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Abstract: This study investigates the curved worldline
of a charged particle accelerated by an electromagnetic
field in flat spacetime. A new metric, which dependes on
the charge-to-mass ratio and electromagnetic potential, is
proposed to describe the curve characteristic of the world-
line. The main result of this paper is that an equivalent
equation of the Lorentz equation of motion is put forward
based on a 4-dimensional Riemannian manifold defined
by the metric. Using the Ricci rotation coefficients, the
equivalent equation is self-consistently constructed. Addi-
tionally, the Lorentz equation ofmotion in the non-inertial
reference frames is studied with the local Lorentz covari-
ance of the equivalent equation. Themodel attempts to ge-
ometrize classical electromagnetism in the absence of the
other interactions, and it is conducive to the establishment
of the unified theory between electromagnetism and grav-
itation.

Keywords: Electromagnetism, Worldline, Riemannian
Metric, Ricci rotation coefficients, Local Lorentz trans-
formations
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1 Introduction
Since Einstein’s general relativity succeeded in geometriz-
ing gravity, numerous people have made great efforts to
geometrize electromagnetism in lots of unified-field the-
ories [1–8]. However, these unified-field theories are not
widely accepted. In recent years, work on geometrization
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of electromagnetism without consideration of gravity has
begun to increase [9–11]. Such studies are not complicated
and the physical meaning is more straightforward. More-
over, the research on only geometrization of electromag-
netism constantly contributes to establishing a final uni-
fied field theory.

Gravity is identified as a geometric phenomenon of
a curved spacetime and the geometric phenomenon is
the subject investigated in general relativity. Electromag-
netism is essentially different from gravity, because it does
not relate to the geometric phenomenon of the curved
spacetime. Finding a suitable geometric phenomenon for
electromagnetism is the first problem for geometrizing
electromagnetism. In the previous references [12–15], the
geometrical description of the worldlines of charged par-
ticles in homogeneous electromagnetic fields have been
studied using Frenet-Serret formulae. The time-like world-
line of a charged particle accelerated by an electromag-
netic field is possibly a geometric phenomenon of ge-
ometrizing electromagnetism. When a particle is acceler-
ated by an electromagnetic force in flat spacetime, the
worldline of the particle becomes a curved line xa(τ), and
it is closely relate to the Lorentz equation of motion

d2xa
dτ2 = e

m F
a
b
dxb

dτ . (1)

The geometrical characteristic of xa(τ) may be the key to
geometrize electromagneticsm. In this paper, we would
like to provide an investigation on the geometrical char-
acteristic of the worldline xa(τ) from a different point of
view.

The essential differencebetween the curved spacetime
and the curved worldline indicates that there could be
many curved worldlines at one spacetime point. To show
the feature of the curved worldline, we structure “arti-
ficial” curvilinear coordinates {xâ} regarding the differ-
ent metrics of the curved worldline xa(τ). The coordinates
{xâ} are not real curved spacetime, but are hypothetical
curved coordinates associated with the flat coordinates
{xa}. Therefore, a metric could be obtained using the lin-
ear relationship between the flat differential coordinates
dxa and the “artificial" differential coordinates dxâ, which
differs from the model that a metric is derived by the co-
ordinates transformation [16–18]. In this current work, we
attempt to introduce differential geometry by defining the
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new metric of the curved worldlines of a charge particle
in an electromagnetic field, and then obtain an equivalent
equation of the Lorentz equation of motion using differen-
tial geometry.

This paper is organized as follows. In Section 2, a new
metric is given depending on the worldline of a charged
particle in an electromagnetic field. In Section 3, an equiv-
alent equation of the Lorentz equation of motion is pro-
posed using the new metric. Section 4 discusses the local
Lorentz covariance of the Lorentz equation of motion. Sec-
tion 5 provides a conclusion.

2 The new metric for classical
electromagnetism

The length element squared ds2 of a worldline xa(τ) in 4-
dimension flat spacetime is

ds2 = ηabdxadxb , (2)

where metric ηab is

ηab =

⎛⎜⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎠ . (3)

The differential coordinate dxa describes the motion of a
charged particle in an electromagnetic field and 4-velocity
of the charged particle is Ua = ( 1√

1−v2
, vi√

1−v2
), where vi =

dxi
dx0 , i = 1, 2, 3 and the speed of light c = 1. Because any
curved worldline obeys the relation (2) in flat spacetime,
the flat metric ηab does not reflect the curved properties
of a worldline. In this model, using “artificial” curvilinear
coordinates xâ wegive anewmetric for theworldline of the
charged particle in an electromagnetic field and the effects
of radiation are ignored.

Assuming that the transformation between differen-
tial coordinates dxâ and dxa is linear, the linear relation-
ship at each point of the worldline is formulated as

dxa = ha âdx
â . (4)

Equations (2) and (4) show that the length element ds2 is
expressed with the differential coordinate dxâ,

ds2 = Gâb̂dx
âdxb̂ , (5)

where
Gâb̂ = ηabh

a
âh

b
b̂ . (6)

The key issue of obtaining metric Gâb̂ is the relationship
between differential coordinates dxâ and dxa.

We consider that the linear transformation ha â needs
to satisfy three limiting conditions. In thefirst limiting con-
dition, in the absence of the case of electromagnetic in-
teraction, the linear transformation ha â should be δaâ. The
second limiting condition is provided by the study of the
Lorentz equation of motion (1), form which the worldline
xa(τ) depends on the charge-to-mass ratio e/m and elec-
tromagnetic potential Aa. As a result, the linear transfor-
mation ha â should be dependent on e/m andAa. The third
limiting condition derives from the length element’s mag-
nitude change of the worldline, measured by the multiple
static-observers positioned at each point of the worldline.
The length element of the observers is

ds′ = dx0, (7)

which is constant at each point of spacetime. comparing
equations (2) and (7), one can find that:

ds =
√
1 − v2ds′, (8)

which indicates that the length element’s magnitude is
proportional to

√
1 − v2. Thus, the linear transformation

ha â should show the characteristic of the length element’s
magnitude, which is the third limiting condition.

In our model, the linear transformation ha â is defined
as:

h0 â = δ
0
â
(︀
1 − Q′)︀ + e

mBâ , (9)

hi â = δ
i
â ,

where Q′ = Q/(1 − e
mA0 + Q) and Bâ is expressed as

Bâ =
Aa(xa)

1 − e
mA0(xa) + Q(t)

, (10)

where Q(t) is a function of time, Aa(xa) is electromagnetic
potential and it is used to structure the equation (see Ap-
pendix)

1√
1 − v2

= 1 − e
mA0 + Q. (11)

Then, the inverse transformation ha â of the transforma-
tion ha â yields

ha 0̂ = δ0̂a (1 + Q) −
e
mAa , (12)

ha î = δ îa .

The transformation ha â and the inverse transformation
ha â satisfy the orthogonal relationship

ha âhb
â = δab and ha âha

b̂ = δb̂â . (13)

It is easily demonstrated that the transformation ha â
meets the first and second limiting conditions. Besides, us-
ing equation (11), we have

h00̂ =
√
1 − v2 = 1 + e

mB0̂ − Q
′, (14)
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which reflects the change of the length element’s magni-
tude, thus the third limiting condition is satisfied. The new
metric Gâb̂ of a worldline’s length element is obtained by
equation (6) and (9):

Gâb̂ = (15)⎛⎜⎜⎜⎝
D0̂D0̂

e
mD0̂B1̂

e
mD0̂B2̂

e
mD0̂B3̂

e
mD0̂B1̂

(︀ e
mB1̂

)︀2 − 1 (︀ e
m
)︀2 B1̂B2̂ (︀ e

m
)︀2 B1̂B3̂

e
mD0̂B2̂

(︀ e
m
)︀2 B1̂B2̂ (︀ e

mB2̂
)︀2 − 1 (︀ e

m
)︀2 B2̂B3̂

e
mD0̂B3̂

(︀ e
m
)︀2 B1̂B3̂ (︀ e

m
)︀2 B2̂B3̂ (︀ e

mB3̂
)︀2 − 1

⎞⎟⎟⎟⎠ ,

where D0̂ = h00̂ = 1 + e
mB0̂ − Q

′, Bâ = Aa
1− e

m A0+Q , Q is a
function of time and Aa is the electromagnetic potential.

It can be seen that the length element ds2 of the
curved worldline xa(τ) has two different expressions with
different characteristics: ds2 = ηabdxadxb and ds2 =
Gâb̂dx

âdxb̂. In the first, ds2 = ηabdxadxb, flat metric ηab
is invariant, which does not reflect the curvature of the
worldline. The change of length element ds2 at each point
along theworldline depends on the differential coordinate
dxa, which can describe the motion of the particle. In the
second expression, ds2 = Gâb̂dx

âdxb̂, the “artificial” dif-
ferential coordinate dxâ is regarded as invariant and it
does not describe the motion of the particle. Besides, the
change of length element ds2 depends on the metric Gâb̂
at each point of the worldline.

3 Differential geometry for
electromagnetism

In this section,weuse the length element expression ds2 =
Gâb̂dx

âdxb̂ to derive equations for themotion of a charged
particle in an electromagnetic field based on differential
geometry. LetM be a 4-dimensional Riemannianmanifold
with metric Gâb̂, which is defined by equation (15) at the
worldline of the charged particle and Gâb̂(Q = 0) at other
space-time points. Now, the transformation ha â is called
tetrad or vierbein. We can derive the equation of a world-
line from an action given in the following equation, which
is proportional to the length of the worldline.

S(xâ) =
∫︁ √︃

Gâb̂
dxâ
dτ

dxb̂
dτ dτ, (16)

where proper time τ is a parameter associatedwith a point
on the worldline and the coordinate xâ is variable. Varia-
tion of the action (16) with respect to xâ provides the tra-
ditional geodesic equation

d
dτ

(︃
dxâ

dτ

)︃
+ Γ â b̂ĉ

dxb̂

dτ
dxĉ

dτ = 0, (17)

where Γ â b̂ĉ =
1
2G

âd̂(∂ĉGd̂b̂ + ∂b̂Gĉd̂ − ∂d̂Gb̂ĉ) is Christoffel
symbol onM. Equation (17) cannot describe the motion of
the charged particle, because dxâ/dτ is not the 4-velocity
of the charged particle. We know that dxa/dτ is consid-
ered to describe the motion of a charged particle, and the
relationship between dxa and dxâ is given by linear trans-
formation ha â in equation (4). Thus, according to the co-
ordinates xa, equation (17) is rewritten as [19]

d2xa
dτ2 + ωabc

dxb

dτ
dxc

dτ = 0, (18)

whereωabc represents the Ricci rotation coefficients of the
tetrad ha â. Besides, the tetrad ha â is also obtained using
the metric Gâb̂ under “resting constraint conditions” [20].
In the torsion-free case, ωabc is given as reported in litera-
ture [21]

ωabc =
1
2
(︀
Cabc + Cbca − Ccab

)︀
, (19)

where

Cabc = (∂b̂h
a
â − ∂âh

a
b̂)hb

b̂hc â (20)

= ha â
(︁
∂c hb â − ∂b hc â

)︁
,

where equation ∂c(ha âha
b̂) = ∂c(δb̂â) = 0 and ∂a = ha b̂∂b̂

are used. Using the tetrad (9) and equaton (14), equaton
(18) becomes

d2xa
dτ2 − e

m F
a
b
dxb

dτ = 0, (21)

where Fab = ∂aAb−∂bAa andAa is electromagnetic poten-
tial. Therefore, the Lorentz equation of motion is obtained
using 4-dimensional Riemannian manifold M defined by
the metric Gâb̂.

4 Covariance of the Lorentz
equation of motion

Motion equation (18) is form invariant with respect to local
Lorentz transformations, under which [22], it is expressed
as

d2xa
′

dτ2 + ωa
′

b′c′
dxb

′

dτ
dxc

′

dτ = 0, (22)

where ωa
′

b′c′ transform as [21]

ωa
′

b′c′ = Λa
′
aΛb′ bΛc′ cωa bc + Λa

′

d∂c′Λb′ d , (23)

where Λa
′
a are local Lorentz transformations, and the re-

lationship between dxa ′ and dxâ is given by the Λa
′
a,

dxa ′ = Λa
′
adxa . (24)
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Equation (22) is considered to describe the equation ofmo-
tion in the different reference frame with coordinates xa ′.
Thus, because equation (18) is equivalent to the Lorentz
equation of motion, the Lorentz equation of motion in the
other reference frames can be studied using equation (22)
and two cases are as follows.

For the case that the local Lorentz transformations are
constant, equation (22) becomes

d2xa
′

dτ2 − e
m F

a′
b′
dxb

′

dτ = 0, (25)

where Fa
′

b′ = Λa
′
aΛb′ bFab, equation (25) is the Lorenz

equation of motion in another inertial frame.When the lo-
cal Lorentz transformations are time-dependent, the refer-
ence frame with coordinates xa ′ is a non-inertial frame. It
is of significant importance that themotion equation in the
non-inertial frame is studied using equation (22) depend-
ing on the corresponding local Lorentz transformations.

We consider a special non-inertial frame—the proper
reference frame (comoving frame) that is attached to the
charged particle in an electromagnetic field. Besides, the
charged particle in the proper reference frame is always
stationary. Thus, dxa

′
is the differential coordinates of the

proper reference frame, and dx0
′
= dτ and dxi

′
= 0 in the

proper reference frame. From the relation Λa′ adxa
′
= dxa,

we have Λ0′ adx0
′
= dxa, which becomes

Λ0′ a =
dxa
dτ . (26)

The term Λa
′
a∂c′Λb′ a dx

b′

dτ
dxc

′

dτ in equation (22) is calcu-
lated,

Λa
′
a∂c′Λb′ a

dxb
′

dτ
dxc

′

dτ = Λa
′
a∂0′Λ0′ a

dx0
′

dτ
dx0

′

dτ (27)

= Λa
′
a
d2xa
dτ2 .

In the proper frame, equation (22) becomes

d2xa
′

dτ2 + Λa
′
a
d2xa
dτ2 − e

m F
a′
b′
dxb

′

dτ = 0. (28)

Using the Lorentz equation of motion, the latter two items
in equation (28) satisfy equation

La
′
a
d2xa
dτ2 − e

m F
a′
b′
dxb

′

dτ = 0. (29)

Thus, motion equation (22) becomes

d2xa
′

dτ2 = 0. (30)

We know that the proper reference frame (comoving
frame) is the non-inertial reference frame, in which the

charged particle is subjected to a fictitious force and a
electromagnetic force. These two forces cancel each other
out which result in the motion equation of the particle as
d2xa

′

dτ2 = 0 in the proper reference frame. In our method,
the motion equation of the particle is expressed as motion
equation (22) in the proper reference frame. After being
calculated, motion equation (22) becomes motion equa-
tion (28), in which the term −Λa

′
ad2xa/dτ2 is fictitious ac-

celeration and the term e
m F

a′
b′dxb

′
/dτ is the electromag-

netic acceleration, and these two forces cancel each other
out. The result is reasonable in the proper reference frame.

5 Conclusions
To conclude, this work proposes the newmetric (15) in flat
spacetime to use for the curved worldline xa(τ) of charged
particles in an electromagnetic field. Then, we show that
equation (18) is the motion equation of the charged par-
ticles and the equation is equivalent to the Lorentz equa-
tion ofmotion using the differential geometry of themetric
(15). As the Lorentz equation of motion can describe the
change of worldline xa(τ), the motion equation (18) ob-
tained shows that our model is self-consistent. Addition-
ally,wehave also investigated the local Lorentz covariance
of the Lorentz equation of motion based on the equiva-
lent equation (18), which is form invariant under the lo-
cal Lorentz transformations. The important conclusion is
that the Lorentz equation of motion in different inertial
or non-inertial reference frames is related using equation
(22). One example is that the motion equation (22) in the
proper frame has been discussed and a rational prediction
result has been obtained. In a sense, our method extends
the Lorentz covariance of the Lorentz equation of motion
to the local Lorentz covariance. Admittedly, local Lorentz
covariance closely relates to general covariance in general
relativity. Despite that general covariance has been pro-
posed for numerous years, physicists do not have a unified
understanding and the discussion continues for general
covariance [23-28]. This research may provide a new point
of view for understanding geometrizing electromagnetism
and the relationship between electromagnetic interaction
and general covariance.

The innovation of this paper is that the curve char-
acteristic of the worldline of charged particles in an elec-
tromagnetic field is described by the metric (15), and the
Lorentz equation of motion is achieved by using the Rie-
mannian geometry defined by the metric. Our method
has an interesting relationship with general relativity. The
important similarity between general relativity and our
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method is that a 4-dimensional Riemannian manifold is
used for studying interactions. Our method significantly
differs from general relativity in the following ways:

(a) Our method investigates the relative motion of an
object in flat spacetime. We introduce differential
geometry to describe the curved worldline rather
than curved spacetime. In the present method, the
coordinates {xâ} represent the characteristics of a
“curved” coordinate with respect to flat coordinates
{xa}, but the coordinates {xâ} are hypothetical.

(b) In general relativity, the metric does not depend
on the properties of the object that is accelerated
by a gravity indicating that objects of different
masses in the gravitational effect have the same
geodesic equation (equation of motion). However,
in our method, the metric depends on the particle’s
charge-to-mass ratio e/m properties. These results
are significant, as charged particles with different
e/m ratios in an electromagnetic field have different
worldlines, consequently introducing different met-
rics and different motion equations.

(c) In our method, the motion equation (18) is con-
structed based on the Ricci rotation coefficients
rather than the Christoffel symbols. The Ricci rota-
tion coefficients are employed to describe the phys-
ical laws in flat spacetime.

To some extent, the present research is significant to unify
electromagnetism and gravitation with differential geom-
etry.

Further studies of differential geometry are needed to
perfect our model. At first, the study of the classical dy-
namics equation may be extended into quantum electro-
dynamics using differential geometry. Secondly, the prob-
lem that electromagnetic potential satisfies the Maxwell
equation need to be studied in the framework of differen-
tial geometry. We believe that the methods and proofs de-
scribed in this paper bring us a step closer to the final uni-
fied theory which will tightly associate differential geome-
try with fundamental electromagnetic interactions.
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Appendix A
√
1 − v2 is associatedwith the electromagnetic potential of

a charged particle accelerated by an electromagnetic field.
According to relativistic mechanics [29],

dU i
dτ = ki = e

m
√
1 − v2

(︁
E⃗ + v⃗ × B⃗

)︁
, (A.1)

and
dU0

dτ = kivi , (A.2)

where U0 = 1/
√
1 − v2 and U i = vi/

√
1 − v2. Combining

equation (A.1) and (A.2), it can see that U0 satisfies the re-
lationship

dU0 = e
m

(︂
−∂A0
∂xi

+ ∂Ai∂x0

)︂
dxi . (A.3)

U0 can be divided into the contributions of scalar field
A0 and vector field Ai, that is U0 = U0

e + U0
m, dU0

e =
− e
m
∂A0
∂xi dx

i and dU0
m = e

m
∂Ai
∂x0 dx

i. For the interaction of a
charged particle with a scalar field A0, the following rela-
tionship is obtained,

U0
e = C −

e
mA0, (A.4)

where C is a constant determined by the initial conditions.
However, U0

m is not easy to obtain. It is considered that
the effect of vector field Ai in equation (A.3) can always be
replaced by a a function of time at some fixed spacetime
points. Therefore, U0

m is rewritten as a function of time.
We set

U0 = 1√
1 − v2

= 1 − e
mA0 + Q(t), (A.5)

where Q(t) is the time function and determined by the vec-
tor field Ai. Based on the above argument,

√
1 − v2 be-

comes a function of the electric potential A0 and time t.
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