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1 Introduction

There is by now a rich interplay and convergence between the subjects of symplectic singulari-
ties and supersymmetric 3d gauge theories. Some examples of this include vortex counting and
quasimaps [1–6]; symplectic duality and 3d mirror symmetry [7]; 3d-3d correspondences [8–11]
and correspondences between boundary conditions and generalised cohomology [11–16]. In
this work, we are interested in extending this interplay and investigating geometric aspects of
the holographic relationship between 3d gauge theory and AdS4 gravity.

Physically, it is well-known that the Bekenstein-Hawking entropy of certain static BPS
magnetically charged black holes in M-theory on AdS4 × S7 can be accounted for by the
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large N asymptotics of the topologically twisted index of the holographically dual 3d N = 4
ADHM theory with one flavour and U(N) gauge group [17–21].1 As we will detail later, the
theory has flavour symmetry group T , whose maximal torus is generated by the charges
(F1, F2, FC). FC is the 3d topological symmetry (the Coulomb branch flavour symmetry)
under which monopole operators are charged. The index is a function of fluxes (n1, n2, nC)
along (F1, F2, FC), and fugacities (t1, t2, ζ) conjugate to (F1, F2, FC). One of the main goals
of our work is to provide a concrete geometric interpretation of the black hole microstate
counting from the perspective of enumerative geometry and integrability.

Geometrically, we study the Hilbert scheme of N points in the plane, denoted XN =
HilbN (C2). This variety arises as the moduli space of Higgs branch vacua of the aforementioned
gauge theory; described as a quiver in figure 3. Enumerative counts of quasimaps in XN [24]
are related to physical hemisphere partition functions [25] and the K-theory of the Hilbert
scheme realises an integrable system associated to the quantum toroidal algebra gl1 [26, 27].
The quantum K-theory ring QKT (XN ) naturally acts on this Hilbert space — physically as
line operators acting on states generated by boundary conditions — and the expectation
values of operators in this ring are controlled by the Bethe equations associated to this
integrable system. We then realise the known entropy functional

S = N
3
2

√
2
3

√
∆̃1∆̃2∆̃3∆̃4

4∑
i=1

ñi

∆̃i

,
4∑

i=1
∆̃i = 2π , (1.1)

as large N expectation values of operators in the quantum K-theory ring of the Hilbert
scheme of points. ∆̃i are a redundant parametrisation of the chemical potentials (log t1, log t2,
log ζ) refining the index, and ñi satisfying ∑4

i=1 ñi = −2 are a redundant parametrisation
of the fluxes (n1, n2, nC).

Along the way to recovering the entropy functional from the enumerative geometry of
the Hilbert scheme, we identify a dominant Higgs branch vacuum providing a geometric
dual to the gravitational/Cardy block [20, 21, 28]. We develop new numerical techniques
to give significant evidence for a novel conjecture that this vacuum corresponds to a fixed
point on the Hilbert scheme described by a particular triangular-shaped Young diagram. We
give a precise statement of this conjecture in section 5.

Summary. The main object of study is the (equivariant) quantum K-theory ring QKT (XN )
of the Hilbert scheme of N points in the plane XN = HilbN (C2). The physical construction
is a B-twisted 3d N = 4 gauge theory on S2 ×B S1 where the ring is realised as the ring
of BPS Wilson line operators wrapping S1. We write

QKT (XN ) = Z[s±1
1 , . . . , s±N

N , t±1
1 , t±1

2 ]/I , (1.2)

where the equivariant parameters {sa}N
a=1 and t1 and t2 are realised physically as gauge and

flavour fugacities (complexified Wilson lines) for the field theory, the latter corresponding to
1More precisely, the black holes are dual to BPS states in topologically twisted ABJM theory with k = 1

and at large N via the standard AdS/CFT duality in [22]. The k = 1 ABJM theory is in turn dual to the low
energy limit of ADHM theory with one flavour [22, 23].
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Figure 1. Partitions are specified by their parts λ = (λ1, λ2, . . .). The transpose partition is denoted
λ∨. Partitions can be written as Young diagrams in Z2 with boxes labelled by s = (i, j) ∈ λ, where
(i, j) run over the rows and columns respectively. The arm and leg lengths of s ∈ λ are defined as
aλ(s) = λi − j, lλ(s) = λ∨

j − i. The hook and the content of a box s are hλ(s) = aλ(s) + lλ(s) + 1,
cλ(s) = j − i.

the group of flavour symmetries T . The ideal I is generated by the Bethe equations which
correspond to the vacuum equations of the 3d N = 4 gauge theory

esa∂saW = 1. (1.3)

Here W is the effective twisted superpotential of the theory considered as a 2d theory after a
S1-compactification. The Bethe equations are a set of rational equations for {sa} dependent on
the equivariant parameters t1, t2. We write them explicitly in (2.23). As we shall explain, the
ring of operators QKT (XN ) acts naturally on the Hilbert space of localised K-theory denoted
HN := K loc.

T (XN ), which corresponds physically to the space of supersymmetric ground states
of the theory on a torus with complex structure τ , in the limit where q = e2πiτ → 1. The
supersymmetric ground states correspond to classical solutions to the Bethe equations (1.3),
meaning solutions in the limit ζ → 0. This Hilbert space2 has a linear basis of torus fixed
points, corresponding to massive vacua, which for XN correspond to partitions i.e. Young
diagrams |λ⟩ with N boxes (see figure 1 for our Young diagram conventions).

Via the gauge-Bethe correspondence [26, 27, 30–32], W may be alternatively viewed as
the Yang-Yang potential of the quantum integrable system associated to the Hilbert scheme
and the representation theory of quantum toroidal gl1. The space ⊕N HN may then be
viewed as a Fock module for this quantum group [29].

In this work we are interested in vacuum expectation values of quantum K-theory
operators acting on HN denoted

⟨O⟩QKT
. (1.4)

Physically, this quantity is computed by the B-twisted index I on S2 ×B S1 with a Wilson
line insertion [33]. To further elucidate the geometric interpretation of this quantity, we
introduce an angular momentum refinement graded by a parameter q on S2 ×B S1 and slice
open the path integral on T 2 along an equator of S2 with a complete set of states/boundary

2In fact [29], the Hilbert space may be identified with the space of Macdonald polynomials and the inner
product structure arises as the Macdonald inner product.

– 3 –



J
H
E
P
1
0
(
2
0
2
4
)
2
3
7

Figure 2. The factorisation setup. The path integral on S2 × S1 in the presence of a line operator is
sliced along a S1 × S1 boundary with a complete set of states |λ⟩⟨λ| inserted.

conditions |λ⟩ ∈ HN [7, 34]. The setup is illustrated in figure 2. The expectation value
may then be computed as

⟨O⟩ = lim
q→1

∑
λ

H
(O)
λ (q, ti)Hλ(q−1, ti)

=
∑

λ

⟨O|λ⟩⟨λ|0⟩.
(1.5)

In the first line Hλ are partition functions of the theory on the hemisphere geometry HS2.
Geometrically they compute the (virtual) Euler characteristic of the space of quasimaps to
XN , based at λ, i.e. the vertex functions of Okounkov [32], but normalised by appropriate
perturbative contributions [34]. In the second line ⟨O| denotes the state created on HN by
the path integral on the bulk HS2 in the presence of a line operator and ⟨O|λ⟩ is the overlap
with a boundary condition that is associated with massive vacua λ. The hemisphere partition
function H

(O)
λ may then be viewed as the transition matrix between the line operator and

fixed point bases of HN .
In the q → 1 limit the inner products can be interpreted as eigenvalues of quantum

K-theory ring operators acting on the localised K-theory Hilbert space. We will show that
the q → 1 asymptotics of the hemisphere partition functions are explicitly given by

⟨O|λ⟩ = lim
q→1

H
(O)
λ (q) = â1/2(T ∗R)

â1/2(µC)â1/2(∆gC)

∣∣∣∣∣
λ

Oλ√
det ∂2Wλ

e
1
ϵ
Wλ , (1.6)

where Wλ and Oλ respectively denote the values of the effective twisted superpotential of
the theory and the line operator on the Bethe root corresponding to the massive vacuum λ.
The normalisation is given by the â-genus of various weight spaces associated to the Higgs
branch geometry that we explain in detail in the main body. We also later give a Higgs
branch geometric interpretation to the superpotential W.

We now turn to the main physical object of study, which is the B-twisted index with
fluxes for flavour symmetries IB

S2(t1, t2, ζ; n1, n2, nC). That is, background fluxes for T are
turned on, with strengths (n1, n2, nC) ∈ Γ(T ) ∼= Z3 in the co-character lattice of T . In
the absence of the angular momentum refinement, it follows directly from the Coulomb
branch localisation formula that

IB
S2 = ⟨e(n1t1∂t1+n1t1∂t2−nCζ∂ζ)W⟩ =

∑
λ

â(T ∗R)
â(µC)â(∆gC)

∣∣∣∣∣
λ

e(n1t1∂t1+n1t1∂t2−nCζ∂ζ)W

det ∂2Wλ
, (1.7)
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where the latter is a sum over evaluations of gauge fugacities at the Bethe roots λ.
The above may equivalently be understood as the expectation value of an operator in

QKT (XN ), i.e. of a Wilson line operator. This is explained as follows. Since the theory is
topologically twisted, the flux can be concentrated at a pole of the S2 (and wrapping the
S1), and is thus equivalent to an insertion of a ’t Hooft line operator, as opposed to the
Wilson line operators considered above. By introducing the angular momentum refinement
corresponding to q = e−ϵ, we take the ’t Hooft line operator to act on one of the hemisphere
partition functions, along the S1 at the pole of the HS2:

IB
S2(t1, t2, ζ; n1, n2, nC) = lim

q→1

∑
λ

(
p̂nC

C p̂n1
1 p̂n2

2 · Hλ(q, t1, t2, ζ)
)

Hλ(q−1, t1, t2, ζ) , (1.8)

where (p̂1, p̂2, p̂C) are ’t Hooft line operators for T with unit flux. In the hemisphere partition
function, ’t Hooft line operator insertions along the S1 at the tip of the HS2 lead to a
shift of parameters:

p̂1 · Hλ(q, t1, t2, ζ) = Hλ(q, t1q, t2, ζ) , p̂2 · Hλ(q, t1, t2, ζ) = Hλ(q, t1, t2q, ζ) ,

p̂C · Hλ(q, t1, t2, ζ) = Hλ(q, t1, t2, ζq−1) .
(1.9)

In this case we see that the leading q → 1 asymptotics of a vertex/hemisphere partition
function with such an insertion is proportional to

lim
q→1

p̂1,2 · Hλ ∼ eW/ϵ+t1,2∂t1,2W , lim
q→1

p̂C · Hλ ∼ eW/ϵ−ζ∂ζW . (1.10)

This computes the spectrum of the operators (p̂1, p̂2, p̂C). In the q → 1 limit, they are
equivalent to multiplication by the conjugate momenta

p1,2 ≡ et1,2∂t1,2W , pC ≡ e−ζ∂ζW (1.11)

We further argue that the action of p̂i on a vertex function is equivalent to the insertion
of a Wilson line operator Li:

lim
q→1

p̂1,2 · Hλ = lim
q→1

H
(L1,2)
λ , lim

q→1
p̂C · Hλ = lim

q→1
H

(L)
λ (1.12)

For p̂C this is immediate as these are simply Wilson lines for the gauge symmetry. For the
other (Higgs branch) flavour symmetries, this follows from certain difference equations (in
flavour fugacities) that these partition functions obey [35–37], which are a generic feature
of 3d theories with at least N = 2 supersymmetry. In the q → 1 limit, this implies that
(p̂1, p̂2, p̂C) are equivalent, up to an element of the Bethe ideal I, to a Wilson line operator
and thus an element of the twisted chiral ring. The above statements are non-trivial for the
Higgs branch flavour symmetries as generically p1,2 = et1,2∂t1,2W may include denominators
in the gauge fugacities.

We may now interpret the twisted index with flux in light of the comments surrounding
equations (1.4) and (1.5):

IB
S2(t1, t2, ζ; n1, n2, nC) = lim

q→1

∑
λ

H
(Ln1

1 Ln2
2 LnC )

λ (q, t1, t2, ζ)Hλ(q−1, t1, t2, ζ)

=
∑

λ

⟨Ln1
1 Ln2

2 LnC |λ⟩⟨λ|0⟩

= ⟨Ln1
1 Ln2

2 LnC ⟩QKT (XN )

(1.13)
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In summary, the twisted index with flux computes the expectation value of certain elements
of the quantum equivariant K-theory of XN .

We then turn to holography. We are interested in static magnetically charged BPS
black holes in M-theory on AdS4 × S7. By the usual holography arguments, the entropy of
such black holes should be captured by the twisted index with fluxes in the large N limit
lim

N→∞
IB

S2 . Using the above, introducing such fluxes corresponds to the shifts p̂n1
1 p̂n2

2 p̂nC
C and

therefore to line operator insertions — we thus make a correspondence between black hole
entropy and the geometric quantity:

lim
N→∞

⟨Ln1
1 Ln2

2 LnC ⟩QKT (XN ). (1.14)

To reproduce the black hole entropy, we consider the large N limit of this expression
for XN = HilbN (C2). We find it more convenient to use the equality of this geometric
quantity to the sum over Bethe roots (1.7), and work in a continuum limit where the gauge
fugacities {sa} are characterised by an eigenvalue density ρ. The twisted superpotential
becomes a functional W[ρ], and the Bethe equations are the extremisation equations of W
with respect to ρ. There is a solution for ρ, that we call the black hole solution, such that
when substituted into the summand of (1.7) one obtains

lim
N→∞

lim
q→1

⟨Ln1
1 Ln2

2 LnC ⟩QKT
= expN

3
2

√
2
3

√
∆̃1∆̃2∆̃3∆̃4

4∑
i=1

ñi

∆̃i

. (1.15)

As mentioned in (1.1), this is the known asymptotic formula of the twisted index [17–19, 38]
and the black hole entropy function, but now interpreted in terms of expectation values in
QKT of the Hilbert scheme of a large number of points N in the complex plane C2.

The black hole solution ρ may be interpreted as identifying a dominant Bethe root
in the large N limit. In section 5 we develop new numerical techniques to identify this
black hole solution at large but finite N and evolve it to a classical vacuum on the Hilbert
scheme. This turns out to correspond to a particular triangular Young diagram, as shown
in figure 4. This method allows us to make the conjecture that the hemisphere partition
function/quasimap count with the triangular Young diagram boundary condition is the
dual in the enumerative geometry of the Hilbert scheme to the Cardy block/gravitational
block [20, 21, 28]. This is a precise identification of a holographic geometric dual quantity
to a supersymmetric black hole entropy function.

Discussion. We have built a bridge between holography calculations in the physics literature
and the enumerative geometry of the Hilbert scheme of points in the complex plane. We
believe that the work raises a number of interesting additional questions. Firstly, it would be
interesting to investigate other 3d N = 4 theories that flow to holographic theories in the IR,
for example the necklace quiver of [19]—we expect the arguments of this paper to extend
straightforwardly. In addition, there is a relation between the quantum K-theory ring and
classical integrable systems [39] whereby the spectrum of the ring realises the phase space of
a classical integrable system. In this context, our computations correspond to expectation
values of conjugate momenta. It would be interesting to investigate the classical integrable
system associated to HilbN (C2) and elucidate its phase space geometry when N is large. In

– 6 –
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particular, one might expect relationships between the equivariant volume functional on the
gravity side and the generating function of the corresponding classical phase space. Finally,
it would be interesting to investigate other closed 3-manifold indices from this enumerative
perspective, such as the S3 partition function or partition functions on Seifert manifolds [40].
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2 The Hilbert scheme

We begin with a discussion and definition of the Higgs branch geometry of the Hilbert scheme
of N points in the plane. We then discuss the enumerative geometry and its relationship
to 3d N = 4 twisted indices.

2.1 Geometry of the Hilbert scheme

We briefly review the Higgs branch geometry of the Hilbert scheme of N points in the plane,
HilbN (C2). We refer the reader to [41] for a more comprehensive treatment. The Hilbert
scheme parametrises codimension N ideals in C[x, y]

XN = HilbN (C2) = {J ⊂ C[x, y] : dimC[x, y]/J = N}. (2.1)

The variety admits a torus action T = C×
t1 × C×

t2 induced by the coordinate action on C2

(x, y) → (t1x, t2y), (2.2)

this action has fixed points labelled by Young diagrams λ with N boxes. The fixed ideals are

Jλ = {xλaya : a = 1, 2, . . . , l(λ)}. (2.3)

We write l(λ) for the length of a partition λ and |λ| = N . In fact, the Hilbert scheme is
a symplectic variety and the symplectic form is scaled with weight −1 under the diagonal
group action t3 ≡ (t1t2)−1. To see this more explicitly we note that the stability condition
for the moment map associated to the quiver in figure 3 may be expressed as

µ−1
C (0)stable = {(A, B, I, J) : J = 0, I cyclic for A, B}. (2.4)

We may then define a polynomial ideal invariant under G by

JA,B,I = {p[x, y] ∈ C[x, y] : p(x, y)I = 0} . (2.5)

Nakajima proves in Theorem 1.14 of [41] that this map is indeed one-to-one. The upshot
is that the Hilbert scheme may be viewed as a symplectic quotient

XN = µ−1
C (0)stable/GC . (2.6)

– 7 –
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1N

Figure 3. The N = 4 ADHM quiver.

G RH RC
RH−RC

2 FH F1 F2

I □ 1 0 1
2 0 1

2
1
2

J □ 1 0 1
2 0 1

2
1
2

A adj 1 0 1
2 1 1 0

B adj 1 0 1
2 −1 0 1

C adj 0 2 −1 0 −1 −1

Table 1. Charges of scalar components of N = 2 chiral multiplets in ADHM with one flavour.

Gauge theory Higgs branch. HilbN (C2) may be interpreted as the Higgs branch of
a certain 3d N = 4 gauge theory and therefore as a symplectic singularity. The quiver
description encodes the field content of a gauge theory with gauge group G = U(N): the
3d ADHM theory with one flavour. It has a vector multiplet, a hypermultiplet (I, J) in the
fundamental representation, and a hypermultiplet (A, B) in the adjoint representation. In
the language of 3d N = 2 supersymmetry, A, B, I, J are chiral multiplets, while the N = 4
vector multiplet consists of an adjoint chiral multiplet C and an N = 2 vector multiplet.
The theory has R-symmetries RH and RC acting on the hypermultiplet and vector multiplet
scalars respectively, while there are additional flavour symmetries FH and FC acting on
the adjoint hypermultiplet and monopole operators respectively. The charges of the scalar
components of each N = 2 chiral multiplet are collected in table 1. We shall mostly use
F1 = (FH + RH − RC)/2 and F2 = (RH − RC − FH)/2 as the basis for Higgs branch flavour
symmetries (from the point of view of a 3d N = 2 theory) since it corresponds to the
torus action (2.2). The fugacities corresponding to F1 and F2 will be denoted as t1 and t2
respectively, while that corresponding to FC is ζ. The fugacities t and z corresponding to
RH−RC

2 and FH that were used in [25] can be written as t = t1t2, z = (t1/t2)1/2.

K-theory ring. The equivariant K-theory ring is generated by tautological bundles V and
the topologically trivial bundle W of rank N and rank 1 respectively. Kirwan surjectivity [42]
enables us to realise the K-theory ring as the polynomial quotient ring

KT (XN ) = Z[{s±1
a }i=1,...,N , t±1

1 , t±1
2 , t±1

3 ]SN /I . (2.7)

Here, SN is the symmetric group and we consider polynomials invariant under the SN action
on the variables {sa}. We have included the redundant generator t3 = (t1t2)−1. The ideal
I is generated by the relations(

sa − t
1
2
1 t

1
2
2

) N∏
b=1
b ̸=a

(sb − t−1
1 sa)(sb − t−1

2 sa)(sb − t−1
3 sa) = 0, a = 1, . . . , N. (2.8)

– 8 –
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The solutions to these equations are given by

sa = t
ia− 1

2
1 t

ja− 1
2

2 , (2.9)

where a = 1, . . . , N run over the boxes of a Young tableaux λ, and correspond to an evaluation
at the fixed point on XN corresponding to λ. The number of solutions is then given by the
partition function p(N). Here, ia and ja denote the row and column indices of the box a ∈ λ,
numbered from the top left in the ‘English’ convention. Our conventions for partitions and
Young diagrams follow those of [25]. We denote by Vλ the evaluation of a vector bundle V at
a fixed point λ. The image of the tautological class under the Kirwan map is

V = s1 + . . . + sN , (2.10)

and the determinant line bundle is given by

L := detV = s1s2 . . . sN . (2.11)

The tangent bundle of MH is given by the cohomology of the complex

0 → gC → T ∗R → g∗C → 0, (2.12)

where gC corresponds to the gauge group quotient and g∗C the complex moment map condition.
Thus in terms of K-theory classes:

T ∗XN = T ∗R − ch gC − t ch g∗C. (2.13)

The hypermultiplet weight space may be read off from the above quiver description and
expressed as

T ∗R = t1/2
N∑

a=1
sa + t1/2

N∑
a=1

s−1
a + z−1t1/2

N∑
a,b=1

sa

sb
+ zt1/2

N∑
a,b=1

sa

sb
. (2.14)

The character of gC for HilbN (C2) may be expressed as

ch gC =
N∑

a,b=1

sa

sb
. (2.15)

Therefore we find that the character of the tangent bundle is given by

TXN = (t1t2)1/2
N∑

a=1
sa + (t1t2)1/2

N∑
a=1

s−1
a − (1− t1)(1− t2)

N∑
a,b=1

sa

sb
. (2.16)

The tangent bundle may be pushed forward to fixed points by evaluating on solutions to the
classical Bethe equations (2.9) corresponding to a fixed point partition λ giving [41]

TλXN =
∑
s∈λ

z−lλ(s)−aλ(s)−1t−
1
2 lλ(s)+ 1

2 aλ(s)− 1
2 + zlλ(s)+aλ(s)+1t

1
2 lλ(s)− 1

2 aλ(s)− 1
2 , (2.17)

where aλ(s) and lλ(s) denote the arm and leg lengths respectively of a box s ∈ λ. Our
partition conventions are summarised in figure 1.
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Fixed point Hilbert space. We consider a vector space spanned by the fixed points
of HilbN (C2):

HN = spR|λ⟩ . (2.18)

This may be realised geometrically as the localisation of the K-theory ring: KT (XN )loc. :=
KT (XN ) ⊗ R, where R denotes the representation ring or equivalently the equivariant
K-theory of a point

R = KT (pt.) = Z[t±1
1 , t±1

2 , t±1
3 ]. (2.19)

Later, we will realise the equivariant localised K-theory physically in the setup of the
hemisphere partition function. There is an action of the K-theory ring on HN defined
diagonally by

V|λ⟩ = Vλ|λ⟩, (2.20)

where Vλ denotes the evaluation of V at the fixed point λ solving equations (2.9). In the
following we will upgrade this to an action of quantum K-theory on HN .

2.2 Quantum K-theory

In this subsection we discuss the relationship between the quantum K-theory ring, rings of
line operators in 3d N = 4 gauge theories and integrability.

Integrability. The main algebraic object we consider is the quantum toroidal algebra gl1,
denoted E . The representation theory of this algebra was studied in [26, 43, 44]. We are
interested in Fock modules of this algebra F(u). The geometric R-matrix construction [29, 45,
46] allows us to identify the Fock module F(u) with the fixed point Hilbert space discussed
above. Namely

F(u) =
∞⊕

N=1
HN . (2.21)

The algebra E is a Hopf algebra [26] with a universal R-matrix from which we may define
a transfer matrix in the Fock space by

T (u) = TrF(u)R. (2.22)

This transfer matrix is diagonalised by the Bethe equations [43]

(−ζ)−1 t
− 1

2
1 t

− 1
2

2
sa − t

1
2
1 t

1
2
2

sa − t
− 1

2
1 t

− 1
2

2

3∏
I=1

N∏
b=1
b ̸=a

sb − t−1
I sa

sb − tIsa
= 1, a = 1, . . . , N. (2.23)

We note that by clearing denominators in this equation and then setting ζ → 0 gives the
classical relations (2.8), which are solved by the classical solutions (2.9).
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The quantum K-theory ring. The K-theory ring may be deformed by the Bethe equations
as follows

QKT (XN ) = Z[{s±1
a }a=1,...,N , t±1

1 , t±1
2 , t±1

3 ]/Iζ , (2.24)

where now the ideal Iζ is generated by the Bethe equations (2.23). This ring is that of
Wilson line operators in the 3d gauge theory — the ring structure can be found by computing
correlators in the twisted index on S2 × S1 or hemisphere partition function HS2 × S1 [33].
The ring structure is deformed by ζ via contributions of higher degree quasimaps on this
geometry, analogously to the 2d case [47].

Defining the complexified gauge holonomies ua via sa = eiua , the Bethe equations (2.23)
may also be expressed as the vacuum conditions

∂uaW = 0 mod 2πZ ⇔ e
sa

∂
∂sa

W = 1, for a = 1, . . . , N (2.25)

W is effective twisted superpotential for the effective abelian theory in the IR for the ADHM
theory, and is a function of the complexified gauge sa and flavour holonomies ti. It is thus
also the Yang-Yang potential of the above integrable system [30, 31]. Explicitly,

W =−
N∑

a=1
log sa log(−1)N−1ζ −

N∑
a ̸=b

Li′2
(

sa

sb

)
−

N∑
a,b=1

Li′2
(

sa

sb
t−1
3

)

+
N∑

a=1

[
Li′2

(
sa t

1
2
1 t

1
2
2

)
+ Li′2

(
s−1

a t
1
2
1 t

1
2
2

)]
+

N∑
a,b=1

[
Li′2

(
sa

sb
t1

)
+ Li′2

(
sa

sb
t2

)]
,

(2.26)

where we have introduced the notation for the modified dilogarithm:

Li′2(x) := Li2(x) +
1
4 log2(−x). (2.27)

These vacuum equations capture the ring relations of the chiral ring by the fact that the
chiral ring is protected under renormalisation.

Geometrically, we may write the superpotential as:

W = − logL log ζ −
∑

w∈µC

Li′2(w)−
∑

w∈∆gC

Li′2(w) +
∑

w∈T ∗R

Li′2(w), (2.28)

where ∆gC denotes the set of roots of gC: ch∆gC = ∏
a ̸=b sab, µC is shorthand for the weights

under which the complex moment map transforms: ch µC = ch tg∗C = ∏N
a,b=1 tsab and L

denotes the determinant line bundle3 (2.11) on HilbN (C2).
That the above yields the Bethe equations (2.23) can be readily checked by using the

fact that

s
d

ds
Li2(s) = − log(1− s), (2.29)

3For more general theories, this term in the superpotential would include a sum over the Picard group of
the Higgs branch.

– 11 –



J
H
E
P
1
0
(
2
0
2
4
)
2
3
7

so that for symplectic pairs of T -weights (w, tw−1), with w = sna
a . . . we have

esa∂sa(Li′2(w)+Li′2(tw−1)) =
(

â(w)
â(tw−1)

)na

=
(

t−
1
2 w

1− tw−1

1− w

)na

. (2.30)

Our conventions for â genera can be found in appendix A.
We denote a quantum K-theory class associated to a tautological bundle V as V̂ . The quan-

tum K-theory ring acts naturally on the localised K-theory ring KT (XN )loc. := KT (XN )⊗R
which as a vector space is HN = spR|λ⟩. It acts diagonally as:

V̂|λ⟩ = Vλ|λ⟩, (2.31)

where now Vλ denotes evaluation of V at the quantum Bethe root associated to λ. Later
in this article, we physically realise this action in the gauge theory.

Supersymmetric indices. We consider the 3d N = 4 ADHM quiver theory, topologically
twisted by RC (i.e. B-twisted), on a hemisphere geometry HS2 × S1. The path integral
produces the space of states HN on the torus T 2 boundary. We are interested in computing
the graded index

IHS2 = TrHS2

[
(−1)F qJ tF1

1 tF2
2 ζFC

]
. (2.32)

The grading by angular momentum is implemented by a twisted periodicity on the matter
fields parameterised by q = e−ϵ, see e.g. [15]. Alternatively, it can be implemented by a
deformation of the metric, so that HS2 fibres non-trivially as one completes a cycle on S1 [48].
In this latter picture, the boundary torus corresponds to Eτ = C∗/qZ, where q = e2πiτ and τ

is the complex structure of the torus. The flavour grading is implemented by introducing
complexified holonomies as described above.

In this setup, one may also insert an element of the ring of Wilson lines O, corresponding
to an element of QKT (X), at the tip of HS2, wrapping the remaining S1 cycle. In the
q → 1 limit, inserting an operator O at the pole and computing the index yields the quantity
⟨0|Ô|0⟩ = ⟨0|O⟩ in the Hilbert space HN described above.

Boundary conditions. We must also specify a boundary condition on the torus boundary
of HS2 × S1. In this work, we consider exceptional Dirichlet boundary conditions Bλ which
are labelled by vacua — in our case partitions λ with |λ| = N [25], we will recap their
definition in the following.

Boundary conditions on the boundary torus may be considered states |λ⟩q living in
the elliptic cohomology of XN [12]. We will momentarily take the q → 1 limit of elliptic
cohomology where we recover the localised K-theory ring KT (XN )loc. and may consider the
exceptional Dirichlet boundary conditions as giving the localised fixed point basis, up to a
normalisation we specify. We now recall from [25] the definition of this boundary condition
for HilbN (C2). We fix a chamber C = {|z| > 1} for the equivariant parameters. We then split
the weight space of all N = 4 hypermultiplets T ∗R according to this choice as

T ∗R = Q+
λ + Q̄0

λ + Q0
λ + Q−

λ . (2.33)
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In our case we find4

Q+
λ + Q̄0

λ = t1/2∑
a∈λ

sa + z−1t1/2 ∑
a,b∈I1

sa

sb
+ zt1/2 ∑

a,b∈I2

sa

sb

Q−
λ + Q0

λ = t1/2∑
a∈λ

s−1
a + zt1/2 ∑

a,b∈I1

sb

sa
+ z−1t1/2 ∑

a,b∈I2

sb

sa

(2.34)

and
Q0

λ = t1/2s−1
(1,1) +

∑
a,b|ia=ib+1
∩ ja=jb

zt1/2 sb

sa
+

∑
a,b|a∈λB

∩ ia=ib
∩ ja=jb+1

zt1/2 sb

sa
(2.35)

where I1 and I2 are subsets of pairs of boxes in young diagrams given by

I1 = {(a, b) ∈ λ × λ : (b ∈ λB) ∩ (ia > ib) or b /∈ λB},

I2 = {(a, b) ∈ λ × λ : (a ∈ λB) ∩ (ib ≤ ib)},
(2.36)

and λB denotes the set of boxes along the bottom-most edge of the Young tableau. We note
that the weight spaces Q+

λ , Q̄0
λ are paired with Q−

λ , Q0
λ respectively under ω → tω−1. Thus,

this defines a holomorphic Lagrangian splitting of the space T ∗R. Further, Q0
λ correspond

precisely to the N = 2 chiral multiplets which obtain non-zero expectation values in the
vacuum λ.

Note that the set of weights in Q0
λ define a tree in the Young tableau λ [25]. Solving

the set of equations w = 1 for w ∈ Q0
λ specifies uniquely:

sa = t
ia− 1

2
1 t

ja− 1
2

2 , (2.37)

which are solutions to the classical Bethe equations (2.9), and also the fixed point evaluation
of the fugacities; they are the values that the gauge fugacities must take in order for scalar
components of chirals in Q0

λ to take their non-zero values in the vacuum λ. More precisely,
the first term in (2.35) sets s(1,1) = t

1
2 . Then, the remaining terms correspond to edges

linking boxes a and b in the tree, which determines the value of sa from the value of sb.
Physically to describe Bλ, the split specifies which chirals we give Dirichlet boundary

conditions and which we give Neumann. In particular, the chiral multiplets with weights in
Q+

λ + Q̄0
λ are given Neumann boundary conditions, and those in Q0

λ + Q−
λ are given Dirichlet

boundary conditions. The chirals in Q−
λ are set to zero at the boundary, whilst those in Q0

λ

are given a non-zero expectation value. These chirals correspond precisely to those which
obtain a non-zero expectation value in the vacuum λ on the Higgs branch. Turning on
these expectation values at the boundary breaks the boundary symmetry which descends
from the bulk U(N) gauge symmetry, setting the boundary values of the gauge fields in
accordance with (2.37), whilst preserving F1,2. Thus, these are what are referred to as
exceptional Dirichlet boundary conditions in [7].

More details on the physical construction may be found in the appendix of [25]. In
particular, these exceptional Dirichlet boundary conditions are chosen in order to have a
Higgs branch image which coincides with the holomorphic attracting Lagrangian submanifold

4These are the weight spaces relevant for the later hemisphere partition function evaluation.
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of a fixed point λ under Morse flow induced by the equivariant parameter z. They realise
an exact holomorphic factorisation [34] of closed 3-manifold partition functions, which we
return to momentarily.

With this choice of chamber and split the tangent bundle (2.16) also splits into positive
and negative directions after evaluation at a fixed point (2.37) according to

TλXN = T+
λ XN + T−

λ XN , (2.38)

where we have

T+
λ XN =

∑
s∈λ

zaλ(s)+lλ(s)+1t
1
2 (lλ(s)−aλ(s)+1),

T−
λ XN =

∑
s∈λ

z−aλ(s)−lλ(s)−1t
1
2 (aλ(s)+lλ(s)+1) .

(2.39)

Localisation. In the work [49] by two of the authors, it is described how to compute the
above physical quantities via localisation in terms of Higgs branch geometry, which we now
briefly review. The hemisphere partition function with a Wilson line operator insertion in
the presence of an exceptional Dirichlet boundary condition Bλ is given more explicitly by

H
(O)
λ =

∫
dqsO(x, s) e

φ(s,ζ)
log q â

(
1− t−1q

1− q
(Q+

λ + Q̄0
λ − tgC)

)
. (2.40)

The â genus is defined multiplicatively for collections of weights — our conventions can be
found in appendix A. In the above prescription the exponential pre-factor is given by

φ(s, ζ) = log ζ logL , (2.41)

where L is the determinant line bundle (2.11), given by L = s1s2 . . . sN in coordinates. The
measure dqs denotes a formal Jackson q-integral that instructs us to sum over q-shifts of
the Chern root evaluations (2.9). Namely∫

dqs f(sa) =
∑

k⃗∈ZN

f(tia−1/2
1 t

ja−1/2
2 qka) (2.42)

The inserted Wilson line O(x, s) is an element of the representation ring KT×U(N)(pt.) i.e. a
polynomial in gauge and flavour fugacities (and their inverses) symmetrised over the gauge
group. The weight spaces entering above are the same that enter the boundary condition
prescription in the previous subsection. Geometrically the partition function computes
the equivariant Euler character of the symmetrised virtual structure sheaf on the space of
quasimaps to the Higgs branch with a descendant insertion χT (QM,O⊗V) with a particular
physically motivated normalisation. More details on the relationship between the hemisphere
partition function and the enumerative geometry of Higgs branches are reviewed in [14, 49].

We now consider evaluating the hemisphere partition function. One may equivalently
express the integrand of (2.40) in terms of regularised q-Pochhammer symbols as follows.
The necessary zeta function regularisation5 is discussed in further detail in appendix A. We

5Our regularisation differs slightly to the usual zeta function regularisation for 3d N = 2 theories as in
e.g. [50] as it makes use of a phase ambiguity present only in the regularisation of 1-loop determinants of 3d
N = 4 multiplets.
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first substitute the split (2.34) into our formula (2.40), upon which we see that the integrand
before evaluation is given by

e
log ζ
log q

∑
a∈λ

log(sa)
∏

a,b∈λ (t1t2 sab; q)′∞∏
a,b∈λ(sab q; q)′∞

∏
a∈λ

(
t
− 1

2
1 t

− 1
2

2 saq; q
)′

∞(
t

1
2
1 t

1
2
2 sa; q

)′

∞∏
a,b∈λ s.t.

(b∈λB)∩(ia>ib)
or (b /∈λB)

(
t−1
1 sab q; q

)′
∞

(t2 sab; q)′∞

∏
a,b∈λ s.t.

(a∈λB)∩(ib≤ia)

(
t−1
2 sab q; q

)′
∞

(t1 sab; q)′∞

(2.43)

In the above, we have modified q-Pochhammer symbols defined as:

(a; q)′∞ = e−E[− log(−a)](a; q)∞ (2.44)

where
E [x] = ϵ

24 − x

4 + x2

4ϵ
(2.45)

and recall q = e−ϵ.
The Jackson q-integral instructs us to evaluate the integrand on q-shifted solutions to

the classical Bethe equations (2.9), sa 7→ t
ia− 1

2
1 t

ja− 1
2

2 qka where ka ∈ Z, and summing over
k ∈ ZN . It turns out that only k forming a reverse plane partition over λ gives non-zero
contributions. The result of the evaluation is

H
(O)
λ (q, t) = e

φ(t,ζ)
log q â

(
1− t−1q

1− q
N+

α

)
V

(O)
λ (q, t), (2.46)

where V(O)
λ (q, t) is the vertex function (see for example [29]) normalised such that

Vλ(q, t) = 1 + O(ζ) . (2.47)

The explicit expression in terms of a vortex sum over reverse plane partitions may be found
in e.g. [25] for the evaluated index however we will not make use of this form in the following.

Integral form. We now re-write the q-Jackson integral (2.40) as a contour integral amenable
to saddle point analysis. We note first the identity

(t; q)′∞
(q; q)′∞

(qw−1qn; q)′∞
(tw−1qn; q)′∞

∣∣∣∣∣
w=1

= (qt−1)
n
2
(t; q)n

(q; q)n
, (2.48)

where the first fraction on the left-hand side comes from the abelian (diagonal) part of the
vector multiplet contribution. The q-Jackson integrand (2.43) contains a product of such
terms, one for each w ∈ Q0

λ. We note also the identity

Res
w=q−n

1
2πis

(q; q)′′∞
(qt−1; q)′∞

(qt−1w; q)′∞
(w; q)′∞

= ∓(qt−1)
n
2
(t; q)n

(q; q)n
, (2.49)
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if w = s±1(. . .). Thus we can replace each term of the form (2.48) from Q0
λ, with the above,

and trade the q-Jackson integral for a contour integral. In the above the double prime
notation indicates the regularisation (q; q)′′ = e−E[− log(−1)](q; q).

The integral form of the hemisphere partition function is

Hλ =
∫
Γ

N∏
a=1

dsa

2πisa
e

log ζ
log q

∑
a∈λ

log(sa)Φ, (2.50)

where the integrand is

Φ =
[ (q; q)′′∞
(qt−1; q)′∞

]N ∏
a ̸=b

(tsa/sb; q)′∞
(qsa/sb; q)′∞

∏
w∈Q+

λ
+Q0

λ

(qt−1w; q)′∞
(w; q)′∞

(2.51)

and the contour Γ encloses the poles sa = t
ia− 1

2
1 t

ja− 1
2

2 qka , a = 1, . . . , N .

Classical limit. We now consider the classical limit6 ϵ → 0 with q = e−ϵ of the integral
form of the hemisphere partition function. The main asymptotic result we require is that
the regularised â-genus of a non-zero weight satisfies to leading order

lim
ϵ→0

â

(
1− t−1q

1− q
w

)
= â(w)1/2â(tw−1)1/2e

1
ϵ

(
Li′2(w)+Li′2(tw−1)+π2

6

)
+...

(2.52)

where . . . indicates O(ϵ) terms. We will often drop the ellipses when taking limits in the
following. Thus if we take a polarisation T ∗W = W + tW ∗, where R is some collection of
weights, the weights pair and we have

lim
ϵ→0

∏
w∈W

â
1
2

(
1− t−1q

1− q
w

)
=

∏
w∈T ∗W

â(w)e
1
ϵ

(
Li2(w)+ 1

4 log2(−w)+π2
6

)
+...

(2.53)

Using this, we have the asymptotics of the parts of the integrand Φ:

∏
w∈Q+

λ
+Q0

λ

(qt−1w; q)′∞
(w; q)′∞

→ e
π2
6ϵ

(N2+N) ∏
w∈T ∗R

â(w)
1
2 e

1
ϵ
Li′2(w),

∏
a ̸=b

(tsa/sb; q)′∞
(qsa/sb; q)′∞

→ e−
π2
6ϵ

(N−N2) e−
1
ϵ
(Li′2(sa/sb)+Li′2(tsa/sb))

[â(tsa/sb)â(sa/sb)]
1
2

(2.54)

and [ (q; q)′′∞
(qt−1; q)′∞

]N

→
(2π

ϵ

)N
2

e
Nπ2

3ϵ e
Nπi

2 e
Nπ2

4ϵ â(t)−
N
2 e−

1
ϵ

N Li′2(t) (2.55)

We thus see that the leading q → 1 asymptotics of the integral (2.50) is given by

lim
ϵ→0

Hλ ∼
∫
Γ

N∏
a=1

dsa

2πisa

(
−2π

ϵ

)N
2 â(T ∗R)1/2

â(µC)1/2â(∆g)1/2 e
1
ϵ
W (2.56)

6In the sense of semi-classical quantisation of the variety obtained from the spectrum of the quantum
K-theory ring.
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where the superpotential is as in (2.28).

W =
∑

w∈T∗R

Li′2(w)−
∑

w∈∆gC+µC

Li′2(w). (2.57)

We have dropped a factor of e
Nπ2

4ϵ , coming from (2.55), since it is a constant and glues
to 1 under ϵ → −ϵ.

We conjecture, following also [51], that the ϵ → 0 asymptotics of Hλ are dominated
by the saddle point approximation for a saddle point (which we also label by λ), which
solves the Bethe equations (2.23) and reduces to the classical solutions sa = t

ia−1/2
1 t

ja−1/2
2

corresponding to a Young Tableaux, as ζ → 0. The saddle point formula thus gives

⟨0|Ô|λ⟩ = lim
ϵ→0

H
(O)
λ = â1/2(T ∗R)

â1/2(µC)â1/2(∆gC)

∣∣∣∣∣
λ

Oλ√
det(−∂2Wλ)

e
1
ϵ
Wλ , (2.58)

where (∂2W)ab denotes the Hessian matrix of W with elements ∂ua∂ub
W and |λ denotes

evaluation of the Chern roots on the quantum Bethe root.

Factorisation. We may thus compute expectation values of quantum K-theory classes by
inserting a complete set of states

⟨0|Ô|0⟩ =
∑

λ

⟨0|Ô|λ⟩⟨λ|0⟩ (2.59)

We then use the asymptotics result above and the fact that reversing the orientation cor-
responds to ϵ → −ϵ to find

⟨0|O|0⟩ =
∑

λ

Oλ
â(T ∗R)

â(µC)â(∆gC)

∣∣∣∣∣
λ

1
det(−∂2Wλ)

, (2.60)

where we evaluate on solutions to the quantum Bethe equations. In the following we will
interpret this physically as factorising the twisted index and the above formula corresponds
to the localisation formula in (7.26) of [40] for the twisted index.

3 The twisted index

In this section, we discuss the twisted index on S2×B S1 and its factorisation into hemisphere
partition functions in the presence of a line operator insertion.

The twisted index. We now consider the topologically twisted index on geometry S2×B S1,
without angular momentum refinement (q). The twist is carried out with respect to the RC

R-symmetry. Following [52], the index is defined as

IB
S2(t1, t2, ζ; n1, n2, nC) = TrHB

S2

[
(−1)F tF1

1 tF2
2 ζFC

]
, (3.1)

where HB
S2 denotes states on S2 in the presence of a topological twist and additional flavour

fluxes (n1, n2, nC), which are annihilated by a pair of supercharges Q11̇
+ , Q22̇

− . The Dirac
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quantisation conditions for the fluxes impose n1,2, nC ∈ Z, n1 + n2 ∈ 2Z. The index may be
localised to give an integral expression, which takes the form of a Jeffreys-Kirwan integral:

IB
S2 =

(−1)N

N !
∑

m∈ZN

∫
JK

N∏
a=1

dsa

2πisa
(−ζ)

∑N

a=1 ma

( N∏
a=1

sa

)nC N∏
a,b=1
a ̸=b

(
s

1
2
ab

1−sab

)ma−mb−1

N∏
a,b=1

(
s

1
2
abt

1
2
1

1−sabt1

)ma−mb+n1+1(
s

1
2
abt

1
2
2

1−sabt2

)ma−mb+n2+1(
s

1
2
abt

1
2
3

1−sabt3

)ma−mb−n1−n2−1

N∏
a=1

(
s

1
2
a t

− 1
4

3

1−sat
− 1

2
3

)ma+ 1
2 (n1+n2)+1(

s
− 1

2
a t

− 1
4

3

1−s−1
a t

− 1
2

3

)−ma+ 1
2 (n1+n2)+1

,

(3.2)

where sab := sa/sb and t3 = (t1t2)−1 as before. Turning on the flavour fluxes n1,2 is equivalent
to topologically twisting by the R-symmetry RC − n1F1 − n2F2.

In the previous work [25] of two of the authors, it is shown that the B-twisted index
with angular momentum refinement factorises exactly into hemisphere partition functions.7
The twisted index without the angular momentum deformation is then recovered in the limit:

IB
S2(ti, ζ; ni, nC) = lim

q→1

∑
λ

Hλ

(
tiq

ni
2 , ζq

nC
2 ; q

)
Hλ

(
tiq

− ni
2 , ζq−

nC
2 ; q−1

)
. (3.3)

Geometric interpretation. The twisted index may be re-expressed in terms of Higgs
branch geometry as follows. We first recall the twisted superpotential is given in terms
of tangent weights as

W = − log ζ logL+
∑

w∈T ∗R

Li′2(w)−
∑

w∈µC

Li′2(w)−
∑

w∈∆gC

Li′2(w) , (3.4)

with L = s1 . . . sN . Each weight w in this expression is a monomial in t1, t2, t3 and sa. The
operator we are then interested in is

(
N∑

a=1
masa∂sa + n1t1∂t1 + n2t2∂t2 − nCζ∂ζ

)
· W . (3.5)

7More precisely, this factorisation was demonstrated with a zeta function regularisation of â producing
modified q-Pochhammers (a; q)′∞ := e−E[− log(a)](a; q)∞. In this work we have used the regularisation (a; q)′∞ :=
e−E[− log(−a)](a; q)∞. In the new regularisation, for each term

(qt−1w; q)′∞
(w; q)′∞

appearing in the q-Jackson integral, we obtain an extra factor of e
πi
2ϵ

log(qt−1). The contribution from the
new regularisation of the vector multiplet contributions is the reciprocal of this. Thus, overall, the new
regularisation produces an extra factor of e

Nπi
2ϵ

log(qt−1). With flux for t, we have t → tqnt/2. Under the
twisted index gluing, gluing the new Hλ will just produce a factor of (−1)N e

Nntπi
2 relative to gluing the index

from [25]. One may redefine the twisted index to absorb this constant factor.
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The twisted index may be expressed as

IB
S2 = 1

N !
∑

m∈ZN

∮ N∏
a=1

dsa

2πisa

â(T ∗R)
â(µC)â(∆gC)

× exp
((

N∑
a=1

masa∂sa + n1t1∂t1 + n2t2∂t2 − nCζ∂ζ

)
· W

)
. (3.6)

With a specific choice of covector in the JK prescription, the fluxes which contribute are
bounded as mi < M − 1 where M is some large integer, see [52] for further details. We can
then perform the geometric sum over ZN to give

IB
S2 = 1

N !

∮ N∏
a=1

dsa

2πisa

1
1− esa∂saW

â(T ∗R)
â(µC)â(∆gC)

exp ((n1t1∂t1 + n2t2∂t2 − nCζ∂ζ) · W) .

(3.7)
The residue evaluation of this integral then involves contributions from the Bethe equa-
tions (2.23). Evaluating this by the residue theorem we find

IB
S2(n1, n2, nC) =

∑
λ

â(T ∗R)
â(µC)â(∆gC)

∣∣∣∣∣
λ

1
det(−∂2Wλ)

Oλ(n1, n2, nC), (3.8)

where Oλ(n1, n2, nC) denotes the flux-adding operator corresponding to the flux insertion,
evaluated on the Bethe root. This localisation formula is in agreement with the index
formula (2.60) derived by factorisation above.

3.1 Flux & line operators

We now discuss the relationship between background flux in the twisted index and line
operator or QKT (X) class insertions in more detail. In the previous section we showed
that the Coulomb branch localisation formula may be interpreted geometrically in terms
of the Higgs branch geometry as

IB
S2(n1, n2, nC) =

∑
λ

â(T ∗R)
â(µC)â(∆gC)

∣∣∣∣∣
λ

1
det(−∂2Wλ)

Oλ(n1, n2, nC) (3.9)

with
O(n1, n2, nC) = exp ((n1t1∂t1 + n2t2∂t2 − nCζ∂ζ) · W) (3.10)

This operator is a flux-adding operator for the flavour symmetries of the theory. It may
be considered as a ’t Hooft line operator, since in the twist the flux may be localised to a
point on S2, and wrapping the S1 [40]. We will refer to these operators as ’t Hooft line
operators from hereon out.

Let us first consider the case of topological flux only so that nC is turned on and n1,2 = 0.
In that case we have

O(nC) = exp (−nCζ∂ζW) = (s1s2 . . . sN )nC , (3.11)
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hence inserting O(nC) is equivalent to a descendant insertion of nC powers of the determinant
line bundle L. Hence, according to the discussion in section 2.2, the B-twisted index with nC

units of flux computes the vacuum expectation value of LnC in the quantum K-theory ring:

IB
S2(nC) = ⟨L⊗nC ⟩ (3.12)

In section 2.2 we discussed how the twisted index/expectation value may also be sliced
open and factorised according to

⟨L⊗nC ⟩ =
∑

λ

⟨L⊗nC |λ⟩⟨λ|0⟩ = lim
q→1

∑
λ

H
(L⊗nC )
λ (q, t)Hλ(q−1, t) (3.13)

where H
(L⊗nC )
λ (q, t) denotes a hemisphere partition function (2.40) with the Wilson line

L = s1s2 . . . sN inserted or, in the enumerative geometry language, a vertex function with
descendant insertion.

It is an immediate consequence of the localisation formula (2.40) that this line operator
insertion may be realised by a q-difference operator acting on the hemisphere partition
function. Namely

H
(LnC )
λ (q, t) = p̂nC

C · Hλ(q, t), (3.14)

where p̂C is a q-difference operator acting by p̂C : ζ → qζ. The expression then follows
from the fact:

p̂C · eφ(s,ζ)/ log q = (s1s2 . . . sN )eφ(s,ζ)/ log q. (3.15)

We now consider the q → 1 limit of this action. Recall that

lim
q→1

Hλ(q, t) = â1/2(T ∗R)
â1/2(µC)â1/2(∆gC)

∣∣∣∣∣
λ

1√
det(−∂2Wλ)

e
1
ϵ
Wλ , (3.16)

and thus

lim
q→1

p̂nC
C · Hλ(q, t) = â1/2(T ∗R)

â1/2(µC)â1/2(∆gC)

∣∣∣∣∣
λ

1√
det(−∂2Wλ)

eWλ/ϵ−nCζ∂ζWλ . (3.17)

In the classical limit the q-difference operator then acts on the hemisphere partition function
as multiplication pC = e−ζ∂ζW so that

lim
q→1

p̂C · Hλ(q, t) = lim
q→1

e−ζ∂ζWλHλ(q, t), (3.18)

or in the language of overlaps in K-theory:

pC : ⟨λ|0⟩ → e−ζ∂ζWλ⟨λ|0⟩ = ⟨λ|L⟩. (3.19)

Above, we discussed the identification of the q-difference operator conjugate to the
topological fugacity with a Wilson line operator insertion. For the other (Higgs branch)
global symmetries, corresponding to fugacities t1, t2, it turns out that this is also true. The
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identification follows from certain difference equations (in flavour fugacities) that these
partition functions are expected to obey [37, 53] on physical grounds.

In the q → 1 limit, these imply that insertions of p1,2 = et1,2∂t1,2W in the unrefined twisted
index or hemisphere partition function/vertex function are equivalent to insertions of Wilson
lines, due to the identifications imposed by the vacuum/Bethe equations. That is, the ’t Hooft
line operators (p1, p2, pC) are all equivalent, up to an element of the Bethe ideal I (which
implies they are the same when evaluated on a solution to the Bethe equations), to Wilson line
operators, and thus to elements of QKT (XN ), the twisted chiral ring. Thus, their correlation
functions and expectation values are the same on the twisted backgrounds we consider in this
work. The statements are non-trivial for the Higgs branch flavour symmetries as generically
p1,2 = et1,2∂t1,2W may include denominators in the gauge fugacities. In appendix B, we show
this explicitly for the ADHM theory with N = 2 and supersymmetric QED with two flavours.8

N.B. Strictly speaking, the results of [37, 53] imply that the ’t Hooft flux operators are
equivalent to a linear combination of Wilson line insertions in the gauge fugacity with
coefficients possibly rational in the equivariant and FI parameters. These are elements of
the quantum K-theory of XN localised at constant values of the parameters t1, t2, ζ. This
is C[{sa}±]/Iζ , as opposed to (2.24). Physically, this makes sense as the values of these
parameters are fixed constant background parameters for flavour symmetries, so throughout
this paper we are more properly working in this ring. However, in an abuse of notation and
nomenclature, and to make contact with the mathematical literature clear, we will continue
to call the ring of physical Wilson lines QKT (X), and the operations on it (such as the inner
product), should all be considered to be in the localised quantum K-theory ring.

Therefore our above conclusions for the topological symmetry generalises to the action of
(p̂1, p̂2, p̂C) for every flavour symmetry on a hemisphere partition function/vertex function.
Namely the action of (p̂1, p̂2, p̂C) are equivalent to the insertion of corresponding Wilson
line operators (L1, L2, L). We have then in the q → 1 limit:

IB
S2(n1, n2, nC) =

∑
λ

(
e(n1t1∂t1+n2t2∂t2−nCζ∂ζ)·W

) â(T ∗R)
â(µC)â(∆gC)

∣∣∣∣∣
λ

1
det(−∂2Wλ)

= lim
q→1

∑
λ

(
p̂n1
1 p̂n2

2 p̂nC
C

) · Hλ(q, t)H(q−1, t)

= lim
q→1

∑
λ

H
(Ln1

1 Ln1
2 LnC )

λ (q, t)H(q−1, t)

=
∑

λ

⟨Ln1
1 Ln1

2 LnC |λ⟩⟨λ|0⟩

= ⟨Ln1
1 Ln2

2 LnC ⟩QKT

(3.20)

In the first line we use the geometric localisation formula (3.8). In the second line we
identify the flux insertions as the classical limit of the action of coordinate q-difference

8Demonstrating this explicitly for the ADHM quiver variety with N generic is more difficult, and will
require not only the exact form of the qKZ [35] equations obeyed by the vertex functions (which to the best of
our knowledge are not explicitly known) but also difference equations for the t-parameter (which to the best
of our knowledge are also not currently known).
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operators on the hemisphere partition functions/vertex functions, the operators may be
thought of as flux-adding operators as in [40, 54]. In the third line we identify the action
of difference operators with Wilson line insertions/descendent insertions in vertex functions.
We thus identify the twisted index with flux insertions as computing an expectation value
of corresponding operators in the classical limit.

Remarks. We conclude this section with some comments on the classical-quantum corre-
spondence. In the case of the cotangent bundle to the complete flag variety Koroteev et
al. [39] show that the spectrum of the quantum K-theory may be associated with the phase
space of a classical integrable system. In the complete flag case, this is the trigonometric RS
system. To the best of the authors’ knowledge, this classical integrable system for the Hilbert
scheme of points N has not yet been identified. In any case, it is expected that the functions{

t1, t2, p1,2 = et1,2∂t1,2W
}

(3.21)

form canonical coordinates on the classical phase space. When quantising this classical
integrable system, with quantisation parameter q = e−ϵ, the vertex functions Hλ(q, t) form
wavefunctions. The coordinates (ti, pi) are promoted to operators that act as q-difference (as
discussed above) as multiplication on the vertex functions/hemisphere partition functions.

4 Large N asymptotics

We now turn to AdS4 holography. In this section we bring together the results of the previous
sections to reframe celebrated results in the physics literature [17] in terms of the enumerative
geometry of the Hilbert scheme.

4.1 AdS4 black holes

In this work, we are interested in the supersymmetric static magnetically charged black holes in
M-theory on AdS4×S7 constructed in [55–59]. Preserving two supercharges, they are dual to
BPS states in topologically twisted ABJM theory with k = 1 and at large N via the standard
AdS/CFT duality in [22]. The k = 1 ABJM theory is in turn dual to the low energy limit of
ADHM theory with one flavour [22, 23], which has been the subject of the previous sections.

On the field theory side, the topologically twisted indices of ADHM with one flavour
are expected to reproduce the entropy of these black holes at large N , and this has been
verified in [17, 19]. In [18, 19], a specific solution to the Bethe equations at large N was
found to reproduce the black hole entropy, henceforth referred to as the black hole solution.
It is conjectured that the black hole solution dominates the index at large N , so that the
index is approximately given by the summand of (3.9) evaluated on the black hole solution.
The index, and the twisted superpotential evaluated on the black hole solution are then

Wλ = iN
3
2
2
√
2

3

√
∆̃1∆̃2∆̃3∆̃4 ,

log IB
S2 ≈ N

3
2

√
2
3

√
∆̃1∆̃2∆̃3∆̃4

4∑
i=1

ñi

∆̃i

= −i
4∑

i=1
ñi∂∆̃i

Wλ .

(4.1)
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Here ∆̃i and ñi are redundant parametrisations of the chemical potentials and fluxes, which
we will specify later. They satisfy the constraints ∑4

i=1 ñi = −2 and ∑4
i=1 ∆̃i = 2π. The

I-extremisation mechanism [17, 60] then ensures that the logarithm of the degeneracy of BPS
states is given by extremising log IB

S2 with respect to ∆̃i under the constraint ∑4
i=1 ∆̃i = 2π.

On the gravitational side, the black hole with magnetic charges pΛ, with Λ = 0, 1, 2, 3,
is a solution of a 4d N = 2 gauged supergravity containing the gravity multiplet and three
vector multiplets [55]. This supergravity theory is a consistent truncation of 11d supergravity
reduced on S7 [61]. It is completely specified by FI parameters and the prepotential

F = −2i
√

X0X1X2X3 , (4.2)

where XΛ are holomorphic sections of a line bundle on the scalar manifold. They also
serve as homogeneous coordinates on the scalar manifold. Supersymmetry of the black
hole solution requires that the magnetic charges satisfy ∑3

Λ=0 pΛ = −2. The attractor
mechanism [17, 55, 56], ensures that the remaining BPS equations for the near-horizon
geometry are equivalent to extremising

S = i
π

G
(4)
N

pΛFΛ(X) , FΛ ≡ ∂F
∂XΛ , (4.3)

with respect to XΛ, subject to the constraint ∑3
Λ=0 XΛ = 1, and the black hole entropy

is then given by the extremal value of S.
Tying the two sides of the correspondence together, the AdS/CFT dictionary instructs

us to identify [17, 22]

1
G

(4)
N

= 2
√
2

3 N
3
2 , p0,1,2,3 = n4,1,2,3 . (4.4)

The extremisation problems in (4.1) and (4.3) then become identical if we also identify
X0,1,2,3 = ∆4,1,2,3/2π, which is consistent with the constraints ∑3

Λ=0 XΛ = 1 and ∑4
i=1∆i =

2π. Hence the field theory computation exactly reproduces the Bekenstein-Hawking entropy
of this class of black holes.

We note that the prepotential in (4.2) is directly proportional to Wλ in (4.1) under the
identification X0,1,2,3 = ∆4,1,2,3/2π required by the entropy computation. In addition, the
logarithm of the S3 partition function is

FS3 = N
3
2
4π

3
√
2r1r2r3r4 , (4.5)

where r1,2,3,4 parametrise a general assignment of R-charges satisfying ∑4
i=1 ri = 2 [62]. Under

the identification ri = ∆i/π, Wλ is also proportional to FS3 , and the constraint ∑4
i=1∆i = 2π

coincides with ∑4
i=1 ri = 2. Furthermore, it is known that FS3(r) ∝ VolS7(r)− 1

2 , where
VolS7(r) is the volume of S7 under different Sasakian metrics parametrised by ri. The ri

determine how the Reeb vector of the cone over S7 is embedded within the U(1)4 ⊂ SO(8)
isometry of S7 [62]. In summary, we have

Wλ(∆) = − 2π2

G
(4)
N

F
(∆
2π

)
= iπ

2 FS3

(∆
π

)
= iπ4

4G
(4)
N

√
3VolS7

(
∆
π

) . (4.6)
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The twisted superpotential, which plays a central role in the quantum K-theory of the Hilbert
scheme HilbN (C2), has the same functional form as the supergravity prepotential and is
related to the Sasakian volume of S7 when evaluated on the black hole solution.

4.2 Large N Bethe equations

In the following, we review the solution of the Bethe equations in the large N limit, as derived
in [17–19, 63]. Firstly, the SN Weyl symmetry of the Bethe equations allows us to order the
gauge holonomies ua ≡ −i log sa ∈ (−π, π) such that Im ua monotonically increases with a.
The appropriate ansatz for ua in the large N limit is

ua = iN
1
2 ta + va , ta, va ∈ R , ta, va ∼ O(1) , (4.7)

where ta is a monotonically increasing sequence in a. We assume that in the large N limit,
ta and va become dense in an interval and one can approximate

ta = t

(
a

N

)
, va = v

(
a

N

)
, (4.8)

for continuous functions t and v. We can then parametrize the holonomies by values of t

instead of a, with the two variables being related by the density

ρ(t) ≡ 1
N

da

dt
. (4.9)

Note that ρ > 0 due to the monotonicity of t. The ansatz is then

u(t) = iN
1
2 t + v(t) . (4.10)

In the large N limit, summations tend to integrals ∑N
a=1 → N

∫
dt ρ(t) and since∑N

a=1 1 = N , the density is normalized as∫
dt ρ(t) = 1 . (4.11)

We define the chemical potentials ∆C and ∆1,2,3 as

ζ = ei∆C , ∆C ∈ (−π, π) , tI = ei∆I , ∆I ∈ (0, 2π) , I = 1, 2, 3 . (4.12)

Since ∏3
I=1 tI = 1, there is the constraint

3∑
I=1

∆I = 2π, 4π . (4.13)

Note that the ∆I cannot sum to 0 or 6π since that would imply tI = 1, which we exclude.
For brevity, we shall restrict to the case ∑3

I=1∆I = 2π, noting that all of the following
conclusions are true in the other case as well, with only minor modifications to the formulae.
We also assume that

Reua − Reub +∆I ∈ (0, 2π) ∀a, b , ±Reua + ∆1 +∆2
2 ∈ (0, 2π) ∀a . (4.14)
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As in [18, 19], one obtains that the large N limit of the twisted superpotential is

W
iN

3
2
= ∆C

∫
dt ρ(t) t +

3∑
I=1

g+(∆I)
∫

dt ρ2(t) + ∆3
2

∫
dt ρ(t)|t|+O(N) , (4.15)

where
g+(∆I) ≡

1
6∆

3
I −

π

2∆
2
I +

π2

3 ∆I . (4.16)

In this limit, the Bethe equations have turned into the extremization equation of W with
respect to ρ. Since ρ needs to satisfy the normalization constraint (4.11), one cannot directly
take the functional derivative of (4.15) with respect to ρ without first solving the constraint.
Instead, as is standard, we introduce a Lagrange multiplier µ and extremize

W
iN

3
2
= ∆C

∫
dt ρ(t) t +

3∑
I=1

g+(∆I)
∫

dt ρ2(t) + ∆3
2

∫
dt ρ(t)|t| − µ

(∫
dt ρ(t)− 1

)
(4.17)

with respect to ρ and µ. Note that adding the Lagrange multiplier does not change the
value of W on solutions to the Bethe equations. The derivative with respect to µ returns
the constraint, while the derivative with respect to ρ gives

∆C t + 2
3∑

I=1
g+(∆I)ρ(t) +

∆3
2 |t| − µ = 0 . (4.18)

This determines ρ to be

ρ(t) =
µ −∆C t − ∆3

2 |t|
2∑3

I=1 g+(∆I)
. (4.19)

Supposing that ρ(t) has finite support on [t−, t+], where t+ > 0 and t− < 0, ρ(t±) = 0
allows us to solve for

t± = ± µ
∆3
2 ±∆C

. (4.20)

In order to be consistent with t+ > 0 and t− < 0, the signs of µ and ∆3
2 ±∆C must agree.

This implies that

|∆C | <

∣∣∣∣∆3
2

∣∣∣∣ , sgn(µ) = +1 . (4.21)

The normalization condition (4.11) then determines µ to be

µ =
√

1
2∆1∆2(∆3 + 2∆C)(∆3 − 2∆C) . (4.22)

When evaluated on the solution determined by (4.19), (4.20), and (4.22), the value of the
twisted superpotential is

Wλ = 2iN
3
2

3

√
1
2∆1∆2(∆3 + 2∆C)(∆3 − 2∆C) . (4.23)
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Having found the dominant Bethe root at large N , we should take the large N limit
of (3.9) and evaluate it on this root to find the large N index. The result is

lim
N→∞

log
[

â(T ∗R)
â(µC)â(∆gC)

∣∣∣∣∣
λ

1
det(−∂2Wλ)

Oλ(n1, n2, nC)
]

= −nC

∫
dtρ(t) t +

[ 3∑
I=1

(nI + 1)g′+(∆I)−
π2

3

] ∫
dtρ2(t) + n3

2

∫
dtρ(t)|t|

= N
3
2

3

√
1
2∆1∆2(∆3 + 2∆C)(∆3 − 2∆C)

(
n1
∆1

+ n2
∆2

+ n3 − 2nC

∆3 + 2∆C
+ n3 + 2nC

∆3 − 2∆C

)
,

(4.24)
where we have introduced n3 = −2 − n1 − n2 for convenience. g′+ is the derivative of g+
in (4.16). In terms of the parameters suited to ABJM theory [19]

∆̃1 = ∆1 , ∆̃2 = ∆2 , ∆̃3 =
∆3
2 + ∆C , ∆̃4 =

∆3
2 −∆C ,

ñ1 = n1 , ñ2 = n2 , ñ3 =
n3
2 − nC , ñ4 =

n3
2 + nC ,

(4.25)

which satisfy ∑4
i=1 ∆̃i = 2π and ∑4

i=1 ñi = −2, (4.23) and (4.24) become (4.1), as claimed.

5 The black hole partition

Recall from (2.58), (2.59), and (3.8) that the twisted index can be obtained by gluing
hemisphere partition functions Hλ in the q → 1 or ϵ → 0 limit. Here, λ not only refers to
the boundary condition Bλ or classical solution (2.9) which correspond to a partition λ, but
it also refers to a solution to the full Bethe equations (2.23) which reduces to the classical
solution under ζ → 0 and dominates the asymptotics of Hλ under ϵ → 0. In the Cardy limit
approach to computing the large N index and thereby the entropy function, a particular
Bethe root, namely the black hole solution reviewed in section 4.2, was found to dominate
the large N and ϵ → 0 asymptotics of Hλ. The right-hand side of (2.58) evaluated on the
black hole solution was known as the Cardy block in [20, 21], and the entropy function was
then obtained by gluing two Cardy blocks, as in (2.59). In gravity, this approach is identical
to the proposal of gluing two gravitational blocks in [28].

However, up until this point, the field theory dual to the gravitational/Cardy blocks was
not precisely known because the boundary condition Bλ or classical solution corresponding
to the black hole solution was not known. In this section, we remedy this by evolving a
finite N analogue of the black hole solution towards ζ → 0, and matching the result with
a classical solution. The result is that the classical solution at the end of the evolution
corresponds to the partition

λ = (1m1 , 2m2 , . . .) , mi =


1 if 1 ≤ i ≤ h ∧ i ̸= N − h(h+1)

2 ,

2 if i = N − h(h+1)
2 ,

0 otherwise

h = max
{

n ∈ N
∣∣∣∣ n(n + 1)

2 ≤ N

}
.

(5.1)
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Figure 4. The triangular partitions of N = 10 (left) and N = 13 (right), as defined in (5.1).

If N is a triangular number, λ has parts {1, 2, . . . , h}, each with multiplicity one, and its
Young diagram has a perfect triangular shape. Otherwise, the multiplicity of one part
N − h(h+1)

2 is doubled, but the shape of the Young diagram is still roughly triangular. We
shall denote the partitions of equation (5.1) as the triangular partitions. For example, the
triangular partitions of N = 10 and 13 are illustrated in figure 4.

Our results therefore allow us to make the following conjectures, for which we give strong
numerical evidence in the remainder of this paper.

Conjecture 1 The black hole solution of the vacuum/Bethe ansatz equations for the ADHM
theory, which dominates the twisted index at large N and reproduces the energy functional
of static magnetically charged black holes in M-theory on AdS4 × S7, is homotopic as ζ → 0
to the classical solution (2.9) corresponding to the massive vacuum λ of the ADHM theory
labelled by the unqiue triangular-shaped Young tableau/partition above.

Combined with the twisted index factorisation (2.59) and the saddle point formula for the
hemisphere partition function/vertex function (2.58), we also have that

Conjecture 2 The geometric object holographically dual to the gravitational block, i.e. the
precise geometric definition of the Cardy block for this holographic system, is the hemisphere
partition function Hλ with an exceptional Dirichlet boundary condition Bλ (as described in
section 2.2) corresponding to the triangular partition above.

5.1 Finite N solutions

In order to provide evidence that the large N black hole solution corresponds to the triangular
partitions, the strategy we use is to first find the finite N analogue of the continuum
solution (4.19) numerically, and then evolve it to ζ = 0 via homotopy continuation.

We wish to numerically solve the finite N Bethe equations in the form

Wa − 2πina , na ∈ Z , ∀a = 1, . . . , N , (5.2)

where Wa are the logarithms of the left-hand side of (2.23). At large N , this is preferable to
solving expWa = 1 since we are looking for solutions with sa ∼ eN

1
2 for which the numerator

and denominator of (2.23) diverge quickly. A solution is found by taking the discretisation
of (4.19) as an initial seed and applying a quasi-Newton method to minimize the error

1
N

N∑
a=1

|Wa − 2πina|2 . (5.3)
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Figure 5. Plots of the density ρ(t), where the discrete points are extracted from the numerical
solutions at N = 2, 10, 25, while the continuous curve is the large N solution given in (4.19). We have
chosen ∆1 = π2

4 , ∆2 = e, ∆C = π
9 , which are in the allowed ranges (4.12), (4.21). One can observe

that the agreement between the numerical solution and the analytic prediction is improving with
increasing N .

Specifically, the definition of the density ρ (4.9) implies

N

∫ t

t−
dt′ρ(t′) = a(t) , (5.4)

which is a quadratic equation in t that can be solved analytically for t(a) when a = 1, . . . , N .
The initial guess u0 is then taken to be

(u0)a = iN
1
2 t(a) , (5.5)

and the integers na in (5.2) are fixed to

na =
⌊ImWa(u0)

2π

⌉
, (5.6)

where ⌊·⌉ denotes rounding to the nearest integer. This determination of na will be correct
if u0 is a close to the exact solution. For 2 ≤ N ≤ 75, we have verified convergence of the
quasi-Newton method, and the resulting solution has purely imaginary values of ua which are
purely imaginary — in agreement with the initial guess. If we then identify t(a) = ua/iN

1
2

and approximate the density (4.9) by computing da/dt via finite differences, the agreement
with the N → ∞ solution (4.19) improves as N gets larger9 (see figure 5). This is evidence
that these numerical solutions are the finite N analogues of the continuum solution (4.19).

5.2 Tracking solutions to the classical limit

We now evolve this finite N numerical solution to ζ → 0, in order to determine the correspond-
ing classical vacuum/partition λ to the black hole solution, and therefore the hemisphere

9For small N , one could be sceptical due to the relatively poor agreement, but the property Re ua = 0
is itself a distinguishing feature which separates the putative black hole solution from other solutions of the
Bethe equations, which generically have nonzero Re ua.
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partition function Hλ dual to the gravitational block. We shall see it is the triangular
partition described at the beginning of this section.

Using the parametrisation ζ = eα+i∆C , the limit is taken by varying α from 0 to −Λ,
where Λ is some large positive cutoff. In the following, we shall set Λ = 14, meaning that
at the endpoint one has |ζ| = e−14 ≈ 10−6, which is sufficiently small for our purposes.
The solution is tracked using the approach of homotopy continuation, implemented using
the predictor-corrector method of [64, 65], which we now outline. In each step i of the
algorithm, we start from a solution u = ui at α = αi, and seek the solution ui+1 = ui +∆u

at αi+1 = αi +∆αi, where ∆αi is a variable step size. As a solution, ui+1 satisfies

0 = Wa(ui+1, αi+1)− 2πina ≈ ∂Wa

∂ub

∣∣∣∣
u=ui,α=αi

∆ub +
∂Wa

∂α

∣∣∣∣
u=ui,α=αi

∆αi

= Jab ∆ub − (⃗1)a∆αi , J(ui, αi)ab ≡
∂Wa

∂ub

∣∣∣∣
u=ui,α=αi

, (⃗1)a = 1 ∀a = 1, . . . , N .

(5.7)
We find that det J ̸= 0 along the path from α = 0 to α = −14. We can therefore invert
J and approximate

∆ua ≈ J(ui, αi)−1
ab (⃗1)b ∆αi . (5.8)

This is the predictor step which provides a good estimate ui+1 ≈ ui+J−11⃗ ∆αi of the solution
at α = αi+1 if ∆αi is sufficiently small. In the subsequent corrector step, we start from
ui+1 ≈ ui + J−11⃗ ∆αi and perform Newton iterations

(ui+1)a = (ui+1)a − J(ui+1, αi+1)−1
ab (Wb(ui+1, αi+1)− 2πin′

b) ,

n′
a =

⌊
ImWa(ui + J−11⃗ ∆αi, αi+1)

2π

⌉
,

(5.9)

until either the error (5.3) is below some tolerance, typically chosen to be 10−32, or the
number of iterations exceeds a maximum number, typically chosen to be 5. Recall that Wa

contains a sum of logarithms. The change from na to n′
a is to treat the case where the branch

cuts of one or more of the logarithms are crossed when passing from ui to ui + J−11⃗ ∆αi. If
the maximum number of iterations is reached but the error is still greater than the tolerance,
the step size ∆αi is halved, after which the ith predictor and corrector steps that we have
just described are repeated. Otherwise, we have succeeded in finding the solution u = ui+1
at α = αi+1 to within the chosen tolerance, and can move on to the (i + 1)th step of the
algorithm. There is a danger that during the corrector step an intermediate solution ui at αi

might jump to a track that is not homotopically connected to the black hole solution. By
keeping the maximum number of iterations in the corrector small and the tolerance tight, we
can minimise the chances of this happening. In addition, if the corrector step is successful
for 3 consecutive steps without needing to half the step size, the step size is doubled. This
allows a larger step size to be used provided that the convergence of the corrector is not
compromised, and speeds up the tracking considerably.

To illustrate how the solution smoothly varies as ζ → 0, we plot in figure 6 the values
of ua on the solutions at intermediate values of α. Notice that the solutions smoothly
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Figure 6. Plots of ua in the complex plane on the solutions at various intermediate values of α while
running the predictor-corrector algorithm. The data is for N = 7, ∆1 = π2

4 , ∆2 = e, and ∆C = π
9 .

interpolate between the purely imaginary black hole solution at |ζ| = 1 and a purely real
classical solution at |ζ| = e−14. Recall that the classical solutions (2.9) are real since the
chemical potentials in (4.12) are real.

Having reached the endpoint α = −14, the solution is refined by performing Newton
iterations until the error is smaller than an even tighter tolerance, which we have chosen to be
10−64. After sorting the numerical solution and classical solutions by increasing real parts, the
matching classical solution and its corresponding partition is then picked out by minimising

N∑
a=1

|(sorted numerical solution)a − (sorted classical solution)a|2 , (5.10)

among all classical solutions, i.e. all solutions of the form (2.9) corresponding to a partition.
Since we have chosen a small enough value of |ζ| = e−14 at the endpoint, it turns out that
the smallest error is several orders of magnitude smaller than the second smallest error,
so that we may unambiguously identify which classical solution and partition is the result
under the ζ → 0 limit. For example, with N = 7, ∆1 = π2

4 , ∆2 = e, and ∆C = π
9 , the

minimum error is roughly 3.5 × 10−5, while the second smallest error is roughly 0.25. As
mentioned, the classical solutions with the minimum error turn out to correspond to the
triangular partitions defined in (5.1). We have checked this for 2 ≤ N ≤ 28, and we expect
and conjecture the same to be true for all N > 28.

5.3 Tracking in the reverse direction

To provide further evidence of the correspondence between black hole solutions and triangular
partitions, it is desirable to track the classical solution of the triangular partition in the reverse
direction from ζ = 0 to ζ = ei∆C , and verify that the endpoint of this homotopy is the black
hole solution. For this purpose, solving the Bethe equations in the form (5.2) is not possible
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since Wa is indeterminate on the classical solutions (e.g. there are terms − log ζ = − log 0
and log

(
sa − t

1/2
1 t

1/2
2
)
= log 0 when ia = ja = 1). Instead, we track the solutions of

Ba(s, v) ≡
(

sa − t
1
2
1 t

1
2
2

) 3∏
I=1

N∏
b=1
b ̸=a

(sb − t−1
I sa) + v ζ t

1
2
1 t

1
2
2

(
sa − t

− 1
2

1 t
− 1

2
2

) 3∏
I=1

N∏
b=1
b ̸=a

(sb − tIsa) = 0 ,

a = 1, . . . , N , (5.11)

which are simply the Bethe equations (2.23) with their denominators cleared, and where
v is a parameter that allows us to interpolate between ζ = 0 and ζ = ei∆C as it is tuned
from v = 0 to v = 1.

One might hope that the tracking of solutions proceed analogously to the previous
subsection, using the predictor-corrector method. However, the initial step from v = 0 to
v = ∆v ̸= 0 poses a difficulty, which we now explain.

Let s∗ be a classical solution at v = 0. We seek the solution at v = ∆v, written as
a systematic expansion

s = s∗ +∆s = s∗ +∆(1)s +∆(2)s + . . . , (5.12)

where each term ∆(n)s is of order (∆v)n. To leading order in ∆v, the analogous Taylor
expansion to (5.7)

0 = Ba(s∗ +∆s,∆v) = ∂sb
Ba(s∗, 0)∆(1)sb + ∂uBa(s∗, 0)∆v +O((∆v)2

)
(5.13)

implies
Jab∆(1)sb = −∂vBa(s∗, 0)∆v , Jab ≡ ∂sb

Ba(s∗, 0) . (5.14)

If λ is the partition associated with the classical solution s∗, we find empirically that

rank(λ) ≥ 2 ⇐⇒ det J = 0 , (5.15)

where rank(λ) is defined to be the maximum positive integer such that λ contains at least
rank(λ) parts with values greater or equal to rank(λ). Diagrammatically, rank(λ) is the
length (in units of boxes) of a side of the largest square that can fit into the Young diagram
of λ, also called the Durfee square. To be more precise, the forward implication of (5.15)
can be proven, and the proof is be found in appendix C.1. Numerically, we were unable
to find a counterexample to the reverse implication in (5.15), and we conjecture it to be
true. Consequently, the initial predictor step fails when tracking the solutions associated
with partitions of rank ≥ 2, since it requires us to invert J .

For these problematic partitions, we shall attempt to fix ∆(1)s by analysing (5.14) and
the Taylor expansion more carefully. Now, the generic solution to (5.14) is

∆(1)s = ∆(1)
× s +∆(1)

0 s , ∆(1)
0 s ∈ Nul(J) (5.16)

where ∆(1)
× s is any particular vector that satisfies Jab∆(1)

× sb = −∂vBa(s∗, 0)∆v, and Nul(J) is
the right null space of J (the right and left null spaces are not equal since J is not symmetric).
Due to the structure of ∂vB and J , which is explained in appendix C.3, there is a specific
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Figure 7. Young diagram of the partition {5, 2, 1} with exterior corners coloured red and interior
corners coloured blue.

choice of ∆(1)
× s that is particularly simple, and also helpful for later simplifications. To specify

it, we define a corner box of a Young diagram to be a box that can be removed to leave
a valid Young diagram. If a corner box is in the top row or left-most column, we shall
call it an exterior corner. The remaining corner boxes will be known as interior corners.10

As an illustration, the exterior and interior corners of the partition {5, 2, 1} are coloured
red and blue respectively in figure 7

With this terminology, our choice of ∆(1)
× s is specified as

∆(1)
× sa =

−∂vBa(s∗,0)∆v
Jaa

, if a is an exterior corner
0 , otherwise

(5.17)

It then remains to determine ∆(1)
0 s, that is the part of ∆(1)s in Nul(J). It turns out that

examining (5.13) at O((∆v)2
)

is useful for this purpose, and it is

0 = Jab∆(2)sb +
1
2∂sc∂sb

Ba(s∗, 0)∆(1)sb∆(1)sc + ∂sb
∂uBa(s∗, 0)∆v∆(1)sb . (5.18)

Contracting with the left eigenvectors va of J gives

va

[1
2∂sc∂sb

Ba(s∗, 0)∆(1)sb∆(1)sc + ∂sb
∂uBa(s∗, 0)∆v∆(1)sb

]
= 0 . (5.19)

Since the left and right null spaces of a square matrix have the same dimension, these are
dim(Nul(J)) quadratic equations for the same number of variables in ∆(1)

0 s. The next step
would be to find bases for the left and right null spaces of J , and solve (5.19) for the coefficients
of ∆(1)

0 s in this basis. We refer the reader to appendix C.2 for an explicit construction of
such bases. Although the number of equations and variables match, it turns out that (5.19)
has an infinite number of solutions in all cases. This is a reflection of the fact that the
Bethe equations (5.11) have infinitely many solutions. For example, if {s∗1, . . . , s∗6} is the
classical solution associated with the partition in figure 8, where the gauge fugacities are
attached to the boxes as labelled, then one can check that {c1s

∗
1, c2s

∗
2, c2s

∗
3, c1s

∗
4, c1s

∗
5, c2s

∗
6}

with c1,2 ∈ C are solutions of (5.11) at any v.
A common property of these infinite families of solutions is that there exist in them

groups of three fugacities whose values are related via

(s1, s2, s3) = (x, t1x, t1t2x) or (x, t2x, t1t2x) , x ∈ C . (5.20)

The Fock modules F(u) of quantum toroidal gl1 vanish on solutions containing (5.20). Such
vanishing conditions are called ‘wheel conditions’ in [43], and they are satisfied by construction.

10This is not to be confused with the notion of inner and outer corners commonly used in the literature.
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1 2 3
4 5 6

Figure 8. Young diagram of the partition {3, 3}. Starting with the classical solution {s∗
1, . . . , s∗

6}
where sa is associated with the box a labelled above, one obtains 2 infinite families of solutions
to (5.11) by scaling the gauge fugacities of the red and green boxes above independently.

· · ·

...

Figure 9. Young diagram of a generic 1-wheel partition. The exterior and interior corners are
coloured red and blue respectively.

Since the members of F(u) become eigenvectors of the integrable Hamiltonians when evaluated
on solutions to the Bethe equations, and the eigenvectors should not vanish, one should regard
solutions that contain (5.20) as unphysical. Therefore, we shall reject solutions to (5.19)
where s∗ +∆(1)s contains (5.20), and hope that what remains is a single solution that can
be used as the initial predictor.

At this point, it is helpful to visualise some of these statements in terms of Young
diagrams. All rank ≥ 2 partitions correspond to classical solutions s∗ which contain at least
one group of fugacities related by (5.20). Whenever there are 3 boxes arranged in a L shape
or rotated L shape like the ones in red and green in figure 8, the corresponding fugacities in
s∗ obey (5.20). If a partition contains at most n such L shapes, we shall call it a n-wheel
partition. For example, figure 7 is a 1-wheel partition, and figure 8 is a 2-wheel partition.
Therefore visually, for s∗ +∆(1)s to be a physical solution, ∆(1)s must vary the fugacities of
one or more boxes in each L shape such that the relationships (5.20) are destroyed.

Now, we find empirically that a physical solution is contained among the solutions
to (5.19) iff s∗ corresponds to a 1-wheel partition. Otherwise, for all the n-wheel partitions
with n ≥ 2 that were examined, all of the solutions to (5.19) are unphysical, and one expects
that higher order terms ∆(≥2)s are needed to destroy the relations (5.20). A 1-wheel partition
generically looks like figure 9, and the physical solution to (5.19) is

∆(1)sa =


−∂vBa(s∗,0)∆v

Jaa
, if a is an exterior corner

−2∂u∂sa Ba(s∗,0)∆v
∂2

sa Ba(s∗,0) , if a is an interior corner

0 , otherwise

(5.21)

Its derivation is covered in appendix C.4.
In this work, we shall restrict our attention to rank 1 partitions and rank 2 1-wheel

partitions, leaving the tracking of the classical solutions of higher-wheel partitions to future
work, since it would involve examining corrections to even higher order. In the rank 1 case, a
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conventional predictor-corrector method can be used throughout since det J ̸= 0 everywhere.
For the rank 2 1-wheel partitions, the initial predictor step has to be replaced by (5.21),
after which the conventional method can take over since det J ̸= 0. Among the triangular
partitions defined in (5.1), those for 2 ≤ N ≤ 7 are within the restricted set of partitions
that we can treat, and we tracked their corresponding classical solutions from v = 0 to v = 1
in (5.11). It turns out that the resulting solutions at v = 1 precisely match the black hole
solutions found in section 5.1. This is a nontrivial check of the correspondence between
black hole solutions and triangular partitions.

A â-genus asymptotics & regularisation

In this appendix, we consider the asymptotics and regularisation of the â-genus of a particular
weight combination. The â-genus of a weight w is defined by

â(w) := 1
w−1/2 − w1/2 , (A.1)

and extended multiplicatively to sums of weights as â(w1+w2) = â(w1)â(w2). We often write
â(W ) as shorthand for â (∑w∈W w) where W is a weight space. The weight combination
that appears frequently in the main body of this work is

â

(
1− t−1q

1− q
w

)
. (A.2)

In this appendix we are interested in the asymptotics of this quantity as q → 1. We first
use the multiplicative property to give:

â(w) = exp
(
− log

(
w−1/2 − w1/2

))
,

â

( 1
1− q

w

)
= exp

(
−

∞∑
i=0

log
(
qi/2w−1/2 − qi/2w1/2

))
,

(A.3)

and the quantity we are interested in is then given by

â

(
1− t−1q

1− q
w

)
= exp

(
−

∞∑
i=0

log q−i/2w−1/2 − qi/2w1/2

t1/2q−1/2q−i/2w−1/2 − t−1/2q1/2qi/2w1/2

)
. (A.4)

The exponent of the right-hand side may be split:
∞∑

i=0

(
− log

(
−q−i/2w−1/2

)
− log

(
1− qiw

)
+ log

(
−t1/2q−1/2q−i/2w−1/2

)
+ log

(
1− t−1qqiw

) )
.

(A.5)

The first and third terms above require zeta function regularisation. This is equivalent to
using the following identity to re-write the summations:

exp
( ∞∑

i=0
log f(i)

)
= exp

(
d

ds

∞∑
i=0

f(i)s

)∣∣∣∣∣
s=0

. (A.6)
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These terms of the exponent individually diverge as ∼ s−2 at s = 0, but the divergence is
cancelled in the sum. More precisely, we have

− d

ds

∞∑
i=0

(−q−i/2w−1/2) = 2
s2 log q

+
(
− log q

24 + 1
4 log(−w)− 1

4
log2(−w)

log q

)
+ . . . , (A.7)

and

d

ds

∞∑
i=0

(−t1/2q−1/2w−1/2q−i/2)=− 2
s2 logq

+
(
logq

24 − 1
4 log(−t−1qw)+ 1

4
log2(−t−1qw)

logq

)
+. . . ,

(A.8)
where . . . indicate higher order terms in s. The combination gives in total at s = 0:

1
4

(
log(−w)− log(−t−1qw)− log2(−w)

log q
+ log2(−t−1qw)

log q

)
. (A.9)

This regularisation allows us to re-write the â-genus in terms of q-Pochhammer symbols.
Using the definition

(x; q)∞ := exp
∞∑

i=0
log(1− qix), (A.10)

we find

â

(
1− t−1q

1− q
w

)
= e−E[− log(−t−1qw)]−E[− log(−w)] (t−1qw; q)∞

(w; q)∞
, (A.11)

with the regularisation term is given by

E [x] = ϵ

24 − x

4 + x2

4ϵ
, (A.12)

where we set q = e−ϵ.

Asymptotics. We now consider the asymptotics as ϵ → 0. In this limit the regularisation
terms contribute the following

1
ϵ

(1
4 log2(−w)− 1

4 log2(−t−1w)
)
+ 1

4 log(−w) + 1
4 log(−t−1w) + . . . (A.13)

We now consider the contribution to the asymptotics of the second and fourth terms in (A.5).
We Taylor expand the logarithm and perform the geometric series over i. Setting q = e−ϵ

and expanding using the definition of the dilogarithm

Li2(x) =
∞∑

n=1

xn

n2 , (A.14)

we find that the contribution of the second and fourth terms is
1
ϵ

(
Li2(w)− Li2(t−1w)

)
− 1

2(log(1− w) + log(1− t−1w)) + . . . . (A.15)
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We thus find in total the asymptotic expansion

â

(
1− t−1q

1−q
w

)
= exp

(
1
ϵ

(
Li2(w)−Li2(t−1w)+ 1

4 log
2(−w)− 1

4 log
2(−t−1w)

)

+ 1
2

(
− log(1−w)− log(1− t−1w)+ 1

2 log(−w)+ 1
2 log(−t−1w)

)
+ . . .

)
,

(A.16)

as ϵ → 0 with q = e−ϵ.

Symplectic pairing. Now let us consider the asymptotics of the â-genus of a weight space T :

â

(
1− t−1q

1− q
T

)
. (A.17)

Equation (A.16) gives us the sub-leading contribution to the limit ϵ → 0 as

∏
w∈T

(−t−1w
)1/4 (−w)1/4

(1− w)1/2(1− t−1w)1/2 , (A.18)

which we may re-write as

∏
w∈T

( 1
(w−1/2 − w1/2)(t−1/2w1/2 − t1/2w−1/2)

)1/2
, (A.19)

which may be re-expressed as ∏
w∈T+tT∨

â1/2(w), (A.20)

where the weights in T and T∨ are paired under w ↔ w−1. In the context of the main body
of this work, the pairing between T and tT∨ corresponds to the symplectic pairing of matter
weights as a result of N = 4 supersymmetry. Let us now consider the O(1/ϵ) part of the
exponential. We use the dilogarithm identity

Li2(a) + Li2(a−1) = −1
2 log2(−a)− π2

6 , (A.21)

to flip the argument of the second dilogarithm in (A.16) giving

1
ϵ

(
Li2(w) + Li2(tw−1) + 1

4 log2(−w) + 1
4 log2(−tw−1) + π2

6

)
. (A.22)

This is again a sum of terms respecting the w ↔ tw−1 pairing. In conclusion, the asymptotic
expansion of (A.17) as ϵ → 0 is

∏
w∈T

â

(
1− t−1q

1− q
w

)
= â1/2 (W ) exp

(
1
ϵ

∑
w∈W

f(w) + . . .

)
(A.23)

where W = T + tT ∗ and f(w) := Li2(w) + 1
4 log

2(−w) + π2

12 , which we often abbreviate
to f(w) = Li′2(w) + π2/12.
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A.1 Remark on factorisation

We conclude the appendix with a brief remark that it is possible to factorise the twisted
index (3.2) ‘under the integral’ sign by using a fusion identity for the â-genus. This is
closely related to the asymptotic result above. We begin with the â-genus of a weight w

raised to some integer power m (such terms appear in the twisted index). We may then
introduce a q-refinement:

â(w)m → â(wq−m/2)â(wq−m/2+1) . . . â(wqm/2). (A.24)

The following fusion identity then follows from the regularisation of the â-genus considered
in the previous subsection:

â

(
1− t−1q

1− q
wqm

)
â

(
1− t−1q−1

1− q−1 wq−m

)
= â(wq−m/2)â(wq−m/2+1) . . . â(wqm/2)â(tw−1q−m/2) . . . â(tw−1qm/2),

(A.25)

this is the property of the â-roof genus that allows factorisation.

B ’t Hooft & Wilson line operator equalities

In this section, we prove for two instances, namely ADHM theory with N = 2 and SQED[2],
that the ’t Hooft operator insertions p1,2 = et1,2∂t1,2W are identical to a combination of Wilson
line insertions when evaluated on solutions to the Bethe equations (2.23), and are hence
elements of the quantum equivariant K-theory. Further, they yield the same expectation
values when computed inserted in the twisted background S2 ×B S1. This serves as evidence
that the same is true for ADHM theory with generic N .

B.1 SQED[2]

For N = 4 supersymmetric QED with N hypermultiplets, the effective twisted superpotential
is given by:

W = − log s log ζ − NLi′2(t) +
N∑

i=1

[
Li′2

(
sxit

1
2
)
+ Li′2

(
sxit

1
2
)]

, (B.1)

where the flavour symmetry has a maximal torus U(1)N−1, for which we introduce fugacities
x1, . . . xN−1, and define xN = (x1 . . . xN−1)−1. Also, t is the fugacity for the same anti-
diagonal R-symmetry (RH − RC)/2 as in the main body, which can be regarded as an
N = 2 flavour symmetry.

For simplicity, take N = 2, the general case can be treated similarly. We take x1 := x,
x2 = x−1. The vacuum equations are given by:

es∂sW = ζ−1

(
sx − t

1
2
) (

s
x − t

1
2
)

(
1− st

1
2 x
)(

1− st
1
2

x

) = 1. (B.2)
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This imposes a quadratic relation on s, and so the twisted chiral ring, which is equal
to QKT (T ∗P 1), can be generated by the elements O ∈ {1, s}. The Bethe roots can be
determined analytically in this case as

s = t
1
2 (1 + x2)(1− ζ)±

√
t(1 + x2)2(1− ζ)2 − 4(tx − ζx)(x − ζtx)

2(x − ζtx) (B.3)

The ’t Hooft operator for the x flavour symmetry is given by:

px = ex∂xW =

(
sx − t

1
2
)(

1− st
1
2

x

)
(
1− st

1
2 x
) (

s
x − t

1
2
) (B.4)

and that of the N = 2 flavour symmetry by:

pt = e2t∂tW = (1− t)2(
1− st

1
2 x
)(

1− t
1
2

sx

)(
1− st

1
2

x

)(
1− t

1
2 x
s

) (B.5)

Note the additional power of 2 in the definition of pt. This is due to the Dirac quantisation
condition; the flux for (RH − RC)/2 must be even as there are half-charged hypermultiplets
under this symmetry. Thus, this is the minimum ’t Hooft operator for this symmetry.

The goal is to express both ’t Hooft operators in the form:

px = Ax + Bxs, pt = At + Bts (B.6)

up to terms which vanish on the vacuum equations (B.2). This demonstrates that in the
q → 1 limit, the ’t Hooft operator insertions in the twisted index and hemisphere partition
function are equivalent to the insertion of Wilson lines. In this simple case, it is possible
to find the interpolating (linear) polynomial in s between the values of px or pt evaluated
at the two roots of the vacuum equation using Mathematica.11

One may explicitly verify that:

px =
(
x2 − 1

)
(x2ζ2 − 1)t + ζ(t − 1)2x2

ζ (tx2 − 1)2
− (ζ + 1)t 1

2 x
(
x2 − 1

)
(ζt − 1)

ζ (tx2 − 1)2
s

+
t

1
2
(
x2 − 1

) (
st

1
2 − x

) (
−(ζ + 1)st

1
2 x + ζtx2 + 1

)
(tx2 − 1)2

(
s − t

1
2 x
) (

es∂sW − 1
)

.

(B.7)

The second line clearly vanishes on the vacuum equations, and so the ’t Hooft operator is
equal to the insertion of the linear combination of Wilson line operators on the first line,
which can be interpreted as a linear combination of QKT (T ∗P1) insertions.

11For the ADHM example this is computationally intractable, so we turn to other methods. See the
next subsection.
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Further:

pt=
x2(t−ζ)

(
t
(
tx4+tx2+ζ(x(t−x+1)−1)(x(t+x+1)+1)+t−2x2)−x2)

ζ (t−x2)2(tx2−1)2

+(ζ+1)
√

t
(
t2−1

)
x3(x2+1

)
(ζt−1)

ζ (t−x2)2(tx2−1)2
s

+ es∂sW−1
(t−x2)2(tx2−1)2

(
sx−

√
t
)(

s−
√

tx
)((ζ+1)s3

(
t2−1

)
t3/2x4

(
x2+1

)
+...

...+s2tx3
(

ζ−
(

t3
(

x4+ζ
(
x2+1

)2
+x2+1

))
−t2

(
x4+ζx2+1

))
...+s2tx3

(
t
(
ζ+ζx4+x2

)
+x2

(
ζ+(ζ+1)x2+2

)
+1
)

...+s
√

tx2
(
x2+1

)(
t
(
−ζ+ζx2

(
t3+t2+t−x2−1

)
+t
(
tx4+(t−1)x2+t

)
−x2

)
−x2

)
...+tx3

(
x2−t

(
tx4+tx2+ζ(x(t−x+1)−1)(x(t+x+1)+1)+t−2x2

)))
,

(B.8)

which demonstrates the equality of the ’t Hooft operator pt to a linear combination of Wilson
line or QKT (T ∗P1) insertions on the vacuum equations.

B.2 ADHM with N = 2

In ADHM theory at N = 2, the ’t Hooft operator insertions can be massaged into the form

p1 = et1∂t1W = − t21
(
1− t−1

3
)2

(1− t1)2

× s
1
2
1 s

1
2
2 (s2 − t3s1)(s1 − t3s2)

(s2 − t1s1)(s1 − t1s2)
(

s1 − t
1
2
3

) 1
2
(

s2 − t
1
2
3

) 1
2
(

s1 − t
− 1

2
3

) 1
2
(

s2 − t
− 1

2
3

) 1
2

,

p2 = et2∂t2W = − t22
(
1− t−1

3
)2

(1− t2)2

× s
1
2
1 s

1
2
2 (s2 − t3s1)(s1 − t3s2)

(s2 − t2s1)(s1 − t2s2)
(

s1 − t
1
2
3

) 1
2
(

s2 − t
1
2
3

) 1
2
(

s1 − t
− 1

2
3

) 1
2
(

s2 − t
− 1

2
3

) 1
2

.

(B.9)

The square root of the product of the two Bethe equations (2.23) is

ζ−1t
1
2
3

(
s1 − t

− 1
2

3

) 1
2
(

s2 − t
− 1

2
3

) 1
2

(
s1 − t

1
2
3

) 1
2
(

s2 − t
1
2
3

) 1
2

= 1 . (B.10)
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Therefore, when evaluated on solutions to the Bethe equations, (B.9) is equal to

p1 = − t21t
− 1

2
3 ζ

(
1− t−1

3
)2

(1− t1)2
s

1
2
1 s

1
2
2 (s2 − t3s1)(s1 − t3s2)

(s2 − t1s1)(s1 − t1s2)
(

s1 − t
− 1

2
3

)(
s2 − t

− 1
2

3

) ,

p2 = − t22t
− 1

2
3 ζ

(
1− t−1

3
)2

(1− t2)2
s

1
2
1 s

1
2
2 (s2 − t3s1)(s1 − t3s2)

(s2 − t2s1)(s1 − t2s2)
(

s1 − t
− 1

2
3

)(
s2 − t

− 1
2

3

) .

(B.11)

In the twisted index, the common factor s
1
2
1 s

1
2
2 above contributes (s1s2)

n1+n2
2 from pn1

1 pn2
2 . Due

to the Dirac quantisation condition n1 + n2 ∈ 2Z, this is an integer power of the determinant
line bundle L = s1s2 and is already an element of quantum K-theory. It remains to show
that the fractions

(s2 − t3s1)(s1 − t3s2)

(s2 − t1s1)(s1 − t1s2)
(

s1 − t
− 1

2
3

)(
s2 − t

− 1
2

3

) = n

d1
,

(s2 − t3s1)(s1 − t3s2)

(s2 − t2s1)(s1 − t2s2)
(

s1 − t
− 1

2
3

)(
s2 − t

− 1
2

3

) = n

d2
,

(B.12)

coincide with a symmetric polynomial in s1,2 when evaluated on Bethe roots. The Bethe
equations with denominators cleared are

B1 =
(

s1 − t
− 1

2
3

)
(s2 − t−1

1 s1)(s2 − t−1
2 s1)(s2 − t−1

3 s1)

+ ζt
− 1

2
3

(
s1 − t

1
2
3

)
(s2 − t1s1)(s2 − t2s1)(s2 − t3s1) = 0 ,

B1 =
(

s2 − t
− 1

2
3

)
(s1 − t−1

1 s2)(s1 − t−1
2 s2)(s1 − t−1

3 s2)

+ ζt
− 1

2
3

(
s2 − t

1
2
3

)
(s1 − t1s2)(s1 − t2s2)(s1 − t3s2) = 0 .

(B.13)
Our strategy is to show that the numerator n in (B.12) can be written as

n = q1d1+a1B++b1B− = q2d2+a2B++b2B− , B+ = B1+B2 , B− = B1 − B2
s1 − s2

, (B.14)

where q1,2, a1,2, b1,2 are symmetric polynomials in s1,2 whose coefficients are rational functions
of t1,2,3 and ζ. They must be symmetric since n and d1,2 are symmetric polynomials by their
definition in (B.12), and since B1 ↔ B2 under s1 ↔ s2, B± are also symmetric. In this way,
n/d1 is equal to q1 on Bethe roots, and n/d2 is equal to q2.12 Note that B1 − B2 has s1 − s2
as a factor, so that B− is a polynomial. In addition, one can show that B− does not vanish
when s1 = s2, meaning that B± only vanish on physical Bethe roots on the Coulomb branch

12More generally, a1,2 and b1,2 could be rational functions of s1,2, as long as their denominators do not
vanish on the Bethe roots. Then it would still be true that the fractions n/d1,2 are equal to q1,2 on the Bethe
roots. However, it turns out here that we can prove (B.14) while restricting a1,2 and b1,2 to be polynomials.
We do not rule out the possibility that a1,2 and b1,2 might have to be rational functions for N > 2.
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of the gauge theory where s1 ̸= s2, so that the gauge group is broken to U(1). The trick
of dividing by s1 − s2 is taken from [66]. Since n, d1,2, B± are symmetric polynomials, we
can express them in terms of the elementary symmetric polynomials

e1 = s1 + s2 , e2 = s1s2 . (B.15)

Now (B.14) is equivalent to saying that n is a member of the polynomial ideals generated
by {d1, B+, B−} and {d2, B+, B−}, i.e.

n ∈ I1 = ⟨d1 , B+ , B−⟩ ∧ n ∈ I2 = ⟨d2 , B+ , B−⟩ . (B.16)

The standard algorithmic way to determine whether (B.16) is true (the ideal membership
problem) is to compute Gröbner bases for I1, I2, and reduce n with respect to the bases [67].
Then (B.16) is true if and only if the remainder is zero under the division algorithm. Choos-
ing lexicographic ordering in {e1, e2}, we compute the Gröbner bases for I1 and I2 using
ExtendedGroebnerBasis in Mathematica. The result turns out to be the same for I1 and I2:

I1 = I2 = ⟨e2(e2 − 1) , (1 + t−1
3 )e2 − t

− 1
2

3 e1e2 , t−1
3 e21 − (1 + t−1

3 )2e2⟩ , (B.17)

implying that they are actually the same ideal. Since the numerator n is precisely a multiple
of the third basis element

n = −t23

[
t−1
3 e21 − (1 + t−1

3 )2e2
]

, (B.18)

the remainder of reducing n with respect to the Gröbner basis is zero and (B.16) is true. We
have thus proven that (B.14) must be true for some polynomials q1,2, a1,2, b1,2. To find these
polynomials explicitly, we can use the conversion matrix returned by ExtendedGroebnerBasis,
which gives the basis element t−1

3 e21− (1+ t−1
3 )2e2 in terms of the starting bases {d1, B+, B−}

and {d2, B+, B−}. The result is

q1= t−1
1 t23ζ

−3(1−t1)−1(1+t1)−3(1+t2)−1
(
t−1
3 −1

)
−3
(

t
− 1

2
3 +ζ

)−1{
ζ3
(
t21−1

)
2×

(1+t2)
(
t−1
3 −1

)
2
(
1+t−1

3

)(
t
− 1

2
3 +ζ

)
+
(
1+t

− 1
2

3 ζ

)2[
t1(1+t2)+t

− 1
2

3 ζ

(
1+t21+t31+

1+2t1
t3

)
+ζ2

(
1−t1−t21+t31(1+t2(2+t1)(1+t2))

)
+t31t

− 3
2

3 ζ3(1+t2)
][
2t−1

3 e21−(1+t1)(1+t2)
(
1+t−1

3

)
e2
]

+t
− 1

2
3 (t1−1)

(
t−1
3 −1

)[
t−1
3 (1+t2)+t−1

3 ζ
(
1+t2+t1(t2−1)

(
t21+t2+2t1(1+t2)

))
+ζ2

(
1+t2+t1

(
2−t1−t21−t2

(
1+3t1+t21+t31

)
−t22(1+2t1)+t2t

−2
3 (2+t1)

))
+t

− 1
2

3 ζ3
(
1+t21+t31−t2

(
1+t1−t21+t31+t41

)
−t2t

−1
3 (1+2t1(1+t1))+t1t

−3
3

)
+ζ4

(
1−t2−t1

(
1+t2+t1

(
1−t2+t1(1+t2)

(
−1−(2+t1)t2+(1+t1)t22

))))
+t31t

− 3
2

3 ζ5(1+t2)
]
e1

}
(B.19)
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a1=2−1t
− 1

2
1 t

3
2
3 ζ−3(1−t1)−1(1+t1)−3(1+t2)−1

(
1−t−1

3

)−3
(

t
− 1

2
3 +ζ

)−1{
t

1
2
2

(
1+t

− 1
2

3 ζ

)
×
[
t1(1+t2)+t

− 1
2

3 ζ

(
1+t21+t31+t

− 1
2

3 (1+2t1)
)
+ζ2

(
1−t1−t21+t31(1+t2(2+t1)(1+t2))

)
+t31t

− 3
2

3 ζ3(1+t2)
][
(1+t1)2e2−t1e

2
1

]
+t

1
2
1

(
t−1
3 −1

)(
1+t1t

− 1
2

3 ζ

)[
t−1
3 (1+t2)

+t
− 1

2
3 ζ

(
1+t2+t1(t2−1)

(
t21+t2+2t1(1+t2)

))
+ζ2(1−t1)(1+t1)2

+t2ζ
2(1+t1)

(
1−2t1−t31

)
−t−2

3 +t−3
3 (2+t1)+t21t

− 3
2

3 ζ3(1+t2)(−1+t1(−1+t2))
]
e1

+t
1
2
1 (1+t1)

(
t−1
3 −1

)[
−t

− 3
2

3 (1+t2)−t−1
3 ζ

(
2(1+t2)+t1(t2−1)

(
t21+t2+2t1(1+t2)

))
+t

− 1
2

3 ζ2
(
−3−2t1+3t21+2t31+t2

(
−3+2t1+3t21+t41

)
−2+t1

t33

)
+ζ3

(
(−1+t1)(1+t1)2

+t2
(
−1+t1−t31+t41

)
+t−2

3 (−1+3t21+t31)+2t1t
−3
3 −t1t

−4
3

)
+t31t

− 5
2

3 ζ4(1+t2)
]}

(B.20)

b1=2−1t
− 1

2
1 t

5
2
3 ζ−3(1−t1)−1(1+t1)−3(1+t2)−1

(
1−t−1

3

)−3
(

t
− 1

2
3 +ζ

)−1{
t

1
2
1 t

− 1
2

3

(
1+t

− 1
2

3 ζ

)
×(

t1(1+t2)+t
− 1

2
3 ζ

(
1+t21+t31+

1+2t1
t3

)
+ζ2

(
1−t1−t21+t31(1+t2(2+t1)(1+t2))

)
+t31t

− 3
2

3 ζ3(1+t2)
)

e31+2(1+t1)
[
t−1
3 t

3/2
1 (1+t2)2e2+t

1
2
1 t

− 1
2

3 ζ (1+t1)
(−2+t1+t21

−t2
(
1−4t1+t21

)
+t2t

−1
3

(
2+t1+t21

)
+2t2t

−2
3
)
e2+t

1
2
1 ζ2(1+t2)

(
−1+t1

(
−1+t1

+t21+t2(−1+t1)2(1+t1)+t2t
−1
3 (2+t1)

(
1+t21

)
+t2t

−2
3

(
1+4t1+t21

)))
e2

+t
1
2
2 ζ3(1+t1)

(
t1(1−t1)(1+t2)

(
1−t−1

3

)2(
t1t

−1
3 −1

)
+
(
−1+t−1

3 +t21

(
1+t2

(
1

+t2+t1
(
−4−3t2+t1(1+t2)

(
2+(1+t1)t2+2t2t

−1
3

)))))
e2

)
+t

7/2
1 t−3

3 ζ4(1+t2)2e2
]

+t
1
2
1

[
−t−1

3 (1+t2)(−1+t1(2+t2))−t
− 1

2
3 ζ

(
−1−t2+2t1(t2−1)+t21

(
2+t1

+t2
(
3−t1+t21

)
+t22

(
2+5t1+t21

)
+t32(1+3t1)

))
−ζ2

(
−1−t2+t1

(
−1+2t2+t22

+t31t
−2
3 (t2−1)+t21t

−1
3 (2+3t2)(1+t2)2+t1

(
1+t22

)
+t21(1+t2)

(
1−5t2+t22

)
+t31t

−1
3

(
1+2t2+2t22+3t32

)))
−t

− 1
2

3 ζ3
(
−2+t1

(
1+3t2+t1(t2−1)2+t31t

−2
3

(
t22−1

)
−t21

(
1+4t2+3t22

)
+t21t

−2
3

(
4+5t2+3t22

)
+t31

(
1+3t2

(
1+t2+t22

))))
−t31t

−2
3 ζ4(1+t2)(−1+t1(1+t2(2+t1(t2−1))))

]
e21+

[
−t

1
2
2 (1+t1)2

(
1+t

− 1
2

3 ζ

)(
t1(1+t2)
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+t
− 1

2
3 ζ

(
1+t21+t31+t−1

3 (1+2t1)
)
+ζ2

(
1−t1−t21+t31(1+t2(2+t1)(1+t2))

)
+t31t

− 3
2

3 ζ3(1+t2)
)

e2

−t
1
2
1 (t1−1)

(
t−1
3 −1

)(
t
− 3

2
3 (1+t2)+t1t

−1
3 ζ (t2−1)

(
t21+t2+2t1(1+t2)

)
+t

− 1
2

3 ζ2(1+t2)
(
(1+t1)2−

2+4t1+2t21+t31
t3

+ t1(2+t1)
t23

)
+ζ3

(
(t1−1)(1+t1)2

+t2(1+t1)
(
−1+2t1+t31

)
−t−2

3 (−1+t21+t31)−2t−3
3 (1+t1)+t1t

−4
3

)
+t31t

− 5
2

3 ζ4(1+t2)
)]

e1

}
(B.21)

The other set of polynomials q2, a2 and b2 can be obtained from q1, a1 and b1 respectively
by exchanging t1 ↔ t2.

C Numerical details

In this appendix, we collect some details in the initial predictor step away from ζ = 0 that
were omitted in section 5.3 for brevity.

C.1 Singularity of the Jacobian

For the Jacobian Jab = ∂sb
Ba(s∗, 0), we want to prove that if s∗ corresponds to a partition

with rank ≥ 2, then det J = 0. Since the derivative of Ba is evaluated at v = 0, only the
first term of (5.11) contributes to J , i.e.

Jab = ∂sb
Ba(s, 0)

∣∣
s=s∗

= ∂sb

(sa − t
1
2
1 t

1
2
2

) N∏
b=1
b ̸=a

(sb − t−1
1 sa)(sb − t−1

2 sa)(sb − t1t2sa)


s=s∗

.

(C.1)
If s∗ corresponds to a partition with rank ≥ 2, we first show that the homogeneous part
of Ba(s, 0) is zero on the classical solution, i.e.

N∏
b=1
b ̸=a

(s∗b − t−1
1 s∗a)(s∗b − t−1

2 s∗a)(s∗b − t1t2s
∗
a) = 0 , ∀a ∈ {1, . . . , N} . (C.2)

For all boxes a in the partition other than the top-left box, there are always neighbouring boxes
b either above or to the left of a which satisfy s∗b − t−1

1 s∗a = 0 or s∗b − t−1
2 s∗a = 0. Thus (C.2)

automatically holds for these boxes. When a is the top-left box, the fact that the partition
has rank ≥ 2 implies that there is a box b to the bottom right of a with s∗b − t1t2s

∗
a = 0.

Now that (C.2) holds, due to the homogeneity of this factor, any overall rescaling of s∗ still
satisfies (C.2). This means that Ba(eϵs∗, 0) = 0 for arbitrary ϵ. Expanding to linear order in
ϵ implies that Jabs

∗
b = 0, i.e. that s∗ is a right null vector of J , and consequently det J = 0.

C.2 Null vectors of the Jacobian

Right null vectors. Let us examine the right null space of the Jacobian and determine a
spanning set of vectors. We shall first generalise the argument in appendix C.1 to find more
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. . .

. . .
...

...

. . .
... . . .
...

...

Figure 10. Shapes of the minimal subsets S which satisfy (C.3).

1 2 3 4 5
6 7 8 9
10 11
12

Figure 11. A division of the partition {5, 4, 2, 1} into a maximum number of subsets satisfy-
ing (C.3), which are coloured red, green, and blue. With sa being associated with the box labelled
a, the zero eigenvectors coming from the 3 independent rescalings are (s∗

1, s∗
2, 0, 0, 0, 0, s∗

7, 0, 0, 0, 0, 0),
(0, 0, s∗

3, s∗
4, s∗

5, 0, 0, s∗
8, s∗

9, 0, 0, 0), and (0, 0, 0, 0, 0, s∗
6, 0, 0, 0, s10∗, s∗

11, s∗
12).

null vectors. Starting from the classical solution s∗, one can scale a subset of the fugacities sa

for a ∈ S ⊂ {1, . . . , N} independently while preserving (C.2), as long as the following is true:

∏
b∈S
b ̸=a

(s∗b − t−1
1 s∗a)(s∗b − t−1

2 s∗a)(s∗b − t1t2s
∗
a) = 0 , ∀a ∈ S ⊂ {1, . . . , N} ,

∏
b∈S′
b ̸=a

(s∗b − t−1
1 s∗a)(s∗b − t−1

2 s∗a)(s∗b − t1t2s
∗
a) = 0 , ∀a ∈ S′ = {1, . . . , N} \ S .

(C.3)

Then sa = eϵ1s∗a for a ∈ S, and sa = eϵ2s∗a for a ∈ S′ still satisfies (C.2) and Ba(s, 0) = 0. As
in appendix C.1, Ba(s, 0) = 0 at linear order in ϵ1,2 implies that the vectors

(v1)a =

s∗a , a ∈ S ,

0 , a ∈ S′ ,
(v2)a =

 0 , a ∈ S ,

s∗a , a ∈ S′ ,
(C.4)

are right null vectors of J . To span the entire null space, one must construct as many of
these subsets S as possible. When trying to do so, one sees that the smallest subsets are
made up of 3 boxes arranged in either of the L shapes in figure 10.

After tessellating the partition with as many of the L shapes in figure 10 as possible,
each of the L shapes must be completed by boxes below and to the right such that the
entire partition is covered by subsets. For example, such a cover and the associated null
vectors are shown in figure 11.

It turns out that the null vectors arsing from rescalings, which we have discussed thus
far, are insufficient to span Nul(J). We also need null vectors of the form

(vb)a = δab , (C.5)
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which are associated with individual boxes b. To determine which boxes b are allowed, we
examine the eigenvalue equation

0= ∂cBa(s∗,0)(vb)c = ∂bBa(s∗,0)= δba

{
N∏

c=1
c ̸=a

(s∗c−t−1
1 s∗a)(s∗c−t−1

2 s∗a)(s∗c−t1t2s
∗
a)

−
(

s∗a−t
1
2
1 t

1
2
2

) N∑
c=1
c ̸=a

[t−1
1 (s∗c−t−1

2 s∗a)(s∗c−t1t2s
∗
a)+t−1

2 (s∗c−t−1
1 s∗a)(s∗c−t1t2s

∗
a)

+t1t2(s∗c−t−1
1 s∗a)(s∗c−t−1

2 s∗a)]
N∏

d=1
d ̸=a,c

(s∗d−t−1
1 s∗a)(s∗d−t−1

2 s∗a)(s∗d−t1t2s
∗
a)
}

+(1−δab)
(

s∗a−t
1
2
1 t

1
2
2

)
[(s∗b−t−1

2 s∗a)(s∗b−t1t2s
∗
a)+(s∗b−t−1

1 s∗a)(s∗b−t1t2s
∗
a)

+(s∗b−t−1
1 s∗a)(s∗b−t−1

2 s∗a)]
N∏

c=1
c ̸=a,b

(s∗c−t−1
1 s∗a)(s∗c−t−1

2 s∗a)(s∗c−t1t2s
∗
a) , ∀a=1, . . . ,N .

(C.6)

In the case a ̸= b, only the last two lines of (C.6) are present. If a is not any of the
neighbours of b drawn below,

a

b a

a

since (C.2) holds, there must exist c ̸= a, b such that (s∗c − t−1
1 s∗a)(s∗c − t−1

2 s∗a)(s∗c − t1t2s
∗
a) = 0,

and the product in the last line above is zero. The non-trivial requirements on b come from the
cases when a is one of the neighbours drawn above, and each of the cases shall be considered
individually. When a is to the top-left of b, either ia = ja = 1 and s∗a − t

1
2
1 t

1
2
2 = 0, or otherwise

there is always a box c above or to the left of a for which s∗c − t−1
1 s∗a = 0 or s∗c − t−1

2 s∗a = 0.
The last two lines in (C.6) are zero either way, and case where a is to the top-left of b does
not provide any constraints on the position of b. Moving on to the case when a is the right
neighbour of b, if a, b are not in the top row, there exists a box c on top of a satisfying
s∗c − t−1

1 s∗a = 0, making the product in the last line of (C.6) zero. Otherwise if a, b are in the
top row, imposing that the last two lines of (C.6) are zero is equivalent to imposing that there
must be a box c satisfying s∗c − t1t2s

∗
a = 0. In other words, either ib > 1 in which case there

are no additional constraints, or ib = 1 and there must exist boxes arranged in relation to b as

b a

· · ·

Lastly, when a is the bottom neighbour of b, if jb > 1, there exists another box c such that
s∗c − t−1

2 s∗a = 0 and the last two lines of (C.6) are zero. Otherwise if jb = 1, imposing that the
last two lines of (C.6) is zero is equivalent to imposing that there must be a box c satisfying
s∗c − t1t2s

∗
a = 0. In other words, either jb > 1 in which case there are no additional constraints,
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or jb = 1 and there must exist boxes arranged in relation to b as

b
...

a

We still have to consider the case a = b, where the first 3 lines of (C.6) must be zero. The
analysis is similar and one can show that there are no new constraints. Taking together the
constraints ∀a, the boxes b in the partition λ corresponding to null vectors of the form (C.5)
belong to the set

SR,ind = {b ∈ λ | (ib = 1 =⇒ ∃(2, jb + 2) ∈ λ ) ∧ ( jb = 1 =⇒ ∃(ib + 2, 2) ∈ λ)} . (C.7)

In the above, and also in subsequent expressions, (ia, ja) denotes a box with row number
ia and column number ja.

To recap, the null space of J contains two sets of vectors. The first are vectors generating
independent rescalings of the classical solution, corresponding to subsets which cover the
partition. The second are vectors corresponding to individual boxes in (C.7). We conjecture
that the null space is completely spanned by these vectors, i.e.

Nul(J) = spanC{vS , vb | S ∈ C, b ∈ SR,ind} , (C.8)

where C is a cover of the partition with the largest number of subsets. For the partition
in figure 11, C would be the set of 3 coloured subsets. Note that the vectors in (C.8) may
not be linearly independent since some subsets S might be entirely made out of individual
boxes in SR,ind. In that case, the vectors corresponding to these subsets S can be removed
from the spanning set. It has been numerically tested that (C.8) holds for all partitions
up to and including N = 16.

Left null vectors. It turns out that for the left null vectors, it is sufficient to consider
vectors corresponding to individual boxes a,

(va)c = δac , (C.9)

for which the eigenvalue equation is

(va)c∂sb
Bc(s∗, 0) = ∂sb

Ba(s∗, 0) = 0 , ∀b ∈ {1, . . . , N} . (C.10)

As in the previous analysis, one should understand the restrictions on the boxes a due
to (C.10). Essentially, one finds that either ia = ja = 1 and the box (2, 2) exists in the
partition, or at least 2 of the 3 neighbouring boxes drawn below must exist in the partition.

a
(C.11)

This is automatic for the interior boxes with ia > 1 and ja > 1. Else if ia = 1 and ja > 1 (since
ia = ja = 1 was already considered as a special case), the box with coordinates (ia +1, ja +1)
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must exist in the partition. Similarly if ja = 1 and ia > 1, (ia + 1, ja + 1) must exist in the
partition. More compactly, the boxes a satisfying (C.10) in the partition λ belong to

SL,ind = {a ∈ λ | (ia = 1 ∨ ja = 1) =⇒ ∃(ia + 1, ja + 1) ∈ λ} . (C.12)

Note that all right null vectors of the form (C.5) are also left null vectors since SR,ind ⊂ SL,ind,
but the converse is not true. It has been checked for all partitions up to N = 16 that

Nul
(
JT ) = spanC{va | a ∈ SL,ind} . (C.13)

We have also checked that the dimensions of the left and right null spaces are equal, as
expected for a square matrix J .

C.3 Choice of particular solution

In this section, we derive the particular solution (5.17) to (5.14). Firstly, let us find the
boxes a for which ∂uBa(s∗, 0) ̸= 0. Note that

∂vBa(s∗, 0) = ζt
1
2
1 t

1
2
2

(
s∗a − t

− 1
2

1 t
− 1

2
2

) N∏
b=1
b ̸=a

(s∗b − t1s
∗
a)(s∗b − t2s

∗
a)(s∗b − t−1

1 t−1
2 s∗a) ̸= 0

⇐⇒
N∏

b=1
b ̸=a

(s∗b − t1s
∗
a)(s∗b − t2s

∗
a)(s∗b − t−1

1 t−1
2 s∗a) ̸= 0 ,

(C.14)

because on the classical solutions, s∗a ̸= t
− 1

2
1 t

− 1
2

2 for any a. For the latter condition in (C.14)
to hold, a cannot have neighbouring boxes below, to the right, or to the top-left, i.e.

×
a ×
×

where the crossed boxes must be absent in the Young diagram associated with s∗. Since there
are no boxes below or to the right of a, it can be removed to leave a valid Young diagram; i.e.
it is a corner box as defined below (5.16). In addition, the condition that there is no box
to the top-left of a implies that it must be an exterior corner.

Next, we show that for exterior corners a, Jba = 0 for all b ̸= a. Explicitly, the matrix
entries are the same as in (C.6) but with a and b exchanged. Since a is an exterior corner,
there is no box b ̸= a such that s∗a − t−1

1 s∗b = 0, s∗a − t−1
2 s∗b = 0 or s∗a − t1t2s

∗
b = 0. On the

other hand, as for any box in the Young diagram, b must have a neighbouring box c ̸= a, b

(as we have just established, c ̸= a because a is an exterior corner) on its left or above it such
that s∗c − t−1

1 s∗b = 0 or s∗c − t−1
2 s∗b = 0, or b is the top-left box with s∗b − t

1
2
1 t

1
2
2 = 0. This means(

s∗b − t
1
2
1 t

1
2
2

) N∏
c=1

c ̸=a,b

(s∗c − t−1
1 s∗b)(s∗c − t−1

2 s∗b)(s∗c − t1t2s
∗
b) = 0 , (C.15)

and therefore Jba = 0.
If we choose ∆(1)

× s to have nonzero entries only in the fugacities corresponding to
the exterior corners a, Jba = 0 for b ̸= a implies that (5.14) simplifies to Jaa∆(1)

× sa =
−∂vBa(s∗, 0)∆v for each exterior corner a. This is clearly solved by (5.17).
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C.4 Derivation of the physical solution

In this section, we go through the steps to simplify (5.19), before solving it in the case where
s∗ corresponds to a 1-wheel partition. If we decompose ∆(1)s as in (5.16), (5.19) becomes

0 = 1
2∂sb

∂scBa(s∗, 0)∆(1)
× sb∆(1)

× sc + ∂sb
∂scBa(s∗, 0)∆(1)

× sb∆(1)
0 sc

+ 1
2∂sb

∂scBa(s∗, 0)∆(1)
0 sb∆(1)

0 sc + ∂v∂sb
Ba(s∗, 0)∆v

(
∆(1)

× sb +∆(1)
0 sb

)
, ∀a ∈ SL,ind ,

(C.16)

where we have used the basis (C.13) for the left null space of J . Due to the judicious
choice (5.17) that was made for ∆(1)

× s, there are various simplifications in (C.16). To see
this, one can analyse the explicit formula for the matrix of second derivatives contracted
with vectors v, ṽ:

∂sc∂sb
Ba(s∗,0)ṽcvb

= ṽa

N∑
b=1
b ̸=a

[(vb−t−1
1 va)(s∗b−t−1

2 s∗a)(s∗b−t1t2s
∗
a)+(s∗b−t−1

1 s∗a)(vb−t−1
2 va)(s∗b−t1t2s

∗
a)

+(s∗b−t−1
1 s∗a)(s∗b−t−1

2 s∗a)(vb−t1t2va)]
N∏

c=1
c ̸=a,b

(s∗c−t−1
1 s∗a)(s∗c−t−1

2 s∗a)(s∗c−t1t2s
∗
a)+(v↔ ṽ)

+
(

s∗a−t
1
2
1 t

1
2
2

) N∑
b=1
b ̸=a

[(vb−t−1
1 va)(ṽb−t−1

2 ṽa)(s∗b−t1t2s
∗
a)+(vb−t−1

1 va)(s∗b−t−1
2 s∗a)(ṽb−t1t2ṽa)

+(ṽb−t−1
1 ṽa)(vb−t−1

2 va)(s∗b−t1t2s
∗
a)+(s∗b−t−1

1 s∗a)(vb−t−1
2 va)(ṽb−t1t2ṽa)

+(ṽb−t−1
1 ṽa)(s∗b−t−1

2 s∗a)(vb−t1t2va)+(s∗b−t−1
1 s∗a)(ṽb−t−1

2 ṽa)(vb−t1t2va)]

×
N∏

c=1
c ̸=a,b

(s∗c−t−1
1 s∗a)(s∗c−t−1

2 s∗a)(s∗c−t1t2s
∗
a)

+
(

s∗a−t
1
2
1 t

1
2
2

) N∑
b=1
b ̸=a

[(vb−t−1
1 va)(s∗b−t−1

2 s∗a)(s∗b−t1t2s
∗
a)+(s∗b−t−1

1 s∗a)(vb−t−1
2 va)(s∗b−t1t2s

∗
a)

+(s∗b−t−1
1 s∗a)(s∗b−t−1

2 s∗a)(vb−t1t2va)]×
N∑

c=1
c ̸=a,b

[(ṽc−t−1
1 ṽa)(s∗c−t−1

2 s∗a)(s∗c−t1t2s
∗
a)

+(s∗c−t−1
1 s∗a)(ṽc−t−1

2 ṽa)(s∗c−t1t2s
∗
a)+(s∗c−t−1

1 s∗a)(s∗c−t−1
2 s∗a)(ṽc−t1t2ṽa)]

×
N∏

d=1
d ̸=a,b,c

(s∗d−t−1
1 s∗a)(s∗d−t−1

2 s∗a)(s∗d−t1t2s
∗
a). (C.17)

Consider the first term 1
2∂sb

∂scBa(s∗, 0)∆(1)
× sb∆(1)

× sc in (C.16). Note that SL,ind does not
exterior corners, so ∆(1)

× sa = 0 and the first two lines of (C.17) vanish. If we next look at
lines 3 to 6, they are zero if a is the top-left box. If not, a has at least 2 neighbours in
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the positions drawn in (C.11), and the product in line 6 will always include a contribution
from when c ̸= a, b is one such neighbour. Since the neighbours drawn in (C.11) precisely
satisfy s∗c − t−1

1 s∗a = 0, s∗c − t−1
2 s∗a = 0, or s∗c − t1t2s

∗
a = 0, this product must be zero. Lastly,

we consider lines 7 to 10. Since ∆(1)
× sa = 0, the summand is proportional to ∆(1)

× sb∆(1)
× sc,

which is only nonzero if b and c are exterior corners. By construction, these boxes b, c

cannot be neighbours of a in the positions drawn in (C.11). Therefore the (at least) 2
neighbours of a in positions (C.11) must be included in the product in the last line, which
is then zero. We conclude that

1
2∂sb

∂scBa(s∗, 0)∆(1)
× sb∆(1)

× sc = 0 . (C.18)

Due to almost identical arguments from analysing (C.17), which we will omit, one can
also show that

∂sb
∂scBa(s∗, 0)∆(1)

× sb∆(1)
0 sc = 0 . (C.19)

Next, we want to show that

∂v∂sb
Ba(s∗, 0)∆(1)

× sb = 0 , (C.20)

for which we need to analyze

∂v∂sb
Ba(s∗,0)vb = ζt

1
2
1 t

1
2
2 va

N∏
b=1
b ̸=a

(s∗b−t1s
∗
a)(s∗b−t2s

∗
a)(s∗b−t−1

1 t−1
2 s∗a)+ζt

1
2
1 t

1
2
2

(
s∗a−t

− 1
2

1 t
− 1

2
2

) N∑
b=1
b ̸=a

×[(vb−t1va)(s∗b−t2s
∗
a)(s∗b−t−1

1 t−1
2 s∗a)+(s∗b−t1s

∗
a)(vb−t2va)(s∗b−t−1

1 t−1
2 s∗a)

+(s∗b−t1s
∗
a)(s∗b−t2s

∗
a)(vb−t−1

1 t−1
2 va)]

N∏
c=1

c ̸=a,b

(s∗c−t1s
∗
a)(s∗c−t2s

∗
a)(s∗c−t−1

1 t−1
2 s∗a) . (C.21)

The first term above is directly zero since ∆(1)
× sa = 0. Note that for the boxes a ∈ SL,ind with

ia = 1 or ja = 1, (ia + 1, ja + 1) being in the partition also implies that the two neighbours
of a, (ia, ja + 1) and (ia + 1, ja) are in the partition. One of these neighbours must be part
of the product in the third line above, where either s∗c − t1s

∗
a = 0 or s∗c − t2s

∗
a = 0, making

the term in the second and third lines zero. In the leftover case where a is an interior box
with ia > 1 and ja > 1, the neighbour (ia − 1, ja − 1) to the top-left is guaranteed to exist
in the partition. Since ∆(1)

× sa = 0, the summand in square brackets above is proportional
to ∆(1)

× sb. For this to be nonzero, b must be an exterior corner, and (ia − 1, ja − 1) ̸= b.
Therefore c = (ia − 1, ja − 1) must be included in the product in the third line. Since
s∗c − t−1

1 t−1
2 s∗a = 0, the whole term is zero.

At this point, (C.16) is simplified to
1
2∂sb

∂scBa(s∗, 0)∆(1)
0 sb∆(1)

0 sc + ∂v∂sb
Ba(s∗, 0)∆v∆(1)

0 sb = 0 ∀a ∈ SL,ind . (C.22)

Next, we express ∆(1)
0 s in terms of the basis found in (C.8) as

∆(1)
0 s =

∑
S∈C

xSvS +
∑

b∈SR,ind

xbvb . (C.23)
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Substituting into (C.22) gives

1
2
∑

S, S′∈C
∂sb

∂scBa(s∗, 0)(vS)b(vS′)c xS xS′ +
∑
S∈C

∑
c∈SR,ind

∂sb
∂scBa(s∗, 0)(vS)b xS xc

+ 1
2

∑
b, c∈SR,ind

∂sb
∂scBa(s∗, 0)xb xc +

∑
S∈C

∆v ∂v∂sb
Ba(s∗, 0)(vS)b xS

+
∑

b∈SR,ind

∆v ∂v∂sb
Ba(s∗, 0)xb = 0 .

(C.24)

Since rescaling a subset S ∈ C of the gauge fugacities is an exact solution of Ba(s, 0) = 0,
we must have

1
2∂sb

∂scBa(s∗, 0)(vS)b(vS′)c = 0 ∀S, S′ ∈ C . (C.25)

In fact, any higher derivatives terms must also be zero when contracted with vS . This
leaves us with

∑
S∈C

∑
c∈SR,ind

∂sb
∂scBa(s∗, 0)(vS)b xS xc +

1
2

∑
b, c∈SR,ind

∂sb
∂scBa(s∗, 0)xb xc

+
∑
S∈C

∆v ∂v∂sb
Ba(s∗, 0)(vS)b xS +

∑
b∈SR,ind

∆v ∂v∂sb
Ba(s∗, 0)xb = 0 , ∀a ∈ SL,ind .

(C.26)

In the case when s∗ is associated with a 1-wheel partition whose Young diagram is shown
in figure 9, the right null space of J is 2-dimensional. The cover C only has one element
which is the whole partition itself, and we denote the corresponding coefficient as x. The
corresponding null vector is s∗ itself. SR,ind consists of the sole interior corner a which is
coloured blue in figure 9, and we denote the corresponding coefficient as y. For the left null
space, SL,ind contains the top-left box with coordinates (1, 1), which we will denote as b, as
well as the interior corner a. (C.26) then consists of the 2 equations

∂sc∂saBb(s∗, 0)s∗c xy = 0 , y

(1
2∂2

sa
Ba(s∗, 0) y +∆v∂v∂saBa(s∗, 0)

)
= 0 . (C.27)

The solution y = 0 is unphysical since s∗+∆(1)
× s+xs∗ still contains fugacities related by (5.20)

for arbitrary x. We are left with the other solution

x = 0 , y = −2∆v∂v∂saBa(s∗, 0)
∂2

sa
Ba(s∗, 0)

, (C.28)

which, when added to (5.17), is precisely (5.21).
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