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ABSTRACT

A review of the fundamental nature of critical phenomena suggests that fluctuations of
matter fields coupled with a topological transition are the signature elements of critical
systems. These two elements are shown to induce a geometric phase transition from

Riemannian geometry to a conformally invariant geometry.
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1 Introduction

Critical phenomena, which are synonymous with continuous or second-order phase transi-
tions, have been studied for more than a century through a progression of developments
that include [1]: van der Waal’s equation; mean-field theory; Landau’s expansion of the
free energy in terms of an order parameter; Onsager’s exact solution of the two-dimensional
Ising model; critical exponents; universality classes; scale invariance; and the renormalization
group. During this historical development there has been an increasing emphasis placed on
the role that fluctuations play near the critical point. In the “classical” period of the theory,
local fluctuations were ignored and average fields were assumed sufficient to determine the
properties of the system. This eventually gave way to the recognition that strong fluctua-
tions are an inherent feature of critical phenomena and, as such, must be taken into account.
This has been done most effectively in recent years through the use of the renormalization
group. In this approach, one identifies key pieces of information such as relations among the
critical exponents by progressively scaling out to larger and larger distances. A remarkable
result that has emerged from this analysis is the recognition that diverse physical systems
share common characteristics near their critical points. This property, known as univer-
sality, suggests that it should be possible to characterize critical phenomena in terms of a
more rudimentary language than is needed to account for the specific microscopic details of
any one particular system. An attempt is made in the present paper to take a step in this
direction by considering the topological nature of critical phenomena from a macroscopic
perspective. It is proposed here that critical phenomena emerge when a projection map (de-
scribed below) acquires a multi-valued nature. Furthermore, when this topological feature
and the associated critical fluctuations are incorporated into a geometric theory of spacetime,
a phase transition from Riemannian geometry to a conformally invariant geometry follows
as a consequence, providing a geometric basis for the scale invariance associated with critical
phenomena.

A cursory study of the literature dealing with critical phenomena reveals that there

are several intertwined topics that are relevant. The key elements that define our current



understanding of critical phenomena, which are briefly reviewed in Section 2, include: a
foundation that is rooted in symmetry considerations; parameters of the physical system
that experience large fluctuations; discontinuous (topological) changes that result when con-
trol parameters are varied continuously; universality classes that are governed by spatial
dimension and symmetry; and the onset of scale invariance. This latter characteristic of
critical matter triggering the emergence of scale invariance in a localized region of spacetime
calls for a geometrical response. It is generally assumed! that the properties of the spacetime
geometry should reflect the characteristics displayed by matter. Under this assumption, one
is confronted with the challenge of understanding how the properties of the local geometry
might change in step with matter when it passes from a system with a well-defined standard
of length to one that is scale invariant at the critical point. What is needed is a framework
that is capable of providing a link between critical matter and geometry. Einstein’s gravita-
tional field equations seem most appropriate for this task. The starting point of the present
geometrical analysis is to consider fluctuations of the spacetime metric (Sec. 3). That is,
rather than presupposing that critical matter will not interact in any significant way with
spacetime geometry, this possibility is allowed for by incorporating conformal fluctuations
into the gravitational field equations. By relating the topological properties of the critical
system to that of the scalar field governing the metric fluctuations, it will be shown that the
Riemannian geometry of general relativity undergoes a phase transition at a critical point
to a geometry that is locally scale invariant. Scale invariance, as used within the context of
critical phenomena, implies that one has the freedom to rescale lengths by a constant factor
(the same factor at each spacetime point). Yet the physical invariance under re-scaling of
lengths is actually valid only within the limited region of the critical system. What is needed
is a locally defined scale invariance rather than global scale invariance. This type of symme-
try, known as conformal invariance, has proven useful in the two-dimensional application of

conformal field theory to critical phenomena [3].

LAn exception to this view is Dirac’s proposal of a dual metric model [2] where an atomic metric is

introduced that is independent of the spacetime metric.



Some concluding remarks are provided in Section 4. An earlier version of this paper
was presented at the Tenth Canadian Conference on General Relativity and Relativistic

Astrophysics [4].

2 The topological nature of critical phenomena

Landau [5] emphasized the role that symmetry plays in governing the properties of phase
transitions. The relevant symmetry might reflect a spatial or temporal invariance, or some
invariance property in an internal space. In general, one of the two phases involved in a
second-order phase transition will be in a higher symmetry state than the other phase; that
is, it may contain the lower symmetry elements along with some additional ones. The tran-
sition from a higher symmetry state to a lower symmetry state is referred to as a symmetry-
breaking process. In the case of a first-order phase transition, which is characterized thermo-
dynamically by the release of latent heat and the discontinuous change in an order parameter
(see below), the symmetries of the two phases may be completely unrelated. A necessary
condition for a first-order phase transition line to terminate at a critical point in a phase
diagram is that the symmetries of the two phases below the critical temperature differ at
most quantitatively. It is for this reason that a critical point can exist for the liquid/gas
phase(s) since, below the critical temperature, both contain a continuous translational sym-
metry, whereas a critical point cannot exist for the liquid/solid phases since the discrete
translational symmetry of the solid phase differs qualitatively from that of the liquid. In this
sense, symmetry considerations play a defining role in critical phenomena.

Landau’s introduction of the order parameter concept, where the order parameter van-
ishes in the higher symmetry or disordered phase and is non-zero in the lower symmetry
ordered phase, provided a means by which phase transitions in a variety of branches of sci-
ence could be studied within a common framework. With the incorporation of group theory
into the analysis, a powerful tool to explore symmetry breaking effects in fields such as par-

ticle physics emerged. This mathematical model for describing critical phenomena (known



as the Landau-Ginzburg model [6]) is based on a potential that depends on external control
parameters as well as the order parameter. This simple model affords a description of “spon-
taneous” symmetry breaking when the sign of the control parameter is changed, causing the
single minimum of the potential to transition to degenerate minima. In terms of the order
parameter, the critical point represents a bifurcation point where the single stable minimum
above the critical point splits into two stable states below the critical point. Although the
order parameter approach continues to be a useful tool in the study of symmetry breaking
processes, it is well known that its quantitative predictions fail in regions close to the critical
point: the theory gives the wrong values for the critical exponents that are associated with
the power law behavior of systems near a critical point. Onsager demonstrated [7] that the
singularity of the free energy at the critical point renders Landau’s power series expansion
of the order parameter invalid in the region of the critical point. The quantitative failure
of Landau’s approach near the critical point does not mean that the symmetry properties
associated with critical phenomena outlined above do not hold; rather, it illustrates that,
due to the singular nature of the critical point, the mathematical tools used to analyze this
point and its corresponding properties must be chosen with care.

It eventually became evident that the physical reason for the failure of Landau’s expansion
was the neglect of strong fluctuations close to the critical point that violate the assumption
held in any mean field theory that the fluctuating field experienced by an individual atom
can be replaced by its average. In general, the macroscopic properties of a physical system
that is made of up many atomic constituents will be governed by two competing effects:
the interaction processes between the constituents of the system that tend to minimize the
energy, and the thermal fluctuations that perturb the interaction processes. The distance
over which a change at one atomic site can influence the properties of other sites is called
the correlation length. As the system approaches a critical point, the regions that experi-
ence a common fluctuation grow anomalously large [6]. However, as the correlation length
diverges, fluctuations continue to occur over the full range of smaller scales. This is most

easily demonstrated with a fluid system. Smoluchowski and Einstein observed that density



fluctuations in a fluid cause fluctuations in the refractive index, which, in turn, leads to the
scattering of light. As the fluid approaches a critical point, it becomes cloudy due to strong
scattering of light, a phenomenon known as critical opalescence. Between the point where
the fluctuations are sufficient to initially cause the fluid to turn cloudy and the critical point,
where the fluctuations become anomalously large, smaller fluctuations continue to occur and
the cloudy state persists. With the fluctuations spanning all scales at the critical point, the
system loses its intrinsic ability to distinguish lengths (at least above the molecular scale),
and the system is said to be scale invariant. Given the predominance of fluctuations at the
critical point, it is clear that any approach that is based strictly in terms of the mean values
of fields neglects the fundamental nature of critical phenomena and will be unsuccessful in
determining the properties of the system arbitrarily close to the critical point.

The challenge of probing the properties of physical systems near a critical point, where
the fluctuations span all scales, can be addressed by using the renormalization group (RG)
approach [8]. The strategy employed is to adopt an iterative method of characterizing a
small region of the system in terms of its constituent properties and their couplings, then
increasing the size of the region by a particular factor, re-characterizing the system at the
new scale, and repeating the process. The process progressively averages out the smaller
fluctuations and results in a mapping of the coupling constants, called the RG flow, in a
parameter space defined by all possible coupling constants associated with the system. A
critical point of the physical system is represented by a fixed point of the mapping in the
parameter space, and the slope of the parameter surface at the fixed point yields the correct
values of the critical exponents for the system. Hence, the RG group provides a method by
which the properties of critical systems can be determined. It should be noted, however, that
the RG approach does not provide a descriptive theory of critical phenomena. Nonetheless,
it does offer some insight into the general features of critical phenomena. For example, the
“zooming out” process [9] renders the microscopic details of the physical system irrelevant.
Indeed, the RG flow of systems as diverse as fluids and uniaxial ferromagnets converge to

the same fixed point and have the same critical exponents. It turns out that these two



systems belong to the same universality class, where such classes are only dependent on the
spatial dimension of the system and its symmetry properties. The fact that the RG approach
predicts that systems which, under normal conditions differ in fundamental ways and are
typically governed by distinct sets of Lagrangians and differential equations, but near the
critical point assume the same characteristics, suggests that it may be possible to use a more
fundamental mathematical language to describe critical phenomena than is offered by an
approach based on differential equations. By employing a scaling procedure to determine
the properties of the critical point, the RG approach also affirms the scale invariant nature
of critical phenomena.

Efforts to probe the physical nature of critical phenomena must be formulated within
some branch of mathematics. Historically, such attempts have tended to draw upon elements
of topology. In a recent series of articles, Casetti et al (see [10] for a review) have used
Morse theory [11] to argue that second order phase transitions are associated with topology
changes that occur in the high-dimensional microscopic configuration space of the system.
Morse theory allows one to relate the local properties of a smooth function on a manifold
to the global properties of the manifold by considering the level sets of the function. To see
how this works, consider the potential V' (¢,,;c) of a physical system that depends on the
state variables or order parameters ¢, (the subscript m stands for matter) as well as a set
of control parameters c¢. A familiar example that is associated with critical phenomena is

the Landau-Ginzburg potential,

1

1
V(pm;a,b) = Zwi‘n + 5@9031 + b, (1)

given here is its most general form [12]. The condition

VvV =0, (2)

where differentiation is with respect to ¢,,, defines the equilibrium states (stable or unstable)

of the system. In mathematical terms?, the solutions to equation (2) define the critical points

2Note that the expression “critical point” generally has different meanings in physics and mathematics.



of V(¢m; a,b) which form the equilibrium surface or critical manifold in (¢,,; a, b)-space. A
(mathematical) critical point is called non-degenerate, isolated, or Morse if the Hessian of
the function has only non-zero eigenvalues at that point. The Morse lemma states that,
in the neighborhood of a non-degenerate critical point, a smooth change of variables can
be performed to express the potential locally as a quadratic form. Morse theory provides
a link between the properties of the potential and the topology of the manifold as follows:
if a non-degenerate critical point lies between two level surfaces of the potential defined by
V= a) = {om : V(pm) = a}, then the topology of a level surface will change in accordance
with the properties of the Hessian as it passes through the critical point; otherwise the two
level sets of the potential will be diffeomorphic to one another. It is important to note
that Morse theory applies directly® only to non-degenerate critical points. In particular,
as the Landau-Ginzburg potential (1) does not satisfy the non-degeneracy requirement, an
alternative approach will be used here to establish a topological connection with critical
phenomena.

A degenerate or non-Morse critical point is one for which the Hessian of the potential
has at least one vanishing eigenvalue. This could result, for example, if the potential took
on a minimum value along a line rather than a single isolated point as in the Morse case.
Near a Morse minimum, where the potential takes on a quadratic form, a perturbation of
the system is represented well in terms of damped harmonic motion. As a consequence, the
characteristically large fluctuations associated with critical phenomena cannot be modeled
by a Morse minimum. The growth of oscillations as a system approaches a degenerate critical

point suggests that critical phenomena should be associated with mathematical degenerate

31t is possible to apply Morse theory in cases where the potential has degenerate critical points by
employing techniques that remove the degeneracies of the potential. While such techniques are needed when
dealing with high dimensional configuration spaces (see, e.g., [13]), they tend to obscure the central role
that degenerate critical points play in continuous phase transitions. For example, even after the problematic
degeneracies have been dealt with in Ref. [13], the authors take care to track them and ultimately conjecture
that a topology change entails a continuous phase transition only when it is associated with a degenerate

critical point.



critical points. This is supported by the correspondence between the mathematical properties
of critical points under perturbations and the observed nature of critical phenomena. It can
be shown [11] that a critical point is structurally stable if and only if it is non-degenerate. A
Morse critical point may shift slightly under a perturbation, but its type will not change. In
contrast, a non-Morse critical point may be transformed under a perturbation into a number
of isolated critical points at different locations. These types of change in the properties
of the potential are what typically occur in examples of spontaneous symmetry breaking.
This leads to the important observation that critical phenomena correspond to mathematical
degenerate critical points [12, 14]. Hence, the branch of mathematics that will be used here
to study critical phenomena is that which is associated with degenerate critical points. The
relevant field of mathematics, which encompasses the topics of singularities, bifurcations,
and catastrophes, emerged with the 1955 paper of Whitney [15]. René Thom [16] later
developed a formalism to describe the canonical forms of singular mappings as well as their
structural stability properties. While this formalism, known as Catastrophe Theory, has
been criticized for its popularized applications [17], it nevertheless provides a framework to
study discontinuous changes (catastrophes) that result from continuous ones. To facilitate
the analysis of non-Morse functions, one embeds them into a smooth family of functions that
are governed by parameters (e.g., the control parameters in eq. (1)) and studies their mapping
properties. The critical or catastrophe manifold for systems with a degenerate critical point
is smooth, but contains various “folds” or “cusps”. In the case of the Landau-Ginzburg
potential (1), the critical manifold is known as the cusp catastrophe. If one projects down
from a catastrophe manifold (with the ¢,,-axis vertical) onto the control parameter space,
the projection map is single-valued in regions corresponding to Morse points and multi-
valued in regions corresponding to non-Morse points [14]. Given that this multi-valued
property is common to all non-Morse critical points, which are in turn associated with
critical phenomena, the multi-valued property will be taken here as the crucial topological

characteristic associated with the onset of critical phenomena.



3 Critical matter and spacetime geometry

It should be noted that the topic of gravitational critical phenomena has received considerable
attention ever since Choptuik presented his self-similar solution for the spherical collapse of
a scalar field [18]. As well, the RG approach has been applied to gravitational topics such
as relativistic cosmology (see, e.g., [19]). These avenues of research have generally applied
techniques of critical phenomena to gravitational problems. In the present work, the reverse
approach is taken: geometric techniques of general relativity are used to probe the spacetime
nature of critical phenomena. Indeed, while the framework of Riemannian geometry provides
a starting point for the present analysis, a connection with gravitational phenomena is rather
secondary. As such, it is conceivable that the topological interaction proposed herein could
be relevant well outside the large scale domain of applicability normally associated with
general relativity. While the gravitational interaction is negligible on the laboratory scale,
this does not preclude the possibility that non-gravitational geometric effects may play a
role at that scale.

As noted above, it is essential that the fluctuations of matter fields be included in any
analysis of the properties of critical phenomena. This principle is extended here to include
geometric fields by using Einstein’s theory of gravitation to investigate the effect of fluctu-
ations of matter on the geometry of spacetime. Given the local nature of the interaction
between matter and geometry, it seems most natural to expect the metric to respond in
kind to matter fluctuations. Other authors have considered fluctuations in general relativity
(see, e.g., [20]); however, such work has generally been posed within the context of quantum
or semi-classical gravity. In the case of critical phenomena, at least at the level where the
microscopic details are irrelevant, it is sufficient to consider the properties of classical fields.

In order to preserve the causal structure of spacetime, it will be assumed that the induced

geometric fluctuations are described by conformal fluctuations of the metric:

g,uu<~r) = 902('T) < g;u/(x) >, (3>
where ¢(x) is a classical fluctuating field and < g,, > is the average background metric.
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Taking the average of (3), it follows that
<p?>=1. (4)

At each spacetime point, the standard of length fluctuates about some mean value. Fluc-
tuations in ¢(z) can be viewed as movements along a fiber over z, with the section over
spacetime defined by the local values of ¢ forming a fluctuating surface. For a neighboring
point x + dx, fluctuations will, in general, differ from those at x. These variations in the
standard of length between neighboring spacetime points will produce a change in length of

a parallel transported vector given by
o =Ly ox. (5)

Regions characterized by 6¢ > 0 or ¢ < 0 define a geometric correlation length. It follows
from the derivative of eq. (4) that < 6¢ >= 0. As such, the mean spacetime is clearly
Riemannian and does not support the scale invariance associated with critical phenomena.
However, the topological nature of critical phenomena has not, as yet, been taken into
account in the geometric theory.

Recall that the topological character of critical phenomena was framed within the context
of a mapping between the (,,, ¢)-space and the control parameter space. In order to establish
a link between this topological property on the matter side with a corresponding one on the
geometric side, the following parallel structure is employed. On the matter side, the order
parameters ,, represent “internal” or “state” variables that define the vertical axis over
the space of “external” or control variables ¢ [14]. The scalar field ¢, which is an “internal”
geometric field, and which has values on the vertical fiber over spacetime, is associated with
the order parameter, while the spacetime manifold corresponds to the control parameter
space. Within this framework, the emergence of critical phenomena is taken to correspond
to ¢ acquiring a multi-valued character. In fact, it is well-known [21] that when ¢ is multi-
valued, 6¢ # 0 around a closed path with the result that absolute standards of length are

lost and ¢, becomes a non-trivial vector field. Outside the critical region, ¢ still vanishes
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around local closed loops and the average geometry is Riemannian. In this manner, the local
character of matter is reflected in the geometry both in and outside the critical region.

It remains to determine how the two spaces can fit together. In the present approach, the

conformal metric fluctuations (3) propagate through the Einstein tensor G, transforming
it to < G, > —1,,,,, where
2 [e% 1 (6%
I;w = ;(SO;MV_ < YGw > ¢ ;oc) - ?(490,;%0,1/_ <G = P’ )7 (6)

and where a semi-colon denotes the covariant derivative associated with < g, >. It has been
shown elsewhere [22] that [, can be used to construct a model that allows a conformally
invariant (Weyl) space and a Riemannian space to coexist on either side of a thin shell, where
the surface tension arises from the boundary conditions satisfied by ¢ ,. In this manner, the
conformal metric fluctuations coupled with the topological property of ¢ lead to a consistent
representation of the observed metric properties of critical systems, without violating the
Riemannian character of geometry associated with non-critical matter.

Some comments on the conformal nature of the geometry associated with critical matter
are in order. Only a few years after Einstein proposed that gravitational phenomena can be
described in geometric terms via the rotation of a vector under parallel transport, Weyl [23]
proposed that a change in length of the transported vector could be used to give a geometric
interpretation of electromagnetic phenomena. It was subsequently argued, however, that
one could either have the conformal invariance of Weyl’s geometry or the absolute standards
of length provided by the constituents of matter, but not both. The rejection of Weyl’s
geometry was based on the conviction that the properties of the geometry should reflect the
characteristics displayed by matter. Yet, various forms of conformal symmetry continue to
find application. Forty years ago, Fulton, Rohrlich and Witten [24] published an excellent
review of conformal invariance in physics. While their work continues to provide a bench-
mark, more recent developments in physics have led to new applications. The discussion
here will be limited to a brief summary of their classification of conformal transformations
(also see [25]) and its relevance to the study of critical phenomena. A more thorough survey

of conformal symmetry is provided in [26].
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The conformal transformations of the spacetime metric,

9 (@) = () g (@), (7)
where o(x) > 0, form a group C, with the set of all manifolds isomorphic under C; con-
stituting a conformal space. The transformation (7) preserves the angle between any two
vectors as well as the ratio of their lengths, but not their individual lengths. The group of
all coordinate transformations together with C, form a larger group C, of which the former
are proper subgroups. The space in which equations are invariant under C' is called a Weyl
space. When a vector is parallel transported around a closed path in Weyl space, it will not,
in general, return with the same length that it had at the starting point. The subgroup of
C obtained by imposing the condition that the transformation map a flat space into another
flat space is called the restricted conformal group Cy. This restricted group is a 15-parameter
Lie group on Minkowski space: four parameters for spacetime translations; six for homoge-
nous Lorentz transformations; one for global scale transformations or dilatations; and four
for “acceleration” transformations (more commonly known as special conformal transforma-
tions today). It is this latter restricted group Cj that has found the greatest application in
studies of critical phenomena. In a quantum field theory description of critical phenomena
[3], scale invariance manifests itself through the covariance of the n-point correlation func-
tions, as well as leading to the establishment of relations between the critical exponents. By
extending dilatation invariance of the correlation functions to conformal invariance under
the group Cj, considerably more information about the nature of a critical point can be ob-
tained, but only in two dimensions. Specifically, one can classify the critical point partition
functions and obtain exact values of the critical exponents [3]. The strength of conformal
field theory in two dimensions is due to the fact that the restricted conformal group C| is
infinite-dimensional in two, and only two, dimensions [27]. This has led to the commonly
held perception that conformal invariance itself is only useful in the two-dimensional case.
However, it should be noted that the flat space condition that under girds applications of
Cy is affected by the dimensionality of the space. This can been seen, for example, by not-

ing that the conformal transformation of the scalar curvature and the Ricci tensor (which
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describe the gravitational content in two and three dimensions, respectively), contain terms
proportional to n— 2, where n is the dimension of the space [28]. It turns out that, for n = 2,
the condition that flat space be mapped to flat space is trivially satisfied. This suggests that
the uniqueness of the dimensionality of two is more significant in satisfying the flat space
constraint than in governing the fundamental role that conformal invariance plays in nature.
Turning this around, one may conclude that the full richness of conformal invariance can

only be realized when curvature is included in the analysis.

4 Discussion

Critical phenomena offer a rich context to probe the subtle ways that matter and geometry
interact. The singularities present at a physical critical point have made it difficult to
formulate a comprehensive theory of critical phenomena; the current general options are
to use a mean-field-theory approach which provides a descriptive theory, but ultimately
leads to incorrect results, or to use the renormalization group approach which allows one to
determine the correct critical exponents, but doesn’t provide a descriptive theory of critical
phenomena. The existence of universality classes suggests that the search for a description
of critical phenomena should be conducted at a more basic level than is offered in terms of
differential equations.

In the present paper, it has been argued that the fundamental nature of critical phe-
nomena is rooted in the topological properties of the critical manifold. In particular, the
onset of critical phenomena occurs when the order parameter acquires multiple values over
the control parameter space. This topological signature of critical phenomena, coupled with
the requirement that fluctuations not be ignored, was incorporated into a geometric theory
of spacetime by allowing the metric to undergo conformal fluctuations involving the scalar
field ¢. The scale invariant nature of critical phenomena follows in the present geometric
model when ¢ takes on the multi-valued nature of critical matter. While these results affirm

the steps taken in the present work, it is recognized that a rigorous inclusion of the study
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of singularities, bifurcations and catastrophes in a geometric theory of spacetime warrants
further analysis. As well, it is noted that the proposed relationship between critical matter
and geometric phase transitions calls for further investigation in applications where phase
transitions play a dominant role, such as in the study of the very early universe.

Finally, the proposed geometric phase transition provides a new perspective on the role
that conformally invariant geometry might play in the physical world. The use of conformal
symmetry, restricted to the group Cy, has proven to be a useful tool in two dimensions;
the present geometric approach offers a more general context to explore the role of confor-
mal invariance. The domain of applicability of this non-gravitational interaction between
critical matter and geometry may extend to scales much less than the large scale domain
of the gravitational interaction of general relativity, as did Weyl’s proposal for a geometric
interpretation of the electromagnetic interaction. There does not appear to be any direct
relationship between the topologically induced vector field ¢, and Weyl’s electromagnetic
interpretation of conformal symmetry. However, there does appear to be a natural associa-
tion between ¢ , and the Casimir force. It is well-known [29] that any field that is fluctuating,
and that is constrained to satisfy boundary conditions, forms the prerequisite conditions for
the appearance of the Casimir effect. This suggests that, in the present context at least,

Weyl’s potential ¢, be associated with the Casimir force.
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