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Abstract

A closed form for the parameterization of the error matrix that arises due to multiple
Coulomb scattering is described. The errors depend on only one angle, rather than the
two quasi-independent projected angles which are commonly used.

Introduction

Multiple Coulomb Scattering (MS) introduces small deviations into the track parameters
compared with those of an unscattered track (i.e a particle traversing the vacuum). The
effect is usually described by an angle, ®"° (1] and a corresponding lateral shift in the
position, € [2]. It is usually assumed that the error on the physical process of measurement
(the resolution) and the MS errors are independent. Also note that the MS process can be
decoupled from energy losses and thus, does not affect the momentum.

MS is a stochastic process, namely, the probability for a scattering event (denoted by the
state X (¢) in the phase space) to take place at time t, (site k;) depends only on the physical
condition in the immediate past at time t < t, (site k;_1). The stochastic nature of MS is
described as a convolution of local probability density functions satisfying the Chapman -
Kolmogorov identity,

wa(X, 1Y, 5) = [ wa(X, ¢, uwal§, ulY, )dk,

where wy(X,t|Y,s)dX is the probability that the event X < X () < X + dX occurs at time
t, given that X(s) = Y for ¢t > s. The subscript "2” emphasizes the fact that only the state
in the immediate past matters. Traversing a material of thickness L the particle undergoes
successive small-angle deflections symmetrically distributed about the incident direction.
Recall that the scattering process goes predominantly in the forward direction leading to
small deflection angles. Applying the central limit theorem of statistics to a large number of
independent scattering events the distribution of the deflection angle can be approximated
by a Gaussian distribution of the scattering angle. The mean squared MS angle is defined
as, ©f = nf?, where n is the number of collisions (n is proportional to the number of atoms
in the material) and §2 is the mean squared angle of a single scattering event defined as (3]:
—  [§%92dQ
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with -;% the differential (Rutherford) cross section for a single scattering. On the scale of
position measurements as they are carried out in high energy physics (HEP) detectors, the
accumulative scattering angle ©*5, estimated by the RMS of the distribution, v ©%, can
be viewed as a 'local’ parameter. Locality is extended here to a step length long enough to
consist of n (large enough) collisions for which the Gaussian approximation is still valid ; and
yet the particle hasn’t lost too much of its energy passing through the material. Alternatively
one can think of shrinking the material between successive planes of measurements to a ‘single
scatterer’ with the above statistical characteristics. We thus picture the particle traversing
the detector from one plane of measurement to the successive plane such that with each
plane is associated a scattering angle distributed symmetrically about the incident direction.
Following this concept of locality, it is most suitable to treat MS errors by convoluting their
probability density functions along the particles trajectory (in the spirit of the Chapman -
Kolmogorov identity).

This article deals with the estimation of the errors on track parameters due to MS, in the
milieu of track reconstruction for HEP detectors. The article is organized in two sections.
In the first section we describe the concept of the local tracking method [4] which is lately
used in some of the largest HEP experiments, such as DELPHI and ZEUS. In the second
section we describe a parameterization of the MS error and outline construction of the error

matrix.

1 The concept of local tracking

A track is locally defined (at a fixed plane of measurement), by five parameters; two coordi-
nates (i.e. two measurements at that fixed plane), two direction cosines (or angles), and the
radius of curvature (when there is a magnetic field), which is proportional to the momentum.
In Cartesian coordinates, one has a five dimensional vector, V = (2,2,¥,9, i) Note how-
ever, that the parameterization of the track and the errors of its parameters in one system
can always be transformed to another system appropriate to the detector geometry. It is
thus sufficient to evaluate the errors for one set of parameters, for example in the Cartesian
parameterization.

The track model, F(V), is a function of the track parameters, and describes the trajectory
of the particle in the detector. In the case of nonlinearities (the presence of a magnetic field),
the analytical function F(V) can be linearized at a given point in space do. The linearized
track model, f(V), is expressed as

dF (V)
ov;
Propagation of the track from a measured location a to the next measured location b can be
described by a matrix derived from the track model, <I>?J‘-’ = g%%;—'ﬁ. In the case of nonlinearities,

it may be approximated by the linearized track model, F(V).
In a similar fashion, errors that occur locally in location a are propagated to location
b using the same propagation matrix, <I>‘,-‘;«’ [5]. The propagation of errors is done using the

following relation:

f(V) = F(Vlao) + laa(Vla - V‘ﬂo)'

oh, = T OY (1)
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where ®% is the transpose of ®2?. The resulting matrix, T%, contains the error variance and
covariance, estimated at location a, as they are propagated to location b.

In order to estimate ('locally’) the MS effect on the track parameters, it is necessary to
evaluate the error variance and covariance in a given plane of measurement (location b) due
to the traversing of a scattering material with a given thickness, L, and radiation length
L, that is located between the b and a planes of measurement. The propagation of these
variance and covariance can be done using equation 1. For a complete estimation of the error
matrix, the MS error variance and covariance are added to the measurement error matrix
and the resulting matrix is propagated across the measurement planes.

This concept is best realized in the Kalman filter approach to track reconstruction in
HEP detectors [6]. In the Kalman filter framework, one estimates the track parameters and
their errors locally, adds to them the MS error matrix and then propagates both the track
parameters and the resulting error matrix to the next plane of the detector. The track
parameters are then updated by a fit procedure resulting in a new set of parameters for
that plane. In this way, one optimally follows the particle trajectory in the detector and the
errors associated with it.

2 Parameterization of the MS error

Next we derive a parameterization of the errors of the track parameters due to MS, in terms
of the scattering angle ®*/5, and outline the calculation of the error variance and covariance
of the track parameters.

Let us break the trajectory of the particle traversing the material in the detector into
a series of quasi straight lines, (each with an infinite radius of curvature), such that the
trajectory that associates the two locations @ and b can be described to first order by the
direction cosines at a, &;*, where 7 runs from 1 to 3.

The effect of MS is to scatter the track such that instead of reaching location b, the
particle is most probably found in a cone of a solid angle  (~ 7@ 5*) around the original
line, ab. Although the direction of the particle is described by two independent variables,
since the length of the cone is fixed and due to azimuthal symmetry we can further reduce the
problem to a one parameter problem - the cone opening angle. Our task is thus to propagate
the angular error due to the MS process to the direction cosines of the particle trajectory.

To first order, the errors of the direction cosines are §z;%, such that the scattered line is
now defined by the new (scattered) direction cosines:

:éial =3 + §2,° (2)

Let us point out again that although the variables ,#;%, §¢;* are 'local’ on the detector scale,
in fact they are the result of an n (large number) of collisions and should thus be considered
as average quantities exactly as @5 is viewed as an average over single scattering angles.
The intersection of the two lines in a plane defines an angle §, with a variance which is equal
to the projected scattering angle [3]:

® MS

7 (3)
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The cosine of the angle of intersection 6, is given by:

cos(8,) = 3% & =Y & (8 + 887 =1+ ST gt 6d” (4)

:

For 8, small enough, the cosine can be expressed as
92
cos(f,) =1 — 5’— (5)

Parameterizing the new direction cosines as a Taylor expansion of the original ones we have

50 = &0 — 80/ 1 — & (6)

where the parameters 86; are small angular deviations of the direction angles. Recall that
after n collisions these small deviations are averaged out such that in an isotropic material
it is legitimate to assume that the 50; are equal i.e. 88; = 60, = §0, = 66 (compare to the
Kinetic Theory of Gases) (7]. Despite the fact that in general, one needs 3 Euler angles to
rotate a vector in space (we may neglect the translation parameters) the statistical nature
of the process averages out these angles to a single parameter, which in turn, is proportional
to the cone opening angle. The treatment of the problem using two quasi-independent
variables [8] seems to us not necessary and leads to a wrong covariance. We would like to
point out again that indeed the direction of the particle is characterized by two independent
variables, say the polar angles, ¥ and ¢, which after MS will suffer from the corresponding
errors, §9,5¢. However, a formulation of the problem with the three direction angles (and
the symmetrical errors associated with them), while constraining the direction cosines to be
orthonormal, is effectively reducing the problem back to two independent degrees of freedom.
Taking the advantage of the statistical characteristics of the process we further reduce the
problem to a one parameter problem. We thus require the new direction cosines to satisfy
orthonormality:

e de = Sl a0 - 200801 - 8%+ 81— )] =1 7

Solving equation 7 for §6 we obtain:

56 = 3 801 — &% (8)

p

Substitution of equation 8 in equation 4 with 68 = —d80y1 — 4", and using the Taylor
expansion of equation 5 yields a parameterization of 60 in terms of the projected scattering
angle 6,:

(9)

Hence, we identify the errors on the direction cosines as a function of the projected MS

scattering angle:
8, / a2
511’\,'“ == ~*~—\/—2: 1-— Ty (10)
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Using this expression the error variance is:

082, 62
060 2
The angular direction errors 66; ;i are independent and therefore there are no correlations
between orthogonal planes. This feature manifests the stochastic nature of the MS process,
where after a large number of independent scattering events any such nontrivial correlations
are practically washed out. This conjecture is associated with the fact that the MS process
is effectively a rotation of the coordinate system. To manifest that the correlations between
the direction errors indeed vanish, we use the polar angle parameterization. Let us describe

the direction cosines after MS as:

56)F = (1 — 4,°) (11)

Ur'i::(

&' = sin(9 + §9) cos(p + i)
§' = sin(9 + §9) sin(p + bp)

3 = cos(¥ + 89)

We Taylor expand the above formulae to first order and obtain the expressions for the

direction errors:

5% = 59 cos(V¥) cos(p) — S sin(¥) sin(yp)
54 = 69 cos(¥) sin(p) + ¢ sin(d) cos(ep)

§3 = — 69 sin(d)

Calculating the correlations we have:

Toy = <‘_9.§_°i519§f£ 6% ¢ 683

589 (964,0&'0 + ET <Pm519)¢ = 696 sin(P)cos(¥)(cos*(¢) — sin’(0))y,

Averaging over the azimuthal angle, ¢, in the range [0,27| leads to:
Oz4 = 0 (12)

This feature can be demonstrated without any loss of generality when the direction vector
is fixed as (0,0,1) .i.e. 4,0 = 0. In this case the correlations between orthogonal directions
are of the third order in the angular error (69,8¢) and can thus be ignored:

88z . 06y

5 —==b6p = §9°8¢p etc.

869 " B6p " v
However, in an isotropic material the coordinate system can always be rotated such that any
trajectory can be described by these fixed polar angles.
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The errors of the parameters z; (the particle coordinates) are expressed as the distance
between the two measured points as it is projected onto this particular direction with a é2;

projection error:
8, .
Soi = 88 Dwap = =5 DoVl — 3’ (13)

with, Azgp, the distance between the two successive measurements

b — 28

Aﬂ'}ab = —\/_1_——:—&'__2_—::—7‘2‘

Using the above equations one can calculate the remaining error variance:

Obz; 62 .
Oz = (53"9“59)2 =5 1= 22) & ooy (14)
and the covariance of the position and the direction errors at a given direction:
O8z; ., 06%; 62
ALY PRALLY I RN § gk 1
Tu = g 0 ggg 0 =~ Lol E) (1)

In view of equation (12) the covariance of orthogonal planes vanishes.
Let us emphasize again that the full covariance matrix, V7, can be transformed to
another set of parameters rather than the Cartesian coordinates and the direction cosines.

Using the ”propagation error formula” (9]

z OfnOfm
Vam ~ — V(= 16
()~ 5 5 e Vil® (16)
one can express the errors on any other parameterization, f, of the particle trajectory.

The propagation of the "local’ error matrix, V7, 1s straight forward for the linear case.
A linear track model at a given plane z = 2x can be propagated to the following plane,
2 = 2k41, with the following transfer matrix:

Dz
1 T 0 0
A 0 1 0 0
@(Al,x,y) = O 0 1 Dz (17)
11—z __g2
0 0 0 1

where Az = zp41 — 2k is the distance between the k, k+1 planes. Assuming that the direction
cosines do not change drastically along the particle trajectory from 2y t0 2n, equation 1 is
applied N times along the path, L = N A z = z, — z1, such that
n ms g N
T = @V (18)
Note that due to the block diagonal form of the @ matrix the off diagonal terms are given
by:

" _ NAz B 2y —
H23d = T gt g RV e

z1

(19)
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Even when a magnetic field is present one can still use the above scheme for short enough
paths i.e. cords that approximate the arc, for which the average change in the direction
cosines is tolerable (small compared to the MS errors). One then propagates the error
matrices of a given cord at the break point to the next cord, using the direction cosines of
this cord etc.

To summarize, we have shown how the MS error may be parameterized using only one
variable, the scattering angle ©MS, which is evaluated in the theory of MS. Using this
parameterization, a full error matrix can be constructed locally and propagated across the
detector. Unlike the calculation found in [8], we find that there are no correlations between
orthogonal planes. This approach is a natural consequence of the stochastic character of the

MS process.
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