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Abstract. In this paper we investigate how the leading term in the geodesic equation in
Schwarzschild spacetime changes under the coordinate transformation to Eddington-Finkelstein
coordinates. This term corresponds to the Newton force of attraction. Also we consider this
term when we add the energy-momentum tensor of the form of the null dust and the null perfect
fluid into right-hand side of the Einstein equation. We estimate the value of this force in Vaidya
spacetime when the naked singularity formation occurs. Also we give conditions in generalized
Vaidya spacetime when this force of attraction is replaced by the force of repulsion.

1. Introduction
In order to describe forces in general relativity one should study the geodesics [1, 2, 3]. In
Schwarzschild metric the leading term in geodesic equation is the Newton force of attraction [4].
Under the notion ’the leading term’ we mean the Γ1

00 component of the Christoffel symbols. In
Schwarzschild spacetime this component is given by:

Γ1
00 =

(
1− 2M

r

)
M

r2
. (1)

Christoffel symbols don’t obey the tensor transformation law and if we do coordinate
transformation then Christoffel symbols change and depending on the coordinate system, we
obtain different inertial forces. However the main goal of this paper is to investigate how the term
Γ1
00 changes when one does coordinate transformation to Eddington-Finkelstein coordinates.
The Schwarzschild spacetime is the solution of the Einstein equations in the vacuum.

However, if we consider the Schwarzschild metric in Eddington-Finkelstein coordinates with
the energy-momentum tensor of the null dust in the right-hand side of the Einstein equations
then one obtains the Vaidya spacetime. This spacetime is one of the earliest examples of cosmic
censorship conjecture violation [5]. Moreover one could consider the mixture of two energy-
momentum tensors of type-I (the null dust) and the type-II (the null perfect fluid). In this
case one obtains the generalized Vaidya spacetime [6]. The only difference from Schwarzschild
spacetime is that in the case of Vaidya spacetime the mass function is the function of the
time and in the generalized Vaidya spacetime case the mass function depends upon both and
the time and the radial coordinate. The generalized Vaidya spacetime also contains the naked
singularities [7, 8, 9, 10].
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We investigate the question how these energy-momentum tensors affect the term Γ1
00. We

also consider the force expression in the case of the naked singularity formation in order to
understand whether it is finite or infinite. Also it is interesting if the attraction can be replaced
with repulsion.

The paper is organized as follows: in sec.2 we consider the Schwarzschild spacetime in
Eddington-Finkelstein coordinates and see if this transformation changes the term Γ1

00. In sec.3
we consider the Vaidya spacetime and see how the null dust affects the forces and consider these
forces in the naked singularity. In sec.4 we consider the generalized Vaidya spacetime and find
the condition when the attraction can be replaced with repulsion. Section 5 is the conclusion.

The signature −,+,+,+ and the system of units G = c = 1 will be used throughout the
paper. Also dash and over dot mean the partial derivative with respect to r and v respectively
i.e. M ′ = ∂M

∂r , Ṁ = ∂M
∂v .

2. Schwarzschild spacetime
Schwarzschild metric in coordinates {t , r , θ , φ} has the following form:

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2) . (2)

To obtain this metric in Eddington-Finkelstein Coordinates one should consider the radial
null geodesic: (

dt

dr

)2

=

(
1− 2M

r

)−2

. (3)

Integrating this equation and doing the following transformation from t to new time v:

t = v + r + 2M ln (r − 2M) , (4)

we obtain the Schwarzschild metric in Eddington-Finkelstein Coordinates:

ds2 = −
(
1− 2M

r

)
dv2 + 2dvdr + r2(dθ2 + sin2 θdφ2) . (5)

The geodesic equation for the metric (5) is given by:

d2r

dτ2
= −M

r2

(
1− 2M

r

)(
dv

dτ

)2

+ 2
M

r2
dv

dτ

dr

dτ
+ (r − 2M)

(
dθ

dτ

)2

+

(r − 2M) sin2 θ

(
dφ

dτ

)2

.

(6)

Comparing the Γ1
00 from (1) and (6) we see that it is the same in both coordinate systems.

However in comparison to the old coordinates in Eddington-Finkelstein Coordinates we have
new force which is proportional to the velocity dr

dτ :

2Γ1
10

dv

dτ

dr

dτ
= −2

M

r2
dv

dτ

dr

dτ
. (7)

As we noted above that Christoffel symbols don’t obey the tensor transformation law and
one might expect new inertial forces to appear in different frames.

We can conclude that in Eddington-Finkelstein Coordinates the leading term Γ1
00 which

corresponds to the Newton force of attraction doesn’t change. It is useful to write down the
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energy expression in this metric. For this purpose we should use the Lagrangian which has the
following form:

L = gik
dxi

dτ

dxk

dτ
= −

(
1− 2M

r

)(
dv

dτ

)2

+ 2
dv

dτ

dr

dτ
+ r2

(
dθ

dτ

)2

+ r2 sin2 θ

(
dφ

dτ

)2

. (8)

And we can easily obtain the energy expression from the (8):

ε =

(
1− 2M

r

)
dv

dτ
− dr

dτ
= const . (9)

And the radial geodesic by using (9) and with φ = const , θ = π
2 is given by:

d2r

dτ2
= −M

r2

(
ε
dv

dτ
− dr

dτ

dv

dτ

)
= − M

r(r − 2M)

[
ε2 −

(
dr

dτ

)2
]
. (10)

3. Vaidya spacetime
If we consider Schwarzschild spacetime in Eddington-Finkelstein Coordinates (5) and assume
that the mass function M is not a constant but depends on the time v:

M = M(v) , (11)

then one obtains the Vaidya spacetime:

ds2 = −
(
1− 2M(v)

r

)
dv2 + 2dvdr + r2dΩ2 ,

dΩ2 = dθ2 + sin2 θdφ2 .

(12)

This is not the solution in empty spacetime anymore. On the right-hand side of the Einstein
equation we have the following energy-momentum tensor:

Tik = µδ0i δ
0
k . (13)

As we can see from (13) the only non-vanishing component of the energy-momentum tensor
is T00. This corresponds to the case of the null dust.

The energy conditions [11] demands that:

Ṁ(v) > 0 . (14)

Now we can write down the radial geodesic in Vaidya metric:

d2r

dτ2
= −

(
1− 2M(v)

r

)
M(v) + Ṁ(v)r

r2

(
dv

dτ

)2

+ 2
M(v)

r2
dv

dτ

dr

dτ
+

(r − 2M(v))

(
dθ

dτ

)2

+ (r − 2M(v)) sin2 θ

(
dφ

dτ

)2

.

(15)

If we compare geodesic equations in Vaidya (15) and in Schwarzschild (6) spacetimes then
we can see that only the leading term Γ1

00 has difference i.e.:

Γ1
00 vaidya = Γ1

00 sch(v) +
Ṁ(v)

r
. (16)
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If we consider the leading term as the force of attraction then one can see that this force is
bigger than in pure Schwarzschild spacetime. It is worth noticing that according to the energy

condition (14) the term Ṁ(v)
r > 0 and the leading term (16) doesn’t change its sign.

The metric (12) depends upon time hense the energy is not conserved i.e.:

ε(v) =

(
1− 2M(v)

r

)
dv

dτ
− dr

dτ
. (17)

Now differentiating ((17)) with respect to τ we obtain the second order geodesic equation
which depends on the energy:

φ = const , θ =
π

2
,

d2r

dτ2
= −

(
1− 2M(v)

r

)
M(v) + 2Ṁ(v)r

r2

(
dv

dτ

)2

+

2
M(v)

r2
dr

dτ

dv

dτ
− dε(v)

dv

dv

dτ
.

(18)

And comparing (18) to (15) one can find the energy change law:

∂ε(v)

∂v
= −Ṁ(v)

r

dv

dτ
. (19)

We can conclude that the particle loses its energy despite it falls onto a black hole.
As we mentioned above the Vaidya spacetime contains the naked singularity. It forms during

the gravitational collapse at v = 0 , r = 0. The case when the mass function is linear has been
considered by P. Joshi [12]. Here we consider the mass function in the form:

M(v) = λvβ , β ≥ 1 , λ > 0 . (20)

In this case the leading term is given by:

Γ1
00 = −

(
1− 2λvβ

r

)
λvβ + βλvβ−1r

r2
. (21)

We are interested only in the case when β >≥ 1 because only in this case the naked singularity
might form. In the case β < 1 the result of the gravitational collapse is the black hole. When
we have the naked singularity formation then the following condition must be held:

lim
v→0 ,r→0

dv

dr
= X0 > 0 . (22)

Moreover X0 is finite.
Substituting this into (21) we can see that if β ∈ [1 , 2) then lim

v→0 ,r→0
Γ1
00 → ∞. When β = 2

it is a positive real constant and when β > 2 it is zero.
However we are interested only in gravitationally strong singularities. According to Tipler’s

deffinition [14] a singularity is termed to be gravitationally strong or simply strong if it destroys
by stretching or crushing any object which falls into it. If it does not destroy any object this
way then the singularity is termed to be gravitationally weak. Mathematically it is [13]:

ξ = lim
τ→0

τ2RikK
iKk > 0 , (23)



PIRT 2021
Journal of Physics: Conference Series 2081 (2021) 012036

IOP Publishing
doi:10.1088/1742-6596/2081/1/012036

5

where τ - is the afine parameter and Ki is the tangent vector to outgoing null geodesic
congruence.

In our case (23) has the following form:

ξ = lim
v→0

2β(β − 1)λvβ−1X2
0 . (24)

And we can see that the singularity is gravitationally strong only in the case β = 1. Hence
we can conclude that when the naked singularity is gravitationally strong the force is infinite
and when the force is finite the naked singularity is gravitationally weak.

4. Generalized Vaidya spacetime
When we consider the mixture of two types of the matter field i.e. type-I and type-II [15]
then one can obtain the generalized Vaidya spacetime. Type-I is the null dust which has been
considered in the previous section. Type-II is the null perfect fluid [6]. So one can write:

T
(I)
ik = µLiLk ,

T
(II)
ik = (ρ+ P )(LiNk + LkNi) + Pgik ,

(25)

here µ is the energy density of the null dust and P and ρ are the pressure and energy density of
the null perfect fluid:

µ =
2Ṁ

r2
, ρ =

2M ′

r2
,

P = −M ′′

r
, Li = δ0i ,

(26)

and li and ni are two null vectors:

Ni =
1

2

(
1− 2M

r

)
δ0i − δ1i ,

LiL
i = NiN

i = 0 , LiN
i = −1 .

(27)

In this case the generalized Vaidya spacetime is given by:

ds2 = −
(
1− 2M(v, r)

r

)
dv2 + 2dvdr + r2dω2 . (28)

Here the mass function not only the function of the time v but also radial coordinate r.
Weak, strong and dominant energy conditions demand:

µ ≥ 0 ,

ρ ≥ P ≥ 0 .
(29)

The radial geodesic equation in this metric has the following form:

d2r

dτ2
= −

(
1− 2M

r

)
(M −M ′r) + Ṁr

r2

(
dv

dτ

)2

+ 2
M −M ′r

r2
dv

dτ

dr

dτ
+

(r − 2M)

(
dθ

dτ

)2

+ (r − 2M) sin2 θ

(
dφ

dτ

)2

.

(30)
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In comparison with (15) we have two changes: I) the inertial force which depends on the

velocity dr
dτ linearly has the extra term M ′

r
dv
dτ

dr
dτ . II) Our leading term has the following change:

Γ1
00 generalizedV aidya = Γ1

00V aidya(r, v)−
M ′

r
. (31)

From (31) one might expect the sign of the force to be changed. But first of all we should
find out the explicit form of the mass function. For this purpose let’s consider the null perfect
fluid with the equation of the state P = αρ where α ∈ [−1 , 1]. In this case the mass function
has the following form [8]:

M(v, r) = C(v) +D(v)r1−2α , C(v) ≥ 0 , D(v) ≥ 0 . (32)

From (30) we can easily see that the only term which can change the force sign is (M−M ′r
r2

.

This term might change the sign for both forces i.e. and for leading term Γ1
00 and the inertial

force which depends linearly on the velocity dr
dτ . So let’s find when this factor can change its

sign. For this purpose substituting the mass function (32) into this term:

M −M ′r

r2
=

C(v) + 2αr1−2α

r2
. (33)

C(v > 0 and D(v) > 0 these are demanded by the dominant and weak energy condition. So
if α ≥ 0 then (33) doesn’t change its sign. The only option is the negative values of α. But in
this case we have to violate the strong energy condition and consider the negative pressure.

So the inertial force which is linearly depends on the velocity dr
dτ changes its sign when the

particle crosses the shell of the radias:

r =

(
− C(v)

2αD(v)

) 1
1−2α

. (34)

Regarding the leading term Γ1
00 things are not so clear. In generall case when (33) changes

its sign this term can be still positive. However it can change its sign and attraction will be
replaced with repulsion if:∣∣∣∣(1− 2(C(v) +D(v)r1−2α

r

)(
C(v) + 2αr1−2α

)∣∣∣∣ > Ċ(v) + Ḋ(v)r1−2α . (35)

That the positive r exists in this case one can see if we consider the mass function which
depends only on r. In this case C(v) = η > 0 , D(v) = ζ > 0 and attraction is replaced with
repulsion at the radius:

r =

(
− η

2αζ

) 1
1−2α

(36)

So we can see that in generalized Vaidya spacetime when we consider the negative pressure
of the null perfect fluid the force of attraction can be replaced with the force of repulsion.

Now let’s find out the law of the energy change. The energy expression in the generalized
Vaidya spacetime is:

ε(v) =

(
1− 2M

r

)
dv

dτ
− dr

dτ
. (37)

Differentiating this with respect to τ one can find:
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d2r

dτ2
= −

(
1− 2M

r

)
(M −M ′r) + 2Ṁr

r2

(
dv

dτ

)2

+ 2
M −M ′r

r2
dv

dτ

dr

dτ
− dε(v)

dv

dv

dτ
, (38)

and comparing this formula to (30) with φ = const , θ = const one can find the same law of the
energy loss like in the previous section (19):

dε(v)

dv
= −Ṁ

r2
dv

dτ
(39)

5. Conclusion
In this paper we have considered the leading term Γ1

00 in Schwarzschild spacetime which is
the Newton force of attraction. First of all we have found out that this term doesn’t change
when we do the coordinate transformation to Eddington-Finkelstein Coordinates. Then the
matter has been added to the right-hand side of the Einstein equation in order to track how
this term will change. In the begining we considered the energy-momentum tensor of the null
dust - so-called Vaidya spacetime. In this case the force of attraction becomes bigger than in
Schwarzschild metric and in the case of gravitationally strong naked singularity formation this
force is infinite. This force becomes finite in the central naked singularity only in the case when
it is gravitationally weak. When we consider the mixture of type-I and type-II of the matter
fields (generalized Vaidya spacetime) then the force of attraction can be replaced with repulsion
but only if we violate the strong energy condition and consider the negative pressure.
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