly (0,V) = 1/F'(V), where the prime is the derivative of
JF with respect to T'. The general solution thus reads

1 2U . U

Solving the second equation of 4.2.15 for T'(U, V) results in determining the corre-
sponding L(U,V). It is worth noting that in [115] it has been verified that indeed
4.2.15 solves 4.2.14 with Ly = 4/F and Ly = 4F', and moreover the condition
that £ should approach Maxwell Lagrangian for a small field strength implies that
F(T)=L({U=0,T) = —T for a small T.

There have been a few explicit and exact solutions of the selfduality condition [113].
As a crosscheck one might reconsider the Born-Infeld theory example given above. In
terms of (U, V), 4.2.8 takes on the form

Lpr(U,V)=—/(1+20)(1+2V) +1. (4.2.16)
The associated function F(T) to Lp; is determined by setting U = 0. This yields

V —4U

__ 1/2 ; —
F(T)=-(1+20)2 41, with T(UV) = o

(4.2.17)
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Thus roughly speaking, there are as many selfdual deformations of Maxwell theory
as there are real analytic functions F(T') of one real argument.

In order to have a better understanding of what is exactly going on, we present
the following illustration:
We actually know that approximate solutions to Eq.4.2.7 can also be obtained by
a power series expansion in F' of Lagrangians whose leading order is Maxwell term
—1/4trF?. Tt is convenient to write down the Lagrangian in terms of P and Q. Up
to fourth order in F), using the identities

~ 1 - 1
(FF)." = Q0.  (F? = F?)." = —;Pd, (4.2.18)
the Lagrangian can be expressed as
1
L(P,Q) = ZP+a1P2 + a2Q* + a3 PQ + O(P?,Q?), (4.2.19)

where a1, as and a3 are arbitrary coefficients. If we substitute 4.2.19 in 4.2.7, then
one can find, up to the same order, that a; = 0 and a free parameter a = as = as.
However, the coefficient a can be yet appropriately fixed by rescaling the field strength
F'. Tt turns out that, up to order four in F', £ coincides with L£g;. One can push this
calculation an order further by adding the most general Lagrangian terms through
order six in F, and again requiring that the resulting Lagrangian solves 4.2.7. What
comes out is that, up to this given order, all the coefficients but one are determined.
The question now is how many free parameters one has in the power expansion of
duality invariant Lagrangians. The power expansion for arbitrarily large m behaves
as

P
L= T +aly +aLo+ -+ a® Loy 1+ a* " Lom, (4.2.20)

where Lo,,—1 and Lo, are written as:

Lom-1 =Y _ any P Q> (4.2.21a)
n=0
Lom =Y ap PPt (4.2.21b)
n=0

In [116] a theorem has been reached which states that in the power expansion 4.2.20
of duality invariant Lagrangians, i.e. Lagrangians that satisfy 4.2.7, there will occur
a free parameter in each Lo, 1 as defined in 4.2.21a and there will occur no free
parameter in each Lo, as defined in 4.2.21b.

We conclude that for specific choices of the free parameters, the power expan-
sion 4.2.20, satisfying duality condition, coincides with the power expansion of the
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Born-Infeld Lagrangian. Actually there are infinitely many free parameters, since for
arbitrary large odd powers in the expansion there will still occur new free parame-
ters in the general expansion. So, there are indeed more Lagrangians which admit
selfduality next to the Born-Infeld theory.

4.2.3 Selfduality of Nonlinear Models with Derivative Correc-
tions

The extension of the E-M selfduality principle to models which involve higher deriva-
tive corrections is of great interest. In particular, this is relevant for applications in
string theory, where it is known (chapter 2) that the open superstring effective action,
which for slowly varying fields coincides with the Born-Infeld theory, also comprises
derivative corrections. It is natural to ask what happens if the Lagrangian also de-
pends on derivatives of the field strength, i.e., L(F,OF). At first sight, it seems that
the analysis presented in 4.2.1 is no more valid, and hence should be modified. How-
ever, most of the discussion in 4.2.1 can be taken over if one works with the action S
rather than the Lagrangian, and uses differentiation of functionals [112][B].

Derivation of Selfduality Condition

We start out with the definitions

1) 1)
Gap = ———S[F], —— _Fo(y) = 26%6(y — ). 4.2.22
o= sl ey Fral) = 202000 - ) (42.22)
The selfduality rotations 4.2.4 have the same structure, yet G’ must be consistently
obtained from an action S’. The selfduality condition, written in the integral form,
then reads

S'|F) = S[F] = /d4xtrGé = /d4xtrFﬁ. (4.2.23)

B Proof:
We resort to the infinitesimal version of 4.2.4 associated to SO(2), then one has

G'P[F'] = G®[F] + AF®,  F'% = F% _ \G™[F), (4.2.24)

where ) is the infinitesimal parameter of 4.2.4, and G'**[F'] = §S'[F'] /6 F!,(z). Using
the selfduality condition S’[F] = S[F] one finds

3S[F] 3S[F] 5

rab ! - - 1 = _
T Rl € o el o

5S[F]), (4.2.25)

where we have made use of

§S[F) = S[F'] — S[F],  and ﬁz@asm = ﬁi@asm +0O(\?).  (4.2.26)
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The evaluation of 6S[F]/6F!, results in

dS[F)
oFy,(x)

— _G[F,z] + %ﬁ ( / dYyGF, y]GoalF, y]). (4.2.27)

The substitution of 4.2.27 into 4.2.25 gives rise to

0
Fab (ac)

On the other hand, from the variation 4.2.24 of GG it follows

G/ab[F/,:E] _ Gab[F, x] _

(55171 + / YGP Y GalF ). (12:28)

G E 4] = G B, ] — ( - 2 / diy ch(y)ﬁcd(y)). (4.2.20)

Inserting the variation §S = —3 [ d*yG°[F, y|Gea[F,y] into 4.2.28, and comparing
the resulting expression to 4.2.29, one obtains the integrated form of the consistency
condition 4.2.23. Here is the end of the proof.

Application

The terms we will consider are the terms 2.5.13 discussed in chapter 2

‘C(m,n) = a/maan, f()rp:7’)fl—|—2_n/27 (4230)

Ly, =amF"T2 for n = 0. (4.2.31)
Now, we need to establish the E-M duality invariance of the p = 4 terms. Of course,
superstring corrections are obtained in d = 10, while E-M selfduality, that has been
discussed so far in this chapter, is realized in d = 4. Therefore we will examine the
validity of E-M selfduality of the contributions of the type 4.2.30, setting all other
ten-dimensional fields to zero, and truncating the resulting expression to d = 4, by
restricting the Lorentz index to run from one to four. Moreover, the result can hold
order-by-order in o’ so that for each order of o’ the corresponding p = 4 contribution
to the Lagrangian satisfies, together with Maxwell m = 0 term, E-M selfduality to
order m in o'.

We start the analysis with the m = 4 terms. Then the four-derivative terms 2.5.25
stated in chapter 2 are

Lia0) = aaya eI oy 08 FLgd' Fly 0 Fyy,, (4.2.32)

where ¢2°°/“/9" has been defined by 2.5.23. The combination Lo + L(4,4) generates

G =F"+ G, Gl 4y = o/ Mg O (0F Foad' OF O Fyy).  (4.2.33)
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To establish E-M selfduality we have to verify whether Lo + L(4,4) solves 4.2.23.
The verification only makes sense to order four in ', since in higher orders other
contributions to the effective action would interfere. Since the zero order term in
4.2.23 cancel it remains to verify that

I= / d*rtrFG 4 = 0. (4.2.34)
Integrating 4.2.34 by parts implies
I = /d4$tgb0d6fghakﬁabakchalFef(‘:)lth. (4.2.35)

The crucial property, which in fact holds to all orders in o, is that in Ly, 2,,—4) the
indices of the field strengths F' are all contracted amongst each other, and therefore
also the derivatives are contracted (see section 2.5.5). The complete symmetry of tg
in combination with

~ ~ 1 ~
(FFy + FFL) o = —§6gtrFkFl; with Fy = O} F, (4.2.36)

allows us to express all the traces over the four matrices resulting from the expansion
of 4.2.35 in terms of products of traces over two matrices. Thus the cancellation of
4.2.34 has been verified [B].

For higher orders in o’ the p = 4 terms contain more derivatives, but again these
are all contracted, while the tensor structure of the field strengths remains the same.
Essentially one has to show that

ts abede foh (Fbe;ngf F{" + FPP Rt By B + Rt Ft Fy R+ Fbenggfﬁfh),
(4.2.37)
where the subscripts 1, 2, 3,4 indicate the derivative structure, vanishes. Using again
4.2.36 and the symmetry of tg one establishes that 4.2.37 vanishes independently of
the precise way the derivatives are contracted.
This gives the desired result: E-M selfduality survives, up to this order in o, the
addition of derivative corrections.

Selfduality and Higher Orders Terms

It would be of interest to use electromagnetic selfduality to constrain, or to determine,
the derivative corrections to the Born-Infeld action that are not known explicitly.
However, it is well-known that already the Born-Infeld action itself is not the only
selfdual deformation of the Maxwell action, the ambiguity can be parametrized by a
real function of one variable. From what precedes it is clear that L, 2,—4) is not the
only p = 4 action with derivative corrections that satisfies 4.2.23 to order o’. Indeed,
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we found that the result depends only on the presence of the tensor ts and on the fact
that there are no contractions between derivatives and field strengths. The result is
independent of the precise way the derivatives are placed.

Given these ambiguities, it is clear that E-M selfduality can only constrain but
not determine the derivative corrections to the terms related to the six-point function,
p = 6. For the four-derivative terms n = 4 we do have the result of [57]. The method
used above is however not applicable, because the property of having no contractions
between field strengths and derivatives no longer holds. Nevertheless, it would be
interesting to extend the analysis of selfduality to those terms.

Selfduality and Field Redefinitions

It could happen that some of the Lagrangians in question contain terms which are
proportional to the lowest order equations of motion 9,G2% for instance, the La-
grangian 4.2.32 is equivalent modulo lowest order equations of motion to the terms
found in [56], for m = 4 and p = 4, written in a different basis. Now, we argue that
those terms, found in [56], satisfy 4.2.23 modulo terms proportional to the lowest
orders equations of motion. For the sake of simplicity, we shall prove this statement
for a more general case:

Given an action S written as

S=S+S5, Si= /d%Vb[F, ]9, GaP. (4.2.38)
The equations of motion derived from 4.2.38 contain
Va(y) 5G§(y)
ab __ yab _ 4 d\¥y cd _ o \¥y
Gob(z) = Gab(2) / aty (55 L0651 (0) — 0.Vl S (x)). (4.2.39)

Using the fact that Sy is selfdual, the only remaining terms in the selfduality condition
are

=~ Va(¥) 5 e 5G§M(y) ~
0= / d'zd'y(Gous(2) e a.Gil) - acvd(y)mam(x)). (4.2.40)

cd ab
By virtue of the identity gi”b ((zg = i?,”d ((Z)) and again selfduality of Sp, the second term

in 4.2.40 can be expressed in terms of a combination involving Baﬁ @b wwhich vanishes
due to the Bianchi identity. The remaining term is proportional to Bchd(y) which
must disappear as a result of a field redefinition on the vector potential. This implies
that we should allow 4.2.23 to hold up to terms containing 9,Gg’, the equation of
motion of Sp.

So, if we have an action Sy satisfying the condition of selfduality, then of course
any action related to that action by a field redefinition should also be considered to
be electromagnetically selfdual.
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4.3 Selfduality of Nonlinear Models Coupling to Mat-
ter Fields

A natural step forward is to couple the model of the previous section, being generalized
to n abelian gauge fields, to matter fields, e.g. scalars, fermions and forms [117].
For these models the consistency of selfduality requires, besides the invariance of
the field equations 4.2.2, the covariance of the matter fields equations of motion
under selfduality transformations. Therefore the selfduality condition 4.2.23 has to
be amended to include the effect of the matter fields couplings.

For the sake of generality, we denote the action of such a model by®

S[F*, ] = /d%c(FZ’,aaFi,cba,aa@“), (4.3.1)

where 7 and « label the number of gauge fields and matter fields, respectively. Then
we consider a linear infinitesimal transformation of the form

1[F, ®] = (A +1)Gi,[F, @] + BF}, (4.3.2a)
Ejy = CGi,[F, ®] + (1+ D)F},, (4.3.2b)
P = 4 (O[], (4.3.2¢)

where A,B,C and D are arbitrary real n X n matrices, and (% some unspecified func-
tions of the matter fields.

The derivation of a selfduality consistency condition for those models is straight-
forward, and it is to some extent similar to the derivation which has been done in
section 4.2.3. Using the fact that 4.3.1 satisfies S'[F, ®] = S[F, ®], the transformed
dual tensor G, arising in the equations of motion of the gauge fields, is expressed as

. 1)

1o & _ o &'

WO x) = 5F’i“b(x)S[F’q)]
% g e - —C s8[F @) (4.3.3)
- 5F/iab(x) ’ 5Fiab(x) = o

where 0S[F, ®] = S[F',®'] — S[F,®]. By means of definitions 4.3.2b and 4.3.2¢, one
can express 4.3.3 solely in terms of the original fields. The variation dG then reads

6G* e (y)

— 2 4 DG, [F, P, 2] —
6anb($) + Gab[ ’ ’I]

§S[F, ®).
(4.3.4)

% _ 4 ik I
5Gab[Faq)7x] - /d yO ch(y) 6Fiab(w)

6Cases, where there are no derivatives for the field strength, have been thoroughly worked out
in [104,106,107,112].
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Now, Eq.4.3.4 must coincide with the variation of G following from 4.3.2. One there-
fore obtains the following constraints on the parameters of the transformation

DY AV = €59, BY = BJt, CY =7, (4.3.5)
from which it follows that”
0

ooy P8 e+ 1 [ atu(BYFLGIP ) - CRGLLE)| ) " i

This is the condition that S should satisfy in order that the equations of motion of
the gauge fields, combined with the Bianchi identity, are invariant under 4.3.2.

It is clear that the parameter ¢ might still be determined. We have not actually
used up all the selfduality requirements. One still has the demand that for selfdual
models the matter field equations of motion should transform covariantly under 4.3.2.
Given the matter equations of motion

« — 5 J—
SHF, ®,x] = 5q)a(x)S[F’ d) =0, (4.3.7)
the transformed equations read
0 5SS 608 (y)
IZe% / / _ 4
SF @ 1) = 75(1)(1(96)55@, D] +/d yé@ﬁ(y) 76@/0‘(1:)
5S  SF(y)
dy— : 4.3.
+ | ity s (438

Again, one might make use of 4.3.2 so as to obtain the variation ¥ in terms of the
original fields

) 1 - ~. . 5Cﬁ
« _ - ij 74 7 j ab _
OX[F, @, 2] 5o (2) [65 + 1 /C d*yG., (y)G (y)} 530 Ys[F, ®]. (4.3.9)
The requirement that 4.3.7 is covariant under 4.3.2 results in
1) 1 o _
- - ij 74 i j ab —
52 (2) {65 + 1 /C d*yG, (y)G (y)] 0. (4.3.10)

The two relations 4.3.6 and 4.3.10 are compatible with one another provided that
e = 0, and therefore for a selfdual model the action should vary in a specific way
under 4.3.2

s(p0) = [aty( = BYEL WP ) + GGG ). (@)

"Notice that in the absence of OF, the functional form of expression 4.3.6 breaks to the normal
form.
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Moreover, one can easily realize that

1 , ,
) (S -1 /d‘lytrFl(y)Gl(y)) =0. (4.3.12)
Finally, the selfduality consistency equation is summarized as

55 S[F,®] = $O[F, 0|60
1

=1 [ @ (BIEL W ) + CTGL0)G )

+2DY G, (y)FT 9 (y)) . (4.3.13)

The combination of 4.3.5 and the condition € = 0 lead to the fact that the selfdual-
ity transformations 4.3.2 are described by the real non-compact group Sp(2n, R); non-
compact real form or slice of the complex Sp(2n) in a real basis of the 2n-dimensional
representation®. The group Sp(2n,R) is the maximal group of duality transforma-
tions, although in specific models the group of selfduality transformations G, leaving
the field equations invariant, may be actually smaller. It should be pointed out that
Sp(2n,IR) or its subgroup G may appear as the group of duality symmetries if the
set of matter fields @ include scalar fields parameterizing the coset space G/H, with
H is the maximal compact subgroup of U (see chapter 5 for more detailed discus-
sion). Any selfdual model without matter fields, £(F), can be viewed as a selfdual
model L(F,®,0P) with the matter fields frozen, ®“(x) = ®§ € G/H. The duality
transformation preserving this background has thus to be a subgroup of U(n), the
maximal compact subgroup of Sp(2n, R). Strictly speaking, in the absence of matter
fields the Sp(2n, R) breaks down to it is maximal subgroup U(n)®. If one treats the
matter fields @ as coupling constants, then non-compact duality transformations re-
late models with different coupling constants. We stress in the end that the formalism
that has been developed may be applied directly to cases in which the fields F and ®
interact with an external gravitational field, described by gq; or by a vierbein; that
is actually because those fields are inert under the action of duality symmetries.

It is worth mentioning that the symplectic group Sp(2n,R) preserves an antisym-
metric bilinear form 7 = (‘{ ’01) such that

N0 —Lown) (G .
(L K) (lan 0 )<F>—1nvar1ant. (4.3.14)

Therefore the only duality invariant which can be constructed from vectors in the
fundamental 2n-dimensional representation is an antisymmetric bilinear 4.3.14.

8The symplectic group Sp(2n, R) is isomorphic to SL(2,R) for n = 1.
9For the maximal compact subgroup U(n), the relations 4.3.5 are reduced to
D=A, C=-B, AT =—-A, BT =B.
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4.3.1 Coupling to Axion and Dilaton

As a well-known particular example [104,105,107], we consider a model L(F, x, , 0x)
in which one gauge field (n = 1) is coupling to a complex scalar field x = x1 + ixe
(i.e. @ = (x,X)), with X is the complex conjugate of x. Consequently, the compact
duality symmetry SO(2) (for pure electrodynamics) should be enhanced to a duality
symmetry under a larger non-compact group SL(2,R) whose finite realization on the

fields reads ,
G a b GN , ax+b
<P ’) <C d> <P> ’ X ex+d (4.3.15)

The corresponding infinitesimal transformations 4.3.2 become

' = (A+1)Gap + BFu, (4.3.16a)
Fiyy = CGap + (1 — A)Fa, (4.3.16D)
dx = B+ 24y — C\?, (4.3.16¢)

where the scalar field y transforms nonlinearly in consistency with the shift invariance.
The only manifest SL(2,R) invariant term of L(F,x,dx) is the kinetic term of the
scalar field

Ix9xX
(x—x)*
Accordingly, we assume that the total Lagrangian decomposes into two parts

Ls(x,0x) = (4.3.17)

L(F,x,0x) = Ls(x,0x) + EA(F, X)- (4.3.18)

Thus the problem of finding the most general Lagrangian £, whose equations of
motion are invariant under SL(2,IR), boils down to a problem of solving equation
4.3.13 for L. For this case the consistency condition 4.3.13 becomes

1 ~ 1 ~ 1 oL . oL
-BtrF'F + — — —AtrGF = — —0X. 4.3.1
1 trF'F + 4OtrGG ) rG aX5x—|— 8Y5X (4.3.19)

Now, substitute 4.3.16c in 4.3.19 and then make use of the fact that A, B and C
are arbitrary parameters, the selfduality equation 4.3.19 leads to the following three
equations

oL oL 1~
i — = —trFF 4.3.2
B + % T EE, (4.3.20)
oL oL 1
Z v = = ZtrGF 4.3.21
Xy +X6y 1 rGF, (4.3.21)
oL oL 1~
200 206 140 4.3.22
X Oy +X % 1 r ( )
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It has been shown in [107,108] that the solution of these equations is

. 1 -
L(F,x) = Lo(\/Xx2F) — letrFF, (4.3.23)

where Lo(/x2F) solves the selfduality equation 4.2.7 of purely (non)-linear electrody-
namics models. In other words, if we redefine F' by F = ,/x2F, one then sees that F
and its dual G = —9L/JF are scale invariant and have the very simple transformation
law

§F = —x2CG,  6G = x2CF, (4.3.24)

i.e., they transform according to the SO(2) transformation whose infinitesimal pa-
rameter A\ redefined as A = x2C.

If we replace x; and x2 respectively by axion and dilaton, namely x = a + ie” %,
then the most general selfdual Lagrangian £ is schematically written as

L(F,a,p,0a,0p) ~ —%(890)2 - %(32“’(6(1)2 — atrFF + Eo(e_%“"F). (4.3.25)

But wait there is more! in [107] it has been established that there is a unique gen-
eralization of the Born-Infeld theory, i.e. Lo = Lpr, admitting SL(2,IR) invariant
equations of motion. The reader should not be confused with an analogous effective
Lagrangian [108] stemming from closed superstring theory, which also contains the
Born-Infeld sector. For such a Lagrangian the SL(2, R) selfduality is completely lost.
However it continues to hold once one truncates the Born-Infeld sector to its low-
energy limit, i.e. keeping only the quadratic terms in F.

4.3.2 Coupling to Type IIB Supergravity Backgrounds

As seen in chapter 2 one of the nice features of type IIB string theory is that it contains
a four-dimensional effective gauge field theory living on the D3-brane, which actually
motivates the study of selfduality. Indeed, in [35,118] it has been proven that the
worldvolume theory of the D3-brane admits SL(2,R) as a duality group symmetry.
It has actually been widely believed that selfduality of D3-brane is inherited from the
SL(2,R) symmetry of type IIB supergravity. Alternatively, we are going to invoke the
machinery that has been developed in this chapter in order to establish the slefduality
of D3-brane worldvolume theory [34,117,119].

We know from section 2.5.2 that the D3-brane wolrdvolume action is divided into
two pieces, namely the Dirac-Born Infeld sector and the Wess-Zumino sector. In type
IIB on-shell supergravity backgrounds the action is

L=Lppr+Lwz. (4.3.26)
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The two pieces of 4.3.26 are written in terms of component fields as

e~% e2% ~
Lppr = —v—-g\/1+ T]—"abfab TS (FapFab)2, (4.3.27)
abed 1 1 1
EWZ =€ ﬂcabcd + anb]:cd + ga]:ab]:cd ) (4328)

where g = detgqp, and ®* = (a,p, B,C2,Cy) are the possible bosonic background
fields of type IIB with Fup = Fup — Bap-

Now let us see whether the selfduality condition 4.3.13 is satisfied for the above
action. First of all, the dual tensor G following from 4.3.26 can be derived as

a £ ~a Ta
Qb = _ 8%':; — C5b — aF, (4.3.29)
~ab £DBI ab ab ab

The SL(2, R) infinitesimal transformations of various fields in our theory are given by
4.3.16a, 4.3.16b and

da =2Aa — Ca® + B+ Ce%%; Sp = —2A + 240, (4.3.31a)
5C8P = ACS® + BB, 6B =CC5" — AB™, (4.3.31b)

B
§ogbed — EBabBCd + %Cgbcsd, (4.3.31c)

The argument that the transformation of Cy provides a nonlinear representation of
SL(2,R), is traced back to the consistency that one should maintain between the
duality transformations and the standard gauge transformations associated with forms
B, CQ and C4.
As a next step we evaluate the variation of the Lagrangian £ w.r.t its argument
® in the left-hand side of 4.3.13
oL oL 1 0L 1 0L (rab 1 oL

boL = ——0p+ —da+ = 6B 4 = -
o= 5. T 3 Taga ™ T 2509’ T 150

sC§bed (4.3.32)

then substitute 4.3.31a-4.3.31c into 4.3.32 and the resulting expression into 4.3.13.
The demand that the equation 4.3.13 must hold for arbitrary values of A, B and C
leads to the fact that all the coefficients of those parameters should vanish identically.
The vanishing of those coefficients results in the following three equations

—%GabFab—2a—£+2aa—£ L OL oy 1 OC

T3 B 30 = 43,
dp " 0a  20B 2902 =0 (4.3.33a)



70 Duality Symmetries for Interacting Fields

1

_ rab i - ab - abprcd _
TFa P+ = 4 2 acgbB + SCaneaB B = 0, (4.3.33b)
oL oL 1 0C 1
ab —2¢ _ 2 - ab - abved _
4GabG +2a_8<p + B ( ) 283‘“’02 + 8eabcd02 C5¢=0. (4.3.33c)

The fact that the £pp; depends upon the dilaton field ¢ in the form of e~ % F implies

OLpBI _ _10LpBI Lap
%) 4 QFab ’

(4.3.34)

which comes in handy for verifying 4.3.33a. Notice that 4.3.33b is almost trivially
satisfied.

The most intricate equation is 4.3.33c. After somewhat tedious but straightfor-
ward calculations it can be reduced to the following equation

cabed OLppr OLpBr
6Fab aFab

+ eQ“a]:ab]-"cd) =0. (4.3.35)

Plugging the explicit definition 4.3.27 of DBI Lagrangian into 4.3.35, it is easily shown
that 4.3.33c is satisfied. We have thereby demonstrated that the D3-brane action
4.3.26 in type IIB supergravity backgrounds indeed satisfies the selfduality condition
4.3.13. Therefore the D3-brane worldvolume theory is selfdual.

The generalization of this analysis to the super D3-brane is somehow feasible and
has been worked out in [118,120,121]. It is worthwhile also to note that in [120,121]
there have been achieved more than that. They have basically succeeded in uplifting
the selfduality transformations from a symmetry of the field equations to a symmetry
of the action: there has been argued that an off-shell duality transformation might
be realized through the gauge potential A,, and by imposing the Gaillard-Zumino
condition, namely selfduality condition 4.3.13, one can easily obtain the invariance
of the action up to surface terms. This method can be regarded as an alternative
approach, in some specific cases, to the PST formalism formerly mentioned.

4.4 Gaillard-Zumino Model: Selfduality in Super-
gravity

One might wonder whether the analysis of selfduality that we have developed so
far may be extended to higher dimensions. We should admit that working in four
dimensions makes life easy, however, there is no obstruction to go higher in dimensions,
specifically even dimensions d = 2p, and hence higher in the field strength rank
[106,122,123]. Such a generalization of the Gaillard-Zumino model comes in handy
when one wants to turn on duality in supergavity.

We consider theories of n (p — 1)-th rank antisymmetric tensor fields A%, —c)
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(t=1,---,n) interacting with matter fields ®(x). The field strengths and its Hodge
duals are defined by

F(;L,1~~~ap = pa[al AZzQ---ap,l] (441)
- 1 .
P = Lovahobig (4.4.2)
The Hodge duality operation has a peculiar property in d dimensions
= +1 ford =4r 42
F =¢F, €= { _1 for d — dr. (4.4.3)

Given a Lagrangian L(F, ®,0®) which governs the dynamics of interacting theo-
ries, the equations of motion and the Bianchi identity read

0oy G177 =0, 9y, F1% =, (4.4.4)
where the dual tensors G§' " generated by £ are defined as

R o
»»u,p_ p'aF}_ll .

cap

Gl,. (4.4.5)

The selfduality requirement imposed on higher dimensional theories - the simultaneous
covariance of 4.4.5 and of matter fields equations of motion under 4.3.2- gives rise to
the following constraints on the parameters

Aij = —Dji, Bij = EBji, Ol = —GCJ‘Z‘, (446)

which can be recast into

STp4+nS =0,  where S — <é g) L o= (hom E'IO"X">. (4.4.7)

Here one should distinguish two cases:

e If the dimension is d = 4r (e = —1), then 7 is an antisymmetric bilinear form and
the above condition corresponds to a Sp(2n,IR) duality group or its subgroup.

e For d = 4r+2 case corresponding to € = 1, 1 is symmetric bilinear form which by
an appropriate change of basis can be brought into its diagonal form diag(1, —1).
Then the duality symmetry associated to this case is SO(n,n) or its subgroup.

As usual, we are not seeking the duality invariance of the Lagrangian, however the
variation of the Lagrangian must take on a very definite form under the duality
transformation

1 o o 1 o
— _— (R ig i TNy — as]
L= (BitrF'FI — CYtrG'GY) 6(2p!trF a9). (4.4.8)
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The variation 4.4.8 of the Lagrangian £ is rather indicative and suggestive. As a
consequence one can obtain an explicit form of the Lagrangian £ satisfying 4.4.8

TR TP
L= 2—p!tI‘F G; + 2—p!tI‘(K G; + el Fz) + Linv(q)7 8(1))7 (449)

where p-th antisymmetric tensors (L;(®, 9®), Ki(®,0®)) transform the same way as

(G, F) see 4.3.14, and Ly, is a manifestly dual invariant (selfdual) sector!?.
One still have the possibility to eliminate GG in favor of the other fields. Substi-
tuting 4.4.9 into 4.4.5 we obtain the following differential equation!

(G —el); = (F— f{)j%(a —eL);. (4.4.10)

In order to solve this equation, one might introduce the so-called j-operation

F =jF, with j2 = e. (4.4.11)
The solution of this equation has then been found to be
G = eLi — M;(®)(F — K)’, (4.4.12)

where M;;(®) is a posteriori an arbitrary n x n symmetric matrix function of the
matter fields!2.

The determination of the matrix M;; in terms of ® rests upon two physical obser-
vations:

e The transformation law of M follows from the covariance of Eq.4.4.12, therefore
the matrix M must transform nonlinearly as

§M = —jB+ AM — MD + ¢jMCM. (4.4.13)

e The form of the kinetic energy term for the vector fields requires

M;;(®) = 6;; + Nij(®). (4.4.14)

10We have assumed that we are dealing with the maximal duality group, i.e., Sp(2n, R) in d = 4r or
SO(n,n) in d = 4r+2 ; any dual invariant quantity associated to this group should be proportional to
KG+eLF. However, had we considered models that admit subgroups of them as duality symmetries,
there have been other invariants than KG + eLF'.

HFor simplicity, we drop spacetime indices in equation 4.4.10.

12Note that the matrix M;j, restricted only to scalar fields, is in some sense the scalar matrix
which will parameterize the target space of the 4D nonlinear sigma-model in chapter 5.
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Thus, if we can find out functions K*(®,99), L*(®, 0P) and M,;(P) with appropriate
transformations properties, we have then an explicit form of the Lagrangian

L= —%p!trFiMiij + e%!trFi(Zi — M;;K7) + ezip!trKi(Li — M K7) + Liny (®,00).

(4.4.15)
Note that the Lagrangians of supergravities, whose equations of motion are invariant
under selfduality transformations, are often of this type.

4.4.1 Special Case: Compact Selfduality

We now consider the case where M;; = §;5, reproducing some of the results we have
obtained in section 4.3. In this special case we will see that the duality symmetry
group must be demoted to a compact group in the absence of the matter fields. From
4.4.13 we see that the parameters of the transformations have to obey

Again, two cases must be distinguished. For d = 4r, the condition 4.4.16 implies

§= <_AB ﬁ) Aij = —Aji, Bij = Bj;. (4.4.17)

In an appropriate complex basis the transformation law becomes

G+iF U 0\ (G+iF . .
5 ) " th U= A+iB. 4.4.18
(G—i—z’F) (0 U) <G+iF>’ h t (4.4.18)

Since U is anti-hermitian, i.e. U = —UT, the duality symmetry group is U(n), the
maximal compact subgroup of Sp(2n,IR). For d = 4k + 2 the constraints 4.4.16 be-
comes

A B
5= (B A) Aij =—4ji,  Bij =By (4.4.19)

G+ F Up 0 G+ F
(G0 () .
with Uy = A+ B, andU_ = A— B are real and antisymmetric matrices. The duality
symmetry group is hence SO(n) x SO(n), the maximal compact subgroup of SO(n,n).
For a non-compact duality group, one may construct a M;;(®), with ® confined
to scalar fields, by resorting to the well-know description of nonlinear sigma models
for scalars valued in the coset spaces G/H of a group by a subgroup. Then G is a

non-compact semisimple duality group but the subgroup H is its maximal compact
subgroup. This nonlinear realization of G and others will be discussed in chapter 5.

and
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4.5 Charges and Selfdual Invariant Quantities

4.5.1 Charges of Duality Symmetry

The duality symmetries that have been examined in this chapter are global sym-
metries, i.e. A, B and C are constant parameters. Although we are dealing with
4-dimensional models whose actions are not manifestly invariant under selfduality
4.3.2, one can still partially perform the usual Noether’s argument and find the con-
servation laws. It is known from Noether’s procedures that the conserved currents
should be constructed in terms of the basic fields of the theory. But we know from
section 4.2 that the action of the duality transformation on the gauge field is through
the field strength F, therefore the realization of duality symmetry on the basic field
A is nonlocal as F' = dA. The way out of this problem, namely locality violation, is
to construct the current so that the basic fields A show up on equal footing with their
duals A in the final expression.

By contrast, the covariance of matter fields equations of motion under selfduality
is locally realized and via the basic fields ®’s. Therefore all one requires so as to apply
consistently the Noether’s theorem is to extract d L out of 6£. Then we get

) 1 L~ o~ o
S L(F!, &%, 0¢%) = -5 (B”F;bFﬂ @ CuGh,GIY 4 2DUGE F ab) . (45.0)

Invoking field equations 4.2.2, we are able to re-express 4.5.1 as a divergence of a
quantity J7
0a L = —0gJ7, (4.5.2)

where
1 .. . . o o . o
Ji =5 (BYF P A) + CUG ™ A + DYG P A — ATF 0 A7) (4.5.3)

with G%, = 3(1-2?, - 81,.22 follows from the equations of motion 8,G* = 0.
Now the standard argument due to Emmy Noether, applying for §¢ £, comes into play

oL o\ o
5oL = 0, (W&D ) = 9, J2, (4.5.4)

where we have made use of the equations of motion of the matter fields. Then one
can easily infer that J§ = (0‘%, with (¢ are the infinitesimal parameters defined
in 4.3.2.

Equation 4.5.2 together with 4.5.4, using all equations of motion, lead to the result
that selfduality symmetries imply the existence of conserved currents

JO=J¢ 4 J8,  with 9,J% =0. (4.5.5)
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Notice that the current 4.5.5 is not invariant under the gauge transformation associ-
ated with the gauge fields
Al — A+ 0,6, Al

a

— AL 4 9,7, (4.5.6)

it still changes by the divergence of antisymmetric tensor
J4— Jv+ 58;,(B”FZ Wl 4 UG 4 DUGE T — AT Fab Ty, (4.5.7)

Therefore the corresponding charge Q = [ JOd3x is gauge invariant and turns out
actually to be the generator'3of the selfduality symmetry. It is worth pointing out
that the charges of global symmetries in general and duality symmetries in particular
will play an essential role in classifying solutions of (super)gravity theories in chapter
6.

4.5.2 Selfdual Invariant Quantities

Although the Lagrangian is not invariant under the duality transformation, a suitably
defined derivative of the Lagrangian with respect to an invariant parameter is invari-
ant. Assume that £ depends upon an invariant parameter w. If (*(®) is independent
of w, we differentiate 4.3.11 with respect to w, then obtain

0 19Gi,

% oL 5 B CcYG7 . (4.5.8)
On the other hand, the derivative of
1 oL
= — Fa Eg— 4 .
oL 5<1>£+25 baFab (4.5.9)
in terms of w yields
0 oL 1 . . OGiab
_ — = al J1
&U&E ) (&u) + 2GabC R (4.5.10)
Comparing 4.5.8 and 4.5.10, we find
oL
58_(.«) =0. (4.5.11)

The result 4.5.11 provides a way of checking that a theory admits selfduality or
of constructing the Lagrangian for such a theory, by switching on couplings in an
invariant way. The case when (“ depend on w is a little more delicate (see [106]).

As an example, if w represents an external gravitational field, 4.5.11 implies that
the energy-momentum tensor, which is the variational derivative of the Lagrangian
w.r.t to the gravitational field, is invariant under selfduality transformations.

13By using Coulomb-like gauge and developing the appropriate canonical formalism.
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4.6 Summary

The main purpose behind this chapter was first to present E-M duality symmetries as
a physical requirement for constraining the higher derivative structure for a given non-
linear electromagnetic theory, in particular the Born-Infeld theory. It’s well-known
that already the Born-Infeld theory is mot the only selfdual extension of the Maxwell
theory. As shown in [108] the ambiguity is labelled by a real function of one real
argument. In this chapter we have moreover demonstrated that electromagnetic self-
duality can only constrain but not determine the higher derivative corrections terms.
This has been established for derivative corrections to the terms related to the 4-point
function.

The rest of this chapter has been devoted to show how a general theory invariant
under dual rotations may be constructed. We tried to clarify the structure of the
theories admitting both compact and non-compact duality. A non-compact duality
invariance is possible only when there are matter fields such as scalar fields. It has
been moreover exhibited that the scalar fields must transform nonlinearly under the
action of the duality group G. We derived the transformation property of the La-
grangian which is required for the equations of motion to be duality invariant, and
show that this property implies the existence of conserved currents and the invari-
ance of the energy-momentum tensor. We further exploited this property for explicit
construction of the selfdual supergravity Lagrangians, which we illustrated by spe-
cializing to the compact case. We found that these theories still have a considerable
degree of arbitrariness, namely in the choice of the matter Lagrangian Li,(®,09).
In supergravity theories this quantity, and in fact the field content itself, are fixed by
supersymmetry. It appears that duality invariance of supergravity theories is implied
by supersymmetry.

Motivated and inspired by our study of selfdual theories we will try in the next
chapter to formulate Kaluza-Klein theories resp. extended supergravities as a non-
linear realization of the duality group G.



Chapter 5

Nonlinear oc-models and
Toroidal Reductions

In this chapter we shall study some aspects of nonlinear sigma models on Riemannian
and pseudo-Riemannian symmetric spaces. Definition of the nonlinear sigma model
will be given, exhibiting how such models arise in Kaluza-Klein theories and extended
supergravity theories.

It is known that dimensional reduction has been used to make a connection to lower
dimensional theories, in particular to our four-dimensional universe. But dimensional
reduction will be studied here not only for this reason, but also to show in the next
chapter that reducing a theory over some of its dimensions leads to a theory which
is easier to solve than the original one. Via uplifting back to the original dimensions
we have generated a solution of the higher dimensional system. In chapter 6 we will
be also interested in reducing brane solutions over their worldvolumes. Therefore we
will restrict in this chapter to torus reductions, distinguishing between what we will
call spacelike and timelike reductions. In the end of this chapter we will outline the
reduction of maximally extended supergravity theories over a torus.

5.1 Introduction

In chapter 4 we have found that the most general duality group that can be realized
with a 4-dimensional theory describing among the other fields a set of n abelian vector
fields and m scalar fields is the non-compact real symplectic group Sp(2n,R), which
has U(n) as its maximal compact subgroup. In addition we have seen that in the
absence of scalar matter fields, U(n) is the largest group of duality transformations. In
specific examples the actual group of duality transformations can be smaller, namely
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a non-compact subgroup G of Sp(2n, R), having H as its maximal compact subgroup.
In those examples the scalar sector is described by a 4-dimensional nonlinear sigma
model, which means that the scalar fields are local coordinates of a non-compact
Riemannian manifold G/H and the scalar action is required to be invariant with
respect to the isometries of G/H. For example, in N = 8, D = 4 supergravity there
are 28 field strengths. The non-compact invariance is the E7 subgroup of Sp(56,R)
and its maximal compact subgroup is the SU(8) subgroup of U(28). The scalar fields
thus take values in the target space Er(7)/SU(8), describing E7(7)/SU(8) nonlinear
o-model.

Nonlinear o-models of our interest are those typically arise through dimensional
reduction of gravitational theories ((super)gravity theories), where the scalar fields
form coset manifolds G/H exhibiting explicitly larger and larger symmetries as one
goes down in dimensions. In the case of eleven-dimensional supergravity for example,
reduction on a n-torus, T", reveals a chain of exceptional symmetries G = E,,(,,). In
these theories, generically the fields transform as follows. The metric is invariant, the
(abelian) gauge fields transform linearly under G and the fermions transform linearly
under the group H. However, in some dimensions the G-invariance is not realized at
the level of the action, but at the level of the combined field equations and Bianchi
identities. For example, in the 4-dimensional example given above the 28 vector fields
do not constitute a representation of the group E7(7). As we have seen in chapter 4
the group G in this case is realized by electromagnetic duality and acts on the field
strengths, rather on the vector fields.

We begin our study by describing some general aspects of nonlinear sigma models
for finite-dimensional coset spaces. In this chapter and the one that follows we will
try to minimize the geometrical and group theoretical technicality, which we review
in appendices A and C.

5.2 Nonlinear Sigma Model Based on Symmetric
Spaces

A nonlinear sigma model describes maps ® from one (pseudo)-Riemannian space
Y equipped with a metric g to another (pseudo)-Riemannian space, “the target
space” M, with metric G;;. Let 2 (u = 1,---D) be coordinates on ¥ and &°
(i = 1,---dimM) be coordinates on M. Then the standard action for this sigma
model is

S:/dDzzr lglg"” 0, 9" ()0, ®! (2)Gi; (®(2)). (5.2.1)
b

Solutions to the equations of motion resulting from this action will describe the maps
®? as functions of .
In what follows, we shall be concerned with sigma models on non-compact Rie-
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mannian symmetric spaces M = G/H where G is a non-compact Lie group generated
by the semi-simple real Lie algebra & and H is its maximal compact subgroup gener-
ated by the real Lie algebra ). Since elements of the coset are obtained by quotienting
out H, this subgroup is referred to as the “ local gauge symmetry” (see below). Our
aim is to provide an algebraic construction of the metric G;; on the coset and of the
Lagrangian [106,124-126].

5.2.1 Symmetric Spaces and Nonlinear Realizations

Suppose G is a group and H is a subgroup of G. The coset space G/H is defined as
the set of equivalence classes [g] of G defined by the equivalence relation

g~g if g¢"'eH, andg,g €@, (5.2.2)

i.e.

lg] = {hg|h € H}. (5.2.3)

If G is a Lie group and H is any Lie subgroup of G, the coset G/H is a manifold and
thus can be described by local coordinates. Since any two points p and p’ on G/H
can by construction be connected by an action of G, the manifold is a homogeneous
space with G being the isometry group and H the isotropy group.

We have investigated the non-compact real forms G of a complex semi-simple
group G in appendix C.2.2 and have found that the involutive automorphism 6 of G
induces a Cartan decomposition of & into even and odd eigenspaces:

=907, (5.2.4)

where

H={iedldi) =i}, IF={teeloF) =-t} (5.2.5)

play central roles. The decomposition 5.2.4 is orthogonal, in the sense that § is the
orthogonal complement of ) with respect to the invariant inner product (. |.) induced
by the Killing metric B(., .),

F={tc&|Vje H: (¢j) =0}. (5.2.6)
The commutator relations split in a way characteristic for symmetric spaces,
9.9]cH,  [9Fcs  [BIFCH (5.2.7)

The subspace § is not a subalgebra. Elements § transform in some representation of
$, which depends on the Lie algebra &. We stress that if the commutator [§, §] had
also contained elements in § itself, this would not have have been a symmetric space.

If the so-called involution 6 taken to be the involution 6, defined in appendix C.2.2,
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then it will have the effect of reversing the sign of every non-compact generator in
the Lie algebra &, while leaving the sign of every compact generator unchanged (see
appendix C.2.2). If we denote the positive root generators, negative root generators
and Cartan generators of & by (Fgz, F_g, H ), where & ranges over all the positive
roots, then for our algebra 6, effects the mapping

— —

96 : (Ea,E_a,H) — (—E_a,—Ea,—H). (528)

The real form corresponding to 6. is called the mazimally non-compact (split) real
form Gy, of G*. It is always, in any real Lie group Gy,, the generator combinations
(Eo — E_,) are compact while the combinations (F, + F_,) are non-compact.

The Cartan split of the generators into compact and non-compact parts reveals
the fact that the Killing metric of a real form G may have an indefinite signature.
However, the metric G;; on the symmetric space G/H has a definite sign. This can be
seen from the fact that all the generators that span G/H are non-compact, therefore
the Killing metric restricted to § is positive definite, and hence the symmetric space
G/H is Riemannian. The restriction of the Killing metric to §) gives rise to a negative
definite metric. Note that had we started with a different real form of G® with
a different involutive automorphism, we would have obtained a different symmetric
space with a different signature for the metric. For more about the classification of
real forms of a complex Lie algebra using involutive automorphisms we refer to [127].

The group G naturally acts through (here, right) multiplication on the coset space
G/H as

(k] — [kg]. (5.2.9)

This definition makes sense because if k ~ k', i.e. k' = hk for some h € H, then
k'g ~ kg since k'g = (hk)g = h(kg). Note that left and right multiplications commute.

In order to describe a dynamical theory on the coset space G/H, it is convenient
to introduce as dynamical variable the group element L(z) = L(®(z)) € G (®* are
the local coordinates parameterizing G/H) and to construct the action for L(z) in
such a way that the equivalence relation

V hiz) e H : L(z) ~ h(xz)L(x) (5.2.10)

corresponds to a gauge symmetry. The physical (gauge invariant) degrees of freedom
are then parameterized indeed by points of the coset spaces. We want also to impose
5.2.9 as a rigid symmetry. Thus, the action should be invariant under

L(z) — h(z)L(z)g,  h(z) € H, g€ G. (5.2.11)

One may develop the formalism without fixing the H-gauge symmetry, or one may
instead fix the gauge symmetry by choosing a specific coset representative L(z) €
G/H. When H is a maximal compact subgroup of G, i.e. G/H is a Riemannian
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symmetric space, there are no topological obstructions, and a standard choice which
is always available, is to take L(z) to be upper triangular form as allowed by Iwasawa
decomposition (discussed in section 5.2.3). This gauge choice is called the solvable
gauge. Given such a gauge choice (or any other one), the global action of an arbitrary
element g € G, on L(x) will lead to a non-standard representative L'(z) and must
therefore be accompanied by a compensating local transformation h(L(x),g) € H in
order to maintain the gauge choice. The total transformation is thus

L(z) — L"(z) = h(L(z), 9)L(z)g,  h(L(z),g) € H, g € G. (5.2.12)

where L (z) is again in the upper triangular gauge. Since now h(L(z),g) depends
nonlinearly on L(xz), this is called a nonlinear realization of G.

5.2.2 Nonlinear Sigma Model Coupled to Gravity

Given the field L(x), we can form the Lie algebra valued one-form
dLL™' = da"9,LL™". (5.2.13)
Under the Cartan decomposition, this element splits according to 5.2.4,
dL(z)L ™! (z) = (Qu(z) + E,(x))dz", (5.2.14)

where Q, €  and E,, € §. In virtue of the involutive automorphism 6 one can write
these explicitly as projections onto the odd and even eigenspaces as follows:

E = %[dLL‘l —0(dLL™")],
Q= %[dLL’l +60(dLL™h)). (5.2.15)

Now, if we define a generalized transpose § [128] (see also [126]) by
()F=—-6(), (5.2.16)
then E and () correspond to symmetric and antisymmetric elements, respectively,
Ef(z) = E(z), Q%)= -Q(x). (5.2.17)

The Lie algebra valued one-forms with components dLL~!, ) and E are invariant
under the rigid right multiplication, L(x) +— L(x)g.

Being an element of the Lie algebra of the gauge group, Q,(x) can be interpreted
as a gauge connection for the local symmetry H. Under local transformation h(z) € H,
Q,(z) transforms as

H : Quz) — h(z)Qu(2)h " (z) + 9,h(z)h (z), (5.2.18)



82 Nonlinear o-models and Toroidal Reductions

which indeed is the characteristic transformation property of a gauge connection. On
the other hand, E, () transforms covariantly,

H : E,(x) — h(z)E,(z)h ! (z). (5.2.19)

Making use of the scalar product (. |.), induced by the Killing metric B written in
a R representation of the group G, we can now form a manifestly H and G invariant
expression by simply squared E,(x). Thus the D-dimensional nonlinear sigma model
action coupled to gravity takes the form

S = [ @av/Il[R - " (Bu(@) ula) (5.220)
:/Ed% 1[R ~ Crg r{Bu(x) B, ()] (5.2.21)

E/dDI |g|[7€—%g“l’aﬂfbi(x)&,@j(:r)Gij(‘ID(:E))}, (5.2.22)
by

where R is the Ricci scalar and Cg is a positive constant depending on the represen-
tation R of G with (.|.) = Cgtr[].

There is an alternative way of writing the above action. We can also form a gen-
eralized “metric”? M that does not transform at all under the local symmetry, but
only transforms under the rigid G-transformations. This can be done by using the
generalized transpose, extended from the algebra to the group through the exponen-
tial map. Actually the main advantage behind using the automorphism 6 is that it
provides us with an embedding of G/H in G [129]

L— M=0LYL=L'L, 6M)=M7", (5.2.23)

where §(L~1) = L*. The matrix M transforms as follows under global transformations
on L(z) from the right

G : M(z) — ¢*M(x)g, geq. (5.2.24)

A short calculation shows that the relation between M(z) € G and L(z) € G/H =
expF is given by

%M_l(x)auj\/l(:v) = L' (2)E,(z)L(x). (5.2.25)

1We call M a “generalized metric” because in the Kaluza-Klein reduction of Einstein gravity over
a torus, it corresponds to the metric of the torus, the field L(z) being the “vielbein” (see section
5.3.2).
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This relation provides another way to write the G- and H-invariant action, completely
in terms of the generalized metric M (x),

Seyu = / aPe/Tgl[R - ig“”(M_16HM|M_16VM)} (5.2.26)
3
:/d% |g|[R+ %tr[@HMa”M_l]] (5.2.27)
3

The equations of motion following from the nonlinear o-model coupled to gravity
action read

Ruw — %auclﬂa,j@j(;ij(q)) =0, (5.2.28)
= ()7

D"9,®" (z) (5.2.29)
where D is the covariant derivative associated with the local transformation H. The
second equation is equivalent to

DVME,(z) =0, (5.2.30)

with D, E,(z) = V,E,(z) — [Qu(z), E, ()], where V# is a covariant derivative on
> compatible with the Levi-Civita connection. Equations 5.2.30 simply express the
covariant conservation of E,(x).

It is also interesting to examine the dynamics in terms of the generalized metric
M. The equations of motion for M are

VHM o M) = 0. (5.2.31)

These equations ensure the conservation of the current
1
Jy = 5/\/1*18#/\/1 =L'E,L, (5.2.32)

i.e., V#J, = 0. This is the conserved Noether current associated with the rigid G-
invariance of the action. Using (M) = M™!, one can derive that the currents J
obey the identity 6(J) = —MJM L.

The incorporation of form fields into the action 5.2.26 is straightforward as long
as one does not want to turn on duality invariance (selfduality of section 4.4). For
example in D = 4 the addition of vectors fields might be accompanied by the du-
ality action of G exactly the way we saw in the previous chapter. In this case the
vector fields should be added to gravity and scalar fields forming a G/H o-model in
such a way that the resulting equations of motion are invariant under the action of
G if the field strengths together with their duals are transformed suitably with a R
representation of G. In [130] it has been shown that the matrix M parameterized
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by the scalar ®° is intimately related to the symmetric matrix defined in section 4.4.
Furthermore it has been argued that the coupling of the vector fields should be such
that the resulting energy density is positive, and hence the symmetric matrix M is
positive definite.

The action describing a nonlinear o-model coupled to gravity and vector fields
arises typically in Kaluza-Klein theories and extended supergravity theories, in par-
ticular from the torus reduction of pure Einstein gravity? to D dimensions which will
be discussed in section 5.3.

5.2.3 Iwasawa Decomposition: Borel Gauge

We have seen above that there exists a nice gauge or coordinate frame, namely the
solvable gauge. It has been shown that the idea behind such a gauge originates from
the Twasawa decomposition. Given a real form G of a semisimple complex Lie group
G°®, the associated Lie algebra & can be decomposed as & = § + s where 9 is the
maximal compact subalgebra, and s is the solvable subalgebra of &. The solvable Lie
algebra s can itself split up as s = ¢ @ n where ¢ is the maximal set of commuting
non-compact generators, i.e. the non-compact part of the Cartan subalgebra CSA
h of G, and n is the lie algebra consists of the generators which have the positive
roots with respect to ¢. This is the Iwasawa decomposition, a description of which
can be found in reference [131]. One of the nice properties of a solvable Lie algebra
is that the matrix representation can be chosen such that all elements of s are upper
triangular. Due to this decomposition one can easily notice that the coset space G/H
is globally isometrical to a group G, a subgroup of G associated to the solvable Lie
algebra, namely

% ~ G, with G, = expls]. (5.2.33)

This reflects the fact that the solvable parametrization of G/H holds globally.
We denote the Cartan subalgebra generators by Hy with I =1,--- ,r = rank(G)
and the positive root generators with Fg. The commutation relations read

[H[, HJ] = 0, [H], Ed*] = Oan, (5234&)
/0 if @ + [ is not a root
[E&’Eﬁ] - { N(a,ﬁ)E&H; otherwise, (5.2.34b)

where @ is the root vector of the Lie algebra &.
Now let us be a little more precise and distinguish two cases:

e If c coincides with the whole Cartan subalgebra ) and n is the subspace generated
by all the positive root generators, then & is &y, the maximally non-compact

2From now on we call the Kaluza-Klein theories, which stem from the dimensional reduction of
pure Einstein gravity theory, pure Kaluza-Klein theory.
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real form of a complex semisimple algebra &® (see C.2.2). This means that
the difference between the number of non-compact generators and the number
of compact ones is the rank r = rankGy,. In this case the solvable algebra s
is isomorphic to the Borel subalgebra of &y,. The Borel subalgebra of any Lie
algebra By, is the subalgebra generated by the positive root generators and the
Cartan generators, namely

G 1
Le % = exp[Borel®y_], L= HIQXP[§¢IH1]Haexp[X°‘Ea], (5.2.35)

In fact for the nonlinear sigma model action of the type discussed above, the
scalars might come in two disguises: either they appear with derivatives or they
also appear in exponential couplings to other fields. The scalars of the first kind
are called azions x® and the scalars of the second kind are called dilatons ¢'.
This means that the coset representative L is written in the Borel coordinate
system 5.2.353. The isometry group G is always maximally non-compact in
the case of maximal supergravity, e.g. N = 8, D = 4, and some less-extended
supergavities [132,133].

e If & is one of the non-maximally non-compact real forms (non-split real form) of
B¢, then ¢ is the subspace of non-compact generators of the Cartan subalgebra
and n is the set of the positive restricted roots generators (more about such
roots see [126]). In the case & is not maximally non-compact, the supergravity
theories with G/H nonlinear o-model are less-extended supergravities. See [A]
for discussion of this in the case of dimensionally reduced heterotic supergravity.

Henceforth we will restrict to the real form G = Gp,, the maximally non-compact real
form of G°®.

5.2.4 Example: SL(n,R)/SO(n) Nonlinear c-model

As an example we discuss the coset SL(n,R)/SO(n). The group SL(n, R) has a rank
r =n — 1 and its maximal compact subgroup is SO(n). There will therefore be n — 1
dilaton fields and n(n—1)/2 axion fields x®. The Cartan generators are given in terms
of the weights 5 of SL(n,R) in the fundamental represenation

(H)ij = (51)513 (5.2.36)

The tracelessness of the special linear group SL generators implies ), 3;; = 0. More-
over, a convenient normalization of the Cartan killing form (metric of the Lie algebra

3 Apart from the fact that these coordinates can be useful for practical purposes, it is also the
coordinate system that is naturally obtained after torus dimensional reduction defined later in this
chapter. The dilatons ¢! then correspond to the radii of the internal tori and the axions x® are
the various off-diagonal internal gravitational degrees of freedom and the internal components of the
p-form gauge potentials.
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in the fundamental representation) leads to two additional identities obeyed by the
weight vectors

> = 2
Zﬁi]ﬂw =201, Bi - B = 26;5 — - (5.2.37)

The positive step operators E;; are all upper triangular and a handy basis is one in
which they have only non-zero entry (E;;);; = 1. Note that the negative step operators
are the transpose of the positive ones.

The SO(n) subalgebra is spanned by the combinations

L
V2

If we work in the fundamental representation of SL, the Lie algebra of SO(n) is
then the vectorspace of anti-symmetric matrices. Now, use the fact that for SL the
generalised transpose f defined above coincides with the ordinary matrix transpose
“T” namely 6(L) = (L*¥)~! = (LT)~!, the relations 5.2.15 become

(Es — E_p). (5.2.38)

E= %[dLL‘l +@LL=HT o= %[dLL‘l — (dLL™HT]. (5.2.39)

Thus the hermatian positive definite matrix M becomes M = LTSL = LTL, i.e.
symmetric matrix, with ¢ is the Euclidean metric invariant under the action of SO(n).

A calculation exhibits that the SL(n,IR)/SO(n) nonlinear o-model Lagrangian
reads

1
Lecatar = —V/|gltr[E?] = + lgltr[oMOM ™. (5.2.40)

The action will generically look complicated but when all axions are set to zero, L is
diagonal L = diaglexp(3/3; - ¢)] and the action becomes

1 1 1
Ztr@/\/l&/\/l_l = —Z(; Bi1Bir)0¢ 07 = —551,]a¢fa¢J. (5.2.41)

This action describes a truncated IR" ! nonlinear o-model, where the n — 1 dilatons
are parameterizing the flat scalar space R"~!.

This brings us to the issue of consistent truncations. According to [130], a nonlin-
ear o-model with target space G1/H; is a consistent truncation of another o-model
with target space Go/Hs if G1/H1 C Ga/Hs and if every solution of the field equa-
tions for the G1/H; o-model is a solution of the field equations for the Ga/Hs o-
model as well. In other words, the truncation is consistent if and only if G1/H; is
totally geodesic* subspace of G/Hs. Note that if G/H is a Riemannian symmetric

4Totally geodesic submanifold is a submanifold such that all geodesics in the submanifold are also
geodesics of the surrounding manifold.
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space then every totally geodesic sub-space of G/H is again a Riemannian symmet-
ric space. Similar statements hold true if we are dealing with a pseudo-Riemannian
G/H* symmetric space that will be defined in a minute. Thus in the above example,
putting all the axions to zero turns out to be consistent with the equations of motion

9,.(\/|gIMro" M) = 0. (5.2.42)

Let us consider the example of the coset space for n = 2, which, although very
simple, is nonetheless quite illustrative. The Lie algebra of SL(2,1R)/SO(2) has the
following standard commutation relations

[H, E3] = 2E,, [H,E_3] = —2F_,, [E2, E_o] = H. (5.2.43)
The SL(2,R) fundamental realization takes on the form

i (0) (D) (D). s

The coset representative, written in the Borel gauge (upper-triangular), behaves as
1 e% 6_%
L= exp[§¢H]exp[XE2] = ( 0 eg)() , (5.2.45)

where ¢(z) and x(z) represent coordinates on the coset space, i.e. they describe the

sigma model map
x € X r— (4, x) € SL(2,R)/SO(2). (5.2.46)

We saw that an arbitrary transformation on L(z) behaves as
L(z) — h(z)L(z)g, h(z) € SO(2), g € SL(2,R), (5.2.47)
which infinitesimally becomes
On.gL = 0h(x)L + Ldg, (5.2.48)

where dh(z), and dg are respectively elements of the SO(2) and SL(2, R) Lie algebras.
Let us now check how L(z) transforms under the generators g = {H, F2, E_5}. As
expected, the Borel generators H and E5 preserve the upper triangular structure

0 eb/2 6/2  _od/2
Sp,L = LEy = <o 60 > §yL = LH = (60 _‘36¢/§< , (5.2.49)

whereas the negative root generator E_s does not respect the form of L(x),

ZEIVA
g ,L=LE_y= (ng 0) . (5.2.50)
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Thus in this case we need a compensating transformation to restore the upper tri-
angular form. This transformation needs to switch off the entry e~%/2 in the lower
left corner of the matrix 5.2.50 and therefore it must necessarily depend on ¢(x). The
transformation that can do this job is a SO(2) Lie algebra element

Shz) = (_e(’_¢, e:) , (5.2.51)

and we find

e?/2y  ¢=39/2

ong_,L=0h(x)L+LE 5= < 0 —X6_¢/2

) € SL(2,R)/SO(2).  (5.2.52)

Finally, from 5.2.45 one can calculate M = LT L and hence the SL(2,R)/SO(2)
nonlinear o-model Lagrangian is

Escalar = _% |g| |:(8¢)2 + 62¢(8X)2]. (5253)

In type IIB supergavity the scalar coset is SL(2,R)/SO(2) where the Borel gauge
has the interpretation that the dilaton ¢ is in the NS sector and determines the string
coupling and x is the RR field C(g) that couples electrically to D-instanton (—1-brane)
and magnetically to 7-brane.

This is somewhat a trivial example so let us consider SL(3,R)/SO(3). The Borel
algebra is

[Hi, B3] = 2E2, [H1, E13] = Ehs, [Hi, Eo3] = —FEos,
[Ha, Eq2] =0, [Hy, F13) = V3F13, [Hy, B3] = V/3Ea3, (5.2.54)
[Eh2, E13] =0, [Ehs, E93] =0, [E12, Ea3] = Eq.

The Cartan generators in the 3-dimensional fundamental representation are written
as

1 0 0 1 1 0 O
H=|0 -1 0}, H;=—{(0 1 0|, (5.2.55)
0 0 O V3 0 0 -2
and the three positive step operators are
0 1 0 0 0 0 0 0 1
Ei,=(0 0 0], Eys=10 0 1], Fis=10 0 0 (5.2.56)
0 0 0 0 0 0 0 0 0
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The three negative step operators can be found by taking the transpose of the positive
ones. The coset representative is expressed as

1 1
L= eXP[X12E12]GXP[X13E13]€XP[X23E23]6XP[§¢1H1 + §¢2H2]

N by 1/ >y —92
e? V) 2T eV (xa2xes + Xi3)
92

= 0 Ot e B o . (5.2.57)
0 0 eV

The SL(3,1R)/SO(3) nonlinear o-model Lagrangian is expressed as

1 1 1. _ e —
Lscalar = =/ |g|[—§(3¢1)2 - 5(&?52)2 - 5{6 e \/§¢2}(8X12)2

1 _, 1, i —
—56 1 \/§¢2(6X13)2—§6¢1 \/§¢2(ax23)2_e 1 \/§¢2X238X12613]-

(5.2.58)

5.2.5 o-model on Pseudo-Riemannian Symmetric Spaces G/H*

The theories that we have seen so far are Minkowskian theories in D dimensions
where the scalars form G/H nonlinear o-model with G/H is a Riemannian target
space. However, there exist also non linear o-models which might arise from Fu-
clidean Kaluza-Klein (reduction over timelike killing vector) and extended supergrav-
ity theories where the scalars take values in a pseudo-Riemannian space G/H*, with
G is the maximally non-compact real form of a complex semisimple Lie algebra and
H* is a non-compact version of H. The Borel coordinates ¢! , x® are no longer valid
for non-Riemannian symmetric spaces since this coordinate system does not cover
the whole manifold® (see [134]). Nevertheless, one can still work on the level of the
H*-invariant matrix, M, for which the choice of the gauge does not play any role.
The basis for a representation R will be chosen such that

0(j) = —n()fn, Vje®. (5.2.59)

The matrix n is H*-invariant matrix having a Lorentzian signature. It can be re-
stricted to the metric on G/H* manifold or to the Killing metric of H*. If we de-
fine M = nM = LiyL, the matrix M will again be hermitian (symmetric) and
M = nLiyL is an element of G.

Due to the non-compactness of H* the matrix # and thus M and G;; will not

5The solvable (Borel) parametrization for G/H*, in contrast to the G/H case in which H is
the maximal compact subgroup of G, holds only locally. To understand this issue, one can think
of the simple case of dS2 = SO(1,2)/SO(1, 1), in which the solvable parametrization describes the
stationary univers and thus covers only half of the hyperboloid.
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be positive definite. Therefore there exist kinetic terms with the ‘wrong sign’ in the
G/H* nonlinear o-model Lagrangians. Scalar fields with the wrong sign of kinetic
terms are sometimes called ghosts in analogy with ghosts in the quantization of Yang-
Mills theory. For example the nonlinear o-model of Euclidean type IIB supergravity
has the following Lagrangian

Escalar = \/m[_%(a(b)z + %672¢(8X)2]. (5260)

The only difference with Lorentzian IIB is the sign of (9x)?. An explanation of this
sign difference can for instance be found in [135]. The different sign does not ruin the
SL(2,R)-invariance but does change the scalar coset to SL(2,R)/SO(1,1). Thus the
metric on the scalar coset is indefinite, and hence as we expected the metric G;; fixes
the kinetic terms of the scalar fields. As we have mentioned before for such a case the
isotropy group SO(1,1) = H* is not the maximal compact subgroup, therefore the
Iwasawa gauge (Borel) fails. This can be seen as follows. Let k € SO(1,1) ( the 1+1
Lorentz group, consisting only of boots), and V' € SL(2,IR), then the gauge action
of SO(1,1) k- V is a boost of both columns. If a column is lightlike then you can
not boost it to become spacelike or timelike. In other words for V' one can not find
an upper-triangular representative. There are however other general gauges one can
think of. One can see for instance [134] for a “good gauge”.

It is worth recalling that the G/H and G/H™* nonlinear o-models arising in the
pure Kaluza-Klein theories and maximally extended supergravities follow basically
from the dimensional reduction over tori of pure Einstein-gravity theory and higher di-
mensional supergravities, respectively. Therefore the coming sections will be devoted
to studying the dimensional reduction over tori, focusing mainly on the reduction of
pure Einstein gravity over Euclidean and Lorentzian tori.

5.3 Dimensional Reduction

Dimensional reduction of a theory, by definition, consists of an expansion over an
internal space and subsequent truncation to the lightest modes. In order to see that
let’s have an instructive illustration:

We consider complex scalar field ¢E living in D dimensional spacetime parameter-
ized by the coordinates z# = (2#,vy). The fourier transformation of ¢ with respect to
the coordinate y can be performed as

o(z,y) = /dkcbk(:v)e““y, (5.3.1)

where k represents the momentum of modes ¢i. Now one can first compactify the y
direction to have the length 27 L, then impose the boundary condition

¢(x,0) = ¢(z,27L). (5.3.2)
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It implies that the integral is converted to a sum due to the fact that over compact
direction the momentum takes discrete values

Assume the scalar field ¢E solves the Klein-Gordon equation such that

Opp=0,  with Op = 9,0 +9,0. (5.3.4)

In order to identify the fields of D = D — 1 dimensions, we insert 5.3.3 in 5.3.4,
implying infinite number of separate equations for every mode ¢,, with different mass

Opén (@) — (%)2 bn(z) = 0, (5.3.5)

where Op = 0,0". As a result a spectrum of fields, which are called the Kaluza-Klein
fields, arises so that ¢q is effectively a massless field and ¢,, are massive fields with
T

In fact, this holds for a general compact internal space and fields (;3 From the
D-dimensional viewpoint we always have a massless sector and a massive sector with
mass inversely proportional to the size of the extra dimensions (internal directions).
Since we live in an effectively four dimensional world, we take the radius of the in-
ternal direction to be small in order for it to be unobservable; the fields ¢, become
extremely massive. Therefore these modes are too massive to be physically important
and are usually decoupled, namely keep only ¢y and truncate the other modes. When
the massive fields are truncated the field (;3 is independent of the internal dimensions.
However, the lower dimensional degrees of freedom are not always massless. It may
happen that the D-dimensional spectrum does not contain massless fields. In this
case we truncate to the lightest modes of the fields.

Consistency of Dimensional Reduction

One can always obtain lower dimensional theories through a dimensional reduction
over compact internal spaces. However one can not reduce over any compact space
since there are consistency conditions. Consistency of dimensional reduction is noth-
ing else than that every lower dimensional solution can be uplifted to a higher dimen-
sional solution. In practice, consistency of dimensional reduction is the consistency of
the truncation of the massive modes. To check consistency, one can consider a general
internal space and a set of eigenfunction E* of the Laplacian operator defined above,
namely OEY = )\jEAJ' . Again the Fourier decomposition over the general internal
space gives

Bay) = o, (@) E™. (5.3.6)
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As before we have massless fields for which Ay = 0 and massive fields. Substituting
5.3.6 into higher dimensional equations leads to

DDQbAj (I) = S)\].. (537)

Sy; is a function which depends on both massless and massive fields. If .S is such
that it vanishes when all massive ¢,; are constant, then the equation 5.3.7 is solved,
hence the truncation to the massless fields are consistent. In other words, we can
truncate the massive modes if the the massless fields do not form a source for massive
ones. This implies that one has a restrictive number of internal spaces where one can
reduce. However the non-consistency of the truncation of the massive fields does not
mean that reduction is useless. From a physical point of view it is probable that the
massive modes have negligible interactions with the massless sector because they are
heavy. So even if the massive modes can not be truncated consistently, leaving them
out will not be too much problem at low energies. However, dimensional reduction
is not only used here for obtaining effective lower-dimensional theories. The exact
result often matters, for example if a dimensional reduction is used as a solution
generating technique (see chapter 6) when lower-dimensional solutions are lifted to
higher-dimensional solutions or vice-versa, the reduction has to be consistent.

This way of performing dimensional reduction-an expansion over an internal space
and truncation to the lightest sector- is unrealistic. Actually this procedure amounts
to writing down an Ansatz which relates the higher dimensional fields to lower di-
mensional ones, i.e. to the lightest modes of the expansion. Dimensional reduction
then consists in substituting the reduction Ansatz in the field equations or the action
(Lagrangian). In most cases the reduction Ansatz depends on the internal space coor-
dinates. This dependence should cancel at the end of the day in order to get the field
equations corresponding to lower dimensional theory. This requirement is equivalent
to the consistency of the truncation to a finite number of lower dimensional fields
discussed above. From now on, we can just make the higher dimensional fields inde-
pendent of the internal dimensions in order to perform dimensional reduction. Note
that the number of degrees of freedom is unchanged under dimensional reduction.

The compactness of the internal manifold is not a necessary demand for having a
dimensional reduction, what does really matter is to have a consistent truncation. It
might happen that the internal space is non-compact, in this case the resulting Kaluza-
Klein spectrum is continuous, and nonetheless the truncation to massless fields is still
plausible. Such a reduction is called non-compactification while the reduction over
compact spaces is called compactification.

5.3.1 Circle Reduction of Gravity

We will now consider the dimensional reduction of Einstein gravity in D dimensions
over a circle to D = D — 1 dimensions. In general, bosonic solution in D dimensions
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is specified by the metric, describing the geometry and other fields such as scalar and
general p-forms. Regarding the metric field, the solution and the geometric structure
must be compatible in a sense that the D-dimensional space M p can be split up in a
D-dimensional space and a S' as an internal manifold, that is M p=Mp xS;. The
coordinates are split up according to ## = (z#,y). In this way we write the metric
ds%, = dsh + e”dy”. (5.3.8)

In fact we should specify which metric we take on a circle as there is one-parameter
family of metrics in the light of the function e?. The parameter e in some sense
describes the size of St. There is nothing against making o depends on x. In general,
the Einstein equations tell us that it has to depend on z! This alleviates the status of
o from a parameter to a physical field o = ¢(z) with its own field equations, found
by substituting the Ansatz 5.3.8 in the higher dimensional field equations.

We have seen above that one of the main outcomes of dimensional reduction is
that the higher dimensional field (;3 is independent of the extra direction. It implies
that for a scalar, vector field and metric, we have schematically:

¢=d(x), A= (Au(®),x(®),  Gar = (if: ?p“) : (5.3.9)

Thus the vector field Au gives rise to a vector field and a scalar field (axion) in lower
dimensions, and the reduction of the metric generates a metric g,,,,, scalar ¢ (dilaton)
and the so-called Kaluza-Klein A,. This example reflects the fact that dimensional
reduction of a higher-dimensional theory generates a lower-dimensional theory with
more fields. This means that a 4-dimensional theory that looks complex can have a
simple higher dimensional origin.

The Ansatz 5.3.9 for the metric is a correct Ansatz, but if we plug it into D-
dimensional Einstein equations, then the D-dimensional equations would take on an
odd form which rather unfamiliar. For instance, the lower dimensional theory would
not have the standard Einstein-Hilbert terms. Therefore the D-dimensional metric
can not be interpreted as a solution of the standard Einstein equation. In order to get
around this problem, one may redefine the metric (9p) — €**¢(gp),w so that the
metric (gp ), solves the lower dimensional Einstein equation. The Ansatz becomes

ds% = e2%ds?, + 2P (dy 4+ A)?, (5.3.10)

where we have redefined the Kaluza-Klein vector such that its corresponding kinetic
term is as close to the standard Maxwell-form 1/4F2. The o and 3 that parameterize
the metric must be

a® = 8=—(D-2)a. (5.3.11)
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The D-dimensional Einstein-Hilbert action can be obtained by inserting the Ansatz
5.3.10 into D-dimensional equations, i.e. in form notation we get

1 1
L=*Rp = 5 *dp Adip - 56—2@—1)“9@ * dA A dA. (5.3.12)

The coupling between ¢ and A,, indicates that one cannot truncate ¢ and maintain A
in order to obtain Einstein-Maxwell theory. If this would have been possible it would
have implied the unification of electromagnetism with gravity®. A truncation of the
vector without truncation of the scalar is possible.

The consistency of the metric Ansatz can be understood as follows: imagine we
take the size of S, e” defined above, to be non-dynamical; namely the function ¢
is constant. Therefore one would not be able to find a solution to the equations of
motion. This can be seen from the fact that the more general and correct Ansatz
5.3.9 gives equation for ¢ that does not have constant ¢ = e as a solution. In other
words, the details of the interactions between various lower-dimensional fields prevent
the truncation of the scalar .

5.3.2 Torus Reduction of Gravity

The circle reduction explained above can be repeated on a series of circles leading to
what is called reduction over a torus T" = S x St... x ST,
—_——

The reduction of gravity over T"™ generates n vecntors fields A™ withm =1,--- | n,
n dilatons ¢™ (they correspond to the radii of the circles), and n(n — 1)/2 axions
Xao- The dilatons and axions scalar fields parameterize the coset GL(n,R)/SO(n) =
Rt x SL(n,R)/SO(n). Thus the reduction Ansatz of D-dimensional gravity over n-
torus to D = D — n dimensions reads (with coordinates zf = (z#,y™))

ds% = e2%dsh + 2P M (dy™ + Al dat ) (dy" + Ajdat). (5.3.13)

The kinetic term for M,,,, reveals that M parameterizes the coset SL(n,R)/SO(n)
and since the “breathing mode” ¢ decouples from the scalars in M,,, in the ki-
netic term, the scalar manifold gets an extra factor’ R* and thus becomes the coset
GL(n,R)/SO(n). The resulting scalar manifold plays the role of the moduli space®
of the torus T, where the scalars in M can be interpreted as shape-moduli of the
torus. The scalar matrix M., is a strictly positive definite symmetric matrix defined

6The original motivation for dimensional reduction was unification of the forces in nature from the
dimensional reduction of pure gravity in some higher dimension. Unfortunately this is not possible
since the dilaton field can not be stabilized.

"This is associated with the constant shift symmetry SO(1,1) = R7T of the dilaton ¢.

8The moduli are parameters that change the shape of the torus, at fixed volume, while keeping it
flat. One can see, as an example, for T2 that as ¢ (not the breathing one) varies, the relative radii
of the two circles change, while as x varies, the angle between the two circles changes.
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by M = LTL, (detM = 1) and plays the role of an internal metric of the torus T",
where L is the corresponding vielbein. We call ¢ the breathing mode since it describes
the overall volume of the torus, and GL(n,IR) is the symmetry of T™. Now if we plug
5.3.13 into the D-dimensional Einstein-Hilbert Lagrangian, it yields

1 1 1
L= *RD—5*dgp/\dg0+1*d/\/lmn/\d(/\/l_l)m"—562(5_0‘)“”an*dA"/\dAm, (5.3.14)

with

9 n (D —-2)a

- 2(D+n-2)(D-2) b= no
The Lagrangian 5.3.14 is the Lagrangian of a pure Kaluza-Klein theory in D dimen-
sions, which describes the coupling of GL(n,R)/SO(n) nonlinear o-model to gravity
and n vector gauge fields. For future use it is worthy noting that the matrix M might
be combined with the breathing ¢ into a matrix M which parameterizes the coset
GL(n,R)/SO(n), namely

(0%

(5.3.15)

M = (|detM|)= M,  |detM]| = expv/2ngp. (5.3.16)

We close this part with a word of caution: in the above reduction we reduced the
action in order to find a new lower-dimensional action. This is not without danger
since it is known that filling in on-shell information (the Ansatz) in an action and then
performing Euler-Lagrange variation with respect to the remaining unfixed degrees
of freedom can be inconsistent. To avoid this problem one should actually do more
work and reduce the field equations instead of the action. But we are lucky as this
problem will not arise in the reductions in this thesis.

5.3.3 Spacelike and Timelike Toroidal Reductions

So far we have considered dimensional reductions of pure Einstein gravity over Eu-
clidean tori, giving rise to Minkowskian pure Kaluza-Klein theories in D dimensions.
We call such reductions spacelike reductions, reductions over spacelike isometries (the
killing vectors are spacelike). However, one can also reduce over a n-torus with a
Lorentzian signature T"~1! and obtain an Euclidean theory. This means that the
time is included in the dimensional reductions, and hence the reduction over the time-
circle is named timelike reduction.

What we have done for spacelike reductions turns out to be valid for timelike
reductions. For instance the reduction Ansatz 5.3.13 continues to hold for timelike
case. The only difference between the two reductions is encoded in the definition of
the internal metric M of the Lorentzian torus T"~ 1!, i.e.

M =L"yL, detM = —1, n = diag(—1,1,---), (5.3.17)



96 Nonlinear o-models and Toroidal Reductions

where 1 here is the tangent space metric of the torus. Surprisingly enough, timelike
reductions give rise to the Lagrangian 5.3.14 but now for Euclidean Kaluza-Klein
theories where the scalars form GL(n,R)/SO(n — 1, 1) nonlinear o-models. That is
indeed an example of pseudo-Riemannian o-models that we have discussed in section
5.2.5.

Reducing to three dimensions makes things look special. One can dualize all the
gauge potentials A™ to scalars as follows: consider in D = 3 the last term in 5.3.14

Sp~ /—an * F™ N F™, (5.3.18)

To dualize the vectors we need to be sure that the F"* are closed and therefore locally
exact, i.e. F'™ = dA™. Therefore we enforce this using the Lagrange multipliers y,

SFx ~ /—an * FNF" — xmdF™. (5.3.19)

Variation with respect to x indeed gives us that F' is closed two-form. Now we can
treat the action as if F' is a fundamental field. The equation of motion for F is

M x F" = dxm = F™ = (=) (M) x dxm, (5.3.20)

where we have made use of the relation A.2.32 for a p-form. If we plug the result for
F, perform partial integration and reshuffle the terms, then we get

Sy ~ /(—1)5(/\4‘1)’”" e dxm A dxn — (=) d(xn (M) % dxm), (5.3.21)

where the total derivative can of course be dropped. We therefore notice that in the
case of the three-dimensional Euclidean theory (reduction over a timelike isometry)
(s = 0) the axion kinetic terms appear with the opposite sign of their related vector
kinetic terms. Consequently, there is a symmetry enhancement in D = 3 since it
can be shown that the extra scalars combine with the existing scalars into the coset
SL(n + 1,R)/SO(n — 1,2)%. In this case there is no decoupled R. Note that for the
reduction over an Euclidean torus (s = 1) from 3 + n to three dimensions we obtain
the coset SL(n + 1,IR)/SO(n + 1).

5.4 Torus Reductions of Maximal Supergravities
We start our discussion with emphasizing the fact that torus reductions do not break

supersymmetry. Therefore the dimensional reductions of type IIB and type IIA on a
n-torus and 11-dimensional supergravity on n + 1-torus lead to the unique maximal

9This means that SO(n — 1, 2)-invariant matrix 7 has as a signature diag(—1, —1,+1,+1,--- , +1).
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G/H-Minkowskian SUGRA | G/H*-Euclidean SUGRA
D =10 SO(1,1) SO(1,1)
D=9 S0t S ven)
D=6 SOG) X0 SO0
D=5 o S
Do st 5%
D=3 S9i0 e

Table 5.4.1: Cosets for maximal supergravities in Minkowskian and Euclidean signa-
tures.

supergavities in D < 11.

The (maximal) supergavity theories can be classified according to the nonlinear
sigma models describing the scalar field interactions. This means that the geometry of
(pseudo)-Riemannian symmetric spaces fixes the scalar field interactions terms in su-
pergavity Lagrangian. We summarize the scalar manifolds of the maximally extended
supergavities that appear after dimensional reduction of 11-dimensional supergavity
on a torus in table 5.4.1 [136]. For future use we show it both for Minkowskian and
Euclidean maximal supergavities. The cosets G/H in the left column are all maxi-
mally non-compact since G is the maximally non-compact real form of a semisimple
complex Lie group and H is its maximal compact subgroup. Since H is compact the
metric is strictly positive definite and the coset is Riemannian. The cosets G/H* in
the right column only differ in the isotropy group H* which is some non-compact
version of H and as a result G/H* is pseudo-Riemannian. In appendix D of [G]
we perform the reductions of type II theories and we give in particular the precise
group theoretical characterization of the ten-dimensional origin of the bosonic fields
in D =3.

5.5 From G/H to G/H*: the Wick Rotation

Let us end this chapter by defining a generalized Wick rotation which maps a geodesic
on G/H in a Minkowskian theory, into geodesic on G/H* in its Euclidean version [G].
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In order to map a compactification on a spatial circle into one on a time-circle, we
need to analytically continue the internal radius: Ry — ¢Ry. This transformation can
be viewed as the action of a complezified O(1, 1) transformation

O = iflo, (5.5.1)

on the Minkowskian D-dimensional theory in which the scalar fields span the target
space G/H. The generator Hy is a suitable combination of the Cartan generators H;
of ® with I = 1,.--rank®. Consider the following action on the generators t,, of &
taking values in some representation of &:

tp — 0, [0, O71]. (5.5.2)
The action of O on the Cartan generators is trivial O} = 64, while it has the following

action on the shift generators:
0y =i~*Ho o (5.5.3)
where a(Hy) is the scalar product defined via the commutation relation [Hy, E,] =
a(Hp)E.. We see that a generic shift generator E, is mapped into itself by 5.5.2.
Eq — 0% [T Eyi~ 0] = 0,% i M) E,, = E,. (5.5.4)

Therefore the transformation 5.5.2 maps & into itself. According to the Cartan decom-
position 5.2.4 the compact subalgebra $ and the non-compact space § are generated
by
H= {ja} = {Ea - E,a},
§={H;, K,} ={H;,E, +E_,}. (5.5.5)
On a generic element g of G the above transformation amounts to a combination
of a change of basis for the matrix representation and a redefinition of the group

parameters. Indeed if we write an element of G as the product of a coset representative
L € exp(F) times an element h of H we have

g=L(p,@)h(§) = ®" Koo Hr %o __, Oe‘b/ak‘*e“’”H’ef/a‘i‘*O—l, (5.5.6)
where the redefined parameters are
s0/[ _ sDI; ¢/a _ ¢000a; g/oc _ gooaa' (557)

Let us consider the effect of this transformation on the generators of the coset
representative and on the compact factor

(b/oz [O Ka O—l] _ (ba i_a(HO)[ia(Ho)Ea + i_a(HO) E—a] _
= ¢" (Ea+ (-1)*E_,) = ¢" Ka,
gla [O ja 071] _ é-a Z-fa(Ho)[ia(Hg)Ea _ Z'*Ot(Ho) E,a] _

£ (Ey — (—1)H) B_ )y = €2 J,, (5.5.8)
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where J, and K, differ from ja and f(a only for a = v, for which J, = F, + E_,
and K, = E, — E_,. J, are therefore generators of H* and K, together with H7
are in 6/H*. The Wick rotation defines therefore a mapping between two different
representations of a same element g of G: one as the product of a coset representative
LinG /H and an element h of H and the other as a product of a coset representative
L in G/H* times an element h in H*. The matrix M(¢!,¢*) = L!L, defined in
subsection 5.2.2, which describes the scalar fields on G/H transforms as follows:

M(p",0%) — O'M(",¢/*)O = LinL = M(¢", ¢), (5.5.9)

where n = OO and M is the matrix describing the scalars on G/H*. For example
in D = 3 maximal supergravity, the effect of the transformation O is to map the
Eg(s)/SO(16) coset in the last row of table 5.4.1 to Eg(s)/SO™(16) coset of the same
row. In other words, 56 compact generators of SO(16) are mapped into 56 non-
compact generators J, in SO*(16).






Chapter 6

Brane Solutions and
Generating Geodesic Flows

The main goal behind this chapter is to illustrate the power of the sigma-model tech-
nique in constructing solutions in a purely algebraic way.

We show first that via torus reduction over the worldvolume of a brane we obtain
a link between timelike p-branes, e.g. Dp-branes, and instantons (D(-1)-instanton),
and similarly between Sp-branes and S(—1)-branes!. The wordvolume reduction of an
Sp-brane over a Euclidean torus (spacelike reductions) leads to a nonlinear o-model
coupled to gravity, describing the dynamics of an S(—1)-brane. We will restrict to
o-models whose target space (moduli space) metrics G;; belong to Riemannian max-
imally non-compact symmetric spaces G/H with H the maximal compact subgroup
of G. By the same token, worldvolume reduction of a p-brane over a Lorentzian torus
results in a nonlinear o-model based on pseudo-Riemannian symmetric spaces G/H*
with H* is a non-compact version of H.

Next we shall show that the branes are described by a geodesic motion on moduli
spaces. Our approach is based on the construction of the the minimal generating
geodesic solution: a geodesic with the minimal number of free parameters such that
all the geodesics are generated by isometry transformations of the moduli space. We
will mainly focus on the Kaluza-Klein theory that follows from the reduction of pure
Einstein gravity, where G is GL(p+1,R) in D > 3 and SL(p+2,IR) in D = 3. In the
case of S-branes this approach allows the construction of new vacuum time-dependent
solutions (fluxless Sp-brane solutions). In the case of timelike branes we obtain some
stationary solutions of pure gravity which still have to be identified.

This chapter is mainly based on work done in [E], [F] and [G].

1S-branes have been briefly introduced in chapter 1. We shall define them at greater length in
section 6.1.
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6.1 Solutions in (Super)gravity

Many (super)gravity solutions of equations of motion have the structure of a p-brane.
These solutions have played an essential role in strengthening our belief in dualities
in the non-perturbative limit.

6.1.1 p-brane Solutions

We have seen in chapter 2 that the spectrum of string theory contains higher rank
gauge fields. Therefore, a further generalization of strings is possible, namely p-
branes, (p + 1)-dimensional extended objects in d-dimensional spacetime of super-
gravity theory. The p-brane electrically couples to a (p + 1)-rank gauge field A, 41y,
or magnetically to a (d — p — 3)-form gauge field A(;_,_3). Another characteristic
of brane solutions is that the geometry has a flat (p + 1)-dimensional worldvolume.
Generically, we discriminate between two kinds of p-brane solutions:

Timelike p-branes

They are related to D-branes and M-branes. A Dp-brane is a static supersymmetric
object appearing in string theory and has three descriptions. The first description is
the one of chapter 2, namely the Dp-brane which can be viewed as (9 — p) spacelike
boundary conditions for the open string in its perturbative limit. In the supergrav-
ity picture Dp-branes are supersymmetric solitonic solutions extended in p spacelike
dimensions and one timelike dimension. We say that the Dp-brane has a (p + 1)-
dimensional worldvolume containing time and a (9 — p)-dimensional transverse space.
They can roughly be seen as higher-dimensional extensions of Reissner-Nordstrom
black hole of four-dimensional Einstein-Maxwell theory. The third picture is less evi-
dent and considers stable Dp-branes as tachyonic kink solutions on the worldvolume
of unstable D(p + 1)-branes [137].
Such branes couple electrically to the gauge fields according to

/dp“aAm...#pHaalX“l ce e Qg XHrrtet (6.1.1)

similarly to the point particle (p = 0), which couples to a 1-form gauge field, and the
NS-NS 2-form B,,,, which couples to a string worldsheet. Thus the electric charge of
such an object can be determined through a generalization of Gauss’ law:

Qe ~ / *Flpy2) (6.1.2)
Sd—p—2

where xF{, 1) represents the Hodge dual of A, 1) field strength, and the §d=r=2 ig
a sphere surrounding the p-brane. This charge is conserved due to the equations of
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motion of the gauge field. Moreover there is the dual magnetic (d—p— 2)-brane which
couples to Ay_,_3) dual to A(,41). Its topological magnetic charge is found to be

Qm ~ / Fipta), (6.1.3)
Sp+2

which is conserved due to the Bianchi identity. Here we perform the integration
over the transversal directions of p-brane. The charges satisfy the following Dirac’s
quantization condition for electric and magnetic monopoles

Qe Qm =2mn,  nek. (6.1.4)

The consistent bosonic truncation of the supergravity action that one needs to
find the solitonic p-brane solutions reads

1

T 22

1 1,
S dz+/|g|(R — 5Ou00" 6 = < e CF( i) (6.1.5)

(p+2)
i.e., brane solutions are supported by the metric, possible the dilaton and a (p + 1)-
form gauge potential.

Naively, one can think about deriving the equations of motion which follow from
6.1.5, and then solving them for a solitonic p-brane solution. But this is highly non-
trivial. Instead one can write down a convenient Ansatz for such a solution which is
given by

ds? = Ay, datde” + 2B dr? 4 20y (6.1.6)

where A, B and C are arbitrary functions, n is the usual Minkowski metric in p + 1
dimensions 1 = diag(—, +,- -+ ,+) and d¥? is the metric of a maximally symmetric
space with unit curvature k = —1,0,1 (see appendix A.4). We refer to such p-branes
as timelike branes, stationary solutions (time-independent solutions). If we assume
that the above Ansatz is consistent with the ISO(p,1) x SO(d — p — 1) symmetry of
spacetime, with the ISO along the worldvolume directions, the Ansatz 6.1.6 becomes

dsg = A0 datdatn, + P Ody dy’sa, ¢ =o(r),
wv = 0,---.p a,b=p+1,---,d—1, (6.1.7)

with r = 1/y®y?d,p the isotropic radial distance in the transverse space. There are
two possible solutions of the equations of motion, resulting in an electric or magnetic
p-brane [138,139]. The metric of those solutions are given by

—4(d—p—3) /7 A(p+1) (g
dsﬁ =h— = Q)da:?pﬂ) +hoa 2)dy(Qd—p—l)’ (6.1.8)

where the harmonic function h satisfies V2h = 0, and the parameter A is given by

2(p+1)(d—p-3)
d—2 '

A=a®+ (6.1.9)
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For d—p—1> 2, h can be written as h(r) = 14 (22)4?=3 where r( is an integration
constant related to the charge in the magnetic case. For the electric-brane solution
the scalar and gauge fields read

2a 2 _
e =h%, Fapiropiyin = ﬁem...upﬂaa(h b, (6.1.10)

Similarly, the magnetic solution has

_za 2
€¢ =h"a s Fal"'ap+2 = —ﬁﬁal...ap+27‘ar(h). (6111)

The simplest example in type II theories is the electric 1-brane, coupling to the
NS-NS 2-form B,,,, called the fundamental string F'1. This solution can be obtained
from the solution above by setting p = 1, a = —1, and d = 10. Its magnetic dual is
called the Neveu-Schwarz 5-brane NS5. As seen in chapter 2, type II also contain RR-
gauge fields allowing for a separate class of solutions, D-branes solutions (see chapter
2).

The eleven dimensional supergravity theory only involves one 3-form gauge field,
and no dilaton. The only sources one can associate to a 3-form are 2-brane or 5-
brane solutions, so we take A = 4. The resulting solutions are called the electric
M2-brane [140] and magnetic M5-brane [141]. Note that the compactification of the
M2-brane along its spatial directions yields exactly the F1 solution of type IIA su-
pergravity. The NS5 solution can be obtained by compactifying the M5-brane along
a transverse direction.

A special case of p-brane is the so-called domain wall, a (d — 2)-brane with one
transverse direction, separating space into two regions.

It has been shown that all those brane solutions preserve half of the supersymme-
tries of the supergravity theories. This implies that such solutions have to satisfy some
first-order differential equations which arise from demanding that the supersymmetry
variation of the fermion vanishes. These first order-equations are now referred to as
Bogomol'nyi, Prasad and Sommerfeld or BPS equations [142,143]. In [144] Witten
and Olive gave the condition to preserve supersymmetry of solitons in supersymmetric
theories. The term BPS equation is now generically used for equations of motion that
are inferred by rewriting the action as a sum of squares. Supersymmetric solutions, in
general, belong to this class?. In the literature these supersymmetric branes are also
called extremal. The word extremal originates from the fact the branes are subject to
a relation between the mass and the charge of Dp-branes. In other words, when the
mass equals the charge a brane is called extremal [146], otherwise the brane is called
non-extremal.

2Stationary non-extremal and time-dependent solutions (discussed later) cannot preserve super-
symmetry in ordinary supergravity theories. However, it has been argued in [E] and [145] that these
solutions often can be found from first-order equations called fake-or pseudo-BPS equations.
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Spacelike p-branes

There is another kind of p-brane solutions where the time direction belongs to the
transversal space and hence they have Euclidean worldvolume. This means that one
chooses a Dirichlet condition for the time-direction. Such p-branes are called spacelike
branes or Sp-branes for short, and they are explicitly time-dependent.

Similarly to Dp-brane, a Sp-brane solution is carried by a metric, a dilaton and a
(p+1)-form gauge potential. The metric, which describes a time-dependent geometry,
is schematically given by3

ds? = 2405, datdz” — e2BWa? 4 200 gx2, (6.1.12)

where ¢ is the usual flat Euclidean metric in p+1 dimensions §,,, = diag(+,+,--- ,+).
The transverse space consists of time and (d — p — 2) dimensions. Ansatz 6.1.12 has
ISO(p + 1) worldvolume symmetry, and Lorentzian SO(d — p — 2, 1) transversal sym-
metry in the kK = —1 case and can be asymptotically flat (in contrast to k = +1
solutions). Those solutions are the spacelike branes introduced by Gutperle and Stro-
minger [147], who conjectured that such branes correspond to specific time-dependent
processes in string theory. Nonetheless, in this chapter we will also define S-brane in
the generalized sense, i.e. for all the other possible slicings.

Due to the time-dependence the S-brane solutions belonging to type II supergrav-
ities are not supersymmetric. Consequently, the solutions are more complicated to
write down. Hence we prefer to focus on S(—1)-branes of type IIB supergravity. This
brane can be viewed as the time-dependent twin of the Euclidean D(—1)-instanton.
The action of the S(—1)-brane follows from the truncation of type IIB supergravity
(d = 10) to its scalar sector

§— /dd gl [R - %(8(;5)2 - %e%(ax)? , (6.1.13)

where ¢ is the dilaton and we denote the axion with x instead of C(g) defined in
chapter 2. As we will see in the ensuing sections, the axion and the dilaton form a
SL(2,R)/SO(2) nonlinear o-model, and also the equations of motion derived from
6.1.13 tells us that the scalar fields trace out a geodesic on the target space.

For p = —1 all space is transverse, so the part involving A is not present in the
Ansatz 6.1.12. We choose the gauge where ¢2¢ = t2 and the Ansatz becomes
1
ds® = = f()d* + 1| T——dr” + rdeZ_Q] (6.1.14)

For k = 0 we have flat space, for K = +1 a sphere and finally for kK = —1 a hyperboloid.
This follows from the fact that when ¢ goes to infinity the metric describes a flat

3In this chapter a Sp-brane has a p 4+ 1-dimensional Euclidean worldvolume just like a Dp-brane
has a (p + 1)-dimensional Lorentzian worldvolume.
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Minkwoski spacetime only for £ = —1 (if f — 1). Only for k¥ = —1 there is an
expected string theory interpretation. The two scalars depend only on t.
The metric solution of the equations of motion following from 6.1.13 behaves as

dt? 1
2 _ 2 2 2102
ds* = AR — +t (1 2 dr +r de_Q) , (6.1.15)
2d—1)(d—2)
where ||v||? is a strictly positive number which turns out to be the affine velocity?

labelling the geodesics traced out by the scalar fields on the targetspace (scalar man-
ifold). The scalar fields solution are given by

() = log [cl cosh(|[v]|A(t) + 02)] LX) = icil tanh [||U||h(t) + 02} +Cs.

(6.1.16)
The C;’s are constants of integrations and the harmonic function h is

h(t) = m In|vat> + at2@=4) — k| + ¢, (6.1.17)
with ol2
a= m (6.1.18)
The two scalar fields and the geodesic are related via the following relation
10112 = (9n)* + *?(Onx)*. (6.1.19)

More about this later.
For the three different values of £ we have

e For k = —1 one has the S(—1)-brane of type IIB supergravity [148].

e For £ = 0 the brane describes a so-called power-law universe in the FLRW-
coordinates.

e For k = +1 the solution is not really an S(—1)-brane. Actually it describes a
transition from a Big-Bang to a Big Crunch for a closed universe. We recom-
mend [149] for a nice explanation.

In fact, time-dependent backgrounds (solutions), e.g. S-branes, are badly under-
stood in string theory because string theory is not yet formulated in such a back-
ground. One of the reasons is, as previously mentioned, that (most) time-dependent
backgrounds are not supersymmetric. Similarly to the timelike p-brane solutions, e.g.
D-branes, there have been some conjectures about the open string picture of S-branes

4The geodesic motion and the affine parameter are defined in appendix A.3.2.
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as timelike tachyonic kinks. D-branes play a central role in the holographic description
of string theory such as the AdS/CFT correspondence [5]. Similarly the S-branes are
conjectured to play a similar role as D-branes in the context of holography. However,
in this case the holographic duality would be a dS/CFT correspondence [150]. In
order to understand this correspondence better one has to improve the understanding
of S-branes. Quite recently there was a proposal to understand cosmological solutions
as Wick-rotations of supersymmetric domain-walls (DW) [151]. This suggests a rela-
tion between DW/QFT correspondence [152] (this is a non-conformal extension of the
AdS/CFT correspondence) and a hypothetical COSM/QFT correspondence. Central
in that discussion is the concept of pseudo-supersymmetry [151]. It is interesting to
formulate pseudo supersymmetry in 10- or 11-dimensional supergravity and interpret
S-branes as pseudo-BPS objects. Such a formulation of S-branes would improve the
understanding of the dS/CFT correspondence. For more about S-brane solutions we
refer the reader to [148,149,153-157].

6.2 From p-brane to (-1)-brane

Since the worldvolume of p-brane solutions (timelike and spacelike) is translation
invariant (z% — x® + ¢*), all these solutions have the property that the worldvolume
directions correspond to Killing directions. In order to fulfill this property, the matter
fields that carry the solutions must also be translation invariant. This implies that
one can effectively dimensionally reduce the solution over the worldvolume. Thus a
p-brane can be mapped to a (—1)-brane solution in D = d — p — 1 dimensions whose
equations of motion can be derived from the action:

S:/de |g|[R—%Gij(q>)aﬂq>iaﬂcpi}, (6.2.1)

where G; is the metric defined in eq.5.2.1 on the moduli space that appears after
dimensional reduction over a torus. For timelike branes, time is included in the
reduction and the corresponding moduli spaces are pseudo-Riemmanian G/H*, in
contrast to moduli spaces (Riemannian G/H) appear after spacelike reduction. If we
compare 6.1.12 and 6.1.6 with 5.3.13, we realize that one has to set the Kaluza-Klein
vectors to zero. In addition, the worldvolume of the theory is identified with M,,,,,. In
general, the metric of the torus M,,,, breaks the worldvolume symmetries (ISO(p, 1)
and ISO(p + 1)), since we will obtain extra terms multiplying the dxdz-terms on the
worldvolume. If we reduce to D = 3 one can dualize all Kaluza-Klein vectors to
scalars (see section 5.3.3). These Kaluza-Klein vectors will lead to off-diagonal terms
that mix worldvolume directions with transversal directions (product of z-direction
and angular direction).
The metric Ansatz for the (—1)-brane is

dsh = ef*(p)dp® + g*(p)guy, dx*da®, @' =®'(p), (6.2.2)
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where the function f corresponds to gauge freedom of reparameterizing the coordinate

p-
Now we have two cases

e cis -1, then the radial coordinate p corresponds to time, i.e. p =t¢, and gq is a
metric on a Euclidean maximally symmetric space (see A.4), the three possible
FLRW-geometries.

e For € = 1, 6.2.2 describes an instanton geometry with p = r the direction
of the tunnelling process. Timelike D(—1)-branes are solutions of Euclidean
supergravities.

If we reparameterize the coordinate p to h(p) via
dh(p) = g' =" fdp, (6.2.3)

then the equations of motion for the scalars are derived from the one dimensional
action

S = / Gi;0n®' 0, D! dh. (6.2.4)

This action demonstrates that the solutions describe geodesic motion on the moduli
space with h(p) as an affine parameter (see appendix A.3.2). From equation 6.2.3 we
read off that h(r) is a harmonic function on the (—1)-brane geometry. In terms of
the affine parameter the velocity ||v]| is constant such that

[0 = GijOn® 0P (6.2.5)

The Ricci tensor following from the metric 6.2.2 is given by

Rpp = (D— 1)[‘% + %]v (6.2.6)
Rapy = —¢ % - gj%f +(D - 2)?—2}95;1 +RE, (6.2.7)

where a dot denotes differentiation with respect to p. The Einstein equation for (—1)-
branes is expressed as

1 i . 1
Rop = 5Gij0p® 0, = S |lolF@ph(p)*,  Rap =0, (6.2.8)

The combination of the Einstein equation together with 6.2.5 leads to the following
first-order equation
1ES

i’ = 2D (D 1)f294*2D + ek f2. (6.2.9)
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This equation gives rise to a solution only when the right-hand side remains positive.
Note that there is no equation of motion for f due to the fact that it corresponds
to the reparametrization freedom that one has of p. Interestingly enough, the scalar
field solution has no influence on solving the metric.

To summarize, one has two kinds of worldvolume reduction (W R) of branes:

e Worldvolume reduction of spacelike branes: the resulting moduli space is Rie-
mannian G/H with a compact isotropy group. Therefore the metric G;; is
positive definite, and then |[v||*> > 0. Thus the scalar fields trace out space-
like geodesics on the moduli space G/H. We have seen also that Sp-branes
reduced over their worldvolumes lead to a system containing gravity and scalars
fields only. Generically, a solution which is carried by a metric and scalar fields
alone has a simpler mathematical structure than those solutions that are carried
by non-trivial p-form potentials. When we have solved the lower-dimensional
(scalar) equations of motion we can lift up the solution to the original fields.
This way one might obtain a solution carried by a non-trivial p-form potential
as well. We will see later in this chapter that via a worldvolume uplifting (WU)
the S(—1)-brane of a pure Kaluza-Klein theory becomes a fluxless Sp-brane. We
refer to [158,159] for a description of spacelike branes, in maximal supergravity,
in terms of a geodesic motion. We thus have the following map

Sp-brane 2 S(—1)-brane WU, Sp-brane. (6.2.10)

e Worldvolume reduction of timelike branes: for this case the reduction gives rise
to a pseudo-Riemannain moduli space G/ H* with a non compact isotropy group.
Hence the metric G;; has an indefinite signature and as a result [|v||? can be
zero, positive or negative. Therefore the geodesic curves traced out by the scalar
fields on G/H* are labeled according to the sign of ||v||?, i.e. null-like, spacelike
and timelike. As an example of a geodesic motion on the moduli space, we
consider the supersymmetric IIB instanton [160]. That solution corresponds to
the lighlike geodesics on SL(2,R)/SO(1, 1) (the Euclidean axion-dilaton system)
whereas the non-supersymmetric IIB instantons correspond to spacelike and
timelike geodesics [161] on SL(2,IR)/SO(1,1). This way we obtain

p-brane 5 (—1)-brane WY, pbrane. (6.2.11)

In the case of the reduction of timelike branes, the correspondence between
geodesics and branes is probably best known in terms of four-dimensional black
holes (0-branes) and the three-dimensional instantons [130,162-164].

6.2.1 (—1)-brane Geometries

Here we want to look for metric solutions belonging to the action 6.2.1 which only
depend on the coordinate p.
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S(—1)-brane Geometries

We first consider the spacelike (—1)-branes (p = t). For this case the target space is
Riemannian and all geodesics have strictly positive affine velocity squared ||v||? > 0.
The solution to the Einstein equations 6.2.9 gives the following D-dimensional metric

dt?
T at—20-2) _

o]l

t2dy? =
TP 0=y p (D2

2 _
dsp =

(6.2.12)

while the scalar fields trace out geodesics curves with the harmonic function h(t) as
affine parameter. The harmonic function A is given by

_ 1 2-D |/ 2(2-D) _
h(t)_\/a(Z_D)lnh/Et + Vat k| +b. (6.2.13)

We take b=0 in what follows since b just corresponds to a shift in the affine parameter
h. For k = 1 the metric 6.2.12 has a coordinate singularity.

Timelike (—1)-brane Geometries: D(-1)-instanton

As mentioned above the timelike (—1) brane (p = r) is an instanton. Its geometry en-
tirely depends on the character of the geodesic curve (spacelike, nulllike or timelike).
Some of these solutions have appeared in the literature before [130,149,161,165,166].

o [|[v]|2>0
For this class of instantons we will be using the gauge f = g. In the table below
we present the conformal factor f that determines the metric and the radial

harmonic function p. Note that for all three values of k£ the solutions have
singularities.

o [[v][*=0

We take the Euclidean “FLRW gauge” for which f = 1. It is clear from (6.2.9)
that for K = —1 we do not find a solution and that for £ = 0 we find flat space
in Cartesian coordinates (¢ = 1) and for k = +1 we find flat space in spherical
coordinates (¢ = r). This makes sense since a lightlike geodesic motion comes
with zero “energy-momentum”®. The harmonic function is

k=0 h(r)y=cr+b,

c (6.2.14)
k=1 h(r)= -5 +b,
5The fact that the k = —1 solution does not exists reflects that there does not exist a hyperbolic

slicing of the Euclidean plane.
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1 1

£(r) = (G lds—5) PP cos P2 (D — 2)1]

k=—1]|h(r)=, /% arctanh[tan(%r)] +0b
1
_ D=2)|]v||®> , \ D=2
flr) = (\/ ( 2(DJ1)H r)b-2
k=0 | h(r) = \/ 2% logr + b
1

$0) = (s g 7 sinh P2 (D — 21

k=1 | h(r) = \/ rtpaey logltanh(252r)] + b

Table 6.2.1: The Euclidean geometries with |[v2|| > 0 in the gauge f = g. The real
number b is an integration constant.

where c is a constant. In Euclidean IIB supergravity the axion-dilaton param-
eterize SL(2,IR)/SO(1,1) and for ||v||> = 0 and k = 1 we have the standard
half-supersymmetric D-instanton [160].

lvl* <0

For k = 0 and k = —1 we clearly have no solutions since the right-hand side
of (6.2.9) is always negative. For k = +1 a solution does exist, and in the
conformal gauge (g = fr) it is given by

1
olI2 _ _ 53
fr)= (1 - 8(D7‘_‘1)|£D72)T 2 2)) ° (6.2.15)

where indeed only ||v]|? < 0 is valid. This geometry is smooth everywhere and

describes a wormhole, since there is a Zs-symmetry that acts as follows

— o]

D—2
r — B3(D-1)(D—-2)

(P2 (6.2.16)

and interchanges the two asymptotic regions. The harmonic function is given

by
= /-8D-D —lv|? —(D-2
h(r) = EOENNTIE arctan( go-nD-2 " ( )) +b. (6.2.17)

For a very nice definition of a wormhole and its geometrical structure we refer the
reader to [161].
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6.3 Geodesic Curves

Our method to understanding all geodesic curves, traced out by scalars falling into
G/H or G/H* nonlinear o-models which arise in pure Kaluza-Klein theories and
maximally exetended supergravities, is by constructing the generating solution. This
is what we call a solution-generating technique. By definition, a generating solution
is a geodesic with the minimal number of arbitrary integration constants so that the
action of the isometry group G generates all other geodesics from the generating so-
lution. In [E] we proved a theorem states that for G/H, where G is a maximally
non-compact real form of a complex semi-simple group and H is the maximal com-
pact subgroup, the generating solution can be taken to be the straight line through
the origin carried only by the dilaton fields.

B-Proof

We have seen in chapter 5 that the Riemannian symmetric spaces G/H can be pa-
rameterized by the Borel coordinate system, namely by scalar fields which are divided
into dilatons ¢! and axions x®. This can be done by choosing the coset representative
to be

1
L= Hlexp[§¢IH1]Haexp[XaEa], (6.3.1)

where H; are the generators spanning the Cartan subalgebra C'SA of the Lie algebra
of G, and the E, are the positive root generators. We know that the dimension of
the C'SA is the rank r of G and for the symmetric spaces G/H (moduli spaces) listed
in the table 5.4.1, the rank is » = 11 — D. Since the Lie algebra of H is spanned by
the combinations E, — E_,, the number of axions equals the dimensions of H.

In the Borel gauge the geodesic equation takes on the form

¢! + 11 i d? §5 + T %7 + T sy x? 0, (6.3.2)
X4+ ko5 +T% o7 + T, x°x" = 0. (6.3.3)

At points for which x* = 0, the components I ;5 and T ;i of the Christoffel symbol
on the moduli space G/H vanish. Therefore a trivial solution can be found

ol = olt, X =0, (6.3.4)

for some parameter ¢t. How many other solutions are there? A first thing we notice
is that every global G-transformation ® — P brings us from one solution to another
solution. Since G generically mixes dilatons and axions we can construct solutions
with non-trivial axions in this way.

Let us now prove that in this way all geodesics are obtained and that depends on
the fact that G is maximally non-compact with H the maximal compact subgroup of
G. Consider an arbitrary geodesic curve ®(¢) on G/H. The point ®(0) can be mapped
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to the origin L[®(¢)] = 1 using G-transformation (in the fundamental representation),
since we can identify ®(0) with an element of G and then we multiply the geodesic
curve ®(t) with ®(0)~!, generating a new geodesic curve ®5(t) = ®(0)~'®(¢) that
goes through the origin. The origin is invariant under H-rotations but the tangent
space at the origin transforms under the adjoint representation (Adj) of H. One can
prove that there always exists an element k € H, such that Adj,®2(0) € CSA [167].
Therefore x* = 0 and this solution must be straight line. In short, we started out
with a general curve ®(t) and proved that the curve ®3(t) = k®(0)~1®(#) is a straight
line

o' (t) = v h(t), xX* =0, (6.3.5)

where h(t) is the harmonic function obtained by the reparametrization 6.2.3 for p = ¢
(time-dependent S-brane solutions are carried by the scalars ®(¢)). This is the end of
the proof. W

For the sake of illustration, let us give a counting argument to advocate the theo-
rem. The number of integration constants in the geodesic equation of motion equals
2x (dim[Borelalgebra)) since for every scalar field ¢y , xo we have to specify the initial
speed and place. If we classify geodesic 7 by the couple

r=(ig), ve€CSA geG, (6.3.6)

then the number of parameters is indeed dimC'SA+dimG = 2 x (dim[Borel] under the
conditions on G/H stated. Thus the number of dilatons is given by r = rankG, and
the number of axions by dimH. Nonetheless, one can not forget about the theorem
proved above and consider this counting as a proof since it may be that the action of
G does not create independent integration constants.

Unfortunately, due to the fact that the Borel gauge is not a valid gauge on pseudo-
Riemannian spaces G/H*, the derivation of the generating geodesic is no longer feasi-
ble by working on the level of the coset representative L (unless one can find a “good”
gauge choice). Instead one can work on the level of the matrix M (see section 5.2.5)
so that one does not need to be bothered with the subtleties regarding the gauge
choice. Note that the counting argument given above is not a trustful proof for G/H*
either since it might happen that the solutions lie in disconnected areas of the moduli
spaces. There the straight line solution is not generating since the affine velocity is
positive:

ol =) _(")?>o. (6.3.7)
I
The affine velocity is invariant under G-transformation and by transforming the
straight line we only generate spacelike geodesics (||v]|? > 0). But cosets with non-
compact H* (see table 5.4.1 for examples in maximal supergravity) have metrics
with an indefinite signature and therefore allow for lightlike, spacelike and timelike
geodesics.
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In the following we will work directly with the matrix M or M (defined in 5.3.16),
restricting to pure Kaluza-Klein theories, i.e. G will be the group GL(n,R) for D > 3
or SL(n+1,R) for D = 3 [G]. The approach that we will follow allows us to rederive
the straight line generating geodesic of GL(n, R)/SO(n) moduli space but also allows
for the generalisation to GL(s+7 = n,IR)/SO(r, s). The extension of our approach to
cover the symmetric spaces G/H* of the right column of table 5.4.1, namely of those
of the maximally-extended Euclidean supergravities, has been worked out in [G].

6.3.1 The Geodesic Curves of Pure Kaluza-Klein Theory

As mentioned before the (—1)-brane solutions are carried by the metric and the scalar
fields and therefore we truncate the Kaluza-Klein vectors in D > 3 and dualize them
in D = 3. The (—1)-brane geometries have just been described above. Let us therefore
focus on the geodesic motion that comes about.

The SL(n, R)/H nonlinear o-model action of the geodesic curves can be compactly
written in terms of the symmetric coset matrix M

§— / dh i[O MOMY], M= LTyL, (6.3.8)

where H can be H = SO(n) or H* = SO(n — 1,1), SO(n — 2,2). The matrix 7 is
the H-invariant matrix. The corresponding equations of motion can compactly be
written as

MM =0, (6.3.9)

where the prime denotes the derivative with respect to the affine parameter h(p).
This implies that M~!M’ = K with K a constant matrix, which can be seen as
the matrix of Noether charges of the group SL(n,R) (see section 5.2.2). The affine
velocity squared of the geodesic curves is |[v]|> = itr[K?]. Because of the identity
M~I M’ = K, the problem is integrable and a general solution is found to be

M(R) = M(0)eKhe), (6.3.10)

By virtue of the transitive action of the isometry group SL(n,R) on the symmetric
space, we can restrict ourselves to geodesics that go through the origin. Since one has
the freedom of affine reparametrization of h we can assume that L(0) = 1. The matrix
of Noether charges is not completely arbitrary, it is actually subject to a constraint
which can be derived from the properties of M

nK =K%y, tr[K]=0. (6.3.11)

K is an element of the Lie algebra of SL(n,R) and accordingly it transforms in the
adjoint of SL(n,R)
K — QKQ™ !, (6.3.12)
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under which the (n — 1) quantities
Tp = tr[KFYY),  withk=1,---,n—1 (6.3.13)

are invariant, i.e. are Casimirs. Notice that the constraints 6.3.11 are not invariant
under the total isometry group but under the smaller isotropy group H.

We here stress that for a pure Kaluza-Klein theory in D > 3 all geodesics that
are related through a GL(n,R)-transformation lift up to exactly the same vacuum
(pure gravity) solution in D + n dimensions since the GL(n,R) corresponds to rigid
coordinate transformations from a (D + n)-dimensional point of view. So, in this
sense it is absolutely necessary to understand the generating geodesic since it classifies
higher dimensional solutions modulo coordinate transformations. Of course, this is
not true for D = 3 where SL(n + 1,R) maps higher dimensional solutions to each
other that are not necessarily related by coordinate transformations.

Due to the non-compactness of the isotropy group such as SO(n—1, 1), the theory
will contain ghosts. A ghost, as previously mentioned, is an axion field with the
opposite sign for the kinetic term in the Lagrangian. For the sake of generality, let
us discuss the ghost content for a theory with scalar coset GL(r + s,R)/SO(r, s).

For a general symmetric space GL(s+1)/SO(r, s) the number of axion fields with
the opposite sign for the kinetic term (ghosts) is 7 x s. For the pure Kaluza-Klein
moduli spaces this can be seen as follows. When one considers a reduction over
time then there are two possible origins for ghosts. Ghost fields x* appear as the
zero-component of a one-form A? in the higher dimension, that is AN = XAdt + A
Alternatively, extra ghost fields appear in three dimensions upon dualisation of the
one-form®. Therefore, imagine we reduce Einstein gravity in D + n to dimensions to
D +1 dimensions over a spacelike torus and then perform a subsequent reduction over
a timelike circle, then the n — 1 Kaluza-Klein vectors in D + 1 dimensions give n — 1
ghostlike axions. This fits with the fact that the scalar coset is GL(n,R)/SO(n—1,1).
If D = 3 then we can further dualise those n — 1 descendants of the Kaluza-Klein
vectors to n— 1 ghostlike axions, thereby doubling the number of ghosts. The Kaluza-
Klein vector that appears from the last timelike reduction does not dualise to a
ghost but to a normal axion since that vector appeared with a wrong sign in three
dimensions. This indeed explains why there are 2(n — 1) ghosts in SL(n +1)/SO(n —
1,2).

Since the matrix K determines all geodesics through the origin, and by transitivity
all geodesics on G/H we will look for the normal form Ky of K under (H C G)-
transformations. As a result the geodesics will be determined by the “integration
constants” in Ky, generating all geodesics through a rigid G-transformation”. A
matrix normal form or matrix canonical form describes the transformation of a matrix

6This is due to the fact that the three-dimensional theory is Euclidean.
7In the discussion section we will briefly mention another approach to generate geodesic solutions,
this approach uses the local isotropy H.
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to another with special properties. For instance the normal form of a symmetric
matrix is the diagonal matrix which can be realized by the action of the orthogonal
groups. Since we have restricted to geodesics that go through the origin- a point
which is invariant under the action of the isotropy H- we see that one can always
find matrices Ky having all possible combinations of values of the invariants Zj,
namely one can restrict the n — 1 invariants of K on Ky and hence any H-orbit
has one element of the form K. In other words we can always transform a generic
K into Ky through an H transformation. Below we derive the normal forms of
the matrix K associated to the generating geodesic curves on the GL(n,R)/SO(n),
GL(n,R)/SO(n—1,1), and GL(n+1,R)/SO(n—1,2) moduli spaces®. We are able to
give a compact proof for the general case GL(r + s,R)/SO(r, s), instead of a case by
case discussion. It is worth recalling that GL-cosets are parameterized by the matrix
M (see section 5.3.16) rather than M.

The Normal Form of gl(r + s)/so(r, s)

Consider K € gl(r + s)/so(r, s), where gl and so are respectively the Lie algebras of
GL and SO. By definition K obeys 6.3.11 (tr[K] # 0)

nK =K'y, with n=(-1,,+1,). (6.3.14)

Two eigenvectors of K, vy and va, that belong to different eigenvalues A\; and A
are necessarily orthogonal with respect to the inner product (, ) defined with the
bilinear form 7, because (va, Kvi) = (Kva,v1) and thus A\ (vi,va) = A2(vy, va).
Now if A1 # Ao then this is only consistent if (vq,ve) = 0. We will say that vy
and va are pseudo-orthogonal. If two eigenvectors have the same eigenvalue we can
always perform a generalized Gramm—Schmidt procedure so that they become pseudo-
orthogonal with respect to n. In general K may not be diagonalizable. This is the
case for instance if K is nilpotent, namely if K* = 0 for some k > 1. Or proof applies
for diagonalizable matrices only. By definition M, see eq. 6.3.10, and therefore K,
should always be real matrices and thus if ) is a complex eigenvalue of K also A is. Let
v and v be the corresponding eigenvectors. If we write v = vy + ivg and A = A\; +i)s
then this means that

Kvi=AMvy — Aova, Kvg = Aovy + Ava, (6315)

pseudo-orthogonality between v and ¥ implies (vq1,v1) = —(va, va).
In what follows we shall consider the cases in which K is nilpotent as singular
limits of diagonalizable matrices, construct a normal form Ky of K and then show

that the resulting normal form also encodes the most general nilpotent case’. In a

8Here the GL(n, R) = Rt x SL(n,R) with R* is associated with the breathing mode.
9A nilpotent matrix is an n X n square matrix K such that K™ = 0 for some positive integer m.
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suitable basis constructed out of the real and imaginary parts of v, the matrix K is
represented by a 2 x 2 real block. We shall construct a basis out of the eigenvectors of
a diagonalizable K in which K has a block diagonal form K, with a real 2 x 2 block
for each couple of \, A eigenvalues, and single diagonal entry for each real eigenvalue.
Kn will satisfy the same property 6.3.14 as K and can be obtained from it through an
SO(r, s) conjugation. The general form of K is thus characterized by the maximal
number of complex eigenvalues. In the following we shall construct Ky for the coset
GL(r + s,IR)/SO(r, s) and show that the maximal number of complex eigenvalues is
min(r, s)1°.

Construction of Ky

Let K € gl(n,IR)/so0(r, s), with n = r+s and r < s, be an n x n real matrix satisfying
eq. 6.3.14. We want to show that K can have at most r complex distinct eigenvalues.

Let v = (¢, @) denote a vector in R™* with ¥ € R” and & € R®. We start showing
that a set v = (7 @) i = 1,...,¢+ 1, of mutually pseudo-orthogonal, null-
vectors, are linearly independent iff the vectors (17(1')) are. Suppose (17(1'))1-:1,,,,)5 are
linearly independent but that 7t1) can be expressed as a linear combination of the
first £: oD = Zle a' 7. Let us show that v(c+1) = Ele a*v(®. By hypothesis
(v(i))izl _____ ¢+1 are light-like and mutually pseudo-orthogonal:

v vy = 0 & 79.50 =g® . g0 | vij=1,....0+1. (6.3.16)

Being (U(Z))Zzl
matrix h;:

¢ linearly independent, we can define the following non singular

.....

hij = .50 =@ . 5@ g j=1,...¢. (6.3.17)

The vector W™ will have the general form: @+ = Zle W 4 5y, where
W@ @, =0,Vi =1,...,0. Then from the pseudo-orthogonality condition 6.3.16
we find that ¢/ h;; = @@ - @HD = §0) . g+ = ¢J hy;, from which we conclude
that ¢ = a’, i = 1,...,¢. From this it follows that v(¢+1) = Zle at v + (6, Wy ).
Requiring vt to be null, we find @, - @, = 0, which implies @, = 0 and thus
v+l — Zle a*v(® . Therefore if ('U(i))izl).”)[_i_l are not linearly independent, the
same is true for (v(V);_;
if (049)=1

Let us now suppose that K has r + 1 distinct complex eigenvalues \; # \;, i =
1,...,7 + 1, and let v = vgi) + ivéi) be the corresponding linearly independent
eigenvectors. Let us show that v("+1) is either zero or a linear combination of the

.....

¢+1 are.

=1,...,

10This number of distinct complex eigenvalues of K will turn out to be equal to the number of
ghostlike scalar fields that will be existing in the geodesics generating solution My
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first r eigenvectors, contradicting thus the hypothesis. From the general analysis we
know that

vinvid) = 0L iz (i) =-h ). (6318
We shall consider the case in which if vgi) is null for some 1, vgi) . véi) # 0 . Under
these assumptions the linear independence of v(¥ implies the linear independence of
v Ifall vi? (and thus v§”) were null-vectors, then we would have r+1 independent,
mutually pseudo-orthogonal null vectors. This would imply that the r+1 components

17?) were independent, which can not be, being them r-dimensional vectors. Consider

now the case in which some of the vgi) are timelike, or spacelike. We can define the

eigenvectors in such a way that vga) = (U(“), 711'(“)), a = 1,...,¢, are null-vectors,

while vgr), r=L0+1,...,r+ 1, are timelike. Moreover we can use SO(r, s) to write

the timelike vectors in the form VY) = (7™, 0), (7)) being mutually orthogonal.
Therefore the matrices h,s = 7 -7 and hq, = 7(* -7 are non-singular matrices.

Suppose V§T+1) = (U(T“), 6), and thus 7" t1 | depends linearly on the first r vectors:
gt = gl 4o g (6.3.19)
from the pseudo-orthogonality condition we find:
0 = Vgr) ,V§r+1) — ) g hpsc® = =0,
0 = vi? It — gl Gt —p b = P =0, (6.3.20)

which implies that VYH) =0.
Consider then a matrix with 27 distinct complex eigenvalues and s—1r real. We can

construct the following basis of pseudo-orthonormal vectors u% defined as follows

Vgi) -vgi) = 1: ugi) = vgi) , uéi) = sinq; Vgi) + cosay Véi) ,
(4) () (4) (4)
i i + i
LRI PRGN W) £ 1 QS £ i .6 K (F % 3D
217 vy 217 vy
where we have denoted by tan(a;) = —vgi) . véi). In the last of the above equations

the upper and lower signs refer to the cases in which ng‘) _ng')

respectively. Define now the following matrix

is positive and negative

T = (ugl)7 uél), ... ,ugr), ug), u(k)) , (6.3.22)

L1Tf this were not the case one can show that the corresponding eigenvalue would be degenerate
and the matrix not diagonalizable.
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where u®) are the s — r spacelike (normalized) eigenvectors corresponding to the real
eigenvalues A\*. The matrix T is in SO(r, 5):

2r s—r
—_—N—
™yT = o, =dag™F, - ..., +F—— ...,0). (6.3.23)
Upon action of T', the matrix K will acquire the following normal form Ky:
A 0 ... 0
0 .
Ky = T'KT=]| : A0 . (6.3.24)
0 /\r+1
0o ... D W
where A1, ..., A, are 2 x 2 blocks corresponding to each complex eigenvalue A1, ..., A,
whose for is
@ L@ _ A= )\gi) + )\gi) tan(a;) _/\g) cos™ (o)
vieeve = b A= G) (i) ONE
5 cos™(ay) =Xy tan(a;) + A}
- , (4) (4)
vilovD = 0 A= Al(i) iﬁ% : (6.3.25)
TFA A
The remaining eigenvalues A 41,...,As; in K are real. On each block A; we can still

act by means of r-independent @(1,1) transformations which may set «; either to 0
or to m. Although K also describes non diagonalizable matrices, like for instance in
the case A\; = 0, A2 = acos(a) and a = 7/2, in which case the block A is nilpotent, we
the above theorem holds for diagonalizable matrices only. If K is not diagonalizable,
its normal form can be expressed by the normal form K](\?) of the diagonalizable
matrix K(©) having the same spectrum as K, plus a constant nilpotent matriz which
interpolates between the blocks corresponding to the same degenerate eigenvalue, the
spectrum being encoded in K K(®. For instance an example of the normal form on
a non-diagonalizable matrix in s((4,R)/s0(2,2) with a 2 times degenerate complex
eigenvalue \ # \ is:

Ky = K4 Nil,
o) A 0 _ Id, Ids . A1 Ao
Ky~ = (o A) ! N“‘(—Id2 J1d,) 0 AT Dy o) (63:20)

We come to the conclusion that there is a subset of K’s (of smaller dimension than
the whole space of K matrices) that is not ”diagonalizable” when the eigenvalues of the
charge matrix are degenerate. In the following, we will restrict to the diagonalizable
K : the absence of the constant nilpotent part Nil.
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6.4 Uplift to Einstein Vacuum Solutions

In order to uplift the solutions from D > 3 dimensions to D + n (n=p+1, the word-
volume dimensions of p-brane) dimensions one uses the Kaluza—Klein Ansatz 5.3.13
where with Kaluza—Klein vectors put to zero

dsh i1 = €**¥dsh + PP My, d2"d2" . (6.4.1)

Consider the symmetric coset matrix M (h) = nexp Kxh with Ky the normal form
of K that generates all other geodesics and h the harmonic function defined in 6.2.3.
The relation between M and the moduli ¢ and M is as follows

M = (|detM|)* M,  |detM| = expV2ngp. (6.4.2)

In the following we will present the vacuum solutions obtained from uplifting
the (—1)-brane solutions of pure Kaluza—Klein theory. This is a nice illustration of
the power of the sigma-model technique since we construct the solutions in a purely
algebraic way. Solving the second-order differential equations for such a vacuum
Ansatz with this degree of complexity is highly non-trivial. It is worth recalling that
we will not make use of a coordinate system on the cosets, so in the case of a non-
compact isotropy group H* we do not need to be bothered with subtleties regarding
the Borel gauge. Note that for uplifting in D = 3 one has to take into account the
Kaluza-Klein vectors.

6.4.1 Time-dependent Solutions

Here we consider the time-dependent (—1)-brane solutions in D dimensions and their
uplifts over a p + 1-torus to Sp-brane solutions of D + p + 1 = d-dimensional pure
gravity.

Sp-brane from GL(p+1=n,RR)/SO(n)

In section 6.3 we showed that the most general geodesic on GL(p + 1 = n,R)/SO(n)
is given by the most general GL(p + 1, R)-transformation of the generating straight
line solution through the origin. Alternatively, by using the relation 6.3.10 and the
normal form Ky (defined above) one can obtain the same result, namely

M= o - o |. (6.4.3)

with h given by 6.2.13.
The scalar field matrix transforms as M — QT MQ with Q € SL(p + 1,R).
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Therefore all we need is to uplift the straight line geodesic since all the other geodesics
are just -transformations which can be absorbed by redefining the torus coordinates
dzZ' = QdZ. The higher-dimensional geometries we find depend on the curvature k of
the lower-dimensional FLRW-space.

If we take the (—1)-brane geometry with k = 0, then the generating solution lifts
up to the Kasner solutions with [E]

ds® = —r0dr? + Y r*daf,  b=1,...,D+n—1. (6.4.4)
b

where the power-laws are defined by

042)\1 OZZ/\Z
— (D —2) 4 L&ili _— — g Xt 6.4.5
YA 28 1
oo = (s ) T e

where we defined a in equation 6.2.12 and use that ||v
obey the Kasner constraints

po+1=> m, o+1)*=> pj. (6.4.7)

b>0 b>0

(6.4.6)

1?2 = %ZZ AZ. The numbers p

When we take slicing with £k = —1, we obtain a generalization of the fluxless S-
brane solutions [147,153,168]. For k = +1 the solutions are not given a special name.
Uplifting the straight line gives a generalization of the fluxless solutions considered in
for instance [169]. Those solutions are the familiar Kasner solutions. We present the
solutions with k = +1.

de? ~ o
d82 = WPro (—m + thEi) + Z Wi (dZ )2 5 (648)
i=1
where the function W(t) is defined as
W(t) = Vat* P + Vat2P-2) — |, (6.4.9)

and the various constants pg, p; are defined as

Do = — Zi Ai 2(D-1) p; = _D - 2p 4 (Zg Aj — nA;) 2(D—1)
°T lell(D—2) V PEE ' no 0 nl[o]] b=z
(6.4.10)

and the affine velocity is given by |[v|[? = £ 3=, AZ.
Note that the k = —1 solutions (S-branes) approach flat Minkowski space in Milne
coordinates for t — oco.
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Time-dependent Solutions from SL(n + 1,R)/SO(n + 1)

If we reduce to three dimensions a symmetry-enhancement of the coset takes place.
The dualisation of the three-dimensional KK vectors generate the coset SL(n +
1,R)/SO(n + 1) instead of the expected GL(n,R)/SO(n). However the generat-
ing solution of the SL(n + 1,R)/SO(n + 1)-coset has only non-trivial dilatons and is
therefore the same as the generating solution of GL(n,R)/SO(n). Nonetheless, there
is an important difference with the time-dependent solutions from GL(n,RR)/SO(n).
In that case a solution-generating transformation € GL(n,R) can be interpreted as a
coordinate transformation in D + n dimensions and therefore maps the vacuum solu-
tion to the same vacuum solution in different coordinates. In the case of symmetry
enhancement to SL(n+1,R) a solution-generating transformation is not necessarily a
coordinate transformation in D + n dimensions. Instead the time-dependent vacuum
solution transforms into a ”twisted” vacuum solution. Where the twist indicates off-
diagonal terms that cannot be redefined away. Such twisted solutions with k£ = —1
have received considerable interest since they can be regular [156,157].

6.4.2 Stationary Solutions from GL(n,R)/SO(n —1,1)

The normal form is given by

Ao w 0 0 X 0 O 0
—w =X, O 0 0 X O 0
Ky=| 0 0 0 01+ 0 0 A 0 (6.4.11)
0 0 0 0 0O 0 O 0
0 0 0 0 0O 0 O An
We exponentiate this to M(h(r)) = pefnh(r) =
_e)\bh(r)f+ (7-) —werh(r) A -1 Sinh(Ah(T)) 0 o 0
—werh( A1 Sinh(Ah(T)) eMoh(r fo (T‘) 0 0
0 0 elsh 0 ,
0 0 0 :
0 0 0 ernh
(6.4.12)
with -
() = 0 (cosh(An(r) & 2, LY. (6.4.13)

and where we define the SO(1, 1) invariant quantity A as

A=/A2 -2 (6.4.14)
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There exist three distinctive cases depending on the character of A. If A is real the
above expression does not need rewriting but we can put w to zero using a SO(1, 1)-
boost and then the generating solution is just the straight line solution. If A = iA
with A real then the terms with cosh(Ah) become cos A and A~'sinh Ak become
A~'sin Ah. Finally, if A = 0 then the term A~*sinh Ak becomes just h and the term
with cosh Ah becomes equal to one.

To discuss the zoo of solutions one should make a classification in terms of the
different signs for k, ||v||> and A%. We restrict to solutions in spherical coordinates
which have &k = +1. The other solutions can similarly be found. The solutions with
spherical symmetry have the more interesting properties that they lift up to vacuum
solutions that can be asymptotically flat. These solutions can be found in [G].

6.5 Discussion

In this chapter we studied the (—1)-brane solutions of the Kaluza-Klein theory (KK
vectors truncated) that can be obtained from reducing pure gravity over a torus. We
introduced the concept of a generating solution. A generating solution is a geodesic
with the minimal number of arbitrary integration constants such that the action of
isometry group G generates all other geodesics from it. We then presented the the-
orem that for maximally non-compact Riemannian cosets G/H, with H its maximal
compact subgroup, the generating solution can be constructed from the Cartan sub-
algebra CSA only. In [G] we have shown that the analysis of the generating solution
can be extended to G/H*, where H* is a non-compact version of H. In this chapter
we focused only on the GL(r + s,R)/SO(r, s) coset and showed that the number of
complex eigenvalues that one needs in order to construct the normal form Ky of the
generating solution is at most min(r, s).

We first illustrated this technique for Sp-branes. That is we studied a Lagrangian
contains only Einstein gravity. Reducing this over the worldvolume of the Sp-brane
gives the moduli space GL(p 4+ 1,IR)/SO(p + 1). Using the above mentioned theorem
we presented the generating geodesic solution, a straight line, for the S(—1) belonging
to this coset. We oxidized the time-dependent geodesic solution back to the original
higher dimensional theory where we obtained a fluxless Sp-brane. This led to S(—1)-
brane /Sp-brane map. If we reduce to three dimensions a symmetry enhancement of
the coset takes place. The dualisation of the three-dimensional Kaluza-Klein vectors
generates the coset SL(p + 2,R)/SO(p + 2). The uplifting back to pure gravity leads
to time-dependent vacuum solution transforming into a twisted vacuum solution.

We like to mention another closely related way to classify geodesics on symmetric
spaces G/H when G and H obey the same conditions as above. This mechanism is
called the compensator algorithm and is developed by Fré et al. [158,170]. The com-
pensator algorithm offers a way to write down exact solutions for the different scalar
fields in an iterative manner that illustrates nicely the integrability of the geodesic
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equations of motion. More precisely, this method constructs geodesic curves from the
straight line by performing a H-local transformation on the tangent space at each
point on the straight curve.

Similarly, we used the same technique for the timelike p-brane case. This actually
has led to different classes of instantons, labelled by the sign of ||v||?. Reducing gravity
over the worldvolume of timelike p-brane gives rise to GL(p+1,R)/SO(p, 1) o-model
for D > 3 and SL(p + 2,R)/SO(p + 1,1) for D = 3, which can be considered as two
extensions of the prototype Lorentzian scalar coset SL(2,1R)/SO(1,1) of Euclidean
type 1IB supergravity. The geodesic generating solution on GL(p + 1,IR)/SO(p, 1)
is constructed using our approach. Uplifting this stationary solution back to higher
dimensional theory provided us with new solutions which still have to be analyzed.
The generating solution for SL(p+2,R)/SO(p+1, 1) case and its uplifting to vacuum
solutions are still under investigation. However, the upliftings of 3D instanton so-
lutions to intermediate dimensions, in particular to four-dimensional extremal black
hole solutions, have been pointed out first by Breitenlohner et al. [130], and worked
out recently by Gaiotto et al. [163]. This is known as instanton /black hole correspon-
dence. The authors of [163] have actually derived extremal solutions for a variety of
four-dimensional models which, after Kaluza-Klein reduction, admit a description in
terms of 3D gravity coupled to a o-model with symmetric target space. The solutions
are found to be in correspondence with certain nilpotent generators K of the isome-
try group G. In particular, they provide the exact solution for a non-BPS black hole
with generic charges and asymptotic moduli in N = 2 supergravity coupled to two
vector fields (one vector multiplet). In [G] we extend the analysis of [163], applying
our generating solution approach, to obtain extremal and non-extremal black holes
in D =4, N = 8 supergravity.

Although in this chapter our analysis has been restricted to the cosets of pure
Kaluza-Klein theory following from the reduction of Einstein-gravity over a torus,
our mechanism for obtaining the generating solution can be straightforwardly ex-
tended to theories with GL(r 4+ s = n,R)/SO(r, s) cosets and also to the cosets in the
right column of table 5.4.1.

Let us finish the discussion by making one surprising observation. It is known that
a geodesic motion sometimes occurs in the presence of a scalar potential and for time
dependent solutions, this can happen for scaling cosmologies. In [E] we studied such
a solution in the context of fake/pseudo-supersymmetry (see for definition [151]) for
multi-field systems whose first-order equations we derived using the Bogomol'nyi-like
method. In particular we showed that scaling solutions that are pseudo-BPS must
describe geodesic curves.



Chapter 7

Summary and Outlook

This thesis has covered in general two separate topics: the string effective actions and
the geodesic motion of brane solutions.

The main theme of the first topic, i.e., the string effective actions, is the con-
struction of the D-brane effective action and supergravity actions. For the D-brane
effective action, in the abelian case and in the limit of constant field strengths this
action has been already known for a long time to all orders in «': it is the Born-Infeld
action. The introductory chapter 2 gives an overview of past attempts and successes
in constructing in the general case. In the chapter 4 we proposed a new method for
constraining the four dimensional D-brane effective action and applied to the abelian
case with derivative corrections. The method is based on the electromagnetic dual-
ity invariance. We have shown that selfduality requirement can only constrain the
derivative corrections terms to the Born-Infeld theory but not determine them. It
is quite interesting to think about possible application of the o’-corrections that we
considered in chapter 2, in particular to the non-abelian Born-infeld theory. For ex-
ample it remains to be seen how the o/-corrections modify the behavior of classical
solutions of the Yang-Mills equations of motion (zeroth order equations) that are
more complicated than the flat background. One may expect for instance, that the
instanton solutions of N = 4, D = 4 Yang-Mills theory receive o/-corrections. One
can easily see from our discussion in section 2.6 that the upper limit for the field
strength F,; on a D-brane could only be obtained by using the complete infinite col-
lection of a/-corrections of the Born-Infeld action. In addition, it turns out that the
Born-Infeld action also provides a finite self-energy for the electric point particle so-
lution. In the nonabelian case, answers to these and other questions that are related
to the resolution of classical singularities by «o’-corrections, will have to wait until
we have an all-order result. We have also seen in chapter 3 that string theory at
low-energy describes Einstein gravity coupled to certain matter fields, together with
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an infinite number of higher derivative corrections. Recently, study of the black hole
physics in string theory involves study of black holes in higher derivative theories of
gravity, in particular in the tree-level heterotic string theory. In chapter 3, we have
established the equivalence between the heterotic effective actions of [100] and [97]
to order «. This indicates that the result of [102] might indeed be a consequence of
supersymmetry.

The second topic of this thesis was concerned with showing that Dp-branes and
Sp-branes can be linked to lower dimensional theories whose solutions are respectively
given by instantons or S(—1)-branes if we reduce over the worldvolume of the brane.
In the lower dimensional action the gravity part decouples and can be solved indepen-
dently, while the o- model sector, obtained after a worldvolume reduction, leads to a
geodesic motion. Then we turned to deriving the generating solution associated with
the geodesic motion traced out by the scalars carrying the brane solutions. This ap-
plies both to instantons and to S(—1)-branes. We introduced the generating geodesic
solution as a solution with the minimal number of arbitrary integration constants
so that the action of the isometry group G actually generates all other geodesics
from the generating one. This way we found the most general fluxless Sp-brane of
Einstein gravity with (deformed) worldvolume via the reduction over an Euclidean
torus. In case we reduce over a Lorentzian torus, the target space becomes a pseudo-
Riemannian G/H* with H* is a non-compact real form of H. Correspondingly, the
geodesic solutions on G/H* are labeled by the sign of the affine velocity ||v||>. We
derived the generating solution for cosets GL(r + s)/SO(r, s), and gave the Einstein
vacuum solutions that can be obtained from uplifting a SL(n,R)/SO(n — 1,1) sta-
tionary (—1)-brane solution.

The generating solutions that we have considered in chapter 6 are all restricted to
theories which are based on symmetric spaces G/H or G/H*, where G is the maxi-
mally non-compact real form (split form). The derivation of the generating solution
can be extended to Euclidean theories in which G is a non-split isometry group (G
is not a maximally non-compact real form), which typically occur in non-maximally
extended supergravities. In [G] we give the results for the half- and quarter-maximal
supergravity theories, e.g., N =4, D = 3 symmetric Euclidean models.

We would like to conclude this final chapter with addressing some questions for
future research:

1. We have seen in chapter 2 that the abelian Born-Infeld action has a closed
expression. One would definitely like to have a closed expression for the non-
abelian D-brane effective action.

2. In principle the method of the black hole entropy calculation of [103] can be ex-
tended to corrections with any number of derivatives. Supersymmetry provides
the derivative contributions at order /2, at o> only partial results are known.
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It will be interesting to extend the analysis of [102] to include the next order.

. We have seen in chapter 4 that the addition of higher derivative corrections of
the field strength survives selfduality symmetry. Another extension would be to
add derivative corrections to the SL(2, R)-invariant extension of the Born-Infeld
thoery. This problem is currently under investigation.

. In all the Euclidean theories that we have studied so far the scalar manifold
is a symmetric space. A natural extension is to look for the generating solu-
tions of non-symmetric supergravity models where the scalar manifold is only
homogenous.

. In our analysis we restricted to uplifts to pure gravity. It would be nice to
extend this with a (p+ 1)-potential as well. This would enable us to write down
the most general p-brane with deformed worldvolume. This would apply both
to timelike and spacelike branes.






Appendix A

Elementary Differential
Geometry

In this appendix we will bring together the ideas of differential geometry, which are
required throughout the thesis. There are several books, e.g, [171,172], written for
physicists, which explore the subject at greater length and greater depth.

A.1 Convention

Apart from chapter 3 which has its own convention, we take the following metric
signature in the main text to be

g=diag(—---—,+---4), (A.1.1)

with (-) occurring ¢ times and (+1) occurring s times. The pair (s,t) is called the
signature of the metric g.

A.2 Introductory Concepts
A.2.1 Manifolds

A D-dimensional manifold is a topological space together with a family of open sets
M; that cover it, i.e, M = |J, M;. M;’s are called coordinate patches. Within one
patch one may defines a 1:1 map ¢;, called the chart, from M; — R. Concretely
speaking, a point p € M; C M is mapped to ¢;(p) = (z!,2%,--- ,2P). We say that
the set (z!,22%,--- ,2P) are the local coordinates of the point p in the patch M;.

If p € M;NM;, then the map ¢;(z'*, 2’2, - -, 2’P) provides a second set of coordinates
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for the point p. The composite map

$i0¢j RP — RP (A.2.1)
is then specified by the set of functions x'#(z"). These functions, and there inverses
a” (z'") are required to be smooth, usually C*°.

A.2.2 Tensor Fields

Scalar, Vector Fields and 1-Forms

The simplest object to define on a manifold M are scalar functions f that map
M — R. We say that the point p maps to f(p) = z. On each coordinate patch M; we
can define the compound map f o ¢; " from RP — R as fi(z") = f o ¢; *(zH) = 2.
On the overlap M; N M; of two patches with local coordinate z# and z’ of the point
p, the two descriptions of f must agree. Thus f;(z#) = f;(z").

Vectors on a manifold M always describe tangents vectors to a curve in M. Let
p(t) be some curve. The coordinates of this curve are z*(p(t)), i = 1---D and the
tangent vector to the curve is given by %xl (p(t)). Defining the differential operator

_ v 9 . i dxi(]?(t))
X=X pyes with X* = pm (A.2.2)
we obtain

& Fo) = X7, (A23)

where f is a function on M. The tangent space to the manifold M at p, the space of
all possible tangents at p, is denoted by T),(M).

To the contravariant vectors, which we have considered up to now, there also
exist their duals - the covariant vectors. The dual space to T},(M) is the cotangent
space T (M) where duality is defined via the inner product (dz’, 52) = &°;.

An element of T}y (M) is given by the so-called 1-form

w = wydz" € T (M), (A.2.4)

where {dz'} represents the dual basis in T}y (M).

Tensor Algebra

We can now construct tensors of type (a,b) by mapping a elements of T;(M ) and b
elements of T,(M) into R. So the space of these tensors is defined by

T% = Ty(M) @ - @ Ty(M)@ T (M) @ --- @ T} (M) . (A.2.5)

a factors b factors
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In terms of local coordinates, it reads’

T(x) =T 08, - 8, de? - da?” € T%,. (A.2.6)
The action of T on 1-forms wy, - -+ ,w, and vectors X, --- , X} gives the number
T(wh L Wey X1, 7Xb) = T;;;:wlzl T waiaXijl o 'ng. (A27)

Allowing the point p to vary smoothly over the whole manifold, the vectors and
tensors also vary smoothly over M, and one achieves so-called vector fields and
tensor fields on M.

We now introduce the additional structure of a metric on a manifold. A metric
or an inner product on a real vector space V is a non-degenerate bilinear map on each
V ® V — R. The inner product of two vectors u,v € V is a real number denoted by
(u,v). The inner product must satisfy the following properties:

(i) bilinearity -(u, c1v1 + cave) = ¢1(u, v1) + c2(u, v2).
(ii) non-degeneracy- if (u,v) =0 for all v € V, then u = 0.
(iii) symmetry-(u,v) = (v,u).

A metric on a manifold is a smooth assignment of a inner product on each T,(M) ®
T,(M) — R. In a local coordinates the metric is specified by a covariant second rank
tensor field g,,, whose determinant denoted by g, and the inner product of two vectors
fields U* and V* is g, U*V", which is a scalar field. In particular the metric gives
the length 7 of a curve z#(t) with tangent vector dz* /dt.

Specifying a metric on a manifold, it will help with the classification of manifolds.
In other words, the manifold is said to be Riemannian if its metric satisfies the
following axioms at each point p € M;

(i) 9(U,V) =g(V,U),
(ii) g(U,U) > 0, equality only for U = 0.

This means the metric evaluated at point p is a symmetric positive definite bilinear
form. A pseudo-Riemannian manifold is a manifold endowed with a metric which
obeys, beside axiom (i), the axiom (ii’) states that if g(U,V) = 0 for all U € T,M,
then V =0, i.e., the manifold has an indefinite signature.

Differential forms: With the help of the wedge product

dzt A dx¥ = da" @ da¥ — dz¥ ® dzV, (A.2.8)

IThe Einstein convention is used throughout the text; any index that appears twice in an expres-
sion is summed over if it appears once as upper index and once as a lower index.
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one can define now several differential forms

0 — form w = w(zx) (A.2.9)

1 — form w = wydx! (A.2.10)
1

p — form w = kul'”up (x)dxHt A A dxtP. (A.2.11)

We denote the set of all p-forms by AP. This is a vector space of dimension?

. ap_ (DY _ D!
dim AP = <p) R (A.2.12)

One can therefore construct (p + ¢)-forms out of p-forms and ¢-forms in a straight-
forward manner by means of the wedge product a;, A 3, € APT%, in such a way that

(p+q)
plq!

ap A Bq = Xpt+q = Xyt pprq = a[#l“'#pﬁﬂp+1"'ﬂp+q]' (A.2.13)

Commuting the forms oy, and 3,, one also obtains
ap A By = (—)P8y A aup. (A.2.14)
All forms belong to the space
AM=ANoAN oA AP, (A.2.15)

which is closed under the wedge product operation (or exterior product). A* is a
graded algebra, also named Cartan’s exterior algebra (Grassmann algebra).

One differentiates the forms by introducing the exterior derivative, namely
d = 0,dx*, acting on a p-form in the following way

1
dw = H&,wm..ﬂp (x)dx” A~ Adate. (A.2.16)

In fact, the exterior product is a map d: A? — AP*! which transforms p-forms into
(p+1)-forms, satisfying nilpotency condition d? = 0 as well as obeying the antideriva-
tion rule

d(ap A Bg) = (doy A Bg) + (=)Poyp A dfg. (A.2.17)

A p-form that satisfies do,=0 is called closed. A p form «, that can be expressed
as oy = dap_q is called exact. Poincaré’s lemma implies that locally any closed
p-form can be expressed as doy,—1, but a1 may not be well defined globally on M.

2Note that AP and AP~P have the same dimensions.
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Trace, (anti)-commutator: Next we define the trace, the commutator and
the anti-commutator of differential forms.

Let o, € V ® AP, 3, € V ® A? be forms which are V-valued, where V is actually
a linear vector space consisting of vectors, e.g., Lie algebra or matrices. One says
V-valued o, ...pips Buyoovy €V

ooy = Wy T (A.2.18)
Bur-ig = By ooy Ti (A.2.19)

with T; the vectors (generators, matrices) of a vector space V. This definition actually
means the direct product, like « = T; ® a* € V ® AP, between the basis {T;} of V and
the wedge of differential forms.

Since, for instance, T matrices satisfy [T}, T};] = fijkT’“, where 7% are the anti-
symmetric structure constants, one can derive the following rules;

lap, Bg] = ap A Bg — (—)1Bq A ap = —(=)P[ By, ] (A.2.20)
{ap, Bg} = ap A By + (=)"Bg Aoy = (=) By, ap} (A.2.21)
[y A Bgs V] = ap A [Bg, wr] + (=) oy, wr] A By (A.2.22)
tr(ap A By) = (—=)P%r(8y A o), also tr[ay, 8,] = 0. (A.2.23)

Hodge x operation: The fact that the space of all p-forms AP and the space
AP~P have the same dimensions, implies a duality between 2 spaces, an isomorphism
given by the Hodge % operation; A? = AP~P. In other words, the star x transforms
p-forms into (D — p)-forms and its action is defined by

1 o
Cpyopp_p = HemmuD—p Y By (A.2.24)

and denoted by %/3,. The natural choice of € is specified up to sign, i.e. up to a choice
of the orientation, by the condition

et P e, = (—)°DY, (A.2.25)

with s the number of minuses appearing in the signature of the metric g, . It is also
worth noting that

P, = (=) DIsl, gk, geel, (A.2.26)
Contraction of equation A.2.25 over j indices yields
T D ey = (=) SGH(D = ), gt e, (AL2.27)
The totally antisymmetric e-tensor or Levi-Cevita tensor is precisely defined by

—)e if all p; are distinct
€propin :{ (=) H (A.2.28)

0 otherwise,
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where o is the signature of the permutation (1,---,D) — (g1, , 4pD)-
Note that
eMTHD — glVighale L gliDVDe g_le,uuu---upv (A.2.29)
and
e12..p = [(=1)*det(g,)]"/* = V/]gl- (A.2.30)

The inner product associated with the star x operation can, up to some integral
over M, be written as follows

1
ap A%, = HQM...#PB’“'"“P\/ lgldzt A - A dxP, (A.2.31)

with € = y/|g|dx' A -+ AdxP is the natural volume element of M. The action of star
on %3, yields
*x (3, = ()PP (A.2.32)

A.3 Homogeneous Spaces, Isometries and Geodesic
Flow

This section is based on a section in the book by Nakahara [171]. We will assume
that the reader is familiar with Lie groups.

A.3.1 Homogeneous Spaces

Let us start by defining the action of a group on a manifold.

Definition: Given a Lie Group G and differentiable manifold M, we define an action
of G on M to be a differentiable map o: G x M — M, which satisfies the following
conditions:

(i) o(e,p) = p for any p € M,
(ii) o(g1,0(g2,p)) = 0(g1g2,p) for any gi1g2 € G and any p € M,

where e is the identity element of the group.

We also need to define the following properties of the group actions:
Definition: Let G be a Lie group that acts on a manifold M by ¢ : G x M — M.
The action ¢ is said to be

(a) transitive if, for any p1, po € M, there exists an element g € G such that
o(g,p1) = p2;
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(b) free if every non-trivial element g # e of G has no fixed points in M. In other
words, given an element g € G, if there exists an element p € M such that
o(g,p) = p, then g must be the identity element e.

Now we are ready to define a homogeneous space. A manifold M is said to be
homogeneous, if there exists a Lie group G that acts transitively on M. The n-
sphere is homogeneous because its group SO(n + 1) acts transitively on it.

Definition: Let G be a Lie group that acts on a manifold M. The isotropy group
of p € M is a subgroup of GG defined by

H(p) = [g € Glo(g,p) = p|. (A.3.1)

This means that H(p) C G is the group of elements that leave p fixed. This is called
the little group or stabilizer. If G acts transitively on M, one can show that isotropy
groups of all points in M are isomorphic to each other.

Theorem: Under certain conditions, if one has a homogeneous manifold M with the
group acting on it with isotropy group H, then the coset space G/H is a manifold
(i.e. it has a differentiable structure), and it is diffeomorphic to M, i.e. G/H = M.
As an example we have SO(n + 1)/SO(n) = S™.

M is said to be isotropic at p if all tangent vectors at p can be rotated into each
other by elements of the isotropy group of p. This matches our intuition that isotropy
means that space ‘looks’ the same in every direction. Spaces that are homogeneous
and isotropic are said to be mazimally symmetric.

A.3.2 Isometries, Geodesic Flow
Isometry

An isometry of a manifold (M, g) is a diffeomorphism® f : M — M which preserves
the metric

[ 95wy =90 ot gpp)(fuU, fiV) = gp(U, V), (A.3.2)

where f* and f, are respectively the pullbacks and the push-forwards of f. In com-
ponents one can write A.3.2

oy~ oy
9 () = 5 5 G0 (£(0)), (A.3.3)

where z# and y* are respectively the coordinates of p and f(p). If we take the infini-
tisemal isometry to be generated by €X, the vector field X is called the Killing vector
field. This leads to the following Killing equation

Xpapg;w + aHXag(TV + 6UX)\QM)\ = 0. (A.3.4)

3Diffeomorphism is an invertible function that maps one manifold to another, such that both the
function and its inverse are smooth.
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As an example we consider D-dimensional Minkowski spacetime (D > 2) there exist
D(D+1)/2 Killing vector fields, D of which generate the translations, (D — 1) boosts
and (D — 1)(D — 2)/2 space rotations. Such spaces which admit D(D + 1)/2 Killing
vector fields are example of the maximally symmetric spaces defined above.

Geodesic Flow

A vector field on a manifold M describes, quite naturally, a flow in M. We consider
the integral curve o(t,z) of a vector field U € T, (M) passing through z at a time
t = 0. In a given patch one has

dot(t,x)

pra UF(o(t,x)) with o(0,2") = z#. (A.3.5)

Such an integral curve representing a map o : Rx M — M, is termed a flow generated
by the vector U.

A geodesic defined with respect to a connection on a manifold M gives the local
extremum of the length of an integral curve connecting two points. Let ¢ : (a,b) — M
be a curve in M. If the tangent vector U(t) on c(t) is parallel transported along c(t),
namely if

VU =0 (A.3.6)

the integral curve c(t) is called geodesic, i.e. the straightest as well as the shortest
possible curve, where V is the covariant derivative defined below. In components, the
geodesic equation A.3.6 becomes

A2+ dz¥ dxf
k,,———=0, A3.7
a2 T ( )

where {z"} are the local coordinate of ¢(t) and I'*,, is the connection coefficients.

The parameter t typically represents time for a timelike curve, or distance for a
spacelike curve. This parameter cannot be chosen arbitrarily. Rather, it must be
chosen so that the tangent vector dz*/dt has a constant magnitude. This is referred
to as an affine parametrization. Any two affine parameters are linearly related.
That is, if r and ¢ are affine parameters, then there exist constants a and b such that
r=at+b.

A.4 Connections, Curvatures and Covariant Deriva-
tives

The (pseudo)-Riemannian manifold (M, g) that physicists use in General Relativity is
a D-dimensional spacetime endowed with a bilinear form, (2,0) tensor with signature
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(—--—,+---+), taking on the form
ds? = g (v)ds" @ da”, w,v=1---D. (A4.1)

The Levi-Cevita connection following from this metric is
1 log
Ffl,l/ = Egp (8,Ltgvcr - 81/9#0’ + 80’9#1/) 5 (A42)

from which one obtain the Riemann tensor

RHVpo’ = 6;71—‘50 - 6UF5P + I Th —T7 TH . (A43)

Vo yp vpt o

The Ricci tensors R,, and the Ricci scalar R are defined via the contractions as
follows

Ruoe = RMypo, R = Rﬁ (A.4.4)
In addition, the Einstein tensor G, takes on the form
1
G =Ruw — §gw7€. (A.4.5)

The action of the covariant derivative V, associated to the general coordinate trans-
formation, on a (p, q) tensor is defined by

vy B Vi vy

VaT iy = 0aTuy = FgﬂlTPFILZ”'ZP T I‘g#mel ----- ’

+ DOLT/ 2 e+ T T e, (A.4.6)
The action of the box operator [J on a scalar field ® is given by

0P = V,0"® = ——0), ( |g|gwa,,c1>) , (A.4.7)

1
Vgl
where g is the determinant of g, .

One can prove that for maximally symmetric space the Riemann tensor is ex-
pressed as

Rpouw = C(gpugou - gpvgo,u)v (A4.8)
where C' is a constant. In the metric Ansatz 6.2.2, g4 often describes an Euclidean
maximally symmetric space. This means we have the sphere S™ for k = 1, the

hyperboloid H™ for k = —1 or flat space E™ for k = 0. Then we have

ds?

dr? +r2dQ2_ |, (A.4.9)

T 1= k2
where d2?, is the metric on the S™ sphere defined by

dQ?, = db? + sin*(6,)d03 + - - - + sin?(0y) - - - sin?(0,,_1)db?>

m*

(A.4.10)
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Performing the following redefinition

2 _ .2
T dr* = dn*, (A.4.11)
one obtain the metrics
k=-1: ds* = dn* + sinh® ndQ?_ |,
k=0 : ds? = dn? +n?dQ2_,, (A.4.12)
k=+1: ds* = dn? 4 sin? ndQ>_,.

The Ricci tensor corresponding to these metrics can be obtained by having C = k,
namely R,, = kn(n — 1).



Appendix B

Some Calculational Details
for Chapter 3

In this appendix we will give some calculational details related to section 3.4 of chapter
3 . Most of the conventions and notations will be used in this appendix are the same
of [100]. The parameter « which will appear throughout this appendix is a free
parameter proportional to o, the inverse of string tension.

B.1 Lagrangian Density and Redefinitions

In [100] the Lagrangian density behaves
L 3 35 Fuwe -1 2
Lr= 56(;5 —R(w) — inij +9(¢p™ " 0u0)" |, (B.1.1)

with the following definitions:
Hyvp = 01,Bu ) — aV205,,,(9-),
a a 2 a ac C
Ospvp =2y bavﬂfp] - gQ*[u 0y Q_p) ’,

0, =W~ g\/iﬁ#ab. (B.1.2)

Antisymmetrasation brackets are with weight 1.
First we redefine the field in order to make the comparison of the actions tractable.
The redefinitions are:
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1. The dilaton changes as

2
p % — e ?2®, (¢~ 0¢) — gafb. (B.1.3)
2. For the two and three-form, one can set
H H B— p (B.1.4)
— - — 1.
3v2 V2
The Lagrangian L then becomes
1 —20 1~ 7y
Lr= See —R(w) — EH#VPH# P +40,20"® (B.1.5)
as in 3.4.4.
The spin connections w(e) solve the equations
Dye,* —Dyej, =0, with Dye,” = 0peva —wp“‘epe. (B.1.6)
The Riemann tensor and related quantities are defined as
Rﬂyab(w) _ auwyab _ 8yw#ab _ w#acwl/cb + Wuacw,ucby (Bl?)
ROW) = €yRu™(w), (B.18)
Rw) = €e'4R,(w). (B.1.9)
B.2 Equations of Motion
The lowest order equations of motion, i.e., at order o/ are:
1
S = ee ?P[R(w) — 4D,0°® + 4(0,P)* + §H“bcHabC] =0, (B.2.1)
1
B = Z<‘9ﬂ(ee*2‘1>m”fj) =0, (B.2.2)
1 1
& = —EeACS +ee (R (w) + Z(HQ)Ac —2e*¢D.20%®) = 0. (B.2.3)

In the main text of section 3.4 we use a field redefinition to eliminate any contribution

proportional to the Ricci tensor. The required equation is, modulo £ and S:

1
R,%(w) =2D,0°® — Z(HQ)#“.

(B.2.4)
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B.3 Expanding Lz in Powers of «a

The 3-form field H is defined recursively by (3.4.6,3.4.7,3.4.8). We find

ﬁ,uup = H,uup - GQ(OB;LVP(W) + A'u,yp) = H#yp - 60[./4#1/;;, (B31)

where O3 ., is the gravitational contribution (order a’) of the Lorentz Chern-Simons
term, and

1 a T a 1 a T a 1 7 a T a
Apvp = 5(’“)[#(%, pr] b) - §R ’ (w)H b+ ZH[# bDVHP] ’

2%

1 ~ ~ ~
- EHmabH,ﬂCHp] <, (B.3.2)

To order o Li B.1.5 can be expressed as

1 1. -
L= 5ee*N’[—R(w) — 5 Huwp H"™" +40,20"®
1 1 1
+of 5HW@(w,/“’ztl,ﬂb) - 5RW‘“’(w)HP‘“’Hﬂ”P + ZH‘“’”H#‘“’DVHP‘“’—F
1
+ EHWPHM‘“’H,,‘“?ztf,fb}]. (B.3.3)

The term with HO(wH) is after partial integration, proportional to B.2.2 and can be
eliminated by a field redefinition.

B.4 Simplification of Lz: Terms

We often use the identity
~ 3 . or
D[a(Q—)Hbcd] = _504R[ab f(Q—)Rcd] j(Q—)v (B41)

to isolate terms that are of higher order terms in «. The term 3.4.14 can be simplified
by using the cyclic identity for the Riemann tensor:

1
Ry (@) HI O HY ™ = =2 Ry ™ ) H CHE (B.4:2)

Now we consider 3.4.15. Note that the two terms written in 3.4.15 are actually the
same. Then we have

1 ab ab ac ryveb ab ac ryrbe
5(DuH," = Dy H, ) HF“H" = D, H,"" H"“°H

= —Dy Hjo H* H". (B.4.3)
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The term is completely of order a/?. Finally we consider 3.4.13. This can be rewritten
as

1
56672{) (DuHuab _ IDVHHab)rD,uHuab _ 6672{)(2RuuabHuachcb + RHCH,uabHabc

+ e“ceyd,DVHabd,DuHabc + 2acq)HabdDdHabc - 28d(I)I—Iu,bd,Dc‘E[abc
+ 2DcHapa D Hapay)- (B.4.4)

The last term is of order o/2.
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Some Lie Algebra Theory

In this introductory appendix we define the basic concepts relating to Lie group and
Lie algebra [131,173,174].

C.1 Classical Lie Groups

Consider a group G acting on a space V over a field F, e.g. (R or C). We can think
of G as being matrices, and of V' as a vector space on which these matrices act. A
group element g € G transforms the vector v € V into g - v = v'.

Once an additional structure, in the form of a metric, has been imposed on an
N-dimensional vector space over a field F', one would be able to classify the classical
(matrix) groups acting on V. Recall the definition of the metric

(vi,v2) =f v, eV, feF (C.1.1)

obeying the following conditions:

(v1, avy + bug) = a(v1, v2) + b(v1, v3) (C.1.2a)
and
(av1 + bug,v3) = (v1,v3)a + (v2,v3)b (C.1.2b)
or
(av1 + bvg,v3) = (v1,v3)a™ + (v2, v3)b* (C.1.2¢)

Metrics obeying conditions C.1.2a and C.1.2b are called bilinear metrics; those
obeying C.1.2a and C.1.2¢ are called sesquilinear. The groups metric-preserving are
then classified as follows!

1Orthogonal groups preserving metric (p, ) in (R or ©) are denoted by O(p, ¢, R), O(p, g, T).
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(a) Groups preserving bilinear symmetric metrics are called orthogonal.
(b) Groups preserving bilinear antisymmetric metrics are called symplectic.

(¢) Groups preserving sesquilinear symmetric metrics are called unitary.

The metric preserving group which are in addition volume-preserving are called
the special metric-preserving groups and are denoted by an additional S., e.g., SO(n),
Sp(n), and SU(n).

In addition, we have five isolated groups, which are called

Es, E.;, Es, Ga, Fy. (C.1.3)

In all groups the subscript denotes the rank of the group. Those five isolated groups
are referred to as the exceptional Lie groups.

C.2 Structure of Simple Lie algebra

C.2.1 The basics

A complex Lie algebra & is a vector space over F' endowed with a binary operation
which is called a Lie bracket commutator

[,]: 6x6—6. (C.2.1)
The two defining properties of [,] read

[X,X]=0 VXe® (C.2.2)

and
(X, [V, Z]|+[Y,[Z,X]]|+ [Z,[X, Y]] =0 VX,Y, Z €& (C.2.3)

The identity C.2.3 is the so-called Jacobi identity.
A Lie algebra is specified by a set of generators {7} and their commutator relations

[T, T = fo 14, (C.2.4)

where f%; are the structure constants. The dimension d of the lie algebra & is thus
the dimension of the underlying vector space spanned by the basis

B={T%=1,-d}. (C.2.5)
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Simple Lie algebras are Lie algebras which contain no proper? ideal and which

is not abelian. An ideal or invariant subalgebra $) of & is a subspace satisfying
simultaneously [$,$] C $ and [, 8] C . An abelian Lie algebra is a Lie algebra
which satisfies [6,8] = 0. A direct sum of simple Lie algebras forms the so-called
semi-simple Lie algebra.
Levi Theorem: Every Lie algebra can be decomposed into the direct sum of simple
Lie algebra and solvable algebras; solvable Lie algebra can be defined iteratively by
the series s = 5, 5' = [s0,57], 5 = [5°"1, 57 1], for a finite number of steps, it ends
up with zero.

In general the action of a Lie algebra & on a vector space V' is carried out via a
linear representation of &

R: & —gl(&): X - R(X), RX): V-V:v—RX)- v (C.2.6)

It is possible to represent & on itself; thereby one obtains the adjoint representation:
forany T € ®
adT(T,) = [T, Tu], = [adT,]% = — fap". (C.2.7)

Exponentiating the generators of the Lie algebra & in the adjoint representation, we
get the adjoint representation of the corresponding group G

Ad(g) = exp[t®ad(T,)], with Ty = T,[Ad(g)]%, (C.2.8)

where g € G and 7 is the group parameter. Actually, in any representation R, the
adjoint action of G on & is given by

R(9)R(Ta)R(g™") = R(T})[Ad(9))"a. (C.2.9)
The Killing metric B(., .) is a symmetric bilinear form defined by
B(T,,T) = tr(adT,adT}) = fae foa’. (C.2.10)

Suppose the Lie algebra is semisimple®. According to Cartan’s criterion, the Killing
metric is non-degenerate for a semisimple algebra. This means detBg,, # 0, so that
the inverse of By, denoted by B, exists. Since the Killing metric is also real and
symmetric, it can be reduced, choosing an orthonormal basis, to canonical form
Bay = diag(—1,---,—1,1,---,1) with p (-1’s) and (d — p) (+1’s) are respectively
the number of compact and non-compact generators (see next section), where d is the
dimension of &. When thinking about a real form, that will be discussed in the next
section, its convenient to visualize it in terms of the signature of its metric.

In any (semi)-simple Lie algebra & there are two kinds of generators: there is a

2Any Lie algebra has two subalgebras, namely & itself and zero. These subalgebras are called
trivial subalgebras; any other subalgebra of & is called proper subalgebra of &.
3This is true for all classical Lie algebras except for the Lie algebras gl(n, C), u(n, C).
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maximal abelian subalgebra, called the Cartan subalgebra CSA § = Hy,---, H,.,
[Hy, Hj] = 0 for two elements of CSA. There are shift operators denoted by E,,. « is
an r-dimensional vector & = (a1, -+ , @) and r is the rank of &. The latter are eigen-
operators of the H; in the adjoint represenation belonging to ay: [Hr, Eo] = arE®.
For each eigenvalue, or roots o, there is another eigenvalue —a; and a corresponding
eigenoperator E_, under the action of H;.

Suppose we represent each element of the Lie algebra by an n x n matrix. Then
[Hr,Hj] = 0 means that the matrices H; can all be diagonalized simultaneously.
The eigenvalues Oy are given by Hp|3) = 51|8), where the eigenvectors are labelled
by the weight vector 3 = (f1,---,/3-). The canonical commutation relations are
summarized by :

[H],HJ] = 0, [H],Ea] = CYIEO“ [EOHE_Q] = a]H]. (0211)

C.2.2 Real Forms

Let us recall some definitions,
VC: Let V be a vector space over R. V® := V @ C is called the complezification of
V. One has dimgV = dimgVC.
WR: Let W be a vector space over C. Restricting the definition of scalars to R then
leads to a vector space W® over R and dimgW = 1/2dimg WE.

Real form of &®: Let &C be a Lie algebra over C. A real form of & is a
subalgebra & of the real Lie algebra (&*)g such that

(V)R = B OR i® direct sum of vector spaces. (C.2.12)

In other words, A real form of a Lie algebra is just a choice of generators for which
the structure constants are real. For example, The complex algebra sl(2, C) of the
complex group SL(2,C) has two real forms; the compact su(2) algebra and the non-
compact s[(2,R) algebra. The possible third real form su(1,1) is included as it is
isomorphic to s((2,R).

Any finite dimensional &* possesses a unique real form in which all the generators
are compact. Compact means that the scalar product of the generators, defined by
the Killing metric, is negative definite. It is given by taking the generators*

Uy =i(Eq+E_q), Vo= (BEa—E_g), Hy =iHj. (C.2.13)

We refer to this compact algebra as &P.
Definition: An involution is a map which is an automorphism defined by

0T, T,) =0(T,)0(Ty,)  VTa Ty €S, 0? =1. (C.2.14)

4The compact nature of the generators follows in obvious way from the fact that the only non
zero Killing metric between Eo and E_q is B(Eo, E_o) =1 and B(H;,Hy) = —(ar,ay) < 0.
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By considering all involutions of the unique compact real form &P one can construct
all other real forms of &¥. In particular, the real forms are in one to one correspon-
dence with all those involutive automorphisms of the compact real form [127,175].
Given an involutive # we can divide the generators of the compact real form &P
into those which possess +1 and -1 eigenvalues of #. We denote these eigenspaces by

E=90F (C.2.15)

respectively. Since 6 is an automorphism it preserves the structure of the algebra and
as a result the algebra when written in terms of this split must take the generic form

9.9]cH  [H.3cs  [BICh. (C.2.16)

Now, from the generators T we define new generators § = —i@, whereupon the algebra
now takes the generic form

[9,9] C 9, [9,8) C 3] C3, [3,8] C (=1)9. (C.2.17)

Thus we find a new real form of ¥ in which the generators § are compact while the
generators § are non-compact®. Clearly, the new real form has maximal compact
subalgebra $) and this is just the part of the algebra invariant under 6.

As each real form corresponds to an involutive § we can write the corresponding
real form as &®. The number of compact generators is dim$) and the number of
non-compact generators is dim® — dim$.

Definition: The character o of the real form is the number of non-compact minus
the number of compact generators and so ¢ = dim® — 2dim$.

If the involutive 0 is taken to be 6. which is a linear operator that takes FE, <
—E_, and H;y — —Hj, an important real form can be constructed. Accordingly,
the generators of the compact real form transform as Vo — Va, U, — —U,, and
HI — HI where Va =FE,—F_,, Ua =F,+F_, and HI H;. Using 6. we find
a real form with generators

Vo = Va, U, = —iU,, H; = —iH]. (C.2.18)

The V, remain compact generators while U, and H; become non-compact’. Clearly,
the non-compact part of the real form of the algebra found in this way contains all
the Cartan subalgebra CSA and it turns out that it has the maximal number of

5This follows from the fact that all the generators in the original algebra are compact and so have
negative definite Killing metric and as a result of the change all the generators § will have positive
definite B.

SFor the compact real form the involution is just the identity map Id on all the generators and
so we may write &P = &.

"We are denoting with H; both the Cartan generators of G and the Cartan generators in this
particular real form. The maximal compact subalgebra is just that invariant under ..
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non-compact generators of all real forms one can construct. It is therefore called
the maximally non-compact real form or split real form® denoted by &y_. Let’s
consider two examples:

(1) The complex Lie algebra & = sl(n,C) has su(n,C) = &P as its unique
compact real form and sl(n,R) = &, as its maximally non-compact real form.

(2) For eg algebra of group Fg the maximally non-compact real form is denoted by
eg(s) = B, and its maximal compact subalgebra is s0(16) of group SO(16). The
character of eg(g) is 0 = 248 —2.120 = 8 = rank(FEjg). This notation may use for
all the exceptional groups.

Taking different non-trivial involutions we find different real forms. For example, for
the real form of Fg denoted by eg(_24) the maximal compact subalgebra is e7 @ su(2).

As the involution # is an automorphism it preserves the Killing metric and as a
result

B(6(X),0(Y)) = B(X,Y)=-B(X,Y)=0ifX €9, Y €. (C.2.19)

Thus the spaces $ and § are orthogonal®. As one can realize from the previous dis-
cussion the Cartan subalgebra CSA § of &y can be split between compact generators
$ and non-compact generators of §. Let us denote the Cartan subalgebra elements
in § by ¢ = hNF. The real rank rg of &y is the dimension of ¢. Clearly, it takes its
maximal value for maximally non-compact case where it equals the rank r of Gg.

8In some literatures the involution @ is called the Cartan involution, and the involution corresponds
to the split form &g, is called the Chevalley involution ..

91t also follows from this discussion that B(X,60(Y)) is negative definite. In fact one can define a
Cartan involution for which this true.
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Nederlandse Samenvatting

Het eerste gedeelte van dit proefschrift behandelt de constructie van de ijktheo-
rie die op een enkel D-braan leeft alsmede superzwaartekrachtstheorieén die kun-
nen ontstaan als laag-energetische effectieve beschrijvingen van snaartheorie en M-
theorie. Van deze laatste wordt gedacht dat ze consistente quantumzwaartekrachts-
theorieén zijn, welke de vier verschillende krachten unificeren en zo quantumvelden-
theorie (QFT) en algemene relativiteitstheorie (GR) met elkaar verenigen. Het tweede
gedeelte van het proefschrift is gewijd aan het afleiden van braanoplossingen van (su-
per)zwaartekrachtstheorieén, welke een essentiéle rol blijken te spelen in het versterken
van ons geloof in dualiteiten in de niet-perturbatieve limiet. Om de verschijning en
de verdienste van snaar- en M-theorie en ook de ontdekking van dualiteiten volledig
te kunnen waarderen, zullen we eerst de historische ontwikkeling van de deeltjes- en
de hoge-energie fysica weergeven.

Het grootste gedeelte van de theoretische natuurkunde van de twintigste eeuw
wordt gedomineerd door twee grote mijlpalen die allebei een radicale verandering
veroorzaakten: quantummechanica en algemene relativiteitstheorie.

In de twintiger en dertiger jaren van die eeuw werd quantummechanica geformu-
leerd als de theorie die het gedrag van deeltjes op (sub)atomaire schaal beschrijft, het
is daarom de theorie die van toepassing is als men met elementaire deeltjes van doen
heeft. Gebaseerd op experimenten werd opgemerkt dat alle deeltjes in de natuur een
fundamentele eigenschap, genaamd spin, hebben, waarvan de waarde deze deeltjes
verdeelt in twee categorieén: bosonen en fermionen. De fermionische sector bevat alle
materie en bestaat uit drie generaties, die elk weer twee quarks en twee leptonen (een
electron en een neutrino) bevatten. Bijna alle ons bekende materie bestaat uit de
lichtste variant van deze drie generaties.

Tussen 1905 en 1916 stelde Einstein zijn relativiteitstheorie voor. Hij stelt dat de
wetten van de natuur voor iedere observator hetzelfde moeten zijn en dat deze daarom
in een observator-onafhankelijke manier geformuleerd dienen te worden (covariant).
De relativiteitstheorie bestaat uit twee delen: de speciale relativiteitstheorie welke
onze noties van tijd en ruimte radicaal veranderde en laat zien hoe deze concepten op
een gecompliceerde manier verbonden zijn, en de algemene relativiteitstheorie (GR)
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welke de ruimtetijd als dynamische entiteit beschrijft: het metrische veld. In GR
manifesteert de zwaartekracht zich als kromming van de ruimtetijd, veroorzaakt door
de aanwezigheid van massa en energie.

Een combinatie van de speciale relativiteitstheorie en quantummechanica leidde
uiteindelijk rond 1970 tot het standaardmodel (SM), welke vrij succesvol de interacties
tussen elementaire deeltjes beschrijft. Het standaard model is een specifieke quan-
tumveldentheorie (QFT) uit oneindig veel mogelijke quantumveldentheorieén. Hierbij
speelt het concept van ijktheorie een belangrijke rol. Door symmetrietransformaties
lokaal te maken, dat wil zeggen door coordinaat-afhankelijke transformatieparame-
ters te introduceren, ontstaan spin 1 ijkbosonen welke de krachten tussen deeltjes
dragen. Eigenlijk hebben bovengenoemde materiedeeltjes hun interactie middels het
uitwisselen van bosonen: de electromagnetische, de zwakke en de sterke krachten wor-
den beschreven door het uitwisselen van respectievelijk fotonen, W/Z intermediaire
vectorbosonen en gluonen. De groep van het SM is SU(3) x SU(2) x U(1). De ex-
perimentele bevestiging van het SM is verbijsterend goed tot energieén van 102GeV.
Echter, er resteren enkele problemen. Ten eerste is de Higgs-sector, verantwoorde-
lijk voor het geven van massa aan de andere elementaire deeltjes, tot dusver nog
niet waargenomen®. Ten tweede zijn er dwingende theoretische argumenten om de
zoektocht naar verdere uitbreiding voort te zetten: allereerst bevat het SM negentien
nauwkeurig afgestemde parameters? die niet voorspeld kunnen worden en dientenge-
volge is het geen fundamentele theorie. Verder is het moeilijk om te verklaren waarom
de Higgs-massa zo ontzettend klein is (met my < 1TeV/c?), dit wordt ook wel het
hiérarchie-probleem genoemd. Ook is het nog niet begrepen waarom er drie generaties
materiedeeltjes bestaan. Bovendien blijkt dat de drie 'running coupling constants’ die
worden geassociéerd met de SM-ijkgroep ongeveer gelijke waarden aannemen bij de
enorm hoge energie van 10'°GeV. Dit suggereert dat de drie krachten bij deze energie
getinificeerd geraken in een enkele ’grote geiinificeerde theorie’ (GUT) die is geba-
seerd op een simpele ijkgroep. Merk op dat het SM de vierde fundamentele kracht,
de zwaartekracht, niet bevat omdat de andere drie krachten veel sterker zijn dan de
zwaartekracht.

Laten we eens teruggaan naar GR. De experimentele en theoretische successen van
GR zijn net zo ontzagwekkend als die van SM. Ter illustratie, GR verklaart het buigen
van licht door massieve voorwerpen zoals onze zon. Ook voorspelt GR het bestaan
van ruimtetijd singulariteiten binnen zwarte gaten®. Tevens speelt GR een sleutelrol
in de hedendaagse kosmologie, waar het bijvoorbeeld de waargenomen kosmologische
roodverschuiving van licht dat afkomstig is van verre sterrenstelsels verklaart, ten-
gevolge van de uitbreiding van het heelal. Tot dusver wordt GR gebruikt als een

IDit is een van de belangrijkste doelen van de nieuwe LHC versneller van CERN, die de experi-
mentele energieschaal verhoogt tot ~ 10*GeV.

2Bijvoorbeeld de parameters die corresponderen met de massa’s van elementaire deeltjes.

3Zwarte gaten zijn objecten die zo massief zijn, dat ze achter een waarnemingshorizon verscholen
zijn, een oppervlak waardoor zelfs licht niet kan ontsnappen (tenminste volgens de klassieke theorie).
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klassieke veldentheorie. Een poging om de zwaartekracht te quantiseren met gelijk-
soortige quantisatietechnieken zoals gebruikt voor het SM is mislukt. De theorie gaat
gebukt onder singulariteiten welke, in tegenstelling tot bij SM ('t Hooft en Veltman
[1]), niet in de hand gehouden kunnen worden. Dit kan worden ingezien vanwege het
feit dat de koppelingsconstante van de zwaartekracht x = 87G/c* niet dimensieloos
is, deze is daarom ongeschikt om te gebruiken in een storingsreeks. De schaal waarop
quantumzwaartekracht belangrijk wordt, is de Planck schaal, gegeven door

hc®
G

8rGh _
lpranck = 5 4110 ®m,  Mplanek = (

1/2
) ~10'8GeV, (D.0.1)

met h Planck’s constante. Zoals men kan zien, ligt de Planck schaal erg dicht bij de
GUT schaal (10'5GeV). Deze observatie laat zien dat er een ” quantumzwaartekrachts-
theorieis vereist die alle vier fundamentele krachten gelijktijdig kan behandelen.

Als een eerste poging dachten fysici aan een theoretische verbetering van SM mid-
dels de introductie van een ander type symmetrie, genaamd supersymmetrie. Dit is
een symmetrie tussen bosonen en fermionen die voorspelt dat er bij ieder boson in
de natuur een fermionische partner bestaat, zo ook vice versa. De eerste motivatie
om zulk een symmetrie te gebruiken is dat het hiérarchie-probleem ermee omzeild
wordt; het is aangetoond dat de Higgs-massa wordt afgeschermd van quantumcorrec-
ties door supersymmetrie. Echter, supersymmetrie transformaties introduceren ook
vele nieuwe deeltjes-’sdeeltjes’ die niet zijn geobserveerd?. Een gedeeltelijk succes in
het samenbrengen van alle fundamentele krachten werd bereikt in 1976 door theorieén
te beschouwen die gebaseerd zijn op lokale supersymmetrie. Zulke theorieén worden
superzwaartekrachtstheorieén genoemd, uitbreidingen van GR theorie die zich beter
gedragen bij hoge energieén; de oneindigheden worden namelijk gedeeltelijk opgehe-
ven. Het spin 2 ijkboson dat verantwoordelijk is voor de dracht van de zwaartekracht
wordt het graviton genoemd. Zijn supersymmetrische partner is het gravitino®.

Snaartheorie is het meest veelbelovende voorstel waarmee de quantumzwaarte-
kracht beschreven kan worden. Snaartheorie vervangt deeltjes door de trillingstoe-
standen van relativistische snaren®. Opmerkelijk is dat het graviton en niet-Abelse
ijkvelden noodzakelijkerwijs deel van het spectrum uitmaken. Zo verenigt snaarthe-
orie op een natuurlijke manier de zwaartekrachtsinteractie met Yang-Mills theorie
(niet-Abelse versie van Maxwell theorie). Daarbij levert snaartheorie een discrete
maar oneindige toren van massieve trillingstoestanden. Hun massa-schaal is van de
orde van de Planck-massa. In supersymmetrische versies van snaartheorie (supers-

4Als supersymmetrie bestaat, dan moet die spontaan gebroken zijn opdat er superdeeltjes met
een hogere massa uit voortkomen. Er bestaat een sterke hoop dat deze zullen worden ondekt in de
LHC.

50m deze deeltjes waar te nemen zouden energieén nodig zijn die ver buiten het bereik van onze
huidige versnellers vallen.

6Merk op dat de snaar een typische lengte Is van de orde van de Planck I, lengte heeft.
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naartheorieén) wordt het graviton op het massaloze niveau vergezeld door de super-
zwaartekrachtsveld sector. Inderdaad werd gevonden dat de laag-energetische limiet
van supersnaartheorie wordt gegeven door superzwaartekracht. Er bestaat een intui-
tieve reden waarom supersnaartheorie vrij van oneindigheden is. Deze oneindigheden
verschijnen meestal in singuliere punten, maar een snaar beweegt in een ruimtetijd
over een twee-dimensionaal oppervlak. Dit feit zorgt er precies voor dat interacties
niet in een enkel punt plaatsvinden, maar zijn uitgespreid over een kleine oppervlakte.
Het blijkt dat de perturbatieve snaarinteracties UV-eindig zijn”.

Snaartheorie heeft naast supersymmetrie zes extra dimensies nodig om consistent
te kunnen worden opgezet. Dit kan men eerder als deugd opvatten dan als een kwaad.
Het is al lange tijd bekend dat hoger-dimensionale theorieén een aantal aantrekke-
lijke eigenschappen hebben. In de twintiger jaren van de twintigste eeuw hebben
Kaluza en Klein [2,3] geprobeerd om Einstein en Maxwelltheorie te verenigen door
vier-dimensionale zwaartekracht en electromagnetisme in een vijf-dimensionale ruim-
te in te bedden. Precies zo nemen we in snaartheorie de zes interne dimensies erg
klein zodat ze niet waar te nemen zijn in hedendaagse experimenten. Deze procedure
heet Kaluza-Klein dimensionele reductie.

Helaas heeft snaartheorie ook zo zijn nadelen. Ze is slechts perturbatief gede-
finiéerd; verstrooiingsamplitudi worden uitgedrukt als een oneindige ontwikkeling
in machten van de snaarkoppelconstante g, die is geassocieerd met de Feynman-
diagrammen van snaartheorie. Het grootste minpunt werd echter duidelijk toen er
vijf verschillende supersnaartheorieén leken te zijn terwijl er werd gehoopt op een
enkele, unieke theorie van quantumzwaartekracht. Dit betekent dat perturbatieve
snaartheorieén slechts een gedeelte van het gehele plaatje verschaffen.

Gelukkig is er veel progressie geboekt op dit punt. De grootste stap voorwaarts was
de ontdekking van dualiteiten, symmetrietransformaties die de verschillende snaar-
theorieén verbinden. Ze relateren in sommige gevallen het regime van zwakke kop-
peling met dat van sterke koppeling zo dat perturbatieve berekeningen in de eerste
theorie niet-perturbatieve informatie verschaffen over de tweede theorie (genaamd S-
dualiteit). Daarnaast werden snaartheorieén op verschillende achtergronden equiva-
lent bevonden (T-dualiteit). Een belangrijke rol werd gespeeld door de zogenaamde
braanoplossingen van snaartheorie. Dit zijn solitonische objecten die kunnen wor-
den gezien als hoger-dimensionale generalisaties van snaren®. Een belangrijke klasse
van branen zijn Dirichlet-branen, kortweg D-branen. Deze zijn speciaal omdat ze
aan enerzijds verschijnen als hypervlakken waarop snaren kunnen eindigen en aan
de andere kant als stationaire oplossingen van (super)zwaartekrachtstheorieén. Er
is nog een klasse van braanoplossingen, S-branen (ruimtelijke branen) welke tijdsaf-
hankelijke oplossingen zijn van (super)zwaartekrachtstheorieén. De vijf ogenschijnlijk

"Er is geen noodzaak om een ultraviolette cut-off te introduceren en de theorie is consistent tot
op hoge energieschalen, daarom is ze fundamenteel.
8Branen kunnen ook worden beschouwd als hoger-dimensionale generalisaties van zwarte gaten.
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verschillende theorieén en hun braanoplossingen worden verbonden middels een web
van dualiteiten. Gedurende de negentiger jaren van de vorige eeuw werd geleidelijk
duidelijk dat deze vijf theorieén allen verschillende limieten in de parameterruimte
van een enkele onderliggende theorie, genaamd M-theorie, representeerden. De fun-
damentele vrijheidsgraden van M-theorie blijven grotendeels onbekend. In plaats van
een voltooide theorie, blijft M-theorie vooral werk in progressie.

Aldus hebben we wat inzicht verkregen en een wat beter begrip opgedaan van
perturbatieve en niet-perturbatieve snaartheorie. Echter, er zijn nog veel interes-
sante open stukken. Ten eerste is er het gebrek aan experimentele ondersteuning.
Inderdaad, alle beloften ten spijt levert snaartheorie geen enkele harde, controleerba-
re voorspelling. De rivaliserende quantumzwaartekrachtstheorieén doen dit trouwens
ook niet. Het is mogelijk om configuraties in snaartheorie te construeren die erg op het
SM lijken, bijvoorbeeld door snijdende D-branen te gebruiken. Echter, tot op heden
is er nog geen manier gevonden om deze modellen uit te lichten als voorkeursvacua.
Daarnaast, omdat snaartheorie zwaar leunt op supersymmetrie en supersymmetrie
wordt gedeeld met veel andere theorieén, vooral met het supersymmetrische SM, zou
de experimentele ontdekking van supersymmetrie nauwelijks een volledige bevestiging
van snaartheorie zijn. Vanwege de extreem hoge energieén die hierbij betrokken zijn,
ligt de toekomst van experimentele verificatie wellicht niet bij deeltjesversnellers maar
in astrofysische en cosmologische ontwikkelingen. Merk op dat snaartheorie al een be-
langrijke toets heeft doorstaan door op een quantummechanische manier een probleem
deels op te lossen dat verschijnt bij het beschrijven van een typisch algemeen relativis-
tisch object, een zwart gat: ze berekent succesvol de semi-klassiek voorspelde entropie
van een supersymmetrisch zwart gat middels het optellen van zijn micro-toestanden.
Helaas blijven er nog vele harde noten te kraken in deze domeinen zoals de verklaring
voor de geobserveerde kleine positieve cosmologische constante en de constructie van
snaartheorie in tijdsathankelijke achtergronden (bijv. S-braanoplossingen).

Echter, in de discussie is tot dusver achtergehouden dat snaartheorie soms een
ongeloofelijk krachtig gereedschap is in andere velden van de natuur- en wiskunde. In
deze beperkte ruimte kunnen we slechts een paar voorbeelden geven. Meest succesvol
is de connectie met ijktheorieén. Het blijkt dat veel eigenschappen van ijktheorie
een geometrische interpretatie hebben in termen van D-branen. Enige tijd geleden
beargumenteerde 't Hooft dat ijktheorieén in de limiet van N groot [4] erg op een
snaartheorie lijken. Een eerste concrete realisatie van zo'n verband was de AdS/CFT
dualiteit?. Andere voorbeelden zijn de inlijving van Montonen-Olive dualiteit [6]
van ijktheorie in de grotere S-dualiteit van snaartheorie en de recente progressies in
de niet-perturbatieve berekening van de chirale sector van N = 1 Super-Yang-Mills
theorie. Hoe dan ook, vele van deze verbanden zijn niet bevestigd op een stricte
mathematische manier. Zo zijn bijvoorbeeld de AdS/CFT correspondentie en S-

9Deze betrekking stelt dat N = 4 Super-Yang-Mills theorie duaal is aan snaartheorie op
AdS® xS® [5].
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dualiteit feitelijk vermoedens waarvoor inmiddels wel een indrukwekkende hoeveelheid
indirecte aanduidingen zijn gevonden.

De lage-energie limiet (veldentheorie limiet) van snaartheorie blijft een belangrijk
gereedschap om de verschillende verschijnselen in de snaartheorie te bestuderen. Veel
kenmerken van snaar- en M-theorie zijn ook aanwezig in de lage-energie limiet, zoals
D-branen en dualiteiten, en daarom is het interessant om deze effectieve beschrijving
te bestuderen.

In dit proefschrift zullen we eerst de lage-energie limiet van de snaartheorie bestu-
deren. In het bijzonder zullen we laten zien, hoe de snaren zichzelf manifesteren als
een ijktheorie die leeft op het D-braan. We zullen zien hoe de correcties op de leidende
orde van de Maxwell actie interessante informatie verschaffen over de ’snaar-achtige’
aspecten van D-braan fysica. We zullen vervolgens proberen om deze correcties in
te perken, gebruikmakend van de electromagnetische dualiteitssymmetrie. Ook zullen
superzwaartekrachts-acties in dit proefschrift worden gepresenteerd als de lage-energie
boom-niveau effectieve actie van snaartheorie voor langzaam variérende kromming.
Afgeleide-correcties, in het bijzonder correcties van de orde o’ op heterotische snaar-
theorie'?, zullen worden onderzocht.

Terug naar de braanoplossingen. Het tweede doel van dit proefschrift is om bra-
nen te bestuderen die oplossingen zijn van (super)zwaartekrachtstheorieén. Zoals we
zullen zien, vormen de dimensies van het uitgebreide object het wereldvolume van de
braan. De overige ruimtetijd dimensies vormen de transversale ruimte. We maken
onderscheid tussen twee soorten branen: indien de tijd deel uitmaakt van het we-
reldvolume wordt de braan ”tijdachtige” p-braan genoemd. De p staat hier voor het
aantal ruimtelijke richtingen van het wereldvolume. Het totale aantal dimensies van
het wereldvolume is p + 1. Als de tijd niet is bevat in het wereldvolume wordt de
braan ”ruimtelijke” Sp-braan genoemd. Voor zulke branen is het totale aantal dimen-
sies p + 1, welke allemaal ruimtelijk zijn. Zo refereert in beide gevallen p naar een
p + 1-dimensionaal wereldvolume.

Het onderzoeken van braanoplossingen middels het direct oplossen van de bewe-
gingsvergelijkingen die volgen uit de (super)zwaartekrachtsactie is verre van triviaal.
In plaats daarvan gaan we kijken naar braanoplossingen van welke de dynamica slechts
van één parameter afthangen (deeltjes-achtige oplossingen). We zullen zien dat deze
parameter een van de coordinaten van de transversale ruimte is. Dit betekent dat
de wereldvolume coordinaten niet expliciet in de oplossingen zullen voorkomen. Dit
impliceert dat men de oplossing effectief dimensioneel kan reduceren over het we-
reldvolume!!. Dit projecteert een p-braan op een (—1)-braanoplossing. Indien we

10Heterotische snaartheorie is één van de eerdergenoemde vijf perturbatieve supersnaartheorieén.

11De reductie over het wereldvolume van de braan geeft aanleiding tot een massaloze lager-
dimensionale theorie, terwijl de reductie over de transversale richtingen van de braan een scalar-
potentiaal zal genereren in de lager-dimensionale theorie. Indien de lager-dimensionale massieve
theorie leeft in een Minkowski-ruimtetijd, dan zijn er twee afzonderlijke oplossingen: tijdsafhankelij-
ke oplossingen (kosmologie) en tijdsonafhankelijke oplossingen (domeinmuren).
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reduceren over een Euclidische torus reduceren, is de resulterende lager-dimensionale
theorie een Minkowski-theorie en de corresponderende oplossing is een S(—1)-braan.
Als de reductie geschiedt over een Minkowski-torus (welke een tijdachtige richting
bevat) dan leeft de lager-dimensionale theorie in een Euclidische ruimtetijd en heeft
deze een (—1)-braan (instanton) als oplossing®?.

Het aantal globale symmetrieén wordt groter en groter als men het aantal dimen-
sies kleiner maakt. Dit kan worden gebruikt om onze zoektocht naar braanoplossingen
verder te vereenvoudigen. De (—1)-braanoplossingen van de lager-dimensionale the-
orie worden gedragen door de metriek en de scalaire velden. We zullen laten zien
dat men de zwaartekrachtsveldvergelijkingen kan ontkoppelen van de scalarveldver-
gelijkingen. Daardoor kan men onafhankelijk voor de metriek en voor het scalarveld
oplossen. De oplossing-genererende techniek zal ons in staat stellen om de meest
algemene scalarveld-oplossingen te vinden.

121n deze analyse beschouwen we enkel consistente reducties. Dit houdt in dat we altijd de reduc-
tiestappen ongedaan kunnen maken zodanig dat we ervan verzekerd zijn dat we ook een oplossing
hebben van de actie waarmee we begonnen zijn. Zo zou men een hoger-dimensionale oplossing kunnen
verkrijgen via het opliften (oxidatie) van een lager-dimensionale oplossing.
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