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{Samenvatting in het Nederlands}

Cohomologische veldentheorie was oorspronkelijk geintroduceerd als een getwiste versie van globale
ruimte-tijd supersymmetrischequantum veldentheorie, specifiek in vier ruimte-tijd dimensies. Voor
globale ruimte-tijd supersymmetrie is per definitie het bestaan van een spinor nodig, die overal op de
ruimte-tijd varieteit constant is. Een spinor bestaat alleen op een spin-variéteit. Een spin-variéteit staat
echter slechts zelden een constante spinor toe. De canonieke manier om dit probleem te omzeilen is
het localiser maken van de supersymmetry; een procedure die haast op magische wijze
(super)gravitatie introduceert.

Er is een tweede optie, genaamd twisten. Dit betekent dat men een nieuwe Lorentz symmetrie
definieert als een geschikte combinatie van de originele Lorentz symmetrie met een interne globale
symmetrie van de theorie. Dit resulteert in supersymmetrie generatoren die anders transformeren onder
de nieuwe Lorentz symmetrie. Er zijn typisch componenten van de superladingen die transformeren
als een scalar. Zo een scalar component Q, die nilpotent is, dat wil zeggen Q* = 0, wordt gezien als een
supersymmetrie van de getwiste theorie. De resulterende theorie is goed gedefinieerd op een
willekeurige variéteit, omdat er geen globale obstructies zijn voor een scalar. Verder is de theorie
algemeen covariant, zonder de introductie van gravitatie. De padintegraal van de theorie hangt alleen
af van de globale cohomologie van Q, onder voorbehoud dat men alleen Q-invariante observabele
gebruikt. Dit is waarom de theorie cohomologisch wordt genoemd.

Een getwiste theorie is gerelateerd aan de onderliggende ruimte-tijd supersymmetrische theorie,
doordat padintegraal van de getwiste theorie een zekere chirale (of BPS) sector van de fysische
amplituden berekent. Dit is een gevolg van de triviale holonomie van de ruimte-tijd waar de theorie
gewoonlijk is gedefinieerd. In dat geval is de operatie van twisten fysisch niet te zien. De typische
fysische toepassing van een getwiste theorie is een niet-perturbatieve test van zekere dualiteiten,
gebruik makend van de semi-klassieke exactheid van de theorie.

Twee beroemde voorbeelden van voor de tweede string revolutie zijnde toepassingen voor mirror
symmetrie en S-dualiteit van N = 4 super-Yang-Mills in vier dimensies. De getwiste theorie van vier-
dimensionale N = 2 supersymmetrische Yang-Mills theorie — de Donaldson-Witten theorie -- leverde
ook cruciale hints voor de gevierde Seiberg-Witten oplossingen van de originele N = 2 theorie. De
oplossingen van de onderliggende fysische theorie geven ons waardevolle inzichten in het wiskundige
probleem gedefinieerd dor de getwiste theorie. Misschien wel de mooiste eigenschap van quantum
veldentheorie is dat de theorie afhangt van een schaal. De even zo mooie eigenschap van
cohomologische veldentheorie is dat de theorie niet van een schaal athankelijk is. Hierdoor kan het
wiskundige probleem gedefinieerd door de eerste theorie worden opgelost in termen van de laatste
theorie bij een andere schaal, waar de relevante vrijheidsgraden in het algemeen compleet anders zijn
van die van de originele -- microscopische -- theorie. Het historische voorbeeld is natuurlijk de
Donaldson versus de Seiberg-Witten invariant.

Na de tweede string revolutie speelt cohomologische veldentheorie nog steeds een belangrijke rol.
Voornamelijk in de fysica van D-branes. Een raison d'etre voor getwiste theorieén wordt gegeven door
D-branes in een niet-triviale ruimte-tijd. Alle tellingen van BPS toestanden en hun toepassingen in de
fysica van zwarte gaten en niet-perturbatieve testen van string-dualiteiten zijn gebaseerd op hetzelfde
principe.

In het algemeen kunnen we de onderliggende fysische oorsprong van een cohomologische
veldentheorie vergeten, en de theorie definiéren als een quantum veldentheorie met een globale
fermionische symmetrie. Zo een theorie hoeft niet direct verkregen te kunnen worden als een getwiste
versie van een supersymmetrische theorie. De meest fundamentele eigenschap van een quantum
veldentheorie met een globale fermionische symmetrie is de vaste punten stelling van Witten. Bijna
alle andere eigenschappen van een cohomologische veldentheorie kunnen worden verkregen als een
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Chapter 1

Introduction

Historically cohomological field theory first has been introduced as a twisted ver-
sion of global space-time supersymmetric quantum field theory, specifically the
N = 2 supersymmetric Yang-Mills theory in four dimensional space-time [1].
The global space-time supersymmetry, by definition, requires the existence of a
spinor which is constant everywhere on the space-time manifold M. A spinor
does exist on a spin manifold. A spin manifold, however, rarely admits a con-
stant spinor. The canonical way overcoming the above difficulty is to localize the
supersymmetry, a procedure that almost magically introduces (super-)gravity
into the picture.

There is a second option called twisting, which means that one defines a
new Lorentz symmetry group by a suitable combination of the original Lorentz
symmetry with an internal global symmetry of the theory. As a result, the
supercharges transform differently under the new Lorentz symmetry. Typically
the supercharges include some components which transform as scalars. Such a
scalar component @, which is nilpotent, i.e. @Q* = 0, is regarded as a supercharge
of the twisted theory. The resulting theory is well-defined on an arbitrary space-
time manifold since there are no global obstructions for a scalar, and enjoys
general covariance without gravity. The path integral of the theory depends only
on the global cohomology of @, provided that one uses Q-invariant observables,
which property coined the adjective cohomological [2].

A twisted theory is closely related to the underlying space-time supersym-
metric theory. Namely the path integral of the twisted theory computes a
certain chiral (or BPS) sector of physical amplitudes [3][4]. This is due to the
trivial holonomy of flat space-time where the physical theory is usually defined.
Then twisting is a physically invisible operation. The typical physical applica-
tion of a twisted theory is a non-perturbative test of a certain duality utilizing
the semi-classical exactness of the path integral. Two famous examples origi-
nating before the second string revolution are given by mirror symmetry [5][6]
and S-duality of N = 4 supersymmetric Yang-Mills theory in four-dimensions
[7]. The twisted version of four dimensional N = 2 supersymmetric Yang-Mills
theory — the Donaldson-Witten theory [1][8]- also provided crucial hints [9][10]
on the celebrated Seiberg-Witten solutions of the original N = 2 theory [11].



2 1 INTRODUCTION

We must stress here that solutions of the underlying physical theory provide
us with invaluable insights in the mathematical problem defined by the twisted
theory. Perhaps one of the most beautiful properties of quantum field theory
is that the theory depends on a scale. The equally beautiful property of coho-
mological field theory is that the theory does not depend on scale. Thus the
mathematical problem defined by the latter theory can be solved in terms of
the former theory at a different scale where its relevant degrees of freedom are,
often completely different from the original microscopic one. The historical ex-
ample is, of course, the Donaldson versus Seiberg-Witten invariant [12]. After
the second string revolution [13][14][15], cohomological field theory still plays
important roles, especially in D-brane physics [16]. A raison d’etre of twisted
theory has been provided in terms of D-branes on non-trivial space-times [17].
All those countings of BPS states and their applications to blackhole physics
and non-perturbative tests of string dualities are based on the same principle,
see [18][19][20][21][22][23] etc.

In general we may forget about the underlying physical origin of a cohomo-
logical field theory and define the theory as a quantum field theory with a global
fermionic symmetry. Such a theory may not be directly obtainable as a twisted
version of an underlying space-time supersymmetric theory. The most funda-
mental property of a quantum field theory with a global fermionic symmetry
is the fixed point theorem of Witten [3][24]. Almost all the other properties of
cohomological field theory can be obtained as a certain lemma of the theorem.
Thus it seems appropriate to quote the theorem here [3].

Consider an arbitrary quantum field theory, with some function
space X over which one wishes to integrate. Let F be a group
of symmetries of the theory. Suppose F acts freely on X. Then one
has a fibration X — X/F, and by integrating first over the fibers
of this fibration, one can reduce the integral over X to an integral
over X/F. Provided one considers only F invariant observables O,
the integration over the fibers is particularly simple and just gives a
factor of vol(F) (the volume of the group F):

/ e %0 = vol(F) - e POy (1.0.1)
X X/F

Now we consider the case that F' is a global fermionic symmetry
generated by a supercharge Q. Then the volume of the group F is
zero. It follows that if Q acts freely, the expectation value of any Q
invariant operator vanishes. In general, F' does not act freely, but has
a fixed point locus Xy. If so, let C be an F-invariant neighborhood
of X, and X' its complement. Then the path integral restricted to
X' vanishes, by the above reasoning. So the entire contribution to
the path integral comes from the integral over C. Here C can be an
arbitrarily small neighborhood, so the result is really a localization
formula expressing the path integral as an integral on Xo. The
details depend on the structure of Q near Xo. If the vanishing of @
near Xy is a generic, simple zero, then the fixed point contribution



is simply an integral over X weighted by the one loop determinants
of the transverse degrees of freedom.

In Chapters 2 and 3 we will develop a general approach which identifies
any cohomological field theory with a 0 + 0-dimensional supersymmetric sigma
model. Being in zero-dimensions the (space-time) supersymmetry simply means
global fermionic symmetry. The target space of our sigma-model may be some
function space X in the theorem quoted above. Such a space may be any (non-
linear or linear and finite or infinite dimensional) space endowed with any of

Riemannian D Kahler D hyper-Kahler (1.0.2)

structures. Actually the above structures may not be regarded as a priori no-
tions. The cohomological field theory can be classified by the number N, =
(NF,N[) of global supercharges, where we have N 4+ N independent mutu-
ally nilpotent fermionic charges and N* denote the number of charges carrying
fermionic (or ghost) numbers £1. Then we have the following sequence of
fermionic symmetries

HE=TS NI =23 N" =t (1.0.3)

which determines the sequence of geometrical structures (1.0.2).*

In this thesis we specialize to models with a Kahler structure. Those models
are quite general and allow us to have very compact formulations. The initial
data will be some function space X endowed with a complex structure compat-
ible with the supersymmetry. Then most of the other structures of the models
can be fixed. We will introduce three types of models, two with N. = (2,0)
and one with N, = (2,2) symmetry, and establish general interrelations. For
each type we will consider non-linear X and linear or non-linear X with a group
G acting on X. Perhaps our definition of cohomological field theory as a zero
dimensional sigma model might be confusing. If the target space X is the func-
tion space of certain fields on a manifold M we have a traditional cohomological
field theory on M.

In due course the relation between our construction and two-dimensional
space-time supersymmetric field theory will become obvious. This implies that
we always have canonical string theoretic generalizations of those differential-
topological invariants defined by cohomological field theory. One may also use
the correspondence to define suitable matrix string theory [29]. We will not go
into this direction in this thesis and refer to [30](31], as examples. The Chapters
2 and 3 may also be viewed, after slight modifications, as an unorthodox intro-
duction to two-dimensional supersymmetric field theories. Our presentation for
models with a group action will parallel the original literature on Ny, = (2,2)

I1The above correspondence is originally due to supersymmetric sigma models in two-
dimensions [25][26][27]. In certain respects, such a correspondence in zero-dimensional mod-
els is more striking since we do not need any underlying geometrical objects like the two-
dimensional space-time. Actually the sequence (1.0.3) leads to more general geometrical
structures including torsion [28]. However, the author is not aware of any examples of a
traditional cohomological field theories with torsion in the space of fields.



4 2 INTRODUCTION

and Ny, = (2,0) gauged linear sigma-models in two dimensions [32][33]. We
should also mention the influential paper of Witten on supersymmetry and
Morse theory [34] dealing with (0 + 1)-dimensional supersymmetric sigma mod-
els, which can be regarded as the origin of cohomological field theory.?

For some general literature for cohomological field theory we refer to [2]
and [35] for short but lucid introductions, and two review articles [36] and
[37]. Those references are mostly about the Riemannian version of A, = (2,0)
models. For the Riemannian version of N, = (2,2) models, called balanced co-
homological field theory, we refer to [38]. For a mathematician the path integral
of a cohomological field theory is the Mathai-Quillen formalism of the integral
representation of the Thom class [39][35]. Though we will never refer to Mathai
and Quillen, our (path) integral formula can be viewed as the Kahler version of
the Mathai-Quillen formalism. More precisely our formulas should be viewed
as a certain equivariant generalization of Fulton and MacPherson’s intersection
theory [40]. For a physicist a cohomological field theory is a supersymmet-
ric gauged sigma model in (0 + 0)-dimensions. Though we will never use the
superspace formalism our construction is equivalent to the N = 2 superspace
formalism.

In the later chapters of this thesis we will apply our formalism to construct
models with certain infinite dimensional target spaces. We will concentrate on
two classes of examples whose target spaces are; (i) the space A of all gauge fields
on complex 2, 3 and 4-dimensional Kahler or Calabi-Yau manifolds. (ii) the total
space T A of cotangent bundle of .4 on complex 2-dimensional Kahler manifolds,
as an example. We call the first and the second classes of the models cohomolog-
ical Yang-Mills theory and cohomological Yang-Mills-Higgs theory, respectively.
Those chapters will be devoted mainly to a detailed study of the physical and
mathematical implications of those models. Cohomological Yang-Mills theory
on a compact Calabi-Yau manifold or on a flat manifold is equivalent to global
supersymmetric Yang-Mills theory on that manifold. One may regard such
a theory as, after being suitably interpreted, effective world-volume theory of
D-brane [16][41], or Matrix theory [42][43], or dual to supergravity/string/M
theories [44]. On the other hand cohomological Yang-Mills-Higgs theory does
not have corresponding global supersymmetric Yang-Mills theory. Neverthe-
less such a model is connected with physical theory by certain renormalization
group flow. It is amusing to speculate that such a model may describe certain
"unbroken phase” of supersymmetric Yang-Mills theory or "unbroken phase” of
the theories in the same equivalence class.

21t is ironical since his construction can be regarded, from our viewpoint, as a generalized
cohomological field theory.



Chapter 2

Standard Models of
Cohomological Field Theory

This and the next chapters are devoted to an elementary and self-contained
introduction to cohomological field theory. Though elementary, we will develop
the most general construction of cohomological field theory involving Kahler
geometry.

In this chapter we consider supersymmetric sigma models in (0 + 0) dimen-
sions, whose target space is a compact complex Kahler manifold X. Those
models may be regarded as the quantum theory of single point-like "instanton”
- the point-like event of X or point-like instanton probes of the classical geom-
etry of X by means of the path integral. The space of all bosonic field will be
the configuration space of the instanton, which is a copy of the manifold X.
We will start from the simplest N. = (2,0) model as a toy model. A slightly
more complicated N. = (2,2) model follows. Then we generalize it to another
N. = (2,0) model. We will survey how those supersymmetric theories probe or
give rise to the classical geometry of Kahler manifolds X, its tangent bundle T'X
and holomorphic Hermitian vector bundle E over X. The models to be covered
here will be used as the prototypes of all the other more elaborated models to
be introduced later. We refer to the models in this chapter as standard models
since any cohomological field theory will reproduce to one of those models if it
is "generic”.

We follow a typical procedure of defining supersymmetric field theory, namely
introducing bosonic fields, supercharges with their algebra, fermionic superpart-
ners, supersymmetric action functional, and studying path integrals. Due to the
triviality of the model everything can be made completely rigorous. Assuming
existence of nil-potent supercharges, a simple application of Poincaré lemma
leads to an appropriate supersymmetric action functional. All the other geo-
metrical structures then naturally follow. We will also clarify the geometrical
meaning of the supercharges.
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2.1 A Toy Model

In this section we design perhaps the simplest path integral, which has many of
the basic properties of cohomological field theory.

Consider a compact complex n-dimensional space X . We pick local co-
ordinates ¢/, I = 1,...,2n on X. The local complex coordinates on X will
be denoted as z%, i = 1,...,n; their complex conjugates are z' = 2. Let X/
be local coordinates fields describing the position of an instanton on X. More
precisely, the X! parameterize a map

X! : point - X. (2.1.1)

We denote by X' local complex coordinates fields and X* be their complex
conjugates. We call X* and X* bosonic fields. We introduce anti-commuting
operators 8 and 3 called supercharges satisfying the following anti-commutation
relations,

=0 T el—0" "= (2.1.2)
We define a pair of graded quantum number (ghost numbers) (p, ¢) such that s
and § carry the following ghost numbers

5:(1,0), 3:(0,1). (2.1.3)

We call the supersymmetry (2.1.2) of type N, = (2,0), meaning that we have
two supercharges both carrying positive ghost numbers.

We assume that the X are holomorphic fields, meaning that 83X i = 0,
and their complex conjugate X' are anti-holomorphic, sX* = 0. Then we can
postulate the following supersymmetry transformation laws

sX' =iyt st =0,

3X' =0, 3 =0,
- - (2.1.4)
sk =0 aur =1
3XT=iy', 3 =0.
From the above we may write 8 and 3 as follows
0 z 0

We call the anti-commuting superpartners 1* and 9" of X* and X, respectively,
fermionic fields. They carry the ghost numbers (1,0) and (0, 1), respectively.
In general, a field with ghost number (p, q) is fermionic if p + ¢ is odd while,
otherwise, it is bosonic. :

Now we consider an action functional S(X?, X* 1 ,4?) which is invariant
under both of the supersymmetries with supercharges s and 3. The conditions
for supersymmetry 85 = 8S = 0 together with the anti-commutation relations
(2.1.2) imply, due to the Poincaré lemma, that S may be written as

S = issk (X', XY), (2.1.6)
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where K is a locally defined real functional of X and X°. Applying the trans-
formation laws (2.1.4) we have

S=i (62—'(_) Vi = —iK -ty (2.1.7)
OXi9Xi 4

Now we consider the Feynman path integral of our model. The partition
function is defined as integration over the space of all fields weighted by e~5,

7= / [DXDXDYDY] e=5. (2.1.8)

In everyday quantum field theory, we usually do not have a well-defined path
integral measure though we have well-established rules of doing the path integral
at least for the perturbative regime. For our trivial quantum field theory the
path integral measure is perfectly well-defined. The space of all bosonic fields
is a copy of X. Thus the path integral is an integral over X. We have

Z = / [ dx*dx*dy*dy* exp (mijw"w?). (2.1.9)
A k k=1

Remark that the path integral measure carries ghost number (n,n), i.e., the
ghost number anomaly. In the above evaluation we used the basic fact of inte-
gration over Grassmann numbers that the integrand should also carry the net
ghost number (n,n) to have a non-vanishing integral. Performing the integral

over ¥* and ¢*, using the law of integral over Grassmannian number, we have
7= [ [T dx*dax*det(ix;). (2.1.10)
X = g
k.k=1

Now we compare the properties of our model with the differential geometry
of the Kéhler manifold X. We denote the space of r-forms on X by Q7 (X). We
have the exterior derivative

d: Q7(X) = Qt(Xx)

satisfying d® = 0. For any complex manifold we have decompositions

(X)= P ax)

r=pt+q

of r-forms into type (p,¢)-forms with p + ¢ = r. Similarly we have a decompo-
sition d = @ + 9 such that

9: QPI(X) - QPFLI(X), 3 QPI(X) 5 QFFLI(X), (2.1.11)

and v
a=0 {0,0}=0, 8 =o0. (2.1.12)
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In terms of the local complex coordinates z* and z* we have

0 =dz i 4= dz 9
azt’ 2t

(2.1.13)

A complex manifold is Kihler iff there exists a non-degenerated type (1, 1)-form
w satisfying dw = 0. A basic fact of the Kéahler geometry is that the Kéhler
metric tensor gz can be written as

2
g5 = e i (2.1.14)

where f is a Kahler potential. The Kahler form w is given by
@ = wade' Aded = igzde AdZ, (2.1.15)

where @; = = while g = g=,.
A compa.nson with our supersymmetrlc theory leads to the following obvious
dictionary _ : _ :
= X', dz' — i),
Zi X;, dz* > iv,b;.
Under the above isomorphism the relations (2.1.12) and (2.1.13) become (2.1.2)
and (2.1.5), respectively, such that

(2.1.16)

88 0-F. (2.1.17)

Also the Kahler form o in (2.1.15), after identifying K with a Kahler potential
fof X, ie, Kz = g;, becomes (minus) our action functional S in (2.1.7).
Now we examine the partition function Z defined by (2.1.9). It is obvious that,

compare with (2.1.10)

. W w" kg k
Z_/Xg _[X - / kH dz"dz det(zgu) (2.1.18)
|

where the second identity follows from the fact that the integrand should be
a top form and the third identity follows from the definition of . Thus the
partition function of our first supersymmetric field theory is the symplectic
volume of X. We remark that the second identity is equivalent to the condition
of the ghost number anomaly cancellation.

One may formalize the above correspondence as follows. For the tangent
bundle T'X we define an associated superspace TX where the hat symbol de-
notes the parity change of the fiber as in (2.1.16). Then the supercharges s and
3 are odd vectors and the action S is a function on e

Now we move on to observables and correlation functions. A supersymmetric
observable @ is a quantity invariant under the symmetry of the theory and
annihilated by supercharges. We consider the following polynomial function on
A

GPl=aq, .= =L grgi . e, (2.1.19)

11...3p]7 "'Jq
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carrying the ghost numbers (p,g). Due to the isomorphism (2.1.16) 3a*7 = 0
iff daP? = 0 where a?? € 2P9(X) is the (p, q)-form on X defined by

P =q, .= =dz'A...Adz* Ad2 A... Adzs. (2.1.20)

1)..2p01--0g

Note that 3 defines a Dolbeault cohomology on the space of observables graded
by the ghost numbers which correspond to the form degrees. In the above
we showed that the 3 cohomology is isomorphic to the Dolbeault cohomology
(8,9**(X)) on X.

The correlation function of observables or the expectation value is defined

by
<H apm.qm> = f[DX@YDTJ)DE] H GPm@m . o—S. (2.1.21)
m=1

m=1

For the present model we see that

([} = [rmrnemne.
m=1 X

Obviously we have non-vanishing correlation function if the observables satisfy
the ghost number anomaly cancellation condition

Z (pms‘}'m f f) f<n {2.1.23)
m=1
Then
LS. 1
< H a.pm'qm> ol ( iy / oI N aF RN AL AT, (201024
T
m=1

It follows that correlation functions of supersymmetric observables depend only
on the cohomology classes of observables and the Kahler form w.! Thus the
correlation function computes the classical cohomology ring of the target space
X. Equivalently the correlation function computes intersection numbers of ho-
mology cycles dual to aP? € HP9(X).

Using our toy model we illustrated many of the basic properties of cohomo-
logical field theory. In general, however, life is never as simple as in the idealized
world. Typically we encounter an infinite dimensional space of certain set of
fields on a manifold M as our target space X. Furthermore there usually exists
an infinite dimensional group action on the target space. Nonetheless one is
eventually interested in the subspace defined as the solution space of certain
first order differential equations, modulo the gauge symmetry. Thus we will

1Consider the integ‘ral f #e® where (3 is a closed (£, f)-form. Let v be homology cycle
Poincaré dual to @wf. Then the integral reduces to 'nlf]! f'r 3. Let 3’ belongs to the same

cohomology class as 3, i.e., ' = 3 + da. We have, using Stokes’ theorem, f‘}(ﬁ’ — )=

f_rda:fa’a:{.l_
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need a machinery to reduce the path integral to such a subspace and to take
care of the group action, as we will do later.

For the time being we ignore those things and assume that the path inte-
gral is eventually reduced to some finite dimensional moduli space. Then it
may be equivalent to our toy model. We may call a quantum field theory on
M with such a property a cohomological field theory. Usually the differential
geometrical structures of the moduli space are induced from those of M. Such
a field theory on M has global supersymmetry equivalent to (0 + 0)-dimensional
supersymmetry. The cohomology of such a global supersymmetry is isomorphic
to a certain cohomology of M. Consequently the correlation functions of su-
persymmetric observables are differential topological invariant of M. We refer
to the original paper [1] of Witten for a lucid exposition of general properties
of such a cohomological field theory. Here we repeated many of his arguments,
perhaps in a slightly different context.

2.2 N.=(2,2) Model

In this section we consider a somewhat more interesting model by generalizing
the toy model of the previous section. We introduce two copies (s4,3+) of the
fermionic charges (8,3). We regard the above doubling as a Z,-grading in the
sense that supercharges carry the following ghost numbers (p, ¢) introduced for
the toy model,
84 : (+1,0), 34 :(0,+1),
s_:(-1,0), 5_:(0,-1).

Thus the supercharges s, and 5, can be identified with the original super-
charges s and 3 of the toy model. We want to define a supersymmetric theory
invariant under all four supercharges. Obviously we will have a Z,-symmetry
exchanging the + and — indices. We will say that the resulting theory is of
type N. = (2,2). We will see that such a model is related with the geometry
of tangent bundle T'X of a Kahler manifold X. The partition function of this
model can be identified with the Euler characteristic of X.

(2.2.1)

2.2.1 Basic Structures

We postulate that the supercharges satisfy the following anti-commutation re-

lations,
& =0, {84,8+} =0, B0, (2.2.2)
and
18,8 =0, {34,335} =0, {as mi L) (2.2.3)
which is an obvious generalization of (2.1.2). We will consider the same bosonic
fields X* and X* as in our toy model. We demand X* to be bi-holomorphic or
chiral, meaning that 3. X* = 0.2 We call the complex conjugates X* anti-chiral,

?Note that this choice is arbitrary. We may also demand twisted bi-holomorphicity or
twisted chirality by imposing 8+ X' = 8_X' = 0. A model with both chiral and twisted
chiral multiplets has very interesting properties.
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meaning that s, X i = g_X'=0. Now the anti-commutation relations among
supercharges suggest that we have the following chiral multiplets

L& XTI gl
"V @il (2.2.4)
H:’

In the above H' are called auxiliary fields, which are introduced due to the
conditions

{s4,8-} X" =is ¥l +is_yi =0, (2.2:5)

can be solved as 819’ = £H' while they are indeterminate.®* Denoting § =
8, €+ s_€; +3.€_ + 3_e; we have the following transformation laws for
chiral and anti-chiral multiplets,

5X° —ie_ i +icgt, 0K =ie i +ie g,
5‘:4—? Hi, 5?::4—5 If‘-,J
Y3 S w:“ = (2.2.6)
5‘&')‘_ = - £_Ht, 6wt_ —r— f_H',
SH* =0 SH* =0.

Now we define a natural supersymmetric action functional. The require-
ments 845 = 5.5 = 0 for S to have N. = (2,2) supersymmetry and the
anti-commutation relations (2.2.2) and (2.2.3) imply, by repeatedly applying
the Poincaré lemma, that we can write S as follows,

S= s aia-F KK, X, (2.2.7)
where K(X?, X7) is a locally defined real functional. Expanding the above we
have

S = g H'H +i0,9;; Vho' HI +idcgs WX H'Y +0,0cg; v vkvil
J (2.2.8)
where 9, = 8/0X" and 8; = 9/0X’ and we set 9;; = 0;0;K. We can integrate

out the auxiliary fields H* and H i by a Gaussian integral, or, equivalently,

eliminate them by plugging in the algebraic equations of motions for H' and
H: 4

H' = —ig" 8,9,z ¥iyt,

b il B (2.2.9)

H’ = +ig98g; vEyt,

where g is the inverse of g;;- Then we obtain the new action functional S,

S' = —Rgs vivkvi ¢l (2.2.10)

3The equation might also be solved as 811’ = 0 without introducing H'. However, the
auxiliary fields are indispensable. The moral is that we better keep it whenever we encounter
redundancy.
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where y
Rz = —00¢9;; + 970,9,56;9a, (2.2.11)

which can be identified with the the Riemann curvature tensor of T'X if K is
a Kahler potential of X. Remark that the non-vanishing components of the
Christoffel symbols in the K&hler geometry are

Ty =g"0kg,;s, ' To=g98g; (2.2.12)
The new action S’ is invariant under the supersymmetry after modifying the
transformation laws (2.2.6) by replacing H* and H' by their on-shell expressions
(2.2.9).
Now we examine the path integral. The partition function is defined as
usual,

Z = f[“DXDf’Du’&PEi]G_S’»

1 n n 3= - s el
= (2—7?) / [I dx*dx*dyk dykdy* dy* exp (ngg epidriw‘_wi).
k,;:l

(2.2.13)
where the integration is over the space of all fields. The bosonic part of the path
integral is an integration over a copy of X. We first perform the integral over ¥’

and wi_ which, as we saw earlier, is equivalent to replacing Rf;'.)—, u'*iﬂ’i'!,b‘._ il
by the (1,1)-form Rz := R;5 -dz* A dzt on X,

ki
Z = (i)n/ ﬁ dv* dyF exp (R.—. P 11.5) (2.2.14)
27 x e g ARG i
Elk=1
Integration over 1) and 'z;’)‘T leads to
1
= /det R :/ elPX) = x(T'X). 2.2.15
e [ detRg) = [ erx) = xq (2215)

The last identity is due to the Gauss-Bonnet theorem. Thus the partition func-
tion computes the Euler characteristic x(X) = x(TX) of the manifold X.

2.2.2 Geometrical Interpretation of Supercharges

Now we examine the geometrical meaning of our supercharges. In Sect. 2.1.1
we already saw that the supercharges s, and 3 are associated with the d and
8 differential on the target space X. Our task is to understand the geometrical
meaning of the remaining supercharges s_ and 5_.

We begin with discarding the obvious candidates for s_ and 3_, namely the
operators 8* and 8 defined by

8* = — % 0% : QPI(X) - QP1I(X),

8§ = —%0%: QPI(X) = QPIH(X),

Il

(2.2.16)

Il
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where * denote the Hodge star. They satisfy the following relations
=0, {9,8}=0 3=, (2.2.17)

and decrease the form degree by (—1,0) and (0, —1) , respectively. We have,
however, well-known relations in Kahler geometry

8,00} = 13,3} = %{d, &} = %v, (2.2.18)

where V is the Laplacian. On the other hand we have {s;,s_} = {3;,3_} =0.
We also have more obvious problem from 8* X' = 0, while s_ X' = ig)* # 0.
Thus we have to seek an alternative set of operators.

We first consider the real symplectic case and then specialize to the Kahler
case. Consider a symplectic manifold with symplectic form @ = @y gdz! Adz?.
Since the matrix wyr; = —w; is non-degenerated we have a well-defined inverse
matrix @w’/. Using @’/ we have a canonical map from a cotangent vector to
a tangent vector.? Denoting a = ajde! and @ = Ei"%r for a cotangent vector
and its dual tangent vector, respectively, we have

&' =w'ay. (2.2.19)

One may define the corresponding operator M as follows

ol a a (3] e
v e S 2.2.20
2 ((%mf) (dzY) (%;:J) a(dzf)) ! S
where the symbol ®£_r means taking tensor product. For instance we have
8 \ d(dz") a —j.a X
1J IJ I
_ - = i 2.2.21
fle = oy (®Bx’) a(dz?) w o7 a o a ( )

Similarly M induce an isomorphism
N: T(APT*X @ ATX) = D(APTIT*X ® AYTITX), (2.2.22)

where TX and T*X are the tangent and cotangent vector, respectively, and I
denotes the space of sections. Note that ['(APT*X ® A?TX) = QP(X,NITX).

Now we can define a first order differential operator by taking the composi-
tion of M and the exterior derivative d,

d: QAPTX @ NTX) = QAPHIT*X ® AITX), (2.2.23)
as follows,
d:= (Nd — dN) : QAPT*X @ ATTX) = QAPT'X @ A7 TX). (2.2.24)

We will conveniently assign the form degree —1 to the operator d. One can
check .
=0, {dd}=0, (2.2.25)

1We may also consider a Poisson manifold with a bi-vector @ /.
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after a direct computations. We also have the following obvious but important

relation
d:z! - de!,

4 2.2.26
d:zf = w”%. ( )
T

Thus for a symplectic manifold X with the symplectic form @ we have

(2!, dz’ d,d),

3 .
3 Ex_}':
where dz! and 8/dz! denote local coordinates in the fiber of TX and the fiber
of T*X, respectively. To relate with supersymmetry we perform the parity
changes for both the fibers of TX and T* X, i.e., TX and T*X. Then we have
a map
(«!,dz’,8/02";d,d) - (X7, ipL,ix1; Q4,Q-), (2.2.27)
where everything is in real coordinates, ! := @//x; and Q4 = 84 + 3.
One may compare our operator d with the (different) operator A defined by
Koszul [45]. The operator A is define as

A = Myd — drig, (2.2.28)
where My in the notation of (2.2.20) is given by

w!J 52 52
s =5 (a(dzi)a(dmi)_a(de)a(dxf))‘ (2.2.29)

Thus A is a second order differential operator with degree —1 on I'(A*T"X) =
Q*(X) and we have Az! = 0.5

Now we return to a Kahler manifold X with Kahler form @ = = sz Adzi
and show that the above interpretation is indeed the correct one. It is suffice to
consider the holomorphic half, say s, and s_. The operator M is decomposed
as M =nN"+nM" where

= 1 7 a
r]’ = —= IJ X£ ! .
5@ ( ,X)XJ%;,
j = 8 (2.2.30)
ﬁ” = —|——w”(_¥f,X£}X,;—._,
where we did parity change N — 1 by
dz' — iyl 8/8z' - ix;,
iy = 32 7 (2‘2‘31)
dz' = 1, 9/9z" = ix;.

*Koszul proved A? = {d,A} = 0 and defined a covariant Schouten-Nijenhuis bracket,
a,f € Q°(X),
{e,B}sn = (Aa) A B+ (—1)*la A Aa — A(a A B).
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Now we define

s. =8y —s8,f. (2.2.32)
From =5
= iwlﬁ, (2.2.33)
we have
§o zyd i Ol a

(2.2.34)

- = —3® X555 + 5 pxE VX oYL

Now we can check if the above identification of the supercharge s_ is the
correct one, After direct computations we find the following relations

e 8Lt =0
8. X' =),
: s et O
CAT Gl ) T = 74 E P+
o - BX (2.2.35)
sSEX = 0: i £
s ; 8—"‘1'4 = T,f)_'_l,b
s_ X' =it _ o 5X"'
i —
where we defined i
e M iFa P
Y = —3@ Xy (2.2.36)
In checking s_1' = 0 we used the torsion-free condition of the Hermitian

connection of T X, equivalent to the condition deww = 0. Using the relation
w5 =ig5 =~y (2.2.37)

aJt

we see that the above is exactly the supersymmetry algebra of s, and s_ in
(2.2.6) after replacing the auxiliary fields H' by their on-shell values given by
(2.2.9).

Now we summarize. We have the following operators

sy =il o S
3, = aw;:i:__ ;_ 21 ;i: _;inﬁn (2.2.38)
such that
Sy ( ANTX® ) QP+1q(Arﬁ®AT )
el I ) el s < (2.2.39)
sl sing ASTX) e (A HTX @ ATX)
st (NTX @ATX) » 07 (NTX @ SELTE),

where 7 X denotes the holomorphic parts of the tangent bundle TX = TX®T X
afilX.
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2.2.3 Introducing a Holomorphic Potential

Now we consider a more general action functional. We pick a holomorphic
function W(X?) of the chiral fields X*. Since 5+ X' = 0 we have 3. W(X*) =0
It follows that we have the following more general N = (2,2) supersymmetric
action functional,

S(A) =8, 5,8 F_K(X', X7) + Asp s  W(X') + A5, 5_W(X),  (2.2.40)

where A is certain coupling constant introduced for convenience. Expanding
S(A) we find

B =9='5H H +i (05454l — \V5) HY +iH (8pgzuhel - Vi)

aVT - - — 0 -
o AaXs vyl - A ';wl”*f’i + 8,09 vS v vl

(2.2.41)

where we set V; := 9W/8X"*. Now we integrate out the auxiliary fields by their

algebraic equations of motions

Hf = —iT% kgt +z,\g’-"V—.}
_ i g (2.2.42)
e +zl'" w+1j}_ — iAg"l/},
where we used the notations in (2.2.12). We have
] i .V; ; ) = i =
S'(A) =\%g JVIK— = /\DX Tp+‘!,1")3 D Y}.'l,f)_'_vf))_ = Regijtbilbilb_‘i’i.
(2.2.43)
where DV 51
i Gk ¢
W = W =+ I‘ijm' (2.2.44)

The Partition Function

The partition function is independent of A since A dependent term is s -exact
deformation of S. In the limit A — co the dominant contributions to the path
integral are from the vanishing locus of holomorphic vector fields V;. Or we may
simply apply the fixed point theorem of Witten to reach the same conclusion;
from the supersymmetry transformation laws (2.2.6) we see that the fixed point

equations are wi = H' = 0. From the relations (2.2.17) the above implies
V=10,

For generic choices the vanishing locus will be zero dimensional and consists
of isolated points. Then there are no fermionic zero-modes and the action func-
tional evaluated at such a point is simply 0. Thus the partition function is just
the sum of contributions of each point weighted by the one loop determinants
of the transverse degrees of freedom. Due to the Bose-Fermi symmetry such a
determinant is +1, depending on a certain orientation, due to supersymmetry
and due to the ambiguity in taking the square root of the determinant. In our
case they always can be set +1 since the ambiguities from holomorphic and
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anti-holomorphic contribution cancel each other. Thus the partition function is
the number of zeros. If we turn off the potential we recover the original model.
This gives rise to the Poincaré-Hopf theorem. We should mention that the usual
derivation of Poincaré-Hopf theorem uses supersymmetric quantum mechanics,
i.e., the (0 + 1) dimensional sigma model [46][47][34], but with essentially the
same arguments.

For a non-generic vector field V; the vanishing locus can be a positive dimen-
sional submanifold. One may try to perturb the vector field V;, thus W(X?), to
a generic one or just evaluate the path integral. We will give a detailed analysis
for this case in the next section in a more general context.

2.3 Generalization to N, = (2,0) Model

The model in the previous section enjoys a perfect symmetry between things
with + and — indices. Now we want to relax such a symmetry. We shall
see that such symmetry is due to the restriction of considering a very special
Hermitian holomorphic vector bundle, namely the tangent bundle T X, over X.
By maintaining only the N, = (2, 0) supersymmetry generated by s, and 3, we
arrive at a more general model, which is related with a Hermitian holomorphic
bundle E over X .

2.3.1 Basic Structures

First we write our action functional S(A) (2.2.40) in form such that only the s
and 34 are manifest,

SO = =843 (95(X°, XNyl ) +ides (VVi(X0)) +id5y (w1 15(XT)) .

(2.3.1)
Similarly we disconnect the diagram (2.2.4) by removing the link s_
YL Kiaie
A : (2:3.2)
Hi

Now we can regard the above as two independent sets of multiplets. Then we

rename various fields as follows

el =y g, Vi = 6.(X7), f f
. Ee = = ( ~.) 95— haE(X’,X‘), (2.3.3)
G, H= Ve = 6a(XY),

where the new indices run as e, 3 = 1,...,r and we maintain the Hermiticity
of h 5. The s; and 3 transformation laws are
aXt =i nly sy =0,

" + 3 (2.3.4)
SXi= ie_wl, 51;"):_ —= 0
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and
éx® = —€e_H", dH= =0,

S o ¥ (2.3.5)
6x% =—e_H®, 6H" =0

Now we have following new action functional

5l (hﬂE(X‘, X':)x‘ix‘i) +isy (X2 6a(XY)) + 154 (x?*_‘ea(xf)) ,
(2.3.6)

which is the general form of N. = (2,0) supersymmetric action functional.

Note that the above action functional may or may not have N. = (2,2)
symmetry. Generically the model does not have N. = (2,2) supersymmetry.
Note also that the model has the same supersymmetry as our toy model in Sect.
2.1.1. Thus the new model shares the same observables with the toy models,
which are @9 obtained by an element a?? = HP9(X) of the cohomology group
HP9(X) after the parity change TX — TX. The differences with the toy model
are that we have additional Fermi multiplets (x®, H*) with a different action
functional. We call the multiplets (x*, H*) Fermi multiplets. We call x* anti-
ghosts. We remark that the action functional of the toy model may be regarded
as zero by treating the Kahler form w as an observables. Now we turn to
examine the action functional.

Expanding S we have

S =hgH H? +i (k50" x5 - 63) H? +iH* (9:h 507x" — 6.)

8645y 1968 30 & T
%3 VX — o U + (Bish p)vi i xxC.

(2.3.7)

After integrating out the auxiliary fields H® and H 8 by their algebraic equations
of motion a .
- o3 k o3

H® = —ih™ akh_yaif)_})(z + th™ 6‘5,

” = = = _ (2.3.8)
H® = +ih®Poch =¢* xT — ihP56,,

we are left with

! o«_ DG(, s o DG-& - = i - £ pa—
=k HG“GE T DX "‘i'J-i-X— = DX be— - Fﬂﬁg“!»”w'ix_x’?, (2.3.9)
where .
F 55 = —6:0:h 5+ h"*(5; haz)(05h_3) (2.3.10)
and -
_DXj = 0;6 + W7 (85hax)6p. (2.3.11)

Relations with Hermitian Holomorphic Vector Bundle

It turns out that we are describing a rank r Hermitian holomorphic vector
bundle E —+ X over a Kidhler manifold X with Hermitian structure h,5. Here

we briefly summarize some properties of Hermitian holomorphic bundles [48].
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Consider a rank r complex vector bundle E over X. Let OP49(X,E) denote
the space of (p, q)-forms over X with values in E. A connection (the covariant
derivative) ds can be decomposed as

ds = 84 + 94 : WPI(X,E) - QPTLI(X, E) @ QP+ (X, E). (2.3.12)

A connection d4 endows E with a structure of a holomorphic vector bundle if the
(0,2)-component F*2 € Q?(X, End(E)) of its curvature F vanishes, i.e., Eﬁ =1,
A complex vector bundle E is Hermitian if it has a fixed Hermitian structure h
which is a C*° field of positive definite Hermitian inner products in the fibers of
E. Given a local frame field sy = (s1,--.,5,.) of E over an open subset I/ C X
we set h 5 = h(sa,s3) where o, = 1,...,7. Gluing them along different

coordinate patches as usual we obtain hﬂl—,(z",z‘_'). A connection D in (E, h) is

called an h-connection if d(h(&,n)) = h(DE,n) + h(€, Dn) for &, € Q°(E). The
theorem is that given a Hermitian structure h in a holomorphic vector bundle E,
there is a unique h-connection d4 called Hermitian connection such that 84 = 8
Finally the curvature two-form of a Hermitian connection is of type (1,1), thus
F%0 also vanishes. The curvature two-form is given by the formula

Fg:= Fcrﬁudz Adzd, (2.3.13)

where F_5- is defined as (2.3.10). We note that the K&hler metric g; on X is
a Herrmtlan structure of T X,

We saw that our model describes a rank r Hermitian holomorphic vector
bundle E with Hermitian structure h_ (z z ) Now G, can be identified with

a holomorphic section of E. In summary a N, = (2,0) model is associated with
a Hermitian holomorphic vector bundle (E, h) over a Kahler manifold X with
holomorphic section. Associated with the base manifold X we have holomorphic
multiplets (2.3.4), as in the toy model. Associated with the fiber space we have
Fermi multiplets (2.3.5).

2.3.2 Path Integrals

Now we examine the path integral of our model in the various situations.

Turning Off the Holomorphic Section

To begin with we consider the case that &, = 0. The partition function Z is
defined by

Z= / [ ﬁ (ax*axFaptayf) f[ (dedXT)Je:cp (Faasvivinexd).

kx=1 4 7=1
(2.3.14)
The bosonic integral is an integral over X. As before the bosonic integral and
integration over ¢/* and 1% combine into the integration of differential forms on
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X by replacing F_z- +wlq'_ with the curvature two-form F,_5 defined in (2.3.13).
Thus we have

f H de dx) ) exp (Fﬂﬁx“‘ Xﬁ) (2.3.15)

1 7=1

The fermionic integral of x® and x? leads to the Pfaffian of the curvature two-
form F 5 € Q"' (X, End(E). We immediately see that the integrand is not a
top form on X unless n = r. For n = r the partition function is the Euler
character x(E),

Z = [x e(E) = x(E), (2.3.16)

otherwise, for n # r, the path integral vanishes. In the case r < n we can insert
a set of observables []aP¢9% with the total ghost number (n — r,n — r) and
evaluate the correlation function

<H ap‘.w) = / e(E) AaP % A ... AaPm9m (2.3.17)
=1 X

The path integral always vanishes for » > n. We see that the vector bundle E
after the parity change can be viewed as a bundle spanned by anti-ghosts x©
over X.

Turning On the Holomorphic Section

Now we turn on the holomorphic section G, of E — X. Applying the fixed
point theorem of Witten we see that the path integral is localized to an s, and
3, invariant neighborhood of the vanishing locus N of 6,(X*) in X, where
a=1,...,rand i = 1,...,n. The condition &,(X*) = 0 implies 8,.(S)q =0
in the s, invariant neighborhood of N. We have

8641, = 0. (2.3.18)

We call a non-trivial solution above a zero-modes of 1, which is a degree of
freedom tangent to the vanishing locus N. We call a non-trivial solution of the
similar equations

9;6ax> =0 (2.3.19)

a zero-mode of x_. For a generic choice of section &, the equation &, = 0 cuts
out a (n — r) complex dimensional subspace of X. Then the equation (2.3.18)
implies that we have exactly (n—r) zero-modes of 11, while the equation (2.3.19)
implies that we do not have any zero-modes of x_, since n > r. Assume that the
equations 3;6, = 0, only for a fixed o have common roots for all 7 =1,...,n.
Then (2.3.18) for the fixed @ do not impose any condition on the a,bi and we
may have (n — r + 1) zero-modes of ¥,. Similarly the equations (2.3.19) do
not impose any condition on the fixed component ¥* and we may have one
zero-mode of x_. Thus we may draw two conclusions
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1. For a generic choice of section we do not have any zero-modes of anti-
ghosts. The vanishing locus &~*(0) of the section has the right complex
(n — r) dimensions and the zero-modes of v span the tangent space of
&71(0).

2. For a non-generic choice of section we may have anti-ghost zero-modes.
The vanishing locus G7*(0) of the section have dimension higher than the
right one. In any cases we have

n—r=#) - #X-) (2.3.20)

where #(f:z;?m ) denotes the number of fermionic zero-modes. We call the
above the formal or virtual complex dimension of G71(0). The space of
anti-ghost zero-modes span a vector bundle V over &!(0) called the anti-
ghost bundle. The fiber dimension of ¥V may jump when G~*(0) develops
singularities.

We also see that our action functional S’ (2.3.9) restricted to the s, and
3, invariant neighborhood C of the fixed point locus is given by

§'g = mpa,ﬁ,i,;,tg,-wi;g 2, (2.3.21)

where it is understood all the fermions (wfi_,w‘;, x%,x%) are replaced by
T

their zero-modes (&;, A vl xa‘_-') and the curvature above is the curva-
ture of the anti-ghost bundle V over G71(0).

Now we examine the path integral. For n = r and with a generic section
the vanishing locus G~1(0) is zero-dimensional and the path integral counts the
number of zeros of the section. For n = r and with a non-generic section the
zeros of the section can be a positive dimensional submanifold &~!(0) C X of
X. The path integral reduces to an integral over & 1(0) and over anti-ghost
zero-modes. Note that the rank of the anti-ghost bundle V over &7!(0) is the
same as the complex dimension of &~!(0). The path integral becomes x(V)

Z = / e(V) = x(V), (2.3.22)
&-1(0)

which in turn can be identified with x(E).

Now we consider the case r < n. The partition function still evaluates the
Euler class e(V) of the anti-ghost bundle V over 6~1(0). Since, by the formula
(2.3.20), the rank of V is smaller than the complex dimension of &~*(0). Thus
the Euler class e(V) is not a top form and the partition function vanishes. To
get a non-trivial result we should insert a set of observables and evaluate the
expectation value

<Hai"bq:> = / e(V) A aPH i & LU aFrdn (2.3.23)
=1 S
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where i Y
Y=Y q=n-r (2.3.24)
=1 L=

and otherwise the path integral vanishes. If there are no anti-ghost zero-modes
we have e(V) = 1 and the above correlation function reduces to the intersection
number of homology cycles Poincaré dual to aP¢'9¢ in &=!(0). The selection rule
above can be understood in more physical terms. The path integral measure
contains a ghost number anomaly due to the fermionic zero-modes. The net
ghost number violation of the path integral measure is (n — r,n — r), which
follows from the formula (2.3.20) and the ghost numbers of the fermions;

0 caex®s (k0

- = (2.3.25)

¥y (0,1), x= (0, =1).
To cancel the ghost number anomaly we have to insert observables according to
the selection rule (2.3.24) to soak up the fermion zero-modes in the path integral
measure.

Specializing to N. = (2,2) Model

Finally we consider a special case of N, = (2,0) model which actually has
N. = (2,2) supersymmetry. We have the following properties

1. For a generic choice of holomorphic potential W(X?) we do not have any
anti-ghost zero-modes. The critical set V,'(0) where V; = 8;W(X?) con-
sists of a collection of non-degenerate points. The partition function is the
number of such points.

2. For a non-generic W(X') we may have anti-ghost zero-modes. The critical
set V,7'(0) may be a higher dimensional subvariety of X. The net ghost
number violation in the path integral measure is always zero. Thus the
rank of the anti-ghost bundle V is exactly the same as the complex dimen-
sion of V,71(0). Thus the partition function is well-defined and computes
the Euler characteristic x(V) of V. We can identify V with the tangent
bundle of V,'(0). Thus the partition function is the Euler characteristic
of V;7'(0). This, in turn, can be identified with the Euler characteristic
of X.

2.3.3 An Infinite Dimensional Example

Here we present an infinite dimensional example - the topological sigma A-
model in two dimensions. We consider a Riemann surface ¥ and a compact
complex d-dimensional Kahler manifold M. Now we let our infinite dimensional
target space X be the space of all maps ¥ — M. Then we can introduce local
holomorphic coordinate fields on X by X*(z,%z) where i = 1,...,d, leading to
holomorphic multiplets (X', ) with the transformation laws (2.3.4). Now we
consider the infinite dimensional vector bundle E over X whose fiber consist of
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=X'®0.X i, Then we have natural complex and Hermitian structures on the
fiber induced from the complex structure and Hermitian metric g;; of M together

with the integration over X. Since our holomorphic section is G, (X?) := 3:X*
the associated Fermi multiplets are given by (x%_, HZ) with the transformation
laws (2.3.5).

Now the action functional (2.2.16) becomes

S =is, ]E @ (Xi_0:X'g;) + i3, / & (Xi_0.X'g;,)
z
— e [Edzz (gt.;x}:ujé_) ;

The supercharges s, and 3, are scalars on both ¥ and M. They are the 8 and 8
operators, after the parity change, on the space X of all maps ¥ — M. The path
integral is localized to the moduli space M of holomorphic maps ¥ — M. The
resulting model is the topological sigma A model which can be obtained by a
twisting of N« = (2,2) two-dimensional space-time supersymmetric non-linear
sigma-model whose target space is M [49][3].

(2.3.26)
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Chapter 3

Equivariant Cohomological
Field Theory

In the previous chapter we developed standard models of cohomological field
theories associated with a Kahler manifold X, tangent bundle T'X and Hermi-
tian holomorphic vector bundle E over X. In this chapter we generalize those
modes to the cases when there is a certain group G action. This generalization
is relevant since most of field theory has a certain gauge symmetry. The models
in the previous chapter are obviously empty if the target space X is linear. On
the other hand models in this chapter have rich structures both for linear' and
non-linear target spaces. This also allows us to consider more general classes of
target spaces like the space of a certain set of matrices, the space of a certain
set of fields on a manifold, etc.

The central tool will be the notion of equivariant cohomology and symplectic
quotients. The only practical difference between the models in the previous
chapter and their equivariant generalizations are that the later models further
localize the path integrals to the vanishing locus of G-momentum map, modulo
the G symmetry. If the G acts freely on such locus we recover the standard
models in the previous chapters now associated with the symplectic quotients.
The momentum map is a generalization of the familiar angular momentum
associated with a group of rotations in the classical mechanics.

3.1 Equivariant Toy Model

We return to our toy model in Sect. 2.1.1, where we considered a n-dimensional
Kihler manifold (X, w) with Kédhler form @ as the target space. Now we assume
that there is a group G action

GxX X, (3.1.1)

1The relation between the previous section and the present section is best compared with
that of non-linear sigma-models and linear gauged sigma models in two-dimensions.
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preserving the complex and Kahler structures. We consider the toy model with
the action functional S in (2.1.4). The action functional is invariant under G
thus the path integral is degenerated. We want to remove the gauge degree of
freedom as follows (compare with (2.1.8) )

__1 D =5
2= /Y [DXDXDyDY] e

w XDDTl
- 25 /‘w[pxpxmw] e (3.1.2)

_— / [DXDXDyDyD(ghosts)] e~ 5~ 5er=Son

#(9) Jx

where #(G) denotes the number of central elements of G, S,; and S, denote the
gauge fixing and ghost terms. The above procedure is the well-known Faddeev-
Popov-BRST quantization on which I do not want to review here.?

A general problem with the path integral above is that the quotient space
X/G rarely has good topology and geometry. This means that it is difficult
make sense out of our (even for finite dimensional) path integral. Furthermore
the geometrical meaning of the s and 3 supercharges on the quotient space
Is not quite obvious. This problem can be avoided by considering equivariant
cohomology. For general references see [39][50][51].

3.1.1 Extending Our Toy Model

A nice route to introduce the equivariant cohomology is a simple generalization
of our toy model in Sect. 2.1.1. Now we assume that there is a group G action
GxX — X on our target space X preserving the complex and Kihler structures.
Our goal is to extend our target space and supercharges s and 3 by introducing
extra fields such that

1. If G acts freely on X the degrees of freedom due to the extra fields disap-
pear,

2. the supercharges become 8 and 9 operators, after the parity change, on
the G-invariant subspace.

To implant the above idea we need the notion of Lie derivative. Consider
a manifold with G action. Let Lie(G) be the Lie algebra of G. We will always
assume that we have a bi-invariant inner product < , > on Lie(G) such that
we can identify Lie(G) with its dual Lie(G)*. Let X' be the local coordinate
fields on X. The G action induces a vector V./T° such that an infinitesimal G
action is represent by
b T LS T (3.1.3)
We denote by j, the interior derivative with respect to the vector V,, i.e.,

Fa s (X)) - HX),

: (3.1.4)
(fa®) o1, =TV an 1y,

2] only want to remark that it involves the Lie algebra cohomology with the parity change.
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Let £, be the Lie derivative with respect to the vector field V;;
L =djg+5.d (3.1.5)

Then the infinitesimal G action on & € Q*(X) is given by @ = a+e%L,a. Thus
a differential form « is G-invariant if £,a = 0. We note an obvious relation
PRI e

Now we extend our target space X by introducing a Lie(G)-valued scalar
¢ = ¢*T, and modify the commutation relation (2.1.2) as?

ad=0_ {a8l=—id?L, B =0 (3.1.6)

Thus {s,3} = 0 on the G-invariant subspace of X and the supercharges are
related with the 8 and & operators on the invariant subspace as in the case of
our previous toy model. The ghost numbers of ¢ should be assigned (1,1) to
match the ghost numbers in the anti-commutation relations above. The above
defines G-equivariant Dolbeault cohomology [52][53].

By the new anti-commutation relations (3.1.6) the supersymmetry transfor-
mation laws (2.1.4) should be modified as follows

sX! =iy, sy’ =0,
X =0, Bt =gt L X Y gy =,
sXt =0, s = —¢°L, X',  F$=0,
X' =i, s =0.

(3.1.7)

where we obtained the conditions s¢ = 3¢ = 0 by demanding the algebra to
be closed. Assume that we have a model with an action functional which is
invariant under the supersymmetries generated by the above new supercharges.
Then we can apply the fixed point theorem of Witten and we have the following
fixed point equation, deduced from the above

s S a1 (3.1.8)

This equation tells us that ¢* = 0 if G act freely on X while ¢® can be non-zero
on a fixed point of the G action. Thus we achieved our initial two goals.

Now we consider a supersymmetric action functional S. Compare with the
non-equivariant case in Sect. 2.1.1, an action functional should be invariant
under G in addition to 8S = 85 = 0. These conditions imply that one can also
apply the Poincaré lemma since the new supercharges are also nilpotent if they
are acting on G invariant quantities. Thus S can be written by the same form
as the previous toy model

S = is5K(X?, XY), (3.1.9)

where K should be G invariant. * Applying the transformation laws (3.1.7) we
have e
S = —i(¢, p) — g9y, (3.1.10)
3where ¢® is €% in (3.1.3) incarnated as a field.

4 Actually K only needs to satisfy a weaker condition that it should invariant under gauge
transformations connected to the identity.
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where

e = i;XK‘, (EGX‘-) : (3.1.11)

Later we shall see that p = p,T® is the equivariant ¢ momentum map on
X. Maintaining all the supersymmetry we consider the following more general
action functional S(()

S(¢) = 188K +19%(,

.= 3. 1512
= —i < ¢, u— (> —igzh'ed, .

where ( belongs to the center of G. We call the additional term a FI coupling.
Now we consider the partition function for the new action. We have

B X DUDT] e—5©)
BN ] [D$DXDXDYDY) e

= ; L K % g1k r _"5"-}‘1"‘3’:_'
= vd(g)-/xé(au C)HdX dX dy dy” - e
Judogs (3.1.13)
. / il
#g p=1(¢)/G r!
1 -
= —#'"C:‘UOI(NC),
where
Ne=u71(0)/6. (3.1.14)

In the above we assumed that G acts freely on the locus u~*(¢) € X. Thus we
could simply integrate ¢ out, which gives rise to the delta function supported
on u~'(¢). Then the quotient space N is smooth. Our action functional S¢
reduces to the Kihler form on the subspace u=!(¢). Since it is G invariant it
becomes, after the parity change, the Kahler from & on the quotient space A¢.
What we showed is the symplectic reduction theorem of Marsden and Weinstein
[54].

We call our extended toy model the equivariant toy model. We note that the
equivariant toy model makes perfect sense even if we start from a flat Kahler
manifold X as our initial target space. We call the space N; the effective target
space, which can be a very complicated non-linear space even if our initial target
space X is flat.

Before examining further properties of our model, we turn to a review of the
equivariant cohomology and momentum map. We refer for details on the equiv-
ariant cohomology and relation with momentum maps to a beautiful exposition
of Atiyah and Bott [50]. The idea is to replace X by a bigger space X x EG
such that the extended space has a nice quotient

Xg = (X xg EG)
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which is equivalent to the original quotient M /G when it has a nice quotient.’
The G-equivariant cohomology H(X) of X is defined as the ordinary cohomol-
ogy H*(Xg) of Xg. For instance the G-equivariant cohomology of M is the
ordinary cohomology of X/G if G acts freely on X.°

We will briefly review a convenient model of equivariant cohomology due to
Cartan, of which variants will be used in this thesis. A crucial reference on the
Cartan model for us is Witten's paper [55]. The path integral of the equivariant
toy model reproduces a Kahler version of Witten’s non-Abelian equivariant
integration formula.

3.1.2 Equivariant Cohomology and Momentum Map

Consider a manifold X with G action. Let Lie(G) be the Lie algebra of G. We
will always assume that we have a bi-invariant inner product < , > on Lie(G)
such that we can identify Lie(G) with its dual Lie(G)*.

Let Fun*(Lie(G)) denote the algebra of polynomial functions on Lie(G) so
that an m!" order homogeneous polynomial is considered to be of degree 2m.
The equivariant differential forms 7 (X) on X are represented by

05 (X) == (Q*(X) ® Fun*(Lie(6)))?, (3.1.16)

where 9 denote the G-invariant part. The degree of such a form is the sum of
degrees of 2*(X) and Fun*(Lie(G)). One endows Q5 (X) with the equivariant
differential operator dg

dg =d—i¢%ja,  df=—i¢*La, (3.1.17)
where j2 = 0 and ¢ = ¢°T* € Lie(G). That is, d} = 0 modulo an infinitesimal
gauge transformation generated by ¢®. Thus on the space Q5 (X) we have’

(?é =

The G-equivariant de Rham cohomology on X is the cohomology of the complex
(Q5(X),dg). The equivariant cohomology of X is the ordinary cohomology of
the quotient space if the group acts freely, otherwise it is something else. For
example Hg(pt) is Fun*(Lie(G))-

The Symplectic Case

Now we consider a symplectic manifold X with symplectic form w. Assume that
we have a G action on X. Under an infinitesimal G action X — X7 +&°V/ the

5The additional space EG is a fixed universal G-bundle over the classifying space BG. The
homotopy quotient Xg forms a fiber bundle = : Xg — BG with fiber X. Then we have the
following diagram
EG + EGxX - X
i 4 1 (3.1.15)
BG + EGxgX - X/G

SNote, however, G-equivariant cohomology of a point is H* (BG) which is highly non-trivial.
TAn element in Q5 (X) is annihilated by La = La + fubcqf'b%, where f,,° = —fpa" are
the structure constants of G. Then, it is also annihilated by ¢% L, since ¢ Lo = ¢ L,.
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symplectic form transforms as @ — w+£%L,w. Thus we have a vector field v
which is an infinitesimal symplectic transformation whenever £, = 0. Since
dw = 0 we have d(j,@) = 0, thus at least locally we can write

Ja@ = dpg. (3.1.18)

The p = pT® : X — Lie(G)* is called the G-momentum map.® The obstruction
for global existence of y, is H!(X). The momentum map is a generalization of
the familiar classical mechanical notion that X is a classical phase space and G
is a group of rotation and p is the angular momentum. The momentum map
is equivariant if u(g(z)) = (ad g)*(i(z)). Then G preserve the subspace u~*(()
when € is a central element. Then the reduced phase space or the symplectic
quotient is defined by

Ne = (X nu*(Q)/6 (3.1.19)

The quotient space is a smooth symplectic manifold if ¢ is a regular value. The
symplectic form % on N¢ is obtained from @ by restriction and reduction [54].

The equivariant cohomology and the momentum map are closely related [50].
Note that the symplectic form @ is not equivariantly closed, dgw # 0. We have
a unique form, due to the degree, of equivariant extension wg of @

wg = w + (¢, p) (3.1.20)
The condition dgwg = 0 reduces to using dg¢ = 0
< ¢,dp — jw >=0. (3.1.21)

Thus wg is equivariantly closed iff p is the momentum map (3.1.18). Note that
wg is G invariant, Lowg = 0, iff the momentum map pu is equivariant.

The Kahler Case

Now we specialize to the case that X is a Kahler manifold with Kahler form w
and with G action, which preserve the complex structure and the Kahler form.
The vector field V! induced by the G action is decomposed into V! = V' + Vi,
Thus one can introduce interior derivatives t, and 7, by contracting with Vﬂ‘_'
and Va‘?, respectively, such that j, = t, + Ta;

lo 1 QPI(X) = QP19(X),

(3.1.22)
Ta : QPI(X) = QPILH(X).
From the relation j; = 0 we have
& =0, fta =0, 5 =0 (3.1.23)
It follows that J
Lo = 0ty + 1,0 + Fta + 1,0. (3.1.24)

8Note that we identified Lie(G) with its dual Lie(G)*.
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We also decompose Fun*(Lie(G)) such that an m** order homogeneous poly-
nomial in Fun(Lie(G)) is considered to be of degree (m, m). Then equivariant
differential forms Q5 (X) on X are represented by

Q7" (X) := (**(X) ® Fun®(Lie(G)))° (3.1.25)
Similarly we decompose dg into
dg = 86 + 9 : QG (M) = QF°(M) & Q' (M). (3.1.26)
where 5 7Ty
= 0.=1 ﬂ_cn
04 (R (3.1.27)
dg =0 — 1¢%1L,.

Remark that ¢ is assigned to degree (1,1). The anti-commutation relations
between 0g and dg are

82 =0, {85,0} =—i¢°La, Dg=0. (3.1.28)

This defines equivariant Dolbeault cohomology on a Kihler manifold. Compar-
ing with the anti-commutation relations (3.1.6) we can identify our supercharges
s and 8 with dg and 9g after the parity change (2.1.16). Thus

. = 8
8 =i — ¢°Vi—,
‘X"!, i
g oy (3.1.29)
N ) S )
S — e
X oyt

Now we examine the relation between the momentum map and equivariant
Dolbeault cohomology. For the Kahler case the relation (3.1.18) becomes, by
matching form degrees

La T = Ofiq. (3.1.30)

Since the Kéhler form @ can be written locally in terms of a Kihler potential

1,

w = i00f, (3.1.31)
we have - "
i1a(68f) = Bua. (3.1.32)
Using the relations {t,,8} = {8,8} = 0 we deduce that
e =1, (0F) (3.1.33)

up to a constant. Combining all together we find an important identity
i0g0gf =w+i< ¢, pu>, (3.1.34)

which we obtained earlier in (3.1.9) and (3.1.10). Thus minus the action func-
tional, =8, is a G-equivariant Kahler form after the parity change. Note that
the momentum map derived above is equivariant if the Kahler potential is G
invariant. Thus we showed all the assertions made in Sect. 3.1.1.
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3.1.3 Path Integrals and Non-Abelian Localization Theo-
rem

We now return to the equivariant toy model. We return to the partition function
Z (3.1.13) and ask what will happen as we vary the FI term (.

We have a classical theorem; the image of a proper momentum map of a
compact group is a convex polytope divided by walls [56][57][58]. As we vary
¢ the symplectic quotient N may undergo birational transformations if the
path of { crosses a wall, otherwise diffeomorphic. For the non-proper case the
symplectic quotient does not exist. This does not imply that the partition
function is empty. Recall that space of all bosonic fields is a copy of X and
the space of all ¢. The correct picture is that the path integral is localized to
N¢ C X/G for regular values of (. The full equation for the localization is

p—¢=0,

Sas o s (3.1.35)

We call the non-trivial solutions ¢ of above equations the zero-modes of ¢. It
is clear that we have zero-modes of ¢ whenever the G action has fixed points in
p~1(¢), thus when ( lies on a non-regular value (y. Clearly the path integral
degenerates at such a value since the path integral measure contains zero-modes
of ¢. Let (4 < (p < (— we have

2(¢h) # 2(C-) (3.1.36)

due to topology change. At (o the partition function should be singular.
It is clear how to resolve the singularity of the path integral. We have to
regularize. We consider a more general action functional S((,¢),
S(Ge) =S +z <>
& e (3.1.37)
=—i<dpu—(> +§(¢, ¢) —igzy'yY.

Note that the additional term is invariant under G as well as all the supersym-
metry. The additional £ dependent term changes the fixed point equations of
the supersymmetry since the ¢ equation of motion is now

i(u—¢) =eo. (3.1.38)

Consequently, for € # 0, the path integral is localized to the locus of the following
equations

0X

Now we also have contributions from higher critical points. Thus, we have two
branches; (i) p* —¢(* = 0, (ii) 5‘%# = 0. Clearly the quotient N space develops
singularities when branches (i) and (ii) intersect. In such a case the integrand
of path integral contains the Gaussian measure

(8‘”") (1® = ¢*) = 0. (3.1.39)

e 2ol (3.1.40)



3.2 EQUIVARIANT N, = (2,2) MODEL 33

for the space of zero-modes ¢q ¢ of ¢. Thus the path integral is non-singular.
Consequently the politically correct version of the model is defined by the action
functional S((,¢).

Now we consider the correlation functions. A supersymmetric observable
should be G-invariant as well as invariant under 8 and 3. Such an observable
should be constructed from an equivariantly closed differential form. An equiv-
ariant differential form O of total degree (p, ¢) can be expanded as

OP9 = aB1 4 ¢l 1971 4 gogba? 29 4 (3.1.41)
where a9 € QP9(X). Let OP9 be the parity change of OP9, thus carrying
ghost number (p,q). We have

g

30P9 = §g0 . (3.1.42)

Thus OP is an 3-invariant observable if OP9 is an dg-closed equivariant differ-
ential form.

The correlation function of observables or the expectation value is defined
by

m=1

<H 5pm.qm> _ / [D¢DXDXDYDY) [] O7mom - €75, i)

m—=1

For the present model one can show that

ﬁ OPmam | — 1 dordes . ..do,s
=1 'Uof(g) G (2?T)a

Xf OPI;QZA___AOPrsQr.exp (m+1(¢,p——§)—%(¢a¢’)):
X

(3.1.44)

where s = dim(G). Applying the fixed point theorem for the global supersym-
metry we see that the above integral can be written as a sum of contribution of
the critical points (3.1.39) of I =< p, pu >. This is the non-Abelian localization
theorem of Witten [55], generalizing the more familiar abelian Duistermaat-
Heckman (DH) integration formula [56]. In the end our equivariant toy model
turns out to be very non-trivial.

3.2 Equivariant N, = (2,2) Model

In this section we develop the equivariant generalization of the N, = (2, 2) model
in Sect. 2.2. We assume the same group G acting on X as in the previous sec-
tion. This naturally extend to the tangent space T'X. Recall that the partition
function of our toy model is the symplectic volume of the target space, while
the partition function of the equivariant toy model is the symplectic volume of
the symplectic quotient N, for generic values of ¢, of X by G. Similarly, the
partition function the equivariant version of N, = (2,2) model, without holo-
morphic potential W, will be the Euler characteristic x(T'N¢) of the symplectic
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quotient N, for generic value of ¢, of X by G. After turning on W, the path
integral reduces to the symplectic quotient M of the critical subset X ,.;; C X
of the potential W by G.
We consider the same "type” of supercharges carrying the same ghost num-
bers (p, q);
S (+1, 0), §+ F (0, +1).,

s_:(-1,0), s_:(0,-1). B2 1)

Now we postulate the supercharges to satisfy the following anti-commutation
relations

{8+,8,.} = —i¢%, La,

s =0, 5;,8 :0:
(0 B Bt Bgion A o
PHEE g s Dlapitn (85—, =
fa_,8 1 =0 {881 =0,

{3_, E-—-} == —?:f,f)‘i_ﬁa,

which are equivariant generalizations of the commutation relations (2.2.2) and
(2.2.3) for the N. = (2,2) model. For the G-invariant subspace the equivariant
supercharges are the same as the non-equivariant ones. Here, in total, we intro-
duced four bosonic fields ¢+, o and 7 taking values in Lie(G). They carry the
following ghost numbers

b4y i (+1,41), i :(+1,-1), (32.3)
d__ :(—1,-1), g:(—1,+1).
The anti-commutation relations above define balanced G-equivariant Dolbeault
cohomology [59]. This is the Kahler version of the balanced equivariant coho-
mology [38].°
We should remark that the above algebra can be obtained by dimensional
reduction of the NV = 1 supersymmetry algebra of four-dimensional super-Yang-
Mill theory and, equivalently, the algebra of N,, = (2,2) super-Yang-Mills
theory in two-dimensions. Thus we may introduce other quantum numbers, as
in two-dimensions, the left and right U(1) R-charges (J;, Jg) as follows

s, : (+1,0), s (-1,0), e
s_ :(0,41), s_:(0,-1).

The analogy with the two-dimensional N,, = (2,2) space-time supersymmetric
gauge theory, equivalently the linear gauged sigma-model [32][33] will be very
useful. Indeed it is a trivial step to obtain a N, = (2,2) model, and vice versa,
Just by replacing ¢% . £, by the left and right moving covariant derivatives Dy
everywhere. Then the indices £ are identified with the left and right spinor
indices in two-dimensions. For example requiring the ghost number symmetry
is equivalent to requiring the two-dimensional Lorentz symimetry.

In our approach a balanced cohomological field theory [60][7](38] is a No = (1,1) super-
symmetric sigma-model in (0+0) dimensions, whose target space can be a general Riemannian
space.
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3.2.1 Basic Structures

Now we examine the basic structure of the model.

No=

(2,2) Multiplets
Chiral multiplets

‘We have the same chiral multiplets introduced in the non-equivariant N, =
(2,2) model,

BiXT =0 (3:2.5]
We have
P& XS gl
ThV P (3.2.6)
H:’

We denote their anti-chiral partners (X ‘_', 'd);'i, H ;), which are their Hermi-
tian conjugates.

Gauge multiplet

The internal consistency of the anti-commutation relations (3.2.2) deter-
mines uniquely the following multiplet

— 8.4 8_
= e g

lz_ |=- |-

s e = (3.2.7)
e
gitetistecy wliidas by

where D is real auxiliary field. All the fields above take values in Lie(G).
We call the above multiplet a N. = (2, 2) gauge multiplet since it originated
from the G action on X. Remark that o is twisted-chiral; i.e.,

gea=8-g = 0. (3.2.8)

The ghost numbers

The ghost numbers (p, q) of the fields in the gauge multiplet are determined
from the assignments (3.2.1) and the commutation relations (3.2.2). We
set the ghost number of X* to (0,0). For the bosonic fields we have

B Gt TaeD Xt H?
O e [ (3.2.9)
g +1 -1 -1 +1.0.0 @
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e The R-charges

The R-charges (Jr, Jg) of the fields in the gauge multiplet are also deter-
mined from the assignments (3.2.4) and the commutation relations (3.2.2).
We set the R-charges of X* to (0,0). For the bosonic fields we have

big o oy 7 D X' B
Ji. 0 0 &L =1 6 oy (3.2.10)
Jit i Bherabe has ebartibl 10t O pnsil

The Supersymmetry Transformation Laws

The explicit transformation laws for the fields in the N. = (2, 2) gauge multiplet
are uniquely determined by the internal consistency

0¢ = iELny +iegny,

8¢ =ie_n_ +ie_T7j_,

do = —1ELm_ —1e_Tj,

67 = —ie_my —ie4T_,

. 1 = =
ony = +ie D — §€+[0, 7] — §€+[¢++: ¢-_] —e_[¢44,7],
= 3 g -
an, = —ie D+ §€+[0’: o] — §€+ [f4+,0-—] —E[¢4+,0], (3:2.11)
1 1
dn— = +ie_D + 55_[0,6] + 55_[¢++, ¢——] —€et[p-—, 0],
; 1 1
Jﬁ_ = —ge_D — 53_ [O',E] -+ ig_[¢++’¢__] = [4)-—,5"],
1 1 1 1
6D = +5E-[brs -]+ SE-[oome] + S ] + SEL [0, -]

1 1 1 1
= Ef—[¢++»ﬁ—] 5 §f—[ﬁ»ﬁ+] = §f+[¢——=ﬁ+] = §f+[0u n_],

where D is an auxiliary field and the commutators are for Lie(G).
The transformation laws for chiral multiplets are also uniquely determined
from the conditions 3. X' = 0.

6X* =ie yt +ie_yl,

S =+ B HY — g2, Lo(X7) — €0 La(X7),

ot = —e_H' — e,0°_La(X?) — e_7°L(X?), (3.2.12)

SH' = +ie_¢2, La(¥') +ie_nf La(X*) — ie_T"La(¥})

—ier ¢ La(¥}) —iern® Lo(X7) +ier0®La(yl),

where H' are auxiliary fields as in the non-equivariant N, = (2,2) model. The
details of the transformation laws above depend on the ways the group G acts
on X*. Since this can be determined easily we will rarely write down the explicit
forms and always refer to the above formulas. One may have several different

chiral multiplets. Their transformation laws are also determined as above once
the complex structure and the group action are given for the bosonic fields.
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The Fixed Point Equations

One can never over emphasize the importance of the fixed point theorem of
Witten. We have seen many times that the existence of global supersymmetry
determine the theories almost uniquely. Such uniqueness becomes stronger as
many global supercharges we have.

From the above supersymmetry transformation laws we see that the simul-
taneous fixed point equations for all the N, = (2,2) are given by

H' =0,
D= 0;
(3.2.13)
(X‘) =0,
[‘Pm: (Pfl] = 07
where ¢, m = 1,...,4 denote the four independent real Lie(G)-valued scalar

components of ¢4+, o and its Hermitian conjugate @. The action functional, in
many respects, just gives the detailed form of the values of the auxiliary fields
D and H*. The path integral is localized to the solution space of the above
set of equations modulo the G-action. The third equation implies that ¢, are
identically zero if G act freely on the subset H=1(0) " D~'(0) C X. In such a
case the path integral reduces to an integral over the quotient space

(H~'(0)nD~'(0)) /G. (3.2.14)

We call this the effective target space. The N. = (2, 2) supersymmetry further
implies, as we shall see shortly, that the above space is a Kahler manifold.

If one is interested in evaluating correlation functions of observables invariant
only under the supersymmetry generated by sy and 3., the path integral is
localized to the locus of the following equations

H'=0,
B %[o, 7] =0, (3.2.15)
7°La(XY) =0
and ‘
@ La(XY) =0,
[bs4rb-_] =0, (3.2.16)
[¢++,0] = 0.

3.2.2 Action Functional and Partition Function

We define the general action functional S by demanding N, = (2, 2) supersym-
metry, the G-symmetry and the ghost number symmetry. We may, however,
not require the U(1)xz symmetry in general. Then S should have the following
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form?!©

S =s+s_§+§_}C(X",X‘T) + 848 W(XY) +§+§_W(X‘h') (3.2.17)
= 3+8_§+§_ (O’,E} 4 §+3_ < t,ﬂ' > +S+§_ 'I‘I‘ cl E,E = 5
where all potentials (X, X?), W(X?) and its Hermitian conjugate W(X?) are

G-invariant and!?

i = —?- —iC (3.2.18)
21

belongs to the center of Lie(G). The first line of the action functional (3.2.17) has
the same form as the non-equivariant N, = (2, 2) action functional. We remark
that the above action functional can be a quite strange object if K(X?, X7) is
non-linear as well as if X* are certain matrices.

Expanding the action functional above we have the following terms depend-
ing on the auxiliary fields

S = (D, D)~i(D, u—C)+(gzH', H)~i(H',0,W) ~i(H*,3;W)+..., (3.2.19)

where p is the G-momentum map on the target space!? X as defined earlier in
(3.1.11), g; = 0:;9;K and 8;)W = OW/OX'. We integrate out the auxiliary

fields D, H* and H i by imposing the following algebraic equations of motion

)
D= 5(# =)
o b B (3.2.20)
H' =497 ——.
ax:

From our general discussion earlier, we see that the path integral is localized to
the space of solutions of the following equations

H—= C = 0?
W _, (3.2.21)
axe T

modulo the G-symmetry. In other words the effective target space (3.2.14) is the
symplectic quotient at level ¢ of the critical set H; ' (0) C X of the holomorphic
potential

M¢ = (H7H(0)np~'(C)) /G- (3.2.22)

Equivalently M. is the restriction of N¢, the symplectic quotient of X by G, to
the critical subset. Those are compatible since H* is G-equivariant as W and S
are G-invariant. Thus M. is a Kahler manifold, provided that ¢ is generic. Note

10The total "Kahler” potential K (X ",X‘T) — <J,E> can be generalized to an arbitrary G-

invariant real functional E(X",X‘; o,7). Then we may obtain a model whose effective target
space is non-Kahler but has torsion and generally a dilaton.

1The theta term plays no roles in the (0 + 0)-dimension we are considering here.

12 A better terminology is to regard X as the space of all X'’s.
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that the space of all bosonic fields is much bigger than X due to the additional
affine space of four real scalars ¢™, m = 1,...,4. The path integral is localized,
in addition to (3.2.21), to the space of solutions of

[‘pm’wn] =0, Lp?nﬁa(xi) =0, (3.2.23)

modulo the gauge symmetry. As the basic principle of the equivariant cohomol-
ogy ¢m = 0if G acts freely while, otherwise, there is something else.

Now we assume that M. is smooth. Then our model is equivalent to the
non-equivariant N, = (2,2) model with target space M.. Thus the partition
function is the Euler characteristic of the effective target space;

Z = x(TM¢) = x(M¢). (3.2.24)

A beautiful fact is that our initial target space X may be infinite dimensional
with an infinite dimensional group G acting on it, while the final target space
M¢ can be finite dimensional.

The Geometry of Effective Target Space

It is obvious that the group action preserves the condition H; = 0 and the
subvariety H; '(0) C X inherits the complex and Kahler structures by restric-
tion. The quotient space M, inherits the Kéahler structure from H; '(0) by the
restrictions and the reduction.

If ¢ takes on a generic value, the group G acts freely and M is a smooth
Kahler manifold. For such a case the model can be identified with the non-
linear non-equivariant N. = (2,2) model in Sect. 2.2.2 with target space M,.
This property is equivalent to the property of equivariant cohomology that the
equivariant cohomology is the ordinary cohomology of the quotient space if it
is smooth.

For non-generic ¢ the quotient space develops singularities or even may not
exist at all. For such cases however one always has some extra degrees of freedom
not described by the moduli space, due to the extension of X/G to Xg. Those
extra degrees of freedom are represented by the solutions of (3.2.23) modulo
gauge symmetry. The first equation in (3.2.23) show that no such a solution
exists if the G action act freely, without fixed points, on X . If there are solutions
they span an affine space,'® which looks like a symmetric products of R*.

The beautiful relation between the symplectic and geometrical invariant the-
ory (GIT) quotients also is an important part of the story [61][62][58]. The es-
sential point is that the condition H; = 0 is preserved by the complexified group
action G€, while the condition D = 0 is only preserved by the real group action.
Thus we may consider a complex quotient H; '(0)/G® and try to compare with
the real quotient (H;'(0) N D~1(0))/G. In general there can be Gt-orbits in
H7'(0) which contain several G orbits in H, *(0) N D~(0). Thus we need to
consider a suitable subset in H; '(0) for which a G®-orbit contains exactly one
solution of the equation D = 0. Then the real equation D = 0 can be identified

13We will relate those degrees of freedom, in certain cases, with the degrees transverse to
the D-brane world volume in the bulk.
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with the gauge fixing condition of the complex gauge symmetry of the complex
equations H; = 0.

The complex gauge group in general does not act freely on the submanifold
H;'(0), so that taking the quotient directly would lead to unwanted singulari-
ties. One first removes such obvious bad points B. However there are subsets
in (H;'(0) — B) which can be arbitrarily close to B by GC action. One call a
point in H;'(0) semi-stable if the closure of its GC orbit does not contain B.
Let H;'(0)ss be the semi-stable subset of H;'(0). Now the beautiful fact is
that the complex quotient H; *(0),s/G€ contains the symplectic quotient Mo as
open subset. A stable orbit is a semi-stable orbit if the points of the orbit have
at most finite stabilizers under the real G action. Then the various symplectic
quotients M can be identified with the quotient space H ~1(0),/G® in dense
open subset. Thus we have

H;1(0)ss/G€ D M¢ D H™'(0),/65. (3.2.25)

The first relation implies that we have a natural compactification of M by
taking the closure in H;(0)s5/GC. The second relation implies that the various
symplectic quotients M, are birational with each others.

Two Finite Dimensional Examples

We now consider two examples for finite dimensional target space X borrowed
from Witten’s papers on two-dimensional gauged linear sigma models [32](33].

Abelian Case

We consider the complex linear space X = C™*! with U(1) action. Let X",
i=1,...,n+ 1 parameterize coordinates of a single instanton on e Tet T
act on C™ such that X* has charge ;. We have

n+1

k=% P (3.2.26)
=il
leading to the momentum map
p=3 QuX. (3.2.27)
To be more specific we consider n chiral fields s; i = 1,...,n with charge 1

and other chiral field p with charge —n. We pick holomorphic potential
W =p-G(s:) (3.2.28)

where G is a homogeneous polynomials of degree n. We also demand transver-
sality, that 8G/ds; = 0 have no common root except at s; = 0. Then the
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conditions in (3.2.21) and (3.2.23) become

Ymp =10,
Pmsi =0,
G(s;) =0,
oG (3.2.29)
v 0,

n
S lsil? —nlpl* —r =0,
i:l

Now we examine how the effective target space varies as we vary (.

e r > 0. The last equation requires that the s; can not all vanish. Then
the second to last equations together with the transversality implies that
p = 0. The second equation implies that ¢,, = 0. So we are left with

Zj|s.-|'-*—c=0,

G(S;‘) —p

(3.2.30)

Thus the classical vacumn space is the hypersurface X in CP™~! defined
by G(s;) = 0. It is a smooth (via transversality) Calabi-Yau space (via
anomaly free R-invariance).

e r < 0. The last equation requires that p # 0. The second equations with
transversality implies that s; = 0 for all « = 1,...,n. The first equation

implies that ¢,, = 0. Thus
lp| = /—r/n. (3.2.31)

e 7 = 0. The only solution for the last two equations is the origin of C**!
which is fixed by the U(1) action thus a singular point. The equations do
not impose any restriction on ,, thus they span C2.

A non-Abelian case

We consider the space X of all NV x k hermitian matrices g In the space X we
introduce a complex structure such that 3.q = 0. We have natural G = U(N)
action on X given by ¢ — gq where g € G. The U(N) action preserve the
natural Hermitian structure f given by

G ="Trqq" (3.2.32)
Then the conditions (3.2.21) and (3.2.23) become
emq =0,
qq¢" — (I =0.

Thus the model reduces to a zero-dimensional sigma model whose target space
Mg, for ¢ > 0, is the Grassmannian G(N, k) — the space of N complex planes
in C*. For ( = 0 we have g = 0 while ¢,, span Sym™ (R?).

(3.2.33)
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3.2.3 N.=(4,4) Model

In this subsection we briefly consider a special case of the N, = (2,2) model
with N. = (4,4) supersymmetry. Historically the hyper-Kahler quotient was
first discovered with the help of the N,,; = (4,4) theory [27].

The initial target space X should have a hyper-Kahler structure. Then we
have three independent complex structures Ji, J5, J3 satisfying J;J; = —&;; +
gijk . For each complex structure I, £ = 1,2,3, we have a Kahler form w,.
Now we assume that we have G action preserving all the Kahler forms, i.e.,
L,wy = 0. Then for each Kahler form w; we have a momentum map pg. The
hyper-Kahler quotient is defined by [27]

3

Mg =17 (C)/6, (3.2.34)

=1

which inherits a hyper-Kahler structure from X by restrictions and reduction.
Let d be the exterior derivative on X. For each complex structure J; we define
a real operator d; by

de = J;tdJ;t. (3.2.35)

Then we have a decomposition d = 9 +8, for each complex structure Jy, where

1 =
Jr = ‘2—(d i 'id{),
(3.2.36)

— 1 o~
6( = -z-‘(d— '&d{_].

Now it is obvious that we have supercharges (s4, Ei) for each complex structure,
defining balanced Dolbeault equivariant cohomology

{si,Ei}=—£¢++, {85_,3{}:—[0,;, {si,sf_}:{}, {si,si}=0,
{S{_,EE_}Z—C,;.__, {Eivsr—}:_ﬁi‘v {Efl-v-'g'e—} =0, {gftvgti} =0,
(3.2.37)

where ¢ is a complex scalar obtained by a certain combination of the four real
Lie(G)-valued scalars. Consequently we have N. = (4,4) supersymmetry.

It is convenient to pick a complex structure .J, say, J = J; with the cor-
responding Kahler form @w = w;, real momentum map g = p; and FI term
¢ = (; once and for all. Then w3 + iw3 is the holomorphic symplectic form
w2, We define the complex momentum map puc = p» + ips and FI term
(c = (3 +1(3. Now the internal consistency of the supersymmetry algebra leads
to N. = (4,4) gauge multiplet consisting of the N, = (2,2) gauge multiplet
(3.2.7) and a N. = (2,2) Lie(G)-valued chiral multiplet,

o s

P W s (3.2.38)
D¢
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with the usual supersymmetry transformation laws. It turns out to be natural
to modify the N, = (2,2) transformation laws (3.2.11) of the N. = (2, 2) gauge
multiplet by replacing D — D + [r, 7).

Consequently we have in total the Lie(G) valued complex scalars ¢, 0,7
associated with G-equivariant cohomology. The target space X must be 2n
complex dimensional, thus we have 2n bi-holomorphic fields X*, i = 1,...,2n.

Now the general action functional with N, = (4,4) supersymmetry is given
by

S =8,8-3,3 K(X*,X") - 8,8_5,5_((0,7) — (1,7))

+ —\;—534.3_(1', pe(X?) — c) + hec. (3.2.39)

+3;:8_(o,t) + hc.

where K(X*, X') is a G-invariant hermitian structure on X. We expand the
action functional and determine the on-shell values of the auxiliary fields. We
find that the path integral is localized to the space of solutions of the equations,
modulo G symmetry

#C(‘Xi) = C\C = 0!

e (3.2.40)
u(X:, XY — ¢ =0,
and \
L (X =0
Pm m( n) (3.2.41)
[¢™, ¢"] =0,
where ™, m = 1,...,6 denote the six independent real components of (¢, 0,7, T, 7).

The equations in (3.2.40) say that the effective target space is the hyper-Kihler
quotient Mz The first equation in (3.2.40) says that ¢™ has non-zero solutions
if G does not act freely. Thus there are no solutions for ™ if the hyper-Kahler
quotient is smooth. As usual, whenever the quotient contains singularity we
have non-trivial solutions for ¢™ spanning an affine space given by, due to the
equation (3.2.41), a certain symmetric product of RS.

Two Finite Dimensional Examples

Here we give two examples relevant to D-brane physics [16][41].

We consider the space X of all complex N x N matrices X*,i = 1,2. We have
a natural complex structure on X by demanding X' are chiral, 3, X* = 0 while
their Hermitian conjugates (X')* := X' are anti-chiral. We have a natural
G = U(N) action on X given by X' — ¢gX'g~! preserving the Hermitian
structure

=y e (3.2.42)
=1

The space X has an affine hyper-Kahler structure with complex momentum
map

pe = [X1, X?). (3.2.43)
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Together with ¢¢, £ = 1,2, 3, where we complexified the six real N x N matrices
@™, we have total five N x N Hermitian matrices as bosonic fields. The action
functional actually has N, = (8,8) supersymmetry, and in fact is the world-
volume theory of N D-instantons, or the IKKT matrix theory [43]. Denoting
(Xi,¢™) by Z%, a =1,...,5, the equations (3.2.40) and (3.2.41) become

[2¢,Z%] =0,

S e (3.2.44)

Thus Z* can be simultaneously diagonalized Z* = diag(z}, ..., zy) and the £-th
eigenvalues {z}} can be interpreted as the position of the ¢-th D-instanton in
R!° in complex coordinates.

Now we introduce additional chiral multiplets ¢ and § which are N' x k and
k x N matrices, respectively. The U(N)-action is given by (g,q) — (9q,q971).
In the total space of matrix quadruples (X*, X?,¢,§) we have an U(N) invariant
Hermitian structure

2
K =1F (Z T | XY + 99" + &*(}}) ‘ (3.2.45)

=1
The complex momentum map is
pe = [X', X% + qq. (3.2.46)

The resulting model may be interpreted as the description of N DO0-branes in
the background of k parallel D3 branes, which breaks the N. = (8, 8) symmetry
down to N. = (4,4) symmetry. The three FI terms ((,(c) represent an anti-
symmetric self-dual two-form being turned on in the D3-brane world-volume
R*.

The equations (3.2.40) and (3.2.41) become

ﬁf’mq = 0,
gém =0,
[0 =0

ol 2.47
X, X% + g7 - Gl =0, i

2

S XX +qg" - TG ¢ =0.

=1
For ¢ # 0 ¢ and § can not have common zeros. Then we have ¢™ = 0 and
[Xl:‘]{z] R qa_ CCI =0,

2 ssbor coliimtingg ads (3.2.48)
D XX +q* ~Ta-¢I=0.
=1
Thus the target space'® is the compactification and the subsequent resolution
of singularities of moduli space of N U(k) instantons on R*. This describes N

14The equations are the ADHM description [63][64] of torsion free sheaves on R* [65] or the
ADHM description of instanton on non-commutative R* [66].
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D-instantons bound to the world-volume of k coinciding D3-branes. Note that
the equivariant degrees of freedom represented by ¢,, are the degrees of freedom
transverse to D3-branes in the bulk R!°. With the FI terms being turned on
those degrees of freedom decouple.

Now we turn off the FI terms. Then the N x k and k x N matrices g and ¢
can degenerate to (N — £) x k and k x (N — £) matrices ¢’ and ¢’, respectively,

q=(§,), G~y (3.2.49)

Then the first two equations in (3.2.47) imply that the ¢™ can be non-vanishing
¢ x £ matrices Z™,

m_ [Z™ 0
o™ = ( 4 0) . (3.2.50)
The last three equations in (3.2.47) imply that the X' can be put into the
following form,
sgafil ol
i ( 0 X,‘-). (3.2.51)

where Z* and X" are £ x £ and (N — £) x (N — £) matrices, respectively. Using
(3.2.49), (3.2.50) and (3.2.51), the last two equations in (3.2.47) lead to

[Z22,27] =0,

Bl (3.2.52)

and
[X"l,Xﬂ] 4 q!af = 01
2 BT e 3.2.53
Z{X”rX“] 32 q!qh . auaf = 0, ( )
=1
where we relabeled the £ x £ matrices, Z* and Z™ as Z%, a=1,...,5. The set
of equations in (3.2.52) imply that Z can be diagonalized

Z= =idiag(z] ;- - 28 ) (3.2.54)

parameterizing positions (in complex coordinates) of £ point-like D-instantons
on R!°. The set of equations in (3.2.53) describe (N — £) U(k) instantons on
R*. This bound state is not stable since some of the (N — f) instantons can
freely degenerate to point-like instantons and escape to the bulk to become D-
instantons. Combining all together we see that the model without FI terms
reduces to a zero-dimensional N, = (4,4) sigma-model with target space

N
| Mx,n—e x Sym“(R'°). (3.2.55)

£=0
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3.3  Generalization to Equivariant N. = (2,0)
Model

Now we consider the equivariant extension of the V. = (2,0) model introduced
in Sect. 2.3 or, equivalently, the generalization of the equivariant N,,, = (2,2)
model in the previous section. We consider the same group G acting on X as
before but now we allow the G action to extend to a Hermitian holomorphic
vector bundle E — X preserving the Hermitian structure. We have two super-
charges s, and 3., isomorphic to the differentials of G-equivariant Dolbeault
cohomology as in the equivariant toy model in Sect. 3.1;

9=.= 0, {84+,8+} = —ig%, La, =10, (3.3.1)

Comparing with the non-equivariant counterpart, the equivariant N, = (2,0)
model has essentially one addition structure that the path integral is further
localized to the vanishing locus p~'(¢) of G-moment map. If G acts freely on
1~ 1(¢) the model reduce to a standard N. = (2,0) model associated with the
symplectic quotients. The observables of the model are given by G-equivariant
closed differential forms, after the parity changes, as our equivariant toy model.
If G acts freely on p~1(() those observables become ordinary closed differential
form on the symplectic quotient. Comparing with our equivariant toy model
the additional structure is that the path integral is further localized to the locus
of vanishing holomorphic sections on E. We will use such property to define a
more general hybrid N. = (2,0) model. Following the discussion in Sect. 3.2 the
model is related with N, = (2,0) world-sheet gauged sigma-model in (1 + 1)
dimensions by dimensional reduction [32].

3.3.1 Basic Structures

We may follow exactly the same route as we followed to arrive at the non-
equivariant N, = (2,0) model from the non-equivariant N. = (2,2) models.

First we write the N. = (2,2) action functional S (3.2.17) in a form such
that only the s, and 3, are manifest - compare with (2.3.1)-

() =- s+§+(<¢_,p(xnx?) —¢) = (n-,m) + (y,;;(xk,xf)wi,ﬁ))

+ i (g, Vi) + 3 (91, (X)),

(3.3.2)
where V; = @W /X", Similarly we disconnect the diagram (3.2.6) by removing
the link s_, _

Pt Xt = gt
0 . (3.3.3)
Hi

Now we regard the above as two independent sets of multiplets. Then we rename
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various fields as follows, exactly the same as earlier (2.3.3)

¥ = X2, H* — H°, Vi = Ga(X7), Mt
= s — . == 9,; = hQE(X‘! Xl)l (3‘3‘4)
B H*— HY, V; = 65(X7),

where the new indices run as o, 8 = 1,. ceyT and we maintain the Hermiticity of
h,5- The N. = (2,0) multiplets (X", ¢} ) are holomorphic, i.e., 5. X' =0. We
call the multiplets (x%, H*) Fermi multiplets. We also disconnect the diagram
(3.2.7) for the N. = (2,2) gauge multiplet by removing the links s_ and 3_,

sy
Gl il (i

7. - D w (3.3.5)
Jra 2o ol
it L e a

Note that & is holomorphic, i.e., 5, = 0. Thus the N, = (2,0) multiplet (7, 7.)
is another holomorphic multiplet, while their Hermitian conjugates (o,7, ) form
an anti-holomorphic multiplet. We may simply remove them, or keep them
as they are still valued in Lie(G), or just regard them as another holomor-
phic multiplet supplementing the multiplets (X*, 4% ).}> We call the multiplet
(¢——,m—,7_,D) N. = (2,0) gauge multiplet taking values in Lie(G).

Now we consider the transformation laws for the s, and 3, supersymmetry.
For the holomorphic multiplets (X‘,Tp;), i.e., 5, X* = 0, and their conjugates
we have

sy X =, ayyt =0,
L X =0 0, =00, L X', 5.4, =0,
8, X' =0, 8Pl = @3, L. X7,  Fpdyy =0,
X =i, Tl =0
which are, of course, the same as (3.1.7). The transformation laws for Fermi
multiplets (x®, H®) and their conjugates are given by

(3.3.6)

s+x2 =-H¢, s H® =0,

T LR R T e,
s+x2 = 3%(XY), s+ H* = -1l Lox2 + 1, 3;3%(X7),

3.x* = —-HY, 5. H*=0,

where 3:3%(X?) = 0. Note that 3. x* # 0 but rather equals J*(X*), while
the above transformation laws are consistent, since '53_ ¥ IR XY = 0y

1514 is our convention that all the holomorphic multiplets are collectively denoted as
(X", 4 ) where each multiplet may transform differently under G and other global symmetries.

We also denote X as the space of all X'’s.
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with the commutation relations (3.3.1). Finally the transformation laws for the
N, = (2,0) gauge multiplet (¢__,n—,7_) are given by

SN = 01

& i % 1
8+¢__ :1‘7}_, S4m— —+3D+§[¢++1¢-‘-]a (338)
o 1 .
T T Rl = —1D + §[¢++: 4?5——]:

§+ﬁ_ — D.

The general N, = (2,0) action functional, with the vanishing ghost number,
is given by the following form!®

50 == 0531 ({6--= 0 = (127 + (322, 17) )

tisy (x2,6%(XY) +i5, (xF, &7(X"))

(3.3.9)

Here h_z(X i X7)is a Hermitian structure on a Hermitian vector bundle E over

X, 6%(X?) a holomorphic section and p(X*, X*) is the G-momentum map on X.
Note that N, = (2,0) symmetry of the above action functional is not obvious
due to the second line in (3.3.9). For example the 3, supersymmetry of the
term 84 (x*,64) is not obvious if J(X*) # 0 due to the transformation law
%X = J(X?). The condition that the action functional S(¢) has N. = (2,0)
is

5. (2,6 = i o i B U (3.3.10)

Let us summarize the basic structure of an equivariant N, = (2,0) model.

1. A complex Kiahler target space X with a G symmetry as an isometry.
These data determine holomorphic multiplets and gauge multiplets as well
as their transformation laws and G-equivariant momentum map g : X —

Lie(G)*.

2. A Hermitian holomorphic vector bundle E — X over the target space X
with the G action preserving the Hermitian structure. We may have up
to two G-equivariant holomorphic sections & and J orthogonal with each
others by a natural non-degenerated G invariant parings. Those sections
determine Fermi multiplets and their transformation laws.

Given the data above, we have an unique family of equivariant N. = (2,0)
models parameterized by the FI term (.

3.3.2 Path Integrals

Expanding the action functional S (3.3.9) we have the following terms depending
on the auxiliary fields D, H® and H®,

S = (D, D)~ (D, p—C)+(h zH*, HP)—i(H*, &%) —i(H",&6%)+.... (3.3.11)

16 The repeated indices are summed over unless otherwise stated.
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We integrate the auxiliary fields out by imposing the following algebraic equa-
tions of motion,

1
D= —{,U- W C)r

2 b (3.3.12)
Ha = lhaEGﬁ-

From our general discussion earlier, we see that the bosonic part of the path
integral reduces to an integral over the space of solutions of the following equa-
tions,

(X =0,
E.(XY)=20, (3.3.13)
n=¢=0,
and :
G LX)
3.3.14
[¢14,6--]1=0, ( )

modulo G-symmetry.

Now we examine the properties of the path integral in some detail by apply-
ing the fixed point theorem of Witten. For simplicity assume that the space X
and the Hermitian holomorphic bundle E are flat. We also turn off the section
J%, keeping & only. Then the fixed point locus of the s; and 3 supersymmetry
is the symplectic quotient M. of 6;1(0) C X by G;

M= (11O N6'(0) /6. (3.3.15)

We have the same set of observables as in the equivariant toy model, given by s,
and 5, closed G-equivariant differential forms O™* with ghost numbers (r, s).
The explicit expression of the action functional is

i 1 B o

§'=D*+)  |Hal* = J[b++, 6] —ilor4.n-]am2
— % Bty — 0 Opat + X 86t + XT 065U (3.3.16)
— ih, 508 Lax2x2 +i9%_ (8, OiaVs + OO5Hati ] )

where Vb’T =L, X'. In doing the path integral one replaces all fields by their zero-
modes. The zero-modes of the fermions are solutions of the following equations

B-ptatli =0, @ Bepta = 0,
0 wj na 77 (3.3.17)
3650, =0, X065 = 0.

The above equations implies that the net ghost number violation A in the path
integral measure due to fermionic zero-modes of (¥, x%,7n-) always equals

A=n—r—dimg. (3.3.18)
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We call A the virtual complex dimension of M. From the equations Qﬁuawi_ =
0 we have the following integrability condition

b, B:paVy + Bidspat v, =0, (3.3.19)

which is also the ¢ _ equation of motion. This implies that one can simply
replace ¢% , with the solutions of the above. Such an argument can not be
justified if there are zero-modes of ¢4, which are given by the non-trivial
solutions of (3.3.14), for instance ¢4, V;' = 0.

Here we specialize to the case that G acts freely, thus there are no zero-modes
of n® and ¢% .. Then the only non-trivial term in the action functional S’ in
the sy and 84 invariant neighborhood C of the fixed point locus is

S'le = —ih 5¢% + Lax® X’ le- (3.3.20)

Using (3.3.19) we can solve ¢%, in terms of the zero-modes (u?,ﬁ,i?) of
(X%, 93, x%)

s = -y —1 T
<83 (") >= = (BpmV ) 0B (3.3.21)
where the prlmed indices above are understood to label independent zero-modes
-i=1,..,n,@= ,7', with the condition
A=n'—r'"=n—r—dimg. (3.3.22)

Then we may write
S'le = ~Fut o)z g Ve XET (3.3.23)

where F{f}’a*ﬁ’ {b—i 1;‘4’_ can be interpreted as the curvature two-form of the anti-
ghost bundle V over M. Consequently the path integral reduces to

k
<H§rm,sm>=/ H dx’ df'r Hdu du® d'qb+1b+
m=1

M o (3.3.24)

x exp (Fuyuz PR ) [[ O,

where (@ denote the expression of an observable @ in terms of zero-modes and
< ¢4 >. The necessary condition for a non-vanishing correlation function is

k
Z(Tnnsm) = (A, 4). (3.3.25)

m=1

Let us first assume that the section is generic and G acts freely on &' (0) C
X. Then M is a smooth non-linear Kahler manifold with complex dimensions

dimeMe=A=n—r—dimg. (3.3.26)
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The above counting goes as follows. Since &,, @ = 1,...,r, are generic they are
all independent and transverse. Thus the condition &, = 0 cuts out a complex
(n—7) smooth submanifold inside the complex n-dimensional ambient space X .
On the subspace we further impose dimG real equations u, — ( = 0 and take
the quotient by the free G action. Now we do not have zero-modes of y_ and
the path integral becomes

=Tm 'sm

k A G ot =
< e > = /M I du®du® agt 4% T O
m=1

= m (3.3.27)
= OA.AO™
JM{
A non-generic situation arises when 6, o’ = 1,...,r’, are linearly dependent

to the remaining sections. Then the complex dimension of M, is given by n' =
A+r'. The resulting space is smooth if the linearly independent components of
the section are transverse. We have r’ y_ zero-modes which span the anti-ghost
bundle V over M. The path integral becomes

k
< 11 6rm‘sm>: / e(V)AO™ 1 A . A O, (3.3.28)
m=1 2ty

A beautiful fact about this is that (X, E,§) can be all infinite dimensional
while the space M can be a finite dimensional space. In particular X can be a
certain function space defined by the space of all fields of a certain gauge field
theory on a manifold M. Then the integral we are dealing with is a genuine
path integral of a non-trivial quantum field theory on M, while the path integral
eventually reduces to an ordinary integral on a smooth finite dimensional space
M. The above is a key principle underlying cohomological field theory [1][24].
In principle the above path integral formalism is well-defined regardless of the
properties the moduli space M,.

Finally we remark that a proper mathematical interpretation of our formal-
ism may be a certain equivariant version of Fulton and MacPherson’s intersec-
tion theory [40].

3.3.3 Deformation to Holomorphic N, = (2,0) Model

In this subsection we introduce hybrid A. = (2,0) model of the equivariant
N. = (2,0) mode and the equivariant toy model in Sect. 3.2. The resulting
hybrid model will have much better behavior than the original model when the
effective target space M, has singularities. To motivate such a model we first
compare the two models.

First of all both the models have the same supersymmetry generated by s
and s, which are the differentials of equivariant Dolbeault cohomology after the
parity change. Secondly both the models share the same holomorphic multiplets
X % ) and their Hermitian conjugates, which are anti-holomorphic multiplets

(X ;, wi) Thus they share the same observables, given by equivariantly closed
differential forms on X, the space of all X*, after the parity change.
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A difference is that the equivariant N, = (2,0) model has the additional
Fermi multiplets (x*, H*) and their Hermitian conjugates (x*, H¥). The roles
of the Fermi multiplets are to restrict the (path) integral over X to the subspace
defined by J;1(0) N &5'(0) C X. For convenience we denote this subspace by
XU ¢ X. We saw that the path integral of the N, = (2, 0) model is localized to
the symplectic quotients M, = (X! N p='(¢) of X! by G. Now we consider
an equivariant toy model whose initial target space is X L1 Then, its path
integral is also localized to the same space M, provided that we set € = 0 in
the action functional S((, e) defined by (3.1.37). We also note that the partition
function of the above equivariant toy model is the expectation value of exp (@g)
evaluated by the N. = (2,0) model, where

Bg 1= 5(C,0) = i (b4, 11— ) +igsPiol. (3.3.29)

The first term above is irrelevant as the path integral of the N, = (2,0) is
localized the to the locus p — ¢ = 0, while the second term above becomes the
Kahler from @ on M;. We note that it is the N. = (2,0) gauge multiplet
(¢——_,m—,7_, D), which is responsible for such a localization. One the other
hand, the above is the action functional of the equivariant toy model on X'! and
the integration over ¢ localizes the path integral by a delta function supported
on M, in X1, Note that M¢ = N|x1.1 is the restriction of ¢ - the symplectic
quotient of X by G - to X11.

The above discussion motivates us to define a new N, = (2,0) model with the
following action functional Si((,0), modifying the original N. = (2, 0) action
functional S in (3.3.9)

Su(C,0) = —i84 54 (h5x% X% ) +i84 (X%, 6a) +i84 (X%, 67)
3

chej (3.3.30)
iy — ) —igg¥i v,
where we removed the N, = (2,0) gauge multiplet (¢__,7n_,7_, D) and added
the action functional S((,0) of the equivariant toy model. According to the
previous discussion we see that the partition function defined by the new action
Sk(¢,0) is equivalent to the expectation value of exp(@g), evaluated by the
original N, = (2, 0) action functional S (3.3.9).
Now we define more general action functional S,((,€) by

Su(6,e) = = 8331 (B 3x2, XZ) +is+(x2, 6a) +i8:(x%, 6z)

poep (3.3.31)

—i(pys,n— () —igz¥YiYy + 3 (P++,P++) -
We call the N. = (2,0) model with the above action functional Sx((,¢) a holo-
morphic N, = (2,0) model, see [67] for the first example. Now we immediately
see that the path integral of the holomorphic N, = (2,0) model is governed
by Witten’s non-Abelian localization principle [55]. The first line of the above
action functional localizes the path integral to X*'!. Then, following the discus-
sions in Sect. 2.2.3, the path integral can be written as the sum of contributions
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of the critical points I = (4 — ¢, p—¢) in X', Also from the discussions in
Sect. 2.2.3 the e-dependent term regularizes the path integral when M, develops
singularities.

The Mapping Between the Two Models

Now we will give more wider viewpoints which contain the original and holo-
morphic N, = (2,0) models as two special limits, following the original method
of Witten [55]. Witten considered the case without the Fermi multiplets but
for general manifolds. The Fermi multiplets will be purely spectators, and the
specialization to a Kahler case will simplify the procedure.

Consider the following one-parameter family of N. = (2,0) supersymmetric
action functional 5(()x,

S(Or =S(0) + Jo45:(6- 6

S <ha5x‘_' , xf) +iss (X2, 6a) +i5:(x%,63)  (3.3.32)

— 8.8, ((¢—~a# =ig= %\45——) &4 (ﬂ—rﬁ_))-

If we set A = 0 we have the original N. = (2,0) model. For A # 0 we can
integrate out the N. = (2,0) gauge multiplet, and we are left with

§'(Q)r = — 8454 (hgx% 2T ) +iss (X%, 6a) + 8. (xZ, )

1 i
R (B=Cp—C)+0O(1/>3).

Since the additional A-dependent term is closed by s and 8, the path integral
does not depend on A as long as A # 0. The models with A = 0 and A # 0 can
be different since new fixed points can flow from the infinity A — oo in the field
space [55].

If we take the limit A — 0, while A # 0, we see that the dominant contribu-
tions to the path integral come from the critical points of I = (p —Cop— (}
Now we add s, and 3;-closed observables, —@ + £(¢+4,¢+4), to the above
action functional,

8'(C,€)r = — 845, <hu§X3,X€> +isy (x2,6a) +i8:(xZ, 67)

(3.3.33)

— i (bt p—C) — 1 <g,-;wi,wi> + % (D++,0+4) (3.3.34)
+ 0By (u = Gu— )+ 0U/2%),

In the above the path integral should be independent of A # 0. Consequently
we see that the partition function of the above action functional can still be
written as a sum of contributions from the critical points of I. Finally we may
take the limit A — oo to remove all the A-dependent terms and obtain the
action functional Si((,¢e) (3.3.31) of the holomorphic N. = (2,0) model. Thus
we showed that the partition function of the holomorphic N, = (2,0) model can
be written as a sum of contributions from the critical points of I = (p—(, p—().
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A Historical Example

In this subsection we recall the first physical application of the non-Abelian
localization principle to physical Yang-Mills theory on a Riemann surface ¥.
Witten showed that physical Yang-Mills theory can be obtained by deforming
the two dimensional version of Donaldson-Witten theory [55]. It is also an
ideal example showing that a cohomological field theory in certain space-time
manifold M is realized as a (0 + 0)-dimensional supersymmetric sigma model
whose target space is the space of all fields. Furthermore the path integral over
the infinite dimensional space of fields reduces to a nice integral over a finite
dimensional space.

We consider the equivariant N. = (2,0) model whose target space X = Ay
is the space Ay of all connections of a SU(2) bundle E over a Riemann surface.
To write down the model we need some data, namely the nature the G action,
and the complex and Kahler structure on the target space. The group G is the
group of all gauge transformations, i.e., g € G where g : ¥ — SU(2). The Lie
algebra Lie(G) of G is Q°(X, End(E)) and we use integration over ¥ to identity
Lie(G)* with Q?(%Z, End(E)). Thus the bi-invariant inner product on Lie(G) is
the integral over ¥ combined with the trace of SU(2);

< a,a>= —/ Tr(a A *a). (3.3.35)
£

According to a complex structure on ¥ the connection 1-form A is decomposed
as

A=A A% (3.3.36)
We introduce a complex structure on Ay, by declaring d4°%! € Q%!(X, End(E))
to be a holomorphic tangent vector in T Ay. The Kahler form on Ay, is defined
by

1
w=— [ TréA'°® ASA™. (3.3.37)
472 M
Finally the action of G preserves the above complex and Kahler structure.
Now we consider the corresponding N. = (2,0) model. According to the
above complex structure we have holomorphic and anti-holomorphic multiplets,

—1,0, . :
(4%1 40) and (A0, ), with the supersymmetry transformation laws

8, A% =2t syl =0,

F oA — 1) 54y = —Oadss, s ¢y, =0,

8, A0 =, 3+'§_th . e S (3.3.38)
A=, sal—o

where ¢, € Q°(M, End(E)) and ¥*! € Q%!(M, End(E)). Note that
{s,3}A = —idso 4, {315}’5’0'1 =i[p4y, 0+1+] (3.3.39)

which are the infinitesimal gauge transformations generated by ¢, .. We have
a N. = (2,0) gauge multiplet (¢__,n_,7_, D), which take values in Lie(G) =
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°(Z, End(E)). The supersymmetry transformations are given by (3.3.8). We
do not consider any Fermi multiplets. We do not have a FI term. One finds
that the G-equivariant Kahler form @g on Ay is

—~ 1

S= oy T (3¢++F+yf)+ A ) (3.3.40)

where F' € Q%(Z, End(E)) = Lie(G)* is the Yang-Mills curvature two-form.
Thus the momentum map is

1
= — 3.3.41
W= ( )
Now the N. = (2,0) action functional (3.3.9) becomes
. 1 e
S=a g, T o I d s Wn_n_w ; (3.3.42)

where w is the Kdhler form on £. The above action functional defines Donaldson-
Witten theory on the Riemann surface £.!7 The path integral is an integral over
the space of all connections;

B e L b D - SR
<o> == /['DADWM+D¢++D¢__Dq_pn_]e 0. (3.343)

According to our discussion the path integral reduces to an integral over the
moduli space My, of flat connections on ¥, provided that O is an s, and 3, -
closed observable (thus an element of G-equivariant cohomology). Thus the
correlation functions of supersymmetric observables are intersection pairing on
the moduli space M of flat connections.

The action functional (3.3.31) of the holomorphic N, = (2,0) model is

1

e = T

—1,0 €
| T (itsr F + 02" A9, - =3 /wTrr,b2++. (3.3.44)
This action functional defines physical Yang-Mills theory on ¥. The relation
between the two models are as described previously. Finally we note that the
solutions of the above Donaldson-Witten theory are found by solving physical
Yang-Mills theory [55].

3.4 Flows from N. = (2,2) to N. = (2,0) Models

In this section we try to complete the circle of ideas by relating a N, = (2,0)
model with a N, = (2,2) model. This section is not for introducing new model
but for introducing an useful method of computing the path integrals. We
will utilize techniques developed here in the remaining chapters of this thesis
concerning infinite dimensional examples.

17"This cohomological field theory can be obtained by a twisting of Ny, = (2,2) space-time
supersymmetric Yang-Mills theory in two dimensions.
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Consider an equivariant N, = (2,0) model as described in Sect. 3.2, with
J* = 0. Such a model was classified by a G-equivariant Hermitian holomorphic
bundle E — X with holomorphic section & ,4. In a generic situation the model
is equivalent to a non-linear N, = (2,0) model which target space M. is M¢ =
(X NG 10)Np~'(¢))/G. In this section we define a canonical embedding of
such a model to a N, = (2,2) model based on the tangent space TE of the total
space of the bundle E — X. Then we study perturbation of the N. = (2,2) to a
more general N, = (2,0) model. We will see that the above circle of ideas leads
us to find a N, = (2,0) model which is "equivalent” to the original N. = (2,0)
model. From the viewpoint of the original N, = (2,0) model there is no a priori
reason of such an "equivalence” to a completely different model. For simplicity
we restrict to linear models.

3.4.1 Embedding of a N. = (2,0) Model to a N, = (2,2)
Model.

Recall that the N, = (2,0) model has a Lie(G)-valued gauge multiplet associated
with the group action of G. We add a Lie(G)-valued holomorphic multiplet
7 —5 14, to form a N. = (2,2) gauge multiplet

8
R N+ & Uyt

ook S

Fo D g (3.4.1)
ORI
grariiges e (s

We had holomorphic multiplets (X* RarY) SE =l associated with the
base space X of E - X. By adding new Fermi multlplets (. ety ), we
extend them to N. = (2, 2) chiral multiplets;

P = XP =5 b
P W . (3.4.2)
Hi

We also had Fermi multiplets (x® Sy He e =0 a,ssot,‘lated with the
fiber of E — X. By adding new holomorphic multlplets (B“ =i %), we extend
them to N, = (2,2) chiral multiplets;

X2 & BT Sh o
Y Lo - (3.4.3)
Hc!
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Now we consider the following N, = (2, 2) supersymmetric action functional

S =s5,8;8_3_ (Z(X‘,X*-') +Y (B*,B%)- <0,7 >)
i=1 a=1

| s s 3.4.4
+s+s_W(X‘,B“)+§+§_W(X’,B“) Pt

+8,8_<t,g>+8;8_<o,t>.

To relate the above model with the initial N, = (2,0) model we assume the
following conditions

aw

8B~
where &, is the holomorphic section of E. This condition implies that W(X*, B*)
is linear in B®. We will utilize this property later. It is useful to rewrite the
action functional S (3.4.4) such that only the N. = (2,0) symmetry is manifest

S=—1i843, ((é——,nx +pr =)+ ) (¥L, i) + 3 (x®xE <T}—ﬁi_))
+isy ((wi,Gi) + (x%, Gc,)) + i85, ((wE,G;) + (X%, 63))

= G.(X"), (3.4.5)

(3.4.6)
where px and pp are the momentum maps on X and the fiber of E, respectively,
while

Gi(X7, B®) := ‘9 b e (3.4.7)

Note that G; is linear in B since W is hnear LB,
Applying the fixed point theorem we see that the path integral is localized
to the solution space of the following equations, modulo the group action of §
G, (X*) =0,
Gi(X?,B%) =0, (3.4.8)
px (X', X7) + up(B*, B%) - ¢ =
and '
w2 La(XT) =0,
¢mLa(B*) =0,
[me., tF:"."l] = 0:
[@m?ﬁm] =0
This model, for a generic value of ¢ implying ¢, = 0 as usual, reduce to the

non-linear N, = (2,2) model whose target space M is the space of all solutions
of the equations (3.4.8) modulo G-symmetry.

(3.4.9)

3.4.2 Perturbation to a N, = (2,0) Model

Now we want to perturb the N, = (2,2) model above to a N, = (2,0) model by
breaking the N. = (0,2) supersymmetry generated by s_ and 3_. This can be
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done by giving bare "mass” to all the newly introduced multiplets given by
(E!n-i-)! ( i—yHi)i (BQLXi) (3410)

and their conjugates. Then the model flows to the original N, = (2,0) model
if we take the bare "mass” to infinity. Such bare mass terms will have special
geometrical meaning.

Note that there is a natural U(1) = S* group acting on B®, while leaving
fixed the X*, such that the momentum map pp remains invariant. This S'-
action is given by

il o G B B T (3.4.11)

where £€ = 1. Note that the above S'-action does not change the first and
the last equations of (3.4.8). The LHS of the second equation of (3.4.8) will be
multiplied by ¢, which does not alter the solution space of the equation. Thus
the S'-action is a symmetry of the effective target space M.

It is important to note that the above U(1) needs not be a symmetry of
our Nys = (2,2) model. To be such a symmetry, the S'-action (3.4.11) should
be extended to all the superpartners. That is, wii and H'® should be invariant
under U(1) while x§ and H® should carry the U(1)-charge 1. We, however,
demand that the above U(1) is compatible with the N. = (2,0) supersymme-
try generated by s; and 3, supercharges. From the expression (3.4.6) of S
with manifest N. = (2,0) symmetry we see that the v* should carry U(1)
charge —1, since G;(X?, B®) is linear in B®. Then, by examining the super-
symmetry transformation laws for the supercharges s, and 3., we see that the
S'-symmetry (3.4.11) should be extended to all the N. = (2,0) multiplets in
(3.4.10) as follows

R e X

S': (i, H) - B, HY), (3.4.12)

S': @,ms) - E@m4).
That is, we give U(1)-charges to the fields in (3.4.10) while all the other fields
remain neutral. Clearly this can’t be done while maintaining the full N, = (2, 2)
supersymmetry.

Recall that the N. = (2,0) supercharges s, and 3, satisfy now familiar
anti-commutation relations

sl =0, {apsii=-itt L, T =0, (3.4.13)

defining the G-equivariant Dolbeault cohomology. Since we have an additional
S* acting on our system it is natural to extend the above to G x S'-equivariant
cohomology. Then the new supercharges, still to be denoted s, and 3, , satisfy
the following anti-commutation relations

a% =1, {84,584} = —i¢%, L, —imLs, B=0. (3.4.14)

where we introduced a parameter m taking values in Lie(S!). The supersym-
metry transformation laws should be modified accordingly.
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Finally we define the following N, = (2, 0) supersymmetric action functional

S(m,m) =S" +ms, 5, (Z(B‘*,BE) — (o, a)), (3.4.15)
a=1
where S’ is defined by the same formula as the action functional in (3.4.6)

but with the modified supersymmetry. The new action functional S(m,m),
compared to the N. = (2,2) symmetric action S, is

S(m,m) = S +mm ) (B, B%) —im » (x§,x) +mm(o,7) — im(i,,n+)

—im(p——, pr — [0,7]) + iM(dy1, pr — [0,7]) + im Z(gbi_.ibi),

(3.4.16)
containing the desired mass terms. We note that the mass terms contain the
Hamiltonian Hg, of the S' symmetry on the space of all B* and o;

Hs: =i (B* B®) +i(0,5). (3.4.17)

This fact will play a crucial role later.

Now we examine the equation for fixed points. Since we only have s, and
3, supersymmetry the path integral is localized to the fixed point locus of those
symmetries, modulo the G symmetry. We have

g L) =0,
oL BY)i=10,
Ga(X') =0, (3.4.18)
G(X7,B%) =0,
px (X%, X%) + up (B, B) - [0,5] - ¢ =0,
and =
[¢,6] =0,
qb Eu(X ) = 01 {3419)
¢*Lo(B%) +mB* =0,
[¢,@] — mo = 0.

The set of equations in (3.4.18) cut out a subspace of the space of all X*, B®
and o. After modding out the G-symmetry we get the effective target space *ﬁ(
of our N, = (2,0) model. Following the previous general discussions we expect
that 5)}; is a Kahler manifold at least for the generic case. The set of equations
in (3.4.19) represent gauge degrees of freedom. In particular those equations
implies the path integral is localized to the fixed point of S'-action on ﬁc,
We always have trivial fixed points, namely B* = ¢ = 0. We call such fixed
points branch (i). In branch (i) the path integral is localized to the solution
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space of the following equations, modulo G-symmetry,
¢ L. (X% =10,

e T (3.4.20)

px (X4 X') —(=0.
which are exactly the generic fixed point equations for the original N, = (2,0)
model. There are other fixed points with B*,7 # 0 when the S'-action can be
undone by the G action. The last two equations in (3.4.19) exactly stand for
such property. We call such fixed points branch (ii).

The above localization principle can also be obtained from a different view-
point. We consider a limit |m| — oo. Then the dominant contributions to the
path integral come from the set of critical points of the Hamiltonian Hg1 de-
fined by (3.4.17). It is well-known that the critical points of the Hamiltonian of
a S'-action are exactly the same as the fixed points of the S'-action. One may
evaluate the partition function in such a limit and set |m| = 0 afterwards, to
get the partition function of the N, = (2,2) model.

Now we assume that everything is generic, so that we do not have any zero-
modes of anti-ghosts, x*,%*, as well as any zero-modes of the N. = (2,0)
gauge multiplets. Then the partition function of the action functional S(m,m)
in (3.4.19) reduces to the following integral

o

Z = /; exp (imHsl +iZ<X$,x§) +£(ﬁ+,n+>) . (3.4.21)
me

where we regard m and 7 as independent numbers and scaled away the overall
. The above resembles the DH integration formula on .. We see, however,
that there is a missing term since the fermionic terms above correspond to the
Kahler form only on the subspace of gﬁg given by X' = 0. We can provide
the missing term by evaluating the correlation function of exp(£{¢++,px> +
i (%, ¥% ), where the exponent is the G-equivariant Kéhler form &g on X.
Note that it is an observable of the original N. = (2,0) model we started from.
Assuming the same generic situation as above, the correlation function reduces
to the following integral

<e;_;,§> — f_ exp(imHg: + @), (3.4.22)
M

where % denote the Kahler form on ﬁc. Now we have exactly the DH integra-
tion formula [56]. The integral can be written as the sum of contributions from
the fixed points of the S*-action.

We saw that we have two branches. In branch (i) the fixed point locus is the
effective target space M, of the original N. = (2,0) model. The Hamiltonian
Hg, in this branch is simply zero. Thus we are evaluating the symplectic volume
of M¢. This is a correlation function of the original N. = (2,0) model. In
branch (ii) the value H £1 of Hg: at a fixed point is non-zero. So the integral for

each fixed point is weighted by a phase factor exp(imH él ). For both branches
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the integral is weighted by a one loop determinant coming from the transverse
degrees of freedom. We note that such a determinant contains factors of m
with certain weights depending on the particular fixed points. After evaluating
the DH integral we can set m = 0. Then we may obtain many relations by
imposing that the poles should be cancelled order by order between the two
different branches, since the limit m — 0 should be smooth in the path integral
of the massive N, = (2,0) model. The partition function of the N, = (2,2)
model is given by a sum of terms with order zero in m. One can also obtain
the symplectic volume of M in terms of a sum of contributions coming from
branch (ii).

In the real situation life is more complicated since it is difficult to achieve
the generic conditions and the space !FDHI( may be non-compact. Its is in principle
possible to elaborate on the above procedure and perform the integral. Even
if we can’t do such an integral due to technicalities we can at least see that
the essential information on the correlation function of the original N. = (2,0)
model is contained in the fixed points which belongs to branch (ii).
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Chapter 4

Cohomological Yang-Mills
Theories on Kahler 2-Folds

In this chapter we apply the general constructions of the previous chapter to an
important class of infinite dimensional target spaces with infinite dimensional
group actions. We take as our target space the configuration space of Yang-Mills
theory, namely the space A of all connections on a Hermitian vector bundle, on
a complex d-dimensional compact Kihler manifold M. The infinite dimensional
group G acting on our target space A is the group of all gauge transformations.
Then we have a natural infinite dimensional holomorphic bundle over 4 with
holomorphic section & = Fﬁ’i" We will consider the two types of models;
the N, = (2,0) model in Sect. 3.3 and its canonical embedding to the N. =
(2,2) model in Sect. 3.4. Those models will be realized as (cohomological)
field theories on the manifold M. For the d = 2 case, in particular, those
models are precisely the Donaldson-Witten [1] and the Vafa-Witten [7] theories,
respectively, specialized on Kéahler manifolds [52][10][59]. The d = 2 case is very
special as those models can be obtained by twisting N = 2 and N = 4 space-time
supersymmetric Yang-Mills (SYM) theories in four dimensions [1][68].

The Donaldson-Witten theory in four dimensions is the first example of a co-
homological field theory. It was introduced, more than a decade ago, by Witten
as a quantum field theoretic approach to the four-dimensional differential topo-
logical invariant of Donaldson [8][69]. This approach opened up completely new
horizon in mathematics [12] via the quantum properties of underlying physical
theory uncovered by Seiberg and Witten [11]. The Vafa-Witten theory played
a crucial role in physics by providing the first strong coupling test of the S-
duality of N = 4 SYM theory, first conjectured by Montonen and Olive [70][71].
To this date, there are well-defined general procedures to determine all those
differential-topological quantities based on the exact solutions of the underlying
physical theories [11][72]. Here we will not follow those steps [73][74][75].
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4.1 Donaldson-Witten Theory

In this section we consider the N. = (2,0) model whose target space is the
infinite dimensional space A of all connections on a vector bundle over a complex
d-dimensional compact Kéahler manifold M [52][67]. We will see, following the
discussions in Sect. 3.3, the N. = (2,0) supersymmetry uniquely leads us to
construct a model whose effective target space is the moduli space of Einstein-
Hermitian connections or, equivalently the moduli space of stable bundles. We
will also see that the resulting model for d > 3 runs into a serious troubles.
For d = 2 case the model is well-defined and gives rise to Donaldson-Witten
theory specialized to a Kahler surface [52][10][53]. Still we work for general
dimensions since the general model here will be used in the later chapters after
small changes.

4.1.1 N,=(2,0) Model

To define an equivariant N, = (2,0) model we need to introduce complex
and Kahler structure on our infinite target space A with the infinite dimen-
sional G action given by local gauge transformations on the gauge fields - see
[69][48] for general references on complex vector bundles. The above data de-
termine N. = (2,0) holomorphic multiplets and gauge multiplets as well as
their supersymmetry transformation laws and the G-equivariant momentum
map i : A — Lie(G)*. Then the path integral of the resulting model will
localized to the symplectic quotient p~*(¢)/G. For d > 1 the quotient space
is still infinite dimensional. Thus one may consider certain infinite dimensional
G-equivariant Hermitian holomorphic vector bundle E — A over A with cer-
tain holomorphic sections, which determine anti-ghost multiplets accordingly.
According to our general discussions in Sect. 3.3.1 we may pick two different
orthogonal holomorphic sections & and J of E. Then the path integral will
be further localized to (3J=1(0) N 6~1(0) N u~'(¢))/G, which can be a finite
dimensional Kahler manifold. To supply above data we need some preparation.

Description of Target Space A

We consider a compact complex Kahler d-fold M with Kahler form w. Ac-
cording to a complex structure on M the space Q" (M) of r-form on M has
decompositions Q"(M) = @ptq=r2P9(M). On M any two-form a € Q*(M)
can be decomposed into @ = a* + a~ such that

at =o*" 4+ agw + 00‘2,

(4.1.1)

et
a” =a),

where a, € 2°(M) is a real scalar and ai_‘l is (1, 1)-form orthogonal to w. For
a complex Kahler 2-fold the above decomposition coincides with the self-dual
and anti-self dual two-forms. We denote by QP(M, E) the space of real p-forms
on M taking values in E. Let F be a rank r vector bundle over M with a
Hermitian metric on E. This fix the topological type for the connections on E.
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We denote by A the space of all connections and by G the group of all gauge
transformations, i.e., g € G such that g : M — U(r). The group G is equivalent
to the group of all unitary automorphisms of E. The Lie algebra Lie(G) of
G is Q°(M, End(E)) and we use integration over M to identity Lie(G)* with
0?4(M, End(E)). Thus the bi-invariant inner product on Lie(G) is the integral
over M combined with the trace of U(r);

< a,a>= -—] Tr(a A *a). (4.1.2)
M

We take A as our initial target space.
Let A denote a connection one-form, which is decomposed into A = 4*° +
A%! We denote by d4y = 84 + 04 the covariant derivative,

dy = 84 + 84 : Q°(M, E) — QV°(M, E) ® Q%' (M, E). (4.1.3)

The space A is an infinite dimensional affine space which tangent vector is
represented by 64 € Q' (M, End(E)).

A' — A€ QY(M, End(E)). (4.1.4)

Note that there is no natural complex structure on 4. Any complex structure
must be induced from the complex structure on M. One introduces a complex
structure A by declaring §4%! € Q%!(M, End(E)) as holomorphic tangent vec-
tor. Then A becomes an infinite dimensional flat Kahler manifold with Kahler
form o,

Mokl vy d-1
= 1@ /M Tr(6AANGA) Aw™ 7, (4.1.5)

and G acts as isometry. The Kihler potential for the Kahler form w of A is
given by
1

1,0 0,1 =
R e S=r

/ kTr(F A F) Aw?2, (4.1.6)
M
where k is a Kahler potential for w, i.e., w = 100k

Now we introduce our N, = (2, 0) supercharges s, and 3_ with the familiar
commutation relations

a5=0 fou: il mimidl e 1 =0 (4.1.7)

The supercharges are identified with the differentials of G-equivariant cohomol-
ogy of our target space A. Thus ¢4, L, is the infinitesimal gauge transforma-
tion generated by the adjoint scalar ¢4 € Lie(G) = Q°(M, End(E)). We have
N, = (2,0) gauge multiplet (¢__,n_,7_, D) taking values in Q°(M, End(E).
Their transformation laws for are given by the general formula (3.3.8).

From the complex structure of A introduced above we have the holomorphic

and anti-holomorphic multiplets (A4%!, epi") and (Alf",t—bir’u), respectively, with
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the following transformation laws,

8 AN = iu’ii’l, 3+'¢'3.'1 =0,

3. A =0, 5490 = —Badys, S4fry =

8, AY =0, 810y = —Oabsy,  F4b14 =0, L
5. A = x_biﬂ, s+E}|_D = 0.

where %! € Q%!(M, End(E)) represents a holomorphic tangent vector in A.
Note that
{s,3}A=—idao,  {8,3}9"" =i[o,9"], (4.1.9)

which are the infinitesimal gauge transformations generated by ¢. From the
transformation laws we have the following equivariant Kahler form

&9 =i8,5,.K
i
= W/ (¢++F) d 1+2(d)|ﬂ'2/ TI‘ + A¢+ ) d l:

(4.1.10)
where we used the Bianchi identity daF = 0 — 94 F%2 = §4F%2 4+ 4 F'1 =0
and integration by parts. The second term in the above is the Kahler form
w and the first term is the G-momentum map ¢4, pa, p : A — Lie(G)* =

2’ (M, End(E));

e W e .

i) = 2(d)1 2 = W(AF)Awd, (4.1.11)

where A denotes the adjoint of wedge multiplication with w.

Description of Holomorphic Section

The remaining task is to determine an infinite dimensional vector bundle over
our target space A with an appropriate G-equivariant holomorphic section &(A4%1),
i.e. 3,6 = 0. From our general discussion a choice of section & should be
compatible with the Kahler quotient such that the effective target space M =
(671(0) N u='(¢))/G inherits a Kahler structure when G acts freely. We intro-
duce a bundle E over our target space A which a holomorphic section &(A4%!)
is given by

G : A% - FP? € Q%%(M, End(E)). (4.1.12)

We note that the above is the only possible choice on general Kahler manifolds,
since there are no other holomorphic ”functions” of A%! which are gauge covari-
ant. Further obvious requirement is that the resulting action functional should
be invariant under the Lorentz symmetry - the holonomy of a Kihler manifold
M.! In general we do not have a room to introduce a second holomorphic sec-
tion J(A%!) of E — A. Thus we set 3 = 0. Then our effective target space will

!There are two special cases. On a Calabi-Yau 4-fold or an arbitrary hyper-Kahler manifold
one can take certain projection of F”? as the holomorphic section of E — 4. We will return
to this later.
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be the moduli space M gg defined by
Mpn = (671(0)np~1())/9- (4.1.13)

Since our section takes values in 2%2(M, End(E)) we have corresponding Fermi
multiplets (x>°, H??), taking values in Q*°(M, End(E));

8 20 0 s H* =0,

a.x2" =0, 5L H™O = —i[y 1, XM, (4.1.14)
g =0, s+ H? = —i[p1, X7, .
L =—H%2, FyHY =0,

Comparing with the general transformation laws (3.3.7), we have J = 0.

Action Functional and Localization

Now we have all the ingredient to write down a N, = (2,0) model. Combining
everything together we obtain the action functional of N. = (2,0) on a complex
d-dimensional Kahler manifold, from the general formula (3.3.9),

NG Tartys £y g
S = 3@ 8.8 AITI(¢__ (FAw +  ad Ig
1 T 220 03D 1 = / -
il T ' ; et )
girmlaics ./M r(x_ s i aam i M i o=

i 2,0 0,2 e 0,2 2,0
=5 FSJr/MTr(x_ AxF ) 3¢ ypt /M Tr(x_ A xF )
(4.1.15)
Expanding above we have the following terms depending on the auxiliary fields

1

R 2dw?

/Tr(D «D + D (AF +iCIg))

2 . ; :
o TI'(H2’O/\*HU'2+'£HZ'UA*FG'2+1-H2'U/\*FO'2)-|—”,

4m?
(4.1.16)
We integrate out auxiliary fields by imposing their algebraic equations of motion
HD,Z == —iFD'z
1 : (4.1.17)
= ~5 (AF +i(Ig).

The explicit form of the action functional is

£ S 1 1 , 1
S :217'-’ /Tr(—zF+ A ‘*F+ — aqﬁ__ * dAdﬁ¢++ + E&[¢++,¢__]2
1 0,1 710, 1 29 o -
+ oAl ¥ |+ S X- A*[dr, X27]+ E[¢'++,?}‘—} * )=

=~

= 3 —1, 1 = 1 —
T Bav! = no By - 5320 A Bl - SX27 A *am.»i"),

(4.1.18)
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where set ( = 0 for simplicity and used the Kahler identities
3 = —i[A,8a], 85 =i[A,B4]. (4.1.19)
We also note that
_/ Tr (F* A xF+) = _/ Tr (2F2° A xF°? + fu * fu)
W gl . (4.1.20)
= —/ Tr (2F2‘” A*xF%? 4 —AF AF) ;
M d

where f = %AF .
A Hermitian connection is called Einstein-Hermitian (EH) with factor ( if?
F92 —q
iAF — (Ig =0.
We denote by Mgy the moduli space of EH connections. From the general
discussions in Sect. 3.3.2 we see that the path integral of this model is localized

to the moduli space Mgy of EH connections.
Now consider the subspace G~1(0) := A!! C A consisting of unitary connec-

(4.1.21)

tions satisfying F%? = ai = (0.3 That is, the partial connection 8, is integrable.
The space A!'! is preserved by G and inherits a complex and Kahler structure
from A. Thus we have a symplectic quotient of A by G, which is equivalent
to MEgn;

MEen = (AY np™(Q)) /9. (4.1.22)
Thus the moduli space M gg is a Kihler manifold if it is smooth. The equivari-
ant differential form @Y, then, may be identified with the Kahler form 2, after
the restriction and reduction, on Mgy. An EH connection can be reducible.
We denote by M% the moduli space of irreducible EH connections. A connec-
tion A € A"! endows E with the structure of holomorphic vector bundle £ 4.
The moduli space M, of holomorphic vector bundles is the space Ab! modulo
bundle isomorphisms generated by the complexification G of G, i.e.,

Mpar = A /GE. (4.1.23)

With a choice of polarization (typically an ample line bundle on M whose cur-
vature two-form is Kahler form w on M), one can define the notion of semi-
stability. The GIT quotient is defined by taking a quotient by G€ restricted
to the semi-stable orbits. The moduli space M;?, of semi-stable holomorphic
bundles is then

= AL gt (4.1.24)
It is shown by Kobayashi that every EH connection induces a semi-stable bundle
and every irreducible EH connection induces a stable bundle. The inverse is
also true and is the Donaldson-Uhlenbeck-Yau theorem [76](77]. Thus we have
isomorphisms

Mgn = Mj,, Mepy = Mi ;. (4.1.25)

2Note that ( = (IM c1(E) A wd_l) /(2“;7r IM w")‘ Thus the FI term ( depends only on
the cohomology class of ¢;(F) and w.
3For general complex vector bundle F%2 = 0 does not imply F?? = 0.
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Observables and Correlation Functions

Now we consider observables which are G-equivariant closed differential forms,
after the parity change, on the space A of all connections. Those observables
generate cohomology rings of the moduli space of EH connections via restriction
and reduction. From 8, ¢4 = 8¢+ = 0 we see that an arbitrary G-invariant
polynomial Q(¢44) of ¢4y with degree r is an observable. It corresponds to
an equivariant (r,r)-form. The other observables can be obtained by the usual
descent procedure. Equivalently we may use the universal bundle to construct
those observables [78].

From the Bianchi identity d4F' = 0 and the transformation laws in (4.1.8),
we have the following generalized Bianchi identity

PF=0. (4.1.26)
where -
D=s8+38+ 04+ 04,
g ke g i (4.1.27)
F=¢pp+ip, +iyy +F2°+ FY! 4 FO?
We define a generalized Chern class ¢, by
I‘ﬂ
s 2= e T N, 1.28
c Gn)l et (4.1.28)
We expand the generalized Chern class as
el e AN 3 L UTE (4.1.29)

pgt+r4s=2n

where the upper indices denote the form degree on M while the lower indices
denote the degree of the ghost number. Now it follows from the Bianchi identity
(4.1.26) that we have the following descent equations

(84 +34+ +8+8)c, =0, (4.1.30)
leading to »
By Vi e VIt L BV OV 1 =0, (4.1.31)
We define
Ol — / i B (4.1.32)
e P.q’ o
M
where a?~ "9~ ¢ H4™9"3(M), 0< r,s <d and 0 < p,q. Then we have
507 F IO =0, (4.1.33)

The above relation implies that not every candidates 6;’_’;’} are both s, and 5
closed.* If we impose the equations of motions all those candidates are both

The relation (4.1.33) implies that Q0% = 0 where Q; = 84 + 84 and O =

Zf::r:‘:q 6§,‘:&”. The relation (4.1.31) implies that the Q4 cohomology depends only on

the de Rham cohomology on M.
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s and 3 closed. In general, however, one should not use a quantity which is
invariant only on-shell as an observable. To define a cohomological theory it is
sufficient to have one global supercharges. Thus we may maintain only the 3,
symmetry and use the 3;-closed equivariant differential forms as observables.
A s;-closed, but 3;-closed only on-shell, equivariant differential form can be
added to the original action functional. Then one can always change the 5,
transformation laws such that the new action functional has 3, symmetry. Such
a perturbation, for the d = 2 case, was studied by Witten and led him to
determine Donaldson invariants of a Kahler surface almost completely [10]. The
similar perturbation was considered earlier in the topological sigma B-model,
and led to the notion extended moduli space of complex structure on a Calabi-
Yau [3].5

One may consider correlation functions of other observables O™ with the
ghost number (r,s) given by s, and 3, closed G equivariant differential forms
O™ - see Sect. 3.3.2. We have

£
MEen

=1

where O™* denote the equivariant differential form O™* after the restriction and
reduction to Mgy and e(V) denotes the Euler class of the anti-ghost bundle V
over Mgp. The above correlation function can be non-vanishing for

£
> (ris) = (4,8), (4.1.35)

i=1

where (A, A) denotes the net ghost number anomaly in the path integral mea-
sure due to fermionic zero-modes.

From the action functional S’ (4.1.18) we obtain the following equations for
fermionic zero-modes,

G =0,

. x>t =0. (4.1.36)
8.4.11)3—‘1 = 07

gAﬁ— == 0)

For d = 2 we also have 845> = 0 by dimensional reasons. Thus a X% zero-

mode is an adjoint-valued harmonic (0, 2)-form -recall that gi = 0. The net
ghost number carried by the above fermionic zero-modes is precisely the com-
plex formal dimension of the moduli space Mgy, which is equivalent to the
moduli space of anti-self-dual connections. For d > 3, the zero-modes of the
anti-ghost fﬂ_’z are no longer constrained to be harmonic. Then we run into a
serious problem that we may have too many zero-modes of the anti-ghost ﬂz.
This implies that the moduli space Mgy and anti-ghost bundle V over it may
have components which are too high in dimensions. It is also doubtful if the
Euler class e(V) is well-defined. We note that the zero-modes of the anti-ghost

5This may be regarded as the starting point of the homological mirror conjecture [79].
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are related with the choice of vector bundle E — A with holomorphic section
6(A%!) = F%2, Thus one may try to extend the target space A or use different
holomorphic section to have well-defined anti-ghost bundle. We will return to
this problem in the later chapters.

In the remaining part of this chapter we restrict our attention exclusively to
the d = 2 case.

4.1.2 Donaldson-Witten Theory

Our model above specialized to a complex d = 2 dimensional Kahler manifold
is Donaldson-Witten theory [1]. The correlation functions (4.1.34) of super-
symmetric observables are the path integral representation of Donaldson’s in-
variants. For a manifold with b;‘ > 3 Donaldson showed that one can avoid
zero-modes of 7j_ and Y°. Thus the correlation functions (4.1.34) can be in-
terpreted as intersection pairings of homology cycles on the moduli space Mgy
of anti-self-dual connections.

We may compare our model with global N = 2 supersymmetric Yang-Mills
theory on R* = C2. We first recall the field contents of our model in d = 2. For
Bosons we have a gauge field A%! and a complex scalar ¢.% In real coordinates,
we have (A’, ¢). For Fermions we have an anti-commuting vector w0+'1 an anti-
commuting scalar 7j_ and a (0, 2)-form X%, The latter two, the real coordinates
can be recombined into a scalar and self-dual two-form. Then the field contents
is

Al
g g (4.1.37)
¢
where o and & denote the undotted and dotted spinor indices from the decom-
position of the Lorentz group SO(4) = SU(2); x SU(2)r. The expression 1*°
contains both symmetric and anti-symmetric parts corresponding to a self-dual
two-form and a scalar. Since the holonomy of R* is contained in SU(2) a phys-
ical observation does not see either SU(2)y, or SU(2)gr. Let’s pick SU(2)g and
replace the index 3 with another index i = 1,2 of a certain SU(2);, while we
keep the index a in *? as the index for SU(2)g. Then we have

A!
i {5 (4.1.38)
(o]

Our action functional S’ in (4.1.18) still remains invariant under the new global
symmetry SU(2)r x SU(2)g x SU(2); x U(1) where U(1) denotes the classical
ghost number symmetry. The above is exactly the field contents of N = 2
supersymmetric Yang-Mills theory with correct global symmetry, which is called
a N = 2 vector multiplet. With the above field redefinition the action functional
S’ in (4.1.18) becomes that of N = 2 super-Yang-Mill theory. The ghost number
anomaly of the path integral measure becomes the well-known chiral anomaly
due to the instantons.

5We regard ¢4+ as an adjoint valued complex scalar ¢ and ¢_ _ as its conjugates.
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AmNE=2 super-Yang-Mills theory has global supercharges Q¥ and Q%
which transform under SU(2) x SU(2)g x SU(2); x U(1) as indicated by the
various indices. Now we go in the reverse direction of the above d:scussmn
by ta.king the diagonal subgroup of SU( Yr X SU(2);. Thus we get Q%*° and
Q . The anti-symmetric part of Ql 'y now transforms as a scalar Q1 and the
symmetrlc part transform as a self-dual two-form. On a Kaihler surface a self-
dual two-form is isomorphic to a scalar Q. and a holomorphic two-form. Thus
we have two scalar supercharges. They corresponds to our s and 3 as

= 5(Q4 +iQ4),
(4.1.39)

8y = %(Q+ —iQy4),

which are identified with the differentials of G-equivariant Dolbeault cohomology
on the space A of all gauge fields. On a hyper-Kahler surface a self-dual two-
form is equivalent to three scalars Q %, £=1,2,3, due to the three independent
Kahler forms wy. Then we have

e %(Q+ +iG4),
Si = _(Q+ e téf;—)a

(4.1.40)

which are identified with the differentials of hyper-Kahler G-equivariant Dol-
beault cohomology on the space A of all gauge fields - see (3.2.36).

The above procedure is called twisting and is originally due to Witten [1]. It
leads for any global supersymmetric theory with a suitable internal symmetry
to a cohomological field theory. On a manifold R*, K3, T* or ALE, for which
the holonomy is contained in SU(2), twisting does nothing. Thus the physical
supersymmetric Yang-Mills theory and the cohomological Yang-Mills theory are
indistinguishable. We should emphasis that a ”cohomological” field theory is
cohomological only as far as it computes correlation functions of observables an-
nihilated by the global supercharges of the theory. Otherwise the theory is not
”cohomological” at all. In the above respect the only benefit of cohomological
field theory compared with a possible equivalent globally space-time supersym-
metric theory is that it can be defined on a general manifold, which usually does
not admit any constant spinor, or not even spinors. Then a cohomological field
theory assigns a certain set of cohomological quantities of differential-topological
nature of the manifold in terms of the correlation functions of supersymmetric
observables. For the present model these are Donaldson’s polynomial invariants,
which depend only on the diffecomorphism class of the four manifold.

According to our approach a global supersymmetric field theory on a Kahler
manifold M, including flat Euclidean space, is nothing but an equivariant N =
(2,0) supersymmetric sigma-model in (0 + 0) dimensions, whose target space
is the function space of all fields in M. For example N = 2 supersymmetric
Yang-Mills theory on R* is equivalent to a N. = (2,0) sigma model with target
space given by the space of all gauge fields. There is literally nothing wrong
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in the above identification. However such an aptitude is overlooking an open
"secret” of quantum field theory.

One of the most beautiful properties of quantum field theory is the depen-
dence on energy scale known as asymptotic freedom. One may define a so called
microscopic theory with certain associated geometric structures like vector bun-
dles etc. At a certain energy scale massive degrees of freedom above the scale are
not essential and can be integrated out. Then we have a (Wilsonian) effective
theory in terms of light degrees of freedom. A wonderful thing is that certain
completely new massless degrees of freedom can appear at certain scales, and
the above prescription breaks down. This leads to certain ”singularities” which
can be mended by including these new massless degrees of freedom. By lower-
ing the energy scale arbitrarily one may have an effective theory described by
the new massless degrees of freedom only. Now one is interested in differential-
topological quantities of a compact manifold M represented by a twisted ver-
sion of the above quantum field theory. Such a quantity may be independent to
arbitrary scaling of the metric on M such that everywhere M looks like flat Eu-
clidean space. Then the essential information of such a differential-topological
quantity on M should be contained in the effective field theory of new mass-
less degrees of freedom. Such an effective field theory should be much simpler
since all the irrelevant degrees are already decoupled. The above considerations
then lead to an equivalence between completely different mathematical entities.
This is exactly what happened in the so called Seiberg-Witten revolution in
differential topology of four manifolds [11][12].

For a certain class of V. = (2,0) models we saw that there is a canonical
embedding to a N. = (2,2) model, which is connected with the original model
by a massive perturbation — see Sect. 3.4. Then one may use an analogy with the
physical system such that the original (non-Abelian) N, = (2,0) model may be
equivalent to a new (Abelian) N, = (2,0) model which can be discovered by the
massive perturbation of the V. = (2,2) model. In the next section we consider
such an embedding of our N. = (2,0) model (N = 2 SYM) to a N, = (2,2)
model. The resulting model turns out to be a twisted version of N = 4 super-
Yang-Mills theory [68](7]. The massive perturbation corresponds to giving bare
mass to the N = 2 hypermultiplet of N =4 SYM theory. The new N, = (2,0)
model corresponds to the cohomological field theory computing Seiberg-Witten
invariants. A beautiful property of N = 4 theory is scale independence as well
as higher symmetry known as S-duality.

It seems to be a good analogy to compare any well-defined N, = (2,0) model
and its extension to a N = (2, 2) model with N = 2 and N = 4 supersymmetric
Yang-Mills theory. For example on may, roughly, regard a well-defined N, =
(2,0) model as an asymptotically free global supersymmetric theory while its
N, = (2,2) extension can then be viewed as a scale independent theory. One
may also interpret the massive perturbation as using a S' symmetry as a certain
renormalization group flow, such that the original and the deformed N, = (2,0)
models lie in different fixed points. Then the equivalence between the two models
may be interpreted as the two models not entirely forgetting their origin.
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4.2 Vafa-Witten Theory

In the paper [7] Vafa and Witten presented strong evidence for S-duality of
N = 4 super-Yang-Mills theory. They used a topological, twisted version of
the N = 4 theory [68] and were able to determine the partition function of
N = 4 super-Yang-Mills theory on certain Kihler manifolds. In particular they
identified the partition function with the Euler characteristic of the moduli space
of instantons, provided certain vanishing theorems hold.

This section, based on [59], is an elaboration and generalization of the work
of Vafa and Witten. We want to determine the partition function for a general
compact Kéhler surface M with b > 3. Our computation of the partition
function involves a a series of perturbations which break the supersymmetry
down to N = 2 and N = 1 (topological) supersymmetry. The perturbation
down to N = 2 is achieved by adding a bare mass term for the N = 2 adjoint
hypermultiplet. Geometrically, this term may be viewed as the equivariant
momentum map of a G x Sl-action on the hypermultiplet. As a result of its
inclusion in the action, the path integral is localized on the fixed point set of
the G x §'-action, which consists of two branches: (i) the moduli space of anti-
self-dual connections, (ii) the moduli space of a certain class of Seiberg-Witten
monopoles. Perturbing further down to N = 1 leads to the factorization of
the Seiberg-Witten classes contributing to branch (ii). Specializing to gauge
groups SU(2) and SO(3) we propose a formula for the branch (ii) contribution
on a general Kahler manifold with 5 > 3. Then S-duality of N = 4 super-
Yang-Mills theory enables us to determine the entire partition function. As a
corollary we obtain a formula for the Euler characteristic of the moduli space
of instantons (branch (i)). Finally we consider the pure N = 2 limit and obtain
the essential part of Witten’s formula for Donaldson invariants [12].

Our construction sketched above is an example of the construction in Sect. 3.4.
The twisted N = 4 super-Yang-Mills theory on Kahler surface is an example of
our N, = (2,2) model. The massive perturbation to twisted N = 2 super-Yang-
Mills theory corresponds to the perturbation to N. = (2,0) mode described in
Sect. 3.4.2. Finally massive perturbation to N = 1 super-Yang-Mills theory
corresponds to perturbation of N, = (2,0) mode down to a N, = (1,0) model.

4.2.1 Embedding to N, = (2,2) Model

In this section we apply the construction in Sect. 3.4. to embed the previous
N. = (2,0) model on a Kahler surface M to a N, = (2, 2) model.
As usual we have the N, = (2,2) gauge multiplet

i -5 D & q,, (4.2.1)
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which consists of adjoint valued scalars on M. We will denote ¢4+ = ¢ and
¢—_ = ¢ in certain occasions. From the holomorphic multiplets (An’l,‘gbi‘l) we
build up the following chiral multiplets,

il N LR
N Vs : (4.2.2)
HG,I

From the Fermi multiplets (x>°, H*°) we build up another set of chiral multi-
plets,

X204 B0t a0
Y s , (4.2.3)

HZ.D

Following the discussion in Sect. 3.2 and 3.4 we have the following manifestly
N. = (2,2) invariant functional

5 =8,5,8_8_ (}C(A“’, A%Y) + K(B*°, B%?) —/ Tr(o * a))
M (4.2.4)
+8,8 W (A, B> +53,3 W AL B
It is obvious that the Hermitian structure K(B%°, B%2) of the space
0*°(M, End(E)) ® Q%%(M, End(E))
1s given by
1
K(B*°,B%?) = —— [ Tr(B>° A+B%?). (4.2.5)
47 M
The holomorphic potential W is also uniquely determined as follows,
W (4%, B?®) = L/ Tr (B0 A PR (4.2.6)
4’.!1'2 M

Now, from the discussions in Sect. 3.4, we see that the path integral is
localized to the solution space of the following equations, modulo the gauge
symmetry,

Fidi=p

B2 =1,

iF Aw+[B*°, B*?] =0,
[o, 8] =0 (4.2.7)

[2,. B %] = 0.

[,7] =0,

dao =0,
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and
[¢++,B%?] =0,
[¢++,7] =0,
[¢44,6--]1=0, )
dydpry = 0.

The set of equations in (4.2.7) is the Vafa-Witten equation on a Kéhler surface.
For a completeness we recall the original form of the Vafa-Witten equation
on a Riemann 4-manifold

Fn+ 3By BPa* = [C, Bonn] = 0,
AR e =D, =10,

where Bp,,, m,n = 1,...,4, is an adjoint-valued self-dual two-form and C is
an adjoint valued real scalar. On a Kahler surface, using (4.1.1), (C, B,.,) are
equivalent to a complex scalar ¢ and a (0,2)-form B%2. The equations (4.2.9)
become (4.2.7) on a Kahler surface.

(4.2.9)

4.2.2 Perturbation to N, = (2,0) Model

Now we want to perturb the above N, = (2,2) model to a N. = (2,0) model
by maintaining the s, and 5, symmetry only. Following the discussions in
Sect. 3.4 we enlarge the gauge symmetry group G to G x S'. Under the S* only
fields newly introduced for the N. = (2,2) model are charged . We have
8LaiB?2, 507 ) =+ &(BP ),
St: (w2, HY) - E(w, H®Y), (4.2.10)
Sl : (a:: 73‘+) = E(Es TH-}l
and the opposite charges to the conjugate fields. Following the procedure in
Sect. 3.4, the perturbed action functional S(m,m) is given by

S(m,m)
=5 — mr_n/ Tr (BZ'G A*B%? 4+ g« E)
M

+ "”‘f e (¢__ (B2, B°?] = [o,%3]) + ¥ A *E‘—'Q)
M

= fﬁf Tr(Tr ¢++([B*°, B*?] — [0,%3]) + x3° AXY? + 71 * '?+)) :
N (4.2.11)
The |m| dependent terms are exactly the physical mass terms for the N = 2
adjoint hypermultiplet after the twisting.
After the above perturbation the path integral is localized to the space of
solutions of the following set of equations, modulo the gauge symmetry;

Fo=1ia B2 =0,

_ B2 =9,7=0, (4.2.12
iF Aw + [B%°, B%?] — %[U,E]w/\w =8, - - : )
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and o
[¢,6] =0,  dagp =0, (4.2.13)

and

(¢, B%?] —mB%? =0, [¢,5] —mz =0,

[, B*°] + mB*° =0, [¢,0] + mo = 0.
In studying solutions of these fixed point equations we specialize to the gauge
group SU(2). We also restrict to Kahler surfaces with b% (M) > 3. Then there
are no reducible instantons for generic choice of the metric.

First of all, (4.2.13) implies that ¢ should be diagonalized at the fixed points.
Thus we have two branches

(4.2.14)

® Branch (i): ¢ = 0. The gauge symmetry is unbroken. Then (4.2.14) im-
plies that B?° B%? o, and 7 vanish. So the fixed point equation (4.2.12)
reduces to the anti-self-duality equation for the connection 4: F{ = 0.

e Branch (ii): ¢ # 0. The gauge symmetry is broken down to U(1). Thus
the bundle E splits into line bundles E = L& L~ with L-L = —k, where
k is the instanton number. And ¢ takes the form ¢ = diag(a, —a). Then
the only non-trivial solutions of (4.2.14) are, with m — a = 0:

Spadi g Lo ey
#=(05) =2 3)

(4.2.15)
OO __(0 0
. 0. VL
Then (4.2.12) reduces to
Fﬂ’zz = = 01 ot
e ao 8128 = 020 = 0. (4.2.16)

iFp2 Aw=BAB — agw?,

Here « is a section of L2 and {3 is a section of K ! ® L?, with K denoting
the canonical line bundle. To make progress it it is useful to regard the
above equation as a perturbation of another equation. To achieve this
note that

1 1
FK-U2®L7 = EFK—1 + Frz — Fp2 = FK—I{Z@L? = EFK—l, (4.2.17)

so that we can write

Fiy =af =0, 3
i L 1 028 = 0p2a = 0.
%Fc/\wzﬁ/\ﬁ—afiw2+§FK—1 Aw,

(4.2.18)
This is a perturbation of the Seiberg-Witten equation [12] for a spin®
structure ( = K ! ® L*; this fact will be crucial in the next section.
For later use we also note that ¢;(() = ws(M) modulo 2 since ¢; (K) =

w2 (M) mod 2.
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4.2.3 Perturbation to N, = (1,0) Theory

We can further break the remaining N, = (2,0) symmetry down to N, = (1,0)
by introducing a bare mass for the twisted N = 1 matter-multiplet. We will do
this by preserving the 3, -symmetry only. Note that, among the twisted N = 2
vector multiplet given by (3.2.7), the twisted N = 1 matter multiplet consists
U= B

of (¥1°,8,6,7_,x_")-

The required mass term involves a holomorphic two-form w?°® € H%°(M)
and has the form

e =3 2/ Tr(v2! A p2') Aw?®. (4.2.19)

This term is invariant under s, -symmetry, but not invariant under the 3 -

symmetry; g
5il20 = —— [ Trodapd' Aw?l. (4.2.20)
an? Jpy

: oy 2.0 2 % = :
However, the imposition x~° equation of motion leads to invariance. The

relevant term in the action S(m,m) is — fMMTrxz_'O A daypd’. If we add
(4.2.19) to the action S(m,m) of (4.2.11) and at the same time change the
S -transformation of x*’ according to

aux2 =le, B — 5.5%° = [7,B?°] — 0u®?, (4.2.21)
the new action S(m,m)" + I 20 enjoys 8.-symmetry. Here S(m,m)’ is given
by

i 1 0.2 2,0
S(m,m) = Sz2(m) — — | Trélo, B"*] Aw™”, (4.2.22)
471'2 M

where the additional term is due to the modification (4.2.21). Since 3,.¢ = 0,
we still have the property Efr = 0. In this way the one component 1,03,’1 of the
N = 1 chiral superfield has obtained a mass. To give mass to the remaining
components in the N = 1 matter multiplet we add the following 3, -exact terms
to the action

8+ =20 0,2
I¢3 F/MTr (c,bx_ ) Aw
2 T 02,0 0,2 L[ S
== /MTI‘ (@[, B*%)) Aw™* + — MTr(fbf;ﬁ)u Aw™? (4.2.23)
1

~ I3 Tr ( ) A w2

A similar prescription for breaking pure N = 2 theory down to N = 1 was given
by Witten in [10].
To sum up, the total action

0,2

S(m,m,w”?) = S(m,m)" + I o2+ Iz, (4.2.24)

has only 3, supersymmetry and all the matter multiplets have a bare mass.
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Now the fixed point equations (4.2.12) undergo an important change due to
the modification of the 3, transformation law of Y** given by (4.2.21). The
new fixed point equations are

F°2 =[5, B®?] — ¢u®? = 0, ot
iF Aw+ [B2°, B%2] — %{0, ETTION. e i )
while (4.2.13) and (4.2.14) remain unchanged. Thus there are again two branches
e Branch (i): This branch is unchanged.
e Branch (ii): We have

Fg,z =af — mw®? =0,

; " 1 (4.2.26)
EFC Nty = ,BAIB“GEWAW — §FK_11

where ( = K~' ® L*. This is a perturbed version of the Seiberg-Witten
equation, containing the perturbation introduced by Witten in [12]. The
condition

aff = mw??, (4.2.27)

gives the crucial factorization condition of the Seiberg-Witten basic classes.

Analysis of Branch (ii) Fixed Points

Our analysis of branch (ii) exploits the relation of the the defining equations
with the the Seiberg-Witten equation.

As a first step we need to classify which Seiberg-Witten classes contribute
to branch (ii). For an arbitrary spin® structure z, which can always be written
in terms of an arbitrary integral line bundle £ as

=K, (4.2.28)

we have an associated Seiberg-Witten equation. If the square root £/2 = L
of £ exists, the Seiberg-Witten equation is identical to the fixed point equation
(4.2.18) of branch (ii). The inclusion of the perturbation in (4.2.26) further
implies that we also have to satisfy the factorization condition a8 = w%2, where
we have scaled m = 1 in (4.2.27).

Let the canonical divisor K be given by K = >, 1iCi, where the C; are
irreducible components. The factorization means that

KR gt =t=% 8l (4.2.29)

where s; are integers with 0 < s; < r;. Thus, the question of which Seiberg-
Witten classes contribute to branch (ii) reduces to finding line bundles L satis-
fying L - L = —k and

25— Z CH B sl <y (4.2.30)
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Now let z be a Seiberg-Witten basic class. If (z'/* ® K1/%) exists as a line
bundle, then the associated SW invariant n, contributes to the path integral in
branch (ii). Note that (/2 @ K'/?) always exist as a line bundle. The question
is thus whether the square root of (z'/? ® K'/2) exists, which is the case iff

%ix +K]=0, (4.2.31)

or, equivalently

%[:.c +unlM)) =0, (4.2.32)

where [...] means the mod 2 reduction. Here wy(M) is the second Stiefel-
Whitney class of our Kahler manifold M. In the SU(2) case such a square
root may not exist. However, if we repeat the analysis for an SO(3) bundle
E, the factorization condition can be met provided the second Stiefel-Whitney
class wo(E) of E satisfies

%[m +wa(M)] = ws(E). (4.2.33)

With the abbreviations zp = wa (M), z = wa(E) and 2z' = z+ K the branch
(ii) contribution has the form

Y madigen X (4.2.34)

where the summation is over all Seiberg-Witten basic classes z and n, denotes
the Seiberg-Witten invariant defined by z. This general form applies to both
the SU(2) and the SO(3) case. In principle one could proceed to compute
the branch (ii) contribution directly using localization techniques. However,
in practice this requires that one starts with a suitable compactification of the
moduli space of the Vafa-Witten equations in order to make the integration over
the normal bundle of branch (ii) well-defined — this will fill the unwritten part
(...) in (4.2.34). Here we are not able to follow that path. Though we have
technical limitation we demonstrated that the general principle advocated in
Sect. 2.5 works fine, since we saw a glimpse of purely non-perturbative quantum
properties by a simple classical analysis.

In the remaining chapter we determine the branch (ii) contribution to the
partition function by a generalization of the results of Vafa and Witten in [7].
Then we apply the S-duality to determine the full partition function.

4.2.4 Partition Function

Vafa and Witten make a precise statement about the expected behavior of
the partition function of N = 4 super-Yang-Mills theory under S-duality [7].
According to [7] the partition function of N = 4 theory is a modular form
invariant under the I'y(4) subgroup of SL(2,Z). If this is true the total partition
function can be determined from the contribution of branch (ii) alone, as we
shall now show.
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Consider the case K = ¥ 7[C;] where the [C;] are irreducible and disjoint.
Vafa and Witten made a prediction for what we call the contribution to the
partition function from branch (ii) (eq. 5.50 in [7]): for the SU(2) case the
answer is

(G(;;?))"” (f,—g) Z;l“-mgéu,wz(a (ljl tf") (g-;)zm_g‘), (4.2.35)

where & = (g1,...,£,) and &; = 0 or 1 chosen independently. Here v = (x +
0)/4 and x and o denote the Euler number and signature of the manifold,
respectively. The expression G(g) = 1/n** is defined by the Dedekind eta-
function.

From our perspective the sum and the delta function dg,,,(# can be under-
stood as follows. What is called w,(£) in [7] is a special form of [z'], so that the
sum in (4.2.35) is over the same range as the sum (4.2.34). In our notation, the
factorization condition has the form

Z=2L=N"¢l€) " o<1 (4.2.36)

From s
k=-L-L=-2z'-2'= “Z (g —1) (4.2.37)

and since s? = s; for s; = 0 or 1, we recover the formula

1
f= —Ez:si(g,- —1), 0<eg <1 (4.2.38)

given in [7]. Note also that 3" (gi — 1) = K - K = 2x + 30.
We now propose a formula for the branch (ii) contributions on general Kahler
manifolds with b > 3. We replace

BN e\ s g
Z 50,1»2(5) (H t;‘) (é) o { 1) Z 50 ! }nr (9_) 1
= i

(4.2.39)
where the summation is over all Seiberg-Witten basic classes = with the Seiberg-
Witten invariants n;. Then, (4.2.35) can be written as

(=1)* (9%'—1)/2 (%) ot S (g—) . (@240

T

In the SO(3) case, for a fixed z = wy(E), we immediately get

o 1),,( (¢* )) (%) _zx_aazfs:.x.nz (g;-) =0 (4.2.41)

x
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The basic idea is to examine the terms generated by applying the S-duality
transformations corresponding to 7 —+ —1/7 and 7 = 7 + 1 to (4.2.41). Com-
bining the resulting terms in a convenient fashion one gets

s G(qz) v/2 8 —2x—30 91 —az'x!
.~ (Z2) 7 (2) T T (5

T

v/2 —2x—30 —z'a'
= G(qlﬂ) by + 6, i n. 6o — 0
15y _1)\l=']= A
+2 ( 4 212 Z( 1) Tz T 91)

=f= 21—b13‘—:?‘ G(_qu?) o — 16, P
4 27?2

el i ik e et
3 (4.2.42)

where the sum ) _ is over all Seiberg-Witten basic classes, as before. In prin-
ciple there could be a contribution to the partition function which can not be
obtained by performing modular transformations of the contribution of branch
(ii). However, such a contribution should vanish for a manifold with b5 > 1.
According to [7] the required transformation behavior under S-duality is:

»/2

Z,(=1/7) = 27%/2(—1)¥ G)_m =11z, () (4.2.43)

We can check that our proposed expression (4.2.42) transforms correctly as
follows. First we insert (4.2.42) into the RHS of (4.2.43) and obtain

wns= )™ o4} (8) e (8)

T

4 Lot o0 sl @ EANNG BBy R G\
e ( (: )) (02?721) PR (9E+91)

P % 3 L —2x—30
+2l—b|(_1)ui:2—%(G( q )) (90 131)

4 2n?

T
= [z]-z'::-z 0 i
o2t o e
where we used
Y (—1)FY8. 0 = (—1)¥F,

Z(_l)z-y+z-m Lo 2b26y,z', (4.2.45)

B el VL e e

z

(4.2.44)
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Carefully taking into account differences in notation these formulae follow from
those noted as eq. (5.40) in [7]. In comparing (4.2.44) with the expression
(4.2.42) evaluated at —1/7 one finds that the first line and second line in (4.2.44)
equal, respectively, the second and first line in (4.2.42) evaluated at —1/7. The
third line of (4.2.44) should thus be compared with the third line in (4.2.42) at
—1/7. The equality here may require some explanation. Performing 7 — —1 /T
in the third line on (4.2.42) one finds, with some rearrangements, that

/2 " —2yv—30
821—51(_1)113'22—0/2 (I)_xz2 G(_q1/2) K 80 =5 191 g
1 4 2n?
§ : _z - o 8o — i6; —z'-z'+2y+30

We want to show that the above is identical to the third term in (4.2.44). A
crucial property is that —z is a Seiberg Witten basic class if z is. Note also that
z' = 3z + K. Writing @’ = —3z+ :K we have —z' -2’ +2x +30 =T - T,
since a Selberg Witten basic clasa T Sd.tlSﬁES z -7 = 2x + 30. Now the second
line of (4.2.46) can be rewritten as

— x4 z? T |-z~ E’EJ 6 +29 =%
Z( 1)~ = ) ET (92—3‘91) : (4.2.47)

(4.2.46)

where we used n_, = (—1)"n, and the fact that v = (x + 0)/4 is an integer.
The Wu formula implies (—1)==*+*" = 1, and we replace the dummy variable
—z,T" with z,2' to complete the proof.

A Relation with Strings

Taubes proved that Seiberg-Witten invariants (SW) are equivalent to Gromov-
Witten invariants (Gr) for a symplectic 4-manifold of simple type [80]. Here
we only consider a Kahler surface. Let & be a non-trivial, complex line bun-
dle over M and use ¢ to define a spin® structure ¢ = K~! ® £2. Then
SW (K '®¢&?) = Gr(€). Consider a line bundle £ such that SW (K ! ®E2) # 0,
then the Poincaré dual of ¢; () is represented by the fundamental class of an
embedded, holomorphic submanifold with, say, n irreducible components. Then
each component H; satisfies the adjunction formula g(H;) = 1+ H; - H;, where
g(H;) is the genus of H;. We can define the integer multiplicities a; by writing
g

Let the canonical divisor K be given by a union of irreducible components
C; with multiplicities r;,1.e K = . r;C;. The factorization of a Seiberg-Witten
basic class # means that

K2 g1/2 = €= Z o (4.2.48)

where the s; are integers with 0 < s; < r;. Consequently, Taubes’ result leads
to the identifications
a; = si, Ci=H;. (4.2.49)
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Physically speaking this means that the world sheets of the superconducting
cosmic strings discussed by Witten in [10] are embedded holomorphic curves.
Recall that for a fixed instanton number k the Seiberg-Witten classes ¢ =

—K + 2z', with 2’ - ' = —4k and z = [2'], contribute to the partition function
of N = 4 theory in branch (ii). From the above discussion we identify z’ with
holomorphic curve ' = Y7 s;H; and 1 — g(a') = —2' - 2/. So the branch

(i1) contribution can be written as the sum of contributions of all holomorphic
curves ¥ with [X] = z. The summation over the (space-time) instanton numbers
is replaced with the summation over the genus of the holomorphic curves (the
world-sheet instantons). So our formula (4.2.42) for the partition function of
N = 4 theory can also be viewed as a genus expansion:

G (ql/g) 5 8o + 6, —2x—3c 0 =0 1-g(X)
1—by = {E]"' M
A ( 4 ( 2n? ) B i (6'.3 +91)

z

4 gl—big—s? G (=427 (o6 X
1
4 2n?

go. iy ) D
_1)[E)2 o 1%
x;( 1) Gr(E}(Bo_wl) .

(4.2.50)

The N =2 Limit and Donaldson-Witten Invariants

It is instructive to rewrite the formula (4.2.42) as follows:

el % P —2x—3¢ 8 —z'z’
Z,=(-1)" (%) (n_g) Z(L‘[z-]nm (i)

o § (60 +6,\ X% il R
4 9l-biti(Tx+1l0) g (q”"}) (%) Z(—l)[z Fzp, (92+ 91)

T

i gl—b1+}(Tx+110) ;—2" = (_ql/z) 2 (

TR, S SR
3 ) i (h) :
(4.2.51)

The fact that this formula can naturally be grouped into three terms whereas
we classically think of contributions from two branches can be understood phys-
ically as follows. The first term is the contribution from branch (ii) and stems
from the singularity in the u-plane due to the massless adjoint hypermultiplet.
The remaining two terms are the contribution from branch (i), which classically
corresponds to the singularity at the origin of the u-plane. Geometrically, the

fo — iy \ X3
n?
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branch (i) contribution is the Euler characteristic of the moduli space of instan-
tons [7]. The fact that this contribution is made up from two terms is due to a
quantum effect: the classical singularity at the origin of the u-plane bifurcates
quantum mechanically [72].

From the above formula we can recover the Donaldson invariants for gauge
groups SU(2) and SO(3) as follows. For a simply connected simple type man-
ifold, Witten’s formula for the generating functional of Donaldson’s invariants
is [10]

<eg+z\u> :21+%(7X+110') exp(ﬂ2/2 st 2A) Z(_l)[m‘].znzeu-r

4 2].+%(7){-!-110-),5:.;—22 exp(_v2/2 Lig) Z(_l)[a-’}-znze—iv-x_
(4.2.52)
Here © is the observable 591 associated with a two-dimensional cycle v and
o= 53, see (4.1.32). The expectation value is computed using (twisted) N = 2
super-Yang-Mills theory.

To obtain the above formula from the N = 4 theory we could turn on the ob-
servables (4.1.32)after breaking the supersymmetry down to N = 2 and, follow-
ing [72][11], take the double scaling limit m — oo and ¢ = 0 with A% = 2¢'/2m?
being fixed. In this limit the singularity coming from the massless adjoint hyper-
multiplet (branch (ii)) moves to infinity in the u-plane and no longer contributes
to the path integral. On the other hand the two other singularities remain at
the points u = +A? (in Donaldson theory A? is normalized to 2). Here we are
not able to consider general expectation values of observables. However, we can
compute the N = 2 limit of the partition function (4.2.51) (the ¢ — 0 limit
since (4.2.51) does not depend on m). The leading terms only come from the
second and the third lines and are given by

21—b,+%(7x+110] (Z(_l)[z’]-znx o t-y—zz Z(_l)[ﬂ-"]'znz) (q3v,f4 sl ) ;

xT i
(4.2.53)
Note that this partition function vanishes unless the dimension of the moduli
space of instantons is zero. Since dimg My = 4k—3v, this occurs when k = 3v/4,
thus explaining the leading term ¢**/4 in (4.2.53). In fact, the expression (4.2.53)
contains all the non-trivial information about Donaldson’s invariants.

The relation between the S'-action and the mass term of the hypermultiplet
described here were summarized and used in the paper [81]. There the same
sequence of perturbations N = 4,2, 1 was used to relate the zero-dimensional
reduction of the Vafa-Witten equation (N = 4) to the ADHM description of in-
stantons (N = 2) [63][64] and of torsion-free-sheaves (N = 1) [65]. It established
the first concrete relation between D-instantons and Yang-Mills instantons [41].
The similar S'-action and its application to the mass perturbation of the N = 4
theory was also considered in [82].

Recently some progress was reported on the entire generating functional of
the N = 2 theory with a massive adjoint hypermultiplet with more general
group [82][83] and on other four-manifolds [22].
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4.2.5 Stringy Donaldson-Witten Theory ?

In this chapter we formulated a twisted N = 4 SYM theory on a Kahler surface
as a N. = (2,2) supersymmetric sigma model in zero-dimensions. As we re-
marked in the first part of Sect. 2.3 our model can be generalized to Ny, = (2,2)
space-time supersymmetric gauged linear sigma model in two-dimensions.

The two equivariant differentials s, and 3, can be identified with the two
left-moving supercharges on a Riemann surface £. The other two differentials
s_ and 5_ are identified with the two right-moving supercharges on ¥. With the
above extension ¢4y correspond to the components of two-dimensional vector
in the light coordinate (or in the complex coordinate). Now we identify €_ and

e_ with sections of KEIK? and €; and ey with sections of f;/z, where Ky
denotes the canonical line bundle on X. The gauge multiplet (4.2.1) becomes the
Nuws = (2,2) vector multiplet, while the two types of bi-holomorphic multiplets
(4.2.2) and (4.2.3) correspond to two types of the N,, = (2,2) chiral matter
multiplets.

The resulting theory can be viewed as an infinite dimensional N, = (2,2)
supersymmetric gauged linear-sigma model [32][33]. Then one may twist the
theory to obtain A model [49][3]. After the A model twisting we have s, and
5_ (or s_ and 3. ) transform as scalars on . Then they are identified with the
differentials of G-equivariant cohomology of the target space - the space A of all
connections A4 and B>?:

A (M, End(E) @ Q°%(M, End(E)). (4.2.54)
Denoting s, := s and 3_ = 3 they satisfy the familiar anti-commutation rela-
tions

al=0 {5,3} = —i6%Ls;, T =0. (4.2.55)

In certain cases’ one can show that all the degrees of freedom due to the NV, =

(2,2) vector multiplet as well as to o, & and its fermionic partner decouple
in the infrared limit in £. Then the twisted model flows to the non-linear
topological sigma model with target space given by the space of solutions (of
the Vafa-Witten equations)

84B%? =0, (4.2.56)
iF Aw+ [B%°, B%?] = 0,

modulo the gauge symmetry. The observables of the model are given by G-
equivariant closed differential forms which flows in the infrared limit to the usual
observables (the closed differential forms on the above moduli space). Thus the
correlation functions of the resulting model are the quantum cohomology rings
of the moduli space of Vafa and Witten.

TA example is the case with the SU(2) group and a Kihler surface M with b;" >3 The
required properties are analyzed in details in [7].
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We may use the S symmetry acting on B%? to by modifying the anti-
commutation relations as usual

ad =1 {8,3} = —i0°L, —imLg, 3 =0. (4.2.57)

Then the path integral can be written as the sum over contributions from the
moduli space of SU(2) instantons (branch (i)) and the moduli space of the
following abelian (branch (ii)) Seiberg-Vafa-Witten equations first considered
in [7]

O 20
FL:! == {]v
9128 =0, (4.2.58)

iFy2 I\WZIB/\E,

which is a special case deg(L) > 0 of the equations (4.2.16). In this way,
we may obtain the quantum cohomology rings of the moduli space of SU(2)
instantons on a Kahler surface M with b5 > 3. The question is if such a
stringy generalization of Donaldson-Witten theory would lead to more subtle
four manifold invariants than the Seiberg-Witten’s. The author do not know
the answer but suspect that it is no at least for the Kéhler case. The above
argument based localization by the S'-action strongly suggest that the quantum
cohomology rings can be, in principle, determined in terms of of the quantum
cohomology rings of the moduli space of Seiberg-Witten monopoles. We expect
to have only the constant map since the later moduli space is a collection of non-
degenerated points [12]. This implies that quantum Donaldson-Witten invariant
may not contain any information beyond the Seiberg-Witten’s at least for the
Kahler case. There seems to be still some hope that one may get non-trivial
result by considering the general almost complex surface. Then the moduli
space of Seiberg-Witten monopoles can be non-zero dimensional almost complex
manifold.
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Chapter 5

Cohomological Yang-Mills
Theories On 3-Folds

5.1 Introduction

The discovery of D-branes has greatly enriched our understanding of non-pertur-
bative strings [16]. The configurations of D-branes may be viewed as a stringy
description of vector bundles (more generally sheaves) and the dynamics is effec-
tively described by supersymmetric gauge theory [41]. The celebrated M (atrix)
conjecture, then, provides a microscopic definition of M theory by the later
theory [42]. The matrix string theory is the M(atrix) theory compactification
on the circle [84] in the eleventh direction and is described by the maximal
Nys = (8,8) supersymmetric gauge theory in (1 + 1) dimensions [29]. The
matrix string theory compactified on a non-trivial manifold should involve de-
grees of freedom of branes wrapped around non-trivial homology cycles. Such a
theory may be viewed with some assumptions as a (1 + 1)-dimensional gauged
linear sigma model with the space of all bundles on compactified space as target
space [30]. Due to the brane configuration not all the supersymmetry will be
preserved. For example the K3 and CY3 compactification have N,, = (4,4)
and Ny; = (2,2) supersymmetry.

Formally the infrared limit from the string world-sheet viewpoint corre-
sponds to the limit where the bulk string coupling constant becomes zero. Then
the theory flows to a superconformal non-linear sigma model whose target space
is the moduli space of semi-stable bundles together with a linear space spanned
by the zero-modes of adjoint scalars. Those zero-modes represent bulk degrees
of freedom transverse to the compactified space (and branes in it). When the
brane configuration is a BPS state the semi-stable bundles are actually stable
and there are no zero-modes of adjoint scalars. Thus the stable bundles represent
the degrees of freedom completely decoupled from the bulk. Those phenomena
are directly related with the equivariant nature of world-sheet supercharges of
gauged linear sigma-models. When the target space given by a symplectic quo-
tient is smooth the equivariant cohomology is the ordinary cohomology of the
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quotient space. Otherwise there is always something more. Recall that the total
extended space where the equivariant cohomology is defined is always smooth.
Similarly the total physical system is always smooth if we include all the degrees
of freedom.

Consequently the infrared superconformal non-linear sigma model whose
target space is the moduli space of stable bundle describes decoupled matrix
string theory from the bulk. As a superconformal (1+ 1)-dimensional non-linear
sigma model the chiral rings can be described by topological sigma-models [3].
In general N, = (2,2) superconformal theory has two types of chiral rings, the
(¢,¢) and (a, ) ring [4]. The (¢, c) ring is described by the A model corresponding
to the quantum cohomology ring of the moduli space of stable bundles. Thus
the Donaldson-Witten type polynomials associated with stable bundles are the
A model correlation functions without worldsheet instanton corrections. The
Donaldson-Witten type invariants can also be viewed as the correlation functions
of chiral primaries of superconformal field theory obtained by M(atrix) theory
compactification. The other (a, c) chiral ring is described by the B model. For
the case of a Calabi-Yau 3-fold we argue that the B model is equivalent to the
holomorphic Chern-Simons theory [85].

The above discussions based on [30] motivates us to look up cohomologi-
cal field theory which computes the classical cohomology rings of the moduli
space of stable bundles on a Calabi-Yau 3-fold. In the previous chapter we
already considered, among others, a natural generalization of the Donaldson-
Witten theory on a complex Kahler surface to a d > 2 dimensional Kihler
manifold M. The path integral of the resulting model is localized to the moduli
space of the Einstein-Hermitian connections, equivalently the moduli space of
stable bundles. However we had a serious problem due to the uncontrollable
abundance of anti-ghost zero-modes. In this chapter we find resolution of this
problem by starting off we have failed. A simple observation is that one has to
introduce additional degrees of freedom to control the anti-ghost zero-modes.
This inductive procedure leads us to a natural extension of the moduli space
of Einstein-Hermitian connections or, equivalently, stable bundles. It turns out
that we have a well-defined model only for the d = 3 case.

Obviously the d = 3 case is the one most relevant to string theory [86]. We
also note that the notion of stable bundles, on a Calabi-Yau 3-fold, appears nat-
urally in the non-perturbative string theory in terms of BPS states [87][88][89].
It is important to note, although usually not being emphasized, that what one
actually has in string theory is the extension of stable bundles. In terms of
D-branes, a rank r stable bundle on a CY 3-fold M is a BPS configuration of
r Dg-branes wrapped around M, while the topological type of the bundle is
determined by Dy, D», and Dy wrapped around non-trivial cycles in M. Such
a Dg brane also has two complex transverse degree of freedom in the bulk. All
together one has the extended stable bundles.

The moduli space of stable bundles on a CY 3-fold is also crucial for ho-
mological mirror symmetry [79][90], which is essentially mirror symmetry with
D-branes [91][92]. The mirror partner of a stable bundle on M is represented
by a special Lagrangian submanifold C C M with flat line bundle L in the
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mirror M Calabi-Yau. The extended mirror conjecture is that the moduli space
of stable bundles on M should be isomorphic to the moduli space of (C, L) on
M. However this can’t be literally true since, for example, the deformation
of special Lagrangian submanifold is not obstructed [93] but the deformation
of stable bundles is. The situation is analogous, in the old mirror symmetry,
to the obvious differences between the moduli space of complex structures on
M and the moduli space of Kahler structure on M. The natural resolution
was extending both the moduli spaces [3].! A natural resolution may be that
both moduli spaces of stable bundles and Lagrangian submanifolds should be
extended [94][95].

We begin with constructing a well-defined N, = (2,0) model on a Kihler
3-fold. This model gives a concrete formula for Donaldson-Witten type polyno-
mials which is valid regardless of the properties the extended moduli space has.
We also argue that, using a S' symmetry and the DH integration formula, that
Donaldson-Witten type invariants may be equivalent to Seiberg-Witten type
invariants on Kahler 3-folds. The dimensional reduction of the model gives rise
to the N, = (2,2) Vafa-Witten model on a Kéihler 2-fold. Then we specialize to
the Calabi-Yau case. On a Calabi-Yau 3-fold the N, = (2,0) supersymmetry is
automatically enhanced to N. = (2, 2) supersymmetry. The partition function
of this model gives a concrete and well-defined formula for holomorphic Cas-
son invariants defined by Thomas [96][97]. On Calabi-Yau 3-folds the actual
dimension of the moduli space of stable bundle can never be equal to the for-
mal dimension, which is zero. This property causes one of the main difficulties
in defining holomorphic Casson invariants. We give a concrete prescription of
dealing with the above problem, different from that of Thomas. We also give a
concrete prescription of resolving the problem caused by reducible connections
by combining certain deformations and perturbations of the initial model.

The N. = (2,2) model can be obtained by dimensional reduction of the
Nuws = (2,2) gauged linear sigma model in (1 + 1) dimensions introduced in
[30]. A quantum field theoretic approach to Donaldson-Witten type invariants
on a general Kahler manifold based on the moduli space of stable bundles is
first studied in [52][67]. We note other related papers; [98][99] for Kahler case
and [100][101] for Calabi-Yau case.

5.2 Motivating the Extended Moduli Space of
Stable Bundles

In this section we motivate the notion of extended moduli space of stable bundles
[95] in the context of resolving the problems of anti-ghost zero-modes discussed
at the end of Sect. 4.1.1.

First we set up our notation. Consider a d complex dimensional compact
Kabhler manifolds (M,w) with Kéhler form w. We consider a rank r Hermitian
vector bundle E -+ M. On M any two-form a € Q?(M) can be decomposed as

'We should also mention that the homological mirror conjecture was derived from a deeper
study of the extend moduli space of complex structures.
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follows
a=at +a",
at = a?*? + aow + a2, (5:2:1)
a = ai‘l,

where a, = 1Aa is a scalar and ai’l is (1,1)-form orthogonal to w. One defines
the following projections

Pt 0% - 0PF (M),  P°?:Q% - Q%3(M). (5.2.2)

The curvature two-form decomposes as F' = F* + F~ according to (5.2.1). A
connection on E is called Einstein-Hermitian (EH) with factor ( if

FU,'Z =0

: 5.2:3
iAF —Cle. )
Now we return to the problem of the anti-ghost zero-modes Let A be an EH
connection. We consider a nearby connection 4 + 64, §4 € Q}(M, End(E)),
which also is EH. After linearization we have P*d4dA := df 6 A = 0. Supplying
the Coulomb gauge condition d36A = 0, a local deformation .4 around a point
A in Mgy represented by the kernel of an operator dj @d} in Q' (M, End(E)).
From the above one introduces the associated elliptic complex of Atiyah-Hitchin-

Singer [102];

0 = Q°(M, End(E)) % 01 (M, End(E)) %> 0%+ (M, End(E)).  (5.2.4)

We compare the above with the fermionic zero-modes of (77_, 1})3_’1 : ”)2‘22) governed
by the equations (4.1.36);

= 52’*&?0-,1 =0, 40,2
dig =0, 9,x_" = 0. (5.2.5)
aAﬂ‘b‘.}.’ = Os
After decomposing 77_ = 7 + ix% into real and imaginary parts, we can form
real fermions (p_,%,,x_)
—_— ‘0 &
P, = %i’i + ¢D+'l, xo =04 w52 (5.2.6)

where np_ € Q°(M, End(E)), ¥ € Q'(M, End(E)) and x_ € Q**(M, End(E)).
The equations for zero-modes (5.2.5) are translated into the following

di, =0,

di*x_ =0. (5.2.7)
dip, =0,

dA”L - 0!

Thus the zero-modes of fermions (5_, %, x_) are elements of the AHS complex
(5.2.4). The above correspondence is one of the crucial ingredients of Witten’s
approach to Donaldson theory in four real dimensions [1]. The path integral
measure contains such fermionic zero-modes and the net ghost number anomaly
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precisely the index of the above complex, which is the formal dimension of the
moduli space of instantons on a four manifold.

Now we undo the combination (5.2.6) and return to the initial equations
(5.2.5) for the complex fermions (ﬁ_,ngl,ﬂz). The equations (5.2.5) imply
that the fermionic zero-modes are one to one correspondence with the following

Dolbeault complex [103]
0~ 0°°(M, End(E)) 2 0 (M, End(E)) 2 0°2(M, End(E)).  (5.28)

Note that gi = 0 at the fixed point locus. Qur problem for d > 3 is that a
fermionic zero-mode of Y only needs to satisfy the condition §;ﬂ2 = 0 so that
we have too many of them. As a result we always have an infinite dimensional
anti-ghost bundle. Therefore the path integral would hardly make any sense.
But this is exactly what the EH condition gives us via local deformation. For
d = 2 the desired condition 84X~ = 0 is automatic due to the dimensional
reason. For d > 3 the only way of imposing the desired condition d,%°> = 0
is to introduce another fermionic field ,\1‘0 with ghost numbers (1,0) such that
the action functional contains the following term

S~ / Tr(A2% A %8422 + ... (5.2.9)
M

Then we obtain in addition to (5.2.5)
B =0, X = (5.2.10)

Thus we have to generalize the N. = (2,0) model in Sect. 4.1.1 by introducing
a new holomorphic multiplet (C*°,13}°) € 0%°(M, End(E)). For d = 3 the
above additional conditions are sufficient. For d = 4 we should supply yet
another additional condition (’24/\1‘0 = 0, otherwise we have too many zero-

i s =0, .
modes of 4\3+'°. Thus we should introduce another fermionic fields 5_4 with
ghost numbers (—1,0) such that now the action contains

ot (A3 A #0? + BASP AE) + .0, (5.2.11)
and so on.
Thus a natural resolution of our problem is to extend the complex (5.2.8)
all the way to the end
00— CO0 2%, 001 B4, 002 P4, 003 By, Ba,o0d 0 (5219)
where C%¢ := Q%¢(M, End(E)). To give any meaning to the above Dolbeault
complex, we have to introduce the following set of fermionic fields

yodd JEVETL
gt o e, (5.2.13)
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where 2 < odd,even < d. It is obvious, from the basic structure of our N, =

(2,0) model, that X‘:_’Ddd are superpartners of anti-holomorphic bosonic fields
€944 to form holomorphic multiplets;

(C%2dd 25305, (5.2.14)
It is also obvious that Eie"m should be parts of Fermi multiplets
(£ By ticveny (5.2.15)

where H%¢"*" are auxiliary fields. Then we may try to design an action func-
tional which gives the following equations, in addition to (5.2.5), for fermionic

zero-modes
—= —0,0dd —0,even

8 '\ P 0! 8 - 0,
—f—{) odd ):ED even (5‘2‘16)
aA = O! a_,qf_ 0.

Thus the (0, g)-form fermionic zero-modes become the elements of the g-th co-
homology group H%4 := Hg’q(M, End(E)) of the complex (5.2.12). Then the
net ghost number violation cﬁle to the fermionic zero-modes is precisely the in-
dex Zgzu(—l)q*’ldﬁmcHo'q of the complex (5.2.12). Now we are in the same
situation as the Donaldson-Witten theory in the d = 2 case.

Finally let’s consider how the above extension fits into the framework EH
connections. Kim introduced the following complex, generalizing the Atiyah-
Hitchin-Singer-Itoh complex [104] [48]

0—s BO 4y gt 4, g2+ 4 gos Ba, B pod (5.2.17)

where d®? = 94 0 P%2, B? = OP(M, End(E)) and BP? = QP9(M, End(E)). It
is shown that the above is a complex if the connection A is EH and elliptic. We
denote the associated ¢g-th cohomology group by H?. It is not difficult to show

that
d d

> (1) dimg HY = 2 " (=1)*" dimc HO9. (5.2.18)
g=0 g=0
It is also obvious that the two extended complexes (5.2.17) and (5.2.12) are
related in the same way as the unextended complexes (5.2.4) and (5.2.8).

We remark that Kim’s complex is not the genuine deformation complex of
EH connections, but rather a natural extension of it. As in the d = 2 case we
require that the index is the complex formal dimension of a certain extended
moduli space of stable bundles. We define the extended moduli space 9 of EH
connections or of stable bundles by extending the EH condition as follows

DoD =0,

5.2.19
+idCwilp =0, )

exp(w) - (:D oD +Do 5)) 1t0p form

where D is the extended holomorphic connections

B=Bug, ) gheld (5.2.20)

2<odd<d
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The versal deformation complex of the above equation is then precisely Kim's
complex (5.2.17). This can be check by using the Kahler identities (4.1.19). In
the above scheme the infinitesimal deformations of the extended moduli space al-
ways lie in H%°%_while the obstructions, by Kuranishi’s method, lie in H%v",
Thus the local model of the extended moduli space is f~1(0) [94], where?

f g H(],nd'd'® HD,odd Ly HD,even. (5.2.21)

The complex formal dimension of the extended moduli space 2 can be com-
puted using the Riemann-Roch formula

d
3 (-1 dimc Ho. = — / td(M) - ch(E) - ch(E"), (5.2.22)

q=0 .4

where td(M) denotes the Todd class of M and ch(E) denotes the Chern char-
acter of E.

Now we have all the ingredients to construct a well-defined N. = (2,0)
model. Unfortunately it turns out to be impossible to implant the above ideas
except for the case of three complex dimensions. It is not possible to maintain
N. = (2,0) supersymmetry and impose the desired equations (5.2.16) for all
fermions unless d = 3.

5.3 On Kahler 3-Folds

We consider the N, = (2,0) model studied in Sect. 4.1 specializing to the case
when M is a Kdhler 3-fold. According to the discussion in the previous section
we introduce one more bosonic field C%3 € Q°3(M, End(E)) and its Hermitian
conjugate C*°. Our goal is to construct a G-equivariant N. = (2,0) model
whose target space is the space A of all connections together with the space of
all C%? fields. Furthermore the fermionic zero-modes should be elements of the
Dolbeault cohomology of the complex (5.2.12). It turns out there is only one
way of achieving this goal.

5.3.1 Basic Properties

The N. = (2,0) model here will be an example of the construction in Sect. 3.3
with J # 0 (3.3.7). We first recall that the path integral of a general N, = (2,0)
model is localized to the space of the following equations, modulo G symmetry,

XY =0,
Ga (X 2P=10) (5.3.1)
p(X, XY —¢=0.

20ne may view the condition for a good deformation as a Maurer-Cartan equation of a
differential graded algebra without derivation. The authors [95] studied the conditions for a
good extended Lagrangian deformation given by a master equation. The homological mirror
symmetry seems to imply that there should be A® or L® morphisms between them. We
examined if the extended moduli space always gives a well-defined cohomological field theory.
So far we are unsuccessful except for the d = 3 case.
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The momentum map u is determined from the Kéhler potential on the space
of all X' and from the G action on it. The sections J* and &, above should
satisfy the following equations to have N, = (2,0) supersymmetry,

_§+Jﬂ = 0'.!
5.6, =0, (5.3.2)
{3“) Gﬂ) = U'

In the present case our infinite dimensional target space is
A (°(M, End(E)) ® Q°*(M, End(E))), (5.3.3)

and the infinite dimensional group G acts on the above space as the group of
all local gauge transformation on M, ie., g € G for g : M — G. The Lie
algebra Lie(G) of G is Q°(M, End(E)) and the bi-invariant inner product on
Lie(G) is (a,a) = — [,, Tr(a A *a). We already gave a complex structure on
A in Sect. 4.1.1 by demanding that A%! is a holomorphic field, i.e., 5, A%! =
0. We also have a unique holomorphic section F%? from the subspace A and
the corresponding Fermi multiplet (x2%, H*?) € Q%2(M, End(E)) with the
following transformation laws

0.2 =
8 /-_: 2_31

i, = (5.3.4)
§+X_‘ =—H"=,

Then we only have two possibilities to fit the additional bosonic fields; either
& = F%2-3,0%3 or J = 8,0%3. The first choice is not possible since 9, = — *
04 *, thus the additional term is not holomorphic, i.e., 5, & # 0 since 3, A1® # 0.
For the second choice we see 8,3 = 0, thus 3,3 = 0, if we demand s, C%3 =0,
Thus the additional holomorphic multiplet is (C°, Ai‘o). We conclude

3= 050",
- (5.3.5)
Finally we check the last condition in (5.3.2) as follows
Tr(G5C*° A+F%%) = | Tr(C3° A %G, F°2) =0, (5.3.6)

M M

by the Bianchi identity dq4F = 0 — 84 F*2 = 0.
The above considerations determine, following Sect. 3.3, an equivariant N, =
(2,0) model.

Fields and Their Transformation Laws

Here we recall again the fields and their supersymmetry transformation laws,
just to refresh our memory. Associated with the G symmetry we have the
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Nc = (2,0) gauge multiplet (¢__,n_,7_, D), all transforming as adjoint valued
scalars on M. The transformation laws are given by (3.3.8),

- =0,

- : 1
84 =in-, B = + §[¢++’ ¢--, 81044 =0, (53.7)
I =17 I 1 s = =
BiGLe =17 8,7 =-—1D+ §[¢++, " fat SRR

§+ﬁ— == D!

We have two sets of holomorphic multiplets and their anti-holomorphic partners.
One set of holomorphic multiplets is (A%*,%%") with anti-holomorphic partners

(A10,9.°)

8 A% =it syl =0,

3, A% =0, 590! = —Badis,

s AM =0, 3+'q_b:_'u = —Oadpty, P48
AW =B O m e 0

The other holomorphic multiplet is (C 3‘0,)«1‘0) with anti-holomorphic partner
(€3, %))

4,0°8 =80 S =,

3,030 =, §+'\10 = —i[¢44,C>7), "
8,C% =0, 3+1<:_.3 = i[pys,COF, (5.3.9)
5,0 = ﬁias §+X13 =,

Finally we have Fermi multiplets (x*°, H?) and anti-Fermi multiplets (Y°%, H%2),

aex 2 = —H*® s, H*° =0

5420 = -050*°,  BLH®" = —ilpyy, x> + i« %, C>0 +i0507°,
g . = ) F*50,3

3+K‘l‘2 = —BACD‘s, 8+HU'2 == —3[¢++,i-0'2] + l[*‘!‘b+ *}CO'S] + 23AA+ f

B0 = —H%2, 3. H*? =0

(5.3.10)

The above transformation laws imply that the resulting N, = (2,0) model, in
general, can not be embedded into a N, = (2,2) theory since s,X>> # 0. Such
an embedding is only possible if M is a Calabi-Yau 3-fold, where our N, = (2,0)
supersymmetry will automatically enhance to N. = (2,2) even without adding
additional field. For a later purpose we summarize the field contents by the
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following diagrams;

o T L
ﬂz L L 'pi'l
TS . N . (5.3.11)
I?+ Ti+ T3+ HO?
s j} - C0:3

The Action Functional

The final ingredient for the action functional is the G-momentum map on the
total space (5.3.3). The total space has a natural G-invariant Kahler potential

1

ha = 2472

[M (nTr(F AF)Aw? —iTr (C*° A C°‘3]). (5.3.12)

From the transformation laws (5.3.8)(5.3.9) we have the following equivariant
Kahler form,

Ejg :='i8+§+x'}"
1 ‘ b iy
— 2/ Tr(igdy+ (F/\w - —[03‘0,00‘3]) (5.3.13)

/Tr'u’;+ A Aw ~—Ai°/\§03)

122

The term in the third line is the Kahler form @, after the parity change, and
the term in the second line is proportional to the G-momentum map
mr on the total space (5.3.3)

1
1272

pr = (F/\u L [030 c® 3]) (5.3.14)

Thus the N, = (2,0) action functional is given by, see (3.3.9) and (4.1.15)

szs+§+/ (q&__(F/\w + = [c” C%% + @HE))

1272
+ s+s+/Tr (xz_'of\#x gl +/Tr T (5.3.15)
M

472
p o [ oqp(spopapoa) 4 B [ (502 5, p0).
4‘.’T2 M 4772 M

Now we examine if the above action functional gives the desired equations
for the fermionic zero-modes. After expanding the action functional S we have
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the following terms relevant for fermionic zero-modes,

1 3 .
S ] Tr( in_ *3A'¢J+ +m_*6Aw+ +—x2_’0/\*3,w’)3_’1
6772 M 2
3op 3i - 3
+ 2322 A «Ouy + §X2° A BN, + 537‘1'2 A m;x?;") a3
(5.3.16)
From the above we obtain the following fermionic equations of motion,
=* 0,1
vy =
= 3= 0,2
an. + -, x =0
n 2 AX 1 (5317)

P2t + iy, =0,
By =0
We will see below that these give rise to exactly the required equations (5.2.5)
and (5.2.10).
5.3.2 Path Integrals

The path integral of our model is localized to the locus of the following equations,
modulo G symmetry, see (3.3.13) and (3.3.14),

9,C%? =0,
Fo2 =0, (5.3.18)
iIFAwAw+ = [030 %] - c Wg =0,

and
dA¢++ -— 03
{¢++!Cﬂ,3] - Ds (5'3'19}
[6++,6-—] =0.

We call the moduli space defined by the eq. (5.3.18) the ertended moduli space
9 of EH connections (with factor () or stable bundles.

& : . ¥ : : =2
Since the path integral is localized to integrable connections 8, = 0, the
fermionic equations of motion in (5.3.17) become

e Gt =0 BT =0
D= i Rou Gy =0.  (5.3.20)
BAﬂr".{: = 09 8AX—‘~ =2 0:
Thus the zero-modes of fermions
L v (5.3.21)

are elements of the cohomology group H®? of the following Dolbeault complex
(5:2:12),

0 ——}COD a,q COI aA 002 8“‘ CO3 ,._)0 (53.22)
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where C%! := QY M, End(E)). It is also easy to check that the above is
isomorphic to the versal deformation complex of the extended moduli space 901 of
stable bundles. Thus minus the index of the above Dolbeault cohomology group
correspond to the net ghost number violations in the path integral measure due
to the zero-modes of fermions in (5.3.21). We have

A= —#{)o + # @30 — #7Do + #03 o

3
=Y (-1)"  dimHO. rEy
=0

g
The net ghost number violation of the path integral due to all the fermions -

the fermions in (5.3.21) and their conjugates — is (A, A). The above index can
be computed by applying the standard Riemann-Roch formula. We have

o

g lcl(E)z) —r2(1—hO1 4 RO2 _R03), (5.3.24)

A fM cl(M)/\(rcz(E} -

where h?9 denote the Hodge numbers of M. We also note that a Hermitian
vector bundle E admits an EH connection if

/M wA (rcz(E) & ; 5% (5)2) >0 (5.3.25)

and the equality holds if and only if E is projectively flat.

Now we take a closer look at the path integral. We note that the zero-modes
of tﬁ)f_’l and Iﬁf, thus H%! and H®%3, correspond to local deformations of the
extended moduli space 9. The other fermionic zero-modes 17_ € H%® and
7&2 will cause some trouble. Note that we have a decomposition into trace and
trace-free parts

HO° = HO‘O(M) Y ﬁo,o‘
H** = H% (M) + T,

We call A—1—h%? the complex formal dimension of 9. If we assume a situation
that G acts freely on the locus of solutions of (5.3.18), i.e., the connection is
irreducible, the extend moduli space 9 is an analytic space with the Kéahler
structure induced from the G-equivariant Kahler form (5.3.13). The moduli
space will not have the right complex dimension A —1— hO2 unless H%2 = 0 as
well. In the ideal situation H%? = H92 = 0, the extended moduli space 9 is
smooth and the zero-modes of tb?,_‘l ; )«i‘o span the holomorphic tangent space.?
Thus the formal complex dimension is the actual dimension.

However the assumption made above, in particular H®2 = 0, is too naive.
We note t‘}}_@:t the obstruction to deformation of the extended moduli space
9 lies in H%2. In two complex dimensions Donaldson proved that one can

3We will establish this later. We remark that the case with H©°3 # 0 has no problem
which is associated with deformation of 911 € Mgy along the direction of C%3. It would be
a problem if we work with Mgg.
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always achieve H®2 = 0 after suitable perturbation of the metric. In three
complex dimensions one can hardly expect such a result to continue to hold.
The assumption H®° = 0 is valid for a bundle E with degree and rank coprime.

Now we examine how the path integral deals with the above problems. We
assume, for simplicity, that our gauge group is SU(r), so that End(E) is always
trace-free. Then the formal complex dimension A is given by

= e c - ?‘2— = Ol 0,2 __ 10,3 2 i
A= /M( (M)/\z(E)) ("% — 1)(1 — A + h%2 — KO3).  (5.3.26)

A typical observable of the theory is the total G-equivariant Kahler form, after
parity change, Erg given by (5.3.13). First we consider an idealistic case that
H®° = H%? = 0. Then the correlation function < exp @5 > can be identified
with the symplectic volume of 90,

<exp@g >= -/ exp o = vol (M). (5.3.27)
m

If we have the anti-ghost X> zero-modes, i.e., H%2 # 0, the above correlation
function becomes

< exp®g >=/ e(V) A exp @7, (5.3.28)
m

where e(V) denotes the Euler class of the anti-ghost bundle V. One may consider
correlation functions of other observables O™* with ghost numbers (r, s) given
by s and 34 closed G equivariant differential forms O™* — see Sect. 3.1.2. We
have

£
<H 5"-‘r’i> :f e(V)AO™ 1 A ... AOT% (5.3.29)
i m

where O™° denotes the equivariant differential form (O™* after the restriction
and reduction to 9. The above correlation function can be non-vanishing if

£

Z(r,-,s.:) = (A,&)‘ (5330)

i=1

due to the ghost number anomaly. Almost all properties are essentially the
same as for the detailed discussions for the N, = (2,0) models in Sect. 2.3.2
and Sect. 3.3.2. Repeating the same analysis here will be unnecessary. What is
remarkable is that the path integral is well-defined even if the moduli space 90t
does not satisfy nice conditions like H%? = 0.

For that purpose let’s look up some details about how the Euler class of the
anti-ghost bundle emerges. The action function S (5.3.15) contains the following
Yukawa coupling involving the anti-ghost,

s T (x'i“ A *[¢++,y‘1"“]) P (5.3.31)

T
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It also contains the following terms, soley from the first line of the expression
(5.3.15), depending on ¢__,

1 o 1 —1,0
SiEsars 'D‘[‘f’—— (*‘1.4dft¢++ = 71C%% [8++,C%]] - ARy ]

== D —0 i oy
[/\ )] ] (5.3.32)

Assuming, for simplicity, that there are no-zero modes of 7j_ (H%° = 0) one can
evaluate the expectation value < ¢4, > of ¢, by solving the ¢__ equations
of motion and replacing all the other fields to their zero-modes. Then the
only non-vanishing term in the action functional S in the s, and 3, invariant
neiborhood C of the fixed point locus comes from the expression (5.3.31), which
can be written as

Sle = ﬂﬂummxiﬂ, (5.3.33)

where {bi; and Y denote the zero-modes of (¢ +‘1 : ,\_3'_’0) and x*°, respectively. In

the above the indices i and e run overi = 1,...,h%' +h®3 and a = 1,..., h%?,

where h%* = dimcH%*. The expression F yf) wj denotes the curvature

o:ﬁ:_;l ;
two form of the anti-ghost bundle V over 91 — the space of the zero-modes a'
of A%! and C*? modulo G. Consequently the expectation value, for example,

< exp &5 >, becomes

A+h%? h2 3
< exp @5 > f H da’daldi)’ dipt II axtdx”
m =
xexp( F 5704 OB PRERE + (0!, D),

(5.3.34)
which leads exactly to (5.3.28).

Some Properties of 9

This is a mathematical digression to establish a property of the extended moduli
space. First we recall a theorem [48][104] on the moduli space Mgy of EH
connections - if H®® = 0 the moduli space M pgg is a complex analytic space.
It is nonsingular at a neighborhood of a connection if H®?2 =0 and its tangent
space is naturally isomorphic to the space of H*!. Here H®* denotes the
cohomology group defined by tracefree endomorphisms.

Now we state an analogous theorem about the extended moduli space 91 of
EH connections on a complex Kahler 3-fold — if H%° = 0 the moduli space I
is a complex analytic space. It is nonsingular at a neighborhood of an extended
connection if H®? = 0 and its tangent space is naturally isomorphic to the
space H%! @ H?P. The extended moduli space 9 is a smooth Kahler manifold
with the formal dimension equal to the actual dimension if H*® = H%? = (.

The proof of the above theorem is similar to that of the Einstein-Hermitian
case [48]. Given an extended EH connection 5, a nearby deformation 84 + a,
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C3° + 3 is governed by the equations

a+aha= 0,
40 =0, (5.3.35)
A(@aB+anp)=0.
We only need to consider the last equation since the theorem quoted above

already dealt with the first two equations. The last equation has the following
orthogonal decomposition

A (ﬁ+§;aa(az\3)) L0,
dB+anp=0¢ B, 08, 0G(anf) =0, (5.3.36)
H(aApB)=0,

where G is Green’s operator and H is the harmonic projection. We define
Kuranishi map k'

E:C¥ 5 C*°,  K(B)=B+8,0G(aAp). (5.3.37)

Then, from the first equation on the right of (5.3.36) we have 94(k'(8)) = 0,
while 8} (k'(8)) = 0 by the dimensional reason. Thus we obtain A8, (k'(3)) =
0— E: (K'(B)) = 0. Consequently we have

k'(8) € H3®. (5.3.38)

Now we examine if the Kuranishi map is invertible for a given p € H Ml e
B =k'"Y(p) and A(848 + a A B) = 0. Taking the orthogonal decomposition of
a A 3 one finds that

A@sB+aAB) =A8,0840G(anB) +A(H(aAB)). (5.3.39)

Note that A(H(aAf3)) is in H?°, which is isomorphic to H°2 By our assump-
tion we have H(a A #)) = 0. Denoting vy = d4a+aAaand § =dsf+a A
we have

§ =384 0G(Baa AP —aAdB)
= _; oG(yAB—aAd) (5.3.40)
2“5; oG(aAd),

where we used the fact that v = 0 for H®2 = 0. Applying the following estimate
184 * 0G| |2k41 < elfvl]2,, (5.3.41)

we have i
[[8]l2.6 < [10]l2,541 = [|84 © G(a A 8)|]2,k41

(5.3.42)
< c||8]]2,k - |l ]2,k
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Taking « sufficiently close to 0 so that ||a||2x < 1/¢, we conclude § = 0. Thus

the Kuranishi map k' is invertible if H°? =0. Consequently the local model of
the extended moduli space 9 is given by f~!(0) where

P HS o 7D = H#, (5.3.43)
(a,8) = H(a A B), A(H(a" A B%)).

5.3.3 A Use of S! Symmetry

The extended equations (5.3.18) we have may be very useful. On the extended
moduli space M of EH connections we have the natural S!-action

S10%3 a0 @l (5.3.44)

which preserves the complex and the Kahler structure. Thus any cohomological
computations can be further localized to the fixed point locus of the S!-action.
For the SU(2) case we are concentrating on it is easy to determine the fixed
point. We have two branches.

e Branch (i)

¢4+ = 0 and the SU(2) symmetry is unbroken. Then we have a trivial
fixed point where simply C%? = 0 where we have EH connections.

e Branch (ii)

¢4+ is a constant diagonal trace-free matrix. The non-trivial fixed point
occur if the gauge symmetry can undo the S'-action. For this the SU(2)
symmetry should be broken to U(1), i.e., £4 = L& L~ where A € AVL.
While C%? and C?° become

08 — (8 g) ’ 30 — (EY 8) E (5.3.45)

where 7 is a section of K "!®L?, with K denoting the canonical line bundle
of our Kahler 3-fold. Then we have the following fixed point equations

Bl =0
1 Doy =, (5.3.46)
itFLAwAw— 57/\720.

where F; denotes the curvature of the line bundle L. Obviously we have
a non-trivial solution if deg(L) > 0. If ¥ = 0 we can have abelian EH
connections, and also if deg(L) = 0.

The above equation (5.3.46) is analogous to the abelian Seiberg-Vafa-Witten
equations [12][7], perhaps equally powerful. Thus we expect that the above
equations may contains all the non-trivial information about the Donaldson-
Witten type theory on Kahler 3-folds. It should be possible to establish our
conjecture quite rigorously. Here we will sketch the idea.
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As a first step we map the N, = (2, 0) model defined by the action functional
S (5.3.15) to its deformed version, following the discussions in Sect. 3.4. The
action functional is then defined by, see (3.3.31),

Sh(s)——s.,.s.,./ Tr(x A*i‘”)
M

? 2,0 2 { =, —0.2 2.0
ST ik A F'D o /ﬂ L e
3 2.‘5‘.{_‘/}"‘1‘r I‘(X * )+4 2S+ (X * )

e £ w3 5
== 33+3+K:']" + EE /M ? Tr(¢)++),

(5.3.47)
where K is given by (5.3.12). As we established earlier the partition function of
the above for £ = 0 is the correlation function (5.3.28) with the same conditions.
If the reducible connections are unavoidable we turn on ¢ to regularize and utilize
the non-abelian localization.

Now we examine the supersymmetry transformation laws (5.3.9) and (5.3.10)
to find that the S'-action (5.3.44) should be extended to as follows

s' (C”103_”1102)—*6(0“_13,?”11’0'2)

(5.3.48)

S (CBO A+ ,X_ ,HQO)_>£(CZD ’\+:X— ,H20)
where €€ = 1. Thus the above fields are now charged under S'. A problem
might be that the above S'-action is not a symmetry of the action functional.
However the S'-action preserves the supersymmetry transformation laws as
well as the localization equations. Thus we can use it anyway. Now we modify
the transformation laws of the charged fields under the S' by extending the
G-equivariant cohomology to G x S!;

=10 {841,84)} = —igt L. —imLs, 32 =0. (5.3.49)

We use the same form of the deformed action functional (5.3.47) but with
the new transformation laws for supercharges according to (5.3.49). We obtain
a new N, = (2,0) supersymmetric action functional®

il
Splm,e) = s+s+/ e (Xz_,a A *ﬂz)
M

=+ t?s+/ Tr(xi‘al\*Fa‘g) ek 1‘,§+/‘ Tr(f‘iz/\*Fz‘D)
472 o dr® M

-a'rlg- —'gmHsl.,

where Hg: is the Hamiltonian of the S!'-action,

Hs: T (™ NG, (5.3.51)

= - = —0,1
This is due to a term like Tr(x*® A %349 ).
5We turn off . We can turn on & whenever necessary.
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The first and second lines in the action functional localize the path integral to
the locus 8,C%3 = F%2 = 0. The first term in the third line further localize
the path integral to the locus up = 0. For simplicity we assume that there are
no zero-modes of Xz_,o_ Then the partition function of the model reduces to®

Z=/ emHsi+or (5.3.53)
o

where @y is the Kahler form of 9, obtained by the restriction and reduction
from our equivariant Kahler form @7 (5.3.13). Thus the partition function
is given by the familiar DH integral formula over a finite dimensional K&hler
manifold 9t [56][105]. It is therefore an integral over the set of critical points of
Hg:1, which is the same as the fixed point locus of the S'-action on 9t. Thus
we have the same two branches.

The following is a formal argument since I do not understand the compact-
ification of M. However it will be sufficient to serve our purpose. We will just
apply the exactness of the stationary phase integral. By setting m — oo we
may have

e Branch (i)
Note that the value of the Hamiltonian Hg: is zero at Branch (i). So its
contribution to the integral is simply the volume of Mgy weighted by
the one loop determinant of due to the normal bundle N(Mgg) in 9.
Note that such one loop determinant contains weight m~* where s denotes
codimension of Mgy) in M. Thus

2(5) ~ —vol( M) %0 (5.3.54)
T

The unwritten part is due to contribution from the normal bundle N (M gg),
while we extracted its dependence on m.

e Branch (ii)
Note that the value of the Hamiltonian at Branch (i) is Hs: = t-deg(L) :=
5z [ ¢1(L) Aw Aw, where L is a line bundle defined in (5.3.46). Thus
1 im
Z(i1) ~ - / ex (——-——de L)+w ) % 9355
(i7) ; = L0 P T g(L) |7 (L) ( )

where (L) denotes the fixed point locus, s’ denotes its codimension and
@|x(r) denote the Kahler form on F(L). The unwritten part is due to

5We remark that the action functional contains the mass term for the anti-ghosts xr"_'u and

fﬂ_j‘ If there are no-zero modes for anti-ghost such the term plays no roles. If there are

zero-modes of anti-ghosts we have to include contribution from the anti-ghost bundles and
the mass term. Then the partition function Z become

Z= / det(F, 5 —imh_z)exp (imHgs: + 1) , (5.3.52)
m

where "Foﬁ - imhaﬁ- is S'-equivariant curvature two form of the anti-ghost bundle ¥V over 901.
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contributions from the normal bundle over the fixed point locus, while we
extracted its dependence on m.

We assume that s < s, otherwise the above formal formula does not make
sense. Then one can take m = 0. Since the original formula was smooth in the
limit of the reduction to the symplectic volume of 91 the poles in Z(i) and Z(11)
should cancel order by order. Thus we have

1 im 2 =
ol Men) ~ iy (m—rdeg(L))

‘ (5.3.56)
im ~
X exp (——deg{L)+wi}-L) Sicaine
-/.';"(L) 127 (£)
and
1 [im J
vol (M) ~ Z;ﬁ- (m—ﬂ_deg(L))
L (5.3.57)

X / exp (—ﬂdeg(L}+€7|f(L)) > S
F(L) 127

We conclude that the above formal evaluation justifies, at least, our conjec-
ture that Seiberg-Vafa-Witten type invariants defined by the equation (5.3.46)
should be equivalent to the Donaldson-Witten type invariants on a Kahler 3-
fold. It is possible to perform a similar analysis for the case with anti-ghost
zero-modes, which makes life more complicated but does not alter the essential
points advocated above.

5.3.4 Reduction To a Kahler Surface

In this subsection we perform a dimensional reduction of our models on a Kahler
3-fold M to a complex Kahler surface M,. We first assume that M is a product
manifold M3 = M, x C and, then, remove dependence of our fields on C. We
have the following correspondence

AML AW

’f]i’] e w-lf‘urn-i-:

X0 o A0, 520, (5.3.58)

HO,? = HO,] H0,2

Cﬂ,ﬂ —y BD,2
as well as the similar decomposition for their Hermitian conjugates. The other
fields (¢++,n—,7_, D) remain as they were. Thus we obtain the N. = (2,2)
model in Sect. 3.2. Similarly the equation (5.3.18) for the extended EH connec-

tion reduces to the Vafa-Witten equations. Furthermore our equation (5.3.46)
for branch (ii) fixed point become the Abelian Seiberg-Witten equations. Thus
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our conjecture on Donaldson-Witten type invariants on a Kahler 3-fold becomes
a fact [12].

Now instead of the above trivial reduction we consider a product manifold
M = M, x X, where ¥ is a compact Riemann surface. Then we can follow
the same steps with the same sort of assumption as [106] to conclude that the
models discussed in the previous subsection are equivalent to topological sigma
model discussed in Sect. 4.2.5. Thus the stringy Donaldson-Witten invariants
on a Kahler surface may be obtained from formulas like (5.3.56) and (5.3.57)
on the product 3-fold. This support an earlier suspicion in Sect. 4.2.5 since the
Seiberg-Vafa-Witten type invariants on a manifold M> x £ most likely are just
the Seiberg-Witten invariants on M.

5.4 On Calabi-Yau 3-Folds

In this section we specialize to the case that the Kahler 3-fold M is Calabi-Yau
with holomorphic 3-form w%3. For the Calabi-Yau case a very special thing
happens that our N, = (2,0) supersymmetry enhances to N. = (2, 2) supersym-
metry. Following the discussions in Sect. 2.1.3 we shall see that the partition
function of our model is the path integral representation of the holomorphic
Casson invariants defined by Thomas [96][97]. We will also discuss various is-
sues related with string theory. We argued that our model is the world-volume
theory of parallel type IIB (Euclidean) D5-branes wrapped on the CY;. We
show that the G-equivariant degrees of freedom correspond to the bulk degrees
of freedom transverse to the (Euclidean) D5-branes. We use such a correspon-
dence as supporting evidence that our path integral should be well-defined in
any situation.

5.4.1 Enhanced Supersymmetry

We consider the N, = (2,0) theory with superchages sy and §; defined in
the previous section specializing to a Calabi-Yau 3-fold M with a holomor-
phic 3-form w®?. Using the non-degeneracy of w®? we may redefine the fields
X HY S, 0% as

"ﬂbi'lg HG'I,T}+,0', (5_4_1)
where’
: 3,0 A 01 0,3 :
e N R (5.4.2)
Hu,z = *(wz,n A H”'l), 00,3 L o'wo‘3_ R

Now it is not difficult to show that the action functional S has additional
global supersymmetries generated by s_ and 3_. We have the following dia-

TWe recall that the Hodge star operator * acting on a (p,¢)-form on a complex d-folds
gives a (d — g, d — p),
*: QP9 (M) — Q4= 29-P(AL),
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grams to be compared with (5.3.11);

T 5 gy & it
1:_ li_ l:_ et S e
= b & 7, . Vi . (5.4.3)

e
Tﬂ T3'+ T3+ Ho!
o 22k, - —

The four supercharges satisfy the following anti-commutation relations, see
(3.2.1) and (3.2.2),

{s+,54+} = i3 Lo,
{oie, mi T =10, {84,8_} = —i0°L,, {s4,
{3,710, {s_,3.} = —i7°L,, {34,
e 30 g g

g L
5 }=0. (5.4.4)

The above anti-commutation relations define balanced G-equivariant Dolbeault
cohomology on the space A of all connections [59]. Thus our model becomes a
N, = (2,2) model.

For convenience we write down the explicit supersymmetry transformation
laws. The N. = (2,0) gauge multiplet in (5.3.7) together with holomorphic and
anti-holomorphic multiplets in (5.3.9) become the N, = (2,2) gauge multiplet
with the transformation laws given by (3.2.11). The holomorphic multiplets in
(5.3.8) and Fermi multiplets in (5.3.10) form N, = (2,2) chiral multiplets. For
the chiral multiplets (A%*!, tff'i‘l,HD‘I) we have

SA%! =ig 2! +ie_yd’,
oYy =+ & H™ —€e_9adiy — €40a0,
2! = —e_HO' — €, 91¢__ — €_8,7, (5.4.5)
§H! = —ie_[py4 4, 02" +ie_Bany +ic_[7, 97"
+ieq[¢——, 9L — iepBan- —ies[o, 9],
while for their conjugate multiplets (Al'o,ﬁio,Hl'a) we find
5AM° :if+al_'0 + iE_Ibwi’D,
~1,0 Al S
6y =+ e H'? — € adpyy — 8,047,
P e B R B iR 85 (5.4.6)
- L i el o
SH'® = —de_[¢pyr, 9 |+ 1€_04T), +1€_[0,%, ]
s =10 B D
— e[, ¥ | — i€ 0T —iEr[o, 9 ],

where d =€_s8, +€,8_+€,5_+¢€,3,.
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Now the action functional S in (5.3.15) can be rewritten in the form with
manifest N, = (2,2) symmetry, see (3.2.17),

1 =
S=8,9,5_3_ (;c — =3 / Tr(o *a}) + 3.8 W(A) +5,3_W(A!"),
M

(5.4.7)
where K is the Kahler potential on the space A of all connections,
1
= Tr (F A 5.
B /Mn (FAF)Aw, (5.4.8)
and W(A%?!) is the holomorphic Chern-Simons form
0,1 1 3.0 = 2
WA )= — | w"ATr[AAGA+ - ANANA). (5.4.9)
87"2 M 3

We remark that the above action functional can be obtained by the dimen-
sional reduction of the (1 + 1)-dimensional N,,; = (2,2) spacetime supersym-
metric linear gauged sigma model in two real dimensions [30], whose target
space is the space A of all connections on a Calabi-Yau 3-fold M. In [30] we
interpreted the model as the matrix string theory [29] compactified on a Calabi-
Yau by regarding A as the configuration space of all D-branes wrapped on the
Calabi-Yau. We will return to the related topics later.

5.4.2 Path Integral and Holomorphic Casson Invariants

Now we examine the partition function of our model. For simplicity we consider
the SU(r) case so that we only have trace-free parts. Examining the simulta-
neous fixed point locus of all the supercharges we see that the path integral is
localized to the moduli space Mgy of EH connections,

F%2 —q,

(5.4.10)
FAwAw=0,
together with the solutions space, modulo G, of
dypm =0,
[{Prna an] e U, (5.411)
[mea 99“] =0,

where ©,,, m = 1,2, denotes the two adjoint valued complex scalars build from
o and ¢44. If there are no reducible EH connections all the adjoint scalars
should be zero and the path integral reduces to an integration over the moduli
space My of stable holomorphic bundles.

Serre duality implies H%' ~ H%3~*. Thus the formal complex dimension
A is always zero. We can convert the fermionic fields (5.3.21) to

T L T (5.4.12)
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The zero-modes of fermions are elements of the cohomology group of the fol-
lowing complex,

0 — C%0 g C00 B4, ool @ C%? ﬂ,g. (5.4.13)

Now we always have a non-zero number of anti-ghost %% unless H%! = 0. At
the end of the day, the fermionic path integral measure will be reduced to

hU.l hn,n ' 43
[ dvf v dv? ay? 1] dit.dif’.dit dii®.. (5.4.14)
p=1 H=1

The net ghost number violation of the measure is zero as the formal dimension.

For simplicity we assume that there are no fermionic zero-modes of 74 and
7y, i.e., H*® = 0. Even if there are no reducible connections the formal dimen-
sion is not equal to the actual dimension unless it is zero. Whenever we have
zero-modes yfli of T,bf‘:_'l we have corresponding zero-modes ¢ of %1, Thus we
have two cases.

(i) There are no fermionic zero-modes. Then the formal dimension A = 0
is the actual dimensions and the moduli space consists of a collection of non-
degenerate points. The partion function then simply counts the number of
solutions. But we hardly expect such a situation to arise.

(ii) There are fermionic zero-modes. Then the formal dimension A = 0 is
not the actual dimensions and the moduli space Mgy contains components
with positive dimension. Then repeating the same anaysis as in Sect. 5.2.2, see
eqs. (5.3.31) - (5.3.33), the partition function becomes

hﬂ,l i 4
Z = 11 da” daP di)® di)? dup” di” exp (R“B-,Yg(aﬂ, PSR ) :
Men ,2
(5.4.15)

where the curvature two-form R 5 5(a?, 03]1;3'_‘;1:54’6_ of the anti-ghost bundle V is
now interpreted as the curvature two-form of the tangent bundle T M gg. Then
the partition function is the Euler characteristic of Mgy.

Thus our partition function can be identified with the holomorphic Casson
invariant defined by Thomas [96][97]. It is interesting to compare our quantum
field theoretic approach to the holomorphic Casson invariant with the definition
of Thomas. Mathematically speaking we are using an infinite dimensional G
equivariant version of Fulton-MacPherson’s intersection theory starting all the
way from infinite dimensional holomorphic bundles with a holomorphic section
F%2(A%') over the infinite dimensional space A of all gauge fields. Thomas
used, very roughly speaking, infinitesimal data about the moduli space of stable
sheaves to construct a virtual moduli cycle, whose role may be identified with
that of the anti-ghost bundle.

The assumption that H%? = 0 is reasonable since it is indeed true when
certain conditions on the topological type of E are met. One may imagine
various mathematical difficulties without such a condition. However, we can
deal with such a situation as well, as we will now discuss.
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5.4.3 Taking Care of Reducible Connections

Now we remove the assumption that there are no zero-modes of n+ and 7, i.e.,
H®° # 0. Then the above analysis is no longer valid. In such a case we perturb
the model to a N. = (2,0) theory by giving bare mass to (o,7, 74,7, >, 1,_21)20)
and further deform the model to a hybrid version, similar to holomorphic Yang-
Mills theory [67]. This procedure can be sketched as follows

1. Write down the action functional S in (5.4.7) such that only the s, and
8, symmetry are manifest,

:%84._3‘.'. / Tr ((}5__ (F A €..|J2 S5 2[{7, *E]) == 'l:‘l‘bg’l A ‘I\EI_YG A w2 -+ 2?}_ ¥ ﬁ_)
127 M
3,0 0,1 0,2 i 0,3 —1,0 2,0
PO (Y2 AF )+——-—4F2/Mw ATe ($2° A F2).
(5.4.16)

2. Modify transformation the laws of the s, and 3, supersymmetries as
(5.3.49) by extending G to G x S* according to

+ =
472

(0,74, 20 HOY) — £(0, 7, 9™, HOY) (5.4.17)

where £€ = 1. The above S'-action is compatible with the s} and 3, supersym-
metry. The S!-action is a . symmetry of our original model if the holomorphic
3-form w*? is rotated by € at the same time. There is no inconsistency since
picking a holomorphic 3-form always has an ambiguity up to a C* action. We
denote the actional functional given by the same form as (5.4.16) but with
the modified transformation laws by S,,. Then we consider the following more
general action functional,

m e o
S(m,m)o =Sm + 32 % /M TT(U * 0‘)

1
=S + —/ Tr(—imﬁio*&— im¢y [0, 7] + M, xny )

3n2
im 10,1 , 1,0 o
T 32 122/“(""— M"—)A“"
(5.4.18)
The new action functional has only N, = (2,0) supersymmetry, while its parti-

tion function is the same as for the original N. = (2,2) theory.
3. Now we deform the model by adding a s, and 3, exact term

Tr (0—_[o,*7]) +

S(m, )1 = Sm,m)o + Soy848 /M Tr(42_)

i (5.4.19)
= S(m,ﬁ)q = 3? TI'(??_ 3 q‘:?__ * D)
We can eliminate the auxiliary field D by setting
Dttt il e (5.4.20)

2
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Then we have
S(m,m)}

1
=58+ = Tr(—iﬁ¢++[a, *G| + M, * N4 —ime__[o,¥T) — mn_ * ﬁ_)

'lmm m 0,1 2
31'12 f Tr(oc*7) — 12172[ Tr(t,b__F i /\1;5 )Aw

e / S Tr
(5.4.21)

where S’ is the original N, = (2,2) action functional S after integrating out D.
Now we see that the above deformed N, = (2,0) model also receives contribu-
tions from the higher critical points d4 f = 0 in additions to the original fixed
points f = 1AF = 0.

4. Finally we define a new action functional I(m,m) by adding s, and 3.
closed observables % and 7,

I(m,m) := S'(m,m) — Mo - M*q, (5.4.22)
where .
= ) =130
Y= 19 2/ TT(¢++F—1¢D+‘1/\¢+ )szj
= JIM
1 3 (5.4.23)
-~ Lt 2
i= 57 [, 5 6R)
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—gf imm s w? ;
I=S5 - ot / 3T ara)+3 2/ 37 Tr(¢--) t33 MaTr(gg,*__'_)
T 1;:2 Tr(‘i‘f’-— (F/\w2 + 4i[o, *6‘]) b u_{)l_ ,\.u;}i-l Keo? 4452 *T_J'_)
m

f Tr (¢>++ (F Aw? + 4ifo, %5]) — ity ° A0 Aw? + 4n, * ﬁ+)
Y (5.4.24)
Now we examine the properties of the new action functional I(m,m). First
of all we can regard m and 7 as independent real numbers. We have cho-
sen the notation to make the action functional look symmetric under + and
— indices. Nevertheless it is interesting to observe that the action functional
I(m,m) almost retains the symmetric structure of the original model, despite
the asymmetric perturbation and deformation. This property may be inter-
preted as a quantum background independence related with the holomorphic
anomaly [107][108]. We will not elaborate on this issue here. For m =m = 0
we recover the original V. = (2, 2) model. For m = 0 and m # 0 we are turning
on 84 and 38 closed observables in the original N. = (2,2) model. Similarly
for m = 0 and m # 0 we are turning on s_ and 3_ closed observables. Hower
both the processes do not change the partition function since the asymmetry of
the added terms between fermions with positive and negative ghost numbers,

T 12#2
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while we do not have any ghost number anomaly in the path integral measure.
The new model defined by I(m,m) is different from the original N. = (2,2)
model for m,m # 0. The original model has a problem when we have reducible
connections, i.e., H%® # 0. Then we have fermionic zero-modes of 7+ and
7. as well as bosonic zero-modes of ¢+ and 0,5. The moduli space Mgy
becomes singular and the path integral may be not well-defined. Furthermore
we have new obvious affine non-compact directions spanned by arbitrary linear
combinations of bosonic zero-modes. The salient feature of the new action func-
tional I(m,77) is that its value restricted to the fixed point locus of the original
N. = (2,2) model is non-zero if and only if the group G does not act freely, i.e.,
H®P # 0. In such a case the quadratic terms of adjoint scalars ¢++ and 0,7
regularize the singularities. By turning on m and m we also see new fixed points
flowing from infinity m,m — oco. Thus we are essentially doing a non-abelian
equivariant integral of Witten [55]. The partion function of the new action
functional I(m,7) can be written as the sum of contributions of higher critical
points da f = 0 of [, Tr(f * f) where f = IAF € Q°(M, End(E). According
to a general estimate of Witten one can always, in principle, extract precise
information of the contribution coming from the original fixed point f = 0, the
moduli space Mgy, by taking m,m — 0.

As a summary we have a quantum field theoretic formalism of the holomor-
phic Casson invariant, which is well-defined regardless to whatever the proper-
ties of the moduli space Mgp.

5.4.4 Relations With String Theory

Stable bundles appear very naturally in non-perturbative string theory. They
correspond to stable BPS configurations of type IIB branes wrapped around
non-trivial cycles in the compactified part M of the bulk space time Z. Consider
a Calabi-Yau 3-fold M with Kahler form w and holomorphic 3-form w?°. We
fix a rank N C* bundle E over M, endowed with a Hermitian structure. We
fix the topological type of the bundle, by specifying its Chern character ch(E),

or rather the Mukai vector ch(E)y/A(M). For a Calabi-Yau 3-fold, the Mukai

vector is given by

48

M

Plig ) chl(E)),
(5.4.25)

where p; (M) is the first Pontryagin class of the Calabi-Yau manifold. We may
sum over different topological types later. The bundles may be seen as describing
D-branes wrapped around the Calabi-Yau manifold M. The D-brane charges
are precisely given by the components of the Mukai vector [89][88]. Since we
are dealing with Euclidean branes we call a type IIB D5-brane, for example, a
D6-brane. For example, the rank r = chg(E) corresponds to the number of D6-
branes wrapped around M and more generally the charges Q3_n(E) ~ chz_,(E)
correspond to D2n-branes wrapped around cycles in M [92].

They are associated to extremal blackhole solutions of the low energy effec-
tive supergravity. The suitable counting of the number of stable orbits corre-

Chu(E), Cl’lg(E) ==

o= (chg(E)),chl (E), chy(E) —
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sponds to counting the microscopic degrees of freedom leading to the black-hole
entropy. The semistable bundles, which are not stable, correspond to marginally
stable configurations. Namely they correspond to branes wrapped around van-
ishing cycles. Physically these represent new massless (or tensionless) states
(11][109]. In the Wilsonian effective theory those degrees attribute to the sin-
gularities in the effective theory.® Mathematically they also correspond to the
singularities in the moduli space Mgy of EH connections. However this does
not mean that the physics breaks down at such a point. It is only the effective
theory which failed at that point. The singularities can be mended by including
to new massless (tensionless) degrees of freedom in the effective description. We
also emphasis that not only the new semi-stable orbits but also related new bulk
(transverse to the compactified space M ) degrees of freedom are created in such
a case. Altogether, the total system (string or M theory), nothing singular has
happened.

Now we apply the above discussions to our model. The r D6-branes wrapped
on the Calabi-Yau 3-fold M induces a rank r Hermitian vector bundle E over
M whose topological type is determined by other lower dimensional D-branes
wrapping homology cycles. On the D6-branes world-volume we have U(r) gauge
field A. The degrees of freedom transverse to M in the bulk, Z = M x C2 in
our case, are represented by two End(E) valued complex scalars ¢,,, m =
1,2, on M. In sum we have exactly the bosonic field content of our model.
Among the 16 space-time supercharges of the effective supersymmetric Yang-
Mills theory of D6-branes on C* we have 4 unbroken supercharges (covariant
constant spinors) since the holonomy of a Calabi-Yau is SU(3). Since we do
not have any propagating gravitons on a D-brane world-volume the covariantly
constant spinors should be twisted to become scalar supercharges [17]. These 4
supercharges can be identified with s; and 3.. Consequently we may interpret
our model as the effective world-volume theory of D6-branes wrapped on M.?

To be more concrete consider a holomorphic vector bundle £4, A € A, If
the holomorphic connection A is reducible we have the reduction £4 = L& L ™!,
where L is a line bundle whose Chern class is determined by the topological
type of £4, thus by E. A reducible holomorphic connection is EH iff the degree
deg(L) of the associated line bundle L vanishes;

deg(L) = /M ci(L) Aw? = fn o —0 (5.4.26)

where Dy denotes the 4-cycle (a positive divisor) Poincaré dual to ¢;(L). Phys-
ically the above situation corresponds to a D4-brane wrapped around the van-
ishing cycle D4. The degree is related with the mass of the wrapped degrees of

8The Wilsonian effective theory is defined in terms of massless degree of freedoms. In the
beginning one has to specify what is the massless degrees of freedom. Such criterion in the
present situation corresponds to, as we shall see shortly, a choice of polarization for stability.

9We should emphasis here that the world-volume theory is not entirely a "cohomological”
field theory. Any global (space-time or not space-time) supersymmetric theory is a "cohomo-
logical” theory and vice versa if we compute the path integral of observables invariant under
some of the global supercharges. Otherwise the fixed point theorem of Witten says nothing
and we do not have such a drastic localization of the path integral to a finite dimensional
moduli space.
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freedom.!® Thus the reducible EH connections correspond to massless states,
represented by the zero-modes of ¢,,. Once massless the state associated with
(5.4.26) can freely propagate into (or escape to) the bulk.'* The corresponding
configuration space is obviously non-compact. Our moral is that one should
include such configurations as well to have a well-defined total system. This
sounds contrary to the usual belief. However we are stating the conventional
wisdom of an equivariant approach.

Actually Witten’s reformulation of Donaldson theory is based on such wis-
dom. As if well-known the equivariant cohomology is always something much
more than the usual cohomology if the quotient space is singular. The extended
space, where one defines equivariant cohomology, is bigger than the space of all
bundles on M (the brane configuration on the compactified part M in the bulk
Z). Those additional parts correspond to degrees transverse to M in Z.

5.4.5 Open String Field Theory, Homological Mirror Sym-
metry and D-branes

This subsection is for a brief history, with some risks due to my own prejudice,
on related subjects. Our purpose here is to place the previous model in a larger
prospective and also to motivate the remaining part of this thesis.

The holomorphic Chern-Simons term was first introduced by Witten as the
action functional of the space-time field theory of the topological B model of
open string field theory [85]. In the paper [85] Witten showed that topological
sigma models on a Riemann surface £ with boundaries can interpreted as string
theory backgrounds, where the usual decoupling of ghost and matter does not
hold. There are two types of topological sigma models called A and B mod-
els [3]. For the A model the path integral is localized to the moduli space of
holomorphic maps from a Riemann surface to a Calabi-Yau 3-fold M. The
correlation functions compute cohomology rings of the moduli space of holo-
morphic maps. The moduli space contains M as its zero-instanton sector (the
constant maps) so that the classical part of the correlation functions is just the
cohomology ring of M itself. Summing up higher instanton contributions the
correlation functions are named quantum cohomology rings. For the B model
there are no such instanton corrections and the path integral is localized to an
integral over M. The correlation functions of the model compute the variation
of Hodge structures. Now Witten considered those models on Riemann surface
¥ with boundaries (9X);. For the A model the boundary condition is that each

100One may also consider the case of D2-branes wrapped on a 2-cycle Poincaré dual to
rCa(E)— ';l e1(E)?. If the cycle shrinks to zero-size we only have projectively flat connections
as BPS states, see (5.3.25). One may also imagine that the area of the 2-cycle becomes
"negative” — a flop type topology change, we do not have any EH connections left. However
the partition function of our model is still non-empty.

11 Mathematically the situation can be viewed as follows; one is interested in the problem
associated with the moduli space of EH connections with a suitable polarization such that
semi-stability implies stability, i.e, the mathematical term of the Wilsonian effective theory.
That is, every reducible holomorphic connection is a non-EH connection. By changing the po-
larization, however, certain reducible holomorphic connections induce semi-stable holomorphic
bundles. These are new degrees of freedom coming from non-EH holomorphic connections.
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component (9X); is mapped to a Lagrangian submanifold £; ¢ M. For the B
model he picked "free” boundary condition. Then he studied the space-time
field theory of the open string field theories of the resulting string background.
For the A model we have Chern-Simons theory with instanton corrections,

1 2
Sq = 3 / Tr(A AdA + EA A A A A) + instanton corrections. (5.4.27)
c

For the B model he obtained the holomorphic Chern-Simons form as the action
functional.

The A model above is closely related with the symplectic Floer theory
~ Floer homology of Lagrangian intersections involving pseudo holomorphic
curves. Fukaya discovered a certain A category on the Floer homology which
is roughly given by the genus zero correlation functions of topological open
string theory — the A model above. Kontsevich extended Fukaya’s category by
supplying a flat line bundle L; for each Lagrangian submanifolds £;. Then he
conjectured so called homological mirror symmetry, that is, the derived category
constructed from the Fukaya-Kontsevich category on a Calabi-Yau is equivalent
to the derived category of coherent sheaves on a mirror Calabi-Yau. Note that
Kontsevich’ extension of the Fukaya category naturally fits in the topological
open string A model (due to the Chan-Paton degrees of freedom). The coherent
sheaves on a Calabi-Yau also naturally appear as holomorphic vector bundles
due to the Chan-Paton degrees of freedom in the topological open string B
model. The homological mirror conjecture is essentially the physical equiva-
lence of the A and B models on mirror Calabi-Yau manifolds. It is interesting
to note that the underlying structure of of the open string fied theory of Gab-
erdiel and Zwiebach [110], the refined version of Witten’s construction [111], is
a (cyclic) A* algebra. The homological mirror symmetry could be a physical
equivalence between two "different” backgrounds in the open string field theory.

In the modern language of physics the A model above corresponds to (topo-
logical) D3-branes wrapped on a CYj3, while the B model corresponds to D6-
branes wrapped on a CYj3. It is shown that the BPS states of type ITA strings
are represented by special Lagrangian submanifolds with flat line bundles on
them, while for type IIB the BPS states are represented by stable holomor-
phic bundles [87]. Subsequently Strominger-Yau-Zaslow (SYZ) suggested a full
quantum equivalence between ITA and IIB models [91]. Based on the simplest
case, SYZ concluded that the mirror symmetry is a T-duality along a special
Lagrangian T fibration on the CY;. Vafa went further for the more general
case and argued, essentially, the homological mirror symmetry can be explained
in terms of T-duality of D-branes wrapped on the Calabi-Yau [92]. Vafa also
conjectured an equivalence between certain variations of holomorphic bundles
and the counting of holomorphic disks with Lagrangian boundary conditions.

5.4.6 A Program

Here we consider a program towards an understanding of generalized mirror
symmetry. Unfortunately this program is still speculative and not yet conclusive
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if it will lead to a concrete understanding of mirror symmetry. It gives also some
motivations for the last chapter of this thesis. The idea is, roughly, to try to
understand the mirror symmetry as something like the equivalence between
Donaldson-Witten and Seiberg-Witten theories. Our source of inspiration are
the facinating properties of Hitchin’s moduli space [112] as well as of quiver
varieties of Nakajima [113].

In Chapter 4 we showed that such an equivalence can be understood from S-
duality of N = 4 supersymmetric Yang-Mills theory. The picture was that both
Donaldson-Witten and Seiberg-Witten theories are obtained as different fixed
points of the same renormalization group flows from N = 4 supersymmetric
Yang-Mills theory. Then the equivalence between two theories was understood
as remnants of the S-duality of the original N = 4 theory surviving the renor-
malization group flows. Such renormalization group flows were generated by
the bare masses of certain fields, which in turn the Hamiltonian of a natural
S! action on the function space of fields. From the viewpoint of the function
space the renormalization group flows are just the gradient flows generated by
the Hamiltonian vector fields.

For mirror symmetry the natural analogue of the above function space is the
space all all maps £ — M from a Riemann surface to a Calabi-Yau 3-fold M. For
a pair (M, M) of such manifolds one associates two different topological sigma
A(M) and B(M) models obtained by twisting the worldsheet N, = (2,2)
supersymmetric sigma model in (1 + 1) dimension [3]. The original mirror
symmetry states that the two models are physically equivalent if (M, M )is a
mirror pair. A natural step towards understanding mirror symmetry could be
the following. We pick a Calabi-Yau 3-fold M and consider the total space of
the cotangent bundle T*M as the target space of a supersymmetric sigma model
in (1 4+ 1) dimensions. Let us denote the corresponding A and B model by A
and B. Since the total space T*M is a hyper-Kahler manifold we may expect
it is self-mirror, i.e., the A and B model are physically equivalent. Assuming
this, our goal will be to recover physical equivalence between A(M) and B(M)
as a remnant of the equivalence A ~ B after a suitable renormalization group
flow.

An important property of T*M is that there is always an S' symmetry acting
on the fiber.!2 This Sl-action also naturally extends to the function space of all
maps £ — T*M. We denote the function space by M ~ T"9t where 91 denotes
the space of all maps ¥ — M. The upshot is that the Hamiltonian h of the
vector field generating the S'-action (the momentum map of S* on the function
space N all maps ¥ — T*M) corresponds to the physical bare mass m of the
fields representing maps to the fiber space of T*M. Thus we consider a family
of supersymmetric sigma models parametrized by m,

S(m)=S+mmh+...,

where S denote the action functional of the original sigma model with target

12 A compact hyper-Kihler is certainly self-mirror. A problem would be the fact that T"M
is a non-compact space. Perhaps one has to consider a natural compactifcation of T"M
compatible with the S! symmetry.
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space T*M and the dots above correspond to the supersymmetric completion.
Now we take limit |m| = co. The dominant contributions to the path integral
are from arbitrary close neighborhoods of the locus of the critical points of h. It
is well-known that the critical points of a Hamiltonian of a S'-action coincide
with the fixed points of the S'-action. Let us denote the fixed point set of the
S'-action by §. The space generally decomposes into disjoint sets

s=LJ%. (5.4.28)

with corresponding Morse index m, — the number of negative eigenvalues of the
Hessian of h at §,. Let us denote the value of h at a fixed points locus §. by
ha. A key point is that the function space of all maps £ — M to the (base)
Calabi-Yau 3-fold M always corresponds to the trivial fixed point Fo with zero
Morse index mo = 0 and vanishing Morse function hg = 0, since the S* acts only
on the fiber of T*M. Thus we recover the supersymmetric sigma model with
target space M, the A(M) or B(M) depending on twisting, in the trivial fixed
point locus o of the S'-action. We also find the Calabi-Yau 3-fold M among
the infinite dimensional space §p as a subspace consists of constant maps. Now
an immediate question is: where is M and how can we recover B(M)? To state
our proposed answer we need to give some more details of our set up.

To begin we consider our hyper-Kahler target space T*M. Let (I, J, K) and
(w1, w2, ws) be the hyper-Kahler structures on T*M, where (w;, I) were extended
from the complex structure and Kahler form on M. In total we have a S? worth
of complex structures since al +bJ + cK with a® +b* +¢% = 1 is also a complex
structure. Now we consider the twistor space T*M x S? such that the fiber over
a point (a,b,c) in S? is a copy of T*M with complex structure al + bJ + cK.
We replace the real coordinates on S? by complex affine coordinate ¢ € CP'.
Then

w0 = (tt.?z + 1(.-)3) — 201 & — (L\Jg — iwg)fz, (5429)
is the holomorphic 2-form on the fiber over . If V' is the vector field generated
by our S'-action on the fiber of T*M we have

Lyuy =0, Lywy = ws, Evan = s, (5.4.30)

This S'-action can be extended to a holomorphic (with respect to the complex
structure I') C* action. This C* action than covers the C* action on CP! in the
twistor space T*M x CP'. The A € C* action has two limit points ¢ = 0, co,
corresponding to +1.

We can extend all the above structures to the function space M of all maps
¥ — T*M. We will maintain the same notations. Now we examine the role of
the C* action. For A — 0 any point on the space 9 flows to some fixed point of
the S'-action. This leads to a cell decomposition of N by attracting sets. For
inverse flow A — oo the limit points are again the fixed points of C* action but
some flows from fixed points §, of the S! action may stay in compact sets:

s={)8:0 %, (5.4.31)
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and each component £, is Lagrangian with respect to the holomorphic 2-form
[113]. Equivalently we can work with the gradient flow associated with the
Hamiltonian h of the S'-action and examine paths of the flow (steepest descent)
for the past t - —oo and the future ¢ — co. We have the correspondence that
|A| = €.

The upshot is that we can naturally identify the generator A of the above
C* action with the inverse of the physical bare mass m of our sigma model
with target space T*M. Thus we regard the sigma model with target space
M as an end point of the renormalization group flow generated by the mass.
Certainly we do not expect that all the physical properties of the model in the
past m = 0 will be preserved after such a flow. However we may also expect that
the chiral rings remember the past where the self-mirror property is recovered.
Thus it is natural to find hints by trying to reverse the flow. What we find
are the Lagrangian subvarieties £,. We also know that £o = Fo = I, which
is the function space of all maps ¥ — M. Now a natural question is; can we
associate sigma models with other Lagrangian subvarieties £, @ # 0, such that
their function space of all maps ¥ — M, can be identified with £,. Then
our discussions so far seem to imply that one may find mirror partner among
(?) those models. One may repeat the same procedure by considering only
constant maps. It will produce a set of Lagrangian subspaces My, C T"M where
My = M. We recall that the B model depends only on the complex structure.
It is possible that other Lagrangian subspaces My, a # 0, are birational to each
others and we might have A(M) = B(M,).*?

If the above speculation turns out to be true one may consider arbitrary di-
mensional Calabi-Yau space and examine Lagrangian subvarieties of its cotan-
gent bundle. Unfortunately we do not even know how to establish the basic
necessary condition like h??(M) = hP*~9(M,). It is quite possible that our
consideration may not shed light on the mirror symmetry itself. But still we
may use the above set up as a useful way of computing quantum cohomology
rings of M in terms of sum of contributions from the (other) fixed points §a,
a #0.

Now we can consider a natural generalization of the above setting. A sigma-
model with the target space M is equivalent to the sigma-model whose target
space is the configuration space of a single DO-brane on M. Thus we can replace
the target space M with the space of all D-brane configurations on the Calabi-
Yau 3-fold M. Such a configuration space can be identified with the space of all
(Chan-Paton) sheaves on M. Similarly the sigma-model with the target space
T*M can be generalized to a sigma-model whose target space is the total space
of the cotangent bundle of the space of all sheaves on M.

Our initial goal was to define N, = (4,4) model whose target space is
the cotangent bundle of the space of all connections on a Calabi-Yau 3-folds,
and to study some of its properties along the line of the above ideas. Some

13The C* action acts transitively on CPI\{O, oo} hence will carry T*M with any com-
plex structure to any other within C[Pl\{ﬂ,oc}. Thus all the complex structures of the
hyperKahlerian family other that +I are equivalent [112]. The base space M is equip with
the complex structure I.
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of ideas above can be applied to N,,; = (4,0) theory. We may also consider
(0 + 0)-dimensional sigma model, thus a cohomological field theory, instead of
(1 4 1)-dimensional model.
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Chapter 6

Cohomological Yang-Mills
Theories on Calabi-Yau
4-Folds

6.1 Introduction

In the previous chapter we used the holomorphic Chern-Simons form as the
holomorphic potential of a N. = (2, 2) supersymmetric model, which led to the
holomorphic Casson invariants of a Calabi-Yau 3-fold. We also recall the other
use of the same form as the action functional of the space-time field theory of
topological open string field theory of the B model. In this chapter we discuss yet
another use of the holomorphic Chern-Simons form, namely as a holomorphic
Morse function.

In the paper [34], Witten constructed a complex spanned by the critical
points of a Morse function whose boundary operator is given in terms of the
gradient flows connecting critical points. In terms of physics, the critical points
are supersymmetric ground states, while the gradients flows are instantons tun-
neling between different ground states. Floer constructed the Morse-Witten
complex on the space of all connections on a real 3-manifold ¥ using the real
Chern-Simons form as the Morse functional [114]. In the Floer case the critical
points are flat connections on a real 3-manifold ¥ and the gradient flow lines
between them are Yang-Mills instanton (anti-self-dual connections) on the real
4-manifold Y x R. Taubes proved that the Euler characteristic of the Floer ho-
mology is (twice) the Casson invariant [115]. Atiyah interpreted the Floer theory
as a non-relativistic quantum field theory and conjectured that its relativistic
generalization is Donaldson theory [8] on a real 4-manifold [116].

Witten studied such a relativistic generalization and obtained the path in-
tegral representation of Donaldson theory [1]. The resulting Donaldson-Witten
theory is the first example of a cohomological field theory and is related with
physical N = 2 space-time supersymmetric Yang-Mills theory on a real 4-
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manifold by twisting. The Hamiltonian formalism of the resulting theory (on
Y x R) gives rise to the Floer homology. Further dimensional reduction of
the theory to Y leads to a cohomological field theory, whose partition function
computes the Casson invariant [117][35].

Donaldson and Thomas observed that Casson and Floer theories have nat-
ural "holomorphic” or ”"complex” counterparts on Calabi-Yau 3- and 4-folds
[118][96]. The idea is, very roughly speaking, to replace real coordinates of real
3- and 4-manifolds with complex coordinates of Calabi-Yau 3- and 4-folds. One
may replace the Chern-Simons form on Y by the holomorphic Chern-Simons
form on a Calabi-Yau 3-fold M, whose critical points are holomorphic bundles.
Between the critical points one has a complex version of gradient flow lines,
which are the holomorphic analogue of anti-self-dual connections on M x S x R.!
According to the program of Donaldson and Thomas most of the themes in the
real case can be played in Calabi-Yau 3- and 4-folds with some variations.

On the other hand, in the paper [30], we proposed that the matrix string
theory compactified on a Calabi-Yau 3-fold should be the N, = (2,2) super-
symmetric gauged-linear-sigma model in ¥ = R x S! whose target space is
the space of all bundles on M.2 In the infrared limit of ¥ the model flows
to Nys = (2,2) superconformal sigma model whose target space is the moduli
space of stable bundles on Calabi-Yau 3-fold. We studied chiral rings of the
resulting superconformal theory by twisting the sigma model. We argued that
the resulting B model is equivalent to the holomorphic Chern-Simons theory.
We also studied A model which involves holomorphic maps (the worldsheet in-
stantons) from ¥ to the moduli space of stable bundles. It turn out that one
can identify the states in the Hilbert space of the topological string with the
"holomorphic” version of Floer homology.?> Furthermore the A model can be
viewed as the N. = (2,0) cohomological field theory for the "holomorphic”
Donaldson-Witten theory on M x S! x R.*

Here we follow the historical footsteps reviewed in the beginning to consider
a quantum field theoretic approach to "holomorphic” or ”"complex” versions of
Floer and Donaldson-Witten theories on Calabi-Yau 3- and 4-folds. We will
start from motivating holomorphic Floer theory adopting Atiyah’s approach.
Then we propose, adopting Witten’s approach, holomorphic Donaldson-Witten
theory (a V. = (2,0) model) which can be used to give a quantum field theoretic
definition of holomorphic Floer homology based on a "Hamiltonian” analysis.
It seems that holomorphic Floer homology still lacks a mathematical definition
beyond the original idea in [118][96]. A detailed study of this topic will appear
elsewhere [119].

A quantum field theoretic approach to Donaldson-Witten type theories on
general Kahler manifolds based on the moduli space of stable bundles was first

1One should not read the above sentence literally.

2The dimensional reduction of the model along ¥ is the N = (2,2) model in Sect. 5.4,
which partition function gives the holomorphic Casson invariant.

3We didn’t realize this relation at the time of writing the paper [30].

4The prefix "holomorphic” can cause some confusions. We will use it since the names
holomorphic Chern-Simons theory and holomorphic Casson invariants are already well-
established.
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considered in [52][67]. A quantum field theoretic approach to Donaldson-Witten
type theories on Calabi-Yau 4-folds based on the moduli space of the holomor-
phic analogue of anti-self-dual connections was first considered by Baulieu et. al.
[100]. Our model for holomorphic Donaldson-Witten theory is different from the
model in [100], though it may morally be equivalent to it. Our model will be es-
sentially a special example of considerations in [52] after some modifications and
shares the same kind of observables as Donaldson-Witten theory. Our model is
also exactly the (Euclidean) supersymmetric Yang-Mills theory on Calabi-Yau
4-folds.

6.2 Holomorphic Donaldson-Witten Theory

In this section we develop the holomorphic version of Donaldson-Witten theory
on a Calabi-Yau 4-fold M; with holomorphic 4-form w*° and Kihler form w.

It will be useful to give a quick sketch of our model along the lines of the
general approach of this thesis. Our model will be an example of an equiv-
ariant N, = (2,0) model, whose target space is the space of all connections
A on a Hermitian vector bundle E over My, or equivalently the space of all
unitary gauge fields on My. Thus the resulting model can not be much dif-
ferent from the model for d = 4 in Sect. 4.1.1. For the given data above the
only freedom we have in a N. = (2,0) model is the choice of a suitable in-
finite dimensional holomorphic Hermitian vector bundle E — A over A with
G-equivariant holomorphic section &. Instead of the former ill-fated choice
6 = F°? in (4.1.12), we take only the "holomorphic self-dual” part F°2+ of
P2 G o paen %(FEE + %EEE?E(F‘}FJ)dz“_A dz®. The above considerations
already determines the model uniquely. However we will take an interesting
detour by imitating Atiyah’s approach to Floer theory and Witten’s relativistic
generalization.

6.2.1 Imitating Atiyah-Floer Theory

We begin by a brief review of the description of the original Floer theory by
Atiyah-Witten [1]. We consider a gauge field Aj(z) on a real 3-fold Y, where
a denotes the index of the Lie algebra and I = 1 2,3 is the vector 1ndex onY.
Let A be the space of all gauge fields on Y. Consider the exterior derivative of
A, after parity change

Q= [ dai) e, (62.1)

and its adjoint

Q" ]d:cx, 64“(1’) (6.2.2)
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where 9§ () and xf(z) represent a one-form and its dual vector field, after the
parity change, on A. They satisfy the following anti-commutation relations

{v7(z),¥5()} =0,
{¥§(2), x5 ()} = 9156°%8%(z — y), (6.2.3)
{xi(=),x5@)} =0,

where gr; denotes the Riemann metric tensor of Y. Using the real Chern-Simons
form W one defines Q; = e~ Qet" and Q; = e W Q*e!"W, where t is a real
number. One finds

Q;=0, {Q.,Q;}=2H, 2 =0, (6.2.4)

where H is the Hamiltonian of the non-relativistic theory. The ground states
of H form the Floer homology group, which is equivalent to the Q-cohomology
group. The Floer homology group is graded by the ghost number U, which is
such that [U,Q] = +Q and [U,Q*] = —Q*. This ghost number is conserved
modulo certain integer d due to instanton corrections.

We now consider a Calabi-Yau 3-fold M and the space A of all connections
on a Hermitian vector bundle E. We follow all the other settings in this chapter.
We introduce fermionic fields ¥¢ and x®, representing (0,1)-forms and (1,0)-
vectors on A respectively. We “consider the d-operator and its "adjoint” on

A
e )
= /dﬁzip;(m)m,

- : )
s=— | &z g-x*(z —
/ g5x™( )éAg(x)
where ¢ = 1,2,3 runs over the complex coordinates on M. They satisfy the
following anti-commutation relations

{¥2(z),v% (y)} = 0
{$2(2), X" (v)} = 826°°6% (2 —y), (6.2.6)
{x2(z),x" ()} = 0.

Using the holomorphic Chern-Simons form W(A?)

(6.2.5)

1 . = 2
W=— | PPAT(ANFA+ZANANA), (6.2.7)
8??2 M 3
one defines 87 = e~ WgetW and e e'zwgezw, where t is a complex number.
One finds
2=0, ulspot=H, &=0, (6.2.8)

where the holomorphic Hamiltonian H is given by

2 T
=i Z/ ' (540 )) $3 (Bai) 4 12:2 /de:ce’:—-"ITr (tb;D;Xg)

(6.2.9)
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where B = %EU k F=. The first two terms above give the Hamiltonian of bosonic
Yang-Mills theory in "four” dimensions whose real 4-vector indices are replaced
by holomorphic indices. The critical points of the Morse function are holomor-
phic vector bundles. The complex gradient flow lines between them are governed
by the following equation

aA? 1 =

E = —EEU‘:.F;-E. (6210)
However one should not accept the above literally. We naturally want to have
stable holomorphic vector bundles as critical points. One may supply such a
stability by hand and then take the quotient by GC. However the above equation
is not invariant under G€. Thus we should fix a Hermitian metric on the complex
vector bundle and supply an Einstein-Hermitian condition, thus imposing the
momentum map equation, and take a quotient by G. Another problem is that
holomorphic Morse theory is different from the real one. We refer to those
problems and resolutions to the papers [118][96].

Thus our strategy is to first consider a relativistic generalization such that
the supersymmetric ground states of the model on M3 x C/Z are given by stable
holomorphic bundles on M3. Then we can just define holomorphic Floer homol-
ogy as a suitable BRST (co)-homology of supersymmetric ground states. By
taking such a definition we do not need to worry about the precise mathematical
definition of coboundary operators and the holomorphic Morse complex etc.®

6.2.2 Covariant Generalization

Now we consider the covariant generalization of the holomorphic Floer theory.
The resulting model will be an equivariant N, = (2,0) model based on the space
of all connections on a Calabi-Yau 4-fold M, with holomorphic 4-form w0, It
is sufficient to retain SU(4) invariance, which is the holonomy group of Mj.
First we promote our fields A; ¢x, and x%, into " Lorentz” multiplets. Obviously

we should introduce (Az,v5), where @, 8 = 1,2, 3,4 runs for anti-holomorphic
tangent vector indices on My. As for X;; we can take a holomorphic self-dual
two form x_3;

sl (6.2.11)

XEE 3 _Xﬁa =

B | =

which has three complex components, the same as Xz The star in the above
denotes complex conjugation. This holomorphic analogue of anti-self-duality
was introduced by Donaldson and Thomas [118].

The above "relativistic” extension uniquely fixes the associated N, = (2,0)
model. The multiplets (Az, ) form N, = (2,0) holomorphic multiplets, i.e.,
8Az = 0. The anti-ghosts X553 together with corresponding auxiliary fields,
form the anti-ghost multiplets (x5, Hz5). Finally we have the usual N. = (2,0)
gauge multiplet (¢__,n_,7_, D). The two supercharges, s, and its conjugate

Sthese are, according to [118], related with the Picard-Lefschetz theory of the Lefschetz
fibration over CP'.



128 6 CoHOMOLOGICAL YANG-MiLLs THEORIES ON CALABI-YAU 4-FoLDs

84, are differentials of G-equivariant cohomology on the space A of all connec-
tions on a Hermitian vector bundle E on My. The property of the anti-ghosts
X&3 fixes the infinite dimensional bundle E over A where other holomorphic
section & of an to the holomorphic self-dual part of the type (0,2) curvature
tensor F;E[A;). Thus we have all the ingredients to define the model.

It is convenient to work with differential forms. For any two-form a €
Q%(M,) we have the familiar decomposition

ot = a%? + qpw + a2,
o 11 (6.2.12)
a =yl

where a; denotes the (1, 1)-form orthogonal to the Kahler form w. On a Calabi-
Yau 4-fold the (0, 2)-form a®? can be further decomposed into

Al aAl o (6.2.13)

where a??* denotes the eigenstates of holomorphic Hodge star operator % de-
fined by [96]
% ?E = x(a02E A wi0) = £a%2%, (6.2.14)

We denote the corresponding eigenspace decomposition of 2%2(M) as
0%2(M) = Q% (M) @ Q%2 (M). (6.2.15)

Thus x> := %xa.adzadz-ﬁ is an element of Q%%+ (M, End(E)). There is a
bilinear form

0%2(M) x Q°2(M) 5 C,  (a®2,8°2) > fM o2 A2 AWM. (6.2.16)

Then
/ a2 A a®? A Wt (6.2.17)
M,

is positive definite on Q%%" (M) and negative definite on %2~ (M). We also
note that for any a%?t € Q%2+ (M) we have

]Tr (B2 A a®2) Awt® = ]Tr (B%%+ A xa?H) (6.2.18)

since *a?T0 = x x (a%%+ A w?) = a®2t A W0,
Though obvious we give the explicit transformation laws. We have two sets
of holomorphic multiplets and their anti-holomorphic partners. One set of holo-

morphic multiplets is (A':"],w'i‘l) and its anti-holomorphic partner (AI'D,E:_'O),

8, A% =iyl syl =0,
E.'.A.D’l = 0, §+¢_[:_'l = _§A¢++,
A0 —1,0 (6.2.19)
a5 =0, 84t = —0ad+y,
—1,0 =10

A0S, =0
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We have Fermi multiplet (y>°

,H*%) € 0*T°(M, End(E)) and anti-Fermi mul-

tiplet (x22, H%2) € Q%2+ (M, End(E))

8.x2° = —H?® s, H* =0

0=, 5. HY® = —i[p, 4, x>, ¢ 5o
—0,2 0,2 ; —0,2 (6.2.20)

s4x_ =0, 3+H s :_3[¢++rX— ]:

By ngtE L gt =,

Finally we have the usual IV, = (2, 0) gauge multiplet with transformation laws

S47- = 01

X : 1
3+¢__ _.—_in_' R +iD + §[¢++1 Qf)__], 3+¢++ =0 (6221)
s —if 2 1 8 = 5
e $+7_ = —1D + §[¢++=¢——], Feiar =1

§+ﬁ-— = D:

The G-equivariant Kahler form on A is defined by (4.1.10), which we rewrite
here for convenience;

ﬁ'g = ‘3-3.+.-§+K

= 771‘2/ Tr(¢++F)/\w +2(4)| 2/ Tr 1}':’3_1/\'?[’:_‘0)/\w3'

(6.2.22)
The action functional is given by the following familiar form
= 8+s+,, Tr ¢ | FAW® + ij“IE
2 - 4ln?
Rty f Tr (x A *—2 g "'*3* / Tr (n (6.2.23)
472

+2F | T (xi” A *F“’”) i ‘8—;/ Tr(z‘bz A *F“'”).
4= M 4 M

Comparing with the action functional (4.1.15) the only difference is the last line
above, involving a different choice of anti-ghost and holomorphic section over
A, ie., F%2 — F92+  After expanding the above we integrate out auxiliary
fields D, H*® and H®? by imposing their algebraic equations of motion,

HO2 — _;p2+
1 (6.2.24)
D = —=(AF +i(Ig).

From the above and the general structure of an equivariant N. = (2,0) model
we see that the path integral is localized to the moduli space defined by the
following equations,

ot =0,

y (6.2.25)
iAF — (Ig = 0.
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An integrable F%? = 53‘ = 0 connection is called Einstein-Hermitian if it further
satisfies the second equation in (6.2.25). We may call the above moduli space
the moduli space of "half-integrable” Einstein-Hermitian connections, since it
imposes only half of the integrability. The equations in (6.2.25) are due to Lewis
as cited in [118]. Note that

/ Tr (F0‘2 A *Fu,z) Awh? 22/ by (F°‘2+ A F0'2+] Awt?
M % (6.2.26)

+4:rr2/ p1(E) Aw™®.
M

If pi(E) is of type (2,2) we see from this that a half-integrable connection is
actually integrable, 5:4 = 0. We denote the moduli space by MM O Mgy. We

also have another familiar localization equation,
dA¢++ = [}s
[f4+,0--]=0.

If the ”half-integrable” EH bundle is irreducible ¢++ = 0 and G acts freely on
the locus of (6.2.25).

(6.2.27)

6.2.3 Path Integral

The explicit form of the action functional is given by

g ¢
" 8n2

1 : e 4
+ [l oI + 6w AU B + 2030 A ey, X0

o f Tr(—2F°’2+A*F2+‘D - iAF*AF — dydpp A xdad__
M

(6.2.28)
2 o o —= : —u—1 0
+ifpip, -] ¥ — i * Gy —in_ 940
— 220 AT 40 = 2x%2 A Q:{Eﬂ;”),
where 1 1
0F = 51+, 3, = 5(1+%)3a. (6.2.29)

- ; P . =t= ;
Now we consider the fermionic zero-modes. Using 8, 84 = F%%* = 0 we obtain
the following equations for fermionic zero-modes,

Bt =0,

Byt 8, 7 = 0. (6.2.30)
8_4 +‘ = 0.,

Note that the equation c'ﬁi(’cj = 0 is automatic here. Consequently the anti-
ghost bundle over M will be finite dimensional. So we see that the fermionic

zero-modes,
Y (6.2.31)



6.2 HoLoMORPHIC DONALDSON-WITTEN THEORY 131

represent the cohomology of the following complex ,

- =+
0 — Q°°(M, End(E)) 2 Q%Y (M, End(E)) 2 0%+ (M, End(E) — 0.

(6.2.32)

The above is the holomorphic analogue of the deformation complex (5.2.4) of

anti-self-dual connections in four real dimensions. The above is the deformation

complex for the moduli space 9 [96]. Thus the formal complex dimension

of M equals minus the index of the above complex or, equivalently, the net

ghost number violation in the path integral measure due to the zero-modes of
fermions,

A= —#m-)o+#@2 o — #°%)o = —dimH®! + dimH®? — dim H®?+.
(6.2.33)
The net ghost number violation of the path integral due to zero-modes of all
the fermions — the fermions in (6.2.31) and their conjugates (ﬁ“,ﬁi’o,xz_’o) —is
(A8

An observable of the theory can be constructed from any closed G-equivariant
differential form on A associated with any cohomology class on M, as defined in
Sect. 4.1.1. A typical observable of the theory is the total G-equivariant Kahler
form, after the parity change, @9 given by (6.2.22). Thus there are essentially no
differences with Donaldson-Witten theory on a Kihler surface. Here the moduli
space of integrable Einstein-Hermitian (anti-self-dual) connections on a Kihler
surface is replaced by the moduli space of half-integrable Einstein-Hermitian
connections on a Calabi-Yau 4-folds.

If we assume a situation that G acts freely on the locus of the solutions of
(5.3.18), i.e. the connection is irreducible, the moduli space 9 is an analytic
space with a Kahler structure induced from the G-equivariant Kihler form. The
moduli space will not have the right complex dimension A unless H%2T = as
well. However, in general, one can hardly expect to have such condition. In any
case the correlation function < exp@9 > becomes - following Sect. 3.2.2 and
5.2 2=

< exp g >= / e(V) Aexpm, (6.2.34)
m

where e(V) denotes the Euler class of the anti-ghost bundle. One may consider

correlation functions of other observables O™* with ghost numbers (r, s) given
by the degrees of s, and 5, closed G equivariant differential forms @™ — see
Sect. 4.1.1. We have — see Sect. 3.2.2 -

'
<H @> — [ emAG A AG,  (6235)
i=1 =

where O™* denotes the equivariant differential form O™* after the restriction
and reduction to 9. The above correlation function can be non-vanishing if

£
Z(T‘,‘,,Si) = (AaA)s (6236)

=

due to the ghost number anomaly.
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6.2.4 Relation to Super-Yang-Mills Theory

We now shortly discuss the relation of holomorphic Donaldson-Witten theory
with physical N = 2 supersymmetric Yang-Mills theory in 8 real dimensions.

First note that because we defined the model for a Calabi-Yau 4-fold, the
holonomy of the manifold is reduced from SO(8) to SU(4). Let us see how the
various representations of these groups reduce under this restriction, see [98]
for a similar analysis. First note that the group SO(8) has three inequivalent
8-dimensional representations, which are called 8, (the vector representation),
8, and 8, (the two chiral spinors). These representations reduce as follows to
SU (4) representations

8,,8, +4®4, 8. +6®2x1. (6.2.37)

Note that the representations 4 and 4 are pseudo-real and symplectic real.
Therefore in fact the complexified SO(8) representations 8, and 8, reduce in
this way. Let us now look at the field content of physical Yang-Mills. It consist
of a vector in 8, (the gauge field), two real (or one complex) scalars and two
complex spinors of both chiralities, so 8, @ 8.. On a Calabi-Yau 4-fold, we see
from (6.2.37) that the gauge field reduces to a 4 of 4 of SU(4) (the difference is
just a matter of convention). Now let us see what happens to the spinors. The
spinor transforming in the 8, goes to 4@ 4. The other one reduces to 6 &2 x 1.

Now we can interpret this neatly in term of the field content of holomorphic
Donaldson-Witten theory. Indeed, the gauge field is in the 4 of SU(4). Fur-
thermore, we have two real scalars ¢+ (or one complex). For the fermions in
our model, the fermions the 1,()3_‘1 and 'q_z'):,'n exactly transform according to 4 &4,
while the holomorphic self-dual spinor th.z has six real components, and there-
fore should transform in the 6 of SU(4); and the remaining two real spinors are
n— and 7_, having one complex of two real components. The supersymmetry
charges of Yang-Mills transform in the the SO(8) representation 8. & 8,. Using
(6.2.37) we readily see that we get two supercharges which transform as scalars
under the holonomy SU(4). These should therefore be identified with the global
supercharges on a general Calabi-Yau 4-fold. Furthermore, these supercharges
both originate from the same charge of the Yang-Mills theory, and therefore
carry the same ghost number. So we should get N. = (2,0) supersymmetry.
This is exactly the global supersymmetry of our model.

Therefore we see that both the field content and the global supersymmetry
of holomorphic Donaldson-Witten theory is completely equivalent to that of
physical Yang-Mills theory on a Calabi-Yau 4-fold. Note that the twisting in
this situation does nothing. But we can even say more. It can be shown that the
action functional (6.2.28) is exactly the action functional, up to a topological
term, of N = 2 supersymmetric Yang-Mills in eight dimensions. This shows
equivalence between N = 2 super-Yang-Mills theory and our holomorphic N, =
(2,0) Donaldson-Witten model on a Calabi-Yau 4-fold.



Chapter 7

Cohomological
Yang-Mills-Higgs Theory

7.1 Introduction

In this last chapter we introduce a new four manifold invariant which seems to
have a good chance of carrying new information beyond Donaldson-Witten or
Seiberg-Witten invariants. We define two models with N, = (2,0) and N, =
(2, 2) supersymmetry, respectively, which are generalizations of Donaldson-Witten
and Vafa-Witten theories on Kahler 2-folds. Then we consider a general N, =
(2,0) model which have the various interesting limits. Thus we are returning
back to the subjects in Chapter 4. The similar generalizations of the theories in
Chapter 5 and 6 are also possible which will appear elsewhere. Our models in
this chapter combine the various general structures and ideas which we discuss
before.

To motivate this chapter, it is useful to recall the models in the previous
chapters. In Sect. 3.3 we studied a general equivariant N. = (2,0) model.
Such a model is classified by a Kahler target space A with a group G acting
as an isometry, which determines a G-equivariant momentum map p : A —
Lie(G)*. We further have a Hermitian holomorphic vector bundle E — A with
G-equivariant holomorphic section &. Then the bosonic part of the path integral
reduces to an integration over M := &' N u~!(¢)/G; the solution space of the
following equations, modulo G,

aS=1
p—¢=0,

provided that we are evaluating correlation functions for supersymmetric observ-
ables. Those observables correspond to elements of G-equivariant cohomology of
A. The correlation functions of such observables are identified with intersection
numbers of homology cycles, represented by the observables, in [e(V)], where
[e(V)] denotes the cycle in M Poincaré dual to the Euler class e(V) of the anti-
ghost bundle V over M. If the model has actually N, = (2,2) supersymmetry

(7.1.1)
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the anti-ghost bundle V can be identified with the tangent bundle T M and
the partition function is the Euler characteristic of M. The moral underlying
cohomological field theory is that the triple (A, G, E) can be all infinite dimen-
sional but certain path integral can still be reduced to an integral over finite
dimensional space M.

In Sect. 4.1 we studied such an example of equivariant N. = (2,0) model
where A is the space of all connections (gauge fields) on a Hermitian vector
bundle £ — M over a complex d-dimensional Kahler manifold M and G is
the group of all gauge transformations. This determines a localization equation
from the momentum map p;

iAF — (Ig =0, (7.1.2)

where ( is the Fayet-Illiopolous term. The solution space of this equation modulo
G is infinite dimensional except for d = 1. For d > 2 we consider an infinite
dimensional bundle E —+ A with G-equivariant holomorphic section &. We saw
that there is an unique choice & = F%? on a general Kihler manifold, leading
to another localization equation,

J ik (7.1.3)

An integrable connection F%? = 5,21 = 0is called Einstein-Hermitian or Hermitian-
Yang-Mills if it further satisfies (7.1.2). Thus the path integral is localized to
the moduli space Mgy of Hermitian-Yang-Mills connections, or equivalently
the moduli space of semi-stable holomorphic bundles. For d =1 and d = 2 the
Einstein-Hermitian condition is the same as the flatness and anti-self-duality of
the gauge fields, respectively.

In Sect. 3.4 we showed that a class of equivariant N, = (2,0) model can be
extended to a N, = (2,2) model. The essential point of such a construction is
introducing additional bosonic fields corresponding to the local frame fields on
the image of the section & : A — E. In Sect. 4.2 we applied the method to
Donaldson-Witten theory and obtained Vafa-Witten theory. Then we defined
a family of models interpolating between the two theories and obtained useful
information about both Donaldson-Witten and Vafa-Witten theories.

In this chapter we generalize Donaldson-Witten (N = 2 SYM) and Vafa-
Witten (N = 4 SYM) theories on Kahler surfaces. The similar generalization
would be possible for models in higher dimensions. The basic idea is to extend
our target space A to the total space T*A of its cotangent bundle. Since A
is a flat affine Kahler manifold a cotangent vector is represented as an element
of Q'(M, End(E)). Thus we introduce additional bosonic fields ¢ given by
an adjoint valued 1-form ¢ € Q'(M,End(E)). Then, by decomposing p =
w0+ ©%1 we have to determine which component form holomorphic multiplets.
We have to declare '*? to represent holomorphic coordinates on the fiber space
of T*A, since we already fixed a complex structure of A by declaring that the A%!
component of a connection 1-form represents holomorphic coordinates. Thus we
have 3, 4%! = 5,0"% = 0. Now one may proceed to construct a N. = (2,0)
model with target space T*A.
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A beautiful fact for any cotangent bundle of a Kahler manifold is that it
always has canonical hyper-Kahler structure [120]. Thus it is natural to consider
hyper-Kahler quotients. Then the real momentum map equation (7.1.2) for A
is generalized to the hyper-Kahler momentum map equations for T4,

BE(PI,D AL 01

iA (F+[e"°,¢™"]) —¢I =0. (L5
However the resulting hyper-Kahler quotient of 7*.A by G will be infinite dimen-
sional except for the d = 1 case, where the quotient space is Hitchin’s moduli
space [112]. To obtain a finite dimensional space we extend the bundle E — A to
E - T*A and try to cut out the hyper-Kihler quotient space by the vanishing
locus of suitable G-equivariant holomorphic sections.

A natural choice on a Kahler surface is

Y% =0,
Bae™® =0, (7.1.5)
WO A0 =0,

which defines Higgs bundles of Simpson [121][122]. The above equation can be

L 3 L
viewed as a generalization of the integrability d; = 0 of the connection 84 to

the integrability of the extended connection D" = 84 + ¢'°. Our model based
on (7.1.5) is a generalization of Donaldson-Witten theory. We will also study
the similar generalization of Vafa-Witten theory.

Another beautiful fact for any cotangent bundle of a Kdhler manifold is that
it always has the equivariant S!'-action acting on the fiber. Such a S'-action
on T*A descends to the moduli spaces above. We will use the S! symmetry to

define a family of models, which have many interesting limits.

7.1.1 Preliminaries

We consider a rank r Hermitian vector bundle E — M over a complex d-
dimensional Kahler manifold M with Kahler form w. Consider the space A of
all connections of E and the cotangent bundle T* 4. First we determine the fields
representing the cotangent space T* A. For the base space A of T*A we have con-
nection 1-form A4 = A%+ A%! with the usual gauge transformation law. We in-
troduce a complex structure I on A using the complex structure of M by declar-
ing A%! to represent holomorphic coordinates. Since A is a flat affine Kahler
manifold a cotangent vector is represented as an element of Q' (M, End(E)). We
introduce an adjoint valued bosonic 1-form ¢ € Q!(M, End(E)), which may be
regarded as an element of the cotangent space of A. According to the complex
structure of M we have a decomposition ¢ = p'® + ¢%!. Then it is natural
to fix the complex structure of the fiber space of T*A by declaring ' to be a
holomorphic coordinate. Thus the (holomorphic) tangent space of T* A is given
by

Q%Y(M, End(E)) ® Q"°(M, End(E)). (7.1.6)
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We denote the above complex structure also by I and call it the preferred
complex structure, which has been induced from the complex structure of M.
The total Kihler potential X(A, ¢) of the total space T*A is given by
1
K =K(A) - = 10 A %) A 71
(49) = K(A) = g [ Tole® n ™) A (717)
where the Kiher potential X(A) of A is

1
K:(A) = W ./M !CTI'(F A F) A wd_z. (718)
and the added term is a Kahler potential in the space B. On the total space
T* A we have a obvious action of the infinite dimensional group G of all gauge
transformations, preserving the Kéhler potential X(A4, ¢).
Now we introduce our N, = (2,0) supercharges s, and 3_ with the familiar
commutation relations

=1 {84+,8+)} = —ig% . La, 2 =0 (7.1.9)

The supercharges are identified with the differentials of G-equivariant cohomol-
ogy of our target space T*A. Thus ¢}, L, is the infinitesimal gauge transfor-
mation generated by the adjoint scalar ¢4, € Lie(G) = Q°(M, End(FE)). From
the complex structure of T* A introduced above we have two sets of holomorphic
multiplets (4%!,4$") and ("%, A}°) and their anti-holomorphic partners. The

supersymmetry transformation laws are given by

s AP = iglt, sy =0,
5, 4% =0, 592 = —Badis,
m i, (7.1.10)
3+A = Oa 3+w+ — *6A¢++,
pe _ =7
3+A1'U = “J!){» ) E+'¢':.° =0,
and 1,0
3+<‘01,0 = 'iA_lF’o, 8+/\+’ =0,
g =0 5L = (644,90, (7.1.11)
3+{PD‘1 =0, s+-'x'—:lk‘l = {¢++!‘l‘gﬂ.1]7 =
g1 0.1 -
3+g00‘1 = 3/\_,’_ 5 '§+X'_::_l =)

From the transformation laws we have the following total G-equivariant
Kahler form on T*A,

&g =is,31K(4,9)
___"__ 1,0 01 a2
~2(d)'n2 /MTr(¢++ (F +[e"%™]) Aw (7.1.12)
1

—1,0 6, <0l 3
+W/MTI'(¢3_’1/\¢+ Jr')\iuf\)q_)/\wd 1.
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The second term in the above is the Kihler form wT of T* A and the first term is
the real G-momentum map ¢, pa, p : T*A — Lie(G)* = Q*"(M, End(E));

1

T 1,0 0,1 d—1
iy = F F [, o™ Aw

R 2{0‘.')!?72 ( [ 2 ])

1
~ 2d(d)'n?

(7.1.13)
A (F g [‘pl,D’ Lp['.l,lf.]) wd’

where A denote the adjoint of wedge multiplication with w.

Following Hitchin [112] we have a natural hyper-Kéhler structure I, J and K
on T"A. Note that the additional complex structures J and K have no relation
with the complex structure on the manifold M. Then we define the holomorphic
symplectic form w¢ on T* A by

wc((614%1,6:0'°), (5, 4%1, 82617))

= ﬁ!ﬂ—g /M Tr (820" 0 A £6, A% — 8,00 A %5, A%1) . L
The corresponding complex momentum map uc on T*A is given by
He = 2(d;' =040 At = m(;&&ayl‘o) Awl. (7.1.15)
Using the Kahler identities
8y =i[6a,A], 8% = —i[Ba,A], (7.1.16)
we see that the zeros of the complex momentum map is given by
AByp"° = G5p"° = (7.1.17)

7.2 Generalized Donaldson-Witten Theory

From now on we consider a rank r Hermitian vector bundle E — M over a
complex 2-dimensional Kahler manifold M with Kahler form w. Consider the
space A of all connections on E and the cotangent bundle T*.4. We have the
same holomorphic coordinates fields 4%! and ¢'° € Q1°(M, End(E)) of T* A,
with the supersymmetry transformation laws in (7.1.10) and (7.1.11). We also
have the usual N. = (2,0) gauge multiplet.

Now consider an infinite dimensional G-equivariant holomorphic Hermitian
vector bundle E — T*A over T"A with a suitable G-equivariant holomorphic
section §(A%1,10), ie., 5,6(4%, 1) = 0. We only have the following
possibility for thla,

6(4%,p'0) = FO2 @ 00 @ ("0 A M), (ri2.1)

We choose this most general form as our holomorphic section. We have a natural
paring of the holomorphic section with corresponding anti-ghost fields T_ given
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by [, M Tr(ro A *6) Thus the anti-ghost for the F%2 bit of section belongs to
02%°(M, End(E)), the anti-ghost for the mixed part belongs to Q'+! (M, End(E))
and the anti-ghost for (p'° A ¢'°) belongs to 2%?(M, End(E)).
Associated with the holomorphic section F%? over the base space A of T*A
we have Fermi multiplet (x>°, H>?) € 02°(M, End(E)) and anti-Fermi multi-
—0,2 0.2
plet (x2°, H™?),

s> =—=H*Y s H* =0,

=0 5, HY = —ilo, 2%, (7.2.2)
84 x2? =0, s+ H*? = —i[p14, %27, T
3,302 = —H"2, 5, H"? = 0.

Associated with the mixed component of holomorphic section 94" over T*A
we have Fermi multiplets (x"!, H*!) € Q1}(M, End(E)) and their anti-Fermi

partners (Y-", " ¥i

syt =—HY, s HY =0,

E-{—Xl_‘l o 0; §+Hl,1 5= _i[¢++1 1’1:[1

sixs =0, 3+ﬁlrl = —ifps4,%2"], i
axt=-E", s H'=0

Associated with the holomorphic section ' A ©!? over the fiber space of T*"A
we have Fermi multiplet (%% K%2) € Q*°(M, End(E)) and their anti-Fermi
partner (7>°, H*?)

o 0% = —K?0, s K20 =0,
Byt =0y 5 K20 = —ilgyy, 2%, (7.2.4)
DS 5, K% = —i[¢,1,727, £
70 = —K%2, g K =)

Now we consider the following N, = (2,0) supersymmetric action functional

S=3+3+/ Tr(f.f)_— (F/\w.p{(pl’a, 0'1]/\w+%w2hg) +?}'—*ﬁ—)
M

472

8.8
e ++/T1‘(x AR? 4+ xb At 4+ A*ﬁ“’)
M

4 2
'!.3 =
Ly i Tr(xi’u A *F%2% 4 381 A %8400 4+ %2 A x(p"0 A pl‘o))
‘JT
184 F
- Tr (‘” 2ARFH0 + 00 A w8 + 720 A x(e™! A wo")) :

(@:25)
We set ¢ = 0 for simplicity by restricting to the case with ¢;(E) = 0. By
expanding the above and integrating out the auxiliary fields we see that the
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path integral is localized to the moduli space defined by the following equations

F% =0
1,0 A 1,0 — 01
gl (7.2.6)
Oap” =0,
iA(F + [¢',¢*]) — CIe = 0.
The first three equations above are from S = 0 and the last equation is

from the total momentum map pg (7.1.13). The Higgs bundle (34,9'°) of
Simpson [121][122] is defined by the first three equations in (7.2.6), which
can be regarded as integrability (D")? = 0 of the extended half ”connection”
D" = 84 + ¢"°. There is notion of semi-stable Higgs bundle and a theorem
analogous to Donaldson-Uhlenbeck-Yau such that every semi-stable Higgs bun-
dle (E,"?) has an Einstein-Hermitian metric;

iA(F + [p"°, %)) — CIg = 0. (7.2.7)

Furthermore the extended connection is flat, i.e., D'o D" + D" o D' = 0, if and
only if ¢;(E,p'?) = ¢;(E,"?) = 0. Thus the path integral of our model is
localized to the moduli space of semi-stable Higgs bundles. We also have other
bosonic localization equations, as usual

dagy4 =0,
[0++,B] =0, (7.2.8)
[¢4+,¢6--]=0.

If the connections are irreducible we have ¢14 = 0 and G acts freely on the
solution space of (7.2.6). The resulting moduli space is then isomorphic to the
moduli space of stable Higgs bundles. We denote the moduli space of semi-stable
Higgs bundle by A. Note that the moduli space A/ contains the moduli space
M of semi-stable bundles, equivalently the moduli space of EH or anti-self-dual
connections on a Kihler surface M.

From now on we set ¢ = 0 for simplicity.

7.2.1 Comparison with Donaldson-Witten Theory

At this point it is useful to compare with Donaldson-Witten theory. The path
integral of Donaldson-Witten theory is localized to the moduli space M of anti-
self-dual connections defined by

(EA)Z =0,

1 e (7.2.9)
A(B4004 +3840084) =0.

Define D" = 84 + ¢"° and D’ = 84 + ¢®'. Our localization equations (7.2.6)
can be written as A
(D”]" — 1

7.2.10
A.(D? OD” +D.‘-‘ OD!) — 0‘ { )
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Similarly we can combine the superpartners of A%! and ¢!, and the anti-ghosts
(x%° X ,no 2} To see this let us define extended fields

AOD) = 401 4 10 A0 . ALO 4 01

(1,00 _—1,0 <01
i =0y A (7:211)
L ROV I LN (T S S

HPO = gL LR g 92 LT LK

where the superscript of the extended fields represent a graded form degree on
M. That is we exchange holomorphic and anti-holomorphic differential form
degree on M of fields associated with ¢'* and ¢*'. For example the extended

anti-ghost T is associated with the total holomorphic section S := F02) =
FO2 4 5,00 + 10 A !0 of E — T*A by the pairing [, Tr ( T A xFO 2)).
Note that the combinations (7.2.11) preserve the ghost numbers
g0V . (41,0, TV :(0,4),
g U 0 T RS a1

The supersymmetry transformation laws for the coordinate fields of T"A are,
combining (7.1.10) and (7.1.11),

(7.2.12)

0, ACD = 9@, 8,00 =0,
3, A00 =, = 'I‘(U’” sse=gRitg e
(1,0) 10 _ (7.2.13)
S+A seli— 0 ‘I’ D’Q5++!
5,400 = @{1 0) _+‘—IJ—(1 o

The supersymmetry transformation laws for the Fermi multiplet (T (2.0) pr(2.0)
are, by combining (7.2.2), (7.2.3), and (7.2.4) together,

5, TEO  _HED, 4 g0 <o

2399 ¢ 5L HEO = —ilgy4, Y2, e
T(cl 2) o (O2) s = +=(0.2) i

84 = 3+H = —3[¢++, T_ ],

7,702 — g, SeH A =0

We have the usual N. = (2,0) gauge multiplet associated with the unitary
gauge transformation. For convenience we rewrite down supersymmetry the
transformation laws

847- = 0:
3+¢__ —_ in_‘ §+n_ — ‘f‘@HD S5 [¢++! "——]r 3+¢++ = 0‘ (7 2 15)
Fed— =L s+ = —iHo + §[¢++,¢—~], 54015650,
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Now the action functional S in (7.2.5) can be written as

S=S+§+f Tr(qb__F“’” Aw
472 Jur

P s / Tr (n_ AsT_ + TEUA *T(_O'z})
M

472
+i% Tr(r(f'“’/\w(“’) +f—§ / Tr(?‘,'”’/\*F”"’J),
M T JIM
(7.2.16)
where
1
T _ 1 50
ur = g2 FO A, (7.2.17)

The above action functional has exactly same form as Donaldson-Witten theory
on Kahler 2-folds, see (4.1.15). We remark that the Kahler identities (4.1.19)
are important technical tools in analyzing Donaldson-Witten theory on Kahler
manifolds. Simpson showed that one also has the Kahler identities for Higgs
bundles,

() =slA, DY), (DY) = =is D, (7.2.18)

We will work with the above shorthand notations.

7.2.2 Path Integrals

The explicit form of the total action functional S’ after integrating out all the
auxiliary fields from S is given by

1 1 1 :
Sr'il :-:4—;2- - Tr(—§F+ A *F+ =, D(ﬁ++ * DQ‘)-_ e Z[¢)++,¢)__] * [(,D++,¢__]
+ oo AT T 4120 A x[pr g, TP il ] T

o iD;ﬁ_ A *‘I’fl) it '-':D”T,?_ A *EE:J)] — Y20 A *D”'I'EE'I)
1 ),

(7.2.19)
where D = D' + D" and we we used the extended Kahler identities (7.2.18).
We also used notation F'*, which is given by

1
Ft=F20 4 §(AF“'”}w 4+ FO2, (7.2.20)

so that F*| 1.0_,01_9 = F*, where F* denotes the self-dual part of the odinary
curvature two-form F. Note that F'™ also contains anti-self-dual two-form part
as well.
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Now we examine the equations for fermionic zero-modes. The equation of
motions for fermions are, modulo infinitesimal gauge transformations, are

T:D”‘T?_ + (Dﬂ)tTE?|2) A 0}

(D" PV =0, (7.2.21)
D"e =g

Using one of the bosonic localization equation (D")? = 0, we find that the
fermionic zero-modes are governed by the following equations

(Dr!)tlp(ﬂ,l) thy 0’ —(0,2)

D"7_=0 o S (D" TS

= 0. (7.2.22)

Thus the fermionic zero-modes are elements of cohomology group of the follow-
ing extended Dolbeault complex

0 - §0©0 2 go1) D g02) _, g (7.2.23)
where
SO = @@ Q%7(M,A*(Ty;°) ® End(E)). (7.2.24)
r+s=p

The net ghost number violation in the path integral measure due to fermionic
zero-modes is (A &) where A is the negative of the index of the above com-
plex. Almost all of the standard procedure in Donaldson-Witten theory can
be repeated here. For example observables are G-equivariant closed differential
forms, after the parity change, on the space T*A. As for a canonical observable
we have the G-equivariant Kahler form, after the parity change, on TA;

&9 = — Tr(¢++F“ ”) /\w+—/ ( “"”/\E‘j‘”’) Aw, (7.2.25)

an?

The correlation functions of supersymmetric observables are the path integral
representations of a generalized Donaldson-Witten invariant.

We note that the fundamental group of four-manifold does not seem to play
any essential roles in the original Donaldson-Witten theory. On the other hand
the most crucial application of Simpson’s Higgs bundle is on the non-Abelian
Hodge theory associated with the representation variety = (M) —+ GL(r,C) of
the fundamental group. For this purpose let us consider the case the ¢, (E) =
e2(E) = 0.! It is known that there is a one-to-one correspondence between
irreducible representations of m; (M) and stable Higgs bundles with vanishing
Chern classes, see [122]. In this situation Donaldson-Witten invariants con-
cern only the unitary irreducible representation variety. An important property
of the moduli space of stable Higgs bundles is the existence of a C* action

11t is not obvious if the moduli space of stable Higgs bundles has a hyper-Kihler structure.
For the flat case the existence of hyper-Kahler structure has proved by Fujiki [123].
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(E,¢"%) = (E,tp™?). Simpson showed that the fixed points of C* action cor-
respond to complex variations of Hodge structures. It also implies that any other
representation of m) (M) can be deformed to a complex variation of Hodge struc-
tures. Among the fixed points the trivial complex variation of Hodge structures
corresponds to unitary irreducible representations. A useful viewpoint of the
C* action is to regard it as Hodge decomposition of non-Abelian cohomology.
Then a unitary representation is some kind of zero-form. The above results also
imply that the path integral of our model for ¢, (E) = ¢3(E) = 0 can be written
as the sum of contributions from every complex variation of Hodge structures.
Thus it is natural to hope that our new invariants may have information beyond
the Donaldson-Witten and Seiberg-Witten invariants for non-simply connected
Kahler 2-folds. Of course we do not need to restrict our attention to the flat
case.

The moduli space of stable Higgs bundles have many beautiful properties
and applications. One of the properties is that the rank r stable Higgs sheaves on
M can be identified with stable sheaves on the cotangent bundle T*M which are
supported on Lagrangian subvarieties of T"M which are finite degree r branched
coverings of M [124][125]. The above property may be relevant to generalized
mirror symmetry on Calabi-Yau 4-folds [92]. If we consider the complex 2-torus,
T4, its cotangent bundle may be regarded as local model for T#-fibered Calabi-
Yau 4-folds. Then the moduli space of stable rank r Higgs sheaves may be
viewed as parameterizing r D4-branes wrapped on Lagrangian cycles of Calabi-
Yau 4-folds. Of course the above picture is too naive but somewhat suggestive.
Here we will not be able to penetrate many of the applications and properties
of Higgs bundles. We will use its S! symmetry to have an anatomy of our
invariants.

7.2.3 Flows to Donaldson-Witten theory

In the lay men’s terms Donaldson-Witten invariant is simply the symplectic
volume of the moduli space M of stable bundles on M. Similarly, the invariants
defined by the correlation function (exp(@5)) is the symplectic volume of the
moduli space N of stable Higgs bundles. One of most important properties of
the moduli space A is that it has a symmetry under a S'-action, which can
be extended to a C*-action. The beautiful fact is that the C* action is a very
special one, related with a certain variation of Hodge structures?®

First we note that our localization equations in (7.2.6) are more than the
equations (7.2.10). We may replace D" by a family of extended derivatives by
introducing a spectral parameter ¢,

Du = 54 o} tcpl'u,

= 7.2.26
D =54 tlpu‘l. ( )

2This notion will be relevant to the case when the Higgs bundle is flat. Then D = D'+ D"
can be identified with the Gauss-Manin connections of the associated local system. Then our
localization equations are familiar tt*-equations in special geometry [126]. In fact for any
complex, not necessarily integral, variation of Hodge structures there is a corresponding flat
Higgs bundle.



144 7 COHOMOLOGICAL YANG-MiLLs-HiGGs THEORY

Then our localization equations in (7.2.6) imply that

(DR =0,

7.2.27
A(D' o D" + D" o D") =0, ( )

for any t with ¢£ = 1. Similarly we replace the extended fields defined in (7.2.11)
as follows

A1) . 401 +t<pl’n, A0 . A1'°+f{pu‘1,
0, ; : —(1,0) —1,0 -0,
'I’E'_ 2 ::wil-i-tA}'_O, Vo = AL,
YOO 20 LBl P0a 0D 2 iy g0
HEO = F*° +iHY + PR, HO2 .= go2 {47 4 2K2°,

(7.2.28)
Then our action functional S in (7.2.5) or (7.2.16) is invariant for any ¢ with
e

We will show shortly that the S! action can be extended to a C* action by
"gauging” the U(1) = S! symmetry and scaling the unit U(1) charge. Such
a procedure is equivalent to giving physical bare mass m to the U(1) charged
fields. Thus one can consider an imaginary CP' where the C* action covers the
natural C* action on CP' with limit points (¢ = 0,t = o). Now we can identify
the two limit points in CP' with (m = co,m = 0). Thus we can interpret
the absolute flow generated by the C* action as a renormalization group flow
from the past or unbroken phase m = 0 to the future (present) or broken phase
m — co. This is not just a mere fantasy since we indeed have a twistor space
constructed from the function space of fields namely the total space T*A of the
cotangent bundle over the space of all gauge fields. Our field space has a hyper-
Kahler structure preserved by the G as well as by the S! symmetry acting on the
fiber of T*A. Such a S! action can be extended to a C* action and then cover the
C* action of CP! in the twistor space T*A x CP'. Furthermore the Hamiltonian
of the S'-action on the field space is precisely the physical bare mass of the
bosonic fields, whose field space are the fiber of T*.A on space-time M. Now
by taking the m — co limit the dominant contributions to path integral come
from the critical points of the Hamiltonian, equivalently from the fixed points
of S'-action. Similarly in the ¢ — 0 limit any point in the field space flows to a
certain fixed point of the S'-action. In the trivial fixed point ©*® = 0 we recover
original Donaldson-Witten theory. As a global supersymmetric field theory on
M certain path integral of our model will be localized to a finite dimensional
subspace A of the hyper-Kahler quotient of T*A by G. The above argument is
valid regardless whether A preserves the hyper-Kahler structure or not.

We may ask an interesting physical question. Donaldson-Witten theory is
the twisted N = 2 supersymmetric Yang-Mills theory. On a manifold with
trivial canonical line bundle twisting does nothing and we have space-time su-
persymmetric Yang-Mills theory. Then where shall we place our model? Our
proposal is that it may describe a certain unbroken phase of bigger symmetry
which is connected to the physical super-Yang-Mills theory by renormalization
group flows, and the physical theory lives in one of the fixed points.
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Now we perturb our model by ”gauging” the U(1) symmetry. For this we
modify the supersymmetry transformation laws according to the following anti-
commutations relations

85 =0, {84,584} = —i¢% Lo —imLs, 7.=0 (7.2.29)

We define a new action functional S(m) by the same formula as S in (7.2.16) but
with the modified transformation laws. Then we define a family of N, = (2,0)
models parameterized by m and T with the following action functional

S(m,m) = S(m) + ims, 3, K(D), (7.2.30)

where K(D) is the Kihler potential of T*A given by (7.1.7). Then the action
functional contains bare mass terms for all the charged fields under the U(1),
except for auxiliary fields. The relevant terms in the action functional looks
like

S(m,m) =8
m : —1,0 1
el (quH(F + "0, %)) + 03 ATy + ALOAXY ) Aw
M
tmim 1,008,200
1o /MTr(w AP Aw+....

(7.2.31)
In the above the mim dependent term is the Hamiltonian of the S'-action on
T*A. The term in the second line is the equivariant Kahler form &rg of T*A.
Thus &9 := ©%|4 is an observable of Donaldson-Witten theory which will
descend to the Kahler form of moduli space M of anti-self-dual connections.
Now by taking the m — oo limit we see that the dominant contributions to
the path integral come from the critical points of the Hamiltonian of the S'-
action. Such critical points are identical to the fixed points of the S'-action. As
usual we always have trivial fixed points given by ¢'° = 0 and the fixed point
locus is the moduli space M of anti-self-dual connections. Thus the contribution
from the trivial fixed points to the partition function of the model with the
action functional S(m,7) is given by a generating functional (exp(@9)) ,, of
Donaldson-Witten theory weighted by one loop contributions from the degrees
of freedom normal to M in A'. We also note that the value of the Hamiltonian of
the S'-action at the trivial fixed point is zero. There are other non-trivial fixed
points ©° # 0 if the S'-action can be undone by the gauge transformations,
99" g7 = 1", (7.2.32)

where g € G and t € U(1).

7.3 Generalized Vafa-Witten Theory

In this section we apply the construction in Sect. 3.4 to embed the previous
N, = (2,0) model on a Kihler surface M to a N. = (2,2) model. The resulting
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model generalizes Vafa-Witten theory and compute Euler characteristic of the
moduli space of stable Higgs bundles together with extra (!) contributions. The
construction of the model will be straightforward exactly as in Sect. 4.2 for
Vafa-Witten theory on Kahler surface. Then we define C* family of N, = (2,2)
models which has various interesting limit.

We recall the basic setting for the previous N. = (2,0) model. We consid-
ered the total space T*A of the cotangent bundle of the space of all connections
of a rank r Hermitian vector bundle E — M over a Kahler surface M. As
for the holomorphic coordinate fields on T4 we have the extended connec-
tion A%! with superpartner 'I'E'r‘l. We also considered an infinite dimensional
G-equivariant holomorphic vector bundle E — T*A with holomorphic section
S(D") = (D")? := F(©2) and associated anti-ghost multiplet (T{_&G)’ H(29)

The basic idea behind the extension to a N. = (2,2) model is that one can
regard the total space of the holomorphic bundle E — T*A as the target space
of a N. = (2,2) model. Then we have to supply local holomorphic coordinate
fields for fiber space of E — T*A. Thus we introduce adjoint-valued bosonic
spectral fields B(2%) and its superpartner Tf‘o}. Now the former holomorphic
section & = F(©2)(D") of the bundle E — TA corresponds to a holomorphic
vector field on the target space E but being supported only on T"A. Thus the
G-equivariant holomorphic vector G(D") should be extended over the whole
space E. Furthermore N. = (2,2) supersymmetry demands that a such holo-
morphic vector should be the gradient vector of a non-degenerated G-invariant
holomorphic function W, i.e, 3. W = 0, on the target space E.

Now demanding N, = (2,2) supersymmetry will take care of everything.
From the N. = (2,0) holomorphic multiplets (A(D‘”',‘I‘Ef‘ll) we build up the
following chiral multiplets, i.e., 5+ A(®Y) =0

g =T @y e Sy i)
PN o . (7.3.1)
H(D.l]

From the N, = (2,0) Fermi multiplets (T(E’O),H(z'o)) we build up another set
of chiral multiplets, i.e., 5. B?? =0

T?9 &= peo 2 39

s o 2 (7.3.2)
H(2.0)

Form the N, = (2,0) gauge multiplet (¢__,n_,7_, Ho,¢++) we build up a
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N. = (2,2) gauge multiplet
7, 5
i

= 84

-5

Tn

Hy, & 7, ,

8_
Ny — P4yt

=

(7.3.3)

[=

¢__i>n__{'_‘_, o

which are adjoint valued scalars on M.

To keep track of all the fields we write down the explicit spectral form of the

extended fields. We have
A©D .= 401 4 410
‘I'(f'l) = 1;’)3:’1 +t)x;:‘0,
HUO) = g10 4 4110
and

B0 ._ g2.0 +iB! +E2CO.2’

A(10) ._ 410 + 01
=050 10 01
‘I'(i ) =y 1AL,

H{D,l) e HD,I +ELO'1,

(7.3.4)

BOA- PRI L PO

2,0 2.0 . = I =2 02 ==(0,2} ; == =2
T(t ):=Xj: —l—txil+t Ny, B i ::ﬂz+txil+tﬁi0,
H®O = H* + 3" + PK°2,  HOD = gO2 4 @ 4 2K,
(7.3.5)

Now we have the standard N, = (2,2) invariant functional

S=8,5,8_5_ (JC(D) + K(B?9) B©2)) _ / Tr(o * EJ)
M

(7.3.6)
48,8 W (A(U,l}, B(z,o)) i) §+§_w (A“-“),B(”'z}) :
where :
K(B®29) BO2) — / Tr (B(z.o} A *B(u,za) : (7.3.7)
Sl Y
The holomorphic potential W, i.e., 3L W = 0, is given as follows
w (A0, Be) = L] Tr (B9 A+FO2). (7.3.8)
1 L

We note that the above action functional remains invariant for any ¢ in (7.3.4)
and (7.3.5) with ¢f = 1. We will use this S! symmetry to define a C* family of
the N, = (2,2) model.

Now, from the discussions in Sect. 3.4, we see that the path integral is
localized to the zeros of the momentum map ug and the critical points of the
holomorphic potential W, modulo the gauge symmetry,

F©2) =,
B «B3% =0,
iF Aw+[BZ9 xB(2)] =,

(7.3.9)
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We also have other default localization equations

[,B®9]=0,  [¢ss,BOP]=0,
(0,2))] — 7l =
[I'J, B ] = 0, [‘;b:l::l:! 0'] 01 (7.3'10)
[o,7] =0, [¢++,9--]=0,
Do =10, P =l

When there are no reducible orbits in (7.3.9) we have ¢ = ¢4 = 0, and the
path integral is localized to the moduli space defined by (7.3.9). The equation
(7.3.9) is a generalization of Vafa-Witten equation. We note that the equations
in (7.3.9), as well as in (7.3.10), remain the same for any ¢ in (7.3.4) and (7.3.5)
with ¢f = 1, which is a symmetry of the action functional.

The equations in (7.3.9) have another S! symmetry given by

(D", B(29) (D",ﬁB(2’°)) (7.3.11)

with £&€ = 1. However the above is not a symmetry of the action functional due
to the holomorphic potential term (7.3.8);

P Dt / Tr (B(z"’) A *F“‘v?’) Py (7.3.12)
4?['2 M

The above situation is exactly same as for Vafa-Witten theory on a Kahler sur-

face. We can use the S! symmetry (7.3.11) to break N, = (2, 2) supersymmetry

down to N, = (2,0) supersymmetry by breaking the supersymmetries generated

by s_ and 5_. We expand (7.3.12) by one step to get

& -8%] Tr (i‘f‘f"” AxF(©2) 4 B(2:0) A *D”'I'(_D’”) FELELRE (9 13)
M

Then we see that
(D", x2°, B2O 9O _, (130 ¢BAO) Fg0)) (7.3.14)

for €€ = 1 preserves the action functional. On the one hand the above rotation
is not compatible with the supersymmetry generated by s_ since s_AG) —
ilIJ(:)'l). On the other hand we can make it compatible with the s, supersym-
metry by assigning the same U(1) charge to the pair (B{z'ﬂ),Tf'm) related by
the s; supersymmetry, etc.

In the next section we will use the above S} x Sé symmetry to define a
C* x C* family of N. = (2,0) theories. The idea is that all the theories, both
the original and the generalized Donaldson-Witten and Vafa-Witten theories,
we discussed so far should be viewed as different semi-classical limits governed
by different massless degrees of freedom of the same underlying theory.

7.3.1 A Family of N, = (2,2) Models

We begin with generalizing our N, = (2,2) model to a C* family of N. = (2,2)
models using the S} symmetry, whose action is given as (7.3.4) and (7.3.5). For
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that purpose we extend our N. = (2,2) supersymmetry by ”gauging” the S}
symmetry;

{s+,3+} = —igl Lo,
{s+,8+} =0, {8+,§_}=—io“£avim£3}, {84,8-}=0, (7.3.15)
{5:,5:}=0, {s_,8,}=—it*Lo—imLs, {34+,3-} =0,
{s_,3_} = —i¢® _L,,

where £ s denotes the Lie derivative defined by the vector field generating the
S} symmetry. Equivalently it is an infinitesimal U(1) gauge transformation for
fields with non-vanishing U(1) charge as defined by (7.3.4) and (7.3.5). For

convenience we write down explicit transformations for bosonic fields

A(U,l) — AU,I +t(|01‘u, A(I,D) = Al‘u+t_lcp°‘1,

B39 .= p20 4 4=1gWl 4202 B0 . BU2 LB 4 2020,
(7.3.16)
The new action functional S(m, ) is defined by the same formula as given
by (7.3.6) but with modified supersymmetry transformation laws for charged
fields under the S} arcodingly to (7.3.15). We write down the relevant terms
depending on the bare mass

mimn
2

S(m,m) =S + 7

Tr (t,a“’/\*tp“’l +BYAsB" + 4C°v2/\*02"’) -
M

(7.3.17)
where the unwritten terms are supersymmetric completions including the bare
mass terms of N. = (2,2) superpartners of bosonic fields charged under S;.
We remark that the above action functional preserves all the symmetry of the
original model. We note that the bare mass terms written above are exactly
the Hamiltonian of the S} action on the space of all bosonic fields. There are
two ways of examining the above action functional. One may take the |m| — o
limit. Then the dominant contributions to the path integral come from the
critical points of the Hamiltonian of the S} action. Such critical points are
identical to the fixed points of S} action, equivalently the C* action. However
this viewpoint is rather limited, as it mainly concerns the moduli space defined
by the equations in (7.3.9). We should not forget that such a moduli space is
only a subsystem, and usually does not form a closed system.

A better viewpoint is to rely on the Higgs mechanism. We again take the
limit that the bare mass is arbitrarily large. Then we can integrate out ev-
erything except for massless degrees of freedom. Here the adjoint scalar fields
(Higgs fields) o and & play a crucial role since the effective mass of a field is the
sum of the bare mass and the contribution from the expectation values of Higgs
scalars. This phenomena can be most directly seen from the anti-commutation
relations of supercharges (7.3.15). Since we have global supersymmetry the ex-
pectation values of supersymmetric observables, < 1 >= Z in our case, are
localized to an integral over the fixed point locus of unbroken global supersym-
metry. Consequently the path integral is localized to the kernel of the right hand



150 7 CoHoMOLOGICAL YANG-MILLs-HiGGs THEORY

sides of (7.3.15) acting on the fields. Then we immediately get the following set
of relevant equations for A%! and B??,
[0,9"°] + mp!® = 0,
[0, B!'] —mB"“! =0, (7.3.18)
[o,C%?] — 2mC®? = 0,

and i
3,10’ = 0,
[0,7] =0, (7.3.19)
[o, BZ‘D] =il

We will now study several limits of these equations.

Three Different Limits

We consider an SU(2) bundle E — M for simplicity. The set of equations
in (7.3.18) are the conditions for masslessness of the fields charged under S}.
The second equation in (7.3.19) implies that ¢ and @ can be diagonalized, say
o — %-diag(a, —a). Since Tro? is the gauge invariant object we will consider
a > 0.

We see that there are three (semi-classical) limits governed by different mass-
less degree of freedom while preserving N. = (2, 2) supersymmetry.

1. Vafa-Witten or a twisted N = 4 super-Yang-Mills theory. (i) the gauge
symmetry is unbroken a = 0. (ii) the gauge symmetry is broken to U(1)
a > 0 and a # m,2m Then ¢'® = B!l = C%? = 0 is the only solution of
(7.3.18). Equivalently those fields and their N. = (2, 2) superpartners are
all infinitely massive.

2. The gauge symmetry is broken to U(1) and @ = m and we have the
reduction E = L @ L~! Then

= 20000 ﬁ“’ 0
ae(® ), (5 )

0 -8
f St (0 ﬁ“) (7.3.20)
16 0 0 P 0 S 1 e
e (191,0 0) ?
=0
We have r

F%2 =,

i(F—0" AP ) Aw+ B A+B " =0,
8,91 =0, (73.21)

8B8%>° + 910 A gt =0,

EL * ;31'1 =1k
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3. The gauge symmetry is broken to U(1) and a = 2m and we have the
reduction E = L @ L=! Then

2,0 0
o BZ’,U = (18 ) :
(_9' " (3,{, 0_ ) 0 _BE,D
A4=\0 -8.)’ B =, (7.3.22)
1,0
= 0, o 0 ,ya,z
c _(0 cinahi
We have
FG,2 =
3,60 = 0, (7.3.23)

iFAw+72°A¥"2 =0.

7.3.2 Families of N, = (2,0) Models

Following the discussions in Sect. 3.4 and Sect. 4.2 we break the N, = (2,2)
symmetry down to N, = (2,0) supersymmetry generated by s, and 3. The
Ssl-action (7.3.11) can be extended to all those additional fields introduced for

the N. = (2,2) model, compared with the original N, = (2,0). The S; action
is given by

st : (w0, BONYSF (90D, gD, (7.3.24)
Sé : (Es??+) = E(E:"H] H

and the conjugate fields have the opposite U(1)¢-charges. Here we can just follow
the procedure in Sect. 4.2 to obtain the general N. = (2,0) supersymmetric
action functional S(m,m, my;,m__) is given by

ﬁ(meA*Bmm+a*3)+”q
1
(7.3.25)

whose new mass terms contain the Hamiltonian of the SEI symmetry. The N, =
(2,0) supercharges s; and 3, satisfy the following modified anti-commutation
relations

S(m,m,myy) =S(m,m) + myym__ /
M

82 =0, {84,384} = —id} Lo —imyy L, 3 =0 (7.3.26)

Now, in total, we have a C* x C* family of N. = (2,0) models. From the
previous discussions all we need to do is collect all fixed point equations of the
supercharges s and 8. Then the localization equations (7.3.9) and (7.3.10)



152 7 CoHOMOLOGICAL YANG-MIiLLs-HiGGs THEORY

are changed by the following equations

F©2) = 0,
D" * B(?,O} S 01
FAw+[B2O xB0O)] _ %[a, e (7.3.27)

D'o + m¢®! =0,
[0, B9 —mB'! — 2mC%? = 0,

and
[b+4, B3O+ m B =0,

[$4+,0] + e = 0. (7.3.28)

[#4+,0__]=0,
dagy4 = 0.

By sending all the bare masses to infinity we have various semi-classical limits
governed by different massless degrees of freedom.

For our purpose it is suffice to examine a limit myy — oo by setting m =
m = 0. For simplicity we consider the SU(2) case. Then we can follow the
discussions in Sect. 4.2.2 and see that the path integral can be written as the
sum of contributions from two branches;

e branch (i): On a generic point on the vacuum moduli space we have the
trivial fixed point B(®?) = 0 and the fixed point locus is the moduli space
N of stable Higgs bundles,

FO2 =,

(7.3.29)
FAw=0.

Hence we recover the generalization Donaldson-Witten theory in Sect. 7.2.

e branch (ii): The SU(2) symmetry is broken down to U(1). We have
E=L®L™ ! and

- @0 _ (0 529 (0 «a
D_(n dl)’ P ol T R AR o

(7.3.30)
where d] = 81, +9"° and b(>%) = §%0 4 g1 4 4%:2 takes values in L~2.
The fixed point equation are

G
dia=0,
d’;‘ * b(z‘ﬂ} = 01 (7-3.31}

iFp Aw— b9 A 402 4 aFw2 = 0.

The above set of equations is a spectral generalization of Abelian Seiberg-
Vafa-Witten equation.
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It is a well-established fact that Donaldson-Witten (DW) theory is equivalent
to Seiberg-Witten (SW) theory [12]. One of the strong evidences, or vice versa,
for such equivalence is the S-duality of Vafa-Witten (VW) theory, which has
both DW and SW theories as two different semi-classical limits after the massive
perturbation. The S-duality, for SU(2) and SO(3), implies that one can recover
the entire partition function from one of such semi-classical limits. We expect
similar relations between the generalized versions. It remains to be seen if our
generalized Seiberg-Witten theory contains new information beyond Seiberg-
Witten invariants.
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