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Abstract

After reviewing the main mathematical tools relevant to the formulation of a
supergravity theory, both in its ungauged and gauged version, two specific exam-
ples are presented. In the first example, the D= 4 N = 3 SO(3)×SU(3) gauged
model inspired by the AdS4×N0,1,0 compactification of M-theory is constructed.
Two inequivalent (SU(1,1)/U(1))3 truncations, obtained from singlets with
respect to two different discrete groups, are discussed in detail. In the second
example, a maximal D = 4 N = 8 SO(1,1)×SO(6)⋉R12 dyonically gauged
supergravity is studied. An N = 1 truncation with respect to a Z3

2 discrete
group is discussed. Both models share the property of having families of pertur-
batively stable vacua parameterized by supersymmetry breaking flat directions
corresponding holographically to perturbatively stable non-supersymmetric
conformal manifolds. In the latter example, a two-parameter family is uplifted
to type IIB supergravity and pieces of evidence for non-perturbative stability
of the conformal manifold are presented.
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Chapter 1

Brief Introduction and
Motivation

Supergravity theories are the main topic of the present research. What is a
Supergravity theory and why is it interesting? The answers to these questions
are many and, in this Introduction, I will try to present my point of view on
the subject.

As the name given by the scientific community to the theory suggests,
the roots of a Supergravity theory reside in General Relativity. This latter
is an essential ingredient in Theoretical Physics. Indeed, Gravity is one of
the fundamental phenomena we experience every day and that we need to
understand to have a complete scientific picture of our universe. Thanks to
the efforts of the past century, today we know how to mathematically describe
Gravity through General Relativity. In particular, the theory is developed in
the framework of Differential Geometry and it aims to give, using the Einstein
Equations, a classical description of Gravity. Gravity is encoded in the geometry
of space-time. This latter is affected by the matter/energy present in it. This is
where the limit of General Relativity becomes apparent. The theory of General
Relativity classically describes very well the geometry of space-time but it
has nothing to say about the nature of the matter deforming it. Even more
elusive to General Relativity is the quantum nature of our world. Once this
is understood, it is clear that there is a theoretical need to extend General
Relativity to describe the other fundamental forces governing our world. In
particular, those described by the well-known Standard Model. There are
some crucial differences between the theoretical approach to General Relativity
and the Standard Model. First of all, in the former, the space-time evolution
for the metric tensor on a differential manifold is encoded in a set of partial
non-linear differential equations while the latter is by definition a quantum field
theory on Minkowski space-time where the metric tensor is fixed and given by
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the flat Minkowski metric. So, we see that the challenge here is not simply
phenomenological but of theoretical nature too. One needs a framework able
to support these very different mathematical descriptions.

At this point, it should be mentioned that the present research is theoretical
rather than phenomenological so the interest is mainly on the mathematical
assumptions and ingredients needed to formulate the relevant models and their
implication on the physics that the theory can describe. It should be then
understood that when adopting this point of view there is no limit to the path
one can try to follow if not the mathematical consistency of the theory and
those fundamental principles that are part of our way of thinking as a scientist.
One of these principles, both present in classical and quantum physics, is the
Lagrangian formulation of a system of particles. This framework is extensively
used in classical mechanics and since the seminal work of Feynman, it found its
applications in quantum mechanics and quantum field theory too. Concerning
quantum field theory, the Lagrangian is one of the fundamental ingredients in
the formulation of the action principle, the other being the space-time on which
the Lagrangian is defined through the quantum fields present in the theory. In
the case of the Standard Model, we have the fermionic and bosonic quantum
fields describing the fundamental particles and interactions but Gravity through
an action principle. Also in the case of Gravity, we can introduce an action
principle, thanks to the Einstein-Hilbert Lagrangian. However, as well-known,
the latter is a non-renormalizable theory. Meaning that it is consistent only at
the classical level, the coupling constant being the square root of the Newton
constant which in natural units has the dimension of a length. This means that,
even when provided with the Einstein-Hilbert action and its Cartan formulation
enabling us to couple the gravitational field to all fundamental particles and
interactions, this route does not provide us with a consistent quantum theory.
On the other hand, it is still a well-defined classical action principle that can
be used to effectively describe some interactions between fermions, bosons, and
Gravity. This is the starting point for formulating a Supergravity theory. What
if we want to achieve a quantum description of gravity and we are not satisfied
with an effective classical description?

One fruitful way of thinking comes from String Theory. Even if the model
was introduced to describe what we know as Strong interaction it gave us a
new way of describing Gravity. The simplest version of the theory involves a
fundamental object in the shape of a one-dimensional string, in contrast to the
zero-dimensional points we were used to, moving freely in a flat Minkowski
space-time. Its free motion allows for vibrations which are described at the
quantum level by creation and annihilation operators acting on a vacuum state.
Surprisingly, some of the modes of the strings, the zero-energy ones, correspond
to the known bosonic particles needed to describe all the fundamental forces,
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including Gravity too. However, this primitive model is in contrast with the
fundamental principle that particles in Minkowski space-time must have non-
negative squared masses. Indeed, a tachyon is present in the spectrum of the
Bosonic String Theory signaling that the background around which the fields,
metric included, were made to fluctuate, is not a true (i.e. stable) vacuum of
the theory. Furthermore, the model is unsatisfactory from other perspectives.
One of them is the fact that it does not describe half-integer spin particles, from
the space-time point of view. Another one is the fact that even if the presence
of interesting particles, such as the graviton is predicted, this simple approach
to String Theory does not provide us with a dynamical picture. A crucial point
is the interpretation of the coordinates describing the embedding of the string
into space-time as quantum fields defined on the intrinsic two-dimensional
surface that the string sweeps as time passes by. This introduces the distinction
between the target space, the space-time where the string moves, and the
world-sheet, the two-dimensional manifold intrinsically describing the motion
of the string in space-time. This distinction is crucial since it gives us the
correct framework in which to fix some issues of the bosonic string. Now, we
are considering the motion of the string as originating from an action principle.
This action principle allows for the introduction of new ingredients such as
new fields defined on the world-sheet with a well-defined interpretation on the
target space. Then, String Theory can be seen as a particular instance of a
two-dimensional quantum field theory. Such a point of view is an important
step forward toward a unified theory of fundamental forces. Indeed, we now
have a quantistically consistent framework in which the graviton arises. Here,
I do not want to focus on the details of String Theory. Instead, I want to
mention one main ingredient that can be introduced in String Theory when
regarded as a quantum field theory: Supersymmetry. This latter concept leads
to Superstring Theory and solves at once two of the main theoretical problems
of Bosonic String Theory. It introduces fermions and it allows the definition of
a tachyon-free spectrum of particles. What is Supersymmetry and how it is
introduced in the Einstein-Hilbert and String Theory action principle? What
is the relation between the two?

Supersymmetry is a particular instance of another extremely important
concept in physics: the Symmetry of a system. In particular, in a quantum field
theory, we are used to dealing with continuous symmetries associated with a
Lie Algebra, such as the global Poincaré symmetry or local Gauge symmetries.
Particles are defined as irreducible representations of such symmetries. They
are labeled by invariants describing physical properties. In this way, we can
exploit the concept of symmetry to define the mass, the angular momentum,
the spin, and in general the charges of a physical system. The key point here
is that symmetry associated with a standard Lie Algebra defines irreducible
representations with states of the same bosonic or fermionic nature. Indeed,
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the helicity of a particle is an invariant of the spinorial representations of the
Lorentz group, the subgroup of the Poincaré one. So, each kind of particle
must be introduced separately in a quantum field theory whose symmetries are
of this kind. Supersymmetry is a much more unifying principle. Indeed, it can
be regarded as an extension of the concept of Lie Algebras to the structure of
Graded Lie Algebras. In particular, one can extend the Poincaré Lie Algebra
of commutators to the SuperPoincaré Graded Lie Algebra of commutators and
anti-commutators by adding to the usual translations, rotations and boosts
generators new fermionic generators associated with supersymmetry. The
fermionic nature of these symmetries is such that the irreducible representations
exhibit states of different helicity so that a particle is now a collection of
both bosons and fermions. Searching for a supersymmetric theory naturally
constrains it to describe both bosons and fermions. When implementing this
concept in String Theory we are led to Superstring Theory where, in the world-
sheet approach, the bosonic fields describing the coordinates of the string are
related by supersymmetry to new fermionic fields. The presence of these new
ingredients in the quantum field theory defined on the intrinsic two-dimensional
surface of the moving and vibrating string allows us to describe both bosonic
and fermionic particles from the Target Space point of view. Requiring these
latter to arrange in a supersymmetric way also from the Target Space point of
view cuts out tachyonic modes from the string spectrum through the so-called
GSO projection. In this way, we end up with a quantum consistent theory
whose zero energy modes, including a graviton, but now supersymmetries
require the presence of other unusual states. In particular, the gravitino, a
vector and also a spinor from the Lorentz point of view, appears. Again, the
details are more complicated and beyond the scope of this introduction. Let us
instead mention how Supersymmetry is implemented on the Gravity side.

When dealing with Gravity, Supersymmetry has a different meaning than
the one present in the SuperPoincaré case. Indeed, in General Relativity,
translations are local and not only global symmetries. We are then dealing
with an infinite dimensional algebra of symmetries as in the case of local gauge
symmetries. One way of introducing supersymmetry in Gravity is to exploit the
Cartan formulation where the gravitational field, encoded in the vielbein frame,
naturally carries a representation of the Lorentz group. Then, in the same way
as we associate with particles in a quantum field theory their supersymmetric
partners we can associate with the vielbein its supersymmetric partner. It
turns out that the properties of the latter, also named gravitino, are the same
as the gravitino present in the spectrum of Superstring Theory. The difference
with a supersymmetric quantum field theory is that now Supersymmetry is a
local symmetry. This is what defines a Supergravity Theory. A Lagrangian
theory of Gravity exhibiting local Supersymmetry in the sense just sketched.
Then, the core of a Supergravity theory is a Lagrangian for the graviton and
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the gravitino fields, it is to say the Einstein-Hilbert Lagrangian coupled to the
Rarita-Schwinger one, with a local symmetry that relates the two. Even if
we already see some similarities from the particle content side, in principle a
generic Supergravity theory is not related to Superstring theory. To explain
what one means by this let me quickly introduce the case where the relation is
well understood. The main bridge between the two is the quantum consistency
of the Superstring Theory. Indeed, the requirement that all local symmetries
of the latter are not anomalous translate into a set of differential equations
describing the dynamics of the string modes. The low energy limit of these
equations, in units of the string tension, can be recast as Euler equations
derived from a specific Supergravity action. In this way, we have the striking
correspondence between the infrared limit of type IIA/B Superstring Theory
and the ten-dimensional type IIA/B Supergravity Theories. We now see the
first relevant application of Supergravity. It is to say the effective description
of the interactions involving the low energy modes of the superstring. This
is extremely important since it allows us to explore some properties of the
most prominent unifying theory which is the Superstring Theory. These
latter are not the only possible Supergravity theories. In particular, they are
formulated in a ten-dimensional space-time. More generically, Supersymmetry
allows for an extension of a Gravity theory on a space-time up to eleven
dimensions. Furthermore, depending on the dimensions of space-time we
can allow for different Supersymmetric extensions of the global Poincaré Lie
Algebra, and its local deformation, obtained by increasing the number of
fermionic generators beyond the minimal extension. In this case, we talk about
extended supersymmetry. The larger the extension, the more the symmetry
and the constraint on the Lagrangian. The main one is that a state present in
a supersymmetric particle must not exceed the spin of a graviton. In this sense,
the eleven-dimensional Supergravity is special since in this case the Einstein-
Hilbert Lagrangian admits a unique supersymmetric extension. Instead, in the
main part of this work I will focus on a four-dimensional space-time. Why
so? What is the relation between them and the supergravities originating from
Superstring theories?

To understand these concepts one has to consider another main tool in
theoretical physics that allows us to relate theories formulated in different
space-time dimensions. It is to say the techniques of dimensional reduction
and space-time (spontaneous) compactification. The technique of dimensional
reduction was introduced by Kaluza and Klein in an attempt of unifying the
electromagnetic field with Gravity. The main idea is that particles of different
nature in a specific dimension can be interpreted as originating from fewer
particles present in higher dimensions. In this way, Gravity coupled to a vector
field and a scalar field in four dimensions can be interpreted as a particular
instance of a pure Gravity theory in a five-dimensional space-time. In some



6 Brief Introduction and Motivation

sense, under reasonable assumptions, one can trade the number of dimensions by
properly increasing the number of fields present in the theory. From the Action
principle point of view, this means that we interpret the representation of the
relevant symmetries in a dimension as originating from suitable combinations
of symmetries present in a higher one. In particular, certain global and local
internal symmetries in the lower dimensional theory naturally originate from
space-time symmetries of the higher dimensional parent theory. In the previous
examples, this would translate into breaking the representation of the spin-two
particle in five dimensions in the sum of the spin-two particle, a spin-one,
and a spin-zero particle in four. On top of this, we have to get rid of those
dimensions we want to cut out by "integrating them out" to obtain an action
principle defined in fewer dimensions. This latter step is less obvious than
the former which is group-theoretically motivated. Indeed, to obtain some
concrete Lagrangian to work with one has to assume a specific dependence of
the fields on the extra dimensions. This can be done only once the nature of
the part of space-time, also named the "internal space", describing the extra
spatial dimensions, is specified. Once this is done we can study the fields that
the latter can support. The most common choice is to assume the internal
space to be compact. This assumption makes sense when trying to obtain an
effective description of the original theory. Indeed, the natural scale introduced
by the compact space, like the radius of a sphere, provides us with a natural
energy scale for the dynamical processes. Again, with our simple example,
we can imagine that the fifth dimension, the fourth spatial one, consists of a
circle. This choice allows us to describe the internal dependence of the fields
through Fourier expansions in units of the length of the circle. So that each
four-dimensional field will show up together with an infinite tower of particles
of the same nature but with mass increasing in discrete steps, it is to say the
various Fourier modes or more generically the Kaluza-Klein modes. At this
step, we are just describing the same model less intuitively so that there is a
one-to-one correspondence between the configurations in four dimensions with
all the Kaluza-Klein modes and the five-dimensional one. The next step for
simplifying the theory consists in considering only the massless modes, which in
our example correspond to the constant modes in the Fourier expansion. In this
way, we have a four-dimensional effective description of the dynamics taking
place at low energy in five dimensions. One can immediately understand that
more complicated examples are those in which the dimension of the internal
space increases. Nevertheless, one can try to explore the simple cases where an
algebraic approach, as in the case of "coset spaces", can help us in studying the
compactification of space-time. There are however some issues with naively
applying this method to obtain a simpler theory in fewer dimensions from a
complicated one defined on a higher dimensional space-time. The first one is
the issue of spontaneous compactification. Indeed, consider our trivial example.
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Let us assume that the Kaluza-Klein mechanism (and generalization thereof)
provides the appropriate framework in which to classically unify gravity and
electromagnetism in four dimensions by obtaining them from gravity on a
five-dimensional space-time. Then it is reasonable to assume that the fifth
dimension must be compact and possibly small since we do not experience
it in our four-dimensional world. We can then proceed as described above
to formulate the theory in four dimensions. We can go on and search for
solutions of the effective model. Will they also describe solutions of the original
five-dimensional theory? In general, this is not true. If we require this to
be the case, we say that we search for a spontaneous compactification and a
consistent truncation. In other words, we introduce the theoretically driven
requirement that the form of the space-time that we choose to obtain a lower-
dimensional theory must be consistent with the equations of motion of the
higher-dimensional one. Furthermore, when removing a subset of degrees
of freedom from the model we must be sure that they are not involved in
the dynamics of the remaining ones. If this is the case we can proceed with
the study of the lower dimensional theory while being sure that we are truly
studying a subsector of the higher dimensional one. In this sense, the steps
of compactification and then of consistent truncation of a higher dimensional
theory to a lower dimensional one are a clever way to break down complicated
equations of motion into simpler ones.

We are then interested in studying four-dimensional Supergravity theories
since they provide an effective description of a subsector of the eleven or ten-
dimensional ones as consistent truncations. More specifically, the construction
of ten/eleven-dimensional backgrounds, in the higher-dimensional descriptions,
would require the solution of often complicated partial differential equations. On
the other hand, the same problem, for certain higher-dimensional backgrounds,
in the four-dimensional framework reduces to the purely algebraic problem of
extremizing a scalar potential. The landscape of supergravity theories is very
rich. From a top-down point of view, each consistent choice of a seven/six-
dimensional internal space of the eleven/ten-dimensional supergravities leads
to effective descriptions captured by different four-dimensional models. Using
a bottom-up approach, even when the field content of a four-dimensional
supergravity is fixed by the relevant (super)symmetries, there is still some
freedom in the kind of interactions that it can display. As we will see, in many
cases we can try to deform a minimally interacting, or abelian, supergravity
theory to a more interacting one through the so-called "gauging" procedure.
Different gaugings can be related to different spontaneous compactifications.
However, it must be pointed out that it is not always obvious how a Supergravity
theory in four dimensions can be interpreted as a consistent truncation of the
eleven or ten-dimensional ones and in many cases this is not the case. Even if
many steps forward have been made, the latter is still an open problem. In
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this thesis, an example of a model exhibiting interesting configurations whose
higher dimensional description, if present, is still not clear will be presented.
On the other hand, in the past decades, using different techniques, many
spontaneous compactifications of eleven and ten-dimensional Supergravities
have been constructed. In this thesis, a particular example leading to a
maximal Supergravity model exhibiting the so-called "S-fold" configurations
will be presented.

During the past three decades a new point of view on Supergravity theories
has been developed. In particular, a well-established interesting reason for
studying Supergravity is the Gauge/Gravity correspondence. The latter consists
of a conjectured duality between quantum gauge theories and quantum gravity
theories. The main concept introduced by the conjecture is given by the
identification between the Action principle of the two theories. In the ideal case,
one would make the duality theoretically rigorous by proving the existence of a
well-defined map between the fundamental ingredients, and the mathematical
objects that can be defined with them, of the gravity model and of the gauge
one. Clearly, this would require the knowledge and a full understanding of
quantum gauge and quantum gravity theories. This is a very ambitious and
challenging goal. However, much progress has been done by the scientific
community in this direction. The most studied examples are those in which
a (super)gravity configuration with an asymptotically locally anti-de Sitter
space-time is dual to a conformal field theory. This example is known as the
"AdS/CFT" correspondence. This specific case strongly relies on the algebraic
notion of the conformal group/algebra and on two ways of geometrically
interpreting it. Given a space with a well-defined metric field, the conformal
group is given by the group of transformations preserving the metric field
modulo a point-dependent rescaling. Then, a Conformal Field Theory on a
given (pseudo)-Riemannian space can be defined as a quantum field theory
exhibiting the conformal group of the given space as symmetry. This would
also imply that we can use this symmetry to organize the degrees of freedom
present in the model by exploiting the representation theory of the conformal
group. On the other hand, one could try to find a space whose isometries
correspond to conformal transformations. If this can be done, one can try
to formulate a gravity theory in which the latter is a vacuum around which
linear perturbative computations can be done. Then, because of their linear
nature, the perturbations will carry a representation of the conformal group
too. This can give a first insight into the possible duality between the degrees
of freedom of the CFT and the perturbations around the vacuum of a gravity
model. Even more promising, from the gauge/gravity conjecture point of view,
is the scenario in which the gravity model under consideration originates from
eleven/ten-dimensional supergravity. Indeed, even if not exploring the full
duality, one can explore the AdS/CFT correspondence within a certain limit
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of String Theory. The main advantage of establishing a duality between two
theories, or part of it, is that one has two ways of studying the same object.
Working on the gravity side can shed light upon the quantum field theory side
and vice versa.

As an example, an important question to ask when studying CFTs is whether
they belong to a family of theories, known as a conformal manifold. The confor-
mal manifold is spanned by exactly marginal deformations of the CFT. Without
entering into technical details, exactly marginal deformations are contributions
that can be added to the Lagrangian of a quantum field theory with no need
for additional quantum corrections. Over the last decade, much insight has
been gained into local properties of conformal manifolds of supersymmetric
conformal field theories. On the other hand, no example is known of a non-
supersymmetric conformal field theory in more than two dimensions featuring
a conformal manifold. Indeed, they are widely believed not to exist. However,
there are no "no-go theorems" that forbid non-supersymmetric conformal mani-
folds. As a result, the existence of non-supersymmetric conformal manifolds
has been largely the subject of speculation.

Getting closer to the results presented in the next chapters, the two examples
of four-dimensional gauged supergravity theories mentioned earlier in this
introduction are relevant in making such speculations concrete. More precisely,
some of the AdS vacua present in these models belong to families parameterized
by continuous parameters corresponding to massless perturbations. From
the AdS/CFT point of view the latter would correspond to exactly marginal
deformations. The vacua under discussion preserve a different amount of
supersymmetry, and in some cases, supersymmetry is completely broken. Then,
the existence of such families of solutions on the gravity side would imply, given
the AdS/CFT correspondence, the existence of a conformal manifold in which
non-supersymmetric conformal field theories are continuously connected to
supersymmetric ones. As already discussed, one could argue that working at
the supergravity level allows us to make statements only valid at a "classical
level". However, the examples related to the "S-fold" configurations involve
four-dimensional supergravity theories whose ten-dimensional origin is clearer.
As it will be shown, this allows us to provide evidence for the existence of a
non-supersymmetric conformal manifold at a "quantum level".

Some technical gaps need to be filled before explicitly presenting such
findings. The next chapter will be devoted to introducing more rigorously
four-dimensional supergravity theories and their gaugings by focusing on the
examples of interest.



Chapter 2

D = 4 Supergravity

As already motivated, it should be clear that the study of gauged supergravity
models in lower dimensions provides an efficient framework in which to explore
effectively the physics described by higher dimensional supergravity theories,
such as D = 10 or D = 11 supergravity. The technique of consistent truncations
allows us to define the lower dimensional models from higher dimensional ones.
It is then relevant the choice of the background on which to reduce the theory
since its properties such as its isometries will play an important role in the
effective lower-dimensional description. The configuration of interest to our
discussion will be the one described by AdS4×wMd, d=D−4 where D = 10
in the case of type II supergravities. The latter corresponds to an external
4-dimensional anti-de Sitter spacetime and an internal manifold Md. In most
cases Md is chosen to be compact, however, configurations with non-compact
internal direction are also of interest. We can relate to this kind of background
by studying D = 4 supergravities. Finding vacua exhibiting the metric of
AdS4 in upliftable models automatically provides a solution for the higher
dimensional model of the form just described. However, it is not completely
satisfactory to limit the analysis to finding vacua of the model. It is indeed
necessary to further study a given configuration to assess its stability. This
can be done perturbatively by computing the mass spectrum of the oscillations
around a given background. In some cases, one can go deeper in the analysis
so to consider the non-perturbative properties of the configuration. Again,
this is more interesting for those solutions admitting an uplift to type IIA/B
supergravity since they can directly relate to non-perturbative superstring
theory configurations. 1 We will explore the framework of Exceptional Field

1In particular, ten/eleven-dimensional supergravity theories include in their landscape of
solutions the so-called p-branes which are extended black-objects with p-dimensional spatial
extension. In ten dimensions, some of these supergravity solutions provide the low-energy
description of microscopic objects belonging to the string spectrum known as Dp-branes.
In supergravity theories, we can effectively study the interaction (usually referred to as
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Theory [4, 5] to prove that some model of interest consistently originates
from higher dimensional theories. As we will see, the same framework allows
us to study the perturbative stability of interesting backgrounds [6]. When
considering the non-maximal supergravity, when supersymmetry decreases,
one can not directly exploit the latter framework. However, it is still possible
to describe interesting classes of consistent truncations within the formalism
of Generalized Geometry [7–9]. In this case, many examples of consistent
truncations can be obtained from generalized GS-structure manifolds with
singlet intrinsic torsion. A complete understanding of the consistency of a given
supergravity model is still missing.

Before moving to some interesting examples of upliftable models and of
models whose higher dimensional origin is still unclear let us proceed with a
short review of the general features of supergravity in four dimensions. First,
the so-called "ungauged supergravity" and some details on its global symmetries
are presented, then the procedure to promote some of the latter to a local
gauge invariance of the model is discussed. This latter procedure, the "gauging
procedure", is fundamental to building the model of interest in the present
thesis.

2.1 Ungauged D = 4 Supergravity

Following [10, 11], the simplest supergravity theory one can build, up to
quadratic terms in the fermionic fields, has the following general form 2:

LN ,D=4 = Lbosonic+Lfermionic+Lmixed, (2.1.1)

1√
|g|

Lbosonic =−R2 + 1
2Gst(ϕ)∂µϕs∂µϕt+

1
4IΛΣ(ϕ)FΛµνFΣµν+ 1

8
√
|g|
RΛΣ(ϕ)ϵµνρσFΛµνFΣρσ

(2.1.2)
is the purely bosonic sector of the theory. R is the Ricci scalar for the metric

gµν (here the mostly minus convention is adopted). As usual, |g|= det(gµν).
ϕs denotes the set of ns scalar fields present in the theory. Their kinetic

"back-reaction") of a single brane with the background fields using the Dirac-Born-Infeld
action on the world-volume of the former. These objects are non-perturbative string states
in the following sense: in the perturbative limit (i.e. small string-coupling constant), the
branes decouple from the low energy spectrum while their interaction becomes relevant at
non-perturbative regimes (large string-coupling constant). We will be dealing with these
objects and their supergravity description in section 6.2.

2Strictly N = 1 models can display a scalar potential too.
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term describes a sigma model with Riemannian metric Gst(ϕ). More on the
scalar field and the space they parameterize will be added below. The vector
sector is described by the Yang-Mills type and the θ-like term for the abelian
curvatures FΛ = 2∂[µA

Λ
ν] of the nv vector fields describing an abelian U(1)nv

gauge symmetry. Since fields are not charged under this latter we say that the
theory describes an "Ungauged Supergravity". However, as we shall explicitly see
in the next chapters, some non-abelian gaugings can be introduced consistently
with supersymmetry. The latter, already at the ungauged level, allows for the
couplings of the Yang-Mills contribution and of the θ-like part to depend on the
scalar fields. This is expected from a top-down point of view on supergravities.
Indeed, this is the case even in the simplest example of compactification by
Kaluza and Klein.

The bosonic sector of the model is one of interest when searching for solutions
defined by the vanishing of all fermionic fields. This latter is the most common
configuration discussed in the literature. However, as we will see, the fermionic
contributions are relevant when discussing supersymmetry and when considering
perturbative phenomena around a solution of the theory. Let us write them
down. We have3:

Lfermionic = ϵµνρσ
(
ψ
A
µ γνDρψAσ−ψAµγνDρψ

A
σ

)
−
i
√
|g|

2

(
λ

I
γµDµλI +λIγ

µDµλ
I
)

(2.1.3)
The fields entering the latter kinetic terms, more precisely the Rarita-

Schwinger and the Dirac one respectively, are the N gravitino fields ψAµ
and the spin-1

2 field collectively denoted by λI . The former is required in a
theory whose supersymmetry is not only global but local too, in other words, a
supergravity theory. Their number selects the N -extended supersymmetry of
the model. In particular, they all belong to the graviton multiplet together with
0, 1, 3, 6, 10, 16, 28 vectors, 0, 0, 1, 4, 11, 26, 56 spin-1

2 fields and 0, 0, 0, 2, 10,
30, 70 real scalar fields, when N = 1,2,3,4,5,6,8. The rest of the vector fields
belong to the vector multiplets, together with 1, 2, 3, 4 spin-1

2 fields and 0, 2,
6, 6 real scalar fields when N = 1,2,3,4. When N > 4, no vector multiplets are
allowed for a theory describing only one metric such as a supergravity theory.
When N = 1, the remaining spin-1

2 fields and scalar fields can be arranged in
matter multiplets. Each one of them provides 2 real scalar fields. We can add
matter fields in the N = 2 case too, and we refer to the multiplets containing
spin-1

2 and scalar fields only as hypermultiplets. Each one of them contains 4
real scalar fields. When N > 2, the scalar fields are required to parameterize
a homogeneous symmetric manifold. Furthermore, no hypermultiplets are

3The conventions of [11] for spinors are implemented
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allowed so that spin-1
2 fields sit only in the graviton multiplet or in the vector

multiplet. The index I splits accordingly. In particular, λAI will denote the
gauginos, present in the vector multiplets, while χABC will denote the dilatinos,
belonging to the graviton multiplet. In N = 5 models, an extra dilatino χ is
present. In N = 6 models, six extra dilatinos χA are present.

Since it is not restrictive for the present discussion, let us focus on N > 2
theories 4. Then, the scalar fields parameterize a coset manifold G/H with G
semisimple and H maximally compact in G. They are conveniently described by
a coset representative L(ϕ) ∈G. An isometry of the scalar manifold described
by an element g ∈G with action of the generic form:

g : ϕs → ϕ′s = ϕ′s(ϕr) , (2.1.4)

is defined by the left action of the g element on the coset representative, modulo
a compensating action of an element h ∈H from the right, more specifically:

g ·L(ϕ) = L(ϕ′) ·h(ϕ,g) , (2.1.5)

where h(ϕ,g) ∈H can in general depend on the point of the scalar manifold
and on the isometry group element that acts on the latter. It is convenient
to rewrite the Lie algebra g of G as the direct sum of its maximal compact
subalgebra H, generating H, and K where the non-compact generators live:

g = H⊕K . (2.1.6)

This decomposition allows us to define relevant ingredients. In particular, as
common in standard group theory, we can define from L(ϕ) a left-invariant
1-form Ω(ϕ) with values in g

Ω(ϕ)≡ L−1dL(ϕ) = Q(ϕ)+P(ϕ) . (2.1.7)

The projections Q,P of Ω belong to H and K, respectively. By considering the
exterior derivative of Ω(ϕ) we can easily derive the Maurer-Cartan equations
dΩ+Ω∧Ω = 0 from which we can obtain the following identities for Q and
P:

R[Q]≡ dQ +Q∧Q =−P ∧P ,

DP ≡ dP +Q∧P +P ∧Q = 0 . (2.1.8)
4In N = 1 models, the scalar manifold is required to be a Kähler manifold. In N = 2

models, it is the direct product of a Special Kähler and a Quaternionic Kähler manifold.
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The above expressions allow us to interpret Q as an H-connection, R[Q]
being its H-valued curvature. D is then interpreted as an exterior H-covariant
derivative under which P is charged.

The mixed terms presented later on (2.1.23), display couplings between
fermions and scalars. Then, H-covariance must be extended to fermions so that
the theory is not sensitive to the action of the local transformations h in (2.1.5).
In other words, we want the supergravity theory to be locally H-invariant.
Indeed, the action of H ⊂ G (2.1.5) relates equivalent configurations of the
scalar fields. In the kinetic term, this is implemented by the H-covariant
derivative D which describes the action of Q on the various fermionic fields
in a suitable representation. As usual, it also contains the Levi-Civita and
spin-connection required to couple fermions to the metric field. Before giving
the explicit form of the interaction terms involving fermionic fields it is useful
to introduce some definitions relevant to making explicit a global G symmetry
of the equations of motion of an extended supergravity theory. This global
symmetry is already captured by the scalar manifold. Indeed, the global action
of the group G is already well defined on the scalars by the left action of
constant elements of G on L(ϕ). Even if this does not completely extend
to a global symmetry of the theory it can still be extended to a symmetry
relating physically equivalent configurations in an electric-magnetic duality
fashion. In particular, once the G action is properly extended to the vectors
and fermions it becomes a manifest global symmetry of the equations of motion
of the model. Going on with [11], let us quickly review this feature. The first
relevant ingredients are GΛµν , defined as

GΛµν =−ϵµνρσ
δLN ,D=4
δFΛρσ

. (2.1.9)

Together with their electric-magnetic duals FΛµν5, they carry a 2nv dimensional
representation Rv of G. We denote the 2nv vector in this representation
as VM = (V Λ,VΛ). Necessary conditions for the action of G to describe a
symmetry of the equations of motion are

Rv[g]TCRv[g] = C, (2.1.10)
5Note that in the case of a gauge theory with field-dependent couplings on a generic

manifold such as the model in (2.1.1) one is led to the definition (2.1.9) for the electric-
magnetic dual of F instead of its Hodge-dual. Indeed, in terms of the doublet GM = (F Λ,GΛ),
the Maxwell equations, in the case of vanishing fermionic fields, can be rewritten as dGM = 0.
Furthermore, one can show that G is covariant under the global G-action which we interpret
as the group of dualities relating different Lagrangians as discussed in the next section. The
definition (2.1.9) reduces to the Hodge dual in a Yang-Mills theory with vanishing θ-term.
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and
M(ϕ′ = g(ϕ)) = R−T

v M(ϕ)R−1
v . (2.1.11)

where CMN is the standard 2nv×2nv symplectic matrix and

M(ϕ) =
 RI−1R+I −RI−1

−I−1R I−1

(ϕ). (2.1.12)

The first property requires that Rv ∈ Sp(2nv,R) and the second one that the
couplings, collected in the symplectic matrix MMN (ϕ) transform properly so
to compensate the vector transformations. The scalar manifold structure, fixed
by supersymmetry, ensures that a 2nv-dimensional symplectic representation of
G is always realizable. Furthermore, the couplings captured byM, constrained
by supersymmetry too, in an extended supergravity theory in four dimensions
are such that the latter property is always satisfied. In particular, defining an
equivalent representation Rv to Rv such that

Rv = S−1RvS, Rv[h] ∈ SO(2nv) h ∈H, (2.1.13)

and the hybrid coset representative L(ϕ) = Rv[L(ϕ)]S, we have that the right
action of H on L(ϕ) translates in an orthogonal right action on L(ϕ). In terms
of this latter, M(ϕ) is computed as

M(ϕ) = CL(ϕ)LT (ϕ)C. (2.1.14)

In this basis, a vector is denoted by VM = (V Λ,VΛ), where V Λ further splits
in (V AB = −V BA,V I) describing the vector sector of the graviton multiplet
and of the matter multiplet respectively 6.

The action of G must be extended to fermions too. In this case, as already
mentioned the relevant transformations are the compensating ones. Indeed,
fermions are coupled to bosons in such a way that they are required to transform
in a complex representation of H. Because of this, it is convenient to consider
a new complex basis for the representation of G defined by Rc

v = A RvA
†,

where

A = 1√
2

 1 i1
1 −i1

 (2.1.15)

6In the N = 6 case, not relevant here, there is only the graviton multiplet and it contains
two different kinds of vectors, those transforming under H as V AB and a singlet. The singlet
is described by the V I sector.
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is the 2nv×2nv Cayley matrix. In this new basis, the action of G is no longer
symplectic but the action of H is block diagonal. Then, Q is represented by

Rc
v[Q] =

 QΛ
Σ 0

0 Q Σ
Λ = (QΛ

Σ)∗

 , (2.1.16)

where

QΛ
Σ =

 QAB
CD = 4δ[A

[CQ
B]
D] 0

0 QI
J

 . (2.1.17)

This is the relevant representation for the H-covariant derivative D . Explicitly,
the relevant expressions are

DµψAν = ∇µψAν +Q B
µA ψBν (2.1.18)

DµχABC = ∇µχABC +3Q D
µ[A χ|D|BC] (2.1.19)

DµλAI = ∇µλAI +Q B
µA λBI +Q J

µI λAJ , (2.1.20)

where ∇µ denotes the Lorentz covariant derivative. In the N = 5 model, χ is
an H-singlet. In the N = 6 model, the expression for χA is the same as the
one for the gauginos with the Q J

µI component dropping out. On the other
hand, P is represented by

Rc
v[P] =

 0 PΛΣ

PΛΣ 0

 . (2.1.21)

Moreover, we can promote the hybrid coset representative to a complex matrix
by defining

Lc(ϕ) = L(ϕ)A † =
 fΛΣ f

ΛΣ

hΛΣ h
Σ
Λ

 . (2.1.22)

In terms of this latter we have M(ϕ) = CLc(ϕ)L†
c(ϕ)C and

− 1√
|g|

Lmixed = λ
I
γµγνψAµ ∂νϕ

sPsIA−
1
2F

+ΛµνIΛΣf
ΣΓOΓµν +h.c.,

(2.1.23)
where the dots refer to, in the N = 5 case, PA = 1

24ϵABCDEPBCDE and,
in the N = 6 models, PAB = 1

24ϵABCDEFPCDEF . Furthermore, 2F+
Λµν =

FΛµν + 1
2

√
|g|ϵµνρσFΛρσ, and the OΓµν are fermion bilinears whose explicit

expression is fixed by supersymmetry and it depends on the theory. Their
relevant property is that they transform in the Rc representation of H, the
group of compensating transformations of the action of G.
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The equations of motion of a D = 4 N > 2 supergravity theory with the
Lagrangian present here can be rewritten in terms of these ingredients to
exhibit a manifest G invariance. This global symmetry of the equations of
motion is one of the main features of supergravity theories in low dimensions.
From a top-down point of view, in the case of a model originating from a
spontaneous compactification, it is believed to capture some of the quantum
dualities relating the different string theories and the conjectured M-theory.
Supergravity theories can then give an effective description for strongly coupled
string theories by exploiting a dual weakly coupled picture. Indeed, as we can
easily see from the symplectic action of G on GM = (FΛ,GΛ), the isometries
of the scalar manifold act as an electric-magnetic duality when extended to
all fields. Since in general this is a symmetry of the equations of motion
and not of the action principle for a supergravity theory, the G action relates
dual Lagrangians. There is some freedom in fixing what we call electric or
magnetic. More precisely, the embedding of G in Sp(2nv,R) depends on the
so-called "symplectic frame". Meaning that at the level of the equations of
motion we can always rotate G alone using a constant Sp(2nv,R) element.
Inequivalent frames will be those that can not be off-set by a local redefinition
of the scalar fields (and consequently of fermions by the action of the relevant
compensating transformation and vectors through Rv[G]) or by a local block-
diagonal GL(nv,R)⊂ Sp(2nv,R) redefinition of the electric and magnetic fields
separately. At the ungauged level, inequivalent symplectic frames describe
equivalent equations of motion. When non-trivial interactions are introduced
through the gauging procedure, different frames can yield inequivalent physical
descriptions. As an example, the N > 1 ungauged models do not feature a
scalar potential. This is not the case after the gauging is implemented. As
presented in the next chapter, starting from different symplectic frames could
result in introducing inequivalent scalar potentials. However, Rv[G] relates
equivalent frames thus giving a tool for dualizing a supergravity theory. It is
important to stress that the presence of G as a global symmetry is intrinsic in
the supersymmetric nature of the model.

Now, we can be more explicit about supersymmetry by describing its action
in the N > 2 models. Following [11], at lower order in the fermionic fields we
have
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δϕsPABCD
s = ΣABCD

δϕsPIAB
s = ΣIAB

δAΛµ = LΛcMOMµ
δV a

µ = iϵAγaψµA+ iϵAγ
aψAµ

δψAµ = Dµϵ−
1
8F

−
ρσABγ

ρσγµϵ
B

δχABC = i∂µϕ
sPsABCDγ

µϵD− 3i
4 F

−
µν[ABγ

µνϵC]

δλIA = iPsIAB∂µϕ
sγµϵB− i

4F
−
µνIγ

µνϵA, (2.1.24)

where ΣΛΣ depend linearly on the supersymmtry point-dependent fermionic
parameter ϵA and the spin-1

2 fields. From the above expressions, we explicitly
see the main property of supersymmetry, it is to say the exchange of bosons with
fermions. Furthermore, we see that the supersymmetry rules define an infinite
dimensional algebra extending the diffeomorphism symmetry of a classical
gravity theory. Indeed, one can verify that commuting two supersymmetry
transformations produces the action of a local diffeomorphism modulo the
equations of motion and other local symmetries. It resembles the main property
of a rigid supersymmetry algebra that the commutator of two supercharges
produces a momentum operator modulo central charges. This is reasonable since
one can make a rigid supersymmetry transformation by selecting a constant
ϵA parameter. A more systematic approach to supersymmetry for a theory
displaying a local diffeomorphism symmetry like gravity theories is given by
the so-called "Rheonomic principle" [12–15]. This latter poses its basis on
the algebraic formulation of a rigid supersymmetry algebra and it extends
the concept to a local symmetry by exploiting the framework of differential
geometry on "Supermanifolds". It is beyond our scope to review this subject
and we refer to the bibliography.

For the present discussion, it is sufficient to think of supersymmetry as the
local symmetry described by the above transformations. From the latter, we
see another important property. Since the supersymmetry rules are written in
terms of H-covariant quantities they inherit this property. In general, H splits
as a direct product of the form H =HR×Hmatter. HR describes the action of
the "R-symmetry" which is U(N ) when N < 8 and SU(8) in the N = 8 maximal
case. It acts as an automorphism of the supersymmetry transformations by
rotating the supersymmetry parameters. Hmatter is present due to those fields
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outside the graviton multiplet. In particular, Hmatter = 1 when N > 4 since in
these models only the gravitational multiplet is allowed.

When searching for Lorentz preserving maximally symmetric bosonic solu-
tions, i.e. vacua, of a supergravity model or for a more general bosonic solution
of the equations of motion one tries to consistently solve the model with van-
ishing fermionic fields. However, a generic supersymmetry transformation can
restore the presence of fermions. Those particular supersymmetries parameters,
when present, that have the property of producing vanishing variations for
all fields will describe residual supersymmetries of the specific background.
They will select a subalgebra of the supersymmetry algebra that in many cases
corresponds to a rigid supersymmetry algebra. As an example, for a Minkowski
background, the residual supersymmetry will reproduce the super-Poincarè
algebra. When the gauging procedure is implemented, AdS backgrounds usu-
ally appear. In these cases, the residual supersymmetry will reproduce the
well-known super-conformal algebra. In the next chapters, this property will be
exploited to make more precise statements on the AdS4/CFT3 correspondence.
Let me conclude the discussion on supersymmetry by noting that I have omitted
the transformations for the λI , χ and χF fields, specific to the N = 3,5,6 cases
respectively. The former is the one of interest in the present work. At lower
order in fermionic fields it reads

δλI = i

2PsIAB∂µϕ
sγµϵCϵ

ABC . (2.1.25)

Now that all the main ingredients for an ungauged model have been presented,
let us continue the discussion with the gauging procedure. Some interesting
solutions, like black holes and other kinds of solitonic configurations, are
already present in ungauged models. However ungauged supergravities are
unsatisfactory from many points of view. As an example, as already discussed,
N > 1 models do not feature a scalar potential. We then encounter the
phenomenological problem of moduli stabilization. It is to say that such models
display several scalar fields whose background value is not fixed by dynamical
considerations and that can lead to instabilities of the solution they belong
to. Moreover, they appear in the interactions of other fields thus leading to
non-predictive models. From a top-down point of view, ungauged supergravities
usually originate from compactifications of higher-dimensional supergravities on
a torus or on classes of Ricci-flat manifolds. When trying to obtain an effective
description for a compactification on a different kind of manifold one is driven to
gauged supergravity models. It is to say models featuring fields charged under
gauge symmetries. Gauged models naturally display a scalar potential that
allows fixing, through the equations of motion, the background values of scalar
fields. The latter are interpreted, in upliftable models, as background values
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of higher dimensional fields. In particular, they can describe the geometrical
properties of the internal manifold on which the higher dimensional theory is
compactified. Then, the non-trivial scalar potential of gauged models offers
the possibility of exploring various kinds of compactifications 7. Furthermore,
if those scalars appearing in the interactions of the Lagrangian are indeed
dynamically fixed, one recovers the predictiveness of the model. The latter is
relevant when studying supergravity for phenomenological purposes.

2.2 Gauging of the Global Symmetries

As reviewed in the previous section, a Supergravity model in general exhibits
global symmetries due to the symmetric nature of the scalar manifold. It
is natural to study how to promote them to local symmetries. Indeed, we
know from many other examples that local symmetries enrich the structure
of the theory offering new theoretical and phenomenological properties to
explore. First of all, nontrivial interactions between gauge fields could be
introduced. As we will see, these will induce a chain of modifications for the
Lagrangian resulting in new interaction terms between fermions and scalars and
in particular in the introduction of a scalar potential. Again, supersymmetry
will be the main constraint and guide principle for the above procedure. As a
trivial requirement, we can not introduce new vector fields. Indeed, the field
content is already fixed in the ungauged model so the gauge group must be
gauged through the vector fields already present in the theory. Then, one must
find which subgroup Gg of G can be chosen consistently. As already introduced,
G is a true symmetry of the equations of motion of the ungauged model but
not of the Lagrangian. So it is clear that once the frame is fixed one has to
choose a subgroup of the so-called "electric group". The latter is the subgroup
of G whose elements are also a symmetry of the Lagrangian. Following [11],
once the symplectic frame is fixed, the electric group Ge is the subgroup of G
such that

∀g ∈Ge⇒Rv[g] =
 AΛΣ 0
CΛΣ D Σ

Λ =−AΛΣ .

 (2.2.1)

Intuitively, such transformations do not change the set of vectors identified as
electric by the frame. Then, it is clear that starting from a different frame, a
different embedding of G in the symplectic group can result in a different Ge
for the Lagrangian.

However, we can work in a more general set-up in which we do not fix
the frame for the ungauged model. It is to say a G-covariant framework.

7See [11] for a review of the main known examples.
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The latter is also referred to as the "embedding tensor formulation" of the
gauging procedure in which a formal G-covariance of the field equations is
made explicit by rewriting the gauged model in a G-covariant fashion through
the "embedding tensor" Θ. The latter is a manifestly G-covariant tensor that
captures all the information about the gauging. As common when searching for
explicit invariance of a model under a particular symmetry, one has to introduce
redundant degrees of freedom. The already present gauge fields AΛµ , which can
be considered "electric" and which are associated with the gauge generators
XΛ, are now doubled by adding their "magnetic" counterparts AΛµ. They
allow us to introduce the gauging of magnetic generators XΛ. Furthermore
one has to make room for new two-form fields Bα = (Bαµν), α= 1, . . . , dim(G),
transforming in the adjoint representation G, the global symmetry group. As
we will see, the conditions on the gauge algebra will ensure that once Gg is
found, we can always rotate the model to an "electric frame", a frame in which
Gg is a subgroup of a suitable Ge. In general, this last step can bring us to an
inequivalent frame than the starting one meaning that to formulate the theory
we must use a dual description of the starting Lagrangian.

The first ingredient in the G-covariant formulation of the gauging is the
introduction of the "embedding tensor" Θ. It can be regarded as a map from
the adjoint representation of the G algebra to Rv⋆ = R−T

v , the representation
dual to Rv. In particular, being tα, α : 1, ...,dim(G), the generators of g, we
have

XM =ΘM
α tα . (2.2.2)

The X-tensor then selects which vectors can enter the gauge connection to
be introduced for the standard minimal couplings in usual gauge covariant
derivatives with coupling constant g. We have

Ωgµ ≡ gAMµ XM . (2.2.3)

Already at this level we explicitly see that this G-covariant formulation allows
for magnetic vector fields to enter the gauge connection. When this is the case,
and the frame in which the gauging is purely electric is inequivalent from the
starting one, we have an example of a dyonic gauging. Later on, an explicit
example in the maximal model will be presented. Moving on with the gauging,
the outlined procedure is not straightforwardly consistent. Indeed, the action
can be made locally Gg-invariant and N -supersymmetric only if the embedding
tensor satisfies the so called linear and quadratic constraints. The latter can be
equivalently described by implementing the definition of the X-tensor tensor

XMN
P ≡ΘMαRv⋆ [tα]NP .



22 D = 4 Supergravity

The linear constraints have the following form:

X(MN
RCP )R = 0 . (2.2.4)

We have in general two quadratic constraints:

a) : [XM , XN ]+XMN
P XP = 0 , (2.2.5)

b) : CMN ΘM
αΘN

β = 0 . (2.2.6)

The linear constraint translates in the gauge invariance of Θ and when it is
satisfied ensures that the gauge fields are properly acted on by a global duality
transformation of an element in Gg. It is to say, they must transform in the
co-adjoint representation of the gauge group. This is the usual setup in all
gauge theories. The quadratic constraints (2.2.6) are instead necessary to
limit the number of vector fields that contribute to the gauging to nv, more
precisely there must be a number less or equal to nv of linearly independent
gauge generators. This constraint ensures that it is possible to introduce, using
a global symplectic transformation, a particular symplectic frame such that
the “magnetic” direction ΘΛα of the embedding tensor Θ are vanishing. This
frame is also referred to as an “electric” frame. The quadratic constraints are
redundant in N ≥ 3 models. In the 8>N > 2 case, upon the validity of the
linear constraints, equation (2.2.6) can be obtained from (2.2.5), while in the
maximal N = 8 theory, the two conditions are equivalent. In practice, these
conditions tell us that a suitable gauge group is such that its dimension does
not exceed the number of vector fields present in the theory and that its adjoint
representation must be embedded in a suitable Ge. We see that this choice is
purely algebraic for a given ungauged model.

Once the gauge algebra is properly chosen one proceeds by introducing
the minimal couplings, and following standard procedure for gauge invariant
theories one can promote partial derivatives to their covariant counterparts:

∂µ→ ∂µ−Ωgµ . (2.2.7)

Analogously, one introduces the non-abelian field strengths:

∂µA
M
ν −∂νAMµ → ∂µA

M
ν −∂νAMµ +gXNP

M AN[µA
P
ν] . (2.2.8)

The same applies to the previously defined Maurer-Cartan connection. In order
to properly describe the scalar sectors of the gauged model, one promotes
P and Q to their gauged version P̂, Q̂. The latter are defined through the
gauged version of the Maurer-Cartan left-invariant 1-form in the following way:

Ω̂ = Rv[L−1(d−Ωg)L] = P̂ + Q̂ . (2.2.9)
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Then, P̂ encodes the gauged vielbein along the non-compact directions of the
isometry group of the scalar manifold and Q̂ described the gauged version
of the H-connection which lives in the compact part of G. One proceeds by
introducing the gauging in the various contributions to the Lagrangian, in
particular the kinetic term for the scalar fields now reads

1√
|g|

Lscal.kin = 1
2GrsDµϕ

rDµϕs, (2.2.10)

where Dµϕ
s = ∂µϕ

s−gAMµ ΘαMksα is the gauged covariant derivative in (2.2.7)
made explicit for the scalar fields. In this expression, ksα are the Killing vectors
describing the scalar manifold isometries along the tα directions. The kinetic
contribution for the vector fields must be modified too. It reads:

1√
|g|

Lv.kin = 1
4IΛΣH

Λ
µνHΣ µν + 1

8
√
|g|
RΛΣϵµντγHΛµνHΣτγ . (2.2.11)

The main ingredients are now HΛ, corresponding to the electric directions of the
improved field strength HM = FM + g

2C
MNΘαMBα, it displays the symplectic

non-abelian curvature FM = dAM + g
2X

M
NP AN ∧AP . Even if its expression

resembles a gauge covariant field-strength, generically it does not share this
property with the electric FΛ. This can be understood by noticing the property
of the symplectic X tensor of not being anti-symmetric in the first two indices.
We have in general, X P

MN =X P
[MN ] +X P

(MN) . Thus, XP
MN can not be directly

interpreted as a structure constant for the gauge algebra since it has a non-
vanishing symmetric component and it does not satisfy a proper Jacobi identity.
The definition of HΛ requires also the Bαµν auxiliary fields. They must be
present to promote FM to the gauge covariant quantity GM = (HΛ,GΛ)8. The
magnetic component of the latter, GΛ = −ϵµνρσ δL

δHρσ
, is the dual vector to

HΛ9. Furthermore, in terms of these ingredients, new Ltop topological terms
and LCS Chern-Simons interactions are required by gauge invariance. Their
derivation is rather involved and we refer the reader to [11].

Concerning the fermionic kinetic terms, their expression is analogous to the
ungauged model with the difference that now the H-connection Q is replaced
by its gauged version Q̂. The same recipes can be implemented to promote
the remaining terms already present in the ungauged model to their gauged
version. It is to say by replacing space-time derivatives, P, Q, and GM

with their gauged version. However, these modifications do not ensure that
8With a little abuse of notation we use GM both for the ungauged and gauged symplectic

vector.
9More precisely, the duality holds when the equations of motion derived from the variation

of Bαµν are imposed. Once this is done, HΛ is identified with GΛ.
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supersymmetry in the sense of the transformations (2.1.24) is preserved. In
fact, it is not. The Lagrangian

L
(0)
N ,D=4 = Lbosonic,gauged+Lfermionic,gauged+Lmixed,gauged+Ltop+LCS

(2.2.12)
has a Gg local symmetry but it is not supersymmetric. However, this problem
can be cured by introducing new terms in the Lagrangian and at the same time
by introducing new contributions to the supersymmetry transformations using
an expansion in the g coupling constant. Indeed, an explicit computation shows
that linear terms in g survive the supersymmetry variation of L (0). Then
one can try to compensate them by adding terms of the same order to the
Lagrangian and to the supersymmetry rules. In principle the procedure could
take infinite steps. Luckily, it stops at second order in the coupling constant
producing the following contributions

1√
|g|

L (1) = g
(

2ψAµ γµνψBν SAB + iλ
I
µγ

µψAµN A
I +λ

I
λJ MIJ

)
+h.c.

1√
|g|

L (2) = −g
2

N
(
N A

I NI
A−12SBCSBC

)
. (2.2.13)

The tensors S, N and M entering the above expressions are called "fermionic
shifts", and they do in general depend on the scalar fields. N A

I = (NI
A)⋆,

SBC = (SBC)⋆. We explicitly see that a scalar potential,
√
|g|V (ϕ) =−L (2),

naturally appears.
As already made explicit in the above expressions, supersymmetry relates

the scalar potential to the fermionic shifts. Furthermore, it poses constraints
between the latter. Let us be more explicit. The fermionic shifts are conveniently
described in terms of the relevant object capturing the main properties of a
gauged supergravity theory, the "T -tensor". It is the H-covariant, scalar
dependent, tensor defined by

T P
MN = (LTc ) Q

M (LTc ) R
N X S

QR (L−T
c ) P

S . (2.2.14)

By definition, the T -tensor satisfies the same linear and quadratic constraints
as the X-tensor, namely

T(MN
PCQ)P ≡ −T(MNQ) = 0 (2.2.15)

CMNTMTN = 0 (2.2.16)[
TM ,TN

]
R

T +TMN
PTPRT = 0. (2.2.17)
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The T -tensor, once expanded in H-irreducible representation, produces all
the necessary ingredients for the definition of the shift tensors. A preliminary
identification of the representations of interest is given by inspecting the
couplings in (2.2.13). Indeed, as already discussed, we require the Lagrangian
to be H-invariant. Further constraints are given by the so-called "gradient
flow equations" and by the "potential Ward Identity". The latter are relation
required by supersymmetry. The gradient flow equations take the following
form

DsSAB = 1
2PsI(ANI

B)

DrNAI = 2PrIBSBA+2MIJ PJA
r + . . . , (2.2.18)

and the potential Ward identity reads

δABV (ϕ) = g2
(
N A

I NI
B−12SBCSAC

)
. (2.2.19)

The same kind of relations can be derived from the T -tensor and its properties.
Indeed, it can be shown that the latter follows from a particular instance of
the quadratic constraint and the former can be obtained by differentiating the
T -tensor. Direct comparison between these identities and the above equations
allows us to correctly identify the S, N and M tensors. As an example of the
technique, an explicit derivation in the N = 3 case is presented in next chapters.
Once this is done, the computation automatically gives us the expression of
the scalar potential. In terms of these ingredients the gauged Lagrangian is
obtained by summing L (0), L (1), and L (2). It is invariant under the gauged
version of the ungauged supersymmetry transformations. In particular, the
variations of fermionic fields are modified with the shift tensors in the following
way

δψAµ = · · ·+ igSABγµϵB

δλI = · · ·+gNAI ϵA. (2.2.20)

The dots refer to the contributions already present in the ungauged model but
modified by the implementation of the gauging recipe.

At this point, we are ready to enter the details of the first example of interest.
Namely, the explicit derivation of an N = 3 D = 4 Gauged Supergravity.
In passing, general mass formulae for the linear perturbations on a given
background will be presented and used to derive interesting mass spectra. In
general, the mass formulae will apply to other models too. This said, the second
example we will analyze is part of a family of dyonic gaugings in the maximal
N = 8 D = 4 model. The latter models can be interpreted as originating from
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a spontaneous compactification of String Theory. We will show that this is the
case by implementing recently discovered techniques exploiting the formalism
of Exceptional Field Theory. We then take the opportunity to introduce this
modern approach to the gauging of those maximal models and derive the mass
formula this way.



Chapter 3

D = 4 N = 3 SO(3)×SU(3) Gauged
Supergravity

The present example consists of a supergravity model derived "from scratch",
meaning that it is not directly obtained from a known consistent truncation
of a spontaneously compactified supergravity theory on a higher dimensional
spacetime. Nonetheless, I want to show that it is interesting on its own in
that it displays a newly discovered feature of the vacua structure of gauged
supergravity theories. Namely, within the present model, families of stable AdS4
vacua parameterized by massless modes are present. These vacua preserve a
different amount of supersymmetries depending on the values of the parameters.
The other known example with such property will be discussed in the next
chapters. The latter will also have the interesting feature of being a consistent
truncation of type IIB supergravity. It can be conveniently presented in the
framework of Exceptional Field Theory. On the other hand, the present chapter
is a direct application of the topics introduced in the previous chapters.

Let me start by noticing that, even if there is no direct proof of the origin of
the present model in terms of a consistent truncation, the theory is inspired by
the spontaneous compactifications of D = 11 supergravity of the form

AdS4×N0,1,0 , (3.0.1)

where the compact factor corresponds to a tri-Sasakian manifold. In particular,
it is an instance of an infinite family of the Sasakian spaces Np,q,r first studied in
[16]. When p,q,r are set to {p,q,r}= {0,1,0} the Sasakian structure enhances
to a tri-Sasakian one1. The space N0,1,0 is the only known tri-Sasakian seven-

1A tri-Sasakian manifold consists of a manifold M whose cone C(M) = R+×M admits
an Hyper-Kähler structure. If this is the case, the cone is also a Calabi-Yau manifold. Indeed,
all Hyper-Kähler manifolds are Calabi-Yau manifolds. Then M is also a Sasaki-Einstein
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dimensional homogeneous manifold. Because of its tri-Sasakian nature, the
background supports, in the full-dimensional picture, three Killing spinors.
The first factor of the background (3.0.1) displays the bosonic conformal
symmetry of a four-dimensional anti-de Sitter space. This latter, combined
with the fermionic symmetries generated by the three Killing spinors, gives
rise to the Osp(3|4) superalgebra which is the N = 3 superconformal algebra
of the boundary theory dual to this configuration [16, 17]. This allows for the
organization of the Kaluze-Klein spectrum in superconformal multiplets of the
relevant Osp(3|4) superconformal algebra. Furthermore, the states transform
nontrivially under the internal SU(3) group corresponding to the isometry group
of the internal space. The Kaluza-Klein states will then be representations of

Giso = OSp(3|4)×SU(3) . (3.0.2)

This was shown explicitly in [18] where general properties for the OSp(3|4)
representations are presented and the relevant supermultiplets are listed. Since
the background exhibits an AdS factor, it is natural to conjecture, in a proper
regime, a duality between the Kaluza-Klein states and the primary operators
of a suitable superconformal field theory. In [19], a proposal for the three-
dimensional dual theory is given and the comparison between its primary
operator and the supergravity spectrum is performed.

At the massless level, the supermultiplet structure is easily given. The
massless graviton multiplet is part of the spectrum. Furthermore, the compact-
ification on N0,1,0 gives rise to nine massless vector multiplets. This translates
in the following fields present in the effective N = 3 lower dimensional language.
The metric field gµν together with three gravitinos ψAµ, three vectors AABµ and
a spinorial field χ• come from the massless vector multiplet. The vector fields
AABµ transforming in the adjoint of the R-symmetry group AABµ can and do
gauge the latter. The massless vector multiplets account for a vector Aµ, a
triplet of spinors λA, and a spinor λ singlet under the R-symmetry group, a
triplet of complex scalars. Eight of the nine vectors coming from the vector
multiplets transform in the adjoint of SU(3) and contribute to the gauging
of the latter. The remaining vector is a singlet under SU(3), its multiplet is
interpreted as the Betti multiplet. The latter, as for the other eight vectors,
are specific to the N0,1,0 compactification since they find their origin in the
cohomology of the latter. The above model is what motivates us to study a
particular instance of the gauged supergravity models of the previous chapters.
We are interested in a D = 4 model because of the AdS4 factor in (3.0.2).
Furthermore, we want to consider an N = 3 supersymmetry as suggested by the

manifold. Homogenous seven-dimensional Sasakian or tri-Sasakian manifolds are relevant in
the study of spontaneous compactifications of eleven-dimensional supergravity of the form
AdS4×M preserving at least N = 2 supersymmetry.
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N0,1,0 compactification. Finally, we want to build a model with gauge group

Gg = SO(3)×SU(3) , (3.0.3)

gauged by a graviphoton and nine vector multiplets.
This is not sufficient in principle to consider the model as originating from a

consistent truncation. Indeed, the analysis carried out in [9] seems to exclude
this possibility. However, as we will describe in detail, we are going to consider
a consistent subsector of the supergravity theory with a smaller scalar manifold
than the one of the full model. In particular, the vacua we are going to study
are all found in a (SU(1,1)/U(1))3 truncation. This feature allows for the
possibility of consistently embedding the solutions we shall discuss in higher
dimensional supergravity. Indeed, the (SU(1,1)/U(1))3 subsector could fit the
analysis of [9]. However, this remains an open problem. At the level of our
analysis, we can infer that the vacuum at the origin of the scalar manifold of
the complete model captures the main properties of the background (3.0.1)
such as the spectrum of massless modes and their packaging in superconformal
multiplets. In the sequel, we will study the full model leaving aside the problem
of consistently uplifting the vacua that it displays.

As already mentioned, the origin of the scalar manifold corresponds to an
isolated N = 3 vacuum. We also unveil new interesting vacua exhibiting a
different amount of preserved supercharges. In particular, the latter appear in
two families displaying N = 1, N = 2 and N = 3 solutions each. Furthermore,
N = 0 perturbatively stable vacua are also present within the same families.
The amount of supersymmetry preserved by the solutions depends on the
background value of three massless fields αi parameterizing them. We can
compute the superconformal multiplet associated with the supersymmetric ones
and we also provide explicit RG flows connecting the two families to the isolated
vacuum at the origin. It is to say, by fixing the constant values of αi one can
choose as IR fixed point of the flow any of the solutions within one of the two
families. The UV fixed point is given by the isolated maximally symmetric
point at the origin of the scalar manifold. An interesting feature of the αi fields
is that they parameterize a manifold with the compact topology T 3/K, K ⊂Gg
being an isomorphic form of the discrete symmetric group S4. Depending on
the amount of preserved supersymmetries, the various vacua nicely fit the latter
manifold. The N = 3 vacuum, different from the central one, is a point inside
the manifold, the N = 2 vacua describe a line, the N = 1 describe a surface and
the remaining points are filled by the non-supersymmetric vacua. In particular,
this exotic family of connected AdS4 vacua can be parameterized by three angles
of a torus T 3 corresponding to the αi fields subject to K-identifications. The
scalar potential is constant along these angles so that, in the dual CFT3 picture,
they should correspond to exactly marginal deformations. It follows that, as we
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will also discuss in the other main example of gauged supergravity presented
in the next chapters, the present analysis would holographically describe a
perturbatively stable conformal manifold parametrized by supersymmetry
breaking marginal deformations.

To be more precise, we find, within the present model, two of such examples
corresponding to two inequivalent ways of truncating the full model to an
(SU(1,1)/U(1))3 scalar manifold. Briefly, concerning the N = 3 vacua, besides
the one at the origin we find that the first one resides in an

SOA
diag(3) = diag(SO(3)×SOI(3))⊂Gg

truncation, while a second one can be found in an

SOB
diag(3) = diag(SO(3)×SOII(3))⊂Gg

truncation. In both cases the SO(3) ⊂ OSp(3|4) factor corresponds to the
R-symmetry of the N = 3 supersymmetric configurations and again in both
cases we have SOI/II(3) ⊂ SU(3) ⊂ Gg. However, in the first cases, we have
that SOI(3) is embedded in SU(3) such that the fundamental representation of
the latter is mapped in the fundamental representation of the former:

3SU(3)
SOI(3)−→ 3 .

In the second truncation we have SOII(3)∼ SUII(2)⊂ SU(3) under which the
fundamental representation branches as

3SU(3)
SUII(2)−→ 2⊕1.

As we will explicitly describe, each of the two non-central N = 3 vacua are
part of a family of (non)supersymmetric vacua with the manifold structure
T 3/K described above. Again they will be conveniently found in two different
truncations analogous to the two SOA/B

diag (3) ones.

3.1 Building the Model

Before entering the details of the vacua structure we will start with specializing
the general features of a supergravity model in D = 4 to N = 3 supergravity.
We will then explicitly illustrate the gauging procedure for the gauge group
of interest. Furthermore, it will provide explicit examples of the derivation of
the fermion-shift tensors, the mass matrices, and the scalar potential from the
H-irreducible components of the T -tensor.
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3.1.1 The Ungauged Model

As anticipated, the ungauged model of this kind features, besides the super-
gravity multiplet, a number n of vector multiplets2. As well-known, for an
N = 3 model in D = 4, the graviton multiplet is made up of the metric field gµν
together with the three gravitinos ψAµ necessary to make supersymmetry local,
with A = 1, . . . ,3, an R-symmetry triplet of vector potentials (graviphotons)
AABµ , and one R-symmetry singlet fermion, the dilatino, χABC = χ• ϵABC . In
the N = 3 case vector multiplets are allowed. We introduce n of them and
we use the label I = 1, . . . ,n to count them. They provide 1×n vector fields
AIµ, 4×9 gauginos λIA, λI , and 6×n real scalar fields that are conveniently
arranged in 3×n complex variables ϕIAB. Alltogether the theory exhibits
nv = 3+n vector potentials.

The complex nature of the scalar sector was first described in [20, 21] where
it is shown that the scalar manifold of an N = 3 D = 4 supergravity must be
of the form:

Mscalar = SU(3,n)
SU(3)×SU(n)×U(1) . (3.1.1)

The latter is a non-compact manifold. Furthermore, the natural metric that
follows from the standard coset geometry makes it a Kähler manifold, as
expected for a supersymmetric gravity theory. The matter content of the model
is then fixed by a convenient choice of the number "n" of vector multiplets. We
will fix later on n= 9. However, many preliminary considerations are true for
generic n. As already introduced in previous chapters, the isotropy group of
the scalar manifold is described by the R-symmetry factor, HR = U(3) in our
case, and by a matter contribution Hmatter = SU(n) which acts exclusively on
the fields originating from the vector multiplets. At the level of the equation
of motion, the global symmetry of the model is the isometry group of the
scalar manifold. The action of the latter on the scalar manifold is extended to
a symplectic linear action on the electric field strengths and their redundant
magnetic counterparts.

It is useful to describe the electric-magnetic G-action in the following complex
representation:

Rη = (3+n)⊕ (3+n) . (3.1.2)

The complex (3+n) representation has the following branch when decomposed
with respect to the isotropy group H:

(3+n) → (3,1)−1⊕ (1,n) 3
n
. (3.1.3)

2Even if we are interested in the n = 9 case, many statements hold with generic n
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Then, we can introduce the natural complex basis for the vector space of the
Rη representation such that G is represented by block-diagonal matrices, the
two blocks corresponding to the two contributions in (3.1.2). In particular, we
have that an element of the Rη vector space is of the form3

VM = (V Λ, VΛ) , V Λ = (V AB, VI) , VΛ = (V Λ)∗ . (3.1.4)

As the notation suggests, V AB corresponds to the (3,1)−1 part of the branching
(3.1.3) and analogously VI describes the (1,n)+ 3

n
contribution of the same

equation. In the basis just introduced we can represent an SU(3,n) element
T ∈G in the following way:

T ∈G → Rη[T]MN ≡

T 0
0 T ∗

 . (3.1.5)

In the above expression T = (TΛΣ) is an element of fundamental representation
of G and it satisfies T †ηT = η, where the standard SU(3,n)-invariant metric
is η = diag(+1,+1,+1,−1, . . . ,−1). The H-branching allows to further split T
into the following blocks:

T =
TABCD TABJ

T I CD T IJ

 . (3.1.6)

It is important to notice that Rη[T]MN , with T ∈ G, is not an Sp(2nv,R)
element. That is to say, Rη is not a symplectic representation of G.4 This
apparent obstruction can be easily overcome by a proper change of basis. In
particular, one can rotate all elements in a symplectic representation where all
the G elements are described by Sp(2nv,R) symplectic matrices in the following
way:

VM = (A †O)MN V
N . (3.1.8)

3Only in this chapter we use underlined indices for the representation Rη.
4The Rη[T ] representation has however a pseudo-symplectic action defined by the 2nv×

2nv matrix Cη whose expression in a convenient notation is:

Cη ≡

(
0 η

−η 0

)
. (3.1.7)

By implementing the identity T †ηT = η, it can be checked that Rη[T ]tCη Rη[T ] = Cη.
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The vector VM in the proper symplectic basis is now a real element with electric
and magnetic components VM = (V Λ, VΛ). Here we give the expression of O:

O =

3 n 3 n

3

n

3

n



1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


.

The role of the latter matrix is to bring the Rη representation to the Rc
v repre-

sentation. The further action of the Cayley matrix A has the Rv representation
as image. In particular, it can be regarded as a map from G to the symplectic
group Sp(2nv,R):

Rv : G −→ Sp(2(3+n),R) ⇔ ∀T ∈G : R[T ]T ·C ·R[T ] = C . (3.1.9)

In the chosen notation, the symplectic invariant-metric has the standard ex-
pression

C≡

 0 1
−1 0

 .
The Rv basis is the correct one to use to define the Lagrangian of the model,
as discussed in the previous chapter. In particular this is the basis naturally
describing the electric field strengths FΛµν = ∂µA

Λ
ν −∂νAΛµ and their magnetic

counterparts GΛµν . It is defined as

GΛµν =−ϵµνρσ
δL

δFΛρσ
. (3.1.10)

They are part of the Rv vector

GMµν ≡

 FΛµν

GΛµν

 , (3.1.11)

An SU(3,n) group element T will act through its Sp(2nv,R) representation. In
general, it will mix the electric and the magnetic components of GM in the
following way:

GMµν → G′M
µν = R[T ]−1

N
M GNµν . (3.1.12)

The symplectic element GM can be locally interpreted as the abelian field
strength of the symplectic electric-magnetic potential AM = (AΛ,AΛ) through
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AMµ ψAµ χ• λIA λI FABµν F Iµν

G (3+n)+(3+n) 1 1 1 1 1 1
H (1,1)0 (3,1)+ 1

2
(1,1)+ 3

2
(3,n)n+6

2n
(1,n) 3(n+2)

2n

(3,1)−1 (1,n)− 3
n

Table 3.1 The G and H representations of vector and fermionic fields. The gauginos
λIA and the λI ones have opposite chirality.

the relation GM = dAM . As far as vectors and fermions are concerned we list
in Table 3.1 their representations with respect to the duality group G and the
isotropy group H ∼HR×Hmatter.

According to the general theory of N > 2 supergravity theories, the scalar
fields parameterize a coset manifold. In our case the ϕ = (ϕs) fields are
interpreted as coordinates of an L(ϕ) ∈ SU(3,n) element which is acted on by
means of the left action of an isometry T ∈ SU(3,n) modulo a compensating
transformation H acting on the right. This action in turn determines the
transformation of the scalar fields after an isometry transformation is performed.
To explicitly describe the coset element L(ϕ) it is convenient to work at the
level of the Lie algebra g of G. In the case at hand we have the decomposition
of g = su(3,n) in its compact and non-compact subspaces given by g = H⊕K
where H = u(3)⊕ su(n) is the Lie algebra of the isotropy group H and K can
be interpreted as the generators corresponding to the scalar fields ϕs. When
this is done we have

L(ϕ) ∈ eK . (3.1.13)

It follows that we are using a parametrization in which H acts covariantly on
the scalar fields. Indeed, the coset structure implies that [H, K]⊂ K so that K
and the scalar fields live in an H representation. In particular, for the scalar
fields ϕs, the relevant representation is the (3,n)k⊕ (3,n)−k one. The index s
then splits as

ϕ= (ϕABJ , ϕABJ) , ϕABJ = (ϕABJ)∗ . (3.1.14)

Accordingly, the expression of the Maurer-Cartan form (2.1.7) in the Rv

representation is:

Ω =
QAB

CD PABJ

PI CD QI
J

 . (3.1.15)

As for the scalar fields we have PABI = (PI AB)∗. For convenience we shall also
introduce PABI = (PABI)∗ and PI AB = (PI AB)∗. As usual, the Riemannian
coset metric can be computed as

Gst(ϕ)dϕs⊗dϕt = PABI
s PABI|t dϕ

s⊗dϕt . (3.1.16)
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3.1.2 The Gauged Model

Now that we have presented the main ingredients of the ungauged model under
discussion and the relevant properties of the latter under the action of the
electric-magnetic duality group G = SU(3, n) we can move on to implement
the gauging procedure previously introduced. We recall here that one of the
main reasons to gauge an N > 2 D = 4 supergravity theory is to introduce a
scalar potential without spoiling the supersymmetry invariance of the model.
This is crucial when searching for vacua different from the Minkowski one that
all ungauged model features. The general case for electric gaugings has been
originally studied in [21]. Here we refine the discussion by implementing the
duality covariant procedure based on the embedding tensor [22–25], see [10, 11]
for reviews, and presented in previous chapters.

In our case, the gauged scalar kinetic term reads as

1√
|g|

Lscal.kin = 1
2GrsDµϕ

rDµϕs = 1
2 Tr(P̂µ ·P̂µ) = P̂ABI

µ P̂ µ
ABI , (3.1.17)

while, as already discussed, the Yukawa terms have the general form:

1√
|g|
LYukawa =g

(
2ψAµ γµν ψBν SAB +iλI

γµψAµNI
A+λ

I
λI MIJ

)
+h.c. .

(3.1.18)

where λI in this specific case collectively denotes the gauginos and the dilatino
spin-1/2 field with the same chirality

λI ≡ {λIA, λI , χ•} .

We will denote the opposite chirality spinors as λI . In N = 3 supergravities, the
fermionic shifts and mass matrices SAB = SBA, NI

A and MIJ can be expressed
in terms of their H-covariant components

SAB = SBA , NIAB , NAI , NA , MIA
J , M•,IA , M•,I , MIA,JB , (3.1.19)

We also introduce the complex conjugate of the latter objects SAB ≡ (SAB)∗,
NI

A ≡ (NI
A)∗, MIJ ≡ (MIJ )∗. A small difference with respect to the general

discussion is that in this case, we use the complex basis Rη so that the T -tensor

TMN
P ≡ (L̃−1)MQ

(
L̃−1 R[XQ] L̃

)
N

P . (3.1.20)

is obtained by dressing XMN
P with L̃−1, where the left index of L̃MN refers

to the real symplectic basis and the right one refers to the complex basis
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symplectic respect to Cη in which the action of G is block diagonal. This does
not introduce subtleties, indeed both the linear and the quadratic constraints
(2.2.15) (2.2.17) are necessary for the consistency of the gauging procedure
to hold. The linear constraint restricts the representation of the T -tensor,
generally transforming in the Rv×Adj(G), to the

(0,1,0, . . . ,0,1)⊕ (1,0, . . . ,0,1,0) (3.1.21)

components, as the Dynkin labels of G-representations, one being the complex
conjugate of the other. This translates into having as only non-vanishing
components the following:

TΛΣΓ = T[ΛΣ]
Γ , TΛΣΓ =

(
TΛΣΓ

)∗
= T[ΛΣ]

Γ .

Recall that in this chapter we use underlined indices Λ : 1, ...,3 +n for the
electric and magnetic components of an element in the basis (3.1.5) which
is complex and symplectic with respect to Cη. We are able to identify the
fermionic shift and mass matrices (3.1.19) as H = S[U(3)×U(n)]-irreducible
tensors extracted from the non-vanishing T -tensor components5 in the following
way:

SAB = −1
2ϵ(A|CDTCDB) ,

NB = TEBE ,
NCI = ϵABCTAB I ,

NIA B = −2TIA B + TIC Cδ
A
B . (3.1.22)

As already anticipated, the gradient flow equations [26, 11] can be found by
inspection of the H-components of the identity:

DT P
MN =−Rv[P] Q

M T P
QN +[T,Rv[P]] P

N , (3.1.23)

where D stands for the H-covariant derivative which acts on T accordingly
to its H-representation. Indeed, one can easily obtain the above equation by
considering the T -tensor definition and the splitting of the Maurer-Cartan form
in (2.1.7) once translated in the suitable representation. As far as the quadratic
constraints (2.2.17) are concerned, they imply that the potential of the model
can be computed from the so-called "potential Ward identity" (2.2.19). In our
case, the above identity takes the form specific to N = 3:

NANB +NAINBI +N B
IC NIC A− 12SACSBC = δBAV . (3.1.24)

5More detailed identities and their derivation can be found in Appendices B and C.
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Here, we have rescaled the embedding tensor and consequently its components
entering the definition of the shift and mass matrices to absorb g, the coupling
constant of the model. This will be a useful notation since for the case under
discussion we will deal with a gauge group Gg allowing for two coupling
constants. They will be captured by independent components of the embedding
tensor. As discussed in the general case, the above equation and the full
quadratic constraints are necessary conditions for the gauging procedure to be
consistent with the original N = 3 supersymmetry of the ungauged model. In
Appendix A we present how to obtain the potential Ward identity starting from
the quadratic constraint of the case under discussion. Now, all the ingredients
necessary to study the model are given. It is left to choose a suitable gauge
group Gg and to explicitly compute all the relevant tensors. However, before
entering the details of a specific gauging let us briefly present general mass
formulae for the fermionic and bosonic fields. We will use them to study
the perturbative stability of the solutions (vacua) presented below. Properly
modified they will hold for a generic gauging and generic N .

3.2 General Mass Formulae

The formulae presented in this section will be relevant for the computation
of the spectrum of perturbation around the relevant AdS4 vacua. The latter
are by construction purely bosonic configurations and the equation of motion
drastically simplify when expanded at quadratic order in the bosonic and
fermionic fields. A further simplification is given by the scalar field configuration.
Later on, we will provide examples of configuration with coordinate-dependent
scalars. However, here we shall focus on constant scalar configurations ϕ0 = (ϕs0)
so that for a solution of the model we have

∂V

∂ϕs

∣∣∣∣∣
ϕ=ϕ0

= 0 . (3.2.1)

As usual, we can relate the extremum V0 = V (ϕ0) of the scalar function V to
the cosmological constant Λ. In our notation, we have the exact match between
the two: Λ = V0. We are going to study the case in which the background
metric describes an AdS geometry with a negative cosmological constant. The
natural scale of the relevant AdS space will be related to the cosmological
constant through the relation L=

√
− 3
V0

.
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3.2.1 Scalar Masses

We can obtain the mass formula for the scalar fields by expanding to quadratic
order the scalar sector of the theory

1√
|g|

Lscal = 1
2GrsDµϕ

rDµϕs−V (ϕ) , (3.2.2)

around the background value ϕ0. The other fields do not contribute to the
computations. By implementing the procedure just outlined, we can derive
the linearized scalar equation of motion which correspond to the Klein-Gordon
equation with square-mass matrix given by:

M (scal)
r
t = G ts ∂2V

∂ϕs∂ϕr

∣∣∣∣∣
ϕ=ϕ0

. (3.2.3)

We then compute the scalar spectrum by evaluating the latter matrix and by
extracting its eigenvalues which will correspond to the square of the masses of
the scalar perturbations.

3.2.2 Vector Mass Matrix

The relevant sector of the theory for the vector masses comes from the coupling
of the latter with the scalars, indeed all fermions vanish in our backgrounds.
In this case, we derive the Euler-Lagrange equation

ϵµνρσDνG
M
ρσ = 2CMN δLmatter

δAMµ
. (3.2.4)

The latter encodes, in terms of the duality covariant vector GM , the dynamical
Maxwell-like equations of motion for the physical fields FΛ and their Bianchi
identities. We will now make use of the so-called "twisted self-duality condition"
in the case of a bosonic background

∗G=−C ·M·G (3.2.5)

which follows from the definition (2.1.9) of GΛ, and we expand equation (3.2.4)
at linear order in the gauge fields. The result is of the form

MMN
∗D∗GN = g2ΘαM krαGrsk

s
βΘ

β
NA

N . (3.2.6)
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so that the squared masses of the vector fields can be computed from the matrix

M (vector)P
M = g2 Rv[L−1] P

Q Rv[L−1] N
Q KNM =−g2 (M−1 ·K ) P

M

(3.2.7)
with

KMN ≡ ΘαM krαGrsk
s
βΘ

β
N

∣∣∣
ϕ=ϕ0

. (3.2.8)

Again, by extracting the eigenvalues of the latter quantity we obtain the
mass spectrum for the spin-one fields. One can already predict that half
of the spectrum will correspond to massless modes. However, they are not
to be considered physical degrees of freedom. Indeed, the duality covariant
formulation of gauged supergravity is redundant since we have introduced the
"magnetic" counterparts of the physical "electric" field strengths. In other words,
by performing a global G transformation, at the level of the equation of motion,
we can rotate the model in a pure electric frame. In the latter configuration,
ΘΛα = 0, and the quadratic constraints imply that the matrix has a Kernel
with dimension at least equal to nv. Furthermore, we can derive an expression
for the vector masses in terms of the T -tensor. Indeed, we note that

det
(
M (vector)

)
∝ det

(
Rv[L−1] ·K ·Rv[L−T ]

)
,

so that the mass spectrum can be equivalently computed by extracting the
eigenvalues of the following object

M(vector)
PN = g2

4 Tr
(
TP ·TN +TP · (TN )†

)
. (3.2.9)

Where we have used that

KMN = 1
2Tr(KMKN ) , (3.2.10)

with
KM ≡

1
2
(
Rv[L]−1 ·XM ·Rv[L]+ (Rv[L]−1 ·XM ·Rv[L])†

)

3.2.3 Fermionic masses

The relevant terms for the fermionic masses are the Yukawa terms (3.1.18).
Here, we explicitly see the role that the fermionic shifts and mass matrices
SAB, NAI and MIJ play in the dynamics of the model. In particular, MIJ and
SAB are relevant for the λI masses and the gravitinos masses respectively. The
NAI shifts will be relevant for the definition of goldstinos, the supersymmetric
analogous of the goldstone bosons.
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Gravitinos masses and Supersymmetry breaking

Since we are working with a bosonic configuration we have as background
values for the fermionic fields

⟨ψAµ ⟩= ⟨λI⟩= 0 .

Among the supersymmetries ϵAQA we can find those that satisfy:

⟨δψAµ⟩ = DµϵA+ iSAB|ϕ=ϕ0γµϵ
B = 0 (3.2.11)

⟨δλI⟩ = N A
I |ϕ=ϕ0ϵA = 0 (3.2.12)

These are necessary conditions for the supersymmetry ϵAQA to be a symme-
try of the bosonic background. Indeed, equations (3.2.11)(3.2.12) describe a
supersymmetry variation of the fermionic fields on the bosonic solution. They
must hold true if we want to preserve the background. If this is the case,
the Killing spinor equation (3.2.11) can have ϵa, a : 1, ...,N ′ ≤N independent
solutions. One can easily derive from the latter the following integrability
condition constraining the gravitinos shift matrix:

SaASbA|ϕ=ϕ0 =−V0
12δ

b
a . (3.2.13)

On the other hand, consistency of this assumption with the second equation
(3.2.12) tells us that the ϵa directions must be in the Kernel of the λI shift
matrices so that in a proper R-symmetry basis we have

N a
I = 0 .

A closer look at the Yukawa terms unveils that the gravitinos shift matrix plays
also the role of their mass matrix. This makes sense since, as in the case of a
bosonic partial symmetry breaking, a massless or massive mode corresponding
to a field gauging a symmetry relates to a preserved or spontaneously broken
generator respectively. In the case N ′ = 3 all gravitinos are to be considered
massless and their mass matrix

SS⋆|ϕ=ϕ0

is, in a proper basis, diagonal with non-vanishing entries m2
ψ = −V0

12 . As
expected in the case of fully preserved supersymmetry on an AdS background.
Otherwise, the modes corresponding to preserved supersymmetry directions
will have the latter squared mass and the masses of the ones signaling a broken
supersymmetry can again be extracted from the SS⋆|ϕ=ϕ0 eigenvalues.
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Spin-1
2 masses

As explained above, when some supersymmetry generators are not preserved
by the vacuum under consideration the N shifts will not vanish. We can use
them to define the "goldstinos"

ηA = λINI
A .

The latter can be used to decouple the gravitinos from the other fermionic
fields through the redefinition

ψAµ → ψAµ + i

12
∑
C

 S
SS⋆+ V0

12 13×3

AC γµηC . (3.2.14)

Here, the summed R-symmetry index refers to the broken supersymmetry
directions. The quantity SS⋆+ V0

12 13×3 restricted to the latter is non-degenerate.
By implementing the latter equation and by considering, at the level of the
equations of motion, first-order contributions in λI one obtains the Dirac
equation

iγµDµλI =
2MIJ −

1
3
∑
AB

 S
SS⋆+ V0

12 13×3


AB

NAINBJ

λJ ≡MIJ λ
J

(3.2.15)
From the latter, we easily obtain the masses for the λI fields by computing the
eigenvalues of the squared mass matrix MM†J

I .

3.3 The Model with Gauge Group SO(3)×SU(3)

Let us now specialize our analysis to the relevant case in which the gauge
group of the model is chosen to be Gg = SO(3)×SU(3). As already argued, the
second factor corresponds to the isometry of the central AdS4 N = 3 vacuum
which we believe to effectively describe the background (3.0.1) with internal
space N0,1,0 while the first factor corresponds to the R-symmetry of the relevant
superconformal symmetry preserved by the configuration. However, the model
is interesting even when not considering the relation with higher dimensional
models. Indeed, we find, in the case of the gauge group under discussion, new
families of (non)-supersymmetric vacua. For the sake of clarity, the analysis is
carried out in a pure electric gauging so that the only non-vanishing entries
of the embedding tensor are the ΘΛα ones. For the case at hand, a dyonic
formulation is physically equivalent and it does not add new features. The
choice Gg = SO(3)×SU(3) is fixed by setting n= 9 and it is consistent with the
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quadratic constraints (2.2.5). In particular, the 24-dimensional representation
Rv contains two copies of the 11-dimensional adjoint representation of Gg.
Indeed, we have the splitting

12 SO(3)×SU(3)−−−−−−−−→ (3,1)⊕ (1,8)⊕ (1,1) . (3.3.1)

of the G fundamental representation with respect to SO(3)×SU(3). In the
above formula, the singlet corresponds to the vector field of the Betti multiplet.
There are no scalar fields in the graviton multiplet and they parameterize the
coset manifold

Mscalar = SU(3,9)
S[U(3)×U(9)] , (3.3.2)

Out of the G isometries generators tα we select the Gg gauged ones through the
embedding tensor which in turn defines the X-tensor (2.2.2). It is convenient
to directly present the expression of XM . We use the notation t̂ℓ, ℓ = 1,2,3,
and t̂m, m= 1, . . . ,8 for the generators of SO(3) and SU(3), respectively. Their
explicit form is given in appendix C.1. We then associate a different coupling
constant g1, g2 to each of the two Gg factors by defining

Xℓ = g1 t̂ℓ , Xm = g2 t̂m . (3.3.3)

The latter, and their complex conjugate, correspond to the non-vanishing
entries of the 24-dimensional vector XM . We have,

{XΛ}= {Xℓ, Xm, XΛ=12 = 0} .

Furthermore,
XΛ = 0

because of our choice of working in an electric frame in which the AΛ magnetic
vectors are not involved in the gauging. The explicit form of the generators t̂ℓ
and t̂m in the Rη representation (3.1.5) is given by

Rη[t̂] =


adj(t̂) 03×9 03×3 03×9

09×3 09×9 09×3 09×9

03×9 03×9 adj(t̂)∗ 03×9

09×3 09×9 09×3 09×9

 t̂ ∈ so(3) (3.3.4)
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Rη[t̂] =



03×3 03×8 0 03×3 03×8 0
08×3 adj(t̂) 0 08×3 08×8 0
0 0 0 0 0 0
03×3 03×8 0 03×3 03×8 0
08×3 08×8 0 08×3 adj(t̂) 0
0 0 0 0 0 0


t̂ ∈ su(3) . (3.3.5)

The electric vector fields naturally belong to the

AΛµ : (3,1)⊕ (1,8+1) , (3.3.6)

Gg = SO(3)×SU(3) representation. As far as the scalar fields are concerned,
we implement the H-covariant parametrization of the coset manifold (3.3.2) in
which the action of Gg is simpler. In particular, the scalar fields belong to the
representation

ϕs : (3,8) [ϕℓ,m]⊕ (3,1) [ϕℓ]+ c.c.

as they correspond to the K directions in (2.1.6).

3.4 Consistent Truncations and Two Classes
of Vacua

As in many gauged supergravity theories, working with the full scalar manifold
is often a very complicated task. In our particular example, we have 54 real
scalars and they will appear in the scalar potential computed from (3.1.24) in
a nonlinear manner. It is then not obvious how to extremize V (ϕ) and thus
to have a complete picture of the vacua of the model. However, one can try
to analyze a sufficiently small subsector of the theory exhibiting a residual
symmetry. It is to say, one can simplify the model to a consistent truncation by
restricting the fields to the singlets of the action of a suitable subgroup of the
symmetries of the theory. The consistency relies on the fact that interactions
between singlets can only give rise to other singlets. In particular, to perform
such truncation, one can choose a subgroup of G preserving the XM tensor.
This latter condition is sufficient for the equation of motion to be preserved.
As we explain below, we can restrict to two different consistent truncations in
which the scalar manifold reduces to

Mscalar,trunc ∼
[SU(1,1)

U(1)

]3
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and it is parameterized by three complex scalar fields. This will lead us to a
simpler scalar potential that can be analytically extremized. Interestingly, two
new classes of AdS vacua are found and we study them in detail. The first
class of solutions is found in the "Type (i)" truncation under the discrete group

Type (i): g1 = exp(π(Ĵ1 + λ̂1)) ∈ SU(2)D ⊂Gg ⊂G
g2 = exp(π(Ĵ2 + λ̂2)) ∈ SU(2)D ⊂Gg ⊂G ,. (3.4.1)

while the second one belongs to the "type (ii)" truncation identified by

Type (ii):
g1 = diag(1,−1,−1,1,1,1,−1,−1,−1,−1,1,1) = exp(π(−Ĵ1 +2λ̂2)) ∈ SO(3)D ⊂ Adj(Gg)⊂G
g2 = diag(−1,1,−1,−1,−1,1,1,1,−1,−1,1,1) = exp(π(−Ĵ2 +2λ̂5)) ∈ SO(3)D ⊂ Adj(Gg)⊂G
g3 = diag(1,−1,−1,−1,1,−1,1,−1,1,−1,−1,−1) ̸⊂ Adj(Gg)⊂G, (3.4.2)

where Ĵi and λ̂I denotes the T -representation (3.1.5) of the gauge generators
Ji ∈ so(3), iλI/2 ∈ su(3) presented in Appendix C.1. The SU(2)D and SO(3)D
groups correspond to a suitable diagonal combination of the R-symmetry
algebra and an so(3) subalgebra of the remaining part of the gauge symmetry.
The above truncations give rise to two different scalar manifolds of the form[SU(1,1)

U(1)

]3
corresponding to two inequivalent ways of embedding su(1,1)3 in K,

the non-compact directions of the scalar manifold. Let us be more explicit by
considering an explicit basis for the representation of an element k ∈ K as a
particular element of the fundamental representation of su(3,9). We have

k =
 03×3 X3×9

X†
9×3 09×9

 , X ∈Mat3×9(C) (3.4.3)

The Xs corresponding to the two inequivalent truncations are given by

Type (i): X =


z1 0 0 0 0 0 0 0 0
0 z2 0 0 0 0 0 0 0
0 0 z3 0 0 0 0 0 0

 (3.4.4)

Type (ii): X =


0 z1 0 0 0 0 0 0 0
0 0 0 0 z2 0 0 0 0
0 0 0 0 0 0 z3 0 0

 (3.4.5)
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and the embedding of the manifold Mscal,trunc parameterized by (z1, z2, z3) is
naturally given by[

SU(1,1)
U(1)

]3
↪→MS : (z1, z2, z3) 7→ exp(k) (3.4.6)

No other scalar fields are allowed when truncating the model by means of
the discrete groups (3.4.1) or (3.4.2). The properties of the latter groups as
subgroups of G will play a role in the physical features of the vacua found in the
corresponding truncations, so let us briefly present the relevant points. In the
type (i) case, one can check that the group elements (3.4.1) close a quaternionic
group. Indeed, one has the natural isomorphism (g1→ i, g2→ j), where i and
j are the usual imaginary units of quaternions. On the other hand, in the type
(ii) case, we have a discrete group generated by three commuting elements of
order two. Then, the group (3.4.2) is isomorphic to Z2×Z2×Z2. One must not
be confused by the fact that in the type (ii) case the g3 element is not inside
the gauge group. Indeed, it is sufficient for the latter to act as a symmetry of
the X-tensor. This is the case, so we are sure that (3.4.5) defines a consistent
truncation. Another important difference between the two groups is given by
their embedding in G. In particular, in the type (i) and type (ii) cases there
are elements of a diagonal combination between the SO(3)R R-symmetry and
the groups

SU(3)⊃

SU(2) generated by {λ1,λ2,λ3} (i)
SO(3) generated by {λ2,λ5,λ7} (ii)

(3.4.7)

respectively. In the first case, we see that the action of the SO(3)R rotation is
combined with rotations of SU(2) corresponding to a spinorial representation of
SO(3). Then, the elements g1 and g2 of the type (i) can be interpreted as two
non-commuting rotations by π/2 and they are sufficient to generate the whole
quaternionic group. In the second case the rotations g1 and g2 correspond
instead to a vector representation of SO(3) and they commute. As we will see,
the two different ways of embedding the three-dimensional rotation group in
SU(3) as in (3.4.7) reflect in different physical properties of the truncations (i)
and (ii). As an example, we will present two analogous families of solutions with
very similar features. However, their spectrum of perturbation will organize in
different combinations of (super)conformal multiplets exhibiting different R-
symmetry representations, in the supersymmetric case. The N = 3 non-central
vacuum corresponding to the (i) case gives rise to spinorial representations of
the R-symmetry while the spectrum of the analogous type (ii) vacuum will
involve vector representations only. As already discussed in detail, once we
have identified the relevant truncation we can easily define the corresponding
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coset representative and use it to dress the X-tensor. In this way, we obtain
the T -tensor and from the latter we extract the fermionic shifts. The power of
working with a consistent truncation is that we can algebraically restrict to the
scalar singlets so that the extrema of the scalar potential

V |singlet = 1
3Tr

(
NANA+NAINAI +N A

IC NIC A− 12SACSAC
)∣∣∣∣

singlet
.

(3.4.8)

will correspond to actual extrema of the full potential in (3.1.24). For the
actual computation, we choose a parametrization of the scalar fields (z1, z2, z3)
in terms of a radial and an angular coordinate. In particular we set

zj = rj exp(iαj), j = 1,2,3, where rj ∈ R≥0 and αj ∈ [0,2π) . (3.4.9)

The geometry of the manifold Mscal,trunc is described by the following coset
metric

ds2 =
3∑
i

(
2dri2 + 1

2 sinh2 (2ri)dαi2
)
. (3.4.10)

The scalar potential obtained from the Type (i) truncation is given by

V (ri,αi) = g2
1 (−3 −2cosh(2r3)− cosh(2r1)(2+cosh(2r2)+cosh(2r3))−

cosh(2r2)(2+cosh(2r3))) + g2
2 (3 +cosh(2r2)(−2+cosh(2r3))

−2cosh(2r3) + cosh(2r1)(−2+cosh(2r2)+cosh(2r3)))(3.4.11)

and the analogous expression for the Type (ii) case is obtained as

V (ri,αi) = g2
1 (−3 −2cosh(2r3) − cosh(2r1)(2+cosh(2r2)+cosh(2r3))−

cosh(2r2)(2+cosh(2r3))) + g2
2
4 (3 +cosh(2r2)(−2+cosh(2r3))

−2cosh(2r3) + cosh(2r1)(−2+cosh(2r2)+cosh(2r3)))(3.4.12)

As one can easily check, they just differ in the second term. In particular, one
can obtain the first one from the second one by substituting g2→ 2g2. This
latter fact can be traced back to the two different embeddings in (3.4.7). Note
that the above expressions do not depend on αi. Since these angular variables
are not Goldstone bosons, they correspond to genuine flat directions.

Now, by virtue of the Gradient-Flow equations, the potential in (3.4.11,3.4.12)
can be re-interpreted in terms of a “superpotential”; such a superpotential, W ,
is strictly dependent on the eigenvalues of the fermionic shift SAB, which are
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given by

Type (i): SAB = δAB

g1
3∏
j=1

cosh(rj)−g2e
i(−αB+αC+αD)

3∏
j=1

sinh(rj)
 ,

(3.4.13)

Type (ii): SAB = δAB

g1
3∏
j=1

cosh(rj)−
g2
2 e

i(−αB+αC+αD)
3∏
j=1

sinh(rj)
 ,

(3.4.14)

with αB ̸= αC ̸= αD. In both type (i) and (ii) truncations, we can construct
the superpotential W(ri,αi) in terms of the modulus of any of the diagonal
entries of SAB (e.g. S11):

W(ri,αi) = 2 |SAA| . (3.4.15)

The scalar potential is defined through the ”superpotential equation”

V (rj) = 2G rs ∂

∂ϕr
W(rj ,αj)

∂

∂ϕs
W(rj ,αj) − 3W(rj ,αj)2 , (3.4.16)

which holds both for Type (i) and Type (ii) vacuum. Notice that the dependence
on αi drops out in the expression of the potential. For this reason, we can
define an αi-independent superpotential as follows:

W0(ri)≡W(ri,αi = 0) , (3.4.17)

in terms of which the potential reads:

V (rk) =
3∑
i=1

(
∂

∂ri
W0

)2
−3W2

0 . (3.4.18)

We shall use this function to derive the domain wall solution in section 3.6. We
find a scalar potential with three flat directions (i.e. not Goldstone bosons)
when restricted to the truncations defined above. In the dual CFT, these flat
directions are natural candidates for exactly marginal deformations. In fact the
three angles will parametrize two 3-tori (T 3

(i), T
3
(ii)) of vacua, to be discussed

below. Although the potential at these extrema does not depend on αi, the
amount of preserved supersymmetry does, thus realizing a phenomenon of
spontaneous supersymmetry breaking through marginal deformations. To our
knowledge, these manifolds of vacua of the N = 3 model under consideration,
preserving different amounts of supersymmetry, have not been discussed in the
literature so far. Let us discuss them in detail.
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3.4.1 The Two Families of Vacua

Inspection of the gradient of the potential shows that one can consistently set6

r1 = r2 = r3 = r. This allows us to write a more compact formula for the scalar
potential to be extremized

Type (i): V (r,α1,α2,α3) = V (r) =−12
[
g2

1 cosh4(r)−g2
2 sinh4(r)

]
,

(3.4.19)

Type (ii): V (r,α1,α2,α3) = V (r) =−12
[
g2

1 cosh4(r)− g
2
2
4 sinh4(r)

]
.

(3.4.20)

The extremality condition ∂V
∂r = 0 determines the following three distinct values

r = rvac for r at the extrema:

Type (i): rvac = 1
2 log

(
g2 +g1
g2−g|

)
=⇒ T 3

(i) of extrema: ∃ g2 > g1 ,

(3.4.21)

Type (ii): rvac = 1
2 log

(
g2 +2g1
g2−2g1

)
=⇒ T 3

(ii) of extrema: ∃ g2 > 2g1 ,

(3.4.22)
Origin: rvac = 0 =⇒ isolated extremum: ∀ g1,g2 .

(3.4.23)

We see that we have one isolated vacuum that exists for all values of the
couplings g1,g2. It is located at the origin O of the scalar manifold as expected.
Aside from it, there are two types of non-trivial vacuum manifolds: both of them
are three-tori T 3 parameterized by (α1,α2,α3), though embedded differently
into the scalar manifold Mscalar. The Type (i) and type (ii) T 3-vacua only
exist for g2 > g1 and g2 > 2g1, respectively. The corresponding values of the

6 The other vacua of the truncations have r2 = r3 = 0 (when g1 = 0) or r1 = r2 and r3 = 0
(modulo permutations of the radii). They correspond to supersymmetric Minkowski vacua
or non-supersymmetric and perturbatively unstable AdS vacua respectively. The first case
corresponds to a model with ungauged graviphotons. Here we shall focus on perturbatively
stable AdS vacua.
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scalar potential V (i.e. the cosmological constants at the extrema) are:

Type (i): Λ= V |rvac =−12 g2
1g

2
2

g2
2−g2

1
, (3.4.24)

Type (ii): Λ= V |rvac =−12 g2
1 g

2
2

g2
2−4g2

1
, (3.4.25)

Origin: V |rvac =−12g2
1 . (3.4.26)

Thus all vacua have a negative constant scalar curvature, as expected for AdS4
spacetime geometries. We still need to introduce one more refinement since
the discussion above was slightly imprecise. The points of the tori T 3 of Type
(i) or (ii) are not all gauge inequivalent. There is a discrete subgroup Γ ⊂Gg
of the gauge group that identifies them. It acts on the (z1, z2, z3) coordinates
introduced in (3.4.6) in terms of a 3-dimensional irreducible representation

Inversions:


−1 0 0
0 −1 0
0 0 1



−1 0 0
0 1 0
0 0 −1




1 0 0
0 −1 0
0 0 −1



Permutations:


0 1 0
1 0 0
0 0 1




1 0 0
0 0 1
0 1 0




0 0 1
0 1 0
1 0 0


(3.4.27)

The first line represents inversions of all possible pairs of the z-coordinates
(shifts of their α-phases by π), while the second line acts by permutations.
These matrices generate the discrete group

Γ ≃ S4 ≃ S3 ⋉K4 ≃ T h24 ≃O24 (3.4.28)

where Sn is the symmetric group of n objects, K4 ≃ Z2×Z2 is the Kleinian
four-group, T h24 ⊂O(3) is the full tetrahedral group (including inversions) and
finally O24 ⊂ SO(3) is the rotational (orientation preserving) octahedral group.
The discrete group Γ ≃ S4 can be presented by 3 generators and relations
among them. A possible choice of these generators (in the 3-dimensional irrep)
consists of the 3 boxed matrices in (3.4.27). So the conclusion of this analysis
is that the vacuum manifold Mvac depends on the couplings g1,g2 and takes
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the form

Mvac =


g2 ≤ g1 : O
g1 < g2 ≤ 2g1 : O∪T 3

(i)/S4

g2 > 2g1 : O∪T 3
(i)/S4∪T 3

(ii)/S4

(3.4.29)

We may interpret the appearance of new vacua for the above ranges of the
coupling constants in terms of the occurrence of phase transitions. As will be
discussed in the sequel, according to the specific phases, different RG-flows
between the above vacua can exist.

Next, we will characterize interesting submanifolds of the vacuum manifold
according to supersymmetry or gauge symmetry-breaking patterns. To analyze
supersymmetry breaking it is sufficient to study the kernel (or equivalently
image) of the generalized fermionic shift tensor N A

I of spin–1
2 fields. The

index I runs over all spin–1
2 fields in the theory. In the case of an N = 3

supergravity in d= 4 dimensions under consideration it means I = 1, . . . ,37 in
the following order: I ∈{1 dilatino, 9×1 gaugino R–symmetry singlets, 9×3
gaugino R–symmetry triplets}. Then the number of unbroken supersymmetries
in a given vacuum is determined as

Nvac = dim
(

KerN A
I

∣∣∣∣
vac

)
(3.4.30)

In light of the potential Ward identity (3.1.24), the number of preserved
supersymmetries is equal to the number of eigenvalues SAA of the diagonal
matrix SAB (see (3.4.13) and (3.4.14)) satisfying

|SAA| = 1
2L =

√
−V0/12, (3.4.31)

where L =
√
−3/V0 is the AdS radius. Both for type i) and ii), the above

condition is met (modulo permutations in angles αi) for one, two, and three
eigenvalues when:

N = 1 α1 = α2 +α3 ,

N = 2 α1 = α2 , α3 = 0 ,
N = 3 α1 = α2 = α3 = 0 . (3.4.32)

All other points break supersymmetry completely. In Figure 3.1 we graphically
illustrate the structure of both type i) and ii) vacua, parametrized by α1, α2α3,
where the identifications implemented by the group Γ are taken into account.
The inversions in this group amount to shifting two angles by ±π, leaving the



3.4 Consistent Truncations and Two Classes of Vacua 51

Figure 3.1 Representation of one of the two manifolds of vacua parametrized by
α1, α2, α3. There is a residual identification (3.4.34) among the points on the plane
α3 = 0. The vertices (−π,−π,−π) and (π,π,π) are also identified.

third unaltered. We can fix these symmetries, as well as the permutations in
Γ , by restricting the values of the angles to the following domains:

D1 : −π ≤ α1 ≤ α2 ≤ α3 ≤ 0 ,
D2 :0≤ α3 ≤ α2 ≤ α1 ≤ π . (3.4.33)

which are represented in Figure 3.1 by the colored tetrahedra. There is still an
identification to be considered among the points in the shaded region of the
graph. It identifies the two triangular faces of the tetrahedra at α3 = 0 and
acts as follows:

(α1, α2) ∈D1 ∼ (α2 +π, α1 +π) ∈D2 . (3.4.34)

Hence we can describe the independent N = 2 vacua (α1 = α2, α3 = 0) by the
segment belonging to D1 only. Let us now describe the gauge group breaking
patterns in various vacua. To determine the subgroup H0 ⊂Gg of the gauge
group that remains unbroken in the vacuum, one solves for the centralizer
h0 ∈ Lie(H0)⊂ su(3,9) of the coset generator k in (3.4.6) evaluated at the given
vacuum [

k
∣∣∣
vac
,h0

]
= 0 (3.4.35)
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Equipped with this knowledge let us classify the submanifolds of Mvac based
on the residual gauge symmetry. We systematize the discussion starting from
most generic submanifolds with the least residual gauge symmetry, going to
more restricted submanifolds with a bigger gauge symmetry according to the
following chain of subgroups

1⊂ ·· · ⊆H(k)
0 ⊆ ·· · ⊆H(1)

0 ⊂Gg (3.4.36)

Below we give the list of special submanifolds of Mvac, together with their
properties, i.e. topology, preserved supersymmetry and residual gauge symme-
try 7

Type (i): g2 > g1

(α1,α2,α3) generic
Mvac = T 3/S4

N = 0
H0 = U(1)

⊃

⊆

(α2 +α3,α2,α3)
Mvac = T 2/K4

N = 1; (α2,α3 ̸= 0)
H0 = U(1)

⊃

⊂

(α2,α2,0)
Mvac = S1/Z2

N = 2; (α2 ̸= 0)
H0 = U(1)D×U(1)

̸⊇

⊂

(α1,α1,α1)
Mvac = S1/Z2α1 ̸= 0 : N = 0
α1 = 0 : N = 3

H0 = SU(2)D×U(1)

r→0−−−→
Mvac = pt =O
N = 3
H0 =Gg

(3.4.37)

7In the following diagrams, the upper inclusion sign captures the relation between various
submanifolds, while the lower one represents relations among unbroken gauge groups H0.
The inclusion between gauge groups is regular, but this is not always the case for the vacuum
manifolds. For instance the two circles (with antipodal identification) are disjoint up to
one point that they share. The first circle is N = 2, the second one is N = 0 and the single
common point is N = 3.
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Type (ii): g2 > 2g1

(α1,α2,α3) generic
Mvac = T 3/S4

N = 0
H0 = 1

⊃

⊆

(α2 +α3,α2,α3)
Mvac = T 2/K4

N = 1; (α2,α3 ̸= 0)
H0 = 1

⊃

⊂

(α2,α2,0)
Mvac = S1/Z2

N = 2; (α2 ̸= 0)
H0 = U(1)D

̸⊇

⊂

(α1,α1,α1)
Mvac = S1/Z2α1 ̸= 0 : N = 0
α1 = 0 : N = 3
H0 = SO(3)D

r→0−−−→
Mvac = pt =O
N = 3
H0 =Gg

(3.4.38)

As we commented in (3.4.7), Type (i) vacua are associated with the embedding
SU(2)⊂ SU(3) which has a U(1) commutant. Namely, one takes the diagonal
combination of this SU(2) subgroup with the SO(3) factor in the gauge group
(taking also into account the U(1) commutant) to arrive at (see (3.4.36))

H
(1)
0 = SU(2)D×U(1) (3.4.39)

This is the residual gauge symmetry of the S1/Z2 vacua (first box on second
line of (3.4.37)). The gauge groups of all other vacua in the Type (i) chains
are subgroups of this one. Similarly, the only other non-abelian subgroup of
SU(3) is SO(3). The embedding SO(3)⊂ SU(3) has no commutant, so in this
case, one arrives at

H
(1)
0 = SO(3)D (3.4.40)

which is the residual gauge group of highest rank for Type (ii) vacua in (3.4.38).
Moreover, let us remark that the singlets with respect to these maximal
subgroups H(1)

0 are the unique ones given in (3.4.4) and (3.4.5) (with the
appropriate specification of phases shown in (3.4.37) and (3.4.38)). To argue
this, as a first step, it is useful to remind the branching rules of the adjoint
representation 8 of SU(3) with respect to its only two non-abelian subgroups
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SU(2) and SO(3)

8
∣∣∣∣
SU(3)

→ (1⊕2×2⊕3)
∣∣∣∣
SU(2)

(3.4.41)

8
∣∣∣∣
SU(3)

→ (3⊕5)
∣∣∣∣
SO(3)

(3.4.42)

Recall that the scalar fields parameterizing the scalar manifold Mscalar trans-
form in the (3,8 + 1) representation under Gg = SO(3)×SU(3). So combining
the above decomposition with the adjoint representation 3 of SO(3) and re-
stricting to the diagonal subgroups results in

(3,2×1⊕2×2⊕3)
∣∣∣∣
SO(3)×SU(2)

→ (1⊕2×2⊕3×3⊕2×4⊕5)
∣∣∣∣
SU(2)D

(3.4.43)

(3,1⊕3⊕5)
∣∣∣∣
SO(3)×SO(3)

→ (1⊕3×3⊕2×5⊕7)
∣∣∣∣
SO(3)D

(3.4.44)

We see that in both cases there is a unique singlet as we claimed.
Having analyzed the residual supersymmetry of our distinguished subset

of vacua, we move on to calculating mass spectra in each of these vacua.
We use the general formulae for mass matrices for fields of all spins given in
previous chapters. Then we apply these techniques and compute the spectra
in all supersymmetric points and show that they organize into OSp(N|4)
supermultiplets, for N = 1,2,3 8. As usual in the AdS/CFT correspondence
literature, this result suggests the duality between our backgrounds and three-
dimensional (super)conformal field theories in which operators dual to the states
described by the (super)conformal multiplets are present. The multiplets also
provide the relevant conformal data for the dual operators. In this framework,
the domain wall solutions presented in the next sections will correspond to RG
flows between different conformal field theories triggered by relevant operators.
As discussed in detail, the massless parameter αi will, in the dual picture,
classify families of RG flows between conformal field theories exhibiting different
amounts of superconformal symmetries.

8We computed mass spectra also for AdS4 vacua that break supersymmetry completely
to SO(3,2).
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3.5 Organizing supergravity fields into OSp(N|4)
supermultiplets

Here we will show results for vacua that preserve N = 1,2,3 supersymmetry.
There are however N = 0 vacua, which completely break supersymmetry and
the mass spectrum of supergravity excitations around these vacua has been
computed as well. However, it is not particularly illuminating and for this reason,
it will not be presented explicitly. Besides the importance of the computation
given the gauge/gravity correspondence, the matching of the spectrum with
(super)conformal multiplets is a consistency check for our computation. Indeed,
on general grounds, one expects this behavior for linearized perturbations
around an AdS4 background whose isometry in four dimensions plays the role
of the conformal algebra in one dimension less.

3.5.1 General comments on OSp(N|4) supermultiplets

To describe supermultiplets we will follow the notation of [27]. The particular
case of OSp(N|4) supermultiplets relevant in this chapter was also studied
earlier in [28]. We briefly summarize just the necessary conventions and
definitions of [27] useful in our special case. For details, the reader is kindly asked
to consult the original paper. Supermultiplets of OSp(N|4) will be classified by
Dynkin labels of its maximal compact subgroup SO(N )R×SO(3)J ×SO(2)∆.
The first factor represents the R–symmetry, the second the (Wick rotated)
Lorentz transformations in three dimensions and finally the last factor is
generated by the dilatation operator D. At the level of algebras, we use for
the first two factors the isomorphism so(3)≃ su(2), whenever available (always
for the spin part and the R-symmetry if N = 3). In such a situation, R and J
are understood as su(2) weights9. For N = 2, the SO(2)≃U(1) R-charge takes
values in real numbers, R ∈ R. Finally, if N = 1, there is no R-symmetry, and
states are labeled just by spin and scaling dimension. Then a supermultiplet
will be denoted by its lowest weight state

X[J ](R)
∆ , whereX = L,A1,A2,B1,B2 (3.5.1)

from which the complete supermultiplet is constructed by raising operators.
As explained above R is the R–symmetry charge, J the spin and ∆ the scaling
dimension. The letter X specifies the type of the supermultiplet: L stands for a
long supermultiplet, A for a short supermultiplet at the threshold (i.e. its scaling
dimension ∆A can be continuously approached from above), while B represents

9We use the half-integer convention for J , as it indicates the spin of the particles, and the
integer one for the Dynkin label R. In [27], the integer convention is used both for J and R.
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an isolated short multiplet (i.e. its scaling dimension ∆B <∆A is separated by
a gap). From supergravity computations at the classical level 10 one obtains
not directly the scaling dimensions, but rather masses of the particles (here we
refer to the uncorrected mass; the AdS4 mass is then obtained by combining
this uncorrected mass with curvature contributions). It is thus useful to build
a dictionary between the uncorrected masses and the scaling dimensions ∆ or
equivalently energies E0, depending on whether we are using a gauge theory or
gravity language. For particles of various spin it takes the form

spin ∆≡ E0

0 1
2

(
3±
√

9+4m2
)

1 1
2

(
3±
√

1+4m2
)

1
2 ,

3
2

1
2 (3+2|m|)

(3.5.2)

3.5.2 N = 3 vacua

OSp(3|4) supermultiplets

The R-symmetry Lie algebra is so(3)≃ su(2). To label the states we will use the
Dynkin label (R) of su(2). The remaining labels of states in a supermultiplet
are the spin and the scaling dimension. In Appendix E.1 we list only those
OSp(3|4) supermultiplets that will be relevant to the present discussion (in the
tables the R-symmetry representation is denoted by its dimension, i.e. 2 for
the fundamental):

N = 3 vacuum preserving H0 =Gg

The mass spectrum in this isolated N = 3 maximally symmetric vacuum is
summarized in Table F.1. A quick consistency check employs the Goldstone
theorem. There are 11 unbroken gauge generators and no broken ones in this
vacuum. Therefore we expect no massive vector fields and 11 + 1 massless
ones. The additional vector comes from a completely decoupled massless vector
supermultiplet – the Betti multiplet. This supermultiplet will be present in all
the following spectra. Later, it will be included without further comments. The
supergravity excitations can be assembled into the following supermultiplets of

10For N = 3 the scaling dimension and hence the mass is a function of quantized quantities
only – the spin and the R-charge. It cannot receive any corrections and is thus exact.
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OSp(3|4)

Spec = A1[0](0)
3
2︸ ︷︷ ︸

massless graviton
multiplet

⊕ 9×B1[0](2)
1︸ ︷︷ ︸

massless vector
multiplets

, (3.5.3)

as can be easily checked by comparing Table F.1 with the field content of the
supermultiplets, which was summarized in the previous section.

N = 3 vacuum preserving H0 = SU(2)D×U(1)⊂Gg

The spectrum at the single N = 3 supersymmetric point (lying on S1/Z2
manifold of vacua, spanned by α1 = α2 = α3, invariant under the same subgroup
H0 of the gauge group) is shown in Table F.2. Inspection of the supermultiplet
tables presented in Appendix E.1 leads to the conclusion that the spectrum
given in Table F.2 is organized into the following supermultiplets

Spec = A1[1
2 ](0)

3
2︸ ︷︷ ︸

massless graviton
multiplet

⊕B1[0](4)
2 ⊕2×B1[0](3)

3
2︸ ︷︷ ︸

massive vector multiplets

⊕ 2×B1[0](2)
1︸ ︷︷ ︸

massless vector
multiplets

. (3.5.4)

A consistency check is provided by the Goldstone theorem. The gauge symmetry
breaking pattern in this vacuum tells that there are 7 broken generators and 4
unbroken ones. Hence the number of massive vector fields is 7 and that of the
massless ones is 4+1, in agreement with the above tables.

N = 3 vacuum preserving H0 = SO(3)D ⊂Gg

As in the previous case, the vacuum manifold that is invariant under the
subgroup H0 = SO(3)D is S1/Z2, spanned by α1 = α2 = α3. Again, there exists
a single supersymmetric point on this circle of vacua which preserves N = 3
supersymmetry. The spectrum at this special vacuum consists of states listed
in Table F.3. Comparison with the supermultiplet tables results in a unique
grouping of the states in Table F.3 into OSp(3|4) supermultiplets

Spec = A1[1
2 ](0)

3
2︸ ︷︷ ︸

massless graviton
multiplet

⊕ B1[0](6)
3 ⊕B1[0](4)

2︸ ︷︷ ︸
massive vector multiplets

⊕ B1[0](2)
1︸ ︷︷ ︸

massless vector
multiplet

. (3.5.5)

Goldstone theorem serves as a check of consistency. There are 3 unbroken
and 8 broken gauge generators in this vacuum and hence 8 massive and 3+1
massless vector fields. Looking at the tables we see that this is true.
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3.5.3 N = 2 vacua

OSp(2|4) supermultiplets

We have a SO(2)≃U(1) R-symmetry and thus states of the OSp(2|4) super-
multiplets are labeled by the U(1) R-charge R ∈ R, spin and scaling dimension.
There are two independent supercharges with R-charge (+1) and (−1), respec-
tively. We know that the N = 2 vacua spontaneously breaks the R–symmetry
to U(1)← SO(3), hence we can infer the R–charges content from the breaking
pattern of R–symmetry representations present in the corresponding N = 3
vacua. In Appendix E.2, more details on the OSp(2|4) supermultiplet are given,
they are also relevant for another main example to be discussed in the next
chapters. Taking all these comments into account, we find a unique way to
organize the spectra in OSp(2|4) supermultiplets. In Appendix E.2 we list the
relevant ones.

N = 2 vacuum preserving H0 = U(1)D×U(1)⊂ SU(2)×U(1)⊂Gg

The gauge symmetry-breaking pattern in this vacuum takes the form Gg =
SO(3)×SU(3)→H0 = U(1)D×U(1). According to Goldstone theorem the 12
vector fields split into 9 massive ones and 2 +1 massless ones (two gauging H0
and one belonging to the Betti multiplet). The supergravity mass spectrum
displayed in Table F.4 can be arranged into the following supermultiplets

Spec = A1A1[1](0)
3︸ ︷︷ ︸

massless graviton
multiplet

⊕ LL[1
2 ](0)

|m(1)
G |+ 1

2︸ ︷︷ ︸
long massive

gravitino multiplet

⊕ LL[0](0)
2︸ ︷︷ ︸

long massive
vector multiplet

⊕2× A2A2[0](0)
1︸ ︷︷ ︸

massless vector
multiplets

⊕

2×LA2[0](
1
2 )

3
2︸ ︷︷ ︸

short massive
vector multiplets

⊕2×LB1[0](1)
1 ⊕2×LB1[0](

3
2 )

3
2
⊕LB1[0](2)

2︸ ︷︷ ︸
1
2−hypermultiplets

⊕ (R→−R)

(3.5.6)

Where

m
(1)
G =

√
g4

1 +g4
2−2g2

1g
2
2 cos2α2

g2
2−g2

1
(3.5.7)

is the mass of the single massive gravitino.
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N = 2 vacuum preserving H0 = U(1)D ⊂ SO(3)D ⊂Gg

The gauge symmetry Gg = SO(3)×SU(3) is partially spontaneously broken
to H0 = U(1)D. We conclude that out of the 12 vector fields 10 become
massive, while 1 + 1 (one belonging to the Betti multiplet) remain massless.
This agrees with the supergravity mass spectrum shown in Table F.5, which
can be organized in a supermultiplet structure given below

Spec = A1A1[1](0)
3︸ ︷︷ ︸

massless graviton
multiplet

⊕ LL[1
2 ](0)

|m(2)
G |+ 1

2︸ ︷︷ ︸
long massive

gravitino multiplet

⊕ LL[0](0)
2︸ ︷︷ ︸

long massive
vector multiplet

⊕ A2A2[0](0)
1︸ ︷︷ ︸

massless vector
multiplet

⊕ LL[0](0)
3︸ ︷︷ ︸

long massive
vector multiplet

⊕

 LL[0](1)
3︸ ︷︷ ︸

long massive
vector multiplet

⊕ LA2[0](2)
3︸ ︷︷ ︸

short massive
vector multiplet

⊕LB1[0](3)
3 ⊕LB1[0](2)

2 ⊕LB1[0](1)
1︸ ︷︷ ︸

1
2−hypermultiplets

⊕ (R→−R)

(3.5.8)

Where

m
(2)
G =

√
16g4

1 +g4
2−8g2

1g
2
2 cos2α2

g2
2−g2

1
(3.5.9)

is the mass of the single massive gravitino.

3.5.4 N = 1 vacua

OSp(1|4) supermultiplets

Since the R-symmetry is trivial, states of irreducible representations of OSp(1|4)
are labeled just by spin and scaling dimension. In Appendix E.3 we list only
six supermultiplets that will be needed, four long and two short ones.

N = 1 vacuum preserving H0 = U(1)⊂U(1)D×U(1)⊂ SU(2)D×U(1)⊂Gg

The gauge symmetry G = SO(3)×SU(3) in this vacuum is partially sponta-
neously broken to H0 = U(1). Thus there are dim(Gg)−dimH0 = 10 broken
generators and the Goldstone theorem implies in this situation that the total
12 vector fields split into 10 massive and 1+1 massless ones (one in the Betti
multiplet). Indeed, the above reasoning complemented by the computation of
the mass spectrum within supergravity, reported in Table F.6 leads to a unique
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N = 1 supermultiplet spectrum in AdS4 (i.e. OSp(1|4))

Spec =A1[3
2 ] 5

2︸ ︷︷ ︸
massless
graviton
multiplet

⊕L[1]
∆

(1)
G1
⊕L[1]

∆
(1)
G2︸ ︷︷ ︸

massive gravitino
multiplets

⊕ 2×A1[1
2 ] 3

2︸ ︷︷ ︸
massless vector

multiplets

⊕4×L[1
2 ]2⊕L[1

2 ]
∆

(1)
V 1
⊕L[1

2 ]
∆

(1)
V 2︸ ︷︷ ︸

massive vector multiplets

⊕L′[0]3⊕2×L′[0]2⊕8×L′[0] 3
2
⊕L′[0]

∆
(1)
H1
⊕L′[0]

∆
(1)
H2
⊕6×L′[0]1︸ ︷︷ ︸

matter multiplets
(3.5.10)

When comparing the supermultiplet spectrum (3.5.10) to the mass spectrum
of supergravity presented in Table F.6, the Higgs phenomenon has to be taken
into account. Namely, the longitudinal modes of massive vectors (gravitini) are
massless scalars (spin-1

2 fermions). The scaling dimensions (energies) appearing
in Table F.6 are expressed in terms of the parameters of the supergravity theory
as follows

∆
(1)
G1 =∆(1)

H1 = 1+

√
g4

1 +g4
2−2g2

1g
2
2 cos(2α2)

g2
2−g2

1
(3.5.11)

∆
(1)
G2 =∆(1)

H2 = 1+

√
g4

1 +g4
2−2g2

1g
2
2 cos(2α3)

g2
2−g2

1
(3.5.12)

∆
(1)
V 1 =1+

√
β

(1)
1 −4

√
β

(1)
2

2(g2
2−g2

1) (3.5.13)

∆
(1)
V 2 =1+

√
β

(1)
1 +4

√
β

(1)
2

2(g2
2−g2

1) (3.5.14)

β
(1)
1 = 5g4

1 +5g4
2−2g2

1g
2
2(4cos(2α2)+4cos(2α3)−3) (3.5.15)

β
(1)
2 = g8

1 +2g6
1g

2
2 +10g4

1g
4
2 +2g2

1g
6
2 +g8

2+

8g4
1g

4
2 cos(2(α2 +α3))+2g2

1g
2
2
(
g2

1 +g2
2
)2

(cos(2(α2−α3))−2cos(2α2)−2cos(2α3))
(3.5.16)

N = 1 vacuum preserving H0 = {1} ⊂ U(1)D ⊂ SO(3)D ⊂Gg

In this vacuum, we observe a complete spontaneous symmetry breaking Gg =
SO(3)×SU(3)→H0 = {1}. Hence Goldstone theorem dictates that there are
11 massive vector fields and just a single massless vector in the Betti multiplet.
The mass spectrum of supergravity fields summarized in Table F.7 is organized
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into the following OSp(1|4) supermultiplets

Spec =A1[3
2 ] 5

2︸ ︷︷ ︸
massless
graviton
multiplet

⊕L[1]
∆

(2)
G1
⊕L[1]

∆
(2)
G2︸ ︷︷ ︸

massive gravitino
multiplets

⊕ A1[1
2 ] 3

2︸ ︷︷ ︸
massless
vector

multiplets

⊕5×L[1
2 ] 7

2
⊕L[1

2 ]
∆

(2)
V 1
⊕L[1

2 ]
∆

(2)
V 2︸ ︷︷ ︸

massive vector multiplets

⊕3×L′[0]4⊕8×L′[0]3⊕2×L′[0]2⊕L′[0]
∆

(2)
H1
⊕L′[0]

∆
(2)
H2
⊕3×L′[0]1︸ ︷︷ ︸

matter multiplets
(3.5.17)

The values of scaling dimensions determining the supergravity mass spectrum
presented in Table F.7 take the form of the ones in the corresponding type (i)
vacua with the replacement g1→ 2g1.

3.6 Domain wall solutions

In the previous section, we studied the (super)conformal multiplet arrangement
of the fields on the new AdS4 vacua. In this section, we will show that the
latter can be interpreted as fixed points of RG-flows triggered by relevant
operators which pertain to the CFT dual to the central vacuum. To do this, we
consider a (3+1)-dimensional bulk space-time, parametrized by the coordinates
xµ =

(
xi,y

)
, and use the standard domain-wall (DW) ansatz for the metric,

which has the usual form

ds2 = e2A(y) ds2
1,2 − dy2 = e2A(y) dxi ηij dx

j − dy2 , ηij = (+,−,−) ,

(3.6.1)
ϕr = ϕr (y) , i, j = 0,1,2 , (3.6.2)

where ds2
1,2 defines the flat Minkowski metric in three dimensions, A(y) is the

scale factor, y is the coordinate transverse to the wall, and all scalar fields
ϕ(y) depend only on the transverse coordinate y 11.From the AdS/CFT point
of view, the domain wall ansatz corresponds to an RG flow between the UV
and IR fixed points described by the asymptotic regions y→±∞. Let us be
more explicit by considering the consistent truncation described in Section 3.4,
generated by the three complex scalar fields z1, z2, z3. We recall that solutions
of the truncated theory are solutions of the complete theory and that all fields
in the DW solution are functions of the transverse coordinate y only. From the
coset metric (3.4.10) and the ansatz in (3.6.1) one can obtain, after consistently

11From now on, we will omit the y-dependence of the scalar fields and the scale factor in
the DW metric.
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setting all fermions and vector fields to zero, the effective Lagrangian density 12

L = −e3A
3∑
i

[
3A′′ + 6A′2 +

(
r′
i

)2
+ 1

4 sinh(2ri)2 (α′
i

)2
+ V (ri,αi)

]
,

(3.6.3)
where the potential for Type (i) and Type (ii) models was given in (3.4.11)
and (3.4.12), respectively.

We leave the details of the DW solutions in appendix D. Here we focus
on the main properties and their possible interpretation in the dual picture.
In particular, we search for configurations in which the radii ri are equal to
the same field r. Then the phases αi do not depend on y. Therefore, the
constant values of the phases αi select the critical point at the end of the
flow (IR fixed point) as in Table (3.4.37) (or (3.4.38) for Type (ii) vacuum),
the starting point being the central N = 3 vacuum (UV fixed point). The
"shape" of the domain wall is implicitly governed by the field r(y) through the
warping function A(y(r)). For the sake of simplicity let us consider the Type
(i) consistent truncation (3.4.4) (Type (ii) consistent truncation gives the same
results after substituting g1→ 2g1), which provides the vacuum at the origin
and the one described by (3.4.21). In this case, we obtain the DW solution,
whose explicit expression is given in eq. (D.1.15) Appendix D. It is useful to
perform the following change of coordinates to study the behavior near the
fixed points of the flow:

xi 7→
(
g2

1− εg2
2
)
xi , r = r(y) , ε =

 0 r→ 0
1 r→ r⋆

(3.6.4)

where r(y) is the solution for r in the DW background. It is enough to know
the expression for the inverse relation y(r) given by (D.1.16). Then the DW
metric becomes

ds2 = 1
4

(
(g1csch(r)−g2sech(r))2

g4
1

dxidxi −
csch2(r)sech4(r)
(g1−g2 tanh(r))2 dr

2
)
. (3.6.5)

Now, we consider the limit r→ 0 to obtain

ds2 ∼ ds2
UV = 1

4r2g2
1

(
−dr2 +dxidxi

)
(3.6.6)

12Here, primes denote derivatives respect to the y direction



3.6 Domain wall solutions 63

which is the metric for an AdS4 space with radius

R2 = − 3
Λ

= 1
4g12 , (3.6.7)

in agreement with the value of Λ at r = 0 in (3.4.24). This expression provides
directly the asymptotic behavior of r near the conformal boundary. Indeed, in
this particular case, the metric is in the usual Poincaré coordinates with radial
direction z. Hence, we have r ∼ z and ∆r = 1. On the other side, expanding
ds2 near r→ r⋆ we get

ds2 ∼ ds2
IR = R2

(
u2dxjdxj−

du2

u2

)
(3.6.8)

where u= (r− r⋆) and

R2 = − 3
V (r⋆) = g22−g12

4g12g22 , (3.6.9)

as expected from (3.4.24). The relation with Poincaré coordinates is given by
u= 1

z . So that (r− r⋆)∼ z−1 and ∆u =−1.
The interpretation as an RG-flow is the following. When we switch on the r

source (the combination δr1 + δr2 + δr3) at the origin of the scalar manifold we
introduce a relevant deformation, indeed the scaling dimension of the operator
coupled to r will be ∆Or |0 = 2. This triggers an RG-flow that eventually ends
at r = r⋆ where the operator becomes irrelevant, indeed ∆Or |r⋆ = 4. We are
flowing from the N = 3 SCFT3 dual to the AdS4 background at r = 0 (the UV
region) to a CFT3 dual to the AdS4 background at r = r⋆ (in the IR region).
In general, the IR three-dimensional dual theory will not be superconformal.
For particular values of αi the IR critical point will correspond to a SCFT3
with different amounts of supersymmetries, in agreement with the classification
given in 3.4.37.

As a check for our interpretation we compute the scalar spectrum of the trun-
cation near r = 0 and r = r∗ and we obtain the masses (−2,−2,−2,−2,−2,−2)
and (4,−2,−2,0,0,0) respectively. The latter correspond to the combinations
(δr1 + δr2 + δr3, δr2− δr1, δr3− δr1, δα1, δα2, δα3). Another relevant check of
the interpretation of r = 0 as the UV critical point and r = r⋆ as the IR one
is provided by the holographic c-theorem [29, 30]. Following these works we
compute

a(y) = A′(y)−2 , (3.6.10)

where
A′(y) =−2g2 sinh3(r(y))+2g1 cosh3(r(y)) . (3.6.11)
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It follows that a(y(r)) is monotonically decreasing as a function of r ∈ [0, r⋆],
consistently with the holographic c-theorem aUV ≥ aIR.

This analysis concludes our detailed discussion of the first interesting ex-
ample of supergravity vacua deformed by supersymmetry breaking marginal
deformations. In particular, within this N = 3 model, the backgrounds ex-
hibit perturbative stability as explicitly checked with standard mass formulae.
However, we are not yet aware of the possibility of embedding this model
inside an upliftable one. By this, we mean that we do not know if the present
theory can arise as a consistent truncation of a spontaneous compactification
of higher dimensional supergravity. Among other implications, this means that
we have very little to say about Kaluza-Klein spectrometry for the solutions
and even less about the non-perturbative stability of the conformal manifolds
discussed above. To fill this gap, we will present another explicit example in
next chapters. In this new case, families of vacua similar to the one found in
the N = 3 model will be presented in a maximal N = 8 model. This latter
framework will allow us to discuss the relation between supergravity theories in
four dimensions and their cousins in ten dimensions (by focusing on the type
IIB case). By implementing the relatively new techniques of Exceptional Field
theory a detailed discussion on Kaluza-Klein spectrometry and the stability
of the solutions can be carried out. Before entering the details of the second
example, let us quickly introduce the new framework in which their properties
can be properly studied.



Chapter 4

Overview on a Class of
Upliftable N = 8 Models

The duality covariant formulation of gauged supergravities [22–24], discussed in
previous chapters has provided a valuable tool for discovering new superstring/M-
theory compactifications and their duality connections. A consistent truncation
of the low-lying modes of superstring/M-theory, in certain compactifications, is
captured by an effective extended supergravity theory whose Lagrangian typi-
cally exhibits characteristic minimal couplings, associated with a gauge group
Gg, Yukawa terms, and a scalar potential. All these features of the effective low-
energy description depend on general characteristics of the higher-dimensional
background, such as the geometry of the internal manifold Mint and various
kinds of fluxes that are present in the solution. As already introduced in the
N = 3 case, all these features are present in a gauged supergravity model and
they can be all encoded in a single object called the embedding tensor. This
tensor is formally covariant with respect to the on-shell global symmetry group
G of the corresponding ungauged theory. Although the presence of minimal
couplings typically breaks G, formal G-invariance of the field equations and the
Bianchi identities are preserved, provided the embedding tensor is transformed
together with all the other fields.

As far as D = 4 N = 8 supergravities are concerned, the on-shell global
symmetry group is of exceptional type G = E7(7). In these cases a direct
relation between certain gauged models and superstring/M-theory can be
established within the framework of Exceptional Field Theory (ExFT) [31,
4, 32, 33]. The latter provides a manifestly E7(7)-covariant description of 11–
dimensional and Type–II supergravities and shows how to embed certain gauged
supergravities within the higher-dimensional ones, as consistent truncations,
through a generalized Scherk–Schwarz ansatz [5]. Recently, this framework has
also proven to be very useful in performing Kaluza–Klein spectrometry for those
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compactifications fitting into the generalized Scherk–Schwarz ansatz [34, 6].
As a key simplification, the construction only relies on the scalar harmonics,
corresponding to the maximally symmetric point of the lower dimensional
supergravity. Let us then present the general feature of the N = 8 supergravity
theories and discuss how to describe some classes of the latter in the ExFT
framework.

4.1 D = 4 N = 8 Supergravity

As a particular example of the general framework discussed in chapter 2,
ungauged N = 8 supergravity in four dimensions only describes a gravitational
multiplet consisting of the graviton, 8 gravitini, 28 vector fields, 56 spin-1/2
fields and 70 scalars spanning the scalar manifold E7(7)/SU(8) [35]. The on-shell
global symmetry group of the ungauged model is E7(7) which acts as an electric-
magnetic duality group on the 28 vector field strengths and their magnetic duals.
This duality action is defined by the symplectic 56-dimensional representation of
E7(7). The gravitini transform in the fundamental representation of SU(8), the
R-symmetry group. In this case H = su(8) and K describes the 70-dimesnional
representation of H. The Rc

v representation is such that

Rc
v[Q] =

 QAB
CD = 4δ[A

[CQ
B]
D] 0

0 Q CD
AB =−QAB

CD

 , (4.1.1)

and

Rc
v[P] =

 0 PABCD

PABCD = 1
24ϵABCDEFGHPEFGH 0

 , (4.1.2)

where QAB
CD, A = 1, ...,8, belong to the 28 two-fold antisymmetric rep-

resentation of su(8) and PABCD belong to the 70 four-fold antisymmetric
representation of the same algebra. However, we will make extensive use
of the SL(8,R) frame in which the gaugings of interest are conveniently
described. In this symplectic frame the off-shell global symmetry group is
SL(8,R)⊂ E7(7). If A,B = 1, . . . ,8 label the fundamental 8-dimensional repre-
sentation of this group, the 28 electric vector fields A[AB]

µ and their magnetic
counterparts A[AB]µ are labeled by the antisymmetric couple [AB]. These
fields are conveniently described by a symplectic 56-component vector AMµ ,
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M = 1, . . . ,56, of the form: AMµ = (A[AB]
µ , A[AB]µ)1. The generators of E7(7)

consist of the SL(8,R) generators tAB and generators tABCD = t[ABCD] (or
their duals tABCD = 1

24ϵABCDEFGHt
EFGH in the representation 70 of the same

group. The relation between these generators and those of H and K, associated
to Q and P respectively, is obtained by branching SU(8) and SL(8,R) and their
representation with respect to the common SO(8) subgroup. In particular the
generators of H correspond to the 28 plus the 35s representations of SO(8). It
is to say the compact generators of SL(8,R) plus the anti-selfdual combination
1
2

(
tABCD− tABCD

)
. Instead, the non-compact generators of K are described

by the 35v plus the 35c representation of SO(8). It is to say the non-compact
generators of SL(8,R) plus the selfdual combination 1

2

(
tABCD + tABCD

)
. After

this quick review of the ingredients in the ungauged case let us move to the
main features of the gauging procedure in the maximal case.

4.1.1 Generalities on the Gauged Model

In the symplectic-covariant formulation of the gauging procedure, the gauge
algebra is described by a 56-component symplectic vector of generators XM ,
M = 1, . . . ,56, each represented by a matrix (XM )NP in the symplectic 56-
dimensional representation of the E7(7) generators:

XMN
PCQP =XMQ

PCNP , (4.1.3)

where CNP is the antisymmetric 56×56 symplectic invariant matrix and the X-
tensor XMN

P ≡ΘαMRv[tα] P
N is expressed in terms of the embedding tensor as

usual. It is a formal E7(7)-tensor encoding all information about the embedding
of the gauge algebra within the global symmetry one. All the additional terms,
required by the gauging procedure, in the Lagrangian (Yukawa terms and scalar
potential) and in the supersymmetry transformation laws are expressed in terms
of XMN

P or equivalently by the T -tensor. By standard algebraic arguments it
can be shown that the linear constraint (2.2.4) restricts the X-tensor to the
912 representation2 of E7(7). Once this constraint is imposed, the quadratic
constraints (2.2.5) are equivalent. The former and the latter are necessary for
the gauged Lagrangian to be supersymmetric. In the maximal case the gauge

1For the SL(8,R)⊂ E7(7) indices we use the notation that contraction over an antisym-
metric couple [AB] should be multiplied times a factor 1/2: VM W M = 1

2 (V[AB]W
[AB] +

V [AB]W[AB]).
2This is true when excluding gauging associated to an extra on-shell scaling symmetry,

the "trombone symmetry", which is not described by E7(7) transformations.
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connection reads:

Ωgµ ≡ gAMµ XM = g

2
(
A[AB]
µ X[AB] +A[AB]µX

[AB]
)
, (4.1.4)

where g is the gauge coupling and the right-hand side is specific to the SL(8,R)
frame. Besides A[AB]µ, also a set of antisymmetric 2-forms Baµν , a= 1, . . . ,133,
transforming in the adjoint representation of E7(7), has to be introduced. This
is a redundant description of the field content which is required when we gauge
a group Gg using vector fields that are not electric in the symplectic frame
of the original ungauged Lagrangian. This will be the case for the gauging
of the main example we will discuss. The fermionic shifts are encoded in the
T -tensor which, as described in (2.2.14), is an H-covariant (SU(8)-covariant in
our case) tensor constructed out of the X-tensor. The latter is in the 912 of
E7(7). When branched respect to H gives the 36 and the 420 representations of
SU(8) plus their conjugates. The former is the one describing the gravitini shift
matrix SAB and the latter describes the dilatini shift matrix N D

ABC . Then the
potential ward identity gives as potential

V (ϕ) = g2
( 1

48N
D

ABC NABCD−
3
2SABS

AB
)

(4.1.5)

It can also be recast in the G-covariant expression [36][37]:

V (ϕ) = g2

672M
MN

(
MPQMRSXMP

RXNQ
S +7Tr(XMXN )

)
. (4.1.6)

The symplectic, symmetric matrix MMN (ϕ) (2.1.14) is defined in terms of the
coset representative LMN ∈

E7(7)
SU(8) of the scalar manifold in the representation

56 of E7(7). M, N = 1, . . . ,56 denote the SU(8) indices labeling the 28 + 28
representation. In (4.1.6) MMN describes the inverse matrix of MMN . On a
specific vacuum, mass matrices can be computed by specializing the general
mass formulae of Section 3.2, explicit expressions can be found in [11]. However,
we will be interested in computing the supergravity spectrum as a subsector of
the full Kaluza-Klein spectrum of the supergravity vacua. Indeed, the examples
presented below are derived in the contest of models upliftable to type IIB
supergravity. Let us proceed by presenting the class of gaugings we want to
focus on in the embedding tensor formalism. As we will see, by describing the
latter in the framework of ExFT, we can explicitly derive their uplift and their
full Kaluza-Klein spectrum.



4.1 D = 4 N = 8 Supergravity 69

4.1.2 Gaugings in the SL(8,R) frame

The fundamental of E7(7) splits in the representation 28′ describing the electric
vector fields, plus its dual describing the magnetic ones, of SL(8,R) when
branched respect to the latter while the 133 splits in the adjoint representation
plus the 70. We then have that the embedding tensor representation, the
912, splits in sum of the 36′ and the 420 of SL(8,R) plus their duals. In
this frame the electric group is Ge = SL(8,R). This implies that if we want
to describe a gauging proper to this frame only electric vector fields can be
selected by the embedding tensor. This means that only the 28×63 part of the
56×133 (when branched respect to Ge) describing Θ C

[AB]D is not vanishing.
In particular, in the case of an electric gauging only the 36 component of the
embedding tensor survives. The latter is given by

Θ C
[AB]D = δC[Aη

(p,q,r)
B]D , (4.1.7)

where η(p,q,r) is the diagonal matrix with p "+1"s, q "-1"s and r = 8−p− q
"0"s on the diagonal [22][24][38]. The above embedding tensor correspond to
a Gg = CSO(p,q,r) = SO(p,q)⋉Rr(p+q). However, the G-duality covariant
formulation allows for more general gaugings than the electric ones. Because
of the algebraic argument given above, it is clear that as soon as magnetic
components of the embedding tensor are switched on we end up in a proper
dyonic gauging. This means that even if we work in the SL(8,R) frame, when
using magnetic vectors, we are describing a gauge group Gg which is gauged by
electric vectors of a frame inequivalent to the SL(8,R) one. Following this idea,
we can use the full power of the G-covariant formulation described in previous
sections and we can consider an embedding tensor, generalising the previous
one, with entries Θ C

[AB]D and Θ[AB] C
D describing the 36 and 36′ components

respectively. In particular, the former has the same expression as (4.1.7) while
the latter has the analogous form [39]

Θ
[AB] C

D = δ
[A
D ξ

B]C
(p′,q′,r′). (4.1.8)

In this case the quadratic constraints (2.2.5) (or equivalently (2.2.6)) are
not trivially satisfied as in the purely electric case and we have

η(p,q,r)ξ(p′,q′,r′)⊗18×8−18×8⊗η(p,q,r)ξ(p′,q′,r′) = 0 . (4.1.9)

The possible gaugings of this form can be divided into two cases. It is to
say the case r = 0 and r ̸= 0. In the former case η(p,q,0) is invertible and the
quadratic constraint are solved by ξ(p′,q′,r′) = ξ(p,q,0) = cη−1

(p,q,0). They describe
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the gauge group Gg = SO(p,q) which is now embedded dyonically in G. In
other words, when c ̸= 0 both the electric and magnetic vector fields of the
SL(8,R) frame are involved in the gauging of the so(p,q) generators. When
c = 0 one recovers the electric version of the gauging. These gaugings are
referred to as SO(p,q)ω models [40], being ω a compact parameter, expressed in
terms of c, parameterizing an SO(2) rotation whose symplectic action relates,
at the classical level, the original frame in which Gg is gauged dyonically and
the frame in which Gg is gauged by electric vectors only. The case r ̸= 0 is
solved, without loss of generality, by considering ξ(p′,q′,r′) with p′ + q′ ≤ r. In
particular, the non-vanishing entries of the latter are confined to the vanishing
entries of η(p′,q′,r′). Then, Gg is of the form

Gg =
(
SO(p,q)×SO(p′, q′)

)
⋉exp

(
N

(8−r)(r−p′−q′)
1 ⊕N (8−r′)(r−p′−q′)

2 ⊕N (8−r)(8−r′)
3

)
.

(4.1.10)
In the above expression, the first SO factor and N1 are gauged by electric

vectors only, the second SO factor and N2 are gauged by magnetic vectors
only while N3 is gauged by a combination of the two. N1, N2 and N3 are
nilpotent algebras. This concludes, from a D = 4 point of view, the general
discussion on the class of gaugings we will consider. Next, we present the main
example corresponding to the specific values p = 6, q = 0, p′ = 1 and q′ = 1.
This latter case and others within the class of models presented above have a
direct higher dimensional interpretation. This feature is best explored in the
context of Exceptional Field Theory. Even if we will not be exhaustive on the
subject, we are going to review the features of the latter framework relevant to
our discussion. The reader is referred to the bibliography for the interesting
details of ExFT. We will merely use the theory for its powerful techniques. In
particular for describing the uplift of supergravity models and for computing
the Kaluza-Klein spectrum of the vacua of interest.

4.2 The Gauged [SO(6)×SO(1,1)]⋉R12 model

In this section we consider the gauged model in which the gauge group has the
form [39, 41–43]:

Gg = [SO(6)×SO(1,1)]⋉R12 . (4.2.1)
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In the SL(8,R)-symplectic frame the embedding tensor XMN
P of the gauging

reads:

X[AB], [CD]
[EF ] =−X[AB]

[EF ]
[CD] = 8δ[E

[AθB][Cδ
F ]
D] ,

X [AB]
[CD]

[EF ] =−X [AB] [EF ]
[CD] = 8δ[A

[Cξ
B][Eδ

F ]
D] ,

(4.2.2)

where a possible choice for the θ and ξ up to change of SL(8,R) basis is

θAB = diag(1,1,1,1,1,0,0,1) , ξAB = diag(0,0,0,0,0,1,−1,0) . (4.2.3)

As expected for the dyonic case, the “magnetic” vectors A[AB]µ are involved
in the gauge connection. In our discussion about this model, we shall follow,
unless stated otherwise, the notations of [43]. Following [43], the vacua we are
interested in can all be described within a Z3

2-invariant sector [44][45] which
describes an N = 1 supergravity coupled to seven chiral multiplets with complex
scalars zi =−χi+ ie−φi , i : 1, ...,7. The coset representative, in a suitable basis
of the E7(7) generators, is chosen to be:

L = exp
 7∑
i=1

χiei

 · exp
 7∑
i=1

φihi

 ∈ [ SL(2)
SO(2)

]7
⊂

E7(7)
SU(8) , (4.2.4)

where the generators hi, ei satisfy the relations [hi, ej ] = δij ej , [ei, (ej)t] = 2δij hi.
They are related to the generators gχi , gφi in [43] as follows: hi = gφi/4, ei =
−12gχi . We have set, without loss of generality, the gauging parameter c to
c= 1. Indeed, the latter is an on/off parameter. The model features anti-de
Sitter vacua with supersymmetry N = 0, 1, 2 and 4. We shall focus below on
the N = 2 class of vacua, compute the (bosonic) Kaluza-Klein spectrum on
them and eventually provide their uplift to D = 10.

4.2.1 The N = 2 Vacua and their Spectra

We shall focus our discussion on the N = 2 vacua, defined by the following
expectation values for the scalars zi:

z1 =−z3 =−χ+ i√
2
, z2 = z4 = z6 = i , z5 = z7 = 1√

2
(1+ i) . (4.2.5)

The vector and fermionic fields are all set to zero. The metric describes a
geometry of AdS with cosmological constant
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Λ=−3g2 (4.2.6)

This family of vacua is parameterized by a continuous parameter χ. From a
low energy D = 4 supergravity perspective, this parameter takes values in R.
It describes an SU(2)×U(1)-invariant vacuum only when χ = 0. In general,
for χ ̸= 0, the vacuum posses a U(1)2 residual gauge symmetry. As we shall
see, this picture is strongly modified when considering the whole KK spectra of
these backgrounds, or, equivalently, the corresponding D = 10 solution. This
analysis will show that χ is in fact periodic. At the level of supergravity
dynamics we can already see that the spectrum depends on χ. In particular the
values of the latter discriminate between U(1)2 and SU(2)×U(1) symmetric
vacua. A compact way of presenting the spectra of the latter is to make explicit
the superconformal symmetry. It is to say to arrange the spectra modes in
superconformal multiplets. In the U(1)2 case, since there must be a massless
gravity multiplet which contains two gravitini with3 m2 = 1 and one massless
vector, only one massless vector multiplet must be considered with the other
vectors being massive. Furthermore, they must come in pairs with opposite
R–charges in order to fit into u(1)R representations. The remaining fields live
in pairs of matter multiplets. The spectrum is organized into the following
OSp(2|4) supermultiplets4

A1A1[1](0)
2 ⊕ LA1[1

2 ](1)
5
2
⊕ A1L[1

2 ](−1)
5
2
⊕4×LL[1

2 ]01
2 +
√

2+χ2 ⊕A2A2[0](0)
1

⊕LB1[0](2)
2 ⊕B1L[0](−2)

2 ⊕2×LL[0](0)
1
2 + 1

2
√

1+16χ2 ⊕2×LL[0](0)
1
2 + 1

2
√

17 .

(4.2.7)

In the SU(2)×U(1) symmetric vacuum identified by χ= 0, some of the long
multiplets in (4.2.7) reach the unitarity bound and the following branching rule
applies

LL[0](0)
1
2 + 1

2
√

1+16χ2
χ→0−→ A2A2[0](0)

1 ⊕LB1[0](2)
2 ⊕B1L[0](−2)

2 . (4.2.8)

The resulting shortened multiplets join their copies in (4.2.7) to combine into
an SU(2) vector. In particular, two massive vectors become massless and join
into the gauge vectors of the enhanced SU(2) symmetry. Nothing more can
be said about the symmetry of the latter vacua and the properties of χ. As
in the N = 3 example in order to have more insight into these solutions a
higher dimensional point of view is useful if not necessary. This is when the
present example becomes more interesting. Indeed, the model originates from

3 Here all masses are normalized in units of 1/L =
√
−V0/3 = g.

4We refer to appendix E.2 for notation and details on these multiplets.
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the gauging of the maximal model which, at the ungauged level originates from
an effective description of string theory. As already anticipated, the dyonic
gauging just described can be uplifted to type IIA/B models. The explicit
uplift is provided by a generalized Shecrk-Schwarz reduction of E7(7) ExFT.
Let us present these ingredients.

4.3 ExFT Framework

ExFT [46][31][4][32][47][48] is a reformulation of 10-/11-dimensional super-
gravity in fully covariant framework respect to the exceptional groups Ed(d),
d = 6,7,8,9. In particular, it allows us to explicitly describe the action of
the latter duality symmetry from a higher dimensional point of view on the
supergravity fields. As we will briefly review in a specific case, this can be
exploited in order to formulate a wide class of consistent truncation of the
higher dimensional supergravities to lower dimensional ones.

We discuss the case d = 7. Indeed, this is the framework we can use to
describe the S-fold configurations presented in next chapters. E7(7)-ExFT is
defined on an extended spacetime spanned by the four-dimensional coordinates
xµ, µ= 0,1,2,3, and 56 internal ones Y M, M = 1, . . . ,56, in the representation
56 of E7(7). So that the bosonic field content of the model{

ĝµν ,M̂MN, Âµ
M, B̂µνa, B̂µνM

}
, µ= 0, . . . ,3 ,

M = 1, . . . ,56 ,
a = 1, . . . ,133 ,

(4.3.1)

will in general depend on both xµ and Y M. In particular ĝµν and M̂MN describe
an internal and external metric respectively, with the latter parametrizing the
coset space E7(7)/SU(8). The fields, AµM, are vectors from a four-dimensional
point of view and they also transform in the 56 of the group E7(7). The
remaining fields are 2-forms, from the internal spacetime point of view and they
transform in the adjoint and fundamental representation of E7(7) respectively.
In analogy to the local diffeomorphism invariance of supergravity theories,
ExFT exhibits local invariance under the action of generalized diffeomorphisms.
The latter extends the former symmetry to the generalized (4+56) dimensional
spacetime. The action of this generalized local symmetry is conveniently
described, in a E7(7) covariant fashion, in terms of generalized Lie derivatives
as explicitly defined in [4]. The so-called "section constraints" give a necessary
requirement in order to actually realize these transformations as a symmetry
of the ExFT model. In particular one has that the action of the operators
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tMN
a ∂M∂N, tMN

a ∂M⊗ ∂N and CMN∂M⊗ ∂N must vanish on all fields. In the latter
expressions, tMN

a stands for the generators describing the E7(7) action in the
fundamental representation. The first relevant solution to the above constraints,
also called "section constraints", is given by restricting the Y M dependence of all
fields to the seven ones with the maximum grading with respect to the GL(1)
factor of the maximal GL(7) ⊂ E7(7). When this condition is imposed one
correctly embeds D = 11 supergravity in E7(7) ExFT. Another relevant solution
to the section constraints is given by restricting the external dependence to
the six coordinates with maximum grading respect to the GL(1) factor of the
maximal GL(6)×SL(2,R)⊂ E7(7). This latter condition allows to embed type
IIB supergravity in E7(7) ExFT 5.

The dynamics of the bosonic fields is derived from the action principle

SExFT =
∫
d4xd56Y

√
|ĝ|
(
R̂+ 1

48 ĝ
µνD̂µM̂MND̂νM̂MN−

1
8M̂MNF̂

M
µνF̂

Nµν−V (M̂, ĝ)+ ...
)
.

(4.3.2)
Here the dots stand for topological terms. In addition to this, the first-order

twisted self-duality constraint

F̂ M
µν =−1

2
√
|ĝ|ϵµνρσCMNM̂NPF̂

P
µν (4.3.3)

must be imposed. The Lagrangian and the self-duality constraint in the above
expressions are reminiscent of the bosonic part of Lagrangian (2.2.12) and
condition (3.2.5) for a D = 4 N = 8 supergravity model. Indeed, the ExFT
Lagrangian is inspired by the latter, however the ExFT theory is formulated on
a (4+56) dimensional spacetime so that all the ingredients in (4.3.2) depend
on all the extended coordinates and they are a generalization of the usual
fields one defines for a supergravity theory as explained in [4]. Nonetheless, the
resemblance becomes explicit when the section constraints are imposed so that
the ExFT equations of motion become equivalent to those of D = 11 or type
IIB supergravity [31][4]. The bosonic action (4.3.2) admits a supersymmetric
generalization where supersymmetry can be considered an extension of general-
ized diffeomorphisms and can be interpreted as local symmetries on a suitable
superspace [49][50].

The bosonic formulation is sufficient for our discussion since we are interested
in (supersymmetric) bosonic solutions of type IIB supergravity. This is a crucial
step in which ExFT becomes technically relevant. Indeed, the solutions we will

5Later on, a slightly modified version of this solution will be considered. While the present
one is useful for describing electric gaugings, the one presented in [41] is relevant in the case
of dyonic gaugings.
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discuss are first obtained as solutions of a dynonically gauged supergravity, of
the kind described in section 4.1.2, and then uplifted to the higher dimensional
theory. This is possible thanks to the property of the latter models of being a
consistent truncation of a spontaneous compactification of type IIB supergravity,
as shown in [41]. The proof is based on the ExFT formulation of type IIB
supergravity. The latter is a natural framework for studying Kaluza-Klein
reductions and the full spectrum of the Kaluza-Klein modes [5][34][6]. In
particular, once the section constraints are imposed, it naturally describes the
ten-dimensional theory with a 4+6 decomposition of the spacetime coordinates.
Furthermore, in the ExFT formulation, the higher-dimensional models are
expressed in a gauged supergravity fashion allowing for a direct comparison
between the lower-dimensional effective descriptions. Let us quickly describe
the latter techniques and how to apply them to the model of interest.

4.3.1 Generalized Sherck-Schwarz Reductions in ExFT

The main lesson to learn from the standard Scherck-Schwarz reduction is
that one can generalize the ordinary dimensional reduction giving rise to
toroidal compactifications to more interesting internal manifolds by exploiting
the symmetries of the original higher dimensional theory [51]. In the first
formulation of the technique it was shown that in a theory invariant under
local diffeomorphisms, such as (super)gravity theory, one can perform different
consistent truncations depending on the subset of the original local symmetries
one can effectively describe in the resulting reduced model. The simplest
reduction is obtained by dropping the internal coordinates dependence on the
local diffeomorphisms resulting in the standard toroidal compactification.

However one can try a more general choice for the local parameter of the
symmetries of the form

λµ(xµ,yi) = λµ(xµ), λi(xµ,ym) = u−1(ym)ijλj(xµ) (4.3.4)

where, on top of the external coordinates xµ dependence, an internal ym,
m = 1, . . . ,n dependence is allowed for the internal directions. While the
toroidal reduction produces a theory with a U(1)n local invariance associated
with constant translations along the original internal direction, the above choice
allows for a non abelian gauge symmetry for the effective model. Indeed,
consistency of (4.3.4) under the usual commutator of two local symmetries
results in the condition

2u−1i
ju

−1k
l∂[iu

p
k] = f p

jl (4.3.5)
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where f p
jl are structure constants for a suitable Lie algebra so that the

internal dependence in the above expression drops out. The latter algebra
will coincide with the resulting gauge algebra. In this way one can see that,
when applying this procedure to supergravity theories, one can recover lower
dimensional ungauged supergravities as toroidal compactifications of higher
dimensional ones while some lower dimensional gauged models can be described
by the above Scherck-Schwarz ansatz. If this is the case, once a proper electric
frame is chosen, the structure constant can be related to the X-tensor. This
is natural since they are both defining the gauge algebra of the model. The
resulting model can be seen as originating from a compactification on an internal
manifold which admits as symmetry the action of the gauge algebra under
consideration such as in the case (but not exclusively) of group manifolds of
dimension n. In particular, the matrix u(y) can be chosen so as to describe
the action of the gauge symmetry on the original internal space by means of
the differential operator6 Li = u−1j

i∂i. From the ansatz (4.3.4), the ansatz for
the fields present in the theory follows from their representation respect to the
internal direction of the local symmetry. As an example, the Kaluza-Klein
vectors Aiµ and scalars originating from the metric decomposition in the external
and internal components will have the ansatz

A(x,y)iµ = u(y)−1i
jA(x)jµ (4.3.6)

since they are vectors under the action of internal symmetries. As another
example, the external part of the metric g(x,y)µν will simply drop the internal
dependence since it is a scalar under the action internal symmetries.

One can apply the same logic to ExFT. In this case the local symmetry is
given by generalized diffeomorphisms capturing both the usual local symmetries
of a gravity theory in four dimensions and local symmetries along the external
Y M directions. By using the fully E7(7) covariant formulation of ExFT one
can generalize the procedure of the standard Scherk-Shwarz reduction to more
general ansatz [5]. Furthermore, because of its strong relation to N = 8 D = 4
gauged supergravity, it provides an explicit description of those gaugings
originating from such generalized reduction. In this case, the relevant choice of
internal parameters is given by 7

Λ(x,Y )M = ρ−1(Y )U(Y )−1M
N ΛN (x) (4.3.7)

6More precisely, in (4.3.4) one should distinguish between the left and right index of
u−1 since they refer to a local symmetry of the original model and to a global symmetry
of the reduced model respectively. Here, instead both indices refer to the complete higher
dimensional model. As matrices, in both cases they have the same entries.

7Here we distinguish between the M better suited for the quantities acted upon by
generalized diffeomorphisms and the global N E7(7) indices.
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where U and ρ, defining the so-called "twist matrix", are elements of E7(7)
and R+ respectively. Condition (4.3.7) is analogous to equation (4.3.5). The
analogy can be understood in the following way. The standard case exploits
the symmetry related to the tangent bundle of a differential manifold of
dimension n with has in general GL(n) as structure group. On the other hand,
generalized diffeomorphisms can be described in the framework of "Generalized
Geometry"[52][53] as objects living in a generalized tangent bundle with E7(7)×
R+ as structure group. The latter will describe the global symmetries of the
reduced equation of motion. In particular, E7(7) is associated with the global
duality group encoded in the isometries of the scalar manifold E7(7)/SU(8)
while the R+ factor is associated to the so-called "trombone" scaling symmetry
displayed by the equation of motion of the ungauged maximal supergravity
model [54].

Consistency of the generalized diffeomorphisms imposes
[
U(Y )−1M

N U(Y )−1Q
P ∂MU(Y ) R

Q

]
912

= 1
7ρ(Y )Θ α

N t R
αP = 1

7ρ(Y )X R
NP (4.3.8)

which relates the U matrix to the embedding tensor in the 912 of E7(7)
describing the gaugings of E7(7) electric generators in the effective model
captured by the generalized Scherck-Schwarz reduction. By the same token
one has to require

∂MU(Y )−1M
N −3ρ−1∂MρU(Y )−1M

N = 2ρθN (4.3.9)

providing the description of a component of the embedding tensor in the 56
of E7(7). The latter describes gaugings of the trombone symmetry. However, as
shown in the latter studies, models with a gauged trombone symmetry do not
have a Lagrangian description [55][56]. The ansatz for describing effectively
local four-dimensional diffeomorphisms and global E7(7) duality symmetries
translates in the following ansatz for the bosonic fields of ExFT

ĝ(x,Y )µν = ρ−2(Y )gµν(x)
Â(x,Y )M

µ = ρ(Y )−1A(x)Nµ U(Y )−1M
N

B̂(x,Y )µνa = ρ(Y )−2U(Y ) α
a B(x)µνα

B̂µνM = −2ρ(Y )−2U(Y )−1P
N ∂MU(Y ) R

P Bµνα t
αN
R

M̂MN = U(Y ) P
M U(Y ) Q

N MPQ, (4.3.10)
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where U(Y ) α
a denotes the U matrix in the adjoint representation of E7(7).

With the above ansatz, the ExFT equations of motion reduce to the ones
of N = 8 D = 4 supergravity with gauging described by the embedding tensor
(4.3.8) and (4.3.9). This also means that, given the equivalence between
ExFT and higher dimensional supergravities, once the latter equations can
be solved for a given embedding tensor of the D = 4 theory, the Generalized
Sherck-Schwarz ansatz provides the uplift of the lower dimensional model
to D = 10/11 supergravity models. In [5], by using these techniques, the
CSO(p,q,r) gaugings described in previous sections were proven to describe
consistent truncations of D = 11 supergravity on seven-dimensional manifolds
with topology Hp,q×Rr. Let us review how the formalism is applied to the
dyonic gaugings with embedding tensor (4.1.7)(4.1.8).

4.3.2 The Dyonic Gaugings in the ExFT Framework

As already discussed, E7(7) is a symmetry of the equations of motion of D = 4
gauged supergravity but in general it is not an off-shell symmetry of the model.
In the case of the SL(8,R) frame, the actual off-shell symmetry of the model is
Ge = SL(8,R). It is then reasonable, as shown in [5], to restrict the U matrix to
an element of SL(8) in order to make the connection with the CSO(p,q,r) and
dyonic gaugings formulated in the SL(8,R) frame. The 56 internal coordinates
are branched accordingly to Y M = (Y [AB],Y[AB]), transforming in the 28 and 28

′

of SL(8,R) respectively. This is formally the same splitting of the fundamental
representation of E7(7) as the global symmetry group of the lower dimensional
equations of motion. The U matrix, as an element of SL(8,R) diagonally
embedded in E7(7), reads

UM
N (Y ) =

U[AB]
[CD](Y ) 0
0 U [EF]

[GH](Y ) = U−1
[GH]

[EF](Y )

 , (4.3.11)

where the 28×28 matrix U[AB]
[CD](Y ) is expressed in terms of the 8×8 one

UA
B(Y ), which describes the same SL(8,R) element in the representation 8, as

follows:
U[AB]

[CD] = 2U[A
[C UB]

D] . (4.3.12)

In the case of the electric CSO(p,q,r) gaugings, following [5], one can consider
the following explicit form for the entries of the U = Ue matrix and the scale
factor ρ= ρe
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(Up,q,re ) B
A =

βrUp,q 0
0 β−(p+q)1r×r

 , ρe = (1−v)
1
4 (4.3.13)

where the (p+ q)× (p+ q) matrix Up,q and β are given by

U−1
p,q =

 (1−v)
p+q−1

p+q ηijy
j(1−v)

p+q−2
2p+2q K(u,v)

ηijy
j(1−v)

p+q−2
2p+2q (1−v)− 1

p+q

(
δij +ηikηjly

kylK(u,v)
)
 (4.3.14)

and

β = (1−v)− 1
(p+q)8 , u= yiyi, v = ηijy

iyj . (4.3.15)

In the above formulae, yi with i = 1, . . . ,p+ q− 1 denote a subset of the
seven physical coordinates chosen among the Y M in agreement with the section
constraints. The matrix ηij denotes the invariant SO(p−1, q) metric with p−1
"+"s and q "-"s. The function K(u,v) solves the differential equation

2(1−v)(u∂uK+v∂vK)+(u− (1+ q−p)(1−v))+1 = 0. (4.3.16)

As proven in [5], once the ansatz (4.3.13) is implemented and provided that
p+ q+ r = 8 and D = 4 (as in our case of study), the conditions (4.3.8)(4.3.9)
reduce to the above equation. In particular, the Ue matrix given above cor-
rectly reproduces, through the condition (4.3.8), the CSO(p,q,r) embedding
tensor while the left-hand side of (4.3.9) identically vanishes, meaning that the
trombone symmetry is not a local on-shell symmetry of the resulting model.

Building on the above results, in [41] the cases of dyonic gauge groups of
the form (4.1.10) with 2 ≤ p+ q ≤ 6 have been considered8. The main idea
in generalizing the electric results is to combine two of the Ue matrices of
the electric case so that the complete U can depend on a more general set of
coordinates, still compatible with the section constraints, involving the dual
representation of the usual electric ones. Let us be more explicit by noticing
that Ue depends only on a subset of the 7 internal physical coordinates leaving

8It should be clear that when we speak of electric gaugings p and q refer to the SO(p,q)
factor of the gauge group while they refer to the electric SO factor of (4.1.10) in the dyonic
case.
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room for a more general dependence. As shown in (4.1.10), one can define the
following U matrix and scale factor ρ

Ud(y) = U (1)(ye)U (2)
m (ym) (4.3.17)

ρd(y) = ρ(1)(ye)ρ(2)(ym), (4.3.18)

where U (1/2) are of the form of the CSO(p,q,r) case as explained below.
In the above expressions the internal 7/6 physical type IIA/B y coordinates
are split into "electric" and "magnetic". The former are chosen from the Y [AB]

and the latter from the Y[AB]. Their type IIA/B origin can be understood
by considering the following branches of the fundamental representation of
E7(7) respect to the maximal subgroups SO(1,1)×GL(6) and SL(2,R)×GL(6)
respectively

56 → 6
′
−4 +1−3 +6−2 +15−1 +6+4 +1+3 +6

′
+2 +15

′
+1 (IIA)

56 → (6
′
,1)−4 +(6,2)−2 +(20,1)0 +(6,1)+4 +(6

′
,2)+2 (IIB).

In the type IIA case, the internal physical coordinates can be chosen to
describe the 6

′
−4 +1−3 representation while in the type IIB case they can be

associated to the (6′
,1)−4 representation. Which of the 7/6 coordinates is

considered electric or magnetic depends on how SO(1,1)×GL(6) or SL(2,R)×
GL(6) is embedded in SL(8,R) which in turn defines the 28+28 splitting of
the 56 generalized coordinates Y M. Once the choice is fixed, one can set

U (1)(ye) = Up,q,p
′+q′

e (yi = yje), j = 1, . . . ,p+ q−1, (4.3.19)

and

U (2)(ym) B
A =

β(p′+q′)(yi = yam)1r′×r′ 0
0 β−r′

U−T
p′,q′(yi = yam)

 , a= 1, . . . ,p′ +q′−1.

(4.3.20)
The expression for the magnetic factor is essentially the same as the electric one
with entries (4.3.11)(4.3.13) but with the role of the Y [AB]and Y[AB] directions
inverted. Moreover, the blocks in (4.3.13) are swapped so that, modulo scale
factors, U (1) and U (2) act non-trivially on the electric and the magnetic direc-
tions respectively. They commute as SL(8,R) elements and they are mutually
compatible in the sense of [41]. This property is analogous to the one for the
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matrices ξ(p′,q′,r′) and η(p,q,r) given in section 4.1.2 of being complementary one
to each other. The scale factor ρ is given by

ρ(1) = ρe(yi = yje), ρ(2) = ρe(yi = yam). (4.3.21)

In [41], the embeddings for the cases 2≤ p+ q ≤ 6 and p′ + q′ = 8−p− q are
considered explicitly9. In particular, p+ q = 2,4,6 is consistent with an ExFT
description of type IIB supergravity. Instead, the other cases are consistent
with the ExFT description of type IIA supergravity and the set of (yie,yam)
coordinates, belonging to the 6

′
−4 representation in (4.3.19), can be extended

with an extra coordinate corresponding to the 1−3 representation appearing
in the same branching. The Ud matrix and the scale factor ρd do not depend
on the latter, however, it is relevant to describe the model in terms of D = 11
supergravity. Following again [41], it is proven that Ud and ρd given above
satisfy the conditions (4.3.8)(4.3.9). In particular, the resulting dyonic X
tensor is given by the sum of the two embedding tensors identified by U (1)

and U (2) respectively. It is to say an embedding tensor describing an electric
CSO(p,q,r) gauging combined with a magnetic CSO(p′, q′, r′) gauging. This
allows us to interpret some of the D = 4 maximal models with gauge group
given in (4.1.10) as originating from a consistent truncation of the generalized
Scherk-Schwarz reduction described in this section. The other way around, the
above construction provides an uplift to type IIA/B supergravity theories of the
D = 4 N = 8 gauged models with gauge group (4.1.10) and 2≤ p+ q = r′ ≤ 6.
In the next chapter, we will see how to apply this result to study interesting
solutions in the p= 6, q = 0, p′ = 2 case. We will also use the main example to
review the ExFT technique for computing Kaluza-Klein spectra of upliftable
solutions of the lower dimensional model.

9In this section we are using a different SL(8,R) basis than the one in section 4.2 which is
the same used in next chapters. It is clear that it is a matter of conventions



Chapter 5

Uplifting the N = 2 Solutions

To summarize the previous chapter and what we are going to discuss, we have
introduced gaugings in four dimensions, which involve, in a standard symplectic
frame, magnetic components of the embedding tensor (dyonic gaugings) [39, 57,
40]. While some of these models are constructed by gauging a same simple gauge
group of the form SO(p,q) in different frames, others involve non-semisimple
gauge groups and have the general form [SO(p,q)×SO(p′, q′)]⋉N , with N
being a subgroup generated by nilpotent generators. The dyonic nature of the
latter gaugings (i.e. the non-vanishing magnetic components of the embedding
tensor) is encoded in a deformation parameter c which if non-vanishing can
always be set to a fixed value by field redefinitions, e.g. c= 1. All these gaugings
generalize their electric simple and semi-simple counterparts [58, 59] (the non-
semisimple gaugings, for c = 0, reduce to the electric CSO(p,q,r) gaugings).
We have discussed how the non-semisimple dyonic gaugings can be embedded
in Type II supergravity in the framework of ExFT. The latter not only provides
explicit uplift formulae for the models allowing to explore interesting properties
of the higher dimensional configurations. For example, the dyonic ISO(7)-model
was shown to be a consistent truncation of massive Type IIA supergravity
[60] on a background of the form AdS4×S6 [61–63, 45, 64, 65]. The general
embedding of the models featuring non-semisimple dyonic gaugings within
Type II supergravities was derived, employing the ExFT framework, in [41].

Here we are interested in describing the application of the latter results to
the four-dimensional maximal supergravity with dyonic gauging

Gg = [SO(6)×SO(1,1)]⋉R12 , (5.0.1)

which features AdS4 vacua with N = 0, 1, 2 and 4 supersymmetries [66, 41–43].
Some of these were lifted to Type IIB S-folds of Janus solutions, which have
a spacetime geometry of the form AdS4×S1×S5, with S5 being a deformed
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five-sphere. These backgrounds are characterized by a monodromy MS1 around
the non-contractible S1 with radius T

2π , with MS1 a hyperbolic element of
the SL(2,Z)IIB duality group. In other words, these solutions feature different
local geometric descriptions patched together by a non-perturbative Type IIB
S-duality transformation. They can also be constructed as suitable quotients
of Janus-like solutions in Type IIB [67, 68]. The N = 4 vacuum with SO(4)
residual gauge symmetry was found in [66] and uplifted to Type IIB theory
in [41]. The N = 0, 1 vacua were discovered in [42]. The N = 0 vacuum with
symmetry SU(4) and the N = 1 one with symmetry SU(3) were uplifted, in the
same work, to ten-dimensional S-folds of type IIB. In [43], a new family of N = 2
U(1)2 symmetric vacua was found. The vacua of this family are labeled by a
continuous, non-compact parameter χ.1 At χ= 0 the residual gauge symmetry
is enhanced to SU(2)×U(1) and the type IIB uplift at this particular value was
found in the same work. The corresponding S-fold solutions are conjectured
to be holographically dual to interface super-Yang Mills theories in D = 3.
Interesting examples are given in [71], where a class of S-fold N = 4 AdS4×K6
solutions with compact K6 internal manifold is given. Following the authors,
these solutions can be obtained as quotients of known non-compact ones, with
the quotient defined by an SL(2,Z)IIB action on the latter. Furthermore,
by translating this procedure on the corresponding N = 4 CFT3 Janus-type
theories [72][73], they were able to find strong candidates for their SCFT3
duals.

By employing the ExFT methods, we perform a Kaluza-Klein analysis on
the U(1)2-symmetric N = 2 family of vacua found in [43]. We perform their
uplift to Type IIB S-fold solutions of the whole 1-parameter N = 2 family. In
particular, we give χ a geometrical interpretation as a 10-dimensional metric
modulus. We find that the dependence on χ of the type IIB solution can
be interpreted as a global twist in the internal geometry, and, in particular,
involving a squashed S3 submanifold of the deformed S5, which is fibered over
S1. This fibration involves a non-trivial twist of the points of S3, as we move
around S1, which depends on χ. As we shall prove, the D = 10 S-fold solutions
corresponding to the χ ̸= 0 vacua are locally related to the one associated
with the χ = 0 vacuum by the above reparameterization, although globally
different. In particular, χ only enters through the dependence of the fields on
the point of the squashed S3 and thus does not affect the axion-dilaton field.
We are also able to relate χ with a complex structure modulus associated with
the internal submanifold S3×S1. Indeed, writing S3 as a Hopf fibration of
a circle over S2 and combining the circular fiber with the external S1 into a

1In fact this family of vacua will feature at least two moduli fields, as the conformal
manifold ought to be complex. The supergravity moduli fields are expected to be a subset of
the four scalar massless modes found in [43]. Recently a 2-parameter extension of the N = 2
vacua studied here was constructed in [69, 70].
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2-torus T 2, the manifold S3×S1 can be written as a toroidal fibration over
S2. We show that χ defines the real part of the modular parameter of the
toroidal fiber T 2 and, due to the invariance of the complex structure of the
torus under a Dehn twist, χ has period 2π

T . All these global properties of
the D = 10 background, associated with the χ parameter, cannot be seen
from the four-dimensional supergravity perspective, but are apparent from the
analysis of the Kaluza-Klein spectrum of these vacua, which we perform. At
the special values χ = πm

T , m ∈ Z, two vectors in the full KK spectrum, but
outside the supergravity truncation, become massless, thus enhancing U(1)2 to
SU(2)×U(1)′. This corresponds to a "space invaders" scenario [74, 75].

As far as the dual 3-dimensional theory is concerned, we can still rely on the
constructions put forward in [76], building on [71]. One of these possibilities
involves the strong coupling regime of the T[U(N)] theory by Gaiotto-Witten
[77] in which the U(N)×U(N) global symmetry is gauged by a U(N) N = 2
vector multiplet, to preserve N = 2 supersymmetry in the IR limit. The
parameter χ would parameterize a further exactly marginal deformation of this
N = 2 model, thus defining a direction in the conformal manifold of the dual
theory. Our analysis, unveiling the compact nature of χ, sheds some light on
the global properties of the conformal manifold.

5.1 Embedding the Model in ExFT

In this section, we shall specialize the discussion of the previous chapter
on the framework of E7(7)-exceptional field theory (ExFT) [4] to uplift the
one-parameter N = 2 family of vacua to D = 10 backgrounds of Type IIB
supergravity. TheD= 4 supergravity vacua under discussion have non-vanishing
gravitational and scalar fields. To perform the uplift of the vacua, we only need
the fields ĝµν(x,Y ) and the generalized metric M̂MN(x,Y ) of the theory, the
vector and tensor fields being consistently set to zero. These fields are related
to their counterparts gµν(x),MMN (ϕ(x)) of the four-dimensional supergravity
as described in section 4.3.1, using the generalized Scherk-Schwarz ansatz [5]:

ĝµν(x,Y ) = ρ(Y )−2 gµν(x) ,
M̂MN(x,Y ) = UM

K(Y )UN
L(Y )MKL(ϕ(x)) .

(5.1.1)

The relationship between UMN (Y ) and the constant embedding tensor XMN
P

(4.2.2) in the four-dimensional theory is:

U−1 R
M U−1 Q

N ∂RU
P

Q

∣∣∣
912

= ρ

7XMN
P , (5.1.2)
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with the scalar function ρ= ρ(Y ) from (5.1.1). Equivalently, this condition is
expressed as [78]

LUM
UN =XMN

P UP , (5.1.3)

via the action of generalized diffeomorphisms, where the UM denote the gener-
alized (56-dimensional) vectors

(UM )N = ρ−1(U−1)M N , (5.1.4)

given by the columns of the inverse twist matrix. In our case, the twist matrix
UM

N (Y ) is an element of the SL(8,R) subgroup of E7(7) and in a suitable SL(8,R)
basis it is diagonally embedded as in (4.3.11). To embed Type IIB supergravity
in ExFT we need the branching of the relevant E7(7) representations with
respect to the subgroup SL(6,R)×SL(2,R)IIB×SO(1,1), where SL(2,R)IIB is
the global symmetry group of the Type-IIB:

56 → (6′,1)−2 +(6,2)−1 +(20,1)0 +(6′,2)+1 +(6,1)+2 , (5.1.5)

the subscript being the SO(1,1)-grading. Correspondingly Y M splits as follows:

YM → ym , yα̂m , ymnp , y
α̂m , ym , (5.1.6)

where m,n,p = 1, . . . ,6 and α̂ = 1,2 labels the components of an SL(2,R)IIB
doublet. Restricting the ExFT fields to the ym coordinates only, the section
constraints are satisfied and the field equations of ExFT reduce to those of Type
IIB supergravity. To identify the above components of Y M with the components
of the same vector in the basis Y [AB], Y[AB] it is necessary to further split the
SL(6,R) representations with respect to its SL(5,R)×SO(1,1) subgroup, so
that yi = yie, i= 1, . . . ,5, are identified with Y [i8] while y6 = y6

m, to be denoted
by ỹ, is identified with Y[67], and we can write (ym) = (yi, ỹ) so that the internal
coordinates are split in "electric" and "magnetic" directions respectively2. We
refer to [41] and [42, 43] for the detailed correspondence between the quantities
in the decomposition (5.1.6) and the components Y [AB], Y[AB].3 The explicit

2Below, the subscript ’e’ will drop out from the electric coordinates.
3As opposed to the notations used in [43], here we label by an upper (or lower) index m

a vector transforming in the 6′ (or 6) representation of SL(6,R).
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form of (the inverse of) UA
B(ym) is given by [41].

√
ρe
ρm

(U−1) B
A =

5 3

5

3


δij +ηikηjly

kylKe(u,v) 0 0 ρ2
eηijy

j

0 1 ρ−2
m Km(ũ, ṽ) ỹ 0

0 ρ−2
m ỹ ρ−4

m (1+Km(ũ, ṽ)ũ) 0
ρ2
eηijy

jKe(u,v) 0 0 ρ4
e

 .

The latter expression is the same as the one given in (4.3.18) and (4.3.19)
(4.3.20) with p = 6, q = 0, p′ = 1, q′ = 1 but in a slightly different SL(8,R)
basis. To express the components of the matrix M̂MN(x,Y ) in terms of D = 10
fields we further need the decomposition of the 133 of E7(7), which branches
as follows

133→ (1,2)+3 +(15′,1)+2 +(15,2)+1 +(35+1,1)0 +(1,3)0 +(15′,2)−1 +(15,1)−2 +(1,2)−3 ,
(5.1.7)

with the E7(7) generators splitting accordingly into{
tα̂ , tmnpq , tα̂mn , tmn , t

α̂
β̂
, tα̂mn , tmnpq , tα̂

}
. (5.1.8)

Next we write M̂MN(x,Y ) in (5.1.1) as

M̂(x,Y ) = VIIB(x,y) · VIIB(x,Y )T ,

where VIIB(x,y) is a representative of the coset E7(7)/SU(8) in the solvable
gauge which is appropriate to the Type IIB theory [79, 80]:

VIIB(x,y) = et
α̂B

α̂ · e
1

24 t
mnpqCmnpq · e

1
2 t

α̂mnB
α̂mn · V2 · V6 , (5.1.9)

where Bα̂ are the scalars dual in D = 4 to Bα̂µν , Cmnpq are the internal
components of the 4-form, Bα̂mn are the internal components of the 2-forms,
V6 is the representative of GL(6,R)/SO(6) and V2 that of SL(2,R)IIB/SO(2),
depending on the D = 10 axion C0 and dilaton ϕ fields. In our notations the
doublet of ten dimensional 2-forms Bα̂

(2) is defined in terms of the NS-NS and
R-R fields B(2), C(2) as follows: Bα̂

(2) = ϵα̂β̂B
β̂ (2) = (B(2), C(2)).4. After having

computed the matrix M̂(x,Y ) on the N = 2 vacua, the internal metric Gmn(y),
the internal components of the 2-forms Bα̂

mn = ϵα̂β̂B
β̂mn

, and the internal

4In our conventions ϵ12 = ϵ12 = +1
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components of the 4-form Cmnpq in the D = 10 solution, can be computed as
follows [41–43]:

Gmn = G
1
2M̂mn

Bα̂
mn = G

1
2Gmpϵ

α̂β̂M̂p
βn

Cmnpq−
3
2ϵα̂β̂B

α̂
m[nB

β̂
pq] = −G

1
2GmrM̂r

npq

m
α̂β̂

= 1
6G

(
M̂mnM̂

α̂mβ̂m
+M̂m

α̂nM̂n
β̂m

)
,(5.1.10)

where G≡ det(Gmn). The matrix m
α̂β̂

is an element of SL(2,R)IIB/SO(2) and
is defined as:

m
α̂β̂
≡ (V2 · Vt2)

α̂β̂
= 1

Im(τ)

 |τ |2 −Re(τ)
−Re(τ) 1

 , (5.1.11)

where τ ≡ C0 + ie−ϕ. In the next section, we shall perform the Kaluza-Klein
analysis on the N = 2 vacua and in section 5.3, using the above formulas, we
shall give the corresponding class of one-parameter D = 10 solutions.

5.2 The N = 2 Kaluza-Klein Spectrum from
ExFT

The ExFT formulation of supergravity not only provides a powerful tool
for uplifting lower-dimensional solutions but also for computing the Kaluza-
Klein spectra around the resulting higher-dimensional backgrounds. The
formalism has been set up in [34, 6] and here we briefly review the relevant
formulas. As a general structure, the Kaluza-Klein fluctuations around such a
background are expressed as a product of the modes of the consistent truncation
(4.3.10) captured by the U matrix, with a complete basis of functions on the
compactification manifold. In the case at hand, the basis of functions {Yς} can
be chosen to be a tensor product of the scalar harmonics on the round S5 with
a standard Fourier expansion on S1. More precisely, we can use the following
basis for harmonics

Yς =
{
Yσ⊗Y(n)

}
, (5.2.1)

where

Yσ = {Ya, Ya1a2 , . . . , Ya1...an , . . .} , ai = 1, . . . ,6 , (5.2.2)
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are the sphere harmonics on S5 constructed as traceless symmetric products
Ya1...an = Y((a1 . . .Yan)), in terms of the fundamental harmonics, Ya, on S5,
which satisfy YaYa = 1, and

Y(n) = exp
(2π in

T
η
)
, (5.2.3)

are the S1 harmonics with periodicity η = η+T of the S1 coordinate η . The
harmonics are related to the twist matrices from (4.3.10) by a linear action of
generalized diffeomorphisms

LUM
Yς =−TMς

φYφ , (5.2.4)

with gauge parameters (5.1.4), see [34, 6] for details. For the following, we simply
note that this relation defines a set of constant matrices (TM )ςφ, satisfying the
algebra

[TM , TN ] =XMN
P TP , (5.2.5)

which realizes the embedding tensor XMN
P as structure constants. For the

specific twist matrix UNM (Y ) defined above, the matrices (TM )ςφ acting on the
harmonics (5.2.1) have the following non-zero entries

TABc1...cn
d1...,dn = 2nt[A((c1tB]((d1δ

c2
d2
. . . δ

cn))
dn)) , T 67,(n)

(m) = 2π in
T

δ
(n)
(m) ,

(5.2.6)
where the matrix

tA
c =


δA,c A≤ 5
δA−2,c A= 8

0 A= 6,7
, (5.2.7)

takes care of the embedding of the harmonics into the basis used to define
UNM (Y ). The fluctuation Ansatz of the ExFT fields (4.3.1) around an AdS4
vacuum extends the Ansatz for the consistent truncation (4.3.10) and is given
by [34, 6]

ĝµν(x,y) = ρ−2
(
gµν(x)+

∑
ς
Yς hµν,ς(x)

)
,

Âµ
M(x,y) = ρ−1 (Ů−1)N M ∑

ς
YςAµN,ς(x) ,

M̂MN(x,y) = ŮM
P ŮN

Q
(
δPQ+πPQ,I

∑
ς
YςjI,ς(x)

)
,

(5.2.8)

where the Kaluza-Klein fluctuations for the metric, vector fields and scalars
are labeled by hµν,ς(x), AµM,ς , and jI,ς ∈ e7(7)⊖ su(8), respectively. The twist
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matrix ŮM
N appearing in (5.2.8) is obtained from the twist matrix from (4.3.10)

upon dressing with the scalar hybrid coset representative of the four-dimensional
supergravity, L N

M ∈ E7(7)/SU(8), evaluated at the scalar configuration specify-
ing the N = 2 vacuum as

ŮM
N (y) = UM

P (y)LPN . (5.2.9)

The scalar fluctuations in (5.2.8) moreover appear under projection πMN,I , with
I = 1, . . . ,70, over the non-compact E7(7)-generators resulting from the expansion
of the group element M̂MN on the 70-dimensional coset space E7(7)/SU(8). The
normalization of πMN,I is not relevant since it drops out of the mass matrix
when normalized relative to the scalar kinetic term. Evaluating the ExFT
field equations from [4] with the fluctuation Ansatz (5.2.8) induces the mass
matrices for the bosonic Kaluza-Klein spectrum which are expressed in terms of
the T -tensor of the resulting gauged supergravity model TMN

P corresponding
to (4.2.2), and the dressed matrices T from (5.2.4), (5.2.6),

TM = (L−1)MN TN . (5.2.10)

The mass matrices are obtained by linearizing the ExFT field equations with
the fluctuation ansatz (5.2.8) [34, 6], and we give them in compact form as

M(spin-2)
ςφ =−(TMTM )ςφ ,

M(vector)
Mς,Nφ = (ΠΠT )Mς,Nφ ,

M(scalar)
Iς,Jφ =M(0)

IJ δςφ+ δIJM(spin-2)
ςφ +NIJM TM,ςφ− 1

6(ΠTΠ)Iς,Jφ .

(5.2.11)

The tensors appearing in these expressions are given by

ΠMς,Iφ = δςφTMN
P πNP,I −12πMN,I TNφς ,

NIJM = −4
(
TMN

P +12TNPM
)
πNQ

[IπPQ
J ] ,

M(0)
IJ = 1

7

(
7TMR

STNS
R+TMR

STNR
S +TRM

STRN
S +TRS

MTRS
N
)
πMQ,I πNQ,J

+ 2
7

(
TMC

RTNQ
R−TMR

CTNR
Q−TRMCTRN

Q
)
πMN,I πCQ,J .

(5.2.12)

In particular, the matrix M(0)
IJ is the mass matrix derived from the scalar

potential of D = 4 supergravity, describing the masses of the 70 scalars at the
lowest Kaluza-Klein level. The corresponding mass formulas for the fermionic
sector have been worked out in [81].
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5.2.1 The Kaluza-Klein spectrum around the N = 2 back-
grounds

Before applying the ExFT technology to the family of N = 2 vacua of interest,
let us first work out to which extent the structure of the spectrum is constrained
from the representation structure of the underlying supergroup OSp(N|4). The
generic supermultiplet of this group is of long type

LL[J ](R)
∆ , J = 0, 1

2 ,1 , (5.2.13)

with J referring to the Lorentz spin of the highest weight state (HWS), such
that its different values in (5.2.13) correspond to the long vector, gravitino,
and graviton multiplets, respectively. Labels ∆, and R refer to the confor-
mal dimensions and the U(1)R R-symmetry charge of the HWS, respectively.
Unitarity implies a lower bound for the conformal dimension

∆ ≥ 1+ |R|+J . (5.2.14)

When the bound is saturated, the long multiplet decomposes into shortened
multiplets5. The presence of an S1 factor in our backgrounds implies that all
masses continuously depend on the inverse circle radius. Only at generic values
of the radius, the spectrum thus necessarily assembles into long multiplets
(5.2.13). At specific values of the inverse radius (and in particular for the zero
modes on the circle) some of the long multiplets fall to the unitarity bound
(5.2.14) and decompose into shortened multiplets. To make the results explicit,
let us recall the character/partition function of the long multiplets (5.2.13),
given by

Z
LL[0](R)

∆

= Z0[∆,R]≡ t∆uR
(
1−
√
t

√
z
u

)(
1−
√
t 1√

zu

)(
1−
√
t
√
z u
)(

1−
√
t u√

z

)
,

Z
LL[ 1

2 ](R)
∆

= Z 1
2
[∆,R]≡−t∆uR

(√
z+ 1√

z

)(
1−
√
t

√
z
u

)(
1−
√
t 1√

zu

)(
1−
√
t
√
z u
)(

1−
√
t u√

z

)
,

Z
LL[1](R)

∆

= Z1[∆,R]≡ t∆uR
(
z+1+ 1

z

)(
1−
√
t

√
z
u

)(
1−
√
t 1√

zu

)(
1−
√
t
√
z u
)(

1−
√
t u√

z

)
.

(5.2.15)

c.f. appendix E.2. Here, exponents of t, u, and z count the conformal dimension,
R-charge, and Lorentz spin, respectively. Following the above discussion, the
partition function for the full Kaluza-Klein spectrum can thus be written in
the form

ZKK = ν0Z0[0,0]+ν1/2Z 1
2
[0,0]+ν1Z1[0,0] , (5.2.16)

5In section 3.5 the notation and details on these multiplets and the shortening patterns
are discussed.
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with the characters ν0, ν1/2, ν1, carrying the HWS of the long multiplets.
Except for the masses, the remaining quantum numbers of the spectrum can
be inferred from the fluctuation ansatz (5.2.8), upon multiplying the fields of
N = 8 supergravity with the tower of scalar harmonics. To this end, let us note
that the U(2) symmetry, preserved at the χ= 0 vacuum, is embedded into the
SO(6) part of the gauge group, such that the gravitini decompose as

8s −→ 2× [0]+1 +2× [0]−1 +2× [1
2 ]0 ,

i.e. ν8 = 2u+ 2
u +2

√
x+ 2√

x
,

(5.2.17)

where x counts the U(1)⊂ SU(2) charges. From this, the U(2) representation
content of the full N = 8 supergravity multiplet can be deduced as

graviton : 28 : 1 ,
gravitini : 28 : 8s ,

vectors : 28 : 8s∧8s ,
spin-1

2 fermions : 56 : 8s∧8s∧8s ,
scalars : 70 : 8s∧8s∧8s∧8s .

(5.2.18)

The S5 sphere harmonics in turn decompose as

6−→ 2× [0]0 +[1
2 ]+1 +[1

2 ]−1 ,

i.e. ν6 = 2+
√
xu+ u√

x
+ 1√

xu
+

√
x
u ,

(5.2.19)

under U(2). The full Kaluza-Klein spectrum then is obtained by multiplying
(5.2.18) with the symmetric tower of S5 harmonics (5.2.19) and the tower of S1

harmonics, the latter amounting to a standard Fourier expansion. Comparing
the result to the general form (5.2.16), we may read off the characters νJ except
for the conformal dimensions, i.e. setting t= 1, and find

ν0
∣∣∣
t=1

=
(1− q2)

(
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x

)
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∣∣∣
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∣∣∣
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1− s .

(5.2.20)
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Here, exponents of q, s, count levels for the S5 and the S1 harmonics, respec-
tively. The S1 factor 1+s

1−s simply encodes the fact that at S1–level n > 0 the
harmonics (Fourier modes) are complex. Representation theory alone thus
determines the Kaluza-Klein spectrum to be of the form (5.2.16), (5.2.20). The
last and central information which completes this spectrum is the assignment
of conformal dimensions/masses to all the states. It is at this step, that the
ExFT technology described in the previous subsection becomes relevant. Af-
ter evaluating the mass matrices (5.2.11) for the spin-2, the vector and the
scalar fields, respectively, we can extract a general formula for the conformal
dimensions ∆ of the HWS of the supermultiplets, counted by (5.2.20), as

∆= 1
2 +

√
17
4 + 1

2R
2−J(J +1)−2k(k+1)+ ℓ(ℓ+4)+4

(
πn
T − jχ

)2

for a HWS of type qℓ snuRxj zJ and SU(2) spin k .
(5.2.21)

The conformal dimensions inside the multiplets then follow from the multiplet
structure (5.2.15). Combining (5.2.16), (5.2.20), and (5.2.21) thus produces
the full Kaluza-Klein spectrum. We stress again, that for some multiplets,
the conformal dimensions determined from (5.2.21) may saturate the unitarity
bound (5.2.14), such that the corresponding long multiplets appearing in the
expansion (5.2.16) split into shortened multiplets. The mass formula (5.2.21)
explicitly shows that a non-vanishing χ ̸= 0 breaks SU(2) by terms proportional
to the U(1) ⊂ SU(2) charge. Moreover, it exhibits an interesting interplay
between the χ-dependence and the S1–level n: all masses receive correction
terms proportional to (

πn
T − jχ

)2
. (5.2.22)

In particular, this allows us to deduce that the full mass spectrum is mapped
onto itself under shifts χ→ χ+ 2π

T . Indeed, upon switching on χ, the SU(2)
representations at a given S1–level n break up into their U(1) constituents
which then at χ= 2π

T recombine (over various levels) into a copy of the original
SU(2) representations. More precisely, a state of SU(2) spin k at level n and
generic value of the deformation parameter χ breaks up into the 2k+1 states
of U(1) charge

j ∈ {−k,−k+1, . . . ,k} , (5.2.23)

with conformal dimensions ∆χ given by (5.2.21), thus deformed by contributions
in (5.2.22). For χ= 2π

T on the other hand, every level ñ in the range

ñ ∈ {|n−k|, |n−k+1|, . . . ,n+k} , (5.2.24)

carries a state of conformal dimension ∆0 which recombine into a spin k
representation of a (newly enhanced) SU(2) symmetry. As an illustration,
Figure 5.1 depicts the spectrum of spin-2 masses at fixed S5–level ℓ = 3. It
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Figure 5.1 Spin-2 masses at level ℓ = 3, as a function of χ. L denotes the AdS4 radius.

shows the breaking and recombining of the spin-2 states as a function of
the deformation parameter χ running from 0 to 2π

T . The spectra at the two
endpoints χ= 0 and χ= 2π

T are identical.
It is also instructive to illustrate this pattern at the lowest S5–level ℓ= 0.

At this level, the spectrum combines into supermultiplets

4×LL[0](0)
1
2 +
√

17
4 + 4π2n2

T 2

⊕ 2×LL[0](0)
1
2 +
√

1
4 +( 2πn

T ±2χ)2⊕ 2×LL[0](0)
1
2 +
√

1
4 + 4π2n2

T 2

⊕ 4×LL[1
2 ](0)

1
2 +
√

2+( 2πn
T ±χ)2⊕ 2×LL[1](0)

1
2 +
√

9
4 + 4π2n2

T 2

,

(5.2.25)

for S1–level n > 0, accompanied by (4.2.7) at level n = 0 . At χ = 0, some
of the conformal dimensions in (5.2.25) degenerate with the corresponding
supermultiplets joining into irreducible SU(2) representations of spin [1] and
[1
2 ], respectively. At level 0, this moreover induces the multiplet shortening

(4.2.8) with the two arising massless vector multiplets A2A2[0](0)
1 manifesting

the symmetry enhancement U(1)→ SU(2), as discussed in the previous section.
In contrast, at χ= 2π

T , those additional massless vector multiplets arise from
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multiplet shortening of the second multiplet in (5.2.25) at level n = 2. This
is an explicit realization of a (bosonic version of the) space invader scenario
encountered in other compactifications [74], in which massive fields from higher
Kaluza-Klein levels turn into massless gauge fields. However, the structure of the
spectrum (5.2.25) shows an even more remarkable structure at the intermediate
value χ = π

T . At this value, multiplet shortening of the second multiplet in
(5.2.25) now at level n= 1 gives rise to two additional massless vector multiplets
which reveal another SU(2) symmetry enhancement at this point. In contrast
with the symmetry enhancement at χ= 2π

T , the full Kaluza-Klein spectrum at
this intermediate point is different from the one at χ= 0. A closer look at the
χ-dependence (5.2.22) of the masses shows that under χ→ χ+ π

T , the spectrum
of states of integer SU(2) spin maps into itself whereas the states of half-integer
SU(2) spin acquire different masses. This is also visible in Figure 5.1 with the
degeneracies due to the symmetry enhancement to an inequivalent spectrum
at the intermediate point χ= π

T . It is worth pointing out that the truncation
of the level 0 spectrum (4.2.7) to integer SU(2) spin amounts to truncating
the four-dimensional N = 8 supergravity to a half-maximal N = 4 theory. In
section 5.3, we will discuss the higher-dimensional origin responsible for these
patterns. First, let us point out the relevant symmetries of the Kaluza-Klein
spectrum. Inspection of the Kaluza-Klein spectrum shows the following two
symmetries:

χ→ χ+ 2π
T

, n→ n+2j , (5.2.26)

χ→−χ , j→−j . (5.2.27)

The above symmetries combine into a reflection symmetry of the spectrum in
the χ= π/T vertical line:

χ→ 2π
T
−χ , n→ n−2j , j→−j , (5.2.28)

which is perceptible in Figure 5.16. Later in Section 5.3.1, we will give a char-
acterization of the symmetries (5.2.26) and (5.2.27) in terms of the geometric
properties of an elliptic fibration within the internal manifold. In this construc-
tion χ will be identified with the real part of the complex structure modulus
of a torus fibered over S2. The symmetry (5.2.26) will then be interpreted as

6More explicitly, one can imagine following a line corresponding to a state with non-
vanishing U(1) charge, it is to say with decreasing/increasing energy with respect to χ, until
it reaches the middle point χT

2π = 1
2 . Because of the SU(2) degeneracy occurring at this point,

one will cross the line corresponding to a state with opposite U(1) charge, it is to say with
increasing/decreasing energy, until the endpoint χT

2π = 1. The symmetry is trivially realized
for those states having vanishing U(1) charge j = 0. Indeed, they correspond to horizontal
lines since their energy does not depend on χ (5.2.22).
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the Dehn twist, see Subsection 5.3.2 on the fiber, which can be reabsorbed in a
globally well-defined reparametrization of the deformed S3, while (5.2.27) as
the effect of a parity transformation on the same fiber, see Subsection 5.3.5.

5.2.2 Multiplet shortening

As discussed above, at χ = 0, the symmetry enhances according to U(1)2→
U(2). At the same time, at these values, the conformal dimensions (5.2.21) of
several supermultiplets hit the unitarity bound (5.2.14) and the generic long
multiplets split up into shortened multiplets according to the patterns reviewed
in appendix E.2. Explicitly, combining the saturation of the unitarity bound

∆= 1+ |R|+J , (5.2.29)

with the formula (5.2.21) translates into the condition

8+2ℓ(ℓ+4) = (|r|+2J)(|r|+2J +2)+4k(k+1) . (5.2.30)

Combining this with the bounds derived from the specific characters (5.2.20),
we conclude that multiplet shortening appears for the multiplets whose HWS
charges satisfy

|R|= ℓ , k = 1+ 1
2ℓ−J . (5.2.31)

This reveals six series of long multiplets which sit on the unitarity bound and
each decomposes into semi-short multiplets according to (E.2.3)

[ ℓ2 ]⊗LL[1](±ℓ)ℓ+2 −→ [ ℓ2 ]⊗


LA1[1](ℓ)ℓ+2 +LA1[1

2 ](ℓ+1)
ℓ+5/2

A1L[1](−ℓ)ℓ+2 +A1L[1
2 ](−ℓ−1)
ℓ+5/2

,

[ ℓ+1
2 ]⊗LL[1

2 ](±ℓ)
ℓ+ 3

2
−→ [ ℓ+1

2 ]⊗


LA1[1

2 ](ℓ)
ℓ+ 3

2
+LA2[0](ℓ+1)

ℓ+2

A1L[1
2 ](−ℓ)
ℓ+ 3

2
+A2L[0](−ℓ−1)

ℓ+2

,

[ ℓ+2
2 ]⊗LL[0](±ℓ)ℓ+1 −→ [ ℓ+2

2 ]⊗


LA2[0](ℓ)ℓ+1 +LB1[0](ℓ+2)

ℓ+2

A2L[0](−ℓ)ℓ+1 +B1L[0](−ℓ−2)
ℓ+2

,

(5.2.32)

at level ℓ > 0. Similar multiplet shortening occurs at χ= π
T . More remarkably,

multiplet shortening happens at every value of χ that is a rational multiple of
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2π
T . More precisely, at

χ= p

q

2π
T
, p,q ∈ N , (5.2.33)

shortening occurs for the multiplets whose HWS have U(1) charge

j = qn

2p ∈
1
2N . (5.2.34)

These multiplets appear at S1 levels n that are integer multiples of p, i.e. n=mp
with m ∈ N. We stress, however, that the resulting shortened multiplets are
not necessarily protected, as they can potentially recombine again into the
original long multiplets. It remains an open question to what extent they can
be recovered in the dual conformal field theory.

5.3 The Type IIB Uplift of the 1-Parameter
N = 2 Vacua

Just as in the χ = 0 case, the D = 10 dimensional solution corresponding to
the 1-parameter family of N = 2 vacua has the geometry of AdS4×S5×S1,
where S5 denotes here a deformed five-sphere. As we shall see this family is
locally related to the χ= 0 solution by a coordinate transformation involving
the coordinates of S1 and a squashed S3 within S5.

5.3.1 Geometry of the Internal Space

We locally parameterize S5 by coordinates θ, φ, α, β, γ and S1 by the coordinate
η, with the following ranges

0≤ η < T , 0≤ θ ≤ π

2 , 0≤ φ < 2π , 0≤ α≤ 2π , 0≤ β ≤ π , 0≤ γ+ π

2 < 4π .
(5.3.1)

The coordinates θ, φ parametrize an S2 within S5, while α, β, γ parametrize
an S3 within the same manifold. We begin by describing the internal geometry
for the χ = 0 solution, before explaining how it is modified when χ ̸= 0. To
understand the effect of χ ̸= 0, it is sufficient to focus on S3 and S1. In the
full solution, discussed in section 5.3.3, the S3 is fibred over S2 in such a way
that, for χ= 0, only an SU(2)×U(1)′ ⊂ SU(2)×SU(2)′ isometry of S3 remains.
Hence it is convenient to describe S3 using the isomorphism SU(2)≃ S3, given
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by

g(α,β,γ)≡
 w1 w2

−w2 w1

=
 e

1
2 i(α+γ+π/2) cos

(
β
2

)
e

1
2 i(−α+γ+π/2) sin

(
β
2

)
−e− 1

2 i(−α+γ+π/2) sin
(
β
2

)
e− 1

2 i(α+γ+π/2) cos
(
β
2

)
 ,

(5.3.2)
where w1, w2 satisfy |w1|2 + |w2|2 = 1 and define the embedding of S3 in C2.
The map from (5.3.1) to the ym coordinates in (5.1.6) is

y1

cosθ = Re(w1) , y4

cosθ = Im(w1) , y5

cosθ = Re(w2) , (5.3.3)

and
y2 = cosϕsinθ , y3 = sinϕsinθ , ỹ = sinhη . (5.3.4)

For χ= 0, we can express the squashed S3 metric in terms of the left-invariant
1-forms σi, i= 1, . . . ,3, defined as

g−1dg =
3∑
i=1

σi(iσi) , (5.3.5)

where σi are the three Pauli matrices. The σi satisfy the Maurer-Cartan
equations

dσi− ϵijk σj ∧σk = 0 , (5.3.6)

with ϵijk =±1 the structure constants of SU(2). Evaluating the Maurer-Cartan
forms in terms of the coordinates (5.3.1), we find

σ1 = 1
2(dγ cos(α)sin(β)−dβ sin(α)) , σ2 = 1

2(dβ cos(α)+dγ sin(α)sin(β)) ,

σ3 = 1
2(dα+dγ cos(β)) .

(5.3.7)

The dependence of the internal metric and the other fields, in the χ= 0 solution,
on the point in S3 is expressed in terms of σi and thus the solution features an
SU(2) symmetry group acting from the left on g(α,β,γ) and thus leaving σi
invariant. Due to the squashing of the S3 geometry, only a U(1)′ subgroup of
the SU(2)′ group acting on g(α,β,γ) from the right is a symmetry of the χ= 0
solution. In fact the group U(1)′ coincides with the N = 2 R-symmetry group,
previously denoted by U(1)R. For χ ̸= 0 the solution features a fibration of
S3 over S1 in which a point of S1 is associated with an S3 parametrized by
coordinates (α′,β′,γ′) which define the following SU(2)-element

g(α′,β′,γ′) = ĝ(α,β,γ,η)≡ h(η) ·g (α,β,γ) , (5.3.8)
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where

h(η)≡
 cos(ηχ) sin(ηχ)
−sin(ηχ) cos(ηχ)

 ∈ SU(2) . (5.3.9)

The relation (5.3.8) defines the transition function on the S3 fiber when changing
chart on S1 and introduces a monodromy on the same fiber as η → η+T ,
represented by the left action of the element h(T ) = h(η)−1h(η+T ) in SU(2).
Then, the total space of the 4-dimensional fiber-bundle, with fiber S3 and base
S1, is given by the quotient space S3× [0, T ]/∼ where the identification ∼ is
defined as follows

[g (α,β,γ) , η = 0] ∼ [h(T ) ·g (α,β,γ) , η = T ] . (5.3.10)

The presence of this monodromy further breaks the SU(2) isometry, that the
squashed S3 has for χ= 0, to the subgroup of SU(2) commuting with h(T ). In
general, this subgroup is given by U(1), while the isometry U(1)′ coming from
the right-action remains of course unbroken by h(T ). The values χ= 2π

kT are
particularly interesting since then the element h(T ) generates the cyclic group
Zk. For k = 1, the quotient is trivial so that four-dimensional manifold, like the
χ= 0 case, is a direct product of S3×S1 with isometry group SU(2). This will
be further clarified in section 5.3.2, where we show that for k = 1, i.e. χ= 2π

T ,
the solution is equivalent to the χ= 0 one. For k = 2, namely χ= π

T , the twist
commutes with all of SU(2) since the Z2 group it generates is the center of
SU(2). Thus for k = 1,2 the U(1) isometry is enhanced to SU(2). This explains
the symmetry enhancement, for those special values of χ, observed in section
5.2 by inspection of the Kaluza-Klein spectrum. Concerning the geometric
description of the internal space, we observe that locally h(η) in (5.3.8) can be
absorbed into a coordinate transformation:

{α,β,γ,η} → {α′(α,β,γ,η), β′(α,β,γ,η), γ′(α,β,γ,η), η′ = η} , (5.3.11)

where α′(α,β,γ,η), β′(α,β,γ,η), γ′(α,β,γ,η) are defined by the solution to the
matrix equation

g(α′,β′,γ′) = ĝ(α,β,γ,η) . (5.3.12)

Therefore, we can express the χ ̸= 0 solution by computing the new left-invariant
1-forms σ̂i associated with ĝ(α,β,γ,η) or, equivalently, g(α′,β′,γ′), as

ĝ−1dĝ =
3∑
i=1

σ̂i(iσi) . (5.3.13)
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We find

σ̂1 ≡ σ1 +χ(−cos(α)cos(β)cos(γ)+sin(α)sin(γ))dη ,
σ̂2 ≡ σ2−χ(sin(α)cos(β)cos(γ)+cos(α)sin(γ))dη ,
σ̂3 ≡ σ3 +χ cos(γ)sin(β)dη .

(5.3.14)

As we will show, the D = 10 background for χ ̸= 0 can be obtained from the
χ= 0 solution given in [43] through the replacement

σi → σ̂i . (5.3.15)

However, it is important to emphasise that the local coordinate redefinition
(5.3.11) is not globally well-defined and therefore does not define a diffeomor-
phism, except for the case χ= 2π

T , as shown clearly in section 5.3.2. Hence, χ
amounts to a physical modulus of the D = 10 solution with periodicity 2π

T .

5.3.2 χ as a Complex Structure Modulus

The parameter χ can also be interpreted as a complex structure modulus on
M4 ∼ S3×S1, which gives another perspective on its geometric role and most
clearly elucidates its periodicity χ ∈ [0, 2π

T ). For this, it is best to view S3 as
the Hopf fibration, such that the Hopf fiber and S1 combine into an elliptic
fibration over S2. As we will now show, χ forms part of the complex structure
modulus of the T 2 fiber. We begin by considering a different, yet equivalent,
parameterization of S3 with coordinates (Φ, ξ, ψ)7, defined by

g(α,β,γ) = g
(

0, π2 ,π
)
·g(Φ,ξ,ψ) . (5.3.16)

A point in the four-dimensional total space that we are considering is now given
by

p= (ĝ(Φ,ξ,ψ,η),η) , (5.3.17)

with
ĝ(Φ,ξ,ψ,η)≡ h(η) ·g

(
0, π2 ,π

)
·g(Φ,ξ,ψ) ∈ SU(2) . (5.3.18)

The projection map π :M4→ S2 is essentially given by the usual Hopf map

π : (ζ1, ζ2) 7→ r =
(
Re(2ζ1ζ2), Im(2ζ1ζ2), |ζ1|2−|ζ2|2

)
, (5.3.19)

7Their ranges are the same as the (α, β, γ) ones.
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with  ζ1 ζ2

−ζ2 ζ1

= g
(

0, π2 ,π
)−1
· ĝ(Φ,ξ,ψ,η) . (5.3.20)

It is straightforward to check that r defined by (5.3.19) satisfies r ∈ S2 ⊂ R3

since r · r = 1 and that ψ and η are projected out in (5.3.19). Thus, ψ and η
provide local coordinates on the T 2 fiber. We can now read off the complex
structure on the elliptic fiber, for example by studying the connection 1-forms
on M4. These are given by the right-invariant 1-forms

ωψ = dψ−2χdη+cosξ dΦ,
ωη = dη .

(5.3.21)

Thus, the local holomorphic coordinate on the elliptic fiber is given by

ϱ= ψ+ τ̂ η , (5.3.22)

with τ̂ = i−2χ defining the complex structure and the periodicity of ϱ given by

ϱ∼ ϱ+4π ∼ ϱ+ τ̂ T . (5.3.23)

Moreover, the σ̂i now read

σ̂1 = 1
2(sin(ξ)cos(Φ)(dψ−2χdη)−dξ sin(Φ)) ,

σ̂2 = 1
2(sin(ξ)sin(Φ)(dψ−2χdη)+dξ cos(Φ)) ,

σ̂3 = 1
2(cos(ξ)(dψ−2χdη)+dΦ) ,

(5.3.24)

or in terms of the complex coordinate ϱ

σ̂1 = 1
4(sin(ξ)cos(Φ)(dϱ+dϱ)−2dξ sin(Φ)) ,

σ̂2 = 1
4(sin(ξ)sin(Φ)(dϱ+dϱ)+2dξ cos(Φ)) ,

σ̂3 = 1
4(cos(ξ)(dϱ+dϱ)+dΦ) ,

(5.3.25)

where there is no explicit dependence on χ. Thus, it is clear that χ only affects
the complex structure of the T 2 fiber. The complex structure τ̂ = i−2χ now
makes the periodicity of χ clear. First, recall that ψ has periodicity 4π whereas
η has periodicity T . Let us thus rescale ψ→ ψ′ = ψ

4π and η = η′ = η
T which
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have standard periodicities

ψ′ ∼ ψ′ +1 , η′ ∼ η′ +1 . (5.3.26)

The local holomorphic coordinate, u, is given in terms of these by

ϱ= 4π
(
ψ′ + τ η′

)
, (5.3.27)

with the complex structure
τ = i

4π −
χT

2π . (5.3.28)

It is now clear that χ→ χ+ 2π
T just corresponds to a Dehn twist, τ → τ −1,

and can be reabsorbed by a globally well-defined reparameterization. Thus, χ
has periodicity 2π

T .

5.3.3 The Metric

The spacetime metric has the following form

ds2 = (2l)−1
(
ds2

AdS4 +ds2
6
)
, (5.3.29)

where
l ≡ (6−2cos(2θ))− 1

4 . (5.3.30)

The internal metric ds2
6 has the following form

ds2
6 = ds2

S2 +ds2
S3×S1 , (5.3.31)

where

ds2
S2 = dθ2 +sin2(θ)dφ2 , ds2

S3×S1 = cos2(θ)
(
σ̂2

2 +8∆4 (σ̂2
1 + σ̂2

3)
)

+dη2 ,

(5.3.32)
and, for a fixed θ, S3×S1 denotes the twisted product described in the previous
section. Note that the squashing of the S3, arising from the different factors
multiplying the σ̂i, breaks the SU(2)×SU(2)′ symmetry of the round S3 to
SU(2)×U(1)′, with the U(1)′ rotating σ̂1 with σ̂3. As discussed in section 5.3.1,
when χ ̸= 0, the SU(2) is also broken to U(1). Finally, the symmetries of S2

are broken by the dependence on θ and φ of the solution.
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5.3.4 The 2-Forms, the 4-Form, the Dilaton and the
Axion

As mentioned earlier, the expressions of the 2-forms and the 4-forms are the
same as in the χ= 0 case, given in [43], aside from the replacement σi→ σ̂i as
in (5.3.15). Thus, in the notation of [43], we can write,

Bα̂
(2) = A(η)α̂

β̂
bβ̂(2) , (5.3.33)

where

A(η)α̂
β̂
≡

cosh(η) sinh(η)
sinh(η) cosh(η)

 , (5.3.34)

is an SL(2,R)IIB twist and

b1
(2) = 1√

2
cos(θ)

[(
cos(ϕ)dθ+ 1

2 sin(2θ)d(cos(ϕ))
)
∧ σ̂2 +cos(ϕ) 4sin(2θ)

6−2cos(2θ) σ̂1∧ σ̂3

]
,

b2
(2) =− 1√

2
cos(θ)

[(
sin(ϕ)dθ+ 1

2 sin(2θ)d(sin(ϕ))
)
∧ σ̂2 +sin(ϕ) 4sin(2θ)

6−2cos(2θ) σ̂1∧ σ̂3

]
.

(5.3.35)

The self-dual 5-form field strength reads:

F̃5 ≡ dC(4) + 1
2ϵα̂β̂B

α̂
(2)∧H

β̂
(3) = (1+⋆)4∆4 sin(θ)cos3 (θ) [3dθ∧dϕ∧ σ̂1∧ σ̂2∧ σ̂3

−dη∧
(

cos(2θ)dθ− 1
2 sin(2θ)sin(2ϕ)dϕ

)
∧ σ̂1∧ σ̂2∧ σ̂3

]
,

(5.3.36)

where H β̂
(3) = dBα̂

(2). Finally, the axion and the dilaton fields are encoded in
the matrix m

α̂β̂
in (5.1.11) which, in our solution, reads

m
α̂β̂

=
(
A−1(η)

)σ̂
α̂

(
A−1(η)

)γ̂
β̂
mσ̂γ̂ , (5.3.37)

where

mσ̂γ̂ = 2∆2

 sin2(θ)cos2(ϕ)+1 −1
2 sin2(θ)sin(2ϕ)

−1
2 sin2(θ)sin(2ϕ) sin2(θ)sin2(ϕ)+1

 . (5.3.38)

Note that the axion-dilaton system is the same as in the χ= 0 solution. This
is because the extra dependence on η when χ ̸= 0 is entirely induced by the
matrix h(η) in (5.3.8), and only affects those fields which depend on the point
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in S3. As mentioned earlier, the explicit dependence of the axion and dilaton
on the coordinates θ, φ mean that the isometries of S2 are not a symmetry of
the whole solution, while U(1)2 = U(1)×U(1)′ is. This is true for all values of
χ. For the special values of χ

χ= mπ

T
, m ∈ Z , (5.3.39)

the twist in the local product of S3×S1 is either trivial (m even) or Z2 (m
odd), as discussed at the end of subsection 5.3.1, and the symmetry of the
solution is enhanced to U(2) = SU(2)×U(1)′. Moreover, when m is even, the
solution is equivalent to χ= 0, so we should identify χ as a periodic modulus
χ∼ χ+ 2π

T . The dependence on η through the SL(2,R)IIB-twist matrix A(η)α̂
β̂

of the two-forms and the axion-dilaton system is the same as in the χ = 0
case, so we can apply to this family of solutions the same discussion about the
corresponding SL(2,R)IIB-monodromy matrix MS1 made in [43]. As η→ η+T
the twist matrix A induces a monodromy

MS1 ≡ A−1(η) ·A(η+T ) =
cosh(T ) sinh(T )

sinh(T ) cosh(T )

 . (5.3.40)

By generalizing the twist matrix and suitably choosing the value of T [43],
one can construct backgrounds in which the monodromy has the form MS1 =
−S T k ∈ SL(2,Z)IIB, thus defining a family of S-fold solutions of Type IIB
theory.

5.3.5 The χ-twist in the Kaluza-Klein spectrum

As we have seen in section 5.3.1, a non-vanishing value of χ induces an extra
dependence on η of those fields which, in the χ= 0 solution, were non-trivial
functions of the point of S3, due to the fibration of the latter over S1. We
can use this feature to determine the χ-dependence on the full Kaluza-Klein
tower of states. To do so, it is easiest to consider the background underformed,
i.e. as for χ= 0, and instead modify the Kaluza-Klein states’ dependence on
η. Thus, fields transforming in the SU(2) representation [k], now acquire an
η-dependence through the [k]-representation of the SU(2)-element h(η) given
in (5.3.9). The corresponding twist matrix has eigenvalues

e2 ijχη , with j =−k,−k+1, . . . ,k−1, k . (5.3.41)

As an example, consider the three vector fields Aiµ, which, for χ= 0, gauge
the SU(2) isometry group. For χ = 0, these transform as the right-invariant
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Killing vectors Ki, defining the infinitesimal left-translations on g(α,β,γ).
Indeed, these vectors, on a group manifold, are defined as:

g−1 · ti ·g =Ki
ℓσsℓ ts , (5.3.42)

where ti are SU(2) generators, with i = 1,2,3, and we have written the left-
invariant 1-forms σi as σi = σiℓ dx

ℓ, xi ≡ (α,β,γ). When χ ≠ 0, the vector fields
are modified. Transforming g by the twist:

g(α,β,γ)→ ĝ(α,β,γ,η) = h(η) ·g(α,β,γ) , (5.3.43)

where h(η) is the 2×2 twist matrix given in (5.3.9), we find

ĝ−1 · ti · ĝ = g−1 ·h−1 · ti ·h ·g = hi
ℓ (Kℓ

kσsk ts) = K̂i
ℓσsℓ ts . (5.3.44)

Here hij denotes the adjoint action of h:

h−1 · ti ·h≡ hijtj . (5.3.45)

Therefore, as expected, the Killing vectors, and therefore Aiµ, transform in the
k = 1 representation acted on by the 3×3 matrix hiℓ(η). The twisted vectors
Â(0)

i
µ, at KK level n= 0 on S1, therefore now have a η-dependence due to the

twist
Â(0)

i
µ(x,η) = hiℓ(η)Aℓµ(x) . (5.3.46)

This additional η dependence makes two of the vectors massive. As a result,
SU(2) is broken at level n= 0. Similarly, the corresponding vectors at level n
on S1 have an η-dependence of the form

Â(n)
i
µ(x,η) = hiℓ(η)Aℓµ(x)e

2iπnη
T , Â(n)

i
µ(x,η)∗ = hiℓ(η)Aℓµ(x)e− 2iπnη

T .
(5.3.47)

We can now see that when χ = pπ/T , with p ∈ Z, the SU(2) symmetry is
restored. Two of the eigenvalues of ∂/∂η on these vectors are now

±
(

2iχ− 2iπn
T

)
=±

(2iπ p
T
− 2iπn

T

)
, (5.3.48)

which vanish for n = p. These correspond to the two gauge vectors at level
n > 0 which become massless for these values of χ and enhance the U(1), seen
at S1 KK level n = 0, back to SU(2). This is a bosonic version of the space
invaders scenario [74, 75], where higher Kaluza-Klein modes become massless.
In general, on a field Φ

[k]
(n), in S1 KK level n and in the [k]-representation of
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SU(2), the operator ∂/∂η will have eigenvalues

±2i
(
j χ− πn

T

)
, j =−k,−k+1, . . . , k−1, k , (5.3.49)

where j can easily be identified with the U(1) ⊂ SU(2) charge. The same
conclusion can be reached by thinking of χ as part of the complex structure
modulus of an elliptic fibration over S2, as in section 5.3.2. Now a field
obtains an additional η-dependence by the replacement of the Hopf fibre
coordinate ψ→ ψ− 2χη. As above, the ψ-dependence is determined by the
field’s U(1)⊂ SU(2) charge, so that the field’s eigenvalues under ∂/∂η are again
given by (5.3.49). This explains the dependence on χ of the KK spectrum, as
noted in section 5.2, see eq. (5.2.22).

We can summarize our geometrical understanding of the symmetries (5.2.26),
(5.2.27) of the Kaluza-Klein spectrum as follows. The former amounts to a
Dehn twist of the toroidal fiber over S2 which can be undone by a globally
well-defined reparameterization of the fiber. In particular for χ = 2π/T the
elliptic fibration is globally S3×S1 where S3 denotes the deformed three-
sphere with isometry SU(2)×U(1), and thus the U(1)2 symmetry is enhanced
to SU(2)×U(1). As far as (5.2.27) is concerned, the transformation χ→−χ
corresponds to a transformation τ →−τ of the complex structure modulus
of the toroidal fiber. This amounts in turn to a reflection in the imaginary
axis of the torus, seen as a complex manifold, since it implies u→−u as we
also transform ψ→−ψ. It is not an invariance of the complex manifold itself,
since it changes its orientation, but rather a parity transformation with respect
to which the higher dimensional theory is invariant.8 Note that a change
ψ →−ψ amounts, in the Kaluza-Klein modes, to changing the sign of the
corresponding j quantum number, as in (5.2.27). We have finally seen how
the ExFT technology for uplifting lower dimensional solutions and computing
Kaluza-Klein spectra can help us in understanding the interesting properties of
supergravity vacua. In our case, the framework was necessary for explaining
the role of the χ parameter in the higher dimensional picture. This analysis
is a step forward with respect to the one in the N = 3 example of previous
chapters. In that case, the parameters αi i : 1,2,3 play a similar role as χ.
However, it is not clear if the uplift of the vacua of the N = 3 model is possible.
At the present level, we can note some similarities such as the presence of free
parameters governing the symmetries of different loci in the families of solutions.
In this chapter, we have presented a parameter χ selecting bosonic symmetries.
However, as in the N = 3 model, the one-dimensional manifold parameterized
by χ sits in a bigger manifold classifying vacua exhibiting different unbroken
supersymmetries if not completely broken. So, as we will discuss below, the

8For a discussion of parity symmetry in extended supergravities see [11].
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present upliftable model share with the N = 3 one the property of exhibiting
a manifold of moduli parameterizing stable AdS4 vacua with a continuum of
non-supersymmetric points.



Chapter 6

More general manifolds of
(non)-Supersymmetric Vacua

In the present chapter, we are going to review other known families of S-fold
configurations generalizing the previous example. They mainly arise from
uplifts of "S-foldable" vacua of the N = 8 and of five-dimensional models. By
this, we mean that the lower dimensional solutions under discussion, once
uplifted to type IIB supergravity can be twisted with the procedure outlined in
[41] following the general considerations of [82]. As above (5.3.40), the folding
can take place since the uplift of the solutions gives rise to an M5×R internal
topology. The non-compact internal direction can be compactified. Indeed, its
dependence can be factorized in a SL(2,R)IIB twist implying that the solution
exhibits a translational isometry along the latter. Then a monodromy analogous
to (5.3.40) is introduced and can be extended to an S-fold configuration. Some
of these backgrounds are of interest to us since they generalize the N = 2
solution presented in previous chapters to a family of supersymmetric and
non-supersymmetric configurations sharing some properties with the vacua
found in the N = 3 model.

We will focus on an interesting subfamily connecting the N = 4 vacuum
of [66] and the N = 2 discussed here through a continuum of N = 0 stable
solutions. We will also present some interesting observations on their uplift
and their holographic interpretation. While in the N = 3 case our analysis was
limited to the study of RG-flows due to the lack of knowledge on the possible
higher dimensional origin of the model, in the present case we have a direct
connection with type IIB supergravity and one can build on well-established
holographic results. As already introduced, the main example of an S-fold
solution was given in [41]. In the latter study, the N = 4 solution of [66]
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belonging the N = 8 [SO(6)×SO(1,1)]⋉R12 gauged model1 is uplifted to type
IIB supergravity. The interpretation as an S-fold is based on the results of
[83][82]. Indeed, as explained in [41] one can consider the four-dimensional
model as originating from two consecutive compactifications. The first step from
ten to five dimensions is captured by the "electric" part of the U-matrix (4.3.18)
while the second and crucial step from five to four dimensions is described by a
Scherk-Schwarz reduction essentially encoded in the magnetic SL(2,R)-valued
part of the same twist matrix. This is where the analysis of [83][82] becomes
explicit. Indeed, the latter step exploits the dependence of the axion-dilaton
field on the remaining external direction to generate a four-dimensional solution
exhibiting an SL(2,R)-monodromy, once the external direction is compactified
to a circle.

This point of view is useful in understanding the holographic interpretations
of the S-folds. Indeed, the five-dimensional picture suggests a strong relation
with a compactified version of the Janus configurations [84, 67, 85, 72, 68,
86, 73, 77, 87, 71]. Building on these results, in [42] new S-fold solutions
are presented. In particular, the authors analyze an N = 2 sector of the
dyonic model under discussion identified by an U(1)2 truncation. Within this
truncation, an N = 1 SU(3) invariant vacuum and an N = 0 SU(4) invariant
vacuum are found. Thanks to the ExFT formalism these vacua are uplifted
to type IIB configurations with topology AdS4×M5×R were M5 ≃ CP2 ⋊S1

and M5 = S5 for the N = 1 and the N = 0 solution respectively. Once again,
following [83][82][41], these configurations can be S-folded by exploiting the
axion-dilaton dependence on the external R direction giving rise to a background
of the form AdS4×M5×S1 with an SL(2,R) monodromy around the S1 factor.
The analysis has been refined in [43] by truncating the theory to the N = 1
sector which was already shown to be fruitful in the study of other gaugings
[88][45]. It turns out that the N = 4,1,0 solutions fit in the latter Z3

2 invariant
sector. In the very same analysis the N = 2 family of vacua introduced in
previous chapters was found. Furthermore, the authors found that the N = 0
solution, from a four-dimensional point of view, actually comes in a family
of three arbitrary parameters. The values of the latter, in the spirit of the
parameter χ of the N = 2 vacua, discriminate between SU(4), SU(3)×U(1),
SU(2)×U(1)2 and SU(2) invariant subfamilies. Analogously, the N = 1 vacuum
sits in a two-parameter family of vacua with possible SU(3), SU(2)×U(1)2 and
SU(3) residual symmetry.

Following the result presented in previous chapters for the uplift of the χ
family, in [89] the full family of N = 1 solutions has been uplifted to type
IIB. By exploiting the technique introduced in the N = 2 case, and presented
above, the three parameters are shown to be compact in the full ten-dimensional

1Other vacua of the same model were also found in [39].
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picture. Furthermore, in the same study, a Domain Wall solution connecting the
N = 1 SU(3) solution with the N = 2 SU(2)×U(1) one is presented, showing
that these families of vacua are not isolated. As shown in [69], solutions with
different supersymmetry are not only related by RG flows but they can be part
of a common family. This was first noted in [76], where it is argued that the
N = 2 and N = 4 solutions should be part, in the CFT dual picture, of the same
conformal manifold. This argument is confirmed, by using the five-dimensional
approach, by the authors of [69]. In the latter study, a one-parameter family
of solutions containing both the N = 4 SO(4) symmetric solution and the
N = 2 SU(2)×U(1) solution, once a further Scherk-Schwarz reduction to four
dimensions is performed, is presented. Exploring the same approach, in [70]
this family was extended to a two-parameter family, one of them being the
χ parameter of the previous section. The latter two-dimensional conformal
manifold preserves in general N = 2 supersymmetry. As explained in the
same work, the solutions are obtained by combining the coset representative
describing the N = 2 solution of [69] with the one describing the χ family of
previous chapters. This interesting idea for constructing new families of vacua
has been systematically explored in [90] where it is shown that given a G0
symmetric S-fold solution one can always deform it with χ-like flat directions
associated with the generators of the cartan of G0. Thus, it is natural that
the N = 0 SU(4) symmetric and that the N = 1 SU(3) symmetric solutions
of [42] come in a three and two-parameter families of vacua respectively. By
the same token, one expects the N = 4 SO(4) solution to sit in a family of two
χ-like parameters, thus different from the one found in [70]. This is exactly
what the authors of [90] found. The main feature of this new family is that,
like the families found in the N = 3 model of previous chapters, it contains
both non-supersymmetric and supersymmetric vacua. In particular, the family
interpolates between the N = 4 vacuum and the symmetric N = 2 vacua
through a two-dimensional manifold of N = 0 U(1)2 symmetric solutions.

However, as we understood in the previous chapter, to fully understand the
nature of the marginal deformations parameterizing the latter families a higher
dimensional description of the S-fold Backgrounds is necessary. An analysis
based on the computation Kaluza-Klein spectrum for the supersymmetric
family described in [70] is carried out in [91]. The χ parameter is shown to
be compact not only in the particular section corresponding to the N = 2
solutions of previous chapters but along the whole family. More elusive is the
nature of the second parameter and we are not going to discuss it in the present
chapter. Instead, we will focus on the higher dimensional interpretation of
the two χ-like flat directions of [90]. As we will see, the interpretation of the
presence of the χ parameter as a local coordinate redefinition can be transposed
in this example and it will give us interesting insights into the perturbative and
non-perturbative stability of the dual non-supersymmetric conformal manifold.
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6.1 Uplift of an interesting two-parameter fam-
ily

As already introduced in Chapter 1 the S-fold configurations under discussion
relate to the study of conformal manifolds, i.e. the manifold spanned by
marginal operators whose β-functions vanish exactly to all orders. Much
progress has been made in the study of such objects and their properties in some
particular cases [92–96]. For example, it is not uncommon for four-dimensional
N = 1 and three-dimensional N = 2 CFTs to possess conformal manifolds,
whose dimensions can be deduced from the symmetry of the CFTs, without
the need to compute β-functions or even having a Lagrangian description.
However, it is widely believed that non-supersymmetric CFTs in more than
two dimensions do not exhibit a conformal manifold. The main reason is that
it is unclear how the precise cancellations in the β-functions will be achieved
without supersymmetry. However, there are no “no-go theorems” that forbid
non-supersymmetric conformal manifolds. As a result, the existence of non-
supersymmetric conformal manifolds has been largely the subject of speculation,
with only a few systematic analyses performed recently [97–100].

The AdS/CFT correspondence [84, 101, 102] between anti-de Sitter (AdS)
solutions of string theory and CFTs provides a powerful tool to address this
question, at least in the “large-N limit” where the rank of the gauge group of the
CFT is taken to be large. The correspondence maps the conformal manifold of
a CFT to a continuous family, known as the “moduli space”, of AdS solutions of
string theory. As yet, no continuous family of non-supersymmetric AdS solutions
of string theory has been constructed, with the possible exception of [103].
Indeed, non-supersymmetric AdS solutions of string theory are conjectured
to be unstable [104], with only a handful of isolated potentially stable non-
supersymmetric AdS vacua known [65].

In this section we are going to argue that the N = 8 gauged model with
an uplift to type IIB supergravity provides holographic evidence for a three-
dimensional non-supersymmetric conformal manifold. We do this by construct-
ing a 2-parameter non-supersymmetric deformation of anN = 4 supersymmetric
AdS4 vacuum describing a non-geometric solution of Type IIB superstring the-
ory. We will prove that the entire 2-parameter family is perturbatively stable in
IIB supergravity, and show that it does not suffer from various non-perturbative
instabilities. We note that just as for the supersymmetric deformations consid-
ered in the χ-family of previous chapters, the non-supersymmetric deformations
we study here can also locally be absorbed by coordinate redefinitions, which are,
however, not globally well-defined. This implies that any local diffeomorphism-
invariant quantities, such as those controlling higher-derivative corrections of
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string theory, are independent of the deformations. This provides hope that
our conformal manifold may also exist beyond the large-N limit of the CFT.

We construct our non-supersymmetric 2-parameter family of AdS4 vacua
of IIB string theory by uplifting the corresponding family of AdS4 vacua of
four-dimensional [SO(6)×SO(1,1)]⋉R12 supergravity [90] using the truncation
Ansatz of [41]. Our family of AdS4 vacua depends on two “axionic” parameters
χ1, χ2 [90]. For generic values of χ1,2, the AdS4 vacua are non-supersymmetric
and preserve a U(1)2 symmetry. Three patterns of (super) symmetry enhance-
ment occur at special loci of the (χ1,χ2) parameter space. For χ1 = ±χ2,
there is an N = 2 supersymmetry enhancement whereas a U(1)2 symmetry is
still preserved. For χ1 = 0 or χ2 = 0, the vacua are non-supersymmetric but
the residual symmetry gets enhanced to SU(2)×U(1). Lastly, an N = 4 and
SO(4) symmetric AdS4 vacuum appears at the special point χ1 = χ2 = 0. As a
result, χ1,2 parameterise non-supersymmetric deformations of the N = 4 AdS4
S-fold vacuum of IIB string theory [41]. The ten-dimensional geometry we
obtain is a non-supersymmetric “S-fold” of the form AdS4×S1

η ×S5, where
S5 = I ×S2

1 ×S2
2 and I is an interval with angular coordinate α ∈ [0, π2 ]. As in

the other S-fold examples, the 10-dimensional solution has an SL2,Z S-duality
monodromy of IIB string theory as we move around the S1

η circle. The corre-
sponding dual CFT is known as a J-fold CFT obtained by compactifying N = 4
super Yang-Mills theory on a circle with an SL2,Z twist [71]. Holography has
recently proven powerful in studying supersymmetric AdS4 vacua of these types
and their supersymmetric deformations [41, 105, 69, 90, 106, 89, 70, 91, 107].
More concretely, the S-fold solution can be constructed out of the following
10-dimensional solution of classical Type IIB supergravity:

ds2
10 =∆−1

[
1
2 ds

2
AdS4 +dη2 +dα2

+ cos2α

2+cos(2α)dΩ1 + sin2α

2− cos(2α)dΩ2

]
,

(6.1.1)

where χi-twisted two-spheres Ωi have metrics

dΩi = dθ2
i +sin2 θi dφ

′
i
2 with dφ′

i = dφi+χi dη , (6.1.2)

and the non-singular warping factor is

∆−4 = 4− cos2(2α) . (6.1.3)
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The two-form potential B2 and C2 take the form

B2 =−2
√

2e−η cos3α

2+cos(2α) volΩ1 ,

C2 =−2
√

2eη sin3α

2− cos(2α) volΩ2 ,

(6.1.4)

whereas the dilaton gs = eΦ and the axion C0 read

eΦ =
√

2e−2η 2− cos(2α)√
7− cos(4α)

, and C0 = 0 . (6.1.5)

The four-form potential C4, yielding a self-dual field strength F̃5 = dC4 +
1
2 (B2∧dC2−C2∧dB2), reads

C4 = 3
2 ω3∧

(
dη+ 2

3 sin(2α)dα
)

− 1
2 f(α)dα∧ (A1∧volΩ2 +volΩ1 ∧A2) ,

(6.1.6)

where dω3 = volAdS4 with AdS radius LAdS4 = 1. The function f(α) in (6.1.6)
is given by

f(α) = sin2(2α) cos(4α)−55(
7− cos(4α)

)2 , (6.1.7)

where we have introduced one-forms Ai =−cosθi dφ′
i so that dAi = volΩi

. Note
that the function f(α) in (6.1.7) vanishes at α = 0, π2 , where each of the S2

shrinks to zero size in a smooth way so that the compact space is topologically
S1
η ×S5.

The S-fold solution, characterised by an SL(2,Z) monodromy along S1
η ,

can then be obtained from the above solution through a suitable SL(2,R)-
transformation together with an appropriate choice of the period T , according
to the prescription given in [41, 71]. In this way the monodromy can be chosen,
for instance, to be a hyperbolic element of the form

Jk =
 k 1
−1 0

 , k > 2 . (6.1.8)

This choice requires the S1
η radius to be

T = log
(
k+

√
k2−4

)
− log2 . (6.1.9)
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Moreover, k can be chosen such that the supergravity approximation remains
valid throughout the S-fold solution, because the dilaton and derivatives of the
axio-dilaton remain small throughout [71].

We shall refrain from further discussing these aspects of the solution, since
they do not affect our present analysis, which focuses on the 2-parameter
deformation of the background and is independent of the duality twist. The
χ1,2 deformations only appear in the background via the combination (6.1.2)
and thus can locally be absorbed by the coordinate redefinition

φ′
i = φi+χi η . (6.1.10)

However, due to the periodicity of η → η+ T , this is only a well-defined
coordinate transformation when χi = 2πki

T for ki ∈ Z. This suggests that the
deformation parameters are periodic with period 2π

T . However, there is a
subtlety because of how the spinors are defined on the S1

η . In fact, by looking
at the spinors, as we will demonstrate later in (6.2.3) through the Kaluza-Klein
spectrum, we see that the correct periodicity is in fact χi ∈

[
0, 4π

T

)
. This means

that the non-supersymmetric conformal manifold is compact and has topology
T 2/Z2, where the Z2 corresponds to the interchange χ1↔ χ2.

An alternative description of the parameters χi comes from their oxidation
to the five-dimensional supergravity obtained by reducing IIB string theory on
S5. As noted in [89, 90] (see also [107, 106]) the χi define non-trivial one-form
deformations or Wilson loops, for the vector fields along S1

η . For the N = 4
S-fold, this corresponds to turning on Wilson loops for the su(2)×su(2)-valued
gauge fields breaking the symmetry down to its Cartan subgroup. It is in-
structive to compare the deformation of the N = 4 S-fold solution analysed
here, with the deformation, discussed in [103], of the maximally supersymmet-
ric AdS5×S5 Type IIB background, which generalises the Lunin-Maldacena
construction [108]. The holographic dual to this solution is conjectured to be
a non-supersymmetric marginal deformation of N = 4 four-dimensional SYM
theory. However, [109] suggested that conformal symmetry of this dual theory
is absent, while [110, 111] hint at the existence of a tachyonic instability in the
corresponding superstring background. In [103], the deformation parameters
γI , I = 1,2,3, were the effect of shift transformations in the O(3,3) group acting
on the three angular directions associated with translational isometries [112]
along internal angular coordinates. These shift transformations were, however,
preceded and followed by T-dualities of the kind RI → 1/RI along all the three
directions. Just as S5 in the AdS5×S5 background, the internal manifold
I×S2

1×S2
2×S1

η of the N = 4 S-fold solution features three angular coordinates
ξI = φ1, φ2, η each associated with a translational symmetry of the internal
metric, although, in the latter case, a constant translation along η is not a
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symmetry of the whole solution due to the SL(2,R)IIB-twist. As opposed to
the construction of [103], the χi-deformation discussed here only results from a
shift transformation in GL(3,R)⊂O(3,3), with no T-dualities. This is effected
by the GL(3,R) matrix

A=


1 0 χ1

0 1 χ2

0 0 1

 , (6.1.11)

which acts linearly on the I-component of all the fields. The components
g = (gIJ) of the internal metric along the angular directions ξI , for instance,
transforms as follows:

g→ At gA. (6.1.12)

Our χi deformations thus change the metric on the S5×S1
η compactification,

while leaving the fibration structure unchanged. This is analogous to complex
structure deformations of T 2 ∼ S1×S1, which can also locally be absorbed
by diffeomorphisms that are, however, not globally well-defined. Indeed, our
χi appear like the real part of complex structure deformations of the φi×S1

η

tori. A more precise definition is in terms of the mapping torus of S5 [90]: the
χi deformations imply that as we move around S1

η , we end up in a different
point on S5. If χi→ χi+2πki/T , ki ∈ Z, the deformation is in GL(3,Z) and
the internal geometry is not affected. Invariance of the full spectrum, however,
due to the presence of states with half-integer j1, j2, extends the periodicity
of χi to 4π/T , as will be discussed below. Via the AdS/CFT correspondence,
our family of non-supersymmetric AdS4 vacua of IIB string theory suggests
that the dual “J-fold” CFT3 should belong to a non-supersymmetric conformal
manifold. However, this is not the case if the non-supersymmetric AdS4 vacua
are unstable, as conjectured in [104].

6.2 Perturbative and non-Perturbative (in)Stability

In general, instabilities could arise due to some scalar fluctuation in the Kaluza-
Klein spectrum violating the Breitenlohner-Freedman bound, or via a non-
perturbative phenomenon. Let us now address these concerns.

First, we can prove that the Kaluza-Klein spectrum has no tachyons, i.e.
the AdS4 vacua are perturbatively stable. To do this, we use the technology
developed in [34, 6] to compute the full Kaluza-Klein spectrum around the
family of non-supersymmetric AdS4 vacua we consider here. It is easiest to
express the Kaluza-Klein spectrum as a deformation of the spectrum of the
N = 4 vacuum 2. The conformal dimension of the highest weight state of each

2The full N = 4 spectrum was computed in [113] and we discuss it in appendix G.
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supermultiplet is given by

∆ = 3
2 + 1

2

√√√√9+2ℓ(ℓ+4)+4
∑

i=1,2
ℓi(ℓi +1)+2

(2nπ

T

)2
, (6.2.1)

where ℓ denotes the S5 Kaluza-Klein level, n the S1 level and ℓ1, ℓ2 the SO(4)
spin of the highest weight state (in this case, the graviton). These N = 4
supermultiplets are counted by the generating function for their highest weight
states:

ν = 1
(1− q2)(1− qu)(1− q v)

1+ s

1− s , (6.2.2)

where the exponent of q and s determine the Kaluza-Klein levels on the S5, ℓ,
and S1, n, while the exponents of u and v count the SU(2)×SU(2) spins, ℓ1
and ℓ2. The effect of the χ1,2 deformations is to shift the conformal dimension
of each field by replacing

2nπ
T
−→ 2nπ

T
+(j1 + j2)χ+ +(j1− j2)χ− , (6.2.3)

in (6.2.1), where j1, j2 are the charges of the field under the U(1)×U(1) Cartan
of SO(4) and we defined χ± = 1

2(χ1±χ2). Note from (6.2.2) that, while j1, j2
are half-integers, j1± j2 are always integers. Thus, we manifestly see that the
full background has periodicity χ±→ χ± + 2π

T , upon which the Kaluza-Klein
spectrum gets mapped back to itself with an appropriate reshuffling of the fields
amongst the S1 level with n→ n− (j1± j2), just like in [3]. Notice that χ1, χ2
separately have period 4π/T , which can only be seen from the spinors on the
AdS4 background which have half-integers charges under the U(1)×U(1) Cartan.
Even more importantly, we can see that the masses for all the fields are bounded
from below by the masses of the fields of the four-dimensional supergravity at
the N = 4 vacuum, i.e. where ℓ= ℓ1 = ℓ2 = n= χi = 0. This in particular implies
that all scalars have masses above the Breitenlohner-Freedman bound for any
value of χi. Thus, the non-supersymmetric vacua are perturbatively stable.
One may also wonder whether the AdS4 vacua are secretly supersymmetric in
10 dimensions, with some gravitinos amongst the higher Kaluza-Klein modes
becoming light, akin to the “space invaders” scenario [74, 75, 3]. However,
from (6.2.1), (6.2.3), we can easily see that such gravitinos can only restore
supersymmetry when the combination 2nπ

T + j1χ1 + j2χ2 = 0. This can only
occur when either n = 0 and χ1 = ±χ2, corresponding to supersymmetry
enhancement that already occurs in the four-dimensional supergravity [90], or
χ± = 2πk±

T , for k± ∈Z when some gravitinos at S1 level n=−(j1 +j2)k+−(j1−
j2)k− become massless. This latter condition is precisely when the background
is mapped back to itself, so that for 0< χ± < 2π

T , χ1 ≠±χ2, the AdS4 vacua
are not supersymmetric in the full Type IIB string theory.
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Next we investigate the non-perturbative stability of the non-supersymmetric
AdS4 vacua. Since the AdS4 vacua arise as near-horizon limits of certain brane
configurations, one may worry that for the non-supersymmetric vacua the
corresponding brane configurations become unstable [114]. We search for
signs of such instabilities by considering single probe Dp-branes (and single
probe NS5-branes) with rigid embeddings in our AdS4 vacua. In particular,
we check whether the branes are unstable due to a greater repulsive force of
the fluxes coming from the WZ term than the attractive (i.e. towards the
interior of the AdS spacetime) gravitational force due to the DBI term. Indeed,
[104] conjectures that there should always be some branes that are unstable
in this way, see also [115]. However, we find that single probe Dp-branes
and NS5-branes without worldvolume flux remain stable when placed in the
non-supersymmetric backgrounds (6.1.1)–(6.1.7). The stability of these probe
branes can be understood in the following way. Firstly, note that we can
perform the diffeomorphism (6.1.10) to remove the χi deformation from the
metric. However, now the coordinates respect the deformed periodicities

φ′
i→ φ′

i+2π ,
η→ η+T , φ′

i→ φ′
i+χiT .

(6.2.4)

As a result, the only well-defined embeddings of branes wrapping η must
also wrap φ′

i. In particular, let us denote by ξ ∼ ξ+T the relevant wrapped
worldvolume coordinate on the brane. Then, the only well-defined embeddings
are given by

η(ξ) = q ξ , φ′
i(ξ) =

(
pi

2π
qT

+χi

)
ξ , (6.2.5)

with pi ∈ Z. We see that as χi is turned on, a brane wrapping S1
η must also

wrap increasing amounts of φ′
i, so that the DBI part of the action increases.

At the same time, for p-branes, with p ̸= 5, the WZ coupling is insensitive to
wrapping along φ′

i, unless the brane is completely internal. Therefore, these
branes either become more stable as χi are turned on or they are completely
internal branes, which cannot trigger non-perturbative instabilities in the usual
way. Finally, an explicit computation for NS5- and D5-branes shows that they
also remain stable as χi are turned on in the backgrounds (6.1.1) – (6.1.7).
Finally, non-supersymmetric vacua may also decay due to bubbles of nothing
[116], which requires a circle or sphere [117] to collapse. However, our internal
space S5×S1

η is topologically protected from such a collapse: the S5 cannot
collapse as it is supported by flux, whereas the S1

η cannot collapse since the
spinors do not have anti-periodic boundary conditions on it [116], but instead
general periodicities along S1

η , provided (χ1,χ2) ̸= (2π
T ,0), (0, 2π

T ). This means
that a straightforward bubble of nothing cannot occur. Still, our vacua could
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decay semi-classically via more complicated bubbles of nothing containing
defects, e.g. a D3-brane in S5 similar to [118, 119] or an O7-plane in S1 [120].
However, because the volume form of the compactification is independent of the
χi deformations, our non-supersymmetric AdS4 vacua are likely to be stable
against the instanton decay constructed in [119], which is delocalised on the
compactification space. On the other hand, constructing the localised instanton
solutions is extremely technically challenging. Moreover, the mechanism of
[119] treats a shrinking dilaton as equivalent to a shrinking S1. Aside from the
validity of this equivalence, a similar shrinking dilaton would be problematic
for our S-fold vacua, where the dilaton is not well-defined due to the quantized
SL(2,Z) monodromy along S1

η .
So far, we have proven that our AdS4 vacua are perturbatively stable and

have provided evidence that they may also be stable against semi-classical
decay. Still, one may worry that while our AdS4 geometries are solutions of IIB
supergravity, the higher-derivative corrections of IIB string theory will spoil our
solutions. In the dual CFT, this would imply that some 1

N corrections lift the
conformal manifold. However, even if not possible globally, the deformations
χi can always be locally absorbed by the coordinate redefinition (6.1.10).
Therefore, all local diffeomorphism-invariant quantities are independent of the
χi. In particular, this means that each term of the higher-derivative corrections
of string theory, involving powers of the curvature tensor or the fluxes, are also
independent of χ1,2. Thus, our non-supersymmetric AdS4 vacua are equally
valid solutions of IIB string theory as the N = 4 vacuum. Moreover, the χi
deformations actually correspond to parity-odd (pseudo) scalars in the maximal
supergravity [90], so the potential 1/N tadpole destabilisation of [121] cannot
take place for our backgrounds. There could still be some string corrections,
e.g. from branes wrapping the compactification, which are sensitive to χi
and which could thus spoil our solutions. For example, Dp-instantons could
wrap some (p+1)-cycle of the compactification, and depend on χi. However,
our solutions are also protected against such instanton corrections, since the
compactification S5×S1

η only has non-trivial 1-, 5- and 6-cycles. Therefore,
we can only have D5-instantons wrapped on the full S5×S1

η . But since the
volume form is independent of χi, these instantons give no corrections to our
solutions. Nonetheless, one could expect some other extended state to do so,
corresponding to some 1

N correction in the dual CFT.

6.3 Holographic Considerations

According to the proposal put forward in [71], the SCFT dual to the N = 4
background emerges as the effective IR description of a 3d T[U(N)] theory
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[77] in which the diagonal subgroup of the U(N)×U(N) flavour group has
been gauged using an N = 4 vector multiplet. In addition, a Chern-Simons
term at level k must be introduced which is defined by the Jk = −S T k ∈
SL(2,Z)IIB monodromy along the S1

η . The effective N = 4 superpotential
[122] Weff = (2π/k)Tr(µH µC) is marginal in the IR and, in [70], a shift Weff→
Weff + λTr(µH µC) with λ∈C was proposed as an exactly marginal deformation
preserving N = 2. The scalar superconformal primary operators µH and µC
are respectively described by the moment maps of the Higgs and Coulomb
branch of T[U(N)]. Each of the µH and µC fields is a component of a vector in
the adjoint representation of the corresponding SU(2) subgroup of the SO(4)
R-symmetry group (to be denoted by SU(2)H and SU(2)C , respectively). We
can therefore associate with µH the quantum numbers j1 = 1, j2 = 0 and with
µC the values j1 = 0, j2 = 1, having identified j1, j2 with the eigenvalues of the
Cartan generators of SU(2)H and SU(2)C , respectively. Note that χ1 (χ2) only
breaks SU(2)H (SU(2)C) to its U(1)H (U(1)C) subgroup. The combination
(χ1−χ2)/2 of these two parameters, for χ1 =−χ2, should already be encoded
in the λ parameter of the N = 2 exactly marginal deformation proposed in [70].
We suggest that the orthogonal combination (χ1 +χ2)/2, be encoded in the
conjectured exactly marginal deformation of the 3d Lagrangian:

∂αO∂αO , (6.3.1)

where O ≡ Tr(µH µC) is an operator with j1 = 1, j2 =−1 and ∂α denote the
partial derivatives with respect to the (real) scalar fields. As opposed to
Tr(µH µC), the above term does not originate from a holomorphic deformation
of the superpotential and thus would break all supersymmetries. The exact
marginality of the operator (6.3.1) is here conjectured in light of the holographic
evidence we put forward. Note that the resulting N = 0 theory would be
parity symmetric in both the Higgs and the Coulomb sector: By performing,
for instance, a parity transformation in the Coulomb sector which changes
sign to the complex structure of the hyper-Kähler manifold (described as
a complex Kähler space), µC → µC , and O would be exchanged with the
exactly marginal operator Tr(µH µC) in the superpotential proposed in [70].
The same transformation would correspond in the bulk to a parity φ2→−φ2
in S2

2 and, correspondingly, to χ2 →−χ2. It is therefore the simultaneous
presence of the deformations O, O and Tr(µH µC) in the Lagrangian which
breaks supersymmetry. Finally, our computation of the Kaluza-Klein spectrum
(6.2.1), (6.2.3) reveals the 4π

T periodicity of the exactly marginal deformations
parameterised by χi, and it also gives the anomalous dimensions of all operators
of the CFT dual to supergravity modes along the non-supersymmetric conformal
manifold.



Chapter 7

Conclusions

Let us proceed with the conclusive remarks by quickly summarizing the contents
of the present work. First of all, it should be now clear that the main innovations
and contributions presented here belong to the supergravity field of study.
However, the subjects of previous chapters are deeply related, as I have tried
to explain, to other main theoretical frameworks such as String Theory and
Conformal Field Theory. Nevertheless, I have tried to be concise on those
aspects not strictly related to the analysis fruit of the last few years of research.

In Chapter 2 a detailed description of a D = 4 Supergravity theory is
presented. In the review, we adopt the point of view of [11]. We first present the
relevant properties of an Ungauged model, the minimal version of a supergravity
model, such as the field content of the theory, the local and global symmetries
it exhibits, the structure of the couplings, the on-shell properties of the model
and so on. In particular, we put our focus on the representations of the various
fields with respect to the on-shell global symmetry group G and with respect
to its compact subgroup H. Indeed, the latter are the main characters in
the gauging procedure and the understanding of many supergravity models as
consistent truncations of D = 10/11 supergravities. We have explained how to
properly choose a subset of the isometry group of the scalar manifold as a good
candidate for a local symmetry of the model and how the gauging procedure
helps us in introducing interesting dynamics for the scalar fields. The main
technical ingredient is the G-covariant formulation in terms of the tensor T.
The latter "knows" everything about the resulting gauged supergravity. Indeed,
the scalar potential and the couplings appearing in the Lagrangian can all be
expressed in terms of H-tensors properly identified from the T -tensor. We
have shown how the consistency of the model boils down to purely algebraic
constraints, the so-called "linear and quadratic constraints", in T.

In Chapter 3 the formalism is specialized to the N = 3 supersymmetric
extended case where the global symmetry group is given by G= SU(3,n). The
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latter being the isometry group of the scalar manifold G/H of the model,
with isotropy group H = S[U(3)×U(n)]. We focus on the n = 9 case and
we argue how this could be interesting given the compactification of D = 11
supergravity on a tri-Sasakian manifold. Indeed, the model feature, in a purely
electric frame, according to the linear and quadratic constraints a gauge group
of the form Gg = SO(3)×SU(3). We identify the T -tensor and its relevant
H-invariant blocks necessary to define the shift tensors and mass matrices. Of
interest is the property of the gauge group of being a direct product of two
semi-simple factors allowing us to introduce two coupling constants g1 and
g2. In particular, we build the scalar potential of the model which depends
on the 54 scalar fields and we restrict ourselves to two simpler truncations
identified by three complex scalars zi = ri e

iαi each. Within the latter subsectors,
we can find all the solutions with constant scalars, vanishing fermions and
vectors. In particular, both truncations share the central N = 3 SO(3)×SU(3)
symmetric vacuum. Each of the two truncations contains a family of AdS4
vacua which can be arranged in a space topologically equivalent to a three-torus
quotiented by the action of a discrete group Γ ∼ S4. Interestingly, the latter
families are present only for specific ranges of the coupling constants. The
first family exists when g1 ≤ g2 ≤ 2g1 while for g2 > 2g1 they are both present.
For each family one finds a single N = 3 vacuum, a one-parameter subfamily
of N = 2 vacua, a two-parameter family of N = 1 vacua. They describe a
point, a line, and a surface inside T 3/Γ respectively, and the rest of the space
is filled with non-supersymmetric points. The subgroups of SO(3) preserving
the latter loci inside the torus correspond to the preserved R-symmetry of
the solutions1. The angular coordinates of T 3/Γ exactly correspond to the
scalar fields αi which are flat directions of the scalar potential. We then
expect the latter to holographically describe marginal deformations of the dual
CFT at the boundary of AdS4. In particular, since all the presented solutions
are perturbatively stable we expect the latter three-dimensional conformal
manifold to be perturbatively stable, even when the non-supersymmetric points
are considered. We are also able to find Domain Wall solutions connecting the
isolated maximally symmetric vacuum at the origin of the scalar manifold to
any of the solutions presented in 3.4.1. Again, the constant values of the scalar
fields αi select the supersymmetry preserved far away from the "Wall". In the
dual picture, they would correspond to RG-flows from the UV theory dual to
the SO(3)×SU(3) symmetric vacuum and the IR conformal field theories dual
to the T 3/Γ family. As we refrain below, this property is reminiscent of the
picture arising in the N = 8 models presented in previous chapters. However, in
the N = 3 a higher dimensional description of the configurations is still missing.
An important question to address in the future is whether the loci of vacua

1We understand that the analysis of [123] is related to the same model but it does not
cover this new results.
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described here can be uplifted to D = 10/11-dimensional supergravities. As an
example, one could try to embed a suitable truncation of the model studied
here (containing the 3-tori of vacua) into maximal supergravity, and then use
exceptional field theory techniques [46, 4, 5] to uplift them to string or M-theory.
Another possibility is that the truncation of the model describing the new vacua
studied here does not fit in a maximal supergravity. In this case, one should
work with less supersymmetric consistent truncations possibly implementing
the analysis of [7]. In particular one could try to obtain a subsector of our
model capturing the new solutions and the central one as a compactification
of string or M-theory using a suitable GS-structure manifold. There is also
the possibility that no consistent truncation can describe our solutions. If
the uplift of the whole new family of vacua is possible, assessing perturbative
stability of the corresponding N = 0 backgrounds would in principle require
the computation of the corresponding Kaluza-Klein spectrum to check if the
D = 4 scalar-modes have all squared masses exceeding the BF bound.

Moving to the second main case of study, in Chapter 4 we apply the general
formalism for the description of the ungauged maximal model in four dimensions,
it is to say theN = 8 D= 4 supergravity exhibiting a global G= E7(7) symmetry.
We present the general theory of the gauging in the SL(8,R) frame. In particular,
the relevant component of the embedding tensor necessary to promote an electric
CSO(p,q,r) subgroup of G and its dyonic counterpart are presented. We then
focus on the case Gg = [SO(1,1)×SO(6)]⋉R12 dyonic gauging. Again, the full
scalar potential is a complicated function of the 70 scalar fields of the model and
we restrict to the analysis of a [SL(2)/SO(2)]7 subsector of the scalar manifold
consistently identified as the one parametrized by singlets respect to a discrete
(Z2)3 symmetry of the theory. We review the known solutions which in this
case have a direct interpretation in terms of D = 10 type IIB supergravity.
Indeed, thanks to the ExFT framework and the generalized Sherk-Schwarz
ansatz one can in general obtain the U -matrix for the CSO(p,q,r) gaugings
and the dyonic gaugings with gauge group (4.1.10).

In chapter 5 we focus on a particular family of N = 2 AdS4 vacua present
in the Gg = SO(6)×SO(1,1)]⋉R12 case originally found in [43]. Interestingly
we can provide an uplift of the latter family to type IIB supergravity. We can
do so thanks to the general results of [41] which we specialize to the case at
hand. We find that the one-parameter family of N = 2 uplift to a so-called
S-fold configuration in ten dimensions with the geometry locally described
by AdS4×S5×S1. Its global features are determined by the fact that going
around the S1 circle causes the solution to transform in an SL(2,Z) dual
configuration which can be interpreted as a patching transformation between
two local descriptions of the same background. Indeed, SL(2,Z) is a well-
known type IIB global symmetry. The uplift gives us a new insight into the
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physical properties of the vacuum. Indeed, as far as the four-dimensional
analysis is concerned, the flat direction χ parameterizing the family of solutions
appears as a non-compact variable which when vanishing corresponds to an
N = 2 SU(2)×U(1)R symmetric solution. For other constant values of χ,
the solution is N = 2 U(1)×U(1)R symmetric. However, the ten-dimensional
picture unveils new interesting features. Indeed, we show, both by studying
the full Kaluza-Klein spectrum of the background and by giving it a nice
geometrical interpretation in terms of a complex structure of the S3×S1 part
of the internal space, that χ is periodic with period given by 2π

T , the latter
being the period of the S1 factor in the internal geometry. In particular, the
Kaluza-Klein spectrum undergoes under a non-trivial permutation of its modes
as χ→ χ+ 2π

T . Furthermore, we find that χ ∼ 0 are not the only special
points of the one-parameter family. The values χ∼ π

T give explicit examples of
the "space-invaders" scenario where vector in the Kaluza-Klein tower become
massless and are responsible for a symmetry enhancement of the solution
to SU(2)×U(1)R [74]. These features have a clear interpretation from the
geometrical point of view too. In particular, we show that χ can be interpreted
locally as a coordinates redefinition applied to the χ= 0 configuration. However,
the latter change of coordinates is only locally well-defined and it can not be
extended globally unless χ= 2π

T . Otherwise, the global geometry of the space
is found to be a fibration of S3 ⊂ S5 over S1 with monodromy

h(T ) =
 cos(χT ) sin(χT )
−sin(χT ) cos(χT )

 (7.0.1)

around the S1 cycle. The latter fibration is topologically equivalent to the
trivial one so that we can still rely on the S5×S1 harmonics to compute the
Kaluza-Klein spectrum for generic values of χ. However, they differ in the
structure of the metric tensor defined on the latter space. First of all, the line
element in the generic case does not exhibit the SU(2)×U(1) isometry of the
χ = 0 case. Indeed, h(T ) breaks the SU(2) isometry to its commutant with
h(T ) which, for generic values of χ, is given by U(1). However, when χ= π

kT ,
with k ∈ Z, h(T )⊂ Zk. This explains the special features observed when χ= π

T ,
since now h(T ) = −1, preserves all of SU(2) and leaves invariant all SU(2)
integer-spin states. When χ→ 2π

T the shift can be now reabsorbed in a globally
well-defined change of coordinates. This can be seen in a particularly clear way
by writing the background as a T 2-fibration over S2, which is further warped
over S2. As we showed, the parameter χ then appears as a complex structure
modulus of the T 2-fibre and a shift χ→ χ+ 2π

T corresponds to a Dehn twist of
the T 2.

As far as the Kaluza-Klein spectrum of the N = 2 background for generic
values of χ is concerned we find that all perturbative modes can be arranged
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in N = 2 D = 4 long superconformal multiplets. In general, the conformal
dimension of Kaluza-Klein modes depends on the radius of the internal T
which can, at the D = 10 supergravity level of analysis, assume different values
compatible with the S-folding procedure, see below 5.3.40. Then only for specific
values of the latter, the conformal dimensions will be exactly the ones saturating
the relevant unitarity bounds of the long multiplets, causing them to split into
short ones. This simple observation turns out to be very useful. Indeed, we can
infer the superconformal multiplet structure of the perturbative modes just by
looking at the Kaluza-Klein tower of the gravitational field. This technique,
applied to the known N = 4 AdS4 vacuum of the same [SO(6)×SO(1,1)]⋉R12

gauged supergravity [43] is reviewed in appendix G. Given these results, some
issues are left to investigate. As an example, our interpretation of the χ twist
as the complex structure of the S3×S1 once described with an elliptic fibration
opens the possibility of adding an extra modulus deforming the solution. The
latter would be different from the non-compact modulus studied in [91] whose
geometric role is still unclear. Another open problem is given by the fact that
other N = 2 solutions could be obtained once a suitable quotient is performed
on the one studied here. Indeed, a detailed inspection of the Kaluza-Klein
spectrum suggests that at the intermediate point χ= π

T one could consistently
truncate the model to states corresponding to the vector representation of
the SU(2) isometry group. One can go further in this argument by noticing
that one may replace the internal S3 geometry with S3/Zk, k ∈ Z+. Since
the quotient does not break the U(1)R R-symmetry, the resulting AdS4 vacua
would still be N = 2 supersymmetric. However, the Zk quotient, for k ≥ 3,
breaks the isometries of the background, for all χ, to U(1)×U(1)′, while the
Z2 quotient preserves the SU(2)×U(1)′ isometry at χ = 0. The periodicity
of the modulus χ is also affected by the quotient. For a Zk quotient, it is
now given by χ ∼ χ+ 2π

kT . This can be seen by noticing that for this value
of χ, the monodromy matrix h(T ) ∈ Zk now acts trivially on S3/Zk. The
same conclusion can be reached by looking at the complex structure of the
T 2 fibration over S2 as in (5.3.2), where the Hopf fiber of S3/Zk and the
S1 parametrized by η make up the T 2 fiber. Since the Hopf fibre now has
periodicity 4π

k , the shift χ→ χ+ 2π
kT corresponds to a Dehn twist. Furthermore,

the Zk quotient projects out various states, thus reducing the KK spectrum and
isometries. In particular, at Kaluza-Klein level 0, only the states corresponding
to 4-dimensional N = 4 supergravity survive the projection. This includes
the modulus χ. For k = 2, the vacua seem to admit a consistent truncation
with 6 vector multiplets, while for k ≥ 3, the vacua seem to admit a consistent
truncation with 4 vector multiplets. These truncations can, in principle, be
constructed by performing the Zk quotient on the twist matrices (5.2.9) and
assembling the invariant objects into a half-maximal structure [124].
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Other generalizations of the N = 2 family of solutions parameterized by the
compact χ modulus are discussed in Chapter 6. After reviewing the recent
results present in the literature we focus on the particular case of a family
described by two χ-like parameters, (χ1,χ2). With similar techniques to the
one implemented in the previous case, we can prove χ’s compactness both from
the geometric and the Kaluza-Klein spectrum point of view. The topology of
the internal manifold is still given by S5×S1, however in this case it is useful
to interpret S5 as S2

1×S2
1×I and χi is interpreted as a modulus of the S2

i part
of the geometry. This configuration corresponds to a marginal deformation
of the N = 4 S-fold background so that in a unique family we encompass
both the latter solution and the N = 2 χ family suggesting that the SCFT
should admit at least a two-dimensional conformal manifold. Interestingly,
non-supersymmetric cases are included for generic values of the moduli χ1
and χ2. We analyze in detail the perturbations on such configurations and
we find that they are indeed perturbatively stable. Moreover, we also give
arguments suggesting that this two-parameter family of S-fold backgrounds may
also be stable against non-perturbative phenomena. In particular, we exclude
brane-jet instabilities. We argue that these configurations should be stable
against "bubble of nothing" solutions [116]. Furthermore, the backgrounds
for generic values of the moduli, hence the non-supersymmetric ones too, are
as valid as the N = 4 solution when considering higher derivative corrections
to go beyond the supergravity approximation. Many of these perturbative
and non-perturbative considerations rely on the remarkable property that χ1
and χ2 can be locally reabsorbed by a local diffeomorphism which however is
not globally well-defined. This example teaches us that non-supersymmetric
vacua connected to stable supersymmetric ones by continuous parameters are
expected to be perturbatively stable. We can then borrow this argument and we
can apply it to the N = 3 model of previous chapters to anticipate perturbative
stability of the T 3/Γ vacua if uplifted to higher dimensional supergravity.
Non-perturbative statements will then require a more detailed analysis.

The presence of non-supersymmetric (non)-perturbatively stable points on
the (χ1,χ2) manifold is a crucial feature to investigate given the conjectured
relation between the S-fold solutions and certain CFT in three dimensions.
In particular, the five-dimensional point of view on this type of backgrounds,
already discussed in previous chapters, suggests a deep relationship with the
so-called Janus configurations. Type IIB Janus solutions were first discussed in
[67]. Their formulation is based on the AdS4 slicing of AdS5 which allows us to
describe the AdS5 conformal boundary as divided into two regions separated
by an interface located at the point where the conformal factor of the boundary
metric diverges. When working in the Poincaré patch for AdS4 this gives an
R1,3 conformal boundary sliced in two by an R1,2 surface. This gives a natural
set-up for dual theories to Janus solution as interface theories in D = 4 N = 4
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SYM. The solution studied in [67] is a non-supersymmetric stable deformation
of the famous AdS5×S5 solution where the dilaton has a non-trivial profile
giving two different boundary values on the two parts of the conformal boundary.
It is to say, the boundary configuration exhibits piece-wise constant dilaton,
with a discontinuity through an interface, where the two pieces of the boundary
join. The name “interface” is because no extra degrees of freedom are present
on the discontinuity. This is discussed in [85] where a proposal for the CFT
dual to the Janus configuration is given and tested. It is essentially the
D = 4 SYM theory with varying gauge coupling across an interface which
preserves SO(2,3) conformal symmetry and breaks supersymmetry. In [68] a
generalization of the latter solution has been constructed providing an N = 1
supersymmetric Janus configuration on the gravity side. Its dual is believed to
be the N = 1 interface SYM found again in [85]. Their construction is based on
the results of the classification of supersymmetric interface gauge theories in [72].
The symmetry of the solutions would be SO(2,3)×SU(3)×U(1)×SL(2,R)IIB
corresponding to the internal manifold topology R×AdS4×S5 with a squashed
S5 given by a fibration of S1 over CP2. The U(1)× SL(2,R)IIB factor acts
as a duality of the solutions. An analysis of the asymptotic behavior near
the conformal boundary of the external metric shows that the type IIB two-
form Bµν provides a delta-like source for operators on the interface. This is
a main difference with the original Janus solution where the SO(6) internal
symmetry forbids the presence of a non-vanishing B field. This is consistent
with the analysis of [72][85]. In [72], a classification of supersymmetric Janus
solutions on the CFT side is carried on. This classification would correspond
to a classification of supersymmetric Janus configurations in Supergravity. A
main difference with the non-supersymmetric case is that the N = 4 SYM fields
on the two sides of the interface provide delta-like sources with support on the
interface. All the possible interface gauge invariant renormalizable operators
are discussed and added to the canonical N = 4 SYM theory. In this way, the
inequivalent supersymmetric configurations with maximal internal symmetry
are classified. Notable mentions to our discussions are given by the N = 4
SU(2)×SU(2)-symmetric model and the N = 2 U(1)×SU(2)-symmetric one.
The classification can be refined by considering deformations further breaking
the flavour symmetry. In this way an N = 2 model U(1)×U(1)-symmetric is
found. Already at this level, we see the strong similarities between the latter
case and the χ deformation studied in the present work. The N = 1 case
of [85] with SU(3) internal symmetry is also recovered. In [73], the N = 4
supersymmetric theory of [72] is generalized so to include a varying θ-angle.
This gives a well-defined SL(2,R)IIB action on the Janus configurations on
the field theory side which was used in [68] to generalize the original Janus
configuration of [67]. In particular, they find that these new Janus solutions
correspond to a pure dilatonic configuration acted upon with an SL(2,R)IIB.
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Then, as in [72] these supersymmetric theories have a superconformal limit
corresponding to a generic Yang-Mills coupling jumping on the interface. The
tools for this construction are put forward in [86] and further studied in [77].
They are the basis for a more general understanding of interfaces in N = 4
SYM. In the latter, the action of S-duality on these theories is discussed in
detail and paired to mirror symmetry in three-dimensional gauge theories. In
particular, the so-called "T (G) theories" are constructed. As shown in [71], the
latter theories are relevant in the dual formulation of the S-fold supergravity
configurations. Indeed, the authors present strong evidence that the theories
dual to the N = 4 S-fold configurations of [41] are given by what they refer to
as Jn CFTs. They argue that the UV behavior of the latter can be described
by the three-dimensional interface T [U(N)] which exhibits global U(N)×U(N)
symmetry with the addition of a level n Chern-Simons term. Furthermore,
the latter model is coupled to a four-dimensional gauge theory with two U(N)
vector multiplets on each side of the interface. The novelty with respect to
the original description of the T [U(N)] models is that the latter gauge fields
are used to gauge a U(N) subgroup of the U(N)×U(N) global symmetry on
the interface. By flowing in the IR one then obtains a U(N) gauge theory
with a level n supersymmetric Chern-Simons term coupled to the T [U(N)]
model. When considering the large N -limit of the latter theories, one obtains a
good candidate for the SCFT’s dual to the N = 4 S-fold configuration, as the
authors of [71] show by explicitly comparing the on-shell action of the type IIB
configuration and the three-sphere partition function of the Jn theory. Once
this correspondence is established it can be exploited to understand the nature
of the theories dual to marginal deformations of the N = 4 S-fold background
and the other S-fold configurations.

As far as the two-parameter family of S-folds is concerned, we provided the
first holographic evidence for the existence of a non-supersymmetric conformal
manifold. Nonetheless, the fate of this family of non-supersymmetric AdS4
vacua deserves further investigation. The brane-web whose near-horizon limit
corresponds to the AdS4 vacua could still suffer from some other instability
mechanism. For example, it could feature some tachyon in its fluctuation
spectrum, see e.g. [125, 126] for recent discussions. However, because we do
not know the brane-web that would give rise to the AdS4 vacua, it is currently
unclear which probe branes to use for this computation. Still, the existence of
a continuous limit to the χi = 0 supersymmetric case could help in taming such
potential instabilities. Also, some non-perturbative string corrections could
lift the moduli space. Finally, the CFT3 interpretation of the χi deformations
deserves further exploration. As already mentioned, the vacua of the N = 3
gauged supergravity presented in previous chapters and their possible uplifts
to D = 10/11 supergravity deserve further investigation. The ten or eleven-
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dimensional backgrounds, if found, would then provide further holographic
evidence in favor of the existence of non-supersymmetric conformal manifolds.
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Appendix A

Ward Identity

A particular case of eq. (2.2.17) is the following one

T Π
ΛR TΣ ∆

Π −TΣ Π
R T ∆

ΛΠ +T Σ
Λ ΠT

Π ∆
R = 0 (A.0.1)

Terms like T ΛΣ
M and TMΛΣ do not appear because R is block-diagonal. We

further restrict (A.0.1) to

TADΠTBΠC −T DΠ
B TAΠC +TABΠT

ΠD
C =

TADET E
B C −T D

B ETAEC +TA E
B T D

E C

+TADIT I
B C −T D

B ITAI C +TA I
B T D

I C = 0 (A.0.2)

Now we recall
T B
ΛA =−T B

Λ A and T I
ΛA = T I

Λ A (A.0.3)

to obtain

QADBC ≡−TADET E
BC +T D

BE TAEC +TAEBT D
EC

+TADIT I
BC −T D

BI TAI C −TAI BT D
IC = 0 (A.0.4)

The following decomposition holds true1

TADE = 1
2(ϵADBSBE + δ

[A
E N D])

TADI = ϵBADTBI (A.0.5)
1SAB = SBA
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In terms of SAB and NA, we compute2

−ϵAADϵ
BBCTADET

E
BC = −(SS∗) B

A
− 1

2(ϵAEDN
DSBE + ϵBEDNDSAE)

−1
4(δ B

A
NANA−NAN

B)

ϵAADϵ
BBCT D

BE TAEC = 1
4(δ B

A
Tr{SS∗}− (SS∗) B

A
+ 1

2(ϵAEDN
DSBE + ϵBEDNDSAE)

+1
4δ

B
A
NAN

A− 3
4NAN

B)

ϵAADϵ
BBCTADIT I

BC = 4TAIT
BI

ϵAADϵ
BBCTAEBT D

EC = ϵAADϵ
BBCT D

BE TAEC
−ϵAADϵ

BBCT D
BI TAI C = −ϵAADϵ

BBCTAI BT D
IC (A.0.6)

It is easy to verify the last two equations. Indeed, eq.(2.2.15) implies

T ∆
ΛΣ =−T ∆

ΣΛ (A.0.7)

We get rid of terms of the form S ·N thanks to

QADBD = 0⇔ ϵAECSCBNE = −1
2δ

A
B NCN

C + 1
2N

ANB

+4δ A
B TCIT

CI − 4TBITAI

−4T D
IB TIA D + 4TIA BT D

ID (A.0.8)

Finally, we obtain3

ϵAADϵ
BBCQADBC−

32
3 Q

AD
ADδ

B
A

= 0⇔NANB+NAINBI+N B
IC NIC A− 12SACSBC = δ B

A
V

(A.0.9)

2SAB = (SAB)∗
3Actually, to get (3.1.22) we must redefine SAB =−2SAB , ND = 2ND, TCI = 1

2NCI .



Appendix B

Fermion Shift Tensors and Mass
Matrices from T-tensor

We present a systematic way to identify the interesting components of the T
tensor involved in the definitions of fermionic shifts and mass matrices.

B.1 Fermionic shifts

In order to identify fermionic shifts inside T we consider what their H rep-
resentation should correspond to. This task is easy since we know that they
enter fermionic supersymmetry transformations with parameter ϵA ∈ (3,1)+ 1

2
.

Indeed, we have

(3,1)+ 1
2
⟨δψAµ⟩= ⟨∇µϵA+iSABγµϵB⟩ ⇒ SAB ∈ (6,1)+1

(1,1)+ 3
2

⟨δχ⟩= ⟨NDϵD⟩ ⇒ ND ∈ (3,1)+1

(3,n)n+6
2n

⟨δλIA⟩= ⟨N B
IA ϵB⟩ ⇒ N B

IA ∈ (8+1,n)+ 3
n

(1,n) 3n+6
2n

⟨δλI⟩= ⟨NIAϵA⟩ ⇒ NIA ∈ (3,n) 2n+3
n

(B.1.1)

We see that the wanted components of T, possibly projected with G ⊂H-
invariant tensors, must have one or two R-symmetry indices and no more
than one matter index. The independent choices, obtained from TABC , TIA B,
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TAB I up to complex conjugation, are

ϵAB(DTABC) ∈ (6,1)+1 ϵAB[DTABC]⇔ TEBB ∈ (3,1)+1

T B
IA ∈ (8+1,n)+ 3

n
ϵCABTAB I ∈ (3,n) 2n+3

n
(B.1.2)

These are exactly the needed representation in the definition of fermionic shifts.

B.2 Fermionic Mass Matrices

Now we move to MIJ . We play the same game as before. In this case we
discover their representations from the possible λIMIJ λ

J ∈ (1,1)0 interactions1

which are of the following form

χ•M••χ• ⇒M•• ∈ (1,1)−3 (B.2.1)
χ•MIλ

I ⇒MI ∈ (1,n) 3
n

(B.2.2)

χ•MAIλIA ⇒MIA ∈ (3,n)− 2n+3
n

(B.2.3)

λ
IMIJλ

J ⇒MIJ ∈
(

1,
1
2

n(n +1)
)

3(n+2)
n

(B.2.4)

λ
IM AJ

I λAJ ⇒M AJ
I ∈ (3,n×n)+1 (B.2.5)

λAIMAI|BJλBJ ⇒MAI|BJ ∈
(

3,
1
2

n(n−1)
)

− n+6
n

(B.2.6)

One can get easily convinced that the only T components matching these
representations are

TIJ J ∈ (1,n)− 3
n

TAJ I ∈ (3,n×n)+1 ϵABCTIJ C ∈
(

3,
1
2

n(n−1)
)

− n+6
n

ϵCABTAB I ∈ (3,n) 2n+3
n

These are the only ones entering gradient flow equations. Then, MIJ and M••
are consistently vanishing.

The precise relations between the mass matrices and the corresponding
components of the T-tensor are given in Appendix C.

1One could find the needed components for NA
I and SAB looking for a gravitino-gravitino

and gravitino-fermions mass terms.
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The Gradient Flow equations

We consider here the different projections of eq. (3.1.23) into H-covariant
components:

DNA = 1
2R[P]EINIAE + 1

2ϵ
EACNCIR[P]I E + 1

2R[P]AINIEE
DNCI = 2ϵABCR[P]BJTAJI −2SCDR[P]DI + ϵCDBNBR[P]DI
DNIAB = −2R[P]I CϵCADSDB +R[P]I BNA

+R[P]J D
(
−2δDBTIAJ +TIDJδAB

)
+R[P]DJ

(
2δADTIJ B−TIJ DδAB

)
DSBE = −1

2ϵAD(BNIDE)R[P]AI −
1
2R[P]I( ENB)I (C.0.1)

On the other hand, using the general form of the gradient flow equations
required by the supersymmetry of the gauged Lagrangian, see [11], specialized
to the N = 3 models, we find:

DNA = R[P]EITAIE +TAEIR[P]I E−2R[P]AIMI
•−2R[P]I FM•IEϵ

EAF

DNCI = −2SCDR[P]DI −2MIJR[P]J C −2M JA
I R[P]BJϵACB

DNIAB = −2R[P]I CϵCADSDB +R[P]J ETIEJδAB +R[P]EJTIJ EδAB
−2R[P]J BMIA

J −2MIA|JCR[P]DJϵCBD
DSBE = −1

2ϵAD(BNIDE)R[P]AI −
1
2R[P]I( ENB)I (C.0.2)

Direct comparison between (C.0.1) and (C.0.2) suggest the following identifica-
tions

TIEE = 2MI
•, TIAJ + 1

2δ
I
JNA =MAI

J , TIJ A =−1
2ϵABCM

IB|JC , TAB I = 2ϵABCM•IC

(C.0.3)
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and
MIJ = 0 . (C.0.4)

The latter condition is consistent with the discussion of Appendix B, where
it is also shown that the mass matrix M••, which does not enter the above
gradient flow equations, is in fact vanishing.

C.1 Gauge Generators

The SO(3)×SU(3) generators t̂ℓ, t̂m in the fundamental representations of the
respective groups read:

t̂ℓ=1 = J1 =


0 0 0
0 0 1
0 −1 0

 ; t̂ℓ=2 = J2 =


0 0 −1
0 0 0
1 0 0

 ; t̂ℓ=2 = J3 =


0 1 0
−1 0 0
0 0 0

 ,
t̂m=3+I = i

2 λI , I = 1, . . . ,8 ,

where

λ1 =


0 1 0
1 0 0
0 0 0

 ; λ2 =


0 −i 0
i 0 0
0 0 0

 ; λ3 =


1 0 0
0 −1 0
0 0 0

 ,

λ4 =


0 0 1
0 0 0
1 0 0

 ; λ5 =


0 0 −i
0 0 0
i 0 0

 ; λ6 =


0 0 0
0 0 1
0 1 0

 ,

λ7 =


0 0 0
0 0 −i
0 i 0

 ; λ8 = 1√
3


1 0 0
0 1 0
0 0 −2

 . (C.1.1)
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Solving for the DW solutions

When computed on the DW metric (3.6.1), the components of the Ricci tensor
read

Rij = e2A
[
3(A′)2 + A′′

]
ηij , (D.0.1)

Ryy = −3
[
(A′)2 + A′′

]
, (D.0.2)

where the ′ denotes the derivative with respect to the transverse coordinate y
and the Ricci scalar is

R = 6
[
2(A′)2 + A′′

]
. (D.0.3)

The Euler-Lagrange equations of motion for (3.6.3) are

e3A
[
2r′′
i +6A′r′

i −
1
2 sinh(4ri)α′

i
2−∂riV (ri,αi)

]
= 0 , (D.0.4)

e3A sinh(2ri)
[
4cosh(2ri)r′

iα
′
i + sinh(2ri)

(
3A′α′

i + α′′
i

)]
= 0 , (D.0.5)

while Einstein equations read

e2A
[
A′′ + 3A′2 + V (ri,αi)

]
= 0 , (D.0.6)

3A′′ + 3A′2 + V (ri,αi) +
3∑
i

(
2r′
i
2 + 1

2 sinh(2ri)2α′
i
2
)

= 0 . (D.0.7)

The critical points of the potentials (3.4.11) and (3.4.12), that we choose as
end–points of the RG-flow, consist of the origin O and other vacua at fixed
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radii

Type (i): r1 = r2 = r3 = rvac = 1
2 log

(
|g2|+ |g1|
|g2|− |g1|

)
, |g2|> |g1| ,

(D.0.8)

Type (ii): r1 = r2 = r3 = rvac = 1
2 log

(
|g2|+2|g1|
|g2|−2|g1|

)
, |g2|> 2|g1| .

(D.0.9)

When imposing that the moduli of all zi are equal, (D.0.4) leads to the conclusion
that αi have to be constant. In fact, setting all ri to the same value r, and
combining the three equations in (D.0.4), one obtains

e3A sinh(4r)
(
α′

1
2 − α′

2
2
)

= 0 , (D.0.10)

e3A sinh(4r)
(
α′

1
2 − α′

3
2
)

= 0 , (D.0.11)

e3A sinh(4r)
(
α′

2
2 − α′

3
2
)

= 0 . (D.0.12)

D.1 The solution

Setting all αi to constant values along the flow, the equations reduce to the
EOM for the field r and the Einstein equations, which read

r′′ + 3A′r′ − 1
6∂rV (r) = 0 , (D.1.1)

A′′ + 3
(
A′
)2

+ V (r) = 0 , (D.1.2)

3
[
A′′ +

(
A′
)2

+ 2
(
r′
)2 ]

+ V (r) = 0. (D.1.3)

V (r,αi) being the potential given in (3.4.19) for Type (i) solution or (3.4.20) for
Type (ii). The last two equations can be combined into the following constraint

3
(
A′
)2
− 3

(
r′
)2

+ V (r) = 0 . (D.1.4)

Now, this system of equations can be obtained from an effective action of the
form

Leff = e3A
[
3
(
A′
)2
− 3

(
r′
)2
− V (r)

]
= (D.1.5)

= 1
2GijΦ

′iΦ′j − V (Φ) ,
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with Φi = (A,r ), V (Φ) = e3AV (r) and Gij = 6e3Adiag(1 ,−1) .
The Hamiltonian corresponding to the above Lagrangian is defined via the
Legendre transform

H = ΠiΦ
′i −Leff = 1

2G
ijΠiΠj + V (Φ) , (D.1.6)

where
Πi = δLeff

δΦ′i
= GijΦ

′j (D.1.7)

are the usual canonical momenta. Then we can recast the second-order field
equations in the form of first order ones by considering the Hamilton-Jacobi
problem, namely by writing

Πi = δW (Φ)
δΦi

, (D.1.8)

where W (Φ) is the Hamilton’s characteristic function, solution to the Hamilton-
Jacobi equation:

H = 1
2G

ij∂iW∂jW + V (Φ) . (D.1.9)

The characteristic functionW (Φ) can be expressed in terms of a αi-independent
“superpotential” W0, defined in (3.4.17), as follows

W (A,r) = 2e3AW0 (r) , (D.1.10)

Note that this ”superpotential" also describes non-supersymmetric flows. Again
this is related to the fact that αi, which connect supersymmetric vacua to non-
supersymmetric ones, are constant along the flow. In terms of the superpotential
W0(r), the scalar potential is defined through the ”superpotential equation”

V (r) = 1
3 (∂rW0(r))2 − 3W0(r)2 , (D.1.11)

which holds both for Type (i) and Type (ii) vacuum. Now, from (D.1.7) and
(D.1.8) we obtain

Φ′i =Gij
∂W

∂Φj
, (D.1.12)
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so that the general form of the first order equations is

Type (i) : A′(y) = W0(r) = 2
∣∣∣∣ [ |g1|cosh3(r) − |g2|sinh3(r)

] ∣∣∣∣ ,
(D.1.13)

r′(y) = −sinh(2r) [ |g1|cosh(r) − |g2|sinh(r) ] ,

Type (ii) : A′(y) =W0(r) =
∣∣∣∣2 |g1|cosh3(r) − |g2|sinh3(r)

∣∣∣∣ , (D.1.14)

r′(y) = −1
2 sinh(2r) [2 |g1|cosh(r) − |g2|sinh(r) ] .

These equations can be easily integrated to give

Type (i) : A(y) =c1 + ln
[
|g1|cosh(r) − |g2|sinh(r)

sinh(2r)

]
, (D.1.15)

y =c2 −
1

2|g1||g2|

2|g1|arctan
[
tanh

(
r

2

)]
+ |g2| ln

[
tanh

(
r

2

)]
+

+ 2
√
|g2|2−|g1|2 tanh(−1)

 |g2|− |g1|tanh( r2)√
|g2|2−|g1|2

 ,

(D.1.16)

Type (ii) : A(y) =c1 + ln
[

2 |g1|cosh(r) − |g2|sinh(r)
sinh(2r)

]
, (D.1.17)

y =c2 −
1

2|g1||g2|

4|g1|arctan
[
tanh

(
r

2

)]
+ |g2| ln

[
tanh

(
r

2

)]
+

+ 2
√
|g2|2−4|g1|2 tanh(−1)

 |g2|−2|g1|tanh( r2)√
|g2|2−4|g1|2

.
c1 and c2 are integration constants that can be set to zero by performing a
shift in the xi coordinates.
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Relevant Supermultiplets

E.1 N = 3

A1[1
2 ](0)

3
2

: massless graviton multiplet

spin ∆ su(2)R irrep m2

1
2

3
2 1 0

1 2 3 0
3
2

5
2 3 1

2 3 1 0

B1[0](2)
1 : massless vector multiplet

spin ∆ su(2)R irrep m2

0
1 3 −2
2 3 −2

1
2

3
2 1 0
3
2 3 0

1 2 1 0
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B1[0](3)
3
2

: masssive vector multiplet

spin ∆ su(2)R irrep m2

0

3
2 4 −9

4
5
2 4 −5

4
5
2 2 −5

4

1
2

2 2 1
4

2 4 1
4

3 2 9
4

1 5
2 2 3

4

B1[0](4)
2 : masssive vector multiplet

spin ∆ su(2)R irrep m2

0

2 5 −2
3 1 0
3 3 0
3 5 0
4 1 4

1
2

5
2 3 1
5
2 5 1
7
2 1 4
7
2 3 4

1 3 3 2

B1[0](6)
3 : masssive vector multiplet

spin ∆ su(2)R irrep m2

0

3 7 0
4 3 4
4 5 4
4 7 4
5 3 10

1
2

7
2 5 4
7
2 7 4
9
2 3 9
9
2 5 9

1 4 5 6

E.2 N = 2

In short, the OSp(2|4) multiplet will be classified by Dynkin labels of the
maximal compact subgroup U(1)×SO(3)J ×U(1)∆. The first factor represents
the R–symmetry, whose charges we label by real R ∈ R. In accordance with
the two independent supersymmetries Q and Q, a generic Osp(2|4) multiplet
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will be of the form

XY [J ](R)
∆ , (E.2.1)

where X ∈ {L,A1,A2,B1} and Y ∈ {L,A1,A2,B1} refer to the long and the
different shortened structures with respect to Q and Q, respectively. The
parameters R, J , and ∆ refer to the R–charge, Lorentz spin, and conformal
dimension of the highest weight state of the multiplet (E.2.1), respectively.1
Unitarity implies the lower bound for the conformal dimension

∆ ≥ 1+ |R|+J . (E.2.2)

For ∆> 1+ |R|+J , the multiplet is of the long type LL[J ](R)
∆ and is given by

the tensor product of its HWS with the representation generated by the action
of the 4 supercharges on a scalar vacuum, c.f. section 4.2 of [27]. Therefore,
its character factors are as in (5.2.15). Evaluating the product and organizing
the fields according to their Lorentz spins, yields the explicit field content
which we summarize in Tables E.1, E.2, for J = 0, 1

2 ,1 . When the unitarity
bound is saturated, the multiplets are shortened. More precisely, for R> 0 and
∆= 1+R+J , the right factor L in (E.2.1) breaks according to

L[1](R)
∆ −→ A1[1](R)

∆ +A1[1
2 ](R+1)
∆+ 1

2
,

L[1
2 ](R)
∆ −→ A1[1

2 ](R)
∆ +A2[0](R+1)

∆+ 1
2
,

L[0](R)
∆ −→ A2[0](R)

∆ +B1[1
2 ](R+2)
∆+1 ,

(E.2.3)

whereas for R < 0 it is the left factor L in (E.2.1) which breaks accordingly.
At R = 0, further shortening occurs, and massless multiplets show up. We
list the relevant shortened multiplets in Tables E.3 and E.4, where we restrict
to the long-short case LA1, etc.. The short-long multiplets are obtained
from the former upon replacing R with −R (we can refer to this operation as
”conjugation”). In particular, a half–hypermultiplet combined with its conjugate
forms a complete hypermultiplet.

1 In contrast to the notation used in [27], our J is half-integer, referring to the spin, not
the Dynkin label.
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LL[0](R)
∆ : long vector multiplet

spin ∆ R m2

0

∆ R (∆)(∆−3)
∆+1 R−2 (∆+1)(∆−2)
∆+1 R+2 (∆+1)(∆−2)
∆+1 R (∆+1)(∆−2)
∆+2 R (∆+2)(∆−1)

1
2

∆+1/2 R−1 (∆−1)2

∆+1/2 R+1 (∆−1)2

∆+3/2 R−1 ∆2

∆+3/2 R+1 ∆2

1 ∆+1 R (∆)(∆−1)

LL[1
2 ](R)
∆ : long gravitino multiplet

spin ∆ R m2

0

∆+1/2 R−1 (∆+1/2)(∆−5/2)
∆+1/2 R+1 (∆+1/2)(∆−5/2)
∆+3/2 R−1 (∆+1/2)(∆−5/2)
∆+3/2 R+1 (∆+3/2)(∆−3/2)

1
2

∆ R (∆−3/2)2

∆+1 R−2 (∆−1/2)2

∆+1 R+2 (∆−1/2)2

∆+1 R (∆−1/2)2

∆+1 R (∆−1/2)2

∆+2 R (∆+1/2)2

1

∆+1/2 R−1 (∆−1/2)(∆−3/2)
∆+1/2 R+1 (∆−1/2)(∆−3/2)
∆+3/2 R−1 (∆+1/2)(∆−1/2)
∆+3/2 R+1 (∆+1/2)(∆−1/2)

3/2 ∆+1 R (∆−1/2)2

Table E.1 Long N = 2 multiplets LL[0](R)
∆ and LL[1

2 ](R)
∆ .
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LA2[0](R)
R+1: short masssive vector multiplet

spin ∆ R m2

0
R+1 R (R+1)(R−2)
R+2 R−2 (R+2)(R−1)
R+2 R (R+2)(R−1)

3
2

R+ 3
2 R−1 R2

R+ 3
2 R+1 R2

R+ 5
2 R−1 (R+1)2

1 R+2 R R(R+1)

LL[1](R)
∆ : long graviton multiplet

spin ∆ R m2

0 ∆ R ∆(∆−3)

1
2

∆+1/2 R−1 (∆−1)2

∆+1/2 R+1 (∆−1)2

∆+3/2 R−1 ∆2

∆+3/2 R+1 ∆2

1

∆ R (∆−1)(∆−2)
∆+1 R ∆(∆−1)
∆+1 R ∆(∆−1)
∆+1 R−2 ∆(∆−1)
∆+1 R+2 ∆(∆−1)
∆+2 R ∆(∆+1)

3
2

∆+1/2 R−1 (∆−1)2

∆+1/2 R+1 (∆−1)2

∆+3/2 R−1 ∆2

∆+3/2 R+1 ∆2

2 ∆+1 R (∆+1)(∆−2)
Table E.2 Short LA2[0](R)

R+1 and long LL[1](R)
∆ N = 2 multiplets.
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LA1[1
2 ](R)
R+ 3

2
: short masssive gravitino multiplet

spin ∆ R m2

0 R+2 R−1 (R+2)(R−1)

1
2

R+3/2 R R2

R+5/2 R−2 (R+1)2

R+5/2 R (R+1)2

1
R+2 R−1 R(R+1)
R+2 R+1 R(R+1)
R+3 R−1 (R+2)(R+1)

3/2 R+5/2 R (R+1)2

LB1[0](R)
R : half-hypermultiplet

spin ∆ R m2

0
R R R(R−3)

R+1 R−2 (R+1)(R−2)
1/2 R+1/2 R−1 (R−1)2

Table E.3 Shortened N = 2 multiplets.

A1A1[1](0)
2 : massless graviton multiplet

spin ∆ R m2

1 2 0 0

3
2

5/2 −1 1
5/2 +1 1

2 3 0 0

A2A2[0](0)
1 : massless vector multiplet

spin ∆ R m2

0
1 0 −2
2 0 −2

1
2

3/2 −1 0
3/2 +1 0

1 2 0 0
Table E.4 Massless N = 2 multiplets.
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E.3 N = 1

Here we list the relevant N = 1 multiplets.

A1[3] 5
2
: massless gravity multiplet

spin ∆ m2

3
2

5
2 1

2 3 0

L[2]∆>2: massive gravitino multiplet
spin ∆ m2

1
2 ∆+ 1

2 (∆−1)2

1
∆ (∆−1)(∆−2)

∆+1 ∆(∆−1)
3
2 ∆+ 1

2 (∆−1)2

A1[1] 3
2
: massless vector multiplet

spin ∆ m2

1
2

3
2 0

1 2 0

L[1]∆> 3
2
: massive vector multiplet

spin ∆ m2

0 ∆+ 1
2 (∆+ 1

2)(∆− 5
2)

1
2

∆ (∆− 3
2)2

∆+1 (∆− 1
2)2

1 ∆+ 1
2 (∆− 1

2)(∆− 3
2)

L[0]∆>1: matter multiplet
spin ∆ m2

0
∆ ∆(∆−3)

∆+1 (∆+1)(∆−2)
1
2 ∆+ 1

2 (∆−1)2

L′[0]∆> 1
2
: matter multiplet

spin ∆ m2

0
∆ ∆(∆−3)

∆+1 (∆+1)(∆−2)
1
2 ∆+ 1

2 (∆−1)2
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Supergravity spectra in the
N = 3 model

F.1 N = 3

spin m2 ∆≡ E0 multiplicity
0 -2 {1,2} 54=27+27
1
2 0 3

2 37
1 0 2 12
3
2 1 5

2 3
2 0 3 1

Table F.1 Mass spectrum of the N = 3 vacuum preserving the full gauge group
SO(3)×SU(3)
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spin m2 ∆≡ E0 multiplicity

0

4 4 1
0 3 16
−5

4
5
2 12

-2 1,2 17
−9

4
3
2 8

1
2

4 7
2 4

9
4 3 4
1 5

2 8
1
4 2 12
0 3

2 9

1
2 3 3
3
4

5
2 4

0 2 5
3
2 1 5

2 3
2 0 3 1

Table F.2 Mass spectrum of the single N = 3 vacuum invariant under the subgroup
SU(2)×U(1) of the gauge group.
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spin m2 ∆≡ E0 multiplicity

0

10 5 3
4 4 16
0 3 24
-2 1,2 11

1
2

9 9
2 8

4 7
2 16

1 5
2 8

0 3
2 5

1
6 4 5
2 3 3
0 4 4

3
2 1 5

2 3
2 0 3 1

Table F.3 Mass spectrum of the N = 3 vacuum invariant under the subgroup SO(3)D

of the gauge group.



F.2 N = 2 157

F.2 N = 2

spin m2 ∆≡ E0 multiplicity

0

−9
4

3
2 8

−2 {1,2} 15 = 6+9
−5

4
5
2 12

0 3 14
4 4 1

(R+2)(R−1) R+2 2
R(R+3) R+3 2

1
2

0 3
2 9

1
4 2 12
9
4 3 4
1 5

2 4
4 7

2 2
R2 R+ 3

2 1
(R+1)2 R+ 5

2 4
(R+2)2 R+ 7

2 1

1

0 2 3
3
4

5
2 4

2 3 1
R(R+1) R+2 2

(R+1)(R+2) R+3 2

3
2

1 5
2 2

(R−1)2 R+ 5
2 1

2 0 3 1
Table F.4 Mass spectrum of the N = 2 vacuum invariant under a U(1)D ×U(1)
subgroup of the gauge group.
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spin m2 ∆≡ E0 multiplicity

0

−2 {1,2} 9 = 4+5
0 3 22
4 4 16
10 5 3

(R+2)(R−1) R+2 2
R(R+3) R+3 2

1
2

0 3
2 5

1 5
2 4

4 7
2 14

9 9
2 8

R2 R+ 3
2 1

(R+1)2 R+ 5
2 4

(R+2)2 R+ 7
2 1

1

0 2 2
2 3 1
6 4 5

R(R+1) R+2 2
(R+1)(R+2) R+3 2

3
2

1 5
2 2

(R−1)2 R+ 5
2 1

2 0 3 1
Table F.5 Mass spectrum of the N = 2 vacuum invariant under a U(1)D subgroup of
the gauge group.
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F.3 N = 1

spin m2 ∆≡ E0 multiplicity

0

−9
4

3
2 8

−2 {1,2} 14 = 12+2
−5

4
5
2 12

0 3 13
4 4 1

(∆V 1 + 1
2)(∆V 1− 5

2) ∆V 1 + 1
2 1

(∆V 2 + 1
2)(∆V 2− 5

2) ∆V 2 + 1
2 1

∆H1(∆H1−3) ∆H1 1
(∆H1 +1)(∆H1−2) ∆H1 +1 1
∆H2(∆H2−3) ∆H2 1

(∆H2 +1)(∆H2−2) ∆H2 +1 1

1
2

0 3
2 10

1
4 2 12
1 5

2 2
9
4 3 4
4 7

2 1
(∆G1−1)2 ∆G1 + 1

2 2
(∆G2−1)2 ∆G2 + 1

2 2
(∆V 1− 3

2)2 ∆V 1 1
(∆V 1− 1

2)2 ∆V 1 +1 1
(∆V 2− 3

2)2 ∆V 2 1
(∆V 2− 1

2)2 ∆V 2 +1 1

1

0 2 2
3
4

5
2 4

(∆G1−1)(∆G1−2) ∆G1 1
∆G1(∆G1−1) ∆G1 +1 1

(∆G2−1)(∆G2−2) ∆G2 1
∆G2(∆G2−1) ∆G2 +1 1

(∆V 1− 1
2)(∆V 1− 3

2) ∆V 1+ 1
2

1
(∆V 2− 1

2)(∆V 2− 3
2) ∆V 2+ 1

2
1

3
2

1 5
2 1

(∆G1−1)2 ∆G1 + 1
2 1

(∆G2−1)2 ∆G2 + 1
2 1

2 0 3 1
Table F.6 Mass spectrum of the N = 1 vacuum invariant under a U(1) subgroup of
the gauge group.
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spin m2 ∆≡ E0 multiplicity

0

−2 {1,2} 6+2 = 8
0 3 21
4 4 16
10 5 3

(∆V 1 + 1
2)(∆V 1− 5

2) ∆V 1 + 1
2 1

(∆V 2 + 1
2)(∆V 2− 5

2) ∆V 2 + 1
2 1

∆H1(∆H1−3) ∆H1 1
(∆H1 +1)(∆H1−2) ∆H1 +1 1
∆H2(∆H2−3) ∆H2 1

(∆H2 +1)(∆H2−2) ∆H2 +1 1

1
2

0 3
2 6

1 5
2 2

4 7
2 13

9 9
2 8

(∆G1−1)2 ∆G1 + 1
2 2

(∆G2−1)2 ∆G2 + 1
2 2

(∆V 1− 3
2)2 ∆V 1 1

(∆V 1− 1
2)2 ∆V 1 +1 1

(∆V 2− 3
2)2 ∆V 2 1

(∆V 2− 1
2)2 ∆V 2 +1 1

1

0 2 1
6 4 5

(∆G1−1)(∆G1−2) ∆G1 1
∆G1(∆G1−1) ∆G1 +1 1

(∆G2−1)(∆G2−2) ∆G2 1
∆G2(∆G2−1) ∆G2 +1 1

(∆V 1− 1
2)(∆V 1− 3

2) ∆V 1+ 1
2

1
(∆V 2− 1

2)(∆V 2− 3
2) ∆V 2+ 1

2
1

3
2

1 5
2 1

(∆G1−1)2 ∆G1 + 1
2 1

(∆G2−1)2 ∆G2 + 1
2 1

2 0 3 1
Table F.7 Mass spectrum of the N = 1 vacuum with completely broken gauge
symmetry.



Appendix G

Kaluza-Klein spectrum of the
N = 4 Vacuum

The N = 4 AdS4 vacuum, first presented in [66], is defined by the following
expectation values of the zi:

z1 = z2 = z3 = i , z4 = z5 = z6 =−z7 = 1√
2

(1+ i) . (G.0.1)

The vacuum has SU(2)×SU(2) symmetry, corresponding to the superconformal
R-symmetry.

As argued in section 5.2.1, the fact that the background contains a S1,
whose radius can be varied, implies that the Kaluza-Klein states with non-zero
modes on the S1 must fit into long supermultiplets. Moreover, by decomposing
the N = 8 multiplet into long N = 4 multiplets, we deduce that, for generic
values of the S1 radius, the entire Kaluza-Klein spectrum organises itself into
long graviton multiplets. Therefore, the full Kalzua-Klein spectrum of the
N = 4 vacuum can be determined from just its spin-2 spectrum, which has
been worked out in [113].

Indeed, a direct computation using the tools of [34, 6] and reviewed in section
5.2 confirms that all Kaluza-Klein modes can be organised into long graviton
multiplets. These are counted by the character for the highest-weight states,
i.e. the gravitons,

ν1 = 1
(1− q2)(1− qu)(1− q v)

1+ s

1− s . (G.0.2)

Here exponents of q, s count levels for the S5 and S1 harmonics, respectively,
while exponents of u, v count the SU(2)×SU(2) spins.
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We find that the conformal dimension, ∆, of the highest weight state of the
supermultiplets, as counted by (G.0.2), is given by

∆= 3
2 + 1

2

√
9+2ℓ(ℓ+4)+4ℓ1(ℓ1 +1)+4ℓ2(ℓ2 +1)+ 2n2π2

T 2 , (G.0.3)

for a HWS of type qℓ snuℓ1 vℓ2 . This precisely matches the spin-2 Kaluza-Klein
masses computed in [113].


