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Abstract: This paper was written in memory of Joao da Providência who passed away in November

2021. It is a pursuit of works developed recently by Joao, Steven and inspired by our many years

of discussions. Neutron stars are described within the quark–meson coupling Bogoliubov (QMC

Bogoliubov) nuclear model which includes u, d and s quarks. The model is improved by including the

ω-b3 mixing term so that constraints imposed by ab-initio chiral effective field theory pure neutron

matter calculations are satisfied. The effects of the symmetry energy slope on the structure and

properties of neutron stars are investigated. In particular, the effect on the radius, on the particle

fractions, and on the onset of the nuclear direct Urca processes is discussed. It is shown that the

improved model is in accordance with GW170817 observations, and that the constrained symmetry

energy does not allow for nucleonic direct Urca processes inside neutron stars. Within the present

model, no hyperons nucleate inside neutron stars.

Keywords: nuclear symmetry energy; equation of state; dense nuclear matter; neutron stars;

gravitational waves; ab-initio chiral effective field theory; SU(3) symmetry; direct urca process

PACS: 26.60.−c; 26.60.+c; 21.65.+f; 97.60.Jd

1. Introduction

In recent decades, the study of the properties of high-density nuclear matter has
received a major boost from astronomical observations. Such studies are particularly im-
portant in the context of nuclear astrophysics. Thus, neutron stars are considered to be
a unique laboratory for nuclear and particle physics, as they are the only systems where
high-density baryonic matter exists. In particular, they can provide the conditions for the
formation of deconfined quark matter. Observations of neutron stars offer us the opportu-
nity to gain access to an area of nuclear physics that is normally inaccessible. Neutron stars
(NS) are systems with several extreme properties, not only very high densities, but also
very asymmetric nuclear matter with a very small proton fraction, or very high magnetic
fields. The properties of these systems are governed by the equation of state (EOS), which
is an essential part of the construction of the stellar mass radius and its tidal deformability.
Observations of NS are therefore expected to provide strong constraints on the high-density
EOS. Despite its crucial role in our understanding of physics at supranuclear densities, the
EOS of nuclear matter deep inside neutron stars remains poorly understood.

The rapid advances in astronomical observational techniques provide many oppor-
tunities to study neutron stars using the equation of the state of high-density nuclear
matter. Recent neutron star observations include the detection of gravitational waves from
neutron star mergers and, where possible, their electromagnetic counterparts [1–4], the
determination of NS masses from radio data, in particular the highly constraining two
solar mass pulsars PSR J1614-2230 [5,6], PSR J0348+0432 [7], MSP J0740+6620 [8,9], and
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the recent simultaneous NS radius and mass measurements by NICER X-ray observations
of pulsars PSR J0030-0451 and MSP J0740+6620 [10–14]. These observations place strong
constraints on the equation of state of dense matter, but smaller uncertainties are needed
to offer a clear indication of the degrees of freedom that make up neutron star matter
at high densities. In particular, the two-solar-mass constraint poses some difficulties for
the possible appearance of non-nucleonic degrees of freedom, such as hyperons, delta
resonances, kaon and pion condensates, or quark deconfined matter [5,15,16]. However,
several works have shown that the lack of knowledge about the properties of high-density
matter is still large enough to allow the appearance of non-nucleonic degrees of freedom,
even considering the two-solar-mass constraint [17–23]. In [24], the authors used a Bayesian
inference approach to determine the conditions under which hyperons could exist inside
neutron stars and still explain the occurrence of two-solar-mass stars. They concluded
that the presence of hyperons requires the nucleonic EOS to be harder, in particular with
greater incompressibility at saturation. Finding the composition of cold dense nuclear
matter therefore remains a serious challenge.

In the 1960s, P.N. Bogoliubov [25] proposed a model of baryons, assuming that these
baryons are composed of independent quarks bound by a linearly increasing potential, as
suggested by gauge theories. Based on this model, the Bogoliubov quark–meson coupling
model was developed [26] and applied to the description of neutron star matter including
hyperonic degrees of freedom [26–28]. Starting from an SU(3) symmetry approach, it was
shown in ref. [28] that this symmetry must be broken in order to satisfy the constraints
imposed by hypernuclei and neutron stars. The authors were able to describe NS obser-
vations, such as two-solar-mass stars or the radius of canonical neutron stars, within the
currently accepted uncertainties in a broken SU(3) model. In particular, by constraining
the Λ and Ξ hyperon potentials to the properties of the hypernuclei, it was shown that no
hyperons are produced at densities such as those found inside neutron stars.

The symmetry energy at saturation is still subject to quite a large uncertainty. In [29],
the authors constrained the symmetry energy at saturation and its slope to 29.0–32.7 MeV
and 40.5–61.9 MeV, respectively, using a set of several experimental nuclear data. A larger
interval was obtained for the symmetry energy slope in [30] (L = 58.7 ± 28.1 MeV),
considering constraints from neutron star properties in addition to experimental nuclear
data. PREX-2 [31] and CREX [32] experiments have been performed to measure the lead
and calcium neutron skin from the parity-violating asymmetry measurement. However,
the uncertainties are still large and the results from PREX-2 and CREX, according to the
studies [33,34], seem to be incompatible with each other, although in [35], three models
are proposed which are compatible with both measurements within 1σ. Knowing the
symmetry energy is important because it defines the properties of the neutron star, such as
its proton fraction. The size of this quantity is directly related to the possibility of nucleonic
direct Urca processes occurring, leading to a rapid cooling of the neutron star [36].

In [37,38], within a relativistic mean-field description of nuclear matter, it was shown
that it is possible to control the neutron star radius by introducing a term that mixes the
ω and ρ meson fields. This term defines the density dependence of the symmetry energy,
in particular its slope [39]. In this paper, we continue our investigation on the Bogoliubov
quark–meson coupling model [26–28]. The values of the slope of the symmetry energy at
saturation of this model, 79 MeV, are above the limits imposed in [29], although still within
those obtained in [30]. The aim of the present work is to include a mixing ω-b3 term in the
model and to study the effects of the nuclear symmetry energy on the composition, structure
and properties of the neutron star within the Bogoliubov quark–meson coupling model.

In Section 2, we briefly present the model; in Section 3, the description of hadronic
matter with strangeness is introduced and the β-equilibrium equation of state is built. In
Section 4, we obtain the structure and properties of neutron stars described by the present
models and discuss the results. In the last section, we draw some concluding remarks.
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2. Bogoliubov Quark Meson Coupling Model

Bogoliubov independent quark model of the nucleon is characterized by a linearly
rising potential confining the quarks [25]. To describe the QMC Bogoliubov model, we
consider the Dirac Hamiltonian written as follows:

hD = −iα · ∇+ β
(

κ|r|+ m − g
q
σσ
)

, (1)

where m is the current quark mass, σ is the external scalar field, g
q
σ denotes the coupling

of the quark to the σ field, κ is the string tension, β and α are Dirac matrices. The current
quark mass m is taken to be m = 0 for u, d quarks because their constituent mass is
assumed to be determined exclusively by the value of κ. The constituent mass of the u, d
quarks is generated dynamically, while the constituent mass of the s quark arises both
dynamically and from its “current” mass. Considering SU(3) symmetry, the coupling g

q
σ is

assumed to be the same for quarks u, d, s. The eigenvalues of hD are obtained by a scale
transformation from

hD0
= −iα · ∇+ β(|r| − a).

We cannot apply the variational approach to hD0
because its eigenvalues are not bounded

from below; however, we need the lowest positive eigenvalue of hD0
. Thus, the eigenvalues

of hD0
are determined by considering its square,

h2
D0

= −∇2 + (|r| − a)2 + iβα · r

|r| , (2)

using a variational principle and considering the following ansatz:

Ψb,λ =

[

χ
iλ(σ · r)χ

]

e−(|r|−a−b)2/2, (3)

where b, λ are variational parameters, and χ is a 2-spinor. We look for the eigenvalues as a
function of the quantity a which is related to the nucleon radius. From the wave function
in Equation (3), it is clear that a + b is a measure of the nucleon radius. Minimizing the
expectation value of h2

D0 for Ψb,λ, the following expression for the quark mass is found:

m2(κ, a)

κ
= min

λ,b

〈ψb,λ|h2
D0|ψb,λ〉

κ〈ψb,λ|ψb,λ〉
= min

λ,b

K0 + V0 + V01λ + (K1 + V1)λ
2

N0 +N1λ2
, (4)

where N0, V0, K0, N1, V1, and K1 are all given in [26,27].
Minimization of Equation (4) with respect to λ is readily performed, so that

m2(κ, a)

κ
=

1

2
min

b





K0 + V0

N0
+

K1 + V1

N1
−
√

(K0 + V0

N0
− K1 + V1

N1

)2

+

( V01√N0N1

)2


. (5)

Minimization of the r.h.s. of Equation (5) with respect to b may be easily implemented as
detailed in [26–28]. However, we found that in the interval −1.25 < a < 2.4 that covers the
range of densities under consideration, we can express the groundstate energy, m(κ, a), of
hD0 with a very good accuracy, as follows:

m(κ, a)2

κ
= 2.64123 − 2.35426a + 0.825225a2 − 0.072244a3

−0.0314736a4 + 0.00155171a5 + 0.00257144a6. (6)

Taking a = g
q
σσ/

√
κ for quarks u, d, we obtain, in the vacuum, the constituent mass of

these quarks equal to 313 MeV, with a = 0 and κ = 37, 106.931784 MeV2. For quark s,
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a = as = −1.2455 + g
q
σσ/

√
κ reproduces the vacuum constituent mass 504 MeV of this

quark. Consequently, the mass M∗
B of the baryon B is given as follows:

M∗
N = M∗

P = 3m(κ, a), M∗
Λ = 2m(κ, a) + m(κ, as), M∗

Ξ = m(κ, a) + 2m(κ, as). (7)

The Σ-hyperons are not considered, as discussed lately in [28], because experimental data
seem to indicate that the potential of the Σ hyperon in nuclear matter is quite repulsive [40];
consequently, their appearance is not expected.

3. Hadronic Matter

In ref. [28], it was shown that the tidal deformability of a 1.36 M⊙ star is larger than
the prediction from GW170817 at a 90% credible interval. Since the symmetry energy in
the present model is quite stiff, and it has been shown that the symmetry energy affects
the radius of low-mass stars [38,39], a softer symmetry energy produces a smaller tidal
deformability. The density dependence of the symmetry energy can be modulated by a term
mixing the vector–isoscalar ω meson and the vector-isovector b3 meson in the Lagrangian
as in [39]. In the present work, this term is taken into account and the properties of nuclear
matter are used to fix the couplings of these mesons to nucleons.

As indicated in ref. [28], field ω is interpreted as a vector field of the η type, in the spirit
of reference [41], with structure (ūu + d̄d + (1 + δ) s̄s)/

√

2 + (1 + δ)2, where 1 + δ > 0 so
that the coupling of ω–meson to quark s is equal to the coupling to quarks u, d multiplied
by factor 1 + δ. This ansatz breaks the SU(3) symmetry and stiffens the EoS. The parameter
δ together with Λωb3

will be fixed to satisfy constraints coming from chEFT calculations for
neutron matter and from the astronomical observations.

In the current version of the model, the energy density is written as follows:

E = ∑
i=B,(B 6=Σ);l

Ei +
1

2
m2

σσ2 +
1

2
m2

ωω2 +
1

2
m2

b3
b2

3 + 3Λωb3
g2

ωg2
b3

ω2b2
3,

and the thermodynamical potential is given by

Φ = ∑
B,(B 6=Σ)

(EB − ρB(µ − qBλ)) + ∑
l

(El − ρlλ) +
1

2
m2

σσ2 +
1

2
m2

ωω2 +
1

2
m2

b3
b2

3

+Λωb3
g2

ωg2
b3

ω2b2
3, (8)

with
1

3
gω = g

q
ω, gb3

= g
q
b3

as quark–meson coupling constants. The Lagrange multiplier µ

controls the baryon density and λ controls the electrical charge. The number density and
energy density of the baryons and leptons are written, respectively, as follows:

ρi =
ki

F
3

3π2
,

Ei =
1

8π2

(

2Ei3
Fki

F − M∗2
i Ei

Fki
F − M∗4

i ln

(∣

∣

∣

∣

∣

Ei
F + ki

F

M∗
i

∣

∣

∣

∣

∣

))

, (9)

where Ei
F =

√

ki2
F + M∗2

i is the particle Fermi energy. The σ field is obtained from the
minimization of thermodynamical potential Φ with respect to σ,

∂Φ

∂σ
= ∑

B,(B 6=Σ)

∂M∗
B

∂σ
ρs

B + m2
σσ = 0, (10)

where

ρs
B =

M∗
B

2π2

(

EB
F kB

F − M∗2
B ln

(∣

∣

∣

∣

∣

EB
F + kB

F

M∗
B

∣

∣

∣

∣

∣

))
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denotes the scalar density of each baryon.
In the spirit of the SU(3) flavor symmetry, the quark–scalar meson σ coupling that

enters in the definition of M∗
B, Equation (7), is the same for all quarks. The minimization

of thermodynamical potential Φ with respect to the ω field and the b3 field, respectively,
offers the relation linking each field to its respective source,

ω =
gω

m2
ω,e f f

∑
B,(B 6=Σ)

ζBρB, b3 =
gb3

m2
b3,e f f

∑
B,(B 6=Σ)

ηBρB, (11)

with

ζP = ζN = 1, ζΛ = 1 + δ, ζΞ0
= ζΞ− = 1 + 2δ, (12)

ηP = 1, ηN = −1, ηΛ = 0, ηΞ0
= 1, ηΞ− = −1,

where m2
ω,e f f = m2

ω + 2Λωb3
g2

ωg2
b3

b2
3, m2

b3,e f f = m2
b3
+ 2Λωb3

g2
ωg2

b3
ω2. Meanwhile, the

minimization of Φ with respect to kFB
leads to the chemical potential of baryon B, written

as follows:

µB =
√

k2
FB + M∗2

B + gωωζB + gb3
b3ηB, (13)

which, explicitly for N, Λ, Ξ, Equation (13) reduces to

µN =
√

k2
FN

+ M∗2
N + gωω + gb3

b3ηN ,

µΛ =
√

k2
FΛ

+ M∗2
Λ

+ gω(1 + δ)ω,

µΞ =
√

k2
FΞ

+ M∗2
Ξ + gω(1 + 2δ)ω + gb3

b3ηΞ.

Finally, the minimization of Φ with respect to kFe leads to the electron Fermi energy, given by

µe =
√

k2
Fe + M2

e . (14)

This model predicts a competition between negatively charged hyperons and leptons.
This is natural following Bodmer–Witten’s Conjecture [42,43], which stipulates that at
high densities, the groundstate of baryonic matter should involve only quarks u, d, s,
without leptons.

The model parameters are obtained by fixing the free parameter κ of the model in
order to fit the nucleon mass M = 939 MeV. Once κ is determined, we can proceed to
specify the desired values for various parameters. We take the standard values for the
meson masses, namely mσ = 550 MeV, mω = 783 MeV, and mb3

= 763 MeV. Next, the
desired values of the neutron effective mass M∗/M = 0.773, nuclear matter binding energy
EB = ǫ/ρB − MN = −15.7 MeV, incompressibility K =315.0 MeV, in agreement with the
range of values proposed in [44], and the nucleon radius RB = 0.1163 fm at saturation
density ρ0 = 0.145fm−3, are obtained by setting g

q
σ = 4.0539996 and gω = 3g

q
ω = 9.2474196.

The coupling constant gb3
= g

q
b3
= 3.9532889 is fixed in order to have the symmetry energy

coefficient esym = 29 MeV and the symmetry energy slope L = 79.45 MeV at saturation
density. Both values are within the ranges obtained in [30], esym = 31.7 ± 3.2 MeV and
L= 58.7 ± 28.1 MeV.

4. Results and Discussion

The isovector properties of the QMC Bogoliubov model can provide valuable insights
into nuclear physics beyond the properties at saturation density. Before applying the
model to the study of stellar matter, we first focus on its properties at saturation and
subsaturation densities.

The effect of the symmetry energy on the properties of the neutron star is studied,
including the mixing term Λωb3

, which allows variation of the symmetry energy slope.
Couplings gb3

and Λωb3
are determined such that the symmetry energy esym is set to 29 MeV
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at saturation density, and the slope L is defined in the range of values obtained in [30] from
a large number of experimental data and astrophysical observations, L = 58.7 ± 28.1 MeV.
In Table 1, we list the values of L that will be discussed in the sequel.

The symmetry energy within the Bogoliubov QMCωb3 model exhibits quite a linear
behavior with the baryon density. This is a common feature with many NLWM models.
The nonlinear mixing ω-b3 term changes the density dependence of the symmetry energy,
and, as a consequence, the symmetry energy of the QMCω b3 model becomes softer at
higher densities, and harder below saturation density; see Figure 1. In this figure, we plot
the symmetry energy in panel (a) and its slope in panel (b) as a function of the baryon
density for several values of the mixing term Λωb3

. The effect of the mixing terms is
clear: the larger the mixing term coupling, the smaller the slope of the symmetry energy
above ρ ∼0.06 fm−3 and the softer the symmetry energy above the saturation density. The
consequences of the isovector properties of the QMC Bogoliubov models are discussed
below. Table 1 lists the properties and parameters of the models studied.

Table 1. Parameters and properties of the model: g
q
σ = 4.0539996, g

q
ω = 3.0824732, ρ0 = 0.145 fm−3,

esym = 29.0 MeV, K = 315 MeV.

Λωb3
g

q
b3

L (MeV)

0.0 3.953289 79.5
0.1 4.23752 67.8
0.2 4.593438 56.2
0.3 5.057328 44.6
0.4 5.697799 32.9

0 0.05 0.1 0.15 0.2 0.25

ρ(fm
-3

)

50

100

150

L
(M

eV
)

0

10

20

30

40

50

e sy
m

(M
eV

)

Λ
ω b

3

=0.0

Λ
ω b

3

=0.1

Λ
ω b

3

=0.2

Λ
ω b

3

=0.3

Λ
ω b

3

=0.4

(a)

(b)

Figure 1. The symmetry energy (panel (a)) and the symmetry energy slope (panel (b)) as a function

of the baryonic density for several values of the mixing term Λωb3
.
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It is very instructive to study the behavior of the pressure of pure neutron matter,
since it directly reflects the behavior of the symmetry energy. In Figure 2, the pressure
of pure neutron matter is plotted as a function of baryon density ρ for several values of
mixing term Λω b3

. In this figure, we also include the 1σ and 2σ constraints obtained from
chiral effective field theoretical (chEFT) ab-initio calculations. Decreasing the slope of the
symmetry energy at saturation density has a noticeable effect on the EoS, which becomes
much softer at a density above 0.08 fm−3. Only models with L = 79.5 MeV (Λωb3

= 0.0) and
67.8 MeV (Λωb3

= 0.1) miss the chEFT constraints. However, the model with L = 56.2 MeV
(Λωb3

= 0.2) satisfies the 2σ constraint and the models with L = 44.6 MeV and 32.9 MeV
(Λωb3

= 0.3 and 0.4) satisfy the 1σ constraint.

 0

 1

 2

 3

 4

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

P
 (

M
e
V

/f
m

3
)

ρ(fm
-3

)

2σ,chEFT
1σ, chEFT
Λω b3 =0.0
Λω b3 =0.1
Λω b3 =0.2
Λω b3 =0.3
Λω b3 =0.4

Figure 2. The pure neutron matter pressure as a function of the baryonic density for several values

of mixing term Λωb3
compared with chEFT neutron matter constraints. The dark and the light blue

bands represent, respectively, the 1σ and the 2σ constraint from chEFT calculations [45].

In Figure 3, the fraction of different particles present inside a neutron star for baryonic
densities below 1.2 fm−3 is plotted as a function of density for Bogoliubov QMCωb3 models
with different values of slope L and δ = 0. In panel (a), we show the results obtained
including hyperons, and in panel (b), the results are restricted to npeµ matter. In panel
(a), for L = 79.5 MeV, the onset of hyperons occurs at ρ = 2ρ0, and the first hyperon to
appear is Λ, at a slightly larger density it is Ξ−, and at about ρ = 4ρ0, it is Ξ0. An increase
in Λωb3

, which corresponds to a decrease in slope L, shifts the onset of these particles to
higher densities, and for L = 32.9 MeV, the onset of Λ occurs at ∼2.5ρ0 and Ξ0 above
6ρ0. Moreover, the fraction of Λ-hyperons in the latter case never exceeds 10%, while at
L = 79.5 MeV it reaches 20%. Concerning the hyperon onset, a similar behaviour in neutron
star matter has been discussed in [21,46]. In panel (b), at subsaturation density, the proton
fraction increases as L decreases. However, above saturation density, the proton fraction
decreases from 30% for L = 79.5 MeV to 10% for L = 32.9 MeV. Notice that a proton fraction
below 1/9 does not allow the occurrence of direct Urca processes [47].

In Figure 4, the fractions of baryons and leptons for β equilibrium matter are represented
as a function of density for δ = 0.05, 0.1, 0.15, 0.2, 0.25 and for Λωb3

= 0.0, 0.1, 0.2, 0.3, 0.4. It
was just discussed that for δ = 0, the onset of hyperons occurs for ρ = 2ρ0, and the first
hyperon to set in is Λ and, at a slightly larger density, Ξ−. A finite δ pushes the onset of
these particles to larger densities, and for δ = 0.2, the onset of Λ occurs at ∼4ρ0 and Ξ−

above 8ρ0. Besides the fraction of Λ, in this last scenario, it never rises above 4%, while
for δ = 0, it reaches 20%. Above saturation density, the fraction of particles is significantly
affected by the decrease in the symmetry energy slope, since the b3 meson field is weaker
for a smaller symmetry energy, and, consequently, the chemical potential of the neutrons is
also smaller, favouring larger fractions of neutrons.
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0.001

0.01

0.1

1

Y
i

0 0.2 0.4 0.6 0.8 1 1.2

ρ(fm
−3

)

0.001

0.01

0.1

1

Y
i

Λ
ωb

3
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Λ
ωb

3
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Λ
ωb

3
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Λ
ωb

3
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Λ
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e

(a)

(b)

e

Figure 3. Baryonic and leptonic particle fractions as a function of the baryonic density for the parameter

δ = 0.0 (panel (a) )and npeµ matter (panel (b)), and several values of the mixing term Λωb3
: solid line

Λωb3
= 0.0, dashed line 0.1, dotted line 0.2, dash-dotted line 0.3, double-dotted dashed line 0.4.
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Figure 4. Baryonic and leptonic particle fractions as a function of the baryonic density, for several

values of parameter δ shown in panels (a–e); and for several values of the mixing term Λωb3
, solid

line Λωb3
= 0.0, dashed line 0.1, dotted line 0.2, dash-dotted line 0.3 double-dot dashed line 0.4. It

was shown in ref. [28] that for δ > 0.2, the onset of hyperons is shifted to densities above 1.2 fm−3.

The central baryonic density lies between 0.9 and 1.1 fm−3, depending on hyperonic content.
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In Figure 5, we show that different hyperons are affected differently by the symmetry
energy. In this figure, the onset baryonic density of Λ, Ξ0 and Ξ− is plotted as a function of
the symmetry energy slope L, where Λωb3

= 0.0 (0.4) corresponds to L = 79.5 (32.9) MeV.
The Λ0 onset baryonic density increases with the parameter δ and always increases with
the decrease in L, because the baryonic chemical potential decreases. The onset of Ξ0 occurs
at quite large densities and, for the range of densities shown, it is present only for δ = 0.0.
Ξ− is never the first hyperon to appear due to its large mass, although negatively charged
hyperons are favored because they replace electrons keeping neutron star matter neutral.
The onset of Ξ− occurs at larger densities for smaller values of L and are present at baryonic
densities below 1.2 fm−3 only for δ = 0.0, 0.05 and 0.1. Details about the onset density of
the hyperons can be seen in Table 2.
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Figure 5. Onset density of hyperon as a function of the slope L, for several values of parameter δ.

Table 2. Onset density of each hyperon.

δ Λωb3
L (MeV) ρΛ0 [fm−3] ρΞ0 [fm−3] ρΞ− [fm−3]

0.0 0.0 79.5 0.292 0.613 0.340
0.1 67.8 0.310 0.837 0.358
0.2 56.2 0.323 0.890 0.370
0.3 44.6 0.334 0.909 0.379
0.4 32.9 0.343 0.920 0.385

0.05 0.0 79.5 0.326 - 0.340
0.1 67.8 0.353 - 0.427
0.2 56.2 0.374 - 0.445
0.3 44.6 0.389 - 0.455
0.4 32.9 0.400 - 0.463

0.1 0.0 79.5 0.374 - 0.499
0.1 67.8 0.418 - 0.550
0.2 56.2 0.4507 - 0.581
0.3 44.6 0.472 - 0.598
0.4 32.9 0.485 - 0.608

0.15 0.0 79.5 0.445 - 0.771
0.1 67.8 0.530 - -
0.2 56.2 0.592 - -
0.3 44.6 0.626 - -
0.4 32.9 0.647 - -

0.2 0.0 79.5 0.566 - -
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In order to study the influence of the density dependence of the symmetry energy on
nucleonic direct Urca (DU) processes, i.e., processes that involve reactions n → p + e− + ν̄e

and p + e− → n + νe, we show, in Figure 6, the DU onset density as a function of the
baryon density for several values of L. The DU process starts operating for L = 79.5 MeV
at a density around ρDU = 0.347 fm−3 for δ = 0.0, ρDU = 0.332 fm−3 for δ = 0.05, and
ρDU = 0.330 fm−3 for δ > 0.1. However, the DU process stops operating when L decreases,
e.g., for L = 67.8 MeV; DU processes are allowed only at densities above 1.2 fm−3. The
symmetry energy is too small at high densities, preventing the nucleonic DU processes
to operate; however, hyperonic direct Urca processes operate at densities just above the
hyperon onset densities.
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Figure 6. Direct Urca process condition for several values of parameter δ and slope L.

In order to complete our study, we explore now the influence of the density de-
pendence of the symmetry energy on the structure of neutron stars as described by the
present model. We integrated the Tolman–Oppenheimer–Volkov equations for nonro-
tating spherical stars in equilibrium [48,49]. We obtained the total EoS by matching the
Baym–Pethcik–Sutherland EoS for the outer crust [50], and for the inner crust, we used
Thomas–Fermi’s description of nonhomogeneous matter for the NL3ωρ model, with a
symmetry energy slope at a saturation of 77 MeV [51], which corresponds to the core EoS.
The complete EoS that has been used to integrate the TOV equations is plotted in the left
panel of Figure 7. The pressure P obtained for different values of δ and Λωb3

is shown as
a function of the energy density. The inclusion of hyperons softens the EoS as expected.
When the δ parameter is turned on, the EoS becomes stiffer, and the EoS with δ ≥ 0.2 almost
coincides with the nucleonic EoS. However, when the coupling constant Λωb3

is turned on,
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we notice that the EoS becomes much softer at lower density and stiffer otherwise. Looking
at the curve mass versus radius shown in the right panel of Figure 7, some conclusions
may be drawn: The different scenarios of EoS considered in our model can describe NS
with masses above 1.92 solar masses if parameter δ 6= 0. For δ ≥ 0.2, the EoS and the M–R
curve are almost insensitive to the value of δ. The onset of hyperons occurs at a density
above ∼ 0.6 fm−3 and the hyperon fraction is too small. Reduction in the symmetry energy
slope has a significant influence on the M–R curve. When the slope of symmetry energy L
decreases, the maximum gravitational masses increases for δ = 0 and decreases slightly
in the other cases, and the corresponding radii decrease; see Table 3. Our model satisfies
the constraints coming from the astronomical observation of PSR J0740+6620 and PSR
J0030+0451 by NICER [10,11,13,14], except for the case of δ = 0.0, when the radii of a 2M⊙
are smaller than what the observations indicate within a 68% confidence interval.

Table 3. Properties of the stable neutron star with maximum mass, for several values of δ and Λωb3
.

δ Λωb3
Mmax Mb

max R E0 uc = ρc/ρ0 R1.4 Λ1.4 R1.6 Λ1.6 R2.0 Λ2.0

[M⊙] [M⊙] [km] [fm−4] [km] [km] [km]

0.0 0.0 1.97 2.28 10.91 7.25 7.674 13.731 934.72 13.492 344.43 - -
0.1 1.98 2.30 10.70 7.46 7.865 13.240 703.90 12.931 246.80 - -
0.2 1.99 2.32 10.66 7.40 7.821 12.907 615.35 12.691 227.53 - -
0.3 2.00 2.33 10.67 7.32 7.764 12.745 576.27 12.590 221.80 - -
0.4 2.00 2.34 10.65 7.26 7.720 12.568 555.19 12.478 219.74 10.80 -

0.05 0.0 2.08 2.43 11.42 6.43 6.882 13.752 947.47 13.680 394.49 12.62 40.95
0.1 2.06 2.41 11.09 6.81 7.235 13.283 726.25 13.155 290.46 12.03 27.27
0.2 2.07 2.43 11.04 6.75 7.197 12.936 631.51 12.855 257.87 11.95 27.76
0.3 2.08 2.44 11.02 6.72 7.181 12.761 586.53 12.716 244.82 11.95 28.82
0.4 2.08 2.45 11.00 6.66 7.135 12.582 561.35 12.580 239.44 11.93 29.79

0.1 0.0 2.16 2.53 11.73 5.97 6.429 13.750 948.13 13.693 399.85 13.11 59.61
0.1 2.12 2.48 11.30 6.45 6.891 13.289 726.08 13.173 295.53 12.44 38.27
0.2 2.12 2.50 11.21 6.44 6.896 12.937 631.23 12.864 260.34 12.27 36.18
0.3 2.13 2.52 11.19 6.42 6.881 12.763 586.85 12.727 246.40 12.21 36.07
0.4 2.14 2.53 11.15 6.40 6.866 12.586 561.33 12.580 239.44 12.15 36.34

0.15 0.0 2.20 2.58 11.83 5.84 6.285 13.746 948.13 13.698 399.97 13.19 63.85
0.1 2.14 2.51 11.35 6.35 6.790 13.284 726.08 13.177 295.52 12.50 40.43
0.2 2.14 2.53 11.24 6.41 6.842 12.939 631.23 12.864 260.34 12.30 37.36
0.3 2.15 2.54 11.20 6.42 6.858 12.763 586.85 12.723 246.40 12.23 36.86
0.4 2.15 2.55 11.16 6.39 6.844 12.581 561.33 12.584 239.44 12.17 36.94

0.2 0.0 2.21 2.60 11.84 5.81 6.256 13.748 948.13 13.697 399.97 13.20 64.33
0.1 2.14 2.52 11.36 6.34 6.776 13.288 726.08 13.175 295.52 12.50 40.54
0.2 2.14 2.53 11.24 6.41 6.843 12.939 631.23 12.866 260.34 12.30 37.37
0.3 2.15 2.54 11.20 6.42 6.859 12.762 586.85 12.727 246.40 12.23 36.86
0.4 2.15 2.55 11.15 6.40 6.844 12.585 561.33 12.579 239.44 12.17 36.94

npeµ 0.0 2.21 2.60 11.84 5.84 6.272 13.746 948.13 13.696 399.97 13.20 64.33
0.1 2.14 2.52 11.36 6.36 6.790 13.283 726.08 13.177 295.52 12.50 40.54
0.2 2.14 2.53 11.24 6.43 6.856 12.939 631.23 12.866 260.34 12.30 37.37
0.3 2.15 2.54 11.20 6.42 6.859 12.762 586.85 12.727 246.40 12.23 36.86
0.4 2.15 2.55 11.15 6.40 6.844 12.585 561.33 12.579 239.44 12.17 36.94

In Table 3, several star properties are given, including the maximum gravitational
mass Mmax and the corresponding baryonic mass Mb

max, radius R, energy density and
baryonic density at the centre E0, and ρc, the radius and the tidal deformability parameter
of 1.4M⊙, 1.6M⊙ and 2.0M⊙ stars, R1.4, R1.6 and R2.0, Λ1.4, Λ1.6 and Λ2.0.
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Figure 7. EoS (left panel) and mass–radius curves obtained from the integration of the TOV equations

(right), for different values of the δ parameter and several values of the mixing term Λωb3
. The curves

stop at the maximum mass configuration. The family of stars for nucleonic stars constituted by npeµ

matter is also represented. Also shown are the constraints from NICER observations of pulsars PSR

J0740+6620 and PSR J0030+0451 [10–14].

The canonical star with a mass of 1.4 M⊙ has a radius of the order ling between 12.5
and 13.7 km, well within the values obtained by NICER [10,11] and other observations [52],
and within or just slightly above the prediction obtained from the gravitational wave
GW170817 [1,2] detected by LIGO/Virgo from a neutron neutron star merger [53–55].

We calculated the tidal deformability of a canonical star with a mass of 1.4M⊙ ac-
cording to [56]. The result obtained was Λ1.4 = 555 − 948 depending on the hyperon
content and the slope of the symmetry energy, partially within the prediction of [57], where,
depending on the waveform used in the analysis, Λ̃ = Λ1.36M⊙ . 800 and & 100.

In Figure 8, we plot the gravitational mass as a function of the tidal deformability
parameter Λ for several values of slope L and δ. At first glance, we can see that QMC
Bogoliubov models satisfy the constraint that GW190425 sets on the M-Λ relations, and this
for any Λω,b3

and L. However, among all models, only the ones with L . 56 MeV satisfy
the constraint that GW170817 sets on the tidal deformability 100 < Λ(1.36M⊙) < 800 as
indicated by the blue horizontal bar in Figure 8. The QMC Bogoliubov models describe
NS as massive as the pulsar MSP J0740+6620 [8], if a correct choice of parameters δ, which
controls the SU(3) symmetry breaking, and Λωb3

, which controls the symmetry energy,
is performed.
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5. Conclusions

In the present study, we investigated the impact of the density dependence of the
symmetry energy on the composition and the structure of neutron stars described by the
QMC Bogoliubov model. To achieve this, we employed a modified version of the QMC
Bogoliubov model which includes a nonlinear ω–b3 coupling in the same way as it was
proposed for the RMF nuclear models [37]. The effects of the medium are taken into account
considering the coupling of quarks to meson fields. The mesonic fields are obtained by
minimizing the thermodynamical potential. By ensuring that the model’s parameters are
set appropriately, the description of saturation nuclear matter properties are in agreement
with experimental results.

In the QMC Bogoliubov model, the up, down and strange quarks are considered as
fundamental constituents, and baryons are described as composite particles. The interaction
between quarks in the vacuum is characterized by a linear interaction and the parameters
introduced at the quark level are fixed so that the vacuum constituent quark masses are
reproduced. The vector isoscalar ω meson included to describe hadronic matter also
includes s-quark content. Constraints imposed by neutron stars and hypernuclei require
that the coupling of the ω meson to the s-quark must be more repulsive than its coupling
to the u- and d-quarks, i.e., the SU(3) flavor symmetry has to be broken.

The additional nonlinear mesonic term between the two vector mesons has allowed
the variation in the dependence of the symmetry energy on the baryon density, in particular
the softening of the symmetry energy above the saturation density. This was essential to
make the model compatible with ab-initio chEFT calculations of pure neutron matter [45]. It
has been shown that smaller values of the slope of the symmetry energy at saturation offer
rise to stars with smaller radii and tidal deformabilities, and in particular for L . 56 MeV,
the tidal deformability of a 1.36M⊙ star is within the 90% credible interval obtained by the
LVC [57]. These are also the models that agree with chEFT calculations. The softening of the
symmetry energy further discourages the occurrence of hyperons in the interior of neutron
stars. Another important effect is the non-appearance of nucleonic direct Urca processes
when the slope is L & 67 MeV. If parameter δ is small enough to allow the appearance
of hyperons, there could still occur hyperonic direct Urca processes. However, if the δ
parameter is chosen to describe the Λ binding energy in hypernuclei, then no hyperons are
allowed to nucleate in neutron stars and only modified Urca processes involving several
nucleons are allowed. In conclusion, the QMC Bogoliubov model described here includes
strange degrees of freedom, but if properties of nuclear matter and hypernuclei are properly
described, hyperons do not nucleate inside neutron stars.
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