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Abstract We study gravitational wave (GW) production in
strongly supercooled cosmological phase transitions, taking
particular care of models featuring a complex scalar field
with a U(1) symmetric potential. We perform lattice simu-
lations of two-bubble collisions to properly model the scalar
field gradients, and compute the GW spectrum sourced by
them using the thin-wall approximation in many-bubble sim-
ulations. We find that in the U(1) symmetric case the low-
frequency spectrum is ∝ ω whereas for a real scalar field it
is ∝ ω3. In both cases the spectrum decays as ω−2 at high
frequencies.

1 Introduction

The direct detection of gravitational waves (GWs) from a
binary black hole merger by LIGO [1] marked the dawn
of a new era in astrophysics and cosmology. In the next
decades various experiments will probe GWs in a wide range
of frequencies [2–9]. In addition to the astrophysical GW
sources, such as compact object binaries, these experiments
will probe also cosmological GW backgrounds providing a
unique probe of the early Universe, as, unlike electromag-
netic signals, GWs can propagate freely from the very begin-
ning of the Universe.

Cosmological first-order phase transitions constitute one
possible source of GWs from the early Universe [10], which
can be probed by the upcoming GW experiments [11,12]. In
a first-order phase transition the false vacuum is separated
from the true vacuum by a barrier as the transition proceeds.
As a result the unstable vacuum decays through nucleation of
bubbles, corresponding to the field trapped in the false vac-
uum tunnelling through the barrier [13–15]. After nucleation
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these bubbles grow until they collide, eventually converting
the whole Hubble volume into the new phase.

The bubbles typically grow by many orders of magnitude
between their nucleation and collisions, releasing a lot of
energy. This energy goes into gradient and kinetic energy of
the bubble walls and into motion of the plasma as the particles
in the plasma interact with the bubble wall. GWs from a phase
transition are sourced by the scalar field gradients [16] and
motions in the plasma [17]. For very strongly supercooled
phase transitions the plasma friction can be negligible. In this
case the bubble walls reach velocities near the speed of light
before they collide [18,19] and the GW signal is dominated
by the scalar field gradients [20].

The GW signal from scalar field gradients was first cal-
culated in the envelope approximation in Ref. [16]. In this
approximation the bubble walls are treated as thin shells that
disappear in the collisions. The resulting GW spectrum is a
broken power-law that at low frequencies grows as ω3 and
at high frequencies decays as ω−1 [21–23]. In Refs. [23,24]
the envelope approximation was extended in order to model
colliding fluid shells. In this so called bulk flow model the
bubble wall energy was assumed to decay as R−2 after the
collision as a function of the bubble radius R. The bulk flow
approximation results in a GW spectrum that turns from ω1

behaviour to ω−2 at around the same frequency at which the
spectrum in the envelope approximation peaks.

Recently the GW spectrum was calculated in 3D lattice
simulations [25–27]. These simulations are very difficult
because of the large separation between the characteristic
length scales in the problem, that is the size of the growing
bubble and its thinning wall. Due to numerical limitations
in such simulations it is impossible account for realistically
large bubble wall velocities. However, the GW spectrum can
still be computed. At high frequencies it was found that the
spectrum lies somewhere between the envelope and bulk flow
approximations. The low-frequency behaviour of the spec-
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trum is especially difficult to resolve and a ω3 behaviour is
typically assumed.

In this paper we approximate the GW spectrum from
strongly supercooled phase transitions by first studying the
scaling of the gradient energy in two-bubble collisions by
lattice simulations and then calculating the GW spectrum by
performing many-bubble simulations in thin-wall approxi-
mation. In this way we can efficiently perform large simula-
tions with realistic behaviour of the GW source. In contrast
to the earlier works, we study also the case of a complex
scalar field with a U(1) symmetric potential which is often
realized in particle physics models.1 We find that in this case
the gradient energy quickly reaches an R−2 scaling after the
collision, whereas for a real scalar field we find that the decay
is much faster. In the former case we find that the GW spec-
trum is near the bulk flow result, and in the latter case we
find a GW spectrum that grows as ω3 at low frequencies and
decays as ω−2 at high frequencies.

2 Bubble collisions

We begin by studying collisions of two complex scalar field
bubbles. In order for the scalar field gradients to be the dom-
inant source of GWs the phase transition has to be severely
supercooled [20]. Typically this can not be realized in models
based on polynomial potentials [36], but in models that are
classically scale invariant a prolonged period of supercooling
is possible [29,30,33,37–50]. In these models the symmetry
breaking originates from radiative corrections [51] and finite
temperature effects give raise to a potential energy barrier
between the symmetric and the symmetry-breaking minima.
The one-loop effective potential is of the form

V (φ) = Bφ4
[

ln

( |φ|2
v2

)
− 1

4

]
+ CT 2|φ|2 (1)

where B and C are dimensionless constants that depend on
the couplings of the scalar field φ (see e.g. [42]), v is the vac-
uum expectation value of |φ| and T denotes the temperature
of the plasma. Motivated by this, we consider logarithmic
potential

V (φ)

�V
= 1+κ

|φ|2
v2 +|φ|4

v4

[
(κ+2) log

( |φ|2
v2

)
−(κ+1)

]
, (2)

where κ is a dimensionless parameter. This potential is U(1)

symmetric and its global minimum lies at |φ| = v where
V (|φ| = v) = 0. For κ > 0 the point φ = 0 is a local
minimum with V (0) = �V . The parameters B and C of

1 See e.g. Refs. [28–35] for studies where GW signal was studied in
these kind of models.

Eq. (1) are related to κ and �V via

B = (κ + 2)�V

v4 , C = κ�V

T 2v2 . (3)

The radial initial profile of the modulus |φ| for an O(4) sym-
metric bubble is obtained as the solution of

∂2
r |φ| + 3

r
∂r |φ| = dV

d|φ| (4)

with boundary conditions ∂rφ = 0 at r = 0 and φ → 0 at
r → ∞. Due to the U (1) symmetry of the potential every
bubble will be nucleated with a complex phase ϕ of the field
φ chosen from the range ϕ ∈ [0, 2π [ with equal probability.

We assume that the phase transition finishes within a Hub-
ble time and therefore neglect the background expansion.
Collision of two initially O(4) symmetric scalar field bub-
bles is O(1, 2) symmetric, and it is convenient to define new
coordinates [52] (s, z, ψ, θ) by tan θ = x/y

t = s cosh ψ , r = s sinh ψ , for t ≥ r ,

t = s sinh ψ , r = s cosh ψ , for t < r , (5)

where r2 = x2 + y2. The bubbles lie at the z axis. The
Klein–Gordon equation for the real (X = R) and imaginary
(X = I ) parts of the field in these coordinates simplify to

±∂2
s φX ± 2

s
∂sφX − ∂2

z φX = − dV

dφX
, (6)

where + and − signs correspond to the regions t ≥ r and t <

r , respectively. The collision of bubbles occurs in the region
t ≥ r where we solve the above equation numerically. In the
region t < r the evolution is given by analytical continuation
of the initial bubble solution

φ(s, z) =
∑
j

φ0

[√
s2 + (z − z j )2

]
, (7)

where z j denotes the position of the bubble j .
In Fig. 1 we show the result from two-bubble collision

in three values of the phase difference between the colliding
bubbles: �ϕ = 0, �ϕ = π/2 and �ϕ ≈ π .2 The numerical
lattice calculation is performed in dimensionless variables,
obtained by scaling φ → φ/v and xμ → √

�V xμ/v, and
the results in Fig. 1 are shown in the simulation units. We
see that the bubble walls quickly accelerate after nucleation,
approaching velocities near the speed of light before their
collision.3 After the collision we see that a sharp phase wall

2 Taking exactly �ϕ = π we would form a stable domain wall in the
collision due to Z2 symmetry of that very particular configuration.
3 In Fig. 1 curves of the form t = ±z + C , where C is a constant, are
lightlike.
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Fig. 1 Collision of two complex scalar field bubbles in the simulation
units. Each column corresponds to one simulation. The color coding in
the upper panels shows the complex phase of the scalar field, whereas

in the lower panels it shows the gradient energy density. White color in
the upper panel indicates the region where φ ≈ 0

continues to propagate with a constant velocity near the speed
of light. This can also be seen in the lower panels, where
we show the evolution of the gradient energy density of the
scalar field, ρgrad = |∂zφ|2/2. It is also clear from these
plots that the energy loss of the gradients after the collision is
much faster in the case where the bubbles have equal complex
phases effectively corresponding to the case with a real scalar
field.

In Fig. 2 we show by the blue solid line the time evolution
of the maximum of gradient energy density averaged over
various values of the phase difference �ϕ. We obtain the case
of a real scalar field from our analysis by taking only the case
�ϕ = 0. This is shown by the red solid line. The collision
happens at t = tc. Before the collision the total released
energy scales as Erel ∝ t3, the surface area as A ∝ t2 and
the wall thickness as L ∝ 1/t due to increase in the Lorentz
factor of the wall. Therefore the energy density at the wall
scales as ρgrad ∝ Erel/(AL) ∝ t2, which is what we see
also in Fig. 2. After the collision, if the bubble wall velocity
is constant and the energy remains localized at the bubble
wall, its gradient energy density scales as ρgrad ∝ t−2 as
Erel and L remain constant. From Fig. 2 we see that this is
not a perfect description. In reality some of the energy is
spread into the collided volume and therefore the maximal
gradient energy density decays faster. In the case of a real
scalar field we see that the scaling of gradient energy density
reaches ∝ t−3 behaviour after the collision, while in the U(1)

symmetric case it scales significantly slower, ∝ t−2. This is

Fig. 2 Evolution of the maximal gradient energy density in a bubble
collision. The blue solid line shows the average from simulations with
different values of the complex phase difference between the colliding
bubbles, and the red solid line shows the case where the bubbles have
equal complex phase. The yellow dotdashed and dashed lines show the
broken power-law approximations for the evolutions after the collision

a consequence of the phase difference between the colliding
bubbles that after the collision for a long time continues to
propagate as a sharp phase domain wall.

The results shown in Figs. 1 and 2 are from simulations
with κ = 0.2, but we have checked that the scaling of the
gradient energy density after the collision is not sensitive to
the value of κ . We have also checked that the same scaling
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results hold in the case of a polynomial potential4 In addition,
we have run simulations with different values for the initial
bubble separation d, that in Figs. 1 and 2 was set to d = 20
(in the simulation units). Our results from simulations with
d ∈ [8, 200] indicate that the bubble separation dictating that
the γ factor of the wall at collision and its energy does not
change the scaling behaviour.

3 Production of gravitational waves

Next we will study the production of GWs from scalar field
gradients using the scaling results of the bubble wall energy
obtained in the previous section. Following Ref. [55], the
total energy spectrum in a direction k̂ at frequency ω of the
GWs emitted in the phase transition is given by

dE

dkdω
= 2Gω2�i jlm(k̂)T ∗

i j (k̂, ω)Tlm(k̂, ω) , (8)

where �i jlm is the projection tensor,

�i jlm(k̂) = δilδ jm − 2δil k̂ j k̂m + 1

2
k̂i k̂ j k̂l k̂m

− 1

2
δi jδlm + 1

2
δi j k̂l k̂m + 1

2
δlm k̂i k̂ j , (9)

and Ti j is the traceless part of the stress energy tensor,

Ti j (k̂, ω) = 1

2π

∫
dt d3x eiω(t−k̂·x) ∂iφ∂ jφ

∗ . (10)

In the thin-wall limit, the gradient energy carried by an uncol-
lided element of the bubble wall at solid angle dx can be
approximated as [16]

dx

∫
dr r2e−iωk̂·x∂iφ∂ jφ

∗

≈ dx x̂i x̂ j
R3
n�V

3
e−iωk̂·(xn+Rn x̂) , (11)

where xn denotes the position vector of the bubble center, x̂
is a unit vector that points from the centre of the bubble in the
direction d and Rn ≈ t − tn is the radius of the bubble that
nucleated at time tn . After the element of the bubble wall
at dx has collided with another bubble, its energy starts
to decrease. Assuming that the velocity of the wall element
does not change in the collision, the scaling of the energy
can be accounted by multiplying Eq. (11) by a function f (t)
which depends on the time tn,c = tn,c(x̂) when the wall

4 In the class of potentials we focus on false vacuum trapping in the
collision typically does not occur. If it did that would change the result,
as most of the gradient energy would remain around the collision
point [53,54].

element collides with another bubble. Before the collision
f (t < tn,c) = 1, and the envelope approximation corre-
sponds to taking f (t > tn,c) = 0. Assuming instead that the
bubble wall loses energy ∝ R−2 we get the bulk flow approx-
imation [23,24] where f (t > tn,c) = [(tn,c − tn)/(t − tn)]3.

On the basis of the results shown in Fig. 2, we find that
the decay of the maximum of the gradient energy density
can be approximated as a broken power-law, that changes
from an ∝ R−ξ1 behaviour to ∝ R−ξ2 . In the thin wall
approximation, the bubble wall energy is simply dEwall ∝
dx R2L max[ρgrad], where the bubble wall width L after the
collision is constant, and therefore

f (t > tn,c) =
2∑
j=1

b j

(
tn,c − tn
t − tn

)ξ j+1

. (12)

For the U(1) symmetric case we use b1 = 0.6, b2 = 0.4,
ξ1 = 8, ξ2 = 2, and in the case of a real scalar field we use
b1 = 0.93, b2 = 0.07, ξ1 = 8, ξ2 = 3. These approximations
are shown in Fig. 2 with the yellow dotdashed and dashed
lines, respectively.

The contribution from N bubbles on the traceless part of
the stress energy tensor (10) can now be written as

Ti j (k̂, ω) ≈ �V

6π

N∑
n=1

∫
tn

dt dx x̂i x̂ j

× f (t, tn,c)R
3
n e

iω[t−k̂·(xn+Rn x̂)] . (13)

We can rotate the coordinate system such that a given k̂ =
k̂(φk, θk) after the rotation points to z direction, k̂ → k̂

′ =
(0, 0, 1). Then, the projection in Eq. (8) simplifies to [21]

dE

dkdω
= Gω3

(
|Txx − Tyy |2 + 2|Txy |2 + 2|Tyx |2

)

= G�V 2ω2
(
|C+|2 + |C×|2

)
, (14)

where

C+,×(k̂
′
, ω) ≈ 1

6π

N∑
n=1

∫
tn

dt dx sin2 θ ′
x g+,×(φ′

x )

× f (t, tn,c)R
3
n e

iω(t−z′n−Rn cos θ ′
x ) , (15)

with g+(φ′
x ) = cos(2φ′

x ) and g×(φ′
x ) = sin(2φ′

x ). The spa-
tial angles in the rotated coordinate system are

tan φ′
x = sin θx sin(φx − φk)

cos θk sin θx cos(φx − φk) − sin θk cos θx
,

cos θ ′
x = sin θk sin θx cos(φx − φk) + cos θk cos θx . (16)
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Fig. 3 Mollweide projection of a bubble surface in a many-bubble
simulation. The color coding indicates the time when the given part of
the bubble surface collided for the first time with another bubble

We consider the exponential bubble nucleation rate per
unit volume, � ∝ eβt . The parameter β, with mass dimen-
sion 1, sets the time and length scale of the transition. The
abundance of GWs produced in bubble collisions in a loga-
rithmic frequency interval is then

GW(ω) ≡ 1

Etot

dE

d ln ω
=

(
H

β

)2 (
α

1 + α

)2

S(ω) , (17)

where α = �V/(ρtot − �V ) characterizes the strength of
the transition, H2 = 8πGρtot/3 is the Hubble rate, and

S(ω) =
(

ω

β

)3 3β5

8πVs

∫
dk

(
|C+|2 + |C×|2

)
, (18)

gives the spectral shape of the GW background. The volume
over which GW is averaged is denoted by Vs . We note that∫

dk
(|C+|2+|C×|2) ∝ Vs/β5. Next we calculate the S(ω)

function numerically.

4 Gravitational wave spectrum

In order to determine the spectral shape of the GW signal we
simulate the phase transition by nucleating bubbles according
to the rate � ∝ eβt inside a cubic simulation volume with
periodic boundary conditions. We neglect the initial bubble
sizes, assume that their wall is infinitesimally thin and evolve
the bubble radii as Rn = t − tn . We generate points on the
surface of a bubble and find the time tn,c when each of these
points collides with another bubble surface by the bisection
method [56]. As an example, in Fig. 3 we show the surface of
the first bubble that nucleated with the color coding indicating
the collision time tn,c. Once the collision times are known, we
can simply integrate the functionsC+,×, and finally compute
the GW spectrum (18).

The time integral in Eq. (15) can be evaluated analyti-
cally if f (t, tn,c) is a (broken) power-law. We perform the
remaining integrals over k̂ and x̂ directions numerically. As
the simulation volume is not spherically symmetric we cal-

Fig. 4 GW spectrum sourced by scalar field gradients. The solid curves
show the spectral shape fit (19) in the U(1) symmetric case (blue) and in
the case that all bubbles have equal complex phase (red) corresponding
to a situation with just a real scalar field. The green and yellow dashed
curves show the spectrum in the envelope and bulk flow approxima-
tions. The shaded bands indicate the variance from averaging over 40
simulations

culate the spectrum only for 6 k̂ directions that correspond
to the normal vectors of the cube faces. In order to accu-
rately determine the GW spectrum, we calculate the average
spectrum over multiple simulations.5

In Fig. 4 the red and blue solid curves show, respectively,
our result for the spectral shape of the GW spectrum in the
U(1) symmetric case, and the case where all bubbles have
equal complex phase, �ϕ = 0, which corresponds to having
a real scalar field. The green and yellow dashed curves, for
comparison, the result in the envelope and bulk flow approx-
imations. The results are obtained by taking geometric mean
over 40 simulations with around 200 bubbles each, while
the error bands show the corresponding geometric standard
deviations.

We calculate a broken power-law fit to the spectrum
parametrized as

Sfit(ω)=
⎡
⎢⎣1+

(
ω
ωd

)d−a

1+
(

ω̄
ωd

)d−a

⎤
⎥⎦ A (a + b)c[

b
(

ω
ω̄

)−a/c+a
(

ω
ω̄

)b/c]c , (19)

where A and ω̄ correspond to the peak amplitude and fre-
quency, c determines the width of the peak, and a, b > 0 are
the low- and high-frequency slopes near the peak of the spec-
trum. The first bracket parametrizes the change in the low-
frequency slope which in the U(1) symmetric case resembles
the envelope result shortly after collision with emission from
a slowly decaying gradient dominating later on. In the other

5 Averaging many smaller simulations is equivalent to running one
much larger simulation but much more easily parallelised.
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Table 1 Fitted values of the parametrization (19)

100A ω̄/β ωd/β a b c d

U(1) sym. 3.63 0.81 0.13 2.54 2.24 2.30 0.93

real field 4.71 0.83 – 2.84 2.29 2.52 a

Bulk flow 4.318 0.56 – 1.05 2.10 1.16 a

Envelope 4.02 1.16 – 3.03 0.88 1.55 a

cases we take d = a for which the first bracket in (19) gives
1.6 The parameter values of the fit are shown in Table 1.

Finally, the present day GW spectrum can be obtained by
simple red-shifting as [17]

GW,0 = 1.67×10−5

h2

(
H

β

)2 (
α

1 + α

)2(100

g∗

)1
3

S(ω) ,

ω̄0 = h∗
(

β

H

)(
ω̄

β

)
, (20)

h = 0.674 [57] denotes the dimensionless Hubble parameter
and

h∗ = 1.65 × 10−5 Hz

(
T∗

100 GeV

) ( g∗
100

) 1
6

(21)

is the inverse Hubble time at the transition redshifted to
today.7 The transition temperature is denoted by T∗ and the
effective number of relativistic degrees of freedom at the tem-
perature T∗ by g∗. At scales larger than the horizon scale at
the time of the transition the spectrum scales as ω3 because
the source is diluted by the Hubble expansion [59,60]. At the
present time this corresponds to frequencies ω < h∗/(2π).

5 Conclusions

We studied the GW spectrum produced in a strongly super-
cooled phase transition. We started from a lattice simulation
of two-bubble collisions in order to model the evolution of
the scalar field gradients which source GWs. We used a log-
arithmic potential typical for very strong phase transitions,
and considered the impact of a complex scalar potential pos-
sessing an U (1) symmetry. We then simulated the produc-
tion of GWs assuming that after collisions the gradients will
continue moving at velocities near the speed of light losing
energy according to the lattice results.

6 Similar parametrization is used e.g. in Ref. [26]. Instead, for example
in Ref. [23] the parameter c is neglected.
7 For the red-shifting we assume standard radiation dominated expan-
sion up to the matter-radiation equality. For a review of possible devia-
tions from this see Ref. [58].

We found that the collision fronts disappear much more
slowly in collisions of bubbles with different complex phases
than in the case where the phases are equal. Therefore in the
U (1) symmetric case the GW source is decaying significantly
slower and the resulting GW spectrum is less steep at low
frequencies than in the case of a real scalar field. Our results
for the GW spectra are shown in Fig. 4, from which we see
that the low-frequency behaviours are in these cases very
different: In the case of a real scalar field the low-frequency
spectrum resembles the envelope approximation result ∝ ω3,
whereas in the U(1) symmetric case it is closer to the bulk
flow result ∝ ω. In both cases the high-frequency power-law
is ω−2. We provided a simple broken power-law fits to these
spectra, convenient for phenomenological studies.

Our treatment accounts only for the gradients at the bub-
ble wall. Since the gradient energy is concentrated where
the bubble wall would propagate also after the collisions,
accounting for the field gradients in detail should result only
in minor changes in the GW spectrum. However, to check
this detailed lattice simulations are needed.
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