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École Doctorale 564

Physique en Île-de-France
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Abstract

Integrated quantum photonics is one of the main routes towards the realization of scalable
quantum information processing with applications ranging from quantum computation
and simulation to secure communications. In this work, we address some of the current
challenges in integrated quantum photonics using the AlGaAs platform. Thanks to its
second order optical nonlinearity, high refractive index and large electro-optic coefficient,
this material is particularly well suited for the on-chip generation and manipulation of
entangled photons pairs at room temperature and telecom wavelengths. This dissertation
is divided in two parallel research directions: on the one hand the integration of novel
functionalities on a monolithic AlGaAs quantum photonic chip and on the other hand the
application of AlGaAs sources of entangled photons to quantum communications. In the
first project, we successfully demonstrate the monolithic integration of an AlGaAs source
with, on the one hand, an electro-optic delay line and, on the other hand, a broadband
polarizing mode splitter of 50 nm bandwidth. In the second project, we take advantage of
the high-quality and spectrally broadband polarization-entangled state generated by the
source to build a reconfigurable multi-user quantum communication network. We imple-
ment entanglement-based quantum key distribution between up to 8 users with flexible
bandwidth management in a fully-connected topology including long-distance fiber links
supporting positive finite-key rates for up to 75 km. These results show the potential of
the AlGaAs platform for future scalable photonic quantum information processing.

Keywords: quantum optics, integrated photonics, quantum communications

Résumé

La photonique quantique intégrée est l’une des principales approches pour la réalisation de
technologies quantiques polyvalentes et flexibles. Les applications les plus notables vont
du calcul quantique et la simulation quantiques aux communications sécurisées. Dans
cette thèse, nous relevons certains des défis actuels de la photonique quantique intégrée
avec l’aide de la plate-forme AlGaAs. Grâce à sa non-linéarite optique du second ordre,
son haut indice de réfraction et son important coefficient électro-optique, ce matériau est
particulièrement adapté à la génération et la manipulation sur puce de paires de photons
intriqués à température ambiante et aux longueurs d’onde télécom. Ce travail de thèse
est divisé en deux axes de recherches parallèles : d’une part l’intégration monolithique
de nouvelles fonctionnalités sur une puce photonique quantique AlGaAs et d’autre part
l’application des sources AlGaAs de photons intriqués aux communications quantiques.
Dans le premier projet nous démontrons l’intégration monolithique d’une source AlGaAs
avec, d’une part, une ligne à retard electro-optique et, d’autre part, un séparateur de
faisceau polarisant doté d’une bande passante de 50 nm. Dans le second projet, nous
tirons parti du haut taux d’intrication et de la large bande de l’état quantique émis par
notre source pour construire un réseau de communication quantique multi-utilisateur re-
configurable. Nous implémentons un protocole de distribution de clé quantique exploitant
l’intrication dans un réseau comprenant jusqu’à 8 utilisateurs avec une gestion flexible de
la bande passante et à des distances allant jusqu’à 75 km en tenant compte des effets de
clés finies. Ces résultats montrent le potentiel de la plateforme AlGaAs dans le contexte
de l’information et des technologies quantiques.

Mots-clé: optique quantique, photonique intégrée, communications quantiques
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Résumé

La photonique quantique intégrée est l’une des principales approches pour la réalisation
de technologies quantiques polyvalentes et flexibles. Au cours des deux dernière décennies,
le domaine des technologies quantiques a reçu une attention grandissante de la part de la
communauté scientifique. Les applications les plus notables vont du calcul quantique et
la simulation quantiques aux communications sécurisées et à la métrologie. Les premières
démonstrations d’avantage quantique dans des tâches de calcul quantique, telles que le
boson sampling, ou de métrologie, comme la détection d’ondes gravitationnelles, ont vu le
jour très récemment, dans les cinq dernières années. Ces découvertes de premier plan sont
soutenues par des programmes de financement à grande échelle, tant au niveau européen,
avec le Quantum Flagship, que national, comme par exemple le Plan quantique français.
Différentes plateformes physiques peuvent être utilisées pour l’implémentation des tech-
nologies quantiques, chacune présentant des avantages pour certains types de tâches. Les
qubits supraconducteurs, les atomes froids ou les spins à l’état solide sont particulièrement
adaptés au calcul quantique. Les photons, quant à eux, se prêtent naturellement à la prop-
agation sur de longues distance ainsi qu’à la miniaturisation sur puce photonique, ce qui
en fait un système polyvalent avec un haut potentiel dans les communications quantiques,
la métrologie mais également le calcul ou la simulation quantique. Ces applications re-
posent sur les propriétés quantiques de la lumière ayant été mises en évidence dans les
expériences pionnières des années 1980 et 1990 telles que l’interférence à un et deux pho-
tons ou la génération d’états comprimés ainsi que d’états intriqués. Au cours des deux
dernières décennies, la réalisation de protocoles d’information quantique sur des plate-
formes photoniques intégrées s’est imposée comme une direction de recherche majeure
pour les technologies quantiques. En effet, il est possible de réaliser des puces miniatures
où la lumière se propage dans des guides d’ondes micrométriques et où son état est ma-
nipulé à l’aide de composants optiques intégrés (lames séparatrices, lignes à retard, lames
d’onde). Cette approche ouvre la voie vers une mise à l’échelle des preuves de principe
dans les domaines du calcul et des communications quantiques en combinant la stabilité
intrinsèque des circuits photoniques intégrés et leur haute densité de composants.

Dans cette thèse, nous relevons certains des défis actuels de la photonique quantique
intégrée avec l’aide de la plate-forme AlGaAs. Grâce à sa non-linéarité optique du sec-
ond ordre, son haut indice de réfraction et son important coefficient électro-optique, ce
matériau est particulièrement adapté à la génération et la manipulation sur puce de paires
de photons intriqués à température ambiante et aux longueurs d’onde télécom. Ce tra-
vail de thèse est divisé en deux axes de recherches parallèles : d’une part l’intégration
monolithique de nouvelles fonctionnalités sur une puce photonique quantique AlGaAs et
d’autre part l’application des sources AlGaAs de photons intriqués aux communications
quantiques.

Les source intégrées AlGaAs de paires de photons sont réalisées sous la forme de
guides d’onde ruban composé d’un empilement de couches épitaxiales formant un coeur
entouré de deux miroirs de Bragg. Le dispositif, dont la largeur est d’environ 5 µm et la
longueur de 2mm, est fabriqué soit par lithographie UV puis gravure chimique soit par
lithographique électronique et gravure sèche ICP. Le guide d’onde supporte des modes
guidés dans le proche infrarouge (775 nm) et aux longueurs d’onde télécom (1550 nm). La
structure épitaxiale est conçue de façon à obtenir des conditions d’accord de phase (phase-
matching) optimales permettant réaliser des processus optiques non-linéaires d’ordre deux.
Parmi eux, la fluorescence paramétrique (SPDC), où un photon dans le proche infrarouge
est spontanément converti en deux photons télécom, peut être utilisée pour la génération
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de paires de photons uniques. En exploitant l’accord de phase de Type II, le processus
de SPDC permet d’émettre des photons télécom intriqués en polarisation directement à
la sortie du guide d’onde. Les propriétés des sources AlGaAs sont mesurées d’abord dans
le régime classique. L’estimation des pertes de propagation par mesure de la transmission
du guide d’onde permet d’évaluer la qualité de la fabrication. Ensuite, la valeur de la
longueur d’onde de dégénérescence du processus de fluorescence paramétrique est déduite
des spectres de seconde harmonique. Enfin les performances de la sources sont quantifiées
dans le régime de comptage de photons. Le taux de génération interne (PGR) et le
rapport signal sur bruit (CAR) sont obtenus par la mesure d’histogrammes de corrélations
temporelles entre les détections des deux photons. Pour réaliser cette mesure, les photons
générés par la source AlGaAs sont séparés à l’aide d’un séparateur de faisceau fibré et
détectés sur des détecteurs de photons uniques à fil supraconducteur. Les corrélations
temporelles sont effectuées à l’aide d’une électronique de comptage (TDC). Nous mesurons
des performances de : PGR = 6.9 × 106 s−1, CAR = 80. Un troisième indicateur de
performance de notre source est la largeur de bande d’émission des photons. Celle-ci est
mesurée par effet Hong-Ou-Mandel (HOM). Dans cette expérience, après avoir séparé les
photons, l’un d’entre eux est retardé à l’aide d’une ligne à retard en espace libre avant
d’interférer avec le premier photon sur une lame séparatrice fibrée 50/50. En mesurant
le nombre de cöıncidences par unité de temps en fonction du retard temporel τ appliqué,
on constant une décroissance autour de τ = 0. En mesurant la largeur à mi-hauteur,
on remonte à la largeur spectrale de la source, ici 60 nm. Le caractère large-bande de la
source est un atout pour la réalisation de communications quantiques multi-utilisateurs
ainsi que pour l’exploration de protocoles fondés sur des états de haute dimension.

Après avoir exposé le fonctionnement et les performances de la source intégrée AlGaAs
de photons intriqués, nous nous attachons à montrer l’intégration monolithique d’une
ligne à retard électro-optique avec une source AlGaAs. L’arsenure de galllium (GaAs)
disposant d’un coefficient electro-optique de second ordre non nul, la valeur de l’indice de
réfraction du matériau peut être modifiée par application d’un champ électrique statique.
En exploitant cet effet dans un guide d’onde AlGaAs, il est possible de contrôler l’indice
de propagation du mode fondamental TE et ainsi d’appliquer un retard de phase à ce
mode. Ce mécanisme permet d’obtenir une ligne à retard intégrée dont le déphasage est
déterminé par la valeur du champ electrique. Celle-ci est réalisée par dépôt métallique
sur le guide d’onde d’électrodes d’or grâce auxquelles le champ statique est imposé. La
caractérisation du dispositif est effectué par des mesures de transmission du guide d’onde
pour différentes valeurs de tension appliquée. La ligne à retard présente une tension π/2
de 9V, ce qui permet de contrôler l’état des photons directement sur la puce en utilisant
des composants électroniques standards.

En outre, nous sommes parvenus à intégrer un séparateur de polarisation large-bande
avec une source AlGaAs de Type II sur une même puce monolithique. Le séparateur de
polarisation est un coupleur directionnel dans lequel la biréfringence intrisèque des guides
d’onde introduit une différence entre les longueurs de couplage TE et TM. A l’aide de
simulations numériques, nous identifions une région dans l’espace des paramètres (largeur
des guides et espacement entre les guides) pour laquelle la lumière se propageant dans
les modes TE et TM quitte le coupleur par des ports opposés. Nous avons fabriqué
ce dispositif par lithographie électronique et gravure sèche ICP puis nous avons effectué
une caractérisation dans le régime classique (pertes de propagation, taux de séparation
de polarisation, seconde harmonique). Nous avons ainsi mesuré un taux de séparation
excédant les 90% sur une bande spectrale de 50 nm. En régime quantique, nous avons
pu démontrer l’émission de paires de photons dans la structure et leur séparation sur le
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séparateur de polarisation intégré. Enfin, nous avons caractérisé l’indiscernabilité spectrale
des photons à la sortie de la puce en réalisant une interférométrie Hong-Ou-Mandel. Nous
avons mesuré une visibilité de 80%, intrinsèquement limitée par la biréfringence de la
source, ce qui montre que nous parvenons à séparer de manière quasi-déterministe les
paires de photons directement sur puce sans altérer leur état quantique. Dans un futur
projet, ces deux dispositifs (ligne à retard et séparateur de polarisation) peuvent être
combinés sur une même puce pour réaliser un interféromètre de Mach-Zender intégré.
Cette architecture permettrait de réaliser la génération et le contrôle sur puce d’états
intriqués dans différents degrés de liberté tels que la polarisation, le mode spatial ou la
fréquence.

Dans la dernière partie de ce manuscrit nous exploitons la haute qualité d’intrication
en polarisation et la large bande spectrale de l’état généré par notre source SPDC AlGaAs
pour construire un réseau de communication quantique reconfigurable. L’intrication est
une ressource centrale pour le domaine de la cryptographie quantique car elle permet de
garantir la sécurité d’un protocole de distribution de clé dans des liens longue distance et
dans des réseaux multi-utilisateurs sans avoir recours à des nœuds fiables. Pour montrer
le potentiel des sources intégrées AlGaAs dans ce contexte, nous avons commencé par
mesurer la bande spectrale de l’état à deux photons généré par la source. Pour cela, nous
avons séparé les photons sur une lame séparatrice fibrée 50/50 puis nous avons inséré un
filtre accordable dans l’un des bras de sortie. En mesurant le nombre de cöıncidences en
fonction de la position centrale du filtre, nous pouvons obtenir une estimation de la bande
passante de l’état. Ici, nous mesurons une largeur spectral de 60 nm autour d’une longueur
d’onde centrale de 1555.6 nm dans la bande télécom C+L. Ce resultat est cohérent avec la
mesure d’effet Hong-Ou-Mandel décrite dans la première partie du manuscrit. Les 60 nm
de bande passante de la source correspondent à 76 canaux ITU standards de 100GHz.
Nous avons ensuite montré la haute qualité de l’intrication en polarisation en mesurant
une fidélité à un état de Bell de plus de 95% sur une bande spectrale de 26 nm. Nous avons
ensuite utilisé un filtre multiport programmable (WSS), très répandu dans l’industrie des
télécommunications classiques, afin de réaliser la distribution d’intrication dans un réseau
reconfigurable. En effet, le WSS permet de diviser l’état quantique des deux photons en
canaux dont la longueur d’onde centrale et la largeur peuvent être définies librement puis de
les distribuer entre différents ports de sortie fibrés correspondant aux différents utilisateurs
du réseau. Ainsi il est possible d’augmenter la capacité du réseau en diminuant la largeur
des canaux sans avoir à modifier le dispositif expérimental. Nous démontrons ainsi la
distribution d’intrication entre 4, 5 et 8 utilisateurs sur des canaux respectivement de
200GHz, 100GHz et 50GHz. Nous appliquons ensuite notre architecture à la distribution
de clé quantique par le protocole BBM92 en montrant un faible taux d’erreurs (< 2%) et
un haut taux de clé secrète (30-40 bps) sur un ensemble de 13 canaux fréquentiels standards
ITU de 100GHz. Nous avons reproduit ces mesures en ajoutant des liens fibrés longue
distance et des atténuateurs variables entre les utilisateurs. Ainsi nous avons pu obtenir
un taux de clé positive en incluant les effets de taille finie jusqu’à une distance de 75 km.
Enfin, nous illustrons la flexibilité de notre architecture réseau en adaptant l’allocation
de bande passante à certaines contraintes structurelles telles que le déséquilibre entre les
distances des liens inter-utilistateurs. L’ensemble de ces résultats montre le potentiel de la
plateforme AlGaAs pour l’implémentation de technologies quantiques polyvalentes ainsi
que leur intégration dans les futurs réseaux quantiques à grande échelle. Dans la continuité
de ce projet, l’un des objectif à moyen terme sera d’augmenter la capacité du réseau dans
des expériences en laboratoire ainsi que d’utiliser une source AlGaAs pour effectuer une
démonstration réaliste de distribution de clé sur un lien fibré déployé en région parisienne.
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Introduction

Scientific context: Quantum technologies

Quantum information (QI) is a research domain at the forefront of 21st century science. It
has emerged over the last three decades as a very diverse field at the crossroads between
basic science and applications.

At the heart of this burgeoning field is quantum mechanics, one of the most fasci-
nating scientific revolution of the last century. QI uses the peculiar features of quantum
systems as a resource to perform tasks that are classically impossible or very hard to
accomplish. Highly sought-after long-term applications include unconditionally secure
communications, the speedup of computationally intensive algorithms or the efficient sim-
ulation of complex solid-state and molecular systems. The quantum phenomena at play
range from the superposition principle and non-cloning theorem to wave-particle duality
and entanglement.

Many significant milestones have been recently achieved such as the first demonstration
of quantum advantage for computing tasks [1, 2], the deployment of quantum communi-
cation schemes on satellite infrastructure [3], gravitational wave detection using squeezed
light [4] or loophole-free tests of quantum non-locality [5, 6, 7]. On the political side, the
last couple of years have seen the creation of international and national funding plans such
as the European Quantum Flagship or the french “Plan quantique”. Now that many ap-
plications seem at reach, the term “Quantum technologies” is gaining momentum as a
avatar for QI. In the literature, the possible applications of quantum technologies are usu-
ally divided into the following branches: quantum computing, quantum communication,
quantum metrology and sensing and quantum simulation.

The current state of the field of quantum technologies is often referred to as the“Second
quantum revolution”. When it was formulated at the beginning of the 20th century, quan-
tum mechanics aimed at explaining unsolved problems of classical physics such as the
stability of electronic orbits in atoms or the black-body radiation spectrum. Building on
the newly established quantum theory, physicists in the 1960’s were able to predict some
of the electronic and optical properties of materials. This led to major technological appli-
cations that are now part of our everyday life such as lasers and transistors. This turnover
was later coined “First quantum revolution”. In the “Second quantum revolution” which,
began in the late 1990’s and early 2000’s with the emergence of QI, the counter-intuitive
features of quantum mechanics are used directly as a resource. This has been made pos-
sible partly thanks to recent advances in nanofabrication techniques, cryogenics or single
photon sources and detectors which enabled the demonstration of increasingly complex
and sensitive quantum phenomena.

We can list several families of physical platforms that are currently used for the imple-
mentation of quantum technologies. A first example is atomic systems. These include for
instance ultracold atoms or trapped ions. The inherent quantum nature, high sensitivity
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and spectacular degree of control that has been achieved over these systems put atoms at
the heart of many applications in quantum computing and quantum simulation [8, 9, 10].
Solid-state quantum systems form another distinct class of physical platform for QI. In-
deed, many advanced applications in quantum computing have been realized using the spin
of single electrons or defect vacancies in crystals [11, 12, 13]. Superconducting circuits
emerged in the last decades as yet another test bed for QI. They quickly became the most
advanced platform in the race for building quantum computers [14, 15]. Lastly, another
approach is to use photons, elementary particles of light, as carriers of information. It
is the historical physical system that was studied by the pioneers of QI in the 1980’s.
Owing to their high speed and immunity to decoherence, photons are suited for quantum
communications as well many applications in quantum computing and simulation [16].

Quantum information experiments with photons: landmarks

The present work deals with photon-based quantum technologies which rely on the multiple
attractive properties of this physical system. In this section we give a brief historical
overview of this field following the introduction of [17]

Photonic quantum information takes its root in the early developments of quantum
optics. In the second half of the 20th century, the very first experimental evidences of
non-classical states of light were discovered. In 1956, the famous Hanbury Brown and
Twiss experiment [18] on intensity interferometry with light collected from stars yielded
results that could only be explained later on using the quantum theory of photodetection
developed by Roy Glauber in the 1960’s. A first experimental signature of photon an-
tibuching was then observed by Kimble, Dagenais and Mandel in 1977 [19] followed eight
years later by the demonstration of emission of squeezed light by Slusher and cowork-
ers [20]. Finally, the first experiments on single and two-photon interference, probing the
wave-particle duality of light, came to light at the end of the 1980’s [21, 22].

One of the first milestone of quantum information is the experimental violation of
Bell’s inequality by Aspect, Grangier and Roger in 1981. The team of physicists used
polarization-entangled photons to prove a very general result: the experimental signature
of non-local correlation in the measurement of entangled states [23, 24]. This showed
that the bizarre features of quantum mechanics were not mere theoretical artifacts but ac-
tual experimentally accessible resources. From this starting point, Bennett and Brassard
proposed in 1984 the first major protocol for quantum cryptography (BB84) that is still
widely used today [25]. In this scheme, the security of a cryptographic key is guaranteed
by the combination of wave-particle duality and the non-cloning theorem. This was fol-
lowed by two other proposals in which the security of the key stems from the entanglement
between pairs of particles [26, 27]. All those schemes were experimentally demonstrated
throughout the 1990’s [28, 29, 30, 31]. Another historical landmark in quantum informa-
tion with photons is the experimental teleportation of photons in 1997 by Bouwmeester
and coworkers in Innsbruck [32] .

Over the course of the 1990’s many experimental efforts were also devoted to the
demonstration of entanglement in new degrees of freedom of photons, among which energy-
time [33, 34] or orbital angular momentum [35]. This decade also saw the development
of new sources of single photons and entangled photons such as quantum dots [36] or
parametric photon-pair sources [37].

This opened the way to the major breakthroughs of the 2000’s, which brought the
proof-of-concept experiments of the previous decade into the realm of practical applica-
tions. Quantum communications emerged as a major field of research with the develop-
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ment increasingly secure and device-independent protocols on the one hand, and large
scale field tests on the other hand [38]. The quest for a quantum repeater, which could
overcome photon loss in long-distance propagation while preserving the quantum proper-
ties of light, is also a long-standing goal of the community. Interfaces between solid-state
or atomic system and photons, eventually moving towards the first operational quantum
networks are also developing very fast [39, 40, 41]. Quantum computing with photons has
also been a very active topic from the first demonstration of CNOT gates [42] and Shor’s
algorithms [43, 44] to boson sampling [45] and finally the recent achievement of quantum
advantage in a photonic implementation of boson sampling [2]. Impressive results have
been achieved as well in photonic quantum simulation such as complex quantum walks [46]
or the simulation of molecular dynamics [47]. Another field that received growing attention
in the previous decade is metrology and sensing using photons. Landmark experiments
include the detection of gravitational waves using squeezed light [4] or more recently the
first demonstrations of distributed quantum sensing [48, 49]. Lastly, the photonic plat-
form is also the cornerstone of many experimental works on fundamental tests of quantum
mechanics such as the first loophole-free tests of quantum non-locality mentioned in the
previous section or experiments aimed at closing more advanced loopholes using basis
settings from random human choices [50] or light collected from distant quasar [51].

Integrated quantum photonics

All of these applications rely on recent advances at the basic science level ranging from
fundamental quantum optics to the development of new materials. Integrated quantum
photonics is an example where the study of quantum phenomena is pushed forward by
engineering challenges.

Many of the seminal experiments of photonic quantum information were performed
using bulk optical components such as non-linear crystals and free-space interferometers.
Even though this approach has the advantage of a great control over the setup and high
photon detection count rates, it offers limited scalability. Indeed, protocols involving a
large number of photons or high-dimensional Hilbert spaces often require the stabilization
of complex and space-consuming interferometric setups.

Integrated photonics offers an alternative route for the realization of scalable quantum
information processing with light. The main idea is to integrate optical functionalities
directly on a single miniature chip. Indeed, light can be tightly confined at the microm-
eter scale and routed in nanofabricated waveguides. In addition, quantum gates can be
performed on several degrees of freedom using simple building blocks such as electro-optic
or thermal phase shifters and directional couplers, all of which are well-known in classical
optics. Moreover, sources of single and entangled photons as well as single photon detec-
tors can be integrated onto photonic chips. Hence, over the last 15 years, the integration of
an increasingly complex combination of photonic components and the on-chip realization
of intricate quantum information tasks have been demonstrated. Those recent advances
are summarized in Refs. [16, 52, 53].

Here, we give an overview of the different physical platforms for the implementation
of on-chip quantum information processing and briefly compare their strengths and weak-
nesses.

Silicon-based technologies This family of materials is one of the most widely used
for quantum photonics. Their common denominator are their cheap fabrication,
mature technology transfer from the complementary metal-oxide-semiconductor
(CMOS) industry and third order optical non-linearity. Entangled photon pairs and
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squeezed light can be generated through spontaneous four-wave mixing (SFWM).
The two main Silicon-based platforms are Silicon-on-Insulator (SOI) and Silicon
nitride (Si3N4).

The SOI platform is currently the main candidate for the race to an all-optical
quantum processor. Its high refractive index allows light confinement at sub-micron
scale waveguides hence a resulting small footprint. Programmable phase shifters
are implemented by locally changing the refractive index of the waveguide using
thermo-optic effects. The SOI platform has been proven to support the integration
of multiple sources and reconfigurable quantum gates on a single chip, with appli-
cations to quantum computing [54] and quantum communications [55, 56]. Finally,
the SOI platform is compatible with the integration of superconducting nanowire
single photon detectors (SNSPDs) [57]. The main disadvantage of SOI for quantum
photonics is its high losses at telecom wavelengths (3 dB cm−1) [54].

Silicon nitride (Si3N4) is another common Silicon-based platform for quantum pho-
tonics that benefits from ultra-low propagation losses (0.2 dB cm−1) [58]. It has
been used to generate high-dimensional entangled states using SFWM [59] as well
as universal gates [58, 60]. The integration of on-chip superconducting detectors
and microelectromechanical systems have been also been successfully implemented
in [61].

Silica-based materials Silica on Silicon (SoS) was historically the first platform to be
used for the realization of on-chip quantum gates thanks to its ultra low losses
(0.05 dB cm−1) [62]. It has a weak third order susceptibility that can be used to
generate photon pairs through SFWM [63]. Just like in Silicon, programmable gates
can be implemented using thermo-optic phase-shifters [64]. The main drawback of
this platform is the low refractive index contrast between the core of the waveguide
and the substrate which results low integration density.

Other glass materials such as borosilicate glass can be used for photonic circuits us-
ing femtosecond laser writing (typical propagation losses of 0.8 dB cm−1) [65]. This
technique provides easy fabrication of complex waveguide circuits that can be ar-
ranged in a 2D [46] or 3D architecture [66]. This is the platform of choice for on-chip
boson sampling [45] and quantum walks [67]. Thermo-optic phase-shifters are also
used to perform programmable gates [68] however the lack of optical non-linearity
in the fabricated waveguides prevents the on-chip integration of parametric photon
sources.

Lithium Niobate (LiNbO3) Thanks to its large χ(2) non-linearity and low losses at
telecom wavelengths (0.1 dB cm−1 [69]), LiNbO3 was one of the first integrated plat-
form for the generation of entangled-photon pairs on a photonic chip using spon-
taneous parametric downconversion (SPDC) [70]. Periodical poling of a LiNbO3

waveguide (ppLN) is used to achieve quasi phase-matching condition for efficient
photon-pair generation. Phase shifters can be realized by taking advantage of the
large electro-optic effect of the material. Hence reconfigurable quantum circuits and
on-chip two photon interference have been demonstrated using this platform [71, 69].
ppLN has also been used as a source in several entanglement-based quantum com-
munications experiments [72, 73] or for on-chip generation of squeezing [74]. In
addition, LiNbO3 can be bonded on Silicon wafers which enables the hybrid integra-
tion of LiNbO3 sources and Si-based quantum photonic circuits [75].

III-V materials Semiconductor III-V materials such as AlGaAs and InAs are ubiquitous
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in classical and quantum photonics. They typically have a high refractive index
allowing for tight light confinement in micrometer scale waveguides. Sources of non-
classical light can be integrated on III-V chips using quantum dots that serve as
bright single photon sources [76]. In AlGaAs the inherently high second and third
order optical non-linearities makes it possible to engineer bright parametric sources
of entangled photon pairs that have been demonstrated using SPDC in non-linear
Bragg reflector waveguides [77, 78] or, more recently, SFWM in AlGaAs-on-insulator
(AlGaAsOI) microring resonators [79]. The propagation losses in Bragg reflector
waveguide are of the same order as in SOI, typically 2 dB cm−1. This is not an
intrinsic limitation of the material and it could be improved with an optimized
epitaxial growth process. As an example, in AlGaAsOI the losses can be lowered
down to around 0.4 dB cm−1 which compares with ultra-low loss platforms such as
Si3N4. Like LiNbO3, AlGaAs features a strong electro-optic coefficient that can be
used to engineer delay lines [80]. The fabrication of on-chip SNSPDs on top of GaAs
waveguide has also been demonstrated in Ref. [81].

One of the most appealing features of III-V materials is their compliance with elec-
trical injection, which stems from their direct electronic bandgap. This opens the
possibility to drastically reduce the device footprint by integrating the pump laser
directly on chip, as was demonstrated in Refs. [82, 83]. Last but not least, III-V
active components can also be integrated onto Silicon chips [84]. This promising
approach brings together the best of both worlds: the mature technology and cheap
fabrication of Silicon waveguide circuits on the one hand and the electrical injection
and second order non-linearity of III-V on the other hand.

III-V quantum photonic chips have been recently used in lab and deployed quantum
communications experiments [85, 86] as well as for quantum computing application
such as the generation of grid states [87, 88] or cluster states [89] and for the quantum
simulation of exotic particle exchange statistics [90, 91].

Encoding quantum information in photons

Light represents one of the most versatile system for quantum information processing.
There are two main approaches for encoding information in quantum states of the elec-
tromagnetic field. The first one, which is referred to as the continuous variable approach
(CV), exploits the state of the quadratures of a many-photon field using squeezed light
and homodyne detection [92]. CV photonic quantum information is one of the main candi-
dates for the implementation of one-way quantum computing [93] and has also been used
to build resource-efficient quantum key distribution architectures [94].

The other branch of photonic quantum information processing, which is the one that
is studied in this manuscript, is the so-called discrete variable approach (DV). In this
framework, information is encoded in the degrees of freedom of single photons [16]. In
what follows, we give a brief overview of the main DV encoding schemes.

Polarization This degree of freedom is perhaps the most widely used for DV quantum
information thanks to its convenient manipulation and the possibility to easily gen-
erate photon pairs in polarization-entangled states using parametric sources [37, 95]
or single emitters [96]. The polarization state of single photons provides a natural
implementation of a quantum two-level system (“qubit”) which has been used in
various fields of quantum information from the first violation of Bell’s inequality [24]
to quantum communications [97], as in the work presented in this manuscript.
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Time-bin In this scheme a quantum bit is encoded in the arrival time of a single photon at
a detector. The manipulation of the quantum state is implemented with the help of
an unbalanced Mach-Zender interferometer, with a tunable time-delay that is much
larger than the photon coherence time. This apparatus is used to perform arbitrary
rotations on the state of a time-bin qubit [98]. Thanks to its robustness to noise
and to dispersion in optical fibers, this encoding is commonly used in long-distance
quantum key distribution [99]. Moreover, this degree of freedom can be extended
to dimensions greater than two, which has been proposed as a way to increase the
capacity and robustness to noise of quantum communication protocols [100, 101].

Path encoding This approach uses the occupation of a spatial mode of the electromag-
netic field by a single photon as a mean to encode information. In this picture, each
spatial mode is associated to a qubit where the 1 state corresponds to the mode being
occupied and the 0 state to the mode being unoccupied. This scheme can be easily
implemented in integrated waveguide circuits using directional couplers and phase
shifters to connect the different spatial modes of an interferometer and to manipulate
the path-encoded quantum states of photons [102, 54]. This approach, being suited
to high-dimensional encoding, has been used to perform generation and manipulation
of high-dimensional bipartite entangled states [103], simulation of quantum walks in
disordered lattices [67] as well as molecular dynamics of a four-atom molecule [47]
or boson sampling [45, 104].

Frequency encoding In this framework, the spectrum of single photons is used to en-
code information. For instance, the spectrum of a photon can be divided into distinct
spectral bins that define the basis of a frequency-bin qubit. At telecom wavelengths,
the quantum state of a frequency-bin qubit is easily manipulated using off-the-shelf
components such as phase modulators and pulse shapers [105, 59, 106]. This ap-
proach represents the frequency analogue of time-bin encoding and lends itself to a
natural extension to high-dimensionality. Indeed, photon pairs that are frequency-
entangled over a large Hilbert space can be conveniently generated in integrated
photonic chips using SFWM in microring resonators [107] or SPDC in III-V ridge
waveguides [87].

Orbital angular momentum (OAM) This type of encoding relies on the transverse
mode profile of single photons featuring twisted wavefronts. In this scheme, the
quantum states are labeled by the number of wavefront twists per wavelength ex-
perienced by light along the propagation direction. This number is an integer that
can, in principle, assume an infinite number of value, meaning OAM is also suited
to to high-dimensional quantum information protocols [108]. Notable applications
of OAM encoding include quantum key distribution with enhanced channel capac-
ity [109] and high-dimensional Bell inequalities violation [110]

Current challenges and research directions

The future prospects and challenges for integrated quantum photonics are manifold. Many
efforts are currently being devoted to developing and integrating an increasing number of
functionalities on a single chip. This includes the monolithic integration of multiples
sources of non-classical light, reconfigurable interferometers and on-chip detectors as well
as hybrid chips combining devices from different platforms. Coupling photonic chips to
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other physical systems such as ions or mechanical resonators also offer great promises for
the integration of on-chip quantum memories [111, 112].

Another direction is going to high-dimensional quantum systems. This includes for
instance the increasing of the number of spatial modes in integrated waveguide circuits
that are used for quantum simulation or boson sampling as well as investigating inherently
high-dimensional degrees of freedom such as frequency for example. The recent results on
integrated quantum frequency combs offer great promises for the development of scalable
frequency-based quantum computing and communication [107]. More exotic states involv-
ing multiple degrees of freedom, such as hyper-entangled states which can be generated
and manipulated on-chip are also a promising resource for future quantum information
protocols [113, 114].

Finally, the integration of quantum photonic chips in quantum network architectures
is another major research prospect that is being currently pushed forward. Indeed the
robustness of integrated photonic components make them ideal candidates for low-cost
sources and detection units for quantum communication both in fiber networks [55, 85]
and free-space links [115] as well as potential on-board components for satellites-based
networks [116].

Scope of this work and outline of the manuscript

In this dissertation, we address some of the current challenges in integrated quantum
photonics using the AlGaAs platform, both on the device engineering side and on the
quantum network side. To this end, two main projects were conducted in parallel: on the
one hand the integration of novel functionalities on AlGaAs quantum photonic chips and
on the other hand the application of AlGaAs parametric sources of entangled photons to
quantum communication.

In the first project, we successfully demonstrated the monolithic integration of an
AlGaAs source with, on the one hand, an electro-optic delay line and, on the other hand, a
broadband polarizing mode splitter of 50 nm bandwidth. In the second project, carried out
in collaboration with Eleni Diamanti at Sorbonne Université and Fabien Boitier at Nokia
Bell Labs, we took advantage of the high-quality and spectrally broadband polarization-
entangled state generated by the source to build a reconfigurable multi-user quantum
communication network. We demonstrated entanglement-based quantum key distribution
between up to 8 users with flexible bandwidth management in a fully-connected topology
including long-distance fiber links supporting positive finite-key rates for up to 75 km.

The manuscript is organized as follows. In Part I we review the main theoretical tools of
classical and quantum optics that are relevant to our work before describing in Part II the
working principle, design and characterization of the AlGaAs entangled photon pair source
used in our experiments. Part III and Part IV are dedicated respectively to the realization
of an integrated electro-optic delay line and a broadband polarization mode splitter on
an AlGaAs quantum photonic chip. In Part V we report on our demonstration of an
AlGaAs-chip-based reconfigurable multi-user quantum communication network. Finally,
we summarize the results presented in this dissertation and outline some perspectives for
future works.
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Chapter 1

Introduction to nonlinear optics
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In this chapter, we give a brief overview of nonlinear optics. We describe qualitatively
the different second order processes that will be encountered in this work then give a
classical mathematical description in the framework of Maxwell’s equations. We introduce
the concept of phase-matching which plays a central role in the design of our AlGaAs
photon-pair sources.

1.1 Second order parametric processes

Nonlinear optics is a branch of physics studying phenomena which arise when intense
electromagnetic fields interact with matter. The basic physical picture behind nonlinear
optics is that when an optical medium is subject to an electromagnetic of sufficiently high
magnitude the response of this medium becomes nonlinear, implying that new fields are
created at a frequency that is different from the excitation frequency. Nonlinear optical
processes are of paramount importance in quantum optics as they are routinely used to
generate quantum states of light, such as in the present work. They admit a natural

3
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2

Figure 1.1: Sketch of the four main second order non-linear processes that are encoun-
tered in this manuscript. SFG: Sum Frequency Generation, SHG: Second Harmonic Gen-
eration, DFG: Difference Frequency Generation, OPA: Optical Parametric Amplification
and SPDC: Spontaneous Parametric Downconversion.
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interpretation in terms of photons, the elementary quanta of light. Indeed, nonlinear
phenomena can be seen as an exchange of photons between different frequency modes. In
this dissertation, we are dealing with second order processes, or three-wave mixing, where
only three distinct frequencies are involved in the conversion process.

A sketch of the different possible three-wave mixing processes is presented in Fig. 1.1.
In sum frequency generation (SFG), two incident photons at frequencies ω1, ω2 create a
third photon at frequency ω3. Second harmonic generation (SHG) is a special case of
SFG for which the incident frequencies are identical. Hence a field at frequency ω is used
to create a frequency-doubled field at 2ω. In difference frequency generation (DFG), the
interaction of incident photons at frequencies ω1, ω2 lead to the creation of a photon at
ω3 = ω1 −ω2 and two photons at ω2. In addition to frequency conversion, DFG results in
an amplification of the seed field ω2 which is referred to as optical parametric amplification
(OPA). Finally, in spontaneous parametric downconversion (SPDC), an incident photon
ω3 is downconverted into two lower energy photons of frequencies ω1, ω2, also called signal
and idler. By convention, signal refers to the photon with the highest energy.

In a frequency conversion process the total energy of the photons of the interacting
modes has to be conserved. Since the energy of a photon at frequency ω is given by ℏω
with ℏ the reduced Planck constant, in all of the listed processes, energy conservation
imposes:

ℏω1 + ℏω2 = ℏω3. (1.1)

SPDC stands out among the rest of the second order processes as it is the only one
which cannot be described in fully classical terms. It can be seen as the quantum limit of
DFG where, instead of using a classical seed field at ω2 to trigger the nonlinear process,
it is the quantum fluctuation of vacuum which couple to the pump at ω1 to ignite the
downconversion process. Thanks to its intrinsic quantum nature, SPDC is one of the
most common and convenient way of generating quantum states of light such as squeezed
states or entangled photon-pairs. A description of SPDC using the formalism of quantum
optics will be given in Chapter 2.

Finally, third order nonlinear processes, which involve four interacting fields are also
widely used in classical and quantum optics. In particular spontaneous four wave mixing
(SFWM) is a way of generating entangled photons in materials that lack second order
optical nonlinearity, such as Silicon.

1.2 The nonlinear dielectric polarization

In the following three sections, we give a classical description of nonlinear optical processes
from Maxwell’s equation following Ref. [117]. We start by introducing the nonlinear
dielectric polarization vector and show how its behavior can explain frequency conversion
phenomena.

Let us recall Maxwell’s equations in a non-magnetic dielectric material in the absence
of charges and currents:

∇×E+
∂B

∂t
= 0, (1.2)

∇×B− µ0
∂D

∂t
= 0, (1.3)

where E is the electric field, D the electric displacement field, B the magnetic induction
and µ0 the vacuum magnetic permeability. The response of an optical medium to an
external electromagnetic field can be described by the dielectric polarization P. When
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subject to an electric field, the electronic cloud of the atoms constituting the medium gets
polarized in the direction of this external field. The dielectric polarization P is essentially
proportional to the induced electric field resulting from the displacement of electronic
charges in the material. This quantity relates to E and D as

D = ϵ0E+P. (1.4)

where ϵ0 is the permittivity of vacuum. At low electric fields P is linear in E but, as the
magnitude increases, a higher order response can be observed. Mathematically, we assume
that P can be expanded as [117]:

P = ϵ0χ
(1)E︸ ︷︷ ︸

PL

+ ϵ0χ
(2)EE+ ϵ0χ

(3)EEE︸ ︷︷ ︸
PNL

+... (1.5)

In this expression χ(1),χ(2) and χ(3), are respectively second, third and fourth order
tensors the tensor product is implicit. The first term is simply the linear response of the
medium, which by definition is proportional to the applied electric field. χ(1) is called
the first order dielectric susceptibility. The second term is the second order nonlinear
response, which is quadratic in the applied field and will be responsible for three-wave
mixing. χ(2) is called the second order dielectric susceptibility. Similarly, the third term
models the third order non-linear response of the medium that gives rise to four-wave
mixing processes.

In what follows, we are only concerned with second order processes and we only retain
the second order term:

PNL = χ(2)EE (1.6)

The vector PNL has a very direct physical interpretation according to Maxwell’s equations.
By taking the curl of (1.2) and plugging it in (1.3), we obtain the following inhomogeneous
wave equation describing the propagation of electromagnetic waves through the medium:

∇2E− n2

c2
∂2E

∂t2
= µ0

∂2PNL

∂t2
, (1.7)

with c the speed of light in vacuum, µ0 the magnetic permeability and n the refractive
index of the medium. We see that the time derivative of PNL acts as a source term in
the wave equation. This shows us that, thanks to the nonlinear response of the materials,
fields at different frequencies are being created which can be, in principle, of different
frequency that the driving field.

1.3 Simple physical picture of three-wave mixing

To see this more explicitly, we show from a simple example how the different classical pro-
cesses described in Fig. 1.1 emerge naturally from the mathematical form of the nonlinear
polarization vector. We take the simplest case of a homogeneous and isotropic medium
under applied field E(t). The nonlinear dielectric polarization given in equation Eq. (1.6)
reduces to a simple scalar quantity

PNL = ϵ0χ
(2)E2(t), (1.8)

where χ(2), in this case, is a scalar. We assume that the incident field E(t) is the sum of
two independent monochromatic fields at frequencies ω1 > ω2:

E(t) = E1(t) + E2(t),

Ei(t) = Eie
iωit + c.c., i = 1, 2.

(1.9)
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The nonlinear dielectric polarization becomes:

PNL = ϵ0χ
(2)
[
E2

1(t) + E2
2(t) + 2E1(t)E2(t)

]
. (1.10)

When expanding the individual terms of the sum we obtain:

E2
1(t) =|E1|2 + E2

1e
i2ω1t + c.c., (1.11)

E2
2(t) =|E2|2 + E2

2e
i2ω2t + c.c., (1.12)

E1(t)E2(t) =E1E2e
i(ω1+ω2)t + c.c. (1.13)

+ E∗
1E2e

i(ω1−ω2)t + c.c.. (1.14)

In Eqs. (1.11) and (1.12), we see that the two incident fields at ω1, ω2 have been frequency
doubled to 2ω1, 2ω2 which describes second harmonic generation (SHG). SFG appears
in Eq. (1.13) where we notice that that the phase factor depends on the sum of the two
frequencies ω1 + ω2. Finally the last term, Eq. (1.14), models DFG since it features an
oscillation at the difference frequency ω1 − ω2.

1.4 Nonlinear optics in crystals

Most optical media used for non-linear optics are crystals. In this kind of material the
above description where χ(2) and E are scalars is too simplistic. Indeed, crystals can
be birefringent, meaning the induced dielectric polarization vector can depend on the
direction of the applied electric field. Hence, in this case, χ(2) is a third rank tensor whose
symmetries reflects the atomic structure of the unit cell of the crystal. This tensor will
couple the different components of the electric field through non-linear processes.

We derive the expression for the nonlinear dielectric polarization in a general
anisotropic medium. Again, we consider the case of three interacting fields at frequencies
{ωℓ}ℓ=1,2,3 fulfilling energy conservation ω3 = ω1 + ω2. Since we are interested in
describing the propagation of waves, we include the spatial dependence of the electric
field in the equations. The electric field and nonlinear dielectric polarization inside the
medium consists of the sum of terms at different frequencies that can be written :

E(r, t) =
1

2

3∑
ℓ=1

[Eℓ(r, t) + c.c.] , (1.15)

PNL(r, t) =
1

2

3∑
ℓ=1

[
PNL

ℓ (r, t) + c.c.
]
, (1.16)

where we assume that the interacting fields are monochromatic waves:

Eℓ(r, t) = Aℓ(r)e
−i(ωℓt−kℓ·r), ℓ = 1, 2, 3. (1.17)

The variable kℓ denotes the wave-vector of the field at frequency ωℓ. Thanks to the linearity
of Eq. (1.7) we obtain a inhomogeneous wave equation for each frequency component ℓ:

∇2Eℓ −
n2

c2
∂2Eℓ

∂t2
= µ0

∂2PNL
ℓ

∂t2
, ℓ = 1, 2, 3. (1.18)

Here we do not seek a general solution to this system of coupled equations. A more
comprehensive approach can be found for example in Ref. [117]. In what follows we are
simply interested in isolating the different terms corresponding to the non-linear processes
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1.5. Phase-matching conditions

of interest. For each value of ℓ, the source term has to be evaluated separately by keeping
the terms in PNL which satisfy energy conservation. In the case we are considering (ω3 =
ω1 + ω2) only three terms are relevant to describe the possible nonlinear processes:

PNL
3,i (r, t) = ϵ0

∑
jk

χ
(2)
ijkE1,j(r, t)E2,k(r, t), [SFG] (1.19)

PNL
1,i (r, t) = ϵ0

∑
jk

χ
(2)
ijkE3,j(r, t)E

∗
2,k(r, t), [DFG] (1.20)

PNL
2,i (r, t) = ϵ0

∑
jk

χ
(2)
ijkE3,j(r, t)E

∗
1,k(r, t), [DFG]. (1.21)

where the subscripts i, j, k span the three spatial directions i, j, k ∈ {x, y, z} and the star
denotes complex conjugation. These equations assume a general form for the dielectric
susceptibility tensor χ(2). However in a crystal the exact form of χ(2) can be inferred from
the symmetries of its crystalline unit cell. The structure of this tensor will dictate which
components of the electric field can be coupled together through three-wave mixing. For
each nonzero matrix element of χ(2), there is a corresponding allowed non-linear process.
We will detail the case of GaAs in Section 4.2.2.

Note that so far we have assumed that χ(2) does not depend on the frequencies. This
assumption, which is referred to as Kleinmann’s symmetry, is valid provided the frequen-
cies involved in the non-linear interaction are much smaller than the natural resonance
frequency of the medium which is typically the case in the dielectric materials we are
considering.

1.5 Phase-matching conditions

y

Figure 1.2: (a) SFG intensity as a function of normalized distance in the direction of
propagation in the case of perfect phase-matching ∆k = 0 (red curve) and in the presence
of a nonzero wave-vector mismatch (blue curve). (b) SFG intensity at a given point of
the nonlinear medium as a function of wave-vector mismatch ∆k exhibiting characteristic
squared cardinal sine dependence.

Now that we have a general expression for the nonlinear dielectric polarization, we
can derive the spatial evolution of the field amplitudes as the interacting fields propagate
through the optical medium. This will allow us to compute the power that is transferred
from one frequency to another in the nonlinear process. For the sake of example, we
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Chapter 1. Introduction to nonlinear optics

focus on SFG but the extension of this analysis to DFG and SHG is straightforward. We
study the case of two pump fields at frequencies ω1, ω2 traveling through a homogeneous
non-linear medium of length L and producing a SFG field at frequency ω3 = ω1 + ω2.

To simplify our analysis, we make a few additional assumptions. First we consider only
one specific interaction where the electromagnetic plane waves at frequencies ω1, ω2, ω3 are
linearly polarized. Then, we consider that the three interacting fields are propagating along
a common direction y such that kℓ = (1/c)nℓ(ωℓ)ωℓey where ey is a unit vector oriented
along the y-axis and nℓ(ω) is the index of refraction seen by mode ℓ = 1, 2, 3. This
assumption is justified in our case since the present work deals with parametric sources in
waveguides where the interacting fields are guided along the same direction. Under these
two assumptions, the electric fields of the three modes reduce to:

Eℓ(r, t) = eℓEℓ(y, t) = eℓAℓ(y)e
−i(ωℓt−kℓy), ℓ = 1, 2, 3, (1.22)

with eℓ a unit vector oriented along the direction of the electric field of mode ℓ. We
see that thanks to these approximations we can again obtain scalar equations for the
spatio-temporal evolution of the fields. By introducing the tensor d which, as a matter of
historical conventions, is commonly encountered in the literature:

dijk =
1

2
χ
(2)
ijk, (1.23)

we get the following the expression for the nonlinear dielectric polarization associated to
the SFG process:

PNL
3 (r, t) = ϵ0deffE1(y, t)E2(y, t), (1.24)

where we dropped the subscript denoting the vector component from Eq. (1.19) since we
are focusing on fields at fixed polarization. deff is the specific matrix element of the tensor
d which couples fields with these given polarization directions. In addition, we also assume
that the variation of the field amplitude in the direction of propagation is small compared
to the wavelength. This is often referred to as the slowly varying envelope approximation
and can be mathematically formulated as:∣∣∣∣dA3

dy
k3

∣∣∣∣≫ ∣∣∣∣d2A3

dy2

∣∣∣∣. (1.25)

To finally compute the spatial evolution of the SFG field, we plug the expression for
the non-linear polarization Eq. (1.24) into the inhomogeneous wave equation Eq. (1.18).
With the help of Eq. (1.22) and Eq. (1.25) we obtain the following relation:

dA3

dy
=

2ideffω3

n3c
A1A2e

i∆ky, (1.26)

where we introduced the wavevector mismatch:

∆k = k3 − k2 − k1. (1.27)

We integrate equation Eq. (1.26) between y = 0 and y = L by further assuming that the
pump fields at ω1, ω2 are sufficiently intense to be treated as undepleted, meaning the
portion of their electromagnetic power that will be exchanged in the frequency conversion
process is small. Then their amplitudes A1, A2 can be treated as constant over the whole
interaction region. From the obtained expression for A3(y) we evaluate the Poynting vector
of the field E3(y, t) at y = L and finally get the intensity of the SFG field at the output
of the interaction region:

I3(L) = I
(0)
3 sinc2 (∆kL/2) . (1.28)
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The value of the maximum SFG intensity that can be generated in a propagation length
L is given by the prefactor

I
(0)
3 =

2d2effω
2
3I1I2L

2

n1n2n3ϵ0c3
. (1.29)

In Fig. 1.2 (a), we plot the value of the intensity I3(L) as a function of the interaction
length L for different values of the wave-vector mismatch. We see that this parameter is
crucial for the efficiency of the frequency conversion process. Indeed, when it is exactly
zero, a situation that we refer to as phase-matching, the intensity of the SFG field grows

quadratically with the distance, eventually reaching its maximum value I
(0)
3 at y = L.

However, for non-zero mismatch, the intensity oscillates with y which hinders the efficient
generation of a field at ω3.

We see that, in order for the conversion process to be efficient, phase-matching con-
ditions must be fulfilled. Note that phase-matching can be thought of in terms of con-
servation of momentum. Indeed, a photon of wave-vector k carries a momentum ℏk and
phase-matching conditions are simply equivalent to the conservation of momentum of
the interacting photons. We see that we finally have a very simple physical picture for
nonlinear optical processes, which are governed by two conservation rules for energy and
momentum:

ℏω1 + ℏω2 = ℏω3, (1.30)

ℏk1 + ℏk2 = ℏk3. (1.31)
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Chapter 2

Spontaneous Parametric
Downconversion (SPDC)
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In this chapter, we give a mathematical description of the SPDC process and show how
it can be used to generate photon pairs. We start by recalling the basics of quantum optics
then we study a simple model which displays the basic physical picture behind photon
pair generation through SPDC.

2.1 Quantization of the electromagnetic field

To begin with, we briefly recall the formalism of quantized modes of the electromagnetic
field that will be used to write down the quantum state of light generated by SPDC. The
quantization of the electromagnetic field can be formulated using Lagrangian or Hamilto-
nian formalism. In the latter, the basic idea is to map Maxwell’s equations onto equiv-
alent Hamilton equations of motion. By doing so, one defines a classical Hamiltonian
H({qℓ} , {pℓ}) which is equal to the total energy contained in the electromagnetic field.
This function depends on new physical quantities {qℓ} , {pℓ} that are the quasi position
and momentum associated with the different modes ℓ of the electromagnetic field. The
goal is to find a proper set of variables for which the Hamilton equations of motion hold:

∂qℓ
∂t

=
∂H

∂pℓ
,

∂pℓ
∂t

= −∂H

∂qℓ
.

(2.1)

Details about the derivation of H and {qℓ} , {pℓ} can be found in most quantum optics
textbooks such as Ref.[118]

To get a quantum model of the electromagnetic field we simply associate to the classical
Hamiltonian H a quantum-mechanical Hamiltonian operator Ĥ. This is done by defining
a quantum-mechanical observable for the quasi-position and momentum of each mode.
We impose that these pairs of newly defined operators {q̂ℓ} and {p̂ℓ} have to satisfy the
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Chapter 2. Spontaneous Parametric Downconversion (SPDC)

canonical commutation relation [q̂ℓ, p̂ℓ′ ] = iℏδℓℓ′ with δℓℓ′ the Kronecher symbol. Then the
quantum Hamiltonian operator can be simply obtained by replacing the classical variables
by their quantum-mechanical counterparts:

Ĥ = H({q̂ℓ} , {p̂ℓ}). (2.2)

One can show that, in the case of free radiation in vacuum, the Hamiltonian of the quan-
tized field takes the form:

ĤR =
∑
ℓ

ℏωℓ

(
â†ℓâℓ +

1

2

)
, (2.3)

where, for each mode ℓ, we defined the ladder operators:

âℓ =
1√
2ℏ

(q̂ℓ + ip̂ℓ) ,

â†ℓ =
1√
2ℏ

(q̂ℓ − ip̂ℓ) .

(2.4)

In this picture, all the modes ℓ of the electromagnetic field are decoupled and can be

described independently by a Hamiltonian ĥℓ = ℏωℓ

(
â†ℓâℓ + 1/2

)
and a pair of observables

q̂ℓ, p̂ℓ.

2.2 Photons and field operators

These operators are identical to those describing a quantum harmonic oscillator having
a discrete energy spectrum divided in quanta of energy ℏωℓ. In the case of modes of the
electromagnetic field, these elementary excitations are what we call photons.

The non-hermitian operators âℓ and â†ℓ are simply the operators associated to the
annihilation or creation of one photon in mode ℓ. They satisfy the commutation relations

[âℓ, âℓ′ ] = 0,
[
âℓ, â

†
ℓ′

]
= δℓℓ′ . (2.5)

When a mode is in a state where it contains only one quantum of energy, we say that it
is populated by one photon. Such a state can be mathematically written:

|1ℓ⟩ = â†ℓ |vac⟩ . (2.6)

where |vac⟩ denotes the state of vacuum. It is an eigenstate of the number operator

N̂ℓ = â†ℓâℓ with eigenvalue 1. Here the mode ℓ can label any degree of freedom of light
such as spatial mode, frequency, momentum, polarization and so on.

By building on our analogy between classical fields and quantum operator, we can
define an observable associated to the electric field. We adopt the Schrödinger picture,
where operators are time-independent and the dynamics of the system is described by the
state vector. In this framework, the electric field operator reads:

Ê(r) = i
∑
ℓ

Aℓ(r)
(
eikℓ·râℓ − e−ikℓ·râ†ℓ

)
= Ê

+
(r) + Ê

−
(r), (2.7)

where the terms Ê
±
(r) containing all annihilation (resp. creation) operators are called the

positive (resp. negative) frequency term. The prefactor Aℓ(r) is simply the classical field
amplitude that has already been defined in Eq. (1.17). Note that, as expected, although
the mathematical form is very close to a classical expression for the electric field of an
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electromagnetic wave, these operators in the Schrödinger picture do not carry explicit
time-dependence. In the Heisenberg picture, which is not discussed here, the operators
have a time evolution which follows closely that of the classical fields.

In this dissertation, the modes of the photons will be determined by their frequency
and polarization. Hence we replace the symbolic labels ℓ of the modes by two variables
ω ∈ R+ and µ ∈ {H,V } where H,V denote horizontal and vertical polarization modes.
Frequency being a continuous variable, the ladder operators obey a continuous version of
the commutations relations of Eq. (2.5):[

âµ(ω), âµ′(ω′)
]
= 0,

[
âµ(ω), â

†
µ′(ω

′)
]
= δµµ′δ(ω − ω′), (2.8)

with δ(ω− ω′) the Dirac distribution. Consequently, the hamiltonian for free radiation in
this notation can be written:

ĤR =
∑
µ

∫∫
dω

[
â†µ(ω)âµ(ω) +

1

2

]
, (2.9)

and the electric field operator is:

Ê(r) = i
∑
µ

∫∫
dωAµ,ω(r)

(
eikµ(ω)·râµ(ω)− e−ikµ(ω)·râ†µ(ω)

)
= Ê

+
(r) + Ê

−
(r) (2.10)

2.3 Simple quantum model for SPDC

This mathematical expression for the field operators will be very useful later on to derive
the exact mathematical form of the quantum state emitted by our source. For now, we
only give a physical picture behind the quantum treatment of SPDC using a simple model
for the nonlinear interactions following the derivation in Ref. [119].

To this end, we need to add to the Hamiltonian for free radiation a term ĤI which
describes the interaction between the fields:

Ĥ = ĤR + ĤI . (2.11)

SPDC being a weak nonlinear process, the bright pump field at frequency ω3 can again
be considered undepleted. Therefore, we treat it as a classical field which will not be
described by quantum-mechanical operators but will rather play the role of a constant
parameter of the model. We write down a toy-model Hamiltonian that describes second
order nonlinear processes:

ĤI = iℏχâ†(ω1)â
†(ω2) + H.c., (2.12)

with χ a parameter proportional to the amplitude of the pump field and ω1, ω2 the signal
and idler frequencies.

We start at t = 0 from the vacuum state |Ψ(0)⟩ = |vac⟩ and derive the time-evolution
of the state vector. We do this in the framework of the interaction picture which is
particularly well-suited for these kind of problems [120]. Indeed, this formalism allows to
decouple the dynamics of the interaction term and of the free radiation term. The time
evolution of the observables will be dictated by the term ĤR while the state vector will
evolve under the effect of ĤI . Hence, in this picture, the time evolution of the quantum
state is governed by the following evolution operator:

Û(t) = exp
(
−iĤIt/hbar

)
= exp

(
ηâ†(ω1)â

†(ω2)−H.c.
)
, (2.13)
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with η = χt. After the three fields have interacted for a time t, the state of the electro-
magnetic field becomes

|Ψ(t)⟩ = Û(t) |Ψ(0)⟩ . (2.14)

We expand the exponential term as a power series and only retain the terms up to second
order, an approximation which is reasonable in the low pump power regime η ≪ 1. This
is indeed the situation we would like to describe as it is the regime in which SPDC can
produce pairs of single photons. The state of the system at time t is given by:

|Ψ(t)⟩ ≈
[
1 + (ηâ†(ω1)â

†(ω2)−H.c.) + ...
]
|vac⟩

= |vac⟩+ ηâ†(ω1)â
†(ω2) |vac⟩+ ...

(2.15)

The first term in the expansion is the vacuum contribution. The second term represents
the creation of a photon pair. Higher order terms in the series expansion would model
multi-pair emission that can arise at high pump powers. Those higher order terms enter
in the description of squeezed states, which can be observed when the SPDC source is
operated at high pump power.

By only post-selecting the second term, we successfully obtain a genuine two-photon
state:

|Ψ⟩two-photon = â†(ω1)â
†(ω2) |vac⟩ . (2.16)

We see that if we only consider an interaction involving two modes of the electromagnetic
field ℓ = 1, 2, as it is the case here, we obtain a quantum state that is separable. Indeed,
it can be rewritten as the tensor product of states of the two modes (â†(ω1) |vac⟩) ⊗
(â†(ω2) |vac⟩).

Non-separable states can also be generated by SPDC provided photons can be emitted
in more than two modes. For instance, we study the case where the generated photons,
just like previously, can have different frequencies ω1 or ω2 but can also be emitted in two
distinct modes µ, ν of the electromagnetic field. These modes could be for example spatial
modes, orbital angular momentum or, such as in the work described in this manuscript,
polarization. We end up with a total of four modes {ω2, µ}, {ω3, µ}, {ω2, ν}, {ω3, ν}. We
adapt the interaction Hamiltonian of Eq. (2.12) to this four-mode case and assume it takes
the following form :

ĤI = iℏχ1â
†
µ(ω1)â

†
ν(ω2) + iℏχ2â

†
ν(ω1)â

†
µ(ω2)−H.c. (2.17)

After the interaction, the state of the electromagnetic field features a two-photon term of
the form:

|Ψ⟩two-photon =
(
η1â

†
µ(ω1)â

†
ν(ω2) + η2â

†
ν(ω1)â

†
µ(ω2)

)
|vac⟩ . (2.18)

We see that this state is indeed non-separable as it cannot be factored into a tensor product
of the state of two independent modes of the electromagnetic field. This kind of state is
referred to as an entangled state, which will be the topic of the next section.
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In this chapter, we cover the basic formalism and physical intuition behind quantum
entanglement. After a brief historical outlook of this concept, we give a few definitions
relating to entanglement and its characterization. Then we explain the link between
entanglement and local realism before describing in detail entanglement in the degrees
of freedom that are going to be encountered in this manuscript namely polarization and
energy-time.

3.1 From first debates to applications

Entangled states are one of the most singular feature of quantum mechanics. This type of
system was studied since the early days of quantum theory in famous thought experiments
which predicted astonishing counter-intuitive phenomena. In their key 1935 paper, Ein-
stein, Podolsky and Rosen shed light on an apparent paradox in the prediction of quantum
mechanics [121]. They study the case of two particles that have interacted and which end
up in a non-separable state. The main conclusion of this pioneer work is that if quantum
mechanics is correct then the measurement of this entangled states can only be interpreted
in terms of nonlocal phenomena, or “Spooky action at distance” as they were later coined
by Einstein. Essentially, measuring the state of one particle would instantaneously project
the other particle in a well-defined state, a phenomenon that cannot be explained by local
physical variables.

Although they have been the source of great debate in the community, these ideas
remained in the realm of theoretical speculation for several decades. It was not until the
1960’s that proposals were made to solve this paradox experimentally. In his pioneering
work, Irish theoretical physicist John Bell provided the first quantitative experimental
criterion that could be used to lift the uncertainty on the nonlocal nature of quantum
mechanics [122]. This result, often referred to as Bell’s theorem or Bell’s inequalities,
opened the way to the seminal experiments of the 70’s and 80’s aiming at testing quantum
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nonlocality in the laboratory. The work on experimental violation of Bell’s inequalities of
Freedman an Clauser in 1972 then Aspect, Grangier and Roger in 1981-1982 confirmed
experimentally the non-local character of quantum mechanics [123, 23, 24]. Since then,
increasingly refined experiments have been carried out in order to test quantum mechanics
against experimental loopholes that could hinder the unambiguous evidence of true phys-
ical non-locality. Very recently, as stated in the introduction of this dissertation, most
crucial loopholes were closed and non-locality is now widely accepted as experimentally
sound [5].

In addition to being an intense research topic in itself, entanglement is a major resource
in the field of quantum information. It is at the root of many quantum communication
protocols such as entanglement-based quantum key distribution [27] or quantum telepor-
tation [32]. Entanglement is also at the core of quantum computing since the universal set
of gates needed to perform a computation on a quantum computer includes the CNOT
gate which creates entanglement between two qubits. Therefore, to perform quantum
algorithms, quantum computers rely on massively entangled states of their multi-qubit
register.

3.2 Formal definition and measures of entanglement

In our analysis, we only consider the case of bipartite entanglement meaning entanglement
between two subsystems. Let H be a Hilbert space and |Ψ⟩ the state vector of the system
we want to describe. We assume this system is in a pure state and can be divided into
two subsystems A and B. Mathematically, it means that H = HA ⊗ HB where HA,HB

are the Hilbert space for the individual subsystems. The state of the system is said to be
entangled if it cannot be written in a separable form:

|Ψ⟩ = |ϕ⟩A ⊗ |ξ⟩B (3.1)

with |ϕ⟩A ∈ HA and |ξ⟩B ∈ HB.

Several degrees of freedom of single photons can carry entanglement : discrete vari-
ables that take integer values such as polarization [95], time-bin [98] or orbital angular
momentum [124], or variables that have a continuous spectrum, such as momentum or
energy-time [34, 59] 1.

All entangled state do not carry the same level of entanglement. There are several
indicators, called entanglement monotones, which can be used to quantify the amount of
entanglement in a quantum system.

Entanglement entropy This is one of the fundamental way of quantifying entanglement
and has a natural interpretation in analogy with classical information theory [125].
For a quantum state described by the density matrix ρ, the Von Neumann entropy
is given by:

S(ρ) = − tr(ρ ln2 ρ). (3.2)

We see that it has an analogous form to the classical information entropy which quan-
tifies the degree of uncertainty of a random variable. When applied to a quantum
system, S quantifies the mixedness of the state, with a maximum value of S = ln 2
for a totally mixed state and S = 0 for a pure state. In the case of a bipartite state,

1Note that, in this work, we are not dealing with what is commonly called “continuous variables”
in the the quantum information literature, the latter referring to the the state of the quadratures of a
many-photon field.
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the Von Neumann entropy has to be computed over the reduced density matrix of
of one of the subsystems:

ρA(B) = trB(A)(ρ), (3.3)

where trA(B) denotes the partial trace over the state of subsystem A(B). The so-
called entanglement entropy of the two-particle state is then defined as:

S = S(ρA) = S(ρB). (3.4)

In an entangled state, there are strong correlations between the states of the two
individual particles. Hence tracing out the state of particle A will add some uncer-
tainty about the state of particle B. When the entanglement between the particles
is maximum, the state of particle B will be left in a fully mixed state and we get
a maximum entanglement entropy of S = ln 2. On the contrary, if the two-particle
system is in a separable state, then ignoring the state of particle A will leave no
uncertainty on the state of particle B which will remain in a pure state and hence
the entropy is minimum S = 0. As a consequence, a bipartite state is said to be
maximally entangled when its density matrix saturates the entanglement entropy.

Fidelity to a maximally entangled state Another way to quantify the entanglement
of a given state ρ is to calculate its distance to a maximally entangled state σ. In
this work, we use the fidelity, which is defined as:

F =

(
tr
√√

ρσ
√
ρ

)2

, (3.5)

and which will be equal to 1 when the two states are identical and to 0 if they are
orthogonal.

Concurrence and tangle Several other measures of entanglement are commonly used
in the literature, such as the concurrence C or tangle T = C2 [126]. Unlike the
fidelity, these quantities are independent of a target state and can be computed
directly from the density matrix. Hence, just like the entanglement entropy, they
reflect the intrinsic entanglement contained in the quantum state.

3.3 Entanglement and local realism, Bell’s inequalities

A B

Figure 3.1: Sketch of a Bell-type experiment. A source S emits pairs of correlated particles
that are sent to two parties A and B. The particles enter measurement devices controlled
by A and B producing binary outcomes 0 or 1.

The connection between entanglement and nonlocality can be understood from the
simple thought experiment sketched in Fig. 3.1. Suppose two parties A and B receive
pairs of particles emitted simultaneously by a source S in an entangled state of the form:

|Ψ⟩ = 1√
2
(|0⟩A |1⟩B + |1⟩A |0⟩B) . (3.6)
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Here we suppose that the Hilbert spaces of the two subsystems HA = HB = C2 are of
dimension 2 and that the kets {|0⟩ , |1⟩} form an orthogonal basis of these two spaces.
Those kets typically describe the orthogonal values that can be taken by the spin of a
massive particle or the polarization of a photon. If A measures the state of its photon and
finds a result |0⟩A, then this instantaneously projects the state of the photon received by
B onto |1⟩B and vice versa. It seems as if the measurement of one party had instantaneous
action at distance on the other subsystem.

To verify that this is a genuine non-local effect, A and B need to carry out a violation
of Bell’s inequalities, also called Bell test. To do so, the two parties A and B are equipped
with a measurement apparatus that is used to perform a projection of the state of their
particle. For now, we do not assume anything about the nature of the apparatus itself
and treat it a a black box. We simply postulate that when a particle enters the device,
the latter records a binary outcome 0 or 1 that will depend on the setting a, b, which can
be tuned by the user. By repeating the experiment many times for a given setting a, b the
parties can measure an estimate of a correlation function of the form:

E(a, b) = P (1, 1|a, b) + P (0, 0|a, b)− P (0, 1|a, b)− P (1, 0|a, b), (3.7)

where P (i, j|a, b) is the probability of obtaining an outcome i, j ∈ {0, 1} given the mea-
surement devices were set to a, b. In his derivation [122], Bell considered the case of local
hidden variable models. In this kind of physical theory, all phenomena can be explained
by variables that are local in the sense that they take a definite value for any point in
space-time. Bell’s theorem implies that, under this assumption, for any set of measurement
settings a, b, a′, b′, the following inequality holds:

S = |E(a, b)− E(a, b′) + E(a′, b) + E(a′, b′)| ≤ 2. (3.8)

This equation is the Clauser-Horne-Shimony-Holt (CHSH) formulation of Bell’s theo-
rem [127]. It is equivalent to the original equality that was derived by Bell, and is today
the most commonly used criterion for experimental proofs of non-locality.

Now we show that in the case of a entangled state this inequality can be violated,
hence proving the non-local character of quantum mechanics. We suppose that the mea-
surement apparatus simply measures a projection of the input state onto a target state
|θ⟩ = cos θ |0⟩+ sin θ |1⟩ where the parameter θ can be chosen at will. In the case of pho-
tons emitted in a polarization-entangled state, this projection is achieved with a polarizer
set at angle θ and a single-photon detector. Using simple algebra, one can show that for
the entangled state given in Eq. (3.6) the conditional probabilities appearing in Eq. (3.7)
become:

P (i, i|a, b) = 1

2
cos2

(
θa − θb

2

)
, i = 0, 1, (3.9)

P (i, j|a, b) = 1

2
sin2

(
θa − θb

2

)
, i ̸= j. (3.10)

(3.11)

By carefully choosing the settings θa, θb, θa′ , θb′ it is possible to make the quantity S
in Eq. (3.8) larger that 2. Maximum violation of the CHSH inequality is obtained with
θa = 0, θb = π/2, θa′ = π/4, θb′ = −π/4 for which quantum mechanics predicts:

S = 2
√
2. (3.12)

As we can observe, by measuring experimentally the value of S with sufficient statistical
significance, one can unambiguously show that the measurement of an entangled state
features non-local correlations.
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A B

Figure 3.2: Sketch of an experiment for the measurement of polarization-entanglement.
S: source of photon pairs. WP: λ/2 and λ/4 waveplates. PBS: polarizing beam splitter.

3.4 Polarization entanglement

The first experiments on violation of Bell’s inequalities were performed on polarization-
entangled photon pairs and polarization-entanglement is still widely used nowadays in
many quantum optics and quantum communication experiments. We also point out
that the AlGaAs photon pair source described in this manuscript is designed to emit
polarization-entangled states as will be shown in Section 5.4. Here, we give a mathemati-
cal description of two-photon polarization-entangled states which can be straightforwardly
transposed to the other discrete degrees of freedom of light, such as spatial modes or time-
bin.

Like in the previous example, polarization states of the quantized electromagnetic
field belong to a Hilbert space HA = HB = C2 of dimension 2. As a convention, we label
|H⟩ , |V ⟩ the basis vectors corresponding to a photon being in a horizontally or vertically
polarized state. Polarization is widely used in quantum information because it provides
a natural implementation of quantum bits, or qubits, quantum systems of dimension 2
which are the quantum analogs to classical bits. In its most general form, the polarization
state of a single photon can be written:

|ϕ⟩ = α |H⟩+ eiφβ |V ⟩ (3.13)

where |H⟩ = â†H |vac⟩ , |V ⟩ = â†V |vac⟩ and α, β, φ are real coefficients satisfying α2+β2 = 1.
With this formulation, the quantum state of a polarization qubit can be seen as an analog
of the Jones vector for the polarization of classical electromagnetic fields. Hence the
states |D⟩ , |A⟩ , |L⟩ , |R⟩ corresponding respectively to±45 deg linear and left/right-handed
circular polarization states can be defined in a similar way:

|D⟩ = 1√
2
(|H⟩+ |V ⟩) , |L⟩ = 1√

2
(|H⟩+ i |V ⟩) ,

|A⟩ = 1√
2
(|H⟩ − |V ⟩) , |R⟩ = 1√

2
(|H⟩ − i |V ⟩) ,

(3.14)

In the case of a pair of photons, the polarization state of the system |Ψ⟩ ∈ HA ⊗HB can
be written:

|Ψ⟩ = c1 |H⟩A |H⟩B + c2 |H⟩A |V ⟩B + c3 |V ⟩A |H⟩B + c4 |V ⟩A |V ⟩B (3.15)

with {ci}i=1,...,4 a set of complex coefficients normalized to 1. The tensor product symbol
has been omitted for lighter notations. We stress that, of course, this state is generally
not separable as in Eq. (3.1).

An example of non-separable two-photon states that is of particular interest for quan-

39



Chapter 3. Quantum Entanglement

tum information is the set of so-called Bell states:∣∣Ψ±〉 = 1√
2
(|H⟩A |V ⟩B ± |V ⟩A |H⟩B) ,∣∣Φ±〉 = 1√

2
(|H⟩A |H⟩B ± |V ⟩A |V ⟩B) .

(3.16)

They are a set of four orthogonal maximally entangled states forming a basis for the
4-dimensional Hilbert space of the two-photon polarization states.

A typical setup for measuring polarization-entangled pairs is displayed in Fig. 3.2. A
source emits pairs of polarization-entangled photons which are traveling towards polar-
ization analysis modules, composed of waveplates (λ/2 and λ/4) and a polarizing beam
splitter (PBS), followed by single photon detectors. The waveplates and PBS are used to
project the state of the photons on the different basis states listed in Eq. (3.14). This can
be used to perform a Bell inequality violation or a tomography of the quantum state [128].
The latter permits the experimental reconstruction of the full density matrix of the two-
photon state which can be used to compute all the properties of the system, including the
measures of entanglement described in the previous sections.

3.5 Energy-time entanglement

Energy-time entanglement is a characteristic feature of parametric sources of photon pairs.
It stems from the correlations that exist in the frequencies ω1, ω2 and arrival times at
a detector t1, t2 of the two photons of the pair. As will be shown in a later chapter
(Section 5.1), the quantum state of light generated by a SPDC source can be written:

|Ψ⟩ =
∫∫

dω1ω2C(ω1, ω2)â
†(ω1)â

†(ω2) |vac⟩ , (3.17)

with â†(ω) the operator associated to the creation of a photon at frequency ω and C(ω1, ω2)
a complex function called the Joint Spectral Amplitude (JSA) that is determined by
energy conservation and phase-matching conditions in the SPDC source. We see that
the state in Eq. (3.17) is separable when the JSA can be written in a factored form
JSA(ω1, ω2) = ϕ(ω1)ξ(ω2) with ϕ(ω), ξ(ω) two complex functions. It can be shown that
for a separable state the following inequality holds [129]:

∆(ω1 + ω2)∆(t1 − t2) ≥ 1, (3.18)

However, in SPDC sources pumped by a narrowband laser, such as in this thesis, the
quantum state presents strong frequency anti-correlations arising from energy conservation
ω1 + ω2 = ωp. As a consequence, in this configuration, we can have simultaneously a very
small uncertainty on both ω1+ω2 and t1−t2 and a violation of Eq. (3.18) can be measured.
This violation reveals that the two photons are in a so-called energy-time entangled state.

In practice, the accurate measurement of t1 − t2 requires advanced ultrafast detection
schemes since most commercially available single photon detectors and coincidence elec-
tronics have a timing jitter much larger than the typical spread of t1−t2. As a consequence,
the direct measurement of energy-time entanglement through Eq. (3.18) remained out of
reach experimentally until the work presented in Ref. [129]. In all previous experiments,
energy-time entanglement is demonstrated indirectly using an interferometric setup re-
ferred to as a Franson scheme, allowing for the violation of a Bell-type inequality for time
and frequency [33, 130, 34]. The experimental setup is sketched in Fig. 3.3 (a). A source S
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Figure 3.3: Measurement of energy-time entanglement using a Franson scheme. (a)
Sketch of the experiment, see text for details. (b) Measured time-correlation histograms
featuring three peaks corresponding to the different trajectories of the two photons inside
the interferometers. (c) Total number of counts in the central peak as function of applied
delay showing interference fringes that are characteristic of energy-time entanglement.
Data from Ref. [78].
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emits energy-time entangled photons that are directed to two unbalanced interferometers
A and B each one consisting of two 50/50 beam splitters separated by a long arm l and
a short arm s. A tunable delay line is introduced in the long arm of each interferometer
inducing a phase shift of ϕA and ϕB respectively for A and B. When traveling through
these interferometers, the photons can take either the long path l or the short path s
before being detected with single photon detectors. This setup leads to three possible
combinations of arrival times for the photons depending on which path has been taken
: sl, ls and ss/ll. This can be seen from the time-correlations histograms in Fig. 3.3 (b)
which features three peaks corresponding to those three possibilities. By measuring the
pairs detected in the central peak, the following state is post-selected:

|Ψ⟩ = |s⟩A |s⟩B + eiϕ |l⟩A |l⟩B (3.19)

where the relative phase difference between the two interferometers is ϕ = ϕA − ϕB and
the kets |s⟩ , |l⟩ denote the state of a photon which has traveled through the short or long
path respectively. When recording the number of coincidence counts as a function of ϕ,
interference fringes are observed, as shown in Fig. 3.3 (c). Experimentally, this effect can
only be observed if the temporal delay τ introduced by the unbalanced interferometers is
much larger than the photon coherence time to ensure that we do not measure a single
photon interference. In addition, τ also has to be smaller than the pump coherence time
otherwise the phase coherence between the two temporal bins s, l will be lost and no
interference can be seen. It can be shown that the visibility of the interference fringes in
a Franson experiment performed with a separable state cannot exceed 50% [130]. As a
consequence, the measurement of a visibility exceeding this bound, such as in the data
presented in Fig. 3.3, is sufficient to certify energy-time entanglement.

3.6 Frequency-bin entanglement

As stated in the introduction of the manuscript, frequency can also be used as a degree of
freedom for the implementation of quantum information tasks. Frequency entanglement
arises naturally in the quantum state of a SPDC source pumped by a narrowband laser.
Indeed, in this regime, as will be shown in Section 5.4, the state in Eq. (3.17) is not
separable and can be written as a frequency-entangled state:

|Ψ⟩ =
∫ +∞

−∞
dΩΦ(Ω)â†(ωp/2 + Ω)â†(ωp/2− Ω) |vac⟩ , (3.20)

where Φ(Ω) is the complex-valued JSA defined by the phase-matching conditions and Ω
the detuning to the biphoton degeneracy frequency ωp/2. Frequency can be converted
into a discrete variable by carving spectral bins within the spectrum of the downconverted
photons using filters, an approach that was pioneered by Olislager and coworkers [105].
The state of frequency-bin qubits can be manipulated using standard telecommunica-
tion components such as electro-optic modulators and pulse shapers [106]. Frequency-bin
entanglement has been demonstrated using a scheme equivalent to a Franson-type ex-
periment where the time-shifts performed by unbalanced interferometers are replaced by
frequency-shifts induced by electro-optic modulators. This configuration was employed
to study nonlocal effects manifested through the violation of a Bell type inequality for
frequency [105, 131] or to perform quantum state tomography of frequency-bin entangled
photons [59]. The main advantages of this degree of freedom are its robustness to noise,
its intrinsic stability ruling out the need for interferometric stabilization and its com-
patibility with standard off-the-shelf telecommunication components. As a consequence,
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3.6. Frequency-bin entanglement

frequency-bin encoding has been used in entanglement-based quantum key distribution
protocols [132] as well as for the realization of gates for frequency-based quantum com-
puting [133].

Frequency-bin encoding lends itself to a natural extension to high-dimensionality. In-
deed, by embedding the SPDC source within an optical cavity, one can generate high-
dimensional frequency-entangled photon pairs, as demonstrated in Refs. [134, 59, 87]. In
this configuration, the photon pairs can only be emitted in the cavity modes which define a
discrete frequency spectrum consisting of resonances separated by the free-spectral range
of the cavity. The generated quantum state can be written approximately as:

|Ψ⟩ =
d∑

k=1

ak |−k⟩s |k⟩i (3.21)

where ak is a complex coefficients and |k⟩ = â†(ωp/2 + kω̄) |vac⟩ with ω̄ the cavity free
spectral range. The integer d represents the number of cavity resonances spanning the
biphoton bandwidth of the emitted state. This type of state is often referred to in the
literature as a biphoton frequency comb (BFC) or an entangled frequency qudit state. As
already mentioned, the different frequency bins of this high-dimensional entangled state
can be addressed using electro-optic modulators and pulse shapers [134, 59]. Frequency
qudits are at the core of experimental demonstrations of high-dimensional optical quantum
logic [135] or two-photon measurement-based quantum computing [114].
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Non-linear optics in AlGaAs
waveguides
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In this chapter, we describe the mechanisms of third-order nonlinear optical processes
in AlGaAs waveguides. We introduce optical waveguides and show how they can be used
in the context of frequency conversion. Then we detail the phase-matching strategy that is
adopted in the devices described in this manuscript before covering the fabrication process
of the nonlinear waveguides. We finally present the experimental characterization of losses
and second order nonlinear frequency conversion in the fabricated devices.

4.1 Optical waveguides for nonlinear optics

4.1.1 Guided modes and effective mode index

Integrated photonics relies on the capability of light to be confined inside optical waveg-
uides. Waveguides are structures made of a core of high refractive index ncore surrounded
by a cladding of lower refractive index nclad. Consequently, there exists stationary so-
lutions to the wave equation for which the intensity of the wave is concentrated inside
the high-refractive index region. This can be seen as the total internal reflection of light
at the interface between core and cladding, such as in optical fibers. According to the
material that is used and to the specific application, several geometries can be adopted,
as sketched in Fig. 4.1. For instance, buried channel waveguides can be encountered in
the SOI platform as well as in III-V materials or femtosecond laser writing in borosilicate
glasses. In rib and ridge waveguides, which are also frequently used in III-V materials,
the optical confinement is provided by the refractive index contrast between the core and
both the air and the substrate.

Guided modes propagate along the structure at a phase velocity that is different from
the velocity of light in the bulk material of the core. Indeed, these modes will have an
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yz

x

Figure 4.1: Example of the most commonly used waveguide geometries in integrated pho-
tonics. The dark grey regions indicate high-refractive index material. The axes are labeled
following the orientation of the electric field for TE and TM modes of the structures.

effective refractive index neff, also called effective mode index, that is determined by the
geometry of the waveguide and the optical properties of the constituting materials. The
dispersion of these effective mode indices play a crucial role for achieving phase-matching
conditions in a waveguide, as will be shown later.

If we assume that the waveguide structure is invariant along the y direction, as depicted
in Fig. 4.1, then the electric field of a wave of frequency ω propagating in a guided mode
takes the form:

E(r, t) = eA(x, z)e−i(ωt−ky), (4.1)

where A(x, z) is the spatial amplitude profile of the mode, e is the unit vector defining
the polarization of the mode, and

k =
ω

c
neff (4.2)

is the effective wavenumber. Assuming there are no source of currents or charge in the
waveguide region, an expression for A(x, z) and neff can be obtained by solving the wave
equation: [

∂2

∂x2
+

∂2

∂x2

]
A(x, z) +

[ω
c
n(x, z)− k

]
A(x, z) = 0, (4.3)

with n(x, z) the refractive index profile of the waveguide cross-section. This expression is
analogous to the Schrödinger equation for a particle in a two-dimensional square potential,
which admits an integer number of eigenfunctions of quantized energy. Likewise here the
waveguide structure will support discrete guided modes characterized by their spatial
profile and mode index. The equation needs to be solved in the different regions of the
waveguides then the solutions are matched at the interfaces. More details on the solutions
of Eq. (4.3) can be found in [136].

Depending whether the factor (ω/c)n − k in Eq. (4.3) has a positive or negative sign
respectively, the field of the wave will vary sinusoidally or exponentially. In a guided
mode, the amplitude decreases exponentially in the cladding and reaches a maximum in
the core. This is verified provided the effective wavenumber of the mode satisfies the
inequality [136]:

ω

c
nclad < k <

ω

c
ncore. (4.4)

The solutions to the wave equation corresponding to guided modes can be divided into
transverse electric (TE) and transverse magnetic (TM). In a TE mode, the electric field is
perpendicular to the yz plane and only the components Ex, Hz, Hy of the electromagnetic
field are nonzero. The TM modes have their electric field perpendicular to the xy plane
with nonzero components Hx, Ez, Ey.
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In practice, analytical solutions to Eq. (4.3) can be found only in simple geometries.
In this work, we calculated numerically the guided modes profiles and effective indices
of our waveguides using commercial electromagnetic simulation software suites, such as
COMSOL or Lumerical, which rely on finite element methods.

4.1.2 Conversion efficiency

Waveguides are widely used in nonlinear optics. Frequency conversion in a waveguide
benefits from the fact that all fields are colinear, making light injection and collection easier
by avoiding walk-off effects that affect nonliner conversion in bulk crystals. For example,
nonlinear waveguides can be fiber-pigtailed removing any need for optical alignment. In
addition to this, the nonlinear interaction can be made more efficient thanks to the tight
confinement of the fields inside the structure.

The efficiency of frequency conversion in a waveguide depends strongly on the prop-
erties of the guided modes. By taking once again the example of SFG: ω1 + ω2 → ω3, we
define the time-averaged optical power of the generated sum-frequency field as

P3 =

∫∫
A
dxdzI3, (4.5)

where the integral is taken over the area A of the waveguide cross-section. With the help
of Eq. (1.28) and Eq. (1.29) we obtain:

P3 =
2ω2

3L
2

n1n2n3ϵ0c3
|Γ|2P1P2sinc

2(∆kL/2). (4.6)

The nonlinear overlap Γ is defined as:

Γ =

∫∫
A
dxdzdeff(x, z)Ã1(x, z)Ã2(x, z)Ã3(x, z), (4.7)

where the tilde denotes the normalized field amplitudes
∫∫

A dxdz|Ãi(x, z)|2 = 1. We
finally obtain the conversion efficiency as the ratio:

ηSFG =
P3

P1P2
=

2ω2
3L

2

n1n2n3ϵ0c3
|Γ|2sinc2(∆kL/2). (4.8)

This equations indicates the parameters that have to be optimized when designing a
waveguide for nonlinear optics:

� The nonlinear overlap Γ, which is controlled by the nonlinear properties of the ma-
terials that are used and the geometry of the waveguide cross-section.

� The wave-vector mismatch ∆k which needs to be made the closest possible to zero
(phase-matching). This is done through the engineering of the dispersion of the
guided modes.

� The length L of the waveguide. According to Eq. (4.8), in a lossless medium the
efficiency increases monotonically with L. However, when taking into account the
inevitable optical losses of the material, there is a trade-off between conversion effi-
ciency and loss which dictates the optimal waveguide length.
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In addition, it can be shown that, in a semi-classical approximation, since SFG and
SPDC are reverse processes, the SPDC conversion efficiency, defined as the number of
generated pairs per pump photon, is proportional to the SFG efficiency [137]:

ηSPDC = ηSFG
ℏω1ω2

ω3

∆ω

2π
, (4.9)

where ω3 is the frequency of the pump field, ω1, ω2 the frequencies of the signal and idler
photons and ∆ω the spectral bandwidth of the emitted state, which can be derived from
the phase-matching conditions.

4.1.3 Phase-matching

In a waveguide, the perfect phase-matching condition ∆k = 0 reduces to a simple relation
between the frequency and effective index of the different interacting modes:

ω3n3(ω3)− ω1n1(ω1)− ω2n2(ω2) = 0. (4.10)

It is obvious that, if we consider that the three photons occupy the same guided mode, in
other words: ni(ω) = n(ω), i = 1, 2, 3, then phase-matching could only occur if this mode
is perfectly non-dispersive: n(2ω) = n(ω), a condition that is never reached in practice.
Therefore, several strategies can be adopted to fulfill phase-matching in waveguides:

Birefringence A dielectric material is said to be birefringent if the refractive index of
an electromagnetic wave traveling through the medium depends on its polarization.
Hence phase-matching can occur between modes of different polarization µ, ν if the
birefringence is sufficient to obtain nν(2ω) = nµ(ω). In many materials, including
AlGaAs, the intrinsic birefringence is not strong enough to meet this requirement.
However, it is possible to design waveguides with artificial form birefringence to
obtain perfect phase-matching, as explained, for instance, in Ref. [138].

Quasi phase-matching In this scheme, the waveguide is divided into several regions
along the propagation direction. The length of these regions is chosen to match the
period of the oscillations of the intensity of the generated field when there is a nonzero
wave-vector mismatch, as shown in Fig. 1.2. To achieve quasi phase-matching, the
χ(2) coefficient in the different regions needs to changes sign at each interface. Then,
instead of oscillating along the waveguide, the optical power will ramp up at each
interface, thanks to the inversion of the χ(2) coefficient. Examples of quasi-phase
matching include ppKTP, ppLN and ppGaAs crystals or waveguides [139].

Modal phase-matching This is the phase-matching strategy used in this work. The
principle is to use a multimode waveguide whose guided modes have different chro-
matic dispersion. By suitably engineering the waveguide structure, it is possible to
obtain guided modes that are compatible with perfect phase-matching. In the case
of SPDC, this amounts to using a pump mode that has the same mode index at
frequency 2ω than the down-converted modes at frequency ω.

4.2 AlGaAs Waveguide design

4.2.1 Epitaxial structure and guided modes

The elementary working principle of the nonlinear AlGAs waveguides studied in this thesis
is depicted in Fig. 4.2 (a). We perform SPDC by sending near infrared (NIR) photons
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Figure 4.2: (a) Artist view of an AlGaAs ridge waveguide used as a source of entangled
photon pairs. The pump photon in the NIR is represented on the upper left corner and
the generated telecom photons are depicted in the bottom right corner. This drawing
represents a Type II interaction since the photons are depicted as cross-polarized. (b)
Refractive index profile in a 2/6-Bragg mirrors ridge waveguide.

2 or 6 280
116

116
280

351

5
z

Table 4.1: Epitaxial structure of the AlGaAs nonlinear waveguides. Two configurations
were used in this dissertation: either with 2 or 6 upper periods for the Bragg reflectors.
The growth sheets for the different wafers used in this thesis are reported in Appendix 12.6.

at around 775 nm inside the waveguide which, thanks to the strong χ(2) of AlGaAs, are
downconverted into pairs of telecom photons around 1550 nm. In this spectral region GaAs
typically has a refractive index of 3.7 at 775 nm and 3.4 at 1550 nm at room temperature en-
suring tight confinement of guided mode at the micrometer scale. The nonlinear coefficient
d41 of GaAs has a typical value of 119 pmV−1. In AlGaAs, this value strongly depends
on the concentration of Al and can be determined using the Ohashi model [140, 141].

The devices are fabricated by etching ridge waveguides into an AlGaAs wafer consisting
of a stacking of different layers of AlxGa1–xAs with a varying Al concentration x. The
layers are epitaxially grown on a [001] GaAs substrate. As depicted in Fig. 4.2 (b) an
Al0.45Ga0.55As core is sandwiched between two Bragg mirrors that are made of alternating
116 nm thick layers of high refractive index Al0.25Ga0.75As and 280 nm-thick layers of low
refractive index Al0.2Ga0.8As. The epitaxial structure is given in Table 4.1. Those Bragg
mirrors have been engineered to provide a photonic bandgap around 775 nm such that
specific guided modes can propagate by total internal reflection. Details on the design
of the Bragg reflectors can be found in Ref. [142, 143, 137]. The waveguides that we
fabricate are typically 2mm-long with a ridge width ranging from about 1.5 µm to 5 µm
and etching depth between 0.8 µm and 4 µm. The influence of the geometric parameters
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Figure 4.3: Square modulus of the electric field of the (a) TE Bragg mode at λp = 775 nm,
(b) TM Bragg mode at λp = 775 nm, (c) TE fundamental mode at λ = 1550 nm and (d)
TM fundamental mode at λ = 1550 nm.

of the waveguide on the nonlinear processes is discussed below.
The different modes that are involved in three-wave mixing are the following :

� The NIR photons propagate in the so-called Bragg mode that is confined in the
core of the waveguide thanks to the photonic bandgap provided by the two Bragg
mirrors. As shown in Fig. 4.3 (a-b), its spatial profile features a bright central lobe,
located in the core, and peripheral lobes spreading in the surrounding layers. The
Bragg mode exists as a TE or TM mode of the waveguide.

� In the telecom range, the refractive index contrast between the core and the sur-
rounding layers of the Bragg mirrors provide tight confinement for guided modes
within the core. The guided modes at λ = 1550 nm involved in the downconversion
process are the fundamental TE and TM modes of the waveguide which are displayed
in Fig. 4.3 (c-d).

Another important feature of AlGaAs waveguides is the modal reflectivity of the facets.
Indeed, due to the refractive index contrast between AlGaAs and air, light propagating
in a guided mode will undergo Fresnel reflection at the waveguide facet. The modal
reflectivity depends on the mode and wavelength and can be estimated numerically using
finite difference time domain methods. We give typical simulated values for the modal
reflectivity of the four guided modes described in Fig. 4.3:

RBragg,TE = 0.86, RFund,TE = 0.29,

RBragg,TM = 0.85, RFund,TM = 0.27.
(4.11)
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Figure 4.4: (a) Sketch of the GaAs unit cell with principal crystallographic directions.
(b) Waveguide layout with corresponding crystallographic axes.

In this dissertation, we used two different epitaxial structures. In the majority of the
previous works from our group, structures having six upper and six lower Bragg periods
have been used. However, in most of the designs of this work we chose to use structures
consisting of two upper Bragg periods and six lower Bragg periods. This choice was
motivated by practical concerns. Indeed the thickness of AlGaAs layers that has to be
etched to obtain a ridge waveguide is smaller for structures with only two top Bragg mirrors
than with six top Bragg mirrors (0.8 µm versus 2.4 µm), which simplifies the fabrication
process of the device. In addition, we did not notice a degradation of the performance
of the device when going from six to two periods. Hence if not otherwise mentioned,
all simulations and experimental results presented in the manuscript were obtained using
epitaxial structures with two upper periods (wafers G5X038 and K7AD118).

4.2.2 Allowed parametric processes in AlGaAs

Depending on the polarization of the interacting fields, several nonlinear interactions are
possible in AlGaAs which are determined by the crystal symmetries of the material. In-
deed, as mentioned in Section 1.4, those symmetries are reflected in the second order
dielectric susceptibility tensor dijk defined in Eq. (1.23) which governs non-linear optical
processes in the medium. The crystal unit cell of GaAs, sketched in Fig. 4.4 (a), obeys a
4̄3m group symmetry. Based on these symmetry considerations, only three matrix element
of dijk are nonzero, as shown in [136]. By contracting the last two indices of χ(2) with the
convention:

jk 11 22 33 23/32 13/31 12/21

ℓ 1 2 3 4 5 6
(4.12)

we obtain the reduced tensor :

d =

0 0 0 d41 0 0
0 0 0 0 d41 0
0 0 0 0 0 d41

 . (4.13)

The basis in which we wrote down this expression for the matrix coincides with the
crystallographic axes of GaAs: x′ = [100], y′ = [010], z′ = [001]. However we fabricate
waveguides whose facets are cleaved at a 45 degree angle with respect to the crystallo-
graphic axes : x = [1̄10], y = [1̄10], z = [001], as depicted in Fig. 4.4 (b). With the help
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of Eqs. (1.19) and (4.13), we write down the nonlinear dielectric polarization vector for
frequency ω3 = ω1 + ω2 in the crystal reference frame:PNL

3,x′

PNL
3,y′

PNL
3,z′

 = 2ϵ0d41

E1,y′E2,z′ + E1,z′E2,y′

E1,x′E2,z′ + E1,z′E2,x′

E1,x′E2,y′ + E1,y′E2,x′

 , (4.14)

where the frequency is implicitly indicated by the subscripts 1, 2, 3 and the spatio-temporal
dependence of the fields is omitted for clarity. We rewrite the three components of the
vector in the laboratory frame by rotating the xy axes counterclockwise around the z axis
by an angle π/4. This is done by applying to Eq. (4.14) the Rz(−π/4) rotation matrix

Rz(−π/4) =
1√
2

 1 1 0
−1 1 0
0 0 1

 . (4.15)

After applying this transform, the non-linear polarization vector in the laboratory frame
reads: PNL

3,x

PNL
3,y

PNL
3,z

 = 2ϵ0d41

 E1,zE2,x + E1,xE2,z

−E1,zE2,y − E1,yE2,z

E1,xE2,x − E1,yE2,y

 (4.16)

By inspecting Eq. (4.16) we conclude that three processes are allowed:

1. Type II : TE + TM ↔ TE, PNL
3,x = E1,zE2,x + E1,xE2,z

2. Type I : TE + TE ↔ TM, PNL
3,z = E1,xE2,x

3. Type 0 : TM + TM ↔ TM, PNL
3,z = −E1,yE2,y

Note that the Type 0 process is made possible by the nonzero electric field component of
the TM mode along the propagation direction y [144].

4.2.3 Modal phase-matching

As already stated above, the SPDC process in AlGaAs nonlinear waveguides involves a
pump photon in a Bragg mode, either TE or TM, and two downconverted photons in
the fundamental TE and TM modes of the waveguide. In Fig. 4.5, we show the value
of the numerically calculated effective mode index of the four modes of interest as a
function of wavelength. Those simulations were performed with the Lumerical software.
For clarity, we plotted the dispersion curves of the NIR mode as function of half the
wavelength of the telecom modes. As we can see, there is a region around which the
values of the effective mode indices become close. Around this region, the phase mismatch
∆k is minimal and frequency conversion between the NIR and telecom modes is possible.
For each of the three possible interactions, we indicate on the plot the point for which

n(2ωPM) =
1

2
(nµ(ωPM) + nν(ωPM)) with µ, ν ∈ {TE,TM}, where ωPM is called the phase-

matching frequency. The phase matching conditions for the three possible interactions can
be summarized as:

1. Type II : TE + TM ↔ TE, ω3nBragg,TE(ω3) = ω1nfund, TE(ω1) + ω2nfund,TM(ω2)

2. Type I : TE + TE ↔ TM, ω3nBragg,TE(ω3) = ω1nfund, TM(ω1) + ω2nfund,TM(ω2)

3. Type 0 : TM + TM ↔ TM, ω3nBragg,TM(ω3) = ω1nfund, TM(ω1) + ω2nfund,TM(ω2)
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Figure 4.6: Numerically simulated phase-matching wavelength for the Type II interaction
as a function of (a) core thickness for a ridge width of 5 µm (b) ridge width for a core
thickness of 351 nm.

In the work presented in this manuscript, we will mostly focus on Type II SPDC inter-
action as it is the process that is used to produce polarization-entangled photon pairs.
Indeed, in a Type II process for a given value of the frequencies ω1, ω2, ω3 two equivalent
processes can occur: TE(ω3) → TE(ω1) + TM(ω2) and TE(ω3) → TE(ω2) + TM(ω1).
Those processes being indistinguishable, the generated photons are emitted in a polar-
ization entangled state directly at the waveguide output. Type 0 and Type I SPDC can
be used to produce energy-time entangled photon pairs, since the two photons have the
same polarization. However, by inserting the source in a Sagnac interferometer, it is also
possible to create polarization-entangled photon pairs from a Type 0 or Type I process,
at the cost of increasing the setup complexity [145].

4.2.4 Tuning of the phase-matching wavelength

As we can see from Fig. 4.5, phase-matching occurs for signal and idler frequencies ω1, ω2 in
the vicinity of the phase-matching frequency ωPM. When generating photon pairs through
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SPDC, the frequency of the pump will be adjusted to this phase-matching frequency and
therefore the generated photons will be distributed within a certain bandwidth ∆ω around
a central degeneracy frequency ωd = ωp/2 = ωPM. Hence ωPM is a parameter of the source
that has to be well controlled as defines the spectral region where the pairs are being
emitted. For instance, in the quantum communication experiment described in Part V,
the source had to be optimized to generate photon pairs in the telecom C-Band between
1535 nm to 1575 nm in order to be compatible with off-the-shelf optical components.

The value of ωPM strongly depends on the dispersion of the modes and hence on
the waveguide design. We can use two main parameters to tune the phase-matching:
ridge width and core thickness. The numerically simulated value of the phase-matching
wavelength as a function of these quantities for a Type II interaction is reported in Fig. 4.6.
We observe from Fig. 4.6 (a) that λPM is proportional to the core thickness. Hence by
carefully adjusting the epitaxial structure, one can get a coarse tuning of the value of
λPM. In addition to this, we see in Fig. 4.6 that λPM is also inversely proportional to
the ridge width. This way of controlling the phase-matching is less constraining since the
ridge width can be chosen at the fabrication stage when etching the waveguide. On the
contrary, changing the epitaxial structure requires growing a brand new sample, which is
a sensitive process. What is more, numerical simulations show that, in these structures,
the etching depth has a negligible impact on the phase-matching wavelegth and therefore
cannot be used as an extra control parameter.

Finally, to get a fine tuning of the phase-matching, one can also change the temperature
of the waveguide. Indeed, the Gerschitz model [146] predicts the variation of the AlGaAs
refractive index as a function of the fraction x of Al and the temperature T . By using this
model in our simulations, we find a linear temperature dependence of about 0.1 nm °C−1

that is consistent with previous experimental results from our group [147]. As we can see,
the dependence on temperature is much weaker but can be still be useful for setting the
value of λPM to a precise wavelength.

4.3 Cleanroom fabrication

4.3.1 Epitaxial growth

To fabricate AlGaAs waveguides, we start from 1” wafers where the the nominal structure
presented in Section 4.2.1 has been grown on an undoped GaAs substrate. The wafers are
grown by molecular beam epitaxy (MBE) at C2N lab in Palaiseau (France) by Aristide
Lemâıtre and Martina Morassi. We cleave small rectangular portions of this wafer, whose
edges are oriented along the [11̄0] and [1̄10] crystallographic axis of AlGaAs, and fabricate
our devices out of these individual pieces of wafer.

During the MBE process, the GaAs substrate is set on a rotating plate and the different
atomic species entering in the composition of AlGaAs are sputtered across the surface of
the substrate. By controlling tightly the gas flow, the MBE machine can deposit AlGaAs
of variable Al concentration atomic layer by atomic layer. The rotating sample holder is
used to ensure that the deposition is uniform across the wafer and hence that the epitaxial
structure will be constant over the whole sample.

In some cases, however, we might want the core thickness to have a gradient in order
to be able to fabricate samples with different phase-matching wavelengths out of a single
growth, depending on the target application. Indeed, since this value is directly propor-
tional to the core thickness, as shown in Fig. 4.6, this give us the freedom to tune the
phase matching by simply choosing the region of the wafer that is used to etch the waveg-
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Figure 4.7: Spatial map of the maximum FTIR reflectivity wavelength for wafers (a)
L5AF052, without a core thickness gradient, and (b) K7AD118, with a linear core thickness
gradient.

uide. To this end it is possible to stop the rotation of the substrate during the growth of
the waveguide core. Consequently, the deposition of the Al0.45Ga0.55As layer will not be
uniform across the substrate and will feature a linear gradient.

After each new growth, the epitaxy team perform a complete Fourier transform infrared
reflection (FTIR) spatial map of the wafer. For 110 locations on the surface of the sample a
FTIR spectrum is acquired. We can compare this data to numerical simulations1 to verify
that the sample that has been grown corresponds to the nominal structure. In Fig. 4.7 we
show the spatial map of the wavelength at which the FTIR spectrum takes its maximum
value for two different wafers, one with a core thickness gradient (K7AD118) and one
without gradient (L5AF052). From simulations, we observe that the maximum FTIR
spectrum wavelength gives the trend for the value of the core thickness: when the thickness
of the core increases, the maximum of the FITR spectrum is redshifted. We see that the
linear gradient in the core thickness is clearly visible in the second plot. On the contrary,
when the rotating plate is on during all of the growth process, we observe that the FTIR
spatial map is relatively homogeneous across the surface of the sample, with a slight radial
gradient.

Those spatial FTIR maps are an interesting characterization tool as they give us a
trend for the value of the phase-matching wavelength across the wafer. Indeed, numerical
simulations show that when the core thickness increases, so does the maximum FTIR
wavelength. Therefore, by measuring experimentally from a fabricated sample a reference
for the phase-matching wavelength at one location of the growth, one can obtain a relative
estimate of its value across the whole wafer from the spatial FTIR map.

4.3.2 Cleanroom process #1 : photolithography and chemical etching

In the two following sections, we describe the fabrication process of the AlGaAs ridge
waveguide. We first focus on the easiest and quickest method : photolithography and wet
chemical etching:

1. Cleaning of the piece of AlGaAs wafer with acetone, isopropanol and water then
additional surface cleaning with a light O2 plasma.

1We used either the stack function in the Lumerical FDTD software or a home-brewed solver to simulate
FTIR curves.
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Figure 4.8: Fabrication steps for (a-d) wet etched waveguides and (e-h) dry etched waveg-
uides. PR: Positive resist, NR: Negative resist, PM: Photomask, UV: Ultraviolet beam,
D: Developer, BCK: Chemical etching solution, ICP: Inductively coupled plasma etching

2. Spincoating of the positive photoresist S1805 (nominal thickness of 500 nm) using
adhesion promoter HMDS (Fig. 4.8 (a)). Both the resist and the promoter are spun
at 5000 rpm for 30 s. After spincoating, the resist is baked at 110 °C for 1min.

3. UV lithography of waveguides using a custom Cr photomask from the company Delta
Mask (Fig. 4.8 (b)).

4. Resist development using a MF-319 developer (Fig. 4.8 (c)). The development time
is 15 s.

5. Chemical etching using a BCK solution composed of acetic acid, potassium
dichromate (K2Cr2O2) and hydrobromic acid (HBr) in stoechiometric proportions
(Fig. 4.8 (d)).

6. Resist removal using acetone.

Due to the isotropic nature of chemical etching the resulting fabricated waveguides
have smooth curvy sidewalls as shown in Fig. 4.9 (a). However the resolution we can
achieve in the lithography is limited by the wavelength of the UV light that is used to
irradiate the sample and the roughness of the metallic mask.

4.3.3 Cleanroom process #2 : e-beam lithography and inductively cou-
pled plasma (ICP) etching

A second way of fabricating the waveguides involves electron-beam (e-beam) lithography
followed by dry inductively coupled plasma (ICP) etching. This method has a much higher
spatial resolution since the wavelength of electrons is much smaller than the wavelength
of UV light. The fabrication steps are as follows :

1. Cleaning of the sample (same as above).

2. Plasma enhanced chemical vapor deposition (PECVD) of a 5 nm layer of SiO that
promotes the adhesion of the resist.
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(a) (b)

2 µm 2 µm

Figure 4.9: Scanning electron microscope (SEM) images of the facet of AlGaAs ridge
waveguides fabricated by (a) wet etching and (b) dry etching.

3. Spin coating of HSQ negative e-beam resist (Fig. 4.8 (e)). The solution that is used
has a 6% concentration in HSQ. The resist is spun at 3000 rpm for 30 s and then
baked at 80 degrees for 4 minutes. The final resist thickness is around 90 nm.

4. E-beam lithography using a Raith Pioneer scanning electron microscope (SEM) with
a fixed beam moving stage (FBMS) module (Fig. 4.8 (f)). Thanks to this particular
writing mode, long waveguides can be patterned much faster than with conventional
e-beam lithography, where the stage remains fixed while the electron beam is moved
to draw the patterns. However, in FBMS mode, the SEM can only draw paths of
fixed width, but not polygons, as it would in conventional e-beam lithography. Later
in this manuscript, in Chapter 9, we use a simple hack to be able to draw polygons
in FBMS: we simply define the contour of the polygon using a first FBMS path then
we filled the polygon using other path of various width. We use an electron beam of
20 kV and an aperture of 30 µm resulting in an electronic current of 300 pA that is
used to irradiate the resist by an electron dose of 800 µCcm−1.

5. Development of the resist with the AZ400K developer (Fig. 4.8 (g)).

6. Removal of the 5 nm-thick SiO layer using reactive ion etching (RIE). We did this
in order to avoid having to etch out the SiO in addition to the AlGaAs layers in the
next step.

7. Waveguide etching using ICP based on Ar and SiCl4 (Fig. 4.8 (h)). This etch-
ing method is strongly directional, resulting in vertical sidewalls, as can be seen
from Fig. 4.9. It is however weakly chemically selective, and the HSQ resist also gets
etched away by the plasma. SiO having a very low etch rate, if we ommitted the
previous step, the HSQ photoresist would have been completely removed during the
etching process before we even reached the first AlGaAs layer under the SiO. What
is more, with our ICP recipe AlGaAs itself has a low etch rate of 11 nmmin−1. Be-
cause of this slow etching process, we chose to use exclusively an epitaxial structure
with only 2 upper Bragg mirror periods to avoid exposing the sample to ICP for too
long before etching the waveguide down to the core.

An important step when designing FBMS masks (and e-beam masks in general) is to
minimize the number of distinct paths or polygons that make up a single pattern to
ensure there is no risk of having mismatches or gaps at the interface between polygons.
For instance, a waveguide with S-bends should be done in a single FBMS path and not
several paths stuck end-to-end. By doing this, one ensures that the waveguide will be
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Figure 4.10: Data from a transmission measurement on a wet etched waveguide of ridge
width 4 µm (K7AD118) for (a) TE polarization and (b) TM polarization. We see Fabry-
Perot fringes arising from the effective cavity formed by the waveguide facet

perfectly smooth, without any discontinuity caused by the interface between the paths
When multiple polygons or paths are unavoidable, one can make the adjacent objects
overlap by about 50 nm to 100 nm to avoid any gaps.

4.4 Measurement of the optical losses of the guided modes

To check the quality of the fabricated device, we characterize the propagation losses of the
telecom modes inside the waveguide by using a method described in [148]. We measure
the transmission of the waveguide as a function of frequency, which will feature a series of
Fabry-Perot resonances arising from the reflectivity of the waveguide facets, as explained
in Section 4.2.1. For a given guided mode, the transmission of the waveguide is expressed
as:

T (ω) =
(1−R)2e−αL

(1−Re−αL)2 + 4R2e−αL sin2[ϕ(ω)]
, (4.17)

where ω is the frequency, α the propagation losses, R the modal reflectivity and L the
length of the waveguide. The phase factor ϕ(ω) is given by:

ϕ(ω) = Ln(ω)ω/c. (4.18)

By measuring the contrast K of the Fabry-Perot fringes K = (Tmax−Tmin)/(Tmax+Tmin)
with Tmax/min the maximum and minimum of Eq. (4.17), it is possible to obtain the
combined loss-reflectivity coefficient

R̃ = Re−αL =
1

K
(1−

√
1−K2). (4.19)

Using the numerically computed value for the modal reflectivity R, an estimate of the
propagation losses can be found as:

α = ln
(
R/R̃

)
/L. (4.20)

To measure T (ω) experimentally, a telecom laser beam is focussed on the input facet
of the waveguide using a NA=0.65 microscope objective. Light at the output facet of the
device is collected using a NA=0.95 objective then directed to an infrared (IR) powermeter.
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The transmitted power is recorded while scanning the input laser wavelength λ. The
transmissivity T is obtained by taking the ratio between the transmitted power and the
input power of the laser. The result of a transmission measurement on a wet-etched
waveguide of width 4 µm (wafer K7AD118) is shown in Fig. 4.10. We observe characteristic
Fabry-Perot fringes with a free-spectral range of 22GHz (0.17 nm), which is compatible
with the length of the device, about 2mm in this case, and the value of the effective mode
indices of TE and TM fundamental modes, around 3.1. From the fringe contrast, we
extract a value of 1.3 cm−1 and 2.5 cm−1 for the TE and TM losses respectively.

Ridge width (µm) Losses TE ( cm−1) Losses TM ( cm−1)

2 6.6 6.0

3 2.6 3.2

4 1.3 2.5

Table 4.2: Measured propagation losses of the fundamental telecom modes around
1550 nm for waveguides of different ridge width fabricated by wet etching in wafer K7AD118.

In Table 4.2 we display the measured values for propagation losses in waveguides of
increasing width that were fabricated on the same chip. The general trend is that the losses
decrease in broader waveguides. Moreover, we observe that for narrow waveguides losses
are higher for the TE than for the TM mode. This is what we would expect intuitively
since the TM mode has its E field polarized parallel to the waveguide sidewalls and hence
is less affected by a reduced ridge width.

The fact that losses increase significantly in narrow waveguides introduces a trade-off in
the tunability of the phase-matching resonance with ridge width presented in Fig. 4.6 (a).
Indeed, the price to pay when attempting to reach higher values for λPM by reducing the
waveguide width is to have a lower conversion efficiency due to the losses. This is why the
thickness gradient in the epitaxial structure is a crucial tuning parameter since, despite
being harder to control, it allows to change the PM wavelength without introducing losses.

4.5 Characterization of the frequency conversion by Second
Harmonic Generation

4.5.1 Principle of the experiment

The second step in the characterization of a device is the measurement of second harmonic
generation. Since it is the reverse classical process of SPDC, it can be used to measure
the phase-matching wavelength λPM of the different SPDC interactions.

The setup used for this experiment is depicted in Fig. 4.11. We couple a telecom laser
beam at frequency ω in and out of the waveguide using the same microscope objectives
as in the previous section. The beam exiting the waveguide will contain the undepleted
strong pump field at frequency ω and a weak frequency-doubled field at 2ω that has been
created by SHG. The beam exiting the waveguide is filtered using a dichroic mirror with
cutoff wavelength 1000 nm. The reflected part, which contains the SHG field, is sent to an
InGaAs photodiode, whose analog electrical output is amplified by a factor of 1× 107 to
1× 108 then fed into a SRS830 lockin amplifier. We add a beam chopper just before the
input microscope objective to modulate the input beam at a frequency of about 220Hz.
The reference signal from the chopper is sent to the lockin amplifier which will amplify
the measured SHG signal at the frequency of the chopper and measure the amplitude and
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Figure 4.11: Sketch of the experimental setup for a SHG experiment. An optional polar-
izer (not shown) can be added before the photodiode to project the SHG field on different
polarizations.

phase of the field. To monitor and keep the waveguide temperature constant, we use a
thermistor and a Peltier cooler, connected to a PID controller (not shown).

By recording the amplitude of the generated beam at 2ω as a function of input fre-
quency ω, we obtain a spectrum where the phase-matching resonances will appear as
maxima of the recorded SHG power. As explained in Section 4.2.2, several interaction
involving modes of different polarizations can occur in the device. Those processes can
be probed separately by adjusting the polarization of the telecom pump beam. There are
two possibilities :

� An input beam with a linear polarization at 45 deg with respect to the vertical
direction, which corresponds to a linear superposition of the TE and TM modes,
will excite all three possible interactions:

– Type II : TE + TM → TE

– Type I : TM+ TM → TE

– Type 0 : TM+ TM → TM

� An input beam with a linear polarization at 0 deg with respect to the vertical direc-
tion, corresponding to the TM mode will only trigger the two interactions:

– Type I : TM+ TM → TE

– Type 0 : TM+ TM → TM

Eventually, the only way to discriminate Type I from Type 0 is to project the polarization
of the generated SHG field by using a polarizer. Type II is usually the brightest since the
epitaxial structure has been optimized favor Type II over the other processes.

4.5.2 Results

The result of a SHG measurement performed using a linearly polarized beam at 45 deg
is displayed in Fig. 4.12 (a). We observe Type II and Type 0 resonances, as expected.
For each interaction, the value of the phase-matching wavelength λPM is given by the
wavelength for which the SHG signal is maximum. For instance, we see that Type 0 phase
matching occurs at lower wavelength than Type II, as expected from the simulations
of Fig. 4.5. Note that the Type 0 peak is smaller than Type II. This comes from the fact
that a 45 deg polarized pump is not optimal for generating Type 0, which would require
a 0 deg polarization. However, we did not repeat the measurement in this other setting
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Figure 4.12: (a) Measured SHG spectrum in a wet etched waveguide from wafer L5AF052
using a a 45 deg polarized telecom pump laser. The spectrum exhibits two interactions:
Type II and Type 0. The satellite peaks on the right of each resonance correspond to SHG
emission in the second order transverse spatial mode. (b) Experimental and simulated
values for phase-matching wavelength as a function of ridge width in wet-etched waveguides
fabricated in wafer K7AD118.

since we were only interested in finding the position of the resonances and not comparing
the conversion efficiencies of the two processes.

Furthermore, for a given interaction, according to our simulations in Fig. 4.6 (b), the
phase-matching wavelength depends on the waveguide width. To verify this, we fabricated
a sample with groups of neighboring waveguides of increasing width, 2 µm, 3 µm and 4 µm,
using photolithography and wet chemical etching (wafer K7AD118). By acquiring the SHG
spectrum in all waveguides, we can observe its dependence on ridge width and compare it
to the numerical simulations. The results are shown in Fig. 4.12 (b). Since the absolute
values of the phase-matching wavelength are hard to predict numerically we obtained an
offset of 25 nm between simulations and experiments. However, when removing this offset,
which has been done in the plot Fig. 4.12 (b), we see that the trend of the simulated curve
follows closely experimental observations.

Therefore, we confirm that the ridge width, which is easy to set on the lithography
mask, can provide a useful tuning parameter to control the biphoton degeneracy wave-
length.
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SPDC in AlGaAs waveguides:
generated quantum state
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In this chapter, we describe the quantum state generated by our AlGaAs SPDC source.
We give a detailed derivation of the mathematical form of the state from first principles
before showing simulations on the joint spectral amplitude (JSA). Then we describe po-
larization entanglement for a Type II interaction.

5.1 Quantum theory of colinear SPDC

To calculate the quantum state of the electromagnetic field at the output of the photon-
pair source, we will need to make a generalization of the simple model of Section 2.3 when
considering a continuum of possible interacting modes, which corresponds to the different
polarization and frequencies that are allowed by the phase-matching conditions.

As in the previous model, the quantum Hamiltonian of the system is the sum of the
Hamiltonian for free radiation ĤR and an interaction Hamiltonian ĤI which will depend
on the non-linear dielectric susceptibility tensor. The Hamiltonian for free radiation reads:

ĤR =

∫
dωpâ

†
p(ωp)âp(ωp) +

∫
dω1â

†
µ(ω1)âµ(ω1) +

∫
dω2â

†
ν(ω2)âν(ω2). (5.1)

By considering a SPDC process where the pump p will generate twin photons of polariza-
tions µ, ν ∈ {H,V }, the interaction term can be written classically as [119]:

HI =
1

8π

∫
V
dr3PNL ·E

=
ϵ0
16π

∫
V
dr3deff(r)Ep(r, t)Eµ(r, t)Eν(r, t).

(5.2)

When going to the quantum mechanical Hamiltonian, we replace the classical fields of the
three photons by their quantum mechanical operators, given in Eq. (2.10). We only keep
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the terms satisfying energy conservation and get the following expression:

ĤI =

∫
V
d3rdeff(r)Ê

(+)
p (r)Ê(−)

µ (r)Ê(−)
ν (r) + H.c. (5.3)

Since we are dealing with guided modes in a waveguide oriented along the y axis, we
assume that the propagation of the three fields is in the y direction: kp = kpey,kµ =
kµey,kν = kνey. We can therefore simplify the expression for the positive and negative
frequency components of the field operators:

Ê(+)
p =

i

c

∫
dωpEp(x, z)e

−ikp(ωp)yâp(ωp),

Ê(−)
µ =

i

c

∫
dω1Eµ(x, z)e

ikµ(ω1)yâ†µ(ω1),

Ê(−)
ν =

i

c

∫
dω2Eν(x, z)e

ikν(ω2)yâ†ν(ω2).

(5.4)

In these expressions, we introduced the spatial mode profiles Ei(x, z) of the three inter-
acting fields. The expression for the interaction hamiltonian can be expanded as:

ĤI = iℏ
[∫∫

dxdzdeff(x, z)Ep(x, z)Eµ(x, z)Eν(x, z)

]
[∫∫∫

dωpdω1dω2

∫
dye−i(kp(ωp)−kµ(ω1)−kν(ω2))y

âp(ωp)â
†
µ(ω1) â

†
ν(ω2)

]
+H.c..

(5.5)

The first term in (5.5) is the nonlinear overlap integral between the three interacting
modes, that has already been introduced in Section 4.1.2:

Γ =

∫∫
dxdzdeff(x, z)Ep(x, z)Eµ(x, z)Eν(x, z). (5.6)

Note that since TE and TM mode have slightly different spatial profiles, Γ will vary for
all three interaction. The integral over y in Eq. (5.5) controls the phase-matching and can
be rewritten:

ΦPM(ωp, ω1, ω2) =

∫
dye−i(kp(ωp)−kµ(ω1)−kν(ω2))y = e−i∆kL/2sinc(∆kL/2) (5.7)

where ∆k = kp(ωp)− kµ(ω1)− kν(ω2) is the wave-vector mismatch and L the interaction
length of the medium. Again, we obtain a familiar sinc2 dependence on the wave-vector
mismatch, which is reminiscent of the conversion efficiency for a classical nonlinear process.

To compute the steady state of the system, we want to decouple the dynamics induced
by ĤR and ĤI by going to the interaction picture [120]. We obtain a time-dependent
Hamiltonian:

Ĥ(I)(t) = e−iĤRt/ℏĤeiĤRt/ℏ. (5.8)

We denote by the superscript (I) the operators and state vector in the interaction picture.
The effect of this transform is to introduce phase factors to the creation and annihila-
tion operators present in the expression of Ĥ. Indeed, under the effect of the unitary
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transformation of Eq. (5.8), the ladder operations evolve as 1:

âp(ωp) → âp(ωp)e
−iωpt

â†µ(ω1) → â†µ(ω1)e
iω1t

â†ν(ω2) → â†ν(ω2)e
iω2t

(5.9)

The free radiation part is unchanged in the interaction picture Ĥ
(I)
R (t) = ĤR. The inter-

action part can be rewritten with the help of equations (5.7), (5.6) and (5.9):

Ĥ
(I)
I (t) = iℏΓ

∫∫∫
dωpdω1dω2

[
ΦPM(ωp, ω1, ω2)e

−i(ωp−ω1−ω2)t

âp(ωp)â
†
µ(ω1)â

†
ν(ω2)

]
+H.c.

(5.10)

The state of the electromagnetic field is obtained by applying the corresponding time-
evolution operator Û (I)(t, t′) in the interaction picture:

|Ψ⟩steady-state = Û (I)(−∞,+∞)
∣∣∣Ψ(I)(0)

〉
= exp

[
− i

ℏ

∫ +∞

−∞
dτĤ

(I)
I (τ)

] ∣∣∣Ψ(I)(0)
〉 (5.11)

The integral is carried out between ±∞ as we are assuming the system has interacted for a
very long time and has reached its steady state. The intial state in the Schrödinger picture
is |Ψ(0)⟩ = |α(ωp)⟩p⊗|vac⟩µ⊗|vac⟩ν , where we assumed the pump field is in a coherent state
α(ωp), which is a good description for a classical laser beam. On the contrary, the modes
of the generated twin photons are initially in a vacuum state, since SPDC is a spontaneous
process. By definition, a coherent state verifies: âp(ωp) |α(ωp)⟩p = α(ωp) |α(ωp)⟩p, hence

âp(ωp) |Ψ(0)⟩ = α(ωp) |Ψ(0)⟩ . (5.12)

This implies that |Ψ(0)⟩ is an eigenstate of the free Hamiltonian (5.1) with eigenvalue
α(ωp). The function α(ωp) can simply be interpreted as the spectrum of the pump field.
Consequently, the initial state in the interaction picture remains unchanged:∣∣∣Ψ(I)(0)

〉
= eiĤI t/ℏ |Ψ(0)⟩ = |α(ωp)⟩p ⊗ |vac⟩µ ⊗ |vac⟩ν , (5.13)

where we omitted the global phase factor in the last equality.
We are only interested in the vacuum and two-photon contribution of |Ψ⟩steady-state.

Thus we expand the exponential in (5.11) as a Taylor series and only keep the first two
terms:

|Ψ⟩steady-state ≈
[
1− i

ℏ

∫ +∞

−∞
dτĤ

(I)
I (τ)

]
|Ψ(0)⟩

=

{
1 +

[
Γ

∫∫∫
dωpdω1dω2

(∫ +∞

−∞
dτe−i(ωp−ω1−ω2)τ

)
ΦPM(ωp, ω1, ω2)âp(ωp)â

†
µ(ω1)â

†
ν(ω2)−H.c.

]}
|Ψ(0)⟩

(5.14)

1The proof is straightforward. Using the Baker-Campbell-Hausdorff formula : eX̂ Ŷ e−̂X = Y +[X,Y ]+
1

2!
[X, [X,Y ]]+

1

”!
[X, [X, [X,Y ]]]+ ..., one can show that for any ladder operators â, â† satisfying [â, â†] = 1

and κ a scalar, one gets eκâââe−κââ = e−κâ and eκâââ†e−κââ = eκâ†.
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By using equation (5.12) along with the identity∫ +∞

−∞
dτe−i(ωp−ω1−ω2)τ = δ(ωp − ω1 − ω2), (5.15)

we further simplify the expression to:

|Ψ⟩steady-state =
{
1 +

[
Γ

∫∫
dωpdω1dω2δ(ωp − ω1 − ω2)

ΦPM(ωp, ω1, ω2)α(ωp)â
†
µ(ω1)â

†
ν(ω2)−H.c.

]}
|Ψ(0)⟩ .

(5.16)

Finally, by carrying out the integral on ωp and dropping the vacuum contribution, the
state generated by the SPDC process can be written:

|Ψ⟩SPDC =

∫∫
dω1dω2C(ω1, ω2)â

†
µ(ω1)â

†
ν(ω2) |vac⟩ . (5.17)

The complex function C(ω1, ω2) is called the joint spectral amplitude (JSA) and can be
expressed as:

C(ω1, ω2) = α(ω1 + ω2)ΦPM (ωp, ω1, ω2)
∣∣
ωp=ω1+ω2

. (5.18)

The JSA is normalized to unity
∫∫

dω1dω2|C(ω1, ω2)|2 = 1 and it admits a simple physical
interpretation: the probability of generating a photon pair at frequency (ω1, ω2) is given by
the modulus square of the JSA |C(ω1, ω2)|2. This quantity, is also referred to as the joint
spectral intensity (JSI). In practice, the JSA contains all the information on the generated
two-photon state, including spectral correlations between the photons and polarization
entanglement.

5.2 Properties of the JSA

5.2.1 Pump spectrum

In all the experiments presented in this dissertation, the AlGaAs SPDC source was pumped
using a narrowband continuous-wave laser (CW) with a linewidth ∆νp = 100 kHz. The
laser spectrum has a Lorentzian lineshape which is expressed as:

α(ω) =
1

π∆ωp

[
∆ω2

p

(ω − ωp)2 +∆ω2
p

]
, (5.19)

with ∆ωp = 2π∆νp. Since the FWHM of the laser line is very narrow compared to the
bandwidth of the emitted photons, the pump spectrum will essentially be nonzero only
along the anti-diagonal: ω1 + ω2 = ωp. The resulting quantum state will therefore be
strongly anti-correlated. To a good approximation, we can assume that the lineshape of
the laser is described by a Dirac delta distribution:

α(ω) ≈ δ(ω − ωp). (5.20)

5.2.2 JSA in the rotated (ω+, ω−) basis

In this regime, it can be useful to express the JSA in the rotated basis:

ω+ = ω1 + ω2,

ω− = ω1 − ω2.
(5.21)
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Using these new coordinates, the JSA can be rewritten as [149]:

C(ω+, ω−) = f+(ω+)f−(ω−), (5.22)

where f+, f− can be determined by identifying term by term this expression to Eq. (5.18).
Note that the transformation in Eq. (5.21) is not strictly speaking a rotation since it does
not preserve the norm. However, this basis is the most natural for expressing the JSA
since the coordinate ω+ reflects directly the energy conservation condition.

Essentially, the expression of f+(ω+) will be dictated by the pump spectrum while
f−(ω−) will depend on the phase-matching function. If we use the narrow pump approxi-
mation of Eq. (5.20), then we simply obtain:

f+(ω+) = δ(ω+ − ωp). (5.23)

In this case, the quantum state becomes:

|Ψ⟩ =
∫

dω−f−(ω−)âµ(ωp + ω−)âν(ωp − ω−) |vac⟩ . (5.24)

We see that, under these assumptions, the JSA is fully determined by f−(ω−). This
function is given by taking a cut of the phase-matching function ΦPM(ω+, ω−) along the
line defined by ω+ = ωp.

5.2.3 Approximate expression for the wave-vector mismatch ∆k

To have a physical intuition on how phase-matching conditions influence the shape of the
JSA, it can be useful to derive an approximate analytical expression for the wave-vector
mismatch ∆k entering in the formula for the phase-matching function. More details on
this derivation can be found in Ref. [150].

We consider the case of Type II SPDC since it will be the process that will be used in
the experiments described in this manuscript. The wave-vector mismatch reads:

∆k = kp − kH − kV

=
1

c
[ωpnp(ωp)− ωHnH(ω1)− ωV nV (ω2)] ,

(5.25)

where np, nH , nV are respectively the effective mode indices of the pump Bragg TE, fun-
damental TE and fundamental TM modes of the waveguide. To simplify this expression,
we make several assumptions:

� The effective mode indices for the fundamental TE and TM modes have a linear
dispersion in the spectral region of interest. Hence for a small variation of frequency
δω we have:

ni(ω + δω) = ni(ω) + δω
dni

dω
, (5.26)

with i = H,V . This assumption is justified when inspecting the simulated modal
dispersion curves in Fig. 4.5, which indeed can be considered linear in a good ap-
proximation. A corollary is that the fundamental mode birefringence, given by the
difference in effective mode index between the TE and TM fundamental modes, is a
constant:

nH(ω)− nV (ω) ≡ ∆n. (5.27)
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� The fundamental TE and TM modes have the same modal dispersion, meaning that:

dnH

dω
=

dnV

dω
≡ dn

dω
. (5.28)

Again, Fig. 4.5 shows that the two lines corresponding to nH and nV are nearly
parallel, which corroborates this assumption.

Using the two approximations given in Eqs. (5.26) and (5.28), we can split the expression
for ∆k into three terms:

∆k = ∆kmodal(ω+) + ∆kbirefringence(ω−) + ∆kdispersion(ω−). (5.29)

The expression of those terms is given by:

∆kmodal(ω+) =
ω+

c
∆nmodal(ω+) =

ω+

c

[
np(ω+)−

nH(ω+/2) + nV (ω+/2)

2

]
, (5.30)

∆kbirefringence(ω−) = −ω−
2c

∆n = −ω−
2c

[nH(ω+/2)− nV (ω+/2)] , (5.31)

∆kdispersion = −
ω2
−
2c

dn

dω
. (5.32)

The term ∆kmodal is proportional to the mismatch between the pump mode index and
the average of the fundamental TE and TM mode indices. ∆kbirefringence arises from the
birefringence between the TE and TM telecom modes. Finally, ∆kdispersion represents the
wavevector mismatch coming from the chromatic dispersion of the modes. We combine
all of those terms in a single expression in the (ω+, ω−) basis:

∆k =
ω+

c
∆nmodal(ω+)−

ω−
2c

∆n−
ω2
−
2c

. (5.33)

We see that the wave-vector mismatch has a polynomial dependence on ω−. Hence the
region of (ω+, ω−) space for which perfect phase matching ∆k = 0 is verified will have
the shape of a parabola. In addition, we notice that the birefringence term introduces an
asymmetry of the phase-matching function with respect to ω− = 0. Indeed, ∆n enters in
the first order term in ω− and it is clear that if ∆n = 0 then ∆k ∝ ω2

−. In that case, the
phase matching function and hence the JSA become symmetric in ω−. As we will see, the
presence of birefringence results in an asymmetry of the JSA.

5.3 Numerical simulation of the JSA

5.3.1 Without cavity effects

We simulate the JSA for a Type II SPDC process using the numerically calculated effective
indices of the interacting modes. In Fig. 5.1 (a), we plot the simulated JSI for an AlGaAs
waveguide in the narrow pump regime. We see that we have a strongly anti-correlated
state, which stems from the narrow bandwidth of the pump, with a degeneracy frequency,
for which ω− = 0, of ωd = ωp/2 = 198× 2πTHz.

In Fig. 5.1 (b-d), we detail the different ingredients defining the structure of the JSA.
A simulation of the phase matching function ΦPM is shown in Fig. 5.1 (b). We observe
that the phase-matching function has indeed the characteristic parabolic shape that was
predicted from Eq. (5.33). The simulated pump spectrum and corresponding JSA are
shown in in Fig. 5.1 (c-d). The bandwidth of the two-photon state is ∆ω = 8THz
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Figure 5.1: (a) Simulated joint spectral intensity in the (ω1, ω2) basis for a source in the
narrow pump regime. For the sake of clarity, the pump bandwidth value has been taken
much larger that what it should be (10GHz instead of 100 kHz) to be able to visualize
the totality of the JSI on a single plot. (b) Simulated phase-matching function ΦPM in
the (ω+, ω−) basis. (c) Simulated pump spectrum for ωp/2π = 383.8THz. Again, here
the value of the pump bandwidth is not to scale. (d) Corresponding antidiagonal profile
f−(ω−) of the joint spectral amplitude.
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Figure 5.2: (a) Frequency grid resulting from the product of the cavity transmission
functions for the two photons present in the expression of the JSA in Eq. (5.34). Dashed
lines indicate two possible values of the pump frequency used to generate a resonant or
anti-resonant BFC. (b) JSA of a resonant BFC. (c) JSA of an anti-resonant BFC (blue
line: real part, red line: imaginary part. Figure from Ref.[87]).

corresponding to ∆λ = 60nm. An important feature of the JSA generated by our source
is that it is slightly asymmetric with respect to ω− = 0. This can be seen from the plots
of f−(ω−), where the ω− = 0 axis has been indicated with a black dashed line. This
asymmetry is a direct consequence of the waveguide birefringence as explained in the
previous section.

5.3.2 With cavity effects

In this paragraph, we give a more accurate description of the JSA by taking into account
the fact that the two end facets of the waveguide act like the two mirrors of a cavity.
When photons are emitted by SPDC within an optical cavity, they bounce back and
forth between the mirrors before exiting the system, like light in a Fabry-Perot resonator.
Another way picture this is to consider that the cavity presents discrete resonances and
that the SPDC photons can only be generated in the cavity modes corresponding to those
resonances. Hence we expect that the resonances of the cavity will appear in the joint
spectrum of the emitted photon-pairs.

To describe this situation, we add an additional factor to the expression of the JSA
given in Eq. (5.18). The JSA C̃(ω1, ω2) in the presence of a cavity can be expressed as:

C̃(ω1, ω2) = tH(ω1)tV (ω2)α(ω1 + ω2)ΦPM (ωp, ω1, ω2)
∣∣
ωp=ω1+ω2

. (5.34)

where the functions tH , tV are simply the amplitude transmission coefficient of H and V
polarized light after traveling through a cavity:

tH(ω) =
(1−RH)eiωτH(ω)/2

1−RHeiωτH(ω)
, (5.35)

tV (ω) =
(1−RV )e

iωτV (ω)/2

1−RV eiωτV (ω)
, (5.36)
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with the round-trip time τi defined as τi(ω) = 2ni(ω)L/c where ni(ω) is the effective index
of mode i = H,V . The transmission function consists of a series of discrete peaks spaced
by ω̄ = 2π/τ , which is the free spectral range of the cavity. Hence the product of the two
cavity factors in Eq. (5.34) will result in a two-dimensional grid in frequency space. This is
shown in Fig. 5.2 (a) where we plot the product of the two cavity functions in the (ω+, ω−)
basis for values of the fundamental TE and TMmode reflectivity of RH = RV = 0.8. These
values are higher than the simulated modal reflectivity for an AlGaAs waveguide given
in Section 4.2 and have been chosen such as to give a clear picture of the cavity effects
on the JSA. The resulting JSA is plotted in Fig. 5.2 (b-c). We see that it features a
series of peaks spaced by 2ω̄. Hence, taking into account all the terms of Eq. (5.34), the
JSA is given by the product of this comb structure and the bell-shaped envelope of the
phase-matching function shown in Fig. 5.1 (d).

This property of the JSA suggests that the emitted state can be seen as a biphoton
frequency comb (BFC), the quantum analog of an optical frequency comb. This kind of
quantum states of light has been first investigated by Ou and coworkers [151] and recently
received growing attention from the integrated quantum photonics community thanks to
their potential applications in quantum computing and communications [134, 114, 87].
One can generate different kinds of BFC by changing the value of the pump frequency as
indicated in Fig. 5.2 (b-c). Two particular cases are highlighted here: resonant BFC, for
which there is a cavity resonance at ω− = 0 and anti-resonant BFC for which there is no
cavity resonance at ω−. As will be seen later in Section 6.4, this ability to control the
comb by changing the pump frequency can be used to manipulate the symmetry of the
quantum-state.

5.4 Polarization entanglement

Now that we discussed in details the spectral correlation between photons generated by
our source, we investigate polarization entanglement created by a Type II interaction. In
this case, the quantum state reads:

|Ψ⟩ =
∫∫ +∞

−∞
dω1dω2C(ω1, ω2) |ω1, H⟩ |ω2, V ⟩ , (5.37)

where |ω,H⟩ = a†H(ω) |vac⟩ and |ω, V ⟩ = a†V (ω) |vac⟩. In the case of a narrowband pump,
the state can be rewritten in the (ω+, ω−) basis:

|Ψ⟩ =
∫ +∞

−∞
dΩΦ(Ω) |ωd +Ω, H⟩ |ωd − Ω, V ⟩ , (5.38)

where we defined for convenience ωd = ωp/2 the degeneracy angular frequency, Ω = ω−/2
the detuning with respect to the degeneracy and Φ(Ω) = f−(ω−). To reveal polarization
entanglement, we rewrite the state as a continuous superposition of bipartite polarization-
entangled states. To do so, we split the summation in Eq. (5.38) into two parts using the
identity:

∫∞
∞ =

∫∞
0 −

∫ −∞
0 then make the change of variable Ω → −Ω into the second

term and finally recombine the two integrals to obtain:

|Ψ⟩ =
∫ ∞

0
dΩ [Φ(Ω) |ωd +Ω, H⟩ |ωd − Ω, V ⟩

+ Φ(−Ω) |ωd +Ω, V ⟩ |ωd − Ω, H⟩] .
(5.39)
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This expression can be seen as a continuous sum of polarization |Ψ+⟩ Bell states that are
distributed over the whole two-photon spectral bandwidth. We see that the JSA, encapsu-
lated in the function Φ(Ω), plays a crucial role in the structure of the polarization-entangled
state emitted by our device. In particular we see that the state is maximally entangled
over the whole bandwidth only if the JSA is perfectly symmetric: Φ(Ω) = Φ(−Ω). How-
ever, we have seen that a slight asymmetry in the JSA arises from the birefringence of our
device, which is detrimental to the quality of polarization entanglement.

To assess the quality of the entangled state generated by our source, we calculate the
fidelity F to a |Ψ+⟩ Bell state and the concurrence C, defined in Section 3.2. Since the
state is spectrally broadband, we want to obtain a value for these measures of entanglement
as a function of the signal and idler frequency. To this end, we define a grid of energy-
conjugate bins of fixed width ∆ and central frequency ωd ± Ω0 spanning the spectral
range of the quantum state, and compute F and C over all these different bins. For a
given value of Ω0, we label by A the signal photons within the frequency window [ωd +
(Ω0 − ∆/2), ωd + (Ω0 + ∆/2)] and by B the idler photons within the frequency window
[ωd − (Ω0 +∆/2), ωd − (Ω0 −∆/2)]. The resulting post-selected quantum state takes the
form: ∣∣Ψ′〉 = ∫ ∞

0
dΩf(Ω) [Φ(Ω) |ωd +Ω, H⟩A |ωd − Ω, V ⟩B

+ Φ(−Ω) |ωd +Ω, V ⟩A |ωd − Ω, H⟩B] ,
(5.40)

with f(Ω) a rectangular distribution:

f(Ω) =

{
1, for Ω ∈ [Ω0 −∆/2,Ω0 +∆/2],
0, elsewhere.

(5.41)

The corresponding density operator is ρ̃ = |Ψ′⟩ ⟨Ψ′|. Following the approach of Ref. [152],
we compute the reduced polarization density matrix ρ by tracing out the frequency part
of the density operator:

ρ =
1

N

∫∫
dω′dω′′

A

〈
ω′∣∣

B

〈
ω′′∣∣ ρ̃ ∣∣ω′′〉

B

∣∣ω′〉
A
, (5.42)

with N a normalization constant. After some straightforward algebra, one obtains:

ρ = α |HV ⟩ABAB ⟨HV |+D |HV ⟩ABAB ⟨V H|
+D∗ |V H⟩ABAB ⟨HV |+ β |V H⟩ABAB ⟨V H| ,

(5.43)

where the 4 non-zero matrix elements are:

α =
1

N

∫ ∞

0
dΩf(Ω)|Φ(Ω)|2, (5.44)

β =
1

N

∫ ∞

0
dΩf(Ω)|Φ(−Ω)|2, (5.45)

D =
1

N

∫ ∞

0
dΩf(Ω)Φ(Ω)Φ∗(−Ω), (5.46)

and the normalization constant is set to N =
∫∞
0 dΩf(Ω)

[
|Φ(Ω)|2 + |Φ(−Ω)|2

]
such that

Tr ρ = 1.

In Fig. 5.3, we display simulations of the fidelity F and concurrence C as a function
of detuning Ω to biphoton degeneracy in the presence and in the absence of cavity effects.
We computed the values over a frequency grid with of bin width ∆ = 100GHz. We
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Figure 5.3: (a) Simulated fidelity F to a |Ψ+⟩ Bell state and (b) Concurrence as a
function of detuning to biphoton degeneracy for the two-photon state emitted by the
AlGaAs source.

see that both quantities remain very close to 1 in a broad region around the biphoton
degeneracy before dropping sharply for a detuning value of around 30 nm detuning. As
stated earlier, this drop is the result of the asymmetry of the JSA induced by waveguide
birefringence. We see from the dashed lines in Fig. 5.3 (a-b) that cavity effects result in
a faster decrease of the entanglement with detuning. This can be understood intuitively
by considering that, due to birefringence and chromatic dispersion, the resonances of the
cavity for TE and TM photons are not perfectly lined up with the antidiagonal defined
by energy conservation, resulting in extra asymmetries in specific regions of the JSA.

The entanglement bandwidth can be increased in several ways. To get rid of cavity
effects, our group has been developing anti-reflection coatings based on SiO that can be
deposited on the facets of the waveguide. In addition, an optimization of the device
structure could be carried out in order to reduce the birefringence and broaden the phase-
matching bandwidth.
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Chapter 6

Experimental characterization of
the biphoton state
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In this chapter, we present the techniques that were used to experimentally characterize
the photon pairs generated by the AlGaAs source. We first describe our setup and data
processing method for photon-counting experiments before highlighting the performance
of our device in terms of brightness and coincidence to accidental ratio (CAR). Then we
introduce Hong-Ou-Mandel (HOM) interferometry and show how the biphoton bandwidth
and indistinguishability can be assessed using this effect. Finally, we present our results
on experimental reconstruction of the JSI using stimulated emission tomography before
turning to measurements of HOM revivals and their physical interpretation in terms of
biphoton frequency combs.

6.1 Pair generation rate and CAR

6.1.1 Experimental setup

We start by describing the basic setup that is used to measure time correlations between the
photons emitted by SPDC. The experiment is sketched in Fig. 6.1. An AlGaAs waveguide
is pumped with a tunable CW diode laser (TOPTICA TM Photonics DL pro 780) which
is coupled into the waveguide through a microscope objective (NA = 0.95, 63×). In order
to generate pairs through SPDC, the frequency of the pump laser is set to the phase-
matching resonance of the device. Light emerging from the end facet of the waveguide is
collected with a second microscope objective (NA = 0.65) and sent to a fiber coupler, after
filtering out the pump wavelength with a high pass filter. Just like in the SHG experiment,
temperature is kept constant using a Peltier cell and a thermistor in a PID loop. In the
case of Type II SPDC, the photon pairs are then split deterministically into two separate
fibers using a fibered polarization controller (FPC) followed by a fibered polarizing beam
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Figure 6.1: Sketch of the experimental setup for the measurement of temporal correlations
in a SPDC process. Generated photon pairs are depicted as pink dots.
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Figure 6.2: Time-correlation histogram acquired from sample K7AD118. The blue and red
dashed lines delimit the post-processed coincidence and noise windows respectively.

splitter (FPBS). For Type I or 0 processes where photons have the same polarization,
a conventional fibered 50/50 splitter is used (consequently dividing the coincidence rate
by half). The photons are finally detected with superconducting nanowire single photon
detectors (SNSPD, Quantum Opus) featuring a 85% detection efficiency and 10 s−1 dark
count rate.

The FPC is used to compensate polarization rotation in the fiber and ensure that the
orthogonal polarization of the generated Type II photons matches the optical axes of the
FPBS, reaching an optimal splitting. The FPC can be adjusted using several techniques.
One can simply put a H or V polarizer before the collimator and adjust the FPC such
that the single counts from SPDC are minimum at one output arm and maximum at the
opposite arm. If the SPDC coincidence signal is strong enough, another possibility is to
plug a fibered 50/50 BS to one of the output arms of the FPBS and adjust the FPC such
as to minimize coincidence counts, making sure that photon pairs never end up in the
same output arm of the FPBS.

6.1.2 Photon counting and data processing

The electrical pulses generated by the detectors upon detecting a photon are sent to a
counting electronics unit, which will compute on-the-fly time-correlations between the
clicks from both detectors. We used a time-to-digital converter (TDC, quTau) which
counts the ”start-stop” events within a fixed time buffer of about 4 µs with a temporal
resolution of 81 ps. In some experiments, we also used a more advanced device called
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6.1. Pair generation rate and CAR

time-tagger (Swabian Instruments). The latter has the ability to record the absolute time
of the detection events with respect to a common reference. In our case, this can be
interesting for experiments involving correlations between events that are separated by a
very long time interval. Indeed, if this interval exceeds the size of the buffer of the TDC,
we cannot record any time-correlations. On the other hand, the time-tagger record the
absolute time-tags and sends it to the computer for correlation analysis thus getting rid
of time buffer problem.

We collect data under the form of time-correlation histograms such as the one displayed
in Fig. 6.2. To do so, we let the detectors and TDC acquire data during a fixed acquisition
time τ . For each time bin of its buffer, the TDC will count the number of ”start-stop”
events that have occurred. When recording time correlation from photon pairs with per-
fectly correlated emission time, we expect all the coincidence events to occur within the
same temporal bin. However, because of the combined timing jitter of the detectors and
counting electronics, the coincidence peak in the histogram will span several time bins,
typically between 5 and 10.

The number of recorded raw signal counts S will be defined as the total number of
start-stop event within a user-defined coincidence window spanning ∆s time bins around
the coincidence peak, as shown in Fig. 6.2. Similarly, we define the number of noise
counts N as the total number of start-stop events within a separate window spanning
∆n time bins that is shifted away in time from the coincidence peak. By doing so, the
noise counts will simply be a measure of the average number of background counts that
are recorded, while the signal counts will be the number of coincidence counts that we
attribute to true raw photon pair-detection events. Note that all this procedure is done
at the post-processing stage. The raw coincidence rate is then obtained as:

Rraw =
S

τ
. (6.1)

The coincidence-to-accidental ratio is defined as the average number of signal counts per
signal bin over the average number of noise counts per signal bin :

CAR =
S

N

∆n

∆s
. (6.2)

Finally, we can define a net coincidence rate which corresponds to the raw signal counts
per unit time from which we subtracted the background noise counts :

Rnet =
1

τ

(
S −N

∆s

∆n

)
= S

(
1− 1

CAR

)
. (6.3)

6.1.3 Source performance

In Fig. 6.3, we show the measured coincidence counts and CAR as a function of input
pump power. As we can see the number of recorded coincidence counts grows linearly
with pump power while the CAR is inversely proportional to the pump power. This is
the usual behavior of SPDC sources operated in the low pump power regime, where the
double pair emission events are negligible [77].

To compare the brightness of our source to different photon-pair sources in the litera-
ture, we need to measure a figure of merit, the pair generation rate (PGR), that quantifies
the intrinsic number of pairs generated per unit time regardless of experimental setup
losses. In the literature, the PGR is usually obtained as the product between the mea-
sured coincidence rate and the transmission of the setup, including the coupling between
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Figure 6.3: (a) Raw coincidence counts and (b) CAR as a function of input pump power
for sample K7AD118 (kcps: kilo counts per second).
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controllable attenuation (Finisar Waveshaper 4000s). (b) Coincidence counts and (c-d)
single counts as a function of applied attenuation ηatt (sample K7AD118).
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6.1. Pair generation rate and CAR

the waveguide facet and microscope objective, the propagation through optical compo-
nents and the detector efficiency. However, the exact value of the coupling losses between
the device and the objective that is used to collect the photons is hard to characterize.

Here we present a method, representing an extension of the model of Ref. [70], which
only relies on coincidence measurements and which enables a more direct estimation of the
PGR. The experimental setup is sketched in Fig. 6.4 (a). We send the photons from our
source into a programmable filter with controllabed attenuation ηatt (Finisar Waveshaper
4000s). The two photons are filtered in a 100GHz window around the biphoton degeneracy
before being separated using a FPBS and detected with SNSPDs. The photons in each
arm, A or B, of the FPBS will experience different optical losses ηA, ηB. These coefficient
take into account both propagation loss and detection efficiency. The PGR is obtained as:

PGR =
Rnet

ηAηB
. (6.4)

We see that the estimation of the PGR relies on the knowledge of ηA, ηB. To measure
those quantities, we record the number of coincidences and single counts at the output
of the PBS as a function of applied attenuation ηatt. If we denote by M the number of
generated pairs per unit time, then the number of recorded coincidences and single counts
is given by:

C = η2attηAηBM, (6.5)

SA = ηattηAM + dA, (6.6)

SB = ηattηBM + dA. (6.7)

where dA, dB are the dark count rates of the two detectors. By fitting our data to these
formulas, we can obtain a value for ηA, ηB that will be used to estimate the PGR according
to Eq. (6.4). Note that ηA and ηB are measured in a 100GHz channel and not for the
totality of the state emitted by the source. However, we can assume that ηA, ηB do not
depend on the wavelength and that their value will be the same over the full two-photon
state.

We experimentally measure ηA = 11.8% and ηB = 11.7%. For a pump power of 20mW
we measure a maximum net coincidence rate of Rnet = 9.55 × 104 s−1 which corresponds
to a pair generation rate and CAR of:

PGR = 6.9× 106 s−1,

CAR = 80.
(6.8)

In principle, since the number of coincidences is proportional to the pump power, the PGR
could be further increased at higher pump powers. However, when going to high powers,
the strong intensity of the pump mode results in a heating of the waveguide, which will
modify the phase-matching conditions and subsequently deteriorate the coincidence rate.
In addition, there is a risk of damaging the waveguide when the pump power per unit area
that is focussed on the facet is too large. Hence, the optimal value for the pump power in
our case is around 20mW and the values in Eq. (6.8) represent the peak performance of
our source.

We can also quantify the performance of the source using the brightness, which is
commonly used in the literature, given by the number of generated pairs per mW of
internal pump power and per nm of bandwidth. In the measurements of Fig. 6.3 we
displayed the pump power before the injection objective. Based on consideration on the
transmission of the microscope objective and the waveguide facet, we estimate the internal
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Input state Coalescence Anti-coalescence

Figure 6.5: Sketch of the Hong-Ou-Mandel effect. (a) Spatial input and output modes
on a beam splitter with associated annihilation operators. (b) Input state for the Hong-
Ou-Mandel effect: two indistinguishable photons are incident on the beam splitter. (c)
Photon coalescence (bunching): the two photons are exiting the beam-splitter by the same
port. (d) Photon anti-coalescence (anti-bunching): the two photons are exiting the beam-
splitter on opposite ports.

pump power to be around 600 µW for an input pump power of 20mW [78]. From our
simulations we know that the bandwidth of our state is 60 nm which gives us a brightness
of about:

Brightness = 0.2× 106 s−1mW−1 nm−1. (6.9)

As a comparison, the brightest ppLN waveguide χ(2) sources have a brightness of 250 ×
106 s−1mW−1 nm−1 for a total device length of 3 cm to 4 cm and SFWM sources in micror-
ing resonators using Si-based materials can reach up to 640× 106 s−1mW−1 nm−1 thanks
to the enhancement provided by the resonator [53]. Note that this figure of merit tends
to be disadvantageous for sources like AlGaAs waveguides exhibiting a broad bandwidth,
which can be, nevertheless, an asset for certain applications. In Ref. [153] the authors
develop an ultra-broadband source based on ppLN waveguides and use as an alternative
indicator of performance the product PGR × CAR which in their case reaches a value
of 8.0 × 108 s−1 for a bandwidth of 100THz. As a comparison, our source operates at
PGR × CAR = 5.4 × 108 s−1, which is of the same order of magnitude but for a smaller
bandwidth of 7THz (60 nm).

6.2 Spectral indistinguishability and biphoton bandwidth:
Hong-Ou-Mandel (HOM) effect

6.2.1 Derivation of the HOM coincidence probability

A quantum-mechanical effect that we extensively used to characterize the spectral prop-
erties of the emitted state is Hong-Ou-Mandel (HOM) interference. More specifically,
HOM give us direct access to the bandwidth of the emitted photons and to their degree
of spectral indistinguishability

Th basic idea of HOM is to split the photon of the pair into distinct spatial modes
and recombine them on a beam splitter after adding a temporal delay τ to one of them.
At the beam splitter output ports, one measures the probability of a coincidence event as
a function of the applied delay. When this time delay is zero, and if they are perfectly
indistinguishable, the probability of a coincidence event at the output of the beam splitter
drops to zero. It means that the two photons always exit the beam splitter from the
same output port. However, when the photons are not perfectly indistinguishable, the
probability of coincidence is not exactly zero. It can be shown that as long as it remains
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under 0.5 the effect cannot be explained by interference of classical fields. Hence, the value
of the visibility in a HOM setup is at the same time a criterion for the non-classicality of
two-photon state and a figure of merit for indistinguishability.

Let us now mathematically derive, following Refs. [154, 155], the HOM coincidence
probability for a SPDC state with a JSA C(ω1, ω2) where the two photons occupy dis-
tinct spatial modes a, b with associated annihilation operators â(ω), b̂(ω) as sketched
in Fig. 6.5 (a-b). The initial quantum state reads:

|Ψ⟩ =
∫∫

dω1dω2C(ω1, ω2)â
†(ω1)b̂

†(ω2) |vac⟩ . (6.10)

An optical delay τ is applied to the photon in spatial mode a and the state becomes:

|Ψ⟩ =
∫∫

dω1dω2C(ω1, ω2)â
†(ω1)b̂

†(ω2)e
−iω1τ |vac⟩ , (6.11)

where the phase factor accounts for the temporal delay in mode a. The photons then hit
the beam splitter. As sketched in Fig. 6.5 (a-b), the input spatial modes of the beam
splitter can be expanded onto the output modes c, d using the following transform :

â(ω) =
1√
2

(
ĉ(ω) + d̂(ω)

)
,

b̂(ω) =
1√
2

(
ĉ(ω)− d̂(ω)

)
.

(6.12)

Using these relations, we can rewrite the state as:

|Ψ⟩ =
∫∫

dω1dω2C(ω1, ω2)e
−iω1τ 1

2

[
c†(ω1)c

†(ω2)− d†(ω1)d
†(ω2)

−c†(ω1)d
†(ω2) + d†(ω1)c

†(ω2)
]
|vac⟩ .

(6.13)

Since we are interested only in the coincidence events, we discard the first two terms,
corresponding to photons ending up in the same output mode c or d. By splitting the
summation using

∫∫
dω1dω2 =

∫∫
ω1<ω2

dω1dω2 +
∫∫

ω1>ω2
dω1dω2 +

∫∫
ω1=ω2

dω1dω2 and
inverting the variables ω1, ω2 in the second term, we obtain the following expression:∣∣Ψ′〉 = 1

2

∫∫
ω1<ω2

dω1dω2

[
C(ω1, ω2)e

−iω1τ − C(ω2, ω1)e
−iω2τ

]
(
c†(ω1)d

†(ω2)− d†(ω1)c
†(ω2)

)
|vac⟩ .

(6.14)

To calculate the coincidence probability, we define the projection operators [155]:

p̂c =

∫
dωĉ†(ω) |vac⟩ ⟨vac| ĉ(ω), (6.15)

p̂d =

∫
dωd̂†(ω) |vac⟩ ⟨vac| d̂(ω), (6.16)

and the coincidence probability, in the case of a pure state, is given by:

Pc =
〈
Ψ′∣∣ p̂c ⊗ p̂d

∣∣Ψ′〉 . (6.17)

After some algebra, the total probability of finding the system in the post-selected
state Eq. (6.14) is simply:

Pc =
1

4

∫∫
dω1dω2

∣∣C(ω1, ω2)e
−iω1τ − C(ω2, ω1)e

−iω2τ
∣∣2, (6.18)
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where we used the symmetry of
∣∣C(ω1, ω2)e

−iω1τ − C(ω2, ω1)e
−iω2τ

∣∣2 with respect to sub-
script permutation to go back to an integral over the whole frequency domain. This
equation can be rewritten:

Pc =
1

2

[
1− Re

∫∫
dω1dω2C⋆(ω1, ω2)C(ω2, ω1)e

−i(ω1−ω2)τ

]
. (6.19)

If we assume that the single photon detectors have a flat frequency response and that their
temporal resolution is much larger than the single photon coherence time, the coincidence
rate between the two detectors at the output of the 50/50 beam splitter will be directly
proportional to Pc

6.2.2 Physical interpretation of a HOM interferogram

HOM visibility and indistinguishability

The figure of merit for HOM interference is the visibility of the HOM dip, which is defined
as:

V =
Pc(∞)− Pc(τ = 0)

Pc(∞)
= 1− 2Pc(τ = 0). (6.20)

assuming Pc(∞) = 1/2. If we plug expression Eq. (6.19) evaluated at τ = 0 into this
definition, we obtain:

V = 2Re

∫∫
dω1dω2C⋆(ω1, ω2)C(ω2, ω1). (6.21)

This integral can be seen as an overlap integral between the JSA and its transpose. When
the JSA is perfectly symmetric with respect to the degeneracy frequency, this overlap
integral is maximum. Hence, we clearly see that the HOM visibility is a direct way to
quantify the indistinguishability of the generated two-photon wavepacket.

Coalescence and anti-coalescence

Furthermore at zero time delay τ = 0, the coincidence probability can exhibit several dis-
tinct behaviors depending on the symmetry of the JSA. Two special cases are represented
schematically in Fig. 6.5 (c-d):

1. For C(ω1, ω2) = C(ω2, ω1) we have Pc = 0 (Photon coalescence or bunching)

2. For C(ω1, ω2) = −C(ω2, ω1) we have Pc = 1 (Photon anti-coalescence or anti-
bunching)

The difference between the two regimes only comes from the JSA’s phase. The phase has
to change sign at ω− = 0 to fulfill perfect anti-coalescence, while it is required to be flat for
coalescence. In both cases, however, the overlap integral that comes up in the expression
for the visibility given in Eq. (6.21) is maximum, and hence we obtain a 100% visibility
for either coalescence or anti-coalescence.

HOM and biphoton bandwidth

In addition, a HOM measurement allows to estimate the biphoton bandwidth of the emit-
ted state. To illustrate this, we take the example of a symmetric anticorrelated gaussian
JSA:

C(ω+, ω−) = δ(ω+ − ωp) exp
(
−2ω2

−/(2∆ω−)
2
)

(6.22)
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where ∆ω− = 2∆ω with ∆ω is the biphoton bandwidth. Then according to Eq. (6.19),
the HOM coincidence probability becomes:

Pc(τ) =
1

2

[
1− exp

(
−1

2
τ2∆ω2

−

)]
. (6.23)

By inspecting Eq. (6.23), we see that the full width at half maximum ∆τ of the HOM dip
relates directly to the biphoton bandwidth:

∆τ =
1√

2∆ω−
. (6.24)

We see that HOM interferometry, in addition to being an elegant signature of two-photon
interference, can be a powerful characterization tool, since a single HOM measurement
allows us obtain directly the bandwidth of the two-photon state.

Examples

In Fig. 6.6, we show the calculated HOM coincidence probability for selected examples:

Perfectly symmetric JSA This is the kind of state that is described in the simple
example of Eq. (6.22). Since the JSA is symmetric with respect to ω− the two
photons are spectrally indistinguishable. As a consequence Pc goes to zero, according
to Eq. (6.19), and the dip visibility is 100%. As shown in Eq. (6.24), the width of the
dip is proportional to the inverse of the spectral bandwidth over which the photons
are emitted. The simulations for this case are shown in Fig. 6.6 (a-b).

Perfectly antisymmetric JSA This case is similar to the first one, the only difference
being the phase flip at ω− responsible for anti-coalescence. Since the amplitude of
the JSA is remains symmetric with respect to ω−, we observe perfect anti-coalescence
with unit visibility as can be seen from Fig. 6.6 (c-d).

Asymmetric JSA In this last example, we consider a state that is slightly asymmetric
with respect to ω− = 0. As we have seen from the simulations in Fig. 5.1, this is the
case for the JSA of the state emitted by our source. Since the JSA is asymmetric
the two photon are slightly spectrally distinguishable. As a result, at τ = 0, the
coincidence probability does not reach zero and the dip visibility is less than 100%.
For a Type-II SPDC source, this asymmetry in the JSA is caused by birefringence
as discussed in the previous chapter.

6.2.3 Measurement of HOM interference

Experimental setup and alignment procedure

In a HOM measurement, as sketched in Fig. 6.7, we use a similar setup as for SPDC except
that the output fibers of the FPBS are sent into a fibered Mach-Zender interferometer. A
free-space delay line is used to balance the optical path between the two arms. It consists of
two collimators separated by a free space distance of around 1.5m, one of which is mounted
on a linear translation stage controlled by a stepper motor (Thorlabs). Translating the
collimator by a distance z creates a temporal delay z/c. The smallest increment of our
motor is 0.1 µm which corresponds to a temporal resolution of about 30 fs. After the delay
line, the two fibers are recombined on a fibered 50/50 BS. The output of this second BS is
finally sent to single photon detectors and counting electronics. Additional FPCs, labeled
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Figure 6.6: Examples of simulated gaussian JSA and HOM interferograms for (a-b)
Perfectly symmetric anticorrelated state, exhibiting perfect HOM coalescence with 100%
visibility. (b-c) Perfectly anti-symmetric anticorrelated state, exhibiting perfect HOM anti-
coalescence with 100% visibility. (c-d) Asymmetric anticorrelated state, which exhibits
HOM coalescence with reduced visibility. In (e) we plotted the JSA and its transpose to
clearly show the asymmetry with respect to ω− = 0.
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Figure 6.7: Sketch of the experimental setup for a HOM experiment.
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Figure 6.8: Sketch of the alignment procedure setup for a HOM experiment. We send
the output of an EDFA successively in both arms of the HOM interferometer and adjust
the FPCs 2 and 3 to minimize the recorded power at the output of one arm of FPBS2.
By doing so, we ensure that the polarization of incoming photons are identical through
the interferometer (see text for details).
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FPC2 and FPC3 in Fig. 6.7, are inserted in the arms of the interferometer to ensure the
photons have identical polarization.

A careful procedure is needed to align the FPCs in order to maximize the indistin-
guishability and thus the HOM visibility. The alignment protocol we use is schematically
depicted in Fig. 6.8. We couple the output of an EDFA into the waveguide instead of the
pump laser. At the output of the waveguide, the transmitted light is then either H or
V polarized using a free-space polarizer then sent to FPBS1 before entering the interfer-
ometer through either arm a or b depending on the polarization that has been set by the
polarizer. An extra FPBS, labeled FPBS2, is plugged onto one of the output arms of the
50/50 BS and one of its output fiber is sent to an infrared powermeter. When the light
from the EDFA is H polarized, it goes through arm a and FPC2 is adjusted such as to
minimize the measured power at the output of the BS + FPBS2 chain. Similarly, when
reversing the polarization of the input light from the EDFA, light enters through arm b
and FPC3 is adjusted such as to minimize the measured power. By doing so, one ensures
that the polarization of photons entering both path a and b are exactly the same at the
50/50 BS. Indeed, using the Jones notation, if the input polarization state is linearly H
polarized: Ea = (1, 0), then at the 50/50 BS, the state has been rotated and becomes
E′

a = UaEa. After the BS and FPBS, we end up with a polarization state E′′
a = UcUaEa.

Similarly, for light entering through arm b the linearly-polarized input polarization state
Eb = (0, 1) is transformed into E′′

b = UcUbEb. By minimizing the transmitted power at the
IR power meter, we make sure that E′′

a = E′′
b and hence, by applying the inverse unitary

U−1
c , that E′

a = E′
b. As a result, the polarization states of the input fields are exactly the

same at the 50/50 BS.

Experimental results

In Fig. 6.9 (a-b) we show the measured HOM coincidence probability at the output of
the 50/50 BS that was obtained using the AlGaAs waveguide source and a pump power
of 25mW. The raw visibility is 86% and the FWHM is 83 fs corresponding to a state
bandwidth of about 80 nm. In our simulations, the only free parameter is the pump
wavelength, which was adjusted to obtain the best agreement with the experimental data.
Therefore, for both simulated curves in Fig. 6.9 (b) and (d), the pump wavelength was
chosen to be 781.13 nm. As already explained, the limitation to the visibility is the inherent
birefringence of the waveguide, which makes the JSA slightly asymmetric with respect to
degeneracy.

In Fig. 6.9 (c-d), we show the result of the same experiment but with a 20 nm tunable
square spectral filter (Finisar Waveshaper 4000s) centered on the biphoton degeneracy
wavelength inserted before the FPBS. As a result, the observed dip width is larger, 267 fs
corresponding to a biphoton bandwidth of about 20 nm, as expected. The visibility has
increased up to 94%. This can be explained by the fact that the JSA asymmetry is
negligible close to degeneracy ω− = 0. Hence when filtering the JSA around degeneracy
with a square filter, we sweep away the spectral distinguishability between the two photons
resulting in a higher HOM visibility.

We see that filtering is indeed a way to increase indistinguishability, at the cost of a
reduction both in biphoton bandwidth and measured coincidence rates. In Fig. 6.9 (e), we
compare our experimental data with a simulation of HOM visibility as a function of filter
width. By decreasing the filter bandwidth down to 10 nm one can reach visibilities above
98%. We also notice that, as expected, when increasing the filter width above 70 nm the
visibility finally reaches the asymptotic value that was experimentally measured on the
full biphoton state.
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Figure 6.9: Simulated JSI and corresponding measured HOM interferogram acquired from
sample G5X038 in the case of (a-b) no filtering, showing a visibility of 86% and (c-d) a
20 nm bandwidth filter at the waveguide output, with a resulting visibility of 94%. (e)
Simulated HOM visibility as a function of filter bandwidth. The red squares correspond
to the two measurements.
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Figure 6.10: (a) Experimental setup for the SET reconstruction of the JSI. (b) Simulated
JSI (sample ABQ71). (c) Reconstructed portion of the JSI using the stimulated emission
tomography technique.

6.3 Joint spectral intensity (JSI) reconstruction by stimu-
lated emission tomography

When characterizing the quantum state of the AlGaAs photon-pair source, another goal
is to directly measure the joint spectral amplitude. The JSI can be reconstructed from
classical DFG measurements in the framework of stimulated emission tomography (SET)
as proposed and demonstrated in [156, 157]. SET relies on the correspondence between
SPDC and DFG processes which are the quantum and classical equivalent of each other.
In [156], it is shown that the measured DFG power as a function of seed and idler fre-
quencies is proportional to the generated number of SPDC photon pairs at the same given
frequencies, which is simply given by the JSI = |C(ω1, ω2)|2.

The experimental setup for this experiment is sketched in Fig. 6.10 (a). We simultane-
ously couple into the device a pump laser beam of frequency ωp, around 775 nm and a seed
telecom beam ω1 from a telecom laser (Tunics) of output power 3mW that was amplified
by an erbium doped fiber amplifier (EDFA, Keopsys) to about 20mW. The pump field
was produced by a TOPTICA DL 780 laser with a power of 24mW at λp = 764.6 nm. The
interacting fields in the non-linear waveguide will create a field at ω2 = ωp − ω1 by DFG.
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We collect the outgoing light using a second microscope objective and couple it into a
SMF28 fiber directed towards an optical spectrum analyzer (OSA, Yokogawa AQ6370C).
We scan the seed frequency ω1 and for each value we record the DFG spectrum on the
OSA. To give an order of magnitude, the peak DFG power that was recorded by the OSA
was about 247 pW. By juxtaposing all the DFG spectra for different values of ω1, ω2, we
reconstruct a full map of the JSI. Note that the input polarization of both pump and seed
fields has to be carefully adjusted to match one of the allowed non-linear processes.

A typical SET measurement and the corresponding simulated JSI are shown
in Fig. 6.10 (b-c). This measurement was performed on a 4mm-long waveguide with
a 6-upper-periods epitaxial structure (ABQ71) whose phase-matching wavelength was
1529.2 nm. The discrete peaks in Fig. 6.10 (c) are a clear signature of cavity effects on
the JSA. We measure a spacing of 6.5GHz between adjacent peaks, which matches the
free spectral range of the effective cavity formed by the two facets of the waveguide used
in the experiment.

One of the shortcomings of the current setup comes from the fact that we needed to
amplify our seed laser with an EDFA. The issue is that the amplifier has a broadband
emission spectrum and, in the vicinity of the degeneracy ω1 = ω2 = ωp/2, the generated
DFG field will have its frequency within the amplifier spectrum. As a result, the strong
amplifier emission will superimpose to the weak DFG signal which then cannot be detected.
Hence the tomography cannot be performed over the whole spectral range in our current
setup and we could not reconstruct the totality of the JSI that is presented in the simulation
of Fig. 6.10 (c). This limitation can be overcome by replacing the laser and EDFA by
a more powerful tunable laser, avoiding the unwanted background radiation from the
amplifier. To reconstruct the JSI near the degeneracy, the pump laser could be filtered
out using a narrowband tunable filter.

Finally, we note that this method allows for the measurement of the amplitude of the
JSA but not its phase. A full tomography of the JSA, including intensity and phase, is
a much more involved process. Several scheme have been demonstrated to achieve this
result, such as in Refs. [158, 159, 160].

6.4 HOM and BFC state symmetry

As explained in Section 5.3.2 thanks to the cavity effects induced by the reflectivity of the
waveguide facets, the state emitted by our source can be seen as a biphoton frequency
comb (BFC). A signature of this comb-like structure of the JSA can be obtained from
Hong-Ou-Mandel interference under the form of revivals of the HOM dip at integer mul-
tiple of half the round trip time τRT of the cavity. We can see this revival effect from
simulations, as shown in Fig. 6.11. Since τRT is inversely proportional to the free-spectral
range of the cavity, the spacing between the revivals increases when decreasing the cavity
length. In our waveguides, whose length is typically 2mm, we have a free spectral range of
around 22GHz corresponding to τRT = 45ps. Note that the temporal width of the HOM
revivals is the same as for the central dip. We also observe from the simulations that the
visibility of the revivals decreases when increasing the time delay. This trend is controlled
by the finesse of the cavity: a cavity having a higher finesse will produce HOM revivals
with a higher visibility [161]. Hence we see that to observe a revival with appreciable vis-
ibility, one needs to use a cavity with mirrors of high reflectivity. However, because of the
chromatic dispersion and birefringence in our structure, the HOM visibility will decrease
if the cavity finesse is too high. Indeed, the combination of these three phenomenon can
lead to a situation where the narrow cavity resonances of the TE and TM photons are not

91



Chapter 6. Experimental characterization of the biphoton state

-50 0 50
0

0.2

0.4

0.6

0.8

1

-500 0 500

(fs)

0

0.2

0.4

0.6

0.8

1

-50 0 50
0

0.2

0.4

0.6

0.8

1

-500 0 500

(fs)

0

0.2

0.4

0.6

0.8

1(a) (b)

(c) (d)

|J
SA

| (
a.

u.
)

|J
SA

| (
a.

u.
)

2

Figure 6.11: Simulated JSA an corresponding HOM interferogram for a (a) resonant and
(b) anti-resonant biphoton frequency comb.

92



6.4. HOM and BFC state symmetry

(ps)

(a) (b)

-1 -0.5 0 0.5 1

0.3

0.4

0.5

0.6

0.7

0.8

C
oi

nc
id

en
ce

 p
ro

ba
bi

lit
y

-1 -0.5 0 0.5 1

0.3

0.4

0.5

0.6

0.7

0.8

(ps)

Figure 6.12: Measured HOM revival interferogram around τ = τRT/2 with a pump
wavelength corresponding to a (a) resonant biphoton frequency comb and (b) antiresonant
biphoton frequency comb.

overlapping in some parts of the biphoton spectrum, therefore increasing the asymmetry
of the JSA [150]. For this reason a compromise has to be found. As an example, for a facet
reflectivity of 50% and a biphoton bandwidth limited to 25 nm a HOM revival visibility
of 70% could be obtained [87].

Finally, we see that the HOM interferogram varies between the case of a resonant or
anti-resonant BFC. Indeed, as demonstrated in Fig. 6.11 (c-d) for an anti-resonant BFC
the odd HOM revivals will feature anti-coalescence, manifested in a peak in coincidence
probability. This anti-coalescence means that that when tuning the pump frequency to
an anti-resonant state and setting the time delay at τ = τRT/2, one successfully gener-
ated a antisymmetric BFC. In other words, under applied delay τ = τRT/2 changing the
pump frequency has the effect of switching the state symmetry from symmetric (coales-
cence) to antisymmetric (anti-coalescence). A comprehensive theoretical analysis of this
phenomenon can be found in Ref. [150].

We demonstrate this effect in our waveguide by performing HOM interference around
τ = τRT/2. To obtain a better visibility, we perform this experiment with the 20 nm
filter on. In the measurement shown in Fig. 6.12 (a), we observe a revival HOM dip of
visibility 20% and FWHM of 250 fs. The reduced visibility compared to the central dip
can be explained by the poor facet reflectivity and residual JSA asymmetry. Furthermore,
we observe that, when detuning the pump wavelength, the shape of the recorded HOM
interferogram changes from a dip to a peak of visibility 28% hence proving the symmetry
inversion of the quantum state.

This phenomenon can also be interpreted in terms of two-photon statistics. Coales-
cence and anti-coalescence being the hallmark of bosonic and fermionic statistics respec-
tively, by changing the pump frequency we artificially modify the statistics of the photons
incident on a beam-splitter from bosonic to fermionic. This phenomenon has also been in-
vestigated by our group with a different approach based on a counterpropagating geometry,
enabling the demonstration of exotic two-photon fermionic and anyonic statistics [91, 90].
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On-chip integration of nonlinear
AlGaAs waveguides and EO delay
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This chapter is dedicated to the demonstration of monolithic integration of an AlGaAs
parametric photon-pair source and an electro-optic phase-shifter. We start by a brief
review of the state of the art in integrated delay lines for quantum photonics before giving
a theoretical description of electro-optic effect in AlGaAs waveguides. Then, we describe
the design and fabrication of electro-optic delay lines in both doped and undoped AlGaAs
waveguides. Finally, we present our experimental results, showing the ability of our device
to apply electro-optically induced optical phase-shifts.

7.1 State of the art and motivation

Generating entangled photons and manipulating their state on a single photonic chip is a
major requirement for applications such as photonic quantum computing, quantum sim-
ulation and quantum communications [16, 52]. The control of the quantum state can be
achieved using simple building blocks such as integrated beam-splitters and phase-shifters.
As stated in the introduction of this thesis, several strategies exist for the realization of
on-chip phase-shifters depending on the physical platform. In Silicon-based materials and
femtosecond-laser-written waveguides in glass, the refractive index can be changed locally
by thermo-optic effect [102, 68]. Compact integrated delay lines can be fabricated onto
waveguides by depositing metallic electrodes that will be heated by thermal dissipation of
electrical current. The thermally-induced local change of refractive index in the waveguide
will create a phase-shift that can be tuned by changing the current flowing through the
electrode. Despite being implemented in ultra-low loss photonic platforms, this kind of
phase shifter cannot achieve fast phase modulation since thermal effects remain intrinsi-
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cally slow. Moreover, with this kind of device, the spatial distribution of heat flow and
hence the exact local variation of refractive index is hard to control.

These drawbacks can be avoided in materials exhibiting non-zero electro-optic coeffi-
cient, such as LiNbO3 and AlGaAs, by exploiting the electro-optic (EO) effect. Indeed,
when applying an electric field to a waveguide using metallic electrodes, one can change
the local refractive index of the material and hence obtain a tunable phase-shifter. The
spatial distribution of the applied field inducing the change in refractive index can be pre-
cisely controlled by suitable engineering of the contacts. In addition, the electric field can
be modulated at high speeds which is not the case of the heat dissipation in thermo-optic
phase-shifters. In classical photonics, the EO effect has been exploited for the realization
of integrated high-frequency phase modulators [162, 163] and polarization rotators [164].

Recently, electro-optic phase shifters have been used for the demonstration of two-
photon state manipulation on photonic chips. On-chip generation, control and interference
of two-photon states using integrated parametric sources, beam splitters and EO phase-
shifters on a monolithic chip have been demonstrated in the ppLN platform, albeit with
relatively important footprint since the chips are typically several centimeters long [71, 69].
This approach has also been developed in the AlGaAs platform. In Ref. [80], the authors
generate photon pairs using an off-chip source then recombine them on a GaAs chip
composed of a phase-shifter and a 50/50 coupler to demonstrate Hong-Ou-Mandel effect.
However, up to now the full integration of SPDC sources, beam splitters and electro-optic
phase-shifters on a monolithic chip is lacking in the AlGaAs platform. This achievement
could serve several purposes such as the generation of high-dimensional entangled states on
a reconfigurable photonic chip or the demonstration of fully-integrated HOM interference,
a scheme that has been recently realized experimentally in the ppLn platform [69]. In
AlGaAs sources are well mastered and their monolithic integration with on-chip beam
splitters and detectors has already been demonstrated in Refs. [165, 166]. One of the
goals of this thesis has been to fill in the gaps by demonstrating the integration of a
SPDC source and an electro-optic phase-shifter on a monolithic chip. We emphasize that
none of the applications demonstrated in previous works require fast phase-modulation.
Nevertheless, the capability of integrating high-speed phase modulators with parametric
sources opens the way towards on-chip manipulation of the frequency state of photon
pairs [59].

7.2 Electro-Optic Effect in AlGaAs waveguides

7.2.1 Propagation of electromagnetic waves in crystals

In this section, we start by reviewing briefly the theory of electromagnetic waves in crystals
and electro-optic effect following Ref. [167]. Our goal is to describe how the application of
a static electric field to an AlGaAs ridge waveguide affects the propagation of light in its
guided modes. We start from Maxwell’s equations, linking the spatio-temporal evolution
of the electric displacement field D and electric field E to that of the magnetic field B.
We consider the case of a non-magnetic dielectric medium in the absence of charges and
currents:

∇×E+
∂B

∂t
= 0, (7.1)

∇×B− µ0
∂D

∂t
= 0, (7.2)
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where µ0 is the vacuum magnetic permeability. The constituting equation that relates the
displacement field to the electric field is :

D = εE (7.3)

where ε is the dielctric permittivity. It encodes the response of a dielectric material to an
electric field, such as that of an electromagnetic wave traveling through the material.

In crystals, such as lithium niobate (LiNbO3), calcite (CaC03) or quartz (SiO2) the
propagation of light is anistotropic. In other words, the phase velocity of the electromag-
netic wave can depend on the direction of propagation and the polarization with respect
to the crystal axis. This anisotropy arises from the atomic structure of the unit cell of the
crystal. Formally, this means that ε will be a tensor and not a scalar, as it would be the
case for an isotropic optical medium such as glass or crystals including GaAs. The sym-
metry group of the unit cell dictates the form of this tensor and hence determines whether
the crystal is optically isotropic or anisotropic. In what follows we calculate the refractive
index n of a wave as a function of its propagation direction s and its polarization.

In a lossless medium, ε is a third rank real symmetric tensor. It is always possible to
find a set of axes of the three-dimensional euclidean space, called the principal coordinate
system, where ε takes a diagonal form :

ε =

εx 0 0
0 εy 0
0 0 εz

 = ε0

n2
x 0 0
0 n2

y 0

0 0 n2
z

 . (7.4)

ε0 is the vacuum permittivity and nx, ny, nz are the refractive indices of a wave polarized
along the x, y, or z axis.

We consider the propagation of a monochromatic plane wave of frequency ω, whose
electric and magnetic field can be written :

E(r, t) = Eek·r−ωt (7.5)

B(r, t) = Bek·r−ωt (7.6)

where k denotes the wavevector k = ks = (ω/c)ns with c the speed of light in vacuum, n
the refractive index that we want to solve for and s the propagation direction of the wave.
To evaluate n for a wave propagating along a given direction, we inject equations (7.5)
and (7.6) into (7.2) and (7.1) and, with the help of (7.3), we get the following relations :

k×E = ωB (7.7)

k×B = −µ0ωD (7.8)

By feeding the first equation into the second one, we obtain the wave equation for plane
waves :

k(k×E) +
ω2

ε0c2
εE = 0. (7.9)

In the principal coordinate system, this equation reads :
ω2

ε0c2
εx − k2y − k2z kxky kxkz

kykx
ω2

ε0c2
εy − k2x − k2z kykz

kzkx kzky
ω2

ε0c2
εz − k2x − k2y


Ex

Ey

Ez

 = 0. (7.10)
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(a) (b)

Figure 7.1: (a) Index ellipsoid for an isotropic medium. (b) Index ellipsoid for an
anisotropic medium. The geometric procedure for finding the normal modes of propa-
gation and associated refractive indices is schematically represented.

Since this system of equation has to admit non-trivial solutions, the determinant of the
matrix has to be 0 :∣∣∣∣∣∣∣∣∣∣∣

ω2

ε0c2
εx − k2y − k2z kxky kxkz

kykx
ω2

ε0c2
εy − k2x − k2z kykz

kzkx kzky
ω2

ε0c2
εz − k2x − k2y

∣∣∣∣∣∣∣∣∣∣∣
= 0. (7.11)

It can be shown that the matrix is of rank 2 therefore (7.11) will be a second order
polynomial in k2. Thus we get two solutions k21 and k22, corresponding to two refractive
indices n1, n2. Replacing these values in (7.10), one can then solve for the electric field
vector and obtain two solutions E1 and E2. Those two solutions are called the normal
modes of propagation. Their electric field is oriented along the directions :

s1 =


sx

n2
1 − nx
sy

n2
1 − ny
sz

n2
1 − nz

 , s2 =


sx

n2
2 − nx
sy

n2
2 − ny
sz

n2
2 − nz

 (7.12)

which are orthogonal to the propagation direction s. n1 and n2 are the refractive indices
associated with the normal modes of propagation. In other words, for a given propagation
direction we have two solutions for the E field, E1 and E2, with two different phase
velocities c/n1 and c/n2.

An elegant way of finding geometrically n1, n2, s1, s2 from the expression of the dielec-
tric tensor ε, without resorting directly to equation (7.10), is the so-called index ellipsoid
method. A proof for this approach can be found in ref [136]. We construct the index
ellipsoid from the following equation :

x2

n2
x

+
xy

n2
y

+
z2

n2
z

= 1. (7.13)

The set of points (x, y, z) form an ellipsoid in euclidean space (see Fig. 7.1). Its principal
axis coincide with the principal axes of the dielectric tensor ε. Their length is equal to
2nx, 2ny and 2nz respectively. The rule for finding the normal modes of propagation
and their refractive index is the following : i) Draw the propagation direction vector s. ii)
Draw the plane that is normal to s and which contains the origin. iii) Draw the ellipse that
constitutes the intersection between this plane and the index ellipsoid iv) The direction of
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Figure 7.2: Unit cell of a GaAs crystal.

the principal axes of this ellipse are s1 and s2. Their length is equal respectively to 2n1

and 2n2.
As shown schematically in Fig. 7.1, isotropic optical media have nx = ny = nz = n0

and their index ellipsoid is a sphere. Whatever the value of s, any polarization direction
is a normal mode with unique refractive index n0. The phase velocity is independent of
the direction and the polarization. In anisotropic media nx, ny and nz are not equal. The
ellipsoid index has an elliptical shape and according to the above procedure, the normal
mode of propagation and associated refractive indices will depend on s.

7.2.2 Electro-optic effect in GaAs

Now that we understand how electromagnetic waves propagate in an anisotropic medium,
we turn to the case of GaAs. GaAs has a Zinc Blend structure of symmetry group 4̄3m (Fig.
7.2). It has a threefold symmetry along the ⟨111⟩ axis and a fourfold mirror symmetry
along the edge of the unit cell. Bulk GaAs is an isotropic optical medium of refractive
index n0 = 3.1. Its permittivity tensor can be written :

ε = ε0

n2
0 0 0
0 n2

0 0
0 0 n2

0

 (7.14)

However under strong electric fields, the charge distribution of the electronic cloud sur-
rounding the atoms of the crystal is deformed. This induces a change in ε making GaAs
artificially anisotropic. This effect is called the electro-optic effect.

In the following, we derive the mathematical expressions for the principal axis of GaAs
under applied electric field and their associated refractive indices following Ref [167]. The
convention for labeling the crystallographic axis of GaAs is the following : x′ = ⟨100⟩, y′ =
⟨010⟩, z′ = ⟨001⟩. Historically, the electro-optic tensor r, which quantify the effect of
an electric field field on the dielectric properties of a crystal, is defined relative to the
impermeability tensor η which is proportional to the inverse of ε : η = ε0ε

−1. Under an
electric field E, the impermeability tensor becomes to the first order in E :

ηij = η0,ij(0) +
∑
k

rijkEk (7.15)

with η0 the impermeability tensor in the absence of an electric field :

η0 =

1/n2
0 0 0

0 1/n2
0 0

0 0 1/n2
0

 . (7.16)
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Equation (7.15) describes the so-called linear electro-optic effect, where the change in η is
proportional to E. There also exists a quadratic electro-optic effect, scaling as the square
of E, which is negligible at the field magnitudes we are considering. r is a third rank
tensor that depends on the symmetry group and the atomic properties of the material.
Only crystals lacking inversion symmetry like GaAs have a nonvanishing r tensor [136]. ε,
and therefore η, being symmetric, r is invariant under the permutation of indices i and j,
according to equation (7.15). In other words rijk = rjik and we can contract the first two
indices, using the notation 1 = x′x′, 2 = y′y′, 3 = z′z′, 4 = y′z′ = z′y′, 5 = x′z′ = z′x′, 6 =
x′y′ = y′x′. This procedure is identical to the derivation of the nonlinear susceptibility
tensor in GaAs in Section 4.2.2. Thanks to the 43̄m group symmetry of the GaAs unit
cell, only three matrix elements of r are non-zero :

r =



0 0 0
0 0 0
0 0 0
r41 0 0
0 r41 0
0 0 r41

 . (7.17)

We note that, due to the symmetry of the unit cell, the structure of r is similar to the
nonlinear susceptibility tensor d given in Eq. (4.13). For GaAs, the numerical value for
the electro-optic tensor element at a wavelength λ = 1550 nm is r41 = 1.5 pmV−1[168].
As a comparison, the largest electro-optic coefficients of LiNbO3 in the telecom range is
r22 = 5.3 pmV−1. Plugging (7.17) into (7.15), we get the expression for η under a field E
:

η =

 1/n2
0 r41Ez′ r41Ey′

r41Ez′ 1/n2
0 r41Ex′

r41Ey′ r41Ex′ 1/n2
0

 (7.18)

η, and consequently ε, are no longer proportional to the identity matrix as in (7.16).
GaAs has become anisotropic.

7.2.3 Electro-optic delay line in a guided geometry

In this section, we apply this formalism to AlGaAs nonlinear waveguides. As was already
stated in Chapter 4, AlGaAs wafers are grown along the ⟨001⟩ axis (z direction). A piece
of this wafer can be cleaved off along one of the weak crystallographic axes ⟨110⟩ and ⟨11̄0⟩
corresponding to x = (x′ + y′)/

√
2 and y = (x′ − y′)/

√
2. As shown in Fig. 7.3 the top

surface of our samples will be the crystallographic plane (001) (normal to the growth axis
⟨001⟩) and the sidewalls will consist of planes (110) and (11̄0) (normal to the ⟨110⟩ and
⟨11̄0⟩ axis respectively).

We consider the case of an electric field oriented along z′ : E = (0, 0, E). According
to (7.18) the impermeability tensor reads:

η =

1/n2
0 r41E 0

r41E 1/n2
0 0

0 0 1/n2
0

 , (7.19)

We look for the principal axes by diagonalizing η. We find the new principal coordinate
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Figure 7.3: (a) Scheme of an AlGaAs waveguide indicating the crystallographic planes
corresponding to the top surface and sidewalls, as well as the direction of a TE and TM
polarized mode and the propagation direction k. (b) Corresponding index ellipsoid under
applied field E = (0, 0, Ez).

system to be : 
x =

x′ + y′√
2

y =
x′ − y′√

2
z = z′.

(7.20)

The z′ axis is left unchanged while the x′ and y′ axes are rotated by a 45 degrees angle
around z′. Note that the principal axes coincide with the growth direction z of our wafer
and the direction of the TE and TM modes of the waveguide as indicated in Fig. 7.3. In
this basis, the impermeability tensor reads :

η =

1/n2
x 0 0

0 1/n2
y 0

0 0 1/n2
z

 (7.21)

The refractive indices associated with x, y, z are derived from the eigenvalues of η :
nx = n0 − n3

0r41E/2

ny = n0 + n3
0r41E/2

nz = n0

(7.22)

We see from Fig. 7.3 that both TE and TM modes of the waveguides have their E field
along one of the principal axes : x for TE and z for TM. We deduce from equation (7.22)
that applying an electric field of magnitude E along z will decrease the TE mode index
by the quantity n3

0r41Ez/2, leaving the TM mode index unchanged. Hence by tuning the
magnitude Ez of the field, we can control the phase of a TE polarized photon traveling
through the waveguide.

If we instead apply an horizontal E field, oriented along x, the new normal modes of
propagation would be along the (x± y)/

√
2 axes, which do not coincide with TE and TM

directions. Hence, in this configuration, instead of shifting the phase of a TE photon, the
electro-optic effect would rotate its polarization.
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7.2.4 Figure of merit: Pi-shift voltage

Our final goal being to implement an on-chip interferometer, we use as figure of merit for
the electro optic device the pi-shift voltage Vπ, which corresponds to the voltage difference
that has to be applied across the structure to induce a phase shift of π to the light
propagating in a guided mode after a single pass in the waveguide. As we have seen
earlier, the fields of the guided modes are confined to the core of the waveguide, which has
a thickness hcore. The potential drop across the core, will be Vcore = Ehcore. According
to (7.22) the relative phase picked up by a TE polarized beam of wavelength λ0 while
traveling through a ridge waveguide of length l under a field of magnitude E is then :

Γ =
2π

λ0

n3
0r41E

2
l =

2π

λ0

n3
0r41
2

Vcore

hcore
l. (7.23)

To get Γ = π, the voltage applied to the core has to be equal to :

Vcore,π =
λ0

n3
0r41

hcore
l

. (7.24)

For a typical ridge waveguide of length l = 3mm and core thickness hcore = 426 nm, we
expect Vcore,π = 5V. As we will see below, since our devices are made out of semiconductor
and not perfectly conducting metal, the effective voltage Vπ that has to be applied to the
structure will be larger than Vcore,π.

To apply a z-oriented electric field to our waveguides, we design a structure where
gold contact are deposited on top of the waveguide then connected to a voltage source,
as sketched in Figure 7.4. Undoped or p-i-n doped samples can be used, each one hav-
ing its strengths and drawbacks. Undoped samples have the lowest losses, both in the
near infrared and at telecom wavelengths, but, since the structure has no mobile charges,
measuring electro-optic effect requires applying high voltages across the waveguide. P-i-n
doped samples are fabricated from the same wafers as the electrically injected photon pair
sources of Refs. [82, 83]. We observe that these samples have higher optical losses caused
by the presence of free carriers introduced by the doping. However, the doping profile is
designed such that the voltage drop occurs across the core of the waveguide where the
optical mode are confined. As a result, the observation of the electro-optic effect requires
the application of much lower voltages than in an undoped sample.

7.3 Design and fabrication of doped samples

7.3.1 Electrostatic behavior : p-i-n junction under reverse bias

In doped samples, the upper and lower Bragg mirrors are p-doped and n-doped respec-
tively, while the core is undoped (intrinsic), forming a p-i-n junction. The substrate is
located in the n-side of the junction and is also n-doped. The carrier concentration is
equal to 10 × 1019 cm−2 in the substrate and is gradually decreased to 10 × 1017 cm−2

towards the core region (see full growth sheet in Table 12.4). The same doping profile is
applied symmetrically to the p-side. To apply a static field to the core of the waveguide,
where guided modes are confined, without inducing any electrical current, we operate the
junction in the reverse bias regime.

We recall the basic working principle of a p-i-n junction. The p side has excess holes and
the n sides has excess electrons. Near the interface between the two sides, free electrons
of the n side, attracted by the holes on the other side, diffuse to the p-doped region.
Conversely, holes near the intrinsic core region diffuse to the n side. The positively charged
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GaAs substrate

Au

(b)

Au

GaAs substrate
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charge region

core

(a)

Figure 7.4: (a) Artist view of a p-i-n doped single ridge waveguide electro-optic modulator.
Inset : View of the waveguide facet under reverse bias (V < 0) with negative and positive
space-charge regions regions highlighted in blue and red respectively. The p-side and n-
sides of the junction are respectively on top and at the bottom of the core. (b) Artist
view of an undoped single ridge waveguide electro-optic modulator. Inset : View of the
waveguide facet under applied voltage featuring some electric field lines.
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Figure 7.5: Top view image of a mounted sample. The bottom and top contact are
highlighted in blue and red respectively while the soldered gold wires are highlighted in
green.

dopant atoms on the n side and the negatively charged acceptor atoms on the p side cannot
move. As a result, a positively charged region will form on the n-side near the interface
and a negatively charged region will form on the p-side near the interface. The resulting
electric field opposes electron and hole diffusion. This charged region is called the space
charge region and can be seen as the two charged plates of a capacitor.

When connecting the junction to a voltage source, two behaviors can occur depending
on the sign of the voltage that is applied. Forward bias V > 0 : In this case, the p-side
is connected to the + terminal of the voltage supply. The electrons and holes on the
n-side and p-side are pushed towards each other, reducing the width of the space charge
region. When a sufficiently high voltage is reached, electron and holes diffusion cannot be
balanced by the electric field of the space charge region and a macroscopic current starts
to flow. Reverse bias V < 0 : In this case, electrons are removed from the p region and
holes are removed from the n region. As a consequence, the width of the space charge
region gets larger, increasing the voltage difference between the two sides, as sketched in
the inset of Fig. 7.4. The intrinsic core acts as a potential barrier that cannot be crossed
by electrons and holes. The junction is then insulating : no current will flow and a voltage
drop Vcore occurs across the intrinsic core region, just like in a parallel plate capacitor.

7.3.2 Contact Geometry

The application of a voltage across the device is done via two gold contacts, as shown
in Fig. 7.4 (a): one on top of the waveguide and the other under the substrate. To ensure
that the top electrode is connected to the p-side only, we deposit an insulating SiN layer
between the waveguide and the top contact. We leave an opening in this SiN layer on top
of the waveguide, where the Au electrode will be in contact with the p-doped AlGaAs.
This opening is located on top of the waveguide to make sure the applied field is vertical,
which would not have been the case if the Au layers were in contact with the sidewalls
of the waveguide. In addition, to ensure good electronic conduction between the bottom
electrode and the n-doped AlGaAs layers, the GaAs substrate itself is n-doped, as we
mentioned earlier.

The voltage can be applied to the structure by soldering a gold microwire onto the top
contact and connecting it to a DC voltage supply. The bottom contact will be soldered
with an indium paste onto the copper sample holder we use in our test bench, the latter
being connected to the ground. An image of a mounted sample showing the gold contacts
and soldered microwires is shown in Fig. 7.5.
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Figure 7.6: (a) Finite element numerical simulation with the COMSOL software suite
of the electrostatic potential distribution in an undoped structure for V = 60V. (b)
Simulated potential drop across the core region Vcore as a function of V .

7.3.3 Cleanroom Fabrication

The fabrication steps are the same as for the device from ref. [82].

� Ridge waveguide fabrication : Ridge waveguides are fabricated by optical lithogra-
phy using a S1828 positive photoresist with HMDS adhesion promoter and etched
with a BCK solution (acetic acid + K2Cr2O7 + HBr in stoechiometric proportions).
The procedure is identical to the one described in Section 4.31.

� SiN layer deposition and opening : A uniform 400 nm thick SiN layer is then de-
posited at the surface of the sample by plasma enhanced chemical vapor deposition
(PECVD) at 280 °C. This will form an insulating layer between the gold contact and
the ridge waveguide. This insulating layer is then opened at the top of the ridges
(see Fig. 7.4). To do this, we make a second optical lithography, with the same resist
as before. After development, we etch out the SiN layer using reactive ion etching
(RIE).

� Top gold contact deposition : A third optical lithography is performed with a neg-
ative resist to draw the shape of each ridge waveguide’s contact. The resist is spun,
then insulated and finally baked, in order to invert it. A 10nm Ti / 400 nm Au
metallic layer is subsequently deposited by metallic evaporation. The resist lift-off
is done with acetone.

� Bottom gold contact deposition : Finally, the bottom contact is deposited on the
bottom side of the substrate by the same technique. No lithography is needed
because the gold layer will cover the whole surface of the bottom of the sample. We
simply put the sample upside down in the evaporating machine

7.4 Design and fabrication of undoped samples

7.4.1 Contact Geometry

Undoped waveguides require a slightly different contact geometry. If we were to apply
a voltage between the top of the waveguide and the bottom of the substrate, like in the

1The photomask that was used is “Laser Claire”.
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doped sample, the resulting voltage across the core would be negligible. Indeed, because
the structure is undoped and has no free carriers, charges cannot be drawn out of the p
and n regions and accumulate on both side of the core. As a result, for a given value of
V , the voltage drop across the core Vcore would be much smaller than in a device with p-n
doping.

To circumvent this issue, we need to put the two gold contacts much closer one to
another. The top contact remains on top of the waveguide while the bottom contact sits
at the base of the waveguide as sketched in the right panel of Figure 7.4. We wanted
to simplify the cleanroom process and avoid the deposition of a SiN layer between the
waveguide and the top contact like in the doped structure. Indeed, the SiN layer opening
on top of the waveguide is difficult to perform perfectly. As a consequence, we reduced
the size of the top contact, which now covers only the flat portion at the top of the
ridge waveguide. This narrower top contact is not connected to the bottom layers of the
waveguide and hence short circuits are avoided. It is however too narrow to allow for
directly soldering gold microwires on it. To this end, we added triangular electrical pads
to the top contacts on which we bond the wire. Again, to avoid any short circuit and
to make sure the applied electric field is as uniform as possible, we set those electrical
pads on small pedestals that are connected to the waveguide. The lithographic pattern
for the waveguide and the pedestals consists of a single polygon therefore the etching of
the waveguides and the pedestals can be done in one step only. Morover, the merging
region between the pedestal and the waveguide has been made thin enough such that the
perturbation of the propagating modes is minimal.

In order to accurately calculate the voltage drop across the core for a given voltage
V applied between the two contacts, finite element electromagnetic simulations of the
electric potential have been performed, using the commercial COMSOL software suite.
The results are presented in Figure 7.6. We see that most of the voltage drop occurs in
the air between the two contacts. The simulations show a linear dependence of Vcore on
V (left panel of Fig. 7.6) with a slope of 0.012.

7.4.2 Cleanroom Fabrication

The fabrication of electro-optic phase-shifter on an undoped ridge waveguides is carried
out the following way :

� Ridge waveguides and electrical pads : We perform an optical lithography of the
straight waveguide with the electrical pad pedestal. The same photoresist and etch-
ing solution as above are used2.

� Top contact deposition : Since we want the top contact to cover completely the
top of the waveguide and the pedestal, we make a second optical lithography with
the exact same pattern as the first one, carefully aligning the photomask onto the
chip thanks to alignment marks. For this second lithography, a reversible AZ5214
negative photoresist is used. After development, a 10 nm Ti/ 400 nm Au contact is
deposited by metallic evaporation. The photoresist is then removed in acetone.

� Bottom contact deposition : Finally, to fabricate the bottom contact, we repeat the
last two steps (lithography, evaporation and lift-off) using a different lithographic
mask with a simple rectangular pattern.

2We used the photomask “EO modulator Félicien 2019”.
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7.5 Measurement of the electro-optic phase-shift

7.5.1 Phase shift measurement from the device transmission

Principle of the experiment

We describe a first experiment that allows us, at the same time, to verify qualitatively
that the TE mode index is modified by electro-optic effect and to estimate quantitatively
the voltage drop Vcore seen by the guided modes as a function of net applied voltage V .
To this end, we measure the TE transmission of our waveguide as a function of laser beam
frequency and applied voltage.

Since the TE effective mode index is affected by electro-optic effect, the transmission
spectrum will change with V . Indeed, the modal transmission for the fundamental TE
mode of an AlGaAs ridge waveguide as a function of frequency ν is that of a Fabry-Perot
cavity:

TTE(ν) =
(1−RTE)

2e−αTEl

(1−RTEe−αTEl)2 + 4RTEe−αTEl sin2
(
π

ν

∆ν

) , (7.25)

where RTE is the modal TE reflectivity of the waveguide facets, αTE the optical loss
coefficient and l the waveguide length. The free spectral range ∆ν of the ridge waveguide
depends on the value of the TE modal effective index nTE:

∆ν =
c

2nTEl
. (7.26)

We recall that according to equation (7.22), the TE mode index varies with Vcore as

nTE(Vcore) = nTE(0) +
nTE(0)

3r41
2hcore

Vcore. (7.27)

Therefore, the application of a bias voltage to the waveguide changes the value of the free
spectral range and we expect the transmission maxima to be shifted according to the value
of Vcore.

For typical values of the core voltage drop of the order of 1 V, the relative change in
the free spectral range is of the order of 20 kHz, which is very small compared to typical
values of ∆ν, in the GHz range. However, if we look at the nth Fabry-Perot resonance with
n = ν/∆ν, the free spectral range shift is amplified since the nth Fabry-Perot resonance
will be shifted by n times the variation in free spectral range. In our waveguides, working
in the telecom range, we obtain n ≈ 6500 and the Fabry-Perot resonance shift will be
significant, of the order of the free spectral range.

To observe this effect, we measure T (ν) for different values of the bias voltage V set
across the structure. We probe our device by coupling a continuous wave (CW) tunable
telecom laser (Tunics) inside our waveguide. The beam is focused onto the waveguide facet
with the help of a C-coated aspheric lens of numerical aperture 0.7 (Thorlabs C330TMD-
C). Light at the waveguide output is collected using a microscope objective of NA =
0.95 (Zeiss Achroplan 63x). We record the output power with a powermeter (Coherent
FieldMax II). The waveguide is kept at a constant temperature of 20 °C using a Peltier cell
and a thermistor set in a P-I-D feedback loop. A DC voltage supply is used to produce
the bias voltage that is applied to the waveguide. Its electrodes are connected to gold
pads that are wire-bonded onto the electrical contacts of the chip.
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(c) Undoped sample (EBW002)
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Figure 7.7: (a-b) Transmission spectrum for two different applied voltages V of an (a)
undoped device (wafer: EBW002) and (b) doped device (wafer: HIY021). Points: exper-
imental data, solid lines: fit to theoretical formula ( see main text for details). Insets:
Value of Vcore extracted from the fit as a function of V . Points: experimental data, solid
lines: linear fit. (c-d) Comparison of the experimental values for Vcore obtained by direct
fit of the data or by measurement of Fabry-Perot resonance shift in (c) undoped and (d)
doped waveguides.
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Direct fit of the data

We perform the measurement at bias voltages V = [0V, 40V, 60V, 80V] in the undoped
structure and V = [0V,−3.5V,−7V,−10V] in the doped structure. The spectra that
were obtained at maximum bias, V = 80V and V = −10V respectively, are presented
in Fig. 7.7 (a-b) and compared to the zero voltage transmission. We can clearly see the
Fabry-Perot resonances shifting when turning on the bias voltage, which is a clear evidence
of the electro-optic effect. As expected, a much stronger voltage is required to see this
effect on the undoped structure than on the doped structure. We want to underline that
any thermal effect is neglected in this experiment since there is a very small current,
smaller than 50 µA, flowing across the structure and the electrical power dissipated in the
waveguide remains negligible.

Direct fit of the data with formula (7.25) and (7.27) yields experimental values for the
core voltage drop Vcore that are plotted in the inset of Fig. 7.7 (a-b). We see that in both
structures, Vcore evolves linearly with V . For the undoped structure Vcore = 0.016V − 0.30
and for the doped structure Vcore = 0.326V − 0.39. The experimental values for undoped
waveguides are comparable to the electrostatic simulation shown in Figure 7.6, where the
slope was found to be 0.012. Doped waveguides have a steepest slope thanks to the doping.
Indeed, because of the presence of freee carriers the voltage drop between the Au contacts
and the core is reduced and the voltage drop across the core is subsequently increased.

In undoped structures, as we can see from these measurements, the expected pi-shift
voltage is very high, around 400V for a 3mm device. To reduce the pi-shift voltage, several
strategies can be adopted such as bringing the bottom contact closer to the side of the
waveguide, increasing the length of the waveguide or designing a new device in a Mach-
Zender geometry with a push-pull voltage scheme. In addition, we could make the samples
out of a wafer with only two upper Bragg mirror periods to reduce the length between
top and bottom contacts, increasing subsequently the applied field in the waveguide core
region. By combining all these improvements, we expect the pi-shift voltage to be reduced
to a value in the 100V range. In doped structures, the expected pi-shift voltage is much
smaller, 15.3V, and the elctro-optic effect can be conveniently studied in this compact
geometry.

Tracking the location of the Fabry-Perot resonances

We describe an alternative method for measuring the effect of the applied voltage on the
propagation of the guided fields from these data by quantitatively analyzing the shift of
the location of the Fabry-Perot resonances when applying a voltage V . We track the nth

Fabry-Perot resonance of our waveguide for different values of V and record its central
frequency νn. The ratio between the resonance frequency at V = 0 and V ̸= 0 is :

νn(0)

νn(V )
=

n∆ν(0)

n∆ν(V )
=

nTE(V )

nTE(0)
(7.28)

where we used the expression (7.26) for the free spectral range ∆ν. Given the value of
nTE(V = 0), the change in TE mode index can be calculated as :

nTE(V )− nTE(0) = nTE(0)

(
νn(0)

νn(V )
− 1

)
. (7.29)

Using equation (7.27) we can rewrite this quantity in terms of Vcore, yielding :

Vcore(V ) =
2hcore

nTE(0)2r41

(
νn(0)

νn(V )
− 1

)
(7.30)
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This relation shows that an experimental value for Vcore can be obtained from the mea-
surement of the ratio νn(0)/νn(V ). The values for Vcore obtained with this method are
displayed on the tables in Fig. 7.7 (c-d) alongside the values obtained by direct fit in the
previous paragraph. We observe that the two methods are in excellent agreement.

7.5.2 Phase shift measurement from the TE/TM dephasing

Principle of the measurement

Another way of assessing the performance of our electro-optic modulator is to directly
measure its pi-shift voltage. To this end, we couple a 45° linearly polarized beam to a
waveguide and measure the induced dephasing between its TE and TM component after
exiting the sample. By reconstructing the polarization state of the beam for different
values of V , we can access the relative phase between its TE and TM components and
thus infer the change in TE mode index induced by electro-optic effect. Using the Jones
vector notation, in the TE/TM basis the input polarization state reads :

Ei =
1√
2

(
1
1

)
. (7.31)

At the output of the waveguide, it becomes :

Eo =

(
tTE(V )
tTM

)
=

(
|tTE(V )|eiΓ(V )

|tTM|eiΓ0

)
=

(
|tTE(V )|ei∆Γ

|tTM|

)
, (7.32)

where tTE(TM) is the TE (TM) complex transmission coefficient of the waveguide, whose
expression is given by the Airy formula :

tTE(V ) =
(1−RTE) exp

(
i2πlc nTE(V )ν

)
exp(−αTEl)

1−RTE exp
(
i4πlc nTE(V )ν

)
exp(−2αTEl)

,

tTM =
(1−RTM) exp

(
i2πlc nTMν

)
exp(−αTMl)

1−RTM exp
(
i4πlc nTMν

)
exp(−2αTMl)

,

(7.33)

with RTE(TM) the modal reflectivity of mode TE (TM). Note that since the TE mode
index is affected by electro optic effect, its phase Γ(V ) depends on the value of V . This
is not the case for the TM mode therefore Γ0 is independent of V . The relative phase
between the two components can be expressed as :

∆Γ(V ) = Γ(V )− Γ0

= arg [tTE(V )]− arg [tTM]

= arg [tTE(V )]− arg [tTE(0)] + ∆Γ0 (7.34)

with ∆Γ0 the phase difference at zero voltage.
We assume that for a given frequency ν the transmission coefficients for the TE and

TM modes are equal : |tTE| = |tTM|. As shown later on, experimental data confirms that
this conditions is fulfilled in our experiments. Under this assumption the output Jones
vector can be written (up to a normalization factor) :

Eo =
1√
2

(
ei∆Γ(V )

1

)
. (7.35)

When ∆Γ = 0 the output beam is linearly polarized along the +45° axis while when
∆Γ = π (pi phase shift), it is linearly polarized along the -45° axis. In the intermediate
case : ∆Γ = π/2 (pi/2 phase shift) the beam is circularly polarized.
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Figure 7.8: (a) Experimental setup for the reconstruction of the output polarization state.
(b-d) Theoretical polar maps of P (θ), the projection of the output polarization vector
on an arbitrary direction (equation (7.36)) for different values of the dephasing ∆Γ. The
radial coordinate is the value of P (θ) and the angular coordinate is the value of θ in
degrees. (b) ∆Γ = 0 (linear polarization). (c) ∆Γ = π/4 (elliptical polarization). (d)
∆Γ = π/2 (circular polarization).

Suppose that for V = 0 the output beam is circularly polarized. To measure Vπ, we
increase V until the beam becomes linearly polarized along the +45° direction, meaning
the electro-optically induced phase shift is π/2. The value of the voltage for which this
occurs will be half the pi-shift voltage Vπ.

Reconstruction of the output polarization state

This experiment has been performed only on the doped structure because of its lower
operating voltages. The measurement setup is sketched in the top panel of Figure 7.8. The
same optical elements as before are used to couple the light in and out of the waveguide.
We adjust the polarization of the input laser beam to 45° using a polarizer. The working
wavelength has been chosen to be λ = 1570 nm. At this wavelength, as it is shown on the
upper right panel of Figure 7.9, TE and TM transmission are comparable, and the output
polarization state can be effectively described by our simple model (equation (7.35)).

To reconstruct the polarization state, we project the output beam onto several direc-
tions spanning a 360° angle. We place an analyzer followed by a powermeter at the exit of
the output microscope objective and we record the normalized transmitted power P as a
function of the analyzer angle θ. Formally, by using (7.35) as the mathematical expression
for the output polarization vector, this quantity can be calculated as :

P (θ) = |Eo · eθ|2 =
1

2
[1 + cos (∆Γ) sin (2θ)] (7.36)

where eθ is the unit vector corresponding to the direction of the analyzer axis. The
measurement of this P (θ) map allow us to discriminate between several polarization states.
Theoretical curves of P (θ) for different values of ∆Γ are plotted in Figure 7.8 (b-d).

We see that linear and circular polarizations yield polar charts with very distinct
shapes. For the first case (Fig. 7.8 (b)), we observe two lobes. As expected for 45°
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Figure 7.9: (a) Polar representation of P (θ) (in a.u.) for different values of V at
λ = 1570 nm. (b) Simulated TE and TM Fabry-Perot transmission around the work-
ing wavelength. (c) Simulated phase shift ∆Γ between TE and TM components as a
function of V at λ = 1570 nm (solid line). The theoretical value of V for which ∆Γ = 0
(dashed line) is −8.2V.

linearly polarized light, the transmitted power is maximum when the analyzer angle is
set to θ = 45° and minimal when θ = −45°. For circularly polarized light (Fig. 7.8 (d)),
the transmitted power is the same, for all analyzer angles θ, hence a P (θ) map with a
circular shape. In short, by looking at the profile of P (θ) we can tell whether the output
polarization is in a linear or circular state. Note that this technique does not allow us to
tell whether the light is left or right circularly polarized i.e. if the electric field vector of
the wave is rotating clockwise or counterclockwise. This property is given by the sign of
∆Γ and we see that, indeed, equation (7.36) is left invariant when flipping the sign of ∆Γ.

Results

The experimental P (θ) maps obtained for different values of applied voltage V are plotted
in Fig. 7.9. We see that at V = 0V, we measure a circle (red curves). The output beam
is therefore in a circular polarization state. At V = −9V, we measure two lobes rotated
by +45° (green curve). The output beam is therefore in an almost perfect +45° linear
polarization state. The small remaining ellipticity, resulting in nonzero transmission for
θ = 45 ± 90°, can be explained by a slight misalignment between the direction of the
polarizer and that of the TE and TM axes. For all intermediate bias voltages, we can
see the smooth transition from circular to linear, with intermediate elliptical polarization
states (orange curves with a peanut shape).

As we explained earlier, the phase shift required to switch from a circular to a linear
polarization is π/2. In our doped structure, this occurs for V = −9V. From the Fabry-
Perot resonance measurement, we know that this voltage corresponds to a core potential
drop of Vπ/2,core = −3.46V, yielding a pi-shift voltage value of Vπ,core = −6.92V. This
experimental value is compatible with the theoretical value of −5V that we obtained
earlier using equation (7.24).

To further support this result, we calculate the expected phase shift ∆Γ(V ) for dif-
ferent values of V and compare it with the experimental data. This quantity can be
straightforwardly computed using formula (7.34). From our experiment, we know that at

114



7.5. Measurement of the electro-optic phase-shift

V = 0 the ouput polarization is circular, therefore the phase difference at zero voltage is
∆Γ0 = π/2. The simulation for ∆Γ(V ) is shown on the lower right panel of Fig. 7.9. We
see that the voltage for which the phase difference switches from π/2 to zero is −9.4V,
which is very close to the experimental value Vπ/2 = −9V.

115



Chapter 7. On-chip integration of nonlinear AlGaAs waveguides and EO delay lines

116



Part IV

Monolithic integration of an
AlGaAs type II photon pair
source and a broadband

polarization splitter

117





Chapter 8

Working principle and device
design

Contents

8.1 State of the art and motivation . . . . . . . . . . . . . . . . . . . 119

8.2 Evanescent coupling of two waveguides . . . . . . . . . . . . . . 120

8.3 Device design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.4 Realization of a test sample . . . . . . . . . . . . . . . . . . . . . 128

In this chapter, we present the working principle of a monolithic device consisting of
an AlGaAs Type II photon-pair source and a broadband polarization splitter. We start
by a brief review of the state of the art for integrated polarization splitters and their
applications to quantum photonics. Then, we give a theoretical description of evanescent
coupling between waveguides before describing in details the design of the generation
and polarization splitting regions. Finally, we will show some preliminary experimental
results on a first generation of samples consisting only of a polarization splitter without a
photon-pair generation region.

8.1 State of the art and motivation

Polarization is one of the most frequently used degree of freedom for quantum information
protocols. As a consequence, on-chip manipulation of the polarization state of photons
pairs is crucial for future integrated quantum photonics. This approach relies on ele-
mentary building blocks such as phase shifters and polarization rotators, that have been
discussed in Part III, as well as integrated polarization mode splitters. Moreover, broad-
band two-photon states are an important resource for a number of applications, such as
quantum communications, which requires integrated polarization handling devices to be
effective over a large spectrum.

Many efforts have been made towards the realization of broadband polarizing mode
splitters in various photonic platforms. Silicon-On-Insulator (SOI) devices relying on
birefringent directional couplers have been reported in references [169, 170, 171]. This
scheme has also been used in femtosecond laser written waveguides for the realization
of integrated quantum gates on polarization qubits [65]. Another approach based on
adiabatic evanescent coupling has been demonstrated in lithium niobate in Ref. [172]. To
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Figure 8.1: Artist view of the integrated AlGaAs SPDC source and polarizing mode
splitter.

the best of our knowledge, the only successful integration of a photon-pair sources and a
polarization splitter on a single photonic chip has been reported on LiNbO3 in Ref. [69].
In this paper, the authors fabricate on a monolithic chip a ppLN source, a polarization
splitter, an integrated polarization rotator and a 50/50 coupler to realize an on-chip HOM
experiment. However, the chip demonstrated in that reference doesn’t display a broadband
operation since the photon pairs are filtered with a 1.2 nm-wide spectral filter.

AlGaAs nonlinear waveguides are ideal candidates for the integration of Type-II polar-
ization entangled photon sources and broadband polarizing mode splitters on monolithic
chips. In this project, we designed, fabricated and characterized an AlGaAs photonic
device, depicted in Fig. 8.1, consisting of a source of entangled photon pairs followed by a
broadband polarizing mode splitter. Pump photons are coupled into a a 5 µm wide waveg-
uide section, where entangled photon pairs are generated by Type-II SPDC. The waveguide
width is then tapered down to around 1.5 µm as we approach the polarization splitting
region which is made of two evanescently coupled waveguides. Thanks to the waveguide
birefringence, generated TE photons will be coupled into the opposite waveguide while
TM photons will remain in the same waveguide. At the end of the coupling region, TE
and TM photons have been split into two distinct spatially separated waveguides.

8.2 Evanescent coupling of two waveguides

8.2.1 Symmetric and Antisymmetric supermodes

To explain in more details the polarization splitting mechanism, we start by describing the
propagation of light in two evanescently coupled waveguides in the framework of coupled
modes theory, as described in Ref. [167]. Let us consider two ridge waveguides a and b, of
corresponding widths wa and wb, separated by a gap g, as shown schematically in Figure
8.2. In what follows, we consider the two waveguides to be identical wa = wb = w. The
propagation direction corresponds to the y-axis. Let Ea (resp. Eb) denote the complex
electric field amplitude for the fundamental guided mode of waveguide a (resp. b) with
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Figure 8.2: (a) Sketch of the cross-section of the two coupled waveguides indicating the
refractive index profiles nc(x, z) and ns(x, z) in the different regions of the structure. (b)
Symmetric and anti-symmetric supermode field profile. Red and blue colors correspond
to positive and negative field amplitudes.

associated propagation constants βa = βb = β0. We assume the waveguides are lossless
such that β0 = (ω/c)n0 where n0 is the real-valued effective mode index of the fundamental
mode, ω the frequency and c the speed of light in vacuum. When the two waveguides are
far apart, Ea and Eb are independent solutions of the wave equation:

□iEi − β2
0Ei = 0, (8.1)

where i = a, b and □i denotes the D’Alembertian operator : □i = ∂2
x+∂2

z+(ω/c0)
2n2

i (x, z).
The function n2

i (x, z) stands for the refractive index profile of waveguide i. It is composed
of the sum of a background term n2

s(x, z), corresponding to the index profile of the region
outside the waveguides (blue area in Fig. 8.2 (a)), and a term, ∆n2

i (x, z), that encodes the
index profile in the waveguide region (brown area in Fig. 8.2 (a)) [167]:

n2
i (x, z) = n2

s(x, z) + ∆n2
i (x, z), (8.2)

where we defined :

∆n2
i (x, z) =

{
n2
c(x, z)− n2

s(x, z), in i,

0, elsewhere.
(8.3)

The refractive index profile of the two-waveguide system is given by:

n2(x, z) = n2
s(x, z) + ∆n2

a(x, z) + ∆n2
b(x, z). (8.4)

When we bring the two waveguide close to each other, we observe a hybridization of
the two fundamental modes, creating so-called supermodes that are delocalized over the
two waveguides. This phenomenon is mathematically analogous to the tunnel effect in a
quantum-mechanical double well model. We look for new solutions to the wave equation
corresponding to these supermodes under the form:

E = AEa +BEb, (8.5)

where A and B are two complex coefficients. The wave equation reads:

□E− β2E = 0, (8.6)
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with β the propagation constant of the supermode and □ = ∂2
x + ∂2

z + (ω/c0)
2n2(x, z).

By plugging (8.5) into (8.6) and with the help of (8.1) and (8.2) we obtain the following
relation:

A

[
β2
0 +

(
ω

c0

)2

∆n2
b(x, z)− β2

]
Ea +B

[
β2
0 +

(
ω

c0

)2

∆n2
a(x, z)− β2

]
Eb = 0. (8.7)

We take the scalar product of this equation independently with Ea then Eb to obtain a
set of two coupled equations for the variables A and B [167]. If we assume a very small
overlap between the fields of the two fundamental modes :

∫∫
dxdzE∗

aEb ≪ 1, this set of
equations takes the form:(

β2
0 − β2 +K J

J β2
0 − β2 +K

)(
A
B

)
= 0, (8.8)

with:

K =

(
ω

c0

)2 ∫∫
dxdzE∗

a(b)∆n2
b(a)Ea(b), (8.9)

J =

(
ω

c0

)2 ∫∫
dxdzE∗

a(b)∆n2
a(b)Eb(a). (8.10)

K represents the dielectric perturbation to the field of the fundamental mode of one
waveguide due due to the presence of the other waveguide and J is the exchange coupling
between waveguides, analogous to the tunnel amplitude in quantum mechanics.

We can now find A, B and β by solving Eq. (8.8). Since it is quadratic in β, the
system of equations has two solutions. The new solutions to the wave equation for the
two-waveguide system are:

Symmetric : ES =
1√
2
(Ea +Eb) , β2

S = β2
0 +K + J, (8.11)

Antisymmetric : EAS =
1√
2
(Ea −Eb) , β2

AS = β2
0 +K − J. (8.12)

The amplitude field profiles of the symmetric and anti-symmetric supermodes are schemat-
ically shown in Fig. 8.2 (b). Of course, these solutions are not unique as there exists and
infinite set of solutions to (8.6). We simply limited our treatment to the subspace spanned
by the two solutions with the highest mode index. This is equivalent to keeping only the
low-energy solutions of a double potential well problem in quantum mechanics by only
considering one bound state in each well.

8.2.2 Splitting ratio

We now study the propagation of an electromagnetic wave that is initially located in the
fundamental mode of waveguide a. At y = 0 the state of the electromagnetic field can be
written:

E(y = 0) = Ea =
1√
2
(ES +EAS) . (8.13)

After traveling a distance y, the field becomes:

E(z) =
1√
2

(
ESe

−iβSy +EASe
−iβASy

)
(8.14)

=
1√
2

(
ES +EASe

−i(βAS−βS)y
)
e−iβSy. (8.15)
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Equation (8.15) shows that a beating occurs between the fundamental modes of the two
waveguides Ea and Eb. Since Eb = (ES − EAS)/

√
2, for propagation distances that are

odd multiples of the beating length

Lc =
π

βS − βAS
(8.16)

the electromagnetic field is localized in waveguide b. Indeed, up to a global phase factor
E((2q + 1)Lc) = Eb, with q ∈ N. Similarly, at even multiples of Lc, the electric field
is localized in waveguide a : E(2qLc) = Ea. Thus, as the wave, initially confined to
waveguide a, travels through the coupled waveguide structure, it hops back and forth
between the two waveguides with a periodicity given by Lc. The normalized power in
waveguides a and b at the output of the device (y = L) is proportional to:

Pa(L) = E(L) ·E∗
a =

1

2
[1 + cos(πL/Lc)]P0, (8.17)

Pb(L) = 1− Pa(L) =
1

2
[1− cos(πL/Lc)]P0, (8.18)

where P0 is the normalized input power. We see that by carefully choosing the length
L of the coupled waveguides, one can transfer all the optical power from one waveguide
to the other or split the power between the two waveguide with an arbitrary splitting
ratio. A device consisting of two such coupled waveguides is called a directional coupler
and is very widely used for light routing on photonic chips [167]. As we explained earlier
(see Section 4.2), in our AlGaAs ridge waveguides, the effective TE and TM mode index
are different due to birefringence. Therefore, S and AS supermodes will have different
propagation constants for TE and TM polarized light. As a result, TM light traveling
through a directional coupler will not have the same beating length as TE light. Let

L
(TE)
c = π/(β

(TE)
S − β

(TE)
AS ) and L

(TM)
c = π/(β

(TM)
S − β

(TM)
AS ) denote the TE and TM

beating lengths. We can engineer the modal birefringence and waveguide coupling by
adjusting the width w of the ridges and the gap g between them to find an optimal point
where:

L
(TM)
c

L
(TE)
c

=
p

p+ 1
(8.19)

with p is a positive integer. When this condition is met, TM light will be totally transferred
to one output port after hopping p times between the waveguides, while TE light will hop
p+ 1 times before exiting through the opposite port.

The figure of merit that we use to quantify the ability of the coupler to spatially
separate the two orthogonal polarizations is the splitting ratio. This is defined separately
for both polarization as:

sTE ≡ P
(TE)
a

P
(TE)
a + P

(TE)
b

=
1

2

[
1 + cos

(
π

L

L
(TE)
c

)]
, (8.20)

sTM ≡
P

(TM)
b

P
(TM)
a + P

(TM)
b

=
1

2

[
1− cos

(
π

L

L
(TM)
c

)]
. (8.21)

This definition depends on which arm, a or b, a given polarization is supposed to exit the
directional coupler. Indeed, for an ideal splitting sTE = sTM = 1 corresponding to the
case where all TE light ends up in arm a and all TM light in arm b. But the splitting
is also optimal when sTE = sTM = 0 for which all TE and TM light exits in arm b or a
respectively. Hence, when designing the device, we are willing to maximize either sTE, sTM

or 1− sTE, 1− sTM depending on the output port assigned to each polarization.
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Figure 8.3: Simulated TE and TM splitting ratios for (a-b) L = 650 µm and (b-c) L =
1085 µm. The regions for which sTE and sTM are either 0 or 1 are highlighted with dotted
lines. The optimal working point of the device are indicated with crosses, corresponding
to a region where Eq. (8.19) is fulfilled for p = 1 or p = 2.

8.3 Device design

8.3.1 Polarization splitting region

We performed electromagnetic mode analysis in our polarization mode splitter by solving
Maxwell’s equations with the COMSOL software suite to find a region in parameter space
where condition (8.19) is fulfilled. For this project, we used an epitaxial structure with
two upper Bragg mirrors (wafers G5X038 and K7AD118). Note that in all designs, the
waveguides feature a shallow etching profile, as indicated in the drawing of the waveguide
cross-section of Fig. 8.2 (b). Only the first four upper layers, corresponding to two Bragg
periods, are etched, leaving the core untouched. This has been done to ensure optimal
coupling between the propagating modes of the waveguides. Indeed, if the core is etched,
then the overlap between the spatial profile of the fundamental modes is drastically re-
duced, thus decreasing the coupling strength. The software solves Maxwell’s equations
in the coupled waveguide structure using finite element methods and extracts the spatial
profile and effective index for a given number of modes at a fixed frequency. We imple-
mented a simple algorithm to automatically detect the two S and AS supermodes from
the multitude of guided modes that are calculated by COMSOL. However, this procedure
can feature some errors when unphysical modes are accidentally identified instead of the
supermodes of interest. As a result, we obtain some outlier points in the simulation data
for certain values of w and g which have been subsequently removed.

From the simulated effective S and AS mode indices, using, Eqs. (8.17) and (8.18), we
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were able to compute the transmitted power for both polarizations as a function of the
waveguide width w, gap g and coupling length L and infer the splitting ratio. In Fig. 8.3,
we display the simulated TE and TM splitting ratios for two selected values of L yielding
the best performance. The regions for which sTE and sTM are either 0 or 1 are highlighted
with dotted lines. In Fig. 8.3 (a-b), we observe that for L = 650 µm, the two dotted
lines cannot be superimposed, meaning that the TE and TM splitting ratios cannot be
simultaneously maximum. We indicate by a cross the optimal working point that has
been found based on these simulations, corresponding to a situation where the condition
in Eq. (8.19) for p = 1 is nearly fulfilled. On the contrary, for L = 1085 µm, we observe
from Fig. 8.3 (c-d) that the dotted lines denoting the regions where sTE and sTM are the
closest to zero can be almost perfectly superimposed. As a consequence, in this design,
we can achieve simultaneously perfect TE and TM polarization splitting. The optimal
working point, corresponding to the region where the two TE and TM dotted lines have
the best overlap, is denoted by a cross. This corresponds to a situation where p = 2
according to Eq. (8.19).

To better understand the physical picture behind these simulations, we compute the
TE and TM splitting ratios a function of coupling length for the optimal set of parameters
w = 1.29 µm, g = 1.51 µm using the S and AS mode indices computed numerically with
COMSOL along with Eqs. (8.16), (8.20) and (8.21). In addition, using the Lumerical
software, we simulate the eigenmode expansion (EME) propagation of a wave that is
initially in waveguide a and record the spatial distribution of the intensity as it travels
through the directional coupler. The results are plotted in Fig. 8.4. The two oscillating
curves in Fig. 8.4 (a) correspond to the beating of the cosine terms in Eqs. (8.20) and (8.21)
and the coupling length associated with the two possible designs that were indicated
in Fig. 8.3 are labeled by black arrows.

In the first design, the TE polarized light does a round-trip by hopping onto the
opposite waveguide before returning to the input waveguide, as shown in the simulated
EME mode propagation in Fig. 8.4 (b). As for the TM mode, it only travels half a round-
trip by directly hopping onto the adjacent waveguide. This is consistent with a TM/TE
coupling length ratio of p = 1, as defined in Eq. (8.19). This design is the simplest in the
sense that it involves the least possible number of round-trips while achieving reasonable
polarization splitting. In addition, it only requires a relatively small coupling length of
about 650 µm, which can be useful to minimize losses. In this case, the TE and TM
splitting ratios are both around 0.9. However, despite its simplicity, this design is not
adapted to the broadband operation requirement for the integration with an AlGaAs
photon-pair source. Indeed, we can see that this design corresponds to a point where the
two curves sTE, sTM intersect but are not at a maximum. When plotting the splitting
ratios as a function of wavelength, as in Fig. 8.4 (c), we see that the two quantities are
never simultaneously maximum over a broad bandwidth.

In the second design, as shown in Fig. 8.4 (d), the TE polarized light does an extra
hop and ends up in the opposite waveguide while the TM polarized light is only having
a single round-trip. In this configuration, which corresponds to a TM/TE beating length
ratio of p = 2, the coupling length is longer, around 1085 µm. However if offers much
more robust polarization splitting. Indeed, this design corresponds to a maximum of both
TE and TM splitting ratios. When looking at the wavelength dependence in Fig. 8.4 (e),
we observe that 1 − sTE and 1 − sTM are above 0.9 over a 50 nm bandwidth. The only
drawback to this design is its longer length which leads to higher losses in the fabricated
device.

We analyze the fabrication tolerances by simulating the impact of a variation in the
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Figure 8.4: (a) Simulated splitting ratio as a function of coupling length for a directional
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here 1 − sTE and 1 − sTM for clarity. Splitting ratio as a function of coupling length for
(a) δ = −45 nm, (b) the nominal design and (c) δ = +45nm. The optimal coupling length
in each graph is indicated by a black dashed line.

value of the ridge width w or the gap g on the splitting ratio. What usually happens
in the fabrication process in our type of device is that the waveguides are either slightly
broader or narrower than the nominal value but their spacing is relatively well controlled.
Indeed, the width of the waveguides depend on several fabrication steps such has the
resist deposition or the etching process, which inevitably feature some imperfections. On
the contrary, the spatial positioning of the lithography patterns, and hence the spacing
between the two waveguides, is determined by the positioning of the SEM moving stage,
which has a much higher degree of reproducibility. Hence if w changes with respect to its
nominal value w0 by an amount ±δ e.g. w = w0 ± δ, then g deviates from its nominal
value g0 by the same amount: g = g0 ∓ δ. We found out that a deviation of this kind in
the waveguide width and gap according to the optimal values w0 = 1.29 µm, w0 = 1.51 µm
does not decrease the maximum achievable splitting ratio but simply shifts the optimal
coupling length. In Fig. 8.5, we simulate effect on the splitting ratio of a variation of
δ = ±45 nm, which is chose to be well above the empirical uncertainty on the waveguide
width that we observed in the fabrication process. We show that a variation of δ = +45nm
shifts the optimal coupling length, for which 1−sTE and 1−sTM are maximum, by +45 µm
while a variation of δ = −45 nm shifts the optimal length by -40 µm. In principle, these
tolerances are larger that the achievable resolution of the electron-beam lithography and
dry etching fabrication process that was used to fabricate the devices (see Section 4.3). In
addition, we make sure that the tuning range of the coupling length is sufficient to make
up for any variation resulting from imperfect fabrication by fabricating multiple devices
on a single chip with various L in steps of 20 µm to 30 µm.

8.3.2 Photon-pair generation region

As shown in Fig. 8.1, the photon-pair generation region consists of a waveguide of width W
that is tapered down to match the width w of the polarization splitting region. This design
ensures that no photon pairs are generated in the polarization mode splitter. Indeed, as we
have seen in Section 4.5, the phase-matching wavelength depends significantly on the ridge
width. Hence, the phase-matching wavelength will not be the same for the two regions
allowing to generate photon pairs only in the generation region. The engineering of the
generation region is illustrated in Fig. 8.6. The simulated phase-matching wavelength for
a 1.29 µm-wide ridge is equal to 780.5 nm. Consequently, we choose a generation width of
W = 5 µm corresponding to the standard ridge width that we used in most samples and
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Figure 8.6: (a) Schematic of the photon-pair generation region with calculated phase-
matching wavelengths. (b) Taper transmission for TE and TM fundamental mode at a
wavelength of 1550 nm.

which is broad enough to allows for an easy coupling of the pump beam into the waveguide.
For W = 5 µm, phase-matching occurs at 762.5 nm, corresponding to a detuning of 8 nm
with respect to the waveguides in the polarization mode splitter.

The taper is designed to have a high transmission of both polarizations while main-
taining the shortest possible length. A FDTD simulation of the taper transmission as
a function of taper length at a wavelength of 1550 nm is displayed in Fig. 8.6 (b). We
see that TE and TM modes are transmitted with more than 99.5% transmissivity when
the taper is longer than 200 µm. Consequently, in our design, we set the taper length to
250 µm.

8.4 Realization of a test sample

To experimentally validate the polarization splitting mechanism, we fabricated a first gen-
eration of prototype devices following the first design (p = 1). In this chip, which was
fabricated from wafer G5X038, there is no photon-pair generation region, only a polar-
ization mode splitter. We chose to first implement the simpler design, with the shortest
coupling region, simply to calibrate the fabrication process and adjust the simulation
parameters accordingly. The nominal waveguide parameters were w = 1.5 µm, g = 1.5 µm.

The device was fabricated using electron-beam lithography and dry ICP etching, a
process that has been described in Section 4.3. Since we needed to pattern long waveguides,
we used the fixed beam moving stage (FBMS) mode. On this chip, we fabricated 13
directional couplers with lengths ranging from 400 µm to 640 µm in steps of 20 µm. The
spacing between the output ports was set to 250 µm to be compatible with the standard
pitch of commercial fiber arrays which can be used to collect light from the chip. The
length of the S-bend was 450 µm resulting in a radius of curvature of 400 µm which is
smooth enough to avoid losses due to the waveguide curvature [166]. In between each
device, we inserted straight 1.5 µm-wide waveguides to characterize the propagation losses
and phase-matching of the sample.

After fabrication, the first characterization step was to precisely measure the width
w of the waveguides and the gap g in the evanescent coupling region with a SEM and
compare those values to the nominal design. There was a slight asymmetry, of the order
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Figure 8.7: (a) False-color SEM images of the test sample fabricated from wafer G5X038.
The blue lines highlight the polarization splitter while the straight waveguide that were
included for characterization appear in red. (b) S-bend region: we observe sharp vertical
sidewalls as well as smooth waveguide curvature. (c) Evanescent coupling region viewed
from the top showing straight and smooth waveguide sidewalls. (d) Raw collected power
from the two output arms a and b for both TE and TM polarization. (e) Measured (dots)
and simulated (lines) splitting ratio as a function of coupling length L at a wavelength
of 1550 nm. In the simulation, an offset of 166 µm was added to the coupling length L in
order to reproduce the experimental results (see text for details).
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of 1% between the two waveguide width. Indeed, when averaging over all the observed
structures on the chip, the first waveguide was measured to be on average 1512 nm wide
while the other was 1528 nm wide. The standard deviation is 3 nm, of the order of the
spatial resolution of the SEM. This shows the good pattern reproducibility of our fabrica-
tion process. Similarly, the gap between waveguides was measured to be 1461 nm with a
standard deviation of 8 nm.

We then put the device on the optical test bench to measure the TE and TM splitting
ratio and their dependence on the coupling length L. To do so, we used the following
setup : we sent a telecom tunable laser (Tunics) at a wavelength λ = 1550 nm through
a linear polarizer with transmission axis making an angle θ with respect to the vertical
axis (x-axis in Fig. 8.2) then into the waveguide using a NA = 0.95 microscope objective
(Zeiss AchroPlan). Light exiting the chip was collected with an identical objective. The
power of the output beam was recorded using a Coherent FieldMaxII power-meter. The
chip was set at a stable temperature using a Peltier cell coupled to a thermistor, like in the
experimental setups described in Chapter 4. Note that, due to the 250 µm spacing between
arms a and b, the short working distance of our output microscope objective does not allow
measuring simultaneously the power exiting from waveguides a and b. As a consequence,
we needed to measure Pa and Pb one at a time, realigning the microscope objective on the
target waveguide between each measurement. We repeated the measurement for all the
devices of different coupling lengths that are present on the chip.

The measured output power from the two output arms a and b for TE and TM at
1550 nm as a function of coupling length and the resulting splitting ratio are shown
in Fig. 8.7 (d-e). We see that the experimental values for the splitting ratio reported
in Fig. 8.7 (e) are in good agreement with simulations, represented as solid lines. We
observe that the simulated and experimental values for the coupling length disagree by an
offset of 166 µm. In other words, we had to add 166 µm to the nominal value of L to make
the simulation in Fig. 8.7 (e) match the experimental data. This difference between the
simulations and the measurements can be due to a possible residual evanescent coupling
in the transition zone between the directional coupler and the S-bends. We also observe
that the fabricated devices cannot reach the theoretical maximum splitting ratio. This is
due to the fact that the initial simulations based on which the coupling length was chosen
did not take into account the shallow etching profile of the waveguides, which shifted the
value of the calculated optimal coupling length. By taking into account the simulations,
we obtain the simulated curves in Fig. 8.7 (e) which reproduce the measurement very
faithfully.
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This chapter is dedicated to the experimental characterization of the device including
a photon-pair generation region and a polarization splitting region on a single chip. We
first describe the chip layout before presenting the result of the classical characterization
in terms of splitting ratio and phase-matching. Then we demonstrate that this device
allows for the generation and spatial separation of photon-pairs directly on chip. Finally,
we report on the measurement of Hong-Ou-Mandel effect directly at the chip output,
showing that we can achieve on-chip polarization splitting without significantly affecting
the spectral indistinguishability of the photon pairs.

9.1 Chip layout

In this new generation of device, we implement Design 2 for the polarization splitter cor-
responding to to p = 2 in Eq. (8.19) in order to get the highest possible splitting ratio.
We fabricated the sample using FBMS e-beam lithography and dry ICP etching using the
recipe described in Fig. 4.8. The nominal waveguide parameters are w = 1.29 µm, g =
1.51 µm. Using the same cleanroom process as in the previous chapter (descibed in Sec-
tion 4.3), we fabricated a chip with 13 structures of increasing coupling length from wafer
K7AD118. From the simulation reported in Fig. 8.4 (a) we predict an optimal coupling
length of 1085 µm at a wavelength of 1550 nm. Thanks to the experimental characteri-
zation performed on the test sample, we recall that we need to subtract a 166 µm offset
to the value of the coupling length. As a consequence, we fabricated devices with cou-
pling lengths ranging from L = 750 µm to 1110 µm in steps of 30 µm. We inserted a test
straight waveguide of width W = 5 µm between every three structures to characterize the
generation region in terms of losses and phase-matching wavelength.

The layout of the e-beam lithography pattern is shown in Fig. 9.1. The spacing between
the output ports has been reduced from 250 µm to 127 µm in order reduce the device
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Figure 9.1: Final device layout showing the lithography pattern that was used to draw
the structure. The FBMS writing direction is indicated with white arrows. See text for
details.

footprint and fit more structures per unit area of the sample. The value of 127 µm is also
another standard pitch for commercial fiber arrays that could be used to collect light from
the waveguides. In addition to this, using a tighter pitch, we were able to collect light from
both output port from a single microscope objective (NA = 0.65), which was not possible
using a 250 µm spacing. This was a requirement for the measurement of HOM effect at the
chip output, which can only be done if the photons from both output ports are collected
simultaneously. In addition, this change in the waveguide spacing also increases the radius
of curvature of the S-bends to a value of 832 µm, which minimizes the losses caused by the
curvature of the waveguides.

The taper connecting the polarization mode splitter to the generation region was drawn
with FBMS electron-beam lithography using the polygon patterning technique shown
schematically in Fig. 9.1. Indeed, since, in FBMS mode, it is not possible to directly
draw polygons but only paths of fixed width, the taper has to be drawn in two steps :
first the contour then the filling. The filling is made of multiple FBMS paths of increasing
width. Note that to avoid any gaps between the lithography paths at the two ends of the
taper, we also draw the narrower waveguides of the polarization splitting region in two
halves. Indeed, by doing so we merge the contour of the taper and generation region with
the waveguides of the splitting region into a single continuous path. SEM images of the
fabricated sample are shown in Fig. 9.2.

9.2 Classical characterization: propagation losses, phase-
matching, splitting ratio

Once the sample was fabricated, we characterized the test straight waveguide by esti-
mating the propagation losses with the Fabry-Perot technique and the phase-matching
wavelength via a SHG spectrum. The experimental setups are identical to those described
in Chapter 4. The results are shown in Fig. 9.3. We obtain a value of 0.9 cm−1 and
1.5 cm−1 for fundamental TE and TM mode losses respectively. The SHG spectrum plot-
ted as a red solid line in Fig. 9.3 was obtained with a linearly polarized pump beam at an
angle of 45 deg with respect to the vertical z-axis (see Fig. 9.2). Instead of the expected
sharp Type II and Type 0 resonance separated by about 10 nm, we observe a group of
tightly spaced peaks with very low amplitude. By setting the pump polarization to 0 deg
with respect to the z-axis (blue solid line), we managed to identify the central and the
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Figure 9.2: (a) False-color SEM image of the fabricated chip. The source and polarization
splitter are highlighted in blue while the red line indicates a test straight waveguide. (b)
Facet of the input waveguide of width W = 5 µm. (c) S-bend and evanescent coupling
region. (d) Facet of the output waveguide of width w = 1.29 µm.
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Figure 9.3: (a) TE and TM transmission and (b) SHG spectrum for a linearly polarized
pump beam at 45 deg (red curve) or 0 deg (blue curve) with respect to the z-axis measured
on the test straight waveguide of width W = 5 µm.

right peak as the Type II resonances while the left peak appears to be Type 0. As a result,
we extract a Type II phase-matching wavelength of 1525 nm.

The next step has been to measure the splitting ratio as a function of wavelength for
all the devices having different coupling lengths L. This is done by sending a telecom laser
beam into the generation region and recording the transmitted power at the two output
ports like for the measurement of the test sample presented in Section 8.4. In this case
the output signal is collected from both ports at the same time using a single NA=0.65
microscope objective. By scanning the input wavelength for the two input polarization,
TE or TM, we were able to experimentally reconstruct the splitting ratios sTE, sTM as
a function of wavelength. We repeated this experiment for all the devices with different
coupling lengths L to identify the one having the best performance. In Fig. 9.4 (a), we
show the result of this measurement for the 5 devices that yielded the best splitting ratios
in the spectral range of interest, namely around the measured phase-matching wavelength
1525 nm. We see that, in all cases, sTE and sTM reach their maximum approximately
around the same wavelength. By changing L, we observe that this optimal wavelength
can be blue or red-shifted, providing us with a useful tuning parameter to adjust the
splitting ratio to the phase-matching of the source. As a consequence, we chose to use a
device with a coupling length L = 1080 µm for which the TE and TM splitting ratios are
optimal around 1525 nm. In addition, we see that the splitting ratio remains above 90%
over a spectral range of about 50 nm. This makes our polarization splitter compatible
with the measured 60 nm FWHM spectral width of the two-photon emission of our source
obtained in Section 6.2. The broadband polarization splitting of our device guarantees
that most of the emitted photons will be efficiently separated on the chip. The raw data for
the splitting ratio measurement in this device is shown in Fig. 9.4 (c-b). We observe that
the transmission of the device is slightly lower for TE than for TM polarization (yellow and
red curves in Fig. 9.4 (c)) which is consistent with the fact that the measured propagation
losses were higher for TE than for TM mode (Fig. 9.3 (a)). We notice, however, that the
measured transmission of the whole device is lower than that of a straight 5 µm-wide test
waveguide. These losses can be attributed to the presence of S-bends and to the narrow
waveguide width in the polarization splitting region (see Table 4.2).
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Figure 9.4: (a) Measured TE and TM splitting ratios as a function of wavelength for 5
samples with different coupling length L. (b) Collected power and (c) normalized trans-
mission from arms a and b for TE and TM polarizations in a device with L = 1080 µm.
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Figure 9.5: Experimental setup for the measurement of time-correlations between the
on-chip generated and separated photons.

9.3 Photon-pair generation and on-chip polarization split-
ting

After identifying the device with the best polarization splitting profile we characterized
the on-chip photon-pair generation and separation. This is done by using the setup
sketched in Fig. 9.5. We pump the generation region of the sample using a NIR CW
laser whose wavelength has been tuned to the measured phase-matching wavelength, in
our case λp = 762.33 nm, and which is coupled into the waveguide by a NA=0.95 Zeiss
Achroplan microscope objective. The generated photons were collected at the output
ports of the polarization splitter using a NA=0.65 objective. As can be seen from the
picture in Fig. 9.6, the two output optical paths were directed towards separate fiber colli-
mators after filtering out the pump using high pass filters. Then the photons were sent to
the SNSPDs for coincidence detection. We scanned the input pump power and recorded
the number of coincidence counts and CAR as shown in Fig. 9.7 (a-b). We observe that
the coincidences have a nearly linear dependence on the input pump power while the
CAR is inversely proportional to the pump power, as in the case of a straight waveguide
(see Section 6.1).

To check the quality of the polarization splitting, we measured the number of coinci-
dence counts after inserting a polarizer at the output of one of the arms of the device. We
record the number of coincidences as a function of the polarizer transmission axis angle
and repeat the measurement with the polarizer in the opposite arm. The result of these
two measurements is displayed in Fig. 9.7 (c). We observe that the number of coincidences
goes to zero when the polarizer transmission axis on arm a is set to 90 deg with respect to
the z-axis (blue curve). Conversely, when the polarizer is in arm b, the coincidences are
minimal for an angle of 0 deg with respect to the z-axis (red curve). This clearly shows
that the photons collected from arm a and arm b are respectively TM and TE polarized,
as expected. We note that the maximum number of counts is larger for the blue curve
than for the red curve, which can be explained by the fact that TM losses are lower than
TE losses, as shown in Fig. 9.4 (c).

9.4 Hong-Ou-Mandel interference at the chip output

9.4.1 HOM coincidence probability for a frequency-dependent polariza-
tion splitter

After showing that photon pairs can be generated and separated on-chip using the in-
tegrated polarization splitter, we probed their quantum state through Hong-Ou-Mandel
interference.
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Figure 9.6: Photograph of the experimental setup showing the collection path for light
exiting the chip from arm a or b (solid blue and red lines). In this image, the polarizer
used for the measurement described in Fig. 9.5 is located in path b.
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dow at τ = −0.5 ps showing the oscillations originating from the term Pc,bunch.

To predict the HOM interferogram in this configuration, we needed to use a more elab-
orate model than the one described in section Section 6.2 in order to take into account the
frequency dependence of the device’s splitting ratio. The model that we used is depicted
in Fig. 9.8 (a). The photon pairs emitted by the source are incident on a frequency-
dependent polarizing beam splitter, which models the polarization splitting region of our
device. We assume that the two photons are initially in the same arm of the PBS, say
arm a. Then, after they exit the PBS, a delay is applied to arm c and the polarization in
this arm is rotated with a half-wave plate such that the two photons end up with identical
polarization. As in a usual HOM interferometer, the photons are recombined on a 50/50
beam splitter. The goal here is to calculate the coincidence probability between the output
arms e, f of the 50/50 beam splitter. We start from the generated SPDC state:

|Ψ⟩ =
∫∫

dω1dω2C(ω1, ω2) |ω1, H, a⟩ |ω2, V, a⟩ , (9.1)

where |ω,H, a⟩ = âH(ω) |vac⟩ , |ω, V, a⟩ = âV (ω) |vac⟩ and the JSA is assumed to be nor-
malized

∫∫
dω1dω2|C(ω1, ω2)|2 = 1. The action of the frequency-dependent PBS is repre-

sented by a unitary transformation acting separately on the H and V subspaces:

âH(ω) =
√

sH(ω)ĉH(ω) +
√
1− sH(ω)d̂H(ω), (9.2)

b̂H(ω) =
√
1− sH(ω)ĉH(ω)−

√
sH(ω)d̂H(ω), (9.3)

âV (ω) =
√
1− sV (ω)ĉV (ω) +

√
sV (ω)d̂V (ω), (9.4)

b̂V (ω) =
√
sV (ω)ĉV (ω)−

√
1− sV (ω)d̂V (ω), (9.5)

where the coefficients sH(ω), sV (ω) are the TE and TM splitting ratios of the polarization
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splitter. After the PBS, the quantum state becomes:

|Ψ⟩ =
∫∫

dω1dω2C(ω1, ω2)
[
|ω1, H⟩

(√
sH(ω1) |c⟩+

√
1− sH(ω1) |d⟩

)]
(9.6)[

|ω2, V ⟩
(√

1− sV (ω2) |c⟩+
√
sV (ω2) |d⟩

)]
,

where we separated the spatial part of the kets for clarity.

The state can be divided into two parts, one describing the case where the two photons
are separated into distinct paths |Ψ⟩sep and another corresponding to the two photons
ending up into the same spatial mode |Ψ⟩bunch. Using these notations, the state can be
rewritten : |Ψ⟩ = |Ψ⟩sep + |Ψ⟩bunch where the two independent contribution are:

|Ψ⟩sep =

∫∫
dω1dω2C(ω1, ω2) |ω1, H⟩ |ω2, V ⟩

(√
sH(ω1)

√
sV (ω2) |c⟩ |d⟩ (9.7)

+
√

1− sH(ω1)
√
1− sV (ω2) |d⟩ |c⟩

)
,

|Ψ⟩bunch =

∫∫
dω1dω2C(ω1, ω2) |ω1, H⟩ |ω2, V ⟩

(√
sH(ω1)

√
1− sV (ω2) |c⟩ |c⟩ (9.8)

+
√
1− sH(ω1)

√
sV (ω2) |d⟩ |d⟩

)
.

After being transformed by the delay line and HWP, the state reads:

|Ψ⟩sep =

∫∫
dω1dω2C(ω1, ω2) |ω1, V, c⟩ |ω2, V, d⟩

√
sH(ω1)

√
sV (ω2)e

−iω1τ (9.9)

+

∫∫
dω1dω2C(ω1, ω2) |ω1, H, d⟩ |ω2, H, c⟩

√
1− sH(ω1)

√
1− sV (ω2)e

−iω2τ ,

|Ψ⟩bunch =

∫∫
dω1dω2C(ω1, ω2) |ω1, V, c⟩ |ω2, H, c⟩

√
sH(ω1)

√
1− sV (ω2)e

−i(ω1+ω2)τ

+

∫∫
dω1dω2C(ω1, ω2) |ω1, H, d⟩ |ω2, V, d⟩

√
1− sH(ω1)

√
sV (ω2). (9.10)

Then the two photons enter the 50/50 beam splitter whose action can be modeled by the
usual unitary transform: |c⟩ = (|e⟩ + |f⟩)/

√
2, |d⟩ = (|e⟩ − |f⟩)/

√
2. We post-select the

states where both photons exit through different output ports and obtain the following
expression:

∣∣Ψ′〉
sep

=
1

2

∫∫
dω1dω2C(ω1, ω2)

√
sH(ω1)

√
sV (ω2)e

−iω1τ

|ω1, V ⟩ |ω2, V ⟩ (− |e⟩ |f⟩+ |f⟩ |e⟩)

+
1

2

∫∫
dω1dω2C(ω1, ω2)

√
1− sH(ω1)

√
1− sV (ω2)e

−iω2τ

|ω1, H⟩ |ω2, H⟩ (|e⟩ |f⟩ − |f⟩ |e⟩) , (9.11)∣∣Ψ′〉
bunch

=
1

2

∫∫
dω1dω2C(ω1, ω2)

√
sH(ω1)

√
1− sV (ω2)e

−i(ω1+ω2)τ

|ω1, V ⟩ |ω2, H⟩ ((|e⟩ |f⟩+ |f⟩ |e⟩)

−1

2

∫∫
dω1dω2C(ω1, ω2)

√
1− sH(ω1)

√
sV (ω2)

|ω1, H⟩ |ω2, V ⟩ (|e⟩ |f⟩+ |f⟩ |e⟩) (9.12)
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We group the different terms and get the final mathematical form of the quantum state:∣∣Ψ′〉
sep

=
1

2

∫∫
dω1dω2

(
C(ω1, ω2)

√
sH(ω1)

√
sV (ω2)e

−iω1τ

−C(ω2, ω1)
√

sH(ω2)
√
sV (ω1)e

−iω2τ
)
|ω1, V, e⟩ |ω2, V, f⟩ (9.13)

+
1

2

∫∫
dω1dω2

(
C(ω1, ω2)

√
1− sH(ω1)

√
1− sV (ω2)e

−iω1τ

−C(ω2, ω1)
√

1− sH(ω2)
√
1− sV (ω1)e

−iω2τ
)
|ω1, H, e⟩ |ω2, H, f⟩ ,∣∣Ψ′〉

bunch
=

1

2

∫∫
dω1dω2

(
C(ω1, ω2)

√
sH(ω1)

√
1− sV (ω2)e

−i(ω1+ω2)τ

−C(ω2, ω1)
√
1− sH(ω2)

√
sV (ω1)

)
|ω1, V, e⟩ |ω2, H, f⟩ (9.14)

+
1

2

∫∫
dω1dω2

(
C(ω1, ω2)

√
sH(ω1)

√
1− sV (ω2)e

−i(ω1+ω2)τ

−C(ω2, ω1)
√
1− sH(ω2)

√
sV (ω1)

)
|ω1, H, e⟩ |ω2, V, f⟩ .

As we can see from Eqs. (9.13) and (9.14), the coincidence probability will be the sum
of four terms corresponding to the four possible polarization states : V V,HH, V H,HV ,
in other words: Pc = Pc,sep+Pc,bunch = PV V +PHH +PV H +PHV . The four terms can be
calculated individually using the suitable projection operators as described in Section 6.2
(Eqs. (6.15) and (6.16)):

Pµν = ⟨Ψ|
(∫

dω |ω, µ, e⟩ ⟨ω, µ, e|
)(∫

dω′ ∣∣ω′, ν, f
〉 〈

ω′, ν, f
∣∣) |Ψ⟩ , (9.15)

with µ, ν = H,V . We obtain the following coincidence probabilities:

Pc,sep = PV V + PHH

=
1

4

∫∫
dω1dω2|C(ω1, ω2)

√
sH(ω1)

√
sV (ω2)e

−i(ω1−ω2)τ

−C(ω2, ω1)
√
sH(ω2)

√
sV (ω1)|2

+
1

4

∫∫
dω1dω2|C(ω1, ω2)

√
1− sH(ω1)

√
1− sV (ω2)e

−i(ω1−ω2)τ

−C(ω2, ω1)
√
1− sH(ω2)

√
1− sV (ω1)|2, (9.16)

Pc,bunch = PV H + PHV

= 2
1

4

∫∫
dω1dω2|C(ω1, ω2)

√
sH(ω1)

√
1− sV (ω2)e

−i(ω1+ω2)τ

−C(ω2, ω1)
√
1− sH(ω2)

√
sV (ω1)|2. (9.17)

The first term Pc,sep defines the envelope of the HOM interferogram while the the second
term Pc,bunch is a rapidly oscillating term resulting from Franson-type interference between
the two paths of the interferometer [151]. The total HOM coincidence probability is the
sum of these two probabilities: Pc = Pc,bunch + Pc,sep. In Fig. 9.8 (b-d), we display
the simulated coincidence probability for different values of the splitting ratio. The two
special cases for which sH = sV = 0.5 and sH = sV = 1 are displayed in Fig. 9.8 (b)
and (d) respectively. The simulated HOM interferogram that is obtained by using the
experimentally measured value of sH(ω), sV (ω) of our device is shown in Fig. 9.8 (c). We
observe that in all three cases the general shape of the interferogram follows a typical HOM
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Figure 9.9: Experimental setup for the measurement of Hong-Ou-Mandel interference
of the on-chip generated and separated photons. The collection microscope objective
(NA=0.65) is not shown here.

dip. However, we notice that there is an oscillating background, as shown in the inset,
coming from the rapid oscillations of Pc,bunch. The period of these oscillations is around
3 fs, which cannot be resolved by our free-space delay line. Hence when measuring the
experimental HOM coincidence probability Pc,exp, these oscillations reduce to a constant
background given by the average value of the oscillating term over a temporal window
of 30 fs defined by the resolution of our free-space delay line: Pc,exp = P̄c,bunch + Pc,sep.
The simulated value for Pc,exp is shown in Fig. 9.8 (b-d) as a solid red line. We see that
if sH = sV = 0.5 then the PBS reduces to a simple 50/50 beam splitter and the HOM
dip visibility cannot exceed the classical threshold of 50%. In the case of a perfectly
polarizing PBS for which sH = sV = 1 we have Pc,bunch = 0 and we obtain the maximum
possible visibility, here 89% which is then only limited by the birefringence of the source,
as explained in Section 6.2. For the intermediate case of our device with L = 1080 µm,
where sH(ω), sV (ω) follow the experimentally measured profile displayed in Fig. 9.4, we
see that the HOM visibility is slightly lower and equal to 80%. This decrease can be
attributed to the imperfect polarization splitting which gives a non-zero contribution to
Pc,bunch.

9.4.2 Experimental setup and results

The experimental setup that was used to perform HOM interference at the output of
the device is depicted in Fig. 9.9. We used the same NA=0.95 and NA=0.65 microscope
objectives as in the previous section to couple the pump into the generation region and to
collect the photons from the chip respectively. After pump filtering and fiber collimation,
we applied a delay on arm b using the same free-space delay line as the one described in
section Section 6.2 before recombining the two photons on a fiber 50/50 beam splitter.
The standard HOM alignment procedure has also been applied to adjust the two FPCs,
ensuring that the polarization of the two photon is identical at the beam splitter.

We first measured the HOM interferogram directly at the chip output, in the exact
configuration depicted in Fig. 9.9. The result is displayed in Fig. 9.10 (a). We see that
the experimental data points in blue are in excellent agreement with the prediction from
our model, shown above in Fig. 9.8 (c), which is represented here as a red solid line. As
explained in Section 6.2.3 the pump wavelength (here 773.17 nm) is the free parameter of
the model and has been adjusted to yield the best agreement with the experimental results.
We obtain a net visibility of V = 80% which, as expected, is lower than the maximum
achievable 89% that was predicted in Fig. 9.8 (d) for perfect polarization splitting. This
discrepancy can be attributed to the imperfect splitting ratio of the device over the whole
spectral bandwidth. Indeed, when the splitting ratio deviates from 100%, the amplitude of
the term |Ψ⟩bunch becomes more important, resulting in accidental counts that deteriorate
the visibility of the HOM dip.
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Figure 9.10: Measured HOM interferogram (blue points) and simulated HOM coincidence
probability (red line) (a) in the absence of polarizers (b) with a 0 deg polarizer in arm A
and a 90 deg polarizer in arm B. Background counts have been subtracted and error bars
are calculated assuming Poissonian statistics.

To corroborate this supposition, we repeated the HOM measurement by adding in
optical paths a and b, respectively, a linear polarizer with transmission axis at an angle of
0 deg and 90 deg with respect to the vertical axis z. The result is shown in Fig. 9.10 (b)
along with a simulation where we assumed perfect polarization splitting sH(ω) = sV (ω) =
1 to model the effect of the two polarizers. We obtain a higher visibility of V = 89%
confirming that, if the polarization splitter was ideal, with a splitting ratio of 1 over the
whole state bandwidth, then we could reach the maximum achievable visibility, which is
then only limited by the source birefringence.

A further improvement of the visibility can be achieved by spectrally filtering the
state at the chip output, as we already demonstrated in Section 6.2. For example, in
Ref. [69] the authors use a 1.2 nm filter and achieve 93.5% visibility from an on-chip ppLn
SPDC source with integrated polarization splitter and electro-optic delay line. Under the
same spectral filtering, simulations show that our device could reach an even higher HOM
visibility of 95.6% confirming that the performance of our chip matches state-of-the-art
ppLN devices. Another possible improvement to our device would be to refine the design of
the polarization splitting region by using adiabatic couplers which, in LiNbO3 waveguides
without an on-chip photon pair source, have been shown to exhibit a very flat spectral
profile with splitting ratios above 98% for more than 100 nm [172].
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In this chapter we give an introduction to entanglement-based quantum key distribu-
tion. We start by presenting the different experimental implementations with an emphasis
on multi-user networks. Then we describe the BBM92 protocol and its security analysis
both in the asymptotic and finite-key regimes.

10.1 State of the art and motivation

Quantum communications is one of the field of quantum information which have seen the
greatest advances in the last three decades. The paradigmatic application is quantum key
distribution (QKD) which enables the generation of cryptographic keys whose security
relies on the basic principles of quantum physics. Several families of QKD protocols have
been developed over the years. In “prepare-and-measure” protocols, a party A encodes
a series of random bits in the state of a quantum system that is sent over to another party
B who measures the state of the system and recovers the bit string that was generated
by A. This series of bits shared by the two parties will be the secret key that can be
used later on for classical cryptographic purposes. In this kind of protocol, the no-cloning
theorem and uncertainty principle of quantum mechanics guarantee the security of the key
and entanglement is not required. “Prepare-and-measure” protocols can be implemented
using different degrees of freedom of light. In discrete variable QKD (DV-QKD), which
is currently the most widely used class of protocols, the key bits are encoded in discrete
degrees of freedom of photons such as polarization [28, 173] or time-bin [99], as already
stated in the introduction of this thesis. Current state of the art implementations of DV-
QKD use attenuated laser pulses as sources of single photons which enables distribution
of secret keys with high rates and over long distances [99, 174, 175]. Continuous-variable
QKD (CV-QKD) has been proposed as an alternative approach that only uses off-the-shelf
telecom components which are widely employed in the industry. In this kind of protocol,
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the bits are encoded in the quadratures of a many-photon field which can then be measured
by homodyne detection [176]. Even though up to now the rates and achieved distances
remain lower than in DV-QKD, the whole transmission process only involves commercially
available standard fiber telecom components such as lasers, electro-optic modulators and
photodetectors [94]. This approach has the advantage of not using single-photon detectors,
whose response time can become ultimately a limitation to the achievable key rates in DV-
QKD.

The second broad class of QKD protocols is entanglement-based QKD. The main
difference with respect to “prepare and measure” protocols is that they rely on a source
of entangled photons which is not controlled by any of the two communicating parties.
A typical scenario is a source emitting pairs of entangled photons that are distributed to
the two users A and B which then measure a projection of the state of their photon. An
eavesdropper trying to intercept the photons to gain information on the key will destroy
the quantum correlations between the photons. As a consequence, a simple measurement
of an entanglement witness by the two parties can reveal the presence of an eavesdrop-
per. The two main entanglement-based QKD protocols are the so-called E91 [26] and
BBM92 [27] protocols, which were proposed and demonstrated in the 1990’s and early
2000’s [29, 30, 31]. Since then, entanglement-based QKD has been going beyond the
proof-of-principle and being implemented in increasingly realistic environments. Polar-
ization and time-bin entanglement are particularly well-suited to this kind of protocols
thanks to their efficient generation using nonlinear optical processes and easy manipula-
tion using standard optical components. As a consequence entanglement distribution and
entanglement-based QKD based on these degrees of freedom have been successfully per-
formed across long-distance fiber links [177, 178], ground-to-ground free-space links [179],
submarine cables [180], satellite-to-ground links [3] and between in-flight drones [181].
These results were obtained using bulk nonlinear crystals as sources of entangled photon
pairs. However, very recently, these kind of experiment were also achieved using integrated
sources such as semiconductor quantum dots [86], ppLN waveguides [72, 73] or AlGaAs
nonlinear waveguides [85].

Since the quantum correlations between the photons, which can be checked by the
users, ultimately guarantee the security of the key, an eavesdropper could have full control
over the source without hindering the success of the protocol. Indeed, even if the source
was controlled by a malicious party, it could not prepare the photon pairs in an entangled
state while still being able to predict the measurement outcomes of the users, as stated
in Bell’s theorem . Owing to the fact that the source is totally independent of the users
and the emitted state is not correlated with the basis choice of any of the two parties, it
has been shown that the security of entanglement-based QKD can be proved even with
an uncharacterized source [182]. This is why entanglement-based QKD is often referred
to as “basis-independent”. This basis-independence is one of the features which makes
entanglement-based QKD the main candidate for the realization of device-independent
QKD (DI-QKD). This much sough-after goal of the quantum communication community
consists in demonstrating a QKD protocol that is absolutely secure against any kind of
attack assuming untrusted measurement devices and source. Device-independence repre-
sents the highest possible security level for a QKD protocol. Several device-independent
QKD security proofs have been developed however, up to very recently, the experimental
implementation of these proposals in the remained out of reach due to the need for either
advanced quantum hardware or extremely low noise rates [183, 184, 185]. However, thanks
to recent theoretical and experimental advances, DI-QKD has been achieved in proof-of-
principle experiments based on trapped ions [186] or entangled photon pairs [187].
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Figure 10.1: Schematic of a three-users trusted-node quantum key distribution network.
Nodes A,B and B,C initially share a key k1 and k2 respectively. The key k2 is transferred
from B to A through a classical channel (blue arrow) after applying a bitwise XOR oper-
ation k1⊕ k2. Then A can decode the string using its key and recover k2 = k1⊕ (k1⊕ k2).
In this scheme, B needs to be a trusted relay.

Another strength of entanglement-based QKD which stems from the basis-
independence, is that it enables the implementation of trusted-node free multi-user
quantum key distribution networks. Indeed, by randomly distributing the emitted
photons-pairs between all possible pairs of users in a multi-node network, all parties can
distill a secret key without the need for extra relay node. In contrast, in most “prepare-
and-measure” QKD networks, when more than two parties need to share a secret key,
they have to exchange bits of information through a trusted relay node [188, 189, 190].
Consider, for instance, the situation depicted in Fig. 10.1. In this three-node configuration
A and B share a secret key k1 and B and C share another key k2. Then A and C
do not share a key. To solve this issue, the intermediate node B can simply perform
a XOR operation between the two keys and send the resulting string k1 ⊕ k2 to node
A. The latter can invert the CNOT operation using its own key and recover k2. In
the final configuration, A and C finally share a secret key k2. The main security issue
to this scheme is that it requires at least one trusted node. Indeed, if B were an
eavesdropper, it could learn the keys k1 and k2 shared by the three users without being
detected and therefore needs to be a trusted user. In addition, in “prepare-and-measure”
protocols, the photon source needs to be operated by one of the users, which should
also be trusted. Recently, an approach to realize a trusted-node free QKD network
using entangled photon pairs has been demonstrated experimentally both in laboratory
experiments [145, 72, 85, 191] and in field tests across optical fiber cables [97, 73]. In this
scheme, the entangled photons generated by a broadband χ(2) source are divided into
wavelength channels that are passively routed to the different users of the network, as
will be explained in detail in Chapter 12.

The AlGaAs platform is a promising system for the development of scalable chip-based
entanglement-based quantum key distribution networks. Indeed, as shown in Chapter 6,
nonlinear AlGaAs waveguides emit photon pairs over a broad bandwidth, of about 60 nm,
which opens the possibility to build a whole multi-user network based on wavelength-
multiplexed quantum links using only a single source. Thanks to its high pair generation
rate and CAR, intrinsic polarization entanglement and compatibility with electrical injec-
tion, the AlGaAs photon-pair source is an ideal candidate for robust integration in QKD
network architectures. In this work, we combine our source with industry-grade flexible-
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Figure 10.2: (a) Ideal polarization-based BBM92 setup. Half circles represent single
photon detectors. HWP : Half wave plate. 50/50 BS : 50/50 beam splitter. PBS :
Polarizing beam splitter. (b) Flowchart for a generic QKD Scheme (adapted from [192]).

grid wavelength division multiplexing techniques to implement a reconfigurable multi-user
QKD network based on the BBM92 protocol [85]. This approach has been developed in-
dependently at Oak Ridge National Laboratory by the team of J.M Lukens [72, 73] using
ppLN waveguides.

10.2 Basic principle of the BBM92 protocol

The basic principle of the BBM92 protocol is sketched in Fig. 10.2 (a). The two parties
Alice and Bob (A and B) are assumed to share a maximally-entangled bipartite quan-
tum state (Bell state). In all that follows, we consider the case of entanglement in the
polarization degree of freedom and we focus on the Ψ+ Bell state which can be written
as : ∣∣Ψ+

〉
=

1√
2

(
|HV ⟩AB + |V H⟩AB

)
. (10.1)

As shown in Fig. 10.2 (a), each party receives one photon of the pair through a private
quantum channel and projects its polarization state using a half wave plates and polarizing
beam splitters either in the principal basis X = {|H⟩ , |V ⟩} or in the diagonal basis :
Z = {|D⟩ , |A⟩} where |D⟩ = (|H⟩+ |V ⟩)/

√
2 and |A⟩ = (|H⟩− |V ⟩)/

√
2. When measuring

|H⟩ (|V ⟩) or |D⟩ (|A⟩) the user respectively records a 0 or 1 value for the received bit.
The basis choice is random and can be implemented by a passive 50/50 beam-splitter.
Since photons in a Ψ+ state are cross-polarized, one of the parties has to perform a bit
flip operation on his key such that the generated keys are identical. The bit string that is
obtained by the two parties after the distribution protocol is called the raw key. However
half the time, A and B choose different measurement basis and the obtained bits are
uncorrelated. After the communication, the parties discloses their basis choices through a
public classical channel and they discard all the bits that were obtained from unmatched
bases, thus loosing one half of the raw key. This process is called basis reconciliation or
sifting. The bit string that is obtained after sifting is called the sifted key.

In the ideal BBM92 scenario (perfect source, channels and detectors), all bits are trans-
mitted to Alice and Bob without any errors. Moreover, Eve, a malicious party trying to
gain information on the key using local measurements, will destroy the quantum correla-
tions that exist between the polarization of the two photons. Alice and Bob can therefore

150



10.3. Security analysis: general considerations

detect the presence of the eavesdropper by performing a verification of the Clauser-Horn-
Shimony-Holt (CHSH) inequality.

10.3 Security analysis: general considerations

In practice, deviations from the ideal protocol arising from the imperfections of the setup
introduce, on the one hand, errors in the bit strings and, on the other hand, side channels
that can be exploited to collect information on the generated key [3]. Nevertheless, the
security of the key can be guaranteed by applying suitable post-processing steps. Those
steps are summarized in the diagram of Fig. 10.2 (b).

The goal of QKD is to distribute a key that is secure in the sense that is has to be

� Correct, which means that Alice and Bob share identical bit strings,

� Secret, meaning that the amount of information that has leaked to a potential eaves-
dropper (Eve) is negligible.

In order to obtain a correct key, Alice and Bob first perform a classical error-correction
procedure [193]. In this step, they consume a certain portion of the bit string to correct
for errors and estimate the error rate. To do so, they disclose partial information on the
key over a public channel, which can be monitored by Eve. To guarantee the secrecy of
the error-free key, Alice and Bob need to suppress Eve’s knowledge of the key by carrying
out a privacy amplification protocol. This knowledge has two sources :

� Information leakage from error correction,

� Side channels attacks.

Privacy amplification usually involves computing a hash of the error-free key that will
further reduce the final key size.

Thus, if Alice and Bob generate a sifted key of length n, then the final secure key is a
bit string of length :

nkey = n− κ− τ (10.2)

where κ and τ are the number of discarded bits in the error correcting and privacy am-
plification stages respectively. The secure key rate can be obtained as :

Rkey = Rraw
1

2
(1− κ/n− τ/n). (10.3)

where Rraw is the raw key generation rate in bit/s and the factor 1/2 accounts for the
sifting procedure.

Security proofs dictate the amount of privacy amplification needed to obtain a secure
key after error correction and the length of this final key in different scenarios depending
on the type of side-channel attacks and the model used for the sources and the detectors.
The ultimate goal of QKD is to implement a completely device-independent protocol that
would guarantee unconditional security of the distributed key. Important theoretical and
experimental results in this directions have been achieved recently, as stated in the previous
section, however, in practical situations, weaker security requirement are enough to prevent
most realistic attacks. A hierarchy in the type of attacks has been established based on
the security requirements needed in order to block them [192]. The weakest type of attack
is individual attacks where Eve is allowed to entangle a probe with one transmitted qubit
at a time, then to store these probes in a quantum memory and wait for the public basis
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reconciliation (sifting) to measure all the probes and reconstruct the key. In collective
attacks, Eve has access to a quantum computer and can make a global measurement
of all the probes. Finally, the most general type of attack is coherent attacks where
Eve has full control over source, channels and detectors in the limits allowed by quantum
mechanics. Note that even the simplest kind of attacks requires quantum memories, which
are currently out of reach for today’s quantum technologies

In the asymptotic regime, when the length of the key is infinite, security proofs have
been derived against individual attacks [194] and against coherent attacks for ideal source
and detectors [195], ideal source with uncharacterized detectors [196] and uncharacterized
source with ideal detectors [182]. Finally, in Ref. [197] the authors derive a more general
proof for security against coherent attacks in the presence of imperfect source and detec-
tors. Extensions of these proofs to the case of finite keys are presented in Refs. [198, 3].

10.4 Asymptotic regime

Error correction : Shannon’s channel coding theorem, a central result in information the-
ory, states that in the limit of infinitely long keys, the maximum error-free achievable
transmission rate cannot exceed the channel capacity C, which quantifies the maximum
mutual information that can flow from Alice to Bob [193]. This upper bound is often re-
ferred to as the Shannon limit. The quantum channel that is used by two parties in QKD
protocols can be modeled as a binary symmetric channel with error rate e and channel
capacity C = 1−H2(e) where H2(e) = −e log2(e)− (1−e) log2(1−e) is the binary entropy
function [193]. Hence, at the Shannon limit, the smallest achievable data loss caused by
error-correction is :

lim
n→∞

κ

n
= −H2(e). (10.4)

In the context of QKD, e is referred to as the quantum bit error rate (QBER) and is defined
as the fraction of erroneous bits in the raw key. Up to now, no known error-correction
code can saturate the Shannon bound. To quantify the deviation from the Shannon limit
of a particular code, we introduce an empirical function f(e) ≥ 1 that is defined as

lim
n→∞

κ

n
= −f(e)H2(e) (10.5)

For a given code, f(e) does not necessarily have an analytical expression but the algorithm
can be tested on actual data for different error rates e to obtain tabulated values of f(e).
One widely used error correcting code in QKD is the so-called Cascade code [199].

Privacy amplification : BBM92 being a source-independent protocol, we follow
Ref. [200] and apply the Koashi-Preskill proof for an uncharacterized source with Cascade
error correction protocol. The privacy amplification shrinking factor is given by

lim
n→∞

τ

n
= −H2(e) (10.6)

Secure key rate : The asymptotic key rate can be obtained by taking the limit n → ∞
of Eq. (10.3). With the help of Eq. (10.5) and Eq. (10.6) we can write the generated secure
key rate as :

Rkey ≥ Rraw
1

2
(1− f(e)H2(e)−H2(e)) , (10.7)

The inequality comes from the fact that f(e) ≥ 1 and that it is possible, in principle, to
obtain better key rates by constructing an error correcting code operating closer to the
Shannon limit. The Shannon limit f(e) = 1 provides in itself the upper bound to Rkey and
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sets the maximal tolerated error rate. Indeed, in this limit Rkey = Rraw(1/2) (1− 2H2(e))
and the key rate becomes negative for e ≥ 11%. Note that this asymptotic rate is the
same for all the security proofs listed in the previous section.

10.5 Finite-key regime

The security proofs that we invoked are only valid in the asymptotic regime, a situation
which is not always fulfilled in practical situations. Finite-size keys impose more conser-
vative bounds on the secure key rate. The framework developed in Refs. [198, 3] provides
bounds to the achievable key rate for a given level of security defined as the probabilities
ϵcorr and ϵsec for the distributed key to be correct and secret respectively.

In this procedure, the parties generate a raw key of length n containing nZ (nX) bits
obtained by measuring the photon polarization in the Z (X) basis. Then they estimate
eZ and eX the error rates in in the Z and X bases. From these estimates, they perform
error correction and privacy amplification following the protocol described in Ref. [198]
and obtain keys in both bases separately with lengths given by :

nkey,Z = nZ − nZH2

[
eX +

√
(nZ + 1) ln(1/ϵsec)

2nX(nX + nZ)

]
− f(eZ)nZH2(eZ)− log2

(
2

ϵcorrϵ2sec

)
(10.8)

nkey,X = nX − nXH2

[
eZ +

√
(nX + 1) ln(1/ϵsec)

2nZ(nX + nZ)

]
− f(eX)nXH2(eX)− log2

(
2

ϵcorrϵ2sec

)
(10.9)

The length of the total key is given by nkey = nkey,Z + nkey,X. Just as in the asymp-
totic regime, the secure key generation rate can be obtained using Eq. (10.3) with error
correction leakage and privacy amplification shrinking factors :

κ =− f(eZ)nZH2(eZ)− f(eX)nXH2(eX)− 2 log2 (1/ϵcorr) (10.10)

τ =− nZH2

[
eX +

√
(nZ + 1) ln(1/ϵsec)

2nX(nX + nZ)

]
− nXH2

[
eZ +

√
(nX + 1) ln(1/ϵsec)

2nZ(nX + nZ)

]
(10.11)

− 2 log2 (2/ϵsec2)

In the limit of infinite key length, we recover Eq. (10.5) and Eq. (10.6) by noticing that
we can make the security parameters ϵcorr, ϵsec arbitrarily close to unity while keeping
asymptotically log2 (2/ϵsec2) /n → 0 and log2 (1/ϵcorr) /n → 0.

This treatment is adapted to practical use cases where the data transmission time
is limited and keys are distributed in blocks of finite lengths. The secure key rate that
can be extracted from Eqs. (10.10) and (10.11) provides the figure of merit for a realistic
implementation of QKD. In the present work, we will use this finite-key treatment to
estimate the secure key rate that is achieved by our source.
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11.3 Characterization of the broadband polarization-entangled state161

In this chapter, we demonstrate the potential of our AlGaAs source for the implemen-
tation of wavelength-multiplexed entanglement-based QKD networks by characterizing
the broadband polarization-entanglement of the generated quantum state. We start by
describing the experimental setup before giving an thorough description of the different fre-
quency demultiplexing schemes that have been used in the experiments. Then we present
our measurements of the Bell correlation curves and fidelity to a maximally entangled
state for pairs of conjugate frequency channels spanning the whole biphoton bandwidth.

11.1 Experimental setup and calibration of the polarization
analysis module

11.1.1 Experimental setup

The setup that was used to characterize the quantum state of our AlGaAs source consists
of three stages : entanglement generation with an AlGaAs chip, frequency demultiplex-
ing/multiplexing (demux/mux) of the generated signal and polarization analysis of the
detected photon-pairs.

Generation stage: The sample is pumped with a tunable CW diode laser (TOPTICA
TM Photonics DL pro 780) which is coupled into the waveguide through a microscope
objective (NA = 0.95, 63×). Light emerging from the opposite end is collected with a
second identical microscope objective and sent to a fiber coupler, after filtering out the
pump wavelength with a high pass filter. A thermistor and a Peltier cooler, connected to
a PID controller, monitor and keep the waveguide temperature constant. We maintain
the sample at 19.3 °C to set the degeneracy wavelength of the photon pairs to 1556.55 nm,
corresponding to the center of the ITU 100GHz channel number 26.
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Figure 11.1: Experimental setup. MO: Microscope Objective. HPF: High Pass Filter.
WSS: Wavelength Selective Switch. CWDM: Coarse Wavelength Division Multiplexing
unit. TF: Tunable Filter. FPBS: Fibered Polarizing Beam Splitter. SNSPD: Super-
conducting Nanowire Single Photon Detector. SM: Single Mode fiber. PM: Polarization
Maintaining fiber. The two 25 km SMF28 fiber spools are not present in the measurements
described in this chapter but will be used later on in the long-distance QKD experiments
of the next chapter.

Demux/mux stage: At the demultiplexing (demux) stage photons are separated into
different fibers according to their frequency. This operation can be done either using
fixed frequency channels of passive wavelength division multiplexing (WDM) compo-
nents [78, 97] or programmable filters called wavelength selective switches (WSS) where
the width and central frequency of each channel can be specified by the user. In our work,
we combine the two demultiplexing strategies depending on the spectral region of interest:
in the telecom C-Band (1530 nm to 1565 nm) we use a WSS and in the L-Band (1565 nm
to 1625 nm) a coarse wavelength division multiplexing unit (CWDM) with 13 nm wide
channels followed by a tunable filter (TF). The demux/mux in the C+L band could also
be performed with a single WSS operating over the whole frequency band. This kind of
component became commercially available only recently, after we performed our exper-
iments. We also benchmarked a thin-film based dense wavelength division multiplexing
unit (DWDM) for our QKD experiments but did not use it for our final results due to
lower performance.

At the frequency multiplexing stage (mux) several frequency channels are combined
into single optical fibers. In an entanglement-distribution network, this can be used to
send photons generated in different frequency channels to a single user, as will be shown
later. In our setup, the CWDM + TF configuration was not used for mux, only for demux.
The WSS has the advantage to implement both demux and mux without extra losses, as
opposed to passive WDM where one need to cascade optical add-drop filter at the mux
stages thus increasing the insertion loss of the setup. Another strength of the WSS is the
ability to reconfigure the frequency channels thus providing unprecedented flexibility with
respect to fixed-grid WDM components.

Polarization analysis: After the demux/mux stage, the photons, which have been sep-
arated into two output ports based on their frequency, are sent towards two polarization
analysis stations. The latter include a fibered polarization rotator (OZ Optics) made
of a set of free-space indexed λ/4, λ/2, λ/4 waveplates, a fibered polarizing beam split-
ter (FPBS, Thorlabs) and a superconducting nanowire single photon detector (SNSPD,
Quantum Opus). The waveplates and FPBS are used to project the polarization of the
measured photons onto the states of two bases X and Z as required in the BBM92 protocol.
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11.1.2 Calibration of the polarization analysis modules

The birefringence of the single mode (SM) fibers is an important issue when using all-
fibered optical components for polarization management. Indeed, light at the output of
the demux/mux stage will travel through SM fibers before hitting the FPBS, where orthog-
onal polarization components will be separated. Along the way, due to the birefringence
of the fibers, the polarization of the photons will rotate in an uncontrolled way. The trans-
formation induced by the fiber being unitary, it preserves the orthogonality of the photon
polarization, and hence the entanglement. However, in this case, it is not possible to
know the basis into which the projection is performed with the FPBS at the polarization
analysis stage. This is not the case when using free-space optics based detection schemes
as in Ref. [97].

This effect is usually canceled by inserting a fibered polarization controller, equivalent
to λ/4, λ/2, λ/4 waveplates, into the fiber path. However our setup already includes a set
of such waveplates for projecting the polarization onto the axis of the FPBS. Therefore, we
used our free-space waveplates module both for performing a rotation on the polarization
state of input light, as it was originally meant to, and for birefringence compensation.

To do so, we designed a calibration procedure that we performed before each measure-
ment run. Given an input polarization state Ei, the action of the birefringence of the fiber
can be modeled as a unitary matrix K and the action of the waveplates projecting the po-
larization onto the FPBS, as a second unitary matrix U(θ). We calibrate the waveplates
such that U(θ) cancels action of birefringence K and performs a rotation of the input
polarization state. Mathematically : U(θ) = K−1R(θ) where R(θ) is a rotation matrix of
angle θ with respect to the optical axes of the FPBS.

The calibration procedure is as follows. Suppose the incoming light is in the polariza-
tion state described by the Jones vector Ei = (1, 0) (horizontally polarized light). If all of
this incoming light exits from output port 1 of the FPBS then we know the polarization
state has undergone a transformation KU(θ = 0) = R(θ = 0). Similarly, for linearly po-
larized light with arbitrary angle with respect to the laboratory frame Ei = (cos θ, sin θ),
if all light exits from output port 1 of the FPBS, we know we have realized the operation
KU(θ) = R(θ) with the waveplates. Therefore, to calibrate the waveplates such that they
effectively realize all the rotations we need in our experiments, we send input telecom laser
with known linear polarization state Ei = (cos θ, sin θ) into the distribution stage and set
the waveplates angles such that all light exits from the same FPBS arm. We write down
the waveplate angles for each value of θ and use them for each measurements to perform
the desired rotations on the polarization of entangled photons.

11.2 Demultiplexing schemes

11.2.1 Wavelength selective switch (WSS)

In this work, we have been using different optical components for the frequency-
demultiplexing of the generated photons. The device that was used in most of our
experiments is a WSS (Finisar Waveshaper 4000s) based on liquid crystal technology. It
features one common port and 4 output ports. The device can fully control the amplitude
and phase of an input signal and has the possibility to route specific wavelength ranges
into different output ports thus acting at the same time as a pulse shaper and as a
programmable optical switch. Light entering through the input port is diffracted with
a grating and the different wavelengths are directed towards pixels on a liquid crystal
array. The amplitude, phase and attenuation of the diffracted light can be controlled by
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Figure 11.2: : Characterization of the WSS. (a-b) Transmitted spectrum into port 1 in
a rectangular filter configuration with (a) variable bandwidth centered at 1544 nm and
(b) variable central wavelength spanning ITU 100GHz channels 39-42. (c) Example of
multi-port optical switching. The input spectrum is divided into 100 GHz channels which
are distributed between the four output ports.

applying a suitable voltage to the liquid crystal pixels. Light is then recombined into the
output fiber ports according to the pattern programmed by the user.

Our WSS operates in the C-Band and features wavelength and polarization-
independent insertion losses of 4.8 dB. In most of our experiments, we programmed
rectangular lineshape of variable width, central frequency and attenuation. To charac-
terize the transmission profile, we send the broadband spectrum of an erbium-doped
fiber amplifier (EDFA) into the common port of the WSS and record the transmitted
power with an optical spectrum analyzer (OSA). Fig. 11.2 shows different rectangular
profiles with (a) variable bandwidth and (b) variable central wavelength. In this data
all wavelength are directed to port 1 and the other 3 ports are unused. We observe a
true flat-top profile with sharp edge roll-off, well suited for demux/mux applications. In
Fig. 11.2 (c), we demonstrate the optical switching capability of the WSS. We carve 10
frequency channels of 100 GHz out of the EDFA spectrum and distribute them among
the 4 output ports to emulate a 4-user network. We see that the WSS implements both
demux, as it can separate different wavelength components, and mux, because it can
recombine those wavelength components into different output ports.

We checked the polarization-insensitivity of the insertion losses by sending a linearly
polarized telecom laser into a λ/4, λ/2, λ/4 fibered polarization rotation module then into
the common port of the WSS that was set to a ”transmit all wavelength to Port 1”
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configuration. We recorded the output power from Port 1 as a function of the angles of
the λ/2 and λ/4 waveplates. We observe a variation of the insertion losses of less than
0.5% with respect to the waveplate angles, thus verifying the ability of the WSS to perform
polarization-entanglement distribution.

11.2.2 CWDM and tunable filter

1542 1544 1546 1548

Wavelength (nm)

-60

-40

-20

0

In
se

rs
io

n 
lo

ss
es

 (
dB

) (a)
50 GHz
100 GHz
150 GHz
200 GHz

1542 1544 1546 1548 1550 1552

Wavelength (nm)

-60

-40

-20

0 (b)
ITU 42
ITU 41
ITU 40
ITU 39

1510 1520 1530 1540 1550 1560 1570 1580 1590 1600

Wavelength (nm)

-60

-40

-20

0

In
se

rs
io

n 
lo

ss
es

 (
dB

) (c)

1530 nm
1550 nm
1570 nm
1590 nm

Figure 11.3: : Characterization of the TF and CWDM. Transmission profile of the TF with
(a) variable bandwidth centered at 1544 nm and (b) variable central wavelength spanning
ITU 100GHz channels 39-42. (f) CWDM: Transmission profile for the four ports covering
the C+L bands. The legend indicates the central wavelength of each output port

One of the shortcomings of our WSS is that its operating spectral range is limited
to the C-Band while our broadband AlGaAs entangled photon source emits in the C+L
band. As explained in Section 11.1, a new generation of WSS covering the C+L band
is now commercially available. Nevertheless, to characterize the quantum state emitted
by our source in the L-Band, we used a combination of a CWDM module followed by a
C+L band TF. The CWDM module is a fibered passive WDM filter with broad frequency
channels based on internal free-space optics. It can be used either in a demux or in a mux
configuration, but not both at the same time like the WSS. It has 2 common ports (add,
drop) 8 output (drop) and 8 input (add) ports. We used it solely for demux by sending
the input signal through the “add” common port and collecting the demultiplexed signal
from the ”drop” ports. The CWDM module features very broad (17 nm) wide channels
with insertion losses of 2.6 dB. We are interested in energy-matched channels, meaning
their central wavelength are symmetric with respect to the degeneracy frequency of our
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Figure 11.4: Characterization of the thin-film based DWDM. Transmitted spectrum from
a selection of output ports corresponding to 100GHz ITU channels 20, 25, 29, 31 and 32.

biphoton state (ITU CH26, 1556.55 nm). The channels pairs that meet this conditions are
channels of central wavelength 1530 nm/1570 nm, 1510 nm/1590 nm and 1490 nm/1610 nm.
However, those channels are too broad to be used for quantum state characterization.
Indeed, in most of our measurements, we measure the properties of our state within a
much smaller window (100GHz, approximately 0.8 nm).

Consequently, we carve narrow 100GHz rectangular windows out of these broad chan-
nels by inserting the TF in one of the output port of the CWDM, as sketched in Fig. 11.1.
Thanks to the frequency anti-correlation of the quantum state, all photons within the
transmission window of the tunable filter will have their energy-conjugate twin exiting
from the opposite port of the CWDM. This alleviates the need for using two filters, one
at each output port of the CWDM. A second filter could simply give a better signal to
noise ratio since it would avoid coincidence between the filtered photons and broadband
uncorrelated noise. To sum up, using the CWDM + TF arrangement, we managed to
route energy-matched 100GHz frequency channels within the C+L band into two sepa-
rate fibers.

Like for the WSS, we characterize this configuration by injecting the output of an EDFA
and measuring the transmitted power spectrum. The results are shown in Fig. 11.3. In (a)
and (b), we illustrate the performance of our C+L-band filter by showing the tunability
of the central frequency and bandwidth as well as the flat-top rectangular lineshape. In
Fig. 11.3 (f) we plot the transmission profile of the 4 CWDM channels within the EDFA
emission range. The line colors correspond to the different output ports of the module.
Again we observe a flat-top transmission profile. We see that the filter rejection seems to
decrease from −60 dB to −20 dB when going to the outer channels. This is simply due
to the fact that the EDFA emission is very weak in these regions, approaching the noise
baseline of the OSA, and therefore the input over output power ratio is close to unity.

11.2.3 Thin-film based DWDM

Finally, we also characterize a third demultiplexing module, namely a thin-film based fixed
grid 100GHz dense wavelength-division multiplexing filter (DWDM), such as the one used
in the work of Refs. [145, 97]. The device (Opneti Communications) presents one input
port and 32 output ports corresponding to ITU 100GHz channels 10 (1569.59 nm) to 41
(1544.53 nm). One of the main drawback of the device is its highly dispersed channel
insertion losses ranging from 0.64 dB for channel 20 to 3.02 dB for channel 31. The trans-
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Figure 11.5: Squares: Coincidence counts after the 50/50 coupler and TF as a function of
filter central wavelength (lower x-axis) and detuning to biphoton degeneracy wavelength
(1556.55 nm) in units of 100GHz channels (upper x-axis). Error bars were calculated
assuming poissonian statistics. Solid line: Theoretical prediction without cavity effects.
Dashed line: Theoretical prediction with cavity effects (see main text for details).

mitted spectrum from output ports corresponding to 100GHz ITU channels 20, 25, 29, 31
and 32 is plotted in Fig. 11.4. We see that, like the other demux devices, the transmission
profile has a flat-top rectangular shape.

11.3 Characterization of the broadband polarization-
entangled state

11.3.1 Biphoton bandwidth from direct coincidence counts

The experimental setup described in the previous section is used for characterizing the
quantum state emitted by our AlGaAs chip. The first step is to measure the biphoton
emission bandwidth from direct coincidence counting. To this end, we use a 50/50 fibered
coupler to separate the generated photons into two optical fibers. We plug the tunable
filter to one of the output arms of the coupler and set the bandwidth of the filter to
0.8 nm (approximately 100GHz). We record the coincidence counts between the two arms
while sweeping the central wavelength of the filter over its whole operating range, from
1525 nm to 1610 nm. As we already mentioned, thanks to energy anti-correlation, photons
filtered by the TF will only trigger coincidences with their energy-matched counterpart,
thus avoiding the need for adding a second filter at the output of the 50/50 coupler.
The result of the measurement is shown in Fig. 11.5. We observe that the counts follow
a bell-shaped curve that is maximum around the biphoton degeneracy (1556.55 nm), as
expected. We measure a full width at half maximum of 60 nm spanning a total of 76 ITU
100GHz channels.

We compare this experimental data to the prediction of the model described in Sec-
tion 5.4. The quantum state after the 50/50 coupler and TF is given by Eq. (5.40):

∣∣Ψ′〉 = ∫ ∞

0
dΩf(Ω) [Φ(Ω) |ωd +Ω, H⟩A |ωd − Ω, V ⟩B

+ Φ(−Ω) |ωd +Ω, V ⟩A |ωd − Ω, H⟩B] ,
(11.1)
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with f(Ω) the rectangular lineshape of a filter centered on a fixed frequency Ω0

(see Eq. (5.41)) and A, B denote the two output fiber path of the 50/50 coupler. To
obtain the coincidence probability, we use the coincidence operators defined in Eqs. (6.15)
and (6.16):

p̂A =

∫
dωâ†(ω) |vac⟩ ⟨vac| â(ω) (11.2)

p̂B =

∫
dωb̂†(ω) |vac⟩ ⟨vac| b̂(ω) (11.3)

where â(ω), b̂(ω) are the operators associated to the annihilation of a photon of frequency
ω in port A, B respectively. The coincidence probability is given by:

Pc =
〈
Ψ′∣∣ p̂A ⊗ p̂B

∣∣Ψ′〉 . (11.4)

This probability is proportional to the number of normalized coincidences. By evaluat-
ing Eq. (11.4) for different values of the filter central frequency Ω0, we obtain the de-
pendence of the number of coincidence counts as a function of wavelength. As explained
in Section 5.3.2, we can include the effect of the cavity formed by the two facets of the
waveguide into the expression of the JSA Φ(Ω) that enters in the coincidence probability.
In Fig. 11.5 we plot the simulated normalized coincidence counts with (dashed line) and
without cavity effects (solid line). We observe that the measured points are in good agree-
ment with the predictions of the model without cavity. When including cavity effects, we
see that some data points in the plateau around the biphoton degeneracy deviate from
the model. However the bandwidth of the spectrum, which is the key feature for our
measurements, is well-reproduced by both theories.

11.3.2 Measurement of Bell correlation curves

A first entanglement characterization of the generated state is done by measuring the Bell
correlation curves in both Z and X bases as a function of frequency. We first separate signal
(high energy) and idler (low energy) photons from 100GHz conjugate channel pairs whose
central frequencies are symmetric with respect to the biphoton degeneracy (1556.55 nm).
In the C-Band, we do so using a WSS and in the L-Band, a CWDM + TF combination, as
explained above. Then we record coincidence counts when projecting the polarization of
the signal photon onto an axis of angle θ1 ∈ [0°, 180°] with respect to the horizontal axis of
the laboratory frame and the polarization of the idler photon on a fixed axis, either H (0°)
for the Z basis or D (45°) for the X basis. The projection of the polarization state is done
using the waveplates and fibered polarizing beam splitter, as explained in Section 11.1 and
Section 11.1.2.

In Fig. 11.6, we display the correlation curves and corresponding raw visibilities ob-
tained between 100GHz conjugate channel pairs spanning the C+L band. The visibility
of the two-photon interference fringes is an indicator of the quality of entanglement. It is
computed from the maximum and minimum values of the raw counts as

V =
max−min

max +min
. (11.5)

Solid lines in Fig. 11.6 are a least-square fit to the expression [119] :

C = a sin2(θ1 − θ2) + b (11.6)
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Figure 11.6: Raw Bell correlation curves for 100GHz conjugate channel pairs with corre-
sponding raw visibilities. Plots with black axes color are measured with a WSS for ITU
channel pairs 25/27 to 13/39. Plots with blue axes color are measured with a CWDM+ TF
for channels pairs centered around 1584.53 nm/1529.55 nm and 1590.41 nm/1524.11 nm.
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Chapter 11. Generation of broadband polarization entanglement with an AlGaAs source

where the free parameters are θ2, the projection angle of the idler photon, a the amplitude
and b the baseline of the correlation curves. We observe that, even though we carefully
canceled out the birefringence of the fibers using the polarization rotators, as detailed in
Section 11.1.2, the value of θ2 for measurements in the Z basis varies slightly over the
different runs. This can be attributed to an additional frequency-dependent phase shift
caused by this residual birefringence. We emphasize that this is not detrimental to the
measured visibilities and hence to the entanglement quality of the generated quantum
state.

11.3.3 Experimental estimation of a lower bound to F

These first two experiments are not sufficient to measure the effective bandwidth over
which the generated photons are entangled. To do so, we estimate the lower bound to
the fidelity F to a Ψ+ Bell state, over the whole emission range of our AlGaAs source.
To calculate the fidelity as a function of channel central frequency, we derive the reduced
density matrix in polarization space after filtering the generated photons into channels
of bandwidth ∆ = 100GHz using the same mathematical procedure as in Section 5.4.
After applying the filtering operation and tracing out the frequency degree of freedom, we
obtain the following density matrix:

ρ = α |HV ⟩ABAB ⟨HV |+D |HV ⟩ABAB ⟨V H|
+D∗ |V H⟩ABAB ⟨HV |+ β |V H⟩ABAB ⟨V H| ,

(11.7)

where the 4 non-zero matrix elements are:

α =
1

N

∫ ∞

0
dΩf(Ω)|Φ(Ω)|2, (11.8)

β =
1

N

∫ ∞

0
dΩf(Ω)|Φ(−Ω)|2, (11.9)

D =
1

N

∫ ∞

0
dΩf(Ω)Φ(Ω)Φ∗(−Ω), (11.10)

and the filter lineshape is given by:

f(Ω) =

{
1, for Ω ∈ [Ω0 −∆/2,Ω0 +∆/2],
0, elsewhere.

(11.11)

with Ω0 the central frequency of the filter. The normalization constant is set to N =∫∞
0 dΩf(Ω)

[
|Φ(Ω)|2 + |Φ(−Ω)|2

]
such that Tr ρ = 1. Finally, the fidelity to a Ψ+ Bell

state can be evaluated from the definition given in Eq. (3.5).

A lower bound to F is accessible experimentally by measuring the populations (diag-
onal elements) of the polarization density matrix in both X and Z bases. As explained
earlier, we start by separating the photon pairs into energy-matched 100GHz frequency
channels pairs spanning the biphoton bandwidth, either using the WSS in the C-Band or
the CWDM and TF in the L-Band, and send the filtered photons to the two polarization
analysis station (waveplates, FPBS, detectors) as shown in Fig. 11.1. Then, by recording
the number of coincidence counts between the two detectors in 8 different configurations :
CHH , CHV , CV H , CV V , CDD, CDA, CAD, CAA we can access the populations of the density
matrix in both bases. For (α, β) ∈ B × B, with B ∈ {X,Z}, the diagonal matrix element
ραβ corresponding to the first (second) photon in α (β) polarization state is calculated
as ραβ = Cαβ/(

∑
B×B Cα′β′). Note that the normalization factor has to be calculated
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Figure 11.7: Squares: Lower bound to the fidelity to a Ψ+ Bell state as a function of the
detuning to biphoton degeneracy wavelength in nm (lower x-axis) and in units of 100 GHz
channels (upper x-axis). Error bars were calculated by taking into account poissonian
statistics of signal counts and subtracted noise counts. Solid line: Theoretical prediction
without cavity effects. Dashed line: Theoretical prediction with cavity effects (see main
text for details).

independently for the two bases. The lower bound to F is then obtained through the
relation [201, 202]:

F ≥ 1

2
(ρHV + ρV H − ρHH − ρV V (11.12)

+ ρDD + ρAA − ρDA − ρAD).

The experimental results, along with the fidelity of the numerically simulated quantum
state emitted by the AlGaAs chip, are shown in Fig. 11.7. The observed lower bound of
the fidelity is above 95% over a 26 nm spectral range corresponding to the first 13 pairs of
100GHz ITU channels around degeneracy, and stays above 85% for up to 38 channels pairs
around degeneracy spanning a total 60 nm wavelength range. Since the channels of the
CWDM are not centered around the biphoton degeneracy wavelength, measurements in
the L-Band are limited to the conjugate channels that fall within the transmission window
of the CWDM ports. For this reason only 3 data points have been acquired beyond 11 nm
of detuning in Fig. 11.7. We can see from Fig. 11.7 that the experimental points are
well reproduced by a model including cavity effects. As explained in Section 5.4, these
effects result in a faster decrease of the fidelity with detuning arising from the asymmetry
introduced in the JSA by the cavity functions (defined in Section 5.3.2) in the presence of
birefringence and chromatic dispersion.
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Flexible multi-user
entanglement-based quantum key
distribution network
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In this chapter, we use the broadband polarization-entangled state emitted by the
AlGaAs source to implement a multi-user entanglement-based QKD network. We start
by measuring the figures of merit of the BBM92 protocol before and after the long-distance
link that separates the source from the users and compare the achievable performance for
two different demultiplexing devices: a WSS or a thin-film DWDM. Then we present our
implementation of a reconfigurable wavelength-multiplexed fully-connected QKD network.
We finally illustrate the flexibility of our scheme by adapting the bandwidth allocation
between the users to specific network constraints such as unbalanced link distances.

12.1 QKD performance before the distribution stage

After demonstrating the emission of polarization-entangled photon over a broad frequency
range, we want to evaluate the intrinsic QKD performance of our scheme. Using the same
setup as described in Section 11.1, we measure the figures of merit of the BBM92 protocol
right after the demultiplexing stage : the asymptotic secret key rate Rkey and the QBER e.
We perform the measurement for 13 different choices of signal and idler 100GHz channel
pairs. Note that this spectral range is limited by the upper cutoff wavelength (1565 nm) of
the WSS corresponding to the boundary of the C-Band, and not by the spectral bandwidth
of the generated biphoton state.
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Figure 12.1: QKD performance before the distribution stage for the 13 ITU 100GHz chan-
nel pairs forming the intersection between the biphoton spectrum and the WSS operating
range. (a) Asymptotic key rate and (b) QBER as a function of the detuning to biphoton
degeneracy in nm (lower x-axis) and in units of 100 GHz channels (upper x-axis). The
11% error threshold for a positive key rate is given for an error correcting code operating
at the Shannon limit.

We first express Rkey and e in terms of the recorded coincidence counts [203]. The raw
coincidence counts in each basis (X and Z) read:

C
(raw)
X = CHH + CHV + CV H + CV V , (12.1)

C
(raw)
Z = CDD + CDA + CAD + CAA. (12.2)

The QBER can be readily obtained by taking the ratio of accidental counts against the
total number of recorded raw coincidence counts:

e =
CHH + CV V + CDA + CAD

C
(raw)
X + C

(raw)
Z

. (12.3)

Next, we compute the raw key rate as the arithmetic mean between the raw count rate in
the X and in the Z basis:

Rraw =
1

2

C
(raw)
X + C

(raw)
Z

τ
, (12.4)

with τ the integration time. Finally, the asymptotic key rate is obtained from Eq. (10.7).
The measured Rkey and QBER are plotted in Fig. 12.1 (a). We see that both quantities

are stable over the 13 ITU 100GHz channels spanning a 10.4 nm wavelength range. The
QBER stays below 2%, well under the positive key rate threshold of 11% defined in
Section 10.4. This stability can be attributed to the flatness of the source spectrum in this
spectral region as shown in Fig. 11.5 and to the wavelength-independent insertion losses of
the WSS. The entanglement quality of the emitted quantum state, combined with the high
conversion efficiency of AlGaAs, yields high asymptotic key rates of 28 to 39 bits/s per
channel, over a very broad spectral range. In Fig. 12.2, we display an example of the raw
data from which Rkey and e were estimated (channel pair ITU 23/ITU 29). We observe
that the level of background noise counts is very low, which is consistent with the moderate
value of the QBER that was reported in our measurements. In the configurations where
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12.2. Long-distance entanglement-based QKD

Figure 12.2: (a) Measured time-correlation histograms for the 8 projective measure-
ments performed to obtain Rkey and e for 100 GHz ITU channels 23 (1558.98 nm) and 29
(1554.13 nm). (b) Extended time-correlation histogram in the AA configuration showing
the low level of recorded background counts.

the number of counts is maximum (AA,DD,HV, V H) we achieve a CAR of the order of
4× 103.

12.2 Long-distance entanglement-based QKD

12.2.1 Theoretical modeling of long distance links

Mathematical model

Principle: Building on the intrinsic performance of our chip, we aim at distributing the
entangled photons across long-distance fiber links. The latter induce optical losses that
decrease the key rate. In this section, we present the theoretical model that is used to
calculate the expected key rate and QBER as a function of link distance.

Following Refs. [200, 204] we adapt to our CW pumping scheme a model describing a
parametric photon-pair pumped by a pulsed laser. The original model provides expression
for the probability per pump pulse of measuring a coincidence count. Instead, we rewrite
this quantity as a probability per detection window.

We are using free-running single photon detectors in a “start-stop” configuration. In
all our coincidence measurements, at the data post-processing stage, we define the number
of coincidences as the number of recorded counts within the m central bins of the measured
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time-correlation histogram. By doing this, we define a temporal window τc = m × ∆τ
where ∆τ is the the minimal temporal bin width allowed by the timing resolution of
the counting electronics. The post-selection of the events within τc is equivalent to this
physical picture : when one of the detector records an event, triggering a “start” signal,
we open a temporal window of τc and record a coincidence count if the “stop” signal at
the other detector happens with a time delay shorter than τc, and a noise count instead.
Therefore instead of considering the probability that a coincidence is recorded given a
pump pulse is emitted, as in the original model, we compute the probability of measuring
a coincidence count within a window τc, given a “start” signal has been recorded.

Quantitatively, our quTau TDC has a resolution of ∆τ = 81ps and the coincidence
peak in the time-correlation histogram typically spreads over m = 6 bins. We recall
that this spread is due to the detector timing jitter. As a result, we use a coincidence
window of τc = 486 ps in our experiments. We emphasize the fact that there is a trade-off
between coincidence window size and recorded noise. Indeed, the larger τc, the higher
the probability of a false coincidence coming from the uncorrelated noise of the source
and the environment. The increasing of τc is therefore detrimental to the QBER and can
significantly affect the long-distance performance of QKD.

Coincidence rate: We denote by

p(k, λ) = λke−λ/k! (12.5)

the probability of the outcome k for a random variable following a Poisson distribution of
parameter λ. Due to the poissonian statistics of light generated by parametric entangled
photon source, the probability to generate a photon pair in a time τc is given by a Poisson
distribution of parameter λ = µτc where µ is the internal pair generation rate (PGR) of
the photon-pair source in pairs/s. The probability p0 of generating zero pair (vacuum
state) within a window τc is

p0 = p(k = 0, µτc) = e−µτc . (12.6)

Assuming negligible multi-pair emission, the probability p1 to generate one photon pair
within τc is simply

p1 = 1− p0 = 1− e−µτc . (12.7)

We now define the yields Y0 and Y1 as the conditional probability of measuring a
coincidence count within τc given zero or one pair has been emitted respectively :

Y0 = Y0AY0B, (12.8)

Y1 = [1− (1− Y0A)(1− ηA)
ndet ][1− (1− Y0B)(1− ηB)

ndet ], (12.9)

where Y0A (Y0B) is the probability of a measuring a detection event triggered by a dark
count within τc at Alice (Bob) and ndet the number of detectors at each user’s measurement
station. In the case of BBM92 with passive basis choice, as sketched in Fig. 10.2, we have
ndet = 4. Again, due to the poissonian statistics of the single photon detection process
and given dA (dB) the dark count rate of Alice’s (Bob’s) detectors, we have

Y0A = 1− p(k = 0, dAτc) = 1− e−dAτc , (12.10)

Y0B = 1− p(k = 0, dBτc) = 1− e−dBτc . (12.11)

ηA (ηB) is the total efficiency of Alice’s (Bob’s) channel which includes link losses and
detector efficiency and can also be seen as the probability of detecting a photon that has
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been emitted by the source. The first (second) bracketed term in Eq. (12.9) represents the
probability of measuring a detection event at Alice (Bob), either triggered by a photon
pair or by a dark count. It is given by one minus the probability of the opposite outcome,
namely no dark count detected and no photon detected. The total probability of measuring
a coincidence event within τc is finally given by

Q = p0Y0 + p1Y1 (12.12)

and we can obtain the coincidence rate in events/s as

Rc = (1/τc)Q. (12.13)

Finally, when modeling the coincidence rate as a function of link losses, one can write :

ηi = ηsetup10
−α, i = A,B (12.14)

with ηsetup the setup efficiency that includes collection and detection efficiency, α the losses
of the optical link. To convert the total losses in dB into equivalent fiber link distance, we
took as a reference the 0.22 dBkm−1 losses of a standard SMF28 fiber.

QBER : Now that an expression for the coincidence rate has been established, we apply
the same formalism to derive the QBER. We start by defining the probability of error e0
(e1) given zero (one) pair has been emitted and a coincidence count has been recorded.
We recall that an error means that Alice and Bob both measure a simultaneous click but
not on the same detector, thus obtaining opposite key bit values. We have

e0 =
1

2
, (12.15)

e1 = e0 +
(e0 − b)ηAηB

Y1
. (12.16)

The first line is straightforward : when the detectors click in the absence of a pair (coinci-
dence between two dark counts) there is an equal probability that this click occurs at the
same detectors at Alice and Bob, meaning that half the time they will record the same
bit value and half the time they will record different bit values (error). Similarly, in the
second line, the first term is the dark counts contribution and the second term models the
systematic polarization measurement errors. The parameter b is the fraction of photon
pairs which are accidentally detected as errors. When b = 0, the only source of error are
the dark counts. The overall QBER e is finally defined as

e =
1

Q
(e0Y0p0 + e1Y1p1) . (12.17)

Asymptotic key rate : Finally, the asymptotic key rate as a function of the link losses
(or equivalent fiber link distance) can be evaluated by feeding Eq. (12.13), Eq. (12.14) and
Eq. (12.17) into the expression Eq. (10.7) for the secure key rate derived in the security
proof.

Estimation of the model parameters µ, b, ηA, ηB :

The model described above relies on four parameters : the internal PGR µ, the polarization
measurement error b and the channel efficiencies of both users ηA, ηB. To measure them
experimentally we send the photon-pairs generated by our source into the WSS and route
the photons belonging to the two conjugate 100GHz ITU channels 23 and 29 to the
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Figure 12.3: (a) Coincidence and (b-c) single counts from conjugate ITU channels 23 and
29 as a function of transmission T = 10−α. The attenuation is controlled by the WSS.
Error bars are calculated assuming poissonian statistics.

two output ports. We apply a variable attenuation to those channels using the built-in
attenuation control of the WSS and send the output directly to the SNSPDs to record
direct coincidence counts between those two channels without polarization selection. From
the measured coincidences and single counts versus attenuation, we can recover µ, ηA
and ηB by fitting the data to the model of equations Eq. (12.6), Eq. (12.7), Eq. (12.8),
Eq. (12.10), Eq. (12.12), Eq. (12.14) and Eq. (12.13).

The results are shown in Fig. 12.3. We observe the expected quadratic and linear
dependence on link transmission T = 10−α of coincidence counts and single counts respec-
tively. From the least square fit to our model, we retrieve the values of µ = 1.65× 104 s−1

and ηsetup = 0.08.
The parameter b can be approximated from the 8 projective measurements used for

the estimation of the lower bound to the fidelity (Section 11.3.3). It is defined as the ratio
between error counts over total counts :

b =
CHH + CV V + CDA + CAD

C
(raw)
X + C

(raw)
Z

. (12.18)

We see that this is the same expression as the estimated QBER shown in Eq. (12.3).
Indeed, according to our simulations (Fig. 11.7) in this spectral region, the theoretical
fidelity is very close to 1 and the discrepancy with the experimental data can be solely
attributed to setup imperfection, and not to the mixedness of the generated state. This is
why b, a parameter that only depends on the setup and not on the source characteristics,
is equal the QBER around degeneracy. We find the experimental value of b = 0.014.
We stress that b could not be estimated with Eq. (12.18) from data recorded far from
degeneracy as, in this region, the reduction in the fidelity does not exclusively come from
measurement errors but also from the increasing mixedness of the quantum state.

12.2.2 Long-distance QKD performance of the source

We compare our model to the experimental long-distance performance of our system by
estimating Rkey and e after adding 25 km SMF28 fiber spools between the demux/mux
stage and the users’ measurement station. The experimental setup is identical to the
one that has been described in Section 11.1 with the addition of the two fiber spools.
This measurement is performed in two configurations: symmetric (both users separated
from the source by 25 km of fiber) and asymmetric (one user at 0 km and the other at
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Figure 12.4: Asymptotic and finite size key rates and QBER for a (a) symmetric and an
(b) asymmetric two-user link supported by 100 GHz ITU channels 23 (1558.98 nm) and 29
(1554.13 nm) as a function of SMF28 fiber distance (lower x-axis) and attenuation (upper
x-axis). Symbols represent experimental data and continuous lines theoretical predictions
for a BBM92 scheme. Finite key rates are estimated assuming 10min block size.

25 km) in order to compare the performances and provide the optimized solution for secure
communication. All measurement runs are performed by selecting entangled photons
from 100GHz ITU channels 23 (1558.98 nm) and 29 (1554.13 nm) which are considered
representative of all the available channels. The results are shown as black symbols on
Fig. 12.4 (a) and (b) for the symmetric and asymmetric configurations respectively.

We point out that we used different timing electronics for the asymmetric link. Indeed,
when one photon travels through 25 km of fiber and its twin through 0 km their arrival
times are separated by a delay of the order of 250 µs. This delay is much larger than
the buffer of our TDC, consisting of 50 000 bins of 81 ps totalizing a 4 µs buffer size.
Therefore, we replaced the TDC by a time-tagger (Swabian Instruments) that can store
the timestamps of all recorded events and compute the coincidence rate after an arbitrary
time delay.

To estimate the maximum distance of a repeater-less link we performed the same
measurement by replacing the fiber spools by variable channel attenuation programmed
on the WSS. The attenuation can then be converted into equivalent length of SMF28 fibers
assuming a standard value of 0.22 dBkm−1 for the SMF28 fiber optical losses. Results for
a symmetric and asymmetric link are shown in Fig. 12.4 (a) and (b) respectively as color
symbols. In order to highlight the relevance of these results for real-world implementations,
we perform a finite key security analysis of our scheme as described in Section Section 10.5.
We compare the experimental value of the asymptotic key rate to theoretical predictions
(continuous lines) for a BBM92 scheme with passive basis selection following the model
described in the previous section.

We see that the measurements performed with variable attenuation closely follow our
theoretical predictions (solid and dashed lines) while measurements with fiber spools (black
symbols) deviate slightly from our model. Since the QBER does not increase significantly
in fiber-based experiments (black filled circles), this small discrepancy can be entirely
attributed to the insertion losses induced by the presence of extra fiber connectors between
the WSS and the fiber spools and not to the potential thermal and mechanical instability
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Technology Distance (km) Rraw (/s) Rkey (asympt.) (/s) QBER (%)

WSS 0 80.4 34.2 0.8

DWDM 0 441.4 151.5 2.1

WSS 50 4.4 1.8 1.1

DWDM 50 13.8 2.0 5.5

Table 12.1: BBM92 QKD performance of the WSS and the DWDM.

of our fiber link.

Based on this data, we can compare experimentally the long-distance performance of
the BBM92 protocol in symmetric and asymmetric configurations. We observe that, in
both scenarios, the key rate including finite size effects stays positive for distances of up
to 75 km. However, we also observe that, at very long distances, the asymptotic key rate
for a symmetric link stays positive up to 250 km, while in an asymmetric link, it drops
at around 215 km. Indeed, in the latter configuration, a strong attenuation in the link
between the source and the distant user induces a strong increase of the QBER as the
signal approaches the noise background. On the contrary, in the symmetric case, the losses
are distributed between the two users and this critical situation is reached at higher levels
of attenuation. In the finite key security regime in which we are operating, the key rates
become negative before the difference between symmetric and asymmetric links comes
into play. This result has practical implications in the context of deployed QKD schemes;
indeed this proves that a scenario involving an entangled pair source connected to one
local user and one distant user will not be detrimental to the BBM92 protocol efficiency.

Furthermore, the performance of our device being practically insensitive to wavelength
in the C-band, as shown in Fig. 12.1, the measured performances for the two particular
channels (23 and 29) can be extrapolated to the 12 other available 100GHz channel pairs.
This means that each channel pair can support a long-distance fiber link, making our
scheme compatible with large-scale fibered QKD networks.

12.3 Comparison between WSS and passive thin-film
DWDM for polarization entanglement distribution

In our preliminary experiments, we decided to benchmark WSS and DWDM for
polarization-entanglement distribution. The DWDM, having lower average insertion
losses, seemed to be a good candidate for long-distance QKD. We choose the conjugate
channels having the lowest insertion losses, in our case ITU 20 (0.64 dB) and ITU 32
(0.91 dB), and measure a very high raw key rate while maintaining a low QBER of 2.1%,
as shown in Table 12.1. We observe that before the distribution stage, the DWDM
outperforms the WSS. However, when adding two 25 km fiber spools, the QBER drops
sharply to 5.5%, which consequently lowers the key rate down to similar levels as for the
WSS. We note that the order of magnitude of the QBER at long distance with a DWDM
is consistent with the results of Ref. [97] where the authors used an identical device.
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Figure 12.5: Principle of fully-connected frequency-multiplexed entanglement networks.
(a) Schematic physical architecture of the network. The source constitutes the central
server nodes where the entanglement is generated. After a demux/mux stage where differ-
ent frequency channels are attributed to each user, the entangled photons are distributed
to the user nodes. (b) Resulting quantum correlation topology. Vertices represent user
nodes and edges symbolize a shared entangled state. (c) Schematic of the source spectrum
with the frequency channel grid used to build a N = 4 fully-connected network (not to
scale). (d) Detailed channel dispatching between the N = 4 users. Channel numbers refer
to their relative offset with respect to biphoton degeneracy.

12.4 A reconfigurable fully-connected multi-user entanglement-
distribution network

12.4.1 Principle

After demonstrating the capability of the AlGaAs source to distribute secure keys over
a broad bandwidth and across long distances, we use our setup to build a multi-user
entanglement distribution network.

We focus on a particular class of networks where each of the N users shares an en-
tangled state with the remaining N − 1 users [145, 97, 72, 73]. We refer to these as
fully-connected networks, by analogy with graph theory: indeed, they can be represented
by a complete graph where each vertex corresponds to one user node and the edges symbol-
ize a shared entangled state between two users. Graph representations for fully-connected
entanglement networks of size N = 4, 5, 8 are shown in Fig. 12.5 (b). Fully-connected
entanglement networks can be implemented with one central server node which hosts the
entangled photon source with demux/mux, and N user nodes consisting of a polariza-
tion analyzing device and single photon detectors to carry out the BBM92 protocol as
schematically depicted in Fig. 12.5 (a).

The number of edges in a complete graph of size N is N(N−1)/2. Hence to get a com-
plete entanglement network, one needs to establish N(N − 1)/2 two-user links supported
by N(N − 1)/2 distinct conjugate channel pairs. To do so, we demultiplex the generated
photons into

Nchannels = N(N − 1) (12.19)

frequency channels, as shown in Fig. 12.5 (c). Then we recombine those channels into
single optical fibers, one for each user. This is done via the WSS which implements both
operations. Each user then receives photons from N − 1 channels, one for each connected
node. Photons from the N − 1 conjugate channels are similarly distributed to the other
users. As a result, each node effectively shares a Bell pair with every other node in the
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Figure 12.6: Reconfigurable multi-user entanglement network. (a-c): Time-correlation
histograms for all two-user links in a fully connected network of size (a) N = 4 with 200
GHz channels, (b) N = 5 with 100 GHz channels and (c) N = 8 with 50 GHz channels.
(d): Measured asymptotic key rate and QBER for ITU channels 23 (1558.98 nm) and 29
(1554.13 nm) as a function of channel width.

network. To illustrate this mechanism, we detail the channel dispatching for theN = 4 case
in Fig. 12.5 (d). Here, for instance, Alice and Bob share an entangled state over channels
CH±1, Alice and Charlie over channels CH±2 and so on. As stated above in Section 10.1,
the main advantage of this network architecture is that it requires no trusted nodes.

12.4.2 Experimental implementation

We now demonstrate the operation of a scalable multi-user network architecture by taking
advantage of the broad entanglement bandwidth of our source and of the flexible frequency
management enabled by the WSS.

The number of required frequency channels scales quadratically with N . In this con-
text, we see that the broadband entanglement of the biphoton state emitted by the AlGaAs
chip is a crucial feature. In addition, the use of a WSS at the demux/mux stage enables a
reconfigurable multi-user network where the central frequency and the bandwidth of each
channel can be adjusted. In our setup we can increase the number of users in the net-
work by simply reducing the bandwidth allocated to each channel. Using all the available
wavelength overlap between the biphoton state and the WSS operating range, our recon-
figurable complete-graph network can accommodate from 4 users, with 200GHz channels
pairs, to 8 users, with 50GHz channel pairs.

We sequentially characterize the N(N −1)/2 two-user links for different network sizes:
N = 4, N = 5 and N = 8. Due to the lack of additional single photon detectors, we
did not run real-time QKD sessions for N users in parallel. Instead, we measure the
time-correlation histograms for all N(N − 1)/2 two-user links in the three different con-
figurations. The obtained coincidence histograms are shown in Fig. 12.6 (a-c). The total
number of counts contained in each coincidence peak is reported in the insets. We observe
that the number of recorded coincidence counts is stable across all links with a relative
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Figure 12.7: Illustration of flexible bandwidth allocation. (a) Sketch of the experiment.
In a fully connected network with N = 5 users, user B is separated from the source by
a 25 km long SMF28 fiber spool. (b) Schematic of the bandwidth distribution between
all two-user links before and after applying the bandwidth reallocation algorithm. After
reallocation, the four links (red, dark green, light blue and dark blue) that connect user
B to the rest of the network are allowed a broader bandwidth. (c) Coincidence counts for
each two-user link before (squares) and after (triangles) bandwidth reallocation.

standard deviation of 7%, 9% and 11% for N = 4, 5, 8 respectively. As already discussed
in Section 12.1, this is a consequence of the broadband character of the source and of
the wavelength-insensitive insertion losses of the WSS. In contrast, in networks based on
passive thin-film WDM filters, the channel transmission can be subject to strong varia-
tions, leading to unbalanced networks where some links carry more signal than others. We
consolidate this result by recalling that, as shown in Fig. 12.1, the QBER and asymptotic
key rate have a very weak dependence on the frequency channel. Hence we expect the key
rate to be evenly distributed among all two-user links in each configuration.

Finally, we check that the QBER is not affected when changing the channel bandwidth.
This is done by estimating e and Rkey using the protocol described in section Section 12.1
for ITU channels 23 and 29 as a function of channel bandwidth. The result is shown in
Fig. 12.6 (d). We see that the QBER is essentially insensitive to the channel bandwidth
and the corresponding asymptotic key rates show a linear dependence with the bandwidth,
as expected. We conclude that these values for Rkey and QBER, alongside with those of
Fig. 12.1, provide an estimate for the achievable QKD performances in the various N -user
graphs presented in Fig. 12.6 (a-c).

Our scheme presents several advantages in terms of scalability over passive WDM QKD
schemes. Indeed, the flexibility offered by the WSS makes it possible to fully reconfigure
the network without modifying the hardware. On the contrary, using passive WDM de-
mux/mux the addition of more users to the network requires either changing the complex
combination of cascaded WDM filters or non-deterministically splitting some channels by
combining WDM filters and multi-port fiber splitters [97, 205], which, either way, comes
at the cost of extra optical losses. In contrast, the fixed insertion losses of the WSS makes
it possible to extend the network without degrading the signal, a major asset in a fully
deployed network scenario.
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12.5 Elastic quantum network with flexible bandwidth allo-
cation

Finally, we exploit the flexibility of our scheme to demonstrate a quantum network where
the signal of each link is optimized following a structural constraint (elastic network). This
experiment represents a first step towards a fully autonomous smart network, where com-
munication rates are automatically optimized based on bidirectional information exchange
between the users and the network provider. We consider a fully-connected entanglement
network where one of the user nodes is located far apart from the entangled photon
source, while all the other nodes are located close to the source as schematically depicted
in Fig. 12.7 (a). We implement this situation for N = 5 by separating node B’s detector
from the source by a 25 km-long SMF28 fiber spool. As we mentioned in Section 12.2.2,
due to the large time delay between detection events in an unbalanced link, we used a
time-tagger for coincidence counting instead of our regular TDC.

If all two-user links have the same fixed bandwidth, the key rate of the four links
connecting the distant user to the rest of the network, i.e., AB CB DB EB, will be lower
than the others. To avoid this problem, we reallocate the state bandwidth by changing the
channel widths, assigning more bandwidth to long links, and less bandwidth to short links,
as schematically depicted in Fig. 12.7 (b). We use a simple algorithm and distribute the
available bandwidth with a 12.5GHz resolution corresponding to current ITU standards
for channel bandwidth granularity.

In order to demonstrate that we can efficiently level the measured signal across the
whole network, we measure one by one the 10 two-user coincidence counts rates. The
results are shown in Fig. 12.7 (c). Red squares represent the raw coincidence counts of the
10 two-user links for fixed 100GHz channels and blue triangles are the raw coincidence
counts recorded after bandwidth reallocation. We observe that, starting from a very
unbalanced initial configuration, we can bring all users to a similar level of signal. The
fluctuations in the signal after reallocation is due to the finite granularity of the flexible
frequency grid which prevents perfect redistribution of the signal between the users.

The same technique could be applied to other ends, such as boosting the signal across
specific links according to user needs. This proof-of-principle experiment shows that QKD
is fully compatible with state-of-the-art telecom network management, opening the way
for flexible metropolitan-scale entanglement distribution.

12.6 Towards new topologies

We discussed the special case of the fully-connected network which, up to now, is the
geometry that drew the most attention for polarization-entanglement networks [145, 97,
72]. But non fully-connected networks of N users distributed into k subnets with N/k
users per subnets have also been suggested in Refs. [97, 205] as a way to increase the
network capacity. This geometry consists of a central k-node fully-connected network.
Each of these main nodes are connected to independent fully-connected subnets of size
N/k as shown in Fig. 12.8 (c). In this particular class of topologies, the number of required
frequency channels is

Nchannels = k
N

k

(
N

k
− 1

)
+ k(k − 1). (12.20)

We note that the scaling of Nchannels with the total number of users N is improved with
respect to Eq. (12.19) for the fully-connected network. For a given number N of users, the
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number k of subnets for a non fully-connected network as a function of the number of
users N . We display optimal values for N and k assuming a source emitting over 152
50GHz frequency channels. (c) Quantum correlation topology for a network consisting of
N = 32 users distributed into 8 subnets. Circles and lines represent user nodes and shared
entangled states respectively.

number of required channels depends on the value of k and the optimal network configura-
tion, which involves the smallest possible number of channels, can be found by minimizing
Eq. (12.20) with respect to k. The comparison of the minimum number of channels versus
N for both fully and non-fully-connected networks is shown in Fig. 12.8 (a). We see that
the increase in the number of channels is much faster in the case of a fully-connected
network. In Fig. 12.8 (b) we plot the minimum number of channels and corresponding
optimal number of subnets k against N to find the maximum network size achievable
with our setup. Our source emits a state having a fidelity greater or equal to 85% over a
range of 60 nm. If we subdivide this spectral band into 50GHz channels, we obtain a total
number 152 available frequency channels. The maximum number of users we can connect
using all this available resource is N = 32 in a network that consists of k = 8 subnets of
4 users. The corresponding quantum correlation topology is shown in Fig. 12.8.

The drawback to the increase in the number of users is the reduction of the degree
of connectivity of the network. In non-fully-connected architectures, entanglement is only
shared between a subset of the users and additional steps are needed to extend entan-
glement between non-connected nodes. Ref. [205] suggested that 2 users A and B within
the k principal nodes can send their key to two users C and D belonging to distinct sub-
nets after encrypting it with a XOR operation, a technique that is widely used in QKD
networks based on “prepare-and-measure” protocols. Despite is simplicity, this protocol
has the major drawback of introducing the need for trusted nodes in the network. A
trusted-node-free protocol for propagating entanglement through the network would be
entanglement swapping.
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Summary of this work

In this chapter, we summarize the results presented in the dissertation and give an out-
look on future work. The main achievements of this doctorate have been the integration of
different functionalities on monolithic AlGaAs chips, the engineering and thorough char-
acterization of the quantum state emitted by the AlGaAs source and the utilization of
this source in a quantum communication network.

We first demonstrated the design, fabrication and characterization of a device including
an AlGaAs source and an electro-optic delay line on a monolithic chip. The delay line can
be easily fabricated by depositing gold electrical contacts on top of a wet-etched non-linear
waveguide. When applying an electric field to the structure, we demonstrated a π/2-shift
voltage as low as 9V, enabling the manipulation of the phase of generated photons directly
on-chip using standard electronics.

In addition to this, we showed how we managed to monolithically integrate on a single
chip an AlGaAs entangled photon pair source and a broadband polarizing mode splitter.
The device consists of a ridge waveguide, into which cross-polarized photon pairs are
generated, connected to a birefringent directional coupler. By carefully engineering the
dispersion of the supermodes of the structure, we achieve on-chip polarization splitting
of photons with a splitting ratio greater than 90 % over a bandwidth of 45 nm. To
probe the spectral indistinguishability of the separated photons, we performed Hong-Ou-
Mandel interference directly at the chip output. We obtained a maximum visibility of 80%
that is intrinsically limited by the inherent birefringence of the present device, showing
the capability to deterministically separate the generated photon pairs on-chip without
altering their quantum state.

On top of these results, we used our AlGaAs source in a multi-user quantum commu-
nication experiment. We first showed the high-quality entanglement of the polarization-
entangled state generated by our source by measuring a Bell state fidelity of above 95%
over a 26 nm spectral band. By taking advantage of the broadband character of the
source, we were able to demultiplex the generated photons into multiple energy-conjugate
telecom channels that were distributed to up to 8 users in a fully-connected topology with
fiber links of up to 50 km. We showcased the potential of our network by running an
entanglement-based quantum key distribution protocol (BBM92) showing asymptotic se-
cure key rates as high as 39 bit s−1. We also performed a finite-key analysis of our scheme.
In addition, by using a wavelength selective switch at the demultiplexing/multiplexing
stage, we showed flexible reconfiguration of the bandwidth allocation over the network.
This functionality was used in a network architecture involving 5 parties to circumvent
the reduction of signal in a specific two-user link due to optical losses.
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Perspectives

We conclude this dissertation by giving an insight into future research perspectives. On
the device side several goals are now at reach. In our work, we separately demonstrated
the integration of the AlGaAs source with an electro-optic delay line and with a polariza-
tion mode splitter. Hence we could readily design and fabricate a chip that would include
all three components. By going one step further, we can also think of adding an extra
on-chip 50/50 splitter to this future device to realize an integrated Mach-Zender inter-
ferometer. In this configurations the photons, after being generated in a waveguide, are
separated deterministically at the polarizing mode splitter and time-shifted by the electro-
optic delay line then finally recombined on the 50/50 mode splitter. This chip could serve
multiple purposes. An idea would be to perform a fully on-chip Hong-Ou-Mandel inter-
ference experiment, as was already shown with ppLN [69]. Moreover, it was demonstrated
that one can create polarization-frequency hyper-entangled states by sending polarization-
entangled photons into a balanced Mach-Zender interferometer [161]. Hence by combining
our broadband source with this fully integrated interferometer, we would be able to gen-
erate directly on-chip hyperentangled photons over a wide spectral range. This type of
quantum state can be a promising resource for quantum communication networks [206].

Another exciting prospect is the on-chip integration of the pump laser with the other
AlGaAs photonic components using the electrical injection scheme that was previously
demonstrated by our team [82]. The possible integration of III-V sources of photon pairs
onto silicon photonic circuits also offers great promises. This hybrid platform would com-
bine bright χ(2) electrically pumped sources and advanced reconfigurable photonic gates.
This could be a major technological breakthrough in the field of integrated quantum pho-
tonics enabling the development of low-power electrically driven photonic chips that could
perform complex quantum information tasks without any external laser source. Our team,
in collaboration with the Center for Nanoscience and Nanotechnologies (C2N) in Palaiseau
and the Silicon technology company ST Microelectronics in Grenoble, is actively pursuing
this goal.

On the quantum communication side, several other projects are underway. In this
dissertation, we demonstrated a quantum communication network of up to 8 users in a
fully-connected trusted-node free topology. However, due to the quadratic scaling of the
number of required frequency channels with the number of users, the finite available band-
width of the state generated by the source limits the number of nodes in the network. To
solve this issue, we are planning on extending our scheme to non-fully connected network
topologies which can accommodate more users at the cost of introducing trusted nodes.
In close collaboration with Eleni Diamanti and Damian Markham at Sorbonne Université,
we are also looking into new theoretical proposals where our network could be used for
other quantum information protocols such as distributed sensing or computing.

We are also aiming at deploying our scheme over fiber communication cables spanning
the Paris metropolitan area. This effort is part of a regional project supported by the
DIM SIRTEQ which aims at constituting a multi-node metropolitan quantum network
connecting major research centers over the Paris area. Together with the group of Eleni
Diamanti, we are planning on laying the first stone of this Parisian network by running
QKD protocols between our two labs, which are located several kilometers apart, first
using commercially available QKD systems then our own AlGaAs source.

Finally, another ongoing project is to combine AlGaAs sources with the on-chip
trapped ions platform that is being developed by the team of Luca Guidoni at Université
de Paris. By coupling the photons from our source with ions in a miniature surface
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trap we are planning on performing on-chip ion-photon entanglement and storage of the
quantum state of the photons in a single ion. The common integration of sources of
non-classical light and atomic system has never been achieved to date and would open
the way to the realization of integrated quantum network nodes.
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Growth sheets

Layer Cycles ∆z (nm) x

Cap 1 20 0

Bragg mirror
2

270 80
Bragg mirror 116 25

Core 1 366 (G5X038) or 351 (K7AD118) 45

Bragg mirror
6

116 25
Bragg mirror 270 80

Substrate 1 0

Table 12.2: Growth sheet of passive structures G5X038 and K7AD118.

Layer Cycles ∆z (nm) x

Cap 1 20 0

Bragg mirror
6

270 80
Bragg mirror 116 25

Core 1 366 45

Bragg mirror
6

116 25
Bragg mirror 270 80

Substrate 1 0

Table 12.3: Growth sheet of passive structures EBW002.
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Growth sheets

Layer Cycles ∆z (nm) x Doping (type) Doping (cm−3)

Cap 1 200 0 p 2× 1019

Bragg mirror
3

270 80 p 2× 1018

Bragg mirror 116 25 p 2× 1018

Bragg mirror
3

270 80 p 2× 1017

Bragg mirror 116 25 p 2× 1017

Core 1 210 45 intrinsic

Active layer 1 8.5 11 intrinsic

Core 1 210 45 intrinsic

Bragg mirror
3

116 25 n 2× 1017

Bragg mirror 270 80 n 2× 1017

Bragg mirror
3

116 25 n 2× 1018

Bragg mirror 270 80 n 2× 1018

Substrate 1 0 n 2× 1018

Table 12.4: Growth sheet of active structure HIY021.
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entanglement-based wavelength-multiplexed quantum communication network. Na-
ture 564, 225–228 (2018). [Cited on pages 55, 149, 160, 175, and 178.]

[146] Gehrsitz, S. et al. The refractive index of AlxGa1-xAs below the band gap: Accurate
determination and empirical modeling. J. Appl. Phys. 87, 7825–7837 (2000). [Cited
on page 56.]

[147] Autebert, C. AlGaAs photonic devices: from quantum state generation to quantum
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[151] Lu, Y. J., Campbell, R. L. & Ou, Z. Y. Mode-locked two-photon states. Phys. Rev.
Lett. 91 (2003). [Cited on pages 73 and 141.]

[152] Schlager, A. et al. Temporally versatile polarization entanglement from bragg re-
flection waveguides. Opt. Lett. 42, 2102 (2017). [Cited on page 74.]

[153] Javid, U. A. et al. Ultra-broadband entangled photons on a nanophotonic chip
(2021). 2101.04877v1. [Cited on page 82.]

[154] Wang, K. Quantum theory of two-photon wavepacket interference in a beamsplitter.
J. Phys. B: At., Mol. Opt. Phys. 39, R293–R324 (2006). [Cited on page 83.]
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