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We show that gapless modes in relativistic hydrodynamics could become topologically nontrivial by
weakly breaking the conservation of energy momentum tensor in a specific way. This system has
topological semimetal-like crossing nodes in the spectrum of hydrodynamic modes that require the
protection of a special combination of translational and boost symmetries in two spatial directions. We
confirm the nontrivial topology from the existence of an undetermined Berry phase. These energy
momentum nonconservation terms could naturally be produced by an external gravitational field that
comes from a reference frame change from the original inertial frame, i.e., by fictitious forces in a
noninertial reference frame. This noninertial frame is the rest frame of an accelerating observer moving
along a trajectory of a helix. This suggests that topologically trivial modes could become nontrivial by
being observed in a special noninertial reference frame, and this fact could be verified in laboratories, in
principle. Finally, we propose a holographic realization of this system.
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I. INTRODUCTION

Hydrodynamics is the universal low energy theory for
systems close to local thermal equilibrium at a long distance
and time. It could describe a variety of physical systems
ranging frommatter at large scales in the Universe, the quark-
gluon plasma [1], toWeyl semimetals [2,3] and graphenes [4]
in the laboratory. At small momentum and frequency, pertur-
bations of a hydrodynamic system close to the equilibrium
would produce propagating as well as diffusive modes [5].
These modes are gapless, whose poles are at ω ¼ k ¼ 0,
which reflects the fact that energy momentum is conserved.
During the last decade, topologically nontrivial quantum

states have been discovered in condensed matter physics
[6,7]. Later, it has been found that many classical systems
have nontrivial topological states too, including topological
optical/sound systems (see, e.g., [8–10] and references
therein), which have also been observed experimentally.

It raises the question if the gapless modes in relativistic
hydrodynamics could also become topologically nontrivial
under certain conditions. In this paper, we start from the
relativistic hydrodynamics and show that after weakly
breaking conservation of energy momentum, hydrody-
namic modes could become topological semimetal-like
nontrivial states that require the protection of a special
spacetime symmetry, and interestingly, these nonconserva-
tion terms for the energy momentum tensor could come
from a noninertial reference frame of an accelerating
observer moving along a helix.

II. EFFECTIVE HAMILTONIAN AND SPECTRUM
IN RELATIVISTIC HYDRODYNAMICS

We focus on the simplest hydrodynamic systems with no
internal charges, whose only conserved quantity is the
energy momentum tensor that satisfies ∂μTμν ¼ 0. Up to
the first order derivative, the constitutive equation for the
energy momentum tensor in the Landau frame is

Tμν ¼ ϵuμuν þ PΔμν − ηΔμαΔνβ

�
∂αuβ þ ∂βuα

−
2

3
ηαβ∂σuσ

�
− ζΔμν∂αuα þOð∂2Þ;
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where Δμν ¼ ημν þ uμuν, ϵ, P are the energy densities, and
pressure and η, ζ are the shear and bulk viscosities.
With small perturbations away from the equilibrium, the

system would respond to the perturbations and develop
hydrodynamic modes. There are four eigenmodes of the
system. Two of them are the sound modes propagating in
the direction of k ¼ ðkx; ky; kzÞ with the dispersion relation
ω ¼ �vsk − iΓsk2, where vs ¼

ffiffiffiffiffi
∂P
∂ϵ

q
and Γs ¼ ð4

3
ηþ ζÞ=

ðϵþ PÞ. The other two are transverse modes with
ω ¼ −i η

ϵþP k
2. To the first order in k, dissipative terms

disappear, and the spectrums of the four modes are real,
which cross each other at ω ¼ k ¼ 0. This spectrum looks
similar to the spectrum of Dirac semimetals, except that we
have two extra flat bands here.
To change the spectrum to a topological semimetal-like

one, we need to add nonconservation terms of Tμν into the
conservation equations. As a first step, we develop the
notion of an effective Hamiltonian in hydrodynamics.
Substituting the constitutive equations for the perturbations
δTμν into ∂μδTμν ¼ 0, we could rewrite the equations into
the form,

i∂tΨ ¼ HΨ; ð1Þ

where we have defined

Ψ ¼

0
BBB@

δϵ

δπx

δπy

δπz

1
CCCA; H ¼

0
BBB@

0 kx ky kz

kxv2s 0 0 0

kyv2s 0 0 0

kzv2s 0 0 0

1
CCCA; ð2Þ

at leading order in k, i.e., omitting dissipative terms
at Oðk2Þ.
In this way, in analogy to the electronic systems [11] we

have defined an effective Hamiltonian matrix H, whose
eigenvalues give the spectrum of hydrodynamic modes
[12]. The four eigenvalues of the matrix Hamiltonian above

give the sound modes ω ¼ �vs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
and double

copies of transverse modes ω ¼ 0. The form (2) is the
“free” Hamiltonian matrix for a conserved energy momen-
tum tensor.

III. TOPOLOGICALLY NONTRIVIAL MODES

To deform the spectrum of the hydrodynamic modes, we
introduce nonconservation terms for the energy momentum

tensor and make sure that the nonconservation terms are
small enough to stay within the hydrodynamic limit. The
nonconservation of energy and momentum could come
from a certain external system, which couples to the
hydrodynamic system under study. At this stage, we
assume that the constitutive equations for Tμν do not get
modified, and later, we will take the modifications into
account and show that the spectrum does not change up to a
rescaling of parameters.
We take a 4D hydrodynamic system and introduce

nonconservation terms for Tμν as follows:

∂μδTμt ¼ mδTtx; ∂μδTμx ¼ −mv2sδTtt;

∂μδTμy ¼ bvsδTtz; ∂μδTμz ¼ −bvsδTty; ð3Þ

where m terms gap the spectrum, while b terms change the
momentum position of the crossing nodes in the spectrum,
and we assume Oðk2Þ < Oðm; bÞ≲OðkÞ.
Physically, (3) states that energy (momentum in the x

direction) is not conserved, whose nonconservation is
proportional to the momentum in the x direction (energy).
Later, we will show that these seemingly ad hoc non-
conservation terms naturally arise from the observation of
an accelerating observer moving in a helix, which could be
tested in experiments, in principle.
After substituting the fluctuations of constitutive equa-

tion into (3), we obtain

i∂tΨ ¼ HΨ; ð4Þ

where Ψ ¼ ðδϵ; δπx; δπy; δπzÞT and

H ¼

0
BBB@

0 kx þ im ky kz

ðkx − imÞv2s 0 0 0

kyv2s 0 0 ibvs

kzv2s 0 −ibvs 0

1
CCCA: ð5Þ

H is similar to a Hermitian matrix as could be seen by
redefining δϵ → 1

vs
δϵ. Thus, this effective H has real

eigenvalues, and the factor vs could be ignored, which
could be taken back by an inverse transformation when
necessary.
The spectrum of the hydrodynamic modes for (5),

ω ¼ � 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ k2 þm2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2x þm2 − b2Þ2 þ ðk2y þ k2zÞ2 þ 2ðk2y þ k2zÞðk2x þm2 þ b2Þ

qr
;

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
.
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Figure 1 shows this spectrum as a function of kx for
ky ¼ kz ¼ 0 in three different situations: m < b, m ¼ b
and m > b as well as for ky > 0; kz ¼ 0 at m < b. The
effect of m terms is to gap the two sound modes. The effect
of b terms is to lift and lower the two transverse flat bands
to symmetric positions of opposite sides of the k axis. In
this way, the modes have band crossings at nonzero values
of k for m < b.
From Fig. 1, we could see that for m < b, there are four

band crossing nodes at ky ¼ kz ¼ 0 while kx ≠ 0, and for
these nodes, ω ≠ 0. These four nodes are still points in the
expanded space of ω, kx, ky, and kz as can be seen from
the fourth plot in Fig. 1. For m ¼ b > 0, the system
becomes critical with two nodes, and form > b, the system
becomes gapped again. This behavior is qualitatively
similar to the topological phase transition of a topological
semimetal [13].
The m terms in (5) do not gap the four band crossing

nodes in them < b case; however, if we have extram terms
in the y or z directions, the gaps will open no matter how
small the y or z mass parameters are. The spectrum in this
case looks the same as the bottom right one in Fig. 1. In this
situation, there are no crossing nodes anymore. This means
that the nodes should be topologically nontrivial under the
protection of symmetries that forbid the m terms in the
y and z directions. We will see later that the symmetry
needed here is a special combination of translational and
boost symmetry in y and z directions. In this sense, the
system (3) experiences a symmetry protected topological
phase transition that happens at the critical point m ¼ b.
Note that for the hydrodynamical modes,ωðk ¼ 0Þ is not

zero anymore due to the nonconservation of energy; i.e.,
energy is constantly pumped into or out of the system.
These crossing nodes at m < b are dissipative when order

k2 terms are taken into account. This is different from the
ω ¼ k ¼ 0 nodes which are real poles in hydrodynamics
with unbroken translational symmetries.
The new m and b terms above are not dissipative so they

only change the shape of the spectrum while do not
introduce any imaginary parts in the dispersion relation.
In contrast, momentum dissipation terms in, e.g., [14–16]
are dissipative terms.

IV. ORIGIN FOR NONCONSERVATION
TERMS OF Tμν

The simplest way to have the nonconservation terms of
Tμν in (3) is to introduce an external rank two symmetric
tensor field. A natural possibility is for this external field to
be a gravitational field hμν [17]. Then, the whole metric
field is gμν ¼ ημν þ hμν, and the energy momentum tensor
is conserved as ∇μTμν ¼ 0 in the new spacetime so that
∂μTμν ¼ 0 does not hold anymore. Expanding this equation
in hμν, we get

∂μδTμν ¼ −
1

2
∂αhδTαν −

1

2
ηνβð2∂μhαβ − ∂βhμαÞδTμα: ð6Þ

Again, we have assumed thatOðhμνÞ ∼OðkÞ and only kept
leading order in k terms [18]. To get the exact m and b
terms in the effective Hamiltonian (5), there are infinite
many choices for hμν, and the simplest choice is for hμν to
be [19]

htt ¼ hxx ¼ mx; htx ¼ hxt ¼
1

2
mtðv2s þ 1Þ;

hty ¼ hyt ¼ −
1

2
bvsz; htz ¼ hzt ¼

1

2
bvsy: ð7Þ

This graviton field hμν (7) could come from sources of
massive matter, and more interestingly, it could also come
from a reference frame transformation from the flat
Minkowski metric generated by x̃μ ¼ xμ þ ξμ with [20],

ξμ ¼
�
mxt
2

;
mx2

4
þmt2

4
v2s ;−

b
4
vszt;

b
4
vsyt

�
: ð8Þ

This is an intriguing result as usually a nontrivial gravi-
tational field could not be transformed to a flat spacetime
globally but only locally. It could be checked that this new
metric field has all the components of the Riemann tensor
vanishing at leading order, thus could be transformed to the
flat spacetime. Though equivalent to a flat spacetime, hμν
could still be viewed as a nontrivial gravitational field
according to the equivalence principle. This hμν denotes a
noninertial reference frame. This result suggests that in a
specific noninertial frame, we could observe hydrodynamic
modes that are topologically protected even when they are

FIG. 1. The spectrum of the modified hydrodynamics with
dynamical equation (3). From left up to right down: the first three
plots are for m < b, m ¼ b, and m > b, respectively, and
ky ¼ kz ¼ 0. The fourth plot is for ky > 0; kz ¼ 0, and m < b.
The distance between two flat bands is determined by the value
of b, while the gap between two curved bands is determined by
the parameter m.
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topologically trivial in the original inertial frame. This
could be tested in laboratories, in principle.
Note that with a nonzero hμν, the constitutive equations

for Tμν could also be written into a covariant form thus
leading to extra terms compared to the original constitutive
equations. However, it can be explicitly checked that these
extra terms do not change the spectrum (3) at all or do not
change the spectrum up to a rescaling of parameters m, b,
and vs depending on whether the fluid is resting in the
original inertial frame or is accelerating together with the
accelerating observer; i.e., the new spectrum could be
obtained by substituting the rescaling relation above to
the spectrum (3), and this does not mean that the real speed
of sound changes. More details could be found in the
Supplemental Material [21].

V. THE EXACT NONINERTIAL
REFERENCE FRAME

We could work out the exact reference frame from the
infinitesimal transformation (8). A rest observer in the new
frame x̃μ has dx̃i ¼ 0 for i ¼ 1, 2, 3. From this, we could

obtain dt̃ ¼ dt, dx ¼ − mv2s tdt
2

, dy ¼ bvszdt
4

, and dz ¼ − bvsydt
4

at order OðmÞ. From the last two equations above, we have
y ¼ R0 cos

bvs
4
t and z ¼ −R0 sin

bvs
4
t with appropriate

choice for t ¼ 0 and a constant radius R0. These together
confirm that the rest observer of the new noninertial frame
is in fact an accelerating observer in the original inertial

frame who has a constant acceleration a ¼ − mv2s
2

in the

x direction and a constant angular velocity ωx ¼ bvs
4
in the

y and z plane. Asm and b are small parameters, the observer
is moving in the nonrelativistic limit, which is consistent
with dt̃ ¼ dt. Note that the fluid is still a relativistic one
though moving collectively nonrelativisitically.
Thus, the topological modes are those observed by an

accelerating observer moving together with the fluid along
a helix in the nonrelativistic limit as shown in Fig. 2, which
makes it, in principle, a realizable setting for experimental
tests of this system. Physically, the nonconservation terms
for Tμν could be thought of as coming from the fictitious
force, including the Coriolis force, the centrifugal force as
well as the inertial force associated with the x direction
constant acceleration. The nontrivial topological nodes

could also be viewed as coming from these fictitious
effects. Now we have shown that the seemingly ad hoc
nonconservation terms of Tμν could in fact be generated
from a very natural noninertial reference frame.
Now we could work out the symmetry of the system (3)

as the isometry of the metric gμν ¼ ημν þ hμν, i.e., coor-
dinate transformations that leave gμν unchanged. The
symmetry could be viewed as the Lie transformation of
the Poincare symmetry generated by the vector (8). Among
the ten generators of this new isometry [22], two of them
are responsible for forbidding m terms in the y and z
directions and protecting the nontrivial topological states,
which are generated by xμ → xμ þ ϵμ, where ϵμ ¼ ayχy þ
azχz with χy ¼ ð− bzvs

4
; 0; 1;− btvs

4
Þ, χz ¼ ðbyvs

4
; 0; byvs

4
; 1Þ

and ay, az two infinitesimal constants. χy (or χz) is a special
combination of the y (or z) direction translational symmetry
and the boost symmetry of the t-y (or t-z) direction. Though
this symmetry looks complicated, physically it only
requires the covariant conservation of momentum in the
y and z directions in the noninertial frame; i.e., there are no
extra external forces in the y and z directions.
Finally, we mention another possible circumstance to

have this nonzero hμν, which could arise in analog gravity
systems; i.e., certain materials could give rise to effective
hydrodynamic equations as if there exists a nontrivial
gravitational field.

VI. TOPOLOGICAL INVARIANT

For systems protected by a certain symmetry, we could
calculate the topological invariant at a high symmetric point
in the momentum space, which is ky ¼ kz ¼ 0 in this case.
There is a charge conjugation symmetry for the solutions,
and we could focus on the lower two nodes in the left top
plot of Fig. 1. Here, as we are in zero effective residual
spatial dimension, the calculation of the topological invari-
ant is different from the Berry phase or Berry curvature for
a nodal line or Weyl semimetals. For the left node at kx ¼
k1 in the left top plot of Fig. 1, the green solution at the left
limit kx → k1− and the right limit kx → k1þ are denoted as
jn1i and jn2i separately. We could define a Berry phase

between the two states e−iα ¼ hn1jn2i
jhn1jn2ij to denote the topo-

logical invariant here. If the Berry phase is an undetermined
one; i.e., jn1i and jn2i are orthogonal to each other, the
system would be topologically nontrivial as the two states
cannot be connected without passing through a singularity,
which means the lower band and the upper band could not
be separated by small perturbations.
In (3), jn1i ¼ 1ffiffi

2
p ð0; 0;−i; 1Þ and jn2i ¼ 1ffiffiffiffiffiffiffi

1þ 1

v2s

p ×
�
−i

ffiffiffiffiffiffiffiffiffiffi
m2þk2x

p
vsðmþikxÞ; 1; 0; 0

�
. Therefore, hn1jn2i ¼ 0, which means

that the Berry phase is undetermined. From the argument
above, the two bands cannot be separated easily by a gap

FIG. 2. The helix trajectory of the accelerating observer and the
fluid in the laboratory frame. The observer/fluid has both a
constant acceleration and a constant angular velocity in the x
direction.
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without going through a topological phase transition.
Similar behavior of an undetermined Berry phase has also
happened for the holographic nodal line semimet-
als [23,24].
This result confirms that the four nodes in Fig. 1 are

topologically nontrivial protected by a special combination
of translational and boost symmetry in the y and z
directions. At the same time, the Berry phase accumulated
through the whole circle around this node would be trivial,
indicating that it is indeed topologically trivial without the
symmetry.

VII. TRANSPORT PROPERTIES

We can follow the calculations in [5,25] to compute the
heat transport for this system to uncover more observational
effects. We obtain

κxxðω; kxÞ ¼ −
iωðϵþ PÞ

Tððk2x þm2Þv2s þ i η
ϵþPωk

2
x − ω2Þ ;

κyyðω; kxÞ ¼ κzzðω; kxÞ ¼ −
k2xηþ iωðϵþ PÞ

Tðb2v2s þ ðiωþ η
ϵþP k

2
xÞ2Þ

;

κyzðω; kxÞ ¼ −κzyðω; kxÞ ¼
ðϵþ PÞbvs

Tðb2v2s þ ðiωþ η
ϵþP k

2
xÞ2Þ

:

With the formulas above, when m ¼ b ¼ 0, all diagonal
components of the dc heat transport diverge. For generic m
and b, we have vanishing dc heat transport κxxð0; 0Þ;
κyyð0; 0Þ and κzzð0; 0Þ while κyzð0; 0Þ ¼ −κzyð0; 0Þ ¼
ϵþP
Tbvs

. These m and b terms eliminate the unphysical
divergence of dc heat transports and lead to interesting
vanishing dc heat transport behavior. An intuitive and
physical reason for this system to be a dc thermal insulator
could be seen from the spectrum, where there is an energy
gap at k ¼ 0 in contrast to being gapless at k ¼ 0 for
standard hydrodynamics, as the consequence of energy
nonconservation. This is similar to the mechanism of
finite dc conductivity obtained for cases with momentum
dissipation.

VIII. Oðk2Þ EFFECTS
Oðk2Þ terms lead to dissipative effects and give rise to

imaginary parts of frequency in the spectrum. The Oðk2Þ
terms make the effective Hamiltonian matrix non-
Hermitian. Here, we still keep terms at m ∼ b order while
not m2 ∼ b2 order assuming that m ∼ k2.
From the eigenvalues of Hamiltonian with Oðk2Þ effects

included, we find that the real part has not changed while
imaginary parts appear. At the four nodes, the imaginary
parts are not zero indicating that the four nodes are
dissipative in comparison to nondissipative nodes at
ω ¼ 0 in the usual hydrodynamics. The imaginary part
for each of the band has a jump at the crossing nodes at

ky ¼ 0 in the kx axis; i.e., the imaginary parts of the same
band are different at the left and right limits of the singular
node. This behavior is similar to the behavior of the
eigenstates when calculating the Berry phase and thus
provides another piece of evidence of the existence of a
symmetry protected topological singular node.

IX. WARD IDENTITIES
AND HOLOGRAPHIC REALIZATION

The physics of hydrodynamics has been studied exten-
sively in holography for strongly coupled systems [26–28].
We aim to construct a holographic system possessing the
same nonconservation equation of (3), thus providing an
example of this system in the strongly coupled limit.
Holographically, we could also perform a coordinate

transformation to get a noninertial frame version of the
AdS=CFT correspondence, which has the metric gμν ¼
ημν þ hμν at the boundary. This system should have the
same spectrum of the hydrodynamic modes. As a first step
for a confirmation, we need to show that our holographic
system indeed has the nonconservation of (3). For this
purpose, we will first obtain the Ward identities for Tμν in
the nonconserved hydrodynamic system from (3) and
match these identities to those in the holographic non-
inertial frame system.
In the case that these nonconservation terms come from a

gravitational field, we could start from the covariant
conservation equation ∇μTμν ¼ 0 and differentiate it with
respect to gλρ to obtain the Ward identities in the momen-
tum space of the boundary system. To the first order in hμν,
the Ward identities are

kμGμν;λρðkÞ þ i½Γð1Þμ
μαGαν;λρðkÞ þ Γð1Þν

μαGμα;λρðkÞ�
þ contact terms ¼ 0; ð9Þ

where the explicit form of the contact terms is omitted.

With nonzero hμν, several components of Γð1Þν
μα would be

nonzero and contribute extra terms to the Ward identities of
kμGμν;λρðkÞ þ contact terms ¼ 0 in hydrodynamics sys-
tems with conserved Tμν [29].
The Ward identities (9) could be reproduced from the

holographic noninertial frame system, where we start from
the usual anti–de Sitter (AdS) Schwartzchild black hole and
perform coordinate transformations so that the boundary
metric becomes gμν ¼ ημν þ hμν.
We have checked that the holographic Ward identities

match exactly to the hydrodynamic Ward identities (9). The
details will be presented in [22], and the hydrodynamic
modes and Green functions will be systematically studied
in future work.
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X. OUTLOOK

One important application of the observation of topologi-
cally nontrivial hydrodynamics modes at finite frequency
would be to enlarge the amplitudes at the crossing frequencies
and momenta due to the doubling of modes, and this enlarge-
ment could be stable from perturbations under certain
conditions.
The fact that an accelerating observer moving along a

helix would see topological hydrodynamic modes of a
hydrodynamic system moving in the same helix could, in
principle, be checked in experiments, including probing the
spectrum of the modes and measuring the featured transport
properties of the system.
Finally, and most importantly, it is possible that systems

other than hydrodynamic systems, e.g., electronic/photonic
systems, would also become topologically nontrivial being
observed in a certain noninertial frame [30], which would
provide another way to obtain topologically nontrivial
materials by mechanically accelerating the detector in a

laboratory. This brings up a new interesting effect for
accelerating observers in addition to the well-known Unruh
effect [31].
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