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{Samenvatting in het Nederlands} 

Cohomologische veldentheorie was oorspronkelijk geintroduceerd als een getwiste versie van globale 
ruimte-tijd supersymmetrischequantum veldentheorie, specifiek in vier ruimte-tijd dimensies. Voor 
globale ruimte-tijd supersymmetrie is per definitie het bestaan van een spinor nodig, die overal op de 
ruimte-tijd variëteit constant is. Een spinor bestaat alleen op een spin-variëteit. Een spin-variëteit staat 
echter slechts zelden een constante spinor toe. De canonieke manier om dit probleem te omzeilen is 
het localiser maken van de supersymmetry; een procedure die haast op magische wijze 
(super)gravitatie introduceert. 

Er is een tweede optie, genaamd twisten. Dit betekent dat men een nieuwe Lorentz symmetrie 
definieert als een geschikte combinatie van de originele Lorentz symmetrie met een interne globale 
symmetrie van de theorie. Dit resulteert in supersymmetrie generatoren die anders transformeren onder 
de nieuwe Lorentz symmetrie. Er zijn typisch componenten van de superladingen die transformeren 
als een scalar. Zo een scalar component Q, die nilpotent is, dat wil zeggen Q2 = 0, wordt gezien als een 
supersymmetrie van de getwiste theorie. De resulterende theorie is goed gedefinieerd op een 
willekeurige variëteit, omdat er geen globale obstructies zijn voor een scalar. Verder is de theorie 
algemeen covariant, zonder de introductie van gravitatie. De padintegraal van de theorie hangt alleen 
af van de globale cohomologie van Q, onder voorbehoud dat men alleen Q-invariante observabele 
gebruikt. Dit is waarom de theorie cohomologisch wordt genoemd. 

Een getwiste theorie is gerelateerd aan de onderliggende ruimte-tijd supersymmetrische theorie, 
doordat padintegraal van de getwiste theorie een zekere chirale (of BPS) sector van de fysische 
amplituden berekent. Dit is een gevolg van de triviale holonomie van de ruimte-tijd waar de theorie 
gewoonlijk is gedefinieerd. In dat geval is de operatie van twisten fysisch niet te zien. De typische 
fysische toepassing van een getwiste theorie is een niet-perturbatieve test van zekere dualiteiten, 
gebruik makend van de semi-klassieke exactheid van de theorie. 

Twee beroemde voorbeelden van voor de tweede string revolutie zijnde toepassingen voor mirror 
symmetrie en S-dualiteit van N = 4 super-Yang-Mills in vier dimensies. De getwiste theorie van vier­
dimensionale N = 2 supersymmetrische Yang-Mills theorie - de Donaldson-Witten theorie — leverde 
ook cruciale hints voor de gevierde Seiberg-Witten oplossingen van de originele N = 2 theorie. De 
oplossingen van de onderliggende fysische theorie geven ons waardevolle inzichten in het wiskundige 
probleem gedefinieerd dor de getwiste theorie. Misschien wel de mooiste eigenschap van quantum 
veldentheorie is dat de theorie afhangt van een schaal. De even zo mooie eigenschap van 
cohomologische veldentheorie is dat de theorie niet van een schaal afhankelijk is. Hierdoor kan het 
wiskundige probleem gedefinieerd door de eerste theorie worden opgelost in termen van de laatste 
theorie bij een andere schaal, waar de relevante vrijheidsgraden in het algemeen compleet anders zijn 
van die van de originele — microscopische ~ theorie. Het historische voorbeeld is natuurlijk de 
Donaldson versus de Seiberg-Witten invariant. 

Na de tweede string revolutie speelt cohomologische veldentheorie nog steeds een belangrijke rol. 
Voornamelijk in de fysica van D-branes. Een raison d'etre voor getwiste theorieën wordt gegeven door 
D-branes in een niet-triviale ruimte-tijd. Alle tellingen van BPS toestanden en hun toepassingen in de 
fysica van zwarte gaten en niet-perturbatieve testen van string-dualiteiten zijn gebaseerd op hetzelfde 
principe. 

In het algemeen kunnen we de onderliggende fysische oorsprong van een cohomologische 
veldentheorie vergeten, en de theorie definiëren als een quantum veldentheorie met een globale 
fermionische symmetrie. Zo een theorie hoeft niet direct verkregen te kunnen worden als een getwiste 
versie van een supersymmetrische theorie. De meest fundamentele eigenschap van een quantum 
veldentheorie met een globale fermionische symmetrie is de vaste punten stelling van Witten. Bijna 
alle andere eigenschappen van een cohomologische veldentheorie kunnen worden verkregen als een 
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Chapter 1 

Introduction 

Historically cohomological field theory first has been introduced as a twisted ver­
sion of global space-time supersymmetric quantum field theory, specifically the 
N — 2 supersymmetric Yang-Mills theory in four dimensional space-time [1]. 
The global space-time supersymmetry, by definition, requires the existence of a 
spinor which is constant everywhere on the space-time manifold M. A spinor 
does exist on a spin manifold. A spin manifold, however, rarely admits a con­
stant spinor. The canonical way overcoming the above difficulty is to localize the 
supersymmetry, a procedure tha t almost magically introduces (super-)gravity 
into the picture. 

There is a second option called twisting, which means tha t one defines a 
new Lorentz symmetry group by a suitable combination of the original Lorentz 
symmetry with an internal global symmetry of the theory. As a result, the 
supercharges transform differently under the new Lorentz symmetry. Typically 
the supercharges include some components which transform as scalars. Such a 
scalar component Q, which is nilpotent, i.e. Q2 = 0, is regarded as a supercharge 
of the twisted theory. The resulting theory is well-defined on an arbi t rary space-
time manifold since there are no global obstructions for a scalar, and enjoys 
general covariance without gravity. The path integral of the theory depends only 
on the global cohomology of Q, provided tha t one uses Q-invariant observables, 
which property coined the adjective cohomological [2]. 

A twisted theory is closely related to the underlying space-time supersym­
metric theory. Namely the pa th integral of the twisted theory computes a 
certain chiral (or BPS) sector of physical amplitudes [3][4]. This is due to the 
trivial holonomy of flat space-time where the physical theory is usually defined. 
Then twisting is a physically invisible operation. The typical physical applica­
tion of a twisted theory is a non-perturbative test of a certain duality utilizing 
the semi-classical exactness of the pa th integral. Two famous examples origi­
nating before the second string revolution are given by mirror symmetry [5] [6] 
and S-duality of N = 4 supersymmetric Yang-Mills theory in four-dimensions 
[7]. The twisted version of four dimensional N = 2 supersymmetric Yang-Mills 
theory - the Donaldson-Witten theory [1][8]- also provided crucial hints [9] [10] 
on the celebrated Seiberg-Witten solutions of the original TV = 2 theory [11]. 



1 INTRODUCTION 

We must stress here that solutions of the underlying physical theory provide 
us with invaluable insights in the mathematical problem defined by the twisted 
theory. Perhaps one of the most beautiful properties of quantum field theory 
is that the theory depends on a scale. The equally beautiful property of coho-
mological field theory is that the theory does not depend on scale. Thus the 
mathematical problem defined by the latter theory can be solved in terms of 
the former theory at a different scale where its relevant degrees of freedom are, 
often completely different from the original microscopic one. The historical ex­
ample is, of course, the Donaldson versus Seiberg-Witten invariant [12]. After 
the second string revolution [13][14][15], cohomological field theory still plays 
important roles, especially in D-brane physics [16]. A raison d'etre of twisted 
theory has been provided in terms of D-branes on non-trivial space-times [17]. 
All those countings of BPS states and their applications to blackhole physics 
and non-perturbative tests of string dualities are based on the same principle, 
see [18][19][20][21][22][23] etc. 

In general we may forget about the underlying physical origin of a cohomo­
logical field theory and define the theory as a quantum field theory with a global 
fermionic symmetry. Such a theory may not be directly obtainable as a twisted 
version of an underlying space-time supersymmetric theory. The most funda­
mental property of a quantum field theory with a global fermionic symmetry 
is the fixed point theorem of Witten [3] [24]. Almost all the other properties of 
cohomological field theory can be obtained as a certain lemma of the theorem. 
Thus it seems appropriate to quote the theorem here [3]. 

Consider an arbitrary quantum field theory, with some function 
space X over which one wishes to integrate. Let F be a group 
of symmetries of the theory. Suppose F acts freely on X. Then one 
has a fibration X -» X/F, and by integrating first over the fibers 
of this fibration, one can reduce the integral over X to an integral 
over X/F. Provided one considers only F invariant observables Ö, 
the integration over the fibers is particularly simple and just gives a 
factor of vol(F) (the volume of the group F): 

f e'sO = vol(F) • f e~sO. (1.0.1) 
JX JX/F 

Now we consider the case that F is a global fermionic symmetry 
generated by a supercharge Q. Then the volume of the group F is 
zero. It follows that if Q acts freely, the expectation value of any Q 
invariant operator vanishes. In general, F does not act freely, but has 
a fixed point locus X0. If so, let C be an F-invariant neighborhood 
of X0 and X' its complement. Then the path integral restricted to 
X' vanishes, by the above reasoning. So the entire contribution to 
the path integral comes from the integral over C. Here C can be an 
arbitrarily small neighborhood, so the result is really a localization 
formula expressing the path integral as an integral on X0. The 
details depend on the structure of Q near X0- If the vanishing of Q 
near X0 is a generic, simple zero, then the fixed point contribution 



is simply an integral over X0 weighted by the one loop determinants 
of the transverse degrees of freedom. 

In Chapters 2 and 3 we will develop a general approach which identifies 
any cohomological field theory with a 0 + O-dimensional supersymmetric sigma 
model. Being in zero-dimensions the (space-time) supersymmetry simply means 
global fermionic symmetry. The target space of our sigma-model may be some 
function space X in the theorem quoted above. Such a space may be any (non­
linear or linear and finite or infinite dimensional) space endowed with any of 

Riemannian D Kahler D hyper-Kähler (1.0.2) 

structures. Actually the above structures may not be regarded as a priori no­
tions. The cohomological field theory can be classified by the number 7VC = 
(Af+,N~) of global supercharges, where we have JV+ + N~ independent mutu­
ally nilpotent fermionic charges and JV* denote the number of charges carrying 
fermionic (or ghost) numbers ± 1 . Then we have the following sequence of 
fermionic symmetries 

AT+ = 1 D N+ = 2 D N+ = 4, (1.0.3) 

which determines the sequence of geometrical s tructures (1.0.2).1 

In this thesis we specialize to models with a Kahler structure. Those models 
are quite general and allow us to have very compact formulations. The initial 
data will be some function space X endowed with a complex structure compat­
ible with the supersymmetry. Then most of the other structures of the models 
can be fixed. We will introduce three types of models, two with Nc = (2,0) 
and one with Nc — (2, 2) symmetry, and establish general interrelations. For 
each type we will consider non-linear X and linear or non-linear X with a group 
G acting on X. Perhaps our definition of cohomological field theory as a zero 
dimensional sigma model might be confusing. If the target space X is the func­
tion space of certain fields on a manifold M we have a tradit ional cohomological 
field theory on M. 

In due course the relation between our construction and two-dimensional 
space-time supersymmetric field theory will become obvious. This implies tha t 
we always have canonical string theoretic generalizations of those differential-
topological invariants defined by cohomological field theory. One may also use 
the correspondence to define suitable matr ix string theory [29]. We will not go 
into this direction in this thesis and refer to [30][31], as examples. The Chapters 
2 and 3 may also be viewed, after slight modifications, as an unorthodox intro­
duction to two-dimensional supersymmetric field theories. Our presentation for 
models with a group action will parallel the original l i terature on Nws = (2, 2) 

1 The above correspondence is originally due to supersymmetric sigma models in two-
dimensions [25] [26] [27]. In certain respects, such a correspondence in zero-dimensional mod­
els is more striking since we do not need any underlying geometrical objects like the two-
dimensional space-time. Actually the sequence (1.0.3) leads to more general geometrical 
structures including torsion [28]. However, the author is not aware of any examples of a 
traditional cohomological field theories with torsion in the space of fields. 



2 I N T R O D U C T I O N 

and Nws = (2,0) gauged linear sigma-models in two dimensions [32][33]. We 
should also mention the influential paper of Wit ten on supersymmetry and 
Morse theory [34] dealing with (0 + l)-dimensional supersymmetric sigma mod­
els, which can be regarded as the origin of cohomological field theory.2 

For some general l i terature for cohomological field theory we refer to [2] 
and [35] for short but lucid introductions, and two review articles [36] and 
[37]. Those references are mostly about the Riemannian version of A/"c = (2,0) 
models. For the Riemannian version of Afc = (2, 2) models, called balanced co­
homological field theory, we refer to [38]. For a mathematic ian the path integral 
of a cohomological field theory is the Mathai-Quillen formalism of the integral 
representation of the Thorn class [39] [35]. Though we will never refer to Mathai 
and Quillen, our (path) integral formula can be viewed as the Kahler version of 
the Mathai-Quillen formalism. More precisely our formulas should be viewed 
as a certain equivariant generalization of Fulton and MacPherson 's intersection 
theory [40]. For a physicist a cohomological field theory is a supersymmet­
ric gauged sigma model in (0 + 0)-dimensions. Though we will never use the 
superspace formalism our construction is equivalent to the N = 2 superspace 
formalism. 

In the later chapters of this thesis we will apply our formalism to construct 
models with certain infinite dimensional target spaces. We will concentrate on 
two classes of examples whose target spaces are; (i) the space A of all gauge fields 
on complex 2, 3 and 4-dimensional Kahler or Calabi-Yau manifolds, (ii) the total 
space T*A of cotangent bundle of A on complex 2-dimensional Kahler manifolds, 
as an example. We call the first and the second classes of the models cohomolog­
ical Yang-Mills theory and cohomological Yang-Mills-Higgs theory, respectively. 
Those chapters will be devoted mainly to a detailed study of the physical and 
mathematical implications of those models. Cohomological Yang-Mills theory 
on a compact Calabi-Yau manifold or on a flat manifold is equivalent to global 
supersymmetric Yang-Mills theory on tha t manifold. One may regard such 
a theory as, after being suitably interpreted, effective world-volume theory of 
D-brane [16][41], or Matrix theory [42][43], or dual to supergravi ty /s t r ing/M 
theories [44]. On the other hand cohomological Yang-Mills-Higgs theory does 
not have corresponding global supersymmetric Yang-Mills theory. Neverthe­
less such a model is connected with physical theory by certain renormalization 
group flow. It is amusing to speculate tha t such a model may describe certain 
"unbroken phase" of supersymmetric Yang-Mills theory or "unbroken phase" of 
the theories in the same equivalence class. 

2It is ironical since his construction can be regarded, from our viewpoint, as a generalized 
cohomological field theory. 



Chapter 2 

Standard Models of 
Cohomological Field Theory 

This and the next chapters are devoted to an elementary and self-contained 
introduction to cohomological field theory. Though elementary, we will develop 
the most general construction of cohomological field theory involving Kahler 
geometry. 

In this chapter we consider supersymmetric sigma models in (0 + 0) dimen­
sions, whose target space is a compact complex Kahler manifold X. Those 
models may be regarded as the quantum theory of single point-like "instanton" 
- the point-like event of X or point-like instanton probes of the classical geom­
etry of X by means of the pa th integral. The space of all bosonic field will be 
the configuration space of the instanton, which is a copy of the manifold X. 
We will s tar t from the simplest Nc = (2,0) model as a toy model. A slightly 
more complicated Nc = (2,2) model follows. Then we generalize it to another 
7VC = (2,0) model. We will survey how those supersymmetric theories probe or 
give rise to the classical geometry of Kahler manifolds X, its tangent bundle TX 
and holomorphic Hermitian vector bundle E over X. The models to be covered 
here will be used as the prototypes of all the other more elaborated models to 
be introduced later. We refer to the models in this chapter as s tandard models 
since any cohomological field theory will reproduce to one of those models if it 
is "generic". 

We follow a typical procedure of defining supersymmetric field theory, namely 
introducing bosonic fields, supercharges with their algebra, fermionic superpart­
ners, supersymmetric action functional, and studying path integrals. Due to the 
triviality of the model everything can be made completely rigorous. Assuming 
existence of nil-potent supercharges, a simple application of Poincaré lemma 
leads to an appropriate supersymmetric action functional. All the other geo­
metrical structures then naturally follow. We will also clarify the geometrical 
meaning of the supercharges. 
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2.1 A Toy Model 

In this section we design perhaps the simplest path integral, which has many of 
the basic properties of cohomological field theory. 

Consider a compact complex n-dimensional space X . We pick local co­
ordinates x1, I = l , . . . , 2 n on X. The local complex coordinates on X will 
be denoted as z', i — I,... ,n; their complex conjugates are zl = zl. Let X1 

be local coordinates fields describing the position of an instanton on X. More 
precisely, the X1 parameterize a map 

X1 -.points X. (2.1.1) 

We denote by X1 local complex coordinates fields and X1 be their complex 
conjugates. We call X1 and X1 bosonic fields. We introduce anti-commuting 
operators s and s called supercharges satisfying the following anti-commutation 
relations, 

s2 = 0, { s , s } = 0 , s 2 = 0 . (2.1.2) 

We define a pair of graded quantum number (ghost numbers) (p, q) such that s 
and s carry the following ghost numbers 

a : (1,0), a : (0,1). (2.1.3) 

We call the supersymmetry (2.1.2) of type Nc = (2,0), meaning that we have 
two supercharges both carrying positive ghost numbers. 

We assume that the X1 are holomorphic fields, meaning that sXl = 0, 
and their complex conjugate X% are anti-holomorphic, sX' = 0. Then we can 
postulate the following supersymmetry transformation laws 

sX1 = ixf, siP* = 0, 

sXr = 0, s-iP* = 0, 

sXi = 0, «V1 = 0, 

sX' = # \ sil? = 0. 

From the above we may write s and s as follows 

s = ir^, *=^£ï (2.1.5) 

We call the anti-commuting superpartners \jjl and ipl of X' and X', respectively, 
fermionic fields. They carry the ghost numbers (1,0) and (0,1), respectively. 
In general, a field with ghost number (p, q) is fermionic if p + q is odd while, 
otherwise, it is bosonic. 

Now we consider an action functional S(X',Xl,ipl,tj;1) which is invariant 
under both of the supersymmetries with supercharges s and s. The conditions 
for supersymmetry sS = sS = 0 together with the anti-commutation relations 
(2.1.2) imply, due to the Poincaré lemma, that S may be written as 

S = isslC{Xi,X1), (2.1.6) 

(2.1.4) 
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where K. is a locally defined real functional of X% and X\ Applying the trans­
formation laws (2.1.4) we have 

( Q2v- \ . _ 
= V V j := -UC&fity. (2.1.7) 

dX*dXi) 'J K ' 

Now we consider the Feynman path integral of our model. The partition 
function is defined as integration over the space of all fields weighted by e _ s , 

Z = j[DXVXV^V^] e~s. (2.1.8) 

In everyday quantum field theory, we usually do not have a well-defined path 
integral measure though we have well-established rules of doing the path integral 
at least for the perturbative regime. For our trivial quantum field theory the 
path integral measure is perfectly well-defined. The space of all bosonic fields 
is a copy of X. Thus the path integral is an integral over X. We have 

f n — — 
Z= [ dXkdXkdr{;kdxpkexp(ilCi-]^

j). (2.1.9) 
k,k = l 

Remark that the path integral measure carries ghost number (n,n), i.e., the 
ghost number anomaly. In the above evaluation we used the basic fact of inte­
gration over Grassmann numbers that the integrand should also carry the net 
ghost number (n, n) to have a non-vanishing integral. Performing the integral 
over ip' and «/>*, using the law of integral over Grassmannian number, we have 

f n 

Z= [ dXkdXkdet{iKil). (2.1.10) 
x k,k=i 

Now we compare the properties of our model with the differential geometry 
of the Kahler manifold X. We denote the space of r-forms on X by ttr(X). We 
have the exterior derivative 

d-.nr(x)^nr+1(x) 

satisfying d2 = 0. For any complex manifold we have decompositions 

fT(X) = 0 W'^X) 
r=p+q 

of r-forms into_type (p, g)-forms with p + q = r. Similarly we have a decompo­
sition d = d + d such that 

d : np'"(x) -»• rF+1'*(x), d:fiP'"(x)^np+1'"(x), (2.1.11) 

and 
d2=0, {d,d} = 0, d2 = 0. (2.1.12) 
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In terms of the local complex coordinates z' and z1 we have 

d = dzi-^, d = dz1-^. (2.1.13) 
dz* dz{ 

A complex manifold is Kahler iff there exists a non-degenerated type (1, l)-form 
w satisfying dza = 0. A basic fact of the Kahler geometry is that the Kahler 
metric tensor gç- can be written as 

d2f 
gQ = - ^ , (2.1.14) 

3 dz>dz3 

where ƒ is a Kahler potential. The Kahler form zo is given by 

w = vjr:dz% A dz3 = igqdz* A dz3, (2.1.15) 

where VJQ = -m-- while gq = g-jv 

A comparison with our supersymmetric theory leads to the following obvious 
dictionary 

z{ -)• X\ dz{ -> i%l)\ 
_ _ (2.1.16) 

zi-^X\ dzl-+irl>1. 
Under the above isomorphism the relations (2.1.12) and (2.1.13) become (2.1.2) 
and (2.1.5), respectively, such that 

a - > « , ä - > « . (2.1.17) 

Also the Kahler form xa in (2.1.15), after identifying /C with a Kahler potential 
ƒ of X, i.e., K- = g^, becomes (minus) our action functional S in (2.1.7). 
Now we examine the partition function Z defined by (2.1.9). It is obvious that, 
compare with (2.1.10) 

Z = Je^ = l^- = l^fl dzkdz*det(igß), (2.1.18) 
k^k—l 

where the second identity follows from the fact that the integrand should be 
a top form and the third identity follows from the definition of ZU. Thus the 
partition function of our first supersymmetric field theory is the symplectic 
volume of X. We remark that the second identity is equivalent to the condition 
of the ghost number anomaly cancellation. 

One may formalize the above correspondence's follows. For the tangent 
bundle TX we define an associated superspace TX where the hat symbol de­
notes the parity change of the fiber as in (2.1.16). Then the supercharges s and 
8 are odd vectors and the action S is a function on TX. 

Now we move on to observables and correlation functions. A supersymmetric 
observable 3 is a quantity invariant under the symmetry of the theory and 
annihilated by supercharges. We consider the following polynomial function on 
TX, 

ap'" = a. . T T xbil ...tp^ip3' ...ip3", (2.1.19) 
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carrying the ghost numbers (p, q). Due to the isomorphism (2.1.16) sâp'q = 0 
iff 9QP '« = 0 where a™ e Sl™(X) is the (p, ç)-form on X defined by 

» i " - » p j i — j 
dz11 A . . . A <&> A d0J'i A . . . A dzj". (2.1.20) 

Note that s defines a Dolbeault cohomology on the space of observables graded 
by the ghost numbers which correspond to the form degrees. In the above 
we showed that the s cohomology is isomorphic to the Dolbeault cohomology 
(d,n*-*(X)) o n X . 

The correlation function of observables or the expectation value is defined 
by 

/ j j Spm,qm \ _ J[VXVXVrliV^] f[ S"""«™ • e~s. (2.1.21) 
\m = l / J m=\ 

For the present model we see that 

/ J J 3P-».«-\ = J aPl'*2 A . . .Aa p " ' ? " Ae r o . (2.1.22) 
\m = l / J* 

Obviously we have non-vanishing correlation function if the observables satisfy 
the ghost number anomaly cancellation condition 

r 

X^(Pm,gm) = (M) , ?<n (2.1.23) 

Then 

TT Spm,i™\ =
 1 f a ! " * A . . . A a M ' M j A . . . A E 7 . (2.1.24) 

\m=l 

It follows that correlation functions of supersymmetric observables depend only 
on the cohomology classes of observables and the Kahler form w.1 Thus the 
correlation function computes the classical cohomology ring of the target space 
X. Equivalently the correlation function computes intersection numbers of ho­
mology cycles dual to ap'q e Hp'q(X). 

Using our toy model we illustrated many of the basic properties of cohomo-
logical field theory. In general, however, life is never as simple as in the idealized 
world. Typically we encounter an infinite dimensional space of certain set of 
fields on a manifold M as our target space X. Furthermore there usually exists 
an infinite dimensional group action on the target space. Nonetheless one is 
eventually interested in the subspace defined as the solution space of certain 
first order differential equations, modulo the gauge symmetry. Thus we will 

1Consider the integral Jxß
e*° where ß is a closed (^,f)-form. Let 7 be homology cycle 

Poincaré dual to ra'. Then the integral reduces to , * ., ƒ ß. Let ß' belongs to the same 

cohomology class as ß, i.e., ß' — ß + da. We have, using Stokes' theorem, ƒ (ß' - ß) = 
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need a machinery to reduce the pa th integral to such a subspace and to take 
care of the group action, as we will do later. 

For the time being we ignore those things and assume tha t the pa th inte­
gral is eventually reduced to some finite dimensional moduli space. Then it 
may be equivalent to our toy model. We may call a quantum field theory on 
M with such a property a cohomological field theory. Usually the differential 
geometrical s tructures of the moduli space are induced from those of M. Such 
a field theory on M has global supersymmetry equivalent to (0 + 0)-dimensional 
supersymmetry. The cohomology of such a global supersymmetry is isomorphic 
to a certain cohomology of M. Consequently the correlation functions of su-
persymmetric observables are differential topological invariant of M. We refer 
to the original paper [1] of Wit ten for a lucid exposition of general properties 
of such a cohomological field theory. Here we repeated many of his arguments, 
perhaps in a slightly different context. 

2.2 Nc = (2, 2) Model 

In this section we consider a somewhat more interesting model by generalizing 
the toy model of the previous section. We introduce two copies ( s± , s± ) of the 
fermionic charges (s,s). We regard the above doubling as a Z2-grading in the 
sense that supercharges carry the following ghost numbers (p, q) introduced for 
the toy model, 

•+ : (+ l ,0 ) , a+ ' : (0 ,+l) , 
• _ : ( - l , 0 ) , s _ : ( 0 , - l ) . 

Thus the supercharges s + and s+ can be identified with the original super­
charges a and s of the toy model. We want to define a supersymmetric theory 
invariant under all four supercharges. Obviously we will have a Zo-symmetry 
exchanging the + and — indices. We will say tha t the resulting theory is of 
type Nc = (2 ,2) . We will see tha t such a model is related with the geometry 
of tangent bundle TX of a Kahler manifold X. The part i t ion function of this 
model can be identified with the Euler characteristic of X. 

2.2.1 Basic Structures 

We postulate tha t the supercharges satisfy the following anti-commutat ion re­
lations, 

4 = 0 , {s±,s±} = 0, 4 = 0 , (2.2.2) 

and 
{ S + , s_} = 0, { s ± , ä T } = 0 , { s + , ä _ } = 0 , (2.2.3) 

which is an obvious generalization of (2.1.2). We will consider the same bosonic 

fields X1 and X 1 as in our toy model. We demand X' to be bi-holomorphic or 

chiral, meaning tha t s±Xl = 0.2 We call the complex conjugates X1 anti-chiral, 

2Note that this choice is arbitrary. We may also demand twisted bi-holomorphicity or 
twisted chirality by imposing S+X' = S-Xl = 0. A model with both chiral and twisted 
chiral multiplets has very interesting properties. 



2.2 Nc = (2,2) MODEL 11 

meaning that s+X' = S-X' = 0. Now the anti-commutation relations among 
supercharges suggest that we have the following chiral multiplets 

ipi_ £- x{ -̂±> v ; 

«^ , /L • (2.2.4) 

H' 

In the above Hl are called auxiliary fields, which are introduced due to the 
conditions 

{s+ , s_}X i =is+V>L +is_V'+ = 0 , (2.2.5) 

can be solved as s±ipl = ±H* while they are indeterminate.3 Denoting 6 = 
s+ë_ + S-€+ + s+e_ + 5_e+ we have the following transformation laws for 
chiral and anti-chiral multiplets, 

SX* =iê_ V+ + ï'ë+ V>-, ^ =ie_ V'V + ie+ipi, 

S4L=-e-H\ S1>L=-e_Hi, 

J i r = 0 <S#7 =0. 

Now we define a natural supersymmetric action functional. The require­
ments 8±S = 8±S — 0 for S to have Nc = (2,2) supersymmetry and the 
anti-commutation relations (2.2.2) and (2.2.3) imply, by repeatedly applying 
the Poincaré lemma, that we can write S as follows, 

S = a+8+aJi-K{X\ X1), (2.2.7) 

where JC(X\X') is a locally defined real functional. Expanding the above we 
have 

S = gr-.WW + idk9i] V£V>-#J + id^g-j tPÎWtil + dt%gi3 V ^ V > 1 # , 

(2.2.8) 
where dt = d/dX' and d- = d/dX* and we set g-j := d^K. We can integrate 

out the auxiliary fields Hl and Hl by a Gaussian integral, or, equivalently, 
eliminate them by plugging in the algebraic equations of motions for Hl and 

_ J 1 _ (2.2.9) 

where glj is the inverse of g^. Then we obtain the new action functional S', 

S' = -R^tJ^li,'_il, (2.2.10) 

3 The equation might also be solved as S±i(it = 0 without introducing H'. However, the 
auxiliary fields are indispensable. The moral is that we better keep it whenever we encounter 
redundancy. 
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where 
Rtki-j = -d&9ß + 9p~qdi9p-kdjgrq, (2.2.11) 

which can be identified with the the Riemann curvature tensor of TX if K. is 
a Kahler potential of X. Remark that the non-vanishing components of the 
Christoffel symbols in the Kahler geometry are 

r M = 9fidkgfj, TL = gf%gfv (2.2.12) 

The new action S' is invariant under the supersymmetry after modifying the 
transformation laws (2.2.6) by replacing Hl and Hl by their on-shell expressions 
(2.2.9). 

Now we examine the path integral. The partition function is defined as 
usual, 

Z= j{VXVXVtl)±VÏ}±}e-s', 

' l \ n / * n — — 

— J / J ] dXkdXkdrPld^d^k_d^exp^ReIß^+i>k+r-i>i.), 
k,k=i 

(2.2.13) 
where the integration is over the space of all fields. The bosonic part of the path 
integral is an integration over a copy of X. We first perform the integral over V>+ 
and xp'+ which, as we saw earlier, is equivalent to replacing Rlki- V'+V'+V'IV'-

by the (1, l)-form Rt~ := Rkjfdzk A dze on X, 

/ i \ n r n — 
z = f ^ j / n ^-^- e x p(%^-^-)- (2-214) 

fc,7t=i 

Integration over ijjl_ and ipl leads to 

Z = j±z J det{Rx-) = J e{TX) := X(TX). (2.2.15) 

The last identity is due to the Gauss-Bonnet theorem. Thus the partition func­
tion computes the Euler characteristic x(-^0 = x(TX) of the manifold X. 

2.2.2 Geometrical Interpretation of Supercharges 

Now we examine the geometrical meaning of our supercharges. In Sect. 2.1.1 
we already saw that the supercharges s+ and s+ are associated with the d and 
d differential on the target space X. Our task is to understand the geometrical 
meaning of the remaining supercharges s_ and s_. 

We begin with discarding the obvious candidates for s_ and s_, namely the 
operators d* and d defined by 

d* = - *d* : np'q(x) -> ftp-^m, 
, (2-2.16) 

d =-*d*:np'q(x)^np>q-l(x), 
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where * denote the Hodge star. They satisfy the following relations 

d*2=0, {d*,d*}=0, d*2=0, (2.2.17) 

and decrease the form degree by (—1,0) and ( 0 , - 1 ) , respectively. We have, 
however, well-known relations in Kahler geometry 

{d,d*} = {d,d*} = \{d,d*} = l v , (2.2.18) 

where V is the Laplacian. On the other hand we have {s+, s_} = {s+, s_} = 0. 
We also have more obvious problem from d*X* = 0, while s _ J ' = iip'_ ^ 0. 
Thus we have to seek an alternative set of operators . 

We first consider the real symplectic case and then specialize to the Kahler 
case. Consider a symplectic manifold with symplectic form w = zujjdx1 Adx . 
Since the matr ix vou = —wji is non-degenerated we have a well-defined inverse 
matr ix wJI. Using VJJI we have a canonical map from a cotangent vector to 
a tangent vector.4 Denoting a = ajdx1 and à = a1 ^ - for a cotangent vector 
and its dual tangent vector, respectively, we have 

51 =wIJaj. (2.2.19) 

One may define the corresponding operator n as follows 

n := Ç {{®ir) HC?) - (®ä£j) W^]) • (2-220) 

where the symbol ^ g f r means taking tensor product . For instance we have 

,j ( d \ dldxL) rj d _ , d _ , „ „ „ , > 

Similarly n induce an isomorphism 

n : T(APT*X <g> AqTX) -> r ( A p " 1 T * X ® Aq+1TX), (2.2.22) 

where T X and T*X are the tangent and cotangent vector, respectively, and T 
denotes the space of sections. Note tha t T{N"T*X ® A T X ) = f îp(X, A ' T X ) . 

Now we can define a first order differential operator by taking the composi­
tion of n and the exterior derivative d, 

d : f2(ApT*X ® A T X ) -> fl(Ap+1T*X 0 A T X ) , (2.2.23) 

as follows, 

d := {nd - dn) : n(ApT*X 0 A«TX) -> ft(ApT*X ® A ' + 1 T X ) . (2.2.24) 

We will conveniently assign the form degree —1 to the operator d. One can 
check 

d2=0, {d,d} = 0, (2.2.25) 

*We may also consider a Poisson manifold with a bi-vector zu 
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after a direct computations. We also have the following obvious but important 
relation 

d : x1 —> dx1, 

~ j u d (2.2.26) 
d : x' -> zo1J -——. 

ox1 

Thus for a symplectic manifold X with the symplectic form tu we have 

{x1 ,dx', -^-j;d,d), 

where dx1 and d/dx1 denote local coordinates in the fiber of TX and the fiber 
of T*X, respectively. To relate with supersymmetry we perform the parity 
changes for both the fibers of TX and T*X, i.e., TX and T*X. Then we have 
a map 

(x^dx^d/dx'-d^) -> (X^itß^ixnQ^Q-), (2.2.27) 

where everything is in real coordinates, ip{_ := TUIJXJ and Q± = s± + s±. 

One may compare our operator d with the (different) operator A defined by 
Koszul [45]. The operator A is define as 

A:=nkd-dnk, (2.2.28) 

where \lk in the notation of (2.2.20) is given by 

wIJ f d2 d2 

n * : 2 \d(dx')d(dxJ) didx^didx1)) ' (2-2.29) 

Thus A is a second order differential operator with degree - 1 on T(A*T*X) = 
fl*(X) and we have Ax1 = 0.5 

Now we return to a Kahler manifold X with Kahler form VD = vc^dz' A dz* 
and show that the above interpretation is indeed the correct one. It is suffice to 
consider the holomorphic half, say s+ and s_. The operator n is decomposed 
as n = n' + n" where 

1 - - 8 (2.2.30) 
2 w+ 

where we did parity change n -> n by 

dz'-^i^x, d/dz'^ixi, 
- - - (2 2 31) 

dz*->iiPl
+, d/dzi^iXi. 

5Koszul proved A 2 = {d, A} = 0 and defined a covariant Schouten-Nijenhuis bracket, 
a , / 3 e f i * ( X ) , 

{a,ß}SN = (Aa) A /3 + ( - l ) H a A A a - A(a A ß). 
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Now we define 

From 

we have 

s_ = 

s_ = n's+ - s+n'. (2.2.32) 

8+=i^+QXV (2-2-33) 

' 2 r o JxJ^ + 2dXÏ^JW+- (2-2-34) 

Now we can check if the above identification of the supercharge s_ is the 
correct one. After direct computations we find the following relations 

s+vi = o, 
dwl> k .1,1 

s+X1 = 0, S+V>- == +i™3iJ£xT<PX<P 

s~XJ=0, ti . dmfi 
._*<=*<, S - ^ = -™î<ëXÏ 

s-ipl = 0, 

(2.2.35) 

where we defined 

ißt = -\™QX-y (2.2.36) 

In checking S-ip'_ = 0 we used the torsion-free condition of the Hermitian 
connection of TX, equivalent to the condition dzu = 0. Using the relation 

^] = id fi = -*>ji (2-2.37) 

we see tha t the above is exactly the supersymmetry algebra of s+ and s_ in 
(2.2.6) after replacing the auxiliary fields H' by their on-shell values given by 
(2.2.9). 

Now we summarize. We have the following operators 

•H d 

S+=li;+dX~i' 8-=f\'a+-8+fr, 
a ~„ ~ , (2-2-38) 

s+=iipl-L, s-=n"s+-s+n", 
+ dX* 

such tha t 

s+ :Qp-9 [ArfX ® A s fx ) -> np+x'q UTTX ® A s fx ) , 

s+ : n M {hrfx ® A s fx ) -> n™+1 Urfx ® Asfx), 

s_ :Ûp'q (ArTX ® A s f x ) -> fi™ ( A r + 1 f X ® A s f x ) , 

s_ :ÜP'9 (j\TTX ® Asfx) -> 0*'« ( A r f x <g> A S + 1 T X ) , 
where T X denotes the holomorphic parts of the tangent bundle TX = TX@TX 
oîX. 

(2.2.39) 
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2.2.3 Introducing a Holomorphic Potential 

Now we consider a more general action functional. We pick a holomorphic 
function W(Xl) of the chiral fields X\ Since s±Xi = 0 we have a±W{Xi) = 0. 
It follows that we have the following more general TV = (2,2) supersymmetric 
action functional, 

S(X) =s+s+s-.s-)C(Xi, X1) + A s + s . W p T ) + As+s_W(X i) , (2.2.40) 

where A is certain coupling constant introduced for convenience. Expanding 
S(X) we find 

5(A) =giJH
iHi + i (ö^jV'+V'l - XV-) IP + iW {d^g^lil - Xvi) 

(2.2.41) 
where we set Vi := dW/dX1. Now we integrate out the auxiliary fields by their 
algebraic equations of motions 

H^-iri^L+iXg^Vj, 
_ I _ . 3 (2.2.42) 

where we used the notations in (2.2.12). We have 

(2.2.43) 
where 

™K^W+T:.Vt. (2.2.44) 
DXi dXi tJ l K ' 

The Par t i t ion Function 

The partition function is independent of A since A dependent term is s±-exact 
deformation of 5. In the limit A —>• oo the dominant contributions to the path 
integral are from the vanishing locus of holomorphic vector fields V{. Or we may 
simply apply the fixed point theorem of Witten to reach the same conclusion; 
from the supersymmetry transformation laws (2.2.6) we see that the fixed point 

equations are ip± = H1 — 0. From the relations (2.2.17) the above implies 
^ = 0. 

For generic choices the vanishing locus will be zero dimensional and consists 
of isolated points. Then there are no fermionic zero-modes and the action func­
tional evaluated at such a point is simply 0. Thus the partition function is just 
the sum of contributions of each point weighted by the one loop determinants 
of the transverse degrees of freedom. Due to the Bose-Fermi symmetry such a 
determinant is ±1 , depending on a certain orientation, due to supersymmetry 
and due to the ambiguity in taking the square root of the determinant. In our 
case they always can be set +1 since the ambiguities from holomorphic and 
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anti-holomorphic contribution cancel each other. Thus the partition function is 
the number of zeros. If we turn off the potential we recover the original model. 
This gives rise to the Poincaré-Hopf theorem. We should mention that the usual 
derivation of Poincaré-Hopf theorem uses supersymmetric quantum mechanics, 
i.e., the (0 + 1) dimensional sigma model [46][47][34], but with essentially the 
same arguments. 

For a non-generic vector field Vi the vanishing locus can be a positive dimen­
sional submanifold. One may try to perturb the vector field Vi, thus V\}{X'1), to 
a generic one or just evaluate the path integral. We will give a detailed analysis 
for this case in the next section in a more general context. 

2.3 General izat ion to Nc = (2, 0) Model 

The model in the previous section enjoys a perfect symmetry between things 
with + and — indices. Now we want to relax such a symmetry. We shall 
see that such symmetry is due to the restriction of considering a very special 
Hermitian holomorphic vector bundle, namely the tangent bundle TX, over X. 
By maintaining only the JVC = (2,0) supersymmetry generated by s+ and s+ we 
arrive at a more general model, which is related with a Hermitian holomorphic 
bundle E over X. 

2.3.1 Basic Structures 

First we write our action functional S(A) (2.2.40) in form such that only the s + 

and s+ are manifest, 

S(\) = -s+s+fa-iX^X^lil) + i\s+(^_Vt(X>)) +iXs+(f_Vr{xi)) . 
(2.3.1) 

Similarly we disconnect the diagram (2.2.4) by removing the link s_ 

V>t Xi ^±> ip% 

^ . (2.3.2) 

H* 

Now we can regard the above as two independent sets of multiplets. Then we 
rename various fields as follows 

Tp'-^X-, H>^Ha, Vi^ea(X
j), . , 

_ - 5 - - > / i -,{Xl,X'), (2.3.3) 

where the new indices run as a, ß = l , . . . , r and we maintain the Hermiticity 
of hag. The s+ and s+ transformation laws are 

SX* =. ie-i/>L <sv>i=o, 
I - (2.3.4) 

SX'=ie^\, <ty>+=0, 
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and 
6X1 = -e-Ha, SHa = 0, 
r w - - (2-3-5) 
6Xl=-e-Ha, SHa=0. 

Now we have following new action functional 

S = - s+s+ (hae(X\X>)xZxl) + is+ (x-&a(X')) + is+ (xï&âiX1)) , 
(2.3.6) 

which is the general form of iVc = (2,0) supersymmetric action functional. 
Note that the above action functional may or may not have Nc = (2,2) 

symmetry. Generically the model does not have Nc = (2, 2) supersymmetry. 
Note also that the model has the same supersymmetry as our toy model in Sect. 
2.1.1. Thus the new model shares the same observables with the toy models, 
which are 8p'q obtained by an element ap'q = Hp>g(X) of the cohomology group 
Hp<i{X) after the parity change TX ->• TX. The differences with the toy model 
are that we have additional Fermi multiplets (x1,Ha) with a different action 
functional. We call the multiplets (xl, Ha) Fermi multiplets. We call x" anti-
ghosts. We remark that the action functional of the toy model may be regarded 
as zero by treating the Kahler form vu as an observables. Now we turn to 
examine the action functional. 

Expanding S we have 

S =ha-ßH°He + i ( ô ^ V - l x ï - S^) H? + iH" (djh^lxï - 6a) 

(2.3.7) 
After integrating out the auxiliary fields Ha and Hß by their algebraic equations 
of motion 

Ha = -ih^dkh^k
+xl + ihaße^ 

H« = +ihaß&^ha^lxl - ih0«6ß, 
we are left with 

(2.3.8) 

S' = fc^ - IffV-ix« - fff iixZ - FaM^U-xl (2.3.9) 

where 
F

aßij = - ^ K n + h^idihcèK&jh^) (2.3.10) 

and 

H f = 9j6a + hFißjKeüGß. (2.3.11) 

Relations with Hermitian Holomorphic Vector Bundle 

It turns out that we are describing a rank r Hermitian holomorphic vector 
bundle E -> X over a Kahler manifold X with Hermitian structure h s. Here 

aß 
we briefly summarize some properties of Hermitian holomorphic bundles [48]. 
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Consider a rank r complex vector bundle E over X. Let üp'q(X, E) denote 
the space of (p, ç)-forms over X with values in E. A connection (the covariant 
derivative) dA can be decomposed as 

dA = dA +dA : fF-«(X,E) -> QP+1^(X,E) ® np'"+1(X,K). (2.3.12) 

A connection dA endows E with a s tructure of a holomorphic vector bundle if the 
(0,2)-component F 0 - 2 € fi2(X, End(E)) of its curvature F vanishes, i.e., d\ = 0. 
A complex vector bundle E is Hermitian if it has a fixed Hermitian s tructure h 
which is a C°° field of positive definite Hermitian inner products in the fibers of 
E. Given a local frame field su = ( s i , • • •, sr) of E over an open subset U C X 
we set ha-p = h(sa,sp) where a , ß = l , . . . , r . Gluing them along different 

coordinate patches as usual we obtain hag(z', zl). A connection D in (E, h) is 
called an h-connection if d(h(£, n)) = h{D£, n) + h(£, Drf) for Ç,r) e Cl°(E). The 
theorem is tha t given a Hermitian s tructure h in a holomorphic vector bundle E, 
there is a unique /i-connection dA called Hermitian connection such tha t dA = d. 
Finally the curvature two-form of a Hermitian connection is of type (1,1) , thus 
F ' also vanishes. The curvature two-form is given by the formula 

F
aß--=Fa^jdZ'Adzl (2.3.13) 

where F^Q is defined as (2.3.10). We note tha t the Kahler metric <JL- on X is 
a Hermitian s tructure of TX. 

We saw tha t our model describes a rank r Hermitian holomorphic vector 
bundle E with Hermitian structure ha-g{zl,zl). Now &a can be identified with 
a holomorphic section of E. In summary a Nc = (2,0) model is associated with 
a Hermitian holomorphic vector bundle (E, h) over a Kahler manifold X with 
holomorphic section. Associated with the base manifold X we have holomorphic 
multiplets (2.3.4), as in the toy model. Associated with the fiber space we have 
Fermi multiplets (2.3.5). 

2.3.2 P a t h Integrals 

Now we examine the pa th integral of our model in the various situations. 

Turning Off t h e H o l o m o r p h i c S e c t i o n 

To begin with we consider the case that &a = 0. The part i t ion function Z is 
defined by 

r r n r 

Z = J J ] (dX"dXW+drl>l) J ] (dxldxî) eœp ( i ^ / ^ î x ^ ) • 
Lk,K~l 7,7=1 J 

(2.3.14) 
The bosonic integral is an integral over X. As before the bosonic integral and 
integration over ip^_ and tp^_ combine into the integration of differential forms on 
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X by replacing F^y^+V'^. with the curvature two-form F Q - defined in (2.3.13). 
Thus we have 

/

r _ 

I J (dxldxl) exp (FapX-Xß-) • (2-3.15) 
- : 7,7=1 

The fermionic integral of xQ and x13 leads to the Pfaffian of the curvature two-
form F Q - £ fi1'1(X, End(K). We immediately see that the integrand is not a 
top form on X unless n = r. For n = r the partition function is the Euler 
character x(E), 

Z = ƒ e (E)=x(E) , (2.3.16) 

otherwise, for n ^ r, the path integral vanishes. In the case r < n we can insert 
a set of observables FJ âPt 'qt with the total ghost number (n — r,n — r) and 
evaluate the correlation function 

/ j j SPt,qt \= f e(E) A a M A . . . A QP"'«™ (2.3.17) 

The path integral always vanishes for r > n. We see that the vector bundle E 
after the parity change can be viewed as a bundle spanned by anti-ghosts x" 
over X. 

Turning On the Holomorphic Section 

Now we turn on the holomorphic section &a of E —> X. Applying the fixed 
point theorem of Witten we see that the path integral is localized to an s+ and 
s+ invariant neighborhood of the vanishing locus N of 6a(X') in X, where 
a = l , . . . , r and i = 1 , . . . ,n. The condition &a(X') = 0 implies s+(S)a = 0 
in the s+ invariant neighborhood of N. We have 

dj6axy+ = 0. (2.3.18) 

We call a non-trivial solution above a zero-modes of ip+, which is a degree of 
freedom tangent to the vanishing locus N. We call a non-trivial solution of the 
similar equations 

dj&aXZ = 0 (2.3.19) 

a zero-mode of X-- For a generic choice of section &a the equation &a = 0 cuts 
out a (n — r) complex dimensional subspace of X. Then the equation (2.3.18) 
implies that we have exactly (n—r) zero-modes of V>+, while the equation (2.3.19) 
implies that we do not have any zero-modes of X-, since n > r. Assume that the 
equations dj&a = 0, only for a fixed a have common roots for all j = 1 , . . . ,n. 
Then (2.3.18) for the fixed a do not impose any condition on the \j)3

+ and we 
may have (n — r + 1) zero-modes of ip+. Similarly the equations (2.3.19) do 
not impose any condition on the fixed component X- a n d we may have one 
zero-mode of X-- Thus we may draw two conclusions 
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1. For a generic choice of section we do not have any zero-modes of anti-
ghosts. The vanishing locus ©_ 1(0) of the section has the right complex 
(n — r) dimensions and the zero-modes of ip+ span the tangent space of 

e-^o). 

2. For a non-generic choice of section we may have anti-ghost zero-modes. 
The vanishing locus <5_1(0) of the section have dimension higher than the 
right one. In any cases we have 

n-r = # ( ^ + ) - # (*_ ) (2.3.20) 

where #(fermi) denotes the number of fermionic zero-modes. We call the 
above the formal or virtual complex dimension of S _ 1 (0 ) . The space of 
anti-ghost zero-modes span a vector bundle V over 6 _ 1 (0) called the anti-
ghost bundle. The fiber dimension of V may jump when 6 _ 1 (0 ) develops 
singularities. 

We also see that our action functional S' (2.3.9) restricted to the s+ and 
s+ invariant neighborhood C of the fixed point locus is given by 

S'\c = -Fa,ïïi,7ri^.xa-f-, (2-3.21) 

where it is understood all the fermions (V>+, ip'+, X- > X- ) a r e replaced by 
their zero-modes (V>+, ipl

+, X- > X- ) a n d the curvature above is the curva­
ture of the anti-ghost bundle V over 6 - 1 ( 0 ) . 

Now we examine the path integral. For n = r and with a generic section 
the vanishing locus (5_1(0) is zero-dimensional and the path integral counts the 
number of zeros of the section. For n = r and with a non-generic section the 
zeros of the section can be a positive dimensional submanifold 6 _ 1 (0 ) C X of 
X. The path integral reduces to an integral over ©_1(0) and over anti-ghost 
zero-modes. Note that the rank of the anti-ghost bundle V over S - 1 ( 0 ) is the 
same as the complex dimension of 6 - 1 ( 0 ) . The path integral becomes x(V) 

Z = I e(V) = x(V), (2.3.22) 

which in turn can be identified with x(E). 
Now we consider the case r < n. The partition function still evaluates the 

Euler class e(V) of the anti-ghost bundle V over 6 - 1 ( 0 ) . Since, by the formula 
(2.3.20), the rank of V is smaller than the complex dimension of S _ 1 (0 ) . Thus 
the Euler class e(V) is not a top form and the partition function vanishes. To 
get a non-trivial result we should insert a set of observables and evaluate the 
expectation value 

'&""•)-L e ( V ) A c l , " ' « 1 ^ . . . A a p - , « " , (2.3.23) 
(o) 
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where 
m m 

53p/ = 5^9/ = n - r , (2.3.24) 

and otherwise the pa th integral vanishes. If there are no anti-ghost zero-modes 
we have e(V) = 1 and the above correlation function reduces to the intersection 
number of homology cycles Poincaré dual to ape '9 ' in & ~1 (0). The selection rule 
above can be understood in more physical terms. The path integral measure 
contains a ghost number anomaly due to the fermionic zero-modes. The net 
ghost number violation of the pa th integral measure is (n — r,n — r ) , which 
follows from the formula (2.3.20) and the ghost numbers of the fermions; 

*r(1'0)' ^ ; ( - 1 ' 0 ) ' ,2.3.25, 
# i : ( 0 , l ) , * : : ( 0 , - l ) . 

To cancel the ghost number anomaly we have to insert observables according to 
the selection rule (2.3.24) to soak up the fermion zero-modes in the pa th integral 
measure. 

Spec ia l i z ing t o Nc = (2,2) M o d e l 

Finally we consider a special case of Nc = (2,0) model which actually has 
Nc = (2, 2) supersymmetry. We have the following properties 

1. For a generic choice of holomorphic potential W(Xl) we do not have any 
anti-ghost zero-modes. The critical set V~ (0) where Vi = diW(Xi) con­
sists of a collection of non-degenerate points. The parti t ion function is the 
number of such points. 

2. For a non-generic W(Xl) we may have anti-ghost zero-modes. The critical 
set V^ -1(0) may be a higher dimensional subvariety of X. The net ghost 
number violation in the pa th integral measure is always zero. Thus the 
rank of the anti-ghost bundle V is exactly the same as the complex dimen­
sion of Vf (0). Thus the part i t ion function is well-defined and computes 
the Euler characteristic x(V) of V. We can identify V with the tangent 
bundle of V r

i
_1(0). Thus the part i t ion function is the Euler characteristic 

of y i
_ 1 ( 0 ) . This, in turn, can be identified with the Euler characteristic 

oiX. 

2.3.3 An Infinite Dimensional Example 

Here we present an infinite dimensional example - the topological sigma A-
model in two dimensions. We consider a Riemann surface E and a compact 
complex d-dimensional Kahler manifold M. Now we let our infinite dimensional 
target space X be the space of all maps E —> M. Then we can introduce local 
holomorphic coordinate fields on X by X'(z,z) where i = 1 , . . . , d, leading to 
holomorphic multiplets (Xz,ipl

+) with the transformation laws (2.3.4). Now we 
consider the infinite dimensional vector bundle E over X whose fiber consist of 
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d^X1 © dzX
l. Then we have natural complex and Hermitian structures on the 

fiber induced from the complex structure and Hermitian metric g^ of M together 
with the integration over S. Since our holomorphic section is &a(X

l) := djX1 

the associated Fermi multiplets are given by (x j_ , H±) with the transformation 
laws (2.3.5). 

Now the action functional (2.2.16) becomes 

(2.3.26) 

The supercharges s+ and s + are scalars on both S and M. They are the d and 9 
operators, after the parity change, on the space X of all maps E —> M. The path 
integral is localized to the moduli space M of holomorphic maps S —» M. The 
resulting model is the topological sigma A model which can be obtained by a 
twisting of Nws = (2, 2) two-dimensional space-time supersymmetric non-linear 
sigma-model whose target space is M [49] [3]. 
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Chapter 3 

Equivariant Cohomological 
Field Theory 

In the previous chapter we developed s tandard models of cohomological field 
theories associated with a Kahler manifold X, tangent bundle TX and Hermi-
t ian holomorphic vector bundle E over X. In this chapter we generalize those 
modes to the cases when there is a certain group Q action. This generalization 
is relevant since most of field theory has a certain gauge symmetry. The models 
in the previous chapter are obviously empty if the target space X is linear. On 
the other hand models in this chapter have rich structures both for linear1 and 
non-linear target spaces. This also allows us to consider more general classes of 
target spaces like the space of a certain set of matrices, the space of a certain 
set of fields on a manifold, etc. 

The central tool will be the notion of equivariant cohomology and symplectic 
quotients. The only practical difference between the models in the previous 
chapter and their equivariant generalizations are that the later models further 
localize the path integrals to the vanishing locus of (/-momentum map, modulo 
the Q symmetry. If the G acts freely on such locus we recover the s tandard 
models in the previous chapters now associated with the symplectic quotients. 
The momentum map is a generalization of the familiar angular momentum 
associated with a group of rotations in the classical mechanics. 

3.1 Equivariant Toy Model 

We return to our toy model in Sect. 2.1.1, where we considered a n-dimensional 
Kahler manifold (X, w) with Kahler form w as the target space. Now we assume 
tha t there is a group G action 

ÇxX->X, (3.1.1) 

1 The relation between the previous section and the present section is best compared with 
that of non-linear sigma-models and linear gauged sigma models in two-dimensions. 
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preserving the complex and Kahler s tructures. We consider the toy model with 
the action functional S in (2.1.4). The action functional is invariant under Q 
thus the pa th integral is degenerated. We want to remove the gauge degree of 
freedom as follows (compare with (2.1.8) ) 

Z=J&jxV
XmV^e-S 

=m L[vxv*v^]'e~s ^ 
= ^ y ƒ [VXVXThl,Thl>V(ghosts)] -s-s gf-^gh 

where # ( £ ) denotes the number of central elements of G, Sgf and Sgh denote the 
gauge fixing and ghost terms. The above procedure is the well-known Faddeev-
Popov-BRST quantization on which I do not want to review here.2 

A general problem with the path integral above is tha t the quotient space 
X/G rarely has good topology and geometry. This means tha t it is difficult 
make sense out of our (even for finite dimensional) pa th integral. Furthermore 
the geometrical meaning of the s and s supercharges on the quotient space 
is not quite obvious. This problem can be avoided by considering equivariant 
cohomology. For general references see [39] [50] [51]. 

3.1.1 Extending Our Toy Model 

A nice route to introduce the equivariant cohomology is a simple generalization 
of our toy model in Sect. 2.1.1. Now we assume tha t there is a group G action 
G x X -> X on our target space X preserving the complex and Kahler s tructures. 
Our goal is to extend our target space and supercharges s and s by introducing 
extra fields such tha t 

1. If G acts freely on X the degrees of freedom due to the extra fields disap­
pear, 

2. the supercharges become d and d operators , after the parity change, on 
the G -invariant subspace. 

To implant the above idea we need the notion of Lie derivative. Consider 
a manifold with G action. Let Lie(G) be the Lie algebra of Q. We will always 
assume tha t we have a bi-invariant inner product < , > on Lie(G) such tha t 
we can identify Lie(G) with its dual Lie(G)*. Let X' be the local coordinate 
fields on X. The G action induces a vector V'Ta such tha t an infinitesimal G 
action is represent by 

X1 -+X1+ e ° V / . (3.1.3) 

We denote by j a the interior derivative with respect to the vector Va, i.e., 

ja •Mr(x)-+nr-1(x), 

Uoa)/2/3 . . ./ , . =rV laIll2...Ir. 

2I only want to remark that it involves the Lie algebra cohomology with the parity change. 
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Let Ca be the Lie derivative with respect to the vector field Va; 

Ca=dja+jad (3.1.5) 

Then the infinitesimal G action on a € Q,*(X) is given by a —> a + eaCaa. Thus 
a differential form a is (/-invariant if Caa = 0. We note an obvious relation 
eaCaX' = eaVj. 

Now we extend our target space X by introducing a Lie(G)-va\ued scalar 
(f> = <f>aTa and modify the commutation relation (2.1.2) as 3 

s2 = 0, {s,s} = -i(f>aCa, s2 = 0. (3.1.6) 

Thus { s , s } = 0 on the (/-invariant subspace of X and the supercharges are 
related with the d and d operators on the invariant subspace as in the case of 
our previous toy model. The ghost numbers of <j> should be assigned (1,1) to 
match the ghost numbers in the anti-commutation relations above. The above 
defines (/-equivariant Dolbeault cohomology [52] [53]. 

By the new anti-commutation relations (3.1.6) the supersymmetry transfor­
mation laws (2.1.4) should be modified as follows 

(3.1.7) 
q> L,aSL , sy — v, 

sX{ = iip\ sVi = 0. 

where we obtained the conditions scp = S(f> = 0 by demanding the algebra to 
be closed. Assume tha t we have a model with an action functional which is 
invariant under the supersymmetries generated by the above new supercharges. 
Then we can apply the fixed point theorem of Wit ten and we have the following 
fixed point equation, deduced from the above 

(fTCaX1 = 0. (3.1.8) 

This equation tells us tha t <fia = 0 if Q act freely on X while <j>a can be non-zero 
on a fixed point of the Q action. Thus we achieved our initial two goals. 

Now we consider a supersymmetric action functional S. Compare with the 
non-equivariant case in Sect. 2.1.1, an action functional should be invariant 
under G in addition to sS = sS = 0. These conditions imply tha t one can also 
apply the Poincaré lemma since the new supercharges are also nilpotent if they 
are acting on G invariant quantities. Thus S can be writ ten by the same form 
as the previous toy model 

5 = i s s / C ( X i , X 7 ) , (3.1.9) 

where /C should be G invariant. 4 Applying the transformation laws (3.1.7) we 
have 

S = -i(<j>,v)-igM\ (3.1.10) 

sXl = iil>1, sip1 = 0, 

sXi = 0, s^ = -4>acax\ s<j> = 0, 

sXi = 0, sip* = -4>acax\ s<p = 0, 

3where (pa is e" in (3.1.3) incarnated as a field. 
4 Actually K. only needs to satisfy a weaker condition that it should invariant under gauge 

transformations connected to the identity. 
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where 

^a=i^(caX
J). (3.1.11) 

dX' v ' 

Later we shall see tha t fi = fiaT
a is the equivariant G momentum map on 

X. Maintaining all the supersymmetry we consider the following more general 
action functional S(Ç) 

5(C) = issK, + i<PaCa 
. -r (3.1.12) 

= -i < <p, n - C > -igfjiplip3, 

where C belongs to the center of Q. We call the additional te rm a FI coupling. 

Now we consider the parti t ion function for the new action. We have 

Z(0 = - 4 T ^ [[V<f>VXVXVipViP] e 
vol{y) J 

= -Tu* I 5^ 'OU dX«dXkdi,kdi,k • e-i9<l^7 

vol{Q) Jx
 x± 

k* (3.1.13) 

n-HQ/o r ! 

where 

*fi = H-\QIG- (3.1.14) 

In the above we assumed tha t G acts freely on the locus M_1(C) C X. Thus we 
could simply integrate <f> out, which gives rise to the delta function supported 
on / i _ 1 (C) . Then the quotient space Afç is smooth. Our action functional Sç 
reduces to the Kahler form on the subspace fi~1(Q. Since it is G invariant it 
becomes, after the parity change, the Kahler from t& on the quotient space Nç. 
What we showed is the symplectic reduction theorem of Marsden and Weinstein 
[54]. 

We call our extended toy model the equivariant toy model. We note tha t the 
equivariant toy model makes perfect sense even if we star t from a flat Kahler 
manifold X as our initial target space. We call the space Afç the effective target 
space, which can be a very complicated non-linear space even if our initial target 
space X is flat. 

Before examining further properties of our model, we tu rn to a review of the 
equivariant cohomology and momentum map. We refer for details on the equiv­
ariant cohomology and relation with momentum maps to a beautiful exposition 
of Atiyah and Bott [50]. The idea is to replace X by a bigger space X x EG 
such tha t the extended space has a nice quotient 

Xg = (XXg EG) 
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which is equivalent to the original quotient MjQ when it has a nice quotient.5 

The (/-equivariant cohomology Hg(X) of X is defined as the ordinary cohomol-
ogy H*(Xg) of Xg. For instance the (/-equivariant cohomology of M is the 
ordinary cohomology of XjQ if Q acts freely on X.6 

We will briefly review a convenient model of equivariant cohomology due to 
Cartan, of which variants will be used in this thesis. A crucial reference on the 
Cartan model for us is Witten's paper [55]. The path integral of the equivariant 
toy model reproduces a Kahler version of Witten's non-Abelian equivariant 
integration formula. 

3.1.2 Equivariant Cohomology and Momen tum Map 

Consider a manifold X with Q action. Let Lie{Q) be the Lie algebra of Q. We 
will always assume that we have a bi-invariant inner product < , > on Lie(G) 
such that we can identify Lie(G) with its dual Lie(Q)*. 

Let Fun*{Lie{G)) denote the algebra of polynomial functions on Lie(Ç) so 
that an mth order homogeneous polynomial is considered to be of degree 2m. 
The equivariant differential forms Clg (X) on X are represented by 

nQ(X) := (0*(X) <g> Fun*{Lie(g))f , (3.1.16) 

where e denote the (/-invariant part. The degree of such a form is the sum of 
degrees of tt*(X) and Fun* (Lie(G)). One endows Clg(X) with the equivariant 
differential operator dç 

dç=d- i<j>aja, 4 = -ipCa, (3.1.17) 

where j% = 0 and <j> = <j>aTa £ Lie(Q). That is, dg = 0 modulo an infinitesimal 
gauge transformation generated by 4>a. Thus on the space Çïg(X) we have7 

dg=Q. 

The ^-equivariant de Rham cohomology on X is the cohomology of the complex 
{Vt*g{X),dg). The equivariant cohomology of X is the ordinary cohomology of 
the quotient space if the group acts freely, otherwise it is something else. For 
example Hg(pt) is Fun*(Lie{Ç)). 

The Symplectic Case 

Now we consider a symplectic manifold X with symplectic form w. Assume that 
we have a Q action on X. Under an infinitesimal G action X1 —> X1 + eaV^ the 

5 The additional space EG is a fixed universal Ç-bundle over the classifying space BQ. The 
homotopy quotient Xç forms a fiber bundle 7r : Xg —> BG with fiber X. Then we have the 
following diagram 

EG <- EG x X -)• X 
I 4- i (3-1-15) 

BG <- EG xs x -> x/g 
6Note, however, Ç7-equivariant cohomology of a point is H*{BG) which is highly non-trivial. 
7An element in Q%(X) is annihilated by La = Ca + fab°<j>bgrr, where fat,

c = —fba
c a r e 

the structure constants of G- Then, it is also annihilated by <f>aCa since 4>aLa = <t>aCa. 
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symplectic form transforms as w -¥ m + eaCavo. Thus we have a vector field Vj 
which is an infinitesimal symplectic transformation whenever Cavj = 0. Since 
dzu = 0 we have d(ja-ca) = 0, thus at least locally we can write 

jaw = dna. (3.1.18) 

The /x = naT
a : X -> Lie{G)* is called the ^-momentum map. 8 The obstruction 

for global existence of/xa is H1(X). The momentum map is a generalization of 
the familiar classical mechanical notion tha t X is a classical phase space and G 
is a group of rotation and fi is the angular momentum. The momentum map 
is equivariant if (j.(g(x)) = (ad g)*(ß(x)). Then G preserve the subspace / x _ 1 ( 0 
when C is a central element. Then the reduced phase space or the symplectic 
quotient is defined by 

ATc = ( X n / i - 1 ( C ) ) / e (3.1.19) 

The quotient space is a smooth symplectic manifold if £ is a regular value. The 
symplectic form w on N^ is obtained from tu by restriction and reduction [54]. 

The equivariant cohomology and the momentum map are closely related [50]. 
Note tha t the symplectic form w is not equivariantly closed, dgw ^ 0. We have 
a unique form, due to the degree, of equivariant extension xzig of w 

rog = w + i((f>, /i) (3.1.20) 

The condition dgVDg = 0 reduces to using dg<f> = 0 

<4>,dti-jw>=0. (3.1.21) 

Thus mg is equivariantly closed iff fi is the momentum map (3.1.18). Note tha t 
•ujç is G invariant, Lawg = 0, iff the momentum map [i is equivariant. 

T h e K a h l e r C a s e 

Now we specialize to the case tha t X is a Kahler manifold with Kahler form w 

and with G action, which preserve the complex structure and the Kahler form. 

The vector field V1 induced by the G action is decomposed into V1 = V1 + V'. 

Thus one can introduce interior derivatives ta and la by contracting with V* 

and Va\ respectively, such tha t j a = ia + IQ; 

ia:n
p'q{X)-^ilp-1^(X), 

la : f i p - 9 ( X ) - > O p ' « - 1 ( X ) . 
(3.1.22) 

From the relation j \ = 0 we have 

il=0, K,ïa} = 0, ï2
a=0. (3.1.23) 

It follows tha t 
Ca = dia + Lad + dla + lad. (3.1.24) 

8Note that we identified Lie(G) with its dual Lie(G)* • 
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We also decompose Fun*{Lie{Q)) such that an mih order homogeneous poly­
nomial in Fun(Lie(Q)) is considered to be of degree (m,m). Then equivariant 
differential forms Qç*(X) on X are represented by 

fl*g'*(X) := (Q*'*(X) <E> Fun*(Lie(G)))G (3.1.25) 

Similarly we decompose dG into 

dg = dG +dG : fl°g(M) = U1/{M)®n°ç'
1(M). (3.1.26) 

where 
dg = d-i(j)ata, 

dg = d — icj)aLa. 
(3.1.27) 

Remark that <j> is assigned to degree (1,1). The anti-commutation relations 
between dg and dg are 

-,2 ~ '~ — •• • •» - —2 dg = 0, {ÔC) dg) = -i<j>a£a, dg = 0. (3.1.28) 

This defines equivariant Dolbeault cohomology on a Kahler manifold. Compar­
ing with the anti-commutation relations (3.1.6) we can identify our supercharges 
s and s with dg and dg after the parity change (2.1.16). Thus 

-d d ( 3 L 2 9 ) 

Now we examine the relation between the momentum map and equivariant 
Dolbeault cohomology. For the Kahler case the relation (3.1.18) becomes, by 
matching form degrees 

taw = dfia. (3.1.30) 

Since the Kahler form zu can be written locally in terms of a Kahler potential 
ƒ, 

w = iddf, (3.1.31) 

we have 
iia(ddf) =dtia. (3.1.32) 

Using the relations {ta,d} = {d,d} = 0 we deduce that 

Ma = iia(Bf) (3.1.33) 

up to a constant. Combining all together we find an important identity 

idgdgf = zu + i<<j),n>, (3.1.34) 

which we obtained earlier in (3.1.9) and (3.1.10). Thus minus the action func­
tional, —5, is a ö-equivariant Kahler form after the parity change. Note that 
the momentum map derived above is equivariant if the Kahler potential is Q 
invariant. Thus we showed all the assertions made in Sect. 3.1.1. 
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3.1.3 Path Integrals and Non-Abelian Localization Theo­
rem 

We now return to the equivariant toy model. We return to the parti t ion function 
Z (3.1.13) and ask what will happen as we vary the FI term Ç. 

We have a classical theorem; the image of a proper momentum map of a 
compact group is a convex polytope divided by walls [56][57] [58]. As we vary 
C the symplectic quotient A/ç may undergo birational transformations if the 
pa th of C crosses a wall, otherwise diffeomorphic. For the non-proper case the 
symplectic quotient does not exist. This does not imply tha t the parti t ion 
function is empty. Recall tha t space of all bosonic fields is a copy of X and 
the space of all 4>. The correct picture is tha t the pa th integral is localized to 
A/f C X/G for regular values of Ç. The full equation for the localization is 

M - C = 0, 
(3.1.35) 

We call the non-trivial solutions cf>0 of above equations the zero-modes of (j>. It 
is clear tha t we have zero-modes of <f> whenever the Q action has fixed points in 
/ i _ 1 (C) , thus when C lies on a non-regular value Co- Clearly the pa th integral 
degenerates at such a value since the path integral measure contains zero-modes 
of (f>. Let C+ < Co < C- w e have 

Z(C+) Ï Z(C-) (3.1.36) 

due to topology change. At Co the part i t ion function should be singular. 
It is clear how to resolve the singularity of the pa th integral. We have to 

regularize. We consider a more general action functional S(C,£), 

S(C,e) = S(C) + ! <4>,<t>> 

= -i < (j>, ß - C > + U^ </>) - ig-fP^-
(3.1.37) 

Note tha t the additional term is invariant under Q as well as all the supersym-
metry. The additional e dependent term changes the fixed point equations of 
the supersymmetry since the <f> equation of motion is now 

i ( / i - C) = £<A- (3.1.38) 

Consequently, for e ^ O , the path integral is localized to the locus of the following 
equations 

f^y^-C)=Q- (3.1.39) 

Now we also have contributions from higher critical points. Thus, we have two 
branches; (i) fia - Ça — 0, (ii) -^ß = 0. Clearly the quotient Mç space develops 
singularities when branches (i) and (ii) intersect. In such a case the integrand 
of pa th integral contains the Gaussian measure 

; E« I*».- (3.1.40) 
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for the space of zero-modes </>0)< of tj>. Thus the pa th integral is non-singular. 
Consequently the politically correct version of the model is defined by the action 
functional S(C,e) . 

Now we consider the correlation functions. A supersymmetric observable 
should be (/-invariant as well as invariant under s and s. Such an observable 
should be constructed from an equivariantly closed differential form. An equiv­
ariant differential form ÖPA of total degree (p, q) can be expanded as 

0P,q _, aJM + ^ « a P - i . ï - 1 + 0 < y ap
a-

2'q-2 + •••, (3.1.41) 

where aP'q € np<q(X). Let Ôp'q be the parity change of Op'q, thus carrying 

ghost number (p,q). We have 

sÔp'q =d^b"'q. (3.1.42) 

Thus Op'q is an s-invariant observable if Op'q is an e n c l o s e d equivariant differ­

ential form. 
The correlation function of observables or the expectation value is defined 

by 

/ J J Qpm,qm \ _ ƒ ' [VtVXVXVißTty] f[ Op""qm • e~s. (3.1.43) 

\m=l / J m = l 

For the present model one can show tha t 

/ TT flP-,»»\ = _ J _ f d<f>idct>2...d<t>s 

VL I «Wh ^y (3.1.44) 
x f 0 P l * A . . . A O M ' - e x p ( c 7 - l - t ( ^ / i - 0 - | ( ^ » ) , 

where s = dim(G). Applying the fixed point theorem for the global supersym-
metry we see tha t the above integral can be writ ten as a sum of contribution of 
the critical points (3.1.39) of I = < /x,/i > . This is the non-Abelian localization 
theorem of Wit ten [55], generalizing the more familiar abelian Duistermaat-
Heckman (DH) integration formula [56]. In the end our equivariant toy model 
turns out to be very non-trivial. 

3.2 Equivariant Nc = (2, 2) Model 

In this section we develop the equivariant generalization of the Nc = (2, 2) model 
in Sect. 2.2. We assume the same group Q acting on X as in the previous sec­
tion. This naturally extend to the tangent space TX. Recall tha t the parti t ion 
function of our toy model is the symplectic volume of the target space, while 
the parti t ion function of the equivariant toy model is the symplectic volume of 
the symplectic quotient J\fç, for generic values of C, of X by Q. Similarly, the 
parti t ion function the equivariant version of Nc = (2, 2) model, without holo-
morphic potential W , will be the Euler characteristic x{TNç) of the symplectic 
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quotient J\f(, for generic value of C, of X by Q. After turning on W, the path 
integral reduces to the symplectic quotient Mç of the critical subset Xcrit C X 
of the potential W by Q. 

We consider the same "type" of supercharges carrying the same ghost num­
bers (p,q); 

s+ : (+ l ,0 ) , «+:(Û,+1), 

S - : ( - l , 0 ) , « _ : ( 0 , - l ) . {Ó-2A} 

Now we postulate the supercharges to satisfy the following anti-commutation 
relations 

r -, n {s+,s+} = -i(j>l+Ca, _ 
{s+,s+}=0, + {s + , S + } = 0, 

{.+,«-} =0, 1 + ' {s+,s-} = 0, (3.2.2) 
r -, n {s+,s-} = -ia £a, _ 

{» - ,« - } = -*<A £„, 

which are equivariant generalizations of the commutation relations (2.2.2) and 
(2.2.3) for the Nc = (2, 2) model. For the ^-invariant subspace the equivariant 
supercharges are the same as the non-equivariant ones. Here, in total, we intro­
duced four bosonic fields (f>±±, a and a taking values in Lie(Q). They carry the 
following ghost numbers 

4>- : ( - l , - l ) , *: (-!,+!). ^-3) 

The anti-commutation relations above define balanced ^-equivariant Dolbeault 
cohomology [59]. This is the Kahler version of the balanced equivariant coho-
mology [38].9 

We should remark that the above algebra can be obtained by dimensional 
reduction of the N = 1 supersymmetry algebra of four-dimensional super-Yang-
Mill theory and, equivalently, the algebra of Nws = (2, 2) super-Yang-Mills 
theory in two-dimensions. Thus we may introduce other quantum numbers, as 
in two-dimensions, the left and right U(l) ^-charges (JL,JR) as follows 

s + : ( + l , 0 ) , S + : ( - l , 0 ) , 

• - : ( 0 , + l ) , Ï _ : ( 0 , - 1 ) . (Ó-2A) 

The analogy with the two-dimensional Nws = (2,2) space-time supersymmetric 
gauge theory, equivalently the linear gauged sigma-model [32] [33] will be very 
useful. Indeed it is a trivial step to obtain a Nws = (2, 2) model, and vice versa, 
just by replacing <t)±±Ca by the left and right moving covariant derivatives D±± 
everywhere. Then the indices ± are identified with the left and right spinor 
indices in two-dimensions. For example requiring the ghost number symmetry 
is equivalent to requiring the two-dimensional Lorentz symmetry. 

9In our approach a balanced cohomological field theory [60][7][38] is a Nc = (1,1) super-
symmetric sigma-model in (0+0) dimensions, whose target space can be a general Riemannian 
space. 
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3.2.1 Basic Structures 

Now we examine the basic structure of the model. 

Nc = (2,2) Multiplets 

• Chiral multiplets 

We have the same chiral multiplets introduced in the non-equivariant Nc = 
(2,2) model, 

s±X{ = 0. (3.2.5) 

We have 
V>i ^- xi ^ v+ 

^ Ss- • (3.2.6) 

We denote their anti-chiral partners (Xt,iJj±,H'1), which are their Hermi-
tian conjugates. 

• Gauge multiplet 

The internal consistency of the anti-commutation relations (3.2.2) deter­
mines uniquely the following multiplet 

S + 8-

a — • ri+ <— 0++ 

« _ 3- ['-
T)_ > ü i rl+ 

*+ * + h 
t > — — > r j - < — a 

(3.2.7) 

where D is real auxiliary field. All the fields above take values in Lie{Q). 
We call the above multiplet a 7VC = (2,2) gauge multiplet since it originated 
from the Q action on X. Remark that a is twisted-chiral] i.e., 

s+a = S_CT = 0. (3.2.8) 

• The ghost numbers 

The ghost numbers (p, q) of the fields in the gauge multiplet are determined 
from the assignments (3.2.1) and the commutation relations (3.2.2). We 
set the ghost number of X% to (0,0). For the bosonic fields we have 

4> ~4> a a D X1 H* 
p +1 - 1 +1 - 1 0 0 0 (3.2.9) 
q +1 - 1 - 1 + 1 0 0 0 
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• The 7^-charges 

The 7£-charges ( JL, JR) of the fields in the gauge multiplet are also deter­
mined from the assignments (3.2.4) and the commutat ion relations (3.2.2). 
We set the 7£-charges of X1 to (0,0) . For the bosonic fields we have 

(3.2.10) 
<t>++ <t>— a a D X1 H 

JL 0 0 + 1 - 1 0 0 1 
JR 0 0 - 1 +1 0 0 1 

T h e S u p e r s y m m e t r y Trans format ion Laws 

The explicit transformation laws for the fields in the iVc = (2,2) gauge multiplet 
are uniquely determined by the internal consistency 

5<f> = ië-T]_ + itJfj_, 

5a = —ië_|_77_ — ie~rj+, 

Sä = —iê-T]+ — ie+rj_, 

5r)+ = +ie+D - -e+[a,W] - -e+[(/>++, <£__] - £_[<&.+ , a ] , 

5rj+ = -ië+D+ -ë+[a,W] - -ë+[4>++, (/>__] - ë_[<£++,cr], (3.2.11) 

5T]_ = +ic-D+ -e_[a,â] + -€-[</>++, (f>—] - e+[(f>—, a], 

5rj_ = -ië-D - -c_[ff ,ä] + -?_[</>++,</>—] - ë + [ ^ _ _ , â ] , 

5D = + - ë _ [ ^ . + ,»j_] + -ê-[a,ri+] + -ë+[<f>—,r)+] + -ë+[W,T)-] 

where D is an auxiliary field and the commutators are for Lie(Ç). 
The transformation laws for chiral multiplets are also uniquely determined 

from the conditions s±X' = 0. 

SX{ =ie+ipL +ië-tp'+, 

5^+ = + Z+H1 - e.ft+CaiX') - e+aPCaiX*), 

Sipt = - ê-H{ - e+tfrl.CaiX') - e _ ö a £ 0 ( X i ) , (3.2.12) 

SIP = + ie-4>Z+£a(xl>L) + ie-rftCaiX*) - i e _ f f ° £ „ ( $ . ) 

- i e + £ _ £ « ( # . ) - ie+r,a_Ca(X
l) + ie+aaCaW_), 

where H1 are auxiliary fields as in the non-equivariant Nc = (2, 2) model. The 
details of the transformation laws above depend on the ways the group Q acts 
on X'. Since this can be determined easily we will rarely write down the explicit 
forms and always refer to the above formulas. One may have several different 
chiral multiplets. Their transformation laws are also determined as above once 
the complex structure and the group action are given for the bosonic fields. 
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The Fixed Point Equations 

One can never over emphasize the importance of the fixed point theorem of 
Witten. We have seen many times that the existence of global supersymmetry 
determine the theories almost uniquely. Such uniqueness becomes stronger as 
many global supercharges we have. 

From the above supersymmetry transformation laws we see that the simul­
taneous fixed point equations for all the Nc = (2,2) are given by 

W =0, 
D = °> , 

3.2.13) 
<pa

mCa(X')=0, 
[<Pm,tpn] = 0 , 

where ipm, m = 1 , . . . ,4 denote the four independent real Z,ie((?)-valued scalar 
components of <j>±±, a and its Hermitian conjugate <r. The action functional, in 
many respects, just gives the detailed form of the values of the auxiliary fields 
D and H1. The path integral is localized to the solution space of the above 
set of equations modulo the (/-action. The third equation implies that ipm are 
identically zero if Q act freely on the subset ü"_1(0) D £)_1(0) C X. In such a 
case the path integral reduces to an integral over the quotient space 

( j c f - 1 (0 )nD- 1 (0 ) ) /ö - (3.2.14) 

We call this the effective target space. The Nc = (2,2) supersymmetry further 
implies, as we shall see shortly, that the above space is a Kahler manifold. 

If one is interested in evaluating correlation functions of observables invariant 
only under the supersymmetry generated by s+ and s+, the path integral is 
localized to the locus of the following equations 

fP = 0, 

(3.2.15) D-l-{a,W] = o, 

^CaiX') = o, 

(]>a
++Ca{Xl) = o, 

[4>++,4>—] = 0, 

[<A++>^] = 0. 

and 
(PUCaiX') = 0, 

(3.2.16) 

3.2.2 Action Functional and Partition Function 

We define the general action functional 5 by demanding iVc = (2,2) supersym­
metry, the 5-symmetry and the ghost number symmetry. We may, however, 
not require the U(l)n symmetry in general. Then S should have the following 
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form1 0 

S =s+s-s+s-JC{Xi,X1) + S + s _ W ( X ' ) +s+s^W{X1) ^ 

— s+S-~s+S-(cr, a ) + s+S- < t,a > +s+S- Tr < W, t > , 

where all potentials )C(X',X'), W ( X ' ) and its Hermitian conjugate W(X') are 
(/-invariant and 1 1 

t=^-it (3.2.18) 

belongs to the center of Lie(Q). The first line of the action functional (3.2.17) has 
the same form as the non-equivariant 7VC = (2, 2) action functional. We remark 
tha t the above action functional can be a quite strange object if K.(X%,X'1) is 
non-linear as well as if X1 are certain matrices. 

Expanding the action functional above we have the following terms depend­
ing on the auxiliary fields 

S = (D,D)-i(D,ß-C)+(gtlH
i,HJ)-i(Hi,diW)-i(H\dIW)+..., (3.2.19) 

where ß is the (/-momentum map on the target space1 2 X as defined earlier in 
(3.1.11), gC] := didjK, and diW = dW/dX\ We integrate out the auxiliary 

fields D, H' and Hl by imposing the following algebraic equations of motion 

. ,dW ( 3 - 2 2 0 ) 

dXi 

From our general discussion earlier, we see tha t the pa th integral is localized to 
the space of solutions of the following equations 

(i - c = o, 
dW _ (3.2.21) 

dïö~0, 

modulo the (/-symmetry. In other words the effective target space (3.2.14) is the 
symplectic quotient at level £ of the critical set H~l(0) C X of the holomorphic 
potential 

M(:={Hr\0)nß-l(())/C. (3.2.22) 

Equivalently M.^ is the restriction of Nç, the symplectic quotient of X by Ç, to 
the critical subset. Those are compatible since Hl is <?-equivariant as W and S 
are (/-invariant. Thus Mç is a Kahler manifold, provided tha t £ is generic. Note 

1 0The total "Kahler" potential K(Xl,X') — (a,a) can be generalized to an arbitrary Q-

invariant real functional K(X', Xl\ cr,W). Then we may obtain a model whose effective target 
space is non-Kähler but has torsion and generally a dilaton. 

1 1 The theta term plays no roles in the (0 + 0)-dimension we are considering here. 
1 2A better terminology is to regard X as the space of all Xl,s. 
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t ha t the space of all bosonic fields is much bigger than X due to the additional 
affine space of four real scalars tpm, m = 1 , . . . , 4. The path integral is localized, 
in addition to (3.2.21), to the space of solutions of 

[<pm,<pn]=0, vCnCa(X
i) = 0, (3.2.23) 

modulo the gauge symmetry. As the basic principle of the equivariant cohomol-
°gy Vm = 0 if G acts freely while, otherwise, there is something else. 

Now we assume tha t M.^ is smooth. Then our model is equivalent to the 
non-equivariant Nc = (2,2) model with target space Mç. Thus the part i t ion 
function is the Euler characteristic of the effective target space; 

Z = X{TMc) = x{Mc). (3.2.24) 

A beautiful fact is tha t our initial target space X may be infinite dimensional 
with an infinite dimensional group G acting on it, while the final target space 
M f can be finite dimensional. 

T h e G e o m e t r y of Effect ive Target Space 

It is obvious tha t the group action preserves the condition Hi = 0 and the 
sub variety i7 t

_ 1(0) C X inherits the complex and Kahler structures by restric­
tion. The quotient space M.^ inherits the Kahler structure from i J~ 1 (0 ) by the 
restrictions and the reduction. 

If £ takes on a generic value, the group G acts freely and M.^ is a smooth 
Kahler manifold. For such a case the model can be identified with the non­
linear non-equivariant Nc = (2,2) model in Sect. 2.2.2 with target space M^. 
This property is equivalent to the property of equivariant cohomology tha t the 
equivariant cohomology is the ordinary cohomology of the quotient space if it 
is smooth. 

For non-generic £ the quotient space develops singularities or even may not 
exist at all. For such cases however one always has some extra degrees of freedom 
not described by the moduli space, due to the extension of X/G to Xg. Those 
extra degrees of freedom are represented by the solutions of (3.2.23) modulo 
gauge symmetry. The first equation in (3.2.23) show that no such a solution 
exists if the G action act freely, without fixed points, on X. If there are solutions 
they span an affine space,1 3 which looks like a symmetric products of E 4 . 

The beautiful relation between the symplectic and geometrical invariant the­
ory (GIT) quotients also is an important par t of the story [61] [62] [58]. The es­
sential point is tha t the condition Hi = 0 is preserved by the complexified group 
action G , while the condition D = 0 is only preserved by the real group action. 
Thus we may consider a complex quotient H~1(0)/GC and t ry to compare with 
the real quotient ( i J r ^ O ) n D~l{Q))/G- In general there can be £ c -o rb i t s in 
H^~ (0) which contain several G orbits in i / ~ 1 (0 ) PI £>_ 1(0). Thus we need to 
consider a suitable subset in i î ~ 1 ( 0 ) for which a (yC-orbit contains exactly one 
solution of the equation D = 0. Then the real equation D = 0 can be identified 

We will relate those degrees of freedom, in certain cases, with the degrees transverse to 
the D-brane world volume in the bulk. 
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with the gauge fixing condition of the complex gauge symmetry of the complex 

equations Hi = 0. 
The complex gauge group in general does not act freely on the submanifold 

H^iO), so tha t taking the quotient directly would lead to unwanted singulari­
ties. One first removes such obvious bad points B. However there are subsets 
in ( # f *(()) - B) which can be arbitrarily close to B by Qc action. One call a 
point in H~l(<S) semi-stable if the closure of its Qc orbit does not contain B. 
Let H^{Q),g be the semi-stable subset of H~l{0). Now the beautiful fact is 
tha t the complex quotient H~1(0)sg/C

c contains the symplectic quotient M0 as 
open subset. A stable orbit is a semi-stable orbit if the points of the orbit have 
at most finite stabilizers under the real Q action. Then the various symplectic 
quotients Mç can be identified with the quotient space H~1(0)s/G

C in dense 
open subset. Thus we have 

H r 1 ( 0 ) „ / ö C DMCD H-l(0)s/GC. (3.2.25) 

The first relation implies tha t we have a natura l compactification of Mç by 
taking the closure in H~l(0)ss/C

c. The second relation implies tha t the various 
symplectic quotients Mç are birational with each others. 

T w o F i n i t e D i m e n s i o n a l E x a m p l e s 

We now consider two examples for finite dimensional target space X borrowed 
from Wit ten ' s papers on two-dimensional gauged linear sigma models [32] [33]. 

Abelian Case 

We consider the complex linear space X = Cn+1 with U(l) action. Let X1, 
i = 1 , . . . , n + 1 parameterize coordinates of a single instanton on Cd. Let U(l) 
act on Cn such tha t X{ has charge Qt. We have 

£ = ] T | ; n 2 , (3.2.26) 

leading to the momentum map 

i 

To be more specific we consider n chiral fields Sj i = 1 , . . . , n with charge 1 
and other chiral field p with charge - n . We pick holomorphic potential 

W=p-G(Si) (3.2.28) 

where G is a homogeneous polynomials of degree n. We also demand transver-
sality, t ha t dG/dsi = 0 have no common root except at s{ = 0. Then the 
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conditions in (3.2.21) and (3.2.23) become 

<PmP = 0, 

ipmSi = 0, 

G(Si) = 0, 

dG n (3.2.29) 
OSi 

n 

Y,\si\2-n\p\2-r = 0, 

Now we examine how the effective target space varies as we vary £. 

• r > 0. The last equation requires tha t the Si can not all vanish. Then 
the second to last equations together with the transversality implies tha t 
p = 0. The second equation implies tha t tpm = 0. So we are left with 

]>>l2-c = o, 
i (3.2.30) 

G(si) = 0. 

Thus the classical vacumn space is the hypersurface X in CPn~l defined 
by G(si) = 0. It is a smooth (via transversality) Calabi-Yau space (via 
anomaly free 7?.-mvariance). 

• r < 0. The last equation requires tha t p ^ 0 . The second equations with 
transversality implies tha t Si = 0 for all i = l , . . . , n . The first equation 
implies tha t ifim = 0. Thus 

\p\ = y/-r/n. (3.2.31) 

• r = 0. The only solution for the last two equations is the origin of C " + 1 

which is fixed by the U(l) action thus a singular point. The equations do 
not impose any restriction on ipm thus they span C 2 . 

A non-Abelian case 

We consider the space X of all N x k hermitian matrices q In the space X we 
introduce a complex structure such tha t s±q = 0. We have natural Q = U(N) 
action on X given by q —» gq where g € Q. The U(N) action preserve the 
natural Hermitian s tructure ƒ given by 

K. = Txqq*. (3.2.32) 

Then the conditions (3.2.21) and (3.2.23) become 

w m o = 0, 

qq - C / = 0. 

Thus the model reduces to a zero-dimensional sigma model whose target space 
M.Ç, for C > 0, is the Grassmannian G(N, k) - the space of N complex planes 
in Ck. For £ = 0 we have q = 0 while ipm span SymN( 
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3.2.3 Nc = (4,4) Model 

In this subsection we briefly consider a special case of the Nc = (2, 2) model 
with iVc = (4,4) supersymmetry. Historically the hyper-Kähler quotient was 
first discovered with the help of the Nws = (4,4) theory [27]. 

The initial target space X should have a hyper-Kähler s tructure. Then we 
have three independent complex structures J i , J2, J3 satisfying JiJj = — S,j + 
Eijklk- For each complex structure I(, £ = 1,2,3, we have a Kahler form vu(. 
Now we assume tha t we have Q action preserving all the Kahler forms, i.e., 
Lavoi = 0. Then for each Kahler form vu( we have a momentum map /i£. The 
hyper-Kähler quotient is defined by [27] 

3 

Mf.= [}»?(&)/G, (3.2.34) 
e=i 

which inherits a hyper-Kähler structure from X by restrictions and reduction. 
Let d be the exterior derivative on X. For each complex s t ructure Je we define 
a real operator de by 

dt = J-xdJ-x. (3.2.35) 

Then we have a decomposition d = de + de for each complex s t ructure Je, where 

de = -{d + idt), 
1 (3.2.36) 

Now it is obvious tha t we have supercharges (sj_, s±) for each complex structure, 
defining balanced Dolbeault equivariant cohomology 

«,s<+} = -£ 0 + + , {sl
+,si_} = -£at, {at

+,8t_}=0, { 4 - 4 } = 0, 

{si, sf.} = -£*-> {st+,se_} = -Cwt, { 4 , s l } = o , { 4 - 4 } = 0, 
(3.2.37) 

where <ji is a complex scalar obtained by a certain combination of the four real 
Lie(G)-va\ued scalars. Consequently we have Nc = (4,4) supersymmetry. 

It is convenient to pick a complex structure J, say, J = J\ with the cor­
responding Kahler form zu = w\, real momentum map fi = Hi and FI term 
£ = £1 once and for all. Then z&2 + izus is the holomorphic symplectic form 
w°'2. We define the complex momentum map /ic = A*2 + *M3 a n d FI term 
£c = £2 + i(,z- Now the internal consistency of the supersymmetry algebra leads 
to ^ c = (4,4) gauge multiplet consisting of the iVc = (2,2) gauge multiplet 
(3.2.7) and a Nc = (2,2) Lïe(£)-valued chiral multiplet, 

A_ <— r —> A+ 

«N A- , (3-2.38) 
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with the usual supersymmetry transformation laws. It turns out to be natural 
to modify the iVc = (2,2) transformation laws (3.2.11) of the Nc = (2,2) gauge 
multiplet by replacing D —» D + f [r , r] . 

Consequently we have in total the Lie(G) valued complex scalars <A, er, r 
associated with Ç-equivariant cohomology. The target space X must be 2n 
complex dimensional, thus we have 2n bi-holomorphic fields X', i = 1 , . . . , 2n. 

Now the general action functional with Nc = (4,4) supersymmetry is given 
by 

S =s+S-s+S-.)C(X\Xl) - s + s _ s + s _ ((o;W) - (T,T)) 

+ - ^ s + s _ ( r , M c ( X i ) - Cc) + h.c. (3.2.39) 

+ s+s_(cr, t) + h.c. 

where K,(X\Xl) is a (/-invariant hermitian structure on X. We expand the 
action functional and determine the on-shell values of the auxiliary fields. We 
find that the path integral is localized to the space of solutions of the equations, 
modulo G symmetry 

Mc(X')-Cc = 0, 
. -r (3.2.40) 

»(x\xt)-ç = o, 
and 

^ £ a ( X ! ) = ° ' (3 2 41) 
[<Pm,vn] = o, ( 3- 2- 4 1 ) 

where </?m, m = 1 , . . . , 6 denote the six independent real components of (cf>±, a, ä, r, r ) . 
The equations in (3.2.40) say that the effective target space is the hyper-Kähler 
quotient M^. The first equation in (3.2.40) says that ipm has non-zero solutions 
if G does not act freely. Thus there are no solutions for tp™ if the hyper-Kähler 
quotient is smooth. As usual, whenever the quotient contains singularity we 
have non-trivial solutions for ipm spanning an affine space given by, due to the 
equation (3.2.41), a certain symmetric product of R6. 

Two Finite Dimensional Examples 

Here we give two examples relevant to D-brane physics [16] [41]. 
We consider the space X of all complex NxN matrices Xi, i = 1, 2. We have 

a natural complex structure on X by demanding X1 are chiral, s±Xi = 0 while 
their Hermitian conjugates (X1)* := X' are anti-chiral. We have a natural 
G = U(N) action on X given by X' -> gXtg~1, preserving the Hermitian 
structure 

2 

£ = ^ T r | X f . (3.2.42) 
i = l 

The space X has an affine hyper-Kähler structure with complex momentum 
map 

HC = {X\X2}. (3.2.43) 
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Together with <f>1, I = 1, 2 ,3 , where we complexified the six real NxN matrices 
(pn, we have total five NxN Hermitian matrices as bosonic fields. The action 
functional actually has Nc = (8,8) supersymmetry, and in fact is the world-
volume theory of N D-instantons, or the I K K T matr ix theory [43]. Denoting 
( X \ <j>m) by Za, a = 1 , . . . , 5, the equations (3.2.40) and (3.2.41) become 

1 _ (3.2.44) 
[Za,Zß] = 0. 

Thus Zi can be simultaneously diagonalized Zl = diag(z{, ...,z'N) and the l-th 

eigenvalues {z\} can be interpreted as the position of the l-th. D-instanton in 

E 1 0 in complex coordinates. 

Now we introduce additional chiral multiplets q and g which are N xk and 
k x N matrices, respectively. The [/(JV)-action is given by (q,q) -» (gq,qg~1)-

In the total space of matr ix quadruples (X\X2,q,q) we have an U(N) invariant 
Hermitian s t ructure 

X; = T r (^Tr |X i | 2 + W *+g*9) J . (3.2.45) 

The complex momentum map is 

fxc = [X\X2] + qq. (3-2.46) 

The resulting model may be interpreted as the description of N D0-branes in 
the background of k parallel £>3 branes, which breaks the iVc = (8,8) symmetry 
down to Nc = (4,4) symmetry. The three FI terms (CCc) represent an anti­
symmetric self-dual two-form being turned on in the £>3-brane world-volume 
E 4 . 

The equations (3.2.40) and (3.2.41) become 

4>mq = 0, 

q<t>m = 0, 

[4>m,Xi}=0, 

[X\X2}+qq-CcI = 0, 
(3.2.47) 

J2[X\X'} + qq*-rq-a = 0-
i = l 

For C T^ 0 q and q can not have common zeros. Then we have </>m = 0 and 

[X\X2}+qq-(;cI = 0, 

2 _ (3.2.48) 
^ [ X i , X i ] + g g * - r 9 - a = 0. 

i=\ 

Thus the target space1 4 is the compactification and the subsequent resolution 
of singularities of moduli space of N U{k) instantons on E 4 . This describes ./V 

1 4 The equations are the ADHM description [63] [64] of torsion free sheaves on R4 [65] or the 
ADHM description of instanton on non-commutative R4 [66]. 
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D-instantons bound to the world-volume of k coinciding L>3-branes. Note that 
the equivariant degrees of freedom represented by <j>m are the degrees of freedom 
transverse to Z?3-branes in the bulk R10. With the FI terms being turned on 
those degrees of freedom decouple. 

Now we turn off the FI terms. Then the N x k and k x N matrices q and q 
can degenerate to (N - £) x k and k x (N - £) matrices q' and q1, respectively, 

? = ( y ) ' ? = ( 0 ? ) ' (32'49) 

Then the first two equations in (3.2.47) imply that the cj>m can be non-vanishing 
£ x £ matrices Zm, 

r=(Z™ °V (3-2.50) 

The last three equations in (3.2.47) imply that the X* can be put into the 
following form, 

Xi=(* 2H). (3.2.51) 

where Zi and XH are £ x £ and (N - £) x (N - £) matrices, respectively. Using 
(3.2.49), (3.2.50) and (3.2.51), the last two equations in (3.2.47) lead to 

[Za,Z*3] = 0, 
L J (3.2.52) 
[Za,Za} = 0, 

and 
[X'\X'2} + q'q' = 0, 

2 C3 2 53) 
Y,[X'i,X'*]+q'q'*-r$=0, 
t = i 

where we relabeled the £ x £ matrices, Z' and Zm a s Z a , a = l , . . . , 5 . The set 
of equations in (3.2.52) imply that Za can be diagonalized 

Za = diag(z?,...,z?), (3.2.54) 

parameterizing positions (in complex coordinates) of £ point-like D-instantons 
on K10. The set of equations in (3.2.53) describe (N - £) U{k) instantons on 
E4 . This bound state is not stable since some of the (N - £) instantons can 
freely degenerate to point-like instantons and escape to the bulk to become D-
instantons. Combining all together we see that the model without FI terms 
reduces to a zero-dimensional Nc = (4,4) sigma-model with target space 

N 

\jMk,N-exSyme(R10). (3.2.55) 
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3.3 Generalization to Equivariant Nc = (2,0) 
Model 

Now we consider the equivariant extension of the Nc = (2,0) model introduced 
in Sect. 2.3 or, equivalently, the generalization of the equivariant Nws = (2, 2) 
model in the previous section. We consider the same group G acting on X as 
before but now we allow the G action to extend to a Hermitian holomorphic 
vector bundle E —> X preserving the Hermitian s tructure. We have two super­
charges s+ and s+, isomorphic to the differentials of (/-equivariant Dolbeault 
cohomology as in the equivariant toy model in Sect. 3.1; 

3 + = 0 , {a+,ä+} =-itf,%+Ca, s2
+=0. (3.3.1) 

Comparing with the non-equivariant counterpart , the equivariant Nc = (2, 0) 
model has essentially one addition structure t ha t the pa th integral is further 
localized to the vanishing locus / i _ 1 (£ ) of (/-moment map . If G acts freely on 
M_1(C) the model reduce to a s tandard Nc = (2,0) model associated with the 
symplectic quotients. The observables of the model are given by (/-equivariant 
closed differential forms, after the parity changes, as our equivariant toy model. 
If G acts freely on /j,~l(Ç) those observables become ordinary closed differential 
form on the symplectic quotient. Comparing with our equivariant toy model 
the additional s tructure is tha t the pa th integral is further localized to the locus 
of vanishing holomorphic sections on E. We will use such property to define a 
more general hybrid Nc = (2, 0) model. Following the discussion in Sect. 3.2 the 
model is related with Nws = (2,0) world-sheet gauged sigma-model in (1 + 1) 
dimensions by dimensional reduction [32]. 

3.3.1 Basic Structures 

We may follow exactly the same route as we followed to arrive at the non-
equivariant Nc = (2,0) model from the non-equivariant Nc = (2,2) models. 

First we write the Nc = (2,2) action functional S (3.2.17) in a form such 
that only the s+ and s+ are manifest - compare with (2.3.1)-

S(0=-s+s+^^,tx(X\X~i)-()-(r1_,ri_) + (gi-(X\XIW_^iyj 

+ is+(^i,Vi(Xi)) +is+(^i,VT(Xi)), 

(3.3.2) 
where Vj = dW/dX'. Similarly we disconnect the diagram (3.2.6) by removing 
the link s_ , 

^i_ Xi J!±J. ^ 

^ • (3-3.3) 

W 

Now we regard the above as two independent sets of multiplets. Then we rename 



3.3 G E N E R A L I Z A T I O N T O E Q U I V A R I A N T NC = (2,0) M O D E L 47 

various fields as follows, exactly the same as earlier (2.3.3) 

- - 9ü -> h â(X',X>), (3.3.4) 

where the new indices run as a, ß = 1 , . . . , r and we maintain the Hermiticity of 
ha-p. The Nc = (2,0) multiplets (X\ip+) are holomorphic, i.e., s+X* = 0. We 
call the multiplets (x",Ha) Fermi multiplets. We also disconnect the diagram 
(3.2.7) for the Nc = (2, 2) gauge multiplet by removing the links s_ and s_ , 

(3.3.5) 

Note tha t ~o is holomorphic, i.e., s+W = 0. Thus the Nc = (2,0) multiplet (CT, r)+) 
is another holomorphic multiplet, while their Hermitian conjugates (a,rj+) form 
an anti-holomorphic multiplet. We may simply remove them, or keep them 
as they are still valued in Lie(Q), or just regard them as another holomor­
phic multiplet supplementing the multiplets (X',ip'+).15 We call the multiplet 
{<f>—,r)_,rj__,D) Nc = (2,0) gauge multiplet taking values in Lie(Q). 

Now we consider the transformation laws for the s+ and s+ supersymmetry. 
For the holomorphic multiplets (Xl,ijj+), i.e., s+X' = 0, and their conjugates 
we have 

s+x1 = # ; , s+^+ = o, 

s+X* = 0, s+r+ = r++CaX', s+<p++ = 0) 

s+X1 = o, S+TPI = r++cax\ s+4>++ = 0, 

s+X1 = i+l, s+r/>l = 0, 

—> v+ 4>++ 

^ D V+ • 

+ * + «+ 

. > 7?_ a 

(3.3.6) 

which are, of course, the same as (3.1.7). The transformation laws for Fermi 
multiplets (x1,Ha) and their conjugates are given by 

s+xl = -Ha, s+Ha = 0, 

s+xa_ = T(X% s+Ha = -icj>a++CaxZ + iil>+d,T(XJ), 

s+x° = TiX1), s+H° = -i<f>a++CaXZ + i^+dfT{x\ 

s+X°=-H", s+H" = 0, 

where d$a(Xj) = 0. Note tha t s+Xl / 0 but ra ther equals 3 a ( X * ) , while 
the above transformation laws are consistent, since ~s+x~ = s + 0 a ( ^ ! ) = 0, 

: 5 I t is our convention that all the holomorphic multiplets are collectively denoted as 
(X', V>!|_) where each multiplet may transform differently under G and other global symmetries. 
We also denote X as the space of all Xx 's. 
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with the commutation relations (3.3.1). Finally the transformation laws for the 
Nc = (2,0) gauge multiplet (</>—,T]-,TJ_) are given by 

S+T1- = 0, 

IT]_ 
S+T)- = -iD + -[<j)++,^>—] 

(3.3.8) 

S+T]_ = 0. 

The general Nc — (2,0) action functional, with the vanishing ghost number, 
is given by the following form16 

5 ( 0 = - s+s+ ( V - , M - 0 - (v-,rj-) + (hapXa-,X°-)} g 

+ i S + ( X « , 6 a ( X i ) ) + i s + ( x ? , 6 « ( X T ) ) 

Here ^ ( P . X ' ) is a Hermitian structure on a Hermitian vector bundle E over 

X, 6 a ( X ' ) a holomorphic section and n(X\ X*) is the (/-momentum map on X. 
Note that Nc = (2,0) symmetry of the above action functional is not obvious 
due to the second line in (3.3.9). For example the s+ supersymmetry of the 
term s+ ( x - , 6 « ) i s n o t obvious if 3 ( ^ 0 # 0 due to the transformation law 
s+x1 = 3 P ^ ) - T n e condition that the action functional 5(C) has Nc = (2,0) 

s+ (xl,ea(xi)) = (r(x{), ea(xi)) = o. (3.3.10) 
Let us summarize the basic structure of an equivariant ./Vc = (2,0) model. 

1. A complex Kahler target space X with a G symmetry as an isometry. 
These data determine holomorphic multiplets and gauge multiplets as well 
as their transformation laws and (/-equivariant momentum map n : X -> 
Lie(gy. 

2. A Hermitian holomorphic vector bundle E ->• X over the target space X 
with the Ç action preserving the Hermitian structure. We may have up 
to two (/-equivariant holomorphic sections S and 3 orthogonal with each 
others by a natural non-degenerated Q invariant parings. Those sections 
determine Fermi multiplets and their transformation laws. 

Given the data above, we have an unique family of equivariant iVc = (2,0) 
models parameterized by the FI term (,. 

3.3.2 Path Integrals 
Expanding the action functional 5 (3.3.9) we have the following terms depending 
on the auxiliary fields D, Ha and Ha, 

S =(D,D)-(D,n-() + (haßHa,He)-i{Ha,&a)-i{H",&") + .... (3.3.11) 

1 6The repeated indices are summed over unless otherwise stated. 
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We integrate the auxiliary fields out by imposing the following algebraic equa­
tions of motion, 

^ _ (3.3.12) 
Ha = ih^&f3. 

From our general discussion earlier, we see that the bosonic part of the path 
integral reduces to an integral over the space of solutions of the following equa­
tions, 

T(Xi) = o, 
ea(X')=Q, (3.3.13) 

/ i - C = 0, 

* + * • * - ° ' (3.3.14) 
[<j>++, 0__] = o, 

modulo (^-symmetry. 
Now we examine the properties of the path integral in some detail by apply­

ing the fixed point theorem of Witten. For simplicity assume that the space X 
and the Hermitian holomorphic bundle E are flat. We also turn off the section 
3 a , keeping 6 only. Then the fixed point locus of the s+ and s+ supersymmetry 
is the symplectic quotient Mç of 6~1(0) C X by Q; 

M( = {»-1(On&-1(0))/S. (3.3.15) 

We have the same set of observables as in the equivariant toy model, given by s+ 
and s+ closed ^-equivariant differential forms Or's with ghost numbers (r,s). 

The explicit expression of the action functional is 

S' =D2 + £ \Ha\
2 - \[<t>++,4>— f - i[</>++,V-]affL 

- rfLdi^X - r£%iaV>l + X - 9 i 6 a V ; + X ^ % 4 (3-3-16) 

- ihap<t>a
++£aXZxl + i<t>-- (f++^aVÎ + didjpa^l) , 

where Vj = CaX\ In doing the path integral one replaces all fields by their zero-
modes. The zero-modes of the fermions are solutions of the following equations 

drpatl = 0, rlLdr^ =0 , 

d*e&l>l = o, x a ^ S â = o. 

The above equations implies that the net ghost number violation A in the path 
integral measure due to fermionic zero-modes of ( V ' + J X - I 1 ? - ) always equals 

A = n-r-dimÇ. (3.3.18) 
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We call A the virtual complex dimension of Mç. From the equations <9r/xaV>+ = 
0 we have the following integrability condition 

4>b
++fyaV~i + didjßa^l = 0, (3.3.19) 

which is also the <f>t_ equation of motion. This implies tha t one can simply 
replace 4>++ with the solutions of the above. Such an argument can not be 
justified if there are zero-modes of 4>\+, which are given by the non-trivial 

solutions of (3.3.14), for instance 4>b++Vb = 0-
Here we specialize to the case tha t G acts freely, thus there are no zero-modes 

of 77" and <f>±±- Then the only non-trivial term in the action functional S' in 
the s+ and s+ invariant neighborhood C of the fixed point locus is 

S'\c = -iha^
a
++CaXa-xl\c (3.3.20) 

Using (3.3.19) we can solve </>°+ in terms of the zero-modes (ul ,ipz
+,X-) of 

(X%4,x°) 

< <l>l+(v*',ur) >= - (dfVbVjy1 a ^ W + ^ (3-3.21) 

where the primed indices above are understood to label independent zero-modes 
- i = 1 , . . . , n ' , Ö:' = 1 , . . . , r ' , with the condition 

A = n' — r' = n — r — dim Q. (3.3.22) 

Then we may write 

s'\c = -H^\^hja^i^Zx-x^, (3-3-23) 

where T.,-' /ä'V'+V'+ c a n be interpreted as the curvature two-form of the anti-
ghost bundle V over MQ. Consequently the pa th integral reduces to 

/ n 0-— \ = / n dxidxT n */<*/<*#:$: 
\m = l I JM< 7 ' = I e' = i (3.3.24) 

where O denote the expression of an observable O in terms of zero-modes and 
< (£++ > . The necessary condition for a non-vanishing correlation function is 

k 

£ ( r m ) s m ) = ( A , A ) . (3.3.25) 

Let us first assume tha t the section is generic and G acts freely on © ^ ( O ) C 
X. Then M.Q is a smooth non-linear Kahler manifold with complex dimensions 

dimcMc = A = n — r — dim Ç. (3.3.26) 
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The above counting goes as follows. Since &a, a = 1 , . . . , r, are generic they are 
all independent and transverse. Thus the condition &a = 0 cuts out a complex 
(n — r) smooth submanifold inside the complex n-dimensional ambient space X . 
On the subspace we further impose diraQ real equations /J,a — ( = 0 and take 
the quotient by the free Q action. Now we do not have zero-modes of X - and 
the path integral becomes 

r A 

du1'due'd^^lY[0 
(3.3.27) 

Öri'Sl A...AÖrk'Sk. 
'Mc 

A non-generic situation arises when &a<, a' = 1 , . . . , r ' , are linearly dependent 
to the remaining sections. Then the complex dimension of Mç is given by n ' = 
A + r'. The resulting space is smooth if the linearly independent components of 
the section are transverse. We have r' \ - zero-modes which span the anti-ghost 
bundle V over MQ. The path integral becomes 

/ 
JM 

m=l I JM< 
e ( V ) A O r i ' , 1 A . . . A 0 r ' ' " . (3.3.28) 

A beautiful fact about this is tha t (X, E, Q) can be all infinite dimensional 
while the space MQ can be a finite dimensional space. In particular X can be a 
certain function space defined by the space of all fields of a certain gauge field 
theory on a manifold M. Then the integral we are dealing with is a genuine 
path integral of a non-trivial quantum field theory on M, while the pa th integral 
eventually reduces to an ordinary integral on a smooth finite dimensional space 
M(. The above is a key principle underlying cohomological field theory [1][24]. 
In principle the above path integral formalism is well-defined regardless of the 
properties the moduli space Mç. 

Finally we remark tha t a proper mathematical interpretat ion of our formal­
ism may be a certain equivariant version of Fulton and MacPherson's intersec­
tion theory [40]. 

3.3.3 Deformation to Holomorphic Nc = (2, 0) Model 

In this subsection we introduce hybrid Mc = (2,0) model of the equivariant 
./Vc = (2, 0) mode and the equivariant toy model in Sect. 3.2. The resulting 
hybrid model will have much better behavior than the original model when the 
effective target space Mç has singularities. To motivate such a model we first 
compare the two models. 

First of all both the models have the same supersymmetry generated by s+ 

and s_|_, which are the differentials of equivariant Dolbeault cohomology after the 
parity change. Secondly both the models share the same holomorphic multiplets 
(Xz, ifil

+) and their Hermitian conjugates, which are anti-holomorphic multiplets 
{Xl,ipl

+). Thus they share the same observables, given by equivariantly closed 
differential forms on X , the space of all X% after the parity change. 
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A difference is tha t the equivariant Nc = (2,0) model has the additional 
Fermi multiplets (x° ,Ha) and their Hermitian conjugates (x-,Ha). The roles 
of the Fermi multiplets are to restrict the (path) integral over X to the subspace 
defined by 3 " 1 (0) n 6 ^ ( 0 ) C X . For convenience we denote this subspace by 
X 1 , 1 C X. We saw tha t the pa th integral of the Nc = (2,0) model is localized to 
the symplectic quotients Mç = (X1'1 D M_1(C) of X 1 - 1 by Q. Now we consider 
an equivariant toy model whose initial target space is X 1 ' 1 . Then, its pa th 
integral is also localized to the same space Mç, provided tha t we set e = 0 in 
the action functional 5(C,e) defined by (3.1.37). We also note t ha t the parti t ion 
function of the above equivariant toy model is the expectation value of exp (wg) 
evaluated by the Nc = (2,0) model, where 

w0 := S(C, 0) = i (4>++,fi- 0 + i g ^ i i i - (3-3.29) 

The first term above is irrelevant as the path integral of the Nc = (2,0) is 
localized the to the locus fi - C = 0, while the second term above becomes the 
Kahler from w on MQ. We note tha t it is the iVc = (2,0) gauge multiplet 
(0 ,r)-,T)_,D), which is responsible for such a localization. One the other 
hand, the above is the action functional of the equivariant toy model on X 1 ' 1 and 
the integration over <j> localizes the pa th integral by a delta function supported 
on Mç in X 1 , 1 . Note tha t Mç = Afçlx1-1 i s t n e restriction of J\fc, - the symplectic 
quotient of X by G - to X ' . 

The above discussion motivates us to define a new Nc = (2,0) model with the 
following action functional 5/,(C,0), modifying the original ./Vc = (2,0) action 
functional S in (3.3.9) 

5fc(C,0) = -is+s+ (h^xa-,X^)+is+{X-,&a)+is+(x^^) 3 30) 

- * {4>++,v- 0 - igc^+^X, 

where we removed the iVc = (2,0) gauge multiplet (<f>—,r]-,rj_,D) and added 
the action functional 5(C,0) of the equivariant toy model. According to the 
previous discussion we see tha t the part i t ion function defined by the new action 
Sh(C,0) is equivalent to the expectation value of exp(rô e ) , evaluated by the 
original Nc = (2,0) action functional S (3.3.9). 

Now we define more general action functional Sh (C>£) by 

5h(C,e) := - S+S+ (h^X-,X^) + is+(X
a-,&a) + is+(xZ, © a ) 

N
 T e (3.3.31) 

- i (<ƒ>++, n - 0 - igqi>\$\ + 2 (•£++. <t>++) • 

We call the Nc = (2,0) model with the above action functional Sh(C,e) a holo-
morphic Nc = (2,0) model, see [67] for the first example. Now we immediately 
see tha t the path integral of the holomorphic A^ = (2,0) model is governed 
by Wit ten 's non-Abelian localization principle [55]. The first line of the above 
action functional localizes the pa th integral to X 1 , 1 . Then, following the discus­
sions in Sect. 2.2.3, the pa th integral can be written as the sum of contributions 
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of the critical points I = (A* - C.A* - 0 i n -X'1,1- A l s o f r o m t n e discussions in 
Sect. 2.2.3 the e-dependent term regularizes the path integral when Mç develops 
singularities. 

The Mapping Between the Two Models 

Now we will give more wider viewpoints which contain the original and holo-
morphic Nc = (2,0) models as two special limits, following the original method 
of Witten [55]. Witten considered the case without the Fermi multiplets but 
for general manifolds. The Fermi multiplets will be purely spectators, and the 
specialization to a Kahler case will simplify the procedure. 

Consider the following one-parameter family of Nc = (2,0) supersymmetric 
action functional S(Q\, 

S«)A :=S(C) + ^+s+<<£— , * — > 

= - S+3+ (haJxZ,xï) +is+(x°L,6a) + iE+(xZ,6ä) (3-3.32) 

- S+S+ ((<£—, M - C - 2 ^ ~ ) " (l-'ï-)) • 

If we set A = 0 we have the original Nc = (2,0) model. For A ^ 0 we can 
integrate out the Nc — (2,0) gauge multiplet, and we are left with 

S'(Ox=-s+s+(hQ-,X-,X°)+is+(X-,ea}+is+(xl,&ä) 
, ' (3.3.33) 

Since the additional A-dependent term is closed by s+ and ~s+, the path integral 
does not depend on A as long as A ̂  0. The models with A = 0 and A ^ 0 can 
be different since new fixed points can flow from the infinity A -> oo in the field 
space [55]. 

If we take the limit A -4 0, while A ^ 0, we see that the dominant contribu­
tions to the path integral come from the critical points of I = (/i — Ç, ß — Q. 
Now we add s+ and s+-closed observables, —zù + |(</>++,<?!>++), to the above 
action functional, 

S'(C,e)x = - S+S+ (h^x-,xï)+is+(xl,ea)+i8+(xï,e^) 

- i <<£++, n-0-i (sijt+.rfV) + \ <*++> *++> (3-3.34) 

+ ^ S + 5 + ( M - C ^ - C ) + ö ( I / A 2 ) . 

In the above the path integral should be independent of A •£ 0. Consequently 
we see that the partition function of the above action functional can still be 
written as a sum of contributions from the critical points of I. Finally we may 
take the limit A -> oo to remove all the A-dependent terms and obtain the 
action functional Sh(Ç,e) (3.3.31) of the holomorphic Nc = (2,0) model. Thus 
we showed that the partition function of the holomorphic Nc = (2,0) model can 
be written as a sum of contributions from the critical points of I = (fi — C, M - C/-
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A His tor ica l E x a m p l e 

In this subsection we recall the first physical application of the non-Abelian 
localization principle to physical Yang-Mills theory on a Riemann surface E. 
Wit ten showed tha t physical Yang-Mills theory can be obtained by deforming 
the two dimensional version of Donaldson-Witten theory [55]. It is also an 
ideal example showing tha t a cohomological field theory in certain space-time 
manifold M is realized as a (0 -I- 0)-dimensional supersymmetric sigma model 
whose target space is the space of all fields. Furthermore the pa th integral over 
the infinite dimensional space of fields reduces to a nice integral over a finite 
dimensional space. 

We consider the equivariant Nc = (2,0) model whose target space X = AY, 
is the space A-£ of all connections of a SU(2) bundle E over a Riemann surface. 
To write down the model we need some data , namely the na ture the Ç action, 
and the complex and Kahler s tructure on the target space. The group Q is the 
group of all gauge transformations, i.e., g 6 G where g : £ —> SU(2). The Lie 
algebra Lie(Q) of Q is fi°(£, End(E)) and we use integration over E to identity 
Lie(Ç)* with fi2(£,End(E)). Thus the bi-invariant inner product on Lie(Q) is 
the integral over E combined with the trace of 5(7(2); 

< a,a > = - ƒ T r ( a A * a ) . (3.3.35) 

According to a complex structure on £ the connection 1-form A is decomposed 
as 

A = A1'°+A0'1. (3.3.36) 

We introduce a complex structure on AT. by declaring S A0'1 6 Î70,1 (E, End(E)) 
to be a holomorphic tangent vector in TAz. The Kahler form on A-z is defined 
by 

zu=-^- f TrSA1'0 ASA0'1. (3.3.37) 
4?r2 JM 

Finally the action of Ç preserves the above complex and Kahler structure. 
Now we consider the corresponding Nc = (2,0) model. According to the 

above complex structure we have holomorphic and anti-holomorphic multiplets, 

(A0'1,^^ ) and (A1,0,rß+ ), with the supersymmetry transformation laws 

s+A^=i^\ /0,1 n 
s+ip+ = 0, 

s+A0'1 = 0, s+VV'1 = -dA(/>++, s+4>++ - o, 
s+A1'0 = 0, s+^+ = -dA4>++, «+</>++ = o, 

s+A^=it^, —1,0 
3+1p+ = 0. 

4>++ E n°(M,End(E)) and ^0 '1 G Çl°>l{M,End{E)). Note that 

(3.3.38) 

{3ls} A = -idA<t>++, {3,-s}^0'1 = i [0++, V+'i]. (3.3.39) 

which are the infinitesimal gauge transformations generated by </>++. We have 
a Nc = (2,0) gauge multiplet ((/>__,rç_,rj_,D), which take values in Lie(Q) = 
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fl°(£, End(E)). The supersymmetry transformations are given by (3.3.8). We 
do not consider any Fermi multiplets. We do not have a FI term. One finds 
that the Ç?-equivariant Kahler form WQ on Az is 

™G = i ƒ Tr {i4>++F+^1 A ^+°) ' (3-3-40) 

where F E ft2(Y;,End(E)) = Lie(Q)* is the Yang-Mills curvature two-form. 
Thus the momentum map is 

M = JLf . (3.3.41) 

Now the Nc = (2, 0) action functional (3.3.9) becomes 

S = s+s+ ^ Tr (±-24>-F + ^V-V-») , (3-3-42) 

where u> is the Kahler form on E. The above action functional defines Donaldson-
Wit ten theory on the Riemann surface E. 1 7 The pa th integral is an integral over 
the space of all connections; 

Ô) = ^ y JiVAV^+V^V^+V^—Vrj-Vrj^e-5 • Ô. (3.3.43) 

According to our discussion the path integral reduces to an integral over the 
moduli space MY, of flat connections on E, provided tha t O is an s+ and s+-
closed observable (thus an element of Ç-equivariant cohomology). Thus the 
correlation functions of supersymmetric observables are intersection pairing on 
the moduli space M^ of flat connections. 

The action functional (3.3.31) of the holomorphic 7VC = (2,0) model is 

Sk(e) = -±z J Tr (i^+F + ^ 1 A ^ ° ) - JL Ju-&</>%+. (3.3.44) 

This action functional defines physical Yang-Mills theory on E. The relation 
between the two models are as described previously. Finally we note tha t the 
solutions of the above Donaldson-Witten theory are found by solving physical 
Yang-Mills theory [55]. 

3.4 Flows from Nc = (2, 2) to Nc = (2, 0) Models 

In this section we t ry to complete the circle of ideas by relating a Nc = (2,0) 
model with a Nc = (2, 2) model. This section is not for introducing new model 
but for introducing an useful method of computing the pa th integrals. We 
will utilize techniques developed here in the remaining chapters of this thesis 
concerning infinite dimensional examples. 

This cohomological field theory can be obtained by a twisting of NW3 = (2, 2) space-time 
supersymmetric Yang-Mills theory in two dimensions. 
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Consider an equivariant Nc = (2,0) model as described in Sect. 3.2, with 
3 Q = 0. Such a model was classified by a ö-equivariant Hermitian holomorphic 
bundle E -» X with holomorphic section &A- In a generic situation the model 
is equivalent to a non-linear Nc = (2,0) model which target space Mç is Mç = 
(X n 6 _ 1 ( 0 ) n H~1(())/G- In this section we define a canonical embedding of 
such a model to a, Nc = (2,2) model based on the tangent space T E of the total 
space of the bundle E -> X. Then we study perturbat ion of the Nc = (2, 2) to a 
more general iVc = (2,0) model. We will see tha t the above circle of ideas leads 
us to find a Nc = (2,0) model which is "equivalent" to the original Nc = (2,0) 
model. From the viewpoint of the original iVc = (2, 0) model there is no a priori 
reason of such an "equivalence" to a completely different model. For simplicity 
we restrict to linear models. 

3.4.1 Embedding of a Nc = (2,0) Model to a Nc = (2,2) 
Model. 

Recall tha t the Nc = (2,0) model has a Z,ie(<?)-valued gauge multiplet associated 
with the group action of Q. We add a Lie(ö)-valued holomorphic multiplet 
~5 —^-T)+, to form a Nc = (2, 2) gauge multiplet 

V+ V++ 

I'- 1'- b 
*+. 

'+. 

D n+ (3.4.1) 

s + 

We had holomorphic multiplets (X' —^ V+), * = 1, • • • , n , associated with the 
base space X of E ->• X. By adding new Fermi multiplets (V>L —^Hl), we 
extend them to Nc = (2, 2) chiral multiplets; 

V'L X' ^ i>\ 

s+u v: s- (3.4.2) 

We also had Fermi multiplets (x ° -^> Ha), a = 1 , . . . ,r, associated with the 
fiber of E -> X. By adding new holomorphic multiplets (Ba —>X+)> w e extend 
them to Nc = (2,2) chiral multiplets; 

Ba -^ xl 

(3.4.3) 
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Now we consider the following Nc = (2, 2) supersymmetric action functional 

S =s+s+s_s_ ( £ ( X \ X7) + J2(B°>B")~ < " > * > ) 
^i= l a = l ' 

— , - - \ (3.4.4) 
+ s+s_W(X\Sa) + s+s->v(x\JB

QJ 
+ s+s- <t,a> + s + s _ < a,t > . 

To relate the above model with the initial Nc = (2,0) model we assume the 
following conditions 

! £ = e-<*), (3A5> 
where 6 Q is the holomorphic section of E. This condition implies that W(X\ Ba) 
is linear in Ba. We will utilize this property later. It is useful to rewrite the 
action functional S (3.4.4) such that only the Nc = (2,0) symmetry is manifest 

S = - is+s+ ((4>-,»x+HF -0 + E ^ - ' V ' - ) + E<X->X?)-<rç-,ÏÏ->) 

(3.4.6) 
where ^ x and /if are the momentum maps on X and the fiber of E, respectively, 
while 

G t ( X > , i n : = ^ - > V ( ^ i r ) - (3.4.7) 

Note that G{ is linear in Ba since W is linear in Ba. 
Applying the fixed point theorem we see that the path integral is localized 

to the solution space of the following equations, modulo the group action of Q 

6a(r) = o, 
Gi{Xj,Ba)=0, (3.4.8) 

»x(X
i,X1)+nF(Ba,B°)-Ç = 0, 

and 

<paMX') = o, 
^ a ( m = o, ( 349 ) 

[fm,<fim] = 0 -

This model, for a generic value of Ç implying ipm = 0 as usual, reduce to the 
non-linear iVc = (2,2) model whose target space 9JÎ̂  is the space of all solutions 
of the equations (3.4.8) modulo (/-symmetry. 

3.4.2 Per tu rba t ion to a Nc = (2, 0) Model 

Now we want to perturb the iVc = (2,2) model above to a iVc = (2,0) model by 
breaking the Nc = (0,2) supersymmetry generated by s_ and s_. This can be 
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done by giving bare "mass" to all the newly introduced multiplets given by 

(ä,T,+), &l,H% {Ba,xD (3.4.10) 

and their conjugates. Then the model flows to the original Nc = (2,0) model 
if we take the bare " mass" to infinity. Such bare mass terms will have special 
geometrical meaning. 

Note tha t there is a natural U{\) = S1 group acting on Ba, while leaving 
fixed the X', such tha t the momentum map [ip remains invariant. This S1-
action is given by 

S 1 : ( X \ Ba) -> (X\ £Ba), (3.4.11) 

where £f = 1. Note tha t the above 5 1 -act ion does not change the first and 
the last equations of (3.4.8). The LHS of the second equation of (3.4.8) will be 
multiplied by £, which does not alter the solution space of the equation. Thus 
the S1-action is a symmetry of the effective target space DJlç. 

It is important to note that the above U(l) needs not be a symmetry of 
our Nws = (2,2) model. To be such a symmetry, the ^ - a c t i o n (3.4.11) should 
be extended to all the superpartners. Tha t is, i/'î and Hl should be invariant 
under U{\) while x± and Ha should carry the t / ( l ) -charge 1. We, however, 
demand tha t the above U(l) is compatible with the Nc = (2,0) supersymme-
try generated by s+ and s+ supercharges. From the expression (3.4.6) of S 
with manifest Nc = (2,0) symmetry we see tha t the ip%_ should carry U(l) 
charge — 1 , since Gi(X^,Ba) is linear in Ba. Then, by examining the super-
symmetry transformation laws for the supercharges s+ and s+, we see tha t the 
5 1 - symmetry (3.4.11) should be extended to all the Nc = (2,0) multiplets in 
(3.4.10) as follows 

S 1 

S 1 

S1 

(Ba,x%)^aBa,xV 
(^L,f l*) - > ? ( # . , # * ) , (3.4.12) 

Tha t is, we give f/(l)-charges to the fields in (3.4.10) while all the other fields 
remain neutral . Clearly this can' t be done while maintaining the full iVc = (2, 2) 
supersymmetry. 

Recall tha t the ./Vc = (2,0) supercharges s+ and s + satisfy now familiar 
anti-commutation relations 

s\ = 0, {s+,s+} = -i4>a++Ca, s\ = 0, (3.4.13) 

defining the Ç-equivariant Dolbeault cohomology. Since we have an additional 
Sl acting on our system it is natural to extend the above t o Ç x S1 -equivariant 
cohomology. Then the new supercharges, still to be denoted s+ and s+, satisfy 
the following anti-commutation relations 

4 = 0, {s+,s+} = -ict>l+£a-im£sx, s + = 0 , (3.4.14) 

where we introduced a parameter m taking values in Lie(S1). The supersym­
metry transformation laws should be modified accordingly. 
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Finally we define the following Nc = (2,0) supersymmetric action functional 

S(m,m) =S' + ms+s+ (J2(Ba,B«) - (<T,ä)j , (3.4.15) 

where S' is defined by the same formula as the action functional in (3.4.6) 
but with the modified supersymmetry. The new action functional S(m,m), 
compared to the Nc = (2, 2) symmetric action 5, is 

S{m,fn) = S + mrn^r(Ba,Bs) - i m ^ ( x + , x + ) + mm(a,ä) -im(rj+,T)+) 
a a 

-im(<j>—,HF - [O-.CT]) + im(4>++,fiF - [a,ä]) + im ^ ( ^ l , •*!>-), 

(3.4.16) 
containing the desired mass terms. We note that the mass terms contain the 
Hamiltonian Hs1 of the S1 symmetry on the space of all Ba and a; 

HSi=iY,{Ba,B«)+i{o,a). (3.4.17) 
OL 

This fact will play a crucial role later. 
Now we examine the equation for fixed points. Since we only have s+ and 

s+ supersymmetry the path integral is localized to the fixed point locus of those 
symmetries, modulo the Q symmetry. We have 

aaCa(X')=0, 

<ra£a(B
a)=0, 

6 a ( X ' ) = 0 , (3.4.18) 

Gi(Xj,Ba)=0, 

w ( r , r ) + ̂ (ß a ,ß" ) - [a,ä] - C = o, 

and 
0,0 = 0, 

<PaCa(X
l) = 0, 

ba£a(B
a)+mBa = 0, 

\à>, a] — ma = 0. 

(3.4.19) 

The set of equations in (3.4.18) cut out a subspace of the space of all X', Ba 

and a. After modding out the ^/-symmetry we get the effective target space 9Jl̂  
of our Nc = (2,0) model. Following the previous general discussions we expect 
that 9Jl̂  is a Kahler manifold at least for the generic case. The set of equations 
in (3.4.19) represent gauge degrees of freedom. In particular those equations 
implies the path integral is localized to the fixed point of 51-action on 3Jl^. 

We always have trivial fixed points, namely Ba = a — 0. We call such fixed 
points branch (i). In branch (i) the path integral is localized to the solution 
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space of the following equations, modulo (/-symmetry, 

4>aca{x
i) = o, 

- (3.4.20) 
/ i X ( X i , X i ) - C = 0. 

which are exactly the generic fixed point equations for the original Nc = (2,0) 
model. There are other fixed points with Ba,W ^ 0 when the S^ac t ion can be 
undone by the Q action. The last two equations in (3.4.19) exactly stand for 
such property. We call such fixed points branch (ii). 

The above localization principle can also be obtained from a different view­
point. We consider a limit \m\ —• oo. Then the dominant contributions to the 
pa th integral come from the set of critical points of the Hamiltonian i?si de­
fined by (3.4.17). It is well-known tha t the critical points of the Hamiltonian of 
a S1-action are exactly the same as the fixed points of the S1-action. One may 
evaluate the parti t ion function in such a limit and set \m\ = 0 afterwards, to 
get the partit ion function of the Nc = (2, 2) model. 

Now we assume tha t everything is generic, so tha t we do not have any zero-
modes of anti-ghosts, X- iV ' l i a s w e U a s a n Y zero-modes of the iVc = (2,0) 
gauge multiplets. Then the part i t ion function of the action functional S(m,rn) 
in (3.4.19) reduces to the following integral 

Z = J_ exp(imHsi+iY,(x%,X%)+i(v+,rl+)), (3.4.21) 

where we regard m and m as independent numbers and scaled away the overall 
m. The above resembles the DH integration formula on UJÎç. We see, however, 
tha t there is a missing term since the fermionic terms above correspond to the 
Kahler form only on the subspace of 97ï̂  given by X 1 = 0. We can provide 
the missing term by evaluating the correlation function of exp(z(</>++,px) + 

' •iKV'+i 1P+))' where the exponent is the ^-equivariant Kahler form Sr g on X. 
Note that it is an observable of the original Nc = (2,0) model we started from. 
Assuming the same generic situation as above, the correlation function reduces 
to the following integral 

exp (imHsi + w), (3.4.22) 

where w denote the Kahler form on 9Jl^. Now we have exactly the DH integra­
tion formula [56]. The integral can be writ ten as the sum of contributions from 
the fixed points of the 51-act ion. 

We saw tha t we have two branches. In branch (i) the fixed point locus is the 
effective target space MQ of the original 7VC = (2,0) model. The Hamiltonian 
Hs1 in this branch is simply zero. Thus we are evaluating the symplectic volume 
of Mç. This is a correlation function of the original Nc = (2,0) model. In 
branch (ii) the value Hsl of Hsi at a fixed point is non-zero. So the integral for 
each fixed point is weighted by a phase factor exp ( imi / ^ 1 ) . For both branches 
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the integral is weighted by a one loop determinant coming from the transverse 
degrees of freedom. We note that such a determinant contains factors of m 
with certain weights depending on the particular fixed points. After evaluating 
the DH integral we can set m = 0. Then we may obtain many relations by 
imposing that the poles should be cancelled order by order between the two 
different branches, since the limit m —» 0 should be smooth in the path integral 
of the massive Nc = (2,0) model. The partition function of the Nc = (2,2) 
model is given by a sum of terms with order zero in m. One can also obtain 
the symplectic volume of M.^ in terms of a sum of contributions coming from 
branch (ii). 

In the real situation life is more complicated since it is difficult to achieve 
the generic conditions and the space 9Jlç may be non-compact. Its is in principle 
possible to elaborate on the above procedure and perform the integral. Even 
if we can't do such an integral due to technicalities we can at least see that 
the essential information on the correlation function of the original Nc = (2,0) 
model is contained in the fixed points which belongs to branch (ii). 
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Chapter 4 

Cohomological Yang-Mills 
Theories on Kahler 2-Folds 

In this chapter we apply the general constructions of the previous chapter to an 
important class of infinite dimensional target spaces with infinite dimensional 
group actions. We take as our target space the configuration space of Yang-Mills 
theory, namely the space A of all connections on a Hermitian vector bundle, on 
a complex c(-dimensional compact Kahler manifold M. The infinite dimensional 
group Q acting on our target space A is the group of all gauge transformations. 
Then we have a natural infinite dimensional holomorphic bundle over A with 
holomorphic section 6 = F^'2. We will consider the two types of models; 
the Nc = (2,0) model in Sect. 3.3 and its canonical embedding to the Nc = 
(2,2) model in Sect. 3.4. Those models will be realized as (cohomological) 
field theories on the manifold M. For the d = 2 case, in particular, those 
models are precisely the Donaldson-Witten [1] and the Vafa-Witten [7] theories, 
respectively, specialized on Kahler manifolds [52] [10] [59]. The d — 2 case is very 
special as those models can be obtained by twisting N = 2 and N = 4 space-time 
supersymmetric Yang-Mills (SYM) theories in four dimensions [1][68]. 

The Donaldson-Witten theory in four dimensions is the first example of a co­
homological field theory. It was introduced, more than a decade ago, by Wit ten 
as a quantum field theoretic approach to the four-dimensional differential topo­
logical invariant of Donaldson [8] [69]. This approach opened up completely new 
horizon in mathematics [12] via the quantum properties of underlying physical 
theory uncovered by Seiberg and Wit ten [11]. The Vafa-Witten theory played 
a crucial role in physics by providing the first strong coupling test of the S-
duality of TV = 4 SYM theory, first conjectured by Montonen and Olive [70] [71]. 
To this date, there are well-defined general procedures to determine all those 
differential-topological quantities based on the exact solutions of the underlying 
physical theories [11] [72]. Here we will not follow those steps [73] [74] [75]. 
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4.1 Donaldson-Witten Theory 

In this section we consider the iVc = (2,0) model whose target space is the 
infinite dimensional space A of all connections on a vector bundle over a complex 
d-dimensional compact Kahler manifold M [52] [67]. We will see, following the 
discussions in Sect. 3.3, the Nc = (2,0) supersymmetry uniquely leads us to 
construct a model whose effective target space is the moduli space of Einstein-
Hermitian connections or, equivalently the moduli space of stable bundles. We 
will also see that the resulting model for d > 3 runs into a serious troubles. 
For d = 2 case the model is well-defined and gives rise to Donaldson-Witten 
theory specialized to a Kahler surface [52] [10] [53]. Still we work for general 
dimensions since the general model here will be used in the later chapters after 
small changes. 

4.1.1 Nc = (2,0) Model 

To define an equivariant iVc = (2,0) model we need to introduce complex 
and Kahler structure on our infinite target space A with the infinite dimen­
sional Q action given by local gauge transformations on the gauge fields - see 
[69][48] for general references on complex vector bundles. The above da t a de­
termine 7VC = (2,0) holomorphic multiplets and gauge multiplets as well as 
their supersymmetry transformation laws and the (J-equivariant momentum 
map n : A —> Lie(Q)*. Then the pa th integral of the resulting model will 
localized to the symplectic quotient / i _ 1 (£)/£/. For d > 1 the quotient space 
is still infinite dimensional. Thus one may consider certain infinite dimensional 
Ç-equivariant Hermitian holomorphic vector bundle E —> A over A with cer­
tain holomorphic sections, which determine anti-ghost multiplets accordingly. 
According to our general discussions in Sect. 3.3.1 we may pick two different 
orthogonal holomorphic sections 6 and 0 of E. Then the pa th integral will 
be further localized to ( 3 _ 1 ( ° ) H © ^ ( O ) n / i - 1 ( C ) ) / 5 , which can be a finite 
dimensional Kahler manifold. To supply above da ta we need some preparat ion. 

D e s c r i p t i o n of Target S p a c e A 

We consider a compact complex Kahler d-îo\d M with Kahler form to. Ac­
cording to a complex s t ructure on M the space Clr(M) of r-form on M has 
decompositions ftr(M) = e p + , = 7 . n p ' 9 ( M ) . On M any two-form a 6 ft2(M) 
can be decomposed into a = a+ + a~ such that 

+ 2,0 , , 0,2 
or = a ' + a 0 w + a ' , 
a =a^ , 

where a 0 € H°(M) is a real scalar and a1^1 is (1, l)-form orthogonal to w. For 
a complex Kahler 2-fold the above decomposition coincides with the self-dual 
and anti-self dual two-forms. We denote by f P ( M , E) the space of real p-forms 
on M taking values in E. Let E be a rank r vector bundle over M with a 
Hermitian metric on E. This fix the topological type for the connections on E. 
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We denote by A the space of all connections and by G the group of all gauge 
transformations, i.e., g £ G such t ha t g : M —> U(r). The group G is equivalent 
to the group of all unitary automorphisms of E. The Lie algebra Lie(G) of 
G is fi°(M', End(E)) and we use integration over M to identity Lie(G)* with 
Q2d (M, End(E)). Thus the bi-invariant inner product on Lie(G) is the integral 
over M combined with the trace of U(r); 

< a,a>= - f T r ( a A * a ) . (4.1.2) 
JM 

We take A as our initial target space. 

Let A denote a connection one-form, which is decomposed into A = A1'0 + 
A0'1. We denote by efo = 3A + OA the covariant derivative, 

dA =dA+dA : n ° ( M , £ ) — > f i 1 ' ° ( M , £ ; ) e n 0 ' 1 ( M , £ ) . (4.1.3) 

The space A is an infinite dimensional affine space which tangent vector is 
represented by 6A 6 fi1 (M, End(E)). 

A' -AG Çll(M,End(E)). (4.1.4) 

Note t ha t there is no natural complex structure on A. Any complex s t ructure 
must be induced from the complex s t ructure on M. One introduces a complex 
s t ructure A by declaring 6 A0,1 € Q0 '1 (M, End(E)) as holomorphic tangent vec­
tor. Then A becomes an infinite dimensional flat Kahler manifold with Kahler 
form U7, 

w = Jt^n f TT(SA A SA> A ̂ -1 ' (4-L5) 
4(a) ITT2 J M 

and G acts as isometry. The Kahler potential for the Kahler form VJ of A is 
given by 

£ ( A i . o ^0,1) = _ 1 f KTv(FAF)Aiod-2, (4.1.6) 
4(d)!7r2 JM 

where K is a Kahler potential for u>, i.e., u> = iddn. 

Now we introduce our JVC = (2,0) supercharges s+ and s_ with the familiar 
commutat ion relations 

4 = 0 , {s+,s+} =-i<t>a
++Ca, s2

+=0. (4.1.7) 

The supercharges are identified with the differentials of Ç-equivariant cohomol-
ogy of our target space A. Thus (f>^_+Ca is the infinitesimal gauge transforma­
tion generated by the adjoint scalar 4>++ 6 Lie(G) = fl°(M, End(E)). We have 
Nc = (2,0) gauge multiplet (<j> ,ri-,rj_,D) taking values in 0°(M ' , End(E). 
Their transformation laws for are given by the general formula (3.3.8). 

From the complex structure of A introduced above we have the holomorphic 

and anti-holomorphic multiplets ( A 0 ' 1 , ^ ' 1 ) and (A1 '°,V'+ ), respectively, with 
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the following transformation laws, 

/0,1 n s+A0'1 = < ' \ 
s+A0'1 

= o, 
s+A1'0 

= o, 
Ö. 4 i.o vir1-0 

s+V '+ 1 = -dA<t>++, s+(f>++ = 0, 

s+rj)+' =-dA<j>++, «+<^++= 0, 

••ip+, s+t;° = o. 

(4.1.8) 

where ^ 0 ' 1 € n 0 , 1 ( M , End(E)) represents a holomorphic tangent vector in A. 
Note tha t 

{s,s}A = -idA<t>, { s , * } ^ 0 , 1 = i[4>, V*0'1], (4.1.9) 

which are the infinitesimal gauge transformations generated by cf>. From the 
transformation laws we have the following equivariant Kahler form 

(4.1.10) 
where we used the Bianchi identity dAF = 0 -> dAF0'2 = dAF0'2 + ÔUF1-1 = 0 
and integration by par ts . The second term in the above is the Kahler form 
zu and the first term is the (/-momentum map (j>++ßa, fi : A —t Lie(Q)* = 
n2n(M,End(E)); 

where A denotes the adjoint of wedge multiplication with u. 

D e s c r i p t i o n of H o l o m o r p h i c S e c t i o n 

The remaining task is to determine an infinite dimensional vector bundle over 
our target space A with an appropriate Ç-equivariant holomorphic section &(A0'1), 
i.e. s+& = 0. From our general discussion a choice of section 6 should be 
compatible with the Kahler quotient such tha t the effective target space M. = 
( 6 - 1 ( 0 ) n p~1(0)/G inherits a Kahler s t ructure when Q acts freely. We intro­
duce a bundle E over our target space A which a holomorphic section ©(A 0 ' 1 ) 
is given by 

6 : A0'1 -> F%2 E n°'2(M,End(E)). (4.1.12) 

We note tha t the above is the only possible choice on general Kahler manifolds, 
since there are no other holomorphic "functions" of A0 '1 which are gauge covari-
ant. Further obvious requirement is tha t the resulting action functional should 
be invariant under the Lorentz symmetry - the holonomy of a Kahler manifold 
M . 1 In general we do not have a room to introduce a second holomorphic sec­
tion CKA0'1) of E -> A. Thus we set 3 = 0. Then our effective target space will 

'There are two special cases. On a Calabi-Yau 4-fold or an arbitrary hyper-Kähler manifold 
one can take certain projection of F0'2 as the holomorphic section of E —> A. We will return 
to this later. 
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be the moduli space M EH defined by 

MEH = (G-1(0)nv~1(O)/G- (4-1-13) 

Since our section takes values in J70,2(M, End(E)) we have corresponding Fermi 
multiplets (xl'°, H2<°), taking values in Q,2'°(M,End(E)); 

S+X
2_'° = - t f 2 ' ° , s+H2>° = 0, 

s+X
2-°=0, s+tf2>° = - # + + I x 2 ' ° ] , 

s +X°J2=0, S+Jff°>
2 = - i [ ^ + ) x ° ' 2 ] , 

5+x°J2 = - # ° ' 2 , *+^0 '2 = 0-

Comparing with the general transformation laws (3.3.7), we have 3 = 0. 

Action Functional and Localization 

Now we have all the ingredient to write down a Nc = (2,0) model. Combining 
everything together we obtain the action functional of Nc = (2,0) on a complex 
d-dimensional Kahler manifold, from the general formula (3.3.9), 

+îW„T<*-°A*F")+i-lK^O-
(4.1.15) 

Expanding above we have the following terms depending on the auxiliary fields 

S =2^2 [TI(D*D + D*(AF + iÇIB)) 

" i / T r ^ 2 ' ° A *H°'2 + lR2'° A * F ° ' 2 + iH2'° A * F ° ' 2 ^ + • • • 

(4.1.16) 
We integrate out auxiliary fields by imposing their algebraic equations of motion 

#0,2 = _ iF0,2 ; 

1 (4-1-17) 
D = --(AF + iÇIE). 

The explicit form of the action functional is 

S' =^ JTr(-V A *F+ - -^__ * d*AdA<f>++ + ±-d\4>++14>-? 

-<£__ *A[V'+'1,V'+ ] + 2 X-° ^*{<P++,X>-] + j[<t>++,V-]*V-

i - ~* ,o,i * a -rifi 1 2,0 . ö ,o,i l - o , 2 . a T i ,o\ 
-T]_ * #4v+ - -Jl- * oAip+ - -X- A *9^v+ - 2 ^ - A *oAil>+ I, 

(4.1.18) 
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where set Ç = 0 for simplicity and used the Kahler identities 

d*A = -i[A,dA], dX = i[A,dA}- (4-1-19) 

We also note that 

/ Tr (F+ A *F+) = - f Tr (2F2 '° A *F 0 ' 2 + fu> * fco) 
JM JM 

= - f Tr ( 2F2'0 A *F0'2 + - U F * AF J 
(4.1.20) 

where ƒ = ^AF. 
A Hermitian connection is called Einstein-Hermitian (EH) with factor £ if2 

F 0 ' 2 = 0 , , 
4.1.21) 

iAF -(IE = 0. y J 

We denote by MEH the moduli space of EH connections. From the general 
discussions in Sect. 3.3.2 we see that the path integral of this model is localized 
to the moduli space MEH of EH connections. 

Now consider the subspace 6 _ 1 (0 ) := A1'1 C A consisting of unitary connec-

tions satisfying F 0 ' 2 = dA = 0.3 That is, the partial connection d\ is integrable. 
The space .41,1 is preserved by Q and inherits a complex and Kahler structure 
from A. Thus we have a symplectic quotient of A1'1 by Q, which is equivalent 
to MEH; 

MEH={A1<1DH-1(0)/G. (4.1.22) 

Thus the moduli space MEH is a Kahler manifold if it is smooth. The equivari­
ant differential form roe, then, may be identified with the Kahler form w, after 
the restriction and reduction, on MEH- An EH connection can be reducible. 
We denote by M*EH the moduli space of irreducible EH connections. A connec­
tion A € A1'1 endows E with the structure of holomorphic vector bundle EA-
The moduli space Mhoi of holomorphic vector bundles is the space .41 '1 modulo 
bundle isomorphisms generated by the complexification GC of Q, i.e., 

M M := Ahl/Çc. (4.1.23) 

With a choice of polarization (typically an ample line bundle on M whose cur­
vature two-form is Kahler form w on M), one can define the notion of semi-
stability. The GIT quotient is defined by taking a quotient by Qc restricted 
to the semi-stable orbits. The moduli space Ms

h
s
ol of semi-stable holomorphic 

bundles is then 
Ms

h
s
ol~A1'1Ugc (4.1.24) 

It is shown by Kobayashi that every EH connection induces a semi-stable bundle 
and every irreducible EH connection induces a stable bundle. The inverse is 
also true and is the Donaldson-Uhlenbeck-Yau theorem [76] [77]. Thus we have 
isomorphisms 

MEH^MZI, MEH - Ms
hol. (4.1.25) 

2Note that C = ( ƒ „ c\(E) A u>d_1) / ( ^ JM u j . Thus the FI term C depends only on 
the cohomology class of c\{E) and u). 

3For general complex vector bundle F0'2 = 0 does not imply F2'0 = 0. 
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Observables and Correlation Functions 

Now we consider observables which are Ç-equivariant closed differential forms, 
after the parity change, on the space A of all connections. Those observables 
generate cohomology rings of the moduli space of EH connections via restriction 
and reduction. From s+(j>++ = s+(j>++ = 0 we see that an arbitrary G-invariant 
polynomial Q(0 + + ) of <£++ with degree r is an observable. It corresponds to 
an equivariant (r, r)-form. The other observables can be obtained by the usual 
descent procedure. Equivalently we may use the universal bundle to construct 
those observables [78]. 

From the Bianchi identity d^F = 0 and the transformation laws in (4.1.8), 
we have the following generalized Bianchi identity 

VT = 0, (4.1.26) 

where 
V = S + S + ÔA +ÔAI 

T = 4>+++ ÏÏ+° + i ^ 1 + F2'0 + F 1 ' 1 + F0-2 

We define a generalized Chern class c n by 

(4.1.27) 

" (27r)"n! 

We expand the generalized Chern class as 

T r F " . (4.1.28) 

p-\-q+r+s=2n 

where the upper indices denote the form degree on M while the lower indices 
denote the degree of the ghost number. Now it follows from the Bianchi identity 
(4.1.26) that we have the following descent equations 

(s++s++d + d)cn=Q, (4.1.30) 

leading to 

We define 

s+v;fq + s+vr
Pxg+1 + dv;:;-[ + d v ; - ^ = o. (4.1.31) 

ô M ° = / Qd"r,J"iAV;;;. (4-1-32) 
J M 

where a
d-r'd-s £ Hd~r'd-S(M), 0 < r, s < d and 0 < p, q. Then we have 

s+O™^ 8+0^=0. (4.1.33) 

The above relation implies that not every candidates Op
rJq

s are both s+ and in­
closed.4 If we impose the equations of motions all those candidates are both 

4The relation (4.1.33) implies that Q+O^ = 0 where Q+ = S+ + 8+ and 0^ = 

*}2 ~- 1 ®p,q • The relation (4.1.31) implies that the Q+ cohomology depends only on 

the de Rham cohomology on M. 
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s and s closed. In general, however, one should not use a quanti ty which is 
invariant only on-shell as an observable. To define a cohomological theory it is 
sufficient to have one global supercharges. Thus we may maintain only the s+ 
symmetry and use the s+-closed equivariant differential forms as observables. 
A s+-closed, but s_|_-closed only on-shell, equivariant differential form can be 
added to the original action functional. Then one can always change the s+ 
transformation laws such tha t the new action functional has s + symmetry. Such 
a per turbat ion, for the d = 2 case, was studied by Wit ten and led him to 
determine Donaldson invariants of a Kahler surface almost completely [10]. The 
similar per turbat ion was considered earlier in the topological sigma B-model, 
and led to the notion extended moduli space of complex structure on a Calabi-
Yau [3].5 

One may consider correlation functions of other observables ÖT,S with the 
ghost number (r, s) given by S+ and s+ closed Q equivariant differential forms 
Or's - see Sect. 3.3.2. We have 

e(V) A O " ' S l A . . . A O r ' , S ! (4.1.34) 
MEH 

where Or,s denote the equivariant differential form ÖT,S after the restriction and 
reduction to M EH and e(V) denotes the Euler class of the anti-ghost bundle V 
over M EH- The above correlation function can be non-vanishing for 

i 

^ ( r i j S i ) = ( A , A ) , (4.1.35) 

where (A, A ) denotes the net ghost number anomaly in the pa th integral mea­
sure due to fermionic zero-modes. 

From the action functional S' (4.1.18) we obtain the following equations for 
fermionic zero-modes, 

- d.tpjT = 0 , - * n 9 
dArj-=0, J * + dAtl2 = Q. (4.1.36) 

OAV+ - 0, 

For d = 2 we also have 6Ux- — 0 by dimensional reasons. Thus a X- zero-
2 

mode is an adjoint-valued harmonic (0, 2)-form -recall tha t dA = 0. The net 
ghost number carried by the above fermionic zero-modes is precisely the com­
plex formal dimension of the moduli space MEH-, which is equivalent to the 
moduli space of anti-self-dual connections. For d > 3, the zero-modes of the 
anti-ghost \— a r e n o longer constrained to be harmonic. Then we run into a 
serious problem tha t we may have too many zero-modes of the anti-ghost X-.' . 
This implies tha t the moduli space M EH and anti-ghost bundle V over it may 
have components which are too high in dimensions. It is also doubtful if the 
Euler class e(V) is well-defined. We note tha t the zero-modes of the anti-ghost 

This may be regarded as the starting point of the homological mirror conjecture [79]. 



4.1 DONALDSON-WlTTEN THEORY 71 

are related with the choice of vector bundle E —> A with holomorphic section 
&(A0'1) = F0'2. Thus one may try to extend the target space A or use different 
holomorphic section to have well-defined anti-ghost bundle. We will re turn to 
this problem in the later chapters. 

In the remaining par t of this chapter we restrict our at tention exclusively to 
the d = 2 case. 

4.1.2 Donaldson-Witten Theory 

Our model above specialized to a complex d = 2 dimensional Kahler manifold 
is Donaldson-Witten theory [1]. The correlation functions (4.1.34) of super-
symmetric observables are the path integral representation of Donaldson's in­
variants. For a manifold with b% > 3 Donaldson showed tha t one can avoid 
zero-modes of rj_ and \ - • Thus the correlation functions (4.1.34) can be in­
terpreted as intersection pairings of homology cycles on the moduli space M EH 
of anti-self-dual connections. 

We may compare our model with global TV = 2 supersymmetric Yang-Mills 
theory on R4 = C 2 . We first recall the field contents of our model in d = 2. For 
Bosons we have a gauge field A0,1 and a complex scalar 4>.6 In real coordinates, 
we have (A1, cf>). For Fermions we have an anti-commuting vector t/>+' an anti-
commuting scalar rj_ and a (0, 2)-form \— • The latter two, the real coordinates 
can be recombined into a scalar and self-dual two-form. Then the field contents 

A1 

rp+ß 1>lß (4.1.37) 

where a and à denote the undotted and dotted spinor indices from the decom­
position of the Lorentz group SO{A) = SU{2)i x SU(2)R. The expression iß_ 
contains both symmetric and anti-symmetric parts corresponding to a self-dual 
two-form and a scalar. Since the holonomy of R4 is contained in SU(2) a phys­
ical observation does not see either SU{2)i or SU(2)R. Let's pick SU(2)R and 
replace the index ß with another index i = 1,2 of a certain SU(2)i, while we 
keep the index a in ip- a s the index for SU(2)R. Then we have 

1>T+ V>f_ (4.1.38) 
4> 

Our action functional S' in (4.1.18) still remains invariant under the new global 
symmetry SU(2)L x SU(2)R x SU(2)j x U(l) where C/(l) denotes the classical 
ghost number symmetry. The above is exactly the field contents of TV = 2 
supersymmetric Yang-Mills theory with correct global symmetry, which is called 
a TV = 2 vector multiplet. Wi th the above field redefinition the action functional 
S' in (4.1.18) becomes tha t of TV = 2 super-Yang-Mill theory. The ghost number 
anomaly of the pa th integral measure becomes the well-known chiral anomaly 
due to the instantons. 

3We regard <p++ as an adjoint valued complex scalar <j> and 4> as its conjugates. 
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A N = 2 super-Yang-Mills theory has global supercharges Qf_ and Qf+ 

which transform under SU{2)L x SU(2)R x 5t/(2)7 x [/(1) as indicated by the 
various indices. Now we go in the reverse direction of the above discussion 
by taking the diagonal subgroup of SU(2)R x SU(2)i. Thus we get Qa_ and 
Q°£. The anti-symmetric part of Q"£ now transforms as a scalar Q+ and the 
symmetric part transform as a self-dualjwo-form. On a Kahler surface a self-
dual two-form is isomorphic to a scalar Q+ and a holomorphic two-form. Thus 
we have two scalar supercharges. They corresponds to our s+ and s+ as 

2 (4.1.39) 

s+ = -(Q+ -iQ+), 

which are identified with the differentials of £-equivariant Dolbeault cohomology 
on the space A of all gauge fields. jDn a hyper-Kähler surface a self-dual two-
form is equivalent to three scalars Ql

+, £ = 1,2,3, due to the three independent 
Kahler forms w/. Then we have 

se
+ = l(Q+ + iQi), 

2 (4.1.40) 
sl

+ = ±(Q+-iQl
+), 

which are identified with the differentials of hyper-Kähler £-equivariant Dol­
beault cohomology on the space A of all gauge fields - see (3.2.36). 

The above procedure is called twisting and is originally due to Witten [1]. It 
leads for any global supersymmetric theory with a suitable internal symmetry 
to a cohomological field theory. On a manifold E4 , K3, T4 or ALE, for which 
the holonomy is contained in SU(2), twisting does nothing. Thus the physical 
supersymmetric Yang-Mills theory and the cohomological Yang-Mills theory are 
indistinguishable. We should emphasis that a "cohomological" field theory is 
cohomological only as far as it computes correlation functions of observables an­
nihilated by the global supercharges of the theory. Otherwise the theory is not 
"cohomological" at all. In the above respect the only benefit of cohomological 
field theory compared with a possible equivalent globally space-time supersym­
metric theory is that it can be defined on a general manifold, which usually does 
not admit any constant spinor, or not even spinors. Then a cohomological field 
theory assigns a certain set of cohomological quantities of differential-topological 
nature of the manifold in terms of the correlation functions of supersymmetric 
observables. For the present model these are Donaldson's polynomial invariants, 
which depend only on the diffeomorphism class of the four manifold. 

According to our approach a global supersymmetric field theory on a Kahler 
manifold M, including flat Euclidean space, is nothing but an equivariant Nc = 
(2,0) supersymmetric sigma-model in (0 + 0) dimensions, whose target space 
is the function space of all fields in M. For example N = 2 supersymmetric 
Yang-Mills theory on K4 is equivalent to a JVC = (2,0) sigma model with target 
space given by the space of all gauge fields. There is literally nothing wrong 
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in the above identification. However such an aptitude is overlooking an open 
"secret" of quantum field theory. 

One of the most beautiful properties of quantum field theory is the depen­
dence on energy scale known as asymptotic freedom. One may define a so called 
microscopic theory with certain associated geometric structures like vector bun­
dles etc. At a certain energy scale massive degrees of freedom above the scale are 
not essential and can be integrated out. Then we have a (Wilsonian) effective 
theory in terms of light degrees of freedom. A wonderful thing is that certain 
completely new massless degrees of freedom can appear at certain scales, and 
the above prescription breaks down. This leads to certain "singularities" which 
can be mended by including these new massless degrees of freedom. By lower­
ing the energy scale arbitrarily one may have an effective theory described by 
the new massless degrees of freedom only. Now one is interested in differential-
topological quantities of a compact manifold M represented by a twisted ver­
sion of the above quantum field theory. Such a quantity may be independent to 
arbitrary scaling of the metric on M such that everywhere M looks like flat Eu­
clidean space. Then the essential information of such a differential-topological 
quantity on M should be contained in the effective field theory of new mass­
less degrees of freedom. Such an effective field theory should be much simpler 
since all the irrelevant degrees are already decoupled. The above considerations 
then lead to an equivalence between completely different mathematical entities. 
This is exactly what happened in the so called Seiberg-Witten revolution in 
differential topology of four manifolds [11][12]. 

For a certain class of Nc = (2,0) models we saw that there is a canonical 
embedding to a Nc = (2,2) model, which is connected with the original model 
by a massive perturbation - see Sect. 3.4. Then one may use an analogy with the 
physical system such that the original (non-Abelian) Nc = (2,0) model may be 
equivalent to a new (Abelian) iVc = (2,0) model which can be discovered by the 
massive perturbation of the JVC = (2, 2) model. In the next section we consider 
such an embedding of our Nc = (2,0) model (N - 2 SYM) to a Nc = (2,2) 
model. The resulting model turns out to be a twisted version of A7 = 4 super-
Yang-Mills theory [68] [7]. The massive perturbation corresponds to giving bare 
mass to the N = 2 hypermultiplet of N = 4 SYM theory. The new Nc = (2,0) 
model corresponds to the cohomological field theory computing Seiberg-Witten 
invariants. A beautiful property of N = 4 theory is scale independence as well 
as higher symmetry known as S-duality. 

It seems to be a good analogy to compare any well-defined Nc = (2,0) model 
and its extension to a Nc = (2, 2) model with N = 2 and N = 4 supersymmetric 
Yang-Mills theory. For example on may, roughly, regard a well-defined Nc = 
(2,0) model as an asymptotically free global supersymmetric theory while its 
Nc = (2,2) extension can then be viewed as a scale independent theory. One 
may also interpret the massive perturbation as using a 5 1 symmetry as a certain 
renormalization group flow, such that the original and the deformed Nc = (2,0) 
models lie in different fixed points. Then the equivalence between the two models 
may be interpreted as the two models not entirely forgetting their origin. 
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4.2 Vafa-Witten Theory 

In the paper [7] Vafa and Wit ten presented strong evidence for S-duality of 
TV = 4 super-Yang-Mills theory. They used a topological, twisted version of 
the TV = 4 theory [68] and were able to determine the part i t ion function of 
TV = 4 super-Yang-Mills theory on certain Kahler manifolds. In particular they 
identified the part i t ion function with the Euler characteristic of the moduli space 
of instantons, provided certain vanishing theorems hold. 

This section, based on [59], is an elaboration and generalization of the work 
of Vafa and Wit ten. We want to determine the parti t ion function for a general 
compact Kahler surface M with b% > 3. Our computation of the parti t ion 
function involves a a series of perturbat ions which break the supersymmetry 
down to TV = 2 and TV = 1 (topological) supersymmetry. The per turbat ion 
down to TV = 2 is achieved by adding a bare mass term for the TV = 2 adjoint 
hypermultiplet. Geometrically, this term may be viewed as the equivariant 
momentum map oî a Q x S1-action on the hypermultiplet. As a result of its 
inclusion in the action, the pa th integral is localized on the fixed point set of 
the G x S^-action, which consists of two branches: (i) the moduli space of anti-
self-dual connections, (ii) the moduli space of a certain class of Seiberg-Witten 
monopoles. Per turbing further down to TV = 1 leads to the factorization of 
the Seiberg-Witten classes contributing to branch (ii). Specializing to gauge 
groups SU(2) and 5 0 ( 3 ) we propose a formula for the branch (ii) contribution 
on a general Kahler manifold with bt > 3. Then 5-duality of TV = 4 super-
Yang-Mills theory enables us to determine the entire part i t ion function. As a 
corollary we obtain a formula for the Euler characteristic of the moduli space 
of instantons (branch (i)). Finally we consider the pure TV = 2 limit and obtain 
the essential part of Wit ten ' s formula for Donaldson invariants [12]. 

Our construction sketched above is an example of the construction in Sect. 3.4. 
The twisted TV = 4 super-Yang-Mills theory on Kahler surface is an example of 
our TVC = (2,2) model. The massive perturbat ion to twisted TV = 2 super-Yang-
Mills theory corresponds to the per turbat ion to TVC = (2,0) mode described in 
Sect. 3.4.2. Finally massive per turbat ion to TV = 1 super-Yang-Mills theory 
corresponds to per turbat ion of TVC = (2,0) mode down to a TVC = (1,0) model. 

4.2.1 Embedding to TVC = (2, 2) Model 

In this section we apply the construction in Sect. 3.4. to embed the previous 
TVC = (2,0) model on a Kahler surface M to a TVC = (2,2) model. 

As usual we have the TVC = (2, 2) gauge multiplet 

_ * + * - i 

a — • r)+ <— <}>++ 

\'~ I"" i¥-
V- ^ D £ - rj+ , (4.2.1) 
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which consists of adjoint valued scalars on M. We will denote <f>++ = <f> and 
4>— = 4> in certain occasions. From the holomorphic multiplets (A0,1, V+1) we 
build up the following chiral multiplets, 

^0,1 £_ Ao,i ^ ^0,1 

«N ^s_ • (4.2.2) 

#0 ,1 

From the Fermi multiplets (x-°,H2'°) we build up another set of chiral multi­
plets, 

x2_,0 £ _ ß 2 , 0 ^ x2,0 

«N A . • (4.2.3) 

H2<° 

Following the discussion in Sect. 3.2 and 3.4 we have the following manifestly 
Nc = (2, 2) invariant functional 

S =s+s+s_s_ fjCiA1'0, A0'1) + !C(B2<0,B0<2) - f Tr(a * w)\ 

+ s+s_W {A°>\B2>°) +s+s_\V {Al'°,B°<2) . 

It is obvious that the Hermitian structure >C(B2>0,B0'2) of the space 

fl2'°(M, End(E)) © fi°-2(M, End(E)) 

is given by 

!C(B2'0,B0<2) = - - L f T r (S2,o A + ß o , 2 ) ( 4 2 5 ) 
47r JM 

The holomorphic potential W is also uniquely determined as follows, 

W (A°'\ B2'0) = - L / Tr (B2'° A F°>2) . (4.2.6) 
47r ^M 

Now, from the discussions in Sect. 3.4, we see that the path integral is 
localized to the solution space of the following equations, modulo the gauge 
symmetry, 

F 0 ' 2 = 0, 

dAB0'2 = 0, 

iFAu + [B2'°,B°>2}=0, 

[ä,B°'2} = 0, (4.2.7) 

[a,l?0'2] = 0, 

[a,ä} = 0, 

dX& = 0, 
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and 

[P++,<P—j = 0, 

dA<l>±± = o . 

The set of equations in (4.2.7) is the Vafa-Witten equation on a Kahler surface. 
For a completeness we recall the original form of the Vafa-Witten equation 

on a Riemann 4-manifold 

iF+n + ±[Bmp, B\]+ = [C, Bmn] = 0, 

DnBmn = DmC = 0, 

where Bmn, rn,n — 1,...,4, is an adjoint-valued self-dual two-form and C is 
an adjoint valued real scalar. On a Kahler surface, using (4.1.1), (C, Bmn) are 
equivalent to a complex scalar a and a (0, 2)-form B0'2. The equations (4.2.9) 
become (4.2.7) on a Kahler surface. 

4.2.2 Per turba t ion to Nc = (2, 0) Model 

Now we want to perturb the above Nc = (2,2) model to & Nc = (2,0) model 
by maintaining the s + and s+ symmetry only. Following the discussions in 
Sect. 3.4 we enlarge the gauge symmetry group G to Q x Sl. Under the S1 only 
fields newly introduced for the Nc = (2,2) model are charged . We have 

S1 

S1 

s1 

(B^,x
2/)^aB2'0,xl°), 

( V ^ f f 0 ' 1 ) ^ ^ - ' 1 , ^ 0 ' 1 ) , (4.2.10) 

(^,rç+) ->£(osrç+), 

and the opposite charges to the conjugate fields. Following the procedure in 
Sect. 3.4, the perturbed action functional S(m,m) is given by 

S(m,rn) 

=S-mm f TT(B20 A *B0'2 + a * a\ 

+ imf TrL_([B2'°,B0'2} - [<r,*ff]) + ^ 1 A * ^ ' ° ) 

- irnjMTv(rr<f>++([B2'0,B0'2} - [a, *W}) + j # ° A 4 ' 2 + rj+ * r,+ ) ^ . 

(4.2.11) 
The \m\ dependent terms are exactly the physical mass terms for the N = 2 
adjoint hypermultiplet after the twisting. 

After the above perturbation the path integral is localized to the space of 
solutions of the following set of equations, modulo the gauge symmetry; 

F°-2 = [ä,ß°'2] = 0, 

on n o 1 dAB°>2 = dAa - 0, (4.2.12) 
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and 
[cj>Ä]=Q, dA4> = Q, (4.2.13) 

and 
[<t>, B0'2} - mB0'2 = 0, [</>, ä]-mä = 0, ^ 

[(t>,B2<°]+mB2>°=0, [<t>,a}+ma = 0. 

In studying solutions of these fixed point equations we specialize to the gauge 
group SU(2). We also restrict to Kahler surfaces with b\(M) > 3. Then there 
are no reducible instantons for generic choice of the metric. 

First of all, (4.2.13) implies that (f> should be diagonalized at the fixed points. 
Thus we have two branches 

• Branch (i): 4> = 0. The gauge symmetry is unbroken. Then (4.2.14) im­
plies that B2,0, B°'2,a, and ä vanish. So the fixed point equation (4.2.12) 
reduces to the anti-self-duality equation for the connection A: F^ = 0. 

• Branch (ii): <f> ^ 0. The gauge symmetry is broken down to U(l). Thus 
the bundle E splits into line bundles E = L®L~l with L-L = — k, where 
k is the instanton number. And <j> takes the form 4> = diag(a, —a). Then 
the only non-trivial solutions of (4.2.14) are, with m — a = 0: 

(4.2.15) 
a» - (J 

* ) • - G : ) -
" • ( Î : ) • " ( S 2)-

Then (4.2.12) reduces to 

F°L? = aß = 0, 

iFjj. A u> = ß A ß — aäu2, 
dLiß = dL?a = (4.2.16) 

Here a is a section of L~2 and ß is a section of K~x ®L2, with K denoting 
the canonical line bundle. To make progress it it is useful to regard the 
above equation as a perturbation of another equation. To achieve this 
note that 

so that we can write 

F°L'2 = aß = 0, 
i — 1 9^2 ß = dtfct = 0. 
-FQ A U> = ß A ß - aäu2 + -FK-i A u, 

(4.2.18) 
This is a perturbation of the Seiberg-Witten equation [12] for a spin0 

structure £ = K~l ® L4; this fact will be crucial in the next section. 
For later use we also note that Ci(() = «^(M) modulo 2 since C\(K) = 
w2{M) mod 2. 
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4.2.3 Per tu rba t ion to Nc = (1,0) Theory 

We can further break the remaining Nc = (2,0) symmetry down to Nc = (1,0) 
by introducing a bare mass for the twisted N = 1 matter-mult iplet . We will do 
this by preserving the «.(--symmetry only. Note tha t , among the twisted N = 2 
vector multiplet given by (3.2.7), the twisted TV = 1 mat te r multiplet consists 

of (V>+\ «M, »?-, xi '0)-
The required mass term involves a holomorphic two-form w2 , 0 £ H2'°(M) 

and has the form 

O.« = g^j ƒ T r ^ 1 A O / 0 . (4.2.19) 

This term is invariant under s + -symmetry , but not invariant under the s + -
symmetry; 

s+Iu2,o = - - ! - / Tv4>dA^°+l Aw 2 ' 0 . (4.2.20) 
4TT2 JM 

However, the imposition X- equation of motion leads to invariance. The 
relevant term in the action S(m,m) is — fM M Tr\- A d^ip^ • If we add 
(4.2.19) to the action S(m,m) of (4.2.11) and at the same time change the 
s + - t ransformat ion of x_' according to 

« + X
2 J° = [a, B2>°] - > «+X

2_'° = fr B2 '°] - « ^ ° , (4.2.21) 

the new action S(m,fn)' + /w2,o enjoys s + - symmetry . Here S(m,Tn)' is given 

by 

Stm,™;) ' = 5 2 ( m ) _ - L [ T r # r , 5 0 - 2 ] Aw 2 ' 0 , (4.2.22) 

where the additional term is due to the modification (4.2.21). Since s+<j> = 0, 
we still have the property 's]r = 0. In this way the one component ip^1 of the 
N = 1 chiral superheld has obtained a mass. To give mass to the remaining 
components in the N = 1 mat ter multiplet we add the following s + -exac t terms 
to the action 

= - j i j ƒ Tr p(<r, B»'0]) A a/1'2 + ~ J Tr {W) a,2>° A a,0'2 (4.2.23) 

-i/>(»-*-'°)-°'2 

A similar prescription for breaking pure TV = 2 theory down to N — 1 was given 
by Wit ten in [10]. 

To sum up, the total action 

S(m, m, w0 '2) = S{m, m)' + 4.0,2 - ) - 1 ^ , (4.2.24) 

has only s+ supersymmetry and all the mat ter multiplets have a bare mass. 
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Now the fixed point equations (4.2.12) undergo an important change due to 
the modification of the s + transformation law of x^'2 given by (4.2.21). The 
new fixed point equations are 

F ° ' 2 = [ ä , ß ° - 2 ] - ( / > u ; o ' 2 = 0 , 

r 9 0 0 9, l r , 3^°'2 = 8Aä = 0, (4.2.25) 
iFALj + [B2<°,B°>2]- - [ f f 1 f f ]uAu = 0, 

while (4.2.13) and (4.2.14) remain unchanged. Thus there are again two branches 

• Branch (i): This branch is unchanged. 

• Branch (ii): We have 

F ° ' 2 = aß - mu,0'2 = 0, 

i - 1 (4.2.26) 
-Fç A ui = ß A ß — aau A u FK-i, 

where £ = K~x ® L4. This is a perturbed version of the Seiberg-Witten 
equation, containing the per turbat ion introduced by Wit ten in [12]. The 
condition 

aß = mu>0'2, (4.2.27) 

gives the crucial factorization condition of the Seiberg- Wit ten basic classes. 

A n a l y s i s of B r a n c h (ii) F i x e d P o i n t s 

Our analysis of branch (ii) exploits the relation of the the defining equations 
with the the Seiberg-Witten equation. 

As a first step we need to classify which Seiberg-Witten classes contribute 
to branch (ii). For an arbi t rary spinc s tructure x, which can always be writ ten 
in terms of an arbitrary integral line bundle £ as 

x = K~1®^2, (4.2.28) 

we have an associated Seiberg-Witten equation. If the square root fx/2 = L 
of £ exists, the Seiberg-Witten equation is identical to the fixed point equation 
(4.2.18) of branch (ii). The inclusion of the perturbat ion in (4.2.26) further 
implies tha t we also have to satisfy the factorization condition aß = w0 '2 , where 
we have scaled m = 1 in (4.2.27). 

Let the canonical divisor K be given by K = YliriCi, where the Ci are 
irreducible components. The factorization means tha t 

J f t : 1 / 2 ® x 1 / 2 = e = ^ s i C 1 , (4.2.29) 
i 

where Sj are integers with 0 < s{ < rt. Thus, the question of which Seiberg-
Wit ten classes contribute to branch (ii) reduces to finding line bundles L satis­
fying L • L = —k and 

n 

2L = Y^ Sid, 0<Si< n. (4.2.30) 
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Now let i be a Seiberg-Witten basic class. If (x 1 / 4 (gi K1/4) exists as a line 
bundle, then the associated SW invariant nx contributes to the pa th integral in 
branch (ii). Note tha t (x1'2 ®K1'2) always exist as a line bundle. The question 
is thus whether the square root of (x1'2 <g> K1'2) exists, which is the case iff 

^[x + K] = 0, (4.2.31) 

or, equivalently 

±[x + w2(M)]=0, (4.2.32) 

where [...] means the mod 2 reduction. Here w2(M) is the second Stiefel-
Whitney class of our Kahler manifold M. In the SU(2) case such a square 
root may not exist. However, if we repeat the analysis for an SO(3) bundle 
E, the factorization condition can be met provided the second Stiefel-Whitney 
class w2(E) of E satisfies 

^[x + w2(M)] = w2(E). (4.2.33) 

With the abbreviations ZQ = W2(M), z = w2(E) and 2x' = x + K the branch 
(ii) contribution has the form 

]>>*^ , M x (...). (4-2-34) 

where the summation is over all Seiberg-Witten basic classes x and nx denotes 
the Seiberg-Witten invariant defined by x. This general form applies to both 
the SU{2) and the SO(3) case. In principle one could proceed to compute 
the branch (ii) contribution directly using localization techniques. However, 
in practice this requires tha t one s tar ts with a suitable compactification of the 
moduli space of the Vafa-Witten equations in order to make the integration over 
the normal bundle of branch (ii) well-defined - this will fill the unwritten par t 
( . . . ) in (4.2.34). Here we are not able to follow tha t path . Though we have 
technical limitation we demonstrated tha t the general principle advocated in 
Sect. 2.5 works fine, since we saw a glimpse of purely non-perturbative quantum 
properties by a simple classical analysis. 

In the remaining chapter we determine the branch (ii) contribution to the 
parti t ion function by a generalization of the results of Vafa and Wit ten in [7]. 
Then we apply the 5-duality to determine the full partit ion function. 

4.2.4 Partition Function 

Vafa and Wit ten make a precise s tatement about the expected behavior of 
the part i t ion function of N = 4 super-Yang-Mills theory under S-duality [7]. 
According to [7] the parti t ion function of N = 4 theory is a modular form 
invariant under the To(4) subgroup of SL(2, Z ) . If this is t rue the total part i t ion 
function can be determined from the contribution of branch (ii) alone, as we 
shall now show. 
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Consider the case K = $3"[Cj] where the [Ci] are irreducible and disjoint. 
Vafa and Witten made a prediction for what we call the contribution to the 
partition function from branch (ii) (eq. 5.50 in [7]): for the SU(2) case the 
answer is 

where e = ( e 1 ; . . . , en) and £j = 0 or 1 chosen independently. Here v = (x + 
<r)/4 and x a n d c denote the Euler number and signature of the manifold, 
respectively. The expression G(q) = 1/T/24 is defined by the Dedekind eta-
function. 

From our perspective the sum and the delta function <$o,iu2(e) can be under­
stood as follows. What is called u>2(e) in [7] is a special form of [a;'], so that the 
sum in (4.2.35) is over the same range as the sum (4.2.34). In our notation, the 
factorization condition has the form 

n 

x' = 2L = Y^£i[d], 0<st<l (4.2.36) 

From 

k = -LL= --x -x = -jY^s^9i~ V (4.2.37) 
i 

and since s? = Si for s; = 0 or 1, we recover the formula 

fc = - - £ % , ( < ? ; - I ) , 0 < e « < l . (4.2.38) 
i 

given in [7]. Note also that YJÏ=\ (& ~ !) = K ' K = 2X + 3<x. 
We now propose a formula for the branch (ii) contributions on general Kahler 

manifolds with 6J > 3. We replace 

£ W i (JR) (|)E""~°" -<-ir!>,,,», (£)"*''', 
(4.2.39) 

where the summation is over all Seiberg-Witten basic classes x with the Seiberg-
Witten invariants nx. Then, (4.2.35) can be written as 

In the 50(3) case, for a fixed z = W2(E), we immediately get 
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The basic idea is to examine the terms generated by applying the S-duality 
transformations corresponding to r —> — 1/r and r —» r + 1 to (4.2.41). Com­
bining the resulting terms in a convenient fashion one gets 

"•E<-*M££) 
— x -a: 

(4.2.42) 
where the sum ^2X is over all Seiberg-Witten basic classes, as before. In prin­
ciple there could be a contribution to the part i t ion function which can not be 
obtained by performing modular transformations of the contribution of branch 
(ii). However, such a contribution should vanish for a manifold with &J > 1. 

According to [7] the required transformation behavior under S-duality is: 

Zy(-l/r) = 2 - ^ / 2 ( - l ) " ( I ) ~ 3 '2 £ ( - 1 ) " » Z , ( T ) . (4.2.43) 
z 

We can check tha t our proposed expression (4.2.42) transforms correctly as 
follows. First we insert (4.2.42) into the RHS of (4.2.43) and obtain 

+ 2 . - W ( _ i r pp pg, £,„,„,„ 
4 / v V y ^ ,l J V0O + 0 

+ 21-*1(-l)"i"" .^ G{-q*)Y(e0 -ioY 

4 \ 2rj2 

-2x-3<7 

«»-*v^(|±|) 
-a: -a; n 

(4.2.44) 
where we used 

z 

j2(-iry+zx' = 2b>6y,x>, ( 4 2 4 5 ) 
2 

y](-iyyi~z2 (-iyx' = 2t,2/2;+y2-<r/2+;r'i'(-ir''y-
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Carefully taking into account differences in notation these formulae follow from 
those noted as eq. (5.40) in [7]. In comparing (4.2.44) with the expression 
(4.2.42) evaluated at - 1 / T one finds tha t the first line and second line in (4.2.44) 
equal, respectively, the second and first line in (4.2.42) evaluated at —1/T. The 
third line of (4.2.44) should thus be compared with the third line in (4.2.42) at 
— 1 / T . The equality here may require some explanation. Performing T ->• — 1 / T 
in the third line on (4.2.42) one finds, with some rearrangements, tha t 

s2^(-iri^f^yx/2^tfiy ^ "/2 / f l 0 _ t - ö l X - 2 x - 3 « r 

2?72 

V \o0 + ie1J 

(4.2.46) 

We want to show tha t the above is identical to the third te rm in (4.2.44). A 
crucial property is tha t -x is a Seiberg-Witten basic class if a; is. Note also that 
x' = \x + \K. Writing x' = -\x + \K we have -x' • x' + 2x + Sa = x' • x', 
since a Seiberg-Witten basic class x satisfies x • x — 2\ + Sa. Now the second 
line of (4.2.46) can be rewrit ten as 

E<-ir~<-l)^.-(££)"". («.47) 

where we used n _ x = {-l)vnx and the fact tha t v = (x + a)/4 is an integer. 
The Wu formula implies ( - l ) " z +x = 1, and we replace the dummy variable 
—x,x' with x,x' to complete the proof. 

A R e l a t i o n w i t h S tr ings 

Taubes proved tha t Seiberg-Witten invariants (SW) are equivalent to Gromov-
Witten invariants (Gr) for a symplectic 4-manifold of simple type [80]. Here 
we only consider a Kahler surface. Let £ be a non-trivial, complex line bun­
dle over M and use f to define a spinc s tructure x = K~x <g> £2 . Then 
SW(K-Y ®i2) = Gr{i). Consider a line bundle f such tha t SW{K~X ®£2) jé 0, 
then the Poincaré dual of cx (£) is represented by the fundamental class of an 
embedded, holomorphic submanifold with, say, n irreducible components. Then 
each component Hi satisfies the adjunction formula g{Hi) = 1 + Hi • Hi, where 
g (Hi) is the genus of H{. We can define the integer multiplicities at by writing 
f = YJi=i.aiHi-

Let the canonical divisor K be given by a union of irreducible components 
Ci with multiplicities r;, i.e K = £ \ rid. The factorization of a Seiberg-Witten 
basic class x means tha t 

K1'2® x1l2=Z = Y,SiCi (4.2.48) 
i 

where the s{ are integers with 0 < S; < rt. Consequently, Taubes ' result leads 
to the identifications 

cii = Si, Ci=Hi. (4.2.49) 
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Physically speaking this means tha t the world sheets of the superconducting 
cosmic strings discussed by Wit ten in [10] are embedded holomorphic curves. 

Recall tha t for a fixed instanton number k the Seiberg-Witten classes x = 
—K + 2x', with x' • x' = —4k and z = [x1], contribute to the part i t ion function 
of N = 4 theory in branch (ii). From the above discussion we identify x' with 
holomorphic curve x' = Y^=i siHi and 1 — g(x') = —x' • x'. So the branch 
(ii) contribution can be writ ten as the sum of contributions of all holomorphic 
curves £ with [£] = z. The summation over the (space-time) instanton numbers 
is replaced with the summation over the genus of the holomorphic curves (the 
world-sheet instantons). So our formula (4.2.42) for the part i t ion function of 
N = 4 theory can also be viewed as a genus expansion: 

-2 X -3<r / 0 v l - g ( E ) 

2 X - 3 C T / n a N. l - g ( E ) 

+2.-s-WcH1/2)V^--v 

x£(-l)[^Gr(E) 

4 I V V 

öo - «öl 

(4.2.50) 

T h e TV = 2 Limit and D o n a l d s o n - W i t t e n Invariants 

It is instructive to rewrite the formula (4.2.42) as follows: 

-2x-3<r 

—2x —3cr • ,, ä \ — i x 

00 + 01 

+ 2 i - 6 I + i ( T x + n C T ) r z ^ G £ _ g i / 2 ) * ^ o - ^ A ~2X~Za 

(4.2.51) 
The fact that this formula can naturally be grouped into three terms whereas 
we classically think of contributions from two branches can be understood phys­
ically as follows. The first term is the contribution from branch (ii) and stems 
from the singularity in the u-plane due to the massless adjoint hypermultiplet. 
The remaining two terms are the contribution from branch (i), which classically 
corresponds to the singularity at the origin of the u-plane. Geometrically, the 
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branch (i) contribution is the Euler characteristic of the moduli space of instan-
tons [7]. The fact tha t this contribution is made up from two terms is due to a 
quantum effect: the classical singularity a t the origin of the u-plane bifurcates 
quantum mechanically [72]. 

From the above formula we can recover the Donaldson invariants for gauge 
groups SU{2) and SO(3) as follows. For a simply connected simple type man­
ifold, Wit ten ' s formula for the generating functional of Donaldson's invariants 
is [10] 

(e"+A") =21+i(7*+11-) exp(^2/2 + 2A) J3(-l)M'«nBe«-

+ 21+?(7*+11-V-*2 exp(-v2/2 - 2A) 5](-i)M'*»i-<r""*-

l(2) 
(4.2.52) 

Here v is the observable O^' associated with a two-dimensional cycle v and 

u = ö\, see (4.1.32). The expectation value is computed using (twisted) TV = 2 

super-Yang-Mills theory. 

To obtain the above formula from the TV = 4 theory we could turn on the ob­
servables (4.1.32)after breaking the supersymmetry down to TV = 2 and, follow­
ing [72][11], take the double scaling limit m - > o o and q -> 0 with A2 = 2q1/2m2 

being fixed. In this limit the singularity coming from the massless adjoint hyper-
multiplet (branch (ii)) moves to infinity in the u-plane and no longer contributes 
to the pa th integral. On the other hand the two other singularities remain at 
the points u = ± A 2 (in Donaldson theory A2 is normalized to 2). Here we are 
not able to consider general expectation values of observables. However, we can 
compute the TV = 2 limit of the part i t ion function (4.2.51) (the q -> 0 limit 
since (4.2.51) does not depend on m) . The leading terms only come from the 
second and the third lines and are given by 

2l_6l + i(7x+llCT) fj2(-l)W*nx + ,*-*" £ ( - A ) M " x ) (<?3"/4 + . . . ) • 
^ X X ' 

(4.2.53) 
Note tha t this part i t ion function vanishes unless the dimension of the moduli 
space of instantons is zero. Since dimcMk = 4k—3f, this occurs when k = 3^ /4 , 
thus explaining the leading term q3"/4 in (4.2.53). In fact, the expression (4.2.53) 
contains all the non-trivial information about Donaldson's invariants. 

The relation between the 5 1-act ion and the mass term of the hypermultiplet 
described here were summarized and used in the paper [81]. There the same 
sequence of perturbat ions N = 4 , 2 , 1 was used to relate the zero-dimensional 
reduction of the Vafa-Witten equation (TV = 4) to the ADHM description of in­
stantons (TV = 2) [63] [64] and of torsion-free-sheaves (TV = 1) [65]. It established 
the first concrete relation between D-instantons and Yang-Mills instantons [41]. 
The similar 5 1-act ion and its application to the mass perturbat ion of the TV = 4 
theory was also considered in [82]. 

Recently some progress was reported on the entire generating functional of 
the TV = 2 theory with a massive adjoint hypermultiplet with more general 
group [82] [83] and on other four-manifolds [22]. 
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4.2.5 Stringy Donaldson-Witten Theory ? 

In this chapter we formulated a twisted N = 4 SYM theory on a Kahler surface 
as a Nc = (2, 2) supersymmetric sigma model in zero-dimensions. As we re­
marked in the first par t of Sect. 2.3 our model can be generalized to Nws = (2,2) 
space-time supersymmetric gauged linear sigma model in two-dimensions. 

The two equivariant differentials s+ and s+ can be identified with the two 
left-moving supercharges on a Riemann surface E. The other two differentials 
s_ and S- are identified with the two right-moving supercharges on E. With the 
above extension <j>±± correspond to the components of two-dimensional vector 
in the light coordinate (or in the complex coordinate). Now we identify ë_ and 

1/2 1/2 
e_ with sections of K^ and ? + and e+ with sections of K-% , where K^ 
denotes the canonical line bundle on E. The gauge multiplet (4.2.1) becomes the 
Nws = (2, 2) vector multiplet, while the two types of bi-holomorphic multiplets 
(4.2.2) and (4.2.3) correspond to two types of the Nws = (2,2) chiral mat ter 
multiplets. 

The resulting theory can be viewed as an infinite dimensional Nws = (2, 2) 
supersymmetric gauged linear-sigma model [32] [33]. Then one may twist the 
theory to obtain A model [49] [3]. After the A model twisting we have s+ and 
s_ (or S- and s+) transform as scalars on E. Then they are identified with the 
differentials of ^-equivariant cohomology of the target space - the space A of all 
connections A and B2'0; 

A © fi2'°(M, End(E) © f2°'2(M, End{E)). (4.2.54) 

Denoting s+ :— s and s_ = s they satisfy the familiar anti-commutation rela­
tions 

s 2 = 0, {s,s} = -iaaCa, s2=0. (4.2.55) 

In certain cases7 one can show tha t all the degrees of freedom due to the Nws = 
(2, 2) vector multiplet as well as to a, ä and its fermionic partner decouple 
in the infrared limit in E. Then the twisted model flows to the non-linear 
topological sigma model with target space given by the space of solutions (of 
the Vafa-Witten equations) 

F 0 - 2 = 0, 

dAB0'2 = 0, (4.2.56) 

iFAu + [B2'°,B°'2] = 0, 

modulo the gauge symmetry. The observables of the model are given by Q-
equivariant closed differential forms which flows in the infrared limit to the usual 
observables (the closed differential forms on the above moduli space). Thus the 
correlation functions of the resulting model are the quantum cohomology rings 
of the moduli space of Vafa and Wit ten. 

7A example is the case with the SU(2) group and a Kahler surface M with 6+ > 3. The 
required properties are analyzed in details in [7]. 
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We may use the S1 symmetry acting on B0'2 to by modifying the anti-
commutation relations as usual 

s2=0, {s,s} = -iaaCa -imCsi, s2 = 0. (4.2.57) 

Then the pa th integral can be written as the sum over contributions from the 
moduli space of SU (2) instantons (branch (i)) and the moduli space of the 
following abelian (branch (ii)) Seiberg-Vafa-Witten equations first considered 
in [7] 

F°J = 0, 
dL*ß = 0, (4.2.58) 

iFL2 A LJ = ß A ß, 

which is a special case deg(L) > 0 of the equations (4.2.16). In this way, 
we may obtain the quantum cohomology rings of the moduli space of SU(2) 
instantons on a Kahler surface M with bf > 3. The question is if such a 
stringy generalization of Donaldson-Witten theory would lead to more subtle 
four manifold invariants than the Seiberg-Witten's. The author do not know 
the answer but suspect tha t it is no at least for the Kahler case. The above 
argument based localization by the S1 -action strongly suggest tha t the quantum 
cohomology rings can be, in principle, determined in terms of of the quantum 
cohomology rings of the moduli space of Seiberg-Witten monopoles. We expect 
to have only the constant map since the later moduli space is a collection of non-
degenerated points [12]. This implies that quantum Donaldson-Witten invariant 
may not contain any information beyond the Seiberg-Witten's at least for the 
Kahler case. There seems to be still some hope tha t one may get non-trivial 
result by considering the general almost complex surface. Then the moduli 
space of Seiberg-Witten monopoles can be non-zero dimensional almost complex 
manifold. 
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Chapter 5 

Cohomological Yang-Mills 
Theories On 3-Folds 

5.1 Introduction 

The discovery of D-branes has greatly enriched our understanding of non-pertur-
bative strings [16]. The configurations of D-branes may be viewed as a stringy 
description of vector bundles (more generally sheaves) and the dynamics is effec­
tively described by supersymmetric gauge theory [41]. The celebrated M(atrix) 
conjecture, then, provides a microscopic definition of M theory by the later 
theory [42]. The matrix string theory is the M(atrix) theory compactifkation 
on the circle [84] in the eleventh direction and is described by the maximal 
Nws = (8,8) supersymmetric gauge theory in (1 + 1) dimensions [29]. The 
matrix string theory compactified on a non-trivial manifold should involve de­
grees of freedom of branes wrapped around non-trivial homology cycles. Such a 
theory may be viewed with some assumptions as a (1 + l)-dimensional gauged 
linear sigma model with the space of all bundles on compactified space as target 
space [30]. Due to the brane configuration not all the supersymmetry will be 
preserved. For example the K3 and CY3 compactifkation have Nws = (4,4) 
and Nws — (2, 2) supersymmetry. 

Formally the infrared limit from the string world-sheet viewpoint corre­
sponds to the limit where the bulk string coupling constant becomes zero. Then 
the theory flows to a superconformai non-linear sigma model whose target space 
is the moduli space of semi-stable bundles together with a linear space spanned 
by the zero-modes of adjoint scalars. Those zero-modes represent bulk degrees 
of freedom transverse to the compactified space (and branes in it). When the 
brane configuration is a BPS state the semi-stable bundles are actually stable 
and there are no zero-modes of adjoint scalars. Thus the stable bundles represent 
the degrees of freedom completely decoupled from the bulk. Those phenomena 
are directly related with the equivariant nature of world-sheet supercharges of 
gauged linear sigma-models. When the target space given by a symplectic quo­
tient is smooth the equivariant cohomology is the ordinary cohomology of the 
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quotient space. Otherwise there is always something more. Recall tha t the total 
extended space where the equivariant cohomology is defined is always smooth. 
Similarly the total physical system is always smooth if we include all the degrees 
of freedom. 

Consequently the infrared superconformai non-linear sigma model whose 
target space is the moduli space of stable bundle describes decoupled matrix 
string theory from the bulk. As a superconformai (1 + l)-dimensional non-linear 
sigma model the chiral rings can be described by topological sigma-models [3]. 
In general Nws = (2,2) superconformai theory has two types of chiral rings, the 
(c, c) and (a, c) ring [4]. The (c, c) ring is described by the A model corresponding 
to the quantum cohomology ring of the moduli space of stable bundles. Thus 
the Donaldson-Witten type polynomials associated with stable bundles are the 
A model correlation functions without worldsheet instanton corrections. The 
Donaldson-Witten type invariants can also be viewed as the correlation functions 
of chiral primaries of superconformai field theory obtained by M(atrix) theory 
compactification. The other (a, c) chiral ring is described by the B model. For 
the case of a Calabi-Yau 3-fold we argue tha t the B model is equivalent to the 
holomorphic Chern-Simons theory [85]. 

The above discussions based on [30] motivates us to look up cohomologi-
cal field theory which computes the classical cohomology rings of the moduli 
space of stable bundles on a Calabi-Yau 3-fold. In the previous chapter we 
already considered, among others, a natural generalization of the Donaldson-
Wit ten theory on a complex Kahler surface to a d > 2 dimensional Kahler 
manifold M. The pa th integral of the resulting model is localized to the moduli 
space of the Einstein-Hermitian connections, equivalently the moduli space of 
stable bundles. However we had a serious problem due to the uncontrollable 
abundance of anti-ghost zero-modes. In this chapter we find resolution of this 
problem by star t ing off we have failed. A simple observation is tha t one has to 
introduce additional degrees of freedom to control the anti-ghost zero-modes. 
This inductive procedure leads us to a natural extension of the moduli space 
of Einstein-Hermitian connections or, equivalently, stable bundles. It turns out 
tha t we have a well-defined model only for the d = 3 case. 

Obviously the d = 3 case is the one most relevant to string theory [86]. We 
also note tha t the notion of stable bundles, on a Calabi-Yau 3-fold, appears nat­
urally in the non-perturbative string theory in terms of BPS states [87] [88][89]. 
It is important to note, although usually not being emphasized, that what one 
actually has in string theory is the extension of stable bundles. In terms of 
D-branes, a rank r stable bundle on a CY 3-fold M is a BPS configuration of 
r £>6-branes wrapped around M , while the topological type of the bundle is 
determined by D4, D2, and Do wrapped around non-trivial cycles in M. Such 
a De brane also has two complex transverse degree of freedom in the bulk. All 
together one has the extended stable bundles. 

The moduli space of stable bundles on a CY 3-fold is also crucial for ho-
mological mirror symmetry [79] [90], which is essentially mirror symmetry with 
D-branes [91] [92]. The mirror par tner of a stable bundle on M is represented 
by a special Lagrangian submanifold C C M with flat line bundle L in the 
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mirror M Calabi-Yau. The extended mirror conjecture is tha t the moduli space 
of stable bundles on M should be isomorphic to the moduli space of (C, L) on 
M. However this can ' t be literally t rue since, for example, the deformation 
of special Lagrangian submanifold is not obstructed [93] but the deformation 
of stable bundles is. The situation is analogous, in the old mirror symmetry, 
to the obvious differences between the moduli space^of complex structures on 
M and the moduli space of Kahler structure on M. The natural resolution 
was extending both the moduli spaces [3].1 A natura l resolution may be tha t 
both moduli spaces of stable bundles and Lagrangian submanifolds should be 
extended [94] [95]. 

We begin with constructing a well-defined Nc = (2,0) model on a Kahler 
3-fold. This model gives a concrete formula for Donaldson-Witten type polyno­
mials which is valid regardless of the properties the extended moduli space has. 
We also argue tha t , using a S1 symmetry and the DH integration formula, tha t 
Donaldson-Witten type invariants may be equivalent to Seiberg-Witten type 
invariants on Kahler 3-folds. The dimensional reduction of the model gives rise 
to the Nc = (2,2) Vafa-Witten model on a Kahler 2-fold. Then we specialize to 
the Calabi-Yau case. On a Calabi-Yau 3-fold the Nc = (2,0) supersymmetry is 
automatically enhanced to Nc = (2, 2) supersymmetry. The part i t ion function 
of this model gives a concrete and well-defined formula for holomorphic Cas-
son invariants defined by Thomas [96] [97]. On Calabi-Yau 3-folds the actual 
dimension of the moduli space of stable bundle can never be equal to the for­
mal dimension, which is zero. This property causes one of the main difficulties 
in defining holomorphic Casson invariants. We give a concrete prescription of 
dealing with the above problem, different from tha t of Thomas . We also give a 
concrete prescription of resolving the problem caused by reducible connections 
by combining certain deformations and perturbat ions of the initial model. 

The Nc = (2, 2) model can be obtained by dimensional reduction of the 
Nws = (2, 2) gauged linear sigma model in (1 + 1) dimensions introduced in 
[30]. A quantum field theoretic approach to Donaldson-Witten type invariants 
on a general Kahler manifold based on the moduli space of stable bundles is 
first studied in [52] [67]. We note other related papers; [98] [99] for Kahler case 
and [100][101] for Calabi-Yau case. 

5.2 Motivating the Extended Moduli Space of 
Stable Bundles 

In this section we motivate the notion of extended moduli space of stable bundles 
[95] in the context of resolving the problems of anti-ghost zero-modes discussed 
at the end of Sect. 4.1.1. 

First we set up our notation. Consider a d complex dimensional compact 
Kahler manifolds (M,u>) with Kahler form LJ. We consider a rank r Hermitian 
vector bundle E ->• M'. On M any two-form a e fl2(M) can be decomposed as 

We should also mention that the homological mirror conjecture was derived from a deeper 
study of the extend moduli space of complex structures. 
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follows 
a = Q+ + a~, 

a + = a 2 - 0 + aoW + a0 '2, (5.2.1) 
- 1,1 a = al , 

where a0 = ^Aa is a scalar and a^ is (1, l)-form orthogonal to u>. One defines 
the following projections 

p± : n2
M -> n2±(M), p0'2 : n2

M -> n°-2{M). (5.2.2) 

The curvature two-form decomposes as F = F+ + F~ according to (5.2.1). A 
connection on E is called Einstein-Hermitian (EH) with factor Ç if 

F0'2 = 0, , 
(5.2.3) 

iAF-ÇIs-

Now we return to the problem of the anti-ghost zero-modes Let A be an EH 
connection. We consider a nearby connection A + 5A, SA 6 fi1 (M', End(E)), 
which also is EH. After linearization we have P+dA5A := djSA = 0. Supplying 
the Coulomb gauge condition dASA = 0, a local deformation SA around a point 
A in M EH represented by the kernel of an operator dA © dA in Cl1 (M, End(E)). 
From the above one introduces the associated elliptic complex of Atiyah-Hitchin-
Singer [102]; 

0 -» Cl°{M,End(E)) -^Q}(M,End{E)) \ Vl2+{M, End{E)). (5.2.4) 

We compare the above with the fermionic zero-modes of {rj_, ip_^ , x- ) governed 
by the equations (4.1.36); 

W = o .0,2 dArj_=0, _ 0 1 ' dAxU-'=0. (5.2.5) 
OAV+ = 0, 

After decomposing r}_ = r] + ix'L into real and imaginary parts, we can form 
real fermions (r)_, î/>+, X-) 

I T 1 ' 0 i /0,1 —2,0 . 0 0,2 i. r, a\ 
•0+ = V'-H + V»+ , X- = X- + X-W + X - , (5.2.6) 

where r)_ <E Q°(M, End{E)), rj>+ € Q}(M, End(E)) and X- € Ü2+(M, End(E)). 

The equations for zero-modes (5.2.5) are translated into the following 

d*Aij,, = 0, 
dAr,_=0, A

+
 + 4 * X _ = 0 . (5.2.7) 

dA1l> + = °. 

Thus the zero-modes of fermions (rf_, ij>+, x~) are elements of the AHS complex 
(5.2.4). The above correspondence is one of the crucial ingredients of Witten's 
approach to Donaldson theory in four real dimensions [1]. The path integral 
measure contains such fermionic zero-modes and the net ghost number anomaly 
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precisely the index of the above complex, which is the formal dimension of the 
moduli space of instantons on a four manifold. 

Now we undo the combination (5.2.6) and return to the initial equations 
(5.2.5) for the complex fermions (rj_, V'+1,X°-'2). The equations (5.2.5) imply 
that the fermionic zero-modes are one to one correspondence with the following 
Dolbeault complex [103] 

0 -> n°-°(M, End(E)) - ^ n0'1 (M, End(E)) - ^ fi°-2(M, End(E)). (5.2.8) 

2 

Note that dA = 0 at the fixed point locus. Our problem for d > 3 is that a 
fermionic zero-mode of x^.'2 only needs to satisfy the condition d^xl2 = 0 so that 
we have too many of them. As a result we always have an infinite dimensional 
anti-ghost bundle. Therefore the path integral would hardly make any sense. 
But this is exactly what the EH condition gives us via local deformation. For 
d = 2 the desired condition ÔAJCI2 = 0 is automatic due to the dimensional 
reason. For d > 3 the only way of imposing the desired condition dAxh2 = 0 
is to introduce another fermionic field A+° with ghost numbers (1,0) such that 
the action functional contains the following term 

f Tr(A^° 
JM 

A *dAX3-2) + ••• (5.2.9) 

Then we obtain in addition to (5.2.5) 

BAX-2 = 0, dXX3/ = 0. (5.2.10) 

Thus we have to generalize the iVc = (2,0) model in Sect. 4.1.1 by introducing 
a new holomorphic multiplet (C3'°,A+'°) 6 n3>°(M,End{E)). For d = 3 the 
above additional conditions are sufficient. For d = 4 we should supply yet 
another additional condition dA\+° = 0, otherwise we have too many zero-
modes of A+' . Thus we should introduce another fermionic fields £_' with 
ghost numbers (—1,0) such that now the action contains 

S ~ / Tr(A^° A *6Ux°:2 + dAXl° A *|°_'4) + . . . , (5.2.11) 
J M 

and so on. 
Thus a natural resolution of our problem is to extend the complex (5.2.8) 

all the way to the end 

0 _ > C°'° - ^ C 0 ' 1 ^ C0'2 - ^ C0'3 -^> . . . % C°'d -> 0, (5.2.12) 

where C°>e := ü°>1 (M', End(E)). To give any meaning to the above Dolbeault 
complex, we have to introduce the following set of fermionic fields 

-0,0 ,0,1 —0,2 Y ° ' o d d 70,euen 
V- ,V>+ ,X- ,A+ ,£_ , (5.2.13) 
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where 2 < odd, even < d. It is obvious, from the basic s tructure of our Nc = 

(2, 0) model, tha t A+' are superpartners of anti-holomorphic bosonic fields 

C°'odd to form holomorphic multiplets; 

(C0'odd^t;odd). (5.2.14) 

It is also obvious tha t £_' should be parts of Fermi multiplets 

(^even^H°'even), (5.2.15) 

where / f ° . e t , e n
 a r e auxiliary fields. Then we may try to design an action func­

tional which gives the following equations, in addition to (5.2.5), for fermionic 
zero-modes 

-^ -rO,odd -^ -O.even 

•»-TO, odd —*-0 ,euen \ ' 
dA\+ = 0 , dAi_ = 0 . 

Thus the (0, g)-form fermionic zero-modes become the elements of the g-th co-
homology group H°<q := H°>q (M, End{E)) of the complex (5.2.12). Then the 
net ghost number violation due to the fermionic zero-modes is precisely the in­
dex ^ 0 = 0 ( — l ) q + l d i m c H ° ' q of the complex (5.2.12). Now we are in the same 
situation as the Donaldson-Witten theory in the d = 2 case. 

Finally let 's consider how the above extension fits into the framework EH 
connections. Kim introduced the following complex, generalizing the Atiyah-
Hitchin-Singer-Itoh complex [104] [48] 

0 ^ ß « A ß > ^ B 2 + ^ B o,3 jk> . . . I i > Bo,d _^ 0 j ( 5 2 1 7 ) 

where d0'2 = dAoP0'2, BP = Q?{M, End{E)) and B™ = Cl™\M\ End(E)). It 
is shown tha t the above is a complex if the connection A is EH and elliptic. We 
denote the associated g-th cohomology group by Hq. It is not difficult to show 
tha t 

d d 

^(-1)"+1dimnH
q = 2^{-l)q+ldimcH°'q. (5.2.18) 

q=0 q=0 

It is also obvious tha t the two extended complexes (5.2.17) and (5.2.12) are 
related in the same way as the unextended complexes (5.2.4) and (5.2.8). 

We remark tha t Kim's complex is not the genuine deformation complex of 
EH connections, but rather a natural extension of it. As in the d = 2 case we 
require tha t the index is the complex formal dimension of a certain extended 
moduli space of stable bundles. We define the extended moduli space 9JI of EH 
connections or of stable bundles by extending the EH condition as follows 

(5.2.19) 
2) o 33 = 0, 

exp( w ) • ( S o S + 9 o 2>) | t o p f o r m + idÇu,dIE = 0, 

where 35 is the extended holomorphic connections 

35 = 0.4+ Y^ C°'OM (5.2.20) 
2<odd<d 
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The versai deformation complex of the above equation is then precisely Kim's 
complex (5.2.17). This can be check by using the Kahler identities (4.1.19). In 
the above scheme the infinitesimal deformations of the extended moduli space al­
ways lie in H°'odd, while the obstructions, by Kuranishi 's method, lie in fj°'even. 
Thus the local model of the extended moduli space is / _ 1 ( 0 ) [94], where2 

ƒ . H0,odd g, H0,odd _^ H0,even^ (5 .2 .21) 

The complex formal dimension of the extended moduli space 971 can be com­
puted using the Riemann-Roch formula 

d 

Y^{-l)q+1dimcH°'q. = - td(M) • ch(E) • ch{E*), (5.2.22) 

where td(M) denotes the Todd class of M and ch(E) denotes the Chern char­
acter of E. 

Now we have all the ingredients to construct a well-defined Nc = (2,0) 
model. Unfortunately it turns out to be impossible to implant the above ideas 
except for the case of three complex dimensions. It is not possible to maintain 
Nc = (2,0) supersymmetry and impose the desired equations (5.2.16) for all 
fermions unless d = 3. 

5.3 On Kahler 3-Folds 

We consider the 7VC = (2,0) model studied in Sect. 4.1 specializing to the case 
when M is a Kahler 3-fold. According to the discussion in the previous section 
we introduce one more bosonic field C 0 ' 3 G fi0'3(M, End(E)) and its Hermitian 
conjugate C 3 , 0 . Our goal is to construct a Ç-equivariant Nc = (2,0) model 
whose target space is the space A of all connections together with the space of 
all C 0 , 3 fields. Furthermore the fermionic zero-modes should be elements of the 
Dolbeault cohomology of the complex (5.2.12). It turns out there is only one 
way of achieving this goal. 

5.3.1 Basic Proper t ies 

The Nc = (2,0) model here will be an example of the construction in Sect. 3.3 
with 3 ^ 0 (3.3.7). We first recall tha t the path integral of a general Nc = (2,0) 
model is localized to the space of the following equations, modulo Q symmetry, 

T(xi) = o, 
ea(X

l)=0, (5.3.1) 

,i(x\x7)-c = o. 
2One may view the condition for a good deformation as a Maurer-Cartan equation of a 

differential graded algebra without derivation. The authors [95] studied the conditions for a 
good extended Lagrangian deformation given by a master equation. The homological mirror 
symmetry seems to imply that there should be A°° or L°° morphisms between them. We 
examined if the extended moduli space always gives a well-defined cohomological field theory. 
So far we are unsuccessful except for the d = 3 case. 
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The momentum map ß is determined from the Kahler potential on the space 
of all X1 and from the Q action on it. The sections 3 Q and S Q above should 
satisfy the following equations to have Nc = (2,0) supersymmetry, 

s+T = 0, 
s+ea = 0, (5.3.2) 

( r , 6 Q ) = 0. 

In the present case our infinite dimensional target space is 

A © (ft3'°(M, End(E)) © ft°'3(M, End(E))), (5.3.3) 

and the infinite dimensional group Q acts on the above space as the group of 
all local gauge transformation on M, i.e., g 6 Ç for g : M -> G. The Lie 
algebra Lie(Q) of Ç is fi°(M, End(E)) and the bi-invariant inner product on 
Lie(Ç) is (a, a) = - Ju Tr(a A *a). We already gave a complex structure on 
A in Sect. 4.1.1 by demanding that A0'1 is a holomorphic field, i.e., s+A0'1 = 
0. We also have a unique holomorphic section F 0 ' 2 from the subspace A and 
the corresponding Fermi multiplet ( x ^ t f 0 - 2 ) € f2°'2(M, End(E)) with the 
following transformation laws 

—0,2 ~ 

s+X- = - 3, , 
*&-*». <5-3-4) 

Then we only have two possibilities to fit the additional bosonic fields; either 
6 = F°<2 - d*AC°'z or 5 = d*AC°>z. The first choice is not possible since d*A = - * 
dA*, thus the additional term is not holomorphic, i.e., s + 6 ^ 0 since s+A1'0 ^ 0. 
For the second choice we see s + 3 = 0, thus s + 3 = 0, if we demand s+C0'3 = 0. 
Thus the additional holomorphic multiplet is (C3 '°, A3^0). We conclude 

3 = ö;C3-0 

& = F' 
(5.3.5) 

Finally we check the last condition in (5.3.2) as follows 

/ Tr(c>;C3'0 A *F0 '2) = / Tr(C3 '0 A ̂ F 0 ' 2 ) = 0, (5.3.6) 
J M J M 

by the Bianchi identity dAF = 0 -> dAF°<2 = 0. 
The above considerations determine, following Sect. 3.3, an equivariant iVc = 

(2,0) model. 

Fields and Their Transformation Laws 

Here we recall again the fields and their supersymmetry transformation laws, 
just to refresh our memory. Associated with the Q symmetry we have the 
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Nc = (2,0) gauge multiplet (<f> ,»j_,?/_,£)), all transforming as adjoint valued 
scalars on M. The transformation laws are given by (3.3.8), 

s+V- = 0, 

» ^ _ _ = !» ,_ , s+V.=-tiD + -[<l>++,<f>..], s + ^ + + = 0 , 
_ 1 _ (5.3.7) 

S+7?_ = 0, 

We have two sets of holomorphic multiplets and their anti-holomorphic partners . 
One set of holomorphic multiplets is (A0 '1 , V+ 1) with anti-holomorphic partners 

/0,1 

s+A0'1 = 0, S + ^ ' 1 = -dA<i>++, 

(5.3.9) 

41,0 _ T i , o (5.3.8) 
s+A - u , a+ip+ = -dA<t>++, 
— 41,0 - T 1 ' 0 - r l ,0 
s+A = iip+ , S+V+ = °-

The other holomorphic multiplet is (C 3 ' ° , A+0) with anti-holomorphic par tner 

s+C3'°=iXY, .+Ai° = ol 

s + C 3 - ° = 0, 3 + A i 0 = - ^ + + ) C 3 - 0 ] , 

s + C ° - 3 = 0 , a +Ä°+ '3 = - z ^ + + , C 0 - 3 ] , 

Finally we have Fermi multiplets (x!.'°, H2<°) and anti-Fermi multiplets (x° ' 2 , H0'2), 

S + X Î ' ° = - i / 2 - 0 , * + / / 2 ' ° = 0 , 

5+x
2_-° = - ö ; C 3 - ° , *+ff

2>° = - ^ + + , x 2 ' 0 ] + *[<'1*,c3<°] + u ^ ° , 

*+X°J2 = -ä;c0-3 , S+H0*2 = -i[<t>++, x0-2] + i [ * ^ \ , c0-3] + ^Ä0;3 , 
s+x°J2 = - # 0 ' 2 , ä+# 0 ' 2 = 0. 

(5.3.10) 

The above transformation laws imply tha t the resulting Nc = (2,0) model, in 
general, can not be embedded into a Nc — (2,2) theory since s+x^2 7̂  0. Such 
an embedding is only possible if M is a Calabi-Yau 3-fold, where our Nc = (2,0) 
supersymmetry will automatically enhance to JVC — (2,2) even without adding 
additional field. For a later purpose we summarize the field contents by the 
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following diagrams; 

C 3 , 0 «+ , 3 , 0 
<i>++ 

—0,2 A 0 ' 1 

rj-
*>+ D Ä0 , 3 

§* 

<>+ h h # 0 , 2 

4>~ j>+ 
V- e0-3 

^ > Vv'1 

(5.3.11) 

The Action Functional 

The final ingredient for the action functional is the (/-momentum map on the 
total space (5.3.3). The total space has a natural (/-invariant Kahler potential 

/CT = —-^- f f K T r ( F A F ) A a ; 2 - z T r ( C 3 ' 0 A C 0 ' 3 ) y (5.3.12) 

From the transformation laws (5.3.8)(5.3.9) we have the following equivariant 
Kahler form, 

= î ^ / M
T « * ~ ( F ^ 2 + 5 [ C " C " ] ) (5.3-13) 

The term in the third line is the Kahler form WT, after the parity change, and 
the term in the second line is proportional to the (/-momentum map 
mr on the total space (5.3.3) 

M T = i ( f A w 3 + l[C3'°' C°'3]) • ( 5 3 - 1 4 ) 

Thus the Nc = (2,0) action functional is given by, see (3.3.9) and (4.1.15) 

+^ I* (*-°* '^')+& LT- ('-"-> <5-3-i5> 
'^JX^^^L^* 4TT2 

Now we examine if the above action functional gives the desired equations 
for the fermionic zero-modes. After expanding the action functional S we have 
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the following terms relevant for fermionic zero-modes, 

S = - g ^ j / Tr lirj_ * 9^V+1 + if)- * ̂ V+' + -jX- A *dAij>+1 

+ -X-'2 A *éUV+ + y X - A *Ö^A+' + - x i ' 2 A * ö ; A ^ ' ° J + . . . 

(5.3.16) 
From the above we obtain the following fermionic equations of motion, 

W 1 = o, 
•"5 , ^Q*—0,2 

2 A (5.3.17) 

OAV^ 1 + î'9lA+' = 0, 
O —0,2 « 

dAX- = 0. 
We will see below that these give rise to exactly the required equations (5.2.5) 
and (5.2.10). 

5.3.2 Path Integrals 

The path integral of our model is localized to the locus of the following equations, 
modulo G symmetry, see (3.3.13) and (3.3.14), 

d*Ac0'3 = o, 

F0'2 = 0, 

iF A w A w + ^[C3 '°, C0'3} - ^Cü3IE = 0, 

(5.3.18) 

and 

dA<t>++ = 0 , 

[4>++,C°'3] = 0, (5.3.19) 

[0++,0__]=O. 
We call the moduli space defined by the eq. (5.3.18) the extended moduli space 
DJl of EH connections (with factor Q or stable bundles. 

2 

Since the path integral is localized to integrable connections d~A = 0, the 
fermionic equations of motion in (5.3.17) become 

"Ô* /0.1 n Q*—0,2 n 
- vAV-t- = u> vAX-l = 0, —*-o 3 
ô^-=°' « /îi n A » n 9AK =0- (5-3'20) 

Ö4V+ = 0, dAX- = 0, 
Thus the zero-modes of fermions 

— /0,1 —0,2 Y 0 , 3 Ir o o i \ 

»7-,^+ ,X- ,A+ (5.3.21) 
are elements of the cohomology group H°'p of the following Dolbeault complex 
(5.2.12), 

0 —» C°-° -5i» C0 '1 -51» C 0 ' 2 -51» C 0 ' 3 -» 0, (5.3.22) 
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where C°'e := fl°' '(M,End(E)). It is also easy to check that the above is 
isomorphic to the versai deformation complex of the extended moduli space 97Î of 
stable bundles. Thus minus the index of the above Dolbeault cohomology group 
correspond to the net ghost number violations in the path integral measure due 
to the zero-modes of fermions in (5.3.21). We have 

A = -#(7j_)o + # ( < ' 1 ) o - #(x°J2)o + #(Ä^'3)o 

= ^(-ly^dimH0'". (5'3-23) 

The net ghost number violation of the path integral due to all the fermions -
the fermions in (5.3.21) and their conjugates - is (A, A). The above index can 
be computed by applying the standard Riemann-Roch formula. We have 

A := ƒ Cl(M)A (rc2(E) - r-^Cl(E)A - , r ^ l - f c ^ + Ä ^ - Ä 0 ' » ) , ( 5 3 2 4 ) 

where hp'q denote the Hodge numbers of M. We also note that a Hermitian 
vector bundle E admits an EH connection if 

ƒ w A (rc2(E) - r-^Cl(E)A > 0 (5.3.25) 

and the equality holds if and only if E is projectively flat. 
Now we take a closer look at the path integral. We note that the zero-modes 

of I/J+ and A_̂  , thus if0'1 and H0'3, correspond to local deformations of the 
extended moduli space 971. The other fermionic zero-modes rj_ 6 H°'° and 
X- will cause some trouble. Note that we have a decomposition into trace and 
trace-free parts 

jjOfi = # 0 , 0 ( M ) + ^ o ; o ; 

H°>2 = H°'2(M)+H0-2. 

We call A — 1 — h0,2 the complex formal dimension of 97t. If we assume a situation 
that Q acts freely on the locus of solutions of (5.3.18), i.e., the connection is 
irreducible, the extend moduli space 971 is an analytic space with the Kahler 
structure induced from the £-equivariant Kahler form (5.3.13). The moduli 
space will not have the right complex dimension A — 1 — h0'2 unless H0'2 = 0 as 
well. In the ideal situation H°'° = H0'2 = 0, the extended moduli space DJl is 
smooth and the zero-modes of i/'+' , A+' span the holomorphic tangent space.3 

Thus the formal complex dimension is the actual dimension. 
However the assumption made above, in particular H0'2 = 0, is too naive. 

We note that the obstruction to deformation of the extended moduli space 
97? lies in H0'2. In two complex dimensions Donaldson proved that one can 

3We will establish this later. We remark that the case with H0-3 ^ 0 has no problem 
which is associated with deformation of 971 C -MEH along the direction of C 0 ' 3 . It would be 
a problem if we work with MEH-



5.3 O N K A H L E R 3 - F O L D S 101 

always achieve H0,2 = 0 after suitable per turbat ion of the metric. In three 
complex dimensions one can hardly expect such a result to continue to hold. 
The assumption H°'° = 0 is valid for a bundle E with degree and rank coprime. 

Now we examine how the pa th integral deals with the above problems. We 
assume, for simplicity, tha t our gauge group is SU(r), so tha t End(E) is always 
trace-free. Then the formal complex dimension A is given by 

:=r I (c 
J M \ 

c1(M)Ac2(E)j - (r2 - 1)(1 - h0'1 + h0'2 - h0'3). (5.3.26) 

A typical observable of the theory is the total (/-equivariant Kahler form, after 
pari ty change, rôÇ given by (5.3.13). First we consider an idealistic case tha t 
H°'° = H0,2 = 0. Then the correlation function < exp rôÇ > can be identified 
with the symplectic volume of Wl, 

<expBg>= e x p r o T = vol(TV). (5.3.27) 

If we have the anti-ghost \ - zero-modes, i.e., H0,2 ^ 0, the above correlation 
function becomes 

< e x p r ô g > = / e ( V ) A e x p r ô T , (5.3.28) 

where e(V) denotes the Euler class of the anti-ghost bundle V. One may consider 
correlation functions of other observables ÖT'S with ghost numbers (r, s) given 
by s+ and s+ closed Ç equivariant differential forms Or's - see Sect. 3.1.2. We 
have 

(P )-i e ( V ) A O r i ' , 1 A . . . A O r ' ' " (5.3.29) 

where Or,s denotes the equivariant differential form Or's after the restriction 
and reduction to ÜJI. The above correlation function can be non-vanishing if 

t 

Yl(ri,si) = (A,A), (5.3.30) 
i = l 

due to the ghost number anomaly. Almost all properties are essentially the 
same as for the detailed discussions for the iVc = (2,0) models in Sect. 2.3.2 
and Sect. 3.3.2. Repeating the same analysis here will be unnecessary. W h a t is 
remarkable is tha t the pa th integral is well-defined even if the moduli space £Dt 
does not satisfy nice conditions like H0'2 = 0. 

For tha t purpose let 's look up some details about how the Euler class of the 
anti-ghost bundle emerges. The action function S (5.3.15) contains the following 
Yukawa coupling involving the anti-ghost, 

S = - ^ JTr (X
2J° A *[4>++,x°J2]) + - - - (5.3.31) 
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It also contains the following terms, soley from the first line of the expression 
(5.3.15), depending on <j>--, 

S = --^ j Tx\^-{*d*AdA<t>++ - i[C3-°,^++ ,C0-3]] - *A[rl>°S,t'°] 

(5.3.32) 
Assuming, for simplicity, t ha t there are no-zero modes of rj_ (H°'° = 0) one can 
evaluate the expectation value < 4>++ > of <j>++ by solving the <f> equations 
of motion and replacing all the other fields t o their zero-modes. Then the 
only non-vanishing term in the action functional S in the s+ and s+ invariant 
neiborhood C of the fixed point locus comes from the expression (5.3.31), which 
can be writ ten as __ _ 

S\c = -^ßij^+xlxt (5-3.33) 

where rp'+ and x~ denote the zero-modes of (t/»+' , A+' ) and x~ > respectively. In 
the above the indices i and a run over i = 1 , . . . , h0'1 + h0'3 and a = 1 , . . . , h0'2, 

where h0'* = dimcH0'*. The expression T^-tfi+rp^ denotes the curvature 
two form of the anti-ghost bundle V over 9DÎ - the space of the zero-modes a* 
of A0 '1 and C 3 , 0 modulo Q. Consequently the expectation value, for example, 
< exprôj . > , becomes 

A+hr ' 

< e x p r ô £ > = / da'datdft+d^lldxLdxl 
Jon i^, 1 'tm t=1 7 = 1 

x exp ( ^ ( a ' y ^ + f e - X ? +Zll(a
e,aIW+&) , 

(5.3.34) 
which leads exactly to (5.3.28). 

S o m e P r o p e r t i e s of ÜJI 

This is a mathematical digression to establish a property of the extended moduli 
space. First we recall a theorem [48] [104] on the moduli space M EH of EH 
connections - if H°'° = 0 the moduli space MEH is a complex analytic space. 
It is nonsingular at a neighborhood of a connection if H0'2 = 0 and its tangent 
space is naturally isomorphic to the space of H0,1. Here H0'* denotes the 
cohomology group defined by tracefree endomorphisms. 

Now we s ta te an analogous theorem about the extended moduli space 971 of 
EH connections on a complex Kahler 3-fold - if H°'° = 0 the moduli space 9Jt 
is a complex analytic space. It is nonsingular at a neighborhood of an extended 
connection if H0,2 = 0 and its tangent space is natural ly isomorphic to the 
space H0'1 © H3'0. The extended moduli space 9JÎ is a smooth Kahler manifold 
with the formal dimension equal to the actual dimension if H0,0 = H0,2 = 0. 

The proof of the above theorem is similar to tha t of the Einstein-Hermitian 
case [48]. Given an extended EH connection 2), a nearby deformation d& + a, 
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C 3 ' 0 + ß is governed by the equations 

ôUa + a A a = 0, 

d*Aa = 0, (5.3.35) 

A(dAß + a A ß) = 0. 

We only need to consider the last equation since the theorem quoted above 
already dealt with the first two equations. The last equation has the following 
orthogonal decomposition 

' dA (ß + dA o G(a A /3)) = 0, 

dA o dA o G(a A ß) = 0, (5-3-3 6) 

i i / ( a A / 3 ) = 0, 

6U/3 + a A ß = 0 <-> < 

where G is Green's operator and H is the harmonic projection. We define 
Kuranishi map k' 

k' : C3'0 -> C 3 ' 0 , fc'(/3) = / 3 + 6 ^ O G ( Q A / 3 ) . (5.3.37) 

Then, from the first equation on the right of (5.3.36) we have dA(k'(ß)) = 0, 

while dA(k'(ß)) = 0 by the dimensional reason. Thus we obtain AdA(k'(ß)) = 

0 —¥ dA(k'(ß)) = 0. Consequently we have 

k'{ß) 6 H3'0. (5.3.38) 

Now we examine if the Kuranishi map is invertible for a given p E H3'0, i.e., 
ß = k'~1(p) and A(dAß + a A ß) = 0 . Taking the orthogonal decomposition of 
a A ß one finds tha t 

\(dAß + a A ß) = AdA o dA o G(a A ß) + A(H{a A /?)). (5.3.39) 

Note that A(H(aAß)) is in H2'0, which is isomorphic to H0,2. By our assump­
tion we have H(a A ß)) = 0. Denoting 7 = 9.4a + a A a and <î = cti/3 + a /\ ß 
we have 

J = dA o G ( ä 4 a A /3 - a A öA/3) 

= d*A o G ( 7 A /3 - a A J) (5.3.40) 

= -dAoG(aA6), 

where we used the fact tha t 7 = 0 for H0,2 = 0. Applying the following estimate 

\\dA * oGv\\2k+1 <c|H|2,fe, (5.3.41) 

we have 
ll^lb,* < IWk*+i = ||ä; o G(a A S)\\2tk+1 

< 11 ci 1 11 11 V • " / 
_ c||d||2,fc • ||a||2,fc-
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Taking a sufficiently close to 0 so that ||c*||2,fc < 1/c, we conclude S = 0. Thus 

the Kuranishi map k' is invertible if H0'2 = 0. Consequently the local model of 

the extended moduli space 971 is given by / _ 1 ( 0 ) where 

(a,ß)^H(aAß),A(H(a*Aß*)). 

5.3.3 A Use of S1 Symmetry 

The extended equations (5.3.18) we have may be very useful. On the extended 
moduli space ÜJI of EH connections we have the natural S1 -action 

5 i . c o , 3 _ j , e t e c o , 3 j ( 5 3 4 4 ) 

which preserves the complex and the Kahler structure. Thus any cohomological 
computations can be further localized to the fixed point locus of the 51-act ion. 
For the SU(2) case we are concentrating on it is easy to determine the fixed 
point. We have two branches. 

• 

• 

Branch (i) 

(j)++ = 0 and the SU(2) symmetry is unbroken. Then we have a trivial 
fixed point where simply C0,3 = 0 where we have EH connections. 

Branch (ii) 

4>++ is a constant diagonal trace-free matrix. The non-trivial fixed point 
occur if the gauge symmetry can undo the S1-action. For this the SU{2) 
symmetry should be broken to U(l), i.e., £ A = L © L~x where A G .4 1 ' 1 . 
While C°>3 and C3'0 become 

where 7 is a section of K~X<^L2, with K denoting the canonical line bundle 
of our Kahler 3-fold. Then we have the following fixed point equations 

F°L
2 = 0, _ , 

1 dLl = 0, (5.3.46) 
IFL A U A U - —7 A 7 = 0. 

where JFJ, denotes the curvature of the line bundle L. Obviously we have 
a non-trivial solution if deg(L) > 0. If 7 = 0 we can have abelian EH 
connections, and also if deg(L) — 0. 

The above equation (5.3.46) is analogous to the abelian Seiberg-Vafa-Witten 
equations [12][7], perhaps equally powerful. Thus we expect tha t the above 
equations may contains all the non-trivial information about the Donaldson-
Wit ten type theory on Kahler 3-folds. It should be possible to establish our 
conjecture quite rigorously. Here we will sketch the idea. 
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As a first step we map the Nc = (2,0) model defined by the action functional 
S (5.3.15) to its deformed version, following the discussions in Sect. 3.4. The 
action functional is then defined by, see (3.3.31), 

(5.3.47) 
where KT is given by (5.3.12). As we established earlier the part i t ion function of 
the above for e = 0 is the correlation function (5.3.28) with the same conditions. 
If the reducible connections are unavoidable we turn on e to regularize and utilize 
the non-abelian localization. 

Now we examine the supersymmetry transformation laws (5.3.9) and (5.3.10) 
to find tha t the 5x-act ion (5.3.44) should be extended to as follows 

S 1 : {C3>0,\3/,x2-°,H2-0) ^ f ( C 3 ' 0 , A ^ , X
2 J ° , F 2 - 0 ) , 

where £f = 1. Thus the above fields are now charged under S 1 . A problem 
might be that the above 5 1-act ion is not a symmetry of the action functional.4 

However the S1-action preserves the supersymmetry transformation laws as 
well as the localization equations. Thus we can use it anyway. Now we modify 
the transformation laws of the charged fields under the S1 by extending the 
Ç/-equivariant cohomology to Q x S 1 ; 

s\ = 0, {s+, S+} = -i<j>a
++Ca - im£si, s2

+ = 0. (5.3.49) 

We use the same form of the deformed action functional (5.3.47) but with 
the new transformation laws for supercharges according to (5.3.49). We obtain 
a new Nc = (2,0) supersymmetric action functional5 

Sh(m,e) =^s+s+ J Tr (X
2J° A *x°J2) 

JX^^+^fX**«") + 4^S+ 

zo% — imHi 7j. — imns^, 
(5.3.50) 

where Hgi is the Hamiltonian of the S^-action, 

H^=^J Tr(C3'°AC0'3), (5.3.51) 

4This is due to a term like Tr(x!.'0 A *dA
:^1). 

We turn off e. We can turn on e whenever necessary. 
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The first and second lines in the action functional localize the pa th integral to 
the locus d*AC°'z = F 0 ' 2 = 0. The first term in the third line further localize 
the pa th integral to the locus ^T = 0. For simplicity we assume tha t there are 
no zero-modes of X- • Then the part i t ion function of the model reduces to 6 

Z = f eirnHsl+u,T^ (5.3.53) 
Jm 

where WT is the Kahler form of ÜJI, obtained by the restriction and reduction 
from our equivariant Kahler form Wj. (5.3.13). Thus the part i t ion function 
is given by the familiar DH integral formula over a finite dimensional Kahler 
manifold DJl [56] [105]. It is therefore an integral over the set of critical points of 
H si, which is the same as the fixed point locus of the S1 -action on Dît. Thus 
we have the same two branches. 

The following is a formal argument since I do not understand the compact-
ification of 3H. However it will be sufficient to serve our purpose. We will just 
apply the exactness of the stat ionary phase integral. By setting m —• oo we 
may have 

• Branch (i) 

Note tha t the value of the Hamiltonian i/51 is zero at Branch (i). So its 
contribution to the integral is simply the volume of M EH weighted by 
the one loop determinant of due to the normal bundle N(MEH) in SOT. 
Note tha t such one loop determinant contains weight m~s where s denotes 
codimension of M EH) in 9JI- Thus 

Z(i) VOI(MEH) x . . . (5.3.54) 
m s 

The unwrit ten part is due to contribution from the normal bundle N(A4EH), 
while we extracted its dependence on m. 

• Branch (ii) 

Note tha t the value of the Hamiltonian at Branch (ii) is Hsi = jk-deg(L) := 
24^2 ƒ ci(L) A w A w , where L is a line bundle defined in (5.3.46). Thus 

ZW ~ J2 ̂ F ƒ exP \~^deg^ + 5 l^w) x - (5-3.55) 

where T(L) denotes the fixed point locus, s' denotes its codimension and 
WI^(L) denote the Kahler form on T(L). The unwritten part is due to 

We remark that the action functional contains the mass term for the anti-ghosts x_' and 
X^_ . If there are no-zero modes for anti-ghost such the term plays no roles. If there are 
zero-modes of anti-ghosts we have to include contribution from the anti-ghost bundles and 
the mass term. Then the partition function Z become 

Z= I det{T -j — imh j ) e x p ( i m f f s i +ra j - ) , (5.3.52) 
J<m 

where F -g — imh -g is S1-equivariant curvature two form of the anti-ghost bundle V over SOt. 
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contributions from the normal bundle over the fixed point locus, while we 
extracted its dependence on m. 

We assume tha t s < s', otherwise the above formal formula does not make 
sense. Then one can take m = 0. Since the original formula was smooth in the 
limit of the reduction to the symplectic volume of 9H the poles in Z(i) and Z(ii) 
should cancel order by order. Thus we have 

<(^»)~ç^(£^)y 
L )

e x p ("Sd e 5 ( L ) + C T | ^ ) ) x"" 
(5.3.56) 

x 
IT(L) 

and 

«*m ~ Ç3ï ( S ^ O 

X ( L ) e X P ( " ï ^ d e 5 ( I ' ) + Ô | : F ( i ) ) X " ' 

(5.3.57) 

x 

We conclude tha t the above formal evaluation justifies, at least, our conjec­
ture tha t Seiberg-Vafa-Witten type invariants defined by the equation (5.3.46) 
should be equivalent to the Donaldson-Witten type invariants on a Kahler 3-
fold. It is possible to perform a similar analysis for the case with anti-ghost 
zero-modes, which makes life more complicated but does not alter the essential 
points advocated above. 

5.3.4 Reduct ion To a Kahler Surface 

In this subsection we perform a dimensional reduction of our models on a Kahler 
3-fold M to a complex Kahler surface M2. We first assume tha t M is a product 
manifold M3 = M2 x C and, then, remove dependence of our fields on C. We 
have the following correspondence 

. 4 o , i ^ A i , 0 5 -

/°>1 v /1 .0 

2,0 
X- -* /1,0 2,0 

X- , 
H0-2 -> # 0 , 1 ,H°>2, 
C 0 ,3 -> B0'2 

(5.3.58) 

as well as the similar decomposition for their Hermitian conjugates. The other 
fields (0±±,rç-, î7_,-D) remain as they were. Thus we obtain the iVc = (2,2) 
model in Sect. 3.2. Similarly the equation (5.3.18) for the extended EH connec­
tion reduces to the Vafa-Witten equations. Furthermore our equation (5.3.46) 
for branch (ii) fixed point become the Abelian Seiberg-Witten equations. Thus 
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our conjecture on Donaldson-Witten type invariants on a Kahler 3-fold becomes 
a fact [12]. 

Now instead of the above trivial reduction we consider a product manifold 
M = M.2 x E, where E is a compact Riemann surface. Then we can follow 
the same steps with the same sort of assumption as [106] to conclude that the 
models discussed in the previous subsection are equivalent to topological sigma 
model discussed in Sect. 4.2.5. Thus the stringy Donaldson-Witten invariants 
on a Kahler surface may be obtained from formulas like (5.3.56) and (5.3.57) 
on the product 3-fold. This support an earlier suspicion in Sect. 4.2.5 since the 
Seiberg-Vafa-Witten type invariants on a manifold M2 x E most likely are just 
the Seiberg-Witten invariants on M2. 

5.4 On Calabi-Yau 3-Folds 

In this section we specialize to the case that the Kahler 3-fold M is Calabi-Yau 
with holomorphic 3-form ui0'3. For the Calabi-Yau case a very special thing 
happens that our iVc = (2,0) supersymmetry enhances to Nc = (2,2) supersym-
metry. Following the discussions in Sect. 2.1.3 we shall see that the partition 
function of our model is the path integral representation of the holomorphic 
Casson invariants defined by Thomas [96] [97]. We will also discuss various is­
sues related with string theory. We argued that our model is the world-volume 
theory of parallel type IIB (Euclidean) £>5-branes wrapped on the CY3. We 
show that the Ç-equivariant degrees of freedom correspond to the bulk degrees 
of freedom transverse to the (Euclidean) D5-branes. We use such a correspon­
dence as supporting evidence that our path integral should be well-defined in 
any situation. 

5.4.1 Enhanced Supersymmetry 

We consider the Nc = (2,0) theory with superchages s+ and s+ defined in 
the previous section specializing to a Calabi-Yau 3-fold M with a holomor­
phic 3-form a»0'3. Using the non-degeneracy of ui0'3 we may redefine the fields 
(x°J 2 , / / 0 ' 2 ,A^,C° . 3 )as 

^_l\H^\r,+ ,a, (5.4.1) 

where7 

—0,2 I -i 0 , o , i \ \ °> 3 _ „ , ,0,3 

H0'2 = * ( ^ Â F ) , C0'3 = au,0'3. 

Now it is not difficult to show that the action functional S has additional 
global supersymmetries generated by s_ and s_. We have the following dia-

7We recall that the Hodge star operator * acting on a (p, (jr)-form on a complex d-folds 
gives a (d - q,d-p), 

* : fiP-«(M) -> n d - « ' d ~ p ( A f ) . 
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grams to be compared with (5.3.11); 

V+ <— P++ 

"+. 

[s- ]î- V-'1 +=- A^ i±> V>°4 

D £- rj+ Ù, Ss- (5.4.3) 

# 0 , 1 
8 + '+ « + 

<t>-- — > 77 _ 4 — a 

The four supercharges satisfy the following anti-commutation relations, see 
(3.2.1) and (3.2.2), 

{*+>*+} = -i4>++£a, 
{s±,s±} = 0, {s+,s-} = -iaaCa, { s + , s _ } = 0 , 

{»±,«±} = 0, { s - , s + } = -ia" Ca, { s + , s _ } = 0 . 

{ » - , » - } = -i<l>--£a, 

The above anti-commutation relations define balanced (J-equivariant Dolbeault 
cohomology on the space A of all connections [59]. Thus our model becomes a 
Nc = (2,2) model. 

For convenience we write down the explicit supersymmetry transformation 
laws. The 7VC = (2, 0) gauge multiplet in (5.3.7) together with holomorphic and 
anti-holomorphic multiplets in (5.3.9) become the Nc = (2, 2) gauge multiplet 
with the transformation laws given by (3.2.11). The holomorphic multiplets in 
(5.3.8) and Fermi multiplets in (5.3.10) form Nc = (2,2) chiral multiplets. For 
the chiral multiplets (A°'l,ip°^ ^0-1) we have 

£ A0,1 — /0,1 , — ,0,1 

ÖA ' =ie+i/'_ + ie~y>+ , 

àip+ = + ë+H0'1 - t-ÖA<t>++ - e+ÔA<r, 

S-tjj^1 = - ë-H01 - t+dA<t>— - e-dAâ, (5.4.5) 

SH0-1 =-ie.[4>++,^°:1}+ie_dAV++ie_[ä,^1} 

+ ie+[(j>—yip^l1) -ie+dAT)- - ie+[cr, V"'1], 

while for their conjugate multiplets (A1,0,il>± , i î1 '0) we find 

( . . i n . - r i , 0 . -ri,0 

o A ' =ie+ip_ + iC-Xp+ , 

&/>+' = + e+H1'0 - ë-dA<f>++ - ë+dAa, 

6$]? = - e-H1'0 - ê+dA4>— - ë-dAa, (5.4.6) 

6Hlfi = - ïl_[<j>++, •)/>_' ] + ië-dAT}+ + ic_[<r,V>+ ] 

- ië+[<j>—, V>+ ] - ië+dArj_ - ië+[â,i/'_' ], 

where S = ë~s+ + ë+s_ + e+S- + e+s+-
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Now the action functional S in (5.3.15) can be rewritten in the form with 
manifest Nc = (2,2) symmetry, see (3.2.17), 

S = s+s+s-s- (K. - - ^ ( Tt{a*â)\ + s + s _ W ( A 0 ' 1 ) + ä + ä _ W ( A 1 ' 0 ) , 

(5.4.7) 

where /C is the Kahler potential on the space A of all connections, 

> C = ^ f KTT(FAF)AU, (5.4.8) 
247^ JM 

and W(^40 '1) is the holomorphic Chern-Simons form 

W(A 0 ' 1 ) = - ^ ƒ w3-0 A Tr ( A A dA + -A A A A A ] . (5.4.9) 
8TT2 7 M V 3 / 

We remark that the above action functional can be obtained by the dimen­
sional reduction of the (1 + l)-dimensional Nwa = (2,2) spacetime supersym-
metric linear gauged sigma model in two real dimensions [30], whose target 
space is the space A of all connections on a Calabi-Yau 3-fold M. In [30] we 
interpreted the model as the matr ix string theory [29] compactified on a Calabi-
Yau by regarding A as the configuration space of all D-branes wrapped on the 
Calabi-Yau. We will return to the related topics later. 

5.4.2 Path Integral and Holomorphic Casson Invariants 

Now we examine the parti t ion function of our model. For simplicity we consider 
the SU{r) case so tha t we only have trace-free parts . Examining the simulta­
neous fixed point locus of all the supercharges we see that the pa th integral is 
localized to the moduli space M EH of EH connections, 

F0'2 = 0 
(5.4.10) 

F ALü A W = 0, 

together with the solutions space, modulo Ç, of 

d-A^m = 0, 

[<Pm,<Pn} = 0, (5.4.11) 

[</>m,</>n] = 0, 

where ipm, m = 1,2, denotes the two adjoint valued complex scalars build from 
<x and 4>±±. If there are no reducible EH connections all the adjoint scalars 
should be zero and the pa th integral reduces to an integration over the moduli 
space M*EH of stable holomorphic bundles. 

Serre duality implies H0'1 ~ H0'3^1. Thus the formal complex dimension 
A is always zero. We can convert the fermionic fields (5.3.21) to 

7/_,</>°'\</'-'1,'7+. (5-4.12) 
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The zero-modes of fermions are elements of the cohomology group of the fol­
lowing complex, 

0 _ > C°-° © C°'° -^> C0'1 © C0-1 ^ 0 . (5.4.13) 

Now we always have a non-zero number of anti-ghost ipj unless H0,1 = 0. At 
the end of the day, the fermionic path integral measure will be reduced to 

h0'1 _ h°'° 
J J d^p

+d^p
+dipp_d^ l \ drfi.drfi_drtdrt. (5.4.14) 

p = l 6=1 

The net ghost number violation of the measure is zero as the formal dimension. 
For simplicity we assume that there are no fermionic zero-modes of rj-j- and 

rj±, i.e., H°'° = 0. Even if there are no reducible connections the formal dimen­
sion is not equal to the actual dimension unless it is zero.^Whenever we have 
zero-modes ip+ of V'+' we have corresponding zero-modes rpl_ of rpj . Thus we 
have two cases. 

(i) There are no fermionic zero-modes. Then the formal dimension A = 0 
is the actual dimensions and the moduli space consists of a collection of non-
degenerate points. The partion function then simply counts the number of 
solutions. But we hardly expect such a situation to arise. 

(ii) There are fermionic zero-modes. Then the formal dimension A = 0 is 
not the actual dimensions and the moduli space M EH contains components 
with positive dimension. Then repeating the same anaysis as in Sect. 5.2.2, see 
eqs. (5.3.31) - (5.3.33), the partition function becomes 

r — ~-
Z = Y[ (WdafdV+dVdV-dilf- exp (^Q^(a", a ? ) # J ^ Ö i ) , 

JMEH p—i 

(5.4.15) 

where the curvature two-form 7?.Q- j(ap , a,p)4>%4'+ of the anti-ghost bundle V is 
now interpreted as the curvature two-form of the tangent bundle XMEH- Then 
the partition function is the Euler characteristic of MEH-

Thus our partition function can be identified with the holomorphic Casson 
invariant defined by Thomas [96] [97]. It is interesting to compare our quantum 
field theoretic approach to the holomorphic Casson invariant with the definition 
of Thomas. Mathematically speaking we are using an infinite dimensional Q 
equivariant version of Fulton-MacPherson's intersection theory starting all the 
way from infinite dimensional holomorphic bundles with a holomorphic section 
F°'2(A0,1) over the infinite dimensional space A of all gauge fields. Thomas 
used, very roughly speaking, infinitesimal data about the moduli space of stable 
sheaves to construct a virtual moduli cycle, whose role may be identified with 
that of the anti-ghost bundle. 

The assumption that H0,0 = 0 is reasonable since it is indeed true when 
certain conditions on the topological type of E are met. One may imagine 
various mathematical difficulties without such a condition. However, we can 
deal with such a situation as well, as we will now discuss. 
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5.4.3 Taking Care of Reducible Connections 

Now we remove the assumption tha t there are no zero-modes of rj± and ^ ± , i.e., 
H°'° T^ 0. Then the above analysis is no longer valid. In such a case we per turb 
the model to a 7VC = (2,0) theory by giving bare mass to (a, o,r}+, rj+, V'°,1,V'_' ) 
and further deform the model to a hybrid version, similar to holomorphic Yang-
Mills theory [67]. This procedure can be sketched as follows 

1. Write down the action functional S in (5.4.7) such tha t only the s+ and 
s+ symmetry are manifest, 

S =j^s+s+ f Tr U>__ (FAu>2 + 2[<T, *a]) - ii^1 A $? Au2 + 2rç_ * r}_ J 

+s? L " " A T r ( * • A * " ) + s ? L -'•'A T r (*-A F2ß) • 
(5.4.16) 

2. Modify transformation the laws of the s+ and s+ supersymmetries as 
(5.3.49) by extending G to Q x S1 according to 

S1 : ( a . q + . ^ . H 0 - 1 ) —> e ^ ^ . ^ . - f f 0 ' 1 ) (5.4.17) 

where £f = 1. The above 5 1-act ion is compatible with the s+ and s+ supersym-
metry. The S1 -action is a symmetry of our original model if the holomorphic 
3-form w3 '° is rotated by f at the same time. There is no inconsistency since 
picking a holomorphic 3-form always has an ambiguity up to a C* action. We 
denote the actional functional given by the same form as (5.4.16) but with 
the modified transformation laws by Sm. Then we consider the following more 
general action functional, 

S(m,m)0 =Sm +—S+S+ Tr(a*w) 

=S + ——£ I Tr I —immer * ä — ïm(f>++ [a, *a\ + mfj+ * r)+ j 

(5.4.18) 
The new action functional has only 7VC = (2,0) supersymmetry, while its parti­
tion function is the same as for the original 7VC = (2, 2) theory. 

3. Now we deform the model by adding a s+ and s+ exact term 

77Z ƒ 

5(m,m)! = 5(m,m)o + —"5-S+S+ / Tr(</>?__) 
6*" JM 
777 f 

= 5 ( m , m ) o - —-r ƒ Tr(rç_ * rj_ - <f>—*D). 
3 7 r J M 

M (5.4.19) 

We can eliminate the auxiliary field D by setting 

£> = - - A F - < £ _ _ . (5.4.20) 
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Then we have 

iS(m, m ) j 

= S' + -~—T I Tri —im<f)++[cr, *a] + rnrj+ * 77+ — im^> [a, *W] — mr7_ * rj_ J 
3 ? r

 JM \ J 

f Tr(<r*ä)--^- f Trft—F-irl)0.:1*^0)*, 
JM 12TT2 JM V ' 

irnrn 
3TT2 

, ü , 2 

M L*n JM 
2 /• , ,2 

(5.4.21) 
where 5 ' is the original Nc = (2, 2) action functional S after integrating out D. 
Now we see tha t the above deformed Nc = (2,0) model also receives contribu­
tions from the higher critical points ÓAJ = 0 in additions to the original fixed 
points ƒ = | A F = 0. 

4. Finally we define a new action functional I(m,m) by adding s+ and s+ 

closed observables u and v. 

I(m,m) := S'(m,m) — mv — m2û, (5.4.22) 

where 

127T2 ./M 
ƒ Tr(V++F-;V^1AV>+°)Aa,2, 

JM V y 

- £ ƒ , £ * < « • > • 

(5.4.23) 

We have 

ƒ = S ' - " 
3TT2 

m 

127T2 

iL ¥ T t < ^ > + 3Ï5/„31 T*--» ! ^ / . i T * - » 2 

/ Tr ( <j> ( F A u 2 + 4i[a, *CT]) - i i /^ '0 A V>°4 A w2 + 4r/_ * r/_ J 

/ Tr ( (j)++ (F Au2 + 4i[a, *ä]) - i ^+° A V»"'1 A w2 + 4r/+ *rj+) m 

(5.4.24) 
Now we examine the properties of the new action functional I(m,m). First 

of all we can regard m and m as independent real numbers. We have cho­
sen the notation to make the action functional look symmetric under + and 
— indices. Nevertheless it is interesting to observe tha t the action functional 
7(771, m) almost retains the symmetric s tructure of the original model, despite 
the asymmetric per turbat ion and deformation. This property may be inter­
preted as a quantum background independence related with the holomorphic 
anomaly [107] [108]. We will not elaborate on this issue here. For m = m = 0 
we recover the original JVC = (2, 2) model. For m = 0 and m ^ O w e are turning 
on s_|_ and s + closed observables in the original Nc = (2, 2) model. Similarly 
for m = 0 and 771 ̂  0 we are turning on s_ and s_ closed observables. Hower 
both the processes do not change the parti t ion function since the asymmetry of 
the added terms between fermions with positive and negative ghost numbers, 
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while we do not have any ghost number anomaly in the pa th integral measure. 
The new model defined by I(m,m) is different from the original Nc = (2,2) 
model for m,rn ^ 0. The original model has a problem when we have reducible 
connections, i.e., H°'° ^ 0. Then we have fermionic zero-modes of r)± and 
rj± as well as bosonic zero-modes of <f>±± and er, a. The moduli space M EH 
becomes singular and the pa th integral may be not well-defined. Furthermore 
we have new obvious affine non-compact directions spanned by arbi t rary linear 
combinations of bosonic zero-modes. The salient feature of the new action func­
tional I(m,m) is tha t its value restricted to the fixed point locus of the original 
Nc = (2,2) model is non-zero if and only if the group G does not act freely, i.e., 
H°'° ^ 0. In such a case the quadrat ic terms of adjoint scalars 4>±± and a,a 
regularize the singularities. By turning on m and m we also see new fixed points 
flowing from infinity m,m —>• oo. Thus we are essentially doing a non-abelian 
equivariant integral of Wit ten [55]. The partion function of the new action 
functional I(m,m) can be writ ten as the sum of contributions of higher critical 
points dAf = 0 of / M T r ( / * ƒ) where ƒ = | A F G fl°(M,End(E). According 
to a general estimate of Wit ten one can always, in principle, extract precise 
information of the contribution coming from the original fixed point ƒ = 0, the 
moduli space MEH, by taking m,rn —» 0. 

As a summary we have a quantum field theoretic formalism of the holomor-
phic Casson invariant, which is well-defined regardless to whatever the proper­
ties of the moduli space MEH-

5.4.4 Relations W i t h String Theory 

Stable bundles appear very naturally in non-perturbative string theory. They 
correspond to stable BPS configurations of type IIB branes wrapped around 
non-trivial cycles in the compactified part M of the bulk space time Z. Consider 
a Calabi-Yau 3-fold M with Kahler form LO and holomorphic 3-form w3 '0 . We 
fix a rank N C°° bundle E over M , endowed with a Hermitian s t ructure . We 
fix the topological type of the bundle, by specifying its Chern character c h ( £ ) , 

or rather the Mukai vector ch(E)JÂ(M). For a Calabi-Yau 3-fold, the Mukai 

vector is given by 

Q = ( c h o ( £ ) , < * ! ( £ ) , c h 2 ( E ) - ^f^ch0(E),ch3(E) - E l f f i c M E ) ) , 

(5.4.25) 
where pi (M) is the first Pontryagin class of the Calabi-Yau manifold. We may 
sum over different topological types later. The bundles may be seen as describing 
D-branes wrapped around the Calabi-Yau manifold M. The D-brane charges 
are precisely given by the components of the Mukai vector [89] [88]. Since we 
are dealing with Euclidean branes we call a type IIB D5-brane, for example, a 
D6-brane. For example, the rank r = ch0(E) corresponds to the number of D6-
branes wrapped around M and more generally the charges Q3-n(E) ~ ch3_n(i?) 
correspond to £>2n-branes wrapped around cycles in M [92]. 

They are associated to extremal blackhole solutions of the low energy effec­
tive supergravity. The suitable counting of the number of stable orbits corre-
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sponds to counting the microscopic degrees of freedom leading to the black-hole 
entropy. The semistable bundles, which are not stable, correspond to marginally 
stable configurations. Namely they correspond to branes wrapped around van­
ishing cycles. Physically these represent new massless (or tensionless) s tates 
[11] [109]. In the Wilsonian effective theory those degrees a t t r ibute to the sin­
gularities in the effective theory.8 Mathematically they also correspond to the 
singularities in the moduli space MEH of EH connections. However this does 
not mean tha t the physics breaks down at such a point. It is only the effective 
theory which failed at tha t point. The singularities can be mended by including 
to new massless (tensionless) degrees of freedom in the effective description. We 
also emphasis tha t not only the new semi-stable orbits but also related new bulk 
(transverse to the compactified space M) degrees of freedom are created in such 
a case. Altogether, the total system (string or M theory), nothing singular has 
happened. 

Now we apply the above discussions to our model. The r £>6-branes wrapped 
on the Calabi-Yau 3-fold M induces a rank r Hermitian vector bundle E over 
M whose topological type is determined by other lower dimensional D-branes 
wrapping homology cycles. On the £>6-branes world-volume we have U(r) gauge 
field A. The degrees of freedom transverse to M in the bulk, Z = M x C2 in 
our case, are represented by two End(E) valued complex scalars ipm, m = 
1,2, on M. In sum we have exactly the bosonic field content of our model. 
Among the 16 space-time supercharges of the effective supersymmetric Yang-
Mills theory of Z)6-branes on C5 we have 4 unbroken supercharges (covariant 
constant spinors) since the holonomy of a Calabi-Yau is 517(3). Since we do 
not have any propagating gravitons on a D-brane world-volume the covariantly 
constant spinors should be twisted to become scalar supercharges [17]. These 4 
supercharges can be identified with s± and s ± . Consequently we may interpret 
our model as the effective world-volume theory of D6-branes wrapped on M.9 

To be more concrete consider a holomorphic vector bundle £A, A E A1'1. If 
the holomorphic connection A is reducible we have the reduction E A = L®L~l, 
where I is a line bundle whose Chern class is determined by the topological 
type of SA , thus by E. A reducible holomorphic connection is EH iff the degree 
deg(L) of the associated line bundle L vanishes; 

deg(L)= / CI(L)/\LO2= I to2 = 0, (5.4.26) 
JM JDi 

where D4 denotes the 4-cycle (a positive divisor) Poincaré dual to cx(L). Phys­
ically the above situation corresponds to a £>4-brane wrapped around the van­
ishing cycle £>4. The degree is related with the mass of the wrapped degrees of 

8 The Wilsonian effective theory is defined in terms of massless degree of freedoms. In the 
beginning one has to specify what is the massless degrees of freedom. Such criterion in the 
present situation corresponds to, as we shall see shortly, a choice of polarization for stability. 

9We should emphasis here that the world-volume theory is not entirely a "cohomological" 
field theory. Any global (space-time or not space-time) supersymmetric theory is a "cohomo­
logical" theory and vice versa if we compute the path integral of observables invariant under 
some of the global supercharges. Otherwise the fixed point theorem of Witten says nothing 
and we do not have such a drastic localization of the path integral to a finite dimensional 
moduli space. 
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freedom.10 Thus the reducible EH connections correspond to massless states, 
represented by the zero-modes of y>m. Once massless the state associated with 
(5.4.26) can freely propagate into (or escape to) the bulk.11 The corresponding 
configuration space is obviously non-compact. Our moral is that one should 
include such configurations as well to have a well-defined total system. This 
sounds contrary to the usual belief. However we are stating the conventional 
wisdom of an equivariant approach. 

Actually Witten's reformulation of Donaldson theory is based on such wis­
dom. As if well-known the equivariant cohomology is always something much 
more than the usual cohomology if the quotient space is singular. The extended 
space, where one defines equivariant cohomology, is bigger than the space of all 
bundles on M (the brane configuration on the compactified part M in the bulk 
Z). Those additional parts correspond to degrees transverse to M in Z. 

5.4.5 Open String Field Theory, Homological Mirror Sym­
metry and D-branes 

This subsection is for a brief history, with some risks due to my own prejudice, 
on related subjects. Our purpose here is to place the previous model in a larger 
prospective and also to motivate the remaining part of this thesis. 

The holomorphic Chern-Simons term was first introduced by Witten as the 
action functional of the space-time field theory of the topological B model of 
open string field theory [85]. In the paper [85] Witten showed that topological 
sigma models on a Riemann surface £ with boundaries can interpreted as string 
theory backgrounds, where the usual decoupling of ghost and matter does not 
hold. There are two types of topological sigma models called A and B mod­
els [3]. For the A model the path integral is localized to the moduli space of 
holomorphic maps from a Riemann surface to a Calabi-Yau 3-fold M. The 
correlation functions compute cohomology rings of the moduli space of holo­
morphic maps. The moduli space contains M as its zero-instanton sector (the 
constant maps) so that the classical part of the correlation functions is just the 
cohomology ring of M itself. Summing up higher instanton contributions the 
correlation functions are named quantum cohomology rings. For the B model 
there are no such instanton corrections and the path integral is localized to an 
integral over M. The correlation functions of the model compute the variation 
of Hodge structures. Now Witten considered those models on Riemann surface 
T, with boundaries (9S)i. For the A model the boundary condition is that each 

1 0One may also consider the case of £>2-branes wrapped on a 2-cycle Poincaré dual to 
rC2(E)-:^ci(E)2. If the cycle shrinks to zero-size we only have projectively flat connections 
as BPS states, see (5.3.25). One may also imagine that the area of the 2-cycle becomes 
"negative" - a flop type topology change, we do not have any EH connections left. However 
the partition function of our model is still non-empty. 

1 1 Mathematically the situation can be viewed as follows; one is interested in the problem 
associated with the moduli space of EH connections with a suitable polarization such that 
semi-stability implies stability, i.e, the mathematical term of the Wilsonian effective theory. 
That is, every reducible holomorphic connection is a non-EH connection. By changing the po­
larization, however, certain reducible holomorphic connections induce semi-stable holomorphic 
bundles. These are new degrees of freedom coming from non-EH holomorphic connections. 
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component (<9£)i is mapped to a Lagrangian submanifold d C M. For the B 
model he picked "free" boundary condition. Then he studied the space-time 
field theory of the open string field theories of the resulting string background. 
For the A model we have Chern-Simons theory with instanton corrections, 

1 /" 2 
SA = - Tr(A A dA + -A A A A A) + instanton corrections. (5.4.27) 

* J c 3 

For the B model he obtained the holomorphic Chern-Simons form as the action 
functional. 

The A model above is closely related with the symplectic Floer theory 
- Floer homology of Lagrangian intersections involving pseudo holomorphic 
curves. Fukaya discovered a certain A°° category on the Floer homology which 
is roughly given by the genus zero correlation functions of topological open 
string theory - the A model above. Kontsevich extended Fukaya's category by 
supplying a flat line bundle Li for each Lagrangian submanifolds C,. Then he 
conjectured so called homological mirror symmetry, tha t is, the derived category 
constructed from the Fukaya-Kontsevich category on a Calabi-Yau is equivalent 
to the derived category of coherent sheaves on a mirror Calabi-Yau. Note tha t 
Kontsevich' extension of the Fukaya category naturally fits in the topological 
open string A model (due to the Chan-Paton degrees of freedom). The coherent 
sheaves on a Calabi-Yau also naturally appear as holomorphic vector bundles 
due to the Chan-Paton degrees of freedom in the topological open string B 
model. The homological mirror conjecture is essentially the physical equiva­
lence of the A and B models on mirror Calabi-Yau manifolds. It is interesting 
to note tha t the underlying structure of of the open string fled theory of Gab-
erdiel and Zwiebach [110], the refined version of Wit ten 's construction [111], is 
a (cyclic) A°° algebra. The homological mirror symmetry could be a physical 
equivalence between two "different" backgrounds in the open string field theory. 

In the modern language of physics the A model above corresponds to (topo­
logical) £>3-branes wrapped on a CY3, while the B model corresponds to D6-
branes wrapped on a CY3. It is shown tha t the BPS states of type IIA strings 
are represented by special Lagrangian submanifolds with flat line bundles on 
them, while for type IIB the BPS states are represented by stable holomor­
phic bundles [87]. Subsequently Strominger-Yau-Zaslow (SYZ) suggested a full 
quantum equivalence between IIA and IIB models [91]. Based on the simplest 
case, SYZ concluded tha t the mirror symmetry is a T-duality along a special 
Lagrangian T 3 fibration on the CY3. Vafa went further for the more general 
case and argued, essentially, the homological mirror symmetry can be explained 
in terms of T-duality of D-branes wrapped on the Calabi-Yau [92]. Vafa also 
conjectured an equivalence between certain variations of holomorphic bundles 
and the counting of holomorphic disks with Lagrangian boundary conditions. 

5.4.6 A Program 

Here we consider a program towards an understanding of generalized mirror 
symmetry. Unfortunately this program is still speculative and not yet conclusive 
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if it will lead to a concrete understanding of mirror symmetry. It gives also some 
motivations for the last chapter of this thesis. The idea is, roughly, to try to 
understand the mirror symmetry as something like the equivalence between 
Donaldson-Witten and Seiberg-Witten theories. Our source of inspiration are 
the facinating properties of Hitchin's moduli space [112] as well as of quiver 
varieties of Nakajima [113]. 

In Chapter 4 we showed tha t such an equivalence can be understood from S-
duality oî N = 4 supersymmetric Yang-Mills theory. The picture was tha t both 
Donaldson-Witten and Seiberg-Witten theories are obtained as different fixed 
points of the same renormalization group flows from N = 4 supersymmetric 
Yang-Mills theory. Then the equivalence between two theories was understood 
as remnants of the S-duality of the original N = 4 theory surviving the renor­
malization group flows. Such renormalization group flows were generated by 
the bare masses of certain fields, which in turn the Hamiltonian of a natural 
S1 action on the function space of fields. From the viewpoint of the function 
space the renormalization group flows are just the gradient flows generated by 
the Hamiltonian vector fields. 

For mirror symmetry the natural analogue of the above function space is the 
space all alhmaps E ->• M from a Riemann surface to a Calabi-Yau 3-fold M. For 
a pair (M, M) of such manifolds one associates two different topological sigma 
A(M) and B(M) models obtained by twisting the worldsheet Nws = (2,2) 
supersymmetric sigma model in (1 -I- 1) dimension [3]. The original^mirror 
symmetry states tha t the two models are physically equivalent if (M, M) is a 
mirror pair. A natural step towards understanding mirror symmetry could be 
the following. We pick a Calabi-Yau 3-fold M and consider the total space of 
the cotangent bundle T*M as the target space of a supersymmetric sigma model 
in (1 + 1) dimensions. Let us denote the corresponding A and B model by A 
and B. Since the total space T*M is a hyper-Kähler manifold we may expect 
it is self-mirror, i.e., the A and B model are physically equivalent. Assuming 
this, our goal will be to recover physical equivalence between A{M) and B(M) 
as a remnant of the equivalence A ~ B after a suitable renormalization group 
flow. 

An important property of T*M is tha t there is always an S 1 symmetry acting 
on the fiber.12 This 5 1-act ion also naturally extends to the function space of all 
maps E -> T*M. We denote the function space by 9! ~ T*0Jl where M denotes 
the space of all maps E -» M. The upshot is tha t the Hamiltonian h of the 
vector field generating the 5 1-act ion (the momentum map of S 1 on the function 
space VI all maps E -» T*M) corresponds to the physical bare mass m of the 
fields representing maps to the fiber space of T*M. Thus we consider a family 
of supersymmetric sigma models parametrized by m, 

S(m) = S + mmh + ..., 

where S denote the action functional of the original sigma model with target 

1 2A compact hyper-Kähler is certainly self-mirror. A problem would be the fact that T*M 
is a non-compact space. Perhaps one has to consider a natural compactifcation of T*M 
compatible with the S 1 symmetry. 
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space T*M and the dots above correspond to the supersymmetric completion. 
Now we take limit \m\ —• oo. The dominant contributions to the pa th integral 
are from arbi t rary close neighborhoods of the locus of the critical points of h. It 
is well-known tha t the critical points of a Hamiltonian of a S1 -action coincide 
with the fixed points of the 5 1-act ion. Let us denote the fixed point set of the 
5 1 -act ion by 3- The space generally decomposes into disjoint sets 

3 = {j3a, (5.4.28) 
a 

with corresponding Morse index ma - the number of negative eigenvalues of the 
Hessian of h at g"a. Let us denote the value of h at a fixed points locus 3 a by 
ha. A key point is tha t the function space of all maps S —• M to the (base) 
Calabi-Yau 3-fold M always corresponds to the trivial fixed point 3o with zero 
Morse index m 0 = 0 and vanishing Morse function h0 = 0, since the S 1 acts only 
on the fiber of T*M. Thus we recover the supersymmetric sigma model with 
target space M, the A(M) or B(M) depending on twisting, in the trivial fixed 
point locus 5o of the S^ac t ion . We also find the Calabi-Yau 3-fold M among 
the infinite dimensional space 3o a s ^ s u b s p a c e consists of constant maps. Now 
an immediate question is: where is M and how can we recover B(M)? To s tate 
our proposed answer we need to give some more details of our set up. 

To begin we consider our hyper-Kähler target space T*M. Let (ƒ, J, K) and 
(LJI , w2, w3) be the hyper-Kähler structures on T*M, where (LJI , I) were extended 
from the complex structure and Kahler form on M . In total we have a S2 worth 
of complex structures since ai + bJ + cK with a2 + b2 + c2 = 1 is also a complex 
structure. Now we consider the twistor space T*M x S2 such tha t the fiber over 
a point (a, b, c) in S 2 is a copy of T*M with complex structure ai + bJ + cK. 
We replace the real coordinates on S2 by complex affine coordinate f 6 OP 1 . 
Then 

u>2'0 = (CJ2 + iu3) - 2 w ^ - (w2 - iw3)£2 , (5.4.29) 

is the holomorphic 2-form on the fiber over £. If V is the vector field generated 
by our 5 1-act ion on the fiber of T*M we have 

Cv^\ - 0, CvLo2=Lü3, Cvu3 =-u}2- (5.4.30) 

This 5 1 -act ion can be extended to a holomorphic (with respect to the complex 
s t ructure ƒ) C* action. This C* action than covers the C* action on OP 1 in the 
twistor space T*M x OP 1 . The A € C* action has two limit points C = 0, oo, 
corresponding to ± / . 

We can extend all the above structures to the function space 9Î of all maps 
S —> T*M. We will maintain the same notat ions. Now we examine the role of 
the C* action. For A —> 0 any point on the space 9Î flows to some fixed point of 
the 51-act ion. This leads to a cell decomposition of 01 by at t ract ing sets. For 
inverse flow A -» oo the limit points are again the fixed points of C* action but 
some flows from fixed points 3a of the S 1 action may stay in compact sets; 

£ = | j £ a D 3 a , (5.4.31) 
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and each component £ a is Lagrangian with respect to the holomorphic 2-form 
[113]. Equivalently we can work with the gradient flow associated with the 
Hamiltonian h of the S1 -action and examine paths of the flow (steepest descent) 
for the past t -» -oo and the future t -» oo. We have the correspondence that 
| A | = V . 

The upshot is that we can naturally identify the generator A of the above 
C* action with the inverse of the physical bare mass m of our sigma model 
with target space T*M. Thus we regard the sigma model with target space 
M as an end point of the renormalization group flow generated by the mass. 
Certainly we do not expect that all the physical properties of the model in the 
past m = 0 will be preserved after such a flow. However we may also expect that 
the chiral rings remember the past where the self-mirror property is recovered. 
Thus it is natural to find hints by trying to reverse the flow. What we find 
are the Lagrangian subvarieties £Q . We also know that £ 0 = 5o = %K, which 
is the function space of all maps £ -> M. Now a natural question is; can we 
associate sigma models with other Lagrangian subvarieties £Q , a ^ 0, such that 
their function space of all maps £ -> Ma can be identified with £ a . Then 
our discussions so far seem to imply that one may find mirror partner among 
(?) those models. One may repeat the same procedure by considering only 
constant maps. It will produce a set of Lagrangian subspaces Ma C T*M where 
Mo = M. We recall that the B model depends only on the complex structure. 
It is possible that other Lagrangian subspaces Ma, a / 0, are birational to each 
others and we might have A(M) = B{Ma).

13 

If the above speculation turns out to be true one may consider arbitrary di­
mensional Calabi-Yau space and examine Lagrangian subvarieties of its cotan­
gent bundle. Unfortunately we do not even know how to establish the basic 
necessary condition like hp'q(M) = hp'3~q(Ma). It is quite possible that our 
consideration may not shed light on the mirror symmetry itself. But still we 
may use the above set up as a useful way of computing quantum cohomology 
rings of M in terms of sum of contributions from the (other) fixed points 5 a , 
a ^ O . 

Now we can consider a natural generalization of the above setting. A sigma-
model with the target space M is equivalent to the sigma-model whose target 
space is the configuration space of a single D0-brane on M. Thus we can replace 
the target space M with the space of all D-brane configurations on the Calabi-
Yau 3-fold M. Such a configuration space can be identified with the space of all 
(Chan-Paton) sheaves on M. Similarly the sigma-model with the target space 
T*M can be generalized to a sigma-model whose target space is the total space 
of the cotangent bundle of the space of all sheaves on M. 

Our initial goal was to define Nws = (4,4) model whose target space is 
the cotangent bundle of the space of all connections on a Calabi-Yau 3-folds, 
and to study some of its properties along the line of the above ideas. Some 

1 3The C* action acts transitively on C P 1 \ { 0 , oo} hence will carry T*M with any com­
plex structure to any other within QP^-fO, oo}. Thus all the complex structures of the 
hyperKählerian family other that ±1 are equivalent [112]. The base space M is equip with 
the complex structure I. 
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of ideas above can be applied to Nws = (4,0) theory. We may also consider 
(0 + 0)-dimensional sigma model, thus a cohomological field theory, instead of 
(1 + 1)-dimensional model. 
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Chapter 6 

Cohomological Yang-Mills 
Theories on Calabi-Yau 
4-Folds 

6.1 Introduction 

In the previous chapter we used the holomorphic Chern-Simons form as the 
holomorphic potential of a Nc = (2,2) supersymmetric model, which led to the 
holomorphic Casson invariants of a Calabi-Yau 3-fold. We also recall the other 
use of the same form as the action functional of the space-time field theory of 
topological open string field theory of the B model. In this chapter we discuss yet 
another use of the holomorphic Chern-Simons form, namely as a holomorphic 
Morse function. 

In the paper [34], Wit ten constructed a complex spanned by the critical 
points of a Morse function whose boundary operator is given in terms of the 
gradient flows connecting critical points. In terms of physics, the critical points 
are supersymmetric ground states, while the gradients flows are instantons tun­
neling between different ground states. Floer constructed the Morse-Witten 
complex on the space of all connections on a real 3-manifold Y using the real 
Chern-Simons form as the Morse functional [114]. In the Floer case the critical 
points are flat connections on a real 3-manifold Y and the gradient flow lines 
between them are Yang-Mills instanton (anti-self-dual connections) on the real 
4-manifold Y x R. Taubes proved tha t the Euler characteristic of the Floer ho­
mology is (twice) the Casson invariant [115]. Atiyah interpreted the Floer theory 
as a non-relativistic quantum field theory and conjectured tha t its relativistic 
generalization is Donaldson theory [8] on a real 4-manifold [116]. 

Wit ten studied such a relativistic generalization and obtained the pa th in­
tegral representation of Donaldson theory [1]. The resulting Donaldson-Witten 
theory is the first example of a cohomological field theory and is related with 
physical N = 2 space-time supersymmetric Yang-Mills theory on a real 4-
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manifold by twisting. The Hamiltonian formalism of the resulting theory (on 
Y X R) gives rise to the Floer homology. Further dimensional reduction of 
the theory to Y leads to a cohomological field theory, whose parti t ion function 
computes the Casson invariant [117] [35]. 

Donaldson and Thomas observed tha t Casson and Floer theories have nat­
ural "holomorphic" or "complex" counterparts on Calabi-Yau 3- and 4-folds 
[118] [96]. The idea is, very roughly speaking, to replace real coordinates of real 
3- and 4-manifolds with complex coordinates of Calabi-Yau 3- and 4-folds. One 
may replace the Chern-Simons form on Y by the holomorphic Chern-Simons 
form on a Calabi-Yau 3-fold M , whose critical points are holomorphic bundles. 
Between the critical points one has a complex version of gradient flow lines, 
which are the holomorphic analogue of anti-self-dual connections on MxS1 xR.1 

According to the program of Donaldson and Thomas most of the themes in the 
real case can be played in Calabi-Yau 3- and 4-folds with some variations. 

On the other hand, in the paper [30], we proposed tha t the matr ix string 
theory compactified on a Calabi-Yau 3-fold should be the Nws = (2, 2) super-
symmetric gauged-linear-sigma model in S = R x S1 whose target space is 
the space of all bundles on M? In the infrared limit of £ the model flows 
to Nws = (2, 2) superconformai sigma model whose target space is the moduli 
space of stable bundles on Calabi-Yau 3-fold. We studied chiral rings of the 
resulting superconformai theory by twisting the sigma model. We argued tha t 
the resulting B model is equivalent to the holomorphic Chern-Simons theory. 
We also studied A model which involves holomorphic maps (the worldsheet in-
stantons) from S to the moduli space of stable bundles. It turn out tha t one 
can identify the states in the Hilbert space of the topological string with the 
"holomorphic" version of Floer homology.3 Furthermore the A model can be 
viewed as the Nc = (2,0) cohomological field theory for the "holomorphic" 
Donaldson-Witten theory on M x S1 x R.4 

Here we follow the historical footsteps reviewed in the beginning to consider 
a quantum field theoretic approach to "holomorphic" or "complex" versions of 
Floer and Donaldson-Witten theories on Calabi-Yau 3- and 4-folds. We will 
s tar t from motivating holomorphic Floer theory adopting Atiyah's approach. 
Then we propose, adopting Wit ten 's approach, holomorphic Donaldson-Witten 
theory (a Nc = (2,0) model) which can be used to give a quantum field theoretic 
definition of holomorphic Floer homology based on a "Hamiltonian" analysis. 
It seems tha t holomorphic Floer homology still lacks a mathematical definition 
beyond the original idea in [118] [96]. A detailed study of this topic will appear 
elsewhere [119]. 

A quantum field theoretic approach to Donaldson-Witten type theories on 
general Kahler manifolds based on the moduli space of stable bundles was first 

'One should not read the above sentence literally. 
The dimensional reduction of the model along E is the Nc = (2, 2) model in Sect. 5.4, 

which partition function gives the holomorphic Casson invariant. 
3We didn't realize this relation at the time of writing the paper [30]. 
4 The prefix "holomorphic" can cause some confusions. We will use it since the names 

holomorphic Chern-Simons theory and holomorphic Casson invariants are already well-
established. 
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considered in [52] [67]. A quantum field theoretic approach to Donaldson-Witten 
type theories on Calabi-Yau 4-fblds based on the moduli space of the holomor-
phic analogue of anti-self-dual connections was first considered by Baulieu et. al. 
[100]. Our model for holomorphic Donaldson-Witten theory is different from the 
model in [100], though it may morally be equivalent to it. Our model will be es­
sentially a special example of considerations in [52] after some modifications and 
shares the same kind of observables as Donaldson-Witten theory. Our model is 
also exactly the (Euclidean) supersymmetric Yang-Mills theory on Calabi-Yau 
4-folds. 

6.2 Holomorphic Donaldson-Witten Theory 

In this section we develop the holomorphic version of Donaldson-Witten theory 
on a Calabi-Yau 4-fold M 4 with holomorphic 4-form UJ4'0 and Kahler form w. 

It will be useful to give a quick sketch of our model along the lines of the 
general approach of this thesis. Our model will be an example of an equiv-
ariant Nc = (2,0) model, whose target space is the space of all connections 
A on a Hermitian vector bundle E over M 4 , or equivalently the space of all 
unitary gauge fields on M 4 . Thus the resulting model can not be much dif­
ferent from the model for d = 4 in Sect. 4.1.1. For the given da ta above the 
only freedom we have in a Nc = (2,0) model is the choice of a suitable in­
finite dimensional holomorphic Hermitian vector bundle E —> A over A with 
<7-equivariant holomorphic section 6 . Instead of the former ill-fated choice 
6 = F 0 ' 2 in (4.1.12), we take only the "holomorphic self-dual" part F°'2+ of 
F 0 ' 2 , i.e., F°'2+ = \{F-j + ^e-^{F*fJ)dz" Adz^. The above considerations 
already determines the model uniquely. However we will take an interesting 
detour by imitat ing Atiyah's approach to Floer theory and Wit ten 's relativistic 
generalization. 

6.2.1 Imitating Atiyah-Floer Theory 

We begin by a brief review of the description of the original Floer theory by 
Atiyah-Witten [1]. We consider a gauge field A'j(x) on a real 3-fold Y, where 
a denotes the index of the Lie algebra and I = 1, 2, 3 is the vector index on Y. 
Let A be the space of all gauge fields on Y. Consider the exterior derivative of 
A, after parity change 

Q = I d3x^x)sAWr (621) 

and its adjoint 
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where i>j(x) and xj (x) represent a one-form and its dual vector field, after the 
parity change, on A. They satisfy the following anti-commutation relations 

W ( * ) , # ( y ) } = 0, 

W(x),XbAy)}=9uSabS3(x-y), (6.2.3) 

{xî(x),xbAy)} = o, 

where gij denotes the Riemann metric tensor of Y. Using the real Chern-Simons 
form W one defines Qt = e~iWQetW and Q* = e~tWQ*etW, where t is a real 
number. One finds 

Q2
t=0, {Qt,Q*t} = 2H, Q t *

2 = 0 , (6.2.4) 

where H is the Hamiltonian of the non-relativistic theory. The ground states 
of H form the Floer homology group, which is equivalent to the Q-cohomology 
group. The Floer homology group is graded by the ghost number U, which is 
such tha t [U,Q] = +Q and [U,Q*] = -Q*. This ghost number is conserved 
modulo certain integer d due to instanton corrections. 

We now consider a Calabi-Yau 3-fold M and the space A of all connections 
on a Hermitian vector bundle E. We follow all the other settings in this chapter. 
We introduce fermionic fields V° and x™\ representing (0,l)-forms and (1,0)-
vectors on A respectively. We consider the 9-operator and its "adjoint" on 
A 

' s (6.2.5) 
s = - / (fxg.-xai(x)- — . 

J yv*~ y '5Al(x)' 
j 

where i = 1,2,3 runs over the complex coordinates on M. They satisfy the 
following anti-commutation relations 

{^(x),^(y)} = 0, 

Hf(x),Xbl(y)} = SJ-Sab6e(x - y), (6.2.6) 

{xj(*),xbl(y)} = o. 

Using the holomorphic Chern-Simons form W(Al) 

w = e? I w 3 , ° A T r ( A A ^ A + \ A A A A A ) ' (62"7) 

one defines sj = e~twsetw and sj = e~twsetw, where t is a complex number. 
One finds 

4 = 0, {sh sT} = H, 5f = 0, (6.2.8) 
where the holomorphic Hamiltonian H is given by 

"4? ƒ A [- fiîw),+i' M'l 4 / A # ^ M 
i,a \ * / 

(6.2.9) 
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where Bx = ^e^kF-rr. The first two terms above give the Hamiltonian of bosonic 
Yang-Mills theory in "four" dimensions whose real 4-vector indices are replaced 
by holomorphic indices. The critical points of the Morse function are holomor-
phic vector bundles. The complex gradient flow lines between them are governed 
by the following equation 

fiA* 1 — 
— = --e^FTk. (6.2.10) 

However one should not accept the above literally. We naturally want to have 
stable holomorphic vector bundles as critical points. One may supply such a 
stability by hand and then take the quotient by Q . However the above equation 
is not invariant under GC • Thus we should fix a Hermitian metric on the complex 
vector bundle and supply an Einstein-Hermitian condition, thus imposing the 
momentum map equation, and take a quotient by Ç. Another problem is tha t 
holomorphic Morse theory is different from the real one. We refer to those 
problems and resolutions to the papers [118] [96]. 

Thus our strategy is to first consider a relativistic generalization such tha t 
the supersymmetric ground states of the model on M3 x C /Z are given by stable 
holomorphic bundles on M3. Then we can just define holomorphic Floer homol­
ogy as a suitable BRST (co)-homology of supersymmetric ground states. By 
taking such a definition we do not need to worry about the precise mathematical 
definition of coboundary operators and the holomorphic Morse complex etc.5 

6.2.2 Covariant Generalization 

Now we consider the covariant generalization of the holomorphic Floer theory. 
The resulting model will be an equivariant Nc = (2, 0) model based on the space 
of all connections on a Calabi-Yau 4-fold M4 with holomorphic 4-form a;4'0. It 
is sufficient to retain SU(4) invariance, which is the holonomy group of M4. 
First we promote our fields Aj ipj, and x ^ into "Lorentz" multiplets. Obviously 

we should introduce (A^, V^r)i where a,ß = 1,2,3,4 runs for anti-holomorphic 
tangent vector indices on M4. As for Xjj w e c a n take a holomorphic self-dual 
two form Xäß', 

*äß = -Xß* = 2 e s ^ ï ( x * ) 7 A , (6.2.11) 

which has three complex components, the same as xji- The star in the above 
denotes complex conjugation. This holomorphic analogue of anti-self-duality 
was introduced by Donaldson and Thomas [118]. 

The above "relativistic" extension uniquely fixes the associated Nc = (2,0) 
model. The multiplets (A^,i^ä) form 7VC = (2,0) holomorphic multiplets, i.e., 
sAä = 0. The anti-ghosts X—g, together with corresponding auxiliary fields, 
form the anti-ghost multiplets (XQTP -^0/3)- Finally we have the usual Nc = (2,0) 
gauge multiplet ((f>--,r]-,rj_,D). The two supercharges, s+ and its conjugate 

5these are, according to [118], related with the Picard-Lefschetz theory of the Lefschetz 

fibration over C P . 
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s+, are differentials of Ç-equivariant cohomology on the space A of all connec­
tions on a Hermitian vector bundle E on M4. The property of the anti-ghosts 
X--g fixes the infinite dimensional bundle E over A where other holomorphic 
section 6 of an to the holomorphic self-dual part of the type (0,2) curvature 
tensor F^-(Aj). Thus we have all the ingredients to define the model. 

It is convenient to work with differential forms. For any two-form a € 
Çl2{Mi) we have the familiar decomposition 

Q+ = a0 '2 + a0u + a0 '2, 
_ , ! (6.2.12) 

a =a£., 

where a± denotes the (1, l)-form orthogonal to the Kahler form u>. On a Calabi-
Yau 4-fold the (0, 2)-form a0 '2 can be further decomposed into 

^ 0 , 2 0 ,2+ , „ 0 , 2 - / G 0 1Q\ 

where a0 ' denotes the eigenstates of holomorphic Hodge star operator * de­
fined by [96] 

*a° ' 2 ± = *(a°.2± A uA°) = ± a ° ' 2 ± . (6.2.14) 

We denote the corresponding eigenspace decomposition of Q,°'2(M) as 

n°-2(M) = n°-2+(M) e n°-2-(M). (6.2.15) 

Thus x-2 •= hx-sßdz^dz^ is an element of Çl°'2+{M,End(E)). There is a 
bilinear form 

n°'2(M) x ft°'2(M) -> C, (a0 '2, ß°>2) -+ ƒ a0-2 A ß°>2 A a;4'0. (6.2.16) 
JM 

Then 

a0 '2 A a0 '2 Aw4 '0 (6.2.17) / 
JM I Mt 

is positive definite on Q,0,2+(M) and negative definite on Q.°'2~(M). We also 
note that for any a°- 2 + € ü,°-2+(M) we have 

[Tr(ß°'2+Aa0'2+)ALo4'0 = f Tr (ß°'2+ A *a2 + '°) (6.2.18) 

since *a2+-° = * * (a°'2+ A w4-0) = a°>2+ A w4-0. 
Though obvious we give the explicit transformation laws. We have two sets 

of holomorphic multiplets and their anti-holomorphic partners. One set of holo­
morphic multiplets is (A0'1, ?/>+' ) and its anti-holomorphic partner (A1'0,-^^ ), 

s+A0'1 • /0,1 /0,1 = 0, 

s+A0'1 = o, — /0,1 = -dA <j>++, 

s+A1'0 = 0, T i , o 
= -8A4>++, 

s+A1'0 .T i ,o - T 1 ' 0 
= 0. 

(6.2.19) 
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We have Fermi multiplet (X-°,H2'0) € ü2+>° (M, End{E)) and anti-Fermi mul­
tiplet (x°l2,H0'2) e n°'2+(M,End(E)) 

S+X2J° - - t f 2 ' ° , s+H2'0 = 0, 
— 2,0 n — rr2,0 -ri 2,0i 
s+ X_' = 0 , a+H =-i[<f>++,xJ ], 

-0,2 n „0,2 -u -0,2H (6-22°) 

— —0,2 TJ-0,2 -z 1/0,2 _ n 

Finally we have the usual iVc = (2,0) gauge multiplet with transformation laws 

s+V- = 0, 

S + 0 _ _ = i r ? _ J s+r!-=+iD+-[4>++,<t>-}, S+4>++ = 0, 

s+^_ = 0, 

The Ç-equivariant Kahler form on A is defined by (4.1.10), which we rewrite 
here for convenience; 

w = is+s+IC 

= m^LT'{^F)^'+ m?LTr(*' A ^ w ' 
(6.2.22) 

The action functional is given by the following familiar form 

+'-£ h (*" A **-°)+'-& L* <"- * '-» (6 2 23> 

Comparing with the action functional (4.1.15) the only difference is the last line 
above, involving a different choice of anti-ghost and holomorphic section over 
A, i.e., F 0 , 2 —» F°'2+. After expanding the above we integrate out auxiliary 
fields D, H2'0 and H0'2 by imposing their algebraic equations of motion, 

# 0 , 2 = _ i F 0 , 2 + ; 

i (6.2.24) 
D = --(AF + iCIE). 

From the above and the general structure of an equivariant Nc = (2,0) model 
we see that the path integral is localized to the moduli space defined by the 
following equations, 

F 0 , 2 + = 0 

(6.2.25) 
iAF -CIE = 0. 
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An integrable F 0 ' 2 = dA = 0 connection is called Einstein-Hermitian if it further 
satisfies the second equation in (6.2.25). We may call the above moduli space 
the moduli space of "half-integrable" Einstein-Hermitian connections, since it 
imposes only half of the integrability. The equations in (6.2.25) are due to Lewis 
as cited in [118]. Note tha t 

/ T r ( F 0 ' 2 A * F ° - 2 ) A u ; 4 ' 0 = 2 / Tr (F° ' 2 + A F°- 2+) A OJA'° 
J M J M 

in2 [ Pl(E) 
J M 

M (6.2.26) 
+4TTZ I P l ( £ ) A u 4 ' 0 . 

If pi{E) is of type (2,2) we see from this tha t a half-integrable connection is 
—2 

actually integrable, dA = 0. We denote the moduli space by 5H D MEH- We 
also have another familiar localization equation, 

dAcj)++ = 0, 

TJ. 1 1 n (6-2-27) 

If the "half-integrable" EH bundle is irreducible <j>±± — 0 and Q acts freely on 
the locus of (6.2.25). 

6.2.3 Path Integral 

The explicit form of the action functional is given by 

S' = - ^ [ T r ( - 2 F ° ' 2 + A * F 2 + ' ° - \\F*AF - dAcf>++A *dA<f>— 
8 7 r JM V 4 

+ \[<j>++ A—}2 + 4>— * A[V>°'\Vv°] + 2txi'° A *[<£++, 
(6.2.28) 

where 

.Lr-r-r)T j • T • --L-r-t- J -r-t- J ' —A.— ' f > X 

+ i[<l>++,V-] * V- - " ? - * dlip+X - if]- * !%$+ 

r, 2,0 . "0+ ,0,1 n—0,2 . Q+-T1.0 J 

-2X1 A ^ V - H -2x_' Aö|V+ J, 

# = 5(1 + *)«*, 5t = 5(l+*)2U. (6.2.29) 

Now we consider the fermionic zero-modes. Using ö 4 ôU = F ° ' 2 + = 0 we obtain 
the following equations for fermionic zero-modes, 

ft* / 0 . 1 _ a 

0AV-=0, - J O I ~ ' ^"V_ , 2=0. (6.2.30) 
«A V>+ = 0, 

Note tha t the equation dAx°'2 = 0 is automatic here. Consequently the anti-
ghost bundle over M will be finite dimensional. So we see tha t the fermionic 
zero-modes, 

Tl-,iP0+\x*-2, (6.2.31) 
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represent the cohomology of the following complex , 

0 -> n°'°(M,End{E)) ^Q?>l{M,End{E)) %n°'2+(M,End(E) -> 0. 
(6.2.32) 

The above is the holomorphic analogue of the deformation complex (5.2.4) of 
anti-self-dual connections in four real dimensions. The above is the deformation 
complex for the moduli space Wl [96]. Thus the formal complex dimension 
of ÜJI equals minus the index of the above complex or, equivalently, the net 
ghost number violation in the path integral measure due to the zero-modes of 
fermions, 

A = - # f o _ ) 0 + # ( < ' 1 ) o - # ( X - 2 ) o = -dimH0'1 + dimH0'2 - dimH°>2+. 

(6.2.33) 
The net ghost number violation of the pa th integral due to zero-modes of all 
the fermions - the fermions in (6.2.31) and their conjugates (rj_,tß^ , x î ' ° ) ~ is 
(A, A ) . 

An observable of the theory can be constructed from any closed ^-equivariant 
differential form on A associated with any cohomology class on M , as defined in 
Sect. 4.1.1. A typical observable of the theory is the total ^-equivariant Kahler 
form, after the parity change, wg given by (6.2.22). Thus there are essentially no 
differences with Donaldson-Witten theory on a Kahler surface. Here the moduli 
space of integrable Einstein-Hermitian (anti-self-dual) connections on a Kahler 
surface is replaced by the moduli space of half-integrable Einstein-Hermitian 
connections on a Calabi-Yau 4-folds. 

If we assume a situation tha t G acts freely on the locus of the solutions of 
(5.3.18), i.e. the connection is irreducible, the moduli space SOT is an analytic 
space with a Kahler s tructure induced from the ^-equivariant Kahler form. The 
moduli space will not have the right complex dimension A unless H°'2+ = 0 as 
well. However, in general, one can hardly expect to have such condition. In any 
case the correlation function < e x p r ô 5 > becomes - following Sect. 3.2.2 and 
5.2.2 -

< e x p r ô e > = / e ( V ) A e x p r ö , (6.2.34) 

where e(V) denotes the Euler class of the anti-ghost bundle. One may consider 
correlation functions of other observables Or's with ghost numbers (r, s) given 
by the degrees of s+ and s+ closed Ç equivariant differential forms 0T'S - see 
Sect. 4.1.1. We have - see Sect. 3.2.2 -

e ( V ) A Ô r i ' S l A . . . A Ô r ' ' , ' 1 (6.2.35) 
an 

where Or's denotes the equivariant differential form ÖT'S after the restriction 
and reduction to 9JÎ. The above correlation function can be non-vanishing if 

l 

^ ( r t , s t ) = ( A , A ) , (6.2.36) 

due to the ghost number anomaly. 
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6.2.4 Relation to Super-Yang-Mills Theory 

We now shortly discuss the relation of holomorphic Donaldson-Witten theory 
with physical N = 2 supersymmetric Yang-Mills theory in 8 real dimensions. 

First note that because we defined the model for a Calabi-Yau 4-fold, the 
holonomy of the manifold is reduced from 50(8) to SU(4). Let us see how the 
various representations of these groups reduce under this restriction, see [98] 
for a similar analysis. First note that the group 50(8) has three inequivalent 
8-dimensional representations, which are called 8„ (the vector representation), 
8„ and 8C (the two chiral spinors). These representations reduce as follows to 
SU (4) representations 

8^,8,, - > 4 © 4 , 8C-> 6 0 2 x 1 . (6.2.37) 

Note that the representations 4 and 4 are pseudo-real and symplectic real. 
Therefore in fact the complexified SO(8) representations 8„ and 8 , reduce in 
this way. Let us now look at the field content of physical Yang-Mills. It consist 
of a vector in 8V (the gauge field), two real (or one complex) scalars and two 
complex spinors of both chiralities, so 8, © 8C. On a Calabi-Yau 4-fold, we see 
from (6.2.37) that the gauge field reduces to a 4 of 4 of SU(4) (the difference is 
just a matter of convention). Now let us see what happens to the spinors. The 
spinor transforming in the 8S goes to 4 © 4. The other one reduces to 6 © 2 x 1. 

Now we can interpret this neatly in term of the field content of holomorphic 
Donaldson-Witten theory. Indeed, the gauge field is in the 4 of SU(4). Fur­
thermore, we have two real scalars 4>±± (o r o n e complex). For the fermions in 
our model, the fermions the V^'1 and rp+ exactly transform according to 4 © 4, 
while the holomorphic self-dual spinor \— n a s s^x r e a l components, and there­
fore should transform in the 6 of SU(4); and the remaining two real spinors are 
rç_ and rj_, having one complex of two real components. The supersymmetry 
charges of Yang-Mills transform in the the 50(8) representation 8C © 8». Using 
(6.2.37) we readily see that we get two supercharges which transform as scalars 
under the holonomy SU (4). These should therefore be identified with the global 
supercharges on a general Calabi-Yau 4-fold. Furthermore, these supercharges 
both originate from the same charge of the Yang-Mills theory, and therefore 
carry the same ghost number. So we should get Nc = (2,0) supersymmetry. 
This is exactly the global supersymmetry of our model. 

Therefore we see that both the field content and the global supersymmetry 
of holomorphic Donaldson-Witten theory is completely equivalent to that of 
physical Yang-Mills theory on a Calabi-Yau 4-fold. Note that the twisting in 
this situation does nothing. But we can even say more. It can be shown that the 
action functional (6.2.28) is exactly the action functional, up to a topological 
term, of N = 2 supersymmetric Yang-Mills in eight dimensions. This shows 
equivalence between N = 2 super-Yang-Mills theory and our holomorphic Nc = 
(2,0) Donaldson-Witten model on a Calabi-Yau 4-fold. 



Chapter 7 

Cohomological 
Yang-Mills-Higgs Theory 

7.1 Introduction 

In this last chapter we introduce a new four manifold invariant which seems to 
have a good chance of carrying new information beyond Donaldson-Witten or 
Seiberg-Witten invariants. We define two models with Nc = (2,0) and iVc = 
(2, 2) supersymmetry, respectively, which are generalizations of Donaldson-Witten 
and Vafa-Witten theories on Kahler 2-folds. Then we consider a general iVc = 
(2,0) model which have the various interesting limits. Thus we are returning 
back to the subjects in Chapter 4. The similar generalizations of the theories in 
Chapter 5 and 6 are also possible which will appear elsewhere. Our models in 
this chapter combine the various general structures and ideas which we discuss 
before. 

To motivate this chapter, it is useful to recall the models in the previous 
chapters. In Sect. 3.3 we studied a general equivariant Nc = (2,0) model. 
Such a model is classified by a Kahler target space A with a group G acting 
as an isometry, which determines a Ç-equivariant momentum map fi : A —> 
Lie(G)*• We further have a Hermitian holomorphic vector bundle E —> A with 
Ç-equivariant holomorphic section S . Then the bosonic part of the pa th integral 
reduces to an integration over M. := 6 _ 1 PI / i _ 1 ( £ ) /£ ; the solution space of the 
following equations, modulo G, 

6 = 0, , 
, : (7.1.1) 

fi-C-0, 
provided that we are evaluating correlation functions for supersymmetric observ­
ables. Those observables correspond to elements of ^-equivariant cohomology of 
A. The correlation functions of such observables are identified with intersection 
numbers of homology cycles, represented by the observables, in [e(V)], where 
[e(V)] denotes the cycle in A4 Poincaré dual to the Euler class e(V) of the anti-
ghost bundle V over M. If the model has actually Nc = (2,2) supersymmetry 
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the anti-ghost bundle V can be identified with the tangent bundle TM and 
the part i t ion function is the Euler characteristic of A4. The moral underlying 
cohomological field theory is tha t the triple (A,G,E) can be all infinite dimen­
sional but certain pa th integral can still be reduced to an integral over finite 
dimensional space A4. 

In Sect. 4.1 we studied such an example of equivariant Nc = (2,0) model 
where A is the space of all connections (gauge fields) on a Hermitian vector 
bundle E —> M over a complex d-dimensional Kahler manifold M and G is 
the group of all gauge transformations. This determines a localization equation 
from the momentum map /z; 

iAF-(IE=0, (7.1.2) 

where ( is the Fayet-Illiopolous term. The solution space of this equation modulo 
G is infinite dimensional except for d = 1. For d > 2 we consider an infinite 
dimensional bundle E —> A with Ç/-equivariant holomorphic section 6 . We saw 
tha t there is an unique choice & = F0'2 on a general Kahler manifold, leading 
to another localization equation, 

F0'2 = 0. (7.1.3) 

An integrable connection F0,2 = dA = 0 is called Einstein-Hermitian or Hermitian-
Yang-Mills if it further satisfies (7.1.2). Thus the pa th integral is localized to 
the moduli space AAEH of Hermitian-Yang-Mills connections, or equivalently 
the moduli space of semi-stable holomorphic bundles. For d = 1 and d = 2 the 
Einstein-Hermitian condition is the same as the flatness and anti-self-duality of 
the gauge fields, respectively. 

In Sect. 3.4 we showed tha t a class of equivariant Nc = (2,0) model can be 
extended t o aJV c = (2, 2) model. The essential point of such a construction is 
introducing additional bosonic fields corresponding to the local frame fields on 
the image of the section & : A —ï E. In Sect. 4.2 we applied the method to 
Donaldson-Witten theory and obtained Vafa-Witten theory. Then we defined 
a family of models interpolating between the two theories and obtained useful 
information about both Donaldson-Witten and Vafa-Witten theories. 

In this chapter we generalize Donaldson-Witten (N = 2 SYM) and Vafa-
Wit ten (N = 4 SYM) theories on Kahler surfaces. The similar generalization 
would be possible for models in higher dimensions. The basic idea is to extend 
our target space A to the total space T* A of its cotangent bundle. Since A 
is a flat affine Kahler manifold a cotangent vector is represented as an element 
of fi1 (M, End(E)). Thus we introduce additional bosonic fields tp given by 
an adjoint valued 1-form <p € fi1 (M', End(E)). Then, by decomposing (p = 
(p^'Q+ip0,1, we have to determine which component form holomorphic multiplets. 
We have to declare tp1'0 to represent holomorphic coordinates on the fiber space 
of T M , since we already fixed a complex structure of A by declaring tha t the A0 '1 

component of a connection 1-form represents holomorphic coordinates. Thus we 
have s+A0'1 = s + y 1 ' 0 = 0. Now one may proceed to construct a iVc = (2,0) 
model with target space T" A. 
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A beautiful fact for any cotangent bundle of a Kahler manifold is that it 
always has canonical hyper-Kähler structure [120]. Thus it is natural to consider 
hyper-Kähler quotients. Then the real momentum map equation (7.1.2) for A 
is generalized to the hyper-Kähler momentum map equations for T*A, 

ax?1*0 = o, 
iA(F + [^°,^})-a = 0-

However the resulting hyper-Kähler quotient of T*A by Q will be infinite dimen­
sional except for the d = 1 case, where the quotient space is Hitchin's moduli 
space [112]. To obtain a finite dimensional space we extend the bundle E —> A to 
E —¥ T*A and try to cut out the hyper-Kähler quotient space by the vanishing 
locus of suitable (/-equivariant holomorphic sections. 

A natural choice on a Kahler surface is 

F 0 ' 2 = 0, 

dAf1'0 = 0, (7.1.5) 

which defines Higgs bundles of Simpson [121] [122]. The above equation can be 
2 

viewed as a generalization of the integrability dA = 0 of the connection 8A to 
the integrability of the extended connection D" = OA + ip1'0. Our model based 
on (7.1.5) is a generalization of Donaldson-Witten theory. We will also study 
the similar generalization of Vafa-Witten theory. 

Another beautiful fact for any cotangent bundle of a Kahler manifold is that 
it always has the equivariant S1-action acting on the fiber. Such a S1-action 
on T*A descends to the moduli spaces above. We will use the S1 symmetry to 
define a family of models, which have many interesting limits. 

7.1.1 Preliminaries 

We consider a rank r Hermitian vector bundle E —> M over a complex d-
dimensional Kahler manifold M with Kahler form LO. Consider the space A of 
all connections of E and the cotangent bundle T*A. First we determine the fields 
representing the cotangent space T*A. For the base space A of T*A we have con­
nection 1-form A = A1'0-!-A0,1 with the usual gauge transformation law. We in­
troduce a complex structure I on A using the complex structure of M by declar­
ing A0'1 to represent holomorphic coordinates. Since A is a flat affine Kahler 
manifold a cotangent vector is represented as an element of Cl1 (M, End(E)). We 
introduce an adjoint valued bosonic 1-form <p £ fll (M, End(E)), which may be 
regarded as an element of the cotangent space of A. According to the complex 
structure of M we have a decomposition p = tp1'0 + ip0'1. Then it is natural 
to fix the complex structure of the fiber space of T*A by declaring if1,0 to be a 
holomorphic coordinate. Thus the (holomorphic) tangent space of T'A is given 
by 

Çl°>l(M,End{E))®nl>°{M,End{E)). (7.1.6) 
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We denote the above complex structure also by I and call it the preferred 
complex structure, which has been induced from the complex structure of M. 
The total Kahler potential K{A, <p) of the total space T*A is given by 

K(A, <p) = IC(A) - ^ i ^ JM T r ( / - ° A ^ 1 ) A a,«"1 (7.1.7) 

where the Käher potential K.(A) of A is 

^ ) = Jï^n I « T r ( F A F ) A W
d - 2 . (7.1.8) 

and the added term is a Kahler potential in the space B. On the total space 
T*A we have a obvious action of the infinite dimensional group G of all gauge 
transformations, preserving the Kahler potential K.{A,tp). 

Now we introduce our Nc = (2,0) supercharges s+ and s_ with the familiar 
commutation relations 

4 = 0 , {s+,s+} =-i<pa
++Ca, s2

+=0. (7.1.9) 

The supercharges are identified with the differentials of (/-equivariant cohomol-
ogy of our target space T* A. Thus <f>++Ca is the infinitesimal gauge transfor­
mation generated by the adjoint scalar 4>++ E Lie{Q) = fi°(M, End(E)). From 
the complex structure of T* A introduced above we have two sets of holomorphic 
multiplets (A0'1,^1) and (cp1,0,A+°) and their anti-holomorphic partners. The 
supersymmetry transformation laws are given by 

(7.1.10) 

and 

S+A^=i^\ s+V'+1 = o, 

s+A0'1 = 0, s+V'+1 = -dA<i>++, 

s+A1'0 = 0, s+V>+ = -dA<t>++, 

s+A^° = t ^ ° , - T1-0 n 8+V+ = 0, 

1,0 \ 1 , 0 S+X+ = 0, 

s+V1'0 = 0, — X 1 . 0 IA ,/,1.01 

s+tfi0'1 = 0, S+X+ =[$++, V0'1}, 
^ „ 0 , 1 _ „-T0.1 ^ T0-1 n 

(7.1.11) 

s+v"'1 = »A+~, s+X^ = 0. 

From the transformation laws we have the following total £-equivariant 
Kahler form on T*A, 

w'g =is+s+K.(A,ifi) 
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The second term in the above is the Kahler form wT of T*A and the first term is 
the real ^-momentum map (f>a

++Ha, MR : T*A -»• Lie{Q)* = ü2n(M,End(E)); 

v ' (7.1.13) 

where A denote the adjoint of wedge multiplication with u>. 
Following Hitchin [112] we have a natural hyper-Kähler structure ƒ, J and K 

on T*A. Note that the additional complex structures J and K have no relation 
with the complex structure on the manifold M. Then we define the holomorphic 
symplectic form wc on T*A by 

wc((61A°'1,Sl^
0),(S2A°'1,62tp

1'0)) 

= ^ T T T / T r (<W'° A ^ i ^ ' 1 - <W'° A *62A°+). ( 7 - L 1 4 ) 
2(d) !?H JM 

The corresponding complex momentum map fie °n T*A is given by 

"c = m^d^'°A ^ = ä^w)A w* ( 7 - 1 - 1 5 ) 
Using the Kahler identities 

dA = i[dA,A], d*A = -i[dA,A], (7.1.16) 

we see that the zeros of the complex momentum map is given by 

A d V ' 0 -> 9ÎV1,0 = 0. (7.1.17) 

7.2 Generalized Donaldson-Witten Theory 

From now on we consider a rank r Hermitian vector bundle E —> M over a 
complex 2-dimensional Kahler manifold M with Kahler form w. Consider the 
space A of all connections on E and the cotangent bundle T* A. We have the 
same holomorphic coordinates fields A0'1 and ip1'0 E Cl1'°(M, End(E)) of T*A, 
with the supersymmetry transformation laws in (7.1.10) and (7.1.11). We also 
have the usual Nc = (2,0) gauge multiplet. 

Now consider an infinite dimensional Çy-equivariant holomorphic Hermitian 
vector bundle E -¥ T*A over T*A with a suitable Ç-equivariant holomorphic 
section 6(A°-1,<p1'0), i.e., s + 6 ( ^ 0 ' 1 , (p1-0) = 0. We only have the following 
possibility for this; 

ëiA0'1,^'0) = F0-2 © c W ' ° © (f1'0 A ^ 1 ' 0 ) . (7.2.1) 

We choose this most general form as our holomorphic section. We have a natural 
paring of the holomorphic section with corresponding anti-ghost fields T_ given 
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by JM Tr(T_ A *6) . Thus the anti-ghost for the F 0 ' 2 bit of section belongs to 
n2'°(M, End(E)), the anti-ghost for the mixed part belongs to Q1'1(M, End(E)) 
and the anti-ghost for (ip1-0 A tp1'0) belongs to fl°'2(M,End(E)). 

Associated with the holomorphic section F 0 ' 2 over the base space A of T*A 
we have Fermi multiplet (xî'0,-/?2'0) £ ü2'°(M,End(E)) and anti-Fermi multi­
plet (x°J2,tf°-2), 

s+Xl:0 = -H2>0, s+H2>° = 0, 

ä + X
2 J ° = 0 , s+H^° =-i[<ß++,XY], 

a+X±2=0, S+H°'2 = -i{4>++,x*-2], 
s+X°:2 = -H0-2, s+H°'2=0. 

Associated with the mixed component of holomorphic section oUv1'0 over T*A 
we have Fermi multiplets (xJ ,H1,1) € Q},1{M,End{E)) and their anti-Fermi 

partners (x J ,H'), 

s+xll^-H1'1, s+H^^O, 

ä+xll1=0, â+H1 '1 = - # + + , xL'1], 
, i —ii , i (7-2.3) 

s+xb1 = -H1'1, s+H1A=0. 

Associated with the holomorphic section ip1'0 A ip1,0 over the fiber space of T*A 
we have Fermi multiplet (r/°'2,X0 '2) £ Ct2'°(M, End(E)) and their anti-Fermi 
partner {rj2fi,H2^) 

s+r,0:2 = -K2<°, s+K2'0 = 0, 
— 0,2 n — 7^2,0 TJL 0,2i 

a+v- = 0 , s+K ' = - # + + , / / _ ' ] , 

—2,0 n - j^0,2 •[, —2,0i \ • • ) 

s+rç2.'0 = -if0 '2, s+tf0 '2 = 0. 

Now we consider the following JVC = (2, 0) supersymmetric action functional 

*-£± fjr (x2J°A *x°_2 + X1-1 A tx1-1 + V°J2A *r?_l°) 

S + / T> I 2,0 . r-.0,2 , 1,1 A a 1,0 , 0,2 . , / 1,0 . 1,0\ \ 
— / Tr X - A * F ' -f X- A *OAV + V- A *Up ' A tp ' ) 
71-2 7M V / 

+ g ± £ Tr (x°J2 A *F2'° + xL'1 A ^ V 1 + ï?2-'0 A ^ 0 ' 1 A <p°<^ , 
(7.2.5) 

We set £ = 0 for simplicity by restricting to the case with Ci(E) = 0. By 
expanding the above and integrating out the auxiliary fields we see that the 

+ 

i s 
+ 4~TT2 
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path integral is localized to the moduli space defined by the following equations 

F 0 - 2 = 0, 

- , n (7 -2 -6 ) 

iA(F+[lfi
1'o,^})-(IE = 0. 

The first three equations above are from & = 0 and the last equation is 
from the total momentum map /xR (7.1.13). The Higgs bundle (8A, <p1,0) of 
Simpson [121][122] is defined by the first three equations in (7.2.6), which 
can be Regarded as integrability ( D " ) 2 = 0 of the extended half "connection" 
D" = dA + tpl'°. There is notion of semi-stable Higgs bundle and a theorem 
analogous to Donaldson-Uhlenbeck-Yau such tha t every semi-stable Higgs bun­
dle (E, tp1'0) has an Einstein-Hermitian metric; 

iA(F+[^°,^1])-CIE = 0. (7.2.7) 

Furthermore the extended connection is flat, i.e., D' o D" + D" o D' = 0, if and 
only if ci(E,(pl>°) = c2{E,ip1'0) - 0. Thus the pa th integral of our model is 
localized to the moduli space of semi-stable Higgs bundles. We also have other 
bosonic localization equations, as usual 

4A4>++ = 0, 

[<A++,#]=0 , (7.2.8) 

If the connections are irreducible we have <f>±± = 0 and G acts freely on the 
solution space of (7.2.6). The resulting moduli space is then isomorphic to the 
moduli space of stable Higgs bundles. We denote the moduli space of semi-stable 
Higgs bundle by M'. Note that the moduli space Af contains the moduli space 
M of semi-stable bundles, equivalently the moduli space of EH or anti-self-dual 
connections on a Kahler surface M. 

From now on we set Q = 0 for simplicity. 

7.2.1 Comparison with Donaldson-Witten Theory 

At this point it is useful to compare with Donaldson-Witten theory. The path 
integral of Donaldson-Witten theory is localized to the moduli space M of anti-
self-dual connections defined by 

(dAf =0, 
_ _ 7.2.9 

A(dA odA + dAodA) = o. 

Define D" =dA+ ip1-0 and D' = dA + ̂ 0- 1 . Our localization equations (7.2.6) 
can be written as 

(£>")2 = 0, 

\(D' o D" + D" o D') = 0. ( 7 ' 2 ' 1 0 ) 
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Similarly we can combine the superpartners of A0'1 and ip1'0, and the anti-ghosts 
{X2'°,X-1,V-2)- T o s e e t n i s l e t u s define extended fields 

A(o,D 

(0,1) 

+ 
(2,0) T 

# ( 2 , 0 ) 

= A°'1+<p1'0, 
1,0 ; U , 1 . \ 1 , U 

= 1p+ + A+ : 
2,0 . 1,1 , 0,2 

= X - +X- +V- > 
= tf*.° + J/M + / f A0,2 

A ( i , o ) 

-r( i ,o) 

Jf(0,2) 

,1,0 0,1 = A>'u + ip' 
-rl ,0 -r0,l 

—0,2 . —1,1 , —2,0 

= X- +X- +V- , 

= H0'2 + H' 

(7.2.11) 

2,0 

where the superscript of the extended fields represent a graded form degree on 
M. That is we exchange holomorphic and anti-holomorphic differential form 
degree on M of fields associated with if1'0 and ip0'1. For example^the extended 
anti-ghost ï ^ ' 0 ) is associated with the total holomorphic section 6 := f,(°>2' := 
j?o,2 + 0 ^ 1 . 0 + ^1,0 A ^1,0 o f g ^ T*A b y t h e p a i r i n g JM T r ^T(_2.°) A *.p(o,2)) 

Note that the combinations (7.2.11) preserve the ghost numbers 

*iO,1):(+l,0), ¥iA:(0,+l), 
T (_ 2 ' 0 ) : ( -1,0) , T (_°'2 ) :(0,-1). 

The supersymmetry transformation laws for the coordinate fields of T*A are, 
combining (7.1.10) and (7.1.11), 

a + A ( o , i ) = . $ ( o , i ) ) 

s+A^ = 0, 

s+A^V = 0, 

s+A^ = i * 

a+9™ = 0, 

s 

(1,0) 

-D"4>++, 

+*<!'0) = - D V + + , 

s + ^ 0 ) = 0. 

(7.2.13) 

The supersymmetry transformation laws for the Fermi multiplet (T_ ' , if(2 , 0 )) 
are, by combining (7.2.2), (7.2.3), and (7.2.4) together, 

8+ï(_2,o) = _H(3,o) i S+HW=0, 

s+H™ = -# + + , ï ( _ 2 ' 0 ) ] , 

s+H^ = ^[4>++,r{°'2\ 

s+H^ = 0. 

â+ïL2 '0) = 0, 
~(0,2) 

s + T _ = 0 , 

(7.2.14) 

•(0 '2) = _ H ( 0 , 2 ) 
s+TJ 

We have the usual Nc = (2,0) gauge multiplet associated with the unitary 
gauge transformation. For convenience we rewrite down supersymmetry the 
transformation laws 

s+<l>— = i»7_, 

s+<f>— =irj-, 

s+V- = 0, 

s+ri- = +iH0 + -[<)>++, <j>—], 

s+rj_ = -iH0 + -[(j>++,(f>—], 

S+Tj_ = 0, 

S+9++ = 0, 

<*+<!>++ = 0. 
(7.2.15) 
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Now the action functional S in (7.2.5) can be written as 

, s+s+ f T f A - _L -r(2'°) A ^°'2)\ H =- / Tr (TI_ A *T)_ + T_ ' A * T _ I 
4TT2 JM V y 

+ lf± ƒ Tr(ïL2'0)A*F(°-2)) + g ± ƒ Tr(rt°,2)A*F<2' 
(7.2.16) 

where 

r = 1 F ( M ) A a , (7.2.17) 
MK - 4*2 

The above action functional has exactly same form as Donaldson-Witten theory 
on Kahler 2-folds, see (4.1.15). We remark that the Kahler identities (4.1.19) 
are important technical tools in analyzing Donaldson-Witten theory on Kahler 
manifolds. Simpson showed that one also has the Kahler identities for Higgs 
bundles, 

(D'y = ."[A, D'% (D"y = -<[A, D'], (7.2.18) 

We will work with the above shorthand notations. 

7.2.2 Path Integrals 

The explicit form of the total action functional S' after integrating out all the 
auxiliary fields from S is given by 

5' = J L ƒ ^ ( - \ F + A *F+ - D4>++ * D4>— + ^ + + , 0 _ _ ] * [4>++,<t>—] 

+ 4>-- * A [ * r \ * H + *T2J0 A *[^++,TL°'2)] + i[4>++,v-] *V-

- iD'rj_ A ̂ ^ 1 ) - iJD'V A *¥Ï '0 ) - T2<° A *D"¥°>1J 

-T(0'2)A*B'*Ï'0)Y 
(7.2.19) 

where D = D' + D" and we we used the extended Kahler identities (7.2.18). 
We also used notation F + , which is given by 

F+ = F(2,o) + 1(AFW)W + F<°-2\ (7.2.20) 

so that F+\vi.o=ipo.i=0 = F+, where F+ denotes the self-dual part of the odinary 
curvature two-form F. Note that F+ also contains anti-self-dual two-form part 
as well. 
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Now we examine the equations for fermionic zero-modes. The equation of 
motions for fermions are, modulo infinitesimal gauge transformations, are 

iD"rj_ + (£>")* ï (_°'2 ) = 0, 

( £ > " ) * ^ 0 , 1 ) = 0, (7.2.21) 

D"y{°'1] = 0. 

Using one of the bosonic localization equation (D")2 = 0, we find tha t the 
fermionic zero-modes are governed by the following equations 

D"r?_ = 0 , , , ' ( £ > " ) * ï _ 2 ) = 0. (7.2.22) 
D"y{°A) = 0, 

Thus the fermionic zero-modes are elements of cohomology group of the follow­
ing extended Dolbeault complex 

0 -> S<°>°) ^ S ^ ^ S<0'2) -> 0, (7.2.23) 

where 
SC.p) = 0 n°'r(M,As(T^'°)®End{E)). (7.2.24) 

r-\-s=p 

The net ghost number violation in the pa th integral measure due to fermionic 
zero-modes is (A, A) where A is the negative of the index of the above com­
plex. Almost all of the s tandard procedure in Donaldson-Witten theory can 
be repeated here. For example observables are (/-equivariant closed differential 
forms, after the parity change, on the space T*A. As for a canonical observable 
we have the (J-equivariant Kahler form, after the parity change, on T*A\ 

iJX^F"'") A"+^IX*'°l'^m)^ <7-2-25) 
The correlation functions of supersymmetric observables are the pa th integral 
representations of a generalized Donaldson-Witten invariant. 

We note tha t the fundamental group of four-manifold does not seem to play 
any essential roles in the original Donaldson-Witten theory. On the other hand 
the most crucial application of Simpson's Higgs bundle is on the non-Abelian 
Hodge theory associated with the representation variety 7rx(M) —» GL(r, C) of 
the fundamental group. For this purpose let us consider the case the Ci(E) = 
02(E) = 0.1 It is known tha t there is a one-to-one correspondence between 
irreducible representations of -ïï\ (M) and stable Higgs bundles with vanishing 
Chern classes, see [122]. In this si tuation Donaldson-Witten invariants con­
cern only the unitary irreducible representation variety. An important property 
of the moduli space of stable Higgs bundles is the existence of a C* action 

JI t is not obvious if the moduli space of stable Higgs bundles has a hyper-Kähler structure. 
For the flat case the existence of hyper-Kähler structure has proved by Fujiki [123]. 
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(E, ip1'0) —> (E,tip1,0). Simpson showed tha t the fixed points of C* action cor­
respond to complex variations of Hodge structures. It also implies tha t any other 
representation of 7Ti (M) can be deformed to a complex variation of Hodge struc­
tures. Among the fixed points the trivial complex variation of Hodge structures 
corresponds to unitary irreducible representations. A useful viewpoint of the 
C* action is to regard it as Hodge decomposition of non-Abelian cohomology. 
Then a unitary representation is some kind of zero-form. The above results also 
imply tha t the pa th integral of our model for Ci(E) = 02(E) = 0 can be written 
as the sum of contributions from every complex variation of Hodge structures. 
Thus it is na tura l to hope tha t our new invariants may have information beyond 
the Donaldson-Witten and Seiberg-Witten invariants for non-simply connected 
Kahler 2-folds. Of course we do not need to restrict our at tention to the flat 
case. 

The moduli space of stable Higgs bundles have many beautiful properties 
and applications. One of the properties is tha t the rank r stable Higgs sheaves on 
M can be identified with stable sheaves on the cotangent bundle T*M which are 
supported on Lagrangian subvarieties of T*M which are finite degree r branched 
coverings of M [124] [125]. The above property may be relevant to generalized 
mirror symmetry on Calabi-Yau 4-folds [92]. If we consider the complex 2-torus, 
T 4 , its cotangent bundle may be regarded as local model for T4-fibered Calabi-
Yau 4-folds. Then the moduli space of stable rank r Higgs sheaves may be 
viewed as parameterizing r £)4-branes wrapped on Lagrangian cycles of Calabi-
Yau 4-folds. Of course the above picture is too naive but somewhat suggestive. 
Here we will not be able to penetrate many of the applications and properties 
of Higgs bundles. We will use its S 1 symmetry to have an anatomy of our 
invariants. 

7.2.3 Flows to Donaldson-Wit ten theory 

In the lay men's terms Donaldson-Witten invariant is simply the symplectic 
volume of the moduli space M. of stable bundles on M. Similarly, the invariants 
defined by the correlation function (exp(w^)) is the symplectic volume of the 
moduli space AT of stable Higgs bundles. One of most important properties of 
the moduli space Af is tha t it has a symmetry under a 5 1-act ion, which can 
be extended to a C*-action. The beautiful fact is tha t the C* action is a very 
special one, related with a certain variation of Hodge structures2 

First we note tha t our localization equations in (7.2.6) are more than the 
equations (7.2.10). We may replace D" by a family of extended derivatives by 
introducing a spectral parameter t, 

D" = dA +t^° 
D' = dA + tip' 

(7.2.26) 

2This notion will be relevant to the case when the Higgs bundle is flat. Then D = D' +D" 
can be identified with the Gauss-Manin connections of the associated local system. Then our 
localization equations are familiar tt' -equations in special geometry [126]. In fact for any 
complex, not necessarily integral, variation of Hodge structures there is a corresponding flat 
Higgs bundle. 
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Then our localization equations in (7.2.6) imply tha t 

( D " ) 2 = 0, 

A ( D ' o £>" + D" o D') = 0, 
(7.2.27) 

for any t with tt = 1. Similarly we replace the extended fields defined in (7.2.11) 
as follows 

A ( o , i ) 

T(2,0) 

ff(2,0) 

/0,1 . . x l , 0 

2,0 , J 1,1 . T2 0,2 
= X+ + tX- +t T}- , 

= H2'° + tH1'1+?K 0,2 

Ad,o) 

//•(0,2) 

—1,0 --r-0,1 
= ip+ +1\+ , 

—0,2 . .—1,1 , .2— 2,0 
= X- + tX- + tf)l , 

= H0'2 + tH 
1,1 + t2K2'0. 

(7.2.28) 
Then our action functional S in (7.2.5) or (7.2.16) is invariant for any t with 
ti= 1. 

We will show shortly tha t the S1 action can be extended to a C* action by 
"gauging" the U(l) = S1 symmetry and scaling the unit U(l) charge. Such 
a procedure is equivalent to giving physical bare mass m to the U(l) charged 
fields. Thus one can consider an imaginary QP 1 where the C* action covers the 
natural C* action on GP 1 with limit points (t = 0,t = oo). Now we can identify 
the two limit points in QP with (m = oo,m = 0). Thus we can interpret 
the absolute flow generated by the C* action as a renormalization group flow 
from the past or unbroken phase m = 0 to the future (present) or broken phase 
m —> oo. This is not just a mere fantasy since we indeed have a twistor space 
constructed from the function space of fields namely the total space T*A of the 
cotangent bundle over the space of all gauge fields. Our field space has a hyper-
Kähler structure preserved by the Q as well as by the S 1 symmetry acting on the 
fiber of T*A. Such a S 1 action can be extended to a C* action and then cover the 

C* action of QP in the twistor space T*A x ' Furthermore the Hamiltonian 
of the 5 1-act ion on the field space is precisely the physical bare mass of the 
bosonic fields, whose field space are the fiber of T* A on space-time M. Now 
by taking the m —> oo limit the dominant contributions to pa th integral come 
from the critical points of the Hamiltonian, equivalently from the fixed points 
of S^ac t ion . Similarly in the t —ï 0 limit any point in the field space flows to a 
certain fixed point of the 51-act ion. In the trivial fixed point ip1,0 = 0 we recover 
original Donaldson-Witten theory. As a global supersymmetric field theory on 
M certain path integral of our model will be localized to a finite dimensional 
subspace Af of the hyper-Kähler quotient of T*A by Q. The above argument is 
valid regardless whether Af preserves the hyper-Kähler s tructure or not. 

We may ask an interesting physical question. Donaldson-Witten theory is 
the twisted N = 2 supersymmetric Yang-Mills theory. On a manifold with 
trivial canonical line bundle twisting does nothing and we have space-time su­
persymmetric Yang-Mills theory. Then where shall we place our model? Our 
proposal is tha t it may describe a certain unbroken phase of bigger symmetry 
which is connected to the physical super-Yang-Mills theory by renormalization 
group flows, and the physical theory lives in one of the fixed points. 
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Now we perturb our model by "gauging" the C/(l) symmetry. For this we 
modify the supersymmetry transformation laws according to the following anti-
commutations relations 

4 = 0, {s+,8+} = -i</>%+Ca-im£si, s2
+ = 0. (7.2.29) 

We define a new action functional S(m) by the same formula as S in (7.2.16) but 
with the modified transformation laws. Then we define a family of Nc = (2,0) 
models parameterized by m and m with the following action functional 

S(m, m) = S(m) + ims+s+K.(D), (7.2.30) 

where K{D) is the Kahler potential of T*A given by (7.1.7). Then the action 
functional contains bare mass terms for all the charged fields under the (7(1), 
except for auxiliary fields. The relevant terms in the action functional looks 
like 

S(m,rn) = S 

- ^ jMTr [i4>++(F + [^0, ^}) + ^0/Alp1;0+ Xl/At;1) Au, 

+ ^ P f Tv(^°A^)Au, + .... 
4?r2 JM 

(7.2.31) 
In the above the mm dependent term is the Hamiltonian of the 51-action on 
T*A. The term in the second line is the equivariant Kahler form Wj. of T*A. 
Thus Bg := W^\A is an observable of Donaldson-Witten theory which will 
descend to the Kahler form of moduli space M of anti-self-dual connections. 

Now by taking the m —• oo limit we see that the dominant contributions to 
the path integral come from the critical points of the Hamiltonian of the S1-
action. Such critical points are identical to the fixed points of the S^action. As 
usual we always have trivial fixed points given by fl'° = 0 and the fixed point 
locus is the moduli space M of anti-self-dual connections. Thus the contribution 
from the trivial fixed points to the partition function of the model with the 
action functional S(m,m) is given by a generating functional (exp(ûç))DW of 
Donaldson-Witten theory weighted by one loop contributions from the degrees 
of freedom normal to M in J\f. We also note that the value of the Hamiltonian of 
the S1-action at the trivial fixed point is zero. There are other non-trivial fixed 
points ip1'0 ^ 0 if the 51-action can be undone by the gauge transformations, 

fl^-V1 = V ' ° , (7-2-32) 

where g € G and t 6 U(l). 

7.3 Generalized Vafa-Wit ten Theory 

In this section we apply the construction in Sect. 3.4 to embed the previous 
Nc = (2,0) model on a Kahler surface M to a. Nc = (2, 2) model. The resulting 
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model generalizes Vafa-Witten theory and compute Euler characteristic of the 
moduli space of stable Higgs bundles together with extra (!) contributions. The 
construction of the model will be straightforward exactly as in Sect. 4.2 for 
Vafa-Witten theory on Kahler surface. Then we define C family of Nc = (2, 2) 
models which has various interesting limit. 

We recall the basic setting for the previous Nc = (2,0) model. We consid­
ered the total space T*A of the cotangent bundle of the space of all connections 
of a rank r Hermitian vector bundle E —> M over a Kahler surface M. As 
for the holomorphic coordinate fields on T*A we have the extended connec­
tion A 0 ' 1 with superpartner $_^ . We also considered an infinite dimensional 
(/-equivariant holomorphic vector bundle E -> T*A with holomorphic section 
©(£>") = (D")2 := F(°-2> and associated anti-ghost multiplet (T (_ 2 ' 0 ) , f f ( 2 ' 0 ) ) . 

The basic idea behind the extension to a Nc = (2, 2) model is tha t one can 

regard the total space of the holomorphic bundle E —• T*A as the target space 

of a Nc = (2,2) model. Then we have to supply local holomorphic coordinate 

fields for fiber space of E —• T*A. Thus we introduce adjoint-valued bosonic 

spectral fields i? ( 2 ' 0 ' and its superpar tner Y + ' . Now the former holomorphic 

section 6 = f (° - 2 ) (£)" ) of the bundle E —> T*A corresponds to a holomorphic 

vector field on the target space E but being supported only on T*A. Thus the 

(y-equivariant holomorphic vector ©(£)") should be extended over the whole 

space E. Furthermore iVc = (2, 2) supersymmetry demands that a such holo­

morphic vector should be the gradient vector of a non-degenerated ^-invariant 

holomorphic function W, i.e, s + W = 0, on the target space E. 

Now demanding Nc = (2,2) supersymmetry will take care of everything. 

From the Nc = (2,0) holomorphic multiplets (A*0 '1 ' , ^{°'1]) we build up the 

following chiral multiplets, i.e., s±A^0,1' = 0 

^(0,1) £-_ A(o,i) ±^ ^(0,1) 

ff(0,D 

From the Nc = (2,0) Fermi multiplets (T ( _ 2 ' 0 ) , i î ( 2 ' 0 ) ) we build up another set 

of chiral multiplets, i.e., s ± ß ' 2 ' 0 ' = 0 

T(2,o) »-_ B(2,o) _!+» x ( 2 ' 0 ) 

H(2,0) 

Form the iVc = (2,0) gauge multiplet (<j> ,r)_,r]_,H0,<j>++) we build up a 
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Nc = (2,2) gauge multiplet 

a —y n+ i— <t>++ 

i°- iJ- I'-
7- —> ti0 i— V+ , 

*+ «+ *+ 

(7.3.3) 

which are adjoint valued scalars on M. 
To keep track of all the fields we write down the explicit spectral form of the 

extended fields. We have 

,4(0,1) 

^ ( 0 , 1 ) 

tfd.O) 

1,0 = A0'1 + tip 
,0 ,1 . . »1 ,0 

^H'^+tL1'0, 

and 

_ß(2,0) 

T (2 ,0) 

# ( 2 , 0 ) 

B^ + tB^'+fc0'2, 
2,0 . T 1,1 . T2 0,2 

X± +tx± +t 7?±' , 

Ad,o) 

^r(i,o) *± 
#(o,D 

jg(o,2) 

Y(°'2) 

# ( 0 , 2 ) 

= A 1 ' U +V ' \ 
"7-1,0 ^ r f l . l 

= r/>± + tX± , 

= if0 '1-hit0 '1 , 

(7.3.4) 

= B°'2+tW' +t2C2<°, 
—0,2 . .—1,1 . .2—2,0 

= X± + *X± + * »7± > 
^ 2 , 0 + ^ l , l + ^ 0 , 2 ; 

Now we have the standard JVC = (2,2) invariant functional 

+ 3+s_W (A'0-1), ß '2-0)) + s + s _ W (A«1 '0 ' , B<0-2') , 

(7.3.5) 

(7.3.6) 

where 

(7.3.7) 

(7.3.8) 

£(jB(2,o))fj(o,2)) = __i_ f T ^ B ^ A * ^ 0 - 2 ) ) . 

The holomorphic potential W, i.e., s±W = 0, is given as follows 

W (A«0 '1 ' , B<2-°>) = J L f Tr (fi«2'0) A *F<°-2>) . 

We note that the above action functional remains invariant for any t in (7.3.4) 
and (7.3.5) with it = 1. We will use this S 1 symmetry to define a C* family of 
the Nc = (2, 2) model. 

Now, from the discussions in Sect. 3.4, we see that the path integral is 
localized to the zeros of the momentum map /ZR and the critical points of the 
holomorphic potential W, modulo the gauge symmetry, 

F ( 0 , 2 ) _ 0 ) 

D " * B(2fi) = 0, (7.3.9) 

i F A W + [ 5 ( 2 ' ° ) , * B ( 0 ' 2 ' ] = 0. 
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We also have other default localization equations 

[*,B^} = 0, [d>±±,B^} = 0, 

[<r,B^}=0, [4>±±,ë] = 0, 

[a,ä}=0, [4>++,4>—]=0, 
Da = 0, D(j)±± = 0. 

(7.3.10) 

A ~ 4TT2 

When there are no reducible orbits in (7.3.9) we have a = (j>±± = 0, and the 
path integral is localized to the moduli space defined by (7.3.9). The equation 
(7.3.9) is a generalization of Vafa-Witten equation. We note that the equations 
in (7.3.9), as well as in (7.3.10), remain the same for any t in (7.3.4) and (7.3.5) 
with tt = 1, which is a symmetry of the action functional. 

The equations in (7.3.9) have another S1 symmetry given by 

(£>",_B<2-°)) -> (D",6B(2'°)) (7.3.11) 

with ££ = 1. However the above is not a symmetry of the action functional due 
to the holomorphic potential term (7.3.8); 

f Tr(B<2'0> A *F^0'2) )+.... (7.3.12) 

The above situation is exactly same as for Vafa-Witten theory on a Kahler sur­
face. We can use the S1 symmetry (7.3.11) to break Nc = (2,2) supersymmetry 
down to Nc = (2,0) supersymmetry by breaking the supersymmetries generated 
by s_ and s_. We expand (7.3.12) by one step to get 

S = i ± - [ Tr ftT(_2,0) A *F<°-2> + .B<2-°> A *D"*(_0,1)) + • • • • (7.3.13) 
8TT2 JM V / 

Then we see that 

(D", ï i , 0 ,B< 2 ' ° \* ( _ 0 , 1 ) ) -» ( Z > " , T ! : 0 , É B ( 2 ' 0 > , £ * L 0 , 1 ) ) (7.3.14) 

for ÇÇ = 1 preserves the action functional. On the one hand the above rotation 
is not compatible with the supersymmetry generated by s_ since s_A'0,1^ = 
i \ I > _ . On the other hand we can make it compatible with the s + supersym­
metry by assigning the same U(l) charge to the pair (U'2 '0 ' , T^_' ) related by 
the s+ supersymmetry, etc. 

In the next section we will use the above S} x Si symmetry to define a 
C* x C* family of Nc = (2,0) theories. The idea is that all the theories, both 
the original and the generalized Donaldson-Witten and Vafa-Witten theories, 
we discussed so far should be viewed as different semi-classical limits governed 
by different massless degrees of freedom of the same underlying theory. 

7.3.1 A Family of Nc = (2, 2) Models 

We begin with generalizing our Nc = (2,2) model to a C* family of 7VC = (2,2) 
models using the Sj symmetry, whose action is given as (7.3.4) and (7.3.5). For 
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that purpose we extend our Nc = (2,2) supersymmetry by "gauging" the S} 
symmetry; 

{«+>*+} = -»>++£<•, 

{*±,*±} = 0, {s+,S-} = -i<Ta£a-im£s}, { s + , s _} = 0, 

{»±,*±} = 0, { s _ , s + } = -i^Ca -im£si, {s+ ,s_} = 0, 

{ « - , « _ } = -i<t>a__Ca, 

where Cs\ denotes the Lie derivative defined by the vector field generating the 
S\ symmetry. Equivalently it is an infinitesimal U(l) gauge transformation for 
fields with non-vanishing U(l) charge as defined by (7.3.4) and (7.3.5). For 
convenience we write down explicit transformations for bosonic fields 

At0-1) := A0'1 + Up1'0, A'1'0» := ̂ 1 ' 0 + t" V 1 , 

B(2,0) : = ß2,0 + t-lBl,l + i-2C0,2 ! B(o,2) . = ß0,2 + ^ M + ^ 2 , 0 

(7.3.16) 
The new action functional S(m,m) is defined by the same formula as given 

by (7.3.6) but with modified supersymmetry transformation laws for charged 
fields under the S* arcodingly to (7.3.15). We write down the relevant terms 
depending on the bare mass 

S(m,m) =S + ^ ƒ Tr (y,1-0A*^-1 + B M A * B h l + 4C0 '2A*C2 '0) + . . . 

(7.3.17) 
where the unwritten terms are supersymmetric completions including the bare 
mass terms of Nc = (2,2) superpartners of bosonic fields charged under Si. 
We remark that the above action functional preserves all the symmetry of the 
original model. We note that the bare mass terms written above are exactly 
the Hamiltonian of the 5^ action on the space of all bosonic fields. There are 
two ways of examining the above action functional. One may take the \m\ —> oo 
limit. Then the dominant contributions to the path integral come from the 
critical points of the Hamiltonian of the S} action. Such critical points are 
identical to the fixed points of S* action, equivalently the C* action. However 
this viewpoint is rather limited, as it mainly concerns the moduli space defined 
by the equations in (7.3.9). We should not forget that such a moduli space is 
only a subsystem, and usually does not form a closed system. 

A better viewpoint is to rely on the Higgs mechanism. We again take the 
limit that the bare mass is arbitrarily large. Then we can integrate out ev­
erything except for massless degrees of freedom. Here the adjoint scalar fields 
(Higgs fields) a and a play a crucial role since the effective mass of a field is the 
sum of the bare mass and the contribution from the expectation values of Higgs 
scalars. This phenomena can be most directly seen from the anti-commutation 
relations of supercharges (7.3.15). Since we have global supersymmetry the ex­
pectation values of supersymmetric observables, < 1 > = Z in our case, are 
localized to an integral over the fixed point locus of unbroken global supersym­
metry. Consequently the path integral is localized to the kernel of the right hand 
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sides of (7.3.15) acting on the fields. Then we immediately get the following set 
of relevant equations for A0'1 and B2,0, 

[ff,.B1,1]-m.B1 '1 = 0 , (7.3.18) 

[a,C°'2]-2mC°'2 = 0, 

and 

dAa = 0, 

[ff,cr] = 0, (7.3.19) 

[a,B2 '°] = 0, 
We will now study several limits of these equations. 

Three Different Limits 

We consider an SU(2) bundle E —> M for simplicity. The set of equations 
in (7.3.18) are the conditions for masslessness of the fields charged under S*. 
The second equation in (7.3.19) implies that a and a can be diagonalized, say 
a = ^diag(a,—a). Since Tr a2 is the gauge invariant object we will consider 
a > 0. 

We see that there are three (semi-classical) limits governed by different mass-
less degree of freedom while preserving Nc = (2, 2) supersymmetry. 

1. Vafa-Witten or a twisted N = 4 super-Yang-Mills theory, (i) the gauge 
symmetry is unbroken a = 0. (ii) the gauge symmetry is broken to U(l) 
a > 0 and a ^ m, 2m Then iplfi = B11 = C0-2 = 0 is the only solution of 
(7.3.18). Equivalently those fields and their ./Vc = (2,2) superpartners are 
all infinitely massive. 

2. The gauge symmetry is broken to U(l) and a = m and we have the 
reduction E = L © L~l Then 

dA 
dL 

0 
0 

0 
01,0 Ï) 

B2>° = 

Wehe 

B ' ~ \0 

C0 '2 = 0. 

F°>2 = 0, 

i(F - â1'0 Ati0'1) ALJ + ß1'1 A*ßhl = 0 , 

fß2'0 0 \ 
^ 0 - / 3 2 ' 0 J ' 

0 ß1'1 \ (7.3.20) 

dL0l<° = 0, (7.3.21) 

dLß2fi + ^°A*ßi'1=0, 

dL*ß^1 = o. 
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3. The gauge symmetry is broken to (7(1) and a = 2m and we have the 
reduction E = L © L~l Then 

B 2 , 0 _ ( ß 2 f i 0 \ 
tf ' — I „ „2,0 > 

dA = 
dL o \ " V ° - £ 2 

0 -dLJ' B1'1=0, (7.3.22) 

^•° = o, ""-(S?) 
We have 

F0-2 = 0, 

dLß2'0 = 0, (7.3.23) 

iF A u + Y' A -yu' = 0. 

7.3.2 Families of Nc = (2, 0) Models 

Following the discussions in Sect. 3.4 and Sect. 4.2 we break the 7VC = (2, 2) 
symmetry down to Nc = (2,0) supersymmetry generated by s+ and s+. The 
Si-action (7.3.11) can be extended to all those additional fields introduced for 
the Nc = (2,2) model, compared with the original Nc = (2,0). The S^ action 
is given by 

S\ : ( £ ( 2 - ° > , T V 2 ' 0 ) ) -» £ ( B ( 2 > 0 ) , T V 2 ' 0 ) ) , 

5 i . ^ (o .D > H (o . i ) ) _>f (*(M)> j ( o , i ) ) ; (7.3.24) 

S \ • {0,T]+) - > | ( ä , J 7 + ) , 

and the conjugate fields have the opposite [/(l)^-charges. Here we can just follow 
the procedure in Sect. 4.2 to obtain the general Nc = (2,0) supersymmetric 
action functional S(m,m, m++,m ) is given by 

S(m,m,m±±) =S{m,m) +m++m-„ j Tr ( B ( 2 ' 0 ) A *B ( 0 ' 2 ) + a * ä) + ..., 

(7.3.25) 
whose new mass terms contain the Hamiltonian of the Si symmetry. The Nc = 
(2, 0) supercharges s+ and s+ satisfy the following modified anti-commutation 
relations 

s\ = 0, {s+, s+} = -i<t>a
++Ca - im++Csi, s2

+ = 0. (7.3.26) 

Now, in total, we have a C* x C* family of Nc = (2,0) models. From the 
previous discussions all we need to do is collect all fixed point equations of the 
supercharges s+ and s+. Then the localization equations (7.3.9) and (7.3.10) 
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are changed by the following equations 

F (0 ,2 ) = 0 > 

D" * B(2-°> = 0, 

F A u + [ B < 2 ' 0 > , * # 2 ' ] 4 a , â ] W A U = 0, (7.3.27) 

D'à + rnifi0'1 = 0, 

[<T,BW}-mB1'1-2mC°'2 = 0, 

and 
[<f>++,B^}+m++B^ = 0, 

[<A++,<7] +m++a = 0. 

dA<P++ = 0. 

(7.3.28) 

By sending all the bare masses to infinity we have various semi-classical limits 
governed by different massless degrees of freedom. 

For our purpose it is suffice to examine a limit m±± —ï oo by setting m = 
m = 0. For simplicity we consider the SU(2) case. Then we can follow the 
discussions in Sect. 4.2.2 and see that the path integral can be written as the 
sum of contributions from two branches; 

• branch (i): On a generic point on the vacuum moduli space we have the 
trivial fixed point £?<0'2) = 0 and the fixed point locus is the moduli space 
J\f of stable Higgs bundles, 

F(0,2) _ A 
(7.3.29) 

Hence we recover the generalization Donaldson-Witten theory in Sect. 7.2. 

• branch (ii): The SU(2) symmetry is broken down to U(l). We have 
E = L® L _ 1 and 

(7.3.30) 
where d'[ =dL+ tf1-0 and b&^ = ß2~° + /31 '1 + 7

0-2 takes values in L~2. 
The fixed point equation are 

F ( 0 , 2 ) = 0 ) 

d'La = 0, 

d'i * &(2'°> = 0, 

iFLAuj- fe(2'°) A *6<°'2> + aao,2 = 0. 

(7.3.31) 

The above set of equations is a spectral generalization of Abelian Seiberg-
Vafa-Witten equation. 
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It is a well-established fact that Donaldson-Witten (DW) theory is equivalent 
to Seiberg-Witten (SW) theory [12]. One of the strong evidences, or vice versa, 
for such equivalence is the 5-duality of Vafa-Witten (VW) theory, which has 
both DW and SW theories as two different semi-classical limits after the massive 
perturbation. The S-duality, for SU(2) and 50(3) , implies that one can recover 
the entire partition function from one of such semi-classical limits. We expect 
similar relations between the generalized versions. It remains to be seen if our 
generalized Seiberg-Witten theory contains new information beyond Seiberg-
Witten invariants. 
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