'

it

Background Mitigation in the
LUX-ZEPLIN Experiment
Using Statistical Analysis of
Waveforms

Anna David
UNIVERSITY COLLEGE LONDON

Department of Physics and Astronomy

Submitted to University College London (UCL) in partial
fulfilment of the requirements for the award of the degree of

Doctor of Philosophy.

Thesis submission date: 13" April 2024



Declaration

Declaration

I, Anna David, confirm that the work presented in this thesis is my own.
In the following paragraphs, I will highlight my own contributions to
each chapter, and clarify where information has been derived from other

sources.

Rather than original work, chapter 2 presents a review of literature on

the topic of dark matter, referring to many publications.

The LUX-ZEPLIN (LZ) experiment is described in chapter 3. I con-
tributed to the operation of the detector through remote shifts, both to
monitor the photomultiplier tubes and data acquisition, and to optimise
the voltages of the electrodes following the first science run (SR1). On-
site work included deployment of calibration sources and upgrades to

monitoring sensors.

The Physics Readiness Monitor discussed in this chapter (including
the tools described as existing features) was developed by E. Fraser. As
a core member of the PREM team, I developed the two-dimensional
comparison tool, Algorithm Groups, and LZap version comparisons, as
well as other general improvements to the user interface. 1 developed
and maintained the plots, algorithms and tuned algorithm limits from
the TPC__Health module, shown in sections 3.7-3.9. Other plots shown
were produced using the Skin Health module, maintained by L. Wolf. I
also played a vital role in the SR2 data quality validation conducted by
the PREM team.

The focus of chapter 4 is the analysis carried out by the LZ collabora-
tion which produced the SR1 WIMP search result. My contributions
to this chapter were the production of acceptance curves for the SR1
data quality cuts using an AmLi calibration source, as described in sub-
section 4.5.1. I contributed significantly to this investigation, which was
carried out in collaboration with members of the UCL dark matter group

as an independent verification of the SR1 WIMP signal efficiency deter-

2 of 241



mination. The further analyses described below did not directly impact
this published result, but were developed using SR1 data, to produce a

framework which could be used for future LZ science runs.

The tuning of simulations shown in chapter 5 is my own work, where code
from T. Fruth was initially used as a basis for creating light collection
efficiency histograms. The S1 area correction map used for comparisons
between data and simulations was generated by G. Rischbieter and M.
Murdy. I altered this code to produce separate maps for the top and
bottom PMT arrays. The derivation of the g; value, using the Doke plot

method described in section 5.2, was carried out by G. Blockinger.

The development of the likelihood-based data quality cuts presented in
chapters 6 and 7 is my own work, with existing LZ Flamedisx tools used

to generate projections of sensitivity and discovery potential.

Anna David
London, United Kingdom
13" April 2024

3 of 241



Impact Statement

Abstract

The LUX-ZEPLIN (LZ) dark matter direct detection experiment searches
for recoils of target xenon nuclei in a time projection chamber following
an interaction with a Weakly Interacting Massive Particle (WIMP). LZ
produced world-leading limits for spin-independent (SI) WIMP-nucleon
interactions using data from its initial 60-liveday science run. During
the expected 1000-liveday total runtime, LZ will explore new regions
of electroweak parameter space, leading to a possible first discovery of
WIMPs. As LZ acquires more data, accidental-coincidence backgrounds,
resulting from random pairings of lone primary (S1) and secondary (S2)
scintillation signals, become increasingly dominant.

This thesis presents a statistical approach to target these events, util-
ising the full time dependence provided by S1 pulse waveforms. The
detection times of scintillation photons can be used to identify events
with either a non-physical time separation between the S1 and S2, or a
spurious pulse shape resulting from the pile-up of single photoelectrons
misclassified as an S1. Data-driven templates of S1 waveforms are used
to perform likelihood ratio tests targeting these background pathologies,
as well as a background-agnostic S1 goodness of fit test. These form the
basis of three test statistics used as input features in a boosted decision
tree, which classifies events as signal or background by taking all three
criteria into consideration. This machine learning approach improves the
projected sensitivity of LZ to 40 GeV-mass WIMPs by 8%. The discovery
potential for a 40 GeV WIMP with an SI WIMP-nucleon cross-section of
3.99 x 107 cm? is improved by 11%.

The development of waveform-based cuts benefits from the use of
accurate optical simulations, so this thesis additionally presents the opti-
misation of several material parameters, in order to better reproduce the
light collection efficiency observed in data. Also described in this work
is the development of data quality monitoring tools, which are essential

to achieve a robust science result for an extremely rare signal.
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vital for ensuring both a robust result, from the removal of anomalous
data, and efficient data taking, enabled by prompt feedback on detector
conditions. It has also been shown that the data quality cuts developed
in this work increase the potential for a future WIMP discovery by LZ,
which would provide a breakthrough in our understanding of the nature

of dark matter.

The XLZD consortium, formed by the LLZ, XENON and DARWIN col-
laborations, will provide a next-generation xenon observatory to probe
the remaining WIMP parameter space, as well as many other physics
channels. Work developed in this thesis, such as the data-driven likeli-
hood approach to waveform analysis and the BDT models, can provide
a framework for future analyses in both LZ and the next-generation de-
tector, saving both human effort and computation time. Skills with ma-
chine learning tools also have a wide range of applications within particle

physics and beyond, for example in healthcare [2] and urban planning [3].

Participation in outreach events, such as Neutrino Day at the Sanford
Underground Research Facility and Science Museum Lates in London,
was facilitated by knowledge of the LZ experiment and the field of dark
matter. This offered an opportunity to members of the public, who may
not have a background in science, to engage with particle physics in a
stimulating manner. Work included in this thesis was also presented to
physics undergraduate students, to provide guidance regarding a future

in academia. Outreach is vital for creating confidence in research and
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inspiring future scientists who will continue the search for new physics.
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7.3 The potential discovery significance for WIMP masses of
9 GeV, 11 GeV and 40 GeV, with no likelihood cut (base-
line), combined linear cuts, and a single BDT cut. The
number of observed signal events ;1 was chosen to be 15
for the baseline scenario, and then adjusted to maintain

the same cross-section when each of the cuts was applied. 220
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Chapter 1
Introduction

The presence of a dominant non-luminous and non-baryonic matter com-
ponent in the Universe is well-motivated by a range of astrophysical and
cosmological evidence, including galactic rotation curves and tempera-
ture fluctuations in the Cosmic Microwave Background. Several dark
matter candidates have been postulated, on mass scales ranging from
~ 107! eV to several hundred solar masses [4]. Weakly Interactive Mas-
sive Particles (WIMPs) on the GeV scale are a particularly compelling
hypothesis, as they are able to predict the calculated dark matter relic
density and arise in underlying theories such as supersymmetry. Chap-
ter 2 reviews the evidence and candidates for dark matter, as well as the
various WIMP direct detection techniques, with a focus on dual-phase
time projection chambers (TPCs), which are used to search for primary
(S1) and secondary (S2) scintillation signals following interactions with
a target material. Xenon is an appealing choice, due to its large WIMP
cross-section, lack of long-lived radioisotopes and excellent self-shielding

properties.

This is the technology employed by the LUX-ZEPLIN (LZ) experi-
ment, which consists of a TPC containing a 7-tonne liquid xenon active
volume, surrounded by two veto systems and a water tank to provide
shielding from backgrounds. Chapter 3 describes these detector com-
ponents, as well as the dominant background signals, which must be
well-understood and mitigated. Identification of data quality issues is vi-
tal for determining which acquisitions are suitable for use in analysis and
for providing prompt feedback to detector operators. Chapter 3 shows
how this was achieved through the use of the Physics Readiness Moni-
tor, for which new tools and analysis modules were developed to assist
with monitoring of the detector health. This framework was used in the
validation of data from the first and second LZ science runs, and is in
place for the third.
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LZ has produced world-leading limits on spin-independent WIMP-
nucleon interactions using data from the first science run, which had a
total exposure of 60 livedays with a 5.5-tonne fiducial mass. This analysis
is described in chapter 4, with a focus on the background resulting from
the accidental coincidences of isolated S1 and S2 pulses. This includes
the origins of these lone pulses, the data quality cuts that target them,
and the modelling of their rate and distribution. The use of calibration
sources to characterise the detector is also discussed, as well as the calcu-
lation of the signal acceptance of data quality cuts using AmLi neutron
events from one such calibration campaign. Finally, chapter 4 describes
the process of using a profile likelihood ratio to determine that the ob-
served data were in agreement with the background-only hypothesis, and

thus set exclusion limits.

Chapter 5 presents the optimisation of Geant4-based optical simula-
tions. The optical parameters of LXe-PTFE reflectivity, LXe absorption
length and LXe Rayleigh scattering length were tuned to reproduce the
position-dependent photon collection efficiency observed in data, for both
the top and bottom photomultiplier tube (PMT) arrays. Accurate optical
simulations produce digitised waveforms and hence facilitate the under-
standing of complex pathologies and the development of pulse-based data

quality cuts.

Chapter 6 exhibits work on a new waveform-based analysis developed
for rejection of the problematic accidental-coincidence background. This
was achieved by exploiting the position-dependent photon timing offset
observed between the top and bottom PMT arrays. Data-driven tem-
plates of the S1 pulse were used to calculate the likelihood that a pulse
is a real S1 within a true Single Scatter, resulting in three test statistics.
The signal acceptance and background rejection efficiency of linear cuts
placed on each of these test statistics is presented. Correlation between

the three cuts indicates that a combined approach would be beneficial.

Chapter 7 presents a boosted decision tree (BDT) analysis, devel-
oped to optimise the rejection of accidental-coincidence backgrounds.
The BDT model was trained with the three test statistics as input fea-
tures. Chapter 7 describes the way in which the approach evolved to take
account of interesting behaviour resulting from the definition of the like-
lihood ratios, which introduced an implicit dependence on the number
of photons in the S1 pulse. The final model consists of 14 BDT models
trained separately, for datasets binned by number of S1 photons. The
improvement to the projected WIMP sensitivity and discovery potential

of LZ, resulting from both this analysis and the linear cut approach, is
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presented. The BDT models produce an 8% decrease in the most strin-
gent limit from a 1000-liveday search, providing sensitivity to additional
WIMP parameter space. An increase in discovery potential of 11% is also
achieved for a 40 GeV WIMP with a spin-independent WIMP-nucleon
cross-section of 3.99 x 10 cm?. A more efficient removal of accidental-
coincidence events would allow for further improvements, so chapter 7
also describes future developments to the current BDT framework which

would enable this.
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Chapter 2

Dark Matter

Approximately 27% of the energy density of the Universe is made up
of non-luminous matter [5], yet it remains undetected. As a result, the
nature of dark matter is one of the most compelling questions in both
cosmology and particle physics. This chapter will summarise the histor-
ical evidence for dark matter, as well as its properties and some of the
most well-motivated candidates. Experimental approaches for dark mat-
ter detection will also be discussed, with a particular focus on the direct

detection of Weakly Interacting Massive Particles.

2.1 Evidence

Evidence for dark matter exists on a wide range of scales, with astro-
physical evidence consisting of gravitational effects on both galaxies and
galaxy clusters. In the 1930s, Fritz Zwicky made observations of the
redshift of galaxies in the Coma cluster to measure velocity dispersions.
He applied the virial theorem, which relates the total kinetic energy to
the gravitational potential energy of the cluster to estimate the total
cluster mass. This revealed a high mass-to-light ratio, with a calculated
mass 400 times larger than the “luminous mass” estimated from the light
emitted by the cluster [6]. Zwicky attributed this to a non-visible compo-
nent, which had a significantly higher mass than the observable matter,
increasing the velocity dispersion.

Further evidence arises from gravitational lensing, the process by
which, following special relativity, massive objects bend spacetime, re-
sulting in distortion of background sources, such as galaxies. Effects can
range from a temporary brightening (microlensing), to a mild distortion
(weak lensing), to multiple separate images of the source (strong lens-
ing). The extent of the distortion allows the mass of a foreground object

to be deduced. Mass-to-light estimates can be produced without the re-
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Figure 2.1: X-ray image from the Chandra Observatory of the merging
cluster 1E0657-558, known as the Bullet Cluster, with green contours
showing the inferred mass distribution from weak gravitational lensing.
The white bar shows a 200 kpc distance for scale. Figure from Ref. [10].

quirement for estimating velocities [7], and dark matter structures can
be mapped [8] [9].

One prominent example of the use of weak gravitational lensing is in
measurements of the mass distribution of two colliding galaxy clusters,
known collectively as the “Bullet Cluster”, shown in Figure 2.1. The
dominant baryonic component of the galaxies consists of X-ray-emitting
plasma, which experiences ram pressure during the collision. The galaxies
behave similarly to collisionless particles, moving past each other and
away from the point of impact, leading to spatial separation from the
plasma. The mass peaks of the system, provided by the gravitational
lensing signal, are aligned near the galaxies, rather than the plasma,
indicating that the dominant contribution to the mass of the system is
non-baryonic [10].

Rotation curves of galaxies describe the orbital velocity, v, of stars as
a function of radial distance, r. For a galaxy obeying Keplerian motion,
this takes the form:

ofr) = /S0 2.11)

where G is the gravitational constant and M (r) is the distribution
of mass as a function of radius. Assuming that mass is concentrated in
a sphere of radius R with constant density, the velocity is expected to
increase as v(r) o< r for (r < R) and decay as v(r) o< r~/2 for (r > R),
where the mass distribution is expected to remain roughly constant. In

the 1970s, using an extremely sensitive spectrometer to measure the red-
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Figure 2.2: Galactic rotation curve for NGC 6503. Baryonic contribu-
tions from the disk and gas are shown, together with the dark matter
halo contribution required to replicate the data. Figure from Ref. [15].

shift of stars in different parts of the galaxy, Vera Rubin was able to
precisely determine the rotation curve of Andromeda, and observed that
the orbital velocity approached a constant value with increasing radius
[11]. It was shown that this could be accounted for by introducing a new
mass component satisfying M (r) oc r [12] [13]. Similar behaviour was
observed in later measurements of many galaxies [14], including the ex-
ample shown in Figure 2.2, providing strong evidence for a non-luminous
halo component.

Cosmological evidence for the existence of dark matter is provided
by measurements of the Cosmic Microwave Background (CMB). In the
early Universe, free nuclei and electrons existed in a plasma. Thomson
scattering with free electrons meant that the mean free path of photons
was short, and ensured that the photons were in equilibrium, so acted as
a black body spectrum. Recombination occurred approximately 380,000
years after the Big Bang, and was the epoch at which the Universe had
cooled sufficiently for electrons and nuclei to first form atoms. Photons
then decoupled from the newly-formed atoms, and the Universe became
transparent, with photons free streaming since then. As the Universe
expanded, the photons continued to act as a black body, which today
has a temperature of 2.73 K and has been redshifted into the microwave
portion of the electromagnetic spectrum [16].

The first 25 years of surveying the CMB indicated that it was en-
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Figure 2.3: Map of fluctuations in the temperature of the CMB as mea-
sured by the Planck space observatory [19].

tirely smooth, however, in 1992, the COBE satellite mission discovered
anisotropies. These took the form of temperature fluctuations on the or-
der of 107°, following subtraction of the dipole anisotropy resulting from
the Doppler shift of the radiation due to the motion of the Earth with
respect to the CMB rest frame [17]. Prior to recombination, both dark
matter and baryons were pulled towards the centre of density fluctua-
tions, but, as the density of the photon-baryon fluid increased, pressure
was created that opposed this gravitational force. Baryons therefore
experienced acoustic oscillations resulting from competing gravitational
and radiation pressures, whereas dark matter continued to fall inward.
As the CMB photons were released, the pressure support was removed,
resulting in the gravitational collapse of matter to create stars and galax-
ies. The resulting variations in temperature left an imprint in the CMB,
providing evidence of these motions [18]. The anisotropies are mapped
at various angular scales, which are quantified by the multipole moments
of a spherical harmonic. A small multipole moment, [, corresponds to
a large angular scale, and vice versa. Figs. 2.3 and 2.4 show the latest
measurement of the temperature fluctuations and power spectrum from
the Planck collaboration [5], which was able to observe the anisotropies

on much smaller angular scales than COBE.

The location of the first peak corresponds to the curvature of the
Universe, whereas the ratio of odd and even peaks informs the baryonic
and dark matter densities. A higher baryonic density would allow the
baryons to fall further into the gravitational potential wells, so that the
odd peaks representing compressions would be amplified compared to the
even peaks indicating rarefactions. A high dark matter density increases

the size of the potential wells that the baryons can fall back into following
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Figure 2.4: CMB power spectrum as measured by the Planck collabora-
tion [5], where [ is the multipole moment corresponding to angular scale.
The fit assumes a ACDM model and the lower panel shows the residuals
between this fit and the data.

a rarefaction. A higher proportion of dark matter thus enhances the third
peak relative to the second [20]. The Planck collaboration measured the
densities of baryonic matter and dark matter to be ,h% = 0.022440.0001
and Q.h% = 0.120 +0.001, respectively, corresponding to a non-luminous
component comprising 84.3% of matter in the Universe. Here, the density
parameter €2, for the relevant species is the ratio of the physical density,

Pz, to the critical density, p., which provides a Universe of flat geometry:

q, = P _ 81Gp
Pe 3H?

where H is the Hubble parameter. Due to the large historical uncer-

(2.1.2)

tainty on H, abundances are often quoted as Q,h? where h = H/(100
kms™"Mpc™1).

2.2 Properties

The CMB power spectrum is well accounted for by the Lambda Cold
Dark Matter (ACDM) model, which includes the existence of dark matter
particles with several assumed properties [21]. For example, they must
be electrically neutral, as they do not interact with the fundamental
electromagnetic force. Evidence that DM particles were present before

recombination indicates that they must also be long-lived.
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Furthermore, dark matter particles appear to have been non-relativistic
(cold) at the time of Universal “freeze-out”, when their annihilation rate
became smaller than the Hubble expansion rate. Dark matter was able
to cluster in gravitational wells to form structures in the early Universe,
when baryons were still coupled to photons. However, relativistic dark
matter with a large free-streaming length would have been able to escape
this gravitational pull, leading to inconsistencies with observations of
large super clusters [22]. N-body simulations using cold dark matter are
capable of reproducing these large-scale structures, but show some dis-
crepancies with observations on sub-galactic scales, leading to the emer-

gence of modifications to ACDM, such as warm dark matter [23].

Measurements of the CMB, combined with predictions from Big Bang
nucleosynthesis (BBN), signify that baryonic matter comprises only a
small portion of the total matter content of the Universe. BBN pre-
dicts the abundance of light elements produced within minutes of the
Big Bang, when protons and neutrons were first able to form nuclei [16].
The rate of these reactions is dependent on the density of baryons in the
early Universe, which is usually expressed normalised by the relic pho-
ton density. Measurements of the abundances of light elements placed
constraints on this free parameter of baryon-to-photon ratio in the BBN
model. A larger baryon-to-photon ratio leads to more reactions and thus
a more efficient transformation of deuterium into *He. The abundance of
deuterium is thus highly sensitive to the baryon-to-photon ratio. Addi-
tionally, deuterium is only created during BBN and is destroyed at a pre-
dictable rate throughout stellar evolution, so observations of abundance
close to the primordial value are possible [24]. The first high-precision
measurements of deuterium were used to calculate a baryon density of
Oh? = 0.020 & 0.002 [25]. This baryon density alone would be unable
to produce the gravitational effects discussed previously, implying that

dark matter particles must be non-baryonic.

Observations of cluster collisions also place constraints on the self-
interaction of dark matter particles, with simulations of the Bullet Clus-
ter constraining the self-interaction cross-section per unit mass to o/m <
1.25cm?g™! [26].

In order to be considered a good candidate for dark matter, a new
particle must also be compatible with current astrophysical and exper-
imental constraints. Since no known particle is able to meet these re-
quirements, detection of dark matter would be compelling evidence for

new physics beyond the Standard Model.
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2.3 Candidates

A variety of candidates have been proposed for dark matter, with an
extremely broad mass range, spanning from ~ 1072! €V to several hun-
dred solar masses [4]. Some of the most popular candidates will now be
summarised, many of which are motivated by existing discrepancies in

the Standard Model of particle physics.

2.3.1 Neutrinos

Standard Model neutrinos were an early candidate for dark matter, but
constraints on their mass, from cosmological observations and measure-
ments of the tritium f-decay spectrum in the KATRIN experiment, indi-
cate that they can only make up a small portion of the total dark matter
density in the Universe [27] [28]. Their relativistic nature also leads to in-
consistencies with observations of structure, as discussed. A new species,
the right-handed sterile neutrino, would interact only via gravity and
through a weak coupling to left-handed Standard Model neutrinos. It
is postulated that sterile neutrinos would be produced through oscilla-
tions of active neutrinos. Although significant constraints exist on mixing
angle, for example from the non-observation of X-rays produced in the
decay of the sterile neutrino to the active neutrino, sterile neutrinos can
be considered primarily as a candidate for warm dark matter with a mass
on the keV scale [29] [30].

2.3.2 Axions

The axion is a quasi-Nambu-Goldstone boson introduced to solve the
“strong CP problem”; the absence of charge-parity violation in the strong
interaction [31]. Most mass ranges have been ruled out by accelerator
searches, astrophysical constraints from supernovae and red giants, and
cosmological constraints from the axion relic density [32]. However, ax-
ions within the mass range of 1peV < m < 10meV are candidates for
dark matter. Thermal axions would move too fast to reproduce ob-
served structures in galaxies and clusters, so axion dark matter must be
produced non-thermally [33]. The ADMX collaboration uses haloscope
technology to search for axions by converting them to detectable mi-
crowave photons using a strong magnetic field via the Inverse Primakoff
Effect [34]. Experiments also search for axions via their couplings with

electrons, in a process analogous to the photoelectric effect [35] [36].
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2.3.3 Massive Compact Halo Objects

Massive compact halo objects (MACHOs) are non-luminous astrophysi-
cal bodies consisting of baryonic matter, that could make up some frac-
tion of the dark matter in the Universe. Example MACHOs include
brown dwarfs, large planets, and neutron stars [37]. The MACHO project
monitored the brightness of stars in the Large Magellanic Cloud to ob-
serve 13-17 gravitational microlensing events over 5.7 years, but ruled
out a 100% MACHO halo at the 95% confidence level. The MACHO
halo fraction was instead placed at 20%, with typical MACHO masses
between 0.15 My, and 0.9 Mg, [38].

Primordial black holes (PBHs) are a subcategory of MACHOs that
would have formed from the gravitational collapse of density fluctuations
in the very early Universe [39]. The LIGO interferometer detected gravi-
tational waves from a merger of two black holes of mass ~30 M, [40], and
there was discussion of whether they could be primordial in nature and
constitute dark matter [41]. Observational constraints have been placed
on the abundance of PBHs at various mass ranges, for example using
velocity dispersions of star clusters or microlensing [39]. Gravitational
waves observed by LIGO and Virgo place the percentage of dark matter
consisting of PBHs at < 1% for masses between 1 Mg and 300 M, [42]
[43].

2.3.4 Modified Gravity

Shortcomings of the dark matter model include an inability to repro-
duce behaviour defined by Renzo’s rule (which states that every feature
in the luminosity profile of a galaxy has a corresponding feature in its
rotation curve) and the Tully-Fisher relation between the baryonic mass
and rotation speed of a galaxy [44]. An alternative hypothesis to dark
matter exists in the form of modifications to Newtonian gravity, a form
of which was first presented in 1983 [45]. Known as modified Newto-
nian dynamics (MOND), the proposal originated as an explanation of
the motion of galaxies, in which the gravitational force is altered at very
low accelerations. Despite success with gravitational effects, the MOND
theory struggles to reproduce all observations that motivate dark mat-
ter, including the CMB power spectrum [44]. Analysis of observations
of wide binary stars by the Gaia satellite were used to claim a deviation
from Newtonian expectations, and report a gravitational anomaly in ac-
cordance with a MOND model at weak accelerations of gy < 107 ms—2

[46], with similar conclusions drawn in Ref. [47]. However, a subsequent

45 of 241



2. Dark Matter

Bayesian analysis, using much stricter data quality cuts, found that the
same data were consistent with Newtonian gravity, and excluded MOND
at 160 confidence. Although these results appear to falsify MOND, it is
made clear that they cannot be used to argue that the ACDM model is

necessarily correct [48].

2.3.5 Weakly Interacting Massive Particles

It may be assumed that dark matter particles were produced thermally
in the early Universe, and were in thermal equilibrium with baryonic
matter. As the Universe expanded, the density of dark matter particles
per comoving volume reduced with decreasing temperature, until the
moment of freeze-out, when the density of dark matter particles became
constant. This provides a dark matter relic density of

2 3x107* cm® s~

Oh? ~ , (2.3.1)

<Uannv>

where (o,n,v) is the thermally-averaged dark matter annihilation
cross-section [49]. The calculated dark matter relic density can be pre-
dicted by a particle with mass on the GeV scale that couples to the Stan-
dard Model via the weak interaction, with an annihilation cross-section
of (Gannv) ~ G3m2 [50].

Dark matter particles with these properties are known as Weakly
Interacting Massive Particles (WIMPs), and their ability to reproduce
the expected relic density is known as the “WIMP miracle”. One widely-
discussed candidate for the identity of the WIMP is the lightest of the four
neutralinos in the Minimal Supersymmetric Standard Model (MSSM):
electrically neutral fermionic states which are composites of the super-
partners of the neutral gauge bosons and the neutral Higgs bosons. This
particle would be stable and could only be destroyed as a result of pair
annihilation, making it a good candidate for dark matter [51]. WIMPs
have been a primary focus of dark matter detection experiments in recent

years.

2.4 Detection

As shown by Figure 2.5, three complementary methods are employed in
dark matter searches, exploiting interactions in the form of dark mat-
ter annihilation, production and scattering off Standard Model particles.
Each mode will be discussed, with a particular focus on direct detection

of WIMP-nucleus scattering.
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Figure 2.5: Cartoon Feynman diagram illustrating the three modes of
dark matter detection, where y and ¢ represent dark matter and Standard
Model particles, respectively.

2.4.1 Collider Searches

Dark matter produced through collisions of Standard Model particles
cannot be observed directly, but its presence could be inferred by miss-
ing transverse momentum [52]. The Large Hadron Collider (LHC) is
the highest-energy particle collider currently operating, and a goal of the
multipurpose ATLAS and CMS experiments is to search for physics be-
yond the Standard Model (BSM), including dark matter. The minimal
experimental signature of dark matter production is a single visible Stan-
dard Model “X” particle combined with missing transverse momentum,
known as a mono-X process [53].

Many models exist for the interactions between Standard Model and
dark matter particles, so collider searches often make minimal assump-
tions about the detectable products, so as to be model agnostic. This can
be achieved by requiring that the recoiling visible particles are governed
by Standard Model processes [54]. This includes initial state radiation
(ISR) in the form of jets [55], photons and vector bosons [56] [57]. If the
mass of the mediator is large compared to the energy of the collision, an
effective field theory (EFT) can be used, and the unspecified coupling
between the Standard Model and dark matter particles can be modelled
as a contact interaction described by a set of operators, as shown in the
Feynman diagram in Figure 2.6a [54].

As couplings of the Higgs boson to light quarks and gluons are sup-
pressed, the rate of Higgs ISR is not significant. Mono-Higgs searches
instead focus on interactions in which the Higgs couples directly to a BSM
particle which participates in the production of dark matter. An example
process is shown in Figure 2.6b, where a heavy neutral Z’ mediator de-
cays to a Higgs boson, h, and a pseudoscalar, A%, of a two-Higgs-doublet
model, where A° then decays to a pair of dark matter particles [58]. This

47 of 241



2. Dark Matter

v/ Z
q X
q X
(a)
q h
7/
//
7’ %
7
-
s X
q
X

(b)

Figure 2.6: Feynman diagrams of mono-X signatures in collider searches
for dark matter. (a) shows a process with photon or Z boson initial state
radiation, where the interaction between Standard Model quarks and
antiquarks (¢ and ¢), and dark matter particles (y and x) is modelled
using an effective field theory. (b) shows an example of a simplified model,
in which a mediator Z’ decays to a Higgs boson, h, and a pseudoscalar,
A®, with the latter then decaying to a pair of dark matter particles.

is an example of a “simplified model”, in which the collision energy is
comparable to or higher than the mediator mass, and so interactions are
resolved into single-particle exchanges [53]. These models include ad-
ditional degrees of freedom associated with the mediator particle, and
bridge the gap to “complete models” with many parameters, such as
MSSM. As no evidence of dark matter has been found, LHC searches

have been able to set constraints for various models.

2.4.2 Indirect Detection

Indirect dark matter searches aim to detect the products of annihilations
or decays of dark matter particles. Dark matter could annihilate directly
to v rays, and models with hadronic final states would also result in a
signal. 7 rays have the benefit of travelling directly from the source with
very little absorption [59]. The Fermi Gamma-Ray Telescope provides
the leading sensitivity to v rays in the GeV region, and has reported
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an anomalous flux in this range, which is well-explained by WIMP dark
matter, but also by pulsars [60]. Meanwhile, the HESS air Cherenkov
telescope sets the tightest constraints on TeV dark matter annihilation
in the galactic centre [61].

Dark matter annihilation can also result in antimatter, which can be
studied with cosmic-ray observations. Cosmic rays allow probing of very
high energies, but their propagation is not well understood. Experiments
including PAMELA have reported an excess in 10 - 1000 GeV positrons
[62], and AMS-02 observed an excess of 5 - 10 GeV antiprotons [63],
which hint at dark matter candidates with masses on the ~ TeV and ~
100 GeV scales, respectively [64] [65].

Searches for secondary particles also include high-energy neutrinos
resulting from the annihilation of WIMPs in the Sun, as well as from
the galactic centre. Due to the relative difficulty of detecting neutrinos,
constraints from these searches are generally weaker than those from ~
signals and cosmic rays [66]. The IceCube underground neutrino obser-
vatory detected a TeV - PeV neutrino flux [67], which could include a
component from dark matter decays [68], however the non-observation
by the Fermi telescope of the v rays that would accompany this decay
provides constraints [69]. Unlike collider searches, indirect detection is

able to set limits on the lifetime of dark matter particles [70].

2.4.3 Direct Detection

The dark matter halo of the Milky Way would produce a WIMP flux
on Earth of the order 10°(100 GeV /m, )em~2s™!, where m,, is the WIMP
mass. This flux is sufficiently large that a measurable fraction of WIMPs
are expected to scatter off target nuclei in direct detection experiments.
The event rate of WIMPs is given by

dN P

diE N mem]v

do

/U wf(v) v (2.4.1)

€ = tMry is the experimental exposure, where ¢ is the observation time,
and My is the detector mass [71]. This dependence on mass and time
motivates the preference for large-scale detectors and long livetimes. p is
the local dark matter density and my is the mass of the target nucleus.
Umin 18 the minimum speed required to produce a WIMP recoil of energy
E.

The velocity distribution of WIMPs in the Milky Way, f(v), is the
main astrophysical input to the rate equation. Direct detection experi-
ments typically assume a Standard Halo Model (SHM), where WIMPs
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follow an isotropic Maxwell-Boltzmann velocity distribution of the form

1

flv) = 2n)os exp (— (V = Viag ) /202> (2.4.2)

where vi,, is the velocity of the Earth with respect to the Galacto-

1

centric rest frame and has an average value of |vi,, |~ 230 km s, and

o is the velocity dispersion, with a typical value of 156 km s~

do
' dE?

tion model used. The total cross-section is often considered as a com-

The total WIMP-nucleus cross-section depends on the interac-
bination of spin-independent (SI) and spin-dependent (SD) components,
corresponding to scalar or vector couplings to quarks, and axial-vector

couplings to quarks, respectively [71]:

do _ _mn
dE 242 yv?

05" F3,(E) + 03P F3p(E)| . (2.4.3)

§I’SD are the SI and

SD WIMP-nucleus cross-sections at zero momentum transfer and Fsr gp

Here, p,n is the WIMP-nucleus reduced mass, o,

are form factors describing the nuclear charge density. The SI model
assumes identical interactions with neutrons and protons, and considers
the mass and charge distribution of the entire nucleus. For SI scattering,
the Helm form factor is commonly used, and is a convolution of the charge
density of a spherical nucleus, which has a uniform distribution inside a
certain radius and is zero outside, with an exponential factor to allow for

the soft edge of the nucleus. 05 LN is defined as:

At =N 7 (A- 2 244

where A is the atomic mass, Z is the proton number and f, and f,
are the effective WIMP couplings to protons and neutrons, respectively
[72]. Assuming that f, = fn,

oot = <'MXN> 2 A%o5T (2.4.5)
Hxn

where fi,,, is the WIMP-nucleon reduced mass and ¢! is the WIMP-

nucleon SI cross-section. The dependence on A% means that target ma-

terials with a high mass number have an increased sensitivity to SI in-

teractions. Figure 2.7 shows the event rate as a function of nuclear recoil

energy for several target materials, for a WIMP mass of 40 GeV, as well

as the dependence of rate on WIMP mass.

The event rate for SD interactions is given by
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Figure 2.7: Reproduction of Figure 1.5 from Ref. [73], produced using the
wimprates package [74]. Shown is the differential WIMP rate, assuming
SI interactions, as a function of nuclear recoil energy. Left is a 40 GeV
WIMP interacting with various target materials, and right is a selection
of WIMP masses scattering in xenon. A value of ¢ = 1 x 10746 cm?
has been chosen.

oS — SQG%NECN (J+1)
0 T J
where J is the total nuclear spin of the target and (S,) and (S,) are

[a, (S,) + an (Su)]? (2.4.6)

expectation values of the proton and neutron spin operators from calcu-
lations using nuclear models. a, and a,, are the couplings to protons and
neutrons, one of which is usually set to zero when quoting SD results, as-
suming WIMPs couple to protons or neutrons only. Neutron-odd targets
are most sensitive to WIMP-neutron interactions, while proton-odd tar-
gets are most sensitive to WIMP-proton interactions. For heavy target
nuclei such as xenon, the SI component is dominant.

Use of an effective field theory can provide a more general approach,
by parameterising WIMP-nucleon interactions in terms of fourteen four-
field operators. The inclusion of momentum dependence in these opera-

tors allows for models beyond the typical SI and SD interactions [75].

2.5 Direct Detection Techniques

Various direct detection techniques aim to measure the energy of the
WIMP-nucleus interaction by observing light, charge, heat, or some com-
bination of the three. Six of the most common detector designs, informed

by Ref. [76] and shown in Figure 2.8, are summarised, along with exam-
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Figure 2.8: Diagrams of the six direct detection techniques described in
the text. The scatter of a WIMP, x, is shown in red and the propagation
of recoil energy is shown in dark blue. All images from Ref. [76].

ples of each type of experiment.

e Anorganic crystal detectors: The first WIMP direct detection
experiment used a high-purity germanium crystal diode to measure
charge in the form of electron-hole pairs [77]. Current experiments
use Ge (CDEX-10 [78]) and Si (DAMIC [79], SENSEI [80]) semi-
conductors to achieve very low thresholds, due to the small amount
of energy required to create electron-hole pairs, but high levels of
electronic noise limit the mass of these detectors to the kg-scale.
Alternatively, light signals from arrays of high-purity kg-scale crys-
tals can be observed by photomultiplier tubes (PMTs), as shown in
Figure 2.8a. Intrinsic backgrounds are high, and background dis-
crimination techniques such as fiducialisation, where a clean inner

part of the active volume is defined, are not possible. The WIMP
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wind, and hence the rate of recoils, varies throughout the year due
to the orbital motion of the Earth. Background signals are not
expected to experience this periodic behaviour [81], so experiments
such as DAMA /LIBRA [82], COSINE-100 [83] and ANAIS-112 [84],
using thallium-doped Nal, and KIMS [85], using thallium-doped
Csl, search for an annual modulation signal. Section 2.7 presents
a discussion of the modulation effect reported by DAMA /LIBRA,

which is in tension with other experimental results.

Cryogenic solid-state detectors: Semiconductor detectors are
maintained at millikelvin temperatures by a cryogenics system to
reduce thermal noise. The temperature increase resulting from
heat signals in the form of phonons is then measured with super-
conducting transition edge sensors. Simultaneously measuring the
ionisation signal using an applied voltage allows for background
discrimination. All modern cryogenic detectors therefore exploit
this two-channel detection approach, with the SuperCDMS [86] and
EDELWEISS [87] collaborations also measuring the ionisation sig-
nal using Ge, and CRESST [88] measuring the scintillation signal
using CaWQ,. Cryogenic detectors provide excellent energy resolu-
tion, but single detectors are limited to the kg-scale, as a small heat
capacity is required. This can be overcome by using arrays of crys-
tals, but the larger surface-to-volume ratio increases the impact of
surface contaminants [76]. Searches that operate with low energy
thresholds offer improved sensitivity to low-mass dark matter parti-
cles. For example, in the CDMSIlite mode, large amplification of the
phonon signal by a high bias voltage across the detector allows for a
much lower energy threshold than in the normal SuperCDMS oper-
ating mode [89]. However, without the ionisation signals recorded

in normal operation, there is less background discrimination.

Single-phase noble liquid detectors: The noble elements xenon
and argon are excellent scintillators, and do not suffer from the high
intrinsic backgrounds associated with long-lived isotopes in kryp-
ton. They can both be liquified to form a dense target for WIMPs.
Following an interaction, single-phase detectors measure the scin-
tillation signal only, so noble-liquid targets are often spherical and
surrounded by PMTs to ensure high light collection. The posi-
tion of an interaction is determined by the photon timing and the
PMT hit pattern. Argon detectors, such as DEAP-3600 [90], make
use of excellent pulse-shape discrimination allowing for powerful

suppression of backgrounds, necessary due to high levels of 3°Ar.
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Conversely, xenon detectors, including XMASS [91], must rely on

fiducialisation.

Dual-phase time projection chambers: Time projection cham-
bers (TPCs) use electric fields to drift electrons through a sensitive
volume in order to perform three-dimensional position reconstruc-
tion. Dual-phase dark matter detectors also observe the primary
scintillation signal in liquid, utilising PMTs in arrays at the top and
bottom of the (typically cylindrical) detector. The ionisation sig-
nal is collected by drifting electrons up to the liquid surface using a
vertical electric field, where they are emitted into an additional gas
layer by a stronger extraction field. Here, a secondary scintillation
signal is produced from collisions with gas atoms. The measure-
ment of both signals allows for mm-precision position reconstruc-
tion. The precisely-measured time separation between the two sig-
nals, together with knowledge of the electron drift velocity, provides
the height of the interaction. The XY position is determined from
the location of secondary scintillation light in the top PMT array.
The relative excitation and ionisation yields depend on the type
of interaction, so the ratio between primary and secondary signals
allows for background discrimination. The Darkside-50 [92] collab-
oration uses argon as the target material, whereas LUX-ZEPLIN
(93], XENONNT [94] and PandaX-4T [95] use xenon TPCs, which

will be discussed in further detail in section 2.6.

Bubble chambers: Bubble chambers contain superheated liquids
held just below their boiling point. Energy depositions will cause
a local phase transition, resulting in the creation of a bubble. The
chamber is observed by cameras, allowing for mm-precision posi-
tion determination, although energy reconstruction is not possible,
and significant deadtime is introduced by the requirement for com-
pression and decompression following each event. The isotope F
has the highest sensitivity to SD WIMP-proton couplings, so is
typically contained in the target fluid, while iodine provides good
sensitivity to SI interactions, due to its high mass number. The
PICO collaboration uses a C3Fg target material and currently re-

ports the highest sensitivity to WIMP-proton scattering [96].

Directional detectors: Directional detectors search for an excess
of nuclear recoils from the direction of the WIMP wind. This often
exploits the daily modulation resulting from the rotation of the

Earth with respect to the WIMP flux. Low-pressure gas targets
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such as C3F,4 are the most commonly-used materials due to the long
ionisation tracks produced by nuclear recoils, allowing for improved
direction reconstruction, and sensitivity to SD interactions is often
a focus. Tracks are either observed by cameras, or charge is drifted
under an electric field and collected on multi-wire readout planes.
Good discrimination of backgrounds is achieved using track range
and ionisation density. The DRIFT-II TPC uses a CSy; + C3F4 +
O, target material [97].

2.6 Dual-phase Xenon TPCs

The principle behind dual-phase TPCs was summarised in section 2.5.
The use of xenon as a target material in this type of detector will now be
discussed, and a more detailed description of the microphysics processes
involved in the generation of the primary and secondary scintillation

signals will be given.

2.6.1 Interactions in Xenon

There are several advantages to using xenon as the target material. First,
liquid xenon (LXe) allows for excellent self-shielding due to its high den-
sity, meaning that a low-background inner fiducial volume can be defined
[98]. The high density also allows for a high target mass within a rel-
atively small cryostat. The high mass number of xenon (A = 131.3)
increases sensitivity to SI interactions, which depend on A2, and the nat-
ural abundance of neutron-odd ?*Xe and '3!Xe provides high sensitivity
to SD interactions. LXe experiments are also sensitive to many dark
matter models beyond SI and SD scattering using an EFT approach,
due to the large atomic mass and neutron-rich composition [99]. As well
as this, xenon has an absence of long-lived isotopes, besides *%Xe and
124Xe, which have extremely long half-lives [100].

As discussed in section 2.5, interactions in target materials result in
energy deposits in the form of excitation, ionisation and heat, allowing
for three channels of detection. The energy, Ey, transferred to a medium

can thus be written as

E() = .Z\]ZEWZ + Ne$Eez + heat, (261)

where E., and F; are the mean energies required to excite or ionise
an electron and N, and N; are the number of excited or ionised atoms.

The de-excitation of atoms creates primary scintillation, known as the
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S1 signal, while the ionisation electrons result in the secondary S2 signal.

The signature of a WIMP interaction, as well as that of neutron back-
grounds, is a nuclear recoil (NR), whereas v and 3 backgrounds result in
electron recoils (ERs). The energy transferred to heat is much more sig-
nificant for NRs than ERs, and is not detected in the TPC, but instead
dissipates in the LXe [101]. The ratio N.,/N; was also found to differ
depending on the interaction type, with a value in the range [0.06 - 0.2]
for ERs in LXe [102], compared to ~ 1 for NRs [103]. This allows for
discrimination between NRs and ERs, which permits background rejec-

tion.

2.6.2 Primary Scintillation: S1 Signal

The primary scintillation signal can be produced through two distinct
mechanisms [101], the first of which is the excitation of a xenon atom,
which, with a neighbouring atom, forms an excimer; a strongly-bound
diatomic molecule in the excited state. The de-excitation of the excimer
to the ground state leads to the emission of a photon in the vacuum
ultraviolet (VUV) range, with a wavelength peaking at 178 nm, denoted
by hv.

e+ Xe — Xe* 4+ e~ impact excitation
Xe* 4+ Xe — Xey" excimer formation
Xey"” + Xe — Xep + Xe  relaxation

Xe; — Xe 4+ Xe + hv VUV emission

(2.6.2)

The superscript v indicates excited states with vibrational excitation,
as opposed to purely electronic excitation.

Scintillation also arises from the recombination of diatomic positive
xenon ions with ionisation electrons. The diatomic ions are formed
through interactions of xenon ions with neighbouring atoms, before re-
combination results in an excited atom. An excimer is then produced
with a neighbouring atom, which leads to the emission of a VUV photon

through a similar mechanism to the process described in Equation 2.6.2.

e~ + Xe — Xe + 2¢~ ionisation
Xet + Xe + Xe — Xej + Xe
e~ + Xef — Xe™ + Xe recombination

(2.6.3)
Xe** + Xe — Xe* 4+ Xe + heat

Xe* 4+ Xe + Xe — Xej + Xe + heat
Xe; — Xe + Xe + hv VUV emission
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The recombination fraction depends on both the applied electric field
and the recoil energy of the interaction.

During the scintillation process, Xe; — Xe 4+ Xe + hv, the molecular
Xe excimer decays with both fast and slow components, corresponding to
the de-excitation of singlet and triplet states, respectively. This process

can be described by:

Emission Time = Cje /™ 4 Cye /™ (2.6.4)

where 71 and 73 are the time constants of the decay of the singlet and
triplet states, respectively. For LXe, measurements of 71 range from 2
to 4 ns, while measurements of 73 range from 21 to 28 ns. The ratio of
singlet to triplet states, (C17/C373) depends on the interaction type, so
the pulse shape will vary between ER and NR events [104]. This effect
can be exploited in the method of pulse shape discrimination, particularly
in argon TPC experiments, as the LAr decay times are separated by two
orders of magnitude, with 77 = 7 ns and 73 = 1.6 ps [105]. Although
this is an appealing property of liquid argon, detectors using this target
material require an exposure roughly five times that of LXe experiments

due to the enhancement of the interaction cross-section for xenon [100].

2.6.3 Secondary Scintillation: S2 Signal

Ionisation electrons that do not undergo recombination are drifted, un-
der the influence of an electric field, to the liquid surface, where they
must overcome a potential barrier to be extracted into the gas phase.
This is achieved through the application of a much stronger extraction
field, which accelerates the electrons to sufficient energies to excite xenon
atoms in the gas, leading to secondary scintillation, known as electrolu-
minescence. The light yield per cm depends on both the electric field
strength, E', and the gas pressure, P, through

dNpy,

dx
The gas-specific coefficients have been calculated to be a = 0.137 V71,
B =177 bar'em™! and v = 45.7 cm™! for xenon [101]. The secondary
scintillation signal is larger than the S1 signal by orders of magnitude.
For example, for values of £ = 10.2 kV and P = 1.8 bar, O(10%) VUV

photons would be produced by a single electron travelling over a distance

=aF — P —~. (2.6.5)

of 0.8 cm between the liquid surface and the anode [106]. It is therefore
sensitivity to the S1 signal that limits the minimum detectable recoil

energy.
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2.6.4 Light and Charge Yields

Following from Equation 2.6.1, the energy of an interaction can be written

as

By = (Nt Noy), (2.6.6)

where W is the energy required to produce an ionisation electron or
excimer, which has a value of 13.5 eV for LXe, using the linear function
presented in Ref. [107]. L is a nuclear quenching factor, which accounts
for energy lost to dissipated heat. The number of photons, n,, and
electrons, n., escaping an interaction site can be related to N, and N;

by the probability of recombination, r through

ne = Ni(1 —r) (2.6.7)

Ny = New + Nyt (2.6.8)

allowing Equation 2.6.6 to be rewritten as [108]

W
Ey = f(ne +n.). (2.6.9)

It should be noted that

Ne + My = Ny + NN; (2.6.10)

is always true, regardless of the recombination fraction.

The S1 and S2 signals can be written in terms of n, and n. as

S1 =n,g (2.6.11)

S2 = ne(eNph01,gas) = NeG2s (2.6.12)

where g; is the light collection efficiency of scintillation photons and
J1,0as 1s the light collection efficiency in the gas phase. € is the electron ex-
traction efficiency and NN, is the number of electroluminescence photons

per electron. Equation 2.6.9 can therefore be rewritten as

W (S1 S2
Ey=—|—+—|. 2.6.13
’ L (91 92) ( )

For ER interactions, the nuclear quenching factor, L is assumed to be

1, as minimal energy is lost to heat, whereas for NRs it varies with recoil
energy and can be modeled by the Lindhard theory [103], [109]. S1 and
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Figure 2.9: Reproduction of Figure 1.7 from [73], which was originally
based on Ref. [111], showing the current exclusion limits for spin-
independent WIMP-nucleon scattering. The gradient of the neutrino fog,
n = —(dlno/dIn N)~!, represents the difficulty in claiming a WIMP ob-
servation, with a larger value of n requiring a higher number of events
to report a discovery. The different sources of neutrinos are indicated,
including the DSNB (diffuse supernova neutrino background).

S2 signal sizes are measured in units of photons detected (phd) rather
than photoelectrons, to account for the ~ 20% probability of one VUV
photon inducing two photoelectrons at the PMT photocathode, known
as the double photoelectron (DPE) effect [110].

2.7 Current Status of Direct Detection

Figure 2.9 shows the current limits in the parameter space of WIMP mass
and WIMP-nucleon cross-section set by direct detection experiments, as-
suming SI interactions. Results from the DAMA/LIBRA collaboration
have been demonstrating an annual modulation signal consistent with
dark matter for over 20 years, reaching a significance of ~ 120 [82]. The
inconsistency of the DAMA/LIBRA signal with the limits provided by
null results from other direct detection experiments has been a cause
for concern. It has been suggested that the modulation could be due
to changes in the detector environment or the analysis methods used.
The DAMA /LIBRA collaboration subtracted the average rate over each
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year to obtain the residual rate, with each cycle of data taking start-
ing at roughly the same time of year. A slowly increasing background
rate could lead to a sawtooth wave, which also fits the data well and
could provide an explanation for the observed modulation [112]. In 2021,
the ANAIS-112 experiment released results after three years of search-
ing for an annual modulation signal, using the same detector material
of Nal(T1), that were incompatible with DAMA /LIBRA at 3.3 and 2.6
o in [1-6] and [2-6] keV energy ranges [84]. The SABRE collaboration
will further test the DAMA /LIBRA claim using similar detectors in the
northern and southern hemispheres to disentangle seasonal effects, such

as a temperature dependence [113].

The LUX-ZEPLIN experiment has set the most stringent limits for
WIMP masses above 9 GeV, with cross-sections above 9.2 x 1078 cm?
rejected at a confidence level of 90% for a WIMP mass of 36 GeV [93].
Above a WIMP mass of 3 GeV, the strongest constraints are all set by
experiments which use LXe TPCs, which have been leading the field in
these mass ranges since the first results from ZEPLIN-II and XENON10
in 2007. The competition between LXe projects has led to developments
in technology that have since been adopted by the community. Examples
include improvements to photosensors, purification methods, calibration
sources and the Noble Element Simulation Technique (NEST), which

models light and charge yields, as well as detector responses [100].

Searches for low-mass WIMPs are limited by detector thresholds, but
sensitivity to this parameter space could be achieved using the Migdal
effect. It is predicted that during a scattering process, a small displace-
ment of the target nucleus relative to the electron shells can, with a
small probability, excite or ionise the atom. Sub-GeV dark matter that
would produce undetectable NRs of sub-keV energy could produce keV-
scale ERs through the Migdal effect, above the detection threshold of
several existing detectors [114]. Although the Migdal effect is yet to
be observed, several experiments have reported improved WIMP exclu-
sion limits by incorporating the process into their signal models, with
Darkside-50 achieving the most stringent limits in the 40 MeV - 3.6 GeV

mass range [115].

Direct detection experiments are limited by the so-called neutrino
floor, where WIMP-nucleus scattering becomes indistinguishable from
coherent neutrino-nucleus scattering due to solar neutrinos, atmospheric
neutrinos and the diffuse supernova neutrino background (DSNB), a hy-
pothesised population of neutrinos produced in the core collapse of su-

pernovae throughout the history of the Universe [116]. It should be
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noted that this limit can in fact be overcome with sufficient statistics
for most WIMP masses, unless the WIMP and neutrino signals are an
exact match. As well as this, the position of the limit is dependent on
a choice of astrophysical parameters. Therefore, the term “neutrino fog”
has recently been adopted by some [111]. In Figure 2.9, the neutrino fog
is defined by the parameter n, which describes how a WIMP discovery
limit scales with the number of observed background events. A higher
value of n represents an increased number of WIMP events required to
claim a discovery. Directional detectors could provide an avenue to search
for dark matter beyond the neutrino floor.

Projected sensitivities for the LUX-ZEPLIN experiment leave only a
further order of magnitude of available parameter space before the neu-
trino fog is reached, which is sufficient to explore with a single future
generation three (G3) multi-tonne LXe TPC experiment. The LUX-
ZEPLIN, XENON and DARWIN collaborations have formed the XLZD
consortium, which aims to create the ultimate xenon observatory, search-
ing for neutrinoless double 3 decay, solar and astrophysical neutrinos, and
other dark matter candidates, as well as WIMPs [117].
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Chapter 3

The LZ Detector and Data
Quality

The LUX-ZEPLIN (LZ) experiment is based 1478.3m underground in
the Davis Cavern at the Sanford Underground Research Facility (SURF)
in South Dakota. LZ utilises two-phase xenon technology to operate low-
background searches for WIMP signals. This chapter will discuss the LZ
detector and software, as well as backgrounds and data quality, which

must be well-understood in order to produce a robust science result.

3.1 The LZ Detector

As shown in Figure 3.1, LZ is a multi-detector experiment, consisting of
an inner TPC containing the LXe target material, surrounded by two
active veto systems, the Outer Detector (OD) and Skin, for background
rejection and in-situ characterisation. These primary components will be

discussed in the following sections.

3.1.1 The Time Projection Chamber

A cylindrical TPC containing a 7-tonne active volume of LXe, with a
thin layer of gaseous xenon (GXe) at the top, is situated inside two
titanium cryostats: the Outer Cryostat Vessel (OCV) and Inner Cryostat
Vessel (ICV). The TPC is used to detect the primary scintillation (S1)
and secondary electroluminescence (S2) signals described in chapter 2.
Whereas S2 signals are relatively large due to the high charge yield in
GXe, some S1 pulses consist of only a small number of photons, so it was
necessary to design the TPC to maximise their collection.

Light is collected by 494 3-inch R11410-22 Hamamatsu photomul-
tiplier tubes (PMTs) arranged in arrays at the top and bottom of the
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Figure 3.1: Schematic of the LZ experiment from Ref. [106].

TPC. Incident photons propagate through PMT windows, which are
made from quartz in order to maximise sensitivity in the VUV range
within which S1s and S2s are emitted in xenon. Photons then encounter
the photocathode, where electrons are produced via the photoelectric
effect. Electron multiplication occurs at a series of dynodes, before col-
lection at the PMT anode. The PMTs were designed specifically for high
performance at LXe temperatures and ultra-low radioactivity [118]. The
TPC is lined with highly-reflective polytetrafluoroethylene (PTFE). The
majority of S1 light is collected by bottom array PMTs, predominantly
a result of reflections at the liquid surface, and the immersion of bottom
array PMTs in LXe, which has a similar refractive index to the quartz of
the PMT windows. The 241 bottom-array PMTs are therefore arranged
in a tightly-packed hexagonal array to optimise S1 light collection.

Four high-voltage stainless steel mesh grids produce the vertical elec-
tric fields in the TPC, with field-shaping rings in the PTFE walls main-
taining field-uniformity. The grids divide the TPC into three regions, as
shown in the schematic in Figure 3.2. The first is a reverse field region
(RFR) between the bottom and cathode grids. The bottom grid has a
small negative bias and exists to protect the bottom PMT array from
the strong fields above it. In the second region, between the cathode and
gate grids, the drift field causes ionisation electrons to travel upwards.
The final region is the extraction region between the gate and anode
grids. The electrons are emitted from the liquid into the gas layer by the
stronger extraction field between these grids, where they gain sufficient
energy to produce the secondary scintillation light known as the S2 signal
[106].
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Figure 3.2: Schematic of the TPC inside the ICV and OCV alongside
a diagram showing the positioning of the grids and the different field
regions that they produce, based on Fig. 2 from Ref. [119]. Blue indicates
the LXe, whereas light grey represents the GXe.

Accurate XY position reconstruction, using the location of S2 light in
the top PMT array, is vital, particularly to avoid leakage of backgrounds
from near the PTFE walls towards the detector centre. Therefore, unlike
the bottom array, top-array PMTs overhang the edges of the TPC (where
they transition to an evenly-spaced, circular arrangement) to avoid an
inward reconstruction bias. As described in chapter 2, the Z-position
(or “drift time”) is calculated from the time difference between the two
signals, using the constant speed of the drifting electrons. The relative
ionisation yield is used to distinguish between electron and nuclear re-

coils.

3.1.2 Veto Detectors

As WIMPs are only expected to scatter once, two veto detectors are
employed to tag events with additional energy deposits outside the TPC.
The Skin detector is situated inside the ICV, surrounding the TPC, from
which it is optically separated. Containing no gaseous xenon, the Skin is
a scintillation-only detector. It holds an additional 2 tonnes of LXe that
is divided between a cylindrical side-skin region and a dome underneath
the TPC. The Skin acts as a scintillator to tag scatters primarily from

internal ~ rays, as well as neutrons. 93 1-inch Hamamatsu R8520 PMTs
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and 20 2-inch Hamamatsu R8778 PMTs view the side skin, while 18
2-inch Hamamatsu R8778 PMTs observe the dome [120].

The OCV is enclosed by an Outer Detector (OD), which acts as a
and neutron anti-coincidence system, consisting of ten tanks filled with
a total of 17.3 tonnes of gadolinium-loaded liquid scintillator (Gd-LS).
Gadolinium efficiently captures neutrons, a problematic NR background
to WIMPs, which release a ~-ray cascade of up to ~ 8 MeV in total
energy. The OD was designed to have a > 95% neutron tagging efficiency;,
as the scintillation light produced in the subsequent interactions in the
LS generally occur within the same event window as the S1 [121]. 120 8-
inch Hamamatsu R5912 PMTs, arranged on ladders around the detector,
collect OD scintillation light [106].

Finally, a water tank holding 228 tonnes of ultrapure water provides

further shielding from cavern s and neutrons.

3.2 LZ Data and Software

Following amplification and shaping, raw signals from PMTs are passed
to the LZ data acquisition (DAQ) system for digitisation by a 32-channel
Analogue-to-Digital Converter card. In order to reduce the raw wave-
form volume, data are collected in Pulse Only Digitisation (POD) mode,
where only groups of contiguous signals above a threshold in each PMT
are stored in circular buffers. Both high- and low-gain signals are ac-
quired, to account for the high dynamic range required to detect small
S1 and large S2 signals. A filter is applied to select useful data, which are
retrieved and compressed by a Data Extractor and sent to a Data Col-
lector for temporary storage, before being written to disk [106]. WIMP
search events are typically triggered by S2s, with the amplitude, channel
multiplicity and coincidence window all contributing to the trigger logic.
The nominal total rate of S2 triggers is ~ 5 Hz during data taking for
the WIMP search. Event windows span from 2ms before to 2.5 ms after
the trigger.

The LZ Analysis Package (L.Zap) generates Reduced Quantities (RQs)
from raw waveforms at the levels of individual PMT channel pulses,
detector pulses (generated by summing channel pulses), and the entire
event. One such pulse-level RQ, used to describe the signal size, is the
integrated pulse area.

LZap contains algorithms to select and classify pulses. Physical pulses
with a PMT coincidence of one are, by default, single photoelectron

(SPE) pulses. RQs describing the shape of the pulse are employed to
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A

a) Single Scatter (b) Multiple Scatter
) Pile-up (d) Other

Figure 3.3: Examples of the possible interaction types, as categorised by
LZap, with S1 pulses shown in green and S2 pulses in blue.

distinguish between Sl-like and S2-like pulses, as Sls typically have a
more positive skew than S2s, which experience electron diffusion. S1-
like pulses must meet an S1 coincidence requirement of three, else they
are classified as multiple photoelectron (MPE) pulses. S2-like pulses are
categorised as single electrons (SEs), unless they meet a minimum S2
area requirement. An “Other” category exists for all remaining pulses
that do not fulfil any of the criteria. Position reconstruction of S2 pulses
is achieved using the Mercury LZap algorithm, which determines the
coordinates and scintillation intensity that provide the optimal similarity
between the observed PMT hit pattern and a light response model [122].

An interaction-finding LZap algorithm analyses the size and shape
of pulses within an event to identify prominent Sls and S2s from the
primary physics interaction. These are the pulses that govern the type
of interaction, leading to classification of events as: Single Scatter (SS),
for a single S1 proceeding a single S2; Multiple Scatter (MS), for a single
S1 followed by multiple S2s; Pile-up, for multiple S1s and S2s in various
orders; and Other, for noise or isolated Sls or S2s. Examples of each
topology are shown in Figure 3.3.

Only SS events are considered as candidate WIMPs. The LZ Offline
Event Viewer is a web-based tool allowing for inspection of waveforms in
all three detectors within an event, with LZap-derived properties, such
as pulse classifications and areas, also available to view. A PMT map
indicates the hit pattern of light collected. An example SS event on the
Offline Event Viewer webpage is shown in Figure 3.4, with magnified
images of the S1 and S2 waveforms in Figure 3.5 to demonstrate typical
pulse shapes. This event has signals in the Skin and OD that are co-
incident with the S1 pulse in the TPC. This corresponds to a neutron

scattering in all three detectors. As this neutron scatters a single time in
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Figure 3.4: From the LZ Event Viewer webpage: a Single Scatter neu-
tron event with a signal in the Skin (middle image) and OD (bottom
image) detectors coincident with the S1 pulse in the TPC (top image),
corresponding to the neutron scattering in all three detectors. The large
S2 pulse and smaller single electrons, multiple photoelectrons and single
photoelectrons can also be seen.

the TPC it contributes an important background to the WIMP search,
but the coincident signals in the veto detectors would allow this event to
be excluded.

LZap RQ files can be used as inputs for modules within the Anal-
ysis LZ Package (ALPACA); the C++ analysis framework tailored for
LZ. ALPACA standardises analyses by handling underlying features in a
shared codebase, and the modular natures allows for easy running of code
written by other users. Analysis code is run over data on an event-by-
event basis, and generally involves implementation of cuts and generation

of histograms, simplified by services within the ALPACA framework.
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Figure 3.5: From the LZ Event Viewer webpage: magnified waveforms
for the S1 (a) and S2 (b) pulses from the event shown in Figure 3.4.

3.3 Backgrounds

Backgrounds must be mitigated as far as possible, and well-understood
to allow for accurate modelling. The sources of backgrounds in LZ, both
internal and external, will now be discussed. For LZ to achieve sensitivity
to WIMP-nucleon cross sections below 3 x 1074 cm? within three years
of data taking, the maximum allowable rate of ER backgrounds from
non-astrophysical sources is 37 x 1076 events/keV /kg/day, with ~ 1 NR
background event during the exposure [106]. The collaboration set sig-
nificantly stricter goals for all backgrounds to reduce the risk of any com-
ponent violating these requirements. Determination of expected number
of events for the most dominant backgrounds in the SR1 WIMP search

is discussed in subsection 4.6.2.

3.3.1 Detector Components

Neutron and ~-ray emission in LZ occurs predominantly from naturally-
occurring radioactive nuclides within detector materials. This includes
the v emitting *°K and %°C, as well as 2**U and ?3?Th and their progeny,
which also generate neutrons via («, n) reactions and spontaneous fission.

Neutrons generally scatter multiple times, but SS neutron NR events are
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indistinguishable from WIMPs and rely on OD tagging, which is not
100% efficient. The LZ goal for backgrounds resulting from fixed con-
tamination in detector components is less than 0.4 NR counts and below
1 x 1079 events/keV /kg/day of ER background, for SS events within the
fiducial volume and WIMP search energy range during a three-year ex-
posure [106]. An extensive radioassay campaign was used to screen all
materials to sensitivities of ~0.2mBq/kg. The contribution of detec-
tor component backgrounds could therefore be well-defined, as well as

minimised through material selection [123].

3.3.2 Surface and Dispersed Contaminants

222Rn and ??°Rn can emanate from detector components, as well as from
dust that has settled on detector materials during construction, and dis-
perse in the LXe. This is the largest contribution to the expected number
of events during WIMP search campaigns, with the dominant radon back-
ground resulting from “naked” /3 emission (not accompanied by = rays)
from the decay of 2!4Pb to 2!“Bi. Radon emanation can be attributed to
both the recoil of radon atoms and diffusion, which is highly dependent
on the material. Detector components were therefore screened for radon
emanation [123], with a maximum activity of 10 mBq required through-
out the LXe and a goal of 1 mBq [106]. For the avoidance of radioactive
dust, transport and assembly of detector components were required to
comply with strict cleanliness protocols, with a requirement limiting dust
contamination to less than 500 ng/cm? on wetted surfaces [124].

To maintain purity, the xenon is continuously circulated through a
purification system. As part of this process, the LXe is vapourised and
passed through a hot zirconium getter to remove electronegative impuri-
ties resulting from outgassing, such as oxygen [120]. As noble elements
are not removed by the getter, the xenon was purified using a process of
charcoal chromatography before transport to SURF, to reduce contam-
ination from Kr and Ar present in natural xenon, with requirements of
0.02 ppt (g/g) and 4.5 x 1071% (g/g), respectively [106]. The presence of
these noble elements leads to a flat ER background from ®°Kr and 3°Ar

[125].

3.3.3 Cosmogenic and Laboratory Backgrounds

During above-ground storage and transport of the xenon, cosmogenic ac-
tivation led to the production of 1*’Xe and 3"Ar. Following underground

deployment, activation from cosmic rays is no longer significant. 2"Xe
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and 37 Ar have half-lives of 36.4 days and 35.1 days, respectively, so during
commissioning and early SR1 acquisitions, these isotopes are still present,
but are decaying away. '2"Xe decays through electron capture, and the v
produced by the de-excitation of the *"I daughter can usually be tagged
by the Skin. In the case that it goes undetected, the L- and M- shell
electron captures produce an ER background within the WIMP search
region of interest (ROT) [93]. 37Ar also decays through electron capture,
with an 2.82 keV Auger cascade from K-shell capture contributing an
ER background in the ROI [126]. Cosmogenic activation backgrounds

are accounted for in the background model (see subsection 4.6.2).

By locating the detector deep underground, the cosmic-ray muon flux
is reduced by a factor of 10° compared to at sea level [127]. However,
the surrounding rock produces v-ray backgrounds emitted from the 23U
and ?32Th decay chains, as well as K [128]. Remaining muon-induced
cascades can produce neutrons, but, following attenuation in the water
tank and tagging by the OD, studies using simulations found that their
rate can be considered to be negligible [129].

3.3.4 Physics Backgrounds

Two rare Standard Model processes in xenon contribute a physics back-
ground for LZ. The two-neutrino double electron capture (2vDEC) of
124Xe can combine captures from K-, L-, M- and N-shells. The LL de-
cay mode (in which both electrons are captured from the L-shell) and
LM decay mode (in which electrons are captured from both the L- and
M-shells) produce backgrounds in the WIMP search ROI. The XENON
collaboration first observed ?*Xe 2vDEC [130] and has since measured
its half-life (1.1 x 10?2 years) and branching ratio (1.4% and 0.8% for the
LL and LM modes, respectively), allowing rates to be modelled [131].
Two-neutrino double-beta (2v33) decay of 3Xe has also been observed
and, with a half-life of 2.165 x 102! years, contributes an ER background
up to 2457.8 keV [132].

The dominant NR background to the WIMP search is due to coherent
elastic scattering of neutrinos with xenon nuclei, predominantly from
solar ®B, with smaller contributions from the hep reaction, as well as
atmospheric and diffuse supernova neutrinos. pp chain neutrinos and, to
a lesser extent, "Be and CNO, produce an additional ER background due

to electroweak interactions with the xenon [125].
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3.3.5 Accidental-Coincidence Backgrounds

Isolated S1 and S2 pulses may be misidentified as a Single Scatter event
if their time separation is less than the maximum possible drift time.
Accidental-coincidence events are a significant background for the LZ
WIMP search, particularly at low energies, and will be a primary focus

of chapter 4.

3.4 Detector Conditions

As data from each of the three science runs, referred to as SR1 (used for
the first WIMP-search result), SR2 and SR3 (ongoing), will be discussed,
the detector conditions for each are summarised in Table 3.1. A campaign
of testing various configurations of electrode voltages was undertaken
before the start of SR2, in an effort to reduce accidental-coincidence
backgrounds from the grids. This resulted in a reduced extraction field
strength, while maintaining the same drift field. Data quality issues
experienced during SR2 will be discussed in section 3.9, and ultimately
resulted in a reduction of the drift field for SR3, in order to prioritise
the health of the detector. As a consequence, the maximum drift time
increased from 951 ps to 1046 ps. Throughout SR1, the temperature and
pressure of the LXe were stable to within 0.2%, at 174.1 K and 1.791
bar(a), respectively. This was not the case for the other science runs, as
during both SR2 and SR3 there was a point at which the temperature
gradient in the TPC was inverted in order to produce a state with less
mixing of the LXe. This resulted in larger deviations in temperature and

pressure, but the mean values are also shown in Table 3.1.
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Table 3.1: The values of key parameters during the SR1, SR2 and SR3
WIMP search campaigns.

Detector Parameter SR1 SR2 SR3

Anode voltage [kV] 4 1.5 3.5
Gate voltage [kV] -4 -6 -4
Cathode voltage [kV] -32 34 -18
Bottom voltage [kV] -1.25 -1.25 -1.25
Drift field [V cm™!] 193 193 97

Extraction field [kV em™!] 7.3 3.39  3.38
Maximum drift time [ps] 951 951 1046
Temperature [K] 174.1 174.7 175.0
Pressure [bar(a)] 1.791 1.858 1.860

3.5 Data Quality Requirements

Since the expected WIMP signal is so rare (< 0.0001 events/kg/day), it
is essential to monitor data and constantly check for problems. Irregu-
larities can correspond to physical changes in the detector itself (such as
the presence of radioactive backgrounds), or the electronics system (such
as altered PMT behaviour). As well as this, changes to online configura-
tions (such as an incorrect acquisition mode), or offline data processing
(such as updates to LZap) could cause issues. Therefore, it is important
to identify data quality defects, in order to influence decisions regarding
whether each “run” (an acquisition typically lasting several hours) can
be used for the WIMP search or other analyses. Prompt feedback on
detector changes should also be provided to experimental operators, so

that adjustments can be made accordingly.

3.6 The Physics Readiness Monitor

The Physics Readiness Monitor (PREM) is the offline Data Quality Mon-
itor for the LZ collaboration and aims to rapidly provide a first look at
datasets within hours of LZap processing. ALPACA analysis modules
can be modified to produce metadata stored in a nested structure in-
side a JSON file, which is sent to a PREM DB (database). An output
ROOT file containing histograms is stored at the National Energy Re-
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search Scientific Computing Center (NERSC). The PREM frontend is a
website known as PREMweb, where the user submits requests for data to
view. PREMweb uses a framework consisting of Cascading Style Sheets
(CSS) and HyperText Markup Language (HTML). A screenshot of the
top of the PREM webpage is shown in Figure 3.6. Dropdown menus
are used to select a Run Type (a campaign such as a specific WIMP
search or series of calibrations), run number, PREM module and LZap
version. These selections also fill a string of key-value pairs within the
URL, allowing for easy distribution of a chosen analysis among collabo-
rators. The backend is a NodeJS application that receives these requests,
and queries the database for the relevant information. The histograms
are then displayed on PREMweb. Three core PREM modules observe
the general health of each of the detectors, while additional dedicated

modules monitor specific detector components or physics quantities.

3.6.1 The TPC Health Module

As the TPC is the detector in which a WIMP interaction may be de-
tected, it is essential that any irregularities in its behaviour are identified
rapidly. A minimal selection of plots were chosen for the TPC_Health
module to allow quick inspection of data. These were categorised accord-
ing to the navigation tabs shown in Figure 3.6, and include monitoring
of the grid health, the rates of pulses, and the position reconstruction
performed within LZap. This information has proved to be critical for
data quality monitoring, with all observed defects discussed in section 3.9
identifiable using the TPC_Health module. It is expected that offline
shifters will conduct PREM detector checks in future, so detailed module
documentation was produced, which included example plots of expected

behaviour from “golden” runs of known good quality.

3.7 Existing PREM Features

Several PREMweb tools, which had previously been developed to assist

with data quality monitoring, will now be described.

3.7.1 One-dimensional Comparison Plots

Presenting data alongside a golden run allows for easy identification of
irregularities. After loading the original dataset, a reference run is cho-
sen using the dropdown menu shown in Figure 3.6. For each new run

selected, a one-dimensional histogram is overlaid in a different colour,
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Figure 3.6: Screenshot of the top of the PREM webpage, where a
Run Type of SR1_WS, run number of 7800 and PREM module of
TPC__Health have been selected. Plots are categorised into the navi-
gation tabs shown.

with a legend displaying the run number, as shown in the upper panel
of Figure 3.7 for two runs during SR1. This histogram shows the rate of
single electron pulses throughout the run. As these pulses are typically
too small to activate the trigger, data from a random trigger were used to
achieve an accurate calculation of the rate (indicated by “RND TRG” in
the plot title). It can be seen that the chosen run, 7812, has an SE rate
that is consistently higher than the reference run, 7800, which signifies

an irregularity.

3.7.2 Algorithms

Another useful PREM feature is the algorithm, which is defined as a
quantity that can be calculated for each run. The majority of one-
dimensional histograms include algorithms monitoring the mean and
standard deviation, but more complicated metrics can also be calculated.
History plots of algorithm values over many runs are essential, both for
detecting transient spikes, and for the monitoring of long-term trends.
The lower panel of Figure 3.7 shows the algorithm history plot for
the mean SE rate, which has been calculated within the TPC Health
module for the histogram shown above, and is revealed upon a click of
the “meanRate” button. This demonstrates that at run 7812, there was
a sharp increase in rate. This corresponds to a known event. As part

of the xenon circulation system, the weir reservoir collects the LXe re-
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Figure 3.7: Example of the one-dimensional comparison and algorithm
features. On the upper panel, the reference run 7800 (before the weir
incident) has been overlaid on the histogram showing SE pulse rate for
the original run, 7812 (after the weir incident). The “meanRate” algo-
rithm button has been clicked to expand the history plot below. As the
algorithm value for the selected run is outside the limits, the button and
card border are shown in red. The “meanRateNo0” algorithm performs
a similar calculation of the mean rate, but ignores time bins with a rate
of zero (for example due to periods of deadtime), which was not relevant
for these specific runs.

75 of 241



3. The LZ Detector and Data Quality

turning from the detector and prepares it for evaporation. A decrease
in TPC pressure caused the contents of the weir reservoir to empty into
the TPC, resulting in an increase in impurities. Upper and lower limits
are set within the PREM module and, as the value for the selected run,
7812, exceeds the outer red limit, the run is flagged by highlighting the
algorithm button and plot border in red. As the circulation system pu-
rified the xenon, the SE rate decayed to a nominal value, demonstrating

how algorithms can be used to observe trends as well as extreme values.

3.8 Development of PREM Features

As well as general improvements to the user interface and stability of
PREMweb, several new features were developed to aid with the evalua-
tion of data quality. This required alterations to the ALPACA core code
to change the structure of the JSON metadata; new database queries;
and additional elements in the HTML code to create new features on the
PREM webpage.

3.8.1 Two-dimensional Comparison Plots

Although it was possible to compare multiple runs for one-dimensional
histograms, it was desirable to develop an equivalent feature for two-
dimensional comparisons. This was achieved by adding a carousel ob-
ject to the HTML code, which appears beneath all two-dimensional his-
tograms when a reference run is selected from the dropdown menu. For
each new run selected, a new slide is added to the carousel with a cap-
tion stating the run number. This allows the user to either compare
two runs side by side, or to rapidly cycle through several runs using the
carousel arrows, for example to examine how populations move around
over the course of several runs. The two runs from before and after the
weir incident are shown in Figure 3.8 on a two-dimensional histogram of
the XY position of SE pulses. The top panel shows that immediately
following the weir event, the pulse rate has increased, and two high-rate
regions or “hotspots” are visible, which will be discussed in further detail

in subsection 3.9.5.

3.8.2 Algorithm Groups

In some cases it is useful to perform the same calculation many times with
different inputs for a single histogram, especially when tracking the same

metric for many PMTs. This could be achieved by attaching hundreds of
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Figure 3.8: Example of the two-dimensional comparison feature. A his-
togram of the rate of SE pulses in XY space is shown for the original run
7812 (after the weir incident). The reference run 7800 (before the weir
event) has been selected, so appears on the carousel below. The carousel
arrows can be used to cycle through runs.
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similar algorithms to one histogram, but this would require excess code
in the PREM module, and many algorithm buttons and separate history
plots on PREMweb, making comparisons difficult. This motivated the
development of the Algorithm Group, a data structure which contains
an array of algorithms.

A searchable dropdown menu and text input box were added to the
website interface, allowing the user to select multiple algorithms within
the group to view on the same history plot. When the value of an al-
gorithm within a group is outside the specified limits, a typical coloured
algorithm button appears to alert the user. Figure 3.9 shows the website
display for the “OD_PMT _SPE” module that measures the response of
PMTs to a single photoelectron. Here, the mean SPE response in pC is
plotted for channels 834, 835 and 836 over several commissioning runs,
where an Optical Calibration System was used to inject controlled pulses
from LEDs into the OD through optical fibres. The PMT voltages were
altered to bring the PMT gains closer together for run 4347 onwards.

3.8.3 LZap Version Comparisons

As well as comparing different runs, it is also useful to make comparisons
between the same run processed with different versions of LZap. This
allows PREM to monitor the performance of the offline reconstruction
software, as well as the quality of the data. Important changes include
alterations to the pulse-finding and pulse-classifying algorithms, resulting
in different populations of each pulse type, as well as updates to the
position reconstruction algorithm and position correction maps. The
LZap version was therefore added as a selection in addition to the existing
Run Type, run number and PREM module options. The user can make
a direct comparison by choosing the same acquisition for the original
run and reference run, and selecting a different LZap version for each
from a dropdown menu. Figure 3.10 shows SR1 run 6774 processed with
both versions 5.4.1 and 5.4.5 of LZap. Updates between these versions
included changes to the pulse area thresholds used to select SEs, as well
as a new calibration of the SPE size per PMT channel used in LZap. The

difference in the distributions of SE pulse area is therefore expected.

3.9 SR2 Data Quality Validation

For SR1 and SR2, the quality of the data was evaluated retroactively,
using the three detector health modules: TPC_Health, OD_ Health and
Skin_Health. All known data quality issues during SR1 were detectable
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Figure 3.9: This plot was taken from PREMweb as an example

of the Algorithm Group feature, and was originally produced using
the OD_PMT_SPE module during OD optical calibrations. The
“meanSPE_pC” button has been clicked to reveal an algorithm history
plot, where the mean SPE response for three selected PMTs is shown. An
additional Algorithm Group, “Chi2perNDF pC” is also attached to the
histogram. Two algorithms within this group (corresponding to PMTs
891 and 910) have values outside the inner limits, so have overflowed to
create yellow algorithm buttons.
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Pulse area for SE pulses (RND TRG)

Run 6774, (5.4.1), Date: 28/Dec/2021
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Figure 3.10: Example of the LZap version comparison feature. The SE
pulse area for reference run 6774 processed with version 5.4.5 has been
overlaid on a histogram for the same run processed using version 5.4.1.

using PREM, and recommendations were made to determine the list of
runs suitable for the WIMP search analysis. The evaluation of SR2 data
will be the focus of this section. The chosen approach was to inspect
algorithm history plots in order to identify both trends and irregular-
ities where the value deviated from the expected range. In the latter
case, histogram comparisons were made between the run of concern and
a golden run of known good quality. The observations and resulting

recommendations from the PREM team will now be described.

3.9.1 Activation of Xenon

For the majority of algorithms, the distributions followed an exponential
trend throughout SR1. To account for this when evaluating data quality,
exponential limits were defined by performing a fit to the algorithm values
as a function of time, and assigning inner and outer thresholds. These
were generally situated at 30 and 40, respectively, which were the values
deemed to represent a significant deviation from typical behaviour. These
limits could be easily displayed using a Jupyter notebook that queries the
PREM DB, providing the additional benefits of allowing for multiple Run
Types on a single plot, and accounting for gaps in the data taking, rather
than jumping to the next value.

An example plot with a clear exponential decay can be seen in Fig-

ure 3.11, which shows the total rate of pulses in the TPC as a function of
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Figure 3.11: Algorithm history plot produced using a Jupyter notebook
that queries the PREM DB, showing the mean pulse rate in the TPC as
a function of time throughout SR2. The exponential 30 and 4o limits
are shown in yellow and red, respectively.

time. The increase and subsequent decay in rate is due to the activation
of xenon, resulting from neutron calibrations which occurred prior to the
start of SR2, leading to additional backgrounds from 31™Xe, 29mXe,
133Xe, 125Xe and '2°1. As well as the pulse rate, many other algorithms
also exhibit exponential behaviour, as the population of activation events
with specific characteristics becomes less dominant. For example, the
mean area of S1 and S2 pulses is pulled down by activation events and,
as this population decays away, the mean pulse area gradually increases.
These isotopes have short half-lives (the longest of which is 11.8 days for
18Im¥e aside from '2°T which is removed by the getter) and high energies
outside the WIMP search ROI. These populations were also continuously
monitored to ensure that they were decaying at the expected rate. There-
fore, this observed trend was not a concern for the WIMP search, and

no additional data quality cut was applied to account for it.

3.9.2 Temporal Variation

As well as the overall exponential trend, some additional temporal mod-
ulation in the pulse rate can be seen in Figure 3.11. Similar behaviour
is observed to various extents for many algorithms, including most rate
plots, where it is most significant for S2 pulses, but is also subtly visi-
ble for SPEs. The behaviour is also evident in the mean pulse area of
SEs and S2s (see Figure 3.12), as well as the mean pulse length. The

algorithm limits here are flat, as the temporal modulation dominates the
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Figure 3.12: Algorithm history plot showing the mean S2 pulse area for
pulses < 3000 phd as a function of time throughout SR2. Flat limits
were chosen to contain the multiple distributions, and inner and outer
limits are shown in yellow and red, respectively.

exponential trend. This was also found to be a position-dependent ef-
fect, with variation observed in the mean radial position of S2 pulses.
Figure 3.13 shows the pulse length of SE pulses as a function of XY
position, for runs at the peak and trough of the modulation of SE pulse
length. At the minimum, pulses are narrower in the central region of the
TPC, whereas at the maximum, they are more uniform in XY space.
Algorithms monitor the mean SE pulse length in several regions in XY
space, and the variation was found to be most significant in the central

region, which is shown in Figure 3.14.

The cause of this behaviour is unknown, but one hypothesis is that
the temperature decrease associated with a circulation change to a state
with less mixing of the LXe resulted in a build up of condensation on the
anode grid, causing sagging over time. The resulting smaller extraction
region would produce a stronger extraction field and hence a higher ex-
traction efficiency. This would lead to larger S2 pulses and a larger S2
pulse rate, deviating from the exponential trend. The increase in SPE
rate could be a result of this, as S2 light is expected to produce SPEs
through fluorescence of detector materials. A smaller extraction region
would lead to narrower SE pulses, and the effects of grid sag would be
most significant near the centre of the anode, explaining the position-
dependent behaviour. The condensation could then fall under its own
weight, before beginning to accumulate again. PREM was a useful tool

for clearly demonstrating this trend. It was recommended that, if correc-
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X vs Y vs pulse length for SE pulses
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Figure 3.13: Comparison of two-dimensional histograms showing the
length of SE pulses in XY space. Only events with total area < 20
electrons were selected, in order to avoid e-train backgrounds (see sub-
section 4.2.2). The upper panel shows run 11320 at the peak of the pulse
length modulation, and the carousel below shows run 11269 at the trough
of the modulation.
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Figure 3.14: Algorithm history plot showing the mean length for SE
pulses within a radius of 36.4 cm. Flat limits were chosen to contain the
multiple distributions, and inner and outer limits are shown in yellow
and red, respectively.

tions were implemented to account for this behaviour, these data would
be suitable for the WIMP search. Although the SR2 acquisitions have
not yet been used in a WIMP search analysis, S1 and S2 pulse sizes in
SR3 data were corrected to account for the temporal variation observed

there.

3.9.3 Low Event Counts

Following investigations of long-term trends, spikes in algorithm values
from a single run or a small number of acquisitions were investigated. One
reason for these deviations that did not result from a physical data quality
defect was the low number of events in some runs, where fluctuations
in data had a larger impact on algorithm quantities. This could be
the result of a short run that was aborted early, but otherwise had no
issues and was suitable for the WIMP search. In other cases, a large
amount of deadtime was present throughout the run, which could be the
result of missing data files, for example due to issues with data collection,
transport or processing. The histogram in Figure 3.15 shows the total
livetime accumulated over time bins of 60 seconds for a run with very low
livetime, compared to a golden run. This plot was particularly useful for
flagging runs with possible data-processing issues, providing information

that can be shared with data-processing managers. In this case, upon
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Figure 3.15: Total livetime accumulated in 60-second time bins, for run
10892, shown in blue, which is missing a large amount of livetime, and
golden run 11113, shown in red.

further investigation it was found that only a fraction of the total events
had been processed using LZap. This was corrected in a later reprocessing
of the data.

3.9.4 Residual ¥"Kr

Spikes with subsequent decays were observed in many algorithm history
plots. One of the most clear examples of this is in an algorithm originally
designed to monitor build-up of charge on the PTFE walls. The spatial
distribution was plotted for Single Scatter events below the ER band,
where the size of the S2 is reduced due to charge loss, with an S1 area
between 80 and 500 phd. This typically leaves a population close to the
walls. Algorithms monitor the rate in four horizontal slices. The “Wall-
Rate3” algorithm shown in Figure 3.16 monitors the rate of these events
with a drift time in the range [478,716] ns. The algorithm history plot is
magnified to show two of the spikes and decays described. These rate in-
creases occurred following two separate injections of a 83™Kr calibration
source into the LXe. 83™Kr is a monoenergetic calibration source used for
defining the detector response, as described in subsection 4.1.1. The his-
tograms compare run 11606, at the beginning of the second spike, with
golden run 11113. An excess of events near the wall can be observed,
demonstrating how new xenon entering the TPC remains close to the
wall in the more isolated circulation state, rather than fully mixing.
Referring to Equation 2.6.13, the population of events corresponding

to the 41.5 keV monoenergetic 83™Kr decay under SR2 detector condi-
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Figure 3.16: The spatial distribution of Single Scatter events below the
ER band is shown in (a) for run 11606 following a 33" Kr injection (upper)
and golden run 11113 (lower). The “WallRate3” algorithm history plot
in (b) shows two spikes and decays in the rate of these events with a drift
time of [478,716] s, following two separate 3*™Kr calibrations.
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tions can be clearly seen in S2-S1 space in Figure 3.17. 83"Kr events have
a double S1 structure, which is discussed in further detail in section 4.1,
and this is observed through the double peak in the histogram of S1 pulse
area in Figure 3.18.

PREM has therefore provided strong evidence for excess 33™Kr fol-
lowing calibrations. ®™Kr has a half-life of 1.83 hours, but the effects
can be seen for up to 26 hours after larger injections. The energy of
8mKr is high relative to the expected WIMP signal, but would result
in an increase in accidental-coincidence backgrounds inside the ROI. As
data quality cuts are able to efficiently remove these backgrounds (see
subsection 4.4.3), it was decided by analysis group leads that inclusion of
these runs in the WIMP search would be preferable to the livetime loss

incurred by their removal.

3.9.5 Hotspots

Localised increases in single-electron rate, known as hotspots, are one
of the most significant data quality concerns. Hotspots can result from
debris or defects in the wires on the gate grid, which can generate addi-
tional electrons. The TPC_ Health module was used to identify hotspots
by dividing the TPC into 16 segments in XY space and monitoring the
SE pulse rate in each. The position of each of the segments is shown in
Figure 3.19. Figure 3.20 shows an example algorithm monitoring the SE
pulse rate in the region labelled 1a. Values outside the algorithm limits
were examined in further detail by inspecting the XY distribution of SE
pulses and Single Scatter events, as well as the SE pulse rate in the cor-
responding region throughout the run. The latter allowed the duration
of the hotspot to be established.

Hotspots were classified into two categories. Transient hotspots gen-
erally only impact one time bin, so are less than 60 seconds in length.
An example of a transient hotspot is shown in Figure 3.21a, where a
localised increased rate of SE pulses is seen. The algorithm button for
“RegiondbRate” is red, indicating that this value is outside the limits.
The corresponding rate spike can be seen in a single time bin in the plot
of SE rate for region 4b shown in Figure 3.21b. A total of 50 transient
hotspots were observed using PREM during SR2, some of which can be
attributed to muons traversing the TPC, rather than grid emission.

Sustained hotspots result in increased rates across several time bins,
and in some cases multiple runs. Figure 3.22a shows a run with two
hotspots in regions 2a and 4a. The former was inspected using the rate

plot shown in Figure 3.22b, which demonstrates that the rate continued
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S1c vs S2c for single scatters
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Figure 3.17: Single Scatter events in position-corrected S2-S1 space for a
run following a 3™ Kr injection (upper) and a golden run (lower). Under
SR2 detector conditions, the S1 and S2 signals from the monoenergetic
83mKr decay with 41.5 keV total energy correspond to the population
clearly seen at coordinates of ~(255, 12100) phd in the upper plot.
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Pulse area for S1 pulses
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Figure 3.18: S1 pulse area for run 11606 following a ®™Kr injection
(blue) and golden run 11113 (red). The two peaks resulting from the
83mKr double S1 can be seen in blue.
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Figure 3.19: Diagram showing the 16 regions in XY space in which the
SE pulse rate is monitored for hotspots, overlaid on a histogram of SE
rate from golden run 11113.
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Figure 3.20: Algorithm history plot of the mean rate of SE pulses in re-
gion la, as defined in Figure 3.19, as a function of time. The exponential
30 and 40 limits are shown in yellow and red, respectively.

to increase throughout the second half of the run over a time period of
more than an hour, suggesting the presence of contamination or a defect
in the grid wires. Only 8 such events were observed using PREM during
SR2.

Remote shifters observe LZ data from raw unprocessed files imme-
diately as they become available using the Underground Performance
Monitor (UPM). Of all SR2 WIMP search acquisitions, only three were
marked as containing a hotspot by shifters that were not flagged during
the PREM evaluation. Although increased SE activity was present, the
mean rate remained within the 3o limits. In future, the requirements
for further inspection of a run could be loosened, or, ideally, the XY
histograms would be inspected for every run.

As data quality cuts, primarily the hotspot exclusion cut, are specif-
ically designed to target these irregularities, the recommendation from
the PREM team was that these runs would be suitable for the WIMP
search following cuts. It was noted that the application of data quality
cuts may result in the removal of entire runs in the case of sustained

hotspots.

3.9.6 Skin Light Emission

The Skin_Health module was also able to identify data quality issues,
the first of which was noise due to a grounding problem with several
Skin PMTs. Figure 3.23 shows the number of pulses detected in each
Skin PMT during run 11187. An excess is observed in channels 684-
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Top XY for SE-like pulses (RND TRG)
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Figure 3.21: Example of a transient hotspot in run 11153, demonstrated
by the SE pulse rate in XY space (a), and the SE pulse rate in region
4b throughout the run, compared to golden run 11113 (b).
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Top XY for SE-like pulses (RND TRG)
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Figure 3.22: Example of a sustained hotspot in run 11281, demonstrated

by the SE pulse

rate in XY space (a), and the SE pulse rate in region

2a throughout the run, compared to golden run 11113 (b).
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Total Number of pulses by channel ID

Run 11187, (5.4.9), Date: 27/Dec/2022
Run 11210, (5.4.9), Date: 30/Dec/2022 C1Channel Ocx_Total

Eniries THED0
B Maen BT2E
A A Std Dev 4043

R _‘__\r’n-"‘Ld—_"\f\,ﬂ. .ﬁnﬁr'h;l,

Rate [Hz]
3

0% Wy il st b e e b
&00 620 840 o nop[éﬁf am].n&”[”roo. ?29[53me [?3074&?];

Figure 3.23: Number of pulses in each Skin PMT for run 11187 (blue),
compared to reference run 11210 (red). This plot was taken from
PREMweb and was originally produced using the Skin_Health module.

694 compared to the reference run. The algorithm shown in Figure 3.24
monitors the ratio of the number of pulses detected by Skin PMTs in the
range 684-694, to the number of pulses seen by Skin PMTs in the dome
region. This behaviour was seen to impact runs 11005-11206, after which
the grounding nut was tightened to resolve the issue. Figure 3.25 shows
the rate of pulses that result in activation of the Skin veto. As there is
no significant difference between the affected runs and the reference run,
it was confirmed that there would be no impact to the WIMP search,

and the impacted runs were still suitable for this analysis.

A more significant issue was light emission observed in the Skin de-
tector, primarily in channel 709 in the bottom side-skin. The heatmap
in Figure 3.26 shows the reconstructed position of pulses in a run af-
fected by light emission, compared to a golden run. The “theta” position
where the pulse rate is highest corresponds to the region closest to the
9 o’clock position on the TPC heatmaps. While the light source itself
was localised, the wider spatial distribution observed in the heatmap is
a result of the position reconstruction, particularly for pulses with a low
number of photons, which are more significantly impacted by statistical
fluctuations. An algorithm was added to monitor the ratio of the pulse
rate in this region (indicated by the overlaid box) to a typical region in
the Skin. Several large spikes can be seen in the algorithm history plot

(Figure 3.27), and each of these runs was investigated further.

For some runs, a transient spike was seen in the total Skin pulse

rate and the rate of activated Skin vetoes, but no obvious leakage into
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Figure 3.24: This algorithm history plot was taken from the Skin Health

module, and monitors the ratio of number of pulses in Skin PMTs 684-
694, to number of pulses in Skin PMTs in the dome region.
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Figure 3.25: Rate of pulses resulting in activation of the Skin veto for
run 11187 affected by grounding issues (blue) compared to reference run
11210 (red). This plot was taken from PREMweb and was originally
produced using the Skin Health module.
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Figure 3.26: Heatmap showing the reconstructed positions of pulses ac-
tivating the Skin veto, for run 11449 impacted by Skin light emission
(upper) and golden run 11113 (lower). The region primarily affected by
light emission is indicated by the overlaid box, with blue corner markers
and black connecting lines. This plot was taken from PREMweb and was
originally produced using the Skin_ Health module.

the TPC was observed. It was recommended that the time period sur-
rounding the spike be removed using data quality cuts, and that these
runs would then be acceptable for use in the WIMP search. Other runs
showed a sustained increase in the number of pulses activating the Skin
veto, as shown in Figure 3.28, which would have an impact on the WIMP
search. The TPC_Health module was used to observe light leakage into
the TPC, as the distribution of SPE light was pulled towards the location
of light emission in the Skin, as shown in Figure 3.29. It was therefore
decided that these runs were unsuitable for use in the WIMP search.
The reason for the light emission is unknown, although the affected
PMT, 709, is close to the RFR resistor chain and, during the Skin irreg-

ularities, shifts in the RFR current were observed. One possible expla-
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Figure 3.27: This algorithm history plot was taken from the Skin_ Health
module, and monitors the ratio of pulse rate in the Skin light emission
region, as defined in Figure 3.26, to the pulse rate in a typical region in the
Skin. Spikes required further inspection to determine if the corresponding
runs were suitable for the WIMP search.
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Figure 3.28: Rate of pulses resulting in activation of the Skin veto for
run 11449 affected by Skin light emission (blue) compared to golden run
11113 (red). This plot was taken from PREMweb and was originally
produced using the Skin_Health module.
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Figure 3.29: Histograms from the TPC_Health module showing the
mean position of SPE pulses in the bottom PMT array for each event,
for run 11449 affected by light emission (upper) compared to golden run
11113 (lower).
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nation is therefore that if a microscopic crack was present in the resistor
material, flowing current could cause light emission. The continued pres-
ence of light emission, at rates that could be damaging to PMTs, was a
significant data quality issue and ultimately resulted in the termination of
SR2. Detector conditions were altered as presented in Table 3.1, and the
strength of the drift field was reduced, whilst maintaining the strength
of the extraction field. The detector response under the new conditions
was measured using calibration sources and a new science run, SR3, was

initiated.

3.10 Summary

TPC__Health module plots, algorithms and shifter instructions were pro-
duced to monitor the health of the LZ detector using PREMweb tools.
This played a vital role in the evaluation of data quality during SR1 and
SR2, and these tools are now in place for SR3 and future science runs.

Both long-term trends and short irregularities were identified using
PREM. Despite the early termination of SR2 due to unstable detector
conditions, the recommendations of the PREM team were useful in de-
termining the list of runs suitable for the WIMP search. The SR2 data
have not yet been used for a WIMP search analysis, in part due to the
complications arising from corrections required for temporal variation.
However, it remains a possibility that SR2 runs identified by the PREM
team be used for future analyses.

Data quality validation was conducted retroactively for SR1 and SR2,
as data required manual processing with PREM. In future, PREM pro-
cessing will be automated, so that PREM modules are run over all rel-
evant LZap-processed runs by default. Development of this system is in
progress, and will allow for offline data quality shifts during future sci-
ence runs. A specific shifting module has been developed, with several
plots sourced from the TPC_Health module, so that shifters will be able
to review key histograms for every run and compare to references. This
will enable a thorough contemporaneous evaluation of data quality, for

example through improved investigations of hotspots.
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Chapter 4

The SR1 WIMP Search

Data taking for the LZ Science Run 1 (SR1) WIMP search commenced
on 234 December 2021 and concluded on 18™ April 2022. Following
the removal of periods of detector instability, the total SR1 exposure
was 60 livedays with a 5.5-tonne fiducial mass. The campaign produced
world-leading limits for spin-independent WIMP-nucleon interactions,
with cross-sections above 9.2 x 1078 cm? rejected at a confidence level of
90% for a WIMP mass of 36 GeV [93]. The SR1 detector characterisation
and analysis procedure will be described, with a particular emphasis on
accidental-coincidence backgrounds and the data quality cuts designed

to remove them.

4.1 Detector Characterisation Using Cali-

brations

An effective calibration campaign was essential in providing an under-
standing of the LZ detector response under SR1 conditions. This was
required for the tuning of the ER and NR bands, determination of
position-dependent light and charge collection efficiencies, modelling of
backgrounds, and development of accurate simulations. The calibration
strategy employed internal, external and source tube methods of deploy-
ment. A selection of sources which were particularly impactful for the

WIMP search analysis are described.

4.1.1 ¥"Kr and 3"Xe

During internal calibrations, sources are injected directly into the LXe
using a carrier gas, leading to uniformity throughout the TPC, and over-
coming the self-shielding properties of LXe. Internal calibrations in-

clude the use of the metastable monoenergetic sources 31 Xe and 83" K.
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18lm¥e has a half-life of 11.8 days and emits a 164 keV ~ ray, whereas
83mKy decays through two stages with a short half-life. Each ®3™Kr de-
cay occurs via a combination of internal conversion, Auger electrons or
X-rays, with a first transition of 32.1 keV and a second of 9.4 keV, which
have half-lives of 1.83 hours and 154 ns, respectively [133].

The uniform spatial distributions and known energies of these sources
are useful properties for defining the detector response. Light collection
efficiency varies with position in the TPC, and depends on optical prop-
erties of detector materials. The size of S1 pulses must be corrected
to account for this, so a corrected S1 area, Slc, is defined. This is de-
rived through application of a corrections map, generated by normalising
83mKr S1 pulse sizes with respect to the S1 size at the detector centre.

This methodology is described in further detail in section 5.2.

The sizes of S2 pulses are similarly corrected to S2¢, but the drift
time must now be separately taken into account. Drifting electrons can
be captured by electronegative impurities in the LXe, leading to artifi-
cially reduced S2 sizes. The probability of capture increases with drift
time, ¢, as exp(—t/7), where 7 is the electron lifetime. This quantity
describes the purity of the xenon and remained between 5000 ps and
8000 ps throughout SR1, significantly higher than the 951 us maximum
drift time. 7 was determined using exponential fits of the S2 size for
B8lm¥ o events as a function of drift time. S2 XY corrections were ap-
plied in a similar manner to the S1 corrections, by normalising 3'™Xe
S2 sizes to (X = 0,Y = 0) to account for variations in grid deflections
and the strength of the extraction field. Any monoenergetic source that
is uniformly distributed in the detector is suitable for producing these
corrections (or example a decays from ?*Rn that has emanated from

detector components), and these were used for validation purposes.

Calibrations are also required for tuning of the NEST models used
to predict the detector response to NR and ER interactions. NEST
employs semi-empirical models that have been tuned using data from
many experiments to reproduce microphysics processes, and maps energy
depositions to S1 and S2 signals using functions of detector parameters.
Both xenon light and charge yields and detector response parameters
were tuned in NEST to reproduce the energies of ®3mKr and *1™Xe
decays, as well as NR and ER band medians and widths that matched
tritium and deuterium-deuterium calibration data. Chapter 5 presents
the process in which these sources were used for the determination of the

light and charge gain parameters.
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Figure 4.1: Distribution of both tritium (blue) and DD (orange) calibra-
tion events in log;, S2c-Slc space. Solid blue and red lines represent the
medians of the ER and NR simulated distributions, respectively, while
dashed lines show the 10% and 90% quantiles.

4.1.2 Tritium

Tritium is also introduced directly into the TPC in the form of tritiated
methane. As a [ source with an endpoint of 18.6 keV, tritium was deemed
an ideal source to tune the median and width of the ER band using
NEST. Tritium has a long half-life of 12.3 years, so is removed through
a getter [134].

4.1.3 Deuterium-deuterium

In addition to other external neutron sources, a deuterium-deuterium
(DD) generator produces monoenergetic neutrons with an energy of 2.45
MeV via DD fusion. The generator is located in the Davis Cavern out-
side the water tank. In DD direct mode, the neutrons travel unimpeded
through air-filled pipes to the outer cryostat vessel, resulting in a con-
tinuum of recoil energies between 0 and 74 keV [135]. As the interaction
length of 12 c¢m is small in relation to the size of the TPC, the genera-
tor is aimed near the top of the detector, so that neutrons may scatter
a single time before exiting through the gas phase. Parameters of the
ER model were propagated to the NEST NR model and were seen to
be in good agreement with the DD data, which are shown alongside the

tritium events in Figure 4.1, compared to the tuned NEST models.
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Figure 4.2: Example accidental-coincidence event from SR1 WIMP
search data where the separation between S1 and S2 pulses is larger
than the maximum drift time of 951 ps. Insets show magnified S1 and
S2 waveforms.

4.1.4 AmLi

AmlLi sources also produce neutrons, but with a continuum of energies
up to approximately 1.5 MeV, and are deployed via three calibration
tubes, situated between the inner and outer titanium cryostat vessels
[136]. AmLi data were collected with all three sources at the same Z-
position for heights of 0 cm, 70 cm and 140 cm above the cathode, follow-
ing the end of SR1. The wider spatial distribution allows for superior
cut acceptance evaluation in comparison to the DD source, as discussed
in subsection 4.5.1, although it should be noted that the self-shielding of

the LXe leads to a higher concentration of events at high radius.

4.2 Accidental Backgrounds

Understanding and mitigating backgrounds was a significant part of the
WIMP search analysis. Accidental-coincidence events are the result of an
isolated S1 pulse and an isolated S2 pulse occurring within the maximum
possible drift time. An example event from the LZ Event Viewer is shown
in Figure 4.2, where the separation between the S1 and S2 is unphysical,
as it is larger than the 951 ps maximum drift time. This type of event
can be erroneously classified as a Single Scatter. An understanding of the
origins of these lone pulses allowed for the development of data quality

cuts to efficiently remove accidental events.
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4.2.1 Isolated S1s

Isolated S1s can refer to S1-like pulses either without an accompanying
S2, or with an associated charge signal which cannot be collected. The
latter can occur for events close to the TPC walls, as electrons can become
attached to the PTFE resulting in charge loss, or events in the RFR,
where electrons cannot be collected. Plate-out of radon daughters on the
cathode and bottom grids also results in an S2 signal which is lost due
to the RFR.

Some prominent sources of S1-like pulses without an associated charge
signal will now be described. Dark counts occur when thermal fluctua-
tions in PMTs promote an electron from the photocathode to the vac-
uum [137].  This results in pulses distributed uniformly in time that
are SPE-like, despite not being instigated by a photon. The process is
temperature-dependent, with a low PMT dark rate of ~40 Hz in the TPC
PMTs. Nevertheless, dark counts and SPE pulses can pile-up to mimic
S1s meeting the three-fold coincidence requirement.

Cherenkov light can be produced in the quartz window of a PMT
when 4°K contaminants decay. Light from this PMT can escape and
be detected in other channels, or be coincident with, for example, dark
counts in other PMTs. For Cherenkov S1s, most of the light is detected
in a single PMT, a feature which can be exploited by data quality cuts,
but this becomes difficult if the decay occurs in a dead PMT.

An increased SPE rate that exhibits a power-law decay over time fol-
lowing a large S2 is known as a photon train (ph-train), and is postulated
to be due to fluorescence of the PTFE that lines the TPC, activated by
VUV S2 light [138]. The rate of photons in the ph-train is proportional
to the area of the S2 pulse. An increased rate of SPE pulses leads to a
higher probability of pile-up into an S1-like pulse.

S1-like pulses with no accompanying S2 can also be a result of light
leaking into the TPC, for example, that which was seen in the Skin and
manifested as a change in the XY distribution of SPE pulses in the TPC

(see subsection 3.9.6).

4.2.2 Isolated S2s

As with isolated Sls, a lone S2 can either have an associated S1 pulse
that goes undetected, or can be the consequence of pile-up of electrons
from various sources.

An example of the latter scenario, as described in chapter 3, is the

emission of electrons from the high-voltage grids, that can occur due to
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contamination or defects in the grid wires.

Similar to the ph-trains that can pile-up into isolated S1s, an elevated
rate of electrons can also occur in the tail of a large S2. The process by
which these “e-trains” are produced is thought to be the capture and
release of drifting electrons by slow-moving electronegative impurities
in the LXe [138]. This is supported by the increased rate of electrons
for events with a high drift time, where there is a higher probability of
capture on an impurity. The length of the e-train scales linearly with the
size of the progenitor S2, and pile-up of these SE pulses is a significant
source of lone S2s.

For some classes of S2-only events, the associated S1 is misclassified
or lost. For example, events which occur near the liquid surface have
a short drift time, which can result in the S1 being merged into, and
classified as part of, the S2 pulse. As the electrons that comprise these
S2s will experience very little diffusion, they can often be identified by
their shorter, rectangular pulse shape.

Deposits in the gas region above the anode result in prompt scintil-
lation and ionisation of xenon atoms in the gas. Due to the negative
bias of the PMTs, the resulting electrons drift downwards. As the field is
relatively low compared to below the anode, electroluminesence is only
produced in a short burst close to the grid wire. The S2s will therefore
be narrower than usual. If the S1 and S2 were correctly identified by the
pulse finder, the event would be removed by fiducialisation. However,
due to slower recombination in gaseous xenon [139], the S1 pulses can
become stretched, leading to misclassification.

Due to the relatively poor collection efficiency of photons compared to
electrons in the detector, a population of low-energy isolated S2 events
exists below ~ 4000 phd, where the S1 signal falls below the 3 phd
threshold. This can be the case for radon daughters plating out on the

cathode and gate grids, for example.

4.3 SR1 Core Cuts

A variety of data quality cuts were applied to remove poorly-reconstructed
events and anomalous data. High rates of isolated Sls and S2s meant
that many of the cuts were designed to specifically target accidental co-
incidences of these pulses. Cuts were developed on calibration data and
sidebands outside the WIMP search ROI in order to mitigate bias, and
were optimised to provide a high signal acceptance and background re-

jection efficiency. The cuts were categorised into four groups: Sl-based
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cuts, S2-based cuts, physics background cuts and livetime impact cuts,

and are described in the following sections.

4.3.1 Livetime Impact Cuts

« Hotspot Exclusions: High rates of electrons due to grid emission
occur in hotspots and can pile up to form S2s, causing accidental
coincidences. To target these, a one-hour window was removed

around periods of high S2 and SE pulse rate.

e Muon holdoff: The calculated muon flux of (5.31+£0.17)x107? ps~'em ™2
at the Davis Campus produces a rate of ~ 10 muons per liveday
passing through all three detectors. Time-coincident signals in the
TPC, Skin and OD were used to tag these events, and a hold-off
of 20 seconds was applied to remove periods of high-electron rates

due to ionisation.

« Electron/photon-train veto: e-/ph-trains following large S2s
can lead to pileup of SEs or SPEs resulting in classification as
S2s and Sls, respectively. The area of the progenitor S2 was used
to define the length of a veto window to remove these high-rates,

resulting in a loss of livetime of 29.8% for SR1.

« High S1 Rate Exclusions: Periods surrounding large spikes in
S1 rates, likely due to instrumental effects, were removed to re-
duce the number of isolated S1 pulses contributing to accidental

coincidences.

« Bad Buffer Cuts: The DAQ buffer for a PMT channel (as de-
scribed in section 3.2) can become full post-trigger, and additional
data can no longer be written to file. This can result in artificially
low pulse areas, so the cut ensured that TPC buffers were live un-
til the end of the prominent S2, and Skin and OD buffers were
live during the veto windows required to capture a pulse coincident
with the S1.

o Excess Area Cut: This cut was designed to target periods of high
rate not removed by the muon or e-train veto, for example when
a large S2 occurred during a period of DAQ deadtime, resulting in
an e-train leaking into the following event. Events with a larger
amount of light then expected before and between the S1 and S2

pulses were removed.
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» Sustained rate cut: Similarly, the sustained rate cut targeted
prolonged periods of high SPE rate due to muons or S2s that were

not tagged by the muon and e-train vetoes.

e Burst Noise Cut: Bursts of noise were observed in PMTs in all
three detectors, but most significantly in the OD. These pulses can
be tagged in the OD based on their shape, and a high density of

these pulses led to the removal of an event.

4.3.2 Physics Background Cuts

o Single Scatter: WIMPs are expected to scatter only once in the
TPC, so only events identified by the Interaction Finder as con-
taining one prominent S1 and one prominent S2 were used in this

analysis.

e« S1 and S2 threshold: The WIMP search ROI, where the back-
ground model has been validated, was defined as 3 < Slc < 80 phd,
52 > 600 phd, log;,S2c < 5. This is in addition to the three-fold

coincidence requirement for S1 classification.

« Fiducial Volume (FV): A drift time cut of [86, 936.5] ps, and a
drift-time dependent radial cut of up to 5.2 cm from the wall, re-
moved external backgrounds by exploiting the excellent self-shielding
provided by LXe. The position reconstruction resolution is poorer
for events at high radius due to reduced S2 light collection efficiency
and charge loss at the walls. The radial cut was therefore chosen
simultaneously with the S2 lower bound to prevent events leaking
into the FV, an approach which required the raw uncorrected S2
pulse size. 6cm circles around the resistor chains which span the
height of the TPC were also removed, as these were found to be re-
gions of high activity. The remaining fiducial mass was calculated

to be 5.5 tonnes.

« OD Veto: A prompt veto targeted v rays and proton recoils in
the OD using a window of [-300,4-300] ns around the TPC S1. A
delayed veto removed neutrons that scattered in the TPC before
being captured by the Gd-LS in the OD, by identifying events with
an OD pulse greater than 200 keV within 1200 ps of the S1.

o Skin Veto: A prompt veto targeted particles such as cavern ~s
scattering in both the Skin and TPC, using a veto window of |-
500,4-500] ns around the S1. A delayed veto searched for «s that
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were produced by neutron capture in the OD without depositing
energy there. The delayed window was [+500 ns,+1200 ps|, with
an upper bound to match the OD veto.

4.3.3 S2-based Cuts

e S2 width vs drift time: Due to electron diffusion, a relationship
exists between the width of an S2 pulse and the drift time. This
can be exploited to identify accidental events where the drift time

was incorrectly assigned.

e Narrow S2: Many accidentals are a product of S2s with very
short drift times near the liquid surface, where the S1 is either lost
or becomes merged with the S2 during pulse finding. To remove
these events, a cut was placed on the RMS width of the S2 pulse

with respect to its area.

« S2 Rise Time: S2 pulses near the liquid surface also tend to
have flat tops, due to random bursts of electron emission. The
rise time is defined as the difference between the time at which 1%
of photons in the pulse have arrived at the PMT (Area Fraction
Time 1 or AFT1) and the time at which 5% of photons have been
detected (AFT5). By cutting on this with respect to the S2 pulse

area, these events can be removed.

e S2 early peak: Accidental gas events with merged Sls and S2s
can be targeted by making a cut on the FWHM of an S2 with

respect to S2 pulse area, as shown in Figure 4.3.

e S2 XY quality: The radial fiducial cut relies on good position
reconstruction, where the Mercury algorithm is used to determine
the XY position of an event from the PMT hit pattern of the
S2 pulse. This can be quantified using the goodness of fit of the

Mercury algorithm.

« S2 TBA: S2-only gas events in the extraction region, especially
those above the anode grid, have a higher top-bottom asymmetry,
or TBA, than events from the LXe. Placing a cut on S2 TBA

allowed this source of accidental events to be reduced.

4.3.4 Sl-based Cuts

¢ S1 Prominence Cut: The Interaction Finder in LZap is tuned

to select Single Scatter events, even if sample purity is reduced by
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e Isolated S2
o DD
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Figure 4.3: The S2 early peak cut removes events below the dashed line.
It can be seen that isolated S2 pulses tend to have a smaller FWHM than
S2 pulses from a DD calibration under SR1 conditions. Plot courtesy of
S. Dey.

contamination from some non-SS. This cut targeted events with
two prominent S1 pulses before the S2, due to an additional lone
S1. This was achieved by comparing the size of the second largest
S1 to the largest S1, and cutting in the parameter space shown in
Figure 4.4. For an event to be removed, a minimum time separation
of 750 ns between the Sls was required, in order to avoid cutting
a single S1 which had been split in two by the LZap pulse-finding
algorithm.

» Stinger Event Cut: Regions where the grid wires of the gate and
anode are misaligned can result in electrons travelling up between
the anode wires and entering a region with much lower fields than
the extraction region. They can then fall onto the anode wires,
where the field is high enough to produce electroluminesence. This
results in a delay between the charge pulse and the S1 “stinger”,
so the cut removed events with a small S1 within 2ps of an SE or
an S2.

e S1 TBA vs drift time: This cut focuses on the relationship
between S1 TBA and drift time, due to the geometry of the detector
and reflectivity of the liquid surface. Events outside 30 bounds

defined by a fit performed on 83" Kr calibration data were removed.
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Figure 4.4: Distribution of SR1 WIMP search events in the parameter
space which compares the ratio of areas of the two largest S1 pulses in
an event to the area of the largest S1. Events to the upper right of the
red line, which are likely to be contaminated by an additional lone S1,

would be removed by the S1 Prominence cut.
using code written by M. Williams.

This plot was generated

« S1 High Single Channel Cut: Many accidental events have a

higher fraction of light in one PMT than expected. An example
of this is Cherenkov radiation emitted inside a PMT, where the
majority of the light will be detected in that channel. The cut used

the “maxChArea” variable to target this behaviour.

S1 Shape: This cut used various metrics for the width, as well
as the “prompt fraction time” (the fraction of the total pulse area
that is detected within a certain time), to target isolated S1 pulses,

which often have a longer and more distorted shape than real Sls.

S1 photon timing: Isolated S1 pulses tend to have a larger spread
than scintillation Sls in the times at which each PMT channel
observes the maximum number of photons. By eliminating S1s
with an RMS of channel peak times larger than 80 ns, this type of

event can be removed.

4.4 Accidentals Model

4.4.1 Accidentals Datasets

Although the data quality cuts have been tuned to target both isolated

Sls and S2s, the surviving accidentals are an important background and
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must be modelled. Single Scatter events with a drift time larger than that
allowed by the TPC (Unphysical Drift Time or UDT events) are known
to be purely accidental coincidences. Assuming no correlation between
S1 and S2 pulses, this dataset could be employed in the creation of an
accidentals PDF. However, it was found that following the application of
all data quality cuts, only one UDT event survived, so it was not possible
to produce a reasonable distribution.

For the purpose of increasing statistics, a new dataset, known as
AccidentalChopStitch (ACS), was generated by stitching together S1 and
S2 pulses using the following process. Events classified as “Other”, in
which no good S1-S2 pair was identified by the Interaction Finder, were
selected from the WIMP search data. As event-level RQs, such as the
trigger times, of the stitched events would not be meaningful, the livetime
cuts, and a selection of the physics cuts, were applied at this stage. Of
these events, if the trigger was random and the area of the S1 was less
than 115 phd, the event was selected as an input S1. If the event was
S2-triggered and the S2 area was less than 1.02 x 10° phd, the event
was selected as an input S2. The S1 and S2 pulses were then randomly
paired, and the stitched events were reprocessed using LZap. A total of

28 million Single Scatter events were produced using this methodology.

4.4.2 Distribution

Statistical comparisons of the S1 and S2 area distributions confirmed
reasonable agreement between the ACS and UDT datasets, and demon-
strated that the Sls and S2s could indeed be treated as uncorrelated.
15,143 events with a physical drift time remained after the application of
all data quality cuts to the ACS data, which was found to be insufficient
to produce a smooth PDF. Therefore, the distribution was projected into
the S1 and S2 dimensions, made possible by the independence of the S1
and S2 pulses. Kernel density estimation and linear fits were then em-
ployed to model the tails of the distributions, and the outer product of
these was calculated. The final PDF is shown in Figure 4.5.

4.4.3 Rate Calculation

The PDF was then normalised to the expected number of accidental
events in the WIMP search ROI following all data quality cuts. As
the number of UDT events was too low to provide a precise event rate,
this was calculated by applying the cut acceptance from the large ACS
dataset to the initial number of UDT events. The initial counts for both
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Figure 4.5: Distribution of AccidentalChopStitch events in log;, S2¢-Sle
space following all data quality cuts and a smoothing procedure, which
separately modelled the tails of the S1 and S2 spectra and took the outer
product. Solid blue and red lines represent the medians of the ER and NR
bands, respectively, while dashed lines show the 10% and 90% quantiles.

the UDT and ACS populations were taken to be the number of events
following a set of baseline cuts, including those that were applied to the
ACS input and the vertical fiducial volume cut, but before the other cuts.
The number of UDT and ACS events surviving both the baseline cuts
and all data quality cuts are shown in Table 4.1. The ratio of these two
values for the ACS dataset provided the cut acceptance, and applying
this to the initial number of UDT events resulted in an expected 1.22
accidental events remaining in the WIMP search ROI, as shown in the
final column. This value had an uncertainty of 21%, which includes
contributions such as potential differences between the composition of
the ACS and UDT datasets, and Poisson fluctuations in the measured
number of UDT events. This corresponds to a rejection efficiency of
99.6% of ACS events.

4.5 SR1 Cut Acceptances

4.5.1 AmLi Cut Acceptance

It has been shown that the data quality cuts were effective for removal

of accidentals, however it was important to ensure no significant loss in
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Table 4.1: The number of events surviving baseline selection cuts and
all data quality cuts for both the Unphysical Drift Time and Acciden-
talChopStitch populations. The final normalised event count of 1.22 was
found by applying the ACS cut acceptance to the initial number of UDT
events.

UDT ACS ACS Normalised by UDT Rate
Baseline Cuts 310 3,861,123 310
All Cuts 1 15,143 1.22

acceptance of NR events such as WIMPs. An investigation of cut accep-
tance was carried out by the author, in collaboration with the UCL group,
with pure AmLi as the selected source, due to its presence throughout
the F'V and coverage of the full S2 range.

In order to confirm that selection of AmLi neutrons was successful, it
was necessary to compare the recoil energy spectrum from AmLi data to
LZLAMA simulations (see chapter 5). The following cuts were applied

to all three AmLi sources at the Z = 70 cm position:

e« SR1 core cuts:

« Single Scatter
e Fiducial volume

« ROI
e OD coincidence cuts:

« OD pulse area > 200 phd (data) and > 100 phd (simulations),
based on spectra of area of the largest pulse in the OD

« OD coincidence > 5 (data only)

e Sl start time < OD start time < S1 start time + 150 s

The simulated spectrum was then scaled by

Livetime from data x Activity of source

Number of simulated events x Percentage of neutron events simulated
(4.5.1)

It was also necessary to adjust for the different activities of the three
sources, which were measured at the University of Alabama using a He
neutron detector [136], so simulations were run separately for each cali-

bration tube, before scaling and summing.
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Figure 4.6: Spectrum of recoil energies for three AmLi sources at 7 =
70 cm for both simulations and data.

The resulting energy spectra are shown in Figure 4.6. Some discrepan-
cies were seen between the data and simulations, particularly at high and
low recoil energies. Quantitatively, using the two sample Kolmogorov-
Smirnov test [140], the null hypothesis that the two datasets were sam-
pled from populations with identical distributions is rejected at the level
4.5 x 10°, meaning that the distributions are highly incompatible. It
was thought that the excess of low energy events in the data was due
to the misclassification of Multiple Scatter events as Single Scatters by
the Interaction Finder. Better agreement was seen between the data and
simulations for the combined SS and MS spectra. The disagreement at
high recoil energies was likely due to (a,n) reactions from oxygen con-
tamination in the AmLi source not accounted for in the SR1 simulations.
For example, the lithium target could become contaminated due to a leak
in the capsule seal. This could result in the presence of **O, which would
produce high-energy neutron tails beyond the usual 1.5 MeV endpoint
[141]. The effect of the oxygen contamination was later estimated using
Geant4-based tools, and an AmLi spectrum which accounted for this was
found to be in better agreement with the observed data.

The distribution of AmLi events from calibration data taken with
sources at all three heights is shown in Figure 4.7. Of the SR1 Core
Cuts discussed, all physics background cuts were either already applied
as baseline cuts to select the AmLi events, or are OD and Skin veto cuts

that are ordinarily used to identify and reject neutrons. It was found
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Figure 4.7: Distribution of events in log;, S2¢-Slc, drift time-r? and XY
spaces following AmLi selection cuts, combining datasets with all three
sources at Z = 0 cm, 70 cm and 140 cm. Solid blue and red lines represent
the medians of the ER and NR bands, respectively, while dashed lines
show the 10% and 90% quantiles.

that application of all livetime impact cuts removed 99.7% of events.
This was primarily due to the sustained rate cut and e-/ph-train veto,
because of the high rate of AmLi events across the entire energy range.
As a result of these high rates, the waveform environment was unclean,
with pile-up of small pulses, including those from e-/ph-trains, leading
to contamination of these events by accidentals. The AmLi acceptance
curves were nevertheless useful for validation purposes.

Since the livetime impact cuts were not applicable for this dataset,

the acceptance was defined here as

AmlLi events surviving baseline cuts and selected cut (45.2)

AmlLi events surviving baseline cuts

Acceptance curves were produced for each S1-based cut as a function
of Slc (Figure 4.8) and each S2-based cut as a function of log;, S2¢ (Fig-

ure 4.9) individually, as well as for the combined S1-based and combined
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Figure 4.8: Acceptance of AmLi events as a function of Slc for each of
the S1-based data quality cuts.

S2-based cuts in Figs. 4.10 and 4.11. Here, acceptance as a function of
r? and drift time is also shown, as well as distributions of rejected events

2 and XY spaces. The error bars were de-

in log,,52¢-Sle, drift time-r
termined using the Clopper-Pearson method, which has a high coverage
level and is commonly used for calculating binomial confidence intervals
[142].

Many of the cut acceptances were lower than desired for the WIMP
search, but due to the increased accidentals component resulting from
high AmLi rates, this was expected. Acceptance was generally lower at
small radial distances from the detector centre. Events in this region
were far from the source tubes, which are situated outside the ICV, so
statistics were low. The S1 Prominence cut showed additional interesting
behaviour, as a minimum acceptance was observed for an Slc of ~ 20 phd.
This can be understood by observing the cut boundary in Figure 4.4.
The cut does not remove events where the area of the largest S1 pulse
is small. The turning point of the function used as the cut boundary is

close to Slc = 20 phd, so the cut is more sensitive to deviations in this
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medians of the ER and NR bands, respectively, while dashed lines show
the 10% and 90% quantiles.
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region. For events in the NR band, this corresponds to a log;, S2c value
of ~ 3.6, which can explain the dip in the acceptance of all S1-based cuts
as a function of log;,S2c seen in Figure 4.10. The acceptance of the S2
Width vs Drift Time cut was seen to increase at high S2 pulse area. This
cut was developed by performing fits in the width-drift time parameter
space for a ®3™Kr calibration dataset, and setting the cut values at 3o
from the mean. The relationship between these variables becomes tighter
for S2 pulses with a greater number of electrons, allowing for an improved
pass rate. The XY quality cut showed a loss in acceptance at both high
and low S2c¢. Inspections of waveforms showed that rejected events from
AmlLi data with a low S2¢ were generally not good events, and included
pathologies such as multiple merged S2s and pile-up from e-trains. It
was proposed that the dip in acceptance at high S2¢ could be a result of
PMT saturation.

4.5.2 Datasets for Cut Acceptance

The official SR1 WIMP search cut acceptances for the S1-based cuts were
determined using tritium calibrations, due to the uniformity of the source
in the detector and the minimal accidental S1s following application of
the e-/ph-train veto. For the S2-based cut acceptance curves, a purely
ER source such as tritium was unsuitable, since the low-energy region
of the NR band cannot be populated by higher-area ER S2s. Although
events from both AmLi and DD neutron sources cover the full S2 range
of the ROI, each source has its drawbacks. As the DD events were highly
localised close to the top of the detector, the majority of events were
outside the FV and, as discussed, the high rates of the AmLi sources
resulted in a poor waveform environment.

The S2-based cut acceptances were therefore determined using an NR
ChopStitch dataset, employing a similar process to that which was used
for accidental event generation, but choosing an S1 and S2 as close to
the desired drift time as possible. The S1 was taken from the tritium
dataset, as were some larger S2s, whereas smaller S2s were taken from
the AmLi data. The final acceptance for all S2-based cuts was defined as
the percentage of events surviving the following sets of cuts, as described

in section 4.3:

Livetime + Physics + S2-based
Livetime + Physics

S2-based Acceptance = : (4.5.3)

with an S1-based cut acceptance of:
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Figure 4.12: Official SR1 WIMP search acceptance curves using a tritium
source for Sl-based cuts (left) and NR ChopStitch for S2-based cuts
(right). The fits shown in red were used in the subsequent analysis.

Livetime + Physics + S2-based + S1-based
Livetime + Physics + S2-based

S1-based Acceptance =
(4.5.4)

The final SR1 acceptance curves are shown in Figure 4.12. Fits of
these curves were applied to the PDFs of each of the simulated signal
and background sources required for limit setting, adjusting the weight
of events, rather than removing them entirely. The overall NR acceptance
as a function of recoil energy, including the efficiency of the trigger, is

shown in Figure 4.13.

4.6 The SR1 WIMP Search Result

4.6.1 Observed Data

After application of all data quality cuts to SR1 WIMP search data, a
total of 335 events remained. Their distribution in log,,S2c-Slc space
is shown in Figure 4.14, with the majority of events populating the ER
band. The spatial distribution of the events is shown in Figure 4.15,
demonstrating the removal of backgrounds by the FV cut, as well as the
Skin and OD vetoes.

4.6.2 Background Model

A profile likelihood ratio (PLR) was employed in log,;,S2¢-Slc space
to test whether these observed data were in better agreement with a

background-only or background and signal hypothesis. This required in-
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Figure 4.13: Signal efficiency as a function of nuclear recoil energy,
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coincidence requirement and 3 phd Slc threshold (orange), other analysis
cuts (green), and the WIMP search ROI (black). Figure from Ref. [93].
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Figure 4.14: Distribution of SR1 WIMP search data in log,,S2c-Slc
space following all data quality cuts. 1o and 20 contours represent the
following models: the best-fit background model (grey), the 37Ar back-

ground component (orange), the 8B solar neutrino component (green),
and a 30 GeV WIMP (purple). Figure from Ref. [93].
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Figure 4.15: Distribution of SR1 WIMP search data in Z-r? space fol-
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whereas the solid line indicates the FV. Black and grey points show data
inside and outside the F'V, respectively. Red crosses represent events re-
moved by the prompt Skin veto and blue circles similarly indicate events
vetoed by a prompt signal in the OD. Figure from Ref. [93].

puts of signal PDFs in log,, S2c-Slc space, which were simulated using
the Geant4-based BACCARAT package for masses between 9 GeV and
10 TeV for a spin-independent WIMP model. Distributions were also
required for each of the components in the SR1 background model, as
shown in Table 4.2. The normalisations of each simulated PDF were

determined through calculations and analysis of the data.

Of the backgrounds discussed in section 3.3, ERs in the WIMP search
ROI were predominantly the result of 8 decays of contaminants dispersed
in the xenon. Contributions from 24Pb and 2'2Pb, from the ??Rn and
220Rn decay chains, respectively, as well as %Kr, all have broad energy
spectra that are relatively flat across the entire energy range considered,
so have been combined into a single background. By fitting Slc peaks of
high-energy a sources on either side of 24Pb (2Pb) in the ?22Rn (**°Rn)
decay chain, the rate of 2'Pb (*'2Pb) was found to be 3.26 nBq/kg (0.14
1Bq/kg). To determine the ®*Kr rate, the concentration of "*Kr in the
xenon was measured to be 144+22 ppq (g/g) using a liquid nitrogen cold
trap, accounting for both individual xenon bottles and residual xenon in
the ICV [125]. « rays from the detector components and caverns walls

also produce a small flat ER spectrum [128], so were combined with the
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B components. All cuts were applied to simulations for every component
of the Detector ER background, before scaling by energy peak fit results
outside the ROI.

A separate flat contribution to the ER background is also expected
from solar neutrinos, the rate of which was calculated precisely using
Refs. [143]-[145]. The physics backgrounds from decays of ¥Xe and
124Xe through double 3 decay and double electron capture, respectively,
also produce ER events, and expected rates were calculated using mea-
surements of isotropic abundances and half-lives from Refs. [130], [132],
[146].

127Xe and 37Ar resulting from cosmogenic activation of the xenon
must also be accounted for. The rate of 2"Xe was constrained by mea-
suring K-shell atomic de-excitations which occur outside the ROI. The
number of 37Ar events was estimated using the exposure of the xenon to
cosmic rays before underground deployment and the decay time before
the start of SR1 [126]. The wide flat constraint on this value accounts for
the high uncertainty in the spallation model and the level of activation

during transport.

Radiogenic neutrons from detector components contribute to the NR
background. The rate prediction was derived by applying the OD neutron-
tagging efficiency to OD-tagged Single Scatter events in the FV. The ex-
pected rate for each of the other background components was set to 5%
of that determined for the WIMP search, due to the 5% chance of an ac-
cidental time-coincident signal in the TPC and OD. Statistical inference
on the OD-tagged event sample produced 0 as the best fit number of
neutron events. The NR background also includes a component from co-
herent elastic neutrino-nucleus scattering from ®B solar neutrinos, which
was determined following Refs. [143]-[145], but this is small due to the

majority of such events being below the current S2 threshold.

Each of the backgrounds discussed, together with the accidentals dis-
tribution as shown in Figure 4.5, reweighted by the acceptance curves in
Figure 4.12, form the SR1 background model. A fit of the model to the
data was performed, with uncertainties in each background component
included as fit constraints. For every WIMP mass tested, the data were
consistent with the background-only hypothesis, as a total of zero WIMP
events resulted in the best fit. The best-fit background model and data

are shown as a function of reconstructed energy in Figure 4.16.

The only systematic uncertainties considered in this statistical infer-
ence were the uncertainties on the estimated background counts. Exam-

ples of systematic uncertainties are those introduced through the mea-
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Table 4.2: The components of the background model, with the number
of events expected within the 60 d x 5.5 t SR1 exposure. Also shown is
the result of fitting the model, including a 30 GeV WIMP contribution,
to data. Table reproduced from [93].

Source Expected Events Fit Result
B decays + Det. ER 215+ 36 222 + 16
v ER 27.1+1.6 27.2+1.6
127X e 9.2+0.8 9.3+0.8
124X e 50+ 1.4 52+ 1.4
136X e 15.1+24 15.24+2.4
8B CEvNS 0.14 £ 0.01 0.15+0.01
Accidentals 1.24+0.3 1.240.3
Subtotal 273+ 36 280+ 16
STAr [0, 288] 52.5799
Detector neutrons 0.010-2 0.0102
30 GeV WIMP - 0.00:6
Total - 333 £ 17

sured branching ratios to naked 8 decay for ?'?Pb and 2“Pb, and the
half-lives for '?*Xe and '*¢Xe, as well as theoretical values for neutrino
fluxes [125]. The calculated values for total livetime and fiducial mass
also introduced systematic uncertainties on the background counts. As
LZ is a low-background experiment, these model uncertainties do not
produce a significant effect on the sensitivity [124]. It can be seen in
Table 4.2 that, aside from the 8 + Det. ER and 3"Ar components, the
uncertainties resulting from the fit are identical to the input model un-
certainties at the quoted precision. This is due to the tight constraints
provided by sideband samples and measurements by other experiments,
as well as the relatively low impact of these background components.
The output systematic uncertainties are shown by the darker blue band
on the best-fit background model in Figure 4.16. The impact of various
other systematics was evaluated by rerunning the statistical inference,
for example by replacing the signal efficiency from Figure 4.13 by the
lower 1o bound of the efficiency band, and the impact on the exclusion
limit was shown to be small. External systematic uncertainties, such as
those present in the dark matter halo model and nuclear form factors,
were not considered for SR1. In addition to the systematic uncertainty,
the statistical Poisson fluctuation on the expected number of events is

shown as the lighter blue band in Figure 4.16.
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Figure 4.16: The best-fit background model as a function of reconstructed
energy. The total of all background components is shown in blue and
the black points are the data. The accidentals and ®B solar neutrinos
background components are included in the fit but are too small to be
visible. Figure from Ref. [93].

4.6.3 SR1 Limits

Fig 4.17 shows the limits of the ST WIMP-nucleon cross-section above
which WIMPs are excluded at the 90% confidence level, as a function
of WIMP mass. For masses between 13 GeV and 36 GeV, the limit is
significantly lower than the median expected limit due to background
fluctuations, so has been power constrained following recommendations
presented in Ref. [147]. At the time of writing, these are the most strin-
gent limits for spin-independent WIMP-nucleon interactions for WIMP
masses greater than 9 GeV, with the optimal sensitivity achieved at a
WIMP mass of 36 GeV, where cross-sections of 9.2 x 107# cm? and above
are rejected at the 90% confidence level. This has been achieved using
only ~ 6% of the estimated 1000-liveday total exposure of LZ, which will
continue to explore new WIMP parameter space and operate other rare

physics searches [124].
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Figure 4.17: The SR1 WIMP search 90% confidence limit (solid black) for
the spin-independent WIMP-nucleon cross-section as a function of WIMP
mass. The dot-dash line shows this limit before power-constraining. The
dashed line shows the median of the sensitivity projection, and the green
and yellow bands are the 10 and 20 uncertainties on this. Limits showing
recent results from other direct detection experiments are also included.
Figure from Ref. [93].
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Chapter 5

Light Collection Efficiency in

Simulations

Accurate optical simulations are valuable for the development of waveform-
based analyses in LZ, and it is essential that they are able to reproduce
the position-dependent detection efficiency of scintillation photons. The
improvement achieved through optimisation of several optical parameters

will be the focus of this chapter.

5.1 LZ Simulations

The ability to accurately simulate events in the LZ detector is vital.
Simulations were used in the optimisation of the detector design, for ex-
ample to increase light collection, and in the calculation of the expected
number of background events using measurements provided by the ra-
dioassay campaigns. As explained in subsection 4.6.2, PDFs produced
using simulations of signal and background sources were used as inputs
for the profile likelihood fit that produced SR1 exclusion limits. Two
simulations chains are utilised by the LZ collaboration, each consisting
of various software packages. A schematic of both chains is shown in
Figure 5.1, and they will now be described in further detail.
BACCARAT (Basically A Component-Centric Analogue Response to
AnyThing) is a Geant4-based package tailored for LZ [129], [148], that
is used for both the fast and full simulations chains. It contains custom
particle generators, with Geant4 tracking used to follow the resulting
particles as they deposit energy in detector components. In the case of the
parametric “fast” chain, these energy deposits can be output directly to
a ROOQOT file, whereas for the full chain, additional processing is required.
As the fast chain tracks energy deposits only, rather than every opti-

cal photon, it is much less computationally expensive than the full chain,
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Figure 5.1: Schematic of the software packages used within the full and
parametric “fast” LZ simulations chains, based on LZ documentation.
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and is used to produce the templates used in limit setting. The BAC-
CARAT output files are processed with the LZ Light Analysis Monte
Carlo Application (LZLAMA), which converts energy deposits in sensi-
tive volumes into RQs, including the average number of observed S1 and
S2 photons, using parametric models of the detector response. LZLAMA
achieves this by performing clustering of energy deposits, before passing
them to NEST, which calculates the S1 and S2 response using maps of
light collection efficiency and electric field. The arrival time and PMT
hit pattern of photons is not modelled, and simulations created in this
manner lack features such as electronic and geometric effects. There-
fore, in order to study complex event pathologies and develop cuts, it is
beneficial to also have full optical simulations available.

In the full-chain mode, BACCARAT converts energy deposits to S1
and S2 signals using G4S1Light and G4S2Light. G4S1Light performs
clustering and interfaces with NEST, while G4S2Light uses an S2 map to
convert ionisation electrons into photons. Full optical ray tracing is then
used to determine which photons are collected by PMTs, resulting in an
output file containing PMT hits. This is used to produce Monte Carlo
Truth (MCTruth) information about the energy deposit, or “vertex”,
that produced the relevant photons. The Detector Electronics Response
(DER) package converts raw photon PMT hits to digitised waveforms
by modelling the front-end electronics of LZ, including the PMTs, cables
and DAQ. The resulting ROOT file is in the same format as those which
are output from the DAQ, and can be passed through LZap in the same
way as raw data, in order to generate RQs from waveforms.

An example contribution of the full simulations chain to LZ data
analysis was the validation of an additional inefficiency in the detector,
whereby, at large drift times, S2 pulses were more likely to be split in
two if only a single template was used in S2 identification. This efficiency
loss was quantified using simulations and applied to the S2 acceptance
curves. In order for the full simulations to be useful, they must first
be tuned to match real data. One important consideration is the light

collection efficiency (LCE) for S1 signals.

5.2 Light Collection Efficiency in the LZ

Detector

The LCE is defined as the gain for S1 signals in the LZ detector and is
known as the g; value. This is the average fraction of S1 light detected

by TPC PMTs and is normalised to the geometric centre of the detector.
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For LZ, this value accounts for both the proportion of photons reaching
a PMT, and effects resulting from the PMTs and electronics. Note that
this differs from some collaborations, where the term only accounts for
the former [149].

LCE is position dependent, particularly in the Z direction, as geom-
etry dictates that a PMT array close to an event will subtend a much
greater solid angle than a PMT array far from the event. This results in
a higher LCE in the respective arrays for events close to the top or bot-
tom of the detector, as more photons are detected directly, rather than
requiring many reflections to reach a PMT. More S1 light is seen in the
bottom array than the top, due to reflections from the liquid surface.

In order to ensure that pulse sizes are independent of position, a
correction is applied to data. In SR1, this was achieved by generating a
correction map that divided the detector into 6859 voxels in X vs Y vs
drift time space. 83™Kr events from calibration data were selected, and
Gaussian means of their S1 pulse area were found. Dividing these by the
mean value in the central bin, and extrapolating to bins with a low event
count, provided a correction factor for each voxel. The three-dimensional
correction map used in SR1 is shown in Figure 5.2.

These position corrections were important for the process of calcu-
lating the ¢g; value. Gaussian means of the corrected S1 and S2 pulse
areas, Slc and S2¢, for monoenergetic sources of known energies from
both calibrations and background data, were added to a Doke plot [102],
as shown in Figure 5.3. The linear relationship is a result of the anti-
correlation between the number of photons and electrons produced in an

interaction. The reconstructed energy equation, Equation 2.6.13, can be

S2c Jo Slc Jo
o () (=) + 2 2.1
F ) (%) o2

allowing a ¢; value of 0.1133 +0.0030 phd/photon to be derived from
the gradient and y-intercept of the fit of the Doke plot. The gy value,

rearranged to give

defined as the effective charge gain for the S2 signal, was similarly de-
termined. Large S2 pulses in the top array can lead to PMT saturation
[106], which artificially reduces the size of the S2 signal, so the S2 light in
the bottom array only, S2¢poiom, is used in the calculation, rather than
S2c. This provided a g™ value of 14.75 4+ 0.56 phd/electron, which
can be converted to a gy of 47.1 + 1.1 phd/electron by dividing by the
S2 top-bottom asymmetry, which had a constant value for SR1. As this
method was fully data-driven, the simulations were tuned to match this
g1 value of 0.1133 4 0.0030 phd/photon.
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Figure 5.2: Three-dimensional correction map generated using 83" Kr cal-
ibration data under SR1 conditions, with code adapted from G. Rischbi-

eter and M. Murdy. Each data point represents the S1 correction factor

in one of the 6859 voxels in X vs Y vs drift time space.
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Figure 5.3: Doke plot, courtesy of G. Blockinger, showing the anti-
correlation of S1 and S2 signals. The fit of the data points from several
monoenergetic sources was used to determine the light and charge gain.

This value was in very good agreement with the results of an alter-
native method, in which NEST was used to produce ER and NR bands.
A raster scan was performed over pairs of g; and go values, minimising
deviations between the medians of the simulated bands and bands from
tritium and DD calibrations, as well as discrepancies between the recon-
structed energies and the true decay energies of 83mKr, ¥1™Xe and 2"Xe
sources. This provided a g; value of 0.1149 4 0.0021 phd/photon and a
g2 value of 46.38 4 1.51 phd/electron.

5.3 Light Collection Efficiency in LZ Sim-

ulations

In order to investigate the LCE in simulations and carry out comparisons
to data, the BACCARAT package was used in the full optical mode
to simulate 10 million photons at various heights throughout the LXe.
This is known as a “photon bomb”. The photons were constrained to
originate within the boundaries of -44.44 mm < X, Y < 44.44 mm,
which correspond to the most central bin in the S1 position correction

map. Optical tracking was used to determine which photons reached a

132 of 241



5. Light Collection Efficiency in Simulations

PMT photocathode.

The PMT quantum efficiency (QE) was then applied in the same
manner as is ordinarily implemented in the DER. The value provided
by Hamamatsu for each PMT, in the range of 25-40%, was adjusted to
account for several effects. This included the relative improvement in QE
of (17.9 £5.2)% when the PMT is cooled from room temperature [118],
and the collection efficiency of the first dynode. At the operating voltages
of LZ, 85% is the collection efficiency reported by the manufacturer, but
this was likely only measured for visible light. Calculations accounting
for the DPE effect at VUV wavelengths, where two photons can over-
come the inefficiency, provided a value of 89% [118]. For each photon
that reached a PMT photocathode, a random number was drawn from
a uniform distribution and, if less than the quantum efficiency of that
PMT, a count was added to the appropriate height bin in a histogram.

Scaling by the total number of photons generated provided a value for
LCE in each height bin. The same process can also be applied to photons
reaching PMTs in the top or bottom array only, to produce corresponding
curves for the top and bottom array LCE. LCE curves produced using
the default BACCARAT settings are shown in Figure 5.4. The LCE
curves can then be fit with a polynomial function in order to determine
the value at the detector centre. This allows for a direct comparison to

the data g, value calculated from the Doke plot.

5.4 Optical Parameters

Many optical parameters are available to tune in the BACCARAT code,
and three were found to have the most significant impact on both the
absolute LCE at the detector centre, and the variation of LCE with
height. These were the reflectivity at the LXe-PTFE interface, the LXe
absorption length and the LXe Rayleigh scattering length. The PTFE
reflectivity is described using the UNIFIED model in Geant4 [150] and
is modelled as entirely diffuse, when in reality there is a specular com-
ponent which is dominant at high angles of incidence [151]. In future,
implementation of a more accurate model in BACCARAT could improve
simulations.

The expected ranges of values for each optical parameter at the mean
LXe scintillation wavelength are taken from Ref. [149], and are shown in
Table 5.1. The default values previously used in BACCARAT simulations
were a LXe-PTFE reflectivity of 97.3%, a LXe absorption length of 100
m and a LXe Rayleigh scattering length of 0.3 m. Other parameters,
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Figure 5.4: Percentage of simulated photons detected as a function of
height above the cathode grid. The S1 correction map is normalised to
the detector centre at Z = 784 mm, indicated by the black dotted line,
so the LCE value at this point is directly comparable to g; from data.

Table 5.1: Expected ranges from Ref. [149] of optical parameters at the
mean LXe scintillation wavelength.

Parameter Range
LXe-PTFE Reflectivity [%)] 93 - 100
LXe Absorption Length [m] 20 - 100

LXe Rayleigh Scattering Length [m] 0.2 - 0.5

such as the reflectivity of the stainless steel grids, were found to have an
impact on the overall LCE, but as the dependence on height was minimal

and the true value is unknown, these were not tuned separately.

The impact of each of the optical parameters is demonstrated in Fig-
ure 5.5, which shows the LCE curves for the most extreme parameter
values from the expected ranges. For a direct comparison to data, the S1
correction factors, determined using #3™Kr calibrations, multiplied by the
g1 value are also shown. The simulated data have been rebinned to match
the binning of the correction map. It can be seen that the LXe-PTFE
reflectivity and LXe absorption length both have a significant impact on
the total amount of light collected, whereas the LXe Rayleigh scattering

length has a more obvious effect on the shape of the distribution.
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Figure 5.5: LCE curves for photon bomb simulations with extreme pa-
rameter values compared to S1 correction factors multiplied by g; from
data. Poisson error bars were calculated for the simulations, but are too
small to be seen. Error bars for the data combine the systematic error on
g1 with errors on the Gaussian means used to determine the correction
factors.

135 of 241



5. Light Collection Efficiency in Simulations

I;Ralld h =02m

L ieh = 0.3 m
1.00F Rayleigh

L leigh =025m
100 paael 1.00

LXe-PTFE Reflectivity

50 100
LXe Absorption Length [m]

Figure 5.6: Subplots showing x? values resulting from a comparison to
data, for all combinations of LXe-PTFE reflectivity and L.Xe absorption,
for each LXe Rayleigh scattering length tested in the grid search. The
default BACCARAT parameters are indicated by the white star.

5.5 Parameter Optimisation

5.5.1 Method and Discussion

In order to tune the LCE in simulations to match what is observed in
data, a grid search was performed by varying all three parameters at
once within the given ranges. A x? comparison was then used to quantify
deviations between the number of surviving photons in each height bin in
the simulations to the expected number of photons if the g; value and S1
correction factors taken from data were applied to the original number
of photons simulated in that bin. This analysis was originally performed
only on the total LCE from the sum of the top and bottom arrays. Each
two-dimensional subplot in Figure 5.6 shows the LXe-PTFE reflectivity
against the LXe absorption length for one of the LXe Rayleigh scattering
length values tested.

Degeneracy can be seen between the LXe-PTFE reflectivity and LXe
absorption length, as each subplot has a valley of x? values. It can be
seen that the previous default parameters are not contained within this

valley, demonstrating the potential for improvement. Intensity, I, of light
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in LXe is described by:

I(z) = Toe= %/ Aatt, (5.5.1)

where [ is initial intensity, = is distance travelled, and A, is at-
tenuation length, which depends on the absorption length and Rayleigh
scattering length through 1/Au = 1/Aaps + 1/Ascar [152]. As LCE de-
pends on the total number of scintillation photons detected by PMTs,
only photon loss due to absorption will be considered. The intensity is
also reduced each time a reflection from the PTFE surface occurs. As-
suming that photons interact with only the LXe and PTFE materials,

intensity of light following n reflections can be written as:

I, = I,_qe e R = [, e~ (ntdn-)Rans p2 = = [je=L/Aars g,
(5.5.2)
where d,, is the distance travelled between the (n — 1)™ and n'® re-
flections, R is the LXe-PTFE reflectivity and L is the total distance. A
greater number of reflections n typically results in a larger total distance
L, and both variables also depend on the position of photon origin. For
a fixed detection probability for a single photon, R is related to s
through:

R ox el/Pavsm) (5.5.3)

which describes the exponential shape of the valley in Figure 5.6. A
shorter Rayleigh scattering length would generally result in larger values
of both n and L. The smallest x? values were found for a Rayleigh
scattering length of 0.2 m, which was the lower bound of the expected
range. Tests of lower values outside this range resulted in even smaller
X2 values.

Absorption of scintillation photons in pure LXe is negligible, and any
absorption is thus due to impurities, in particular water and oxygen. It
is conceivable that the LXe absorption length could exceed 100 m due
to the high purity of the xenon, in which electronegative impurities were
required to be suppressed to the level of ~ 0.1 ppb [153]. The grid
search was therefore extended up to a LXe absorption length of 1000
m for a scattering length of 0.2 m, as shown in Figure 5.7. The PTFE
reflectivity producing the minimum Y? value was determined for each
absorption length, and these data points were fit with an exponential
function, which flattens as the absorption length becomes much greater
than the height of the TPC. Since the LXe-PTFE reflectivity and LXe
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Figure 5.7: x? values resulting from a comparison to data for a LXe
Rayleigh scattering length of 0.2 m. The range of values for LXe ab-
sorption length has been extended up to 1000 m. The white data points
show the PTFE reflectivity producing the minimum x?2 for each value of
LXe absorption length, and have been fit with an exponential function.
The white dashed lines indicate that the reflectivity of 97.7% measured
at Coimbra-LIP corresponds to an absorption length of 290 m.

absorption length were degenerate, sensible values were selected for the
pair of parameter values. Using the experimental setup described in
Ref. [154], a dedicated chamber at Coimbra-LIP was used to perform
measurements of the reflectivity in LXe of the PTFE used in LZ. This
was determined to have a value of 97.7%, which, from the fit of the

minimum valley, corresponded to a LXe absorption length of 290 m.

The LCE curve for a photon bomb simulated using these tuned pa-
rameters is shown compared to the default parameters in Figure 5.8, and
a better match to data is demonstrated at all heights. The relative LCE
was also determined for simulated ®¥™Kr events, produced by using the
relevant event generator in BACCARAT, which implements the relative
branching fractions from Ref. [155] for the different decay modes, before
G4SLight provides the yields using NEST models. The DER and LZap
were then run over the MCTruth output files. The Gaussian means of
S1 pulse areas were determined relative to the central bin, in order to
provide a direct comparison to the S1 correction map. As the simulated
events originated at a range of radii, it was decided that only events in
the range -40 cm < X, Y < 40 cm, in which the correction factors are
relatively uniform, would be selected for both simulations and data. The
non-uniformity is most evident near the bottom of the detector, where

the LCE is higher at small radii, as seen in the two-dimensional correction
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Figure 5.8: LCE curve for a photon bomb simulation using default and
tuned optical parameters, compared to S1 correction factors multiplied
by ¢; from data.
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Figure 5.9: The S1 correction map generated using 83™Kr calibration
data, as shown in Figure 5.2, but in XY space for three drift time slices,
to show the non-uniformity with radius near the bottom of the detector.
The black circles show the position of the TPC wall.

maps shown in Figure 5.9. The results of this comparison are shown in
Figure 5.10. Again, an improved match to data can be seen, particularly

near the bottom of the detector.

5.5.2 S1 Area Discrepancy

Although an improvement was observed in the relative LCE for 33™Kr,
there was a significant discrepancy in the absolute S1 area, as shown
in Figure 5.11. The distributions were fit with skew Gaussian functions
of the form f(z) = 2¢(x)®(ax), where ¢(z) is the standard Gaussian

distribution and ®(a) is the cumulative distribution [156]

O(ax) = / o(t)dt, (5.5.4)
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Figure 5.10: Mean S1 area relative to the detector centre for a ™Ky
source using simulations with both default and tuned parameters, com-
pared to S1 correction factors from data. The error bars on the data
combine the statistical error on the Gaussian means with the standard
error due to the variation of correction factors across XY space.

in which « is the shape parameter which determines the skewness.
Although the x? values resulting from the fits are relatively high, it can
clearly be seen that the peak of the distribution is ~ 50 phd lower for
the tuned simulations than for data. Several studies were carried out to

investigate the cause of this behaviour.

First, a comparison was made between the number of raw S1 photons
generated in BACCARAT and a recent version of NEST, 2.3.12. The
results can be seen in Figure 5.12, where the two peaks correspond to the
32.1 keV and 9.4 keV transitions from the 83™Kr decay. The means of the
BACCARAT peaks were lower than the values determined from NEST
and, following further investigation, it was found that the calculation of
83mKr yields in G4S1Light used an old model, from NEST version 2.0.1.
It was therefore identified that BACCARAT would need to be updated
to use the new NEST 33 Kr model, which was predominantly based on
analysis of #™Kr S1 signals in the PIXeY detector [133]. As the accuracy
of the fast chain, which was used to produce the signal and background
PDFs, had been the priority for SR1, this study was an important step

in the validation of the full chain simulations.

In the meantime, S1 area comparisons were made for another monoen-
ergetic source, 13'™Xe, for which the model was up to date. Figure 5.13a
shows that a discrepancy between simulations and data was still present.
The simulations tuning had been carried out without accounting for sec-
ondary PMT effects, which are usually applied in the DER. These include
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Figure 5.11: Total S1 area for a %3™Kr source, produced using full chain
simulations with tuned parameters, and data. The distributions have
been fit with skew Gaussian functions.
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Figure 5.12: The histogram shows the number of raw S1 photons pro-
duced for a 83"Kr source in BACCARAT, where the peaks for the 9.4
keV and 32.1 keV transitions have been fit with Gaussian functions. The
means of Gaussian fits from %™ Kr data generated with two versions of
NEST are indicated with the vertical dotted and dashed lines.
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first dynode hits, the process in which a photon is transmitted through
the PMT photocathode and induces a photoelectron at the first dynode
[157]. As electron multiplication only begins at the second dynode, the
total PMT gain is reduced by the gain of the first dynode. The PMT
transit time is decreased by the difference in time taken for a photon
to travel from the photocathode to the first dynode, compared to an
electron. Photoelectrons can also backscatter elastically or inelastically
off the first dynode or the structures that surround it, decelerating and
stopping before they reach the photocathode, and then beginning the
typical electron multiplication process from the first dynode [158]. This
results in a smaller pulse, as well as a time delay. These factors all lead
to smaller S1 pulse sizes, which had not been accounted for when tuning
the simulations in BACCARAT alone.

As shown in Figure 5.13b, when these secondary effects are turned off
in the DER, the mean of the simulated S1 pulse areas is brought much
closer to the data, although the standard deviation is still slightly lower.
As these effects were tuned for a higher gain than that at which the LZ
PMTs are currently operated, their impact is likely not as significant in
reality. It was therefore decided that the DER would be run with sec-
ondary PMT effects turned off until further tuning could be conducted.

A final check was carried out, in which a mock source in the DER was
used to simulate single photons with VUV wavelengths. Their areas were
then compared to those of SPEs from SR1 WIMP search data in Fig-
ure 5.14. The peak value remains slightly lower for the DER simulations,
which may be due to a discrepancy in the SPE calibration between the

DER and LZap. The distribution is again narrower for the simulations.

5.5.3 Results

Gaussian means were determined for S1 pulse areas in slices of height
throughout the TPC, using tuned optical parameters in BACCARAT,
with no secondary PMT effects in the DER, and a '3!™Xe source that is
correctly modelled in NEST. Figure 5.15 shows that there is much better

agreement with data throughout the detector.
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Figure 5.13: Total S1 area for a 3'™Xe source produced using tuned full
chain simulations compared to data. In (a), secondary PMT effects are
turned on in the DER, and in (b) they are turned off.
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Figure 5.14: The pulse area of single photons generated in the DER,
compared to SPEs from WIMP search data.
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Figure 5.15: Comparison of mean S1 area for *'™Xe in slices of height
in the TPC for simulations with default parameters, tuned parameters,
and tuned parameters with secondary PMT effects turned off, as well as
data. Error bars from uncertainties on the Gaussian means are too small
to be seen.
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5.6 Array-dependent Parameter Optimisa-

tion

5.6.1 Method and Discussion

The tuned simulations were able to replicate the total LCE in the LZ
detector well. However, when plotting the LCE separately for the top
and bottom arrays as in Figure 5.16, it can be seen that the agreement
worsens significantly near the top of the detector. The correction map
generation code was adapted to produce separate maps for the top and
bottom arrays to facilitate this comparison. The gradients have become
steeper compared to the default parameters, which is thought to be pri-
marily a result of decreasing the Rayleigh scattering length. If photons
travel shorter distances before deflection, the difference in relative LCE
between the near and far PMT array will be enhanced.

It was therefore decided that top and bottom array LCE should be
considered separately in the y? comparison, before summing the terms.
The histograms resulting from this grid search are shown in Figure 5.17,
and it can be observed that the LXe-PTFE reflectivity and the LXe ab-
sorption length remain degenerate, as expected. The most significant
difference is seen in the LXe Rayleigh scattering length, which now pro-
duces a minimum y?2 value when it lies between 0.40 m and 0.45 m.

Figure 5.18 shows the minimum x? value for each two-dimensional
histogram against the Rayleigh scattering length. Spline interpolation
between the data points provided an optimal scattering length of 0.43
m. Photon bomb simulations were run for this scattering length, with
LXe absorption lengths of up to 1000 m, and again the minimum valley
was fit with an exponential function, as shown in Figure 5.19. In this
instance, a PTFE reflectivity of 97.3% was chosen, which applies a 0.4%
penalty to the value measured at Coimbra-LIP to account for gaps in the
PTFE surface, due to pins made of polyether ether ketone (PEEK). The

corresponding L Xe absorption length was determined to be 121 m.

5.6.2 Results

The top array, bottom array and total LCE curves for photon bombs
using the optimal set of parameters are shown in Figure 5.20, demon-
strating improved results compared to the default parameters. A good
agreement to data is seen in all regions of the TPC, except for the bottom
array LCE for photons generated close to the bottom of the detector.

This discrepancy was explored by varying additional optical parame-
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Figure 5.16: LCE curves for the top (a) and bottom (b) array only, for
photon bomb BACCARAT simulations with default and tuned parame-
ters, compared to data.
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Figure 5.17: Subplots showing x2 values resulting from a comparison to
data, considering top and bottom array LCE separately, for all combi-
nations of LXe-PTFE reflectivity and LXe absorption length, for each
LXe Rayleigh scattering length tested in the grid search. The default
BACCARAT parameters are indicated by the white star. The param-
eters resulting from the previous tuning are beyond the z-axis range of
these plots.
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Figure 5.18: The minimum x?2 value from each of the histograms in
Figure 5.17, which correspond to a different LXe scattering length. The
black line shows the interpolation between the points and the red dashed
line indicates the position of the minimum point on this line.
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Figure 5.19: 2 values resulting from a comparison to data for a LXe
Rayleigh scattering length of 0.43 m. The range of values for LXe ab-
sorption length has been extended up to 1000 m. The white data points
show the PTFE reflectivity producing the minimum x?2 for each value of
LXe absorption length, and have been fit with an exponential function.
The white dashed lines indicate a reflectivity of 97.3% and an absorption
length of 121 m.
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ters, however further study is required to gain a full understanding of the
issue. Possible solutions, that would have a position-dependent impact,
include adjustments to the refractive index of the quartz PMT windows,
the refractive index of the gaseous xenon, and the reflectivity of the grids
in LXe compared to GXe.

Figs. 5.21 and 5.22 show WIMP search data from the start of SR1
in S2¢portom-S1c space to highlight distributions of events resulting from
activation of the xenon. The lowest-energy peak corresponds to the 164
keV decay of 13'™Xe, while the two remaining peaks are from the 208
keV and 235 keV K- and L-shell electron capture decays of *"Xe [159].
Also shown are the 1o contours for BACCARAT simulations of these
isotopes using default parameters and parameters tuned using both the
top and bottom array LCE. At the time of running, the simulations had
not been tuned to reproduce SE signals in data, so S2¢pit0m values have
been scaled to account for the difference in SE size and the variation in S2
pulse area with drift time. As expected, improved alignment is seen for
events near the top and middle of the detector, while some discrepancy
remains near the bottom of the TPC. When considering data from all

vertical positions, good overall agreement is observed.

5.7 S1 Pulse Length

Investigations were carried out to determine whether varying the optical
parameters would affect the length of the S1 pulse, due to altered pho-
ton transit times. Three metrics for the pulse length were considered:
(AFT95 - AFT5), FWHM, and (AFT95 - pulse peak time), which de-
scribes the length of the pulse tail. These measurements make use of
the Area Fraction Time (AFT) quantities, which are defined as the time
at which the specified percentage of photons in a pulse have arrived at
the PMT. The histograms shown in Figure 5.23 compare simulations of
a 131" Xe source, with default and tuned parameters, to data. The 10 ns
binning corresponds to the resolution at which the DAQ samples wave-
forms. Good agreement is seen between simulations and data for the
tail length, but the (AFT95 - AFT5) and, in particular, FWHM metrics
indicate that pulses are typically shorter in the simulations. For all three
metrics, the agreement with data has slightly worsened for the tuned
parameters compared to the default, which motivates future analyses, as
discussed in section 5.8.

Figure 5.24 shows S1 pulses from 100 3™Xe events in both tuned sim-

ulations and data, which have been aligned with AFT25 at zero, summed
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Figure 5.20: LCE curves for the top array (a), bottom array (b), and
total light collected (c), for photon bomb BACCARAT simulations with
default parameters and parameters tuned by considering the top and
bottom array LCE separately.
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Figure 5.21: Two-dimensional histograms show the distributions of
BImXe and 2"Xe events from early SR1 WIMP search data at the top
(a), middle (b), and bottom (c) of the detector. Overlaid are 1o contours
for the same sources, simulated using BACCARAT with default parame-
ters (red) and parameters tuned by considering the top and bottom array
LCE separately (black).
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Figure 5.22: Distributions of *'™Xe and '?"Xe events from early SR1
WIMP search data at all heights in the detector. Overlaid are 1o con-
tours for the same sources, simulated using BACCARAT with default
parameters (red) and parameters tuned by considering the top and bot-
tom array LCE separately (black).

and normalised. Although there is generally good agreement, this con-
firms that S1 pulses are slightly narrower in the simulations, compared
to in data. The Rayleigh scattering length is likely the parameter that
has the most significant impact on photon arrival times, due to its effect

on the overall path length.

5.8 Summary and Discussion

Accurate optical simulations are vital for analyses that depend on wave-
forms. The position-dependent LCE has been tuned to replicate the data
by conducting a grid search, in which the LXe-PTFE reflectivity, LXe ab-
sorption length and LXe Rayleigh scattering length were varied. Several
issues were identified, including changes to the ®3™Kr model and sec-
ondary PMT effects. It was found that tuning the simulations to match
only the total LCE resulted in significant discrepancies in the LCE for
the top and bottom PMT arrays. The grid search was therefore repeated,
considering the top and bottom photon counts separately. This resulted
in good agreement between the LCE in both PMT arrays throughout the
detector, apart from in the region close to the bottom of the TPC. This

warrants further investigation, and several possible solutions have been
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Figure 5.23: Histograms showing three metrics describing the S1 pulse
length: AFT95 - AFT5 (a), FWHM (b), and AFT95 - pulse peak time
(c). A B'™Xe source generated from simulations using default parameters
and array-dependent tuned parameters is compared to data.
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Figure 5.24: S1 pulses from 100 *™Xe events aligned at AFT25, summed
and normalised, for simulations using array-dependent tuned parameters,
compared to data.

suggested. Radial variation of LCE is not expected to be a large effect,
and simple checks were conducted to ensure that it behaved as expected.
In future, the x? comparison could be extended to include XY position
as well as drift time. As photons originating close to the TPC wall are
more likely to undergo reflections, this is likely to break the degeneracy
between LXe-PTFE reflectivity and LXe absorption length, but would
require increased computation time. The S1 pulse length was also ex-
plored, with the spread in arrival times of S1 photons found to be slightly
narrower in the simulations compared to data.

It would be beneficial to conduct further tuning of the simulations
with photon transit time contributing additional terms to the x? test.
Comparisons to timing in the data are more complex than LCE, as pho-
ton creation times are unknown, prohibiting a direct calculation of the
transit time. Sources such as 3'™Xe can be simulated, in order to com-
pare the shape of the S1, but running the DER and LZap in addition to
BACCARAT for many combinations of parameters, to allow for wave-
form analysis, is computationally expensive. The arrival time of the first
photon in an S1 pulse cannot be determined reliably, so metrics for the
width, such as those previously described, must be relied upon to deter-
mine the spread of photon detection times.

Despite the challenges described, simulations that accurately model
the timing of S1 photons, as well as the LCE, are important for various
analyses. In particular, simulations were used to investigate the timing
offset effects that resulted in the development of the S1 likelihood cut
discussed in chapter 6. This cut would further benefit from testing and
tuning on fully accurate simulations, which provide photon counts and

arrival times for S1 pulses.
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Chapter 6

The S1 Likelihood Cut

Of the background signals described in chapter 3, one of the most sig-
nificant for the WIMP search is the accidental coincidence of S1 and S2
pulses, which can be misclassified as a Single Scatter event. The focus
of this chapter is the development of three data quality cuts, which use
arrival times of S1 photons to target accidentals. S1 waveform templates,
which depend on both the drift time and PMT array in which photons
are collected, were generated using large samples of events from data.
These were used to calculate the likelihood that an event is a true Single
Scatter with a real S1 pulse. The methodology of the cuts, as well as
the resulting signal acceptance and background rejection efficiency, will

be discussed.

6.1 Photon Timing Offset

Many of the SR1 data quality cuts described in section 4.3 are designed
to remove accidental-coincidence events by targeting the S1 pulse. One
method for doing so is assessing whether the S1 looks as expected for the
drift time assigned to the event. Features of the S1 pulse itself can also
indicate whether it is likely to be a result of pile-up of SPEs or PMT
dark counts, that meets the three-fold coincidence requirement. Both
the former general case and the latter specific pathology can be targeted
using the arrival time of photons in the S1 pulse.

An offset between hit times in the top and bottom PMT arrays has
been observed in data. This effect is dependent on the drift time of an
event, and is most significant near the top and bottom of the detector,
where an offset of up to ~ 45 ns between pulse peaks can be seen. The
offset between waveforms is demonstrated in Figure 6.1. Here, monoen-
ergetic 2!8Po «a events were retrieved from SR1 WIMP search data by

using cuts in log;, S2c-Slc space to select the population of events with
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a decay energy of 6.115 MeV following Equation 2.6.13. The S1 wave-
forms from 1000 events from drift time slices of ~ 55 ps near the top,
middle and bottom of the detector were aligned at AFT25, the time at
which 25% of the S1 photons have been detected, prior to summation
and normalisation. The “lz-code” Python package (recently developed
by A. Baker) was used to separate the waveforms into signals detected in
the top and bottom PMT arrays. Waveforms are sampled by the DAQ in
time bins of 10 ns. To achieve a better resolution on the peak time than
this 10 ns sampling, an exponentially-modified Gaussian function was fit
to the waveform, and the maximum was found. Only when photons orig-
inate very close to the top of the detector does the waveform observed
by the top array become comparable in amplitude to that observed by
the bottom array, due to reflection from the liquid surface. The top
array PMTs detect light sooner than the bottom array for events with
short drift times close to the top of the detector, and vice versa. The
top-minus-bottom peak time offsets are shown against drift time on an

event-by-event basis in Figure 6.2, for 2!*Po events from SR1 data.

Calculating the expected time of flight for a photon traversing the
height of the detector in a straight line, using the PMT-to-PMT distance
of 1708.3 mm and the speed of light in LXe of 0.6¢c, a maximum timing
offset on the order of 10 ns would be expected, not accounting for re-
flections. It was postulated that the discrepancy between this and the
observed values of ~ 45 ns may be due to Rayleigh scattering in the LXe,
as a small scattering length increases the distance a photon is required
to travel to reach a PMT at the far end of the detector. A timing offset
was also seen in simulated data, so, to investigate this, a photon bomb
simulation was run using BACCARAT with an initial LXe Rayleigh scat-
tering length of 0.43 m, resulting from the tuning described in chapter 5.
The difference in time between a photon reaching a PMT photocathode
and its creation are shown in Figure 6.3 for photons originating at three
different heights at the top, middle and bottom of the SR1 fiducial vol-
ume. An offset in the means of the distributions for the top and bottom
PMT arrays of 29.8 ns at the bottom of the fiducial volume and 24.6 ns
at the top is observed. The Rayleigh scattering length was then changed
to a large value of 10 m, and the offsets reduced to the expected value
of ~ 10 ns. This dependence on the Rayleigh scattering length suggests
that there is potential to use the timing offset as a metric for further
tuning of BACCARAT optical parameters.

This timing offset can also be exploited when targeting accidental

events, where the drift time is not meaningful, so the strong relationship
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Figure 6.1: Summed and normalised S1 waveforms for 2!8Po events in
drift time slices near the top, middle and bottom of the TPC. Signals
detected in the top and bottom PMT arrays are shown separately in red
and blue, with their peaks marked with dashed lines to show the offset
between them. The total pulse is shown in grey.
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Figure 6.2: The top-minus-bottom photon timing offset for ?!8Po S1
pulses in SR1 data.

between the two variables would not be seen. Therefore, it was decided
that a data quality cut, depending on both the drift time and the PMT
array in which the photon is detected, would be developed. As S1-like
pulses resulting from pile-up of SPEs or dark counts are often irregular
in shape, the arrival times of photons within a pulse could also be used
to discriminate against this specific source of isolated Sls. Therefore,
several test statistics would be calculated, with the aim of using photon
arrival times to determine the likelihood that an event is an accidental,

each focusing on different properties and pathologies.

6.2 S1 Template Construction

To formulate a hypothesis that a pulse is a real S1 at the correct drift
time, several templates were produced for the S1 waveform. The tem-
plates are entirely data-driven, using a high-energy 2!®Po source, pro-
viding high statistics for the number of photons in each time bin. The
waveforms were again aligned, summed, normalised and divided into con-
tributions from the top and bottom arrays. The waveforms were trimmed
to 2000 ns and the bottom array signal was then artificially attached to
the end of top array waveform in order to contain all the information
within one PDF, whilst maintaining the timing offset between the two

arrays. Example templates for several drift time slices are shown in Fig-
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Figure 6.3: The difference in time between photon generation and arrival
at a PMT photocathode for photons simulated using BACCARAT, for
photon creation heights at the bottom, middle and top of the FV. In (a),
the LXe Rayleigh scattering length is set to its tuned value of 0.43 m,
whereas in (b) it is set to 10 m. Counts have been normalised for easier
comparison of distributions.
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ure 6.4.

6.3 Likelihood Calculation

In order to evaluate whether an S1 pulse is consistent with a certain
template, a likelihood fit was performed. For each event tested, photon
arrival times are found using a peak-finding algorithm in LZap, which
considers each PMT channel separately. A data sample larger than a
trigger threshold constitutes the start of a peak. When the data value
subsides below the trigger threshold, the search for the next peak begins.
The algorithm also searches for subpeaks, if the peak is longer than
four samples. Higher precision algorithms, for example using waveform
deconvolution, would not be limited by the 10 ns sampling and could
thus be a useful future development to the cut.

Fig. 6.5 shows top and bottom waveforms for an example tritium
event, where the number of photons in each 10 ns time bin, as deter-
mined by the LZap algorithm, are also shown. An S1 template has been
normalised by the total number of S1 photons in the tritium event and
the top and bottom components are also overlaid on the plot. Although
the top and bottom components are shown separately here for ease of
observation, they are considered to be one distribution for the purpose
of the likelihood calculation, as shown by the unphysical high times on
the z-axis for the bottom waveform, which has been artificially attached
to the end of the top waveform. The aim is to compare the observed
number of photons in the tritium pulse to the expected number of pho-
tons according to the S1 template, in each time bin, using a likelihood
calculation.

For each test statistic, the number of photons in each time bin was as-
sumed to be Poisson distributed, allowing the likelihood to be calculated

using

N nbe_fb

Ly(p) = I *—— (6.3.1)

[
b=1 W

where f, is the expected number of photons and n, is the observed
number of photons in bin b. As the time defined as the start of a pulse
can be unreliable, the start time of the test pulse relative to the template,
tg, was allowed to float in order to maximise the likelihood. For two of
the test statistics considered, it was desirable to repeat this process for
every S1 template, in order to identify which drift time range produces
the highest likelihood.

The logic of the S1 likelihood calculation is therefore as follows:
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Figure 6.4: Three of the S1 templates generated using 2!*Po events in
drift time slices near the top, middle and bottom of the detector. The 0
- 2000 ns range corresponds to the top array PDF and the 2000 - 4000
ns range shows the bottom array PDF after joining the two together.
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Figure 6.5: Top and bottom S1 waveforms for a tritium event are shown
in purple, together with the number of tritium photons in each 10 ns
time bin. Top and bottom S1 templates, normalised by the total number
of tritium S1 photons, have been overlaid, to illustrate the comparison
which is to be made between expected and observed number of photons.
This information will all be contained within one PDF, with 2000 ns
artificially added to the bottom template as in Figure 6.4, but the two
arrays are shown separately here to provide clarity.
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« Loop over templates for every drift time slice to maximise likelihood

o For each template, loop over the offset between pulse start

time and the start of the template (¢y) to maximise likelihood

o For each %y, loop over the 10 ns time bins, calculating each

term contributing to the likelihood using Eq. (6.3.1).

Each test statistic was constructed using a ratio of likelihoods, and

will now be described.

6.3.1 S1 Goodness of Fit

A general goodness of fit (GOF) test was employed to determine the
likelihood that a pulse is a real S1 at the correct drift time, without the
requirement for a specific alternative hypothesis. This was achieved by
using the likelihood ratio as defined in Ref. [160]:

M nb —fy, 0T~y M f b
e n,’e b _
g=—2In b b ] = —21nl () e fb]. 6.3.2
b];II nb! / nb! bl;‘E Ty ( )

The numerator of the likelihood ratio is the Poisson likelihood as
described in Eq. (6.3.1), and the denominator is identical, except that
the expected number of photons is replaced by the observed number of
photons. The latter can be thought of as the expected likelihood if the

template was a perfect match to the data:

Ho] o1 [L(Sl template at correct drift time)
=—2In

— 2] [
1 " H, L(“Ideal” template)

(6.3.3)

This allows for the construction of a x? statistic, which has the benefit

of being agnostic to the background signal, but suffers from a resulting
reduction in sensitivity. A high value of ¢ indicates that the S1 template
at the assigned drift time does not fit the data well, allowing these events

to be rejected as likely accidentals.

6.3.2 S1 Template Comparison

The next test statistic makes use of the photon timing offset described,
by comparing the S1 template that maximises the likelihood with the S1

template corresponding to the assigned drift time of the event:
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q=—2In [go] = —2ln[

1

L(S1 template at assigned drift time)

L(S1 template maximising likelihood) | -
(6.3.4)

An incorrect drift time can result in both an unexpected timing offset
between the top and bottom waveforms, and an unexpected split in the
total number of photons in the top and bottom arrays. This is closely
related to the existing S1 TBA vs drift time cut that was implemented in
SR1, but now also takes the position-dependent timing characteristics of
the event into consideration. A high value of ¢ indicates that the assigned
drift time does not provide the best match to the data, so it is likely that
the S1 belongs to an accidental-coincidence event.

S1 pulses from regions outside the fiducial volume, such as the gas
layer at the top of the TPC, can contribute to accidental-coincidence
events. These Sls can have unusual pulse shapes. For example, Sls
generated in the gas region are often wider than usual due to slow re-
combination in GXe. The inclusion of S1 templates outside the fiducial
volume allows populations such as gas events to be included in the al-
ternative hypothesis. If these were not included, both Hy and H; would

have a low likelihood for these events.

6.3.3 Shape-based Pile-up Discrimination

The final test statistic targets “fake” S1 pulses due to pile-up of SPEs
by comparing the likelihood of the S1 template best matching the data
with the likelihood corresponding to a flat rate of photons. As this cut is
specifically targeting the population of “fake” S1s, rather than accidentals
in general, it does not take the drift time into account, hence why every
S1 template is tested to maximise the likelihood. It was found that for
this cut, using the summed top and bottom waveforms was more effective
than separating them, so the PMT array is also not taken into account
here.

As the expected number of photons in each time bin must be the

same, following from Equation 6.3.1 the general form of the flat rate
likelihood is

L(p) o fNe P, (6.3.5)

where NN is the total number of observed S1 photons, B is the total
number of bins, and a scale factor accounting for the number of photons

in a single bin is not included here. To maximise this likelihood, the
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derivative is taken with respect to the expected number of photons in
each bin, f:

fNle BI(N — fB) =0, (6.3.6)

providing a maximum at f = N/B. The expected number of photons
for the flat rate hypothesis is therefore found by dividing the total number
of photons in the S1 evenly over every time bin. The likelihood ratio is
then defined as:

L(S1 template maximising likelihood)
L(Flat rate template)

Hy
=2In|—| =-21
1 " [Hl] " [
(6.3.7)
This allows pulses formed from pile-up, where the observed number
of photons is in better agreement with the flat template than the S1

template, to be rejected based on the high value of q.

6.4 Development on SR1 Data

6.4.1 Cut Value Determination

Initial development of the cut was performed on SR1 data, using tritium
calibration data as the signal sample and AccidentalChopStitch (ACS)
events as the background. As explained in chapter 4, tritium is a 3 source
that is injected directly into the LXe. The uniformity of the source in
the detector and the clean waveform environment meant that tritium SS
events were here selected as a proxy for the WIMP signal. ACS events
are produced by artificially stitching together unpaired S1 and S2 pulses
to model the distribution of the accidental-coincidence backgrounds that
are targeted by this cut.

Each likelihood ratio has a different dependence on the number of
photons in the S1, so fits were performed on these distributions for the
tritium data, with a linear and exponential fit used for the shape-based
and GOF likelihood ratios, respectively. The template comparison like-
lihood ratio does not have a dependence on the number of photons, be-
cause, when the assigned drift time provides the best match to data,
Hy/Hy = 1 exactly, for any number of photons. This is demonstrated
in Figure 6.6, where it can be seen that the likelihood ratio follows the
same distribution for tritium events with 5, 35 and 65 S1 photons. The
parameters from the fits to tritium data were used to produce a one-

dimensional distribution of each test statistic. Initially, cut values were
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Figure 6.6: Distribution of test statistics for the template comparison
likelihood ratio, for tritium events containing 5, 35 and 65 S1 photons,
without other S1-based cuts applied

selected to achieve an overall 95% tritium signal acceptance for each test
statistic. The background rejection efficiency was then calculated from
the ACS data.

This process was carried out twice. In the first scenario, every SR1

data quality cut was applied to both datasets, apart from:

e The Slc lower bound, in order to maintain high statistics at low

energies, where a high rate of accidentals is expected

o The S1-based accidentals cuts, which target the same events as the
likelihood cuts

Then, in the second scenario, all data quality cuts, including the S1-based
cuts, were applied, apart from the S1 lower bound, and the fits and cut
values were redetermined. This was to demonstrate the power of the cut
in addition to the existing cuts.

For the former, each likelihood ratio is shown in Figs. 6.7-6.9, first
as a function of number of photons, then as a flat distribution, following
normalisation by the fit to tritium data. It can be seen that a significant
part of the ACS sample does not follow the functions defined by the

tritium and can therefore be removed using a linear cut. In each case,
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the cut value leading to a signal acceptance of 95% has been noted, and
results in an overall ACS rejection efficiency of 33.7%, 33.1% and 29.9%
for the GOF, template comparison and shape-based cuts, respectively.
The lower efficiency of the shape-based cut is a result of true S1 pulses
in the ACS sample, meaning that it is not purely a background sample
for this cut. Testing on a photon-train dominated population, where
pile-up is common, yielded an improved efficiency. As the aim was to
determine the combined effect of all three cuts on the entire accidentals
background, the ACS dataset will be the denominator used for efficiencies
quoted throughout this investigation.

The one-dimensional test statistic distributions for the second sce-
nario, following application of all other cuts, are shown in Figure 6.10.
Fewer outlying ACS events can now be seen, due to the effectiveness of
existing S1-based cuts. Nevertheless, a background rejection efficiency of
10.9%, 12.5% and 26.1% for the GOF, template comparison and shape-
based cuts, respectively, was achieved, demonstrating that the shape-
based cut is most powerful for removing backgrounds not targeted by

other cuts.

6.4.2 Dependence on Pulse Area

There was some concern that there may be a dependence of the shape
of the S1 templates on pulse area. This was investigated using an AmLi
source. As discussed in chapter 4, AmLi is a neutron source that was
deployed in three calibration tubes at three heights, producing a wider
spatial distribution than DD calibrations. As demonstrated in subsec-
tion 4.5.1, the majority of the livetime impact cuts could not be applied
to AmLi data, due to the high rate of events across the ROIL. This re-
sulted in a waveform environment that is less clean than for tritium. S1
pulses from an AmLi source were binned in ranges of 20 phd, and the
resulting summed waveforms were compared. There were no significant
differences observed, apart from for the lowest bin (0 - 20 phd), which
is shown in Figure 6.11 compared to pulses in the 60 - 80 phd range.
Similar behaviour was observed for a tritium source.

It was found that good alignment between pulses was difficult to
achieve for the lowest energy bin (see Figure 6.12), where the low number
of photons leads to separated peaks, rather than a smooth distribution
with a consistent AFT25. This led to a preference for the '®Po source
for the templates, which has a high number of photons in the S1 pulse.
Note that this did not prevent the cut from being applied on low-energy

events, as the treatment of ¢y as a free parameter handles any alignment
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Figure 6.7: Distribution of test statistics for the GOF likelihood ratio,
for tritium and ACS signals without other S1-based cuts applied, against
number of S1 photons in (a), and following normalisation by the expo-
nential fit to tritium data in (b). The cut value corresponding to 95%
signal acceptance is shown.
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distribution, not requiring normalisation by a fit, in (b). The cut value
corresponding to 95% signal acceptance is shown.
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Figure 6.10: One-dimensional distributions of GOF, template comparison
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data quality cuts applied, following normalisation by tritium fits.
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Figure 6.11: S1 templates generated using AmLi events in the ranges of
0 - 20 phd and 60 - 80 phd, in drift time slices near the top, middle and
bottom of the detector for the top array (left) and bottom array (right).

172 of 241



6. The S1 Likelihood Cut

?OZOT Py ]
Y
~s N
\g /// A)\A\ ., \\
= 0.15F RN \ ]
= 0. S N \
] r Vel S \
— // / /"\\\\\ \
_8 0 10_ ,III I//~\\ \\\\____\ \\ -
=) R N N _Nn
‘= 7 f /Iill N \———‘\:‘ SO
'_9‘-4005% // l/////l AN \\\\ SNONTTTNG S ]
140 TS \ N e 25 sS4 S
<% J //{///Z//I \x\___\_—___\;\:\~ \’12;34‘ \_f:\
L skl S e s e T ]
OOO'|w.w‘w-[ww‘w|w.ww[ww‘w|w|ww[ww‘w|w|ww[w P I
—100 =50 0 50 100 150 200 250 300
Times [ns]

Figure 6.12: Each dashed line is taken from a different AmLi event, and
shows the waveform for an S1 pulse with area less than 10 phd, aligned
with the AFT25 value at ¢t = 0.

issues.

6.4.3 Dependence on Interaction Type

Another concern was that using an « source to create the S1 templates
may cause an issue for detecting the NR WIMP signal. As discussed
in chapter 2, during the scintillation process, the molecular Xe excimer
decays with both a fast and slow component, corresponding to singlet
and triplet states, the ratio of which depends on interaction type [104].
Pulse shape discrimination uses this effect to discriminate between ER
and NR events. This is not the intended purpose of the S1 Likelihood
cut, which distinguishes between real NR or ER events and accidentals.
Therefore, it was important to quantify the significance of the interaction
type of the events used to produce the templates.

Tritium, AmLi and 2'®Po sources were used to produce templates
in each drift time slice. For tritium and AmLi, only pulses with an area
greater than 20 phd were selected for the templates, due to the alignment
issues discussed. Examples from near the top, middle and bottom of the
detector are shown in Figure 6.13. Some differences in the pulse shape
can be observed, for example, near the top of the detector, the NR AmLi
source produces a narrower peak than the tritium and 2'®Po sources,
which is in agreement with results from Ref. [104].

To quantify the effect of these differences on the likelihood, combina-
tions of 2**Po and AmLi templates and tritium and AmLi signal sources
were tested. Care was taken to ensure no overlap in the AmLi samples
used as signal sources and in template creation. The likelihood ratio dis-
tributions against number photons are compared for each statistical test

in Figs. 6.14-6.16, with the fit parameters also shown. All parameters are
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either in agreement within the fit uncertainty, or very close, apart from
the y-intercept of the linear fits in Figure 6.16, which are consistently
higher for the AmLi source compared to tritium.

When following the entire methodology to produce a cut efficiency
for a signal acceptance of 95%, it was found that there was very little
difference between using AmLi or 2'®Po templates, with < 1.3% change
in efficiency for all three cuts. However, the choice of tritium or AmLi
as the source on which to perform the fit and tuning led to significant
differences in cut efficiency. The tritium performed better, with a smaller
standard deviation of the one-dimensional distributions of test statistics.
This can be attributed to the fact that the AmLi dataset contains a higher
number of events with a small number of photons, where it becomes more
difficult to distinguish between signal and background. Note that this
did not cause an issue when using AmLi to produce the templates, as
only events with an area larger than 20 phd were used, to mitigate the
alignment issues described previously. It was therefore decided that the
use of 2¥Po templates and tritium signal sources would continue, due
to the high number of photons, and even coverage of the full Slc range,

respectively.

6.5 Application on SR3 Data

6.5.1 Cut Value Determination

Following development of the cut on SR1 data, SR3 datasets became
available to use for testing and tuning. The *8Po selection criteria in
log,, S2¢-Slc space were adjusted to allow for the new detector condi-
tions, and new templates were generated. The drift time slices remained
55 ps in size, but two additional templates were included to allow for the
higher maximum drift time resulting from the lower drift field. The S1
templates were also trimmed to 750 ns each for the top and bottom PMT
arrays, as this was found to contain the pulse lengths of the majority of
legitimate S1 pulses, without including excess baseline. This had the
impact of altering the range of shape-based test statistic values, due to
the dependence on the total number of bins, B, in the flat rate likelihood
in Eq. (6.3.5).

The relationships between each likelihood ratio and the number of
S1 photons were re-generated using data from a tritium calibration un-
der SR3 conditions. A set of baseline cuts were applied to select the
tritium events, while other SR3 core cuts underwent development. Fit

parameters were recalculated and the likelihood ratio values were again
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Figure 6.13: S1 templates made using tritium, AmLi and 28Po events
from drift time slices near the top, middle and bottom of the detector,
for signals in the top array (left) and bottom array (right).
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Figure 6.14: Relationship between the GOF likelihood ratio and the
number of S1 photons for a tritium source (left) and an AmLi source
(right) using 2'®Po templates (top) and AmLi templates (bottom). The
fit parameters for the function f(z) = A — exp(B + Cxz) are shown.
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normalised to provide a one-dimensional distribution of test statistics.
The cut values were reselected to again achieve a signal acceptance of
95%. The results of this process are shown in Figs. 6.17-6.19, with back-
ground rejection efficiencies of 25.4%, 25.7% and 28.1% for the GOF,
template comparison and shape-based cuts. Following further tuning of
other cuts, the individual power of the cut was tested. The S1 likelihood
cuts were tuned on a tritium dataset with all other cuts applied, and the
resulting distributions are shown in Figure 6.20, with accidental rejection
efficiencies of 18.2%, 21.2% and 26.4% for the GOF, template comparison

and shape-based cuts.

6.5.2 Cut Efficiency

Acceptance curves were generated for each cut, for tritium and ACS
datasets. For the samples with only baseline cuts applied (Figure 6.21),
the combined cut acceptance for the tritium signal was found to be 87.4%,
which resulted in a background rejection efficiency of 47.1%. As expected
from the results when using low-energy AmlLi as a signal source, there is
a dip in signal acceptance at low Slc¢, predominantly resulting from the
shape-based cut. When all other data quality cuts had been applied to
the samples, including S1-based cuts which target accidentals, the com-
bined cut acceptance of 87.6% had an associated background rejection
efficiency of 42.4% (Figure 6.22). The signal acceptance and background
rejection efficiency of each likelihood cut is presented in Table 7.2 for
each of the samples described. As ACS events were removed across the
entire range of Slc tested, an investigation was carried out, using the
Offline Event Viewer, into which events were targeted by each likelihood

cut that were not removed by any other cut.

6.5.3 Pathologies Removed

The template comparison cut removes events with an unexpected top-
bottom area split or timing offset for the assigned drift time. The example
in Figure 6.23 shows an event with a short drift time of 88 ps, where the
bottom array detects photons earlier, and in a greater quantity, than
expected for an event close to the top of the detector.

The shape-based cut was found to predominantly target small Sls,
such as the example pulse shown in Figure 6.24, which has an area of 2.4
phd. The fact that these pulses are often surrounded by a high rate of
SPEs supports the idea that they are likely due to SPE pile-up. Larger

pulses are also removed by this cut, where the unusual shape can be
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Figure 6.17: Distribution of test statistics for the GOF likelihood ratio,
for tritium and ACS SR3 data with only baseline cuts applied, against
number of S1 photons in (a), and following normalisation by the expo-
nential fit to tritium data in (b). The cut value corresponding to 95%
signal acceptance is shown.
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Figure 6.18: Distribution of test statistics for the template comparison
likelihood ratio, for tritium and ACS SR3 data with only baseline cuts
applied, against number of S1 photons in (a), and as a one-dimensional
distribution, not requiring normalisation by a fit, in (b). The cut value
corresponding to 95% signal acceptance is shown.
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Figure 6.19: Distribution of test statistics for the shape-based likelihood
ratio, for tritium and ACS SR3 data with only baseline cuts applied,
against number of S1 photons in (a), and following normalisation by the
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signal acceptance is shown.
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Figure 6.20: One-dimensional distributions of GOF, template comparison
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Figure 6.21: Acceptance for SR3 tritium (left) and ACS (right) as a
function of Slc for each likelihood cut individually and all combined,
following application of baseline cuts only.
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Figure 6.22: Acceptance for SR3 tritium (left) and ACS (right) as a
function of Slc for each likelihood cut individually and all combined,
following application of all other data quality cuts.
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Figure 6.23: Event Viewer screenshot of an ACS event removed by the
template comparison likelihood cut. The short time separation between
S1 and S2 pulses in green and blue, respectively, can be seen in (a). The
S1 waveform is magnified in (b), and the S1 channel waveforms are shown
for the top (c¢) and bottom (d) PMT arrays.
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Table 6.1: The tritium signal acceptance and ACS background rejection
efficiency for each likelihood cut and for all likelihood cuts combined,
for the case where the individual cuts have been tuned to produce a
signal acceptance of 95%. The samples on which the likelihood cuts were
tuned and tested are specified in the first row. In the first scenario, only
baseline cuts were applied to the samples, and in the second scenario all
other SR3 data quality cuts were applied.

Baseline Selection Cuts —All Data Quality Cuts

Likelihood Cut Acceptance Efficiency Acceptance Efficiency
GOF 95.0% 25.4% 95.0% 18.2%
Template Comparison 95.0% 25.7% 95.0% 21.2%
Shape-based 95.0% 28.1% 95.0% 26.4%
All Likelihood Cuts 87.4% 47.1% 87.6% 42.4%

attributed to a pile-up of multiple S1 pulses that has been classified as
a single S1, such as the example in Figure 6.25, which has an S1 area
of 31.2 phd. Some pulses removed were likely misclassified as Sls, such
as the example in Figure 6.26, where the S1 of size 11.1 phd looks to be
part of a single electron pulse. The GOF cut is able to remove events

with both unusual shapes and timing offsets, due to its agnostic nature.

6.5.4 Cut Correlation

As each cut has been tuned separately to provide a signal acceptance of
95%, the overall cut acceptance of 87.4% may be considered to be too low
for the WIMP search. This could be improved by varying the acceptance
of each cut individually, or alternatively the potential of combining mul-
tiple cuts simultaneously can be considered. To evaluate this potential
for improvement, the correlation between each of the three cuts has been
studied in Figure 6.27, using SR3 data with only baseline cuts applied.
An excess of ACS events in a region which cannot be targeted by hori-
zontal and vertical linear cuts alone indicates that a combined approach
would result in an improved cut efficiency. This is particularly the case
for the template comparison cut in combination with both the GOF cut
and the shape-based cut. These observations resulted in the decision to
investigate methods of combining the three cuts using machine learning,

as discussed in chapter 7.
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Figure 6.24: Event Viewer screenshot of an ACS event removed by the
shape-based likelihood cut, likely due to SPE pile-up. The S1 (green
marker) can be seen amongst SPE pulses (yellow markers) in (a) and
magnified in (b).
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Figure 6.25: Event Viewer screenshot of an ACS event removed by the
shape-based likelihood cut, likely due to S1 pile-up.
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Figure 6.26: Event Viewer screenshot of an ACS event removed by the
shape-based likelihood cut, likely due to pulse misclassification.

188 of 241



6. The S1 Likelihood Cut

-5.0 -2.5 0.0

P T T T T
10~ - 100— —
wn
F
&3
Q 5T 1 w0’ .
O L g
07 T R Bl [ ﬂ|[|'||l.|_| | HMWHH
2.5 0.0 0 5
Shape TS GOF TS
; N B A 10°
wn 75F 4 o 75F .
o [ o [ 2| | |
E 50 E 50 ] 10
[P [P ]
5 2sF g 2sF 4
= r = r 10 [ T
ok il s st ( (A L1 | ﬁﬂlnmun T
2.5 0.0 0 10 0 50 100

Shape TS Template TS

Figure 6.27: Test statistics for each likelihood cut plotted against each
other for tritium (blue) and ACS (red) data to investigate cut correlation.

189 of 241



6. The S1 Likelihood Cut

6.6 Summary

The photon timing offset observed in both LZ data and simulations has
been exploited to construct three test statistics to target accidental-
coincidence backgrounds. This resulted in the development of data qual-
ity cuts using SR1 data, including investigations of the dependence of
pulse shape on area and interaction type. When applying all three lin-
ear cuts on SR3 data, a combined tritium signal acceptance of 87.4%
and a combined background rejection efficiency of 47.1% was achieved,
or 87.6% and 42.4% following application of all other data quality cuts.
Accidental events across the entire Slec range were removed, including
pathologies such as the pile-up of SPEs or Sls, as well as misclassified
pulses. A study of the correlations between the three cuts indicates that
applying the cuts simultaneously rather than individually would allow
for an improved background rejection efficiency for the same signal ac-
ceptance. The focus of chapter 7 is a boosted decision tree, which was

developed for the purpose of combining these cuts.
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Chapter 7

Accidental-Coincidence
Background Removal with

Machine Learning

Boosted decision trees (BDTs) are a powerful tool for event classification
in particle physics. It has been shown in subsection 6.5.4 that the test
statistics which formed the basis of linear cuts in chapter 6 would be more
effective for background rejection if utilised simultaneously. To achieve
this, the test statistics can be used as input parameters for a BDT. This
allows for all three metrics to be considered in the classification decision,
and is thus expected to improve the rejection efficiency of accidental-
coincidence backgrounds. The development of the analysis from a single
preliminary BDT to a tuned array of 14 models, and its impact on the
sensitivity of the LZ experiment to WIMPs, will be the focus of this
chapter.

7.1 Boosted Decision Trees

For more than 30 years, machine-learning techniques have been employed
in the field of high energy physics [161] [162], where the objective is
typically to identify a rare physics signal amongst background processes
occurring at a much higher rate. Traditional cut-and-count methods,
which optimise the ratio of signal to background events passing thresholds
on various parameters, are not sensitive in regions of substantial overlap
between the two populations. Often, an event will not meet one of the
selection criteria, but if other parameters indicate that it is signal-like, it
would be undesirable to reject it [163].

A decision tree is a method of event classification, in which a model

is trained on (often simulated) signal and background events, labelled 1
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Figure 7.1: Schematic of a single decision tree. At each node, splits
are made on features x; ;, with cut values c; 234, to classify events into
signal, “S”, and background, “B”.

and 0, respectively. At each node, a binary cut is made on a feature, as
shown in Figure 7.1, such that multiple criteria are considered in the clas-
sification decision. A single decision tree is susceptible to overtraining,
whereby the model is trained on statistical fluctuations in the training
data. BDTs employ the process of boosting, which overcomes this issue

by using an ensemble of trees. The final prediction for the i*® event is

defined as

9 = ka (%), (7.1.1)

where {fi, fo, ..., fr} is a set of trees, which are functions that map
attributes to weights, w;. For the Extreme Gradient Boosting (XGBoost)
algorithm [164] used in this analysis, the following objective function is

minimised:

i k
where Q(fy) =T +a ) Jw;| + EAZMJQ.,

J=1 Jj=1

where [ is the loss function that measures the difference between the
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prediction, ¢;, and target, y;. €2 is a regularisation term, which is a
feature of the XGBoost algorithm that penalises complexity to avoid
overfitting. Here, v, o and \ are regularisation parameters, with the
former penalising trees with a large number of leaves (terminal nodes
where the splitting stops), resulting in shallower trees. « and \ are L1
and L2 regularisation terms, which reduce the sensitivity of the model to
individual observations. T is the number of leaves in the tree and w is
the sum of the leaf weights. Equation 7.1.2 cannot be optimised by tra-
ditional methods in Euclidean space, so the model is trained additively,
using a second-order Taylor approximation of the objective function for
fast optimisation. This is the process of boosting, which can be thought

of as “greedily” adding the tree f; that minimises

L0 — Zn:l (yi’gi(tfl) 1 (Xi)) +Q(f), (7.1.3)
=1

where ¢! is the prediction of the i-th instance at the ¢-th iteration.
In this way, each new tree gradually corrects for errors in the previous
trees.

The dissimilarity between the target and prediction is commonly mea-

sured using the binary cross entropy or log loss, in which the loss function
is defined as [165]:

DoL(Giye) = —yilmgi = (1= ) In(1 = 5y). (7.1.4)

This function is minimised when the prediction g; is close to zero for
background events, which have a target y; of zero, or close to one for
signal events, where y; is one.

The use of BDTs is prevalent in the particle physics community, due
to their speed and scalability, as well as their robustness against missing
values and imbalanced datasets [163]. For example, a BDT was used in
producing the first evidence for tttt production in the ATLAS experi-
ment [166]. The LZ collaboration utilised a BDT in searches for WIMP-
nucleon effective field theory couplings in SR1 data over an extended
energy range. The BDT was used for the rejection of 7-X backgrounds,
in which multiply-scattering v rays can be misclassified as Single Scat-
ters, due to at least one interaction occurring in a region of the detector
from which charge cannot be collected [167].

In the context of background rejection in particle physics, the BDT
assigns a score in the range [0,1], where 0 and 1 are the target scores for
background and signal events, respectively. By examining the label of

events in a validation dataset, it is then possible to place a cut on BDT
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score at the desired signal acceptance. Tuning of a single cut on BDT
score is more feasible than adjusting multiple linear cuts.

In the case of the S1 likelihood cut, the three test statistics can be
used as the input features for a BDT. SR3 tritium and AccidentalChop-
Stitch events were again chosen for the signal and background datasets.
Initially, the BDT was trained on datasets with only baseline data quality
cuts applied. To remove the dependence on the number of S1 photons,
the likelihood ratios were again normalised by fits to the tritium data

prior to input into the BDT, as in the linear cut method.

7.2 Hyperparameters

In order to optimise the XGBoost model, several hyperparameters can
be tuned. The tunable parameters considered in this study, as informed
by Ref. [168], are as follows:

e Number of trees: This parameter controls the number of boost-
ing iterations, in which a new tree is applied. A sufficiently high
value is required to avoid underfitting, whereby the model is unable
to learn the training data effectively, resulting in poor performance
on both training and validation data. Conversely, a very large num-

ber of trees results in a more complex model prone to overfitting.

o Learning rate, n: After each boosting stage, n reduces the fea-
ture weights. A low value of 1 therefore slows down learning and
leads to a more conservative boosting process, avoiding overfitting.
For a given learning rate, as the number of trees is increased, the
performance of the model will generally improve, before plateauing.
A lower 7 typically requires a larger number of trees to reach the
optimal performance. This smaller step size results in slow compu-
tation, but makes it easier to reach the optimum performance for

a model.

e Maximum depth: This hyperparameter governs the maximum
number of levels in a tree. A high value results in a complex model,

which may be prone to overfitting.

e Subsampling fraction: The subsampling fraction controls the
proportion of training data sampled for use in each boosting itera-
tion. Selection of a low value produces a more conservative model,
preventing overfitting, but the chosen value should not be so low

as to result in underfitting.
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Table 7.1: Values of each hyperparameter selected for initial BDT inves-
tigations. Further tuning was later carried out for the “number of trees”
and “maximum depth” parameters.

Parameter Value
Number of Trees 500
Learning Rate 0.01

Maximum Depth 6
Subsampling Fraction 0.8
L1 Regularisation, « 0.4
L2 Regularisation, A 0.4

e L1 and L2 regularisation: a and A are L1 and L2 regularisation
terms applied to the feature weights as in Equation 7.1.2, and are
analogous to Lasso and Ridge regression, respectively. L1 regular-
isation penalises the absolute value of the weights, shrinking some
to zero. It is robust to outliers in the data. L2 regularisation acts
on the squares of the weights, forcing them to be small but never
zero. It is preferable for data with highly correlated features, as it
distributes their impact more evenly [169]. Regularisation reduces
the sensitivity of the model to small changes in the training data,

and hence reduces overfitting.

In preliminary investigations, these parameters were set heuristically,
guided by conventional values used in similar studies (for example, Ref
[170]). Their chosen values are shown in Table 7.1. The number of trees
and maximum tree depth were later tuned for each model using a grid

search, as described in further detail in subsection 7.4.2.

7.3 Initial BDT Investigations

7.3.1 BDT Performance

Initially, a dataset containing an equal number of tritium and ACS events
was divided into training and validation samples, with an 80-20 split. A
single XGBoost model was trained on events across the entire range of
Slc values simultaneously. The trained model was then used to assign a
score to events in the validation dataset. The distributions of BDT scores
for events labelled as signal and background are shown in Figure 7.2.
The performance of the BDT was measured using a Receiver Operating

Characteristic (ROC) curve, as shown in Figure 7.3, which shows the true
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Figure 7.2: Distribution of BDT scores for tritium signal and ACS back-
ground events in validation data using the preliminary BDT model.

positive rate as a function of false positive rate. This was determined by
finding the tritium acceptance and accidental acceptance for every BDT
cut value tested. The optimal scenario of 100% signal acceptance for 0%
background leakage corresponds to the top-left corner of the plot. The
BDT performed well on the validation data, with a 44.7% accidental

rejection efficiency for a 95% signal acceptance.

In order to identify which features were most useful in deciding the
classification of events, the importance of each input variable was quanti-
fied in three ways. The weight refers to the frequency with which a feature
is used to make splits; the coverage measures the number of events for
which a given feature affects the splits; and the gain is the reduction in
the loss function (and hence the improvement of the accuracy of predic-
tions) that is achieved by including a feature. The relative importance
described by these three metrics is shown for each test statistic in Fig-
ure 7.4. The shape-based test statistic provides the highest weight, and
has values for the cover and gain that are only slightly below those for

the template comparison test statistic.

To ensure the validity of the results from this model, three BDTs were
trained, each with one of the test statistics as the single input parame-
ter. In this case, the BDT is expected to produce a similar accidental
rejection efficiency to the equivalent linear cut for the same tritium signal
acceptance. For both the template comparison and goodness of fit tests,
this was indeed the case. However, a cut on BDT score at 95% tritium
signal acceptance for the model which used the shape-based test statistic
returned an efficiency of 35.3%, which was a significant improvement on

the linear cut efficiency of 28.1%. In order to investigate this, events fail-
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Figure 7.3: ROC curve for the preliminary BDT model showing tritium
acceptance as a function of accidental acceptance for many possible BDT
score cut values.
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Figure 7.4: Relative importance of each feature in the preliminary BDT
model, as defined by the cover, weight and gain metrics.
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Figure 7.5: Distribution of shape-based test statistic values for tritium
and ACS validation data. The dark blue and red histograms indicate
events failing a cut on BDT score with 95% tritium signal acceptance,
for a model with the shape-based test statistic as the only input feature.
The light blue and pink histograms show all tritium and ACS validation
data, respectively.

ing the BDT score cut were identified in the distribution of shape-based

test statistic values, as shown in Figure 7.5.

7.3.2 Test Statistic Quantisation

It would be expected that primarily events with a low shape-based test
statistic would be assigned a low BDT score, and thus fail the cut. Close
to the peak of the distribution, the rate of signal events is higher than
that of background events, so a higher BDT score would be expected.
However, it can be seen that some signal and background events in this
region (specifically, in the ranges ~[0.82,0.90] and ~[1.06,1.12]) are in
fact removed by the BDT cut.

Reproducing this histogram with a finer resolution for a small range
of values close to the peak of the distribution, as in Figure 7.6, revealed
that the rate of accidental events did in fact repeatedly spike above the
rate of signal events. Statistical fluctuations were unlikely to be the origin
of these spikes, as the variation of event counts is large compared to the
tritium data. The good performance of the BDT on the validation data
implied that the spikes occurred at the same test statistic values in both
the training and testing datasets.

An even finer resolution, as in Figure 7.7, demonstrated that there
was quantisation present, as exactly the same test statistic values were
produced for multiple events. This is expected, as the same likelihood

value can occur if the distribution of S1 photons between the 10 ns wave-
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Figure 7.6: As in Figure 7.5, but with finer binning, to demonstrate the
spikes in ACS rate close to the peak of the shape-based test statistic
distribution.
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Figure 7.7: As in Figure 7.6, but with even finer binning, to demonstrate
the quantisation of test statistic values.

form sampling time bins is the same for two events. This is more likely to
transpire for events with a small number of S1 photons, for which there
are fewer possible combinations. This quantisation was also seen in the
template-comparison and GOF test statistics, but to a lesser extent, as
the drift time must also be in the same range in order to produce identical

values for the likelihood ratio.

This introduced a dependence of event classification on Slc, as the
ACS dataset contains a larger number of small pulses, which are more
likely to produce duplicate test statistic values. The BDT would learn
to treat events with these repeated values as accidental-like, so events,
both signal and background, with a small number of photons, were more
likely to be rejected by the BDT cut. This undesirable behaviour is
demonstrated most clearly by the tritium acceptance curve, shown in

Figure 7.8, which declines significantly for low Slc values.
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Figure 7.8: Tritium acceptance as a function of Slc for the BDT cut
with an overall tritium signal acceptance of 95%, for a model with the
shape-based test statistic as the only input feature.

A temporary solution was introduced, in which the BDT input vari-
ables were binned to smear out the quantisation. When the shape-based
single-variable BDT was retrained on this data, the model did not learn
the spikes in the data, so, as expected, events close to the peak of the
test statistic distribution were no longer removed by the BDT cut, as
shown in Figure 7.9. This approach likely incurs a cost in terms of loss

of information, so was not used to produce the final results.

7.3.3 Cherenkov Light

A population of accidental events with the highest test statistic values
was observed at a higher rate than the tritium signal. On investigation,
it was discovered that many of these events had a higher corrected S1
area than expected for the number of S1 photons detected, as shown in
Figure 7.10. Here, 4000 signal and background events are shown, with
test statistics less then and greater than one. For accidental events with
a high test statistic, a new population of events is observed, away from
the correlated band. It was taken into consideration that ACS events
have a randomly-assigned drift time, so the correction factor applied to
the pulse area is likely to be incorrect for the true position of the S1,
which may result in a larger area. However, the effect observed here is
too large to be attributed solely to this behaviour. By applying a cut
to select and inspect these events, it was found that they generally had
properties consistent with the Cherenkov light that can be produced in
PMT windows.

The majority of light from a Cherenkov S1 pulse is detected in a single
PMT. Inspection of the channel waveforms from the selected population

of events, such as those shown in Figure 7.11, demonstrated that this
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Figure 7.9: Distribution of shape-based test statistic values for tritium
and ACS validation data. The dark blue and red histograms indicate
events failing a cut on BDT score with 95% tritium signal acceptance.
The shape-based test statistic is the only input feature for this model,
and the input values were binned to smear out quantisation. The light
blue and pink histograms show all tritium and ACS validation data,
respectively.

i / i Y
80 s 80 4 =
_?607 . _?607'. -
= |
= 40 1 = a0t ]
wn 7] r

Tritium: TS <1 ] Tritium: TS > 1 ]

ACS:TS< 1 N: ACS: TS >1
TR R R RS R R R RS SRR SRS
0 20 40 60 80 100 0 20 40 60 80 100
Number of Photons Number of Photons

Figure 7.10: Distribution of tritium and ACS events in S1c-nppotons SPace,
for events with a shape-based test statistic less than one (left) and greater
than one (right). The black dashed line indicates a cut used to select
events with a high Slc value for the given number of S1 photons.
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was indeed the case. A small pulse width is also expected for Cherenkov
S1s, and Figure 7.12 shows that this population of S1 pulses is narrower
than other accidental events.

An explanation as to why these events have a high test statistic value
is that, during calculation of the likelihood ratio, the waveform align-
ment can be chosen such that narrow pulses are contained entirely within
the peak of the S1 template, whereas wider pulses incur a penalty from
regions of the template where the probability is low. This introduces an-
other small dependence on Slc. It can be seen in Figure 7.13 that pulse
length is generally independent of Slc, except for at small pulse areas,
where the pulse tends to be narrower. Small tritium pulses are therefore
more likely to have a similar test statistic value to Cherenkov Sls, and
thus be rejected by the BDT cut. This remaining small dependence on
Slc can be seen in the tritium acceptance curve in Figure 7.14.

It may be concluded that it is acceptable for the BDT to treat these
events with a high shape-based test statistic as accidental-like, however
there already exists a data quality cut specifically designed to target
Cherenkov events: the high single channel cut. It was therefore decided
that the BDT will instead be trained only on the accidental events sur-
viving all other data quality cuts. This would allow for the determination

of the power of the BDT cut on top of the existing analysis.

7.4 Binned BDT Analysis

7.4.1 Approach

In order to preserve all available information, and minimise dependence
on Slec, it was decided that, rather than binning the BDT input variables,
multiple BDTs would be trained separately. Each input dataset would
contain an equal number of signal and background events, with each
possible number of S1 photons up to 15. The number of available ACS
events with more than 15 photons was low, so, to maintain high statistics,
a single BDT model was trained for events with nppoons > 15. This was
deemed to be acceptable, as no test statistic quantisation was observed

in this region.

7.4.2 k-fold Cross Validation

The “maximum depth” and “number of trees” hyperparameters were
tuned separately for each BDT using a grid search, where k-fold cross

validation was employed. This is the process in which the total dataset

202 of 241



. Accidental-Coincidence Background Removal with Machine Learning

amplitude [phd/ns]

amplitude [phd/ns]

5

0

TpcHighGain

Run 1662, Event 1662
® S1 @ S2

SE MPE SPE Other

Channel traces

.5e-1 —:
.0e-1 —:
.se-1
.0e-1 —:

.0e-2

-115.00 -114.90

time [us]

Run 1662, Event 1662

.0e+0

-115.00 -114.90

time [us]

0000000000000
0000000000000
0000000000
000000000
@000

Figure 7.11: Screenshots from the LZ Event Viewer, showing an example
of an ACS S1 pulse with a high-shape based test statistic, likely to be
Cherenkov light. The relatively narrow S1 pulse is shown in (a), and
the channel waveforms in (b), as well as the TPC PMT heatmap in (c),
demonstrate that the majority of light is detected by one PMT.
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Figure 7.12: S1 pulse length, defined as AFT95 - AFT5, for ACS events
with a high shape-based test statistic and high S1c for the given number
of photons (pink), compared to other ACS events (dark red).
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Figure 7.14: Tritium acceptance as a function of Slec for the BDT cut
with an overall signal acceptance of 95%, for a model with the shape-
based test statistic as the only input feature, in which the input values
were binned to smear out quantisation.
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is divided into k subsets of approximately equal size. One of k£ models
is trained on all subsets except one, which is treated as the validation
dataset for that model and scored. This means that all events are used
for both training and validation, as opposed to the previous approach, in
which only a small subset of the data was available for scoring. Five and
10 are typical values for k [171], and k = 5 was selected for this study.
The GridSearchCV module from the sklearn Python package was utilised
to operate a cross-validated parameter grid search. The combination of
“number of trees” and “maximum depth” that maximised the “negative
log loss” metric, and thus minimised the loss function, was selected for

each model.

7.4.3 BDT Performance

The trained BDT models were then used to produce scores for every
event. The distribution of BDT scores for each model is shown in Fig-
ure 7.15. It can be seen that separation of the background and signal
populations generally improves as number of photons is increased, as ex-
pected. An ROC curve was then generated for each model, as shown in
Figure 7.16. To maintain a constant signal acceptance across all models,
a different BDT cut value would be selected for each value of n,n0t0ms-
Example acceptance curves for a BDT cut with a signal acceptance of
95% are shown in Figure 7.17. By setting the acceptance requirement
for each BDT separately, the dip in acceptance at low Slc suffered by
the combined linear cuts is not encountered here. The background rejec-
tion efficiency could then be calculated separately for each model, as well
as over the entire ACS dataset. When choosing an 87.6% signal accep-
tance for each model, equivalent to the combined linear cut acceptance
in chapter 6, the total accidental rejection efficiency is 48.1%, compared
to 42.4% for the linear cuts. The feature importance for each model is
shown in Figure 7.18, where it can be observed that no single variable is

consistently outperforming the other two.

7.5 Cut Optimisation

It is desirable to determine the cut value that would provide the optimal
sensitivity to WIMPs. This process was carried out for both the linear
and BDT versions of the S1 likelihood cut, to allow for an accurate

comparison. Feldman and Cousins introduced the ratio

R=P(n| u)/P(n| jest) (7.5.1)
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Figure 7.17: Tritium and ACS acceptance as a function of Sle¢, for a
BDT cut where the tritium signal acceptance has been set to 95% for
each model.

as the quantity on which to base an ordering principle, where n is
the observed number of events [172]. R is the ratio of the probability of
obtaining n for a true signal mean, u, and the probability of obtaining
n given the best-fit value of . For a known mean background, b, and a
given value of i, values of n are added to an acceptance region in order
of decreasing R, until the sum of P(n | u) meets the required confidence

level, where here the standard value of 90% is used.

The optimal cut value depends on the exposure of the experiment,
and can be estimated using a background-only Feldman-Cousins upper
limit calculation. WIMP models for which the expected number of signal
events exceeds this upper limit would be rejected at the 90% confidence

level if no signal was observed.

One required input for this calculation is the signal acceptance. As
this was designed to be approximately constant with Slc, it was applied
as an overall percentage. This entered the calculation only as a penalty
on the upper limit, leading to a weaker limit for a lower signal accep-
tance. The required quantity is the total signal acceptance for all data
quality cuts on a pure (i.e. following livetime and physics cuts) signal
dataset. The existing acceptance curve corresponded to the acceptance
of the BDT cut alone, on a dataset with all other cuts applied. This
was therefore required to be normalised by the acceptance of the other
S1-based and S2-based cuts:
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Figure 7.18: Relative importance, as defined by the cover (blue), weight
(orange) and gain (green) metrics, of the shape-based (“S”), GOF (“G”)
and template-comparison (“T”) input features in each of the 14 BDT
models, where n is the number of S1 photons. The error bars show
the standard deviation in the importance scores across the five models
employed in k-fold cross validation.
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Signal Acceptance =
S1 Likelihood + Physics 4+ Livetime + S1-based + S2-based
Physics + Livetime
_ S1 Likelihood + Physics + Livetime + S1-based + S2-based (7.5.2)
B Physics + Livetime + S1-based + S2-based
" Physics 4 Livetime + S1-based + S2-based
Physics + Livetime

The acceptance curve corresponding to the second term was already
available as part of the standard SR3 analysis, and was again found to

be approximately constant across Slc.

The calculation also requires the expected number of background
events and the background rejection efficiency, both used to determine
b. The expected number of background events was chosen to be the
number of accidental events within the 1o contour of a 40 GeV-mass
WIMP during the total run time, following all other data quality cuts,
as shown in Figure 7.19. For this study, the 40 GeV WIMP was selected
as a representative example, as this is the region in which LZ has peak
sensitivity. However, it would also be possible to tune the likelihood cut
thresholds to target sensitivity improvements at different WIMP masses.
For smaller masses, the distribution of signal events would be concen-
trated in the region dominated by accidentals, so the run would become
background limited more quickly. A more aggressive cut would therefore
be required, where livetime is sacrificed for improved background rejec-
tion. For higher masses, the WIMP contour extends further along the
NR band, leading to less overlap with accidentals. A less aggressive cut,
for which more livetime is preserved, would therefore be preferable.

As background rejection efficiency varies with Sle¢, the ACS accep-
tance curve was applied to the accidentals distribution, in order to cal-

culate the overall percentage efficiency in the selected region.

For every value of signal acceptance tested, 10,000 toys were gener-
ated, with a Poisson distributed number of observed background events,
ng. The upper limit on p was determined using the TFeldmanCousins
class in ROOT, which queries tables of confidence intervals for combi-
nations of b and ng. The mean upper limit was plotted against the cut
acceptance, and a polynomial fit was used to determine the minimum
point, corresponding to the acceptance at which the weakest signals can

be rejected.

The calculation was undertaken for two possible run times: 200 live-

days, which is the approximate expected livetime for SR3, and 1000 live-
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Figure 7.19: SR3 distribution of AccidentalChopStitch events in
log,, S2c-Slc space following all data quality cuts and a smoothing pro-
cedure. The 1o contour for a 40 GeV WIMP is shown in black.

days, which is the estimated total livetime of the LZ experiment. The
latter will be in a regime in which accidental-coincidence backgrounds
are more dominant, so a more aggressive cut is expected to be effective.
The results for both the combined linear cuts and the BDT cut are shown
in Figure 7.20, which also includes the total number of accidental events
within the 40 GeV WIMP 1o contour that survived each cut. For the
1000-liveday search, it can be seen that acceptances across the full range
tested outperform the 100% signal acceptance scenario, which is equiv-
alent to no cut. The optimal acceptance and the resulting mean upper
limit are shown for each scenario in Table 7.2, together with the num-
ber of surviving accidentals. A small reduction in the upper limit and
accidental counts can be seen for the BDT cut compared to the linear

cuts.

7.6 Impact on WIMP Sensitivity

Sensitivity projections were then produced for each cut scenario, in order
to demonstrate the potential impact on the WIMP search. It was decided
that likelihood cut acceptances of 92% and 95% would be used, as the
optimal values returned by the Feldman-Cousins study for 1000 and 200

livedays, respectively. Acceptances of 80% and 99% were also tested as
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Table 7.2: The optimal likelihood cut acceptance which provides the
lowest mean upper limit for each of the four scenarios described in the
text. The number of accidental events within a 40 GeV WIMP 1o contour
that survive a cut with this acceptance is also shown.

Cut  Livetime [d] Acceptance Accidentals Upper Limit

Linear 200 95.1% 1.51 3.81
BDT 200 95.2% 1.45 3.73
Linear 1000 91.7% 6.73 6.25
BDT 1000 91.5% 6.46 6.17
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Figure 7.20: Mean upper limits determined using a Feldman-Cousins
calculation for each value of total signal acceptance for the S1 likelihood
cut. Combined linear cuts and a single cut on BDT score are shown for
200- and 1000-liveday searches. The error bars show the standard error
across the different toys and the solid black line is a polynomial fit to the
data, for which the minimum point is indicated by the black dashed line.
The number of surviving accidental events within the chosen contour is
shown in red.
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extreme scenarios.

In the process of limit setting, a profile likelihood ratio is used to

define a two-sided test statistic, ¢, for a signal strength, u:

L (u,g>
Ap) = W (7.6.1)
t, = —2In\(u), (7.6.2)

in which the Feldman-Cousins method has been modified to include a
set of nuisance parameters, 8. Here, a single hat corresponds to parame-
ters that maximise the global likelihood, whereas a double hat indicates
parameters that maximise the likelihood for a specific value of p.

As prescribed in Ref. [147], the test statistic recommended for limit-

setting in dark matter direct detection experiments is

(7.6.3)

In the case of dark matter searches, the signal can only increase the
event count, so yu is required to be positive. If ji < 0 for a certain dataset,
then the best agreement between the data and a physical value of ;1 occurs
at ;= 0. The test statistic definition therefore ensures that if i < 0, it
will always be fixed to zero in the denominator of the likelihood ratio.

For limit setting, a signal-plus-background model forms the null hy-
pothesis, Hy, and a background-only model forms the alternative hypoth-
esis, H;. For every WIMP mass tested, for a range of possible values of
i, Monte Carlo toys are used to generate distributions of test statistics
for each hypothesis. When testing the level of agreement between H,
and data, the p-value is defined as the integral of the H, distribution

above the value of the test statistic observed in data, fu,obs:

p) = P (b= T | 1) = [ f (0] 1) di. (7.6.4)

1,0bs

The p-value is therefore the probability of obtaining a value of #,
greater than f#,obs.

When evaluating a projected sensitivity, the median of the distribu-
tion for H; is determined, and replaces fmobs in the calculation of the
p-value. For each WIMP mass, the value of u for which the p-value is

0.1 is scaled to produce a limit on the WIMP-nucleon cross-section. The
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p-values obtained when the median of the H; distribution is shifted by
410 or 20 are indicated by green and yellow bands, respectively, in limit
plots, in order to quantify statistical fluctuations over repeated experi-
ments. To evaluate the impact of the S1 likelihood cut on the WIMP
search, this process was carried out using the Flamedisx package in the

non-asymptotic regime [173], [174].

Templates for WIMPs, backgrounds and accidentals were produced
for use as inputs for the statistical inference. It should be noted that
at the time of this study, the official data quality cuts and background
model were still undergoing development, so results will not be fully
consistent with the final SR3 analysis. In particular, the S2 threshold
for the WIMP search has since been raised from 4.5 electrons to 14.5
electrons in order to continue acquiring data for the search for a 8B signal,
while keeping the 8B region blinded separately from the WIMP search.
As this study considers only projected sensitivities and not the observed
data, it does not interfere with the bias mitigation in place for SR3.
A consequence of the lower S2 threshold is an additional population of
accidentals, which are correlated in nature, meaning that a small spurious
S1 and S2 arise from the same source, such as an e-/ph-train, and are
misclassified as a Single Scatter. This population was not modelled in
this investigation, but it is expected that the S1 likelihood cut would
also target these events, leading to further improvement. The sources
of tritium and *C, which contaminated early SR3 data, were also not
included in the background model for this sensitivity study, but will be
accounted for in the official analysis. The S1 likelihood cut acceptance
curves for tritium were applied to the PDFs for signal and background
sources, and the accidental acceptance curves were similarly applied to

the ACS PDF, to produce templates for all cut scenarios.

The sensitivity projections for 200 and 1000 livedays are shown in
figs. 7.21 and 7.22, compared to the case with no likelihood cut applied.
As expected, for the 200-liveday search, the impact of the S1 likelihood
cut was limited, with small visible improvements for the 95% and 99% cut
acceptances, which are close to the minimum of the upper limit curves
resulting from the Feldman-Cousins calculation. The most significant
relative improvement on the most stringent limit from the baseline sce-
nario was 3.9% for the BDT cut (with a cut acceptance of 99%) and
2.3% for the linear cuts (with a cut acceptance of 95%). As a cut with
an acceptance of 80% produced a weaker upper limit than no cut in the
Feldman-Cousins study (see Figure 7.20), it is unsurprising that in this

scenario the median sensitivity worsens compared to the baseline case.
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Figure 7.21: Sensitivity projections for a 200-liveday WIMP search, com-
puted using Flamedisx. In the baseline scenario (black), no further cuts
are applied in addition to the standard SR3 cuts. The pink line shows
the impact of the S1 likelihood combined linear cuts and the blue line
shows the BDT cut. 1o and 20 bands are also shown for the BDT cut.

The BDT cut outperforms the linear cuts here, as is generally the case.
For 1000 livedays, the 92% cut acceptance has the biggest impact, result-
ing in an improvement of the most stringent limit for a 40 GeV WIMP
from 2.12 x 107*8 cm? for the baseline scenario to 1.97 x 107*8 cm? for
the BDT cut, an 8% decrease. The limit for an ideal scenario of 100%
acceptance for the likelihood cut and 100% removal of accidentals is also
shown. The most stringent limit in this case corresponds to a cross-
section of 1.04 x 107 cm?, a 51.2% decrease from the baseline scenario,
demonstrating the potential for significant further improvement by tar-

geting this important background.
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Figure 7.22: Sensitivity projections, as in Figure 7.21, but for a 1000-
liveday WIMP search. The limit for an ideal scenario of 100% cut accep-
tance and 100% removal of accidentals is also shown.
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7.7 Impact on WIMP Discovery Potential

In the case that a new signal is detected, the background only model
becomes the null hypothesis, and a special case of the test statistic is
used to test the significance at which it can be rejected in favour of Hq,

the signal-plus-background model:

- —2InA(0), >0
foi= a0 = 0 220 (7.7.1)
07 n < 0
The p-value is then determined using:
=P (o2 T [0)= [ f(io]0)diy (7.7.2)
tO, obs

The p-value can be expressed in terms of the number of standard
deviations above the mean of a Gaussian distribution that would result
in a probability of py in the upper tail. 30 and 50 are the significances
usually required to claim “evidence” or a “discovery”, respectively, in
particle physics. For a projected discovery calculation, a signal is injected
into simulated background-only datasets, where the number of events is
Poisson distributed about a mean value of the chosen p. The median of
the H; distribution is again used as the point above which the integral
is calculated to determine the p-value.

For this investigation, masses of 9 GeV, 11 GeV and 40 GeV, corre-
sponding to WIMP interactions at threshold, just above threshold, and
at the optimal sensitivity, respectively, were chosen to demonstrate the
impact of the S1 likelihood cut on the WIMP discovery potential. A
cut acceptance of 92% for a 1000-liveday search was chosen to show
the most significant impact. For each WIMP mass, a single value of

= 15 was chosen to obtain a discovery significance approaching 3o.
This corresponds to WIMP-nucleon cross-sections of 8.23 x 10747 cm?,
3.28 x 107*"cm? and 3.99 x 107 cm? for the 9 GeV, 11 GeV and 40
GeV WIMPs, respectively. These values are realistic as they are be-
low the current LZ limit, but within the design sensitivity goal of LZ of
3x 1078 cm? in the WIMP parameter space. For each cut scenario, i was
scaled appropriately to maintain the same WIMP-nucleon cross-section,
so that the relative improvement could be observed. Although both the
combined linear and BDT cuts were chosen to have the same total accep-
tance across Slc, the differing shapes of the acceptance curves result in

slightly different acceptances for the specific WIMP masses considered,

!This approach was adopted to avoid computationally-intensive scans of toy Monte
Carlo trials for many values of u.
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resulting in different values of .

The distribution of values for the resulting discovery significance is
shown in Figure 7.23. The most significant improvement is seen for a 40
GeV WIMP, where the median discovery potential increases from 2.58c
for the baseline scenario, to 2.70¢ with the linear cuts applied, to 2.85¢
for the BDT cut. This constitutes an 11% increase from the baseline to
BDT scenarios. The chosen p value, cross-section and resulting discovery
potential for each scenario are presented in Table 7.3. This demonstrates
how the cuts increase the potential for LZ to claim evidence for WIMPs,
in the case of a detection. The effect is larger for the discovery potential
than the sensitivity, which is expected when considering a population
such as accidentals, which can directly overlap the signal. The impact of
the background level on the upper limit becomes more significant for the
smaller p-values associated with discovery tests compared to sensitivity
studies. It should be noted that in a full study of discovery potential,
the desired p-value would be chosen, and all ;4 values would be tested to
determine the cross-section that results in this value.

In the event that a direct detection experiment observes an excess ap-
proaching 3o, it is recommended that the “look elsewhere effect” (LEE)
should be taken into account. This is the phenomenon which can occur
when testing a null hypothesis against several different alternative hy-
potheses, such as different WIMP masses. A statistical fluctuation could
be observed for any of these signal hypotheses, leading to an overestima-
tion of the discovery significance. The impact of the LEE is dependent
on both the number of hypotheses and the ease of distinguishing between
them, and is expected to be small, particularly for WIMP masses greater
than 40 GeV [147].

7.8 Future Improvements

The binned BDT implementation described enhances the sensitivity of
the LZ experiment to WIMPs, but its performance could be further im-
proved through more extensive tuning of the available hyperparameters,
as well as by using a larger input dataset. The creation of separate
BDT models for each value of n,p010ns resulted in small training datasets,
which could be boosted with more calibration data, as well as a larger
production of ACS events.

This BDT used only three input parameters, but there are many other
pulse features that can be used to distinguish between signal events and

accidentals. The same process could be followed with all pulse-based
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Figure 7.23: Projected discovery potential of LZ for a 1000-liveday search,
for scenarios with no additional cuts, combined linear cuts and a BDT
cut. For each WIMP mass, a value of u = 15 was used for the baseline
scenario, and was scaled to maintain the same cross-section for the other
cases.
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Table 7.3: The potential discovery significance for WIMP masses of 9
GeV, 11 GeV and 40 GeV, with no likelihood cut (baseline), combined
linear cuts, and a single BDT cut. The number of observed signal events
i was chosen to be 15 for the baseline scenario, and then adjusted to
maintain the same cross-section when each of the cuts was applied.

Mass [GeV] Cut g Cross-section [cm?] Discovery Significance

9 Baseline 15 8.23 x 10~%7 2.370
9 Linear 13.5 8.23 x 10~47 2.460

BDT 139 8.23 x 10747 2.450
11 Baseline 15 3.28 x 10747 2.590
11 Linear  13.5 3.28 x 1077 2.670
11 BDT 13.9 3.28 x 10~%7 2.760
40 Baseline 15 3.99 x 10748 2.58¢0
40 Linear 13.5 3.99 x 10748 2.700
40 BDT 1338 3.99 x 10748 2.850

event selection implemented within the BDT model, rather than as indi-
vidual cuts that are applied in advance. “Feature engineering” would be
carried out to select physically-motivated input variables, which gener-
ally have significant overlap with those used in WIMP search data quality
cuts. An example of this approach can be seen in Ref. [170], in which ten
input parameters, primarily describing the shape and size of S1 and S2
pulses, were utilised to increase removal of accidental-coincidence events
in SR1 data. The addition of the three S1 likelihood input variables to
a model such as this would further improve rejection of accidentals, and

thus increase sensitivity to WIMPs.

7.9 Summary

In chapter 6, three test statistics were introduced with the purpose of
targeting accidentals based on arrival times of S1 photons. Rejection of
events based on linear cuts on each quantity resulted in a loss of sensitiv-
ity due to overlap between the distributions for signal and background
events. A boosted decision tree can be employed to consider all three
metrics when classifying events, and facilitates optimisation of cut accep-
tance and accidental rejection efficiency through the tuning of a single
cut on BDT score.

Initial investigations revealed interesting behaviour of the XGBoost

model. In particular, quantisation of test statistic values, a general fea-
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ture of the binned likelihood calculation, resulted in a reduced acceptance
for events with a low number of S1 photons. As well as this, a popu-
lation of accidental events were found to produce the highest values for
the shape-based test statistic. Upon further investigation, evidence indi-
cated that these were narrow S1s resulting from Cherenkov light in PMT
windows.

It was therefore decided that several BDT models would be trained
separately for each value of nypoons below 15, in order to remove the
effects of test statistic quantisation. All other data quality cuts would
be applied on the input data to target pathologies such as Cherenkov
light, and demonstrate the additional impact of the BDT cut beyond the
existing WIMP search analysis. The resulting signal acceptance showed
a reduced variation with Slc in comparison to the linear cuts.

In order to determine the impact of the BDT cut on the WIMP search,
a Feldman-Cousins calculation was used to calculate the optimal cut
acceptance for 200- and 1000-liveday searches. For the 1000-liveday case,
a BDT cut with a signal acceptance of 92% resulted in an improvement of
the projected discovery potential of up to 11% and of the most stringent
exclusion limit by up to 8%, compared to the case with no additional
cuts applied. An ideal scenario, in which all accidental-coincidence events
were removed, was observed to have a significant impact on the WIMP
sensitivity, so it is essential to continue to target this background as
effectively as possible. Further improvement can be expected through
larger training datasets, more extensive tuning of hyperparameters, and,

most importantly, inclusion of additional input features.
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Chapter 8
Conclusions

The LZ direct detection experiment set world-leading limits on spin-
independent WIMP-nucleon interactions during its first science run. This
was achieved through the detection of primary and secondary scintilla-
tion signals in a dual-phase xenon TPC, as described in chapter 3. The
Physics Readiness Monitor was used to check for problems in the data,
and new tools were developed to facilitate this. During validation of SR2
data, Algorithm Groups and two-dimensional plot comparisons were used
in the identification of both long-term trends and brief irregularities. The
TPC _Health module was employed to observe features such as xenon ac-
tivation, temporal variation of pulse sizes, residual ¥ Kr, hotspots, and
light emission detected in the Skin. This enabled the compilation of a
list of acquisitions suitable for the WIMP search analysis. Whilst SR2
was terminated due to detector instabilities, the monitoring tools and
validation procedures developed in this thesis will be key to evaluating

the data quality for ongoing and future physics runs.

The tuning of optical simulations to reproduce the position-dependent
light collection efficiency in SR1 data was described in chapter 5. Three
optical parameters, the LXe-PTFE reflectivity, LXe absorption length
and LXe Rayleigh scattering length, were found to yield the most signif-
icant impact on the LCE. These were optimised in a grid search, which
used a x? comparison to data. After accounting for issues with the mod-
els for 83™Kr photon yields and secondary PMT effects, an improved
match to data was achieved throughout the detector for the total LCE.
However, it was found that separate consideration of photon counts in
each PMT array was required to produce accurate top and bottom ar-
ray LCE curves. The optimal Rayleigh scattering length of 0.43 m was
selected and, as the reflectivity and absorption length were shown to be
degenerate, a sensible pair of values of 97.3% and 121 m were chosen for

these parameters, based on an external measurement of the reflectivity.
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The tuned parameters provided good results in every region of the de-
tector, apart from close to the bottom. Several potential solutions were
suggested, including adjustments to the refractive index of the quartz
PMT windows or the gaseous xenon. Pulses were observed to be slightly
narrower in simulations than data, so future tuning should take this into
consideration. These tuned simulations will be advantageous for analysis
of complex pathologies and development of waveform-based cuts in the

future.

A new waveform-based data quality cut was designed to target ac-
cidental coincidences of lone S1s and S2s, which form one of the most
significant backgrounds to the WIMP search. This was the focus of chap-
ter 6 and chapter 7. An offset of up to ~ 45 ns was observed between
photon arrival times in the top and bottom PMT arrays, which was
strongly correlated to the drift time of an event. This could be used to
identify accidentals, for which the drift time is assigned randomly and is
therefore not meaningful. As well as this, the shapes of pulses classified
as S1s resulting from the pile-up of dark counts or SPEs are often ir-
regular. Data-driven S1 templates were generated for slices of drift time
throughout the detector, and three test statistics were designed to ex-
ploit both of these identifying features. The test statistics consisted of
an S1 goodness of fit test, a comparison of S1 templates at various drift
times, and a ratio of likelihoods for S1 and flat rate hypotheses. Test
statistic values were calculated for a tritium signal and a background
dataset consisting of AccidentalChopStitch (ACS); artificially-paired S1s

and S2s used to model accidental-coincidence events.

Following normalisation to account for a dependence on the number of
S1 photons, linear cuts were applied to reject ACS events. Investigations
conducted using SR1 data showed that the pulse area and interaction
type would not have a significant impact on the template shape. Each
cut was then tuned on SR3 data to produce a signal acceptance of 95%.
In the case where only baseline selection cuts were applied to the sig-
nal and background datasets, the acceptance of the combined likelihood
cuts on the signal sample was 87.4%, with a background rejection effi-
ciency of 47.1%. When all other SR3 data quality cuts were applied to
the signal and background samples prior to tuning of the cut parame-
ters, a combined likelihood cut acceptance of 87.6% and an accidental
rejection efficiency of 42.4% were achieved. The cuts removed accidental-
coincidence events across the full range of Slc within the WIMP search
region of interest. This included pathologies such as pile-up of SPEs or

S1s, misclassified pulses, and events with an incorrect assigned drift time.
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It has therefore been demonstrated that the S1 likelihood cut is able to ef-
fectively remove accidentals. Correlation was observed between the three
individual cuts, indicating that simultaneous consideration of the three
test statistics would lead to improved background rejection efficiency for

the same signal loss.

This was achieved through the use of a boosted decision tree, for which
the three test statistics were used as input features. The BDT assigned a
score to events, with 0 and 1 as target scores for background and signal,
respectively. A single cut was then placed on the BDT score to achieve
the desired signal acceptance. A preliminary BDT performed well, and
models with a single test statistic as the only input feature were used
to validate this. The BDT using the shape-based test statistic achieved
a background rejection efficiency that was significantly better than the
equivalent linear cut, prompting further investigation. Quantisation of
test statistic values for events with a low S1 photon count resulted in
a reduced signal acceptance for this population. To avoid this, several
BDT models were trained separately for events with a different number
of S1 photons. A population of accidental-coincidence events with a high
test statistic value was also observed, which, upon further investigation,
was deemed likely to be Cherenkov light. Although it was logical that
these events should be rejected by the BDT cut, it was decided that all
other SR3 data quality cuts would be applied to datasets before training
the BDT, to exploit existing cuts that target specific pathologies, such
as Cherenkov light. Hyperparameters were tuned separately for each
model, employing k-fold cross validation. The BDT models achieved a
total accidental rejection efficiency of 48.1% for an 87.6% signal accep-
tance, compared to 42.4% for the combined linear cuts. The BDT score
cut values for each model were selected to ensure that acceptance was
approximately constant across Slc. This was superior to the combined

linear cuts, for which a dip in acceptance is present at low Slec.

In order to evaluate the impact on the WIMP search of both the linear
and BDT approaches to the S1 likelihood cut, a Feldman-Cousins calcula-
tion was used to determine the optimal cut acceptance. The background
signal was chosen to be the surviving accidental-coincidence events within
the 1o contour of a 40 GeV WIMP, following all other data quality cuts.
For a 200-liveday search, the optimal cut acceptance was found to be
~95%, corresponding to a reduction of accidentals in the chosen region
from 2.15 to 1.51 for the linear cuts and 1.45 for the BDT cut. For a
1000-liveday search, a more aggressive cut of ~92% was found to be op-

timal, which reduced the number of accidentals in the chosen region from

224 of 241



8. Conclusions

10.74 to 6.73 for the linear cuts and 6.46 for the BDT cut.

Sensitivity projections were then produced, demonstrating that ap-
plication of the BDT cut could improve the sensitivity of LZ to WIMPs
by up to 8% for a 1000-liveday search, relative to the baseline sce-
nario. For a 40 GeV WIMP with an ST WIMP-nucleon cross-section of
3.99x 1078 cm?, the BDT cut increased the projected discovery potential
by 11% for a 1000-liveday search. The significant improvement to WIMP
sensitivity when all accidentals were removed (a 51.2% decrease in cross-
section for the most stringent limit) showed that it is vital to continue to
target this background. A future comprehensive BDT analysis with ad-
ditional input features would increase the potential of the LZ experiment
to either exclude further parameter space, or claim a WIMP discovery.
Other avenues for future developments for both the linear and BDT ver-
sions of the S1 likelihood cut include the incorporation of uncertainties in
the S1 templates and the separation of S1 templates by interaction type,
depending on the physics search. The XLZD next-generation experiment
will also require efficient removal of accidental-coincidence backgrounds,
as it explores the remainder of the WIMP parameter space before reach-
ing the neutrino fog. The framework and techniques developed here rep-
resent an important first step in addressing this challenge. If no signal is
observed, this remaining parameter space can be excluded, and the focus
of direct detection searches will turn to directional detectors which can

overcome the neutrino fog, and searches for other dark matter candidates

beyond WIMPs.
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