

Study of the \bar{K} -nucleus interaction by using the $^{12}\text{C}(K^-, p)$ reaction at J-PARC

Yudai ICHIKAWA¹, Jung KEUN AHN², Yuya AKAZAWA³, Kanae AOKI⁴, Elena BOTTA^{5,6}, Hiroyuki EKAWA^{7,1}, Petr Evtoukhovitch⁸, Alessandro FELICIELLO⁵, Manami FUJITA³, Toshiyuki GOGAMI⁹, Shoichi HASEGAWA¹, Tomoyuki HASEGAWA¹⁰, Shuhei HAYAKAWA^{11,1}, Tomonori HAYAKAWA¹¹, Ryotaro HONDA¹¹, Kenji HOSOMI¹, Ken'ichi IMAI¹, Wooseung JUNG², Shunsuke KANATSUKI⁷, Shinhung KIM², Shinji KINBARA^{12,1}, Kazuya KOBAYASHI¹¹, Jaeyong LEE¹³, Simonetta MARCELLO^{5,6}, Koji Miwa³, Taejin MOON¹³, Tomofumi NAGAE⁷, Yoshiyuki NAKADA^{11,1}, Manami NAKAGAWA¹¹, Takuya NANAMURA⁷, Megumi NARUKI⁷, Atsushi SAKAGUCHI¹¹, Hiroyuki SAKO¹, Susumu SATO¹, Yuki SASAKI³, Kotaro SHIOTORI⁹, Hitoshi SUGIMURA¹, Toshiyuki TAKAHASHI⁴, Hirokazu TAMURA³, Kiyoshi TANIDA¹, Zviadi TSAMALADZE⁸, Mifuyu UKAI⁴, and Takeshi. O. YAMAMOTO⁴

¹ASRC, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan

²Department of Physics, Korea University, Seoul 136-713, Republic of Korea

³Department of Physics, Tohoku University, Sendai 980-8578, Japan

⁴High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801, Japan

⁵INFN, Istituto Nazionale di Fisica Nucleare, Sez. di Torino, I-10125 Torino, Italy

⁶Dipartimento di Fisica, Università di Torino, I-10125 Torino, Italy

⁷Department of Physics, Kyoto University, Kyoto 606-8502, Japan

⁸Joint Institute for Nuclear Research, Dubna, Moscow Region 141980, Russia

⁹Research Center for Nuclear Physics (RCNP), Osaka University, Osaka 567-0047, Japan

¹⁰Allied Health Sciences, Kitasato University, Sagamihara 252-0373, Japan

¹¹Department of Physics, Osaka University, Osaka 560-0043, Japan

¹²Physics Department, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan

¹³Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea

E-mail: yudai@post.j-parc.jp

(Received September 30, 2016)

We have measured the inclusive missing-mass spectrum of the $^{12}\text{C}(K^-, p)$ reaction at a K^- beam momentum of 1.8 GeV/c. This experiment was carried out as a by-product of a pilot run of the J-PARC E05 experiment, which was conceived to search Ξ -hypernuclei by using the (K^-, K^+) reaction at J-PARC K1.8 beam line. In present measurement, we study the \bar{K} -nucleus interaction by comparing the observed missing-mass spectrum with a DWIA calculation. In a preliminary analysis, a “KINK” structure, which might be originated from the threshold of $K^-N \rightarrow \Sigma\pi$ absorption, was found.

KEYWORDS: $\bar{K}N$ interaction, Kaonic nuclei, $\Lambda(1405)$

1. Introduction

The interaction between \bar{K} and nucleus has been studied by measuring the X-rays from kaonic atoms, which were coulombian bound state of a K^- and a nucleus under the influence of the strong interaction, for a long time. However, it is difficult to determine a \bar{K} -nucleus potential only from the information of these X-rays. It is because the depth of \bar{K} -nucleus potential strongly depends on the theoretical model setting. From the result of tp approach, which is widely used to investigate the hadron-nucleus interaction, the best fit potential gives a real part depth of about -80 MeV for a typ-