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ABSTRACT

Context. X-ray observations of galaxy clusters are routinely used to derive radial distributions of intracluster medium (ICM) ther-
modynamical properties, such as density and temperature. However, observations only allow access to quantities projected on the
celestial sphere, so an assumption on the three-dimensional distribution of the ICM is necessary. Usually, spherical geometry is as-
sumed.

Aims. The aim of this paper is to determine the bias due to this approximation on the reconstruction of the ICM density radial profile
of a cluster sample and on the intrinsic scatter of the density profiles’ distribution, particularly when the substructures of clusters are
not masked.

Methods. We used simulated clusters for which we can access the three-dimensional ICM distribution. In particular, we considered a
sample of 98 simulated clusters drawn from THE THREE HUNDRED project. For each cluster, we simulated 40 different observations
by projecting the cluster along 40 different lines of sight. We extracted the ICM density profile from each observation, assuming the
ICM to be spherically distributed. For each line of sight, we then considered the mean density profile over the sample and compared
it with the three-dimensional density profile given by the simulations. We thus derived the spherical bias in the density profile by
considering the ratio between the observed and the input quantities. We also studied the bias in the intrinsic scatter of the density
profile distribution by performing the same procedure.

Results. We find a bias in the density profile, b,, smaller than 10% for R < Rsq, and it increases up to ~50% for larger radii. The bias
in the intrinsic scatter profile, by, is higher, reaching a value of ~100% for R ~ Rsy. We find that the bias for both of the analyzed
quantities strongly depends on the morphology composition of the objects in the sample. For clusters that do not show large-scale
substructures, both b, and b, are reduced by a factor of two. Conversely, for systems that do show large-scale substructures, both b,

and b, increase significantly.
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1. Introduction

Galaxy clusters play a crucial role in the understanding of both
astrophysical processes and large-scale structure evolution. They
are the largest virialized objects generated from small density
fluctuations in the primordial era and grew hierarchically under
their own gravity influence. Indeed, galaxy clusters trace the evo-
lution of the Universe and its composition, so important cosmo-
logical knowledge can be derived by studying their properties
(e.g., Voit 2005; Allen et al. 2011). Moreover, many astrophys-
ical processes take place within galaxy clusters, and the bary-
onic component properties derived from cluster studies are used
for astrophysics and fundamental physics studies (e.g., Arnaud
2005; Tozzi & Norman 2001). In this context, X-ray observa-
tions play a major role, as they can detect the emission associated
with the intracluster medium (ICM), which is the hot and rarefied
plasma that lies among the galaxies. This component contributes
~15% to the total cluster matter and represents the main baryonic
component, as stars and galaxies make up only a few percent.

* Corresponding author; silvano@iasf-milano.inaf.it

In particular, X-ray observations enable ICM density and tem-
perature profiles to be derived. These are crucial quantities for
obtaining cluster properties since they provide the starting point
for mass measurements. In particular, they are used to derive
the total cluster mass through the hydrostatic equilibrium equa-
tion. Moreover, the ICM density profile is used to obtain the gas
mass, which is a widely used proxy of the total mass of clus-
ters (Arnaud et al. 2010; Kravtsov et al. 2006; Pratt et al. 2019),
and to measure the cluster mass function and hence the mass
density, Q,, which is a fundamental quantity for cosmological
studies. Therefore, the reconstruction of the ICM density profile
assumes a significant role in cosmological studies. Moreover,
in the era of precision astronomy and cosmology (Allen et al.
2011; Planck Collaboration XX 2014; Salvati et al. 2018), it is
very important to be aware of the contribution of each systematic
error source that can affect any measure and to quantify them.
Every astronomical observation carries an intrinsic aspect
that could introduce systematic errors. In fact, observations
can be informative only about projected quantities, so an
assumption on the underlying geometry is necessary to recover
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three-dimensional properties, such as density profiles. In this
context, the property of cluster shape also assumes a crucial role.

It is well known that the mass distribution within galaxy
clusters is generally not spherical, even though determining its
three-dimensional shape is still an issue. Several studies have
investigated the problem using multi-wavelength techniques,
such as through a combination of gravitational lensing, X-ray,
and Sunyaev-Zel’dovich effect observations, both on individual
clusters and cluster samples, and these studies have found a quite
general triaxial morphology (Sereno et al. 2006, 2017, and ref-
erences therein). However, some clusters appear more spheri-
cal and present smoother density profiles thanks to virialization
processes, while others can present density inhomogeneities that
make the cluster shape more intricate.

However, it is a standard practice to assume spherical
geometry when deriving cluster gas properties from X-ray
observations. In fact, this makes the gas distribution deprojection
process easier to implement and more computationally efficient.
Moreover, it is widely assumed that any possible geometrical
bias in single systems is averaged out when considering cluster
samples, thanks to the triaxial orientations that are assumed to
be randomly distributed. Systematic errors in the gas distribu-
tion reconstruction due to spherical assumption have been inves-
tigated throughout the years, typically by comparing different
deprojection models applied to different theoretical morpholo-
gies (see, e.g., Binney & Strimpel 1978; Piffaretti et al. 2003).
The most recent work in the context of X-ray and Sunyaev—
Zel’dovich observations is by Buote & Humphrey (2012a,b).
The authors investigate the spherical averaging of galaxy clus-
ters shaped using different ellipsoidal models. They quantify
the orientation-average bias and scatter for many observables
and find generally small mean biases with substantial scatter
for different view orientations. However, the studies in this area
of research mostly investigate the impact of elliptical shapes
instead of spherical ones, considering clusters with smooth den-
sity profiles and leaving the presence of inhomogeneities aside.
In the present work, we investigate the bias due to the spheri-
cal assumption on the reconstruction of the ICM density profile
while considering the presence of inhomogeneities in substruc-
tures. In fact, in contrast to the cited works based on theoretical
geometrical models, here we consider clusters that are simulated
in a cosmological context such that their shapes are not theo-
retically defined following a geometrical model but are given
by the cosmological framework and the gravitational interaction
with the environment. For each simulated cluster, we emulated
an X-ray observation on the sky plane and considered numerous
different lines of sight. By using standard X-ray analysis proce-
dures, we extracted the ICM density profile from each projected
cluster, assuming spherical geometry, and compared it with the
true density profile given by the simulations. In this way, we are
able to quantify the bias introduced by the spherical assumption.

This paper is organized as follows: In Sect. 2, we describe the
composition of the simulated cluster sample and the procedure
to produce mock X-ray maps. In Sect. 3, we discuss the mock
maps analysis procedure, while in Sect. 4 we present the main
results of the analysis. In Sect. 5, we discuss the results, and in
Sect. 6 we summarize the biases that arise from the spherical
approximation in the gas density profile.

We adopted a flat A cold dark matter cosmology with
Qn(0) = 0.3, QA(0) = 0.7, and Hy = 70km Mpc~' s=!. We note
that the cosmological density values are those of the simulated
sample, which is characterized by a slightly lower Hubble con-
stant (Hogm = 67.77kmMpc~!s7!). However, this difference
does not affect the results of this paper.
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Fig. 1. Mass distribution of the sample of simulated clusters used in this
work. The minimum and maximum values of the mass are 2.0x 10'* M,
and 14.3 x 10'* M, respectively.

2. Dataset and production of mock maps
2.1. Dataset

This work relies on simulated galaxy clusters drawn from
THE THREE HUNDRED project (Cui et al. 2018). This project
comprises 324 regions re-simulated with full-physics hydro-
dynamical codes selected from the dark matter only MultiDark
Planck 2 simulations (Klypin et al. 2016). The aim of this work
is to statistically characterize the bias introduced when deriving
the ICM radial density profile of clusters and assuming a spher-
ical geometry. This is tested on a sample that needs to be as rep-
resentative as possible of the underlying cluster population and
is able to reproduce the variety of morphologies. Therefore, we
selected 98 clusters from THE THREE HUNDRED catalog with
masses in the range 2.0 X 10" My < Msqp! <14.3 x 10'* M,
(Fig. 1). The sample was built to include about 20 to 25 objects
in each of the following mass intervals: [2—4], [4—6], [6—8],
[8—10] x 10'* My, in addition to nine objects with Msy >
10" M. The selection was done by making sure that vari-
ous morphologies were represented, as shown in Fig. 2. In the
figure, several clusters show substructures that appear as lumi-
nous regions distinguishable from the central halo, while oth-
ers have an almost spherical distribution. These features make
the sample suitable to study the effects introduced by the spher-
ical approximation, which is ordinarily used for X-ray analysis,
and to quantify the related bias in the density profile reconstruc-
tion. All the clusters are fixed at redshift z = 0.3 since we are
not interested in studying any possible effect due to spatial res-
olution. The physical properties of each cluster are reported in
Table A.1.

2.2. Simulating mock X-ray maps

The starting point of this work involved the creation of mock
observations of the simulated clusters. This was done by pro-
jecting them on the sky plane and reproducing X-ray telescope
effects in order to obtain an X-ray-like image.

Mg = %nR?OOSOOp(., with p,. critical density at cluster redshift.
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Fig. 2. Image gallery of the 98 galaxy clusters in the simulated sample. Each image covers an area of SRspy X SRso and represents the spatial
distribution of the ICM projected along one random direction in units of cm=® Mpc. The solid circle indicates Rsq, while the dashed one indicates
2Rs00. In many clusters one or more substructures are present. The names of the simulated clusters are reported in each panel. The first number
identifies the simulated region where the halo is extracted, and the second is the mass-rank index of the halo in that specific region. For example,

CLO0005_1 is the most massive cluster found in the fifth region.

2.2.1. Projection on the sky plane

Since telescopes observe projected objects on the sky plane,
we first projected each three-dimensional simulated cluster. We
created emission-measure maps from each simulated cluster
with the program Smac (see Dolag et al. 2005; Ansarifard et al.
2020). The maps are centered at the position of the maximum of
the density field, which coincides with our definition of the theo-
retical center. The field of view has a side equal to 6Rs( divided
into 1200 pixels, leading to a resolution of 5% Rsgo per pixel.
This distance of 6Rs( is also the length of the integration along
the line of sight. By reaching such a high distance from the clus-
ter center (3Rsop = 2Ry in the front and the back of the object),
we were sure to include any possible large-scale structure whose

emission can be visualized in the projected maps. Starting from
a map oriented as the z axis of the simulation box and thus ran-
domly oriented with respect to the cluster’s major axis, we then
created other maps obtained by rotating the object with equi-
spaced angles, as visually represented in Fig. 3. In this way we
generated 40 emission measure (EM) maps for each simulated
cluster. The chosen 40 lines of sight allowed us to uniformly
investigate the object from different directions.

The maps were produced by summing over the contribu-
tion of all gas particles with temperature, 7}, larger than 0.3 keV
and density, p;, below the star-forming density threshold. This
condition allowed for the study of the diffuse gas that emits in
the considered X-ray bands. We note that the same gas parti-
cle exclusion was applied to all the quantities extracted from the
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Fig. 3. Representation on a sphere (left) and on a polar plane (right) of
the forty directions along which a three-dimensional simulated cluster
is projected. The directions are distributed at intervals of A9 = 1/10 n
and A¢ = 1/8 &, with 8 € [0,9/10 n] and ¢ € [0,3/8 x|, where ¢ =
0 identifies the equatorial plane. Every direction is identified as (¢, p),
where 1 € [0,9] and p € [0, 3] represent 6 and ¢.

Table 1. Parameters used in the phabs/APEC model for mock map pro-
duction and analysis.

Flat ACDM cosmology Hy = 70km/s/Mpc

Q,=03

QA = 07
Exposure time 30ks
Energy band 0.5-2.0keV
Metallicity 0.25 (Ghizzardi et al. 2021)
Temperature ) 2keV < Ty < 10keV (Table A.1)
f=ne/n, 1.08
Redshift 0.3 (from simulations)
Galactic column density 2.0 x 1072° cm~2 (Kalberla et al. 2005)
Background 5.165 x 1073 ctsarcmin™ s~ + 3%

Notes. ¥ The temperature is different for each cluster, and it is given
by the simulation. *'The galactic column density was evaluated at high
galactic latitudes.

simulated clusters, such as the 3D gas density profiles. To cre-
ate the maps, we specifically summed the product (m; X p;) of
the selected particles once this contribution was weighted by a
spline kernel with a width equal to the gas particle smoothing
length.

The resulting maps are in units of a mass density squared
integrated over a volume, that is [gZ cm ™ kpc? cm]. However, the
EM standard units are [cm™® Mpc], so we needed to convert them
by taking into account the proton mass, the molecular weight ,
and the electron-to-proton fraction f since the EM is referred to
as the electron emission. We used the same gas parameters that
characterize the simulated gas, namely u = 0.59 and f = 1.08.

2.2.2. Generating mock maps

Once the 40 EM maps had been generated for each cluster, we
generated mock X-ray observations. X-ray telescopes collect the
incoming photons in their camera pixels, so they return counts
maps. To create these maps from the EM maps, we first con-
verted them into surface brightness (SB) maps. The EM and
SB are related through the cooling function A(T, Z, z), which
depends on the cluster temperature 7', the cluster abundance Z,
and the cluster redshift z:

SB=A(T,Z,7) fnenpdl = A(T, Z,2)EM(r). (1)
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Fig. 4. Mock map generation process. Left panel: Map of the cluster
emission. Central panel: Map of the cluster emission with the addition
of the tiled background. Right panel: Map resulting from the discretiza-
tion of the cluster+background map through a Poisson randomization.
All maps are in units of counts.

In the soft X-ray band, the cooling function A(T,Z,z)
shows little dependence on either temperature or cluster abun-
dance Z (Ettori 2000; Bartalucci et al. 2017). To ensure this
fact, we computed the cooling function for different temper-
atures and abundances, with typical cluster temperature val-
ues that can fluctuate by 20% (Rossetti et al. 2024, cf. Fig. 11)
and typical cluster abundance values that can fluctuate by 25%
(Ghizzardi et al. 2021, cf. Figs. 5 and 11); A(T, Z) varies less
than 3%. Therefore the cooling function was computed using
a constant temperature and constant abundance, within the
[0.5,2.0] keV energy band. The temperature for each cluster was
given by the simulations, while the metal abundance was fixed
to the average value 0.257Z, as derived from (Ghizzardi et al.
2021, cf. Modified analysis of Table 1). The redshift was fixed
for all clusters to z = 0.3. The cooling function was com-
puted via XSPEC (Arnaud 1996) using the phabs (photoelec-
tric absorbed)? Astrophysical Plasma Emission code (APEC)}
model (Smith et al. 2001) and convolved with the telescope
effective area. For our scope, we considered the XMM-Newton
PN camera.

Once we generated the surface brightness maps, we con-
verted them into X-ray-like counts maps, following the same
method described in Bartalucci et al. (2023), which we briefly
report here. First, we converted the surface brightness into pho-
ton counts by multiplying the surface brightness maps by the
pixel surface and by an observation time of 30ks, a typical
XMM-Newton exposure time. For simplicity, we did not con-
sider Point Spread Function and vignetting effects or the pres-
ence of malfunctioning pixels or gaps. For these reasons the
exposure time is the same for all the map pixels. We then added
the sky background component. We considered a mean value
bkgmean = 5.165 X 1073 ctsarcmin™2 s~! measured by the PN
camera in the [0.5-2] keV band (Bartalucci et al. 2023), and we
introduced spatial variations by dividing the field of view into
square tiles of ~2.35 arcmin size where the background value
varies by approximately 3% (Ghirardini et al. 2018) around
bkgmean- Finally, we applied a Poisson randomization to each
pixel of the map to emulate the discretized photon counts. All
the used parameters are reported in Table 1. The outcome of this
procedure is represented in Fig. 4. Through this approach, we
created 40 mock X-ray maps — one for each projection line — for
each of the 98 simulated clusters.

2 https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/
node259.html
3 https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/
nodel34.html
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3. Data analysis

The main purpose of the following analysis is to determine the
bias in the cluster gas density profile reconstruction due to the
spherical symmetry approximation. In particular, we evaluated
the effect caused by the presence of inhomogeneity in substruc-
tures. To reach this goal, we used the mock X-ray maps obtained
as described in Sect. 2.2.2 to extract the gas density profiles fol-
lowing the same procedure used for real observations, where
spherical symmetry is assumed. However, it is important to high-
light a key difference between the density profile extraction pro-
cedure followed in this work and the one used in real cluster
analysis. In fact, in the latter case, if any substructure appears in
the observation frame, it is masked in such a way that its con-
tribution to the cluster main emission will not be considered.
Therefore, it is interesting to study how the density profile is
reconstructed even with the contribution of substructures while
maintaining a spherical model. Furthermore, when we have to
deal with real cluster observations, it can occur that substructures
are indistinguishable from the central core because of resolution
issues and because they are located along the observer-core line
of sight. For these reasons, it is important to evaluate the impact
of the substructures on the gas density profile when it is recon-
structed with a spherical shape.

3.1. Analysis of mock maps

To extract the gas density profile from every mock X-ray map,
we used pyproffit* (Eckert et al. 2016, 2020), a Python pack-
age largely used for X-ray cluster analysis in which the spherical
symmetry is assumed. For each map, pyproffit first extracts
the SB profile (count rate per surface and time unit), by comput-
ing the mean surface brightness in concentric annular bins and
dividing by the exposure time. We extracted the SB profile up to
3Rs50p in annular bins of 5 arcsec width. We then converted the
SB profile into an EM profile through Eq. (1). The conversion
factor A(T, Z, z) was computed via XPSEC with the same proce-
dure and parameters used for the production of the mock maps
(see Sect. 2.2.2 and Table 1).

The obtained EM profile was then deprojected to obtain the
electron density profile. In fact, the EM is defined as the projec-
tion along the line of sight of the gas density:

EM(r) = f ne(R)ny(R)dl = ]—£ f n2(Ryd, 2)

where f is the electron-to-proton fraction. The EM profile depro-
jection process to obtain the electron density profile was per-
formed by pyproffit while assuming a spherical geometry.
That is, the EM profile was modeled as a combination of -
models:

EM() = ) Aidi(r) = ) A1+ (L, 3)

rc,i

In particular, we modeled the EM profile by combining six S-
models. Such a spherical geometry is widely used since the -
model functions ¢; can be analytically deprojected, thus return-
ing the deprojected functions ®;(R) = f ¢;(r)dl. The combina-
tion of the deprojected functions ®; gives the following electron
density profile:

ne(R) = Z CiiR) = ) Cj[1 + (%)2]_3@-. @

1

4 https://pyproffit.readthedocs.io

The parameters of the S-models (8;, r.;, A;) in Eq. (3) were
inferred by pyproffit from the observed EM profile by maxi-
mizing a Poissonian likelihood. The background was considered
a flat surface brightness profile described by a single parameter.
In particular, we considered the radial range [2.5, 3]R5¢o as the
background fitting region, where the background emission dom-
inates over the cluster emission. The deprojection result is the
electron density profile of the cluster (Eq. (4)). The procedure is
schematized in Fig. 5.

3.2. Analysis of density profiles

In this section we study how the spherical symmetry assumption
impacts the cluster gas density profile reconstruction. In partic-
ular, we study how the presence of substructures influences the
deprojection process.

The spherical assumption’s impact can be derived by com-
paring the extracted profiles with the input profiles, that is, the
density profiles given directly by simulations. The input pro-
files are obtained by computing the density on spherical shells
starting from the cluster center’. We divided the analysis by
first studying each cluster individually and then the sample as
a whole.

3.2.1. Single cluster analysis

As a first step of the analysis, we considered each cluster indi-
vidually so that we could compare the profiles extracted along
each line (n:jjc‘j(los)) of sight with the input density profile (”g,ld)
and study how well it is reconstructed by considering the ratio
between each extracted profile and the input one. This type of
analysis shows how the spherical approximation works on spe-
cific clusters, allowing us to understand how substructures and
their projected position (which depends on the line of sight)
modify the reconstructed profile.

3.2.2. Sample analysis

For the main part of the analysis, we considered the entire sample
observed only from one line of sight at a time instead of consid-
ering every cluster from different lines of sight. This approach
reproduces what a real observer would actually see. We were
able to access at least 40 different realizations of the same sam-
ple (one for each projection line) and compared the results, giv-
ing us the opportunity to study how different projections impact
the density profile reconstruction. To perform this type of analy-
sis, we defined the sample global electron density profile n, and
the related intrinsic scatter oiy. These quantities were defined
as follows. The global density profile is the logarithmic average
profile of the 98 cluster profiles 7. ¢ in the sample. Assuming that
their distribution is log-normal, the logarithmic average is then
defined as the expected value of the logarithmic distribution of
the 98 density profiles:

2
ne = exp ¢+ ], ®)

where ¢ and o are respectively the mean and the standard
deviation of the normal distribution of logn.. The intrinsic
scatter o, represents the physical dispersion of the sample pro-
files around the global profile n., and it is related to the total

5 We stress that fact the profiles computed using spherical shells cannot
be used to study the triaxial geometry of the cluster.
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Fig. 5. Schematic representation of the procedure described in Sects. 2.2.2 and 3 to derive the gas density bias and the intrinsic scatter due to the

spherical assumption.

dispersion o as

= |52 2
0= /T T Tstarr (6)

where oy is the statistical error computed as the square root of
counts within each radial bin.

For each sample realization, we computed the observed

global density profile n2™" and the observed intrinsic scat-

ter o> We then compared different sample realizations and
obs

tr
considered the mean observed global profile ng
distribution of all the observed global profiles n2**"®. The same
procedure was performed on the intrinsic scatter to obtain the

mean observed intrinsic scatter 0';’;’; of all the observed intrinsic

scatter O'Ezi(los). We also defined the respective input quantities,
that is, the mean input global density profile n" and the mean
input intrinsic scatter o-l", .

By comparing the observed and input quantities, we could
determine the biases on the density and scatter profiles, respec-
tively b, and by, associated with the spherical geometry assump-

tion. We defined the bias b, for the quantity g as
bq — qobS/qin -1.

of the normal

@)

4. Results
4.1. Single cluster results

The results of the analysis outlined in Sect. 3.2.1 on single clus-
ters show the impact of cluster morphology on the density profile
reconstruction. We report two illustrative and opposite cases: one
“regular” cluster (i.e., without substructures) and one “irregular”
cluster (i.e., with substructures). These cases are shown in the
X-ray-like maps reported in Fig. 6.

In the first case, we show the cluster CL®129_1 (Fig. 6, left). It
does not present any substructure, as shown in the three reported
maps, and it exhibits a spherical core. The cluster indeed appears
similar to itself regardless of the considered projection. Therefore,
the 40 density profiles should appear similar to each other. More-
over, each reconstructed profile reproduces the input one quite
well. The ratio between the extracted and the input profiles is
<1.1 for a very large radial range (R < 1.5Rs00). This result indi-
cates that the assumed spherical symmetry does not introduce any
relevant bias when studying clusters with few substructures.
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In the second case, we show the irregular cluster CLOOO5_1
(Fig. 6, right). It features an evident substructure visible in all
the three cluster projections. Its presence can significantly mod-
ify the apparent shape of the cluster that an observer would see.
For example, an observer along the line of sight (9,2; the red
line of sight in Fig. 6) might consider this cluster as a regular
one (with no substructures in the outer regions), whereas along
the (2,1) projection (the green line of sight), the substructure is
clearly distinguishable from the central core. Because of this,
the reconstructed density profiles are expected to differ from one
line of sight to another, as actually shown by the results and
indeed from the input profile. The shape of the reconstructed
profile is affected by the substructure position. If one considers
once again the projection along (9,2), one can see that the corre-
sponding reconstructed density profile shows a “bump” at small
radii, where the substructure is seen. In this region, the observed
profile results are overestimated with respect to the input one. If
we instead consider the (2, 1) projection (green), we can see that
the bump in the density profile shape is located at larger radii,
where the substructure appears. More generally, for each line
of sight, the reconstructed profile overestimates the input profile
where the substructure appears. This overestimation can be par-
tially due to a projection effect and partially due to the spherical
modeling process (both contribute to it), making the substruc-
ture deprojected density higher than the real three-dimensional
one (see Appendix B). From these considerations, we inferred
that for irregular clusters the spherical approximation introduces
an overall overestimation of the extracted profile with respect to
the input one in the region where the substructures appear, with

typical ratios n:ﬁ(los)/ ni‘jcl 2 2 for R = Rsqp.

4.2. Sample results

The results of the analysis outlined in Sect. 3.2.2 of each sample
realization are reported in Fig. 7. In the left panel of the figure,
we report the bias b, = n%* /ni" — 1 on the global density profile,
while in right panel we report the intrinsic scatter oy, profile
and the associated bias by = o/ — 1. For both of these
quantities, we report the 40 results on each sample realization
(g°1°9) and also the mean over all the projections (¢°").

The bias in the global density profile due to the spheri-
cal approximation shows a very similar behavior regardless of
the line of sight, exhibiting an overall overestimation of the
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Fig. 6. Gas density profile along 40 lines of sight for two clusters chosen as examples. In the left figure, the regular cluster CL0O129_1 is reported,
while the right figure presents the irregular cluster CLO005_1. For both figures, the black line refers to the input gas density profile, and the colored
lines refer to the observed profiles, extracted assuming spherical geometry for the gas spatial distribution. Each color refers to a specific line of
sight, as reported on the polar plane. In the bottom panel of both figures, the observed-to-input ratio is reported for each line of sight. It is evident
how the input profile is better reconstructed for the regular cluster. On the right of each figure, three cluster projections are reported (the color of
the edges identifies the corresponding line of sight). The solid and the dashed circles refer respectively to Rsgp and 2R5. We note the smooth shape
of CL0129_1, regardless of the projection, and the irregular shape of CLO005_1, where the substructure position changes with the projection.
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Fig. 7. Characterization of the bias introduced by the spherical assumption for the whole sample. Left figure: Bias in ICM density profile due to
spherical assumption. In the bottom panel, we report the zoom of the innermost region. The gray lines refer to the global density profile for each
sample realization (one for each line of sight), the solid black line refers to the mean over the sample realizations, and the dash-dotted lines refer
to the 1o value. Right figure: Scatter profile of the sample’s density profiles around the global density profile (upper panel) and the relative bias
due to the spherical assumption (bottom panel). The lighter black lines refer to the scatter profile for each sample realization, the solid black line
to the mean over the sample realizations, and the dash-dotted lines to the 1o~ value. The black dashed line refers to the input profile, and the green
dashed line refers to the 50% level.

reconstructed profile that gradually increases with the radius.
More specifically, in the innermost regions for R < Rsg, the
mean bias introduced by the spherical approximation is <10%
and decreases down to <5% for R < 0.4Rso0. Conversely,
the bias increases in the outer regions, reaching 50% at R ~
2Rs0 (see Table 2). As expected, this behavior does not sig-
nificantly differ from one sample realization to another; that is,
the line of sight does not introduce significant differences in
the bias.

These results show that the reconstructed global density pro-
file is generally overestimated. We can hypothesize that this is
due to the presence of irregular clusters in the sample since, as
we observed in Sect. 4.1, the presence of substructures causes
an overestimation of the observed cluster emission and thus of
the observed density profile in the region where the substructure
appears. Therefore, if several irregular clusters are included in
the sample, the global density profile should be overestimated
over a large radial range, as shown by the results. Moreover,
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Table 2. Results of the analysis for the biases on the global density profile and on the intrinsic scatter of a cluster population.

Bias in global density
b, + 0% [%]

Bias in density scatter [%]
by + o' [%]

R [Rspp] Complete sample Regular sample Irregular sample Complete sample Regular sample Irregular sample
0.2 1.37+0.01 —-0.66 +£0.02 2.74+£0.03 -3.9+0.1 -13+03 124+04
0.5 6.61 +0.03 1.82+0.04 29+0.1 67.1+0.2 9.3+0.6 139.6 £0.8
0.8 9.43+0.03 1.24+£0.03 12.5+0.2 111.1+ 0.4 46.9+0.3 374.1+1.6
1.0 12.8 £0.08 -1.14+0.04 23.9+0.3 110.1£0.5 25.8+0.3 287.7+1.6
1.5 30.3+0.2 5.63+0.08 67.0+0.7 1049+04 552+0.6 1599 +1.1
2.0 56.9+0.2 26.7+0.1 105.3+0.9 954+04 45.2+0.7 174114

Notes. The results are given for the entire sample (98 clusters) and for two subsamples (15 clusters each one) composed of regular or irregular
clusters. The errors on mean values are attributed to the differences given by different sample realizations along different lines of sight for the

quantities g, ' = (b'*

los
q 4 MAX +b‘7 MIN)/2'

the bias increases with the radius. This can be due to the sub-
structure’s apparent position: The profile tends to be more over-
estimated if the substructure appears in the outer regions (see
Appendix B).

Next, we move on to the analysis of the results on the sam-
ple intrinsic scatter profile. First of all, we note that the observed
total dispersion o (see Eq. (6)) almost entirely coincides with the
intrinsic scatter oy, as the statistical scatter o, is very small
because we used mock observations with high statistics derived
from simulations. With these results in hand, we observed that
the intrinsic scatter (Fig. 7, right upper panel) behavior is sim-
ilar for both the observed and the input scatter profiles: They
show a convex shape with a minimum in 0.4—-0.8Rs0o. At smaller
radii, the scatter increases since simulated clusters present dif-
ferent core densities and slopes. In the outer regions, the scatter
increases since clusters more frequently show substructures in
these regions.

The difference between the observed and the input scatter
can be evaluated by analyzing the bias b, (Fig. 7, right lower
panel). We observed that the observed and input scatter mostly
differ in the outer regions. For R < 0.3Rsq, the difference
between the observed and input scatter is in fact not very sig-
nificant, with an associated bias b; < 10%. This is due to the
fact that in these regions the observed density profile closely fol-
lows its corresponding input profile (b, < 5% for R < 0.4Rs50)
regardless of the cluster and the line of sight so that the distri-
bution of the observed profiles is very similar to the distribution
of the input ones, and thus the bias in the scatter is small. Con-
versely, in the outer regions the observed scatter increases much
more than the input scatter, with an associated bias by > 100%
for R > 0.6Rs5(. This is likely due to substructures that show up
at different projected radii along different lines of sight, impact-
ing a large radial range.

For both the global density and the intrinsic scatter profiles,
we hypothesized that the differences between the observed and
the input quantities could mainly be due to the presence of sub-
structures in some clusters. This hypothesis can be tested and
verified by dividing the sample into subsamples with different
morphological compositions.

5. Substructures impact analysis

We tested the impact of substructures by defining two subsam-
ples that we labeled as the “regular sample” and the “irregular
sample”, which were respectively composed of clusters present-
ing or free from substructure emission. Thanks to this differen-
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tiation, we could isolate the substructures’ impact and evaluate
the related bias.

5.1. Déefinition of subsamples

To divide the sample into regular and irregular clusters, we
defined a “shape estimator” (SE), that is, a quantity that can
evaluate the presence of substructures. Substructures modify the
SB profile shape by introducing an SB peak where the sub-
structure appears (for an example, see Fig. B.1). Obviously, the
peak position depends on the considered projection. We took
advantage of the large number of projections we had, and for
each cluster we compared the SB profiles from different lines of
sight. Clusters that present substructures show different SB pro-
file shapes depending on the considered projection, while regular
clusters show very similar profiles regardless of the line of sight
(Fig. 8). Therefore, we could distinguish between regular and
irregular clusters by evaluating the SB profile distribution width,
normalized for the mean surface brightness value (i.e., their scat-
ter og B)-

There are several morphological indicators that are used in
the literature to classify clusters that have been calibrated on X-
ray observations (e.g., see Campitiello et al. 2022 for a recent
work using these indicators). However, their application to our
sample of simulated X-ray observations would require further
calibrations that are beyond the scope of this work. For this rea-
son, we defined the SE as the combination of different profiles’
distribution scatters at different radii:

SE = /Z o25(ry).

In particular, we considered seven radii between 0.1Rsq and
2.0Rs50 (see Appendix C). We then computed the SE for all the
clusters in the sample and ordered them in ascending order with
respect to the SE value so that the first clusters are the most
regular ones, while the last are the most irregular. We identified
two subsamples, one of regular and one of irregular clusters, by
respectively selecting the first and the last 15 SE-ordered clusters
(see Fig. C.2).

The regular clusters are characterized by a lack of substruc-
tures. However, their morphologies typically differ from a spher-
ical shape, showing triaxial structures. Thanks to this charac-
teristic, we could use the regular sample to study the spherical
assumption bias in nonspherical objects without substructures
(i.e., without the main source of deviation from the spherical
symmetry).

®)
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5.2. Analysis of subsamples

We repeated the same analysis outlined in Sect. 3.2.2 on the two
subsamples defined in the previous section, obtaining for each

subsample 40 global density profiles n:};jgm) and 40 global scat-

obs(los)

inI/R (one for each sample realization along a line

ter profiles o

of sight) and the mean global density and scatter profiles over
the 40 sample realizations, nggjk and O-?IR:,I R The results are
reported in Fig. 9 and Table 2 and are compared with the results
obtained in Sect. 4.2 for the complete sample. As one can see,
the sample composition strongly affects both the reconstructed

density and scatter profiles.
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For what concerns the density profile, we observed that for
the regular cluster sample, the observed profile differs from the
input profile by less than 10% up to a very large radial range
(R = 1.5Rsy), while for the complete sample, the 10%-bias
range is achieved only up to R = 0.9Rsq. In addition, for the
regular sample, the bias remains <5% for a very extended radial
range (R < 1.2Rsq0). On the other hand, for the irregular clus-
ter sample, the observed density profile is well reconstructed
(b, < 10%) for a smaller radial range (R < 0.7Rsq), while at
R =~ Rsq, the observed profile is overestimated by more than
20% with respect to the input profile.

We can conclude that the differences between the observed
and the input profiles strongly depend on the sample composi-
tion and, in particular, on its large-scale morphology. That is, if
the sample is composed of clusters that present substructures,
then the density profile of the sample is less accurately recon-
structed than for regular cluster samples. This is highlighted also
by the radius at which the difference between the reconstructed
and the input profile can be seen. For irregular clusters, the bias
increases significantly at R = Rsgo, where indeed substructures
begin to appear. Considering the complete sample, where both
regular and irregular clusters are present, the substructure effects
are reduced by the regular clusters so that the global profile of
the sample is better reconstructed for a large radial range than
the case where only irregular clusters are considered.

Differences between the regular and irregular samples
became even more pronounced when we investigated the scat-
ter. The regular sample presents an observed scatter much more
similar to the input one than the complete sample, with b; < 10%
for R < 0.5Rs500. The bias reaches a maximum value of ~90% for
0.6R500 < R < 0.7R500 and then stabilizes to ~50% for R > Rsq.
For the irregular sample, we could see that the observed scat-
ter differs from the input one much more than the complete and
the regular samples, even for small radii, being <10% only for
R < 0.2Rs5qp, while at R =~ 0.3Rs5yy we find by ~ 40%. The bias
increases up to very high values in the outer regions. We found a
maximum bias of %400% for 0.7Rs00 < R < Rsop and by =~ 200%
for R > Rs()o.

These results confirm that the observed density profiles of
irregular cluster results are overestimated in the radial range
where the substructures appear. Since the position of the sub-
structure differs from one cluster to another, the sample profile
distribution will be broader than the input one. For a regular clus-
ter, this is obviously not valid. Since there are no substructures,
the density profile is well reconstructed for all the clusters in the
sample, making the sample profile distribution much more simi-
lar to the input one.

The impact of the substructures is also noticeable when
studying the results for different sample realizations. For the reg-
ular sample, every line of sight shows a very similar behavior,
while in the irregular sample important differences can be found
from one sample realization to another. This is obviously due to
substructures. In the regular sample, each cluster appears simi-
lar to itself regardless of the line of sight, so there are no large
differences between the sample realizations. On the other hand,
in the irregular sample, each cluster can appear in very different
shapes depending on the considered line of sight, thus creating
very different sample realizations (see Fig. C.3).

These results led us to the conclusion that the high bias mea-
sured for the complete sample is indeed due to substructures. In
fact, since the sample is composed of both regular and irregular
clusters, the profile distribution is primarily enlarged by irregular
clusters.
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6. Conclusions

In this paper, we tested the three-dimensional reconstruction of
the global ICM density profile of a cluster population and its
intrinsic scatter profile when spherical geometry is assumed. We
used a sample composed of 98 simulated galaxy clusters that was
built to be representative of a common cluster population. We
considered 40 different sample realizations by projecting each
cluster along 40 different lines of sight. For each sample real-
ization, we emulated an X-ray observation of all the clusters in
the sample, and we extracted the electron density profile while
assuming a spherical geometry for the gas spatial distribution.
We then derived the global gas density profile for each sample
realization and compared it with the input global density profile,
which was directly given by the simulations. We were therefore
able to determine the bias introduced by the spherical assump-
tion in the reconstruction of the ICM density profile. We also
analyzed the bias in the intrinsic scatter of the profile distribu-
tion for each sample realization.
For the global density profile, we found the following:

— It is well reconstructed for a large radial range, with a bias
due to the spherical approximation smaller than 10% for R <
Rs00-

— In the innermost regions (R < 0.4Rs(), the bias decreases
down to values <5%.

— At large radii (R > Rsg), the bias increases up to =50%
because of the impact of substructures.

— The bias strongly depends on the sample composition. If the
sample is composed of regular clusters (without overdensity
substructures), the bias is smaller (b, < 20% for R < 2Rsq
and b, < 5% for R < 1.5Rsy). However, if it is only com-
posed of clusters that show substructures, the bias increases
considerably (b, > 10% for R > 0.7Rsq).

For the intrinsic scatter of the density profiles’ distribution, we
found the following:

— The mean reconstructed scatter follows the input scatter quite
well in the inner regions, with a bias b; < 10% for R <
0.3R5()0.

— In the outer regions, the reconstructed scatter results are con-
siderably higher than the input one, with an associated bias
that rapidly increases up to ~100% in 0.4Rsp0 < R < 0.7Rs00,
maintaining this value for larger radii. This is due to sub-
structures in the outer regions of some clusters in the sample
that cause the density profile to be overestimated in the radial
range where substructures appear, making the sample profile
distribution broader. Similar to the bias in the density profile,
the bias in the scatter strongly depends on the sample com-
position: If we consider a sample composed exclusively of
clusters that do not show substructures, the bias in the pro-
file distribution scatter is by < 10% for a larger radial range
(R < 0.5Rs00), and in the outer regions, it is reduced by a
factor of two, down to ~50%. If we consider a sample com-
posed exclusively of clusters that do show substructures, the
bias is $10% only for R < 0.2Rs0p (at R = 0.3Rs5pp we find
by = 40%). In the outer regions, it increases up to a maxi-
mum value of %400% for 0.7Rs50p < R < Rsoo and by = 200%
for R > R50().

The analysis outlined in this paper led to the estimation of
the biases that should be considered when 3D reconstruction
of the ICM density profile through spherical approximation
is performed on real observations, particularly when consider-
ing cluster substructures. In fact, even if the substructures are
generally masked out from real observations, it can occur that
some of them appear indistinguishable from the central core and
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consequently cannot be masked, introducing the bias that we
evaluate in this work. Moreover, the shape of the intrinsic scat-
ter found in the analysis can be used as a comparison for real
observations of cluster samples.
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Appendix A: Sample properties Cluster Rsoo Moo Tso SEu
[arcmin] [10' My] [keV]
Table A.1. Table of the sample properties. CL0049 2 3.101 2.935 3.507 0.851
CLO053_1 4.330  7.993  5.387 0.896
Cluster R Msw  Tsoo SEn CLO0S5_1 4.403 8405  7.408 1.945
[arcmin] [10"Mg] [keV] CLO0057_1 3.330 3.634 4412 3.573 (D)
CLO059_1 4.487 8890  5.695 2.153 ()
CLO00L_1 4271 7670  5.755 2.101 CLO061_1 3416 3925  3.784 0.584(R)
CLO001 2 3429  3.969  4.152 0867 CLO061_2 3296  3.524  3.143 0.889
CLO001 3 3.594 4571 4467 1.632 CLO067_1 4.806 10928  7.186 1.154
CLO003_1 4431 8567 6515 0837 CLO068_1 4355  8.127 4713 1.828
CL0003 3 3.828 5522  3.888 0.688 CLO069_1 4.891 8247  6.621 3.311 ()
CLO004_2 3.831 5536  5.018 0498 (R) CLO0T2 1 4321  7.946 6479 1346
CLO005_1 3.661 4831  4.175 1.872 CLO074_1 3302  3.546  2.998 2.479 (I)
CLO006 2 3.342  3.674  4.154 0.670 CLO075_1 4390 8328  6.990 0.927
CL0006_3 2.774  2.101  2.912  1.323 CLO076_1 3.723  5.080  4.076 2.307 (I)
CLO008 2 3.052  2.798  2.926 0945 CLO079_1 4.487 8889 5746 1.230
CLO008_3 2.745  2.036  2.090 0.609 (R) CLOOSI 1 3.801 5405 4626 0.664
CL0009 2 3.033 2748  3.739 0.601 (R) CLO089_1 3.544 4380 4376 2.243(I)
CL0010_1 3.570  4.480 3780 1593 CLO091_1 3718 5061 4307 1.577
CL0010 2 3.517 4282 4.679 0.774 CL0092_1 4.183 7205  4.403 1.590
CL0010_3 3.328  3.630  3.855 0.537(R) CLO093_1 3.421 3941 3389 3.261 ()
CLO012_1 3.915 5910  3.849 6.772 (D) CLO094 1 3371 3770 3.617 2.036
CLO013_L 4.145  7.009 5013 1.030 CLO098_2 3.494  4.198  3.861 0.633
CLO014_ 1 2.923 2458  2.881 2.005 CLO099_1 4362 8.169 5523 1231
CLO015_1 3.800 5402 4.662 3.411(I) CLOI02_1 4486 8886  7.751 0.627 (R)
CLOO017_1 4.699 10215  7.337 0.698 CLOIO7 1 4259  7.604 5401 1355
CLOOI8_1 4.860 11297  8.446 1.057 CLOLIO 1 4350 8105 4994 1551
CLO018 3 3.264 3423  4.086 1.741 CLOI19_1 4242 7515 4554 3.060 (I)
CL0020_3 3.782  5.324  4.660 0.769 CLOI20_1 4414 8467 5898 0911
CLO021 1 4.685  10.124 6391 1.702 CLOI29_1 4474 8817 8549 0381 (R)
CL0022 2 3219 3285 4700 0.810 CLOI34_1 4387 8310  6.085 0.746
CL0025 2 3044 2764  3.040 0.833 CLOI46_1 4367 8198 4381 1.771
CLO025_1 4438 8.604 8218 0520 CLOIS3_1 4422 8510  6.741 0.644
CLO026 3 3.031 2740 3492 1.200 CLOI60_1 4218 7385 6918 0.756
CLO026 4 2.739 2022  2.630 049 (R) CLOI89_1 4263  7.626 5327 0.564 (R)
CLO028_1 3.801 5408 ~ 35.641 1984 CLO206_1 4273  7.680  7.187 0.552(R)
CL0029_1 4.998 12293  8.152 1297 CLO213 1 4231 7458 4557 1.009
CLO034_1 3.820 5489 4.162 1.065 CLO217_1 4356 8138  6.197 0.992
CL0034_2 2.880 2351  3.167 0.544 (R) CL0226 1 4180  7.191 6133 0743
CLO035_1 4.633 9792 5781 2413 () CLO249 1 4302 7.838 5043 1497
CL0039_1 4.821  11.031 7.022 1715 CLO268 1 4319 7931 4982 1525
CLO040_1 4233 7466 5255 2.629() CL0272_1 4277 7701 6567 0.592(R)
CLO042 2 3.055  2.805  2.626 1.303 CLO276_1 4.168  7.127  7.426 0.455(R)
CLO043_1 4.349 8095 5401 1085 CL0286_1 4313  7.899  5.115 0.870
CLO046_1 4.504 8995  6.966 10.129 (I) :
CL0047 1 3.714  5.042 3683 1.284 Note. The forth column reports the shape estimator value
CL0047 2 3.494 4.198 3728  0.846 (Appendix C) and the cluster classification: (R) are clusters in
CL0047 3 3.331 3.637 3827 0.843 the regular sub-sample, (I) are clusters in the irregular sub-
CLO049_1 3.399  3.865 3430 1.136 sample.
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Appendix B: Substructures impact

In our study the observed density profiles result generally over-
estimated with respect to the input profile. In particular, the over-
estimation arise in the region where the substructure appears.
This result can be justified considering two effects: the projec-
tion effect and the model effect.

The density profile derives in fact from the measured sur-
face brightness profile. The observed surface brightness profile
is obtained by measuring the projected gas emission averaged
on annular bins, so that the three-dimensional emission is redis-
tributed on circular shells instead of spherical shells. Since
surface brightness is related to square density as SB o« (n?), if
inhomogeneities are present in the gas distribution their emission
is enhanced. This can cause an overestimation of the gas density

profile in the order of VC where C = (n?)/{(n)? is the clumpi-
ness factor (see e.g. Nagai & Lau 2011; Roncarelli et al. 2013;
Eckert et al. 2015). These effects make substructures appear as
high emission peak.

Moreover, the model we used does not take into account the
substructures emission peak. In fact, we are assuming a spheri-
cal shape of the gas distribution, so that the observed emission
measure is modelled as a composition of S-profiles (Eq. (3))
that can’t describe the emission peak. The resulting fitted sur-
face brightness profile is forced to pass through the peak, result-
ing less steep than the measured one in the region around the
substructure, leading to an overestimation of the real profile
(Figure B.1). As a consequence, the reconstructed density profile
results overestimated as well.

Moreover, as shown in Section 4.2 and Section 4.1 the over-
estimation of the density profiles increases gradually with the
radius, in particular in the complete sample and for the irreg-
ular clusters, showing that this effect is due to substructures.
This radial variation of the density bias can be explained through
the two effects just outlined. In fact, if we consider a projection
where the substructure appears far from the central core, where

the cluster main emission is lower (Figure B.1, left), the sub-
structure emission peak emerges from the main emission profile
much more than the case when the same substructure appears
near the central core (Figure B.1, right). In this way, the over-
estimation of the surface brightness, thus the overestimation of
the density profile, is higher for larger radii, as shown by the
colored areas in Figure B.1. Therefore, if we consider a sam-
ple in which substructures can appear at any distance from the
core, the bias on the global density profile does increase with the
radius.

Appendix C: Shape estimator

We define the shape estimator, a quantity that can evaluate the
presence of substructures. For each cluster the shape estimator
S E is defined as:

SE = /Z o2, (r).

where ogp(7;) is the scatter of the surface brightness profiles
(normalized over the mean value) measured from the 40 different
lines of sight, evaluated at R = r;. Substructures produce an alter-
ation in the surface brightness profile by introducing an S B peak
where the substructure appears, so that in that region the surface
brightness scatter is higher. The scientific aim of this estimator is
to identify the most extreme cases in our sample. Its calibration
for a more general use is beyond the scope of this work.

We report in Figure C.1 the scatter at different radii for each
cluster in the sample. The osp(r;) distribution clearly becomes
broader as the radius increases: this is due to the fact that in
the inner regions substructures are not very distinguishable from
the central core since their emission is weaker than the central
core, so that the 40 surface brightness profiles of each clus-
ters are very similar to each other, thus the scatter is small; if

(C.1)
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Fig. B.1. Surface brightness profile for cluster CLO005_1 seen from two different line of sight. The orange data point refers to the measured
emission, the blue line refers to the fitted B-profiles combination model. The emission peaks correspond to the substructure emission: in the
projection reported in the left figure the substructure appears in the outer regions of the cluster (R ~ Rsq), while in the projection reported on the
right the substructure appears near the central core. The difference between the fitted profile and the observed one can be quantified by the colored
area that is larger when the substructure appears far from the central core, which means that if the substructure appear far from the central core the

observed density profile results much more overestimated.
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Fig. C.1. Scatter of the surface brightness profiles distribution (over the 40 line of sight) for each cluster at different radii. The scatters distribution

becomes broader with increasing radius.

the substructure appear in the outer regions its emission peak
is more evident so that the scatter is higher. Moreover, the lat-
ter consideration applies only to irregular clusters (i.e. clusters
that present substructures), while for regular clusters the surface
brightness profile is not affected by emission peak, so that the
scatter remains small regardless of the radius. For example, if we
consider CL0035_a its scatter goes from osg(R = 0.1Rs509) =
0.05 to osp(R = 2Rsp9) = 1.9, while CLO129_a goes from
osg(R = 0.1R500) = 0.02 to os5(R = 2R509) = 0.2. Therefore
we can conclude that CL0129_a is more regular than CL0035_a.
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In Figure C.2 we show the shape estimator S E in ascend-
ing order, so that the clusters can be considered in "regu-
larity" order. As we can expect, the sample shows a con-
tinuous distribution of SFE, which means that the sample
presents a varied morphology composition. We can therefore
consider the sample as representative of a common cluster
population.

We chose the first 15 clusters as the regular sub-sample and
the last 15 as the irregular sub-sample. In Figure C.3 we report
four clusters of each sub-sample that show the validity of the



Veronesi, L, et al.: A&A, 694, A107 (2025)

SE

000
Z‘ .,.,.,..n(nunl'i
0000®®
0nn000000uunounu"“0“
TYYLLLIX]

) ) 8, N, 8 N 0 N 0, e 0 N N N 0, N N e, N, e 0, N e 0 0 e e e 00 e e e e e
a'o'no's'o'slolv'a' ng'o'nolm N om0 o' in'm'n N o ' m o't in N in'm m e ¢ m t e N Ko o 'a ' o a'o'n N o n'e'o Ha'e e o ' 0wl n'w' ¢ 't 'l o 0 o' ¢ oo g 'm g i~ '
AR BRSO AMANO B ON O OO ANENOOINMONAMANNOIIIORONANANO AN A AMNINT ONN NOTNIONO IO AN N AONMATOOINN AN ONBARMER NI AND N S
NGO O00ORNHONOOHOHO0O00ONHHOO000000OONOONNOOONHNNOOOOHO0000000 00NN HOO00000 0000000000000 1000009
553835383 3653800380000830060000000080000000000000000000000000000088000600000000000000000000000000000808
99S5283358333388333883833:383833388323383332838339838333883338838338382338833383833:83838388232338333838339382333983338333833333
[sisisisisieisisisisislslsisivislsisivislsisivieislstsivislsisivielsisisielslsisivioislsieiolsisivivislsisieicislsiviclslsivivislsisieicisisivielslsivivislsisieiclslsivivislsivivislslsieielslsiole)

Fig. C.2. Shape estimator for each cluster in the sample, showed in ascending order, from the most regular to the most irregular. The blue clusters
compose the regular sub-sample, the red clusters compose the irregular sub-sample.

method just defined: the clusters of the regular sample do not
show any substructure and present a regular central core, while
the irregular sample clusters show complex morphology.
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CL0129_1 (0,0) CL0129 1 (5,2) CL0129_1 (8,3) CL0089_1 (0,0) CL0089_1 (5,2) CL0089_1 (8,3)

CL0010_3 (0,0) CL0010_3(5,2) CL0010_3 (8,3) CL0012_1 (0,0) CL0012_1 (5,2) CL0012_1 (8,3)

CL0272_1 (0,0) CL0272_1 (5,2) CL0272_1 (8,3) CLO016_3 (0,0) CL0O016_3 (5,2) CLO016_3 (8,3)

Fig. C.3. Example of clusters that compose the regular (left) and the irregular (right) sub-sample. For each clusters we report three different lines
of sight (i.e. each column is a different sample realization). The solid and dashed circles represent respectively Rsqo and 2Rs.
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