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Antisymmetric Matrices Are Real Bivectors

Eckhard MS HITZER*

(Received August 24, 2001)

This paper briefly reviews the conventional method of obtaining the canonical form of an
antisymmetric (skewsymmetric, alternating) matrix. Conventionally a vector space over the complex
field has to be introduced. After a short introduction to the universal mathematical “language”
Geometric Calculus, its fundamentals, i.e. its “grammar” Geometric Algebra (Clifford Algebra) is
explained. This lays the groundwork for its real geometric and coordinate free application in order to
obtain the canonical form of an antisymmetric matrix in terms of a bivector, which is isomorphic to
the conventional canonical form. Then concrete applications to two, three and four dimensional
antisymmetric square matrices follow. Because of the physical importance of the Minkowski metric,
the canonical form of an antisymmetric matrix with respect to the Minkowski metric is derived as well.

A final application to electromagnetic fields concludes the work.

Key Words : Geometric Calculus , Geometric Algebra, Clifford Algebra,
Antisymmetric (Alternating, Skewsymmetric) Matrix, Real Geometry

1. Introduction

But the gate to life is narrow and the way that leads to
it is hard, and there are few people who find it. ...I
assure you that unless you change and become like
children, you will never enter the Kingdom of heaven.

Jesus Christ”

... enter the teahouse.” The sliding door is only thirty
six inches high. Thus all who enter must bow their heads
and crouch. This door points to the reality that all are
equal in tea, irrespective of social status or social
position."!

... for geometry, you know, is the gate of science, and
the gate is so low and small that one can only enter it as
a little child. William K. Clifford™

* Dept. of Mechanical Engineering

2. Motivation

2.1 Antisymmetric matrices
We are all familiar with antisymmetric (alternating,
skewsymmetric) matrices. Prominent examples are: the
matrices describing infinitesimal rotations" in
mechanics the electromagnetic field tensor in
Maxwell’s electrodynamics, the three spatial Dirac
matrices of quantum mechanics, the torsion tensor of
space-time torsion, etc.
A matrix is said to be antisymmetric if interchanging
rows and columns (transposing A->A") gives the
negative of the original matrix

A" =-4. 2.1
Or expressed in components
A, =-4,. (2.2)

This naturally means that the main diagonal elements
are all zero

A4, =0. (2.3)
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Every square matrix can be decomposed into its
symmetric part with
A" =4

and antisymmetric part:
_ 1 ro 1 .
A=A, + 4, —5(A+A )+5(A—A ). (2.5

It is standard undergraduate textbook!'! knowledge,
that symmetric matrices have a set of » orthonormal
eigenvectors, n being the dimension of the space.
Taking the n eigenvectors as basis, the symmetric
matrix takes diagonal form

A
A’Z
(2.6)

A

n

Aty Ay, ... Ay are the corresponding real eigenvalues,
some of which may be equal or zero.

Eq. (2.6) shows the socalled canonical form of a
symmetric matrix.

Trying to do the same for antisymmetric matrices,
we find"! that a similar “canonical form” can be
achieved, but not over the field of real numbers, only
over the field of complex numbers. The eigenvalues
will either be purely imaginary, occurring only in
complex conjugate pairs or zero

JVir— Vi, JVa—JVyse+0 2.7
where ; stands for the usual imaginary unit with j*=-1.
The eigenvectors will also have complex valued
components.

But since the imaginary wunit j lacks a
straightforward geometric interpretation, the questions
for the canonical form restricted to real spaces arises.

In this work I will basically give two answers. The
first is a classical answer as found in books on linear
algebra''). This first answer arrives at a real canonical
form using complex unitary spaces for the sake of
proof.

The second answer will show how a redefinition of
the product of vectors, the socalled geometric product
of vectors can do without the complex field altogether
and derive a more elegant real answer.

2.2 The “classical’ canonical form of antisymmetric
matrices

Maltsevl'!) states a theorem (p. 166, THEOREM
6&6a) about the canonical form of an antisymmetric

Q4)

matrix, representing a skewsymmetric transformation:
“In a real unitary space the matrix A of a

skewsymmetric transformation, in a suitable
orthonormal basis, assumes the form
0 v
-v, O
A= U :
-v, O
0
2.8)

Where O, is the zero matrix of order k(= n-2m).”

0

0, = (2.9)

0

All matrix elements omitted in (2.8) and (2.9) are
understood to be zero. Maltsev continues:

“For each real skewsymmetric matrix A there exists
a real unitary matrix U such that U AU has the form
(2.8).”

In order to show the zero or pure imaginary number
property of the eigenvalues, Maltsev must resort to
Hermitian skewsymmetric matrices. To prove his
THEOREM 6, he basically invokes another theorem
about the canonical form of matrices representing
normal transformations ([11], p. 156). Skewsymmetric
matrices are special normal matrices. To prove the
Maltsev
introduces complex vector coordinates and a (unitary)

theorem about normal transformations,
vector space over the field of complex numbers.

The reader is thus left with the impression, that
there is no way to avoid complex numbers and
complex vector spaces in order to arrive at the desired
canonical form of an antisymmetric matrix.

The contrary is demonstrated in chapter 3.4 of
book “Clifford Algebra to

Geometric Calculus.””) But before showing what

Hestenes&Sobczyk’s

(purely real) Geometric Calculus can do for us in this
issue, I will introduce Geometric Algebra for the
readers, who are so far unfamiliar with this “unified

2 [7]

language for mathematics and physics” "', science and

engineering.



3. First steps in Geometric Algebra

In this section I will first describe Geometric Algebra
and Geometric Calculus. Understanding their relation,
we can proceed to formulate the fundamentals of
Geometric Algebra for two, three and higher dimensions.

3.1 Geometric Algebra and Geometric Calculus

Geometric Algebra (also known as Clifford Algebra)
has been extended to a universal Geometric Calculus!'?
including vector derivatives and directed integrals. It
seamlessly integrates all fundamental interactions known
in nature "%

Without using matrices Geometric Algebra already
unifies projective geometry, linear algebra, Lie groups,
and applies to computational geometry, robotics and
computer graphics.

Geometric Calculus of multivectors and multilinear
functions provides the foundation for Clifford Analysis,
which is based upon a synthesis of Clifford algebra and
differential forms, both of which owe much to the work
of H. Grassmann (1844)”). This enables an clegant new
formulation of Hamiltonian mechanics'*? and a complete,
explicit description of Lie groups as spin groups.!'”

The relation of Geometric Algebra and Geometric
Calculus may be compared to that of grammar and
language.m

Diverse algebraic systems''®), such as

o coordinate geometry

. complex analysis

. quaternions (invented by Hamilton'*))
. matrix algebra

. Grassmann, Clifford and Lie algebras
. vector, tensor and spinor calculi

. differential forms

. twistors

and more appear now in a comprehensive unified system.
The attribute universal is therefore justified.

3.2 Real two-dimensional Geometric Algebra

The theory developed in this section is not limited to
two dimensions. In the case of higher dimensions we can
always deal with the two-dimensional subspace spanned
by two vectors involved, etc.

3.2.1 The geometric product

Let us start with the real two-dimensional vector space
R?. It is well known that vectors can be multiplied by the
inner product which corresponds to a mutual projection
of one vector a onto another vector b and yields a scalar:
the projected length a cos@ times the vector length b, i.c.
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a-b=(acos9)b=abcos9. (3.1
The projected vector a itself can then be written as
a =a-bb/b’. (3.2)

In 1844 the German mathematician H. Grassmann [2]
introduced another general (dimension independent)
vector product: the antisymmetric exferior (outer)
product. This product yields the size of the parallelogram
arca spanned by the two vectors together with an
orientation, depending on the sense of following the
contour line (e.g. clockwise and anticlockwise),

arb=-bAaa. 3.3)

More formally, (3.3) is also called a bivector (2-blade).
Grassmann later on unified the inner product and the
exterior product to yield the extensive product, or how it
was later called by W.K. Clifford, the geometric

product®" of vectors:

ab=a-b+anb. (3.4

We further demand (nontrivial!) this geometric product
to be associative,
(ab)c = a(bc) 3.5)

and distributive,

a(b+c)=ab+ac. (3.6)

Let us now work out the consequences of these
definitions in the two-dimensional real vector space R”.
We choose an orthonormal basis {e;, €}. This means
that

2 _ _ 2 _ — —
e, —ee —¢ -e =1¢,-¢ee,—e,-e,=1,

e -e,—e,-e=0. (3.7

Please note that e.g. in (3.7) we don’t simply multiply
the coordinate representations of the basis vectors, we
multiply the vectors themselves. We are therefore still
free to make a certain choice of the basis vectors, i.e. we
work coordinate free! The product of the two basis
vectors gives
ee,=¢e e, +e Nne, =€ Ne, 68)
=—e, € =—€, € —€, Ne =—€e =i
the real oriented area element, which I call i. It is
important that you beware of confusing this real area
element i with the conventional imaginary unit

j=v-1.

But what is then the square of i?
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i’ =ii= (ee,)(ee,) =—(ee,)(e,e)
=—e,(e,e,)o, = ¢ =—1

(3.9)

The square of the oriented real unit area element of i is
therefore i°= —1. This is the same value as the square of
the imaginary unit j. The big difference however is, that j

is postulated just so that the equation j° =—1 can be

solved, whereas for i we followed a constructive
approach: We just performed the geometric product
repeatedly on the basis vectors of a real two-dimensional
vector space.

So far we have geometrically multiplied vectors with
vectors and area elements with area elements. But what
happens when we multiply vectors and area elements
geometrically?

3.2.2 Rotations, vector inverse and spinors
We demonstrate this by calculating both e,i and e;i:

el = ej(ee;) = (e,€)) e; =€ (3.10)
ezi = 62(—6261) = - (e2e2) €, = —€;. (31 1)
This is precisely a 90 degree anticlockwise

(mathematically positive) rotation of the two basis
vectors and therefore of all vectors by linearity. From
this we immediately conclude that multiplying a vector
twice with the oriented unit area element i constitutes a
rotation by 180 degree. Consequently, the square i* = —1
geometrically means just to rotate vectors by 180 degree.
I emphasize again that j and i need to be thoroughly kept
apart. j also generates a rotation by 90 degree, but this is
in the plane of complex numbers commonly referred to
as the Gaussian plane. It is not to be confused with the
90 degree real rotation i of real vectors in a real
two-dimensional vector space.
i also generates all real rotations with arbitrary angles.
To see this let a and b be unit vectors. Then I calculate:
a(ab)= (aa)b = b (3.12)
Multiplying a with the product ab therefore rotates a into
b. In two dimensions Ry,=ab is therefore the “rotor” that
rotates (even all!) vectors by the angle between a and b.
What does this have to do with i? Performing the
geometric product ab explicitely yields:
ab = cosO® + i sin® (3.13)
(Please keep in mind that here a’> = b®> =1 and that the
area of the parallelogram spanned by a and b is precisely
sinf,,, which explains the second term.) This can
formally be written by using the exponential function as:
R.p= ab = exp(i 0,,) = cosO,, + 1 sinb,, (3.14)
We can therefore conclude that the oriented unit area
element i generates indeed all rotations of vectors in the
real two-dimensional vector space.
Another important facet of the geometric product is

that it allows to universally define the inverse of a vector
with respect to (geometric) multiplication as:
1 def X

X :_=_27

X X

X’=xx=x-x. (3.15)

That this is indeed the inverse can be seen by calculating
(3.16)

Using the inverse b of the vector b, we can rewrite the
projection (3.2) of a unto b simply as

a, =a-bb’, (3.17)

where I use the convention that inner (and outer)
products have preference to geometric products.

It proves sometimes useful to also define an inverse
for area elements A = +|Ali:

Al = A/A? = A/HAP) = —AJAP,  (3.18)
where |A| is the scalar size of the area as in (3.51) and
one of the signs stands for the orientation of A relative to
i. We can see that this is really the inverse by calculating
AAT = ATA = AA/A’ = AYA* = —|AFI(HAP) = 1. (3.19)

By now we also know that performing the geometric
product of vectors of a real two-dimensional vector
space will only lead to (real) scalar multiples and linear
combinations of scalars (grade 0), vectors (grade 1) and
oriented area elements (grade 2). In algebraic theory one
assigns grades to each of these. All these entities, which
are such generated, form the real geometric algebra R,
(note that the index is now a lower index) of a real
two-dimensional vector space R”. R, can be generated
through (real scalar) lincar combinations of the following
list of 2>=4 elements

{1, ey, ey i}. (3.20)
This list is said to form the basis of R;. When analyzing
any algebra it is always very interesting to know if there
are any subsets of an algebra which stay closed when
performing both linear combinations and the geometric
product. Indeed it is not difficult to see that the subset
{1,i} 1is closed, because 1li = i and ii = —1. This
sub-algebra is in one-to-one correspondence with the
complex numbers C. We thus see that we can “transfer”
all relationships of complex numbers, etc. to the real
two-dimensional geometric algebra R,. We suffer
therefore no disadvantage by refraining from the use of
complex numbers altogether. The important operation of
complex conjugation (replacing j by — in a complex
number) corresponds to reversion in geometric algebra,
that is the order of all vectors in a product is reversed:

(ab)" = ba (.21)

and therefore
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i* =(ee,) =ee, =—ee,=-i. (322

In mathematics the geometric product of two vectors
[compare e.g. (3.4),(3.7),(3.8),(3.14)] is also termed a
spinor. In physics use of spinors is frequently considered
to be confined to quantum mechanics, but as we have
just seen in (3.14), spinors naturally describe every
elementary rotation in two dimensions. (Spinors describe
rotations in higher dimensions as well, since rotations are
always performed in plane two-dimensional subspaces,
e.g. in three dimensions the planes perpendicular to the
axis of rotation.)

3.3 Real three-dimensional Geometric Algebra
We begin with a real three-dimensional vector space
R’ In R we introduce an orthonormal set of basis

vectors  {e;, e, e}, that is e -e =1 and

e,-e =0forn # m, {nm=123}. The basic 2’ =8

geometric entities we can form with these basis vectors
are:

1, scalar (grade 0)

{ ey, e,, €5}, vectors (grade 1)

{i3= € €, 1= € €3, ;™ €3 €1},

oriented unit real area elements (grade 2)

i= e, e, e;3, oriented real volume element (grade 3)

(3.23)

We now have three real oriented unit area elements
{iy, i, i3} corresponding to the three plane area elements
of a cube oriented with its edges along e;, e, and
e;. This set of cight clements {1, e, &, €3, iy, by, i3, i}
forms basis of the real geometric algebra R; of the three
dimensional vector space R®. By looking at the subsets
{1,e,e,i3}, {1, &, €, 1} and {1, 5, ¢;, i} we see that
R; comprises three plane geometric sub-algebras, as we
have studied them in section 3.2.2. In general, by taking
any two unit vectors {u, v} which are perpendicular to
each other, we can generate new two-dimensional plane
geometric sub-algebras of R; with the unit area element i
= uv.

As in the two-dimensional case we have i;>= i, = is’=
i’=-1. And we have
i’=ii=e e, e3e, €3 =— € € €3¢,(€3 ¢)
= e e;es3(ese;) e =—¢ € e3(e3€;) €
=—e;es(eses)e; e =...=-1. (3.24)
Each permutation after the third, fourth and fifth equal
sign introduced a factor of —1 as in (3.8). The square of
the oriented three-dimensional volume element is
therefore alsoi*=—1.

In three dimensions the vector a unto b projection
formula (3.17) does not change, since it relates only
entities in the a,b plane. But beyond that we can also
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project vectors a onto i planes, by characterizing a plane
by its oriented unit area element i. In this context it
proves useful to generalize the definition of scalar
product to elements of higher grades ©*!:

a-B =(a-B) = l(aB, +(—1)”'B,a), (3.25)

r—1—2

where r denotes the grade of the algebraic element B,,
and the bracket notation is explained in (3.36a). For B,=
b (r=1) we have as usual a-b = %(ab + ba), but for

B. =i (example with grade r=2) we have

D I
a~l:—(al—la). (3.26)
2
We can calculate for example
. 1
e i = —2—(e1e2e3 - e2e3el): 0 (3.27)
. 1
e, i = §(e2e2e3 —eee,)=e, (3.28)
.1
e,-i, = 5(e3e2e3 —e,ee,)=—e,. (3.29)
If we now rotate e; (and —e;) with i, = - i; from the
right by —90 degree in the e,,e; plane, we obtain
e, i,i] =—e i, = —ee.e, =e,, (3.30)
e, -iij =ej, —eee e, (3.31)
respectively.

The projection of any vector a unto the es,e, plane is
therefore given by

a =a-ii;. (3.32)

We say therefore instead of ese, plane also simply
ii-plane. And in general the projection of a vector a unto
any i-plane is then given by

a=a-ii’, (3.33)

[

which is in perfect analogy to the vector unto vector
projection in formula (3.17).

There is more™**! to be said about Rs, and in the next
section some more concepts of geometric algebra will be
introduced for the geometric algebras of general
n-dimensional real vector spaces.

3.4 Blades, magnitudes, orthogonality and duality

Let {e;, €, ... €,} be an orthonormal vector basis of
the Euclidean vector space over the reals R". R, denotes
the geometric algebra generated by {e;, e, ... €,}.
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k-blades B, are defined as multivectors that can be
factorized by the outer product (3.4) into k vector factors

B,=a na,An...na,. (3.34)

A general multivector element M of the geometric
algebra R, will consist of a sum of various elements of
different grades

M=M0+M1 +M2+ . .+Mn, (335)

where some of the k-vectors M (0 <k < ) may also

be zero. Each k-vector M can in turn be written as a sum
of pure blades of degree & as in (3.34). There are at most

n
[kj terms in such a sum, because the orthogonal basis

n
{e,, e ... e} allows only to form (k] different

k-blades. Extracting the grade k part M, from the
multivector M (3.35) is sometimes denoted as

M) =M,. (3.36a)

The grade O or scalar part of M is sometimes denoted as

(M)=(M) =M,. (3.36b)

Geometric algebra is very suitable to denote subspaces
and perform direct algebraic operations with subspaces,
because each pure blade also represents the subspace
spanned by the vectors in its factorization (3.34). As
shown in [7], p. 9, each inner product (3.25) of a vector a
with a pure k-blade B, has the expansion

a-B,=a-(a, na,A...na)=

k . (3.37)
> (-D)'"'a-a(a na, A...a...Aa,

s=1
where 55 means that the vector a, is to be omitted from

the product. This means that if the vector a is
perpendicular to all a, (s=1.. k), then the product (3.37)
vanishes identical. If a is perpendicular to all a; (s=1...k),
it must also be orthogonal to all linear combinations of
the a, (s=1...k), and therefore to the k-dimensional
subspace of R” spanned by the a, (s=1...k).

a-B, =0 (3.38)

tells us therefore that a is in the orthogonal complement
of the k-dimensional subspace defined by B,.

Analogous to (3.25) the outer product can also be
generalized to the outer product of vectors with k-vectors

aAM, = %(aMk +(-1)*M,a) 539

=(aM, )

While an inner product with a vector as in (3.25) always
reduces the grade by one, the outer product (3.39)
increases the grade by one. The outer product can also
serve to directly characterize subspaces of R” related to
k-blades By. Suppose that a is linearly dependent on the
vectors a; (s=1...k), that define B, as in (3.34). By
linearity the outer product of a with B, must vanish.

anB, =0

k+1

(3.40)

tells us therefore that the vector a is contained in the
k-dimensional subspace defined by B,.

By successive applications of (3.25) and (3.39) to all
k-blades of the r-vector A; and the s-vector B; one can
show ([7], p. 10) that the geometric product of them can
be written as the graded multivector sum

AB =(4B,)  +(4B,) . +..+(4B,)

r S r+s

(3.41)

Taking the lowest and hightest grade parts of (3.41)

one defines the scalar product and the outer product of
the r-vector A, and the s-vector B, to be

A -B = (A,BS>‘H‘ (3.42)
and
A AB =(4,B,) . (3.43)

respectively. But a warning is in place. As Dorst!'”!

showed, the definition (3.42) has some drawbacks,
which can be improved by changing the definition of the
scalar product.

If A,=a Ana,=aa, ands>l, then

Az B, = <a132Bs> 0 (a, 'Bs)

S~

(3.44)

by repeatedly applying (3.25) and (3.39) and discarding
the higher grade parts. If the grade s=2 then

Az 'Bz = <a1a2B2>0 =a, '(az 'Bz)
=(a,-B,)-a, =—(aa) B,
=-a,-(a,-B,)=a,-(B,-a))

(3.45)

where the interchange of B, and a vector in the scalar
product introduced always a negative sign. (3.45) shows,
that the brackets are irrelevant and we can therefore drop
them completely

(a, na,) B, =(a,-B,)a,

(3.46)
=a,-(B,-a)=a, B, a



Equation (3.46) makes it easy to prove, that if we
define a new vector b as

b=a' B, =0, (3.47)

it will be orthogonal to the original vector a.
Remembering that a'=a/a’ (a= a’' if a’=1), we find that

a-b :a-(iz~B2)= <a12B2> =(B,)=0,(3.48)
a a

where we have used definitions (3.15), (3.42) and
(3.36b). If beyond that a is part of the subspace defined
by the 2-blade B, we can show that B=ab

ab=a(a"'-B)= a(—a% ‘B)= ;1—2—a(a -B)
1 , (349
= 7a(aB) =B
a

where we used (3.15) and for the third equality that
aB=a-B+aAnB=a-B, and (3.40).

Conceming the outer product (3.43) of orthogonal
2-blades A, and B, (they consist of four mutually
orthogonal vectors) it is easy to show the commutation
properties
AB, =aabb, =2a na, Ab, Ab,
=(a, rna,)A(b, Ab,)=A4, A B,
=(b, Ab,)A(a, na,)=B, A4, =B,4,

Every pure k-blade can be reduced to a product of
orthogonal vectors by only retaining the part of each
vector factor in the blade, which is orthogonal to the
other (k-1) vectors. After this procedure, the outer
product in (3.34) can be replaced by the geometric
product, all without changing the value of the blade.
Reversing the order of all vectors introduces a factor
(-1)<*D2 Multiplying a k-blade and its reverse gives the
squares of all vector lengths

B'B=a’al...a =[B] =(-1)*“"’BB, @51

which defines the magnitude |B| of a k-blade B.

Geometrically multiplying a k-vector Vy (understood
to be a linear combination of k-blades) with a blade of
maximum grade n (there is only one such maximum
grade element in each geometric algebra R,, all others
are just scalar multiples) we obtain according to (3.41) a
(n-k)-vector

VL =(VL) , =(VL) ..

I, is because of the maximum grade property a pure
n-blade and its vector factors span the whole R". Each
k-blade summand in the k-vector Vi represents therefore
a subspace contained in the full I, space R". This

(3.50)

(3.52)
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subspace relationship leaves according to (3.40) only
(and with proper reshuffling in each k-blade under
concern) successive inner products of I, with the vector
factors of the k-blade. Hence in (3.52) each k-blade
summand will produce a dual (n-k)-blade and by
linearity we get (3.52).

A consequence of (3.52) is that each vector will
become a dual algebra clement of grade (n-1) if
multiplied with the maximum grade pseudoscalar. Each
2-blade (bivector) will become a dual element of grace
(n-2). A consequence of this is, that only in »n=3
dimensions bivectors (2-blades, two dimensional area
elements) are dual to vectors.

Comparing (3.41) and (3.52), we see that e.g. for n=4,
the expressions

VI, =V, I,=(V,L) _=(V,L,) (353

=

must all be equal.

Finally a remark about the squares of pseudoscalars.
By induction one can prove the following formula for
squares of Euclidean pseudoscalars

iP=(-)""i . (3.54)

Using this formula, the first 11 squares are
(n=1,2,3,4,5,6,7,8,9,10,11) 1,-1,-1,1,1,-1-1,1,1,-1-1. The
periodicity of two is evident. 11-dimensional spaces play
a certain role in higher dimensional elementary particle
field theories.

As is to be expected, the square of the pseudoscalar
depends on the metric. If we choose therefore a (1,3) or

(3,1) Minkowski metric, we end up with

i; =-1

A . (3.55)

and not with 7, =1 as in the Euclidean case.

This concludes our short tour of geometric algebra. It
gives a taste of the huge potential for coordinate free
algebraic calculations and provides most of the
geometric algebra tools for the following sections. To
someone just starting to get acquainted with geometric
algebra, [ strongly recommend reference [4].

4. Real treatment of antisymmetric matrices

Let {e, €2 ... €,} be an orthonormal vector basis of
the Euclidean vector space over the reals R". R, denotes
the geometric algebra generated by {e;, €y, ... €,}. The
set of bivectors { e e, e;es, ..., e, ,e,} forms a nn-1)/2
dimensional linear space over the reals. This is the same
dimension as for the space of antisymmetric square
matrices in » dimensions. These two spaces are indeed
isomorphic. Let A be a bivector in R, and A the
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corresponding  antisymmetric  matrix  with  the
components Ay. Using (3.46) the isomorphism is given
by:
Ak,:ek-A-el, “4.1)
l n
A= > D Aee, . “.2)
kl=1

Taking the transpose A’ on the left side of (4.1)
corresponds to taking the reverse of the bivector A,
because according to (3.21)

(e.e,)’ =ee, =—e.e,. 4.3)

The last equality is analogous to (3.22), because e, and e
are orthogonal to each other and anticommute therefore.

This isomorphism is very useful, because we can now
seck the canonical form of the isomorphic bivector A of
(4.2), using the powerful tools of geometric algebra.
After establishing the canonical form in a completely
real geometric way, we can simply map it back to the
corresponding antisymmetric matrix A by applying (4.1).

4.1 The canonical form of a bivector A

The derivation of this canonical form is taken from
chapter 3.4 of reference [7].

Every bivector A can be represented as a sum of
distinct commuting plane (two dimensional) area
clements [2-blades, £=2 in (3.34)]

A=A +A,+--+A (4.4)
where in accordance with (3.50)

AA =AA, =A NA, “5)
and with (3.51) for &k #/ and

A;=-v} <0, O<v, eR. (4.6)

According to (4.6) we can decompose cvery area
element A, into its scalar size v, times its unit arca
element iy

A, =vi, 4.7)
with
i, =-1, (4.8)

as for the unit area clement in (3.9). The orthogonal
decomposition is only unique if all vy are different.

The chief problem is to compute the Ay of (4.4) from
the expression for A given by (4.2). To solve for the Ay it
is convenient to introduce the multivectors Cy of grade
2k by the equation

C = l<Ak>zk -

i DAA AL @Y

h<ly<..<ly
where 4=1,2,....m. A*=AA.. A (k times) is evaluated
from (4.2) and the right side of (4.9) is obtained by
substituting (4.4) into the left side and applying (3.36a).
Then (4.9) constitutes a set of m equations to be solved
for each A, in terms of the Cy’s.

First the squares oy = A/ = —v/ of each A, can be
found as the roots of the mth order polynomial

S(Ca) ™,

k=0

(4.10)

where the scalar coefficients <Ci> are calculated by

taking the scalar part (3.36b) of the squares of the
multivectors Cy defined in (4.9)

(ch=(ci) = > AjA;..A} . @)

h<ly<..<ly
(4.10) can be verified by identifying the <C;’> as the

coefficients of the factored form of the polynomial

(A2 -a)Al-a)..(A2-a). @1
After the roots o, = A/ of
ZmXCﬁ >(— a)" ™t =0 (4.13)

k=0

have been determined, equation (4.9) can be replaced by
a set of m linear bivector equations for the m unknowns
A,, which is given by

n
D A=A +A, ++A
kl=1

(4.14a)

D AA] AL |(4.14)

=1 h<ly<o<lyy,
e gy =1

for k=2,...,m. In reference [7] {p. 81, Eqn. (4.15)} also

the term C, - C, occurs. C, of grade zero should be a

scalar € R | but as pointed out and remedied by
Dorst!'” the scalar product in reference [7] is not
well-defined if one of its factors is of grade zero (i.e.
€ R).

Equation (4.14) can be solved by standard procedure,
if all o; are distinct. But if e.g. a=o,, then all
coefficients of A; and A, will also be equal, and
additional properties of A will be needed to determine
the A;.

This ‘orthogonalization’ of a bivector produces via the



isomorphism (4.1) the canonical form of the

corresponding antisymmetric matrix.
Taking f(X)=X-A as a linear (skewsymmetric)

vector transformation, the square /* will be a symmetric
transformation with the eigenvalues o= A/ = —v;* and
the characteristic polynomial (4.10), which equals (4.12).
To show this let a; be a unit vector in the i, plane, i.e.

anij=a,AA,; =0, (4.15)
according to (3.40). By (4.5) we have
a,-A, =0 for [ #k, (4.16)

because the wvectors that span the i, must all be
orthogonal to a, € i,, since all i, planes are orthogonal

to each other by (4.5)-(4.7). So by using (4.4), (4.6),
(3.25), (3.42) and (4.15) we see that

fia,)=(a,-A)-A=Ala,=—v/a, 417
By finally defining the unit vector

b, =a, i, € irplane, (4.18)

which is by (3.48) orthogonal to a, every plane area
element A; can be written as in (3.49)

A, =vi,=v,ab,, 4.19)

where

{a;, b;, a5, b,, ..., a,, b,} (4.20)
is a set of othonormal eigenvectors of £ with
nonvanishing eigenvalues —v;’= A/,

4.2 The canonical form of antisymmetric matrices by
real geometry

Let us suppose for a moment, that the antisymmetric
1 X 1 square matrix A has maximum rank r=n. Then the
number of distinct orthogonal area elements m in (4.4)
will be m=n/2, and no zero eigenvalues will occur. The
set of n=2m orthogonal -ecigenvectors (4.20) will
therefore form a basis of the vector space R”.

Applying the bivector matrix isomorphism (4.1) with
respect to the basis (4.20) we find with (3.46) that

Aypoen =a,-A-b, =a, '(ZAIJ ‘b,

11
=a,-A,-b, =a, '(Vkik)'bk
=v(a, i) b, =vb, b, =v,

4.21)

The third equality holds because of (4.16), for the fourth
(4.19) has been inserted, the sixth equality uses the
definition of the vector by in (4.18), and the last just says
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that the b,’s are unit vectors. Because of the

antisymmetry we have

Ay = Ay =V 4.22)

and

4, =0. (4.23)

Because of (4.16) all other matrix elements will
necessarily be zero.
Summarizing the results in matrix form, we get

0 v
., 0
A= , 4.29)

%

where again all omitted elements are understood to be
Zero.

If we now drop the requirement of A to have
maximum rank, the vectors in the kernel of the linear
vector transformations f and £ (4.17) have to be added to
our orthogonal basis (4.20). This are all the vectors,
which are mapped to zero by f and f£. They have
therefore the eigenvalues zero. By Gram-Schmidt
orthogonalization ([7], p.28), a set of orthonormal
vectors, spanning the kernel, can therefore be added to
(4.20), supplementing (4.20) to a full orthonormal basis
of R".

Calculating the matrix components of A with respect
to the supplemented basis according to the isomorphism
(4.1) we end up with the full canoncical form of the
antisymmetric matrix A as given in (2.8).

This completes the derivation of the canonical form of
antisymmetric matrices by making use of the completely
real geometric algebra. There was especially no need to
introduce complex numbers, complex coordinates or
complex vectors, Hermitian skewsymmetric matrices, or
vector spaces over the field of complex numbers.

Beyond these strong formal and educational merits,
we can now visualize the geometric essence of an
antisymmetric matrix via the isomorphism (4.1), which
allows us to switch freely back and forth between the
matrix from and the bivector form: As proved in section
4.1, equations (4.5)-(4.7), the isomorphic bivector A

represents a set of m<n/2 orthogonal (two
dimensional) plane area elements A; of size v; with
oriented unit area elements i; (1</<m).

In the following section we will apply this new way of
unraveling the geometry of an antisymmetric matrix for
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the examples of antisymmetric 2x2,3x3and4 x4

square matrices.

5. Application to antisymmetric 2x2 , 3x3 and

4x4 square matrices

5.1 Application to antisymmetric 2 X 2 square matrix

A general two dimensional antisymmetric matrix A
written with respect to any two dimensional orthonormal
basis {e,, e,} has already the canonical form

A:(_"V ;].

Using the isomorphism (4.2) we can directly calculate
the corresponding bivector A as

5.1

1< 1
A= EZAklekel = E(Alzelez + AZleZel)
k=

1 1
= E(Velez —ve,e, ) = E(l/elez + Velez) (5.2)

=wee, =W

2

where we have used the anticommutativity of e; and e;
and the definition of the oriented (two dimensional)
plane area element as in (3.8).

The set of all antisymmetric square matrices in two
real dimensions, represents therefore nothing else but all
possible plane oriented area elements only distinguished
by their scalar size |v| and their orientation encoded in i.

This is strongly reminiscent of Gibbs’ cross product of
vectors in three dimensions and indeed the
antisymmetric (bivector) part of the geometric product of

“two vectors as in (3.4) is the generalization of the cross
product independent of the dimension » of the vector
space in which the vectors are situated. This is because
in any dimension, we can restrict our considerations to
the plane spanned by the two vectors to be multiplied.

If we were to calculate the eigenvalues of the matrix A,
in the conventional way, we would find

/’l’l,?.:ijv, jE v—1.

But instead of sticking to the geometrically
uninterpretable imaginary unit j we should rather take
the eigen-bivectors

(5.3)

A=W, and A, =vi* =14, (5.4)

It is not difficult to show along the lines of (3.10) and
(3.11) that (5.4) leads indeed to a consistent real
geometric interpretation of imaginary eigenvalues and
the related complex eigenvectors as a 90 degree rotation

operation on the vector doublet (e, e,), l'eSpeCtively.“S’w]

v means an additional dilation of the doublet (e;, €;) by
V.

5.2 Application to antisymmetric 3 X 3 square matrix

A pgeneral three dimensional antisymmetric matrix A
written with respect to a three dimensional orthonormal
basis {e;, e;, €3} has the form

0 c -b
A=|-¢c O a 5.5)
b —-a O

Applying the isomorphism (4.2) we can directly
calculate the corresponding bivector A as

R 1
A= EZ A.e.e, = _2‘(Az3e2e3 + A4y,e.e,

k1=
+ A4, e.e +A.ee, +A,ee, +4,e.e) (56)
=ae,e, +be,e +cee,
where we have used the anticommutativity (4.3)
ee =—ee, for [#k. 5.7
The square of A is
AP =—-a*-b* - =7, (5.8)
because all cross terms like
ae,e,be.e +be.eae,e,
=ab(e,e.e.e +e.ee.e,) (5.9)

=ab(e,e, +ee,)=0
vanish according to (5.7). v will only be zero if a=b=c=0,
i.e. if the matrix A in (5.5) is the zero matrix. Defining

’sg, b'sé, c=< (5.10)
v v v
we get
A=v(dee, +bee +c'ee,)=vi, (511
with i>=-1. The unit vector
a=(-ce,+be,)/J1-a> (5.12)
has the property (4.15)
ani=0 (5.13)

which is easy to show from (5.11) and (5.12) by explicit
calculation. Defining the second unit wvector b
perpendicular to a we get according to (4.18)



b=a-i

(5.14)
= [(1 —da'*)e, —a'b'e,—a'c'e, ]/\/1 —-a”
This gives the bivector A its final factorized form as in
(4.19)

A=vi=1ab. (5.15)

The orthonormal vector pair {a, b} in the i plane is only
unique up to an arbitrary common rotation, because any
choice of unit vector a in the i plane will do.

The explicit form (5.15) of the bivector A shows that
the sum of bivectors (4.4) will have precisely one term
(m=1) in three dimensions. That means an antisymmetric
matrix in three dimensions always specifies one
corresponding oriented (two dimensional) area element
A. Multiplying A with the three dimensional
pseudoscalar i of (3.23) gives by (3.52) a vector k of
length v perpendicular to the i plane

k =—iA = ae, +be, +ce,

: (5.15)
=v(d'e +b'e, +c'e;)=1c

where the minus sign is a convention, which ensures that
c=(axb), ie ¢ is just Gibbs® cross product of the

vectors a and b. This mapping of bivectors A and i to
vectors k and e, respectively, works only in three
dimensions, which is why Gibbs’ cross product can only
be defined in »=3 dimensions, as shown by (3.52). In
contrast to this, the definition of the outer product of
vectors (3.3) is completely dimension independent and is
therefore to be preferred to the conventional cross
product.

The fact that m=1 in n=3 dimensions means that the
kernel of the linear transformations fix) and f(x) of
section 4.1 will have the dimension k=n-2m=1. This
kernel consists of the vectors parallel to k or ¢.

{a, b, ¢} is therefore an orthonormal basis of R® with
respect to which the matrix A takes its canonical form by
applying the isomorphism (4.1)

(5.16)

If we were again to calculate the eigenvalues of the
matrix A in the conventional way we would find

A, =tjv, j=-1. 4 =0.

As in (5.4) we should better replace the geometrically
uninterpretable imaginary unit j by the eigen-bivectors

(5.17)

A =W, and A, =¥’ =-1, (5.18)
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where the bivector i is defined in equation (5.11). We
could again show 'along the lines of (3.10) and (3.11) that
(5.18) leads indeed to a consistent real geometric
interpretation of imaginary eigenvalues and the related
complex eigenvectors as a 90 degree rotation operation
on the vector triplet (e;, ez e3), respectively.'®'”
v means an additional dilation of the triplet (e;, ez, e3)
by v. The rotation takes place in the i plane around the
axis ¢. The index ‘||’ means projection onto the i plane
using (3.33).

5.3 Application to antisymmetric 4 X 4 square matrix

A general four dimensional antisymmetric matrix A
written with respect to a four dimensional orthonormal
Euclidean basis {e;, e,, e;, e,} has the form

0 c -b r
-c 0 a s

A= (5.19)
b —-a 0 ¢

-r —-s -t O
Applying the isomorphism (4.2) we can directly
calculate the corresponding bivector A as
1 3
A=—) Aee =
2;,: e (5.20)
ae,e, + be.e, +cee, +ree, +se.e, +1e.e,

The two multivectors C, and C; of equation (4.9) are

e A
C =ﬁ<A ) =A=A +A,, (5.21)
C,=1(a") =Lara-aa 522
SN TANA=AL o

- The grade 4 part of the square of A yields

1
EA NA =are,e; nee, +
bse.e ne,e, +clee, Nne.e

3v1 2%v4 1%2 Kt ] i (5.23)

=(ar +bs +ct)e,e,ee,
=(ar+bs+ct)i, = %IA A Ali4

because all other parts of the square of A have grades
less than 4. i, is the oriented four dimensional unit
volume elcment, also called pseudoscalar.
The polynomial (4.10), whose two roots are the
squares of the two bivectors in (5.21)
0‘1=A12=—V12, 0‘2=A22=—V22
becomes now

(5.24)



294

é(Ci)(— a) " =a’ - <A2>a + (%A A A)Z
(5.25)
The two coefficients of (5.25) are
2\ _ /a2
(ch)=(a%) 526

=@ +b++r’+5° +12):—|A|2

because only squares like (ee;) (ee)=—1 with /# k

contribute, and
1 2
(C3)= (—Z—A A Aj

=(ar +bs+ct)’ = ;11—|A A A|2

, (5.27)

because i,°=1. To find o; and o, we therefore need to
solve
(@ +b+ct+rr+ st + 1) 528
+(ar +bs+ct)’ =0
(5.28) yields

A2 2
a,=A, ="V,

[P = AT A AT |

=%[—(a2 +b+t+rt+s+ 1)

+ (@ + b+ +1rP +5 +17) —4(ar +bs +c1)’ ],

(5.29)
Next we write down the m=2 equations (4.14). Using
(5.20) and (5.21) we get for (4.14a)
A =ae,e, + bese, +cee, +ree, +se,e, +1ee,
=A +A, ’
(5.30a)

Using (5.21), (5.22), (5.23), (5.27) and (4.5) we can
write for (4.14a)

C,-C,=CC,= A%(A NA)=AiARA

= (A1 + Az)AlAz = A12A2 + A§A1
(5.30b)
The first equality in (5.30b) holds, because as in (3.53)
C; is already of maximum grade 4. Provided that

o; and o, are distinct, the equations (5.30) can be solved
to give

o1
A - C1C2 _a]A —14E|A/\A|A—alA
1 @, —q

, (5.31)
a, -

where we have used the fourth expression in (5.30b) to
replace C;C,. The expression for A, is obtained by
interchanging the subscripts 1 and 2 in (5.31). Observing
that

2
1
aa, = [5|A A A|j ) (5.32)
and using v; and v; of (5.29) we finally get
. v, +LV
A =vi =vL5—2A, (5.33)
Vi =V,
and
. v, +iV
A, =v,i,=v, 21 A. (5.34)
vV, =V
It is easy to check that

A=A HA = Vit Voby, T1b=holi=is, 1= b'=—1, (5.35)
and that the two orthogonal unit bivectors i, and i, are
related by

= — iy, 1= — iy (5.36)

The explicit form (5.35) of the bivector A shows that
in four dimensions the sum of bivectors (4.4) will have
precisely two terms (m=2), provided that v, and v, are
distinct. That means that an antisymmetric matrix in four
dimensions always specifies two corresponding (two
dimensional) distinct orthogonal area elements A; and
A,. The relations (5.36) show that the units i, i, of these
two area elements are dual to each other by the
multiplication with the four dimensional pseudoscalar i

The duality of area elements (3.53) in four dimensions
is also the reason, why Gibbs’ cross product cannot be
defined in four dimensions: The dual entity of an outer

product a A b is not a vector (as in three dimensions),

but because fo (3.53) again an area element.

In particular cases it will be no problem to find the
orthonormal eigenvectors {a;, b;, a; b,} of the linear
transformations a(x) and a’(x) of section 4.1. A possible

way of construction for the eigenvector a; (¢ i . plane) is

to simply téke e.g. the basis vector e;, calculate its

projection e,; onto the i, plane with (3.33) and divide it
by its length.

. o] . ool

e e 11 e il

m _ M 1, _ ™M 17 ' (5‘37)

a,

= - .ol T .
lelﬂl‘ ‘el 'lll,‘ Ie] 1

The second unit eigenvector b; (e i1 plane) can then be



calculated with the help of (4.18) as
e i

|e1 ' '1|

The second equality holds, because of a, Ai, =0

b,=a i =ajl =

——e -iji’i, = . (5.38)

|°1 ‘ '1|

(4.15). a; and b; will be unique up to a common rotation
in the i, plane. In the very same way we can calculate a,

and b, (e izplane) e.g. as
e1\|2

‘e1u2|

which are again unique up to a common rotation in the i,

€1

a,

. b,=a,-i,

. (539

:|e1'i2

plane.

Applying the matrix ismormorphism (4.1) with respect
to the orthonormal eigenvector basis {a;, b;, a,, b,}, we
get the canonical form of the matrix A of (5.19) as

0O v O O
-v, 0 O

0 0 0 v,

0 0 -v, O

. (5.40)

where the values v, v, are taken to be positive and
defined by (5.29).

If we were again to calculate the eigenvalues of the
matrix A in the conventional way we would find

A,zzijvb )3,4:ijvza Jj=v-1.

As in (5.4) and (5.18) we should better replace the
geometrically uninterpretable imaginary unit j by the
eigen-bivectors

(5.41)

. . @ .
A =vi, A, =vip =-vig,

A =Voiy, A, =W, =i, (5.42)

We could again show along the lines of (3.10) and (3.11)
that (5.42) leads indeed to a consistent real geometric
interpretation of imaginary eigenvalues of A and the
related complex eigenvectors as 90 degree rotation
operations on the vector.quadruplets (e, €z, €31, €q),
(€12, €22, €3, €4p2), Tespectively."®'*?**) The rotations
take place in the i, and i, planes, respectively. The
factors v,, voresult in additional dilations of the
respective quadruplets by v;, v,. The indices ‘||1’ and
|2’ mean projections onto the i, and i, planes,
respectively, using (3.33).

I did not discuss the case of one of the wvalues
V1, V5 equal to zero. This is an extension of the previous
section, with a two dimensional kernel.
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6. The canonical form of a bivector in Minkowski
space

6.1 Derivation of the canonical form of a bivector in

‘Minkowski space

In order to study important applications of the
canonical form of antisymmetric matrices, we need to
deal with the pseudoEuclidean (Minkowski) metric. This
will open a wide field of applications in special relativity,
c.g. to Lorentz transformation generators, to the field
tensor of Maxwell’s electrodynamics, relativistic
quantum mechanics, etc. The Minkowski metric is
defined by four orthogonal vectors satisfying

ei=e=e=-¢; =1, (6.1)

where the first three vectors span space and the fourth
vector gives the time direction. The orthogonal
decomposition in Minkowski space is used and alluded
to (e.g. [7], pp. 10,11; [13], pp. 49,86) in the literature,
yet I haven’t seen any explicit proof so far.

The definition of the isomorphism formula (4.1)
doesn’t change. But in (4.2) the metric (6.1) must be
taken into account, resulting in a minus, whenever the
indices & or / take the value 4. For the matrix (5.19), this
results in the isomorphic bivector to be ’

l 3
A= Eg_‘:Ak,eﬁe;‘ =
ae.e, +be.e +cee, —ree, —see, —re.e,
because in the Euclidean case (4.2), we have el= ey,
e, 1= €z, el= es, ey l= e,, but in the Minkowski case the
inverse of e; changes to es'= —e; The squares of the
distinct commuting plane (two dimensional) area
elements (2-blades) may now also become positive, so
(4.6) has to be replaced by

A; =4y} 20, O0<v,eR. (6.2)

The factoring as in (4.7) will continue to be possible, but
the squares of the unit area elements i, may now also
become positive. (4.8) has therefore to be replaced by

i =i,i, =11 (6.3)

As an example for the positive sign in (6.3) we can e.g.
calculate

(ee,)ee,)=eeee, =—eeee =ee =1

After defining the multivectors Cy as in (4.9), the squares
o;= A7 = T v/ of each A, can be calculated as the roots
of (4.10). After the roots have been calculated (4.14)
serves to find the actual bivectors.

Let me now turn to the antisymmetric 4 x 4 matrix
(5.19), but use the Minkowski basis (6.1), instead of the
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four dimensional Euclidean basis of section 5.3. I will
not repeat the whole argument of section 5.3, but I will
point out all necessary modifications in detail.

First, the explicit expressions in (5.23) change to

1

EA NA = —are,e; Nnee,

—bse,e, Nnee, —clee, Nne,e,

©.4)
=—(ar + bs +ct)e,e,e e,

=—(ar +bs+ct)i, = _71|A A A‘i4

As will soon be seen from the explicit expression,
replacing (5.29) we now have instead of (5.24)

(7.1=A12=+V12, (X.2=A22=—V22 . (65)
The two coefficients in polynomial (5.25) change to
(c)=(a%)
, (6.6)

=@ +b+c*-r* -5 1)

and to
2
(C3)= GA A Aj

=~ hanar
4

6.7)

=—(ar +bs +ct)

replacing (5.26) and (5.27), respectively. The sign in
(6.7) changes, because in the basis (6.1) the pseudoscalar
is has the square (3.55) i/’= —1. With these new
coefficients, the polynomial equation for the roots (6.5)
now reads
a+(@+b+ct-r' -5 -t 68
—~(ar +bs+ct)’ =0 '
instead of (5.28).
(6.8) yields

o, = A12,2 = iv12,2
:%[_ (a%)z [(a?) +|A/\A|2}

:%[—(a2 +b+c* -1 =57 1)

1“\/(a2 +b7+c* —r* —s*—1t*)? +4ar + bs +ct)?],

6.9)
where the plus sign stands for the index ‘1’ and the
minus sign for the index ‘2’ respectively. (6.9) justifies
(6.5).

Using the new o; and o, obtained from (6.9) the form
(5.31) of the orthogonal bivectors A; (and A,) will not
change. Relation (5.32) changes its sign to

2
aa, = —vlzvf = —(%]A A A’j . (6.10)

The explicit versions of A, and A, become therefore

A =vi, -vl 2 A, (6.11)
vi+v?
. v, +IV
A,=v,i, =v,2—4+1A (6.12)
V +V

In consequence of this relations (5.35) and (5.36)
change to

A=A AV Voo, Tio=iol =iy, 1= —i=1, (6.13)
and

=iy, 1= — i (6.14)

This concludes the derivation of the canonical form of
a bivector A, where A is isomorphic to the
antisymmetric matrix A of (5.19) supposing the
Minkowski metric (6.1).

The question remains, what happens, if i, or i, would
be null 2-blades, i.e. factoring them according to (3.49)
would yield at least one of the vector factors a or b to be
a null vector with zero square, e.g. a’=0. If we assume
e.g. i, to be a null 2-blade, with e.g. a,> =0, then

according to (3.51) we would also have i,>=0. But this
will not be the case, if a, #0 in (6.9), because
o=As"=v,i,>. i,>=0 would therefore only be possible, if
a, =0 in (6.9). In this case one has to check, whether
A=A, with A, defined according to (5.31) [and not

(6.11)]. A null 2-blade i, will exist, only if A # A .

6.2 Application to Maxwell’s electromagnetic field
tensor

The electromagnetic field tensor is given by (5.19),
replacing the components of the electric field

E= (r,s,t) and the magnetic field B= (a,b,c) .

And we need to remember that Maxwell’s theory is
special relativistic, 1ie. invariant under Lorentz
transformations in Minkowski space. The basis we have
to use must therefore satisfy (6.1).

By (6.9) we obtain its two eigenvalues

v ={%[(E2 - B)ey(E - BY 4 (B BY }}/
v, = H— (i - B) e (5~ B + a(E - B }}%

(6.14)




which are not a space-time invariant, since the fields
itself are not space-time invariant. (Only the energy
density and the
Electromagnetic
[12,13].) But the term under the inner square roots of

Pointing vector are invariants.

invariants are properly treated in

(6.14) is the trace of the Lorentz transformation invariant
Maxwell energy momentum tensor (= energy density
minus square of the Poynting vector) of the
electromagnetic field.

In general the electromagnetic field tensor A is thus

specified by two orthogonal bivectors
v, =iV,

V& - Bf +4(E- Bf

v, +i,v,

JE -5 +4(F B

Let us now turn to the special case of plane

A (6.15)

A =vi =y,

A, =v,i, =v, A (6.16)

electromagnetic waves, which mediate electromagnetic
forces. They are light, warmth, radio transmission waves,
transmit information to cellular phones, in short, our
world would not be without electromagnetic interaction.

electrodynamics describes plane
electromagnetic by oscillating, but

perpendicular, electric and magnetic vector fields.

Maxwell’s

waves always

The perpendicularity of E and B simply means that

ar+bs+ct=0, (6.17)

which results in great simplifications, because the
coefficient (6.7) will therefore be zero as well. (6.8) will
then have the form

@b+t —r s —tHa=0. (6.18)
i.e. we have the two roots

le2 =—(a2 +h2 4t =t = —12),0(2 =0. (6.19)

a, = 0 in (6.19) means, that 0<v, in (6.2) is no longer

fulfilled. But that only means that we have a kernel of
dimension two, otherwise the two o’s are still distinct
and the analysis of section 6.1 therefore still applies.

Inserting £ and B in (6.19) gives

a, = (E* - BY) (6.20)

Plane electromagnetic wave fields can therefore now

be alternatively characterized in a new way. They have a
degenerate field tensor, which becomes obvious in the

canonical form. Only one eigenvalue v, # ( is present

A=A,. 6.21)
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7. Conclusion

This paper showed how the use of coordinates,
matrices, complex numbers, and vector spaces over the
complex numbers can be avoided in the analysis of
antisymmetric matrices.

Utilizing real geometric algebra, i.e. the “grammar” of
universal geometric calculus, antisymmetric matrices are
found to best be treated via their isomorphism with real
bivectors. The isomporphism allows to effortlessly
switch back and forth between the antisymmetric matrix
and the isomorphic bivector. Geometric algebra can
easily yield the canonical form of this bivector,
consisting of a decomposition into orthogonal plane area
elements. These area elements can be interpreted both as
plane two dimensional rotation
operators in these subspaces.
explicitly demonstrated that the

subspaces and as
It was view
Matrices are Real Bivectors” s
consistent  for  both Euclidean
(pseudoEuclidean) Minkowski space. This view has

advantages for teaching, research and application of

“Antisymmetric
spaces  and

antisymmetric matrices, in whatever context they occur!

" The calculations in this paper can be implemented
both symbolically and numerically in commercial and
freely available (stand alone) geometric algebra software
Cambridge

packages and programs, e.g. in the

Geometric Algebra package!®! and others.
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Notes

1) Antisymmetric matrices rotations in

generate
arbitrary high dimensions.

2) It is interesting to note this parallel in the Japanese
tea ceremony. The present form of the tea ceremony

was established by Sen Rikyu in the 16" century. His



298

wife is said to have been a secret Christian

(Kirishitan), some think even Sen Rikyu was.
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