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Abstract: Since Hamilton proposed quaternions as a system of numbers that does not
satisfy the ordinary commutative rule of multiplication, quaternion algebras have played
an important role in many mathematical and physical studies. This paper introduces the
generalized notion of Pauli Fibonacci polynomial quaternions, a definition that incorporates
the advantages of the Fibonacci number system augmented by the Pauli matrix structure.
With the concept presented in the study, it aims to provide material that can be used in
a more in-depth understanding of the principles of coding theory and quantum physics,
which contribute to the confidentiality needed by the digital world, with the help of
quaternions. In this study, an approach has been developed by integrating the advantageous
and consistent structure of quaternions used to solve the problem of system lock-up and
unresponsiveness during rotational movements in robot programming, the mathematically
compact and functional form of Pauli matrices, and a generalized version of the Fibonacci
sequence, which is an application of aesthetic patterns in nature.

Keywords: generalized Fibonacci polynomials; Pauli matrices; quaternions; Pauli Fibonacci
polynomial quaternions
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1. Introduction

Particle physics, sometimes called high energy physics, is the area of natural science
that investigates the ultrastructure of matter. This research deals with two issues: The first
is the search for elementary particles, the ultimate constituents of matter at its smallest
scales. The second is to explain what interactions take place between them to create matter
as we view it [1]. While knowledge about electricity goes back much further, the fact that
the electron is a particle has been proven more recently. In this sense, the first experimental
evidence for the existence of the electron as a charged particle dates back to Thomas Alva
Edison’s experiments in the 1880s [2]. For the development of the elementary particle, the
dates in [1] will be taken as a basis, as given below: After years in which the fundamental
particle was considered to be the atom, J. J. Thomson brought a different perspective
to the situation when he extracted electrons from matter in the form of cathode rays in
1897 [3]. In 1932, Chadwick discovered that the nucleus, the core of the atom, is composed
of protons and neutrons [4]. In 1934, Fermi established the theory of weak interactions [5].
In 1935, Yukawa developed the meson theory to explain the nuclear force acting between
them [6]. Thus protons and neutrons, two of the three grains of baryons, were considered
fundamental particles until the 1960s. Quarks and leptons are now recognized as the
essential components of matter [1].
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Currently, we are dealing with spin, which is of great importance for the physics of el-
ementary particles and is also a complex concept. Eliot Leader has beautifully summarized
the place of the concept of spin in the field with an analogy: Spin acts a dramatic Jekyll
and Hyde role in the theater of elementary particle physics, at times heralding the collapse
of an existing theory and at other times serving as a strong device in confirming another
theory [7].

Spin, which requires a deep understanding of quantum mechanics to understand
how it actually arises, first appeared when Paul Andrew Maurice Dirac derived the Dirac
Equation, the cornerstone of relativistic quantum mechanics. Richard Feynman wrote
the following explanation about the concept of spin [8]: “It appears to be one of the
few places in physics where there is a rule which can be stated very simply, but for
which no one has found a simple and easy explanation [9]”. In their classic textbook on
quantum mechanics, Landau and Lifshitz wrote the following about the spin property [8]:
“The spin property of elementary particles is peculiar to quantum theory. . . It has no
classical interpretation. . . It would be wholly meaningless to imagine the ‘intrinsic’ angular
momentum of an elementary particle as being the result of its rotation about its own
axis [10]”. In [7], it is stated that Dirac’s (1927) work demonstrated that spin arises
automatically in a relativistic theory and can no more be considered as an autonomous
additional degree of independence. Particles with full spin satisfy the Bose–Einstein
statistics, and particles with half spin comply with the Fermi–Dirac statistics [11].

The concept of spin appears in quantum mechanics books through an idealized
Stern–Gerlach experiment in which a non-relativistic ray of silver atoms crosses an inho-
mogeneous magnetic field [7]. In non-relativistic quantum mechanics, Bargmann showed
that it is possible to describe the particle spin by performing the central extension of the
Galilei group [12]. The spin of a particle in non-relativistic quantum mechanics is given as
an additional rotational degree of freedom [7].

There is also an approach that does not accept the Stern–Gerlach experiment, which
is considered the first measurement of spin, as a measurement of electron spin. Bohr and
Pauli are researchers who claimed that it is impossible to measure the spin of an electron.
Despite this idea, spin has played a major role in the development of modern science
both theoretically and technologically. In the last 30 years, studies that have gained great
momentum have been carried out after the characterization of some metals using electron
spin resonance, and studies have been carried out to detect radio frequency spin signals
with scanning tunneling microscopy, and thus a new class of studies has emerged by taking
advantage of the chemical sensitivity of spin resonance methods below the nanometer
scale [13].

Spinors are theoretically used to model particles with half-integer spin, such as the
massive electron and the massive or massless neutrino [14]. In fact, the spinor theory
was developed independently by physicists and mathematicians. As a result, there is no
single definition of the spinor concept in the literature [15]. According to Figueiredo et al.,
spinors have three different definitions, each showing a different perspective [15,16]. First
is the covariant definition [17,18], the second is the algebraic definition [19–21], and, finally,
the third is the operatorial definition [22]. Spinors have performed an essential role in
physics and mathematics for the past eighty years [2]. In theoretical physics, one of the
long-enduring problems is the combination of space–time and internal symmetries. The
space–time symmetries produced by the Poincare group (including the space reversal P,
time reversal T, and their combination PT) are treated as completely certain transformations
of the space–time continuum. The first transformation, charge conjugation C, which is
associated intimately with a complex conjugation of Lorentz group representations but
is not a space–time symmetry, can be treated as an internal symmetry. There are also a
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wide variety of internal symmetries that come from quark phenomenology from SU(N)-
theories [23].

As is well known, elementary particles might be grouped into multiplets satisfying
nonreducible representations of the so-called algebras of internal symmetries (e.g., the
multiplet of the isospin algebra su(2) or the multiplet of the algebra su(3)) [23]. Gell-
Mann [24] and Ne’eman [25] argue that the charge multiplicities of the group SU(2) can be
combined into a larger group, such as the group SU(3). Thus the isospin group SU(2) is
considered as a subgroup of SU(3) such that SU(2) ⊂ SU(3) [23].

Looking back on the nineteenth century, there was a need for a mathematical theory
in which physical laws could be described and their universality checked. The conditions
were in place for the construction of such a theory. The two leading names in developing
this theory were Hamilton and Grassmann. Although Hamilton is thought to have done
this work to find a suitable mathematical tool to apply Newtonian mechanics to various
aspects of astronomy and physics, Grassmann’s real intention was to develop a theoretical
algebraic structure on which the geometry of any number of dimensions could be based.
From a purely mathematical point of view, Hamilton perhaps wanted to introduce a binary
operation that could be physically interpreted in terms of a rotation in space [26].

The algebra of two-component spinors and Pauli matrices, part of the SU(2) group,
enables a more compact and elegant formalism for defining classical rotations in real three-
dimensional space. While the spinor representation is normally related with quantum
mechanics, it is very intimately associated with quaternions, which were used a century
ago by Hamilton to describe the inner degree of freedom of the electron, recognized as
spin [27,28].

Quaternions were defined by Hamilton in 1843 [29]. Hamilton expressed the quater-
nion by means of a certain quadruple, which he called the real part of the first term and
the imaginary part of the structure formed by the other three terms, and some equalities
regarding the squares and products of the symbols in the imaginary part are valid [15].
Hamilton introduced a non-commutative binary algebra based on four basic units, such
as (1, i, j, k), in which many aspects of mechanics could be treated. James C. Maxwell
argued that quaternions could be valuable in the theoretical advancement of electricity
and magnetism. The theory of quaternions did not survive in its original form, despite
the numerous applications Hamilton pointed out and the insistence of many researchers,
including the Scottish mathematician Tait [26].

Despite the great value of Grassmann’s work, the importance of neither the original
nor the extended work has been adequately recognized. The work needed to bring formal
clarity and simplicity to the subject, and to demonstrate its important contributions, has
been done by subsequent researchers instead of Hamilton and Grassmann. John Willard
Gibbs, one of the most important mathematical physicists, was highly influential in de-
veloping the form of vector analysis. His need for a simpler mathematical framework
for topics such as electromagnetics and thermodynamics was satisfied by selecting those
aspects of the subject that could best be applied to theoretical physics, thanks to his insight
into the work of Hamilton and Grassmann [26]. Quaternions found application especially
in physics in the late 19th and early 20th centuries [30].

In robotics and computer-aided design, it is very important to be capable of defining
geometric relationships clearly and unambiguously. This is done through coordinate
systems and geometric transformations in the form of translation, scaling, symmetry, and
rotation [31]. Euler angles were often used to formulate the rotational motion of objects.
One of the disadvantages of utilizing Euler angles to simulate rotation is a condition known
as gimbal lock [32]. Gimbal lock has been a highly visible problem in spacecraft control
after the Apollo mission suffered from it [33]. In systems using three separate rotations,
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gimbal lock is a situation where two rotation axes align at certain angles, resulting in the
loss of control of one axis. With quaternions, which eliminate this limitation and have many
other advantages, research on a wide range of applications, especially in 3D space, is still
ongoing. Programs such as Python SciPy 1.2.0 a popular language for robot programming,
have added commands to their libraries to convert from Euler angles to quaternions [31].

In 1927, Pauli introduced the idea that the wave function of the electron could be
described by a vector with two complex components; this vector is a spinor in three-
dimensional Euclidean space. A year later, Dirac, in line with the needs of the relativistic
equation, defined a wave function for the electron represented by a vector with four
complex components, a spinor of four-dimensional pre-Euclidean space–time. In fact,
physicists had unwittingly rediscovered the mathematical objects created by Cartan in 1913
while studying linear representations of groups. Moreover, the spinors studied by Cartan
are examples of spinors that can be defined in a very general way, starting only from certain
axioms. Additionally, vector spaces whose elements are spinors are related to the general
theory of Clifford spaces introduced by Clifford in 1876 [34].

The term spin was first used by physicists to describe certain properties of quantum
particles that emerged during various experiments. To quantify these properties, some new
mathematical concepts called spinors were defined. These are vectors of a space whose
transformations are related in a certain way to rotations in physical space. The analysis
of the geometrical characteristics of spinors is necessary to better reveal the relationship
between rotations in the space of spinors and rotations in three-dimensional physical
space [34].

Pauli matrices, also referred to as Pauli spin matrices, are mathematical instruments
of quantum mechanics. They took this name from the famous physicist Wolfgang Pauli,
who made great advances in physics. Pauli matrices can be represented by using complex

numbers as follows: σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i

i 0

]
, σ3 =

[
1 0
0 −1

]
.

Together with these three matrices, the identity matrix I =

[
1 0
0 1

]
is also included

as a fourth element in order to represent observables. The state of an electron’s spin
along orthogonal axes can be represented using the corresponding σ1, σ2, σ3. One of the
interesting properties of Pauli matrices is that these three matrices form a basis for the
space of 2 × 2 matrices. That is, any 2 × 2 matrix can be written as a linear combination of
σ1, σ2, σ3 and the identity matrix. The Pauli matrices are orthogonal. Also, Pauli matrices
are Hermitian. That is, these matrices are equal to their conjugate transpose. The traces of
Pauli matrices are equal to zero. That is, the sum of the elements on the principal diagonal
of σ1, σ2, σ3 is zero. On the other hand, the determinant of σ1, σ2, σ3 is one. This property
means that Pauli matrices represent rotations in the quantum analogue of the phase space
of classical mechanics.

Let the unit matrix be denoted by σ0. Some important properties of Pauli matrices can
be given as follows [34] (σ0 is obtained by taking the squares of the Pauli matrices):

For m ̸= n and m, n ∈ {1, 2, 3}, σmσn = −σnσm. Also,

σ1σ2 = iσ3, σ2σ3 = iσ1 and σ3σ1 = iσ2. (1)

The following relations are valid for Pauli matrices:

σ1σ2 − σ2σ1 = 2iσ3, σ2σ3 − σ3σ2 = 2iσ1 and σ3σ1 − σ1σ3 = 2iσ2.
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Using the linearly independent of unit matrix σ0 and Pauli matrices, the following
relation is written:

λ0σ0 + λ1σ1 + λ2σ2 + λ3σ3 = 0.

For m ∈ {0, 1, 2, 3}, σm matrices are a base of the vector space of 2 × 2 matrices over

real or complex numbers. Also, each matrix A =

[
a b

c d

]
can be expressed as

A = ασ0 + βσ1 + γσ2 + δσ3 = 0

where
α =

1
2
(a + d), β =

1
2
(b + c), γ =

1
2

i(b − c), δ =
1
2
(a − d).

The Pauli matrices used to describe the behavior of quantum bits (qubits) can play
important roles in quantum computers and artificial intelligence processes that are still
under development.

Pauli matrices are introduced into the theory of spinors in the following way:

x = ψφ∗ + ψ∗φ,

y = i(ψφ∗ − ψ∗φ),

z = ψψ∗ − φφ∗.

The quaternion can be represented using the complex numbers ψ and φ, with the
associated spinor components (ψ, φ) and (φ∗, ψ∗) expressed in matrix form. With this

information, take χ =

[
ψ

φ

]
and χ† =

[
ψ∗ φ∗

]
using Pauli matrices, the x, y, z

components of the vector can be written as follows: x = χ†σ1ζ, y = χ†σ2χ and z = χ†σ3χ.
Every matrix corresponds to a component along one of the axes of the reference

trihedron. These are infinitesimal rotation matrices around the axes Ox, Oy, Oz multiplied
by a factor [34].

Pauli used spinors, thought to be elements of C2, to reveal the behavior of an electron
by taking the spin of the electron into account in quantum mechanics. In physics, spinors
arose as a product of Pauli’s theory of non-relativistic quantum mechanics (1926) and
Dirac’s theory of relativistic quantum mechanics (1928) [35,36]. These matrices, which
appear in the Pauli equation, which takes into account the interaction of a particle’s
spin with an external electromagnetic field, are named after the physicist Wolfgang Pauli
(1928) [36]. These matrices have a very important place in nuclear physics studies. Dirac
gave important formulas about Pauli matrices [35]. Less than two years after the 1926
discovery of the Schrödinger equation, Dirac derived a first-order wave equation for a
four-component spinor field describing relativistic spin-1/2 particles such as electrons [35].
For detailed information on this subject, reference [37] can be reviewed. Vivarelli [38]
was involved in this area from the geometrical aspect. He showed an injective and linear
correspondence between spinors and quaternions, and, in three-dimensional Euclidean
space, he gave spinor representations of rotations. Thus, a more concise and simpler
depiction of quaternions can be reached by the concept of spinors. Quaternions, being
applied to the fields of mathematics, physics, robotics, engineering, and chemistry, can be
worked through spinors with the help of the correspondence given by Vivarelli [38].

We will now examine in more detail the quaternions mentioned above, which Hamil-
ton constructed using the three symbols i, j, k to generalize the concept of complex numbers,
with the following properties:
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i2 = j2 = k2 = −1, ij = −ji = −k, jk = −kj = −i, ki = −ik = −j.

If q is written using these three components and 1,

q = u1 + xi + yj + zk

q formed by this method are called quaternions and they form a four-dimensional
vector space over real numbers. The structure shown by H represents the quaternion
algebra. The moment he discovered these equations, Hamilton carved them into a bridge.
He spent the rest of his life working on quaternions, which is why this algebra is now
represented by H, after him [39]. Also, the quaternion algebra is a Clifford algebra and
the generating elements are e1 = i, e2 = j and for i ̸= j eiej = −ejei, e2

j = −1. Here,
e3 = e1e2 = ij = −k.

A matrix representation of the quaternions is then the following:

q = uσ0 + xiσ1 + yiσ2 + ziσ3.

With the help of the generating symbols of quaternions, an isomorphism can be
established between the quaternion algebra and other four-dimensional algebras. A classi-
cal representation of quaternions is given by the following generator elements and their
outputs [34]:

e1 =

[
0 1
−1 0

]
, e2 =

[
0 i

i 0

]
, e1e2 = e3 =

[
i 0
0 −1

]
.

Therefore, we get for the matrix representation of a quaternion

q = u1 + xe1 + ye2 + ze3,

where 1 =

[
1 0
0 1

]
.

A generalized non-commutative quaternion q is a vector in 4-dimensional vector space
of the form q = u1 + xe1 + ye2 + ze3, where quaternionic units e1, e2, e3 satisfy the next
equalities for c1, c2 ∈ R.

e2
1 = −c1, e2

2 = −c2, e2
3 = −c1c2,

e1e2 = −e2e1 = e3, e2e3 = −e3e2 = c2e1 and e3e1 = −e1e3 = c1e2.

For special values of c1 and c2, we obtain well-known subclasses of non-commutative
quaternions. Specific choices of c1 and c2 yield well-established types of non-commutative
quaternions:

c1 = c2 = 1, real quaternions,
c1 = 1, c2 = −1, split quaternions,
c1 = 1, c2 = 0, semi quaternions,
c1 = 0, c2 = 0, 1

4 quaternions [40].
A generalized commutative quaternion q is a vector in 4-dimensional vector space

of the form q = u1 + xe1 + ye2 + ze3, where quaternionic units e1, e2, e3 satisfy the next
equalities for c1, c2 ∈ R.

e2
1 = c1, e2

2 = c2, e2
3 = c1c2,

e1e2 = e2e1 = e3, e2e3 = e3e2 = c2e1 and e3e1 = e1e3 = c1e2.
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For special values of c1 and c2 we obtain well-known subclasses of non-commutative
quaternions. Specific choices of c1 and c2 yield well-established types of non-commutative
quaternions:

c1 < 0, c2 = 1, elliptic quaternions,
c1 = 0, c2 = −1, parabolic quaternions,
c1 > 0, c2 = 1, hyperbolic quaternions [41].
The real linear span of {I, σ1, σ2, σ3} is isomorphic to the real algebra of H quaternions,

and the Pauli quaternions are defined by this basis [42]. A Pauli quaternion is given as

p = x01 + x1σ1 + x2σ2 + x3σ3

and a set of Pauli quaternions is denoted by Hp. The conjugate of a Pauli quaternion,
represented by p∗, in [43], is shown as

p∗ = x01 − x1σ1 − x2σ2 − x3σ3.

Isomorphism from H to this set is given by the following transformation, which has the
opposite sign for Pauli matrices: 1 → I, i → −iσ, 1, j → −iσ2, k → −iσ3 [44]. Optionally,
the isomorphism may be realized by a transformation that uses the Pauli matrices in inverse
order, such that 1 → I, i → iσ3, j → iσ2, k → iσ1 [42].

For any Pauli quaternion, the product is defined as follows:




x0 x1 x2 x3

x1 x0 −ix3 ix2

x2 ix3 x0 −ix1

x3 −ix2 ix1 x0







y0

y1

y2

y3


.

For all p, q ∈ Hp Pauli quaternion product is given by

pq = (x0y0 + x1y1 + x2y2 + x3y3)1 + ((x0y1 + x1y0) + i(x2y3 − x3y2))σ1

+((x0y2 + x2y0) + i(x3y1 − x1y3))σ2 + ((x0y3 + x3y0) + i(x1y2 − x2y1))σ2.

Then, pp∗ = p∗p = (x2
0 − x2

1 − x2
2 − x2

3)1 [45].
Another concept that is important for our study is Fibonacci numbers. The literature

on Fibonacci numbers, which has been analyzed in many remarkable ways for quite some
time, is extensive. Fibonacci numbers are numbers that originated when Leonardo Pisano,
who introduced Hindu-Arabic numerals to Europe in the early 1200s, presented a problem
involving the increase in the rabbit population in his book Liber Abaci, which later led
Pisano to be known as Fibonacci. These numbers go on as 0, 1, 1, 1, 2, 3, 5, 8, 13, . . . and are
called the Fibonacci sequence and are expressed by the following recurrence relation: For
n ≥ 0, Fn = Fn−1 + Fn−2, here Fn is the nth Fibonacci number, F0 = 0, F1 = 1.

After Horadam ’s study of a generalized version of the Fibonacci sequence in [46],
many different generalizations were made about these fascinating numbers, and their
mathematical properties and practical applications were studied.

One of the most popular generalizations of Fibonacci numbers is the sequence of
Fibonacci polynomials : Fn(x) = Fn−1(x) + Fn−2(x) for n ≥ 2, with F0(x) = 0, F1(x) = 1.

Some cryptographic algorithms use complex sequences of numbers and polynomials.
With the idea that a structure more general than Fibonacci polynomials can provide certain
advantages in key generation and encryption methods, the following generalizations,
which will be employed in this study, are summarized below.

Since quantum theory can be formulated using Hilbert spaces on any of the three
relational normed division algebras, namely real numbers, complex numbers, and quater-
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nions [39], we will now briefly talk about Fibonacci polynomials in our study on the
combination of quaternions, which we have touched upon in detail, with number se-
quences, which are important topics in the mathematical field. The generalized Fibonacci
polynomials, {Wn(x)} are given as follows [47]:

Wn(x) = r(x)Wn−1(x) + s(x)Wn−2(x),

W0(x) = a(x), W1(x) = b(x), n ≥ 2.

Binet’s formula of generalized Fibonacci polynomials can be calculated using the
characteristic equation, which is given as

t2 − r(x)t − s(x) = 0.

The roots of the characteristic equation are

a(x) = a =
r(x) +

√
r2(x) + 4s(x)

2
, β(x) = β =

r(x)−
√

r2(x) + 4s(x)

2
.

These equalities are consistent with the formulas provided in [48].
Note: For the sake of simplicity throughout the rest of the paper, we use

Wn, r, s, W0, W1, α, β, Gn, Hn, G0, G1, H0, H1

instead of

Wn(x), r(x), s(x), W0(x), W1(x), α(x), β(x), Gn(x), Hn(x), G0(x), G1(x), H0(x), H1(x).

In the next theorem, we recall Binet’s formula of generalized Fibonacci polynomials.

Theorem 1.

(a) (Distinct Roots Case: α ̸= β) Binet’s formula of generalized Fibonacci (Horadam) polynomi-

als is

Wn =
p1αn − p2βn

α − β
(2)

where

p1 = W1 − βW0, p2 = W1 − αW0.

(b) (Single Root Case: α = β) Binet’s formula of generalized Fibonacci (Horadam) polynomials is

Wn = (D1 + D2n)αn (3)

where

D1 = W0,

D2 =
1
α
(W1 − αW0).

For more detail, see Soykan [47].
There are some studies in the literature that bring together the classical Fibonacci

sequence, which is a special case of a more general concept employed in this study, and
the concept of quaternions, which are integrated with the Pauli matrix structure. There
are not enough studies covering all these concepts. The fundamental studies of Fibonacci
quaternions are [45,49,50]. A few important works inspired by these studies in the following
periods are as follows. In [51], Fibonacci quaternions were generalized to define higher
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order Fibonacci quaternions. In [52], which establishes a relationship between spinors and
Fibonacci polynomials, a new sequence family of Generalized Fibonacci polynomial spinors
is introduced; the matrix structure of the sequences related to these defined polynomials
and some special relations are given. Fibonacci type quaternions with evaluations from
different perspectives can be found in [53–58]. Generalized commutative quaternions of
the Fibonacci type were defined in [41]. When it comes to studies that associate the concept
of Pauli quaternion with number sequences, we can say that the first of these studies is [59].
Azak studied [60] the Gaussian version of Torunbalci’s work. In [61], Pauli–Leonardo
quaternions are introduced and various equalities are obtained. İşbilir and others are
working on incomplete generalized (p, q, r)-Tribonacci Pauli quaternion polynomials [62].

A Fibonacci quaternion is generally defined in [50] as

Qn = Fn + iFn+1 + jFn+2 + kFn+3

where Qn is the nth Fibonacci quaternion, Fn denotes the nth Fibonacci number, and i, j, k

are the classical quaternion units.
In [49], the author, by defining Qn = Fn + u, for u = Fn + iFn+1 + jFn+2 + kFn+3,

presented the following properties regarding to the isomorphic structure of Fibonacci
quaternions. For

H = {Qn : Qn = (Fn, Fn+1, Fn+2, Fn+3)}

and

H
′
= {Pn : Pn =

(
w −z

z w

)
, w,z ∈ C},

there exists an isomorphism between H and H
′
.

Qn = (Fn, Fn+1, Fn+2, Fn+3) → Pn =

(
Fn + iFn+1 −Fn+2 − iFn+3

Fn+2 − iFn+3 Fn − iFn+1

)
.

Also,
Pn = Fn + Fn+1E + Fn+2 I + Fn+3K

where E =

(
1 0
0 1

)
, I =

(
i 0
0 −i

)
, J =

(
0 −1
1 0

)
, K =

(
0 −i

−i 0

)
.

In this paper, we introduce a notion based on Pauli matrices in the framework of
quaternions using the structure of generalized Fibonacci polynomials given in [47]: Gener-
alized Pauli Fibonacci polynomial quaternions. Important equalities have been obtained
with the help of Pauli (r, s) Fibonacci polynomial quaternion and Lucas versions of these
polynomials. Also, the relation of the defined concept with matrices is given. Thus, the
defined concept will be carried to the broad axis of matrix theory. The main idea behind
the development of generalized Pauli Fibonacci polynomial quaternions is, first of all, to
provide a transition from the usual Euler approach, which has disadvantages especially
for rapidly changing angles in robotic coding and 3D animation system in the developing
digital world, to a more useful quaternion-based structure, and then to take advantage of
the Fibonacci sequence and polynomials associated with the balance and aesthetic approach
in nature (golden ratio).

Previous studies on Fibonacci quaternions [39,45,63] and spinors [51] have established
a foundational understanding of algebraic structures involving Fibonacci numbers and
quaternionic representations. These works mainly focused on the properties and identities
of Fibonacci quaternions and their connections to spinorial objects in classical settings. In
contrast, the present study introduces a novel generalization by incorporating Pauli ma-
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trices into the structure of generalized Pauli Fibonacci polynomial quaternions (GPFPQs).
This integration enriches the algebraic framework by combining the recursive nature of
Fibonacci polynomials with the intrinsic non-commutative and anti-commutative prop-
erties of Pauli matrices. As a result, the proposed structure is better suited to modeling
quantum mechanical systems, particularly in areas involving spin dynamics, entanglement,
and unitary transformations.

Moreover, the Pauli-based extension of Fibonacci quaternions opens potential applica-
tions in both quantum information theory (e.g., quantum state representation and encoding)
and classical cryptography, where matrix-based operations and structural complexity are
desirable features. This approach not only generalizes existing quaternion models but also
establishes a bridge between number theory, operator theory, and quantum computation,
offering a richer mathematical toolset for future research.

The incorporation of Pauli matrices brings several novel aspects that were not explored
in the prior quaternion models:

• Non-commutative Structure Enhancement:

Pauli matrices inherently possess non-commutative and anti-commutative properties,
which, when combined with Fibonacci polynomials, yield richer algebraic structures than
those presented in classical Fibonacci quaternion models. This allows for a more nuanced
representation of quantum mechanical symmetries and transformations.

• Quantum Mechanical Relevance:

Pauli matrices play a foundational role in quantum mechanics, particularly in spin and
quantum state representations. By embedding these matrices into the GPFPQ framework,
our approach creates a bridge between number-theoretic constructs (Fibonacci polynomials)
and quantum operators, facilitating more natural modeling of quantum systems, such as
entanglement, quantum rotations, and spin states.

• Potential for Quantum and Classical Applications:

The new structure opens up applications not just in theoretical algebra, but also in
quantum information (e.g., state encoding) and cryptographic schemes where Pauli-based
operations are commonly used in quantum error correction and secure communications.

• Analytical Generalization:

Our approach also generalizes previous models by defining an extended algebra that
encompasses both classical quaternion identities and matrix-based operations, thus allow-
ing for further exploration in operator theory, matrix representation, and coding theory.

The concept, which we have defined with the help of general polynomials used in the
context of Pauli matrices and quaternions, is presented for the evaluation of researchers,
considering that it will be used together with the below studies in the literature.

In article [64], a cryptographic framework is proposed that employs Pauli spin-1/2
matrices in conjunction with finite state machines to encrypt data streams, aiming to
enhance the robustness and security of data transmission processes. In [65], a secure
cryptosystem is presented based on the braiding and entanglement of Pauli 3/2 matrices,
aiming to ensure the secure transmission of sensitive information over the Internet. A
solution for maximal dense coding with symmetric quantum states, based on unitary
operators derived from the Pauli group, is proposed in [66], where quantum communication
and coding theory are integrated. In [67], a fast construction of quantum codes based on
the residues of Pauli block matrices is explored, with significant discussions on quantum
error correction and stabilizer codes. In [68], the authors propose an approach to quantum
fully homomorphic encryption (FHE) by integrating Pauli one-time pad encryption with
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quaternion algebra. The integration of these two techniques enables fully homomorphic
operations on encrypted quantum data without compromising privacy.

We can list the contributions that the concept of “Generalized Pauli Fibonacci Poly-
nomial Quaternions” can provide to the literature and its features that may attract the
attention of researchers looking for a study topic in different fields as follows:

• By combining the time-dependent growth properties of Fibonacci polynomials with
quantum transformations of Pauli matrices, more flexible and accurate modeling of
temporally evolving quantum systems can be achieved.

• With the help of Fibonacci polynomial-based quaternion structure, more accurate
modeling of systems such as biological signals and financial fluctuations involving
nonlinear dynamics can be achieved.

• Pauli matrices are already fundamental components in quantum error-correcting codes
(see [69]). Non-commutative Pauli Fibonacci quaternions could inspire new code
systems with pattern-based coding logic to design error-correcting and corruption-
tolerant systems in quantum information theory.

• After the encryption systems based on Fibonacci numbers, which have been previously
investigated in classical cryptography (see [70]), quaternions and non-commutative
structures can offer potential solutions for post-quantum cryptography. Combin-
ing the recurrence property of Fibonacci sequences and the orientation structure of
quaternions, the presented concept can help to develop a new generation of secure
algorithms with asymmetric and quantum-resistant encryption methods.

The structure of the sections in the manuscript is as follows: The introduction presents
a comprehensive overview of Fibonacci quaternions and explores their connection to
Pauli matrices through the quaternion–spinor relationship. Furthermore, the discussion
highlights the theoretical significance and practical applicability of these mathematical
constructs in addressing complex and evolving problems in various fields, including
physics, engineering, and computational sciences.

In the second section, the mathematical structure of the generalized Pauli Fibonacci
polynomial quaternions is formally introduced. To support practical implementation and
demonstrate the applicability of the proposed formulation, detailed tables are presented
for both positive and negative indices, providing insight into the behavior and numerical
characteristics of the quaternion components across varying index values. Moreover, the
(r, s)-Fibonacci and Lucas extensions of the definition are presented to illustrate the algebraic
flexibility and generalization capacity of the proposed structure. These formulations not
only expand the classical Fibonacci and Lucas sequences within a quaternionic framework,
but also demonstrate that the study aligns with the expected generalization procedures
in the literature, thereby reinforcing its theoretical soundness and potential for broader
algebraic applications. Furthermore, by deriving the Binet formula and the corresponding
generating function for the generalized Pauli Fibonacci polynomial quaternions, the study
provides readers with a closed-form expression and a systematic computational tool. These
formulations not only facilitate the efficient calculation of higher-order terms but also align
with standard methodologies in the literature aimed at revealing the analytical structure
and recurrence behavior of generalized number sequences within algebraic systems.

In Section 3, the concepts of Pauli (r, s )-Fibonacci polynomial quaternions and their
Lucas versions are further extended through the derivation of important summation formu-
las. These formulas are obtained using recurrence relations that are commonly employed
to generate polynomial sequences, thereby providing closed-form expressions for the sums
of the defined polynomials. Through this approach, the study aims to establish the nec-
essary theoretical framework to support further algebraic exploration and computational
application of these generalized quaternionic structures.
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In Section 4, several findings are presented to demonstrate that the matrix-based
methodological framework, which is widely used in the literature for generalized Fibonacci
polynomials, can be successfully extended to the newly defined structure that integrates
Pauli matrix properties with quaternionic algebra. These results emphasize the adaptability
of classical recursive techniques to more complex algebraic systems.

The final section of the manuscript is dedicated to presenting the conclusions drawn from
the study, along with a set of recommendations for future research and potential applications.

2. Main Results

This section is devoted to the exploration of various mathematical properties and
identities associated with generalized Pauli Fibonacci polynomial quaternions. We begin by
presenting the structure and definition of the Pauli (r, s)-Fibonacci polynomial quaternion,
followed by a detailed version of Binet’s formula adapted to this generalized framework.
Additionally, we examine several classical identities in the context of these quaternions,
including Catalan’s identity, the Simpson formula, and the Cassini identity, each of which
provides deeper insight into the algebraic and analytical nature of these constructs. The
results obtained not only extend well-known Fibonacci-related identities to a broader setting
but also offer new perspectives relevant to both pure mathematics and theoretical physics.

The generalized Pauli Fibonacci polynomial quaternions can be defined by the basis
{1, iσ1, iσ2, iσ3} where iσs = 1, 2, 3 satisfy the conditions as follows:

QpWn = Wn1 + Wn+1σ1 + Wn+2σ2 + Wn+3σ3. (4)

Note that the identity (4) can be written as

QpWn =

(
Wn + Wn+3 Wn+1 − iWn+2

Wn+1 + iWn+2 Wn − Wn+3

)
. (5)

The transformation defined as

(Wn1, Wn+1σ1, Wn+2σ2, Wn+3σ3) → QpWn =

(
Wn + Wn+3 Wn+1 − iWn+2

Wn+1 + iWn+2 Wn − Wn+3

)

is a linear isomorphism.

Lemma 1. For nonnegative integer n, the generalized Pauli Fibonacci polynomial quaternions

sequence
{

QpWn

}
are defined by second order recurrence relation as follows:

QpWn+2 = rQpWn+1 + sQpWn (6)

with the initial conditions QpW0 and QpW1.

Proof. Using (4) and recurrence relation Wn = rWn−1 + sWn−2, we obtain

QpWn+2 = Wn+21 + Wn+3σ1 + Wn+4σ2 + Wn+5σ3

= (rWn+1 + sWn)1 + (rWn+2 + sWn+1)σ1

+(rWn+3 + sWn+2)σ2 + (rWn+4 + sWn+3)σ3

= r(Wn+11 + Wn+2σ1 + Wn+3σ2 + Wn+4σ3)

+s(Wn1 + Wn+1σ1 + Wn+2σ2 + Wn+3σ3)
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Lemma 2. For negative integers n, we have the following identity:

QpW−n−2 = − r

s
QpW−n−1 +

1
s

QpW−n. (7)

Proof. From (6), we obtain

QpW−n = rQpW−n−1 + sQpW−n−2

Hence, we have

QpW−n−2 = − r

s
QpW−n−1 +

1
s

QpW−n

Following this, Table 1 presents the first few generalized Pauli Fibonacci polynomial
quaternions with positive subscripts.

Table 1. The first few generalized Pauli Fibonacci polynomial quaternions with positive subscripts.

n QpWn

0
W0(1 + sσ2 + rsσ3)

+W1
(
σ1 + rσ2 + sσ3 + r2σ3

)

1
sW0

(
σ1 + rσ2 + (s + r2)σ3

)

+W1
(
1 + rσ1 + (s + r2)σ2 + (r3 + 2rs)σ3

)

2
sW0

(
1 + rσ1 + (s + r2)σ2 + (r3 + 2rs)σ3

)

+W1
(
r1 + (s + r2)σ1 + (r3 + 2rs)σ2 + (r4 + s2 + 3r2s)σ3

)

3
sW0

(
r1 + (s + r2)σ1 + (r3 + 2rs)σ2 + (r4 + s2 + 3r2s)σ3

)

+W1
(
(s + r2)1 + (r3 + 2rs)σ1 + (r4 + 3r2s + s2)σ2 + (r5 + 3rs2 + 4r3s)σ3

)

4
sW0

(
(s + r2)1 + (r3 + 2rs)σ1 + (r4 + s2 + 3r2s)σ2 + (r5 + 3rs2 + 4r3s)σ3

)

+W1
(
(r3 + 2rs)1 + (r4 + s2 + 3r2s)σ1 + (r5 + 3rs2 + 4r3s)σ2 + (s3 + r6 + 6r2s2 + 5r4s)σ3

)

5
sW0

(
(r3 + 2rs)1 + (r4 + s2 + 3r2s)σ1 + (r5 + 3rs2 + 4r3s)σ2 + (s3 + r6 + 6r2s2 + 5r4s)σ3

)

+W1((r
4 + s2 + 3r2s)1 + (3rs2 + r5 + 4r3s)σ1 + (s3 + r6 + 6r2s2 + 5r4s)σ2

+(r7 + 10r3s2 + 4rs3 + 6r5s)σ3)

As a special case of QpWn, taking r = 2 and s = 1, we have the following table (Table 2).

Table 2. The first few generalized Pauli Fibonacci polynomial quaternions with positive subscripts
for the case r = 2 and s = 1.

n QpWn

0 W0(1 + σ2 + 2σ3) + W1(σ1 + 2σ2 + σ3 + 4σ3)

1 W0(σ1 + 2σ2 + 5σ3) + W1(1 + 2σ1 + 5σ2 + 12σ3)

2 W0(1 + 2σ1 + 5σ2 + 12σ3) + W1(2.1 + 5σ1 + 12σ2 + 29σ3)

3 W0(2.1 + 5σ1 + 12σ2 + 29σ3) + W1
(
(5.1 + 12σ1 + 29σ2 + (r5 + 3rs2 + 4r3s)σ3

)

4 W0(5.1 + 12σ1 + 29σ2 + 70σ3) + W1(12.1 + 29σ1 + 70σ2 + 169σ3)

5 W0(12.1 + 29σ1 + 70σ2 + 169σ3) + W1(29.1 + 70σ1 + 169σ2 + 408σ3)

Next, the first few generalized Pauli Fibonacci polynomial quaternions with negative
subscripts are presented in Table 3.
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Table 3. The first few generalized Pauli Fibonacci polynomial quaternions QpWn with nega-
tive subscripts.

n QpWn

0
W0(1 + sσ2 + rsσ3)

+W1
(
σ1 + rσ2 + sσ3 + r2σ3

)

−1 (− r
s 1 + σ1 + sσ3)W0 + ( 1

s 1 + σ2 + rσ3)W1

−2 (( 1
s +

r2

s2 )1 − r
s σ1 + σ2)W0 + (− r

s2 1 + 1
s σ1 + σ3)W1

−3
((− r3

s3 − 2 r
s2 )1 + ( 1

s +
r2

s2 )σ1 − r
s σ2 + σ3)W0

+(( 1
s2 +

r2

s3 )1 − r
s2 σ1 +

1
s σ2)W1

−4
((3 r2

s3 +
r4

s4 +
1
s2 )1 + (− r3

s3 − 2 r
s2 )σ1 + ( 1

s +
r2

s2 )σ2 − r
s σ3)W0

+((− r3

s4 − 2 r
s3 )1 + ( 1

s2 +
r2

s3 )σ1 − r
s2 σ2 +

1
s σ3)W1

−5
((−4 r3

s4 − r5

s5 − 3 r
s3 )1 + ( 1

s2 + 3 r2

s3 +
r4

s4 )σ1 + (− r3

s3 − 2 r
s2 )σ2

+( 1
s +

r2

s2 )σ3)W0 + (( 1
s3 + 3 r2

s4 +
r4

s5 )1 + (− r3

s4 − 2 r
s3 )σ1

+( 1
s2 +

r2

s3 )σ2 + (− r
s2 )σ3)W1

As a special case of QpWn, taking r = 2 and s = 1, we have the following table (Table 4).

Table 4. The first few generalized Pauli Fibonacci polynomial quaternions QpWn with negative
subscripts for the case r = 2 and s = 1.

n QpWn

0 W0(1 + σ2 + 2σ3) + W1
(
σ1 + rσ2 + sσ3 + r2σ3

)

−1 (−2.1 + σ1 + σ3)W0 + (1 + σ2 + 2σ3)W1

−2 (5.1 − 2σ1 + σ2)W0 + (−2.1 + σ1 + σ3)W1

−3 (−12.1 + 5σ1 − 2σ2 + σ3)W0 + (5.1 − 2σ1 + σ2)W1

−4 (29.1 +−12σ1 + 5σ2 − 2σ3)W0 + (−12.1 + 5σ1 − 2σ2 + σ3)W1

−5 (−70.1 + 29σ1 − 12σ2 + 5σ3)W0 + (29.1 − 12σ1 + 5σ2 − 2σ3)W1

Now, we define two special cases of the generalized Pauli Fibonacci polynomial
quaternions QpWn, denoted by Pauli (r, s)− Fibonacci polynomial quaternion QpGn and
Pauli (r, s)-Lucas polynomial quaternion QpHn.

For all integers n, the nth Pauli (r, s)-Fibonacci polynomial quaternions QpGn are
defined by

QpGn = Gn1 + Gn+1σ1 + Gn+2σ2 + Gn+3σ3 (8)

with QpG0 = G01 + G1σ1 + G2σ2 + G3σ3 and QpG1 = G11 + G2σ1 + G3σ2 + G4σ3, and the
Pauli (r, s)-Lucas polynomial quaternions QpHn are defined by

Qp Hn = Hn1 + Hn+1σ1 + Hn+2σ2 + Hn+3σ3 (9)

with Qp H0 = H01 + H1σ1 + H2σ2 + H3σ3 and Qp H1 = H11 + H2σ1 + H3σ2 + H4σ3.

Lemma 3. For all integers n, we have the following identities:

(a)

QpGn+2 = rQpGn+1 + sQpGn

with

QpG0 = σ1 + rσ2 + (s + r2)σ3,

QpG1 = 1 + rσ1 + (s + r2)σ2 + r(2s + r2)σ3.
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(b)

Qp Hn+2 = rQpHn+1 + sQp Hn

with

QpH0 = 2.1 + rσ1 + (2s + r2)σ2 + r(3s + r2)σ3,

QpH1 = r1 + (2s + r2)σ1 + r(3s + r2)σ2 + (4r2s + r4 + 2s2)σ3.

Proof. Taking QpWn = QpGn and QpWn = QpHn in Lemma 1, (a) and (b) follow.

In the next tables below (Tables 5–12), we give some terms of the Pauli (r, s)-Fibonacci
polynomial quaternion QpGn and Pauli (r, s)-Lucas polynomial quaternion QpHn with
negative and positive subscripts.

Table 5. The first few Pauli (r, s)-Fibonacci polynomial quaternions QpGn with positive subscripts.

n QpGn

0 σ1 + σ2r + σ3(r
2 + s)

1 1 + rσ1 + σ2
(
r2 + s

)
+ σ3

(
r3 + 2sr

)

2 r1 + σ1
(
r2 + s

)
+ σ2

(
r3 + 2sr

)
+ σ3

(
r4 + 3r2s + s2

)

3
(
r2 + s

)
1 + σ1

(
r3 + 2sr

)
+ σ2

(
r4 + 3r2s + s2

)
+ σ3

(
r5 + 4r3s + 3rs2

)

4
(
r3 + 2sr

)
1 + σ1

(
r4 + 3r2s + s2

)
+ σ2

(
r5 + 4r3s + 3rs2

)
+ σ3

(
r6 + 5r4s + 6r2s2 + s3

)

5
(
r4 + 3r2s + s2

)
1 + σ2

(
r6 + 5r4s + 6r2s2 + s3

)
+ σ1

(
r5 + 4r3s + 3rs2

)
+ σ3

(
r7 + 6r5s + 10r3s2 + 4rs3

)

As a special case of QpGn, taking r = 2 and s = 1, we have the following tables (Table 6).

Table 6. The first few Pauli (r, s)-Fibonacci polynomial quaternions QpGn with positive subscripts
for the case r = 2 and s = 1.

n QpGn

0 σ1 + 2σ2 + 5σ3

1 1 + 2σ1 + 5σ2 + 12σ3

2 2.1 + 5σ1 + 12σ2 + 29σ3

3 5.1 + 12σ1 + 29σ2 + 70σ3

4 12.1 + 29σ1 + 70σ2 + 169σ3

5 29.1 + 70σ1 + 169σ2 + 408σ3

Table 7. The first few Pauli (r, s)-Lucas polynomial quaternions Qp Hn with positive subscripts.

n Qp Hn

0 2.1 + rσ1 + σ2(2s + r2) + σ3(r
3 + 3rs)

1 r.1 + σ1(r
2 + 2s) + σ2(r

3 + 3rs) + σ3(r
4 + 4r2s + 2s2)

2 r.1 + σ1
(
r2 + s

)
+ σ2

(
r3 + 2sr

)
+ σ3

(
r4 + 3r2s + s2)

3
(2r + r3 + rs).1 + σ1(2r2 + r4 + 2s + 2r2s) + σ2(2r3 + r5 + rs2 + 3r3s + 4rs)

+σ3
(
6r2s + 4r4s + 3r2s2 + 2r4 + 2s2 + r6)

4
(r4 + 4r2s + 2s2).1 + σ1(r

5 + 5r3s + 5rs2) + σ2(9r2s2 + 2s3 + 6r4s + r6)
+σ3(r

7 + 7r5s + 14r3s2 + 7rs3)

5
(r5 + 5r3s + 5rs2).1 + σ1(r

6 + 6r4s + 9r2s2 + 2s3) + σ2(r
7 + 7r5s + 14r3s2 + 7rs3)

+σ3(r
8 + 8r6s + 20r4s2 + 16r2s3 + 2s4)
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As a special case of QpHn, taking r = 2 and s = 1, we have the following tables (Table 8).

Table 8. The first few Pauli (r, s)-Fibonacci polynomial quaternions Qp Hn with positive subscripts
for the case r = 2 and s = 1.

n Qp Hn

0 2.1+ 2σ1 + 6σ2 + 14σ3

1 r.1 + 6σ1 + 14σ2 + 34σ3

2 r.1+ 5σ1 + 12σ2 + 29σ3

3 14.1 + 34σ1 + 82σ2 + 198σ3

4 34.1 + 82σ1 + 198σ2 + 478σ3

5 82.1 + 198σ1 + 478σ2 + 1154σ3

Table 9. The first few generalized Pauli (r, s)-Fibonacci polynomial quaternions QpGn with
negative subscripts.

n QpGn

0 σ1 + σ2r + σ3(r
2 + s)

−1 1
s .1 + σ2 + rσ3

−2 − r
s2 .1 + 1

s σ1 + σ3

−3 ( 1
s2 + r2

s3 ).1 − r
s2 σ1 +

1
s σ2

−4 (− r3

s4 − 2 r
s3 ).1 + ( 1

s2 + r2

s3 )σ1 − r
s2 σ2 +

1
s σ3

−5 ( 1
s3 + 3 r2

s4 + r4

s5 ).1 + (− r3

s4 − 2 r
s3 )σ1 + ( 1

s2 + r2

s3 )σ2 + (− r
s2 )σ3

As a special case of QpGn, taking r = 2 and s = 1, we have the following tables (Table 10).

Table 10. The first few generalized Pauli (r, s)-Fibonacci polynomial quaternions QpGn with negative
subscripts for the case r = 2 and s = 1.

n QpGn

0 σ1 + 2σ2 + 5σ3

−1 1.1 + σ2 + 2σ3

−2 −2.1 + σ1 + σ3

−3 5.1 − 2σ1 + σ2

−4 −12.1 + 5σ1 − 2σ2 + σ3

−5 29.1 − 12σ1 + 5σ2 − 2σ3

Table 11. The first few Pauli (r, s)-Lucas polynomial quaternions Qp Hn with negative subscripts.

n Qp Hn

0 2.1 + rσ1 + σ2(2s + r2) + σ3(r
3 + 3rs)

−1 − r
s 1 + 2σ1 + rσ2 + σ3(2s + r2)

−2 ( 2
s +

r2

s2 ).1 − r
s σ1 + 2σ2 + rσ3

−3 (− r3

s3 − 3 r
s2 ).1 + σ1(

2
s +

r2

s2 )− r
s σ2 + 2σ3

−4 (4 r2

s3 + r4

s4 + 2
s2 ).1 + 2

s σ2 + σ1(− r3

s3 − 3 r
s2 ) +

r2

s2 σ2 − r
s σ3

−5 (−5 r3

s4 − r5

s5 − 5 r
s3 ).1 + σ1(

2
s2 + 4 r2

s3 + r4

s4 ) + σ2(− r3

s3 − 3 r
s2 ) + σ3(

2
s +

r2

s2 )

As a special case of QpHn, taking r = 2 and s = 1, we have the following table (Table 12).
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Table 12. The first few Pauli (r, s)-Lucas polynomial quaternions Qp Hn with negative subscripts for
the case r = 2 and s = 1.

n Qp Hn

0 2.1 + 2σ1 + 6σ2 + 14σ3

−1 −21+ 2σ1 + 2σ2 + 6σ3

−2 6.1 − 2σ1+ 2σ2 + 2σ3

−3 14.1+ 6σ1 − 2σ2 + 2σ3

−4 34.1 − 14σ1+ 6σ2 − 2σ3

−5 −82.1+ 34σ1 − 14σ2 + 6σ3

The addition, subtraction, and multiplication by real scalars of two generalized Pauli
Fibonacci polynomial quaternions gives the generalized Pauli Fibonacci polynomial quater-
nions. Then, the addition and subtraction of two generalized Pauli Fibonacci polynomial
quaternions are defined by

QpWn ± QpWm = (Wn ± Wm)1 + (Wn+1 ± Wm+1)σ1 + (Wn+2 ± Wm+2)σ2 + (Wn+3 ± Wm+3)σ3.

The multiplication of a generalized Pauli Fibonacci polynomial quaternions by a real scalar
λ is defined as follows:

λQpWn = λWn1 + λWn+1σ1 + λWn+2σ2 + λWn+3σ3.

By using (1), multiplication of two generalized Pauli Fibonacci polynomial quaternions is
formulated as

QpWn × QpWm = (Wn1 + Wn+1σ1 + Wn+2σ2 + Wn+3σ3)× (Wm1 + Wm+1σ1 + Wm+2σ2 + Wm+3σ3)

= Wn1Wm1 + Wn1Wm+1σ1 + Wn1Wm+2σ2 + Wn1Wm+3σ3 + Wn+1σ1Wm1

+Wn+1σ1Wm+1σ1 + Wn+1σ1Wm+2σ2 + Wn+1σ1Wm+3σ3

+Wn+2σ2Wm1 + Wn+2σ2Wm+1σ1 + Wn+2σ2Wm+2σ2 + Wn+2σ2Wm+3σ3

+Wn+3σ3Wm1 + Wn+3σ3Wm+1σ1 + Wn+3σ3Wm+2σ2 + Wn+3σ3Wm+3σ3.

= WnWm1 + WnWm+1σ1 + WnWm+2σ2 + WnWm+3σ3 + Wn+1Wmσ1

+Wn+1Wm+11 + Wn+1Wm+2iσ3 + Wn+1Wm+3(−i)σ2 + Wn+2Wmσ2

+Wn+2Wm+1(−i)σ3 + Wn+2Wm+21 + Wn+2Wm+3iσ1 + Wn+3Wmσ3

+Wn+3Wm+1iσ2 + Wn+3Wm+2(−i)σ1 + Wn+3Wm+31.

= (WnWm + Wn+1Wm+1 + Wn+2Wm+2 + Wn+3Wm+3)1

+(WnWm+1 + Wn+1Wm + Wn+2Wm+3i − Wn+3Wm+2i)σ1

+(WnWm+2 + Wn+2Wm + Wn+3Wm+1i − Wn+1Wm+3i)σ2

+(WnWm+3 + Wn+3Wm + Wn+1Wm+2i − Wn+2Wm+1i)σ3.

The scalar and vector parts of QpWn, which are the nth term of the generalized Pauli
Fibonacci polynomial quaternions with (QpWn), are denoted by

SQpWn
= Wn1 and VQpWn

= Wn+1σ1 + Wn+2σ2 + Wn+3σ3.

Thus, the generalized Pauli Fibonacci polynomial quaternions QpWn is given by

QpWn = SQpWn
+ VQpWn

. (10)



Axioms 2025, 14, 449 18 of 35

Then, the multiplication of two generalized Pauli Fibonacci polynomial quaternions is
defined by

QpWn × QpWm = SQpWn
SQpWm

+
〈

VQpWn
, VQpWm

〉
+ SQpWn

.VQpWm
+ SQqWn

.VQpWm
+ VQpWn

ΛVQpWm
.

For more details, see Jafarı and Yaylı [40].
Also, the generalized Pauli Fibonacci polynomial quaternions product may be obtained

as follows:

QpWn × QpWm =




Wn Wn+1 Wn+2 Wn+3

Wn+1 Wn −iWn+3 iWn+2

Wn+2 iWn+3 Wn −iWn+1

Wn+3 −iWn+2 iWn+1 Wn







Wm

Wm+1

Wm+2

Wm+3


.

The conjugate of generalized Pauli Fibonacci polynomial quaternions QpWn is denoted by
QpWn, and it is

QpWn = Wn1 − Wn+1σ1 − Wn+2σ2 − Wn+3σ3.

The norm of QpWn is defined as follows:

∥∥QpWn

∥∥2
= QpWnQpWn =

∣∣∣W2
n − W2

n+1 − W2
n+2 − W2

n+3

∣∣∣.

Now, using (10), we introduce Binet’s formula for generalized Pauli Fibonacci polyno-
mial quaternions QpWn.

Binet’s formula for generalized Pauli Fibonacci polynomial quaternions can be calcu-
lated using its characteristic equation, which is given as

t2 − rt − s = 0 (11)

where the roots of this equation are

α =
r +

√
r2 + 4s

2
, β =

r −
√

r2 + 4s

2
.

In the next Theorem, we present Binet’s formula for the Pauli generalized Fibonacci poly-
nomial quaternions.

Theorem 2. For all integers n, we have the following formulas:

(a) (Distinct Roots Case α ̸= β) Binet’s formula of generalized Pauli Fibonacci polynomial

quaternions is

QpWn =
p̂1αn − p̂2βn

α − β
(12)

=
p̃1αn − p̃2βn

α − β
, (13)

where

p̂1 = QpW1 − βQpW0,

p̂2 = QpW1 − αQpW0,

p̃1 = p11 + p1ασ1 + p1α2σ2 + p1α3σ3,

p̃2 = p21 + p2βσ1 + p2β2σ2 + p2β3σ3.

Note that p1 and p2 are as stated in Theorem 1.
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(b) (Single Root Case α = β) Binet’s formula for generalized Pauli Fibonacci polynomial quater-

nions is

QpWn = (d̂1 + d̂2n)αn (14)

= (d̃1 + d̃2n)αn, (15)

where

d̂1 = QpW0,

d̂2 =
1
α
(QpW1 − αQpW0),

d̃1 = D11 + (D1 + D2)ασ1 + (D1 + 2D2)α
2σ2 + (D1 + 3D2)α

3σ3,

d̃2 = D21 + D2ασ1 + D2α2σ2 + D2α3σ3.

Note that D1 and D2 are as stated in Theorem 1.

Proof.

(a) If the roots of (11) are distinct, then Binet’s formula of QpWn is given below:

QpWn = C1αn + C2βn.

Taking n = 0 and n = 1, respectively, we have the following system of linear equations:

QpW0 = C1 + C2

QpW1 = C1α + C2β.

Hence, solving these two equations, we obtain

C1 =
QpW1 − βQpW0

α − β
,

C2 =
QpW1 − αQpW0

α − β
.

Then, (13) can be proved by (4).
(b) If the roots of (11) are equal, then Binet’s formula for QpWn is given below:

QpWn = (d̂1 + d̂2n)αn.

Taking n = 0 and n = 1, respectively, we have the following system of linear equations:

QpW0 = (d̂1 + d̂20)α0

QpW1 = (d̂1 + d̂21)α1.

Hence, solving these two equations, we obtain

d̂1 = QpW0, d̂2 =
1
α
(QpW1 − αQpW0).

Then, (15) can be proved easily by (4).
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Theorem 2 gives us the following results as particular examples of Binet’s formula for
the Pauli (r, s)-Fibonacci polynomial quaternion QpGn and Binet’s formula for the Pauli
(r, s)-Lucas polynomial quaternion Qp Hn.

Corollary 1. For all integers n, we have the following formulas:

(a) (Distinct Roots Case α ̸= β) Binet’s formula for the Pauli (r, s)-Fibonacci polynomial quater-

nion QpGn is

QpGn =
p̂1αn − p̂2βn

α − β
,

where

p̂1 = 1 + (r−β)σ1 + (r2 + s − βr)σ2 +
(

r3 + 2sr − β(r2 + s)
)

σ3,

p̂2 = 1 + (r−α)σ1 + (r2 + s − αr)σ2 +
(

r3 + 2sr − α(r2 + s)
)

σ3.

(b) (Distinct Roots Case α ̸= β) Binet’s formula for the Pauli (r, s)-Lucas polynomial quaternion

QpHn is

Qp Hn =
p̂1αn − p̂2βn

α − β
,

where

p̂1 = (r − 2β)1 + (r2 + 2s−βr)σ1 + (r3 + 3rs − β(2s + r2))σ2

+
(

r4 + 4r2s + 2s2 − β(r3 + 3rs)
)

σ3,

p̂2 = (r − 2α)1 + (r2 + 2s−αr)σ1 + (r3 + 3rs − α(2s + r2))σ2

+
(

r4 + 4r2s + 2s2 − α(r3 + 3rs)
)

σ3.

(c) (Distinct Roots Case α = β) Binet’s formula for the Pauli (r, s)-Fibonacci polynomial quater-

nion QpGn is

QpGn = (d̂1 + d̂2n)αn

where

d̂1 = σ1 + σ2r + σ3(r
2 + s),

d̂2 =
1
α
+

r − α

α
σ1 +

r2 + s − αr

α
σ2 +

r3 + 2sr − α(r2 + s)

α
σ3.

(d) (Distinct Roots Case α = β) Binet’s formula for the Pauli (r, s)-Lucas polynomial quaternion

QpHn is

QpHn = (d̂1 + d̂2n)αn

where

d̂1 = 2.1 + rσ1 + σ2(2s + r2) + σ3(r
3 + 3rs),

d̂2 =
r − 2α

α
+

r2 + 2s − αr

α
σ1 +

r3 + 3rs − α(2s + r2)

α
σ2

+
r4 + 4r2s + 2s2 − α(r3 + 3rs)

α
σ3.
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Proof.

(a) Taking QpWn = QpGn in Theorem 2 (a), we obtain

QpGn =
p̂1αn − p̂2βn

α − β

where

p̂1 = QpG1 − βQpG0

= 1 + rσ1 + σ2

(
r2 + s

)
+ σ3

(
r3 + 2sr

)
− β(σ1 + σ2r + σ3(r

2 + s))

= 1 + (r−β)σ1 + (r2 + s − βr)σ2 +
(

r3 + 2sr − β(r2 + s)
)

σ3,

p̂2 = QpG1 − αQpG0

= 1 + rσ1 + σ2

(
r2 + s

)
+ σ3

(
r3 + 2sr

)
− α(σ1 + σ2r + σ3(r

2 + s))

= 1 + (r−α)σ1 + (r2 + s − αr)σ2 +
(

r3 + 2sr − α(r2 + s)
)

σ3.

(b) Taking QpWn = QpHn in Theorem 2 (a), we obtain

QpHn =
p̂1αn − p̂2βn

α − β

where

p̂1 = QpH1 − βQp H0

= r.1 + σ1(r
2 + 2s) + σ2(r

3 + 3rs) + σ3(r
4 + 4r2s + 2s2)

−β(2.1 + rσ1 + σ2(2s + r2) + σ3(r
3 + 3rs))

= (r − 2β)1 + (r2 + 2s−βr)σ1 + (r3 + 3rs − β(2s + r2))σ2

+
(

r4 + 4r2s + 2s2 − β(r3 + 3rs)
)

σ3,

p̂2 = Qp H1 − αQp H0

= r.1 + σ1(r
2 + 2s) + σ2(r

3 + 3rs) + σ3(r
4 + 4r2s + 2s2)

−α(2.1 + rσ1 + σ2(2s + r2) + σ3(r
3 + 3rs))

= (r − 2α)1 + (r2 + 2s−αr)σ1 + (r3 + 3rs − α(2s + r2))σ2

+
(

r4 + 4r2s + 2s2 − α(r3 + 3rs)
)

σ3.

(c) Taking QpWn = QpGn in Theorem 2 (b), we obtain

QpGn = (d̂1 + d̂2n)αn

where

d̂1 = QpG0

= σ1 + σ2r + σ3(r
2 + s),

d̂2 =
1
α
(QpG1 − αQpG0)

=
1
α
(1 + rσ1 + σ2

(
r2 + s

)
+ σ3

(
r3 + 2sr

)
− α(σ1 + σ2r + σ3(r

2 + s)))

=
1
α
+

r − α

α
σ1 +

r2 + s − αr

α
σ2 +

r3 + 2sr − α(r2 + s)

α
σ3.
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(d) Taking QpWn = QpHn in Theorem 2 (b), we obtain

QpHn = (d̂1 + d̂2n)αn

where

d̂1 = Qp H0

= 2.1 + rσ1 + σ2(2s + r2) + σ3(r
3 + 3rs),

d̂2 =
1
α
(Qp H1 − αQp H0)

=
1
α
(r.1 + σ1(r

2 + 2s) + σ2(r
3 + 3rs) + σ3(r

4 + 4r2s + 2s2)

−α(2.1 + rσ1 + σ2(2s + r2) + σ3(r
3 + 3rs))))

=
r − 2α

α
+

r2 + 2s − αr

α
σ1 +

r3 + 3rs − α(2s + r2)

α
σ2

+
r4 + 4r2s + 2s2 − α(r3 + 3rs)

α
σ3.

As a different method, Binet’s formula of generalized Fibonacci polynomial quater-
nions formula can also be expressed as given in the theorem below.

Theorem 3. For all integers n, we have the following formulas:

(a) (Distinct Roots Case α ̸= β) Binet’s formula for generalized Pauli Fibonacci polynomial

quaternions is

QpWn =
1

α − β

(
αn p1 − βn p2 + αn+3 p1 − βn+3 p2 αn+1 p1 − βn+1 p2 − iαn+2 p1 + iβn+2 p2(

αn+1 p1 − βn+1 p2 + iαn+2 p1 − iβn+2 p2
)

αn p1 − βn p2 − αn+3 p1 + βn+3 p2

)

(b) (Single Root Case α = β) Binet’s formula for generalized Pauli Fibonacci polynomial quater-

nions is

QpWn = αn

(
D1 + D2n + D1α3 + D2nα3 D1α + D2nα − iD1α2 − D2nα2

D1α + D2nα + iD1α2 + D2nα2 D1 + D2n − D1α3 − D2nα3

)

where p1, p2, D1,and D2 are as stated in the Theorem 1.

Proof.

(a) Using Binet’s formula for the Generalized Fibonacci (Horadam) polynomial given in
Theorem 1 (a) together with identity (5), we obtain

QpWn =

(
Wn + Wn+3 Wn+1 − iWn+2

Wn+1 + iWn+2 Wn − Wn+3

)

=




p1αn−p2βn

α−β + p1αn+3−p2βn+3

α−β
p1αn+1−p2βn+1

α−β − i( p1αn+2−p2βn+2

α−β )
p1αn+1−p2βn+1

α−β + i( p1αn+2−p2βn+2

α−β ) p1αn−p2βn

α−β − p1αn+3−p2βn+3

α−β




=
1

α − β

(
αn p1 − βn p2 + αn+3 p1 − βn+3 p2 αn+1 p1 − βn+1 p2 − iαn+2 p1 + iβn+2 p2

αn+1 p1 − βn+1 p2 + iαn+2 p1 − iβn+2 p2 αn p1 − βn p2 − αn+3 p1 + βn+3 p2

)
.
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(b) From Theorem1 (b), which provides Binet’s formula for the generalized Fibonacci
(Horadam) polynomial, and using identity (5), we obtain

QpWn =

(
Wn + Wn+3 Wn+1 − iWn+2

Wn+1 + iWn+2 Wn − Wn+3

)

=

(
(D1 + D2n)αn + (D1 + D2n)αn+3 (D1 + D2n)αn+1 − i(D1 + D2n)αn+2

(D1 + D2n)αn+1 + i(D1 + D2n)αn+2 (D1 + D2n)αn − (D1 + D2n)αn+3

)

= αn

(
D1 + D2n + D1α3 + D2nα3 D1α + D2nα − iD1α2 − D2nα2

D1α + D2nα + iD1α2 + D2nα2 D1 + D2n − D1α3 − D2nα3

)
.

Next, we give the ordinary generating function
∞

∑
n=0

znQpWn of the sequence of gener-

alized Pauli Fibonacci polynomial quaternions.

Theorem 4. Suppose that fQpWn
(z) =

∞

∑
n=0

znQpWn is the ordinary generating function of the

sequence of generalized Pauli Fibonacci polynomial quaternions. Then
∞

∑
n=0

znQpWn is given by

∞

∑
n=0

znQpWn =
QpW0 + z(QpW1 − sQpW0)

(1 − rz − sz2)
. (16)

Proof. Using the definition of the generalized Pauli Fibonacci polynomial quaternions and

subtracting rz
∞

∑
n=0

znQpWn and sz2
∞

∑
n=0

znQpWn from
∞

∑
n=0

znQpWn, we obtain

(1 − rz − sz2)
∞

∑
n=0

znQpWn =
∞

∑
n=0

znQpWn − rz
∞

∑
n=0

znQpWn −
∞

sz2 ∑
n=0

znQpWn

=
∞

∑
n=0

znQpWn − r
∞

∑
n=0

zn+1QpWn − s
∞

∑
n=0

zn+2QpWn

=
∞

∑
n=0

znQpWn − r
∞

∑
n=1

znQpWn−1 − s
∞

∑
n=2

znQpWn−2

= (QpW0 + zQpW1)− szQpW0

+
∞

∑
n=2

(QpWn − rQpWn−1 − sQpWn−2)

= QpW0 + z(QpW1 − sQpW0)

By rearranging the above equation, we obtain (16).

From Theorem 4, we have the following corollary.

Corollary 2. For all integers n, we have the following formulas:

(a) The generating function of the Pauli (r, s)-Fibonacci polynomial quaternion QpGn is

∞

∑
n=0

znQpGn =
1

(1 − rz − sz2)
(σ1 + σ2r + σ3(r

2 + s) + z(1 + (r − s)σ1

+(r2 + s − rs)σ2 + (r3 + 2rs − sr2 − s2)σ3)).
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(b) The generating function of the Pauli (r, s)-Lucas polynomial quaternion Qp Hn is

∞

∑
n=0

znQp Hn =
1

(1 − rz − sz2)
(2.1 + rσ1 + σ2(2s + r2) + σ3(r

3 + 3rs)

+z((r − 2s).1 + (r2 + 2s − rs)σ1 + σ2(r
3 + 3rs − 2s2 − sr2)

+σ3(r
4 + 4r2s + 2s2 − sr3 − 3rs2))).

Proof. By taking QpWn = QpGn and QpWn = QpHn in Theorem 4, parts (a) and (b)
follow directly.

Next, we present a theorem concerning QpWn and Gn.

Theorem 5. For all integers m, n, we have the following formulas:

QpWn+m = QpWnGm+1 + sQpWn−1Gm, (17)

i.e.,

QpWn+m = QpWmGn−1 + sQpWm−1Gn.

Proof. The proof can be carried out by induction on m. First, we assume that m ≥ 1.
If m = 1, then Equation (17) holds. Since

QpWn+1 = rQpWn + sQpWn−1

= QpWnG2 + sQpWn−1G1

where G2 = r and G1 = 1. For m = 2, (17) is true. As

QpWn+2 = rQpWn+1 + sQpWn

= r(rQpWn + sQpWn−1) + sQpWn

= (r2 + s)QpWn + sQpWn−1

= QpWnG3 + sQpWn−1G2.

Now, we assume that the equation holds for all m with 1 ≤ m ≤ k + 1. Thus, by our
assumption, for m = k and m = k + 1, respectively, we have

QpWn+k = QpWnGk+1 + sQpWn−1Gk, (18)

QpWn+k+1 = QpWnGk+2 + sQpWn−1Gk+1. (19)

By using (6), (18) and (19), we have

QpWn+k+2 = rQpWn+k+1 + sQpWn+k

= r(QpWnGk+2 + sQpWn−1Gk+1) + s(QpWnGk+1 + sQpWn−1Gk)

= QpWn(rGk+2 + sGk+1) + sQpWn−1(rGk+1 + sGk)

= QpWnGk+3 + sQpWn−1Gk+2

That means the equations hold for m = k + 2.

Next, we assume that m ≤ 0; this implies |m| = −m = v. For v = 0, i.e., m = 0,
Equation (17) is true. Since

QpWn = QpWnG1 + sQpWn−1G0,
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where G0 = 0 and G1 = 1. For v = 1, i.e., m = −1, Equation (17) is true:

QpWn−1 = QpWnG0 + sQpWn−1G−1,

where G0 = 0 and G−1 = 1
s . Let Equation (17) hold for all |m| = −m = v with 0 ≤ v ≤ k+ 1.

Thus, by our assumption, for v = k and v = k + 1, respectively, we have

QpWn−k = QpWnG−k+1 + sQpWn−1G−k, (20)

QpWn−k−1 = QpWnG−k + sQpWn−1G−k−1. (21)

By using (7), (20) and (21), we have

QpW−n−k−2 = − r

s
QpW−n−k−1 +

1
s

QpW−n−k

= − r

s
(QpWnG−k + sQpWn−1G−k−1) +

1
s
(QpWnG−k+1 + sQpWn−1G−k)

= QpWn(−
r

s
G−k +

1
s

G−k+1) + sQpWn−1(−
r

s
G−k−1 +

1
s

G−k)

= QpWnG−k−1 + sQpWn−1G−k−2.

So means Equation (17) holds for v = |m| = k + 2.
Note that, if we take n = 1 and m = n− 1 in Theorem 5, we have the following identity:

QpWn = QpW1Gn + sQpW0Gn−1. (22)

Next, we give a theorem that provides some identities related to the Pauli (r, s)-Fibonacci
polynomial quaternion QpGn and the Pauli (r, s)-Lucas polynomial quaternion Qp Hn.

Theorem 6. For any integer n, the following equalities are true:

s3Qp Hn = −(3rs + r3)QpGn+4 + (4r2s + r4 + 2s2)QpGn+3,

s2Qp Hn = (2s + r2)QpGn+3 − (3rs + r3)QpGn+2,

sQp Hn = −rQpGn+2 + (2s + r2)QpGn+1,

Qp Hn = 2QpGn+1 − rQpGn,

Qp Hn = rQpGn + 2sQpGn−1,

(r2s3 + 4s4)QpGn = −(3rs + r3)Qp Hn+4 + (4r2s + r4 + 2s2)Qp Hn+3,

(r2s2 + 4s3)QpGn = (2s + r2)Qp Hn+3 − (3rs + r3)QpHn+2,

(r2s + 4s2)QpGn = −rQp Hn+2 + (2s + r2)Qp Hn+1,

(r2 + 4s)QpGn = 2QpHn+1 − rQp Hn,

(r2 + 4s)QpGn = rQpHn + 2sQp Hn−1.

Proof. Using (8) and (9), and s3Hn = −(3rs + r3)Gn+4 + (4r2s + r4 + 2s2)Gn+3 (for the
proof, see Lemma 9 in [47], we have
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s3QpHn = s3Hn1 + s3Hn+1σ1 + s3Hn+2σ2 + s3Hn+3σ3

= (−(3rs + r3)Gn+4 + (4r2s + r4 + 2s2)Gn+3)1

+(−(3rs + r3)Gn+5 + (4r2s + r4 + 2s2)Gn+4)σ1

+(−(3rs + r3)Gn+6 + (4r2s + r4 + 2s2)Gn+5)σ2

+(−(3rs + r3)Gn+6 + (4r2s + r4 + 2s2)Gn+6)σ3

= −(3rs + r3)(Gn+41 + Gn+5σ1 + Gn+6σ2 + Gn+7σ3)

+(4r2s + r4 + 2s2)((Gn+31 + Gn+4σ1 + Gn+5σ2 + Gn+6σ3))

= −(3rs + r3)QpGn+4 + (4r2s + r4 + 2s2)QpGn+3.

The other cases of the theorem can be proved using (8) and (9), and the equalities that are
given in Lemma 9 in [47].

Theorem 7. For all integers n, we have the following identity:

QpWn − QpWn+1σ1 − QpWn+2σ2 − QpWn+3σ3 = (Wn − Wn+2 − Wn+4 − Wn+6)1

Proof. Using (1) and (4), we obtain

QpWn − QpWn+1σ1 − QpWn+2σ2 − QpWn+3σ3 = Wn1 + Wn+1σ1 + Wn+2σ2 + Wn+3σ3

−(QpWn+1 − QpWn+2σ1 − QpWn+3σ2 − QpWn+4σ3)σ1

−(QpWn+2 − QpWn+3σ1 − QpWn+4σ2 − QpWn+5σ3)σ2

−(QpWn+3 − QpWn+4σ1 − QpWn+5σ2 − QpWn+6σ3)σ3

= Wn1 + Wn+1σ1 + Wn+2σ2 + Wn+3σ3

−σ1QpWn+1 + σ2
1 QpWn+2 + σ2σ1QpWn+3 + σ3σ1QpWn+4

−σ2QpWn+2 + σ2
2 QpWn+4 + σ1σ2QpWn+3 + σ3σ2QpWn+5

−σ3QpWn+3 + σ1σ3QpWn+4 + σ2σ3QpWn+5 + σ2
3 QpWn+6

= (Wn − Wn+2 − Wn+4 − Wn+6)1

Now, we give the Catalan’s identity for the generalized Pauli Fibonacci polynomial quater-
nions QpWn.

Theorem 8 (Catalan’s identity). For all integer n, we have the following formula:

QpWn+mQpWn−m − QpWnQpWn = (−s)n(QpWmQpW−m − QpW0QpW0).

Proof. For the proof, we use Binet’s formula of the QpWn and (5). We know that there are
two cases for Binet’s formula of the generalized Pauli Fibonacci polynomial quaternions
QpWn. Therefore, we investigate the distinct roots case α ̸= β, using Theorem 3 (a); we have

QpWn+mQpWn−m − QpWnQpWn = (αβ)n−m p1 p2
αm − βm

(α − β)2

(
A11 A12

A21 A22

)
,

where
A11 = −(αm − βm − αβm+1 + αm+1β + iαβm+2 − iαm+2β − α3βm + αmβ3 + αm+3 −

βm+3 − iα2βm+1 + iαm+1β2 − α2βm+2 + αm+2β2 − α3βm+3 + αm+3β3),
A12 = (αβm+3 − αm+3β − iα2βm + iαmβ2 − αm+1 + iαm+2 + βm+1 − iβm+2 − α3βm+1 +

αm+1β3 − iα2βm+3 + iα3βm+2 − iαm+2β3 + iαm+3β2 + αβm − αmβ),
A21 = −(αβm+3 − αm+3β− iα2βm + iαmβ2 + αm+1 + iαm+2 − βm+1 − iβm+2 − α3βm+1 +

αm+1β3 + iα2βm+3 − iα3βm+2 + iαm+2β3 − iαm+3β2 − αβm + αmβ),
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A22 = −(αm − βm − αβm+1 + αm+1β − iαβm+2 + iαm+2β + α3βm − αmβ3 − αm+3

+ βm+3 + iα2βm+1 − iαm+1β2 − α2βm+2 + αm+2β2 − α3βm+3 + αm+3β3).
Similarly, we have

QpWmQpW−m − QpW0QpW0 = (αβ)−m p1 p2
αm − βm

(α − β)2

(
A11 A12

A21 A22

)
.

Note that p1, p2 are as stated in Theorem 1. Therefore, we have the result that we need.
(Note that, using (11), we have αβ = −s.)

Now, we investigate the other root case. For the single root case α = β, using
Theorem 3 (b), we have

QpWn+mQpWn−m − QpWnQpWn = α2nmD2
2

(
B11 B12

B21 B22

)
,

where
B11 = −

(
m − 2iα3 + mα2 + 2mα3 + mα4 + mα6

)
,

B12 = −2α
(
−iα4 + 2α3 − imα + m

)
,

B21 = −2α
(
−iα4 − 2α3 + imα + m

)
,

B22 = −
(
m + 2iα3 + mα2 − 2mα3 + mα4 + mα6

)
.

Similarly, we have

QpWmQpW−m − QpW0QpW0 = mD2
2

(
B11 B12

B21 B22

)
,

where D1, D2 are as stated in Theorem 1. Therefore, we get the result that we need. (Note
that, using (11), we have α2 = −s.)

This equality is non-commutative, meaning that the order in which the operations are
performed affects the result. In other words, the terms involved in the equation do not
commute, and switching the order of operations will generally lead to a different outcome.
This non-commutativity arises due to the properties of the quaternionic operations and the
specific structure of the generalized Pauli Fibonacci polynomials involved in the identity.

Next, we give the Cassani’s identity for the generalized Pauli Fibonacci polynomial
quaternions QpWn.

Theorem 9 (Cassini’s identity). For all integers n, we have the following formula:

QpWn+1QpWn−1 − QpWnQpWn = (−s)n(QpW1QpW−1 − QpW0QpW0).

Proof. Taking m = 1 in Theorem 8, the proof can be completed.

Next, we present the Simpson formula for the generalized Pauli Fibonacci polynomial
quaternions QpWn.

Theorem 10 (Simpson Formula). For all integer n, we have the following formula:

∣∣∣∣∣
QpWn+1 QpWn

QpWn QpWn−1

∣∣∣∣∣ = s2n

∣∣∣∣∣
QpW1 QpW0

QpW0 QpW−1

∣∣∣∣∣
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Proof. Using Theorem 9, and properties of the 2 × 2 block matrix, we have

∣∣∣∣∣
QpWn+1 QpWn

QpWn QpWn−1

∣∣∣∣∣ = det(QpWn+1QpWn−1 − QpWnQpWn) (23)

= det((−s)n(QpW1QpW−1 − QpW0QpW0))

= s2n det((QpW1QpW−1 − QpW0QpW0))

= s2n

∣∣∣∣∣
QpW1 QpW0

QpW0 QpW−1

∣∣∣∣∣.

3. Linear Sum Formulas

In this section, we present some sum formulas related to the generalized Pauli Fibonacci
polynomial quaternions QpWn. The following theorem presents some summation formulas of
generalized Pauli Fibonacci polynomial quaternions QpWn with positive subscripts.

Theorem 11. Let x be a complex number. For n ≥ 0, we have the following formulas:

(a) If sx2 + rx − 1 ̸= 0 then

n

∑
k=0

xkQpWk =
xn+2QpWn+2 + xn+1(1 − rx)QpWn+1 − xQpW1 + (rx − 1)QpW0

sx2 + rx − 1
.

(b) If r2x − s2x2 + 2sx − 1 ̸= 0 then

n

∑
k=0

xkQpW2k =
−xn+1(sx − 1)QpW2n+2 + rsxn+2QpW2n+1 − rxQpW1 + (r2x + sx − 1)QpW0

r2x − s2x2 + 2sx − 1
.

(c) If r2x − s2x2 + 2sx − 1 ̸= 0 then

n

∑
k=0

xkQpW2k+1 =
rxn+1QpW2n+2 − sxn+1(sx − 1)QpW2n+1 + (sx − 1)QpW1 − rsxQpW0

r2x − s2x2 + 2sx − 1
.

Proof. (a) Using the recurrence relation

QpWn = rQpWn−1 + sQpWn−2,

i.e.,
sQpWn−2 = QpWn − rQpWn−1,

we obtain

sx1QpW1 = x1QpW3 − rx1QpW2

sx2QpW2 = x2QpW4 − rx2QpW3

...

sxn−1QpWn−1 = xn−1QpWn+1 − rxn−1QpWn

sxnQpWn = xnQpWn+2 − rxnQpWn+1.

By adding the equations side by side, we obtain

n

∑
k=0

xkQpWk =
xn+2QpWn+2 + xn+1(1 − rx)QpWn+1 − xQpW1 + (rx − 1)QpW0

sx2 + rx − 1
.
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(b) and (c) Using the recurrence relation

QpWn = rQpWn−1 + sQpWn−2

i.e.,
rQpWn−1 = QpWn − sQpWn−2

we obtain

rx1QpW3 = x1QpW4 − sx1QpW2

rx2QpW5 = x2QpW6 − sx2QpW4

rx3QpW7 = x3QpW8 − sx3QpW6

...

rxn−1QpW2n−1 = xn−1QpW2n − sxn−1QpW2n−2

rxnQpW2n+1 = xnQpW2n+2 − sxnQpW2n.

Now, if we add the above equations side by side, we get

r(−QpW1 +
n

∑
k=0

xkQpW2k+1) = (xnQpW2n+2 − QpW2 − x−1QpW0 (24)

+
n

∑
k=0

xk−1QpW2k)− s(−QpW0 +
n

∑
k=0

xkQpW2k).

Similarly, using the recurrence relation

QpWn = rQpWn−1 + sQpWn−2

i.e.,
rQpWn−1 = QpWn − sQpWn−2

we write the following clear equations:

rx1QpW2 = x1QpW3 − sx1QpW1,

rx2QpW4 = x2QpW5 − sx2QpW3,

rx3QpW6 = x3QpW7 − sx3QpW5,

...

rxn−1QpW2n−2 = xn−1QpW2n−1 − sxn−1QpW2n−3,

rxnQpW2n = xnQpW2n+1 − sxnQpW2n−1.

Now, if we add the above equations side by side, we obtain

r(−QpW0 +
n

∑
k=0

xkQpW2k) = (−QpW1 +
n

∑
k=0

xkQpW2k+1)− s(−xn+1QpW2n+1 +
n

∑
k=0

xk+1QpW2k+1). (25)

Then, solving system (24) and (25), the required result of (b) and (c) follow.

The following corollary gives the sum formulas related to the Pauli (r, s)-Fibonacci
polynomial quaternion QpGn and the Pauli (r, s)-Lucas polynomial quaternion Qp Hn.

Corollary 3. The following sum formulas are given:

(a) If sx2 + rx − 1 ̸= 0, then we have the following sum formula for the Pauli (r, s)-Fibonacci

polynomial quaternion QpGn :
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(1) ∑
n
k=0 xkQpGk =

1
sx2+rx−1

(xn+2QpGn+2 + xn+1(1− rx)QpGn+1 − x1−σ1 +(−r−
sx)σ2 −

(
s + r2 + rsx

)
σ3).

(2) ∑
n
k=0 xkQpG2k = 1

r2x−s2x2+2sx−1
(−xn+1(sx − 1)QpG2n+2 + rsxn+2QpG2n+1 −

rx1 + (sx − 1)σ1 − rσ2 −
(
s − s2x + r2

)
σ3).

(3) ∑
n
k=0 xkQpG2k+1 = 1

r2x−s2x2+2sx−1
(rxn+1QpG2n+2 − sxn+1(sx − 1)QpG2n+1 +

(sx − 1)1 − rσ1 −
(
s − s2x + r2

)
σ2 − r

(
2s − s2x + r2

)
σ3).

(b) If sx2 + rx − 1 ̸= 0, then we have the following sum formula for the Pauli (r, s)-Lucas

polynomial quaternion QpHn :

(1) ∑
n
k=0 xkQp Hk = 1

sx2+rx−1
(xn+2Qp Hn+2 + xn+1(1 − rx)Qp Hn+1 + (rx − 2)1 −

(r + 2sx)σ1 −
(
2s + r2 + rsx

)
σ2 −

(
2s2x + 3rs + r3 + r2sx

)
σ3).

(2) ∑
n
k=0 xkQp H2k = 1

r2x−s2x2+2sx−1
(−xn+1(sx − 1)QpH2n+2 + rsxn+2Qp H2n+1 +

(r2x + 2sx − 2)1 − r(sx + 1)σ1 −
(
2s − 2s2x + r2

)
σ2 − r

(
3s − s2x + r2

)
σ3).

(3) ∑
n
k=0 xkQpH2k+1 = 1

r2x−s2x2+2sx−1
(rxn+1QpH2n+2 − sxn+1(sx − 1)QpH2n+1 − r(1+

sx)1−
(
2s − 2s2x + r2

)
σ1 − r

(
3s − s2x + r2

)
σ2 −

(
4r2s − 2s3x + r4 + 2s2 − r2s2x

)
σ3).

Proof. (a) and (b) Taking QpWn = QpGn and QpWn = Qp Hn in Theorem 11, the proof
is completed.

The Case x = 1

In this subsection, we investigate the case x = 1, r = 1, s = 2, i.e., r2x − s2x2 + 2sx −
1 = 0.

Observe that setting x = 1, r = 1, s = 2 (i.e., for the generalized Pauli Jacobsthal
quaternion that can be denoted the Qp Jn case) in Theorem 11 (b) and (c) makes the right-
hand side of the sum formulas to be an indeterminate form. Application of L’Hospital rule,
however, provides the evaluation of the sum formulas. If r = 1, s = 2, then we have the
following theorem.

Theorem 12. If r = 1, s = 2, then for n ≥ 0, we have the following formulas:

(a)
n

∑
k=0

Qp Jk =
1
2
(Qp Jn+2 − Qp J1).

(b)
n

∑
k=0

Qp J2k =
1
3
((n + 3)Qp J2n+2 − 2(n + 2)Qp J2n+1 + Qp J1 − 3Qp J0).

(c)
n

∑
k=0

Qp J2k+1 =
1
3
(−(n + 1)Qp J2n+2 + 2(n + 3)Qp J2n+1 − 2Qp J1 + 2Qp J0).

Proof.

(a) Taking x = 1, r = 1, s = 2 in Theorem 11 (a), we obtain the desired identity.
(b) The proof of this part is carried out using Theorem 11 (b). Setting r = 1, s = 2 in

Theorem 11 (b), we obtain

n

∑
k=0

xkQp J2k =
−xn+1(2x − 1)Qp J2n+2 + 2xn+2Qp J2n+1 − xQp J1 + (3x − 1)Qp J0

−4x2 + 5x − 1
.

For x = 1, the right-hand side of the above summation formulas becomes an indeter-
minate form. Now, we apply L’Hospital rule. Then, we get
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n

∑
k=0

Qp J2k =
d

dx (−xn+1(2x − 1)Qp J2n+2 + 2xn+2Qp J2n+1 − xQp J1 + (3x − 1)Qp J0)
d

dx (−4x2 + 5x − 1)

∣∣∣∣∣
x=1

=
1
3
((n + 3)Qp J2n+2 − 2(n + 2)Qp J2n+1 + Qp J1 − 3Qp J0).

(c) We apply Theorem 11 (c). From Theorem 11 (c), with r = 1, s = 2, it follows that

n

∑
k=0

xkQp J2k+1 =
xn+1Qp J2n+2 − 2xn+1(2x − 1)Qp J2n+1 + (2x − 1)Qp J1 − 2xQp J0

−4x2 + 5x − 1
.

For x = 1, the right-hand side of the above summation formulas results in an indeter-
minate form. Now, we can employ L’Hospital rule. Consequently, we obtain

n

∑
k=0

Qp J2k+1 =
d

dx (xn+1Qp J2n+2 − 2xn+1(2x − 1)Qp J2n+1 + (2x − 1)Qp J1 − 2xQp J0)
d

dx (−4x2 + 5x − 1)

∣∣∣∣∣
x=1

=
1
3
(−(n + 1)Qp J2n+2 + 2(n + 3)Qp J2n+1 − 2Qp J1 + 2Qp J0).

4. Matrices Associated with Generalized Pauli Fibonacci Polynomial
Quaternions QpWn

In this part of our study, we give some identities on some matrices linked to the
Generalized Pauli Fibonacci polynomial quaternions QpWn. First, we assume that A =(

r s

1 0

)
and NQpWn

=

(
QpW2 QpW1

QpW1 QpW0

)
. Hence, we have the following identity:

An =

(
Gn+1 sGn

Gn sGn−1

)
.

For the proof, see Soykan [47].
Therefore, we obtain the following theorem associated with the matrix A and NQpWn

.

Theorem 13. For all integer n, we have the following identity:

AnNQpWn
=

(
QpWn+2 QpWn+1

QpWn+1 QpWn

)
.

Proof. Using identity (22) and properties of Generalized Pauli Fibonacci polynomial quater-
nions QpWn, we obtain

AnNQpWn
=

(
Gn+1 sGn

Gn sGn−1

)(
QpW2 QpW1

QpW1 QpW0

)

=

(
W2QpGn+1 + sQpW1Gn QpW1Gn+1 + sQpW0Gn

QpW2Gn + sQpW1Gn−1 QpW1Gn + sQpW0Gn−1

)

=

(
QpWn+2 QpWn+1

QpWn+1 QpWn

)
.
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Remark 1. By taking the Generalized Pauli Fibonacci polynomial quaternions QpWn as the Pauli

(r, s)-Fibonacci polynomial quaternion QpGn and the Pauli (r, s)-Lucas polynomial quaternion

Qp Hn, respectively, we obtain matrices NQpGn
, NQp Hn

as follows:

NQpGn
=

(
QpG2 QpG1

QpG1 QpG0

)
.

NQp Hn
=

(
Qp H2 Qp H1

Qp H1 Qp H0

)
.

From Theorem 13, we have the following corollary.

Corollary 4. For all integer n, we have the following results:

(a)

AnNQpGn
=

(
QpGn+2 QpGn+1

QpGn+1 QpGn

)

(b)

AnNQp Hn
=

(
QpHn+2 QpHn+1

QpHn+1 QpHn

)

Proof. Taking QpWn = QpGn and QpWn = QpHn in Theorem 13, (a) and (b) follow.

Based on our theoretical perspective, we considered that the terms of the matrix we
defined, being related to

QpWn = Wn1 + Wn+1σ1 + Wn+2σ2 + Wn+3σ3,

correspond to the Hamiltonian of a spin-1/2 particle in a magnetic field. In this context, if
generalized Fibonacci polynomials, or more specifically Fibonacci numbers, are used in the
following equation,

Hn = Wn1+
3

∑
i=1

Wn+iσi.

The terms Wn+iσi may be interpreted as components of a magnetic field that vary with
time or state, while the term Wn1 can be viewed as a scalar contribution shifting the
total energy.

5. Conclusions

In this paper, a modification of generalized Fibonacci polynomials is established by
combining the concepts of quaternion and Pauli matrix. It is expected that this study will
attract the attention of experts who will conduct research in both physics and mathematics.
The generalized Fibonacci properties and polynomials containing elements in the sense
of Pauli matrix and quaternion introduced in this paper can be evaluated in terms of
investigating the suitability of quaternion structures for studies in physics, such as the refor-
mulation of Dirac and Maxwell equations. The (r,s)-extensions of the Fibonacci and Lucas
sequences presented in this study were introduced to demonstrate the algebraic flexibility
and generalization capacity of the proposed structure. These formulations not only extend
the classical Fibonacci and Lucas sequences within a quaternionic framework but also align
with established generalization procedures in the literature. In doing so, they reinforce
the theoretical soundness of the approach and highlight its potential for broader algebraic
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applications. In conclusion, this study introduces a novel generalization by incorporating
Pauli matrices into the framework of Generalized Pauli Fibonacci Polynomial Quaternions
(GPFPQs). This integration enriches the algebraic structure by merging the recursive nature
of Fibonacci polynomials with the non-commutative and anti-commutative properties of
Pauli matrices. As a result, the proposed structure is particularly effective in modeling
quantum mechanical systems, especially in the fields of spin dynamics, entanglement, and
unitary transformations. Moreover, the Pauli-based extension opens up new potential
applications in quantum information theory, such as quantum state representation and
encoding, as well as in classical cryptography where matrix-based operations and structural
complexity are highly valued. This approach not only generalizes existing quaternion mod-
els but also establishes a connection between number theory, operator theory, and quantum
computation, providing a more comprehensive mathematical toolset for future research. In
future work, one can try to relate matrix polynomials to the concept we have presented,
and try to relate it to structures such as the pseudo Hermitian operator representation
using [71].
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