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Abstract

We investigate the violation of nonlocal realism using various entangled continues- and
hybrid-variable states under dichotomic observables. In particular, we consider two cases of
dichotomic observables (1) described by a pseudospin operator and (2) given in terms of the
Wigner representation of the state in phase space, parity measurement and displacement
operation. We address the recently proposed operational measure of nonlocality which describes
the probability of local-realism violation under randomly sampled observables. We show the
usefulness and limitations of the probability of local-realism violation for the detection of
nonlocality. A simple procedure to detect such nonlocal correlations for randomly chosen settings
with efficiencies of up to 100% is proposed. The practical advantage of applying random
measurements that considerably lowers the experimental requirements is mentioned.

1. Introduction

One of the most remarkable features of quantum mechanics is that distant measurements can exhibit
correlations being inconsistent with any locally-causal description [1]. Although this feature was initially
thought to be evidence of the incompleteness of the quantum theory [2], there is nowadays the
overwhelming experimental evidence that the nature is indeed nonlocal [3].

Nonlocality plays the central role in quantum-information science and has been recognized as an
essential resource for quantum-information tasks [4] including quantum key distribution [5],
communication complexity [6], randomness generation [7], and device-independent information
processing [8, 9]. In particular, the presence of nonlocal correlations is widely used as a simple and strong
device-independent test for certifying the presence of entanglement [10, 11]. However, nonlocal correlations
are correlations of the measurement outcomes. As such, they are not solely a consequence of entanglement
but they also depend upon the choice of the measurements.

Demonstrations of nonlocal correlations typically employ the carefully chosen measurements [12].
Moreover, such specific measurements depend on the analyzed state. This necessarily requires the spatially
separated observers to share a complete reference frame that has to be well-aligned and also to have some
knowledge about the exact shape of the quantum-state density matrix. To circumvent these requirements, the
observers may use the correlated quantum systems to establish a shared reference frame and perform a
complete state tomography. However, these approaches are resource-intensive, since they require the use of
many entangled quantum states.

Recently, it has been shown that such methods are not required to demonstrate the violation of the Bell
inequality. Contrary to that, one can analyze nonlocal correlations of complex states using the probability
that random measurements generate nonlocal statistics. The probability of local-realism violation under
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random measurements, proposed in [13, 14], has gained considerable attention as an operational measure of
the nonclassicality of a quantum state [15]. It has been demonstrated both numerically [13, 16, 17] and
analytically [18] that for N spatially separated observers the most choices of the measurement lead to
nonlocal correlations between the measurement outcomes. In other words, the probability of local-realism
violation under random measurements approaches 1 as N increases. Furthermore, in [18] it has been proven
that this quantifier obeys certain natural properties and expectations for an operational measure of
nonclassicality, e.g. invariance under local unitary operations. The probability of violation can also be easily
implemented experimentally. The error arising from this approach is comparable to the usual measurement
errors [17, 19]. The probability of violation can also be used to establish the degree of entanglement of a
quantum state [20].

However, all these studies assume discrete entangled states. A question naturally arises about the
usefulness of the probability of violation for more general quantum systems described, e.g. by the continuous
variable (CV) states. Here, Chen et al [21] have studied the Bell inequality using the pseudospin formalism
which, together with the parity operator, closes an SU(2) algebra. Such approach yields the maximal
violation of the Clauser, Horne, Shimony, and Holt (CHSH) [22] inequality, and so one may expect that the
probability of violation for two-mode CV states derived using the pseudospin formalism behaves similarly as
that of the entangled qubit states. However, the pseudospin approach is not implementable easily
experimentally.

In contrast, Banaszek and Wédkiewicz (BW) have studied the Bell inequality for CV states using the
Wigner-function representation in phase space, the derived parity measurements and displacement
operation [23, 24]. Since the parity operator is a dichotomic observable, BW were able to construct a
CHSH-type inequality which is especially experimentally interesting. The violations of such Bell inequality
can be demonstrated using photon detection, either photon-number-resolving measurements or photon
presence measurements [25, 26]. Successful experimental implementations of parity measurements via
photon-number-resolving detection can be found in [27-29]. We note that the BW approach, unfortunately,
does not always lead to the maximal violation of the CHSH inequality [30], even when its generalized version
is considered [26].

In this paper, we tackle this problem by considering CV and hybrid quantum systems and applying both
the pseudo-spin approach and the approach based on the Wigner function to arrive at the probability of
local-realism violation. In section 2, the used methods are described and discussed. Results obtained for both
approaches and different states are analyzed in section 3. Conclusions are drawn in section 4.

2. Description of the method

2.1. Bell nonlocality and its quantification
Let us consider a family of Bell-CHSH relations (equivalent under permutation of parties, inputs, and
outputs) given by

BCHSH = C(UJA7WB) + C(WA,WIQ C(W[{UWB) - C(WA,Wé),

where C(wa,wsg) is the correlation function between parties A and B when the measurements are set for
parameters w4 and wg. Then the local realistic theorem imposes the following inequality

|(Beusu)| < 2, (1)

where (Bcpsn) stands for the expectation value of Beysy with respect to a given quantum state.

If for given settings Q = {wa,w},wp,wj} the Bell relation does not obey the inequality (1), the
correlations between the measurements outcomes are said to be Bell nonlocal. Note that nonlocal
correlations of a bipartite state with two measurements and two outcomes per party are fully characterized
by the CHSH inequality, assuming the freedom in relabeling all measurement settings and/or outcomes
and/or parties [31].

For a given Bell scenario, the values of 2 settings which lead to the violation of local realistic description
solely depend on the analyzed state. So it is necessary to know the form of the quantum-state density matrix.
Especially, when the degree of violation of the Bell inequality is used as a measure of nonlocality.

To tackle this problem, another may how to quantify nonlocal correlations of complex states was
proposed in [13, 14] by introducing the probability of local-realism violation under random measurements.
It is defined as [13, 14]

Py (p) = / F(p.2)de, @)
2
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where p stands for the quantum-state density matrix and we integrate over the space of measurement
parameters 2 = {ws,w},ws,w}} that vary within the Bell scenario according to the Haar measure. The
function f{p,?) attains one of two possible values

1 if settings lead to the violation
f(p,Q) = of local realism,
0, otherwise.

For the CHSH scenario and maximally entangled two-qubit states, the probability of violation takes its
maximal value of Ppay = 2(7 — 3) ~ 28.3% [13].

2.2. Correlation function for CV states
For CV systems, there are two well-known definitions of the correlation function C(wy,ws) based either on
the pseudospin or the Wigner-function formalism.

Pseudospin formalism For a single-mode light field the following pseudospin operators § = (5,,5,,5;) are
introduced [21] for a nonlocality test:

L= (|2n+1)(2n+1|—|2n)(2n]),
n=0
se = (8 118)) /2,
g_:(§+)T:Z|2n><2n+1\, (3)
n=0

and |n) denote the usual Fock states. Within this scheme, the correlation function reads C(a,b) =
(a-8; ®@b-s;), where a and b denote the unit vectors, and §; is the pseudospin operator for jth party
(j = 1,2). Each unit vector can be characterized by a pair of angles {6, ¢ }. Then the scalar product is given by

a-8§ =5,cos0,+sinb, [exp (ip,) S + exp (—ipa)$+], (4)
and similar expressions hold for b - §,. The relation (1) in then given as
Bs=(a-8)@(b-8)+(a"-8)@(b-8) +(a-8) @ (b"-8) —(a'-8))® (b"-5,). (5)

It is straightforward to see that, within the pseudospin formalism, the space of measurement parameters {2
in (2) is spanned by the set of angles {6, ¢a, . ..,0;,¢;} that characterize the unit vectors a, a’, b, b’

Wigner-function formalism: First, let us recall the definition of the Wigner function of a bipartite
quantum state p [32, 33]:

W(wA,wB) =Tr |:pAA ((.L)A) X AB (wB) y (6)

where wy (wp) denotes the set of measurement parameters for party A (B), similarly as before; A4 (wy)
(Ap(wsg)) is the kernel operator corresponding to party A (B). In particular, when p describes a bipartite CV
quantum system the kernel operator takes the well-known form [32]

An(wa) = A(a) = 2D (a)TID! (), )

where D(a) = exp[aal — a*d] is the displacement operator [32], IT = exp(ir a'a) denoted the bosonic
parity operator, and @ (a') stands for the annihilation (creation) bosonic operator. Similarly one defines
Ag(wg) = A(B) for party B.

Following BW [23, 24], we consider the optical experiment when the detectors are capable of resolving
the number of absorbed photons. In this case, the Bell events -1 can be assigned to the fact whether an even
or an odd number of photons has been registered. Consequently, the correlation function
C(a, B) = (D(a)IIDT () ® D(B)IIDT(B)) [23, 24]. Based on equation (6) one can write

2 ) 2

Clonf) = (A () 0 A(B) = - W(a), (®)

where W(a, 3) represents the Wigner function of the analyzed CV quantum state. The Bell parameter is then
defined as
2
™
Bw = - (W(a,f) + W(a, ") + W(a', 8) = W(a’, 8)), 9)

3
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and the space of measurement parameters {2 is spanned by the complex field amplitudes {a, o, 53, 5’}. The
general expression is referred to as the generalized BW formalism [26], while in the original BW approach
[23, 24] two of the four parameters are assumed to be zero, namely o = 8 = 0.

Finally, it is important to note that the violation of the Bell inequality (9) does not necessarily imply the
negativity of the Wigner function for the analyzed state. There are well-documented cases of states with a
positive Wigner function that still violate the inequality (9), and conversely, instances where the Bell
inequality is not violated despite the Wigner function not being positive definite [23, 24]. This discrepancy
arises because the Wigner representation of the parity operator does not correspond to a bounded reality, as
it reflects the dichotomic outcome of the measurement.

2.3. Bell inequality for hybrid states
Let us now introduce the CHSH-like inequality for quantum states that involve both discrete and CVs. In
particular, for a hybrid bipartite state with density matrix py composed of a bosonic field (party A) and a
qubit (party B) one can arrive at the pseudospin formalism by replacing >~ | — Z}q:o in equation (3)
concerning the qubit part.

On the other hand, the Wigner-function formalism is introduced based on equations (6) and (7)
together with the formula

Ay (wn) = B, (0,0) = 50(0,0) 1,01 0,0), (10)

where U(f, ¢) is the unitary SU(2) rotation operator and I, =1, - /363 denotes the parity operator of the
single qubit with the Pauli operators o3 [33]. Consequently, the Wigner function of py reads as

V3

s

W(a,0,6) = %WA (@) = Y2C(a,0,0), (1)

where Wy (a) = Tr[paA ()] denotes the Wigner function of the reduced bosonic state p4 = Trg[pp]. We
introduce a new correlation function

Cla,0,6) =Tr | pub () TLDT (a) © U (6,6) 5307 (6,0)] (12)

It is important to note that U(6,¢)63UT (8, ¢) can be replaced by b - &, where b is the unit vector and
& = (61,02,063) using the Pauli operators o;, i = 1,2,3 (c.f. the psudospin formalism). Finally, the Bell
parameter By for the hybrid state py is defined as

BH = % (W(a>9>¢) + W(a’a/a¢/) + W(O{I797¢) - W(a/>9/,¢/) - WA (O‘)) . (13)

3. Numerical results

In this section, we investigate probabilities Py of violation for several important states applying the
pseudospin formalism and the Wigner-function formalism. Specifically, we examine the properties of several
bipartite states that are often considered as nonclassical resources:

e Two-mode squeezed state (TMSS)

Tuiss) = S0 LB (14
n=0

coshr

where |n) are the usual Fock states and r is the squeezing parameter.
o Singlet-like entangled coherent state (ECS1)

[ECS:) = N (I =) = [ =)), (15)

where N] = 1/2[1 — exp(—4+)] and |y) denotes the coherent state with amplitude v # 0. Without the loss
of generality) we assume v € RT.
o Triplet-like entangled coherent state (ECS2)

[ECS2) = N5 (M) +1 =11 =), (16)

where A, = /21 + exp(—47)]], ¥ #0, and v € R similarly as before.
4
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Figure 1. Probability Py of violation for TMSS as a function of squeezing parameter r. The inset shows mutual relations between
Py (TMSS) (plain dotted curve) and Py (Q) (dotted curve with triangles) vs. function f;, where fi (r) = tanh(2r) for TMSS and
£1(0) = sin(20) for two-qubit state Q defined as |Q) = cos6]0)|0) + sin6|1)|1).

e Hybrid qubit-Schrédinger cat state

H) = (|0>|7>+ DI=), (17)

S\

where y#0and v € RT.

3.1. Pseudospin operators

In the pseudospin formalism, the space of measurement parameters € is parameterized by the angles
determining the unit vectors a, a’, etc. To generate their values according to the Haar measure, we apply the
method described in [34]. Specifically, the values of angles ¢;, i € {a,a’,b,b’}, are sampled independently
and uniformly in the ranges (0,2). Similarly, the values of angles 6; = arcsin(«fil/ ?) are derived from
auxiliary random variables &; distributed uniformly in the interval 0 < §; < 1 fori € {a,a’,b,b'}. The
number of measurement settings was chosen to ensure that results remained consistent up to the fifth
decimal place, typically requiring between 10® and 10° settings. The numerical analysis has resulted in the
following observations:

(a) For the TMSS the correlation function C(6,, ¢, 0, ¢p) takes the form

C(emd)maba ¢b) = cosf, cos +fl (1’) sin 6, sin 0y, cos (¢a + ¢b) s (18)

where fi(r) = tanh(2r). Substituting this equation to the CHSH expression the operator Bs given in
equation (5) is determined and plotted in figure 1. The probability Py of violation increases as the value of
squeezing parameter r grows and reaches its maximum value P, when r — oo. This reflects the fact that
the TMSS becomes the maximally entangled state in the (2 x 2)—Hilbert space when r — oo [21]. We note
that Py is close to Pray already for r > 2. Also the correlation function in equation (18) is identical to that of
the two-qubit state |Q) = cos6|0)|0) + sin#|1)|1) provided that f; (r) is replaced by sin(26) (see the inset in
figure 1). This means that r — oo is equivalent to § — /4.

(b) For the singlet-like state ECS1 the correlation function is given by [26]

C(Oa; Pa; O, dp) = — cos b, cos b, — fo () sin b, sin 6, cos (da — ds) , (19)
where
4n+1 2
fo(7) = 2esch (27 (Z m) (20)

and csch stands for the hyperbolic cosecant function. In this case, the probability of violation Py approaches
the maximum value Py, in two extreme cases: v — 0 and 7 — oo (see figure 2), despite the ECS1 is
maximally entangled in the (2 x 2)—Hilbert space (but not in the infinite-dimensional Hilbert space) in the
entire range of ~y. For small +, the local minimum of Py is observed. It is because the pseudospin formalism
for CV is not completely identical to that of a two-qubit system when a qubit is composed of two orthogonal
even and odd macroscopic coherent states [35]. Specifically, the ECS1 can be rewritten in the (2 x 2)—

5
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Figure 2. Probability Py of violation for ECS1 (plain dotted line), ECS2 (dotted curve with triangles), and HS (plain dashed
curve) as a function of coherent amplitude . The inset shows mutual relations between Py (TMSS) (solid curve with diamonds),
Pv(ECS,) (dotted curve with triangles), and Py (H) (dashed curve with squares) as a function of squeezing parameter r (TMSS)
and coherent amplitude v (ECS2 and HS).

Hilbert space based on the new orthonormal basis for coherent fields containing the even and odd coherent

states |[£) = N (|7) £] — 7)), where N = /2[1 & exp(—272)]. The role of the base states |+) in forming
ECSI1 is completely interchangeable only for v — 0 and y — oo. The same effect is observed when the

strength of violation is analyzed [26]. Moreover, the minimum of Py is reached for the same y that implies
the minimum of the strength of violation.

(c) For the triplet-like state ECS2 the correlation function takes the form written in equation (18) with
function fi (r) replaced by function f3(7),

2
4 2 4n+1
() = P 27) ( ) (21)

1+exp 47 Z./ 2n+1

In contrast to the singlet-like ECS1, the probability Py of violation for ECS2 approaches the maximum value
only when v — co. For 7 — 0Py — 0 is observed (figure 2). This is because the ECS2 becomes separable in
the (2 x 2) Hilbert space for v — 0. Using the even and odd coherent states, the ECS2 is expressed as

N A2
[ECS:) = o3 H )+ 5z 19 (22)
It is easy to show that N_ — 0 when v — 0. This accords with the formula for negativity £(ECS,) =
tanh(2+?) [36] that gives £(ECS,) = 0 for v = 0. For any nonzero -y the system in the state |[ECS;) is
entangled, and the negativity £ rapidly reaches its the maximum value 1 when ~y increases. Interestingly,
when > 1.3 (i.e. £(ECS;) > 0.998) the probability Py of violation for ECS2 becomes similar to that for
ECS1, including the formation of local minimum (figure 2).

(d) For the hybrid qubit-Schrodinger cat state the correlation function is derived as
C(0a, da, Oy, dp) = — sinb, cos ¢, cos by + f4 () siny, (cos b, cos ¢y, + sinb, sin ¢, sin @y, ) (23)

where

> 4n+1

fil) =ew () 3 e

As documented in figure 2, the probability Py of violation for the hybrid state considered as a function of y
behaves similarly to that for ECS2 and forms a local minimum around « ~ 1.5. For ~y —> 0 the probability Py
of violation vanishes because the hybrid qubit-Schrédinger cat state is separable (£(H) = /1 — exp(—472)).
With the increasing amplitude vPy grows rapidly exceeding the values for ECS2 in the entire range of . This
is a consequence of the relation £(H) > £(ECS;,) for any . This means that, for fixed -, the hybrid
qubit-Schrodinger cat state gets more entangled than the triplet-like ECS2.

(24)

6
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Figure 3. Probability Py of violation for the TMSS as a function of squeezing parameter r for the generalized BW scenario; the
measurement parameters are sampled over (a) the real and (b) the whole complex planes.

3.2. Wigner-function formalism
Now we discuss the probability of violation Py analyzed for the Bell inequality expressed in terms of the
Wigner function. In this case, the space of measurement parameters §2 is determined by four complex
amplitudes o, o', 5, and B’ that are supposed to be sampled varying uniformly their real and imaginary
parts in the range (—o00, 00). However, this results in the trivial solution Py = 0. To arrive at nonzero Py, we
have to restrict our sampling to a finite regime (—4, ). This accords with possible experimental realization.
Namely, the displacement operation can be experimentally reached by combining a considered field with a
highly excited coherent reference field |z) at a highly asymmetric beam splitter with transmission T & 1 [37,
38]. At the beam-splitter output, one gets a state displaced by the coherent amplitude o = —izy/1 — T,
i.e. the displacement operation b(a) is realized on the input state (see [37] for details). It holds for fixed z
that the greater the asymmetry (1 — T — 0) is, the smaller the amplitude « is. In the limiting case, T =1
implies o = 0. In our probabilistic scheme, it is not necessary to control the values of z and T when
estimating Py, which significantly reduces the experimental requirements. On the other hand, the limitation
of the range of the parameters has an interesting physical interpretation, which will be discussed later, as it
represents the uncertainty in experimental settings. Calculations made for different values of § demonstrate
the influence of uncertainty in setting the displacement parameters on testing the Bell inequalities.

The numerical calculations revealed the following results:

(a) The Wigner function for TMSS is obtained as [39]

Wrmss (o, 8) = %exp[—Zcosh (2r) (|a\2 + \,6’|2) + 2sinh (2r) (a8 + a* B7)]. (25)

It is used to calculate the Bell function Byy given in equation (9). We first assume the BW scenario in which
two of the four parameters are equal to zero (o = 3 = 0). In this case, the probability Py of violation
increases rapidly as the squeezing parameter r grows, and then the constant behavior characterized by

Py =1[0.76] for the measurement parameters sampled over the real [complex] values, as shown in

figure 3(a) [(b)]. This means that, within the BW scenario, nonlocal correlations and thus entanglement of
TMSS is detected for random settings with certainty provided that the amplitudes o’ and 3/ are considered
as real. This is a rather unexpected result as the Bell parameter By, for TMSS violates the CHSH inequality
much weaker compared to when the pseudospin formalism is applied [26]. For sufficiently high values of r
the probability Py of violation is zero. The width of the constant behavior of Py strongly depends on the
value of §: The smaller the value of § is, the greater the value of r is reached such that Py > 0. From the
experimental point of view, § = 0.05 appears to be sufficient for the current state-of-the-art experiments
exhibiting squeezing around 15 dB (r =1.73) [40].

A similar behavior of Py is observed when the generalized BW scenario is applied by randomly selecting
all for measurement amplitudes. The difference is in the width of the constant behavior and the reached
value of Py (see figure 4). In the generalized BW scenario, the maximal values of probability Py of violation
reach 0.7 (0.38) when sampling over the real (complex) measurement amplitudes.

7



IOP Publishing

New J. Phys. 26 (2024) 073034 A Barasinski et al

Figure 4. Probability Py of violation for the TMSS as a function of squeezing parameter r for the generalized BW scenario; the
measurement parameters are sampled over (a) the real and (b) the whole complex planes.
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Figure 5. Probability Py of violation for the TMSS as a function of squeezing parameter r for the ring (|©2| = 0) and disc
(|| # 0) sampling areas assuming 6 = 0.001. In (a) [(b)] [generalized] BW formalism is applied.

Let us reformulate the above results in a form better applicable to the real experimental situation in
which the displacement amplitudes are generated with well-defined amplitudes but random phases. We thus
assume that « = |o|exp(igy ), where |a| [¢,, is uniformly distributed in the interval (|a|, ||+ &)

[¢a € (0,27)]. The amplitudes o', 5, and 3’ are defined similarly. The change in sampling geometry
naturally affects the obtained results, as it follows from the comparison of curves in figure 5 with those
plotted in figures 3 and 4. For the circular geometry, the probability Py of violation reaches noticeably higher
values and drops down for larger r compared to the above-analyzed square geometry. With the increasing
values of measurement amplitudes |a],...,|3’| the values of Py decrease for both methods. This confirms
the conclusion that the probability Py of violation is very useful for experimental detection of nonlocal
correlations, provided that the measurement amplitudes are small.

(b) For the singlet-like state ECS1, the Wigner function is given as [26]

Wacs, (@) = 57 (exp [-2 (laf + 18 ~ 27Re{a— 8} + 2%
+exp (=2 (lal* + |8 +27Re{a — 5} +27%)]

[_
— exp [—2 (\a|2 + |8 + 2iyIm {a — ﬁ})]
—exp [—2(\042—}—|B|2—2i'ylm{a—ﬁ})]). (26)

8
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Figure 6. Probability Py of violation for the state ECS1 as a function of coherent amplitude -y considering (a) [(b)] [generalized]
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Figure 7. Probability Py of violation for the state ECS2 as a function of coherent amplitude -y considering (a) [(b)] [generalized]
BW scenario and complex amplitudes.

On the other hand, we get the Wigner function of the triplet-like state ECS2 in the form

Wecs, (o, ) = /\% (exp [72 (|O‘|2 +18]* — 2yRe{a — 8} +2fyz)}

+exp =2 (Jaf +[B]” + 2yRe{a — 8} +27°)]

+ exp [—2 (\oz|2 + |8 + 2iyIm {a — 5})]
[_

+ exp 2(\a|2+|5|2—2i71m{a—5})]>. (27)

As documented in figures 6 and 7, the probability Py of violation grows rapidly with the increasing
amplitude ~y for both types of states and then it remains constant. It reaches the values around 0.98 (0.999)
for ECS1 (ECS2) when = 5 assuming BW approach with § =0.001. As the sampling range described by §
increases, the maximum achievable values of Py decrease, especially for ECS1.

The generalized BW approach provides similar results as the BW approach, only the attainable values of
Py are smaller [compare the curves in figure 6(b) with those in figure 6(a) and also the curves in figure 7(b)
with those in figure 7(a)].

Thus the BW approach is superior above the generalized BW approach and it allows to detect nonlocal
correlations with randomly set measurement amplitudes in the entire range of . From this point of view, it
is much more efficient than the pseudospin approach.
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Figure 8. Probability Py of violation for the state HS as a function of coherent amplitude ~ considering (a) [(b)] [generalized]
BW scenario and complex amplitudes.

(c) For the hybrid state HS the above conclusions do not apply. Its Wigner function is determined in the
form [41]

Wi (6,0,5) = %exp [—2]8—a)?] (1 — /3 cos (20)) + % exp 28+ ] (1 + /3 cos (29))
+ ? exp [—2|B|*] sin (20) cos (2 (¢ + 2Im {Bar*})) . (28)

The values of probability Py of violation, determined by equation (13), lie below 0.2, as evidenced in figure 8.
This means that they are considerably smaller than the values of Py reached in the pseudospin approach.

4, Conclusions

We have investigated the probability of violation of the CHSH inequalities under random measurements
considering the probability as an indicator of nonlocal correlations. Contrary to the current literature
devoted to discrete systems, we have analyzed specific continuous-variable and hybrid states. We have
investigated the violation of the Bell inequality based on dichotomic observables using the pseudospin and
the Wigner-function formalisms.

The pseudospin operator can be understood as the limiting case of the Gisin—Peres observable, ensuring
the maximal violation of the CHSH inequality for the original Einstein—Podolsky—Rosen (EPR) state. In
contrast, the original EPR state cannot maximally violate the CHSH inequality within the
Banaszek—Woodkiewicz formalism or even its generalization that uses the Wigner function. However, the
investigations of nonlocality based on the Wigner function are very important because of their realistic
practical experimental realizations.

Our results have revealed that the Banaszek—Woodkiewicz formalism based on the Wigner functions
gives high probabilities of CHSH-inequality violation under random measurements, much higher than those
achieved in the pseudospin formalism. Specifically, the probability reaches the value of 0.78 for the
two-mode squeezed vacuum state. For the entangled coherent states the probabilities are even greater
approaching 1. This contrasts with the probabilities for hybrid states that lie below 0.2. For the hybrid states,
the pseudospin formalism is much more efficient.

Random sampling allows for much simpler experimental procedures for the detection of the Bell
nonlocality: The detection devices do not need initial setting and calibration and also no apriori information
about the form of the state density matrix is needed. In the sense that the measurement settings do not need
to be tailored to the state being tested. Thus, our method can be applied in unstable experimental
environments where the discussed requirements are difficult to reach. This opens the door for much simpler
and thus more efficient detection of the Bell nonlocality.
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