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This paper briefly reviews the conventional method of obtaining the canonical form of an 
anti symmetric (skewsymmetric, alternating) matrix. Conventionally a vector space over the complex 
field has to be introduced. After a short introduction to the universal mathematical "language" 

Geometric Calculus, its fundamentals, i.e. its "grammar" Geometric Algebra (Clifford Algebra) is 
explained. This lays the groundwork for its real geometric and coordinate free application in order to 

obtain the canonical form of an anti symmetric matrix in tenns of a bivector, which is isomorphic to 
the conventional canonical form. Then concrete applications to two, three and four dimensional 
anti symmetric square matrices follow. Because of the physical importance of the Minkowski metric, 
the canonical form of an anti symmetric matrix with respect to the Minkowski metric is derived as well. 
A final application to electromagnetic fields concludes the work. 
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1. Introduction 2. Motivation 

2.1 Antisymmetric matrices 

283 

But the gate to life is narrow and the way that leads to 
it is hard, and there are few people who find it. ... I 
assure you that unless you change and become like 
children, you will never enter the Kingdom of heaven. 

We are all familiar with anti symmetric (alternating, 
skew symmetric) matrices. Prominent examples are: the 
matrices describing infinitesimal rotations l

) in 

Jesus Chris/9
] 

. .. enter the teahouse. 2
) The sliding door is only thirty 

six inches high. Thus all who enter must bow their heads 
and crouch. This door points to the reality that all are 

equal in tea, irrespective of social status or social 
position. [21] 

... for geometry, you know, is the gate of science, and 
the gate is so low and small that one can only enter it as 
a little child. William K. Clifforcl4

] 
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mechanics the electromagnetic field tensor in 
Maxwell's electrodynamics, the three spatial Dirac 
matrices of quantum mechanics, the torsion tensor of 

space-time torsion, etc. 

A matrix is said to be anti symmetric if interchanging 

rows and columns (transposing A->AT) gives the 

negative of the original matrix 

AT = -A. 
Or expressed in components 

Akl = -A1k · 

(2.1) 

(2.2) 

This naturally means that the main diagonal elements 

are all zero 

(2.3) 
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Every square matrix can be decomposed into its 

symmetric part with 
AT =A 

and anti symmetric part: 

(2.4) . 

It is standard undergraduate textbook[l] knowledge, 

that symmetric matrices have a set of n orthonormal 

eigenvectors, n being the dimension of the space. 

Taking the n eigenvectors as basis, the symmetric 

matrix takes diagonal form 

~ 

(2.6) 

A}, A2, ... An are the corresponding real eigenvalues, 

some of which may be equal or zero. 

Eq. (2.6) shows the soc aIled canonical form of a 

symmetric matrix. 

Trying to do the same for anti symmetric matrices, 

we find[1l] that a similar "canonical form" can be 

achieved, but not over the field of real numbers, only 

over the field of complex numbers. The eigenvalues 

will either be purely imaginary, occurring only in 

complex conjugate pairs or zero 

jv1,-jV1,jv2 ,-jv2 ,"· .,Q (2.7) 

where j stands for the usual imaginary unit with /=-1. 

The eigenvectors will also have complex valued 

components. 

But since the imaginary unit j lacks a 

straightforward geometric interpretation, the questions 

for the canonical form restricted to real spaces arises. 

In this work I will basically give two answers. The 

first is a classical answer as found in books on linear 

algebra[ll]. This first answer arrives at a real canonical 

form using complex unitary spaces for the sake of 

proof. 

The second answer will show how a redefinition of 

the product of vectors, the socalled geometric product 

of vectors can do without the complex field altogether 

and derive a more elegant real answer. 

2.2 The 'classical' canonical form of antisymmetric 

matrices 

Maltsev[II] states a theorem (p. 166, THEOREM 

6&6a) about the canonical form of an antisymmetric 

matrix, representing a skewsymmetric transformation: 

"In a real unitary space the matrix A of a 

skew symmetric transformation, in a suitable 

orthonormal basis, assumes the form 

A= 

o 

o 
(2.8) 

Where Ok is the zero matrix of order k(= n-2m}. " 

(2.9) 

All matrix elements omitted in (2.8) and (2.9) are 

understood to be zero. Maltsev continues: 

"For each real skewsymmetric matrix A there exists 

a real unitary matrix V such that V-I AV has the form 

(2.8)." 

In order to show the zero or pure imaginary number 

property of the eigenvalues, Maltsev must resort to 

Hermitian skew symmetric matrices. To prove his 

THEOREM 6, he basically invokes another theorem 

about the canonical form of matrices representing 

normal transformations ([11], p. 156). Skewsymmetric 

matrices are special normal matrices. To prove the 

theorem about normal transformations, Maltsev 

introduces complex vector coordinates and a (unitary) 

vector space over the field of complex numbers. 

The reader is thus left with the impression, that 

there is no way to avoid complex numbers and 

complex vector spaces in order to arrive at the desired 

canonical form of an anti symmetric matrix. 

The contrary is demonstrated in chapter 3.4 of 

Hestenes&Sobczyk's book "Clifford Algebra to 

Geometric Calculus. ,,[7] But before showing what 

(purely real) Geometric Calculus can do for us in this 

issue, I will introduce Geometric Algebra for the 

readers, who are so far unfamiliar with this "unified 

language for mathematics and physics" [7], science and 

engineering. 



3. First steps in Geometric Algebra 

In this section I will first describe Geometric Algebra 

and Geometric Calculus. Understanding their relation, 

we can proceed to formulate the fundamentals of 

Geometric Algebra for two, three and higher dimensions. 

3.1 Geometric Algebra and Geometric Calculus 
Geometric Algebra (also known as Clifford Algebra) 

has been extended to a universal Geometric Calculus[l2] 

including vector derivatives and directed integrals. It 
seamlessly integrates all fundamental interactions known 
in nature. [5,13] 

Without using matrices Geometric Algebra already 
unifies projective geometry, linear algebra, Lie groups, 
and applies to computational geometry, robotics and 
computer graphics. 

Geometric Calculus of multivectors and multilinear 
functions provides the foundation for Clifford AnalYSis, 

which is based upon a synthesis of Clifford algebra and 
differential forms, both of which owe much to the work 
of H. Grassmann (1844)[2]. This enables an elegant new 
formulation of Hamiltonian mechanics[22] and a complete, 
explicit description of Lie groups as spin groups. [15] 

The relation of Geometric Algebra and Geometric 
Calculus may be compared to that of grammar and 
language. [7] 

Diverse algebraic systems[16], such as 

• coordinate geometry 

• 
• 
• 
• 
• 
• 
• 

complex analysis 
quaternions (invented by Hamilton[14]) 

matrix algebra 
Grassmann, Clifford and Lie algebras 
vector, tensor and spinor calculi 
differential forms 
twistors 

and more appear now in a comprehensive unified system. 
The attribute universal is therefore justified. 

3.2 Real two-dimensional Geometric Algebra 
The theory developed in this section is not limited to 

two dimensions. In the case of higher dimensions we can 
always deal with the two-dimensional subspace spanned 
by two vectors involved, etc. 

3.2.1 The geometric product 
Let us start with the real two-dimensional vector space 

R 2. It is well known that vectors can be multiplied by the 
inner product which corresponds to a mutual projection 
of one vector a onto another vector b and yields a scalar: 
the projected length a cos{) times the vector length b, i.e. 
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a· b = (acos9)b = abcos9. (3.1) 

The projected vector a II itself can then be written as 

all = a· bb/ b2 
. (3.2) 

In 1844 the German mathematician H. Grassmann [2] 
introduced another general (dimension independent) 
vector product: the anti symmetric exterior (outer) 
product. This product yields the size of the parallelogram 
area spanned by the two vectors together with an 
orientation, depending on the sense of following the 
contour line (e.g. clockwise and anticlockwise), 

a /\ b = -b /\ a . (3.3) 

More formally, (3.3) is also called a bivector (2-blade). 
Grassmann later on unified the inner product and the 
exterior product to yield the extensive product, or how it 
was later called by W.K. Clifford, the geometric 
product[23,7] of vectors: 

ab = a . b + a /\ b . (3.4) 

We further demand (nontrivial!) this geometric product 
to be associative, 

(ab)c = a(bc) (3.5) 

and distributive, 

a(b + c) = ab + ac . (3.6) 

Let us now work out the consequences of these 
definitions in the two-dimensional real vector space R 2. 
We choose an orthonormal basis {el' C:2}. This means 
that 

e; = e1el = el . el = 1 ,e; = e2e2 = e2 . e2 = 1, 

(3.7) 

Please note that e.g. in (3.7) we don't simply multiply 
the coordinate representations of the basis vectors, we 
multiply the vectors themselves. We are therefore still 
free to make a certain choice of the basis vectors, i.e. we 
work coordinate free! The product of the two basis 
vectors gives 

= -e2 /\ el = -e2 . el - e2 /\ el = -e2el == i 
(3.8) 

the real oriented area element, which I call i. It is 
important that you beware of confusing this real area 
element i with the conventional imaginary unit 

j=.J-i. 

But what is then the square of i? 
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e = ii = (e1e2)(e1e2) = -(e1e2)(e2el) 

= -el (e2e2)al = -e1el =-1 
(3.9) 

The square of the oriented real unit area element of i is 
therefore e = -1. This is the same value as the square of 
the imaginary unit). The big difference however is, that} 

is postulated just so that the equation j 2 = -1 can be 

solved, whereas for i we followed a constructive 
approach: We just performed the geometric product 
repeatedly on the basis vectors of a real two-dimensional 
vector space. 

So far we have geometrically multiplied vectors with 
vectors and area elements with area elements. But what 
happens when we multiply vectors and area elements 
geometrically? 

3.2.2 Rotations, vector inverse and spinors 
We demonstrate this by calculating both eli and e2i: 

eli = el(ele2) = (e)e) e2 = e2 (3.10) 
e2i = e2(-e2e) = - (e2e2) e) = -el. (3.11) 

This is precisely a 90 degree anticlockwise 
(mathematically positive) rotation of the two basis 
vectors and therefore of all vectors by linearity. From 
this we immediately conclude that multiplying a vector 
twice with the oriented unit area element i constitutes a 
rotation by 180 degree. Consequently, the square i2 

= -1 
geometrically means just to rotate vectors by 180 degree. 
I emphasize again that} and i need to be thoroughly kept 
apart. j also generates a rotation by 90 degree, but this is 
in the plane of complex numbers commonly referred to 
as the Gaussian plane. It is not to be confused with the 
90 degree real rotation i of real vectors in a real 
two-dimensional vector space. 

i also generates all real rotations with arbitrary angles. 
To see this let a and b be unit vectors. Then I calculate: 

a(ab)= (aa)b = b (3.12) 

Multiplying a with the product ab therefore rotates a into 
b. In tWo dimensions Rab=ab is therefore the "rotor" that 
rotates (even all!) vectors by the angle between a and b. 
What does this have to do with i? Performing the 
geometric product ab explicitely yields: 

ab = cose + i sin8 (3.13) 
(please keep in mind that here a2 = b2 = 1 and that the 
area of the parallelogram spanned by a and b is precisely 
sin8ab, which explains the second term.) This can 
formally be written by using the exponential function as: 

Rab= ab = exp(i 8ab) = cos8ab + i sin8ab (3.14) 
We can therefore conclude that the oriented unit area 
element i generates indeed all rotations of vectors in the 
real two-dimensional vector space. 

Another important facet of the geometric product is 

that it allows to universally define the inverse of a vector 
with respect to (geometric) multiplication as: 

I de! X 
-1 2 

X =-=2' X =xx=x·x. (3.15) 
X X 

That this is indeed the inverse can be seen by calculating 

-1 -1 XX 1 xx =X X=-2=. (3.16) 
X 

Using the inverse b-1 of the vector b, we can rewrite the 
projection (3.2) of a unto b simply as 

all = a· bb-1
, (3.17) 

where I use the convention that inner (and outer) 
products have preference to geometric products. 

It proves sometimes useful to also define an inverse 
for area elements A = ±IAli: 

A-I = NA2 = N(-IAI2) = -NIAI2, (3.18) 

where IAI is the scalar size of the area as in (3.51) and 
one of the signs stands for the orientation of A relative to 
i. We can see that this is really the inverse by calculating 
AA-I = A-I A = ANA2 = A2/A2 = -IAI2/(-IAI2) = 1. (3.19) 

By now we also know that performing the geometric 
product of vectors of a real two-dimensional vector 
space will only lead to (real) scalar multiples and linear 
combinations of scalars (grade 0), vectors (grade 1) and 
oriented area elements (grade 2). In algebraic theory one 
assigns grades to each of these. All these entities, which 
are such generated, form the real geometric algebra R2 
(note that the index is now a lower index) of a real 
two-dimensional vector space R 2. R2 can be generated 
through (real scalar) linear combinations of the following 
list of 22=4 elements 

{I, eJ, e2, i}. (3.20) 
This list is said to form the basis of R2. When analyzing 
any algebra it is always very interesting to know if there 
are any subsets of an algebra which stay closed when 
performing both linear combinations and the geometric 
product. Indeed it is not difficult to see that the subset 
{l, i} is closed, because Ii = i and ii = -1. This 
sub-algebra is in one-to-one correspondence with the 
complex numbers C. We thus see that we can "transfer" 
all relationships of complex numbers, etc. to the real 
two-dimensional geometric algebra R2. We suffer 
therefore no disadvantage by refraining from the use of 
complex numbers altogether. The important operation of 

complex conjugation (replacing) by -j in a complex 
number) corresponds to reversion in geometric algebra, 
that is the order of all vectors in a product is reversed: 

(abt = ba (3.21) 

and therefore 



(3.22) 

In mathematics the geometric product of two vectors 
[compare e.g. (3.4),(3.7),(3.8),(3.14)] is also termed a 
spinor. In physics use of spinors is frequently considered 
to be confined to quantum mechanics, but as we have 
just seen in (3.14), spinors naturally describe every 
elementary rotation in two dimensions. (Spinors describe 
rotations in higher dimensions as well, since rotations are 
always performed in plane two-dimensional subspaces, 
e.g. in three dimensions the planes perpendicular to the 
axis of rotation.) 

3.3 Real three-dimensional Geometric Algebra 
We begin with a real three-dimensional vector space 

R3. In R3 we introduce an orthonormal set of basis 

vectors {e},~, e3}, that is em . em = 1 and 

e . e = 0 for n =1= m, {n,m=I,2,3}. The basic 23 = 8 m n 

geometric entities we can form with these basis vectors 
are: 

1, scalar (grade 0) 

{ el, e2, e3}, vectors (grade 1) 

{i3= el e2, it= e2 e3, h= e3 ed, 
oriented unit real area elements (grade 2) 

i= e} e2 e3, oriented real volume element (grade 3) 
(3.23) 

We ~ow have three real oriented unit area elements 

{it, i2, h} corresponding to the three plane area elements 

of a cube oriented with its edges along e}, e2, and 

e3. This set of eight elements {I, e}, ~, e3, it, h, h, i} 

forms basis of the real geometric algebra R3 of the three 
dimensional vector space R3. By looking at the subsets 

{I, ell~, h}, {I, ~, e3, it} and {I, e3, e}, h} we see that 
R3 comprises three plane geometric sub-algebras, as we 

have studied them in section 3.2.2. In general, by taking 
any two unit vectors {u, v} which are perpendicular to 

each other, we can generate new two-dimensional plane 

geometric sub-algebras of R3 with the unit area element i 

=uv. 

As in the two-dimensional case we have i l
2 = h 2 = h 2 = 

e= -1. And we have 

i 2 = i i = e} e2 e3 e} e2 e3 = - e} e2 e3 el (e3 e2) 

== e} e2 e3(e3 ed e2 = - e} e2 e3 (e3 e2) el 
== - e}e 2(e3e3) e} e2 == ... == -1. (3.24) 
Each permutation after the third, fourth and frfth equal 
sign introduced a factor of -1 as in (3.8). The square of 

the oriented three-dimensional volume element is 
therefore also i 2=_1. 

In three dimensions the vector a unto b projection 
formula (3.17) does not change, since it relates only 

entities in the a, b plane. But beyond that we can also 
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project vectors a onto i planes, by characterizing a plane 
by its oriented unit area element i. In this context it 

proves useful to generalize the definition of scalar 
product to elements of higher grades [3]: 

a· B == (a· B) = ~(aBr + (_ly+r Bra), (3.25) r r r-l 2 

where r denotes the grade of the algebraic element Br, 

and the bracket notation is explained in (3.36a). For Br= 

b (r-l) we have as usual a· b = Yz (ab + ba), but for 

Br= i (example with grade r=2) we have 

. 1 (. .) a . 1 = - al - la . 
2 

We can calculate for example 

e1 . i l = ~(ele2e3 - e2e3e1) = 0 
2 

(3.26) 

(3.27) 

(3.28) 

If we now rotate e3 (and -C2) with h- I = - h from the 

right by -90 degree in the e2,e3 plane, we obtain 

(3.30) 

(3.31) 

respectively. 

The projection of any vector a unto the e3,e2 plane is 
therefore given by 

(3.32) 

We say therefore instead of e3,e2 plane also simply 
h -plane. And in general the projection of a vector a unto 
any i-plane is then given by 

• ·-1 
all = a· 1 1 , (3.33) 

which is in perfect analogy to the vector unto vector 
projection in formula (3.17). 

There is more[3,4,5] to be said about R3, and in the next 

section some more concepts of geometric algebra will be 
introduced for the geometric algebras of general 
n-dimensional real vector spaces. 

3.4 Blades, magnitudes, orthogonality and duality 
Let {el' e2, ... en} be an orthonormal vector basis of 

the Euclidean vector space over the reals Rn. Rn denotes 
the geometric algebra generated by {el, e2, ... en}. 
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k-blades Bk are defined as multivectors that can be 
factorized by the outer product (3.4) into k vector factors 

(3.34 ) 

A general multivector element M of the geometric 
algebra Rn will consist of a sum of various elements of 
different grades 

(3.35) 

where some of the k-vectors Mk (0 ~ k ~ n) may also 

be zero. Each k-vector Mk can in turn be written as a sum 
of pure blades of degree k as in (3.34). There are at most 

( nkJ terms in such a sum, because the orthogonal basis 

lei, e2, ..• enl allows only to form (~J different 

k-blades. Extracting the grade k part Mk from the 
multivector M (3.35) is sometimes denoted as 

(3.36a) 

The grade 0 or scalar part of M is sometimes denoted as 

(3.36b) 

Geometric algebra is very suitable to denote subspaces 
and perform direct algebraic operations with subspaces, 
because each pure blade also represents the subspace 
spanned by the vectors in its factorization (3.34). As 
shown in [7], p. 9, each inner product (3.25) of a vector a 
with a pure k-blade Bk has the expansion 

a· Bk = a· (al A a 2 A ... A a k ) = 
k 

L(-ly+la·as(a1 Aa2 A ... as···Aak )' 

(3.37) 

s=1 

where as means that the vector as is to be omitted from 

the product. This means that if the vector a is 
perpendicular to all as (s= 1 ... k), then the product (3.37) 
vanishes identical. If a is perpendicular to all as (s= 1 ... k), 
it must also be orthogonal to all linear combinations of 
the as (s= 1. .. k), and therefore to the k-dimensional 
subspace of Rn spanned by the as (s=l ... k). 

(3.38) 

tells us therefore that a is in the orthogonal complement 
of the k-dimensional subspace defined by Bk. 

Analogous to (3.25) the outer product can also be 
generalized to the outer product of vectors with k-vectors 

1 k 
a A Mk == -(aMk + (-1) Mka) 

2 

-(aM) - k k+1 

(3.39) 

While an inner product with a vector as in (3.25) always 
reduces the grade by one, the outer product (3.39) 
increases the grade by one. The outer product can also 
serve to directly characterize subspaces of Rn related to 
k-blades Bk. Suppose that a is linearly dependent on the 
vectors as (s=l. .. k), that define Bk as in (3.34). By 
linearity the outer product of a with Bk must vanish. 

(3.40) 

tells us therefore that the vector a is contained in the 
k-dimensional subspace defined by Bk. 

By successive applications of (3.25) and (3.39) to all 

k-blades of the r-vector Ar and the s-vector Bs one can 
show ([7], p. 10) that the geometric product of them can 
be written as the graded multivector sum 

A B = (A B)I 1 + (A B)I 1 + ... + (A B ) r s r s r-s r s r-s + 2 r s r+ s 

(3.41) 
Taking the lowest and hightest grade parts of (3.41) 

one defines the scalar product and the outer product of 
the r-vector Ar and the s-vector Bs to be 

(3.42) 

and 

(3.43) 

respectively. But a warning is in place. As Dorst[17] 
showed, the definition (3.42) has some drawbacks, 
which can be improved by changing the definition of the 
scalar product. 

If A2 = a1 A a 2 = a1a 2 and s> 1, then 

(3.44) 

by repeatedly applying (3.25) and (3.39) and discarding 
the higher grade parts. If the grade s==2 then 

A2 . B2 = (a1a 2B2)o = a 1 • (a2 . B 2) 

= (a2 . B2)· a 1 = -(a2a 1)· B2 (3.45) 

where the interchange of B2 and a vector in the scalar 
product introduced always a negative sign. (3.45) shows, 
that the brackets are irrelevant and we can therefore drop 
them completely 

(a1 Aa 2 )·B2 =(a2 ·B2)·a1 
(3.46) 



Equation (3.46) makes it easy to prove, that if we 
define a new vector b as 

b == a-I . B2 "* 0 , (3.47) 

it will be orthogonal to the original vector a. 
Remembering that a-1=aJa2 (a= a-I if a2=1), we find that 

a· b = a· <; . B2 ) = (a ; B2) = (B2) = O. (3.48) 

where we have used definitions (3.15), (3.42) and 
(3.36b). If beyond that a is part of the subspace defined 
by the 2-blade B2 we can show that B=ab 

ab = a(a -1 . B) = a( ~. B) = _1 a(a· B) 
a2 a2 

1 
=-a(aB)=B 

a2 

(3.49) 

where we used (3.15) and for the third equality that 

aB = a . B + a 1\ B = a . B , and (3.40). 

Concerning the outer product (3.43) of orthogonal 
2-blades A2 and B2 (they consist of four mutually 
orthogonal vectors) it is easy to show the commutation 
properties 

A2B2 = a1a 2b1b 2 = a1 1\ a 2 1\ b1 1\ b2 
= (a1 1\ a2 ) 1\ (b1 1\ b 2 ) = A2 1\ B2 (3.50) 

= (b1 /\ b 2) 1\ (a1 1\ a 2) = B2 /\ A2 = B2A2 

Every pure k-blade can be reduced to a product of 
orthogonal vectors by only retaining the part of each 
vector factor in the blade, which is orthogonal to the 
other (k-l) vectors. After this procedure, the outer 
product in (3.34) can be replaced by the geometric 
product, all without changing the value of the blade. 
Reversing the order of all vectors introduces a factor 
(-1 )k(k-1 )/2. Multiplying a k-blade and its reverse gives the 

squares of all vector lengths 

B'li'B = a~a~ ... a~ = IBI2 = (_1,(k-1)/2 BB , (3.51) 

which defines the magnitude IBI of a k-blade B. 
Geometrically multiplying a k-vector Vk (understood 

to be a linear combination of k-blades) with a blade of 
maximum grade n (there is only one such maximum 
grade element in each geometric algebra Rn, all others 
are just scalar multiples) we obtain according to (3.41) a 
(n-k)-vector 

(3.52) 

In is because of the maximum grade property a pure 
n-blade and its vector factors span the whole Rn. Each 
k-blade summand in the k-vector Vk represents therefore 
a subspace contained in the full In space Rn. This 
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subspace relationship leaves according to (3.40) only 
(and with proper reshuffiing in each k-blade under 
concern) successive inner products of In with the vector 
factors of the k-blade. Hence in (3.52) each k-blade 
summand will produce a dual (n-k)-blade and by 
linearity we get (3.52). 

A consequence of (3.52) is that each vector will 
become a dual algebra element of grade (n-l) if 
multiplied with the maximum grade pseudoscalar. Each 
2-blade (bivector) will become a dual element of grace 
(n-2). A consequence of this is, that only in n=3 

dimensions bivectors (2-blades, two dimensional area 
elements) are dual to vectors. 

Comparing (3.41) and (3.52), we see that e.g. for n=4, 

the expressions 

V214 = V2 .14 = (V214)14_21 = (V214)2 (3.53) 

must all be equal. 
Finally a remark about the squares of pseudo scalars. 

By induction one can prove the following formula for 
squares of Euclidean pseudo scalars 

·2 = (_1)n-1 ·2 
In In-I· (3.54) 

Using this formula, the first 11 squares are 
(n=I,2,3,4,5,6, 7,8,9,10,11) 1,-1,-1,1,1,-1-1,1,1,-1-1. The 
periodicity of two is evident. II-dimensional spaces play 
a certain role in higher dimensional elementary particle 
field theories. 

As is to be expected, the square of the pseudoscalar 
depends on the metric. If we choose therefore a (1,3) or 
(3,1) Minkowski metric, we end up with 

·2 1 14 = - , (3.55) 

and not with i~ = 1 as in the Euclidean case. 

This concludes our short tour of geometric algebra. It 

gives a taste of the huge potential for coordinate free 
algebraic calculations and provides most of the 
geometric algebra tools for the following sections. To 
someone just starting to get acquainted with geometric 
algebra, I strongly recommend reference [4]. 

4. Real treatment of antisymmetric matrices 

Let {e1, e2, .•. en} be an orthonormal vector basis of 
the Euclidean vector space over the reals Rn. Rn denotes 
the geometric algebra generated by {e1, e2, ... en}. The 
set of bivectors { e1e2, e1e3, ... , en-len} forms a n(n-l)/2 

dimensional linear space over the reals. This is the same 
dimension as for the space of anti symmetric square 
matrices in n dimensions. These two spaces are indeed 
isomorphic. Let A be a bivector in Rn and A the 
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corresponding anti symmetric matrix with the 
components Ak1 . Using (3.46) the isomorphism is given 

by: 

1 n 

A = - LAkZeke,. 
2 k,'=1 

(4.1) 

(4.2) 

Taking the transpose AT on the left side of (4.1) 

corresponds to taking the reverse of the bivector A, 

because according to (3.21) 

(eke, t = e,ek = -eke, . (4.3) 

The last equality is analogous to (3.22), because ek and e, 

are orthogonal to each other and anticommute therefore. 

This isomorphism is very useful, because we can now 

seek the canonical form of the isomorphic bivector A of 
(4.2), using the powerful tools of geometric algebra. 

After establishing the canonical form in a completely 
real geometric way, we can simply map it back to the 

corresponding antisymmetric matrix A by applying (4.1). 

4.1 The canonical form of a bivector A 
The derivation of this canonical form is taken from 

chapter 3.4 of reference [7]. 

Every bivector A can be represented as a sum of 

distinct commuting plane (two dimensional) area 
elements [2-blades, k=2 in (3.34)] 

(4.4) 

where in accordance with (3.50) 

AkAz = AzAk = A z 1\ Ak (4.5) 

and with (3.51) for k 7:- I and 

A~ = -v: < 0, 0 < vk E R. (4.6) 

According to (4.6) we can decompose every area 

element Ak into its scalar size Vk times its unit area 
element ik 

(4.7) 

with 

(4.8) 

as for the unit area element in (3.9). The orthogonal 

decomposition is only unique if all Vk are different. 
The chief problem is to compute the Ak of (4.4) from 

the expression for A given by (4.2). To solve for the Ak it 
is convenient to introduce the multivectors Ck of grade 

2k by the equation 

where k=1,2, ... ,m. Ak=AA ... A (k times) is evaluated 

from (4.2) and the right side of (4.9) is obtained by 

substituting (4.4) into the left side and applying (3.36a). 

Then (4.9) constitutes a set of m equations to be solved 
for each AI in terms of the Ck's. 

First the squares (XI = A/ = -v/ of each Az can be 
found as the roots of the mth order polynomial 

i (C~)(- a )m-k , (4.10) 
k=O 

where the scalar coefficients \ C~ ) are calculated by 

taking the scalar part (3 .36b) of the squares of the 

multivectors Ck defined in (4.9) 

\C~) = \C~)o = LA~A~2 ... A~k· (4.11) 
ZI <i2 <···<it 

( 4.10) can be verified by identifying the \ C~) as the 

coefficients of the factored form of the polynomial 

(4.12) 

After the roots al = Al2 of 

i (C~)(- a )m-k = 0 (4.13) 
k=O 

have been determined, equation (4.9) can be replaced by 

a set of m linear bivect~r equations for the m unknowns 
A/, which is given by 

n 

LAkZeke, =AI +A2 +···+Am , 

k,'=1 

(4.14a) 

for k=2, ... ,m. In reference [7] {po 81, Eqn. (4.15)} also 

the term Co· C1 occurs. Co of grade zero should be a 

scalar E R, but as pointed out and remedied by 
Dorst[17j the scalar product in reference [7] is not 

well-defined if one of its factors is of grade zero (i.e. 

ER). 

Equation (4.14) can be solved by standard procedure, 

if all a/ are distinct. But if e.g. aF a/" then all 
coefficients of A/ and AI' will also be equal, and 
additional properties of A will be needed to determine 

theA/. 
This 'orthogonalization' of a bivector produces via the 



isomorphism ( 4.1) the canonical form of the 

corresponding anti symmetric matrix. 

Taking f (x) = x . A as a linear (skewsymmetric) 

vector transformation, the square I will be a symmetric 

transformation with the eigenvalues (Xl = A/ = -v/ and 

the characteristic polynomial (4.10), which equals (4.12). 

To show this let al be a unit vector in the il plane, i.e. 

(4.15) 

according to (3.40). By (4.5) we have 

az • Ak = 0 for l-:t:. k, (4.16) 

because the vectors that span the ik must all be 

orthogonal to az E ii' since all ik planes are orthogonal 

to each other by (4.5)-(4.7). So by using (4.4), (4.6), 
(3.25), (3.42) and (4.15) we see that 

j2(a/) = (az' A)· A = A~az = -Vz
2a/ . (4.17) 

By finally defining the unit vector 

bz == az . iz E iz-plane, (4.18) 

which is by (3.48) orthogonal to ai, every plane area 

element AI can be written as in (3.49) 

(4.19) 

where 

{aI, b}, a2, b2, ... , am, bm} (4.20) 

is a set of othonormal eigenvectors of 1 with 

nonvanishing eigenvalues -v/= At 

4.2 The canonical form of antisymmetric matrices by 

real geometry 
Let us suppose for a moment, that the anti symmetric 

n x n square matrix A has maximum rank r=n. Then the 

number of distinct orthogonal area elements m in (4.4) 

will be m=nI2, and no zero eigenvalues will occur. The 

set of n=2m orthogonal eigenvectors (4.20) will 

therefore form a basis of the vector space Rn. 

Applying the bivector matrix isomorphism (4.1) with 

respect to the basis (4.20) we find with (3.46) that 

A2k ,2k+l = a k . A· bk = a k . (fA/]' bk 
1=1 

= a k . Ak . b k = a k . (vki k )· b k 

= vl(ak · ik)' bk = vZbk · bk = VI· 

(4.21) 

The third equality holds because of (4.16), for the fourth 

(4.19) has been inserted, the sixth equality uses the 
definition of the vector bk in (4.18), and the last just says 
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that the bk's are unit vectors. Because of the 
anti symmetry we have 

A2k 2k+l = -A2k+l 2k = -VI' , , (4.22) 

and 

(4.23) 

Because of ( 4.16) all other matrix elements will 

necessarily be zero. 

Summarizing the results in matrix form, we get 

o 
-VI 0 

A = (4.24) 

o 
-Vm 0 

where again all omitted elements are understood to be 

zero. 

If we now drop the requirement of A to have 

maximum rank, the vectors in the kernel of the linear 

vector transformations f and 1 (4.17) have to be added to 

our orthogonal basis (4.20). This are all the vectors, 

which are mapped to zero by f and I. They have 

therefore the eigenvalues zero. By Gram-Schmidt 
orthogonalization ([7], p.28), a set of orthonormal 

vectors, spanning the kernel, can therefore be added to 
(4.20), supplementing (4.20) to a full orthonormal basis 
ofRn. 

Calculating the matrix components of A with respect 

to the supplemented basis according to the isomorphism 

( 4.1) we end up with the full canoncical form of the 

anti symmetric matrix A ·as given in (2.8). 

This completes the derivation of the canonical form of 

anti symmetric matrices by making use of the completely 
real geometric algebra. There was especially no need to 

introduce complex numbers, complex coordinates or 

complex vectors, Hermitian skewsymmetric matrices, or 

vector spaces over the field of complex numbers. 
Beyond these strong formal and educational merits, 

we can now visualize the geometric essence df an 

anti symmetric matrix via the isomorphism (4.1), which 

allows us to switch freely back and forth between the 
matrix from and the bivector form: As proved in section 

4.1, equations (4.5)-(4.7), the isomorphic bivector A 

represents a set of m::;; n /2 orthogonal (two 

dimensional) plane area elements Al of size VI with 

oriented unit area elements i l (1::;; I ::;; m) . 

In the following section we will apply this new way of 
unraveling the geometry of an antisymmetric matrix for 
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the examples of anti symmetric 2 x 2 , 3 x 3 and 4 x 4 

square matrices. 

5. Application to antisymmetric 2 x 2 , 3 x 3 and 

4 x 4 square matrices 

5.1 Application to anti symmetric 2 x 2 square matrix 
A general two dimensional anti symmetric matrix A 

written with respect to any two dimensional orthonormal 

basis {e}, e2} has already the canonical form 

A= ( 0 vJ 
-v 0 . 

(5.1) 

Using the isomorphism (4.2) we can directly calculate 

the corresponding bivector A as 

(5.2) 

where we have used the anticommutativity of e) and e2 
and the definition of the oriented (two dimensional) 
plane area element as in (3.8). 

The set of all anti symmetric square matrices in two 

real dimensions, represents therefore nothing else but all 
possible plane oriented area elements only distinguished 

by their scalar size Ivl and their orientation encoded in i. 
This is strongly reminiscent of Gibbs' cross product of 

vectors in three dimensions and indeed the 
anti symmetric (bivector) part of the geometric product of 

two vectors as in (3.4) is the generalization of the cross 
product independent of the dimension n of the vector 

space in which the vectors are situated. This is because 
in any dimension, we can restrict our considerations to 

the plane spanned by the two vectors to be multiplied. 
If we were to calculate the eigenvalues of the matrix A, 

in the conventional way, we would find 

~ -+. '~,2 - _lV, (5.3) 

But instead of sticking to the geometrically 

uninterpretable imaginary unit j we should rather take 
the eigen-bivectors 

'\ • '\ .'li' • 
"'I = VI, and "'2 = VI = -VI . (5.4) 

It is not difficult to show along the lines of (3.10) and 
(3.11) that (5.4) leads indeed to a consistent real 

geometric interpretation of imaginary eigenvalues and 
the related complex eigenvectors as a 90 degree rotation 

operation on the vector doublet (e), e2), respectively.[18,19] 

v means an additional dilation of the doublet (e), e2) by 
v. 

5.2 Application to anti symmetric 3 x 3 square matrix 

A general three dimensional anti symmetric matrix A 
written with respect to a three dimensional orthonormal 

basis {e}, e2, e3} has the form 

c -bj 
a . 

o 
(5.5) o 

-a 

Applying the isomorphism (4.2) we can directly 

calculate the corresponding bivector A as 

1 3 1 
A = - L AkZekeZ = -(A23e2e3 + A32e3e2 

2 k,l= 2 

+ A3le3el + AB ele3 + Al2ele2 + A2l e2el ) (5.6) 

= ae2e3 + be3el + cele2 

where we have used the anticommutativity (4.3) 

ekeZ = -eZek for I 7:- k . 

The square of A is 

A 2 = _a2 
- b2 

- c2 = -v2 
, 

because all cross terms like 

ae2e3be3e1 + be3elae2e3 

= ab(e2e3e3el + e3ele2e3 ) 

= ab(e2el + ele2 ) = 0 

(5.7) 

(5.8) 

(5.9) 

vanish according to (5.7). v will only be zero if a=b=c=O, 

i.e. if the matrix A in (5.5) is the zero matrix. Defining 

we get 

a' 
a 

v 
b' = !!-., c' 

v 
c 

(5.10) 
v 

A = v(a'e2e3 + b'e3el + c'ele2 ) = vi, (5.11) 

with e=-l. The unit vector 

a = (-c'e2 + b'e3 )/ .Jl- a'2 (5.12) 

has the property (4.15) 

a!\ i = 0 (5.13) 

which is easy to show from (5.11) and (5.12) by explicit 

calculation. Defining the second unit vector b 
perpendicular to a we get according to (4.18) 



b == a· i 

= [(1- a,2 )e
l 

- a'b' e
2 

- a' c' e
3 
V .JI - a,2 

(5.14) 

This gives the bivector A its final factorized form as in 

( 4.19) 

A = vi = vab. (5.15) 

The orthonormal vector pair {a, b} in the i plane is only 

unique up to an arbitrary common rotation, because any 

choice of unit vector a in the i plane will do. 

The explicit form (5.15) of the bivector A shows that 

the sum of bivectors (4.4) will have precisely one tenn 

(m=l) in three dimensions. That means an anti symmetric 

matrix in three dimensions always specifies one 

corresponding oriented (two dimensional) area element 

A. Multiplying A with the three dimensional 

pseudo scalar i of (3.23) gives by (3.52) a vector k of 

length v perpendicular to the i plane 

k == -iA = ae l + be2 + ce3 
(5.15) 

= v(a'e l + b'e2 + c'eJ = vc' 

where the minlls sign is a convention, which ensures that 

c = (a x b), i.e. c is just Gibbs' cross product of the 

vectors a and b. This mapping of bivectors A and i to 
vectors k and c, respectively, works only in three 

dimensions, which is why Gibbs' cross product can only 

be defined in n=3 dimensions, as shown by (3.52). In 

contrast to this, the definition of the outer product of 

vectors (3.3) is completely dimension independent and is 

therefore to be preferred to the conventional cross 
product. 

The fact that m= I in n = 3 dimensions means that the 

kernel of the linear transformations fix) and I(x) of 

section 4. I will have the dimension k=n-2m = I. This 

kernel consists of the vectors parallel to k or c. 

{a, b, c} is therefore an orthonormal basis of R3 with 

respect to which the matrix A takes its canonical form by 

applying the isomorphism (4.1) 

A=[-; ~ n (5.16) 

If we were again to calculate the eigenvalues of the 
matrix A in the conventional way we would find 

(5.17) 

As in (5.4) we should better replace the geometrically 

uninterpretable imaginary unit} by the eigen-bivectors 

"l • "l .li' • 
1\.1 = H, and 1\.2 = VI = -H , (5.18) 
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where the bivector i is defined in equation (5.11). We 
could again show along the lines of (3.10) and (3.11) that 

(5.18) leads indeed to a consistent real geometric 

interpretation of imaginary eigenvalues and the related 

complex eigenvectors as a 90 degree rotation operation 
on the vector triplet (elll, e211. e311), respectively. [1 8,19] 

v means an additional dilation of the triplet (elll, e211, e311) 

by v. The rotation takes place in the i plane around the 

axis c. The index 'II' means projection onto the i plane 
using (3.33). 

5.3 Application to antisymmetric 4 x 4 square matrix 
A general four dimensional anti symmetric matrix A 

written with respect to a four dimensional orthonormal 

Euclidean basis {el, e2, e3, e4} has the form 

0 c -b r 

-c 0 a s 
A= (5.19) 

b -a 0 1 

-r -s -I 0 

Applying the isomorphism (4.2) we can directly 

calculate the corresponding bivector A as 

1 3 

A = - LAkZekeZ = 
2 k,l= 

ae2e3 + be3el + cele2 + rele4 + se2e4 + le3e4 

(5.20) 

The two multivectors C l and C2 of equation (4.9) are 

C, =i;(A')2 =A=A, +A2, 

. The grade 4 part of the square of A yields 

1 
- A 1\ A = are2e3 1\ e1e4 + 
2 

bse3e1 1\ e2e4 + cte1e2 1\ e3e4 

= (ar + bs + ct)e1e2e3e4 

= (ar + bs + ct)i4 = ~IA 1\ Ali4 
2 

(5.21) 

(5.22) 

(5.23) 

because all other parts of the square of A have grades 

less than 4. i4 is the oriented four dimensional unit 
volume element, also called pseudoscalar. 

The polynomial (4.10), whose two roots are the 

squares of the two bivectors in (5.21) 

(Xl=A1
2=-V12

, (X2=A2
2
=-vl (5.24) 

becomes now 
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(5.25) 

The two coefficients of (5.25) are 

(5.26) 

because only squares like ( e~k) (e~k)=-l with I =1= k 

contribute, and 

= (ar + bs + ct)2 = ..!..IA 1\ AI2 
4 

(5.27) 

because i/ = 1. To find al and a2 we therefore need to 
solve 

a 2 +(a2 +b2 +c2 +r2 +S2 +t2)a 

+ (ar + bs + ct)2 = 0 

(5.28) yields 

A 2 2 
al,2 = 1,2 = -V1,2 

(5.28) 

CC - A i4~IAI\AIA-alA 
Al = 1 2 a 1 = 2 , (5.31) 

a 2 -a1 a 2 -a] 

where we have used the fourth expression in (5.30b) to 
replace CI Cz. The expression for A2 is obtained by 
interchanging the subscripts 1 and 2 in (5.31). Observing 
that 

(5.32) 

(5.33) 

and 

(5.34) 

It is easy to check that 
A=AI +A2=v l i l + V2iZ, il h=izi l =i4, il

Z= i/=-l, (5.35) 
and that the two orthogonal unit bivectors i l and h are 
related by 

(5.36) 
The explicit form (5.35) of the bivector A shows that 

in four dimensions the sum of bivectors (4.4) will have 
precisely two terms (m=2), provided that VI and Vz are 
distinct. That means that an anti symmetric matrix in four 
dimensions always specifies two corresponding (two 
dimensional) distinct orthogonal area elements Al and 
Az. The relations (5.36) show that the units iI, h of these 

~ 
two area elements are dual to each other by the 

± (a2 +b2 +c2 +r2 +S2 +t2)2 -4(ar+bs+ct)z]. multiplication with the four dimensional pseudoscalar i4 . 

(5.29) The duality of area elements (3.53) in four dimensions 
Next we write down the m=2 equations (4.14). Using 

(5.20) and (5.21) we get for (4. 14a) 

A = ae2e3 + be3eJ + ceJe2 + reJe4 + se2e4 + te3e4 

=AJ +A2 

(5.30a) 
Using (5.21), (5.22), (5.23), (5.27) and (4.5) we can 
write for (4. 14a) 

Cj ·C2 = CjC2 = A..!..(A 1\ A)= Ai41A 1\ AI 
2 . 

= (Aj + A2)AjA2 = A~ A2 + A~Aj 
(5.30b) 

The first equality in (5.30b) holds, because as in (3.53) 
C2 is already of maximum grade 4. Provided that 
(Xl and a2 are distinct, the equations (5.30) can be solved 
to give 

is also the reason, why Gibbs' cross product cannot be 
defined in four dimensions: The dual entity of an outer 

product a 1\ b is not a vector (as in three dimensions), 

but because fo (3.53) again an area element. 
In particular cases it will be no problem to find the 

orthonormal eigenvectors {a1, b1, a2, b2} of the linear 
transformations a(x) and a2(x) of section 4.1. A possible 

way of construction for the eigenvector a] (E i
j 
plane) is 

to simply take e.g. the basis vector e], calculate its 
projection e]111 onto the i1 plane with (3.33) and divide it 
by its length. 

(5.37) 

The second unit eigenvector b 1 (E i
j 
plane) can then be 



calculated with the help of (4.18) as 

b 
- . - . - 1 .. -I· _ e] . i] 

] = a] . I] - a]l] - -I -.-1 e] . 1]1\ I] - -I -.-1 . (5.38) 
e] . I] e] . I] 

The second equality holds, because of al 1\ i l = 0 

(4.15). a1 and b1 will be unique up to a common rotation 

in the i1 plane. In the very same way we can calculale a2 

_ e]112 _ • _ e] . i2 
a 2 = -I -I' b2 = a 2 . 12 - -I -. ·-1 ' 

e]112 e] 12 
(5.39) 

which are again unique up to a common rotation in the iz 
plane. 

Applying the matrix ismormorphism (4.1) with respect 

to the orthonormal eigenvector basis {a1, b1, a2, b2}, we 
get the canonical form of the matrix A of (5.19) as 

0 v] 0 0 

-v] 0 0 0 
A= (5.40) 

0 0 0 V2 

0 0 -v2 0 

where the values VI, V2 are taken to be positive and 
defined by (5.29). 

If we were again to calculate the eigenvalues of the 
matrix A in the conventional way we would find 

(5.41) 

As in (5.4) and (5.18) we should better replace the 

geometrically uninterpretable imaginary unit j by the 

eigen -bivectors 

'\ • '\ • Ijo • 
1\,] = V]II' 1\,2 = V]II = -V]II' 

(5.42) 

We could again show along the lines of (3.10) and (3.11) 

that (5.42) leads indeed to a consistent real geometric 

interpretation of imaginary eigenvalues of A and the 

related complex eigenvectors as 90 degree rotation 

operations on the vector.quadruplets (e111]' e211], e3111, e4111), 
(e1112, e2112, e3112, e4112), respectivelyY 8,1 9,20] The rotations 

take place in the it and i2 planes, respectively. The 

factors VI, V2 result in additional dilations of the 
respective quadruplets by VI, V2' The indices 'Ill' and 
'112' mean projections onto the i1 and i2 planes, 
respectively, using (3.33). 

I did not discuss the case of one of the values 
VI, V2 equal to zero. This is an extension of the previous 
section, with a two dimensional kernel. 
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6. The canonical form of a bivector in Minkowski 

space 

6.1 Derivation of the canonical form of a bivector in 

Minkowski space 
In order to study important applications of the 

canonical form of anti symmetric matrices, we need to 
deal with the pseudoEuclidean (Minkowski) metric. This 

will open a wide field of applications in special relativity, 
e.g. to Lorentz transformation generators, to the field 

tensor of Maxwell's electrodynamics, relativistic 
quantum mechanics, etc. The Minkowski metric is 

defined by four orthogonal vectors satisfying 

2 2 2 2 1 
e] = e2 = e3 = -e 4 = , (6.1) 

where the first three vectors span space and the fourth 

vector gives the time direction. The orthogonal 
decomposition in Minkowski space is used and alluded 
to (e.g. [7], pp. 10, ll~ [13], pp. 49,86) in the literature, 
yet I haven't seen any explicit proof so far. 

The definition of the isomorphism formula (4.1) 
doesn't change. But in (4.2) the metric (6.1) must be 

taken into account, resulting in a minus, whenever the 
indices k or I take the value 4. For the matrix (5.19), this 

results in the isomorphic bivector to be 

1 3 

A "A -]-] = - L..J kZekeZ = 
2 k,l= 

ae 2e3 + be3e] + ce]e2 - re]e4 - se2e4 - te3e4 

because in the Euclidean case (4.2), we have el-l= el, 

ez-1= ez, e3-1= e3, e/= e4, but in the Minkowski case the 

inverse of e4 changes to e4-1= -e4. The squares of the 
distinct commuting plane (two dimensional) area 
elements (2-blades) may now also become positive, so 

(4.6) has to be replaced by 

(6.2) 

The factoring as in (4.7) will continue to be possible, but 

the squares of the unit area elements ik may now also 
become positive. (4.8) has therefore to be replaced by 

(6.3) 

As an example for the positive sign in (6.3) we can e.g. 

calculate 

(e]e4)(e]e4) = e]e4e]e4 = -e]e4e4e] = e]e] = 1. 

After defining the multivectors Ck as in (4.9), the squares 

CJ.z= A/ = ± v/ of each Az can be calculated as the roots 
of (4. 10). After the roots have been calculated (4.14) 
serves to find the actual bivectors. 

Let me now tum to the anti symmetric 4 x 4 matrix 
(5.19), but use the Minkowski basis (6.1), instead of the 
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four dimensional Euclidean basis of section 5.3. I will 

not repeat the whole argument of section 5.3, but I will 

point out all necessary modifications in detail. 

First, the explicit expressions in (5.23) change to 

1 
- A 1\ A = -are2e3 1\ el e4 
2 

- bse3el 1\ e2e 4 - cte l e2 1\ e3e 4 

= -Car + bs + ct)el e2e3e4 

= -Car + bs + ct)i4 = =-!IA 1\ Ali4 
2 

(6.4) 

As will soon be seen from the explicit expression, 

replacing (5.29) we now have instead of (5.24) 

al=Al
2=+vl2, a2=Al=-V2

2
. 

The two coefficients in polynomial (5.25) change to 

and to 

-1 2 
= -Car + bs + ct)2 = -IA 1\ AI 

4 

(6.5) 

(6.6) 

(6.7) 

replacing (5.26) and (5.27), respectively. The sign in 

(6.7) changes, because in the basis (6.1) the pseudoscalar 

i4 has the square (3.55) i/= -1. With these new 

coefficients, the polynomial equation for the roots (6.5) 

now reads 

a 2 + (a2 + b2 + c2 
_ r2 - S2 - t2)a 

-(ar+bs+ct)2 = 0 

instead of (5.28). 

(6.8) yields 

A 2 2 
a l,2 = 1,2 = ±VI,2 

=H _(A2)±~(A2)2 +IA A AI' ] 

=~[_(a2 +b2 +c2 _r2 _S2 _t2) 
2 

(6.8) 

(6.9) 

where the plus sign stands for the index '1' and the 

minus sign for the index '2' respectively. (6.9) justifies 

(6.5). 

Using the new al and a2 obtained from (6.9) the form 

(5.31) of the orthogonal bivectors Al (and A2) will not 

change. Relation (5.32) changes its sign to 

(6.10) 

The explicit versions of Al and A2 become therefore 

A - . - vI -i4v2 
I - VIII - VI 2 2 A, 

VI +V2 
(6.11) 

A - . - v2 +i4vIA 2 - V 212 - V 2 2 2 . 

VI +V2 
(6.12) 

In consequence of this relations (5.35) and (5.36) 

change to 

A=AI+A2=vlil+ V2i2, ili2=i2iI=i4, i1
2= -il=l, (6.13) 

and 

i2= i4il, il= - i4i2. (6.14) 

This concludes the derivation of the canonical form of 

a bivector A, where A is isomorphic to the 

anti symmetric matrix A of (5.19) supposing the 

Minkowski metric (6.1). 

The question remains, what happens, if il or iz would 

be null 2-blades, i.e. factoring them according to (3.49) 

would yield at least one of the vector factors a or b to be 

a null vector with zero square, e.g. a2=0. If we assume 

e.g. i2 to be a null 2-blade, with e.g. a22 =0, then 

according to (3.51) we would also have i22=0. But this 

will not be the case, if a 2 7:- 0 in (6.9), because 

a2=A2 2=V2i2 2. iz 2=0 would therefore only be possible, if 

a 2 = 0 in (6.9). In this case one has to check, whether 

A=AI with Al defined according to (5.31) [and not 

(6.11)J. A nu1l2-blade i2 will exist, only if A 7:- AI' 

6.2 Application to Maxwell's electromagnetic field 
tensor 

The electromagnetic field tensor is given by (5.19), 

replacing the components of the electric field 

E = (r,s,t) and the magnetic field B = (a,b,c) . 

And we need to remember that Maxwell's theory is 

special relativistic, i.e. invariant under Lorentz 

transformations in Minkowski space. The basis we have 

to use must therefore satisfy (6.1). 

By (6.9) we obtain its two eigenvalues 

(6.14) 



which are not a space-time invariant, since the fields 

itself are not space-time invariant. (Only the energy 

density and the Pointing vector are invariants. 

Electromagnetic invariants are properly treated in 

[12,13].) But the term under the inner square roots of 

(6.14) is the trace of the Lorentz transformation invariant 

Maxwell energy momentum tensor (= energy density 

minus square of the Poynting vector) of the 

electromagnetic field. 

In general the electromagnetic field tensor A is thus 

specified by two orthogonal bivectors 

A · VI - i4v2 A 
I = VIII = VI I (6.15) 

\j(£2 _ B2) + 4(£, B) 

Let us now turn to the special case of plane 

electromagnetic waves, which mediate electromagnetic 

forces. They are light, warmth, radio transmission waves, 

transmit information to cellular phones, in short, our 

world would not be without electromagnetic interaction. 

Maxwell's electrodynamics describes plane 

electromagnetic waves by oscillating, but always 

perpendicular, electric and magnetic vector fields. 

The perpendicularity of £ and B simply means that 

ar + bs + ct = 0 , (6.17) 

which results in great simplifications, because the 

coefficient (6.7) will therefore be zero as well. (6.8) will 

then have the form 

i.e. we have the two roots 

a 2 = 0 in (6.19) means, that O<Vk in (6.2) is no longer 

fulfilled. But that only means that we have a kernel of 

dimension two, otherwise the two a's are still distinct 

and the analysis of section 6.1 therefore still applies. 

Inserting E and B in (6.19) gives 

(6.20) 

Plane electromagnetic wave fields can therefore now 

be alternatively characterized in a new way. They have a 

degenerate field tensor, which becomes obvious in the 

canonical form. Only one eigenvalue VI 7:- 0 is present 

(6.21 ) 
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7. Conclusion 

This paper showed how the use of coordinates, 

matrices, complex numbers, and vector spaces over the 

complex numbers can be avoided in the analysis of 

anti symmetric matrices. 

Utilizing real geometric algebra, i.e. the "grammar" of 

universal geometric calculus, antisymmetric matrices are 

found to best be treated via their isomorphism with real 

bivectors. The isomporphism allows to effortlessly 

switch back and forth between the antisymmetric matrix 

and the isomorphic bivector. Geometric algebra can 

easily yield the canonical form of this bivector, 

consisting of a decomposition into orthogonal plane area 

elements. These area elements can be interpreted both as 

plane two dimensional subspaces and as rotation 

operators in these subs paces. 

It was explicitly demonstrated that the view 

"Antisymmetric Matrices are Real Bivectors" IS 

consistent for both Euclidean spaces and 

(pseudoEuC\idean) Minkowski space. This view has 

advantages for teaching, research and application of 

antisymmetric matrices, in whatever context they occur! 

The calculations in this paper can be implemented 

both symbolically and numerically in commercial and 

freely available (stand alone) geometric algebra software 

packages and programs, e.g. in the Cambridge 

Geometric Algebra package[6] and others. 
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Notes 

I) Antisymmetric matrices generate rotations m 

arbitrary high dimensions. 

2) It is interesting to note this parallel in the Japanese 

tea ceremony. The present form of the tea ceremony 

was established by Sen Rikyu in the 16th century. His 
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wife is said to have been a secret Christian 

(Kirishitan), some think even Sen Rikyu was. 
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