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Abstract: Quantum entanglement as a non-local correlation between particles is critical to the trans-

mission of quantum information in quantum networks (QNs); the key challenge lies in establishing

long-distance entanglement transmission between distant targets. This issue aligns with percolation

theory, and as a result, an entanglement distribution scheme called “Classical Entanglement Perco-

lation” (CEP) has been proposed. While this scheme provides an effective framework, “Quantum

Entanglement Percolation” (QEP) indicates a lower percolation threshold through quantum pre-

processing strategies, which will modify the network topology. Meanwhile, an emerging statistical

theory known as “Concurrence Percolation” reveals the unique advantages of quantum networks,

enabling entanglement transmission under lower conditions. It fundamentally belongs to a different

universality class from classical percolation. Although these studies have made significant theoretical

advancements, most are based on an idealized pure state network model. In practical applications,

quantum states are often affected by thermal noise, resulting in mixed states. When these mixed

states meet specific conditions, they can be transformed into pure states through quantum operations

and further converted into singlets with a certain probability, thereby facilitating entanglement perco-

lation in mixed state networks. This finding greatly broadens the application prospects of quantum

networks. This review offers a comprehensive overview of the fundamental theories of quantum

percolation and the latest cutting-edge research developments.

Keywords: entanglement transmission; quantum communication; complex quantum network;

entangled state; percolation

MSC: 81P01

1. Introduction

With the rapid development of quantum information, quantum communication has
become a cutting-edge technology in the field of information transmission [1]. Compared
to classical communication methods, quantum communication offers a significantly more
reliable means of information transmission, primarily due to its superior confidentiality
and security features. In the context of increasing demands for information security
and privacy protection, quantum communication, with its unique properties of quantum
entanglement and superposition, is emerging as an effective way to solve the problem of
information transmission.

In quantum communication, qubits function as the fundamental units of information
transmission, with their entanglement playing a crucial role. Quantum entanglement
represents a unique non-classical correlation wherein qubits, regardless of the distance
between them, remain interconnected. Thus, a change in the state of one qubit will in-
stantly affect the state of another qubit. Qubits also play a significant role in quantum
communication as they can provide better channel capacity and stronger noise resilience,
which are key to achieving long-distance quantum communication [2–4]. In recent years,
the non-local entanglement properties of qubits have been verified, opening up new pos-
sibilities for constructing more efficient quantum communication systems [5–8]. This
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phenomenon underpins the theoretical framework for quantum teleportation, facilitating
non-local transmission of information between qubits through entangled states [9]. Given
this characteristic, quantum communication demonstrates significant potential for secure
information transmission, particularly in technologies such as quantum key distribution,
superdense coding, where the application of quantum entanglement substantially enhances
the confidentiality of the communication process.

However, despite quantum entanglement laying a solid theoretical foundation for
quantum communication, there are still many challenges in practical applications. The
fragility of quantum entanglement makes it prone to degradation when exposed to thermal
noise, and other quantum disturbances, causing the entangled states to lose their correlation.
The degradation effect becomes more pronounced as the transmission distance increases,
significantly undermining the reliability and stability of long-distance quantum communi-
cation. Therefore, in this field, the question of how to maintain and improve the quality of
entangled states during transmission has emerged as a critical research topic. To address
these challenges, researchers have proposed various optimization strategies, one of which
is the introduction of quantum repeaters. This method divides entangled transmission
into several shorter links, where entanglement can be “purified” and “swapped”, thereby
effectively enhancing the fidelity of entangled states [10,11]. This scheme extends the trans-
mission distance of quantum communication while significantly reducing the degradation
of entangled states caused by environmental interference, making it an effective tool for
entanglement distribution.

From the perspective of network science [12–14], researching how to optimize the
entanglement distribution within a complex network to achieve long-distance quantum
transmission efficiently and reliably has become a challenging, yet promising, research
field. The phenomenon of quantum percolation, as an important research direction in
quantum networks, is closely related to percolation theory. The entanglement distribution
exhibits similar behavior to percolation theory: when a sufficient number of entangled
links are formed within the network, an entanglement connection can be established
between the source node and the target node. This provides new theoretical support for
quantum communication and has sparked further research on how to achieve efficient
entanglement distribution.

This article primarily explores the percolation phenomena in quantum networks, orga-
nized as follows: In Section 2, we briefly introduce percolation theory in complex networks.
In Section 3, we analyze the basic model of a quantum network. In Section 4, we review
Classical Entanglement Percolation and Quantum Entanglement Percolation. In Section 5,
we delve into exploring Concurrence Percolation and study its critical phenomenon. In
Section 6, we discuss entanglement percolation in a mixed state network. These methods
not only provide a theoretical foundation for the design of quantum communication but
also offer new ideas and directions for the development of quantum networks.

2. Percolation Theory

Percolation theory was initially developed to study the flow behavior and characteris-
tics of fluids in porous media [15]. However, as research has progressed, its applications
have gradually extended beyond fluid mechanics to various fields such as statistical physics
and complex networks. Today, percolation theory has become an important tool for study-
ing randomness, phase transitions, and complex systems, particularly in analyzing changes
in network structure and connectivity [16].

One of the most classic percolation models is a square lattice, where percolation
employs probabilistic methods to investigate how the overall connectivity of a system
changes when random nodes or edges are removed. In this model, each edge in the lattice
is retained with a certain probability p and removed with a probability of 1 − p. As the
retention probability increases, when p reaches a critical value, a sufficiently large connected
cluster begins to form, and the system exhibits a percolation phenomenon, meaning that
one or more paths connect the two ends of the lattice (as shown in Figure 1).
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Lattice (p = 0.25) Lattice (p = 0.5) Lattice (p = 0.75)

Figure 1. The three graphs illustrate the connectivity of a square lattice network at different probabili-

ties p. When p = 0.25, there are only scattered clusters; at p = 0.5, a clear connected path spans the

entire lattice; while at p = 0.75, large-scale connected paths become even more apparent, with almost

all nodes being connected.

In the subcritical region, when the percolation probability p < pc, the nodes in the
lattice form many small and dispersed clusters, with almost no connections between each
cluster, making them isolated from one another. This low connectivity means that it is
almost impossible to find a complete path from one side of the lattice to the other, leading
the entire system to exhibit disordered behavior. The number of clusters ns decreases
rapidly as the cluster size increases, which can be described by an exponential decay
function [17],

ns ∼ s−τe−s/sξ , (1)

where s is the size of the cluster, and sξ is the characteristic size.
As the percolation probability approaches the critical point p ≈ pc, the system begins

to display specific critical behaviors, showing characteristics of transitioning from a locally
disconnected state to a globally connected state. Near this tipping point, some properties
follow power-law distributions [16,18,19], such as

The size of the giant cluster S,

S ∼ |p − pc|β; (2)

The correlation length ξ,
ξ ∼ |p − pc|−v; (3)

The mean cluster size ⟨s⟩,
⟨s⟩ ∼ |p − pc|−γ; (4)

The characteristic size sξ ,

sξ ∼ |p − pc|−1/σ; (5)

with the following relationships:

β = τ−2
σ , (6)

γ = 3−τ
σ . (7)

Here, the exponents β, v, γ, σ, and τ are known as critical exponents [16–18]. This
power-law relationship reflects the universal behavior of the system near the critical point,
indicating that the statistical properties of the percolation system are independent of the
specific shape of the lattice but are determined by some universal parameters.

In the supercritical region, where p > pc, a massive connected cluster begins to form.
As p continues to increase, the average size of connected clusters also grows, and the vast
majority of nodes join the largest cluster, forming the dominant structure of the system.
At this point, the entire system exhibits high global connectivity, allowing for connection
between distant nodes.
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Percolation theory provides an effective method for studying the transition of complex
systems from local random behaviors to global structural changes. It has demonstrated
significant theoretical and practical value in interdisciplinary research areas, such as the
spread of infectious diseases and network robustness, and offers a fresh perspective for the
development of quantum communication.

3. Quantum Network

A qubit is the fundamental unit for transmitting quantum information, and quantum
entanglement between qubits is a unique phenomenon in quantum information processing
that allows two or more particles to be closely correlated at the quantum level. This
entanglement enables instant information sharing between particles, even when they are
far apart, playing a crucial role in quantum communication [20].

The Bell state is a maximally entangled two-qubit state. In this state, the correlation
between two qubits is maximized, allowing perfect information transmission in quantum
communication. Different quantum states exhibit varying degrees of entanglement, which
can affect transmission. Therefore, we need specific measurement tools to describe their
degree of entanglement [21].

For a bipartite pure state, it can be expressed using Dirac notation as

|ψi(θ)⟩ = cos θ|00⟩+ sin θ|11⟩, (8)

where 0 ≤ θ ≤ π/4. In such a pure state, the entanglement degree can be described using
the Concurrence , defined as

C(|ψ⟩) =
√

2[1 − Tr(ρ2
A)], (9)

where ρA is the reduced density matrix [22,23]. The density matrix of a pure state ρψ can
be written as

ρψ = |ψ(θ)⟩⟨ψ(θ)| = (cos θ|00⟩+ sin θ|11⟩)(cos θ⟨00|+ sin θ⟨11|). (10)

Expanding this expression gives

ρψ = cos2 θ|00⟩⟨00|+ cos θ sin θ|00⟩⟨11|+ cos θ sin θ|11⟩⟨00|+ sin2 θ|11⟩⟨11|. (11)

Taking the partial trace of ρψ over one subsystem yields

ρA = TrB(ρψ) = cos2 θ|0⟩⟨0|+ sin2 θ|1⟩⟨1|, (12)

which can be written as

ρA =

(

cos2 θ 0

0 sin2 θ

)

. (13)

Thus, C(|ψ(θ)⟩) = sin 2θ, with a range of [0, 1]. When θ = π/2, c = 1, representing
the maximally entangled pure state, i.e., the singlet. If θ = 0, it clearly indicates no
entanglement [23].

In quantum communication, quantum entanglement is highly sensitive to the external
environment and is prone to degradation due to noise, fiber loss, and other external factors,
leading to a gradual decrease in transmission efficiency over long distances. Quantum
repeaters use “entanglement swapping” technology to connect multiple segments of entan-
gled states, allowing the quantum state to be “recovered” after a certain distance, enabling
long-distance distribution of entangled states. Therefore, similar to a network model,
quantum networks also have a graph-like structure (as shown in Figure 2). However,
in this case, the nodes consist of multiple qubits, and each edge (or connection) in the
network represents a pure entangled state |ψi(θ)⟩ established between two qubits, with θ

determining the degree of entanglement in this pure state.
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Figure 2. Small dots represent individual qubits, while large dots represent nodes in the network,

with each node typically consisting of multiple qubits. The edges represent the entangled pure state

formed between two qubits.

4. Entanglement Percolation in Quantum Networks

4.1. Classical Entanglement Percolation

In quantum networks, Classical Entanglement Percolation (CEP) offers a new per-
spective for analyzing the entanglement transmission of quantum states. This theory is
similar to traditional percolation theory, but its core concept is leveraging the properties of
quantum entanglement to establish connections between nodes in the network [24].

In this framework, each edge represents the same entangled pure state. Using the
Procrustean method [25], each partially entangled pure state can be transformed into a
singlet with a certain probability p = 2 min(sin2 θ, cos2 θ) = 2 sin2 θ, known as the Singlet
Conversion Probability (SCP). This means that for each edge, there is a probability p that it
will be retained, and a probability 1 − p that it will break. As the conversion probability
p increases, when it reaches a critical value pth, a giant cluster forms within the quantum
network. Based on this, by using entanglement swapping, two connected singlet edges can
be transformed into a singlet that connects their endpoints, thus enabling any two nodes in
the cluster to be linked through a singlet. When p is large enough, it is possible to find a
connected path between the boundaries, thus enabling entanglement transmission.

It becomes clear that CEP is essentially a problem of path connectivity, which can be
described using the “sponge-crossing” probability (Psc). This represents the probability
of finding a connected path between distant boundaries. For irregular networks that lack
obvious boundaries, the boundaries are defined as two nodes Source and Target, with the
shortest distance between them being the diameter of the network.

According to classical percolation theory, for sufficiently large networks and for p ⊂
[0, 1], there always exists a critical probability p, at which a giant cluster appears in the
network that can effectively connect the two boundaries. In other words, pth is the minimum
value that makes Psc > 0, representing the percolation threshold

pth = inf
{

p ⊂ [0, 1] | lim
n→∞

PSC > 0
}

. (14)

The percolation threshold represents the critical point in a network for transitioning
from local to global access. When the entangled resources, connectivity density, or trans-
mission capacity in the network reach this threshold, the quantum network can enable
global quantum communication or entanglement distribution. So, how do we calculate the
percolation threshold pth for a quantum network? Specifically, Psc is actually a function of
the variable p. In a series-parallel network, the series-parallel rules [23],

{

Series: p = p1 p2 · · · ;
Parallel: 1 − p = (1 − p1)(1 − p2) · · · ,

(15)

can be used to calculate Psc, similar to the way resistances are calculated in electrical
networks, thereby finding pth. For example, in CEP, the percolation thresholds vary
across different lattice structures. For common lattice types, such as a square lattice,
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honeycomb lattice, and triangular lattice, their percolation thresholds are 0.670, 0.777, and
0.545, respectively. These values are expressed in units of (π/4)−1θ [23].

However, real quantum networks are often complex in structure and may contain
loops and multiple connections, requiring higher-order calculation rules to handle these
situations.

Fortunately, the properties of Classical Entanglement Percolation allow us to focus on
finding the probability of a maximally entanglement path between the two boundaries,
making Monte Carlo simulations an effective tool. In simulations, we randomly assign
conversion probabilities p to each edge and calculate whether a maximally entanglement
path between the source and target can form at a given p. As the number of simulations
increases, we can gather statistics on the connectivity probability for each p value, and thus
plot the relationship between Psc and p. When we observe that Psc suddenly jumps from
zero to a positive value, we can determine the critical probability.

4.2. Quantum Entanglement Percolation

In fact, it has been shown that entanglement transmission does not necessarily require
reaching the above threshold, meaning that CEP is not the optimal solution. Through certain
preprocessing operations and adjustments to the network topology, a lower percolation
threshold may be achieved, a method known as Quantum Entanglement Percolation
(QEP) [26–28].

For two entangled states, |ψi(θ1)⟩ and |ψi(θ2)⟩, each containing one qubit located at
the same node, by performing an entanglement swapping operation, these two entangled
states can be transformed into a new pure state and then converted into a singlet state. In
this case, the total success probability is given by

p = min
{

2 sin2 θ1, 2 sin2 θ2

}

, (16)

which is equivalent to the probability of transforming the state with the least entanglement
in |ψi(θ1)⟩ and |ψi(θ2)⟩ into a singlet using the Procrustean method, and this is optimal [29].

Furthermore, if two nodes are connected by two pure states, applying majorization [30]
can further optimize this transmission process, resulting in the highest conversion probability

p = min
{

1, 2(1 − cos2 θ1 cos2 θ2)
}

. (17)

For certain specific network structures, the QEP can reduce thresholds through opti-
mization operations, thereby improving the entanglement transmission efficiency. However,
this does not imply that QEP is the optimal solution in all cases. In fact, the effectiveness of
QEP depends on multiple factors, including the topology of the network, the nature of the
entangled states between nodes, and the preprocessing operations employed. Compared to
classical situations, quantum networks exhibit their unique “advantages”, achieving more
efficient transmission through these quantized operations.

5. Concurrence Percolation in Quantum Networks

5.1. Concurrence Percolation Theory

In fact, although QEP can lower the threshold of the CEP, it is still not the optimal
result. This suggests that compared to classical theory, quantum networks have their own
uniqueness, and QEP cannot fully explain the percolation phenomenon.

The core of both CEP and QEP is to find a singlet path between the source and target.
To reduce this necessary condition, an alternative scheme called Concurrent Percolation
Theory (ConPT) has been proposed [23,31]. This scheme focuses on the concurrence
between quantum states, which ranges between 0 and 1, rather than the probability p
of singlet conversion. Similar to CEP, the concurrence between the source and target is
described by CSC, the “sponge-crossing” concurrence, and cth is defined as its corresponding
threshold. In the thermodynamic limit, CSC tends toward 0 in the subcritical region and 1
in the supercritical region. The threshold is defined as
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cth = inf
{

C ⊂ [0, 1] | lim
n→∞

CSC > 0
}

. (18)

Moreover, for the same θ, cth is always smaller than pth [17].
Interestingly, concurrent entanglement percolation also follows certain series-parallel

rules [23]:







Series: c = c1c2 · · · ;

Parallel: 1+
√

1−c2

2 = max

{

1
2 ,

1+
√

1−c2
1

2
1+
√

1−c2
2

2 · · ·
}

.
(19)

In a series-parallel network, the above formula can be directly applied to calculate the
corresponding CSC. However, for networks containing loops, other calculation methods
are required. Based on the idea of equivalent resistance, a method called the Star-Mesh
transform has been proposed to replace unknown high-order rules, allowing for the equiv-
alent calculation of CSC (as shown in Figure 3). Under ConPT, the thresholds for a square
lattice, honeycomb lattice, and triangular lattice are 0.42, 0.51, and 0.32, respectively, which
are clearly lower than those obtained under CEP [23].

(a) Star-Mesh transform

(c) Parallel rule

(b
) S

e
rie

s ru
le

S
T

S
T

S
T

S
T

Figure 3. (a) Star-Mesh transform compresses a star graph with loops (n nodes) into a complete graph

with fewer nodes (n-1 nodes), thereby simplifying the topology. During this process, the connectivity

equivalence between two specified nodes S and T is preserved. (b,c) Series rule and parallel rule:

When multiple quantum channels (or connections) are connected in series or parallel, their overall

equivalent transmission characteristics can be calculated using the series rule or parallel rule.

However, the calculation of the Star-Mesh transform is a double-recursive process, and
as the network size increases, the complexity grows exponentially, making it impractical
to compute for larger network structures. To solve this issue, researchers proposed a fast
approximation method combining the Sm approximation and parallel approximation [32].

Since entanglement percolation is essentially a problem of path connectivity [33], paths
of different lengths have varying impacts on the total concurrence. As the path length
increases, the influence of a single path gradually weakens, so considering only the shortest
m paths can basically reflect the percolation of the entire network. Meanwhile, the parallel
approximation ignores overlapping edges between different paths and treats them as being
in parallel. It has been verified that the C′

SC obtained from the parallel approximation is
always an upper bound of the actual value CSC. By combining these two approximation
methods, the selected m paths can be fully regarded as being in parallel, while ignoring
their internal shared edges. After calculation, an approximate threshold will also emerge.
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In the thermodynamic limit, this approximate threshold will gradually approach the
true cth. Simulations have verified that the results obtained by the approximation method
are very close to the theoretical values, which greatly accelerates the computation process
and provides a feasible solution for solving the percolation threshold of large scales, greatly
advancing the study of ConPT.

5.2. Critical Phenomena in Concurrence Percolation

Percolation theory is closely related to critical exponents. In typical lattice networks
(such as Bethe lattices, square lattices, honeycomb lattices, etc.), Concurrence Percolation
also exhibits critical phenomena, with these critical exponents being independent of the
specific details of the network [17,23].

To investigate the critical phenomena of Concurrence Percolation in quantum net-
works, a type of hierarchical scale-free network called (U, V) flowers was chosen as the
research model (as shown in Figure 4). This type of network effectively simulates the topo-
logical features of many real-world networks, such as social networks and the internet [34].
The (U, V) flower network is a hierarchical scale-free network with self-similar properties,
and it achieves this by iteratively replacing each edge with the same structure [35,36].
Nodes are connected through two parallel paths with lengths U and V, satisfying U ≤ V.
This repeated structure generation ensures that the network maintains similar topological
features across different levels.

(a) n=1 (b) n=2

S T TS

Figure 4. (U, V) flower: The nth generation (U, V) flower is shown in the figure, with (a) n = 1 and

(b) n = 2, where the blue paths represent the shorter path U = 2, and the orange paths represent the

longer path V = 3.

Through numerical simulations and theoretical derivations, it was found that the
relationship between longer and shorter paths has markedly different effects on the two
types of percolation.

For classical percolation, the critical probability can be expressed as

pth ≃ 1 −
(

ln
U

U − 1

)

V−1 + O
(

V−2
)

. (20)

For Concurrence Percolation, the critical value is

cth ≃ 1 −
(

1

4
ln V

)

V−1 + O
(

V−1 ln ln V
)

. (21)

This indicates that, in classical percolation, shorter percolation paths play a crucial
role near the critical point, while in Concurrence Percolation, longer paths have a more
significant impact on the percolation properties [37].

The asymptotic behavior of critical exponents shows significant differences between
classical percolation and Concurrence Percolation. In classical percolation, the indices ν,
d − d f , and β are primarily determined by the shorter path length U, indicating that shorter
paths dominate the percolation process. In contrast, for Concurrence Percolation, the main
factors affecting ν and d f are related to the longer path V, with slow corrections appearing,



Mathematics 2024, 12, 3568 9 of 12

which leads to cancellations in the calculation of β, resulting in a constant β = 1 that is
independent of the values of U or V.

From theoretical and statistical physics perspectives, Concurrence Percolation and
classical percolation belong to different universality classes. This difference in universality
classes arises from how the two percolation problems handle the increase of length scale V,
which controls U. As V approaches infinity, the critical exponents of classical percolation
decouple from V and depend only on the shorter length scale U. In contrast, the critical
exponents of Concurrence Percolation depend on both U and V. This distinction extends
to the behavior of critical thresholds: as V approaches infinity, both pth and cth converge,
but the convergence of the concurrence threshold cth is slower, indicating that concurrence
has greater resilience as V increases [38,39].

These findings emphasize the role of longer paths in quantum networks: although
entanglement decays exponentially along longer paths, if the paths are abundant, longer
paths still significantly contribute to the overall connectivity of the quantum network.

6. Entanglement Percolation in Mixed State Networks

The entanglement percolation of mixed states is a theoretical model that describes
the behavior of entanglement transmission in mixed state quantum networks. Previous
research has primarily focused on the theory of Concurrence Percolation in pure state
quantum networks, which is somewhat similar to classical percolation theory. However,
the assumption of pure state networks is overly idealized, as in the real world, due to
factors such as thermodynamic noise, quantum states are often mixed states. Therefore, to
better understand the entanglement transmission behavior in actual quantum networks, it
is necessary to extend the existing theoretical framework to handle mixed states [40,41].

For mixed states, they cannot be described by a single state vector but are instead
represented by a density matrix, usually written as

ρ = ∑
i

pi|ψi⟩⟨ψi|, (22)

satisfying the normalization condition ∑i pi = 1.
In conjunction with CEP, the problem of entanglement transmission in a mixed state

network also involves finding a path that can eventually generate a singlet. To generate a
singlet between any two nodes in a mixed state quantum network, these two nodes need to
be connected by mixed states of a particular form [42]. Specifically, the form of this mixed
state should be expressed as

ρ(α, γ, λ) = λ|α, γ⟩⟨α, γ|+ (1 − λ)|01⟩⟨01|, (23)

where |α, γ⟩ represents a pure state that can be written as

|α, γ⟩ =
√

α|00⟩+
√

1 − α − γ|11⟩+√
γ|01⟩, (24)

with parameters 0 ≤ λ ≤ 1.
In this framework, if two nodes are connected by two quantum states satisfying the

form ρ(α1, γ1, λ1) and ρ(α2, γ2, λ2), through pure state conversion measurement (PCM),
there is a probability pc = λ1λ2(α1(1 − α2 − γ2) + α2(1 − α1 − γ1)) that a pure state

|α′, γ = 0⟩ =
√

α′|00⟩+
√

1 − α′|11⟩ can be obtained [41], where

α′ =
min(α1(1 − α2 − γ2), α2(1 − α1 − γ1))

α1(1 − α2 − γ2) + α2(1 − α1 − γ1)
. (25)

Next, by using the Procrustean method, a singlet can be obtained with a probability
p = 2 min(1 − α′, α′). Thus, the final SCP can be expressed as

pscp = 2λ1λ2 min[α1(1 − α2 − γ2), α2(1 − α1 − γ1)]. (26)
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For more complex network structures, where a path may contain multiple quantum
states, entanglement can be transmitted through an entanglement swapping operation.
Specifically, this is achieved by performing standard Bell basis measurements between the
two quantum states connected along the path. There are four possible outcomes of the
measurement, respectively, |Ψ±⟩ and |Φ±⟩. When the result is |Ψ±⟩, the new state becomes

ρ

(

α1α2

h±
,
(
√

α1γ2 ±
√

γ1(1 − α2 − γ2))
2

h±
,

λ1λ2h±
2p(Ψ±)

)

, (27)

which still satisfies the specific mixed-state form mentioned above, and thus entanglement
swapping can continue. However, if the result is |Φ±⟩, the form of the mixed state can-
not be preserved, and the process cannot proceed further. Therefore, as the number of
entanglement swapping increases, the fidelity of the final result rapidly declines, making
long-distance entanglement transmission very difficult [10].

To improve the transmission efficiency of mixed state entanglement percolation, one
can consider setting multiple edges on each bond to meet the conditions for generating
a singlet. This can transform the problem of entanglement percolation in a mixed state
network into CEP. Similar to QEP, some preprocessing operations, such as the swapping
procedure or the square protocol, can be used to lower the percolation threshold, thereby
achieving more efficient entanglement transmission.

Through these methods, the efficiency of entanglement percolation in mixed state
quantum networks can be improved, reducing the loss that occurs during long-distance
transmission and providing a more practical theoretical foundation for future quantum
communication and quantum information processing.

7. Discussion

Percolation theory provides a novel framework for investigating connectivity and
phase transition phenomena in quantum networks. Due to the unique features of quantum
mechanics, such as the non-locality of quantum entanglement, percolation in quantum
networks presents greater complexity than in classical networks.

A central issue in the study of percolation phenomena in quantum networks is deter-
mining the percolation threshold. In complex quantum networks, the parallel approxima-
tion method may introduce considerable errors, as it fails to adequately account for the local
complexities of the network. These errors may be non-negligible, particularly in practical
applications where imprecise threshold estimates can result in inefficiencies in quantum
communication or the misallocation of network resources. Consequently, reducing errors
in the parallel approximation method or developing more accurate and efficient algorithms
has become a critical research challenge [43,44].

Additionally, under specific conditions, the percolation threshold in quantum net-
works can be reduced through the optimization of quantum resource allocation. This
observation suggests that, with the same level of resources, an optimized network structure
can facilitate more efficient global quantum communication. This leads to a fundamental
question: in the limiting case, is it possible to determine the minimum percolation thresh-
old? If so, how can this exact limit be calculated, and what is its physical significance?

Although Concurrence Percolation offers a new theoretical framework for quantum
network design, it remains limited to pure state networks. Extending the concept of Con-
currence Percolation to mixed state quantum networks has become another key challenge.
Since the degree of entanglement in mixed states is typically lower than in pure states,
achieving global connectivity may require more entanglement resources and paths. There-
fore, does a well-defined percolation threshold exist in mixed state quantum networks as
well? How does it compare to the threshold in pure state?

Addressing these questions could lead to further optimization in the design of quan-
tum networks and provide valuable theoretical insights for the practical implementation of
quantum information processing in the future.
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