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Abstract: The Bronnikov generalization of the Fisher naked singularity and Dilatonic
black hole spacetimes attracts high interest, as it combines two fundamental transitions
of the solutions of Einstein equations. These are the black hole/wormhole “black bounce”
transition of geometry, and the phantom/canonical transition of the scalar field, called
trapped ghost scalar, combined with an electromagnetic field described by a non-linear
electrodynamics. In the present paper, we put restrictions on the parameters of the Fisher
(wormhole) and Dilatonic (black hole or wormhole) regularized spacetimes by using
frequencies of the epicyclic orbital motion in the geodesic model for explanation of the
high-frequency oscillations observed in microquasars or active galactic nuclei, where stellar
mass or supermassive black holes are usually assumed.

Keywords: Fisher and Dilatonic regularized spacetime; quasiperiodic oscilation; microquasars;
supermassive black holes

1. Introduction

There is an increasing interest in so-called regularized spacetimes implied by a natural
expectation that the effects of quantum gravity have to modify the solutions of the classical
Einstein equations by substituting the spacetime singularities for some regularly behaving
regions. Nevertheless, this general belief leads to significantly different results, if different
approaches to quantum gravity are applied [1]. Moreover, the regularization is possible
even in the framework of the general relativity, if one considers solutions of Einstein
equations combined with some non-linear electrodynamics [2–8].

The simplest way of regularization due to the expected effects of quantum gravity
was for the case of standard general relativistic black hole spacetimes, namely the singular
Schwarzschild spacetime with mass parameter M, proposed by Simpson and Wiser in [9],
by introducing a regularization parameter into the spherical radial coordinate r due to
the relation r(u) =

√
u2 + b2, where u is a new coordinate substituting r, and b is the

regularization parameter. The regularized spacetime then represents a regular black hole
for b < 2M, an extremal black hole for b = 2M, and a wormhole for b > 2M. A regular black
hole has two horizons at uh± = ±

√
4M2 − b2; the hypersurface u = 0, giving a minimum

of the scale factor r(u), represents the so-called “black bounce”, not a throat, as u is the
temporal coordinate under the inner horizon uh−

1. The extremal black hole has a single
horizon at u = 0. In the wormhole case, there are no horizons of the regularized spacetime.

A widely discussed alternative to the Simpson–Visser quantum gravity regularization
is represented by the black hole–white hole transition related to the loop quantum gravity

Universe 2025, 11, 99 https://doi.org/10.3390/universe11030099

https://doi.org/10.3390/universe11030099
https://doi.org/10.3390/universe11030099
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://doi.org/10.3390/universe11030099
https://www.mdpi.com/article/10.3390/universe11030099?type=check_update&version=1


Universe 2025, 11, 99 2 of 23

models [17,18]. Here, we focus on the solutions connected to the black hole–wormhole
(BH/WH) Simpson–Visser transition [9], which was generalized to the charged [19] and
rotating [20,21] black hole spacetimes, including a wide range of astrophysical phenomena,
as echoes in quasinormal modes, gravitational lensing, or accretion processes, studied in
such spacetimes; see, e.g., refs. [22–28]. Of course, in the more general spacetimes, the
naked singularity solutions are regularized using the Simpson–Visser method.

The crucial point of regularized spacetimes with a BH/WH transition is finding the
proper stress–energy tensors composed of physical fields that could represent a relevant
source of such spacetimes. Properties of the sources giving the spacetimes demonstrating
the BH/WH transitions were discussed in [1,29]. It was shown that in the framework of
general relativity, the sources should combine a self-interacting minimally coupled phantom
scalar field and an electromagnetic field considered under non-linear electrodynamics [1];
the combination of the scalar and electromagnetic fields is necessary in order to obtain a
physically relevant stress–energy tensor, but the scalar field cannot be generally a canonical
field, as its phantom character is necessary to obtain the black bounce.

In [1], regularization of the singular Fisher’s solution with a massless canonical scalar
field [30], corresponding to a naked singularity spacetime that is sometimes called JNW
naked singularity [31], and special Dilatonic black hole solutions with interacting massless
scalar and electromagnetic fields [32–34] has been constructed, where the scalar field
has the phantom form in the strong field regime and a canonical form in the weak field
regime. Detailed discussion of the character of the scalar and electromagnetic fields and
the resulting stress–energy tensor can be found in [1,29].

Although the regularized Fisher and Dilatonic spacetimes have a non-standard con-
struction because of the combination of the specific scalar and electromagnetic fields,
they can be seriously considered black hole mimickers because of the extreme gravity
represented by the spacetime geometry. For this reason, it is quite relevant to consider
astrophysical consequences of their possible existence, and it is quite natural to confront
the predictions of astrophysical processes in the corresponding backgrounds with the phe-
nomena observed in sources where the existence of black holes is usually assumed. These
are the microquasars, binary systems where stellar mass black holes are assumed [35–37],
or active galactic nuclei (quasars), where supermassive black holes are assumed in their
central part [38]. It is very important and has to be stressed that quasars can be promoted
into the role of standard candles and clocks in cosmology [39–41]. Here, we study the
spacetime geometry and its influence on the accretion Keplerian disks that can be consid-
ered uncharged, focusing attention on the epicyclic motion around stable circular geodesics
representing the motion of hot spots on the Keplerian disks.

We put some fundamental restrictions on the spacetime parameters of the regularized
Fisher and Dilatonic backgrounds by using the so-called geodesic model of the twin HF
QPOs of X-ray radiation having fixed frequencies at a rational (usually 3:2) ratio [42,43]
coming from accretion disks orbiting central objects in microquasars [37] and active galactic
nuclei [38]. Of course, the HF QPO data are more abundant from the atoll sources or
Z-sources where neutron stars are assumed [44,45], but the regularized Fisher and Dila-
tonic spacetimes cannot be considered neutron star mimickers, as they do not contain
the standard nuclear matter as the source of spacetime geometry and are endowed by
extremely strong magnetic fields. Therefore, we do not consider them here; furthermore,
the observed HF QPOs in neutron star systems have quite different characters as they
evolve with time [46].

We consider only the resulting spacetime structure of the regularized Fisher and
Dilatonic backgrounds; we do not consider the influence of the related scalar and elec-
tromagnetic fields, as we focus on the behavior of uncharged matter of thin accretion



Universe 2025, 11, 99 3 of 23

disks. We study the geodesic structure of these spacetimes—we determine their circular
geodesics and frequencies of the epicyclic oscillatory motion of test particles around stable
circular geodesics. The frequency of the orbital motion and the related epicyclic radial and
latitudinal frequencies are basic ingredients of the geodesic model of HF QPOs [42]2.

Throughout this paper, we use space-like signature (−,+,+,+), and a geometric
system of units in which G = c = 1; we restore them when we need to compare our results
with observational data. Greek indices run from 0–3, Latin indices from 1–3.

2. Regularized Spacetimes

Spherically symmetric regularized spacetimes describing a regularized black hole
or naked singularity can be expressed in general by the line element taking in the
Schwarzschild-like coordinates from the form

ds2 = − f (x)dt2 +
1

f (x)
dx2 + r2(x)

(

dθ2 + sin2 θ dϕ2
)

, (1)

where x is the so-called quasiglobal radial coordinate introduced in [50]. Here, we consider
two kinds of these spacetimes.

2.1. Regularized Fisher Spacetime

In 1948, I.Z. Fisher presented a static, spherically symmetric solution to Einstein’s
equations in the presence of a massless scalar field [30]. This solution demonstrates how a
scalar field modifies spacetime curvature and reduces to the Schwarzschild solution when
the scalar field is absent. The Fisher spacetime was rediscovered by Janis, Newman, and
Winicour in [31]; therefore, it is also known as the JNW naked singularity spacetime.

Fisher ordinary spacetime [30] considers the scalar mesostatic field of a point source
with regard to spacetime curvature caused by this field. It was demonstrated that at a
small distance from a source, the gravitational effects are so large that they cause significant
changes in the behavior of the meson field. In particular, the total energy of the static field
diverges logarithmically [30]. In the Fisher solution, the spacetime line element and the
scalar field Φ take the form [30]

ds2 = −
(

1 − 2k

x

)a
dt2 +

(

1 − 2k

x

)−a
du2 + x2

(

1 − 2k

x

)1−a
dΩ

2, (2)

Φ = ± (1 − a2)1/2

2
ln(1 − 2k

x
) (3)

where k > 0 and a ∈ (−1, 1) are integration constants, such that M = ak has the meaning of
the gravitational Schwarzschild mass, and C = ±k

√
1 − a2 is a scalar charge. As we have

to consider solutions with a positive gravitational mass M, we have to restrict to values
of 0 < a < 1 in order to fulfil this condition under the restriction of k > 0. In the rest of
this paper, we will suppose M = 1, i.e., x → x/M, a → a/M and k → k/M = 1/a. The
radial coordinate x in Equation (2) ranges from 2k to infinity, x = 2k corresponds to a naked
singularity.

The metric regularized in the Simpson and Visser’s way demonstrates the replacement
of the difference x − 2k = y with the expression

√
u2 + l2, where u is a new radial coordi-

nate, ranging in u ∈ R, and l > 0 is a new (Simpson–Visser) constant with the dimension
of length. The Fisher metric regularized in this way then takes the form [1]

ds2 = −
( y

y + 2k

)a
dt2 +

( y

y + 2k

)−a
du2 + y1−a(y + 2k)1+adΩ

2, y =
√

u2 + l2, (4)
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being regular at all u ∈ R and asymptotically flat at u → ±∞. The line element given by
Equation (4) describes a static traversable wormhole (see the radial profile of the lapse
function in Figure 1) with a Schwarzschild mass M = ak at both flat asymptotics u → ±∞

and a throat at u = 0 with the radius

rth = l(1−a)/2(l + 2k)(1+a)/2. (5)

This regularized metric is not a solution of GR with a massless scalar field, but it
can be related to a scalar field coupled to an electromagnetic field governed by non-
linear electrodynamics, as demonstrated in [1]. We are not going into these details here,
as we focus on the properties of the spacetime influencing uncharged accretion matter
(test particles).
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Figure 1. Lapse function f (u) of the regularized Fisher spacetime given for various parameters a

and l.

2.2. Regularized Dilatonic Spacetime

Originating from the Einstein–dilaton theory [34], the Dilatonic spacetime incorporates
a dynamical scalar (dilaton) field arising in string theory. It generalizes black hole solutions
and reverts to Schwarzschild or Reissner–Nordström geometry when the dilaton coupling
is turned off. Dilatonic spacetimes are special solutions to the Einstein equations with a
material source composed from a massless scalar field interacting with an electromagnetic
field, with parameter λ representing intensity of the coupling of the scalar and electro-
magnetic fields [1]. The special solution considered for the Dilatonic fields related to the
string theory has the metric coefficients related to the line element given by Equation (1)
determined by the expressions [33,34,51]

f (x) =
(

1 − 2k

x

)(

1 +
p

x

)−2/(1+λ2)
, r2(x) = x2

(

1 +
p

x

)2/(1+λ2)
, (6)

with the scalar (Φ) and electric (E⃗) fields given by

Φ = − λ

1 + λ2 ln
(

1 +
p

x

)

, 2E⃗2 = −FµνFµν =
Q2

r4(x)
e−4λΦ, (7)

where k > 0 and Q (the electric charge) are integration constants and metric parameter is
their combination given by the relation

p =
√

k2 + Q2(1 + λ2)− k > 0. (8)

Because we are concerned with the motion of uncharged matter, we are not discussing
here the behavior of the related scalar and electromagnetic fields—for detailed discussion
see [1].
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We shall focus on the case λ = 1 related to the string theory [33,34], where the line
element takes the simple form

ds2 = −1 − 2k/x

1 + p/x
dt2 +

1 + p/x

1 − 2k/x
dx2 + x(x + p)dΩ

2. (9)

Then, the Schwarzschild mass M = k + p/2 = Q2/p, the horizon is located at x = 2k,
and a singularity is located at x = 0. The global causal structure is the same as that of the
Schwarzschild space-time. In the rest of this paper, we will suppose M = 1, i.e., x → x/M,
p → p/M, and k → k/M = 1 − p/2.

Regularization of the Dilatonic spacetime is realized by replacing dx 7→ du and
x 7→

√
u2 + l2, where l > 0 is again the regularization parameter of dimension of length.

The line element can be then expressed in the form

ds2 = −1 − 2k/x

1 + p/x
dt2 +

1 + p/x

1 − 2k/x
du2 + x(x + p)dΩ

2, x =
√

u2 + l2. (10)

Clearly, there is u ∈ R, and the regularized Dilatonic spacetime given by Equation (10)
is asymptotically flat at x → ±∞. The regular Dilatonic metric corresponds to three possible
types of spacetime (see the radial profile of the lapse function illustrated in Figures 2 and 3):

(i) If l < 2k, a regular black hole with two horizons at u = ±
√

4k2 − l2 and a black
bounce at u = 0, see Figure 3;

(ii) If l = 2k, a regular extremal black hole with a single extremal horizon at u = 0 (a
black throat [29]);

(iii) If l > 2k, a symmetric traversable wormhole with a throat at u = 0; the throat radius
is determined by the relation rth =

√

l(p + l).
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Figure 2. Lapse function f (u) of the regularized Dilatonic spacetime is given for various parameters
p and l.
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Figure 3. Horizon position of the regularized Dilatonic spacetimes is given in dependence on the
regularization parameter l and the spacetime parameter p in the first and the second columns. In
the third column, the combinations of parameters p and l for which a horizon exists are shown
(shaded area).

The regularized solution is related to scalar and electromagnetic fields modified in
comparison to those related to the original solution—these modifications are demonstrated
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in [1] and will not be considered here, being irrelevant for the scope of the present paper
where only motion of uncharged matter is considered.

3. Circular Geodesics in the Regularized Spacetimes

In order to test the parameters of the regularized Fisher and Dilatonic spacetimes,
we study the geodesic motion of test particles in these spacetimes and find the circular
geodesics of these spacetimes that govern the character of radiating accretion disks, and thus
enable comparison with data obtained by observations of X-ray emission from microquasars
and active galactic nuclei.

The geodesic motion in a given spacetime is determined by the metric tensor through
the equations of geodesic motion

d2xµ

dτ2 + Γ
µ
ρσ

dxρ

dτ

dxσ

dτ
= 0 (11)

that are accompanied by the norm condition for test particles having rest mass m, or for
photons (or other massless particles) having m = 0:

uµuµ = gµν uµuν = −δ (12)

where the parameter δ = m2.
Because of the spherical symmetry of the explored spacetimes, the geodesic mo-

tion is fixed to central planes and for simplicity, we can choose the equatorial plane at
θ = π/2 = const. Due to the additional temporal and axial spacetime symmetries, two
constants of the motion exist along with the fixed central plane—namely, stationarity of
the spacetime implies conservation of the covariant energy E and axial symmetry implies
conservation of the axial angular momentum L. It is convenient for test particles with
rest mass m to introduce the specific energy and the specific axial angular momentum by
the relations

E =
E

m
=

−pt

m
L =

L

m
=

pϕ

m
. (13)

3.1. Effective Potential

In order to study the geodesic motion and to find the circular geodesics of the consid-
ered spacetimes, we use the standard method of effective potential that is given in relation
to the conserved axial angular momentum of the moving particle [52]:

Veff = f (r)

(

1 +
L2

gϕϕ

)

(14)

Note that for the motion of massless particles (m = 0), the effective potential is related
to the impact parameter b = L/E [52]; we do not consider motion of massless particles in
the present paper.

Now, we can give the effective potential explicitly for both the considered regularized
spacetimes.

For the regularized Fisher spacetime, the effective potential takes the following form:

VF
eff =





a

a + 2√
l2+u2





a
[

L2
(

l2 + u2
) a−1

2
(
√

l2 + u2 + 2
)−a−1

+ 1
]

(15)

The behavior of this effective potential is characterized in Figure 4. Notice that the
effective potential is decreasing with increasing parameter l.
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Figure 4. Effective potentials of test particles moving in the regularized Fisher spacetimes are given
for characteristic values of the length parameter l and the spacetime parameter a.

For the regularized Dilatonic spacetimes, the effective potential takes the follow-
ing form:

VD
eff =

(x + p − 2)
(

px + l2 + L2 + l2)

x(x + p)2 (16)

The behavior of this effective potential is characterized in Figure 5. Notice that the effective
potential is decreasing with increasing parameter l.
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Figure 5. Effective potentials of test particles moving in the regularized Dilatonic spacetimes are
given for characteristic values of the length parameter l and spacetime parameter p.

3.2. Circular Geodesics

The circular geodesics are determined by local extrema of the effective potential
implied by the condition

dVeff

du
= 0. (17)

Using this general condition, we can find the radial profiles of the particle (quadratic)
specific axial angular momentum in both the considered regularized spacetimes in the
following form:

L2
c(F)(u, l, a) = −

a
[

(y + 4)y2 + 4y
]

y−a(y + 2)a

a2y − ay2 + 2(y + 1)
,

L2
c(D)(u, l, p) =

2x2(x + p)

p(3x − 2)− 6x + p2 + 2x2 . (18)

These radial profiles are illustrated in Figure 6. Notice that the radial profiles in the
Fisher spacetimes depend on the spacetime parameters weakly in comparison with the
radial profiles in the Dilatonic spacetimes, demonstrating significantly stronger variability.

The covariant specific energy of a particle following the circular geodesics is deter-
mined by the value of the effective potential at the extremal point, given by specific axial
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angular momentum.The radial profiles of E2 are given for the regularized Fisher and
Dilatonic spacetimes by the relations

E2
c(F)(u, l, a) =

(

1 − 2
ay

)a

y(y + 2)[a2y − ay2 + 2(y + 1)]
×

{

l2
[

a2(y + 2)− a
(

3y + 2u2 + 4
)

+ 2(y + 3)
]

− au4 − al4+

u2
[

a2(y + 2)− a(3y + 4) + 2(y + 3)
]

− 4(a − 1)y
}

,

E2
c(D)(u, l, p) =

(x + p − 2)
[

(p − 2)x + x2](3px + p2 + 2x2)

x(x + p)2[p(3x + p − 2)− 6x + 2x2]
. (19)

The radial profiles of the covariant specific energy are illustrated in Figure 7 and demon-
strate similar differences as in the case of radial profiles of the specific angular momentum.
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Figure 6. The radial profiles of the specific angular momentum Lc of test particle at circular orbits for
characteristic values of the parameter l and a (p).
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Figure 7. The radial profiles of the specific energy Ec of test particle at circular orbit for characteristic
values of the parameter l and a (p).
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3.2.1. Regions of Existence

The regions allowing for the existence of circular geodesics are characterized in
Figures 8 and 9. We can see that in the regularized Fisher spacetimes, the circular or-
bits can exist at all allowed radii if the parameter a < 0.5, while a circular null geodesic
exists for a > 0.5—it is reaching maximal radius at ucng = 1 for the limiting value a = 1 and
l = 0; for increasing l and fixed a, the radius of the circular null geodesic is decreasing to
ucng = 0 at l = 1. The circular geodesic exists at all u > 0 for l > 1 (and a = 1). We can thus
see that the special annular region where no circular geodesic exists, being surrounded by
these orbits, observed in the original Fisher naked singularity spacetimes [53,54], similarly
to the case of the Kehagias–Sfetsos naked singularity spacetimes of the Horava gravity [55],
are not present due to the regularization procedure. In the Dilatonic spacetimes, the circular
null geodesics exist for p < 2. There is ucng = 3 for p = 0 and l = 0 (corresponding to the
Schwarzschild geometry), while with fixed p = 0, it is reaching ucng = 0 for l = 3. For
p = 2, we have the limiting value of ucng = 0 obtained for p = 2 and l = 0. For p > 2, the
circular geodesic exists at all u > 0. Again, there is no annular region forbidding the exis-
tence of circular geodesics in regularized Dilatonic spacetimes. Note that the circular null
geodesics do not correspond to the photon spheres because of the existence of non-linear
electromagnetic fields in the regularized spacetimes [47–49].
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Figure 8. Regions of existence of circular geodesics (shaded) in the regularized Fisher and Dilatonic
spacetimes are given in the u vs. l space for various parameters a and p.
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3.2.2. ISCO

The marginally stable (innermost) circular geodesics (ISCOs) of the considered regu-
larized Fisher and Dilatonic spacetimes are determined by the condition

d2Veff(r)

dr2

∣

∣

∣

∣

r=rc

= 0. (20)

This condition is related to the circular orbits. For the regularized Fisher spacetimes,
the condition takes the form

(

1 − 2
ay

)a

×
{

−32(−1 + a)y + al6[−6 + a(2 − 4a + y)]

+ au6[−6 + a(2 − 4a + y)] + l2
{

80 + 88y + 8u2(11 + 2y)

+ 4a4[2y + u2(4 + y)
]

− 2a
[

8(5 + 4y) + u2(44 + 9u2 + 26y)
]

+ a2
[

16 + 64y + u2
(

88 + 16y + 3u2(2 + y)
)]

− 4a3
[

4(1 + y) + u2(10 + 3u2 + 8y)
]}

+ l4
{

44 + 8y + a
[

− 2(22 + 9u2 + 13y)

+ a
(

44 + 8y + 3u2(2 + y) + 2a2(4 + y)− 4a(5 + 3u2 + 4y)
)]

}

+ 2u4
{

22 + 4y + a
[

− 22 − 13y + a
(

22 + 4y + a(−10 + 4a − 8y + ay)
)]

}

+ 8u2
{

10 + 11y + a
[

− 2(5 + 4y) + a
(

2 + 8y + a(−2 − 2y + ay)
)]

}

}

= 0. (21)

For the regularized Dilatonic spacetime, we arrive to the form

l4 + p4 + u4 − 6u2x + p2(6u2 − 8x
)

+ 4pu2(x − 3) +

p3(4x − 2) + 2l2[3(p − 2)p + u2 − 3x + 2px
]

= 0. (22)

Results of numerical calculations giving the ISCO radius are illustrated for characteris-
tic values of the spacetime parameters in Figure 10.
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Figure 10. ISCO position dependent on parameter l for characteristic values of the parameter a (p).
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From our analysis, it follows that the position of the ISCO in the Fisher spacetime and
the Dilatonic spacetime disappears for certain combinations of the parameters l and a (p).
This is because stable circular orbits can exist at any radius, and there is no limitation on
their existence. For Fisher spacetime, the ISCO ceases to exist approximately for a ≲ 0.5.
On the other hand, for Dilatonic spacetime, the ISCO disappears for values greater than
approximately p ≳ 2. This is evident from Figures 6 and 7, where no minima of L and E
exist for relevant values of the spacetime parameters.

4. Epicyclic Oscillations Around Stable Circular Geodesics of the
Regularized Spacetimes

In the linear perturbation regime, the radial (δu(τ)) and latitudinal (δθ(τ)) epicyclic
motion around stable circular orbits is governed by the equation of the harmonic oscilla-
tor [42]

δü + ω̄2
r δu = 0, δθ̈ + ω̄2

θ δθ = 0, (23)

where ω̄r (ω̄θ) represents the angular velocity of the radial (latitudinal or vertical) epicyclic
oscillations as measured at the proper time τ of the oscillating particle. These angular
frequencies are determined by the Hamiltonian separated into its dynamic and potential
parts [56]

H = Hdyn + Hpot, (24)

where

Hdyn = 1
2

(

guu p2
u + gθθ p2

θ

)

, (25)

Hpot = 1
2

(

gttE2 + gϕϕL2 + m2
)

, (26)

and are given by the relations

ω̄2
r =

1
grr

∂2Hpot

∂r2 , (27)

ω̄2
θ =

1
gθθ

∂2Hpot

∂θ2 .

The derivations are calculated by using relations for energy E = Ec and axial angular
momentum L = Lc at the positions of the stable circular orbits.

The orbital angular frequency of the circular motion is determined by the relation

ω̄ϕ =
L

gθθ
. (28)

Equation (27) gives angular frequencies as measured by a local observer related to
the oscillating particle, but we have to find the angular frequencies as measured by static
observers at infinity who represent real observers observing the oscillations from a large
distance. Therefore, we rescale the locally measured angular frequencies by a corresponding
redshift factor related to the orbital motion along the stable circular geodesic at rc and find

ω =
ω̄

−gttE . (29)
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In order to obtain the observed frequencies in the standard units, we have to use the
transformation

ν =
1

2π

c3

G M

ω̄

−gttE , (30)

giving expressions that could be directly used in fitting to observational data.
Using relations (4) and (10), (18), and (26) in Equation (27), we arrive at the formulas

for the epicyclic frequencies measured in regularized Fisher spacetimes in the form

ω̄θ = ω̄ϕ =

√

a(2y + y2)y
a
2−1(y + 2)−a−2

y − 2a + 1
, (31)

ω̄2
r =

au2
(

y
y+2

)a

y2(y + 2)4(−2a + y + 1)
×

{

l4 + 2l2
(

u2 + 3y + 7
)

+ 4a2
(

y2 + 4y + 4
)

− 6a
[

(y + 5)y2 + 8y + 4
]

+

u4 + 6u2y + 14u2 + 16y + 8
}

, (32)

where y =
√

u2 + l2, as defined in Equation (4). In the case of the regularized Dilatonic
spacetime, we arrive at the formulas

ω̄θ = ω̄ϕ =

√

p + 2
√

2[p(x2 − 4x) + x2(x − 3)− p2]
1/2 , (33)

ω̄2
r =

u2(p + 2)

2x3(x − 2)(p + x)4[p(x2 − 4x) + x3 − 3x2 − p2]
×

{

−2p4(x − 2) + 10p3
(

2x − x2
)

+ p2x2
(

x2 − 22x + 40
)

+

2px2
[

l2(x − 11) + u2(x − 11) + 18x
]

+ x4
(

x2 − 8x + 12
)}

. (34)

where x =
√

u2 + l2, as defined in Equation (10).
The resulting radial profiles of the observed radial and latitudinal (orbital) frequencies

are presented in Figures 11 and 12. As is usual for the spherically symmetric spacetimes,
the angular frequency of the latitudinal epicyclic oscillations equals the angular frequency
of the orbital motion.

Since the twin HF QPOs observed in microquasars and active galactic nuclei are
mainly detected with the frequency ratio very close to 3:2, we show in the presented
radial profiles the radius of the spacetime where the ratio of the frequencies of the
radial and vertical (latitudinal) epicyclic oscillations takes the ratio 3:2, denoted as
u3:2(F) or u3:2(D) for the regularized Fisher or Dilatonic spacetimes, and compare this
radius with the radius corresponding to the frequency ratio 3:2 for oscillations in the
Schwarzschild spacetime.

Because of astrophysical relevance of the radius where the frequency ratio 3:2 occurs,
we demonstrate dependence of the position of the radii with frequency ratio 3:2 on the
spacetime parameters of the considered spacetimes in Figure 13.

We can see that with increasing parameter l, the frequency radius u3:2, where ratio
νU:νL = 3:2 occurs, is increasing. For l > 40, the radius u3:2 > 40M for both spacetimes is
seen in Figure 13.
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Figure 11. Epicyclic frequencies in regularized Fisher spacetime with M = 1 for characteristic values
of parameters l and a.
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Figure 12. Epicyclic frequencies in regularized Dilatonic spacetime with M = 1 for characteristic
values of parameters l and p.
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Figure 13. Position of radius where epicyclic frequencies are in ratio νθ :νr = 3:2 in the Fisher and
Dilatonic regularized spacetimes with characteristic values of parameters a (p)e.

5. Restrictions on the Regularized Spacetime Parameters Due to Fits to
the HF QPOs Observed in Microquasars and Active Galactic Nuclei

In this section, we compare astrophysical data coming from X-ray observations of twin
HF QPOs in some microquasars and active galactic nuclei with the geodesic model of twin
HF QPOs applied to the regularized Fisher and Dilatonic spacetimes. The comparison with
the twin HF QPO data enables us to obtain restrictions on the parameters of the spacetimes
under consideration, which are well founded by observations.

5.1. Geodesic Model of HF QPOs

In some microquasars, we observe twin HF QPOs in the X-radiation coming from
their accretion disks [37,57,58]. The frequency ratio of the twin (“upper” and “lower”)
oscillations is observed with the small number ratios 3:2, 2:1, 4:3, 3:1, etc. However, a
large majority of the twin HF QPOs observed in microquasars is in the frequency ratio
3:2 [37,59]. Twin HF QPOs demonstrating the same frequency ratio are observed also in
some active galactic nuclei [38]. Magnitudes of the observed frequencies correspond to
frequencies of the orbital motion of accreted uncharged matter in close vicinity of the black
hole considered in the center of the accretion disk in both microquasars, where stellar mass
black holes are assumed, and in active galactic nuclei, where supermassive black holes
are assumed. Therefore, the community of astrophysicists accepts as realistic the geodesic
model of HF QPOs assuming the observed frequencies related to proper combinations of
the orbital frequency of the circular geodesic motion and the frequencies related to the
epicyclic oscillatory motion around stable circular geodesics [27,42,60,61].

The relativistic precession variant of the geodesic model [62] assumes a blob of a thin
accretion disk orbiting the black hole and identifies the observed HF QPO frequencies νu, νl ,
with a combination of the orbital and epicyclic frequencies given by the relations

νu = νφ,

νl = νφ − νr. (35)

Other variants of the geodesic model, inspired by the Rezzolla model [63], assume
oscillations of a torus. If the torus is slender, then the frequencies of the torus oscillations
are equal to the frequencies of the epicyclic oscillation in the torus center [61,64]3.

However, the twin HF QPOs observed in microquasars demonstrate strong stability,
i.e., in different observations they appear or reappear with the same magnitudes [37,57]. As
in the geodesic model, the frequencies depend on the position of the oscillating hot spot or
the slender torus, we have to find a reason why the position related to the fixed observed
frequencies is the relevant one. A natural idea of this kind was proposed by Abramowicz
and Kluzniak and is related to the resonance phenomena [60,75–77]. The resonance variant
of the geodesic model assumes in its simplest form a non-linear resonance of the radial and
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vertical oscillations of a slender torus, with frequencies related to the twin HF QPOs in the
elementary form

νu = νθ ,

νl = νr. (36)

For more complex resonance variants of the geodesic model, see [61], and for more
complex treatment of the resonant phenomena, see [42]. Furthermore, if a parametric
resonance is relevant, the 3:2 resonance is the strongest one [78].

For the above-mentioned reasons, the resonance variant of the geodesic model is
widely used for fitting the observational data from microquasars or active galactic nu-
clei [79,80] to test various models of black holes, naked singularities, or wormholes, con-
structed under various alternative models of gravity, or in GR combined with non-linear
electrodynamics, or for black holes or other central objects in various surroundings or
under various influences.

Here, we apply the simplest resonance variant of the geodesic model in fitting data
from both microquasars and active galactic nuclei in order to restrict the parameters of the
regularized Fisher and Dilatonic spacetimes.

5.2. Comparison of Observational Data from Microquasars with the Geodesic Model of Twin HF
QPOs Applied for the Regularized Spacetimes

Here, we focus on fitting the twin HF QPO data observed in microquasars. The
astrophysical data are taken from the following three sources: GRG 1915-105, XTE 1530-564,
and GRO1655-40, presented in Table 1 [37,81].

Table 1. Observed twin HF QPO data for the three microquasars, and the restrictions on mass of their
central object.

Source νU [Hz] νL [Hz] M/M⊙

GRO 1655-40 447–453 295–305 6.03–6.57
XTE 1550-564 273–279 179–189 8.5–9.7
GRS 1915+105 165–171 108–118 9.6–18.4

It should be noticed that sole twin peaks with exact ratio 3:2 are surely present only at
GRO 1655-40 microquasar, but some doubts on their presence in XTE 1550-564 are given
in [35]. More complex varieties of frequencies and their ratios are observed in the case
of the GRS 1915+105 source—modified estimates of the mass of the central object in this
source are mentioned in [82].

The possible fits are shown in Figure 14, which illustrates the fits for the regularized
Fisher wormhole spacetimes (left), and separately the fits for the Dilatonic spacetimes
describing both black holes and wormholes (right) by using the profile of the upper
frequency given by the resonant variant of the geodesic model.

It is evident that for both the regularized Fisher wormhole spacetimes and Dilatonic
black hole or wormhole spacetimes, we can always find a combination of the spacetime
parameters that enables fitting the data from the three microquasars.

The constraints on the parameters of the regularized Fisher and Dilatonic spacetimes
following from the fitting procedure related to the resonance variant of the geodesic model
of HF QPOs are determined by the condition that at least one of the microquasar data are
met by the curve corresponding to the applied variant of the geodesic model by fitting the
selected three microquasar data. The constraints are given by the shaded region displayed
in Figure 15. We can see that in both spacetimes, the range of allowed values of the
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regularization parameter is restricted to l < 3. In the case of Dilatonic spacetime, the
wormhole case is the proper one for the fitting.
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Figure 14. Dependence of the upper frequency on the mass of the central object compared to three
selected observed microquasars for Fisher and Dilatonic generalized spacetimes for characteristic
values of parameters l, a, and p.
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Figure 15. Shaded area gives limits on the parameters a and p and l of Fisher (on the left panel) and
Dilatonic spacetime (on the right panel) giving suitable fit at least on one of three selected microquasars.

5.3. Comparison of Observational Data from Active Galactic Nuclei with the Geodesic Model of HF
QPOs Model Applied to the Regularized Spacetimes

In this section, we focus on the observational HF QPO data from active galactic nuclei
where usually a supermassive black hole is assumed. We use the upper observed frequency
again, and for clarity divide the sources into two sets.The list of these datasets is provided
in Table 2 [38].
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Table 2. Observations of QPOs around supermassive BHs [38].

Number Name BH Spin log MBH (M⊙) fUP (Hz)

1 RE J1034+396 0.998 6.0+1.0
−3.49 2.7 × 10−4

2 1H0707-495 >0.976 6.36+0.24
−0.06 2.6 × 10−4

3 MCG-06-30-15 >0.917 6.20+0.09
−0.12 2.73 × 10−4

4 Mrk 766 >0.92 6.82+0.05
−0.06 1.55 × 10−4

5 ESO 113-G010 0.998 6.85+0.15
−0.24 1.24 × 10−4

6 ESO 113-G010b 0.998 6.85+0.15
−0.24 6.79 × 10−5

7 1H0419-577 >0.98 8.11+0.50
−0.50 2.0 × 10−6

8 ASASSN-14li >0.7 6.23+0.35
−0.35 7.7 × 10−3

- TON S 180 <0.4 6.85+0.5
−0.5 5.56 × 10−6

- RXJ 0437.4-4711 - 7.77+0.5
−0.5 1.27 × 10−5

- XMMU J134736.6+173403 - 6.99+0.46
−0.20 1.16 × 10−5

- MS 2254.9-3712 - 6.6+0.39
−0.60 1.5 × 10−4

- Sw J164449.3+573451 - 7.0+0.30
−0.35 5.01 × 10−3

The resulting fits (and parameters fitting at least one source) are shown in Figures 16–19,
respectively. It is clear that both the regularized Fisher and Dilatonic spacetimes are capable
of fitting all sources, with an appropriate choice of parameters, except the “island” source Sw
J164449.3+573451. Note that this special source is not available in other attempts for the fitting;
see, e.g., ref. [74].
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Figure 16. Dependence of the upper frequency on the mass of the central object compared to
selected observed supermassive black holes [9] for Fisher and Dilatonic regularized spacetimes for
characteristic values of parameters l and a (p).
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Figure 17. Limits on parameters a/p and l of Fisher and Dilatonic spacetime giving suitable fit on at
least one of the selected sources presented in Figure 16. Here is the lower range a little bit distorted
by the huge uncertainty of source RE J1034+396.
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Figure 18. Dependence of the upper frequency on the mass of the central object compared to
selected observed supermassive black holes [9] for Fisher and Dilatonic regularized spacetimes for
characteristic values of parameters l and a (p).
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Figure 19. Limits on parametesr a/p and l of Fisher and Dilatonic spacetime giving suitable fit on at
least one of the selected sources presented in Figure 18.

6. Discussion

Our study of the two spacetimes (Fisher, of naked singularity type, and Dilatonic
of black hole/naked singularity type), where regularization of the Simpson–Vissertype
implies the necessity of a specific combination of the scalar and electromagnetic fields and
transformation of these spacetime into the wormhole type (Fisher) or black bounce type
(Dilatonic) that can serve as black hole mimickers, was concentrated onto the epicyclic
motion around circular geodesics, and its application for explanation of twin HF QPOs
observed in microquasars and active galactic nuclei focuses on the case of the frequency
ratio 3:2.

Surprisingly, we have found that the radial profiles of the epicyclic frequencies in
both the considered spacetimes generally have the same character as in the standard
Schwarzschild spacetime, but the significant shift of the position of possible resonant
phenomena with the frequency ratio 3:2 is observed. This shift, corresponding to the
increase of the magnitude of frequencies that are in the 3:2 ratio in correspondence with
those related to the Schwarzschild black holes having the same mass, is observed in both
the spacetimes, and is more significant in the wormhole spacetimes. This effect is reflected
in the fitting procedure by the resonance variant of the geodesic model of HF QPOs, having
a positive role especially in the case of fitting the sources in active galactic nuclei.

The regularized Fisher and Dilatonic spacetimes demonstrate greater flexibility, accom-
modating ASASSN-14li within specific parameter ranges. The fitting by the regularized
Fisher spacetimes is particularly effective only for small range values about a ∼ 0.35 and
l ∼ 0.5. In the case of regularized Dilatonic spacetimes, one can fit the same source by lower
values of the parameter l (approximately l ∼ 0.3–1) and moderate values of p (around p ∼
2–3) in the wormhole regime.

As shown in Figures 17 and 19, the data points within the shaded area (these cor-
respond to the cases where the fit is possible at least for one of the selected sources)
demonstrate a high level of agreement of the theoretical predictions given by the reso-
nance variant of the geodesic model of HF QPOs, and the related assembly of observed
astrophysical data coming from the considered sources.

7. Conclusions

We have studied the circular orbits and related epicyclic oscillatory motion around
stable circular geodesics in order to obtain some restrictions on the parameters of the
regularized Fisher and Dilatonic spacetimes by fitting the twin HF QPO observational data
coming from the three standard microquasars and a selection of the active galactic nuclei.
By using the most common resonant variant of the geodesic model of the twin HF QPOs, we
have found that the restriction on the spacetime parameters of the considered spacetimes is
much more strict in the case of the microquasars, where only the wormhole spacetimes are
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selected as allowable. On the other hand, in the case of the data coming from the active
galactic nuclei, a much more extended range of allowed values of the spacetime parameters
has been found. Note that for microquasars, the regularized Fisher and Dilatonic spacetime
(more specifically, the Dilatonic wormhole spacetimes) provides successful fits for all
sources. For supermassive black holes, both the Fisher and Dilatonic spacetime fits all
sources except SwJ (island source). Of course, it would be interesting to compare our results
related to the simplest model based on the purely geodesic motion with optical phenomena
where the influence of electromagnetic field is reflected in the effective geometry governing
the photon motion [47–49]. We plan such a study in a forthcoming paper.
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Notes

1 The black bounces are contained in a variety of black holes that contain beyond their horizon an expanding asymptotically
isotropic universe [10–12]. In general relativity, or its extensions, such bounced solutions can be obtained, if phantom scalar fields
are considered the source [13–16].

2 It is important that the frequencies of the oscillations are independent of the electromagnetic field governed by non-linear
electrodynamic models being fully governed by the spacetime geometry, but the optical phenomena depend on the non-linear
electrodynamics—the photons are not following the null geodesics of the spacetime [47–49].

3 Some alternatives to the geodesic model of HF QPOs are the diskoseismic model relating the QPOs to the global oscillations of
thin accretion disks [65–71], and the string loop oscillation model [72]. Of special interest is the magnetically modified geodesic
model where epicyclic motion is considered for slightly charged matter orbiting a magnetized black hole or neutron star along
stable circular orbits [43,73,74].
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60. Török, G.; Abramowicz, M.A.; Kluźniak, W.; Stuchlík, Z. The orbital resonance model for twin peak kHz quasi periodic

oscillations in microquasars. Astron. Astrophys. 2005, 436, 1–8. [CrossRef]
61. Stuchlík, Z.; Kološ, M. Models of quasi-periodic oscillations related to mass and spin of the GRO J1655-40 black hole. Astron.

Astrophys. 2016, 586, A130. [CrossRef]
62. Stella, L.; Vietri, M. kHz Quasiperiodic Oscillations in Low-Mass X-Ray Binaries as Probes of General Relativity in the Strong-Field

Regime. Phys. Rev. Lett. 1999, 82, 17–20. [CrossRef]
63. Rezzolla, L.; Yoshida, S.; Zanotti, O. Oscillations of vertically integrated relativistic tori—I. Axisymmetric modes in a

Schwarzschild space-time. Mon. Not. RAS 2003, 344, 978–992. [CrossRef]
64. Rezzolla, L.; Yoshida, S.; Maccarone, T.J.; Zanotti, O. A new simple model for high-frequency quasi-periodic oscillations in black

hole candidates. Mon. Not. RAS 2003, 344, L37–L41. [CrossRef]
65. Okazaki, A.T.; Kato, S.; Fukue, J. Global trapped oscillations of relativistic accretion disks. Publ. Astron. Soc. Jpn. 1987, 39, 457–473.
66. Nowak, M.A.; Wagoner, R.V. Diskoseismology: Probing Accretion Disks. II. G-Modes, Gravitational Radiation Reaction, and

Viscosity. Astrophys. J. 1992, 393, 697. [CrossRef]
67. Kato, S. Basic Properties of Thin-Disk Oscillations. Publ. Astron. Soc. Jpn. 2001, 53, 1–24. [CrossRef]
68. Kato, S. Resonant Excitation of Disk Oscillations by Warps: A Model of kHz QPOs. Publ. Astron. Soc. Jpn. 2004, 56, 905–922.

[CrossRef]
69. Lai, D.; Tsang, D. Corotational instability of inertial-acoustic modes in black hole accretion discs and quasi-periodic oscillations.

Mon. Not. RAS 2009, 393, 979–991. [CrossRef]
70. Horák, J.; Lai, D. Corotation resonance and overstable oscillations in black hole accretion discs: General relativistic calculations.

Mon. Not. RAS 2013, 434, 2761–2771. [CrossRef]
71. Kato, S.; Fukue, J. Trapped Radial Oscillations of Gaseous Disks around a Black Hole. Publ. Astron. Soc. Jpn. 1980, 32, 377.

[CrossRef]
72. Stuchlík, Z.; Kološ, M. String loops oscillating in the field of Kerr black holes as a possible explanation of twin high-frequency

quasiperiodic oscillations observed in microquasars. Phys. Rev. D 2014, 89, 065007. [CrossRef]

http://dx.doi.org/10.1093/mnras/stx570
http://dx.doi.org/10.1111/j.1365-2966.2007.11943.x
http://dx.doi.org/10.1103/PhysRevD.61.045001
http://dx.doi.org/10.1016/S0370-2693(00)00522-0
http://dx.doi.org/10.1140/epjc/s10052-019-6543-8
http://dx.doi.org/10.1103/PhysRevD.85.104031
http://dx.doi.org/10.1103/PhysRevD.100.024055
http://dx.doi.org/10.1103/PhysRevD.90.024035
http://dx.doi.org/10.1140/epjc/s10052-015-3862-2
http://dx.doi.org/10.1086/422810
http://dx.doi.org/10.1016/j.newar.2020.101524
http://dx.doi.org/10.1051/0004-6361:20041377
http://dx.doi.org/10.1051/0004-6361:20047115
http://dx.doi.org/10.1051/0004-6361/201526095
http://dx.doi.org/10.1103/PhysRevLett.82.17
http://dx.doi.org/10.1046/j.1365-8711.2003.07023.x
http://dx.doi.org/10.1046/j.1365-8711.2003.07018.x
http://dx.doi.org/10.1086/171538
http://dx.doi.org/10.1093/pasj/53.1.1
http://dx.doi.org/10.1093/pasj/56.5.905
http://dx.doi.org/10.1111/j.1365-2966.2008.14218.x
http://dx.doi.org/10.1093/mnras/stt1120
http://dx.doi.org/10.1111/j.1365-246X.1980.tb04814.x
http://dx.doi.org/10.1103/PhysRevD.89.065007


Universe 2025, 11, 99 23 of 23

73. Shaymatov, S.; Vrba, J.; Malafarina, D.; Ahmedov, B.; Stuchlík, Z. Charged particle and epicyclic motions around 4 D Einstein-
Gauss-Bonnet black hole immersed in an external magnetic field. Phys. Dark Universe 2020, 30, 100648. [CrossRef]

74. Stuchlík, Z.; Kološ, M.; Tursunov, A. Large-scale magnetic fields enabling fitting of the high-frequency QPOs observed around
supermassive black holes. Publ. Astron. Soc. Jpn. 2022, 74, 1220–1233. [CrossRef]
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