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The Goldstone theorem states that under certain conditions, which will 
be stated later, in a dynamical theory which is invariant under a particular 
symmetry group and where this symmetry group is broken by the ground­
state, e.g. the vacuum state in a relativistic field theory, there must exist 
particles of mass zero or-in the nonrelativistic case-excitation modes, 
the en~rgy of which tends to zero with increasing wavelength. This 
theorem is of great interest for elementary particle physics for essentially 
two reasons: 

(1) There are a number of symmetry groups in elementary particle 
physics, like SU(3) or even higher symmetries, which are not exactly 
realized in nature in the sense that there exist one-particle states or 
resonances grouped into multiplets which are supposed to transform 
approximately according to an irreducible representation of this group 
but which do not have exactly the same mass, and secondly that in the 
interaction of these particles and resonances the conservation laws, related 
to this symmetry group by Noether's theorem, are only approximately 
obeyed. On the other hand, these symmetry violations do not seem to be 
connected in a direct or an indirect way with the appearance of mass zero 
particles. Therefore, if one wants to interpret this symmetry violation as 
a consequence of an asymmetrical vacuum as proposed for SU(3) by Baker 
and Glashow1 , rather than as an asymmetry of the underlying dynamical 
law, one has to find some means to invalidate the Goldstone theorem. 

(2) There do exist in nature a number of massless particles: the photon, 
the neutrinos and, probably, the graviton. In a general dynamical theory 
it is rather difficult to obtain such particles as particular solutions, except 
by chance or if they are introduced from the beginning. In this context 
the Goldstone theorem, it appears, could provide an interesting way to 
enforce their existence, because, in fact, all the known massless particles 
do occur in connexion with symmetry violations, the photon with isospin 
violation, the neutrinos with parity violation, etc., and the graviton 



probably with a violation of the Poincare group2• Unfortunately, how­
ever, it turns out that all these mass zero particles do not have the sym­
metry properties, as explicitly stated by the Goldstone theorem in its 
present mathematical formulation. Therefore, in order to uphold this 
conjecture, the present predictions of the Goldstone theorem on the 
symmetry properties of the massless particle must be generalized. 

Consequently the validity of the conjecture that the observed symmetry 
violations in elementary particle physics arise from an asymmetry of the 
vacuum state, will decisively depend on an invalidation or-if we exclude 
SU(3) and possible higher symmetries as fundamental symmetries-on a 
generalization of the Goldstone theorem. In contrast to this, in non­
relativistic dynamics we know many systems where the Goldstone theorem 
holds in its present form. The magnons in the ferromagnet, the phonons 
in liquids and crystals are, for example, Goldstone modes connected with 
an asymmetry of the groundstate3• 

There exist many general proofs of the Goldstone theorem today. 
The first proofs were given by Goldstone, Salam and Weinberg4 and by 
Bludman and Klein5• A proof on a much more rigorous basis using only 
the algebra of observables was recently given by Kastler, Robinson, and 
Swieca, and Ezawa and Swieca6• 

Let me roughly sketch the proof of the Goldstone theorem in order to 
indicate the basic assumptions. Let us assume there is a certain symmetry 
transformation which leaves the dynamics invariant. Formally, this may 
be expressed by the forminvariance of a Lagrangian density or the 
forminvariance of an equation of motion and the quantization condition. 
As an example we may just use a simple gauge transformation to simplify 
the discussion. As a consequence of the invariance there exists, according 
to the Noether theorem, a conserved current: 

oµl(x) = 0 

and a time-independent hermitean operator 

Q = J daµjµ(x) = t=td
3
x j°(x) 

(1) 

(2) 

which serves as a generator of the unitary representation of the symmetry 
group in the state space. The symmetry is broken by the translational 
invariant vacuum state, if for some field operator <f>(x), which is not invar­
iant under this symmetry group, i.e. which transforms as <f>(x) ~ </>'(x), 
the vacuum expectation value changes 

(01 </>(x) IO) = (01 </>(O) IO) ":/; (01 </>'(x) JO) = (OJ </>'(O) 10) (3) 
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or, expressed differently, if for an infinitesimal symmetry transformation 
,...._,oA. we have 

_!_ (01Osymef>(x)10) = -i (01 [Q, ef>(x)] IO) = C ¢ 0 ( 4) 
oA. 

(with C = constant). By introducing a complete set of intermediate states 
the latter may also be expressed as7 

L 2.J!~n (01Q10')(0'1ef>(x)10) = C ¢ 0. 
O';tO 

If we make use of the local form (2) of the generator one gets 

-if da'1' (01 [jµ(x'), ef>(x)] IO) = C ,= 0 
(for all surfaces) 

which leads to the local condition 

with 

(01 Uix'), ef>(x)] 10) = j_ f(z) 
(}zll 

(z = x - x') 

-ifda'fl J_ f(z) = C. 
ozll 

(5) 

(6) 

(7) 

Due to the locality requirement (vanishing of the commutator for space­
like distances) f(z) can be written as a superposition of causal functions 
~(z; m) with various masses m: 

f(z) = iC J dm2p(m2
) ~(z; m) 

As a consequence of the current conservation (1) 

a;J(z) = 0 and hence p(m2
) = o(m2

) 

(8) 

(9) 

i.e. ef>(x) must contain matrix elements leading to massless particles from 
the vacuum. This is the content of the Goldstone theorem. 

From Eqn. (5) one merely deduces that there exists in the theory other 
states 10') different from the vacuum state 10) which have the same energy 
(and momentum) as the vacuum state since Q is a (time independent) 
symmetry operator. We call these states 10') spurion states. They are 
created from the vacuum by <fo(x). Relation (9) which has made use of 
the local structure of the symmetry operator and hence contains more 
information, reveals that the spurious, in fact, are merely the infrared 
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limit (p ~ 0) of massless particles generated by cp(x), the Goldstone par­
ticles, which we will shortly call 'zerons'. Roughly speaking the zerons 
are localized spurious. 

In this connexion Heisenberg2 has emphasized that any localized 
spurion connected with a nonlocalized spurion could again be a possible 
'zeron'. Hence the symmetry character of the Goldstone zeron should in 
general not be immediately identified wit4 the symmetry character of the 
spurious which is usually done, but states a separate problem. 

I wish now to remark on the various steps of the rough (and partly 
inaccurate) derivation in particular to indicate the various assumptions 
of the Goldstone theorem. 

The first assumption refers to the existence of a conserved current. This 
assumption is decisive because it expresses that there exists a symmetry of 
the dynamics, at all. In our proof above the existence of such a locally 
conserved current is necessary to conclude that the spurions are not 
isolated states o(pµ) but can be localized to become mass zero particles. 
However, it is not important that r(x) is really a local current. It is 
sufficient to require that for an arbitrarily large, but still finite volume V 
with the surface S, the change of the 'charge' Q(t) with time within this 
volume is accompanied by a current J8 (t) leaving through the surface, i.e. 

d 
dt Qv(t) = -J s(t). (10) 

The volume V e.g. may be a measurable region in a bubble chamber or 
even the volume of the bubble chamber itself. The requirement of a con­
served local currentjµ(x) would mean, that this relationship holds for any 
volume, and hence also for the infinitely small volume element in which 
case we can write: 

Qv(t) = L d3xj°(x, t) 

J8 (t) = Lds · j(x, t) (11) 

If we have only the relationship (10), then upon a symmetry variation of 
<fo(x) only within the volume Vat time t', we would get 

0
\ (01 oi.//:i<fo(x) IO) = -i (01 [Qv(t'), </>(x)] IO) = Cv(x; t - t') ¥= 0 (12) 

with 

lim Cv(x; t - t') = C = const. 
V->oo 
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and hence due to (10) 

1 d Vt' I d 
-~, -d (01 Osy'rn<f>(x) IO) = -i (01 [J 8 (t ), </>(x)] 10) = - Cv(x; t - t') 
U/• t dt 

{ 
0 in region A 

= ;i£0 outside. 

,t-t' 

(13) 

For a local theory this vanishes for x within a region A, bordered by light 
cones through the surface points S, i.e. fort = t' if xis inside the volume. 
Condition (13) is sufficient to localize the spurion to a certain extent, and 
hence to prove the existence of a zero mass particle. 

In a relativistic quantum field theory it is by no means trivial to establish 
the existence of a conserved current, because the construction of such 
currents usually involves products of field operators at the same space-time 
point which are rather singular objects. Consequently it is certainly not 
sufficient to establish the conservation laws simply on the basis of the usual 
(classical) substitution transformations. Nevertheless one has to keep in 
mind that the Goldstone theorem only breaks down if the weaker require­
ment (IO) is violated. 

An example of such an intrinsically broken symmetry is Schwinger's 
model of 2-dimensional quantum electrodynamics8, where, despite of the 
formal y 5-symmetry, the chirality current is not conserved. Some people 
call this case a locally broken symmetry9• However, such a definition 
seems only worthwhile if something is left of the symmetry at all, e.g. the 
weaker condition (10) which then would still imply a 'zeron'. Otherwise 
we should simply call this a 'no symmetry' case. 
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The next question refers to the existence of the generator Q. One can 
easily show that if the vacuum is not invariant under the symmetry group, 
i.e. if Q 10) ;;f:. 0, then the integral (2) will diverge. Physically speaking the 
'charge' of the translational invariant vacuum state is either zero (invariant 
case) or infinite. In the latter case also all other states created from it by 
application of a finite number of field operators have also infinite charge. 
Hence Q itself is an infinite operator and no proper element of the 
Hilbert space. Hence also the unitary transformation: 

(14) 

connected with the symmetry leads out of the Hilbert space. Vacuum 
states 10),. which are formally obtained by the transformation (14) belong 
to different inequivalent representations of the algebra of the field opera­
tors. They differ, so to say, by an infinite number of spurions or infrared 
zerons. 

Although the operator Q is ill-defined, the commutator of Q with any 
operator localized in a certain finite region, which only was used above, is 
well-defined. In this case one can always work with the well-defined 
operator Qv(t) and go to the well-defined limit V-+ oo of the commutators. 
It is important in this context that the commutator is assumed to vanish 
for large space-like separations, a property which is required for all observ­
ables in a local relativistic theory. 

It was pointed out by Higgs, Englert, and Brout10, and also by Hagen, 
Guralnik, and Kibble11 that the Goldstone zerons can be avoided if there 
are in addition long range interactions in the theory from the outset, 
however, as will be seen, at a dear price. That long range forces affect the 
Goldstone theorem, in fact, was recognized earlier by Anderson12 for the 
nonrelativistic case in particular in connexion with superconductivity 
where the Goldstone modes are pushed up to become the plasmons. For 
the relativistic case, however, it was important to recognize that long 
range interactions occur in connexion with gauge fields, i.e. mass zero 
vector fields, where the nonlocal character of the interaction becomes 
apparent if one uses the non manifestly covariant Coulomb gauge related 
to a certain space-like surface 

oA - (no)(nA) = 0 (15) 

which involves the time-like vector nµ the normal to this surface. Due to 
the long-range interaction (Coulomb type interaction) the commutator 
(01 [Qv(t'), cp(x, t)] 10) does not become time independent in the limit 
V-+ oo, since the surface current term does not decrease sufficiently fast. 
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At the same time the commutator is not manifestly covariant. In fact, the 
commutator (7) has now the more general form10 

(01 [jl'(x'), </>(x)] 10) = 1- f(z) + (g1'"o2 
- oµo")n,g(z) (16) 

OZµ 

If long range interaction are involved, then we can assume f(z) = 0, i.e. 
that no mass zero particle occurs, since one has instead 

g(z) = i (no) cfdm2p(m2)A(z· m) 
02 

- (no)2 ' 

to take care of the condition (6), where the inverse operator o2 - (no) 2 ->­

-V2 indicates the nonlocal character of this case. In addition, the now 
massive Goldstone particle combines with the two massless vector bosons 
to form a normal 3 component massive vector field. So, no massless 
particles are left in the theory. 

One may, of course, also use the manifestly covariant and local Gupta­
Bleuler description using the Lorentz gauge, which, however, implies the 
introduction of an indefinite metric in the Hilbert space. In this case, the 
Goldstone theorem is valid and hence formally leads to a zeron, which, 
however, can be shown13 to decouple completely from the physical states 
and eventually is eliminated, if one projects on the physical subspace of 
the Hilbert space. Hence also in this description there is eventually no 
physical zeron left. 

However, it should be emphasized that the example of Higgs and others 
shows that a theory of this type is only causal, and hence physically 
acceptable, if the states created by the operator <f>(x) from the vacuum 
can be separated completely from the physical states and suppressed. In 
this case one then has to check whether the symmetry, which is broken, 
still has a non-trivial meaning in the subspace after this projection. This 
does not seem to be the case, as we will shortly indicate in the model given 
by Higgs: 

Higgs10 starts out with a model originally suggested by Goldstone with 
the Lagrangian* 

Lo = ~[ </>µ* oµf + </>µ oµf * - </>1'* </>µ - ~~2 ( </>* </> - 112
) J (18) 

for a scalar nonhermitean field operator <f>(x), in which the potential has a 

* The notation here is that essentially used by Kibble13• 
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minimum for 1</>1 2 = 'YJ2 = const. In the groundstate hence 

( <Z = const.) (19) 

v 

o ;Groundstote' 

The time component of <P,, are the canonical conjugate variable of <fo(x). 
The Lagrangian is obviously invariant under the gauge transformations 

<f>(x)-+ eiei.<fo(x) 

</>*(x)-+ e-ie).</>*(x) 

which leads to a conserved current o,,y = 0 with 

r = - ie[ <Pµ* <P - <P,,<P *1 

The symmetry (20) is broken by the groundstate, because 

;A (OI o<f> IO> = ie(OI <fo(x) \0) = ie'Yjeir.< =/= 0. 

(20) 

(21) 

(22) 

The Lagrangian may be rewritten by introducing the modular dependence 
R(x) and the phase dependence O(x) of the fields as new field variables: 

<fo(x) = R(x)e10 <x> 
(23) 

<f>*(x) = R(x)CiO(x) 

with the corresponding canonically conjugate variables as the time com· 
ponents of the vectors R,,(x) and O,,(x). One obtains 
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which upon variation besides the actual field equations leads to the alge­
braical relations 

Rµ = 01,R 

eµ = R2 oi 
(25) 

which may also be inserted into the Lagrangian without harm. The 
symmetry transformation (20) in the new variables is now simply 

e(x)-'>- e(x) + eA (26) 

with the other variables remaining unchanged, and the current (21) is 

Y = -eeµ(x) (27) 

The groundstate condition (19) is now expressed by 

(01 R(x) 10) = 17 

(01 e(x) 10) = oc 
(28) 

The first condition (28) does not indicate a symmetry violation, because 
R(x) is invariant under the symmetry transformation. The symmetry 
breaking condition (22) arises solely from the second condition in a rather 
trivial fashion: 

1 
bl. (01 oe(x) 10) = e ¥= 0 (29) 

From the latter it follows immediately by the Goldstone theorem that 
e(x) is a massless field, in fact, the Goldstone zeron, which can also be 
directly seen from the Lagrangian, if we approximately replace R(x) ~ 
17. The R(x) field on the other hand is connected with a particle of finite 
mass m0, which can be deduced by introducing the new field operators 

r(x) = R(x) - 17 rµ(x) = Rµ(x) (30) 

One now introduces a massless gauge field Aµ(x) by the prescription 
(Fµvnv is the canonically conjugate variable of Aµ): 

L = -tFµv(ovAµ - oµAv) + !PvFµv + L 0(with oµ(}-'>- oµe + eA1,) 

µ '.:'.! e ) eµeµ = LF +LR+ e (uµ + eAµ - -2 
2R 

(31) 

which obviously is invariant under the coordinate dependent gauge 
transformations: 

e(x)-'>- e(x) + e?.(x) 

Aµ(x)-'>- Aµ(x) - oµ?.(x) 
(32) 
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The vector()µ is here now obviously 

()µ = R2(oµO + eAµ) = - ! jµ(x) 
e 

The critical commutator for the Goldstone theorem is 

(OI [jµ(x'), e(x)] !O) = -e(OI [Oµ(x'),e(x)] IO> 

(33) 

(34) 

which in the Coulomb gauge is nonlocal, and hence does not fulfil the 
requirements of the Goldstone theorem. In fact, one finds: 

( o2 oo)nv J i(OI [Oµ(x'), e(x)] 10) = gµv 
9 

- µ ; (no) p(m2) dm2 A(z; m) 
o· - (no) 

z = (x' - x) (35) 
with p(m2

) R:::! o(m2 - e2ri 2
). 

On the other hand one can also introduce the new field operator 

1 1 
Bµ(x) = -

2 
()µ = Aµ(x) + - o,,e(x) (36) 

eR e 

instead of Aµ(x) (the canonically conjugate variable is still pvnv) and 
obtain the Lagrangian in the form 

L = -tPv(ovBµ - oµBv) + iPvFµv + te2R2B,,Bµ +LR (37) 

which does not contain O(x) any more as variable. The canonical momen­
tum (}I' did combine with the two transversal fields of Aµ to give a (3 
component) massive vector field Bµ with mass mf,. = e2ri2• If one restricts 
oneself to the state space produced by only applying the gauge invariant 
operators pv(x), B,,(x), R(x) (but not e(x)!) on the vacuum, then the 
original symmetry no longer has meaning in this restricted state space, 
since all operators are (trivially) invariant under the gauge transformations. 
Hence this does not lead into contradiction with the general proof of 
Ezawa and Swieca6• 

The situation is similar, if one introduces non-Abelian groups as Kibble 
has shown13• Again the original Goldstone zerons become massive by a 
coupling to a corresponding gauge field by which procedure the gauge 
fields themselves become massive. At the same time the original sym­
metry transformations become meaningless in the gauge invariant observ­
ables. Only the mass zero gauge fields of the unbroken symmetries survive. 
However, their mass zero character has nothing to do with the Goldstone 
theorem. They are rather the leftover mass zero fields which were put in 
from the beginning. 

To state the result more clearly, let us consider the isospin group SU(2). 
If we break the symmetry around the x- and y-axis by the vacuum, one 
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obtains in the simplest case of a scalar isovector field without gauge fields, 
a massive scalar boson S0, and positively and negatively charged Gold­
stone zerons s+, s-, if for simplicity we identify the properties of the 
zerons with the properties of the corresponding spurions. We get other 
zerons by combining s+ and s- with positively and negatively charged 
spurious. If the gauge field is turned on, i.e. if one introduces a massless 
vector isotriplet A+, A0, A-, the A+ and A- combines with s+ and s-, 
respectively, to give two massive vector bosons v+, v- and only the A0 

remains massless. Hence: 

massive scalar /11 = m0 

massive vector m = er1 

massless vector m = 0 

so 
v+, v­
Ao 

The spectrum hence contains incomplete multiples. The remaining mass­
less gauge field is connected with the nonviolated rotation symmetry 
around the 3-isospin-axis. If all symmetries are broken, there will be no 
massless field left. 

If one applies this procedure to a SU(3) invariant theory and subse­
quently breaks this symmetry by strong, electromagnetic and weak inter­
actions, the only remaining mass zero particle is the photon14• Otherwise, 
however, the model has very unrealistic features, in particular again the 
original high symmetry has completely lost its meaning. 

Perhaps one has to be somewhat more careful with the statement that 
these symmetries are physically meaningless because all observables are 
left invariant. Also the electric and baryon number gauge transformations 
are such symmetry transformations which leave the observables invariant, 
but nevertheless have important physical consequences. In fact, this 
invariance leads to the superselection rules. However, it appears, that the 
strict validity of these transformations is the decisive difference. A broken 
symmetry on the other hand can only be sensed, if the theory contains 
some observables which are not invariant. 

One may believe that at least in the case of a non-Abelian symmetry 
group like SU(2), there are some objects left in the theory (namely the 
incomplete multiplets), which do not have a trivial transformation 
character. According to the construction this, however, is not the case. 
For example, neither the v+, v-nor the s0 , nor the A0 transform like an 
isotriplet any longer. 

This is, in fact, a general deficiency of all multiplets which are broken 
by an asymmetrical vacuum, and is not characteristic of the Higgs case. 
It was Umezawa who particularly stressed this point15• Let us again 
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consider the broken SU(2) isospin symmetry case without the gauge fields. 
The vacuum in this case could be hypothetically imagined as a large 
isoferromagnet with nonvanishing magnetization in the z-direction. The 
energy levels of a particle with isospin t will split up consequently into 
two nondegenerate mass components, depending on the isospin orienta­
tion. This, however, is not a correct description. If we imagine, for the 
moment, that the vacuum is very large but finite, we may characterize it 
by a large isospin Iv. The non-degenerate mass doublet is then described 
by states of total isospin I = Iv ± i". i.e. as energy levels corresponding to 
different irreducible representations of the symmetry group. If one per­
forms an isospin rotation the levels hence do not transform into each other, 
because they differ in energy, but rather transform into themselves plus 
spurion contributions. The spurious correspond to the infrared limit of 
the Goldstone zerons. The whole reaction to our symmetry transforma­
tion seems to consist in a rearrangement of the isospin in the groundstate. 
In particular, if we separate from the field operator a part which, like 
R(x) described above, does not participate in the broken symmetry trans­
formations and connect the physical particle with it, then the physical 
particle will behave like an isosinglet under the 11 and 12 rotations, i.e. 
its isospin degree of freedom will appear to be 'frozen'. The whole trans­
formations only add terms to the rest fields, which, as Umezawa remarks, 
merely change the Bose-Einstein condensation of the Goldstone zerons. 
In this language all the components of a nondegenerate multiplet behave 
like singlets under the relevant transformations. The variant part, a 
spurion part, is disconnected and combines with the BE-condensation 
part of the Goldstone bosons. 

This indicates that the original symmetry transformation no longer 
connects the components of a split multiplet. There may, however, exist 
another, although weakly time-dependent transformation, which does 
connect the components of a multiplet in the expected way. In our 
example, it will consist of the isospin transformation which rotates the 
isospin only of the particle and not the large isospin of the vacuum. 
Whether this new transformation is a sufficiently good approximate sym­
metry transformation, i.e. is sufficiently time-independent, will depend on 
the strength of the coupling of the isospin of the particle to the vacuum 
isospins relative to their mutual coupling. If the particle coupling is 
strong a description as an isosinglet or an isotriplet may be more appro­
priate. Biritz16 has given an example of such anomalous multiplets in a 
model of a ferromagnetic chain. In connexion with the nonlinear spinor 
theory strange particles were interpreted as such anomalous isospin 
multiplets17• 
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In the non-Abelian models of Higgs and Kibble the originally degenerate 
multiplets after breaking of the symmetry become nondegenerate and even 
partially incomplete. It is hard to see how in this case an approximately 
valid symmetry transformation can be found which would transform these 
objects as members of the original irreducible representation. Obviously, 
a theory which approximately retains only the multiplets, but not the 
corresponding Clebsch-Gordan coefficients and selection rules would be 
completely useless. 

There are still a number of other questions which should be studied in 
detail. One question is, what happens to the description of the 
isospin rotations around the x- and y-axis in the state space, if the super­
selection rules for the electric charge are established, because then these 
transformations, even if performed locally, would connect different invar­
iant sectors. An investigation of this question may perhaps reveal that 
Higgs' suggestion may be physically applicable, after all, in the case where 
a gauge symmetry is left intact, because the leftover massless gauge field 
would enforce a superselection rule. 

The isospin symmetry in elementary particle physics has been conjectured 
long ago by Heisenberg and coworkers2 to be a possible candidate for an 
exact dynamical symmetry which is broken by the groundstate, because 
its violation is accompanied by and phenomenologically attributed to the 
mass zero photon. Unfortunately, however, the Goldstone 'zerons' in 
connexion with violation of the SU(2) isospin group are, as we have seen, 
scalar, and, in the usual description, charged objects. Intuitively they are 
the magnons, the Bloch spin waves, of an infinitely large isoferromagnet 
at zero temperature. On the other hand it is quite clear that the isoferro­
magnet would not be an adequate description for the physical situation, 
because such a vacuum state would also violate CPT-invariance. One can 
easily see this if we imagine e.g. a 7T-meson in such an isoferromagnet, 
which would naturally split up into a mass triplet and hence violate the 
requirement that 77+ and 7T- are antiparticles. This indicates that in this 
case, one has to employ a more complicated way to break the SU(2) 
symmetry. 

A more appropriate model for the isospin violating vacuum state in 
elementary particle physics would be a model in which at every lattice 
point there is a particle and an antiparticle with their isospins pointing 
essentially in opposite directions. There would be no resultant polariza­
tion (charge), but the polarization of the particle and antiparticle sub­
systems would be very large and distinguish a certain direction. Under 
CPT such a system would transform into itself. A state of this type has 
formally some similarity with the groundstate of an antiferromagnet, 
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where the spins of neighbouring particles try to be antiparallel. One 
obtains such a groundstate, if one introduces forces which tend to align 
the spins of like particles and antialign spins of unlike particles. The 
groundstate of such a system is a very complicated object. Biritz and 
Yamazaki18 have recently started to investigate this model in an approxima­
tion where the antialigning forces between the particles and antiparticles 
are considered weak in comparison with the aligning forces between like 
particles. In lowest approximation one obtains essentially a double 
isoferromagnet, a particle- and antiparticle-isoferromagnet oriented in 
opposite directions. This describes a particular superposition of states 
with isospin I = 0, 1 · · · with zero charge, i.e. without net polarization 
in the 3 direction. With the particle-antiparticle forces fully switched on, 
the situation gets very complicated, because these forces tend to form local 
singlets which upset the double ferromagnetic ordering by flipping a 
certain number of particle-antiparticle pairs. The exact groundstate has 
not been worked out as yet. The model has to be studied in three dimen­
sions, since, similar to the antiferromagnet19, the zero-point fluctuations 
do not permit a long range ordering in one and two dimensions. 

In this iso-antiferromagnetic model there seems to appear a new un­
charged Goldstone mode which is connected with a localized flipping of 
a particle-antiparticle pair. There is a way to write this mode as a pro­
jection operator 

lk) ,...._, Z i(l + T3)eikn 10) 
n 

which senses localized flipped particle-antiparticle pairs and hence has 
some similarity with the photon. An interesting question, however, is 
whether one can avoid now the charged Goldstone modes which are 
suggested still to show up in the usual interpretation on the basis of a 
general proof of the Goldstone theorem in the algebraic approach. 

One actually would suspect that such charged modes, at least in the 
usual interpretation, should arise in connexion with a rotation of the 
particle-antiparticle lattice as a whole. However, one realizes that a 
rotation of the lattice, which has vanishing magnetization, after the rota­
tion leads to a state for which the expectation value of the magnetization 
in the z-direction is still zero. Hence one may expect that the charged 
modes do not occur in the same way as in the ferromagnet. 

Of course, there would still remain the question how the Goldstone 
zeron can be endowed with spin without breaking the Lorentz group by 
the vacuum, which actually would be required in this case by the Goldstone 
theorem20• The hope is here, that actually the Coulomb force, which is 
scalar, is inferred by the Goldstone argument, and that the photons only 
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follow indirectly from it by locality and Lorentz invariance. This all has 
still to be investigated. 

The question whether the neutrino may follow from some kind of a 
Goldstone argument must be completely denied at present. This becomes 
particularly clear in Umezawa's argumentations, where the Bose-Einstein 
condensation of the zerons appear to be crucial. 

Before closing I wish to make a few remarks about the possibility to 
directly observe the underlying dynamical symmetries. Up to now we 
have argued that the existence of a local conservation law can only be 
indirectly inferred through the appearance of the Goldstone zerons, at 
least, if no long range forces are present from the beginning. The question 
arises whether there is not a direct way to establish the local conservation 
law. After all, it states that for every given volume the time-change of 
the 'charge', e.g. the first or second component of isospin, must be con­
nected with a corresponding current going through the surface of this 
volume. If we find in a bubble chamber experiment that in a certain 
process isospin is violated, then-in our interpretation-this can only 
mean that our book-keeping is incorrect, that some isospin must have 
leaked out of the chamber unaccounted. There are, in fact, two reasons 
why our conventional book-keeping could be wrong: 

(1) mass zero particles carrying isospin with an energy smaller than our 
energy resolution may have escaped our observation (infrared problem); 

(2) The interacting particles were erroneously assumed to be exact 
eigenstates of isospin. Already their mass splitting, however, indicates 
that this can be only approximately true. So e.g. the w0 has small admix­
tures of the quantum numbers of p0, the 7To those of 'YJ, etc. 

I finally want to remark on the non-leptonic weak interactions which 
phenomenologically can be successfully formulated as isospin i-spurion 
emission processes. In a theory with an isospin degenerate vacuum this 
formal description may even have a realistic foundation, because, as 
Umezawa has indicated, such a spurion is connected with the Bose­
Einstein condensation of the Goldstone boson. It indicates a transfer of 
intrinsic quantum numbers to the vacuum as a whole. Such a description 
seems to have some formal similarity with the Mossbauer effect, where 
apparently the recoil momentum of the y-emitting nucleus is transferred 
to the crystal as a whole, and hence seems to be locally lost. Weisskopf21 

has demonstrated, due to the high zero-point fluctuations connected with 
a local measurement, that there is no observable violation of the causality 
principle. 

In conclusion, I wish to stress that, to our knowledge, there exists no 
case in which a dynamically valid symmetry in a relativistic, causal theory 
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can be broken by the groundstate in an observable way without involving 
mass zero particles. The main problem in our opinion in dealing with the 
Goldstone theorem in relativistic theories seems to be connected with the 
physical interpretation of the assumptions which go into it-in particular, 
what we mean by a symmetry and its violation-and the physical inter­
pretation of the consequences we derive from it-in particular whether we 
retain an approximate symmetry for the non-degenerate one-particle states 
which originally belonged to a single multiplet of the symmetry group and 
what are the symmetry properties of the zerons. Probably all these ques­
tions can only be decided by actually carrying out dynamical calculations. 
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Discussion on the report of H.P. Dtirr 

S. Weinberg. I would like to emphasize a little more strongly the applica­
tions of the Goldstone theorem to the real world. First, let me mention 
in passing, that there is one other classical example of a Goldstone mode 
besides the ones that are always quoted, i.e. the hose instability of a charged 
particle beam in a uniform plasma. Coming back to the strong inter­
actions, I would say that the greatest triumph of the Goldstone theorem 
is that it gives a 'raison d'etre' for the pion as an almost massless particle. 
From this point of view, it is not important whether the Goldstone 
theorem has been rigorously proved; the important thing is that it tells 
us how the strong interactions could keep the pion mass so small. 

I was also very impressed with the suggestions of Higgs, Kibble, and 
others, and would like to point out that the p and A1 mesons afford a good 
example of these ideas. Of course isotopic spin is not broken, so the p 
meson mass has to be put in at the beginning, and then chiral symmetry 
'breaking' gives an additional mass to the A1, which in fact agrees with 
experiment. (Because the p has a bare mass, the Goldstone bosons don't 
go away; they are just the pious.) We can also ask whether these ideas 
can be applied to unify the electromagnetic and the weak interactions. If 
we restrict ourselves to the observed electronic leptons, then there is just 
one way that this can be done: there must be a massless photon, a massive 
charged intermediate meson, and a heavier intermediate neutral meson. 
The neutral intermediate boson has observable effects, notably that in 
electron-neutrino scattering the axial-vector (ee)(vr) coupling is ~ what 
we would expect from the old calculation of Feynman and Gell-Mann. 

This raises a question that I can't answer: Are such models renormal­
izable? You start with a Yang-Mills type Lagrangian which is renormal­
izable, and re-order the perturbation theory by redefining the fields. I 
hope someone will be able to find out whether or not the resulting 
Lagrangian is a renormalizable theory of weak and electromagnetic 
interactions. 
F. Englert. With regard to the renormalizability of gauge vector mesons 
in the presence of broken symmetry, Brout and I (Phys. Rev. Letters 13, 
9 (1964) and Nuovo Cim. 43, 244 (1966)) showed that the propagator of 
the massy vector mesons is [gµv - qµqv/q2](q 2 - µ 2)-1, µbeing the induced 
mass of the gauge field. The term in (qµq,/q 2) having a singularity at 
q2 = 0 is due to the Goldstone boson contribution to the vector meson 
propagator. The term enters in this way as a consequence of the Ward 
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identity and is not therefore an effect due to an approximation. Therefore 
the answer to Weinberg's question is that these massy vector gauge fields 
constitute a renormalizable field theory. 
H.P. Diirr. I wish to apologize that I haven't mentioned, at all, the theories 
where chirality is broken, which was first treated by Nambu. Of course, it 
appears that chirality is fundamentally broken by a slight amount such 
that the 7T-meson acquires a small mass. One can nevertheless, as Weinberg 
has pointed out, actually recover many relationships of the Goldstone 
situation. 
F. E. Low. Does a Goldstone boson lie on a trajectory? 
H.P. Diirr. I don't know, but I would suspect that the answer may depend 
on the particular dynamics one has to deal with. 
R. Brout. At least in the Nambu model where the 7T-meson is an (NN) 
bound state, it would appear unlikely that the 7T-meson reggeizes. When 
one turns on small bare mass, the matrix elements of oµjµ 5 do not tend to 
zero at oo momentum transfer, but rather to the matrix elements of 
moiftY5'1fJ, m0 being the bare mass. Thus there is no unsubtracted dispersion 
relation for the pseudoscalar form factor, as would be expected from 
reggeization of the pion and a no subtraction hypothesis. In the case that 
m0 = 0 and oµjµ 5 = 0, the pion is the Goldstone pole and remains the 
pseudoscalar pole in the form factor, no matter how high the momentum 
transfer. This follows from the Ward identity. Again the behaviour is 
contrary to Regge behaviour. 
R. E. Marshak. Since we are working in a rather speculative domain, I 
should like to make a remark which illustrates the different approaches to 
chirality symmetry taken by Weinberg and by some of us who have worked 
exclusively with fermion fields. I find it extremely strange and suggestive 
that we not only have three lepton fields in close analogy to the three 
quarks which seem to structure the hadrons, but we also have 3 symmetry 
breakings from the SU(3) @ SU(3) level, down to SU(3), down to SU(2) 
and finally down to SU(l) x Y. In a sense, the muon and electron are 
behaving like the quarks which produce the hypercharge and electro­
magnetic splittings respectively among hadrons. In a more serious vein, 
Weinberg is willing to tolerate a non zero mass pion as a sort of pseudo­
Goldstone particle. One might have a chance to explain the 3 broken 
symmetries in terms essentially of lepton currents compounded out of the 
3 objects we know with different masses: zero mass v, electromagnetic 
mass e, and muon mass which is of the order of (hypercharge) SU(3) 
breaking. Perhaps this conjecture can already be excluded by what is 
known about simultaneous symmetry breakings and the generalized 
Goldstone theorem. 
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H.P. Diirr. At present I cannot see how a connexion can be made between 
the Goldstone theorem and the leptons. Perhaps there might be a way 
to establish a connexion between weak currents and the breaking of 
symmetries if one uses some kind of a mechanism as suggested by 
Higgs and others which make use of long range forces in the original 
Lagrangian. 
W. Heisenberg. In connexion with the Goldstone theorem I want to stress 
two points. The one concerns the interaction of a particle with the ground­
state. If the breaking of the symmetry is seen experimentally in the 
splitting of mass levels in a multiplet, then in the Goldstone case, the 
splitting must be due to this interaction of the particle with the ground­
state and its collective modes. Therefore if one were to try to explain the 
violation of SU(3) by a Lagrangian exactly invariant under SU(3) and an 
asymmetrical groundstate, there should not only exist the collective modes 
of mass zero in the groundstate, but these modes should also interact 
strongly with the particles-against existing experimental evidence. With 
respect to SU(2) the situation is much better. There we have the Coulomb 
field and the photon, and their interaction is just of the correct order of 
magnitude for explaining the mass splitting in the iso-multiplets. 

The second point concerns the projection operator in the definition of a 
Goldstone particle. These particles may be considered as localized 
spurious. Now a spurion, being the change from one vacuum to another 
vacuum, means some change which is-with equal probability-spread 
out over the whole space. If one then constructs a projection operator 
which picks out just those points in space where the change has occurred, 
then by means of this operator one can localize the spurion, i.e. construct 
a Goldstone particle. Therefore the occurrence of a projection operator 
like e.g. iCY + r 3) in the Gell-Mann-Nishijima rule is a strong indication 
for the Goldstone-character of the corresponding particle or field. 
R. E. Marshak. How can you hope to demonstrate that the photon is 
the Goldstone particle in SU(2) symmetry breaking when it has the wrong 
quantum numbers? 
H. P. Diirr. There may be still some hope to change the internal quantum 
numbers of the Goldstone boson by coupling on spurions, as Heisenberg 
has suggested. The Lorentz properties would be all right if one could 
show that the Goldstone object is really the scalar Coulomb force from 
which then the photons would arise by a secondary step from Lorentz 
invariance. 

Personally, I certainly would take the suggestion of Higgs and others as 
an attractive possibility, provided one can find some way out in the 
difficulties which seem to occur there. 
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G. Kiillen. If it is true that the 77-meson is a Goldstone particle with 
approximately zero mass then I would like to ask: what is the situation 
for the other mesons usually classified to be in the same octet? 

Do they all correspond to Goldstone particles, but with some of the 
masses more equal to zero than others? Alternatively, one could declare 
that the octet classification is an accident and that the 77-meson is basically 
different from the other pseudoscalar mesons. If the first alternative is 
preferred by the official point of view my question is: Do all the pseudo­
scalar mesons correspond to the same broken symmetry or are they related 
to different broken symmetries? If so, which broken symmetry corresponds 
to which particle? 
S. Weinberg. I don't know what the official view is, but the consensus 
seems to be that it is better not to think about the strange particles if you 
want to go on thinking you understand what is going on. Nevertheless, 
Glashow and I have looked at what happens to Goldstone's theorem if 
you include SU(3) x SU(3) symmetry breaking with a specific assumption 
as to how the symmetry breaking term transforms. The result is very 
weak, i.e. one inequality among the masses of the would-be Goldstone 
bosons (the pseudoscalar nonet and the unobserved kappa meson), which 
may be true. In addition, it should be noted that the calculations of KN 

and KN scattering lengths which use the idea of a partially conserved 
strangeness-changing current are in pretty good agreement with experiment. 
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