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The Goldstone theorem states that under certain conditions, which will
be stated later, in a dynamical theory which is invariant under a particular
symmetry group and where this symmetry group is broken by the ground-
state, e.g. the vacuum state in a relativistic field theory, there must exist
particles of ‘mass zero or—in the ‘nonrelativistic case~-excitation modes,
the energy of which tends to zero with increasing wavelength. This
theorem is of great interest for elementary particle physics for essentially
two reasons:

(1) There are a number of symmetry groups in elementary particle
physics, like SU(3) or even higher symmetries, which are not exactly
realized in nature in ithe sense ‘that there: exist. one<particle states ‘or
resonances grouped into multiplets which are supposed to transform
approximately according to an irreducible representation of this group
but which do not have exactly the same mass, and secondly that in the
interaction of these particles and resonances the conservation laws; related
to: this symmetry ‘group by Noether’s theorem; are only approximately
obeyed. On the other hand, these symmetry violations do not seem to be
connected in a direct or an indirect way with the appearance of mass zero
particles. Therefore, if one wants to interpret this symmetry violation as
a consequence of an asymmetrical vacuum as proposed for SU(3) by Baker
and Glashow?!, rather than as an asymmetry of the underlying dynamical
law, one has to find some means to invalidate the Goldstone theorem.

(2) There do exist in nature a number of massless particles: the photon,
the neutrinos and, probably, the graviton. In a general dynamical theory
it is rather difficult to obtain such particles as particular solutions, except
by chance or if they are introduced from the beginning. In this context
the Goldstone theorem, it appears, could provide an interesting way to.
enforce their existence, because, in fact, all the known massless particles
do occur in connexion with symmetry violations, the photon with isospin
violation, the neutrinos with parity violation, etc., and the graviton
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probably with a violation of the Poincaré group®. Unfortunately, how-
ever, it turns out that all these mass zero particles do not have the sym-
metry properties, as explicitly stated by the Goldstone theorem in its
present mathematical formulation. Therefore, in order to uphold this
conjecture, the present predictions of the Goldstone theorem on the
symmetry properties of the massless particle must be generalized.

Consequently the validity of the conjecture that the observed symmetry
violations in elementary particle physics arise from an asymmetry of the
vacuum state, will decisively depend on an invalidation or—if we exclude
SU(3) and possible higher symmetries as fundamental symmetries—on a
generalization of the Goldstone theorem. In contrast to this, in non-
relativistic dynamics we know many systems where the Goldstone theorem
holds in its present form. The magnons in the ferromagnet, the phonons
in liquids and crystals are, for example, Goldstone modes connected with
an asymmetry of the groundstate®.

There exist many -general proofs .of the Goldstone. theorem  today:
The first proofs were given by Goldstone, Salam and Weinberg* and by
Bludman and Klein®.: A proof on:a much more rigorous basis using only
the algebra of observables was recently given by Kastler, Robinson, and
Swieca, and Ezawa and Swieca®.

Let me roughly sketch the proof of the Goldstone theorem in order to
indicate the basic assumptions. Let us assume there is a certain symmetry
transformation which leaves the dynamics invariant. Formally, this may
be expressed by the forminvariance of a Lagrangian density orthe
forminvariance of an equation of motion and the quantization condition.
As:an example we may just use a simple gauge transformation to simplify
the discussion. As a consequence of the invariance there exists, according
to the Noether theorem, a conserved current:

0,j“(%) = 0 €9

and a time-independent hermitean operator

o=w =], aeiw @

which serves as a generator of the unitary representanon of the symmetry
group in the state space. The symmetry is broken by the translational
invariant vacuum state, if for some field operator ¢(z), which is not invar-
iant under this symmetry group, i.e. which transforms as d(x)— ¢'(x),
the vacuum expectation value changes

(O] $() |0) = (0] $(0) [0} 5 (0] ¢' (=) 10) = (01 #/(0) [0) 3
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or, expressed differently, if for an infinitesimal symmetry transformation
~04 we have

512«)1 dsyme() [0) = —i (0] [Q, $()]|0) = C 0 )

(with C = constant). By introducing a complete set of intermediate states
the latter may also be expressed as”

0%:02 T {010 1079(0'] p(=) [0y = C 2 0. (5)

If we make use of the local form (2) of the generator one gets

i j a6 (0] [, $@][0) = C % 0 RO

(for all gurfaces)

which:leads td the local condition

O i), $(@)]10) = a%f(z) (c= =) @
with

N
-—1fda”é-z—; f(z) = C.

Due-to the locality requirement (vanishing of the commutator for space-
like distances) f(z) can be written as a superposition of causal functions
A{z; m) with various masses m: '

f(2) = indmzp(nlz) Az; m) fd}112p(n22) =1 ®
As a consequence of the current conservation M
02f(z) = 0 and hence p(m?) = d(m®) )

i.e. ¢() must contain matrix elements leading to massless particles from
the vacuum.. This-is the content of the Goldstone theorem.

From Eqn. (5) one merely deduces that there exists in the theory other
states |0") different from the vacuum state |0) which have the same energy
(and momentum) as the vacuum state since @ is a (time independent)
symmetry operator. We call these states [0") spurion states. They are
created from the vacuum by ¢(2). Relation (9) which has made use of
the local structure of the symmetry operator and hence contains more
information, reveals that the spurions, in fact, are merely the infrared
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limit (p — 0) of massless particles generated by #(z), the Goldstone par-
ticles, which we will shortly call ‘zerons’. Roughly speaking the zerons
are localized spurions.

In this connexion' Heisenberg? has. emphasized. that any localized

* spurion connected with a nonlocalized spurion could again be a possible
‘zeron’. - Hence the symmetry character of the Goldstone zeron should in
general not be immediately identified with the symmetry character of the
spurions which is usually done, but states a separate problem.

I wish now to remark on the various steps of the rough (and partly
inaccurate) derivation in particular to indicate the various assumptions
of the Goldstone theorem.

The first assumptlon refers to the existence of a conserved current. This
assumption is decisive because it expresses that there exists a symmetry of
the dynamics, at all. In our proof above the existence of such a locally
conserved current is necessary to conclude that the spurions are not
isolated states d(p¥) but can be localized to become mass zero particles.
However, it is:not important that j*(x) is really a.local current. It is
sufficient to require that for an arbitrarily large, but still finite volume V'
with the surface S, the change of the ‘charge’ Q(¢) with time within this
volume is accompanied by a current Jg(z) leaving through the surface, i.e.

;f;QV(i) = T, (10)

The volume ¥ e.g. may be a measurable region in a bubble chamber or
even the volume of the bubble chamber itself. The requirement of a con-
served local current j#(x) would mean, that this relationship holds for any
volume, and hence also for the infinitely small volume element in which
case we can write:

00 = #a

Is(®) =f ds - j(x, 1) (1n

If we have only the relationship (10), then upon a symmetry varxatlon of
$(z) only within the volume ¥ at time ¢’, we would get

é(ol S5imd(@) [0) = —i (0] [Qp(t)), $(@]10) = Cp(x;t — ) £ 0 (12)

with
lim Cp(x; 1 — ¢') = C. = const.
V-
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and hence due to (10)

az <01 Ssvm(@) |0) = —i (0] [(t), ()1 10) = ;% Cp(x;t — 1)

0 in'region 4
{#0 outside. ' (13)

\

Light .cone

For a local theory this vanishes for # within a region A4, bordered by light
cones through the surface points S, i.e. for 7 = ¢’ if z is inside the volume.
Condition (13) is sufficient to localize the spurion to a certain extent, and
hence to prove the existence of a zero mass particle. '

In a relativistic quantum field theory it is by no means trivial to establish
the -existence of a conserved current, because the construction of such
currents usually involves products of field operators at the same space-time
point which are rather singular objects. - Consequently it is certainly not
sufficient to establish the conservation laws simply on the basis of the usual
(classical) substitution transformations. Nevertheless one has to keep in
mind that the Goldstone theorem only breaks down if the weaker require-
ment (10) is violated.

An example of such an intrinsically broken symmetry is Schwinger’s
model of 2-dimensional quantum electrodynamics®, where, despite of the
formal y;-symmetry, the chirality current is not conserved. Some people
call this-case a locally broken symmetry®.  However, such a definition
seems only worthwhile if something is Ieft of the sym’metry at all; e.g. the
weaker condition (10) which then would still imply a ‘zeron’. Otherwise
we should simply call this a ‘no symmetry’ case.
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The next question refers to the existence of the generator: @.-. One can
easily show that if the vacuum is nof invariant under the symmetry group,
ie. if O |0) # 0, then the integral (2) will diverge. Physically speaking the
‘charge’ of the translational invariant vacuum state is either zero (invariant
case) or infinite. In the latter case also all other states created from it by
application of a finite number of field operators have also infinite charge.
Hence Q itself is an infinite operator and no proper element of the
Hilbert space. Hence also the unitary transformation:

UA) = e'*@ (14

connected with the symmetry leads out of the Hilbert space. Vacuum
states |0), which are formally obtained by the transformation (14) belong
to different inequivalent representations of the algebra of the field opera-
tors. They differ, so to say, by an infinite number of spurions or infrared
zerons.

Although the operator @ is ill-defined, the commutator of Q with any
operator localized in a certain finite region, which only was used above, is
well-defined. In this case one can always work with the well-defined
operator Qp(¢) and go to the well-defined limit ¥~ oo of the commutators.
It is important in this context that the commutator is assumed to vanish
for large space-like separations, a property which is required for all observ-
ables in a local relativistic theory.

It was pointed out by Higgs, Englert, and Brout', and also by Hagen,
Guralnik, and Kibble! that the Goldstone zerons can be avoided if there
are in addition long range interactions in the theory from the outset,
however, as will be seen, at a dear price. That long range forces affect the
Goldstone theorem, in fact, was recognized earlier by Anderson®® for the
nonrelativistic case in particular in connexion with superconductivity
where the Goldstone modes are pushed up to become the plasmons For
the relativistic case, however, it was important to recogmze that long
range interactions occur in connexion with gauge fields, i.e. mass zero
vector fields, where the nonlocal character of the interaction becomes
apparent if one uses the non manifestly covariant Coulomb gauge related
to a certain space- hke surface

— nd)(nd) =0 ’ (15)

which involves the time-like vector n* the normal to this surface. Due to
the long-range interaction (Coulomb type interaction) the commutator
O [@p (), ¢(x, )] 10) does not become time independent in the limit
V — o0, since the surface current term does not decrease sufficiently fast.
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At the same time the commutator is not manifestly covariant. In fact, the
commutator (7) has now the more general form?!®

O A, $(2)] 10) = 5@ f@) + (@0 — ¥Pmgl)  (16)

If long range interaction are involved, then we can assume f(z) = 0, i.e.
that no mass zero particle occurs, since one has instead

(na)
— (ndy*

to take care of the condition (6), where the inverse operator 0 — (n0)? —
—V? indicates the nonlocal character of this case. In addition, the now
massive Goldstone particle combines with the two massless vector bosons
to form a normal 3 component massive vector field. So, no massless
particles are left in the theory.

One may, of course, also use the manifestly covariant and local Gupta~
Bleuler description using the Lorentz gauge, which, however, implies the
introduction of an indefinite metric in the Hilbert space. In this case, the
Goldstone theorem is valid and ‘hence formally leads to a zeron, which,
however, can be shown®® to decouple completely from the physical states
and eventually is eliminated, if one projects on the physical subspace of
the Hilbert space. Hence also in this description there is eventually no
physical zeron left.

However, it should be emphasized that the example of Higgs and others
shows that a theory of this type-is only causal, and hence physically
acceptable, if the states created by the operator ¢(x) from the vacuum
can be separated completely from the physical states and suppressed. In
this case one then has to check whether the symmetty, which is broken,
still has a non-trivial meaning in the subspace after this projection. This
does not seem to be the case, as we will shortly indicatein the model given
by Higgs:

Higgs'® starts out with a model originally suggested by Goldstone with
the Lagrangian*

g2(2) = 1 fdmzp(nf) A(z; m) fdmzp(mz) =1 (17

1 ‘ e mg
L= #"04 + #04" — ¢°6, - 10" -] (19
for a scalar nonhermitean field operator ¢(x), in which the potential has a

* The notation here is that essentially used by Kibble®.
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minimum for [¢|? = #? = const. In the groundstate hence
(0] $10) =7ne* %0  (x= const.) (19)

Vv

S

N\
o

ol=Groundstate’

The time component of ¢* are the canonical Conjugate variable of ¢(z).
The Lagrangian is obviously invariant under the gauge transformations

$(@) — &' (2)
() > ¢ (@)
which leads to a conserved current d,j* = 0 with
Jt= —ic[¢*"h — $"4"] @1
The symmetry (20) is broken by the groundstate, because

(20)

, 5%<0| 8¢10) = e(0] $(x) |0) = iene’= 5 0. 2)

The Lagrangian may be rewritten by introducing the modular dependence
R(#) and the phase dependence 0(x) of the fields as new field variables:

$(z) = R@)e"
$"(%) = R(@)e™"

with the corresponding canonically conjugate variables as the time com-
ponents of the vectors R*(x) and 6#(x). One obtains

2 040
L, =R“3,R — LR"R, — ;1:72 [R® = 7%* + 0"3,0 —

(23)

2R2“ 24

2

=Lg+ Ly
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which upon variation besides the actual field equations leads to the alge-
braical relations

R,=3,R
6,=R0,0

which may also be inserted into the Lagrangian without harm. The
symmetry transformation (20) in the new variables is now simply

(29)

6(z) —0(x) + el : (26)
with the other variables remaining unchanged, and the current (21) is
| = —et(z) @7)
The groundstate condition (19) is now expressed by
(O] R(2) [0) =7 28)
(0] 8() [0) = o

The first condition (28) does not indicate a symmetry violation, because
R(z) is invariant under the symmetry transformation.: The ‘symmetry
breaking condition (22) arises solely from the second condition'in‘a rather
trivial fashion: ,

L 01 60(2) [0y = e 0 (29)
Ny

From the latter it follows immediately by the Goldstone theorem that
O(z) is-a massless field, in fact, the Goldstone zeron, which can-also be
directly seen from the Lagrangian, if we approximately replace R(z)
7. The R(z) field on the other hand is connected with a particle of finite
mass m,, which can be deduced by introducing the new field operators

r@=R@—7n =R (30)
‘One now introduces a massless gauge field 4*(x) by the prescription
(F#n, is the canonically conjugate variable of 4*):
L = —}F*(0,4, — 0,4,) + }F"F,, + Ly(with 9,0 — 0, 0 + ed)
626
=Lp+ L+ 00,0 + eA,,) — QR—" (31)

which “obviously is invariant under - the coordmate dependent gauge
transformations: ,

O(z) — 0(z) + eA(x)

(32)
AM(z) > A (x) — O*M(x)
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The vector 0, is here now obviously
0, = R0,0 + ed) = — L j,() (33)
: e

The critical commutator for the Goldstone theorem is
O] [j*(="), 0@)] |0y = —e(0] [64(x),0(2)] |0) (34)

which in the Coulomb gauge is nonlocal, and hence does not fulfil the
requirements of the Goldstone theorem. In fact, one finds:

(________________guv aﬂaV)nv‘(nB)fP(mz) dm® A(z; m)

i= (@ —2) (35)
with p(m?) ~ d(m® — e*n?).

On the other hand one can also introduce the new field operator
B(x)= 0 = A () + = a 0(x) (36)

instead of A4,(x) (the canomcally con;ugatevanable isstill F#'n) and
obtain the Lagrangian in the form

L = —}F*(,B, — 9,B,) + }F*F,, + }*R*B,B* + L,  (37)

which does not contain 6(x) any more as variable. The canonical momen-
tum 6# did combine with the two transversal fields of 4% to give a (3
component) massive vector field B with mass m}, = ¢*n? If one restricts
oneself to the state space produced by only applying the gauge invariant
operators F#(x), B*(x), R(z) (but not 6(z)!) on the vacuum, then the
original symmetry no longer has meaning in this restricted state space,
since all operators are (trivially) invariant under the gauge transformations.
Hence this does not lead into contradiction with the general proof of
Ezawa and Swieca®.

The situation is similar, if one introduces non-Abelian groups as Kibble
has shown'. Again the original Goldstone zerons become massive by a:
coupling to a corresponding gauge field by which procedure the gauge
fields themselves become massive. At the same time the original sym-
metry transformations become meaningless in the gauge invariant obsery-
ables. Only the mass zero gauge fields of the unbroken symmetries survive.
However, their mass zero character has nothing to do with the Goldstone
theorem. They are rather the leftover mass zero fields which were put in
from the beginning.

To state the result more clearly, let us consider the isospin group SU(2).
If we break the symmetry around the x- and y-axis by the vacuum, one
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obtains in the simplest case of a scalar isovector field without gauge fields,
a massive scalar boson S°, and positively and negatively charged Gold-
stone zerons S*, §7, if for simplicity we identify the properties of the
zerons with the properties of the corresponding spurions. We get other
zerons by combining $* and S~ with positively and negatively charged
spurions.  If the gauge field is turned on, i.e. if one introduces a massless
vector isotriplet 4%, 4% A7, the 4T and 4~ combines with S+ and: S,
respectively, to give two massive vector bosons ¥+, '~ and only the A°
remains massless. Hence:

massive scalar m = m, SO
massive vector m = en Vrov=

massless vector m =0 AL

The spectrum hence contains incomplete multiples. The remaining mass-
less gauge field is connected with the nonviolated rotation symmetry
around the 3-isospin-axis. If all symmetries are broken, there will be no
massless field left.

If one applies this procedure to a SU(3) invariant theory and subse-
quently breaks this symmetry by strong; electromagnetic and weak inter-
actions, the only remaining mass zero particle is the photon. Otherwise,
however, the model has very unrealistic features, in particular again the
original high symmetry has completely lost its meaning.-

Perhaps one has to be somewhat more careful with the statement that
these symmetries are physically: meaningless because all observables are
left invariant. Also the electric and baryon number gauge transformations
are such symmetry transformations which leave the observables invariant,
but nevertheless have important physical consequences. In fact, this
invariance leads to the superselection rules. However, it appears, that the
strict validity of these transformations is the decisive difference. A broken
symmetry on the other hand can only be sensed, if the theory contains
some ‘observables which are not invariant.

One may believe that at least in the .case of a'non-Abelian symmetry
group like SU(2), there are some objects left in the theory (namely the
incomplete multiplets), which do not have a trivial transformation
character.  According to the construction this, however, is not the case.
For example, neither the ¥+, ¥~ nor the S°, nor the 4° transform like an
1sotr1plet any longer.

This is, in fact, a general deﬁmency of all multiplets which are broken
by an asymmetrical vacuum, and is not characteristic of the Higgs case.
It was Umezawa who particularly stressed this point'®. Let us again
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consider the broken SU(2) isospin symmetry case without the gauge fields.
The vacuum in this case could be hypothetically imagined as a large
isoferromagnet with nonvanishing magnetization in the z-direction. The
energy levels of a particle with isospin % will split up consequently into
two nondegenerate mass components, depending on the isospin orienta-
tion. This, however, is not a correct description. If we imagine, for the
moment, that the vacuum is very large but finite, we may characterize it
by a large isospin I,. The non-degenerate mass doublet is then described
by states of totalisospin I = I, 4 %.1.e. as energy levels corresponding to
different irreducible representations of the symmetry group. If one per-
forms an isospin rotation the levels hence do not transform into each other,
because they differ in energy, but rather transform into themselves plus
spurion contributions. The spurions correspond to the infrared limit of
the Goldstone zerons. The whole reaction to our symmetry transforma-
tion seems to consist in a rearrangement of the isospin in the groundstate.
In particular, if we separate from the field operator a part which, like
R(z) described above, does not participate in the broken symmetry trans-
formations and connect the physical particle’ with. it, then the physical
particle will: behave like an isosinglet under the [y and I, rotations, i.e.
its isospin degree of freedom will appear to be ‘frozen’.  The whole trans-
formations only add terms to the rest fields, which, as Umezawa remarks,

merely change the Bose-Einstein condensation of the Goldstone zerons.

In this language all the components of a nondegenerate multiplet behave
like singlets: under the relevant transformations.. The variant part, a
spurion part, is disconnected and combines with the BE-condensation
part-of the Goldstone bosons.

This indicates that the- original. symmetry transformatxon no longer
connects the components of a split multiplet. -‘There may, however, exist
another, although weakly time-dependent transformation, which does
connect the components of a multiplet in the expected way. In our
example, it will consist of the isospin transformation which rotates the
isospin only of the particle and not the large isospin of the vacuum.
Whether this new transformation is a sufficiently good approximate sym-
metry transformation, 1.e. is sufficiently time-independent, will depend on
the strength of the coupling of the-isospin of the particle to the-vacuum
isospins relative to their mutual coupling. If the particle coupling is
strong a description as an isosinglet or an isotriplet may be more appro-
priate. Biritz!® has given an example of such anomalous multiplets in a
model of a ferromagnetic chain. In connexion with the nonlinear spinor
theory strange particles were interpreted as such anomalous isospin
multiplets'?.
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In the non-Abelian models of Higgs and Kibble the originally degenerate

multiplets after breaking of the symmetry become nondegenerate and even
partially incomplete. It is hard to see how in this case an approximately
valid symmetry transformation can be found which would transform these
objects as members of the original irreducible representation. Obviously,
a theory which approximately retains only the multiplets, but not the
corresponding Clebsch-Gordan coefﬁments and selection rules would be
completely useless.
- There are still a number of other questions Wthh should be studled in
detail. - One question is, what happens to the description of the
isospin rotations around the z- and y-axis in the state space, if the super-
selection rules for the electric charge are established, because then these
transformations, even if performed locally, would connect different invar-
iant sectors. An investigation of this question may perhaps reveal that
Higgs’ suggestion may be physically applicable, after all, in the case where
a gauge symmetry is left intact, because the leftover massless gauge field
would enforce a superselectxon rule.

Theisospin symmetry in elementary particle physics has been conjectured
long ago by Heisenberg and coworkers? to be a possible candidate for an
exact dynamical symmetry which is:broken by the groundstate, because
its violation is accompanied by and phenomenologically attributed to the
mass zero photon. Unfortunately, however, the Goldstone ‘zerons’ in
connexion with violation of the SU(2) isospin group are, as we have seen,
scalar, and, in the usual description, charged objects. Intuitively they are
the magnons, the Bloch spin waves, of an infinitely large isoferromagnet
at zero temperature.  On the other hand it is quite clear that the isoferro-
magnet would not be an adequate description for the physical situation,
because such a vacuum state would also violate CPT-invariance. One can
easily see this if we imagine e.g. a w-meson in such an isoferromagnet,
which would naturally split up into a mass triplet and hence violate the
requirement that »+ and =~ are antiparticles. This indicates that in this
case; one has: to:employ-a more comphcated way to-break the SU(2)
symmetry.

A more appropnate model for the isospin vxolatmg vacuum state in
elementary particle physics would be a model in which at every lattice
point there is a particle and an antiparticle with their isospins pointing
essentially in opposite directions. There would be no resultant polariza-
tion (charge), but the polarization of the particle and antiparticle sub-
systems would be very large and distinguish a certain direction. Under
CPT such a system would transform into itself. A state of this type has
formally some similarity with the groundstate of an antiferromagnet,
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where the spins of neighbouring particles try to be antiparallel. One
obtains such a groundstate, if one introduces forces which tend to align
the spins of like particles and antialign spins of unlike particles.  The
groundstate of such a system is a very complicated object. Biritz and
Yamazaki'® have recently started to investigate this model in-an approxima-
tion where the antialigning forces between the particles and antiparticles
are considered weak in comparison with the aligning forces between like
particles. In lowest approximation one obtains essentially a double
isoferromagnet, a particle- and antiparticle-isoferromagnet oriented in
opposite directions. This describes a particular superposition of states
with isospin I = 0,1 -+ - with zero charge, i.e. without net polarization
in the 3 direction. With the particle-antiparticle forces fully switched on,
the situation gets very complicated, because these forces tend to form local
singlets which upset the double ferromagnetic ordering by flipping a
certain number of particle-antiparticle pairs. The exact groundstate has
not been worked out as yet. The model has to be studied in three dimen-
sions, since, similar to the antiferromagnet’®, the zero-point fluctuations
do not permit a long range ordering in one and two dimensions.

In this iso-antiferromagnetic model there seems to appedr a new un-
charged Goldstone mode which is connected with a localized flipping of
a particle-antiparticle pair. There is a way to write this mode as a pro-
jection: operator

[ ~ 3 4(1 + 7™ [0)

which''senses localized flipped particle-antiparticle pairs: and hence has
some similarity with the photon. *An interesting question, however, is
whether one can avoid now the charged Goldstone modes which are
suggested still to show up in the usual interpretation on the basis of a
general proof of the Goldstone theorem in the algebraic approach.

One actually would suspect that such charged modes, at least in the
usualinterpretation; should arise in’ connexion with ‘a rotation:of the
particle-antiparticle lattice-as-a whole. - However; one: realizes ‘that ‘a
rotation of the lattice, which has vanishing magnetization, after the rota-
tion leads to a state for which the expectation value of the magnetization
in the z-direction is still zero. 'Hence one may expect that the charged
modes do not occur in the same way as in the ferromagnet.

Of course, ‘there: would still remain the question how:the Goldstone
zeron can be endowed with spin without breaking the Lorentz group by
the vacuum, which actually would be required in this case by the Goldstone
theorem?®.:: The hope is here, that actually the Coulomb force; which is
scalar, is inferred by the Goldstone argument; and that the photons only
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follow indirectly from it by locahty and Lorentz invariance. This all has
still to be investigated.

The question whether the neutrino may follow from some kind of a
Goldstone argument must be completely denied at present. This becomes
particularly clear in Umezawa’s argumentations, where the Bose-Einstein
condensation of the zerons appear to be crucial.

Before closing I wish to make a few remarks about the possibility to
directly observe the underlying dynamical symmetries. Up to now we
have argued that the existence of a local conservation law can only be
indirectly inferred through the appearance of the Goldstone zerons, at
least, if no long range forces are present from the beginning. The question
arises whether there is not a direct way to establish the local conservation
law. After all, it states that for every given volume the time-change of
the ‘charge’, e.g. the first or second component of isospin, must be con-
nected with a corresponding current going through the surface of this
volume. If we find in a bubble chamber experiment that in a certain
process isospin is violated, then—in our interpretation—this can only
mean that our book-keeping is incorrect, that some isospin must have
leaked out of the chamber unaccounted. There are; in fact; two reasons
why our conventional book-keeping could be wrong:

(1) mass zero particles carrying isospin with an energy smaller than our
energy resolution may have escaped our observation (infrared problem);

(2) The mteractmg ‘particles were erroneously assumed to be exact
eigenstates of isospin. Already their mass splitting, however, indicates
that this can be only approximately true. So e.g. the «® has small admix-
tures of the quantum numbers.of p?; the #° those of 7, etc.

I finally want to remark on the non-leptonic weak interactions which
phenomenologically can be successfully formulated as isospin $-spurion
emission processes. In a theory with an isospin degenerate vacuum this
formal description may even have a realistic foundation, because, as
Umezawa has indicated, such a spurion is connected with the Bose-
Einstein condensation of the Goldstone boson. It indicates a transfer of
intrinsic quantum numbers to the vacuum as a whole. Such a description
seems to have some formal similarity with the Mossbauer effect, where
apparently the recoil momentum of the y-emitting nucleus is transferred
to the crystal as a whole, and hence seems to be locally lost. Weisskopf®
has demonstrated, due to the high zero-point fluctuations connected with
a local measurement, that there is no observable violation of the causality
principle.

In conclusion, I wish to stress that, to our knowledge, there exists no
case in which a dynamically valid symmetry in a relativistic, causal theory
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can be broken by the groundstate in-an observable way without involving
mass zero particles. The main problem in our opinion in dealing with the
Goldstone theorem in relativistic theories seems to be connected with the
physical interpretation of the assumptions which go into it—in particular,
what we mean by a symmetry and its violation—and the physical inter-
pretation of the consequences we derive from it—in particular whether we
retain an approximate symmetry for the non-degenerate one-particle states
which originally belonged to a single multiplet of the symmetry group and
what are the symmetry properties of the zerons. Probably all these ques-
tions can only be decided by actually carrying out dynamical calculations.

References

(1) Baker, M., and Glashow, S. L., Phys. Rev., 128, 2462 (1962).

(2) Heisenberg, W., Rev. Mod. Phys., 29, 269 (1957). - Heisenberg, W., Proc.
Ann: Intern. Conf. High Energy Phys. CERN, 119 (1958). Dtur, H. P,
Heisenberg, W., Mitter, H., Schlieder, S.; and Yamazaki K., Z. Natur-
forsch.; 14a; 441 .(1959). See also Heisenberg, W., An Introduction to the
Unified Theory of Elementary Particles, Wiley, London,-1967; German ed.
Hirzel Verlag, Stuttgart, 1967, :

(3) See e.g. Wagnper, H., Z. Physik. 195,273 (1966):

(4) Goldstone, J., Nuovo Cimento, 19,154 (1961): Goldstone, J., Salam, A.,
and Weinberg, S. “Phys. Rev. 127, 965 (1962).

(5) Bludman S. A., and Klein; A., Phys. Rev., 131,2364 (1963).

(6) Kastler, D., Robmson, D, and Swieca, A., Commun. Math. Phys., 2, 108
(1966); see also Ezawa, H and Swleca, J. A., DESY preprmt 66/38
(1966).

(7) Bludman, S. A., Proc. of seminar on unified theories of elementary particles,
Moax-Planck-Inst. fiir Physik und Astrophysik , Feldafing p. 36 (1965).

®) Schwmger, 1., Phys. Rev 128, 2425 (1962); Theoret. phys. IAEA Wien
1963,

©) Marls,pTh A.J., et al., preprint 1967

(10) Higgs, P. W, Physzcs Letters 12, 132 (1964); nggs P, W., Phys. Rev,
145, 1156 (1966), Englert, F., and Brout, R., Phys Rev. Letters 13,321
(1964). :

(11). Guralnik, G. S., Hagen, C. R., and Kibble T. W. B., Phys. Rev. Lett. 13,
585 (1964); see also Kibble, T. W. B., Proc. of the Intern.. Conf. on
Elementary Particles (1965) p. 19; and Proc. of the Intern. Theor., Phy31cs
Conference on Particles and Flelds (1967).

(12) Anderson, P. W., Phys. Rev. 130, 439 (1963).

(13) Kibble, T. W. B., Imperial College Preprint ICTP/66/25.

(14) Higgs, P. W, Phys Rev. Letters, 13, 508 (1964).

(15) Umezawa, H Nuovo Cim. 40, 450 (1963); Leplace, L., Sen, R N.,
Umezawa, H., Nuovo Cim. 49, 1 (1961), Sen, R. N., Urnezawa, H.,
Nuovo Cim. 50 53 (1967). '

(16) ‘Biritz; H., Nuovo Cim. 47, 581 (1966).



H. P. DURR 17

(17) Dirr, H. P., and Heisenberg, W., Nuovo Cim. 37, 1446 (1965); Diirr,
H. P.,-and Heisenberg, W., Nuovo Cim. 37, 1487 (1965);

(18) Biritz, H., and Yamazaki, K., to be published. =~ '

(19) Merwin, N. D., Wagner, H., Phys. Rev. Letters 17, 1133:(1966).

(20) Bjorken, J. D., Annals of Physics (N.Y.) 24, 174 (1963).

(21) Weisskopf, V. F., Boulder Lectures in Theoretical Physics, VYol. IlI, p. 79
(1960). , _r



Discussion on the report of H. P. Diirr

S. Weinberg. I would like to emphasize a little more strongly the applica-
tions of the Goldstone theorem to the real world. First, let me mention
in passing, that there is one other classical example of a Goldstone mode
besides the ones that are always quoted, i.e. the hose instability of a charged
particle beam in a uniform plasma. Coming back to the strong inter-
actions, I would say that the greatest triumph of the Goldstone theorem
is that it gives a ‘raison d’&tre’ for the pion as an almost massless particle.
From this point of view, it is not important whether the Goldstone
theorem has been rigorously proved; the important thing is that it tells
us how the strong interactions could keep the pion mass so small.

I was also very impressed with the suggestions of Higgs, Kibble, and
others, and would like to point out that the p and 4, mesons afford a good
example of these ideas. Of course isotopic spin is not broken, so the p
meson mass has to be put in at the beginning, and then chiral symmetry
‘breaking’ gives an additional mass to the 4;, which in fact agrees with
experiment. (Because the p has a bare mass; the Goldstone bosons don’t
go away; they are just the pions.) We can also ask whether these ideas
can be applied to unify the electromagnetic and the weak interactions. If
we restrict ourselves to the observed electronic leptons, then there is just
one way that this can be done: there must be a massless photon, a massive
charged intermediate meson, and a heavier intermediate neutral meson.
The neutral intermediate boson has observable effects, notably that in
electron-neutrino scattering the axial-vector (ée)(v#) coupling is § what
we would expect from the old calculation of Feynman and Gell-Mann.

This raises a question that I can’t answer: Are such models renormal-
izable? You start with a Yang-Mills type Lagrangian which is renormal-
izable, and re-order the perturbation theory by redefining the fields. I
hope someone will be able to find out whether or not the resulting
Lagrangian is a renormalizable theory of weak and electromagnetic
interactions.

F. Englert. With regard to the renormalizability of gauge vector mesons
in the presence of broken symmetry, Brout and I (Phys. Rev. Letters 13,
9 (1964) and Nuovo Cim. 43, 244 (1966)) showed that the propagator of
the massy vector mesons is [g,, — ¢,4,/9*1(g* — u*)~%, u being the induced
mass of the gauge field. The term in (g,9,/¢% having a singularity at
g* =0 is due to the Goldstone boson contribution to the vector meson
propagator. The term enters in this way as a consequence of the Ward
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identity and is not therefore an effect due to an approximation. Therefore
the answer to Weinberg’s question is that these massy vector gauge fields
constitute a renormalizable field theory. ,

H. P. Diirr. I wish to apologize that I haven’t mentioned, at all, the theories
where chirality is broken, which was first treated by Nambu. Of course, it
appears that chirality is fundamentally broken by a slight amount such
that the 7-meson acquires a small mass. One can nevertheless, as Weinberg
has pointed out, actually recover many relat1onsh1ps of -the Goldstone
situation.

E. E.Low. Does a Goldstone boson:lie on a trajectory?

H. P. Diirr. Idon’t know, but I would suspect that the answer may depend
on the particular dynarmcs one has to deal with.

R. Brout. At least in the Nambu model where the 7-meson is an (VAN)
bound state, it would appear unlikely that the 7-meson reggeizes. When
one turns on small bare mass, the matrix elements of 9, j,; do not tend to
zero at.co momentum transfer, -but rather to the matrix elements of
myPysy, m, being the bare mass. Thus there is no unsubtracted dispersion
relation for the pseudoscalar form factor, as would be expected from
reggeization of the pion and a no subtraction hypothesis. In the case that
my =10 and 0,j, =0, the pion is the Goldstone pole and remains the
pseudoscalar pole in the form factor, no matter how high the momentum
transfer. This follows from the Ward identity. Agam the behaviour is
contrary to Regge behaviour.

R. E. Marshak. - Since we are working in a rather speculative domain, 1
should like to make a remark which illustrates the different approaches to
chirality symmetry taken by Weinberg and by some of us who have worked
exclusively with fermion fields. I find it extremely strange and suggestive
that we not only have three lepton fields in close analogy to the three
quarks which seem to structure the hadrons, but we also have 3 symmetry
breakings from the SU(3) ® SU(3) level, down to SU(3), down to SU(2)
and finally down to SU(1) x Y. In a sense, the muon and electron are
behaving like the quarks which produce the hypercharge and electro-
magnetic splittings respectively among hadrons. In.a more serious vein,
Weinberg is willing to tolerate a non zero mass pion as a sort of pseudo-
Goldstone partlcle One -might have a chance to explain the-3 broken
symmetries in terms essentially of lepton currents compounded out of the
3 objects we know with different masses: Zero mass », electromagnetic
mass e, and muon mass which is of the order of (hypercharge) SU(3)
breaking. - Perhaps this conjecture can already be excluded by what is
known about simultaneous symmetry breaklngs and the generalized
Goldstone theorem. ,
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H. P. Diirr. At present I cannot see how a connexion can be made between
the Goldstone theorem and the leptons. Perhaps there might be a way
to establish a connexion between weak currents and the breaking of
symmetries if one uses some kind of a mechanism as suggested by
Higgs and others which make use of long range forces in the original
Lagrangian.
W. Heisenberg.  In connexion with the Goldstone theorem I 'want to stress
two points. The one concerns the interaction of a particle with the ground-
state. If the breaking of the symmetry is seen experimentally in the
splitting of mass levels in a multiplet, then in the Goldstone case, the
splitting must be due to this interaction of the particle with the ground-
state and its collective modes. Therefore if one were to try to explain the
violation of SU(3) by a Lagrangian exactly invariant under SU(3) and an
asymmetrical groundstate, there should not only exist the'collective modes
of mass zero in the ‘groundstate, but these modes should also ‘interact
strongly with the particles—against existing experimental evidence.: With
respect to SU(2) the situation is much better. There we have the Coulomb
field and the photon, and their interaction is just of ‘the correct order of
magnitude for explaining the mass splitting in the iso-multiplets.

The second point concerns the projection operator in the definition of a
Goldstone particle: “These particles may  be considered as localized
spurions. Now a spurion, being the change from one vacuum to another
vacuum, means some change which is—with equal probability—spread
out over the whole space. If one then constructs a projection operator
which picks out just those points in space where the change has occurred,
then by means of this operator one can localize the spurion; i.e. construct
a Goldstone particle. Therefore the occurrence of a projection operator
like e.g. (Y + 7,)in the Gell-Mann-Nishijima rule is a strong indication
for the Goldstone-character of the corresponding particle or field.

R. E. Marshak. How can you hope to demonstrate that the photon is
the Goldstone particle in SU(2) symmetry breaking when 1t has the wrong
quantum numbers?

H. P. Diirr.- There may be still some hope to change the internal quantum
numbers of the Goldstone boson by coupling on spurions, as Heisenberg
has suggested. The Lorentz properties would be all right if one could
show that the Goldstone object is really the scalar Coulomb force from
which then ‘the photons would arise by a secondary step from Lorentz
invariance.

Personally, I certainly would take the suggestion of Higgs and others as
an attractive possibility, provided one can find some way out in the
difficulties which seem to occur there.
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G. Killén. If it is true that the w-meson is a Goldstone particle with
approximately zero mass then I would like to ask: what is the situation
for the other mesons usually classified to be in the same octet?

Do they all correspond to Goldstone particles, but with some of the
masses more equal to zero than others? Alternatively, one could declare
that the octet classification is an accident and that the 7-meson is basically
different from the other pseudoscalar mesons. If the first alternative is
preferred by the official point of view my question is: Do all the pseudo-
scalar mesons correspond to the same broken symmetry or are they related
to different broken symmetries ? If so, which broken symmetry corresponds
to which particle?

S. Weinberg. ' I don’t know what the official view is, but the consensus
seems to be that it is better not to think about the strange particles if you
want to go on thinking you understand what is going on. Nevertheless,
Glashow and I have looked at what happens to- Goldstone’s theorem if
you include SU(3) x SU(3) symmetry breaking with a specific assumption
as to how the symmetry breaking term transforms. The result is very
weak, i.e. one inequality among the masses of the would-be Goldstone
bosons (the pseudoscalar nonet and the unobserved kappa meson), which
may be true. In addition, it should be noted that the calculations of KN

and KN scattering lengths which use the idea of a partially conserved
strangeness-changing current arein pretty good agreement with experiment.
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