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Abstract
A recurrence relation is said to have the Laurent property if all of its iterates
are Laurent polynomials in the initial values with integer coefficients. Recur-
rences with this property appear in diverse areas of mathematics and physics,
ranging from Lie theory and supersymmetric gauge theories to Teichmüller the-
ory and dimer models. In many cases where such recurrences appear, there is a
common structural thread running between these different areas, in the form of
Fomin and Zelevinsky’s theory of cluster algebras. Laurent phenomenon alge-
bras, as defined by Lam and Pylyavskyy, are an extension of cluster algebras,
and share with them the feature that all the generators of the algebra are Laurent
polynomials in any initial set of generators (seed). Here we consider a family
of nonlinear recurrences with the Laurent property, referred to as ‘Little Pi’,
which was derived by Alman et al via a construction of periodic seeds in Laurent
phenomenon algebras, and generalizes the Heideman–Hogan family of recur-
rences. Each member of the family is shown to be linearizable, in the sense
that the iterates satisfy linear recurrence relations with constant coefficients.
We derive the latter from linear relations with periodic coefficients, which were
found recently by Kamiya et al from travelling wave reductions of a linearizable
lattice equation on a six-point stencil. By making use of the periodic coeffi-
cients, we further show that the birational maps corresponding to the Little Pi
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family are maximally superintegrable. We also introduce another linearizable
lattice equation on the same six-point stencil, and present the corresponding
linearization for its travelling wave reductions. Finally, for both of the six-point
lattice equations considered, we use the formalism of van der Kamp to construct
a broad class of initial value problems with the Laurent property.

Keywords: Laurent property, Laurent phenomenon algebra, integrable lattice
equation, linearization
Mathematics Subject Classification numbers: 11B37, 39A14, 13F60.

(Some figures may appear in colour only in the online journal)

1. Introduction

There continues to be a great deal of interest in nonlinear recurrences of the form

xn+mxn = P(xn+1, . . . , xm+n−1), (1)

for a polynomial P, with the surprising property that all of the iterates are Laurent polynomials
in the initial data with integer coefficients, that is to say

xn ∈ Z[x±1
0 , . . . , x±1

m−1]

for all n. One of the first instances of this Laurent property was in the context of Somos
sequences [26], which can be viewed as nonlinear analogues of Fibonacci or Lucas sequences
in number theory [14]. The Laurent property is an essential feature of the generators in
cluster algebras, a novel class of commutative algebras introduced by Fomin and Zelevin-
sky [19], which are defined by recursive relations of the same form as (1) but with the
restriction that P should be a binomial expression of a specific kind. The same authors also
considered a more general set of sufficient conditions which ensure that the above recur-
rence has the Laurent property, without requiring P to be a binomial [20]. More recently,
this led to the introduction of the broader framework of Laurent phenomenon (LP) algebras
[42].

Cluster algebras are the focus of much activity due to their connections with diverse areas
of mathematics and physics, ranging from Lie theory and supersymmetric gauge theories to
Teichmüller theory and dimer models [13, 17, 30]. The structure of a typical cluster alge-
bra is very complicated, due to the complexity of the recursive process, called mutation, that
produces the generators. However, there are certain subclasses of cluster algebras that are asso-
ciated with discrete integrable systems of some kind, whose structure allows a more explicit
description, and often these are the examples that are of most interest in applications to other
areas. The simplest subclass consists of the finite type cluster algebras, which have a taxonomy
that coincides with the Cartan–Killing classification of semisimple Lie algebras and finite root
systems [21], and are associated with purely periodic dynamics, as was observed earlier by
Zamolodchikov in the context of the thermodynamic Bethe ansatz for integrable quantum field
theories [54].

Beyond finite type, the next interesting subclass of cluster algebras corresponds to dis-
crete dynamical systems that admit linearization, in the sense that the variables satisfy linear
recurrence relations with constant coefficients. The simplest example is the recurrence

xnxn+2 = x2
n+1 + 1, (2)
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arising from mutations of the Kronecker quiver (an orientation of the affine A(1)
1 diagram), for

which the iterates satisfy the linear relation

xn+2 − Cxn+1 + xn = 0 (3)

for all n ∈ Z, where

C =
xn

xn−1
+

xn−1

xn
+

1
xnxn−1

(4)

is a first integral (independent of n). The recurrence (2) is the simplest of the Q-systems appear-
ing in the theory of quantum integrable models [10, 11, 40], which provide recursion relations
for characters of representations of Yangian algebras, and can be obtained as reductions of
discrete Hirota equations [48]. Moreover, the sequence of Laurent polynomials generated by
(2), which begins with

x1, x2,
x2

2 + 1
x1

,
x2

1 + x4
2 + 2x2

2 + 1
x2

1x2
,

x4
1 + 2x2

1x2
2 + 2x2

1 + x6
2 + 3x4

2 + 3x2
2 + 1

x3
1x2

2

, . . . , (5)

has a combinatorial interpretation as the set of generating functions for the perfect matchings
of certain graphs [47]. Also note that substituting x1 = x2 = 1 into (5) gives the sequence
1, 1, 2, 5, 13, . . . , which is a bisection of the Fibonacci numbers (missing out every other
term).

The reader can easily verify by induction that (4) is a first integral for (2), and thence show
directly that the linear relation (3) holds along each orbit, where C = const. However, here we
sketch an alternative derivation which is a prototype for the methods used in the sequel. The
key to the latter is that (4) can be rewritten using a 2 × 2 determinant, as∣∣∣∣ xn xn+1

xn+1 xn+2

∣∣∣∣ = 1.

As a consequence, the determinant of the 3 × 3 matrix

Mn =

⎛
⎝ xn xn+1 xn+2

xn+1 xn+2 xn+3

xn+2 xn+3 xn+4

⎞
⎠

vanishes, i.e. |Mn| = 0 for all n; this can be checked directly by substituting for the higher shifts
of xn in terms of the lower ones, using (2), but follows effortlessly from the Desnanot–Jacobi
identity—see (24) below—by expanding the determinant of Mn in terms of 2 × 2 minors.
It is then not hard to show that the kernel of Mn is spanned by a vector of the form
v = (1,−C, 1)T, where C is independent of n, and after solving a linear system for C the
formula (4) results, while the first row of the matrix equation Mnv = 0 yields the linear
relation (3).

Linearization in the above sense was found for dynamics of cluster variables obtained from
affine Dynkin quivers of type A in [24], for types A and D via frieze patterns in [3], and in gen-
eral for all affine types ADE in [41]. It has been further conjectured (and proved in certain cases)
that linearizability holds for sequences of cluster variables obtained from mutation sequences
obtained from box products X�Y of a finite type Dynkin quiver X and an affine Dynkin quiver
Y [51]. A previously known example is provided by Q-systems, which correspond to taking
X = An for n arbitrary and Y = A(1)

1 , so (2) is included when n = 1. The case of a product of a
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pair of affine quivers X, Y is not linearizable, but is conjectured to be associated with systems
that are integrable in the Liouville–Arnold sense [25].

In work by one of us with Fordy and Hone [23], concerning cluster algebras obtained from
quivers that are mutation-periodic with period 1, in the sense of [24], we showed a further
property of the affine type A recurrences, specified by a pair of coprime positive integers p, q
as

xnxn+p+q = xn+pxn+q + 1, (6)

namely that the iterates satisfy additional linear relations with periodic coefficients, of the
form

xn+2q − Jnxn+q + xn = 0, Jn+p = Jn,
xn+2p − Knxn+p + xn = 0, Kn+q = Kn.

(7)

(The derivation of the latter relations is analogous to that for (3) sketched above, which is the
case p = q = 1; see section 4 in [23].) Furthermore, another family of linearizable recurrences
from period 1 quivers was found, of the form

xnxn+2k = xn+pxn+q + xn+k, p+ q = 2k, (8)

which (for p = 1, q = 3) includes Dana Scott’s recurrence [26]

xnxn+4 = xn+1xn+3 + xn+2, (9)

and these also admit linear relations with periodic coefficients, given by

xn+3q − Jn+kxn+2q + Jnxn+q − xn = 0, Jn+p = Jn,
xn+3p − Kn+kxn+2p + Knxn+p − xn = 0, Kn+q = Kn.

(10)

(See section 5 in [23] for full details.) Analogous linear relations with periodic coefficients
for affine quivers of types D and E, and associated Liouville integrable systems, appear
in [50].

Apart from their relevance to the representation theory of affine quivers and associated clus-
ter categories [41], there are other reasons why the recurrences (6) are of particular interest. In
Teichmüller theory, they appear as the Ptolemy relations between lambda lengths of geodesic
arcs on surfaces [17, 18] (in this case, an annulus with p points on one boundary and q points
on the other), and, being associated with triangulated surfaces, they provide the main examples
of cluster algebras of finite mutation type [15] (see section 2 for more details). Furthermore,
for any p, q (not necessarily coprime), Fordy and Marsh obtained (6) from quivers that they
named ‘primitives’ [24], since they are the building blocks for all quivers that are periodic with
period 1 under cluster mutations, hence generate recurrences via cyclic sequences of mutations
(once again, the reader is referred to section 2 for a more detailed explanation). In addition, all
of the recurrences (6) can be rewritten in terms of a 2 × 2 determinant, so their integer solu-
tions correspond to one of Coxeter’s frieze patterns [7, 8, 46], while (as we shall see below)
the solutions of (8) produce SL3 friezes.

Here we are concerned with linearizable recurrences that exhibit the Laurent property, but go
beyond the setting of cluster algebras. As well as providing new examples of discrete integrable
systems, instances of the Laurent property that lie outside the framework of cluster algebras
have recently been found in the context of Lie theory [28] and Teichmüller theory [53]. To
begin with we will consider the family of recurrences

xnxn+2k+l = xn+2kxn+l + axn+k + axn+k+l, (11)

with a fixed parameter a and positive integers k and l. These recurrences were named the ‘Little
Pi’ family in [2], where they were shown to be generated by period 1 seeds in the setting of
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LP algebras. They extend the Heideman–Hogan recurrences [33], corresponding to the case
l = 1, for which detailed features of the linearization were proved in [36]. Thus our first aim
here is to generalize the results of the latter work, and resolve some open conjectures from
[52]. In particular, for (11) we obtain the constant coefficient linear relation

xn+6kl −Kxn+4kl +Kxn+2kl − xn = 0 (12)

when 2k and l are coprime, and a counterpart relation
xn+6kl −Axn+5kl + Bxn+4kl − Cxn+3kl + Bxn+2kl −Axn+kl + xn = 0. (13)

if gcd(2k, l) = 2; see theorems 4.4 and 4.7 below. (All other cases can be reduced to one of
these.) In addition to the first integrals (K or A,B, C) that appear as coefficients, we derive
periodic quantities and associated linear relations with periodic coefficients.

Ordinary difference equations can arise as reductions of two-dimensional lattice equations.
For instance, the affine type A recurrences (6) are obtained from the four-point equation∣∣∣∣ us,t us+1,t

us,t+1 us+1,t+1

∣∣∣∣ = 1 (14)

for (s, t) being coordinates on Z2 (or more generally, on a quadrilateral lattice), which is the
relation for a frieze pattern [8]. To obtain (6), one should take the (p,−q) travelling wave
reduction

us,t = xn, n = ps + qt, (15)

corresponding to a wave moving on the lattice with constant velocity −q/p ∈ Q. Similarly, it
was noted in [37] that the five-point lattice equation∣∣∣∣us,t−1 us+1,t

us−1,t us,t+1

∣∣∣∣ = us,t, (16)

which is the relation for a 2-frieze [45], reduces to (8) by substituting in (15) with the replace-
ment p → p − k, q → k, to obtain the (p − k,−k) travelling wave reduction. The authors of [37]
also considered the Little Pi family (11) as a reduction of the six-point lattice equation

us+1,t+2us,t = us+1,tus,t+2 + a(us,t+1 + us+1,t+1). (17)

(Note that, compared with [37], we have switched the order of the independent variables and
introduced the parameter a.) By obtaining linear relations for the above lattice equation, they
deduced linear recurrences with periodic coefficients for its (l,−k) travelling wave reduc-
tion (11) (cf proposition 3.5 and corollary 3.7 below). In addition, they proved the Laurent
property for the lattice equation (17), in the sense that for the initial value problem defined
by

I = {us,0, us,1, u0,t : s, t ∈ N},

the iterates in the positive quadrant in Z2 are Laurent polynomials in the elements of this
set.

In this paper we introduce a new six-point lattice equation, given by

(us+1,t+2 + us+1,t + a)us,t+1 = (us,t+2 + us,t + a)us+1,t+1 (18)

and prove the Laurent property for both this and (17) with a much broader set of initial values
than just I. We further show that (18) is linearizable, and this feature (as well as the Laurent
property) extends to the family of (l,−k) travelling wave reductions

(xn+2k+l + xn+l + a)xn+k = (xn+2k + xn + a)xn+k+l. (19)
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Our original motivation for introducing (18) was the fact that, when k = 1, the reduction (19)
is the total difference of

xn+l+1xn = xn+lxn+1 + a
l∑

i=1

xn+i + b, (20)

where the arbitrary parameter b is an integration constant. The latter family of recurrences was
referred to as the ‘extreme polynomial’ in [2], where it was obtained from another set of period
1 seeds in LP algebras, and for b = 0 it was independently found in [52], where it was also
shown to be linearizable and have the Laurent property (see [35] for further details). However,
the recurrences (19) lie beyond the setting of LP algebras.

All of the lattice equations described above fit into the framework of partial differential,
differential-difference and partial difference equations described by Demskoi and Tran [9],
who considered the family of determinantal equations

|M| = const, (21)

where |M| = det(M) is the determinant of an N × N matrix M of Casorati type, with entries
specified by

M = (us+i−1,t+ j−1)1�i, j�N

(up to shifts of indices) in the lattice case, or with appropriate modifications to Wronskian
type entries in the case of partial differential/differential-differenceequations. Equations of the
form (21) are connected to 2D Toda lattices with appropriate boundary conditions, as well as
Liouville’s equation, and they are said to be Darboux integrable, meaning that they admit com-
plete sets of first integrals that do not depend on one or the other of the independent variables
s, t. If both s, t are taken as continuous variables, then the simplest example of (21) considered
in [9] is the case N = 2, giving the partial differential equation∣∣∣∣u us

ut ust

∣∣∣∣ = β = const, (22)

which, upon setting ν = −log u, is equivalent to Liouville’s equation written in the form

νst = −βe2ν . (23)

The SL2 frieze relation (14) is already in the form (21) with N = 2, being the fully discrete
analogue of (22), and has the consequence that the corresponding 3 × 3 determinant vanishes,
i.e. ∣∣∣∣∣∣

us,t us,t+1 us,t+2

us+1,t us+1,t+1 us+1,t+2

us+2,t us+2,t+1 us+2,t+2

∣∣∣∣∣∣ = 0.

The vanishing of the above determinant follows by applying the Dodgson condensation
algorithm [12], based on the Desnanot–Jacobi identity for matrix minors [5] (this is also
referred to as Sylvester’s identity in [9]), that is

|M| |M1N
1N | = |M1

1 | |MN
N | − |M1

N | |MN
1 | (24)

in which a superscript i (subscript j) on a minor denotes that the ith row (jth column) is deleted.
Using similar methods to [23], the right/left null vectors of the 3 × 3 matrix yield the linear
relations

us,t+2 − Jus,t+1 + us,t = 0, ΔsJ := J(s + 1, t) − J(s, t) = 0,
us+2,t − Kus+1,t + us,t = 0, ΔtK :=K(s, t + 1) − K(s, t) = 0,

(25)
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where the coefficients J = J(t), K = K(s) are first integrals of (14) in the s, t directions respec-
tively, and the two linear relations in (25) reduce to those in (7) after imposing the travelling
wave reduction (15). In fact, there is another connection between (22) and its fully discrete ver-
sion (14): by using canonical coordinates for the Poisson structure associated with (6) in the
case p = 1, q = 2m − 1, Fordy showed that this map generates the Bäcklund transformation
for m copies of Liouville’s equation [22].

A similar application of Dodgson condensation using the 2-frieze relation (16) yields

∣∣∣∣∣∣
us,t−2 us+1,t−1 us+2,t

us−1,t−1 us,t us+1,t+1

us−2,t us−1,t+1 us,t+2

∣∣∣∣∣∣ = 1,

which is the relation for an SL3 frieze on each of the sublattices obtained by restricting s + t to
have odd/even parity, and can be put in the standard form (21) by a linear change of coordinates.
A further application of (24) shows that the corresponding 4 × 4 determinant vanishes for the
2-frieze relation, while in [37] it is shown that there is also a constant 3 × 3 determinant and
a vanishing 4 × 4 determinant associated with (17), and in the sequel we prove an analogous
result for the new lattice equation (18).

In the next section we give a very brief introduction to cluster algebras and LP algebras,
explaining the main differences and how nonlinear recurrences of the form (1) can arise in
that setting; we give full details for the particular case of the Little Pi family (11). Section 3
is devoted to an independent derivation of the linear recurrences with periodic coefficients
found for the Little Pi family in [37], which we then use in section 4 to derive a constant
coefficient relation of order 6kl, of the form (12) or (13), for each pair of coprime positive
integers k, l. Moreover, for each member of the Little Pi family, we prove that the correspond-
ing birational map is maximally superintegrable: not only are the conditions of Liouville’s
theorem (or rather, its discrete version [43]) satisfied, but also the number of independent
first integrals is one less than the dimension of the phase space. Section 5 is concerned with
the new six-point lattice equation (18), including the proof of linearization both for the lat-
tice equation and all its travelling wave reductions (19). Finally, in section 6 we show that
the new lattice equation has the Laurent property for suitable band sets of initial values in
Z2, of the kind described by van der Kamp in [39], and we use this to infer the Laurent
property for its reductions (19). We apply the same approach to show the Laurent property
for the lattice equation (17) with band sets of initial values, before making some concluding
remarks.

2. Cluster algebras, LP algebras and recurrence relations

In this section we briefly review the construction of cluster algebras and LP algebras, and
explain how particular recurrences of the form (1), having the Laurent property, appear in that
context.

2.1. Construction of a cluster algebra

A cluster algebra is constructed from collections of objects called clusters: for a cluster algebra
of rank m, a cluster is a set of m independent quantities called cluster variables. A seed in a
cluster algebra consists of a cluster together with an m × m integer matrix, called an exchange
matrix. There is a process called mutation which allows new seeds to be produced, using the
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exchange matrix. The most general definition of a cluster algebra, as in [19], includes an addi-
tional set of m quantities called coefficients, which also undergo mutation, but for the sake of
simplicity, here we will focus on coefficient-free cluster algebras.

Definition 2.1. A seed (x, B) in a coefficient-free cluster algebra of rank m consists of
a cluster x, which is a collection of m algebraically independent elements (cluster vari-
ables) xi, so x = {x1, . . . , xm}, together with an m × m exchange matrix B = (bi j) ∈ Matm(Z)
which is skew-symmetrizable, i.e. there is a diagonal matrix D ∈ Matm(Z>0) such that DB is
skew-symmetric.

Definition 2.2. For each seed (x, B) there is a mutation μk for each k ∈ {1, . . . , m}, pro-
ducing a new seed μk ((x, B)) = (x′, B′). The process of mutation is defined in the following
steps:

• Matrix mutation: the new exchange matrix B′ = (b′
ij) = μk(B) is defined by

b′
i j =

{
−bi j if i = k or j = k,

bi j + sgn(bik)[bikbk j]+ otherwise,
(26)

with sgn(a) being ±1 for positive/negative a ∈ R and 0 for a = 0, and [a]+ = max(a, 0).
• Cluster mutation: the new cluster x′ = (x′j) = μk(x) is defined by the exchange relation

x′k =

∏N
i=1 x

[bki]+
i +

∏N
i=1 x

[−bki]+
i

xk
, (27)

and x′j = xj for j �= k.

Remark 2.3. If the exchange matrix B is skew-symmetric, it can be associated with a quiver
Q without one- or two-cycles, that is, a directed graph specified by the rule that bij is equal to the
number of arrows i → j if it is non-negative, and minus the number of arrows j → i otherwise.
There is an associated process of quiver mutation which modifies the arrows in Q to produce
a new quiver Q′ = μk(Q) associated with B′, as specified by the rule (26).

Example 2.4. Take m = 2 and the skew-symmetric exchange matrix

B =

(
0 2
−2 0

)
,

which is associated with the Kronecker quiver. Given the initial cluster x = {x1, x2}, applying
the mutation μ1 produces the new exchange matrix

B′ = μ1(B) =

(
0 −2
2 0

)
,

and the new cluster

x′ = μ1(x) =

{
x2

2 + 1
x1

, x2

}
.

Example 2.5. Take m = 4 and the skew-symmetric exchange matrix

B =

⎛
⎜⎜⎝

0 1 −1 1
−1 0 2 −1
1 −2 0 1
−1 1 −1 0

⎞
⎟⎟⎠ .
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which is associated with one of the quivers considered in section 5 of [23]. Given the initial
cluster x = {x1, x2, x3, x4}, applying the mutation μ1 produces the new exchange matrix

B′ = μ1(B) =

⎛
⎜⎜⎝

0 −1 1 −1
1 0 1 −1
−1 −1 0 2
1 1 −2 0

⎞
⎟⎟⎠ ,

and the new cluster

x′ = μ1(x) =

{
x2x4 + x3

x1
, x2, x3, x4

}
.

Definition 2.6. Two seeds are said to be mutation equivalent if one can be obtained from the
other via a finite sequence of mutations. For a choice of initial seed (x, B), the cluster algebra
A = A(x, B) is the subalgebra of Q(x1, . . . , xm) generated by all cluster variables in seeds that
are mutation equivalent to the initial seed. Evidently this does not depend on the choice of
initial seed.

Any mutation is an involution, i.e. μk ◦ μk = id, but in general, arbitrary pairs of mutations
do not commute with one another. Although the definition of mutation in a cluster algebra may
appear very complicated at first sight, it has the remarkable feature that it generates Laurent
polynomials in the cluster variables of any initial seed.

Theorem 2.7 ([19] , theorem 3.1). Each of the cluster variables in the cluster algebra is a
Laurent polynomial in the cluster variables of an initial seed, i.e. for any seed ({x1, . . . , xm}, B)
we have A ⊂ Z[x±1

1 , . . . , x±1
m ].

In general, cluster algebra mutations generate infinitely many distinct exchange matri-
ces, and infinitely many cluster variables. As mentioned in the introduction, the simplest
cluster algebras are those of finite type, which have only finitely many cluster variables,
and were classified in [21]. These are a subset of the finite mutation type cluster algebras,
as classified in [15, 16], for which the mutations produce only a finite set of exchange
matrices.

2.2. Recurrence relations from period 1 seeds in cluster algebras

Given an initial cluster x, any sequence of mutations produces a corresponding sequence of
Laurent polynomials, but in general it is not possible to treat successive mutations as the iter-
ations of a single birational map, because the exponents that appear in the exchange relation
(27) are the entries of the matrix B, which changes with each subsequent mutation. However, in
the case that B is skew-symmetric, Fordy and Marsh identified conditions on the matrix entries
which ensure that a suitable sequence of cluster mutations is equivalent to iterating a single
recurrence relation [24].

Definition 2.8. An exchange matrix B is said to be cluster mutation-periodic with period
p if (for a suitable labelling of indices) μp ◦ μp−1 ◦ . . . ◦ μ1(B) = ρp(B), where ρ is the cyclic
permutation (1, 2, 3, . . . , m) 	→ (m, 1, 2, . . . , m − 1).

When B is skew-symmetric, it corresponds to a quiver Q, and in that context, the case of
cluster mutation-periodicity with period p = 1 means that the action of mutation μ1 on Q is the
same as the action of ρ, which is such that the number of arrows i → j in Q is the same as the
number of arrows ρ−1(i) → ρ−1(j) in ρ(Q). This means that the cluster map ϕ := ρ−1 · μ1 acts
as the identity on Q (or equivalently, on B), but in general x 	→ ϕ(x) has a non-trivial action
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on the cluster. Mutation-periodicity with period 1 implies that iterating this map is equivalent
to iterating a single recurrence relation. The period 1 classification result of Fordy and Marsh
can be paraphrased thus:

Theorem 2.9. Let (a1, . . . , am−1) an (m − 1)-tuple of integers that is palindromic, i.e.
aj = am−j for all j ∈ [1, m − 1]. Then the skew-symmetric exchange matrix B = (bij) with
entries specified by

b1, j+1 = a j and bi+1, j+1 = bi j + ai[−a j]+ − a j[−ai]+,

for all i, j ∈ [1, m − 1], is cluster mutation-periodic with period 1, and every period 1 skew-
symmetric B arises in this way. Furthermore, the Laurent polynomials generated by the cyclic
sequence of mutations · · · ◦ μ3 ◦ μ2 ◦ μ1 coincide with those produced by the cluster map ϕ,
given by

ϕ : (x1, . . . , xm−1, xm) 	→
(

x2, . . . , xm,

∏m−1
j=1 x

[a j]+
j+1 +

∏m−1
j=1 x

[−a j]+
j+1

x1

)
,

corresponding to the iterates of the nonlinear recurrence relation

xnxn+m =
∏

j: a j>0

x
a j
n+ j +

∏
j: a j<0

x
−a j
n+ j. (28)

The above result says that a skew-symmetric B matrix that is cluster-mutation periodic
with period 1 is completely determined by the entries in its first row (or equivalently, its first
column), and these form a palindrome after removing b11. The entries aj in the palindrome
are precisely the exponents that appear in the exchange relation defining the cluster map ϕ,
whose iterates are equivalent to those of the nonlinear recurrence relation (28). Thus (28)
corresponds to a special sequence of mutations in a particular subclass of cluster algebras
whose exchange matrices satisfy the requirements of theorem 2.9, up to mutation equiva-
lence. Such a nonlinear recurrence is an example of a generalized T-system, in the termi-
nology of Nakanishi, who introduced a more general notation of cluster-mutation periodicity
in [49].

Remark 2.10. The case of rank 2 is very special: all of the cluster variables are generated
by repeating the mutation sequenceμ2 ◦ μ1. Also, any 2 × 2 skew-symmetric exchange matrix
is cluster mutation-periodic with period 1. The observant reader will already have noticed that
the matrix B in example 2.4 produces the nonlinear recurrence (2). Hence, in this example,
the whole cluster algebra is generated by iterating the recurrence (2). Similarly, example 2.5
corresponds to the Dana Scott recurrence (9). However, in that case the cluster algebra is much
larger than what is obtained from the recurrence, because there are infinitely many sequences
of mutations that do not correspond to iterations of the cluster map ϕ. For instance, applying
the mutation μ2 to the initial seed gives

μ2(B) =

⎛
⎜⎜⎝

0 −1 1 1
1 0 −2 1
−1 2 0 −1
−1 −1 1 0

⎞
⎟⎟⎠ , μ2(x) =

{
x1,

x1x4 + x2
3

x2
, x3, x4

}
,

where the Laurent polynomial (x1x4 + x2
3)/x2 is not one of the iterates of (9).
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2.3. Construction of an LP algebra

There are various situations where birational transformations of the form (1) arise with more
than two monomials on the right-hand side [28, 53], and Laurent phenomenon (LP) algebras
provide a general framework for such situations which goes beyond the setting of cluster alge-
bras [42]. Like cluster algebras, LP algebras are constructed from clusters: for an LP algebra of
rank m, a cluster consists of m independent cluster variables. A seed in an LP algebra consists
of a cluster together with m polynomials in the cluster variables, called exchange polyno-
mials. Similarly, there is a process of mutation allowing the production of new seeds, using
the exchange polynomials. Certain conditions must be imposed on the exchange polynomials
which ensure that the Laurent property is preserved under arbitrary sequences of mutations, in
the sense that all of the cluster variables so obtained are Laurent polynomials in the m cluster
variables from the initial seed. There is also a concept of periodic seeds [2], analogous to the
concept for cluster variables that was introduced in [24], which allows recurrence relations to
be generated by particular sequences of mutations.

Definition 2.11. A seed (x, P) in an LP algebra of rank m consists of a cluster x, which is a
collection of m algebraically independent elements (cluster variables) xi, so x = {x1, . . . , xm},
together with m exchange polynomials P = {P1, . . . , Pm}. For each i ∈ 1, . . . , m it is required
that

• Pi is irreducible in Z[x1, . . . , xm];
• Pi does not contain the variable xi.

Definition 2.12. For each seed (x, P) there is a mutation μk for each k ∈ {1, . . . , m}, pro-
ducing a new seed μk ((x, P)) = (x′, P′). The process of mutation is defined in the following
steps:

(a) Define the exchange Laurent polynomials {P̂1, . . . , P̂m} ⊂ Z[x±1
1 , . . . , x±1

m ] to be the
unique polynomials such that

1. P̂ j = P j
∏

1�i�n,i �= j xai
i for each j and ai ∈ Z�0 for each i;

2. for i �= j,

P̂i|
x j←

P j
x
∈ Z[x±1

1 , . . . , x±1
j−1, x±1, x±1

j+1, . . . , x±1
m ]

and this polynomial is not divisible by Pj in this ring.

(b) The new cluster is x′ = μk(x) = {x1, . . . , x′k, . . . , xm} where x′k := P̂k
xk

(c) Now define polynomials

G j :=P j|
xk←

P̂k |x j←0

x′k

(d) For each j, remove all common factors with P̂k|x j←0 from Gj in the unique factorization
domain Z[x1, . . . , x̂k, . . . , x̂ j, . . . , xm], with the hats denoting omitted variables. Denote
the polynomials obtained in this way by Hj.

(e) The new exchange polynomials are P′
j = HjMj, where Mj is the unique Laurent monomial

in Z[x1, . . . , xk−1, x′k, xk+1, . . . , xm] such that P′
j is not divisible by any Laurent monomial

in this ring.
(f) The new seed is (x′, P′) = ({x1, . . . , x′k, . . . , xm}, {P′

1, . . . , P′
m})
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With the same definition of mutation equivalence as in the case of cluster algebras, the
definition of an LP algebra is the following (again, it is independent of the choice of initial
seed).

Definition 2.13. For a choice of initial seed (x, P), the LP algebra A = A(x, P) is the subal-
gebra of Q(x1, . . . , xm) generated by all cluster variables in seeds that are mutation equivalent
to the initial seed.

The somewhat convoluted construction of LP mutation ensures that the proof of the Laurent
property of cluster algebras, via the Caterpillar lemma in [19], is still valid in the more general
LP case.

Theorem 2.14 ([20] , theorem 5.1). Each of the cluster variables in the LP algebra is a
Laurent polynomial in the cluster variables of an initial seed, i.e. for any seed ({x1, . . . , xm}, P)
we have A ⊂ Z[x±1

1 , . . . , x±1
m ].

2.4. Recurrence relations from period 1 seeds in LP algebras

Following [2], we now show how the notion of periodic seeds for cluster algebras, introduced in
[24], may be generalized to LP algebras, in the special case where the period is 1. Periodic seeds
may be used to show that the iterates of certain recurrence relations correspond to mutations
in an LP algebra, hence satisfying the conditions of theorem 2.14. This proves the Laurent
property for these recurrences. In the definition above, we considered unordered seeds, but
when we consider recurrence relations it is helpful to fix an ordering, which we identify by
putting round brackets (,) instead of braces {, } around the variables.

Definition 2.15 (period 1 seed). Let (x, P) = ((x1, . . . , xm), (P1, . . . , Pm)) be a seed (where
the cluster variables and exchange polynomials are ordered according to their subscript), let

(x′, P′) = ρ ◦ μ1(x, P) =
(
(x′2, . . . , x′m, x′1), (P′

2, . . . , P′
m, P′

1)
)

be the seed obtained from it by applying the mutation μ1 and then reordering the variables with
a cyclic permutation ρ, and define xm+1 = x′1. The seed (x, P) is called periodic with period 1
if

P′
1 = SPm and P′

i = SPi−1 for 2 � i � m, (29)

where the shift operator S increases the subscripts on each of the xi appearing by one.

The importance of the above definition is due to the following result, which is corollary 2.5
in [2], but for completeness we sketch the proof here.

Proposition 2.16. If (x, P) = ((x1, . . . , xm), (P1, . . . , Pm)) is a period 1 seed with P1

= P(x2, . . . , xm), then the iterates of recurrence

xnxn+m = P(xn+1, . . . , xn+m−1) (30)

are Laurent polynomials x1, . . . , xm with integer coefficients.

Proof. Since P′
2 = SP1 we have P′

2 = P(x3, . . . , xm+1). Applying the mutation μ1 to the
period 1 seed (x, P) gives

x′1 =
P(x2, . . . , xm)

x1
,
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and setting xm+1 = x′1 agrees with the first iteration of the proposed recurrence (30). After
applying the cyclic permutation ρ to reorder the variables and exchange polynomials, the new
seed is

ρ ◦ μ1(x, P) =
(
(x2, . . . , xm, xm+1), (P′

2, . . . , P′
m, P′

1)
)

,

with new exchange polynomials given by (29). Now applying the mutation μ2 gives a new
cluster variable

x′′2 =
P′

2(x3, . . . , xm+1)
x2

=
P(x3, . . . , xm+1)

x2
,

which is defined to be xm+2, and produces the new seed

ρ ◦ μ2(x′, P′) =
(
(x3, . . . , xm, xm+1, xm+2), (P′′

3, . . . , P′′
m, P′′

1, P′′
2)
)

,

where

P′′
1 = SP′

m, P′′
i = SP′

i−1 for 2 � i � m.

Continuing to apply consecutive mutations μ3, μ4, and so on, one can see that this will give
precisely the iterates of (30). Since these iterates are given by compositions of mutations they
belong to the LP algebra A generated by the seed (x, P), hence are Laurent polynomials in the
initial cluster variables by theorem 2.14. �

2.5. Little Pi from a period 1 seed

The Little Pi recurrences (11) are one of several examples of the form (30) found in [2] that
can be shown to have the Laurent property by describing them in terms of successive muta-
tions of a period 1 seed, as in proposition 2.16. In order to apply this result they construct the
‘intermediate polynomials’, that is to say, the other exchange polynomials that appear in the
period 1 seed, such that the shifting conditions (29) hold. For Little Pi, this construction is split
into four cases, which we list below.

For convenience, we slightly change the notation compared with the above discussion,
where we followed [20] in labelling a cluster of size m with indices from 1 to m. To be con-
sistent with [2], below we label the initial cluster variables xi and exchange polynomials Pi

with indices 0 � i � m − 1. Note that the inclusion of the coefficient a in (11) means that the
Laurent property takes the form

xn ∈ Z[a, x±1
0 , x±1

1 , . . . , x±1
2k+l−1],

but in fact in the next section we will take a → 1. (More details of the Laurent phenomenon
over a ring of coefficients are provided in [20].) Only the polynomials Pj for j ∈ J := {0, k, 2k, l,
k + l} are given here. To find the intermediate polynomial Pi for any i, take the largest j ∈ J
with j � i and shift Pj up by i − j, so that Pi = S i− jP j. Note that in all cases we have P0 = P.

• For l > 2k:

Pk = ax0x2k + ax2kxl + x0x3kxk+l + a2
k+l,

P2k = ax0x3k + axl−kxk+l + x0xl−2kxk+l + a2x0,

Pl = axkxl−k + axl−kxk+l + x0xl−2kxk+l + a2x0,

Pk+l = ax0 + axl + xkxl−k.
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• For l = 2k:

Pk = ax0x2k + ax2
2k + x0x2

3k + a2x3k,

P2k = ax2
k + axkx3k + x2

0x3k + a2x0,

P3k = ax0 + ax2k + x2
k .

• For 2k > l > k:

Pk = ax0x2k + ax2kxl + x0x3kxk+l + a2xk+l,

Pk+l = x0xl−kxk+l + x0x2l−kxk+l + xl−kxkx2l + xl−kxk+lx2l + ax0x2l,

P2k = axkx3k−l + axkx3k + x0xkx3k + a2x2k−l,

Pk+l = ax0 + axl + xkxl−k.

• For k > l:

Pl = x2lxk + x2lxk+l + x0x2k + x0xk+2l,

Pk = x0xk+lx2k−l + x0xk+l x2k + x0xk−lx2k + xlxk−lx2k + axk−lxk+l,

Pk+l = xlxk + xk+2lxl + x0xk+2l + xkx2l,

P2k = axk−l + axk + x0x2k−l.

3. Linear relations with periodic coefficients for Little Pi

Henceforth we shall work with the Little Pi family of recurrences in the form

xnxn+2k+l = xn+2kxn+l + xn+k + xn+k+l, (31)

which is obtained from (11) after rescaling xn → axn. These recurrences generalize the family
found by Heideman and Hogan [33], which is the case l = 1. In order to find linear relations,
we begin by showing that the 3 × 3 matrix

Ψn :=

⎡
⎣ xn xn+2k xn+4k

xn+l xn+2k+l xn+4k+l

xn+2l xn+2k+2l xn+4k+2l

⎤
⎦ (32)

has a non-zero periodic determinant. For convenience we set

zn := xn + xn+l,

and note the following two identities, which are a consequence of (31):

znxn+2k+l = xn+lzn+2k + zn+k, (33)

znxn+2k = xnzn+2k − zn+k. (34)
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Lemma 3.1. The 3 × 3 determinant

δn := |Ψn| =

∣∣∣∣∣∣
xn xn+2k xn+4k

xn+l xn+2k+l xn+4k+l

xn+2l xn+2k+2l xn+4k+2l

∣∣∣∣∣∣
has period k.

Proof. First observe that (31) can be rewritten as∣∣∣∣ xn xn+2k

xn+l xn+2k+l

∣∣∣∣ = zn+k,

so using Dodgson condensation, as given by (24) with N = 3, we may write

xn+2k+lδn =

∣∣∣∣ zn+k zn+3k

zn+k+l zn+3k+l

∣∣∣∣ =: δ′n+k. (35)

Upon scaling the first column by xn+3k+l, we see that the 2 × 2 determinantδ′n+k in (35) satisfies

xn+3k+lδ
′
n+k =

∣∣∣∣ zn+kxn+3k+l zn+3k

zn+k+lxn+3k+l zn+3k+l

∣∣∣∣ .
Then we can use (33) and (34) on the left column to obtain

xn+3k+lδ
′
n+k =

∣∣∣∣ xn+k+lzn+3k + zn+2k zn+3k

xn+k+lzn+3k+l − zn+2k+l zn+3k+l

∣∣∣∣
=

∣∣∣∣ zn+2k zn+3k

−zn+2k+l zn+3k+l

∣∣∣∣ , (36)

and by the same token, but instead manipulating the right column in (35), we have

xn+k+lδ
′
n+k =

∣∣∣∣ zn+k −zn+2k

zn+k+l zn+2k+l

∣∣∣∣ . (37)

Shifting up n → n + k and comparing with (36) we arrive at

δ′n+k

xn+2k+l
=

δ′n+2k

xn+3k+l
,

so these ratios are periodic with period k, which is the required result. �

Lemma 3.2. For each n the determinant δn = |Ψn| is non-zero, considered as an element
of Q(x0, x1, . . . , x2k+l−1), the ambient field of fractions in the initial data for (31).

Proof. Without assuming the Laurent property, a priori the iterates of (31) are rational func-
tions of the initial data with rational numbers as coefficients, and the same is true for the
determinant δn. Let us consider the case of substituting real positive initial values xn > 0 for
n = 0, . . . , 2k + l − 1. It follows by induction that xn > 0 for all n ∈ Z, hence also zn > 0 for
all n. If δn vanishes for some n then δ′n+k vanishes, by (35), but then

zn+kzn+2k+l + zn+2kzn+k+l = 0

by (37), which is a contradiction. Hence δn is a non-zero rational function. �
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We now consider the corresponding 4 × 4 matrix

Ψ̂n :=

⎡
⎢⎢⎣

xn xn+2k xn+4k xn+6k

xn+l xn+2k+l xn+4k+l xn+6k+l

xn+2l xn+2k+2l xn+4k+2l xn+6k+2l

xn+3l xn+2k+3l xn+4k+3l xn+6k+3l

⎤
⎥⎥⎦ ,

and use Dodgson condensation once more, with N = 4 in (24), to calculate

|Ψ̂n| =
δn+kδn+2k+l − δn+k+lδn+2k

zn+3k+l
,

and then by periodicity of δn we have the

Corollary 3.3. The 4 × 4 determinant |Ψ̂n| is identically zero.

Given that |Ψ̂n| = 0, we obtain linear relations with periodic coefficients by considering the
right and left kernels (i.e. the kernel of Ψ̂n and that of its transpose).

Remark 3.4. The kernel of Ψ̂n is one-dimensional, since if it were of dimension greater than
one then Ψn we would have a non-trivial kernel, contradicting lemma 3.2.

Proposition 3.5. The iterates of (31) satisfy the linear relations

xn+6k + K(3)
n xn+4k + K(2)

n xn+2k − xn = 0, (38)

xn+3l + γnxn+2l + βnxn+l + αnxn = 0, (39)

with periodic coefficients: K(2)
n and K(3)

n have period l, αn has period k, and βn and γn have
period 2k.

Proof. Let (K(1)
n , K(2)

n , K(3)
n , 1)T be in the kernel of Ψ̂n. (We are justified in scaling the last

entry to 1 due to lemma 3.2.) From the first three rows of

Ψ̂n(K(1)
n , K(2)

n , K(3)
n , 1)T = 0 (40)

we get the matrix equation⎡
⎣ xn xn+2k xn+4k

xn+l xn+2k+l xn+4k+l

xn+2l xn+2k+2l xn+4k+2l

⎤
⎦
⎡
⎣K(1)

n

K(2)
n

K(3)
n

⎤
⎦ = −

⎡
⎣ xn+6k

xn+6k+l

xn+6k+2l

⎤
⎦ , (41)

and by Cramer’s rule

K(1)
n =

−δn+2k

δn
= −1

The last three rows of (40) give⎡
⎣ xn+l xn+2k+l xn+4k+l

xn+2l xn+2k+2l xn+4k+2l

xn+3l xn+2k+3l xn+4k+3l

⎤
⎦
⎡
⎣K(1)

n

K(2)
n

K(3)
n

⎤
⎦ = −

⎡
⎣ xn+6k+l

xn+6k+2l

xn+6k+3l

⎤
⎦ . (42)

The equations (41) and (42) imply that K(2)
n and K(3)

n both have period l. Now set

Ψ̂T
n (αn, βn, γn, 1)T = 0, (43)
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and analogous arguments to the preceding ones give

αn = −δn+l

δn
(44)

and the result that αn is k-periodic, and βn and γn are 2k-periodic. �

We can derive further relations between the coefficients in (38) and (39) by using (41) and
(42), as well as the corresponding equations for the left kernel of Ψ̂n.

Lemma 3.6. The periodic coefficients in (38) are related to one another by K(2)
n+k = −K(3)

n .

Proof. From the first two rows of (40) we have[
xn+2k xn+4k

xn+2k+l xn+4k+l

] [
K(2)

n

K(3)
n

]
=

[
xn xn+6k

xn+l xn+6k+l

] [
1
−1

]

Then solving for K(2)
n and K(3)

n yields

K(2)
n =

xnxn+4k+l − xn+lxn+4k + zn+5k

zn+3k
,

K(3)
n =

xn+2k+lxn+6k − xn+2kxn+6k+l − zn+k

zn+3k
,

from which we get

zn+5kK(2)
n+2k + zn+3kK(3)

n = zn+7k − zn+k.

The sequence of zj satisfy the same linear equation as the xj, obtained by replacing each xj → zj

in the matrix equation (41), due to the l-periodicity of K(2) and K(3), so we have

zn+5kK(2)
n+2k + zn+3kK(3)

n = −K(2)
n+kzn+3k −−K(3)

n+kzn+5k.

Assuming that K(2)
n+k + K(3)

n �= 0 implies

K(2)
n+2k + K(3)

n+k

K(2)
n+k + K(3)

n
= − zn+3k

zn+5k
,

and the left-hand side above is periodic with period l so the right-hand side should be too, i.e.

zn+3k

zn+5k
=

zn+3k+l

zn+5k+l
⇐⇒

∣∣∣∣zn+3k zn+3k+l

zn+5k zn+5k+l

∣∣∣∣ = 0,

and this determinant is δ′n+3k from (35), but by the proof of lemma 3.2 this cannot be identically
zero, which gives a contradiction. Hence K(2)

n+k + K(3)
n = 0 as required. �

Corollary 3.7. The linear relation (38) with l-periodic coefficients has the form

xn+6k − Kn+kxn+4k + Knxn+2k − xn = 0

with Kn :=K(2)
n .

Remark 3.8. The latter results were previously obtained via a different method, using the
travelling wave reduction of (11), in [37] (see corollary 3.2 and proposition 3.3 therein).
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We close this section by proving some conjectures made for l = 1 in [52], and extending
them to arbitrary l.

Proposition 3.9. The periodic coefficients of the linear relation (39) satisfy the following
set of identities:

αn = βn + γn+k − 1, (45)

αn+l(γn + γn+k) = βn+l + βn+k+l, (46)

k−1∏
i=0

αn+i = (−1)k. (47)

Proof. From the left kernel analogue of (42) we have

[
xn+l xn+2l

xn+2k+l xn+2k+2l

] [
βn

γn

]
= −

[
xn xn+3l

xn+2k xn+2k+3l

] [
αn

1

]
,

so we can express βn and γn as

βn =
αn(xn+2kxn+2l − xnxn+2k+2l) + zn+k+2l

zn+k+l
,

γn =
(xn+2k+lxn+3l − xn+lxn+2k+3l) + αnzn+k

zn+k+l
.

Upon shifting βn → βn+k we can equate the bracketed terms above as

αn+lγnzn+k+l − αnαn+lzn+k = βn+lzn+k+2l − zn+k+3l. (48)

Now if we write the zj in terms of the xi and replace the xn+k+4l that appears as

xn+k+4l = −αn+lxn+k+l − βn+k+lxn+k+2l − γn+k+lxn+k+3l,

then (48) becomes

− αnαn+lxn+k + (αn+lγn − αnαn+l − αn+l)xn+k+l

+ (αn+lγn − βn+l − βn+k+l)xn+k+2l + (1 − βn+l − γn+k+l)xn+k+3l = 0. (49)

Since the kernel of Ψ̂n is one-dimensional we can scale and equate coefficients in (49) and an
appropriate shift of (43) to get three equations, namely

αn = βn + γn+k − 1, γn+kαn+l

= βn+l + βn+k+l − αn+lγn, αn+l = βn+l + γn+k+l − 1.

where the third of these is simply a shift of the first, and these rearrange to give (45) and (46).
The identity (47) follows from (44) and the fact that δn has period k. �
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4. Linear relations with constant coefficients

In this section we derive the linearization of the Little Pi family (31), in the form of linear
relations with constant coefficients, which were not previously considered in [37]. The key
is to use monodromy arguments, similar to those employed in [23] in the case of the cluster
algebra recurrences (6) and (8).

We start by defining the sequences of matrices

Ln :=

⎡
⎣0 0 1

1 0 −Kn

0 1 Kn+k

⎤
⎦ , L̃n :=

⎡
⎣ 0 1 0

0 0 1
−αn −βn −γn

⎤
⎦ , (50)

which vary with overall periods l and 2k, respectively, and allow the linear relations (38) and
(39) to be rewritten in matrix form as

ΨnLn = Ψn+2k, L̃nΨn = Ψn+l,

where as beforeΨn is given by (32). The point of this is that if we define the pair of monodromy
matrices

Mn :=LnLn+2kLn+4k · · · Ln+2k(l−1), M̃n := L̃n+(2k−1)l · · · L̃n+2lL̃n+lL̃n (51)

then right multiplication by Mn will shift Ψn by 2k upwards l times, that is

ΨnMn = Ψn+2kl, (52)

and left multiplication by M̃n will shift Ψn by l upwards 2k times, so that

M̃nΨn = Ψn+2kl. (53)

Remark 4.1. If d := gcd(k, l) > 1 then the recurrence (31) splits into d copies of itself, so
without loss of generality we can take d = 1. Then with d = 1, if l is odd then gcd(2k, l) = 1
and lcm(2k, l) = 2kl, while if l is even then gcd(2k, l) = 2 and lcm(2k, l) = kl, and we need to
deal with these two different cases separately.

4.1. The case gcd(2k, l) = 1

Here lcm(2k, l) = 2kl, so l is odd, and with the monodromy matrices Mn and M̃n defined as in
(51) above, we see that due to the l-periodicity of Ln and the cyclic property of the trace, the
quantity K := tr(Mn) has period l, and similarly tr(M̃n) has period 2k. Now from (52) and (53)
we have

K = tr(Mn) = tr(Ψ−1
n Ψn+2kl) = tr(Ψn+2klΨ

−1
n ) = tr(M̃n),

so K has period gcd(2k, l) = 1, hence is a first integral for (31), independent of n. The same
argument applies to the quantity K̃ := tr (M−1

n ) = tr (M̃−1
n ), which we will now show is equal

to K.

Proposition 4.2. The trace of the monodromy matrix Mn satisfies K = tr(Mn) = tr (M−1
n ).

Proof. The result holds in the case l = 1, since we have K = tr(Mn) = tr(Ln) = Kn+k,
K̃ = tr(L−1

n ) = Kn, and Kn has period 1, hence K̃ = K. (Another proof for l = 1 is
given in [36].) Rewriting K as tr(M̃n), and similarly for ‖ = tr(M̃−1

n ), and (setting n = 0
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without loss of generality) this implies an algebraic relation between the 5k quantities
α0, . . . ,αk−1, β0, . . . , β2k−1, γ0, . . . , γ2k−1, namely that

tr (L̃2k−1L̃2k−2 · · · L̃0) = tr (L̃−1
0 L̃−1

1 · · · L̃−1
2k−1) (54)

must hold as a consequence of the relations in proposition 3.9 for l = 1. Due to periodicity
there are 2k independent relations of the form (45), as well as k independent relations of the
form (46), together with (47), but in fact there are only 3k independent relations in total, so
these equations define an affine variety of dimension 2k. Now for odd l > 1 note that K = K̃
holds if and only if

tr (L̃σ(2k−1)L̃σ(2k−2) · · · L̃σ(0)) = tr (L̃−1
σ(0)L̃

−1
σ(1) · · · L̃−1

σ(2k−1)), (55)

where σ is the permutation of the indices 0, 1, . . . , 2k − 1 defined by

σ(i) = il mod 2k,

which satisfies the properties

σ(i + k) − σ(i) ≡ k ( mod 2k), σ(i + 1) − σ(i) ≡ l ( mod 2k).

With all indices read mod 2k (or mod k in the case of αj), it follows from these properties that
σ acts by permuting the coordinates αj, βj, γj in the identities for l = 1 in proposition 3.9, so
that the identities for each odd l are just

ασ(n) = βσ(n) + γσ(n+k) − 1,

ασ(n+1)(γσ(n) + γσ(n+k)) = βσ(n+1) + γσ(n+k+1),

and similarly for (47). In other words, the identities for odd l > 1 are just permutations of those
for l = 1, so the algebraic relation (55) holds as an immediate consequence of the relation (54)
when l = 1. �

Remark 4.3. There is an implicit assumption in the above proof, namely that when l = 1
the map from the initial values x0, x1, . . . , x2k for (31) to the variety defined by the relations
in proposition 3.9 is surjective, which ensures that the identity tr(Mn) = tr (M−1

n ) must be an
algebraic consequence of these relations. In particular, it is enough to check that for l = 1
there is collection of 2k independent 2k-periodic functions of the initial data (e.g. either of
the sets β0, . . . , β2k−1 or γ0, . . . , γ2k−1 should be functionally independent). While this is a
straightforward but laborious task for any given k, we do not know of a simple verification that
is valid for all k. However, for any l, a direct algebraic proof of proposition 4.2 is provided by
the argument used to prove theorem 4.5 in [35], which we will revisit in the proof of theorem
5.4 below.

Theorem 4.4. If gcd(2k, l) = 1 then the iterates of (31) satisfy the constant coefficient linear
relation

xn+6kl −Kxn+4kl +Kxn+2kl − xn = 0

where K = tr(Mn) is a first integral.

Proof. Note that |Ln| = 1, hence |Mn| = 1, so by the Cayley–Hamilton theorem applied to
Mn we have

M3
n − tr (Mn)M2

n + cMn − I = 0 (56)
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for some c. Premultiplying by M−3
n in (56) gives

M−3
n − cM−2

n + tr (Mn)M−1
n − I = 0,

so from the Cayley–Hamilton theorem for M−1
n we see that c = tr (M−1

n ) = tr (Mn) = K.
Multiplying (56) by Ψn from the left yields

Ψn+6kl −KΨn+4kl +KΨn+2kl −Ψn = 0

and the top leftmost entry of this matrix equation gives the required linear relation for xn. �

4.2. The case gcd(2k, l) = 2

In this case lcm(2k, l) = kl, with l even and k odd. With the same definition (51) for Mn, each
matrix in the product appears twice in the same order relative to its neighbours, so Mn is a
perfect square, and we can define the square root M∗

n = M1/2
n by the same product with half as

many factors, and similarly for M̃∗
n = M̃1/2

n . The total shift for Ψn is now kl instead of 2kl, so
we have

M∗
n := LnLn+2k · · ·Ln+k(l−4)Ln+k(l−2),

M̃∗
n := L̃n+(k−1)lL̃n+(k−2)l · · · L̃n+lL̃n,

with

Ψn+kl = ΨnM∗
n = M̃∗

nΨn (57)

Again tr (M∗
n) has period 2k and tr (M̃∗

n) has period l, but now this implies that Kn := tr (M∗
n) =

tr (M̃∗
n) has period gcd(2k, l) = 2, and similarly for K̃n := tr ((M∗

n)−1). The analogue of
proposition 4.2 requires more work in this case. We begin with

Proposition 4.5. The trace of M∗
n satisfies Kn = tr(M∗

n) = tr ((M∗
n+1)−1).

Proof. When k = 1 in terms of M̃∗
n we have

Kn = tr (L̃n) = −γn, K̃n = tr (L̃−1
n ) = −βn

αn
.

Now due to (47) we have αn = −1 and using (45) we get βn = −γn+1, hence Kn = K̃n+1,
and the result holds in this case. This implies an algebraic identity between the entries of the
monodromy matrix M∗

n and its shift, namely that

tr (L0L2 · · · Ll−2) = tr (L−1
l−1L−1

l−3 · · ·L−1
1 )

(where we set n = 0 without loss of generality), which is just a tautology in terms of the l
quantities K0, K1, . . . , Kl−1 that appear in the entries. Similarly to the argument in the proof of
proposition 4.2, we have that for k > 1 the required identity of traces for M∗

n and (M∗
n+1)−1 just

corresponds to a permutation σ of the indices of the quantities Kj, given by σ(j) = 2jk mod l,
so the relation Kn = K̃n+1 holds for all k. �

Proposition 4.6. The iterates of (31) satisfy a linear relation with period 2 coefficients,
given by

xn+3kl −Knxn+2kl +Kn+1xn+kl − xn = 0 (58)
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Proof. This follows by the Cayley–Hamilton theorem, as in the proof of theorem 4.4, but
with different traces appearing. �

Theorem 4.7. When gcd(2k, l) = 2, the iterates of (31) satisfy the constant coefficient
relation

xn+6kl −Axn+5kl + Bxn+4kl − Cxn+3kl + Bxn+2kl −Axn+kl + xn = 0

where

A = Kn +Kn+1, B = KnKn+1 +Kn +Kn+1, C = K2
n +K2

n+1 + 2.

Proof. LetS be the shift operator such thatS( fn) = fn+1 for any function of n. Then applying
the operator

S3kl −Kn+1S2kl +KnSkl − 1

to equation (58) gives the required result. �

4.3. Superintegrability of Little Pi

The birational map

ϕ : (x0, . . . , x2k+l−2, x2k+l−1) 	→ (x1, . . . , x2k+l−1, x2k+l)

defined by the Little Pi recurrence (31) is measure-preserving, in the sense that

ϕ∗Ω = (−1)lΩ,

where Ω is the volume form

Ω =
dx0 ∧ dx1 ∧ · · · ∧ dx2k+l−1

x0x1 · · · x2k+l−1
.

We can use this to show that the map ϕ is maximally superintegrable, in the sense that it admits
an (anti-) invariant Poisson structure, and the number of independent first integrals is one less
than the dimension of the phase space.

In the case gcd(2k, l) = 1, it appears that the l-periodic quantities K0, . . . , Kl−1 are inde-
pendent of one another, hence any cyclically symmetric functions of these quantities are first
integrals: so this provides l independent first integrals for (31). Similarly, subject to the rela-
tions in proposition 3.9 one can take 2k independent 2k-periodic quantities, and cyclically
symmetric functions of these provide 2k independent first integrals. However, in total this
should give exactly 2k + l − 1 independent first integrals I1, I2, . . . , I2k+l−1, since the identity
tr (Mn) = tr (M̃n) gives a relation between these two sets of cyclically symmetric functions.
Then by a result from [6], taking all but one of these first integrals together with the covolume
form

V = x0 · · · x2k+l−1
∂

∂x0
∧ · · · ∧ ∂

∂x2k+l−1

(i.e. the (2k + l)-multivector field that contracts with Ω to give 1) yields a Poisson bracket
defined by

{ f , g } = V(d f , dg, dI1, dI2, . . . , dI2k+l−2),

and this bracket is invariant/anti-invariant under the action of ϕ, according to the parity of l,
that is

ϕ∗{ f , g } = (−1)l {ϕ∗ f ,ϕ∗g }
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for any pair of functions f, g on the (2k + l)-dimensional phase space. By construction, the first
integrals I1, I2, . . . , I2k+l−2 are Casimirs for this bracket, but the additional first integral I2k+l−1

is not, so it defines a non-trivial Hamiltonian vector field.
As an example, we take the simplest case k = l = 1, when ϕ is defined by

xn+3xn = xn+2xn+1 + xn+2 + xn+1. (59)

The quantity K0 = K is a first integral, which can be written as

K =
x6 − x0

x4 − x2
,

by theorem 4.4, and then rewritten as a function of the initial values x0, x1, x2 by using (59). In
fact, by theorem 1.2 in [36], the explicit expression is

K = P(0) + P(1) + P(2),

where

P(0) = 1 +
x0

x2
+

x2

x0
, P(1) =

(
1 +

x2

x0

)
x0 + x1

x1x2
+

(
1 +

x0

x2

)
x1 + x2

x0x1
,

and

P(2) =
1

x1x2
+

1
x0x1

+
1

x0x2
.

Also, by proposition 3.9 we have

α0 = −1, γ0 = −β1, γ1 = −β0,

and then from (39) we can find two independent 2-periodic quantities by solving for β0, β1 in
terms of the xj from the pair of linear equations

x3 − β1 x2 + β0 x1 − x0 = 0,
x4 − β0 x3 + β1 x2 − x1 = 0.

Then the two symmetric functions

I1 = β0β1, I2 = β0 + β1

provide two independent first integrals, but they are related to K by

K = tr (M0) = tr (M̃0) = tr (L̃1L̃0) = β0β1 − β0 − β1 = I1 − I2.

Finally, contracting the covolume form

V = x0x1x2
∂

∂x0
∧ ∂

∂x1
∧ ∂

∂x2

with the one-form dI1 gives the Poisson bracket

{ f , g } = V(d f , dg, dI1),

which is anti-invariant under the action of the map ϕ defined by (59), so it is invariant under
the doubled map ϕ2, and this is a superintegrable map in three dimensions. The flow of the
Hamiltonian vector field

d
dt

= { ·, I2 }
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commutes with the map, and its level sets are curves defined by I1 = const, I2 = const.

5. Linearization and reductions of a six-point lattice equation

In this section we consider the new six-point lattice equation (18), which can be rewritten as
an equality of two 2 × 2 determinants, in the form∣∣∣∣ us,t+1 us,t+2

us+1,t+1 us+1,t+2 + a

∣∣∣∣ =
∣∣∣∣us,t + a us,t+1

us+1,t us+1,t+1

∣∣∣∣ ,

or in the form of a conservation law, as

Δs aus,t+1 = Δt

∣∣∣∣ us,t us,t+1

us+1,t us+1,t+1

∣∣∣∣ . (60)

By imposing the constraint

us,t = us+k,t−l

for integers k, l, one obtains the (l,−k) travelling wave reduction

us,t = xn n = ls + kt, (61)

which produces the family of recurrences (19). Upon making use of the conservation law (60),
we can write the reduction as

(Sk − 1)

∣∣∣∣ xn xn+k

xn+l xn+k+l

∣∣∣∣ = (S l − 1) axn+k,

and as both sides are a total difference this can be integrated to give

k−1∑
j=0

∣∣∣∣ xn+ j xn+ j+k

xn+ j+l xn+ j+k+l

∣∣∣∣−
l−1∑
j=0

axn+ j+k = b, (62)

where b is an integration constant. In other words, b is a first integral for (19). The particular
case k = 1, given by (20), is the ‘extreme polynomial’ family found from period 1 seeds in LP
algebras in [2], whose linearization was studied in [35] for b = 0.

For k > 1, the recurrences (62) are not of the type (1) that can arise from periodic seeds in
LP algebras, and none of the recurrences (19) are of this type. Nevertheless, these recurrences
turn out to have the Laurent property for any k, as a consequence of the fact that the lattice
equation (18) has the Laurent property.

5.1. Linearization of the new lattice equation

Similarly to the results on linearization of the lattice equation (17) obtained in [37], the iterates
of the new six-point equation (18), or equivalently (60), satisfy two types of linear relation,
with coefficients that are independent of one or the other of the lattice variables s, t.

Proposition 5.1. The solutions us,t of the lattice equation (18) satisfy the linear relations

us,t+3 − (J(t + 1) + 1)us,t+2 + (J(t) + 1)us,t+1 − us,t = 0, (63)

us+3,t + A(s)us+2,t + B(s)us+1,t + C(s)us,t = 0, (64)
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where J(t) is independent of s, and A(s), B(s) and C(s) are independent of t.

Proof. Dividing both sides of (18) by us,t+1us+1,t+1, we immediately find a quantity which
is invariant under shifts in the s direction, since the equation becomes the total difference

Δs J = 0,

where J = J(t) is defined by

J(t) :=
us,t+2 + us,t + a

us,t+1
. (65)

The definition of J rearranges to give an inhomogeneous linear relation for us,t, that is

us,t+2 − J(t)us,t+1 + us,t + a = 0, (66)

and by applying the difference operatorΔt to this we are led to the homogeneous relation (63).
Since the coefficients of the latter are fixed under shifting s, we can write down four shifts of
the relation in the form of a matrix linear system, that is⎡

⎢⎢⎣
us,t us,t+1 us,t+2 us,t+3

us+1,t us+1,t+1 us+1,t+2 us+1,t+3

us+2,t us+2,t+1 us+2,t+2 us+2,t+3

us+3,t us+3,t+1 us+3,t+2 us+3,t+3

⎤
⎥⎥⎦
⎡
⎢⎢⎣

−1
J(t) + 1

−J(t + 1) − 1
1

⎤
⎥⎥⎦ = 0. (67)

Thus we see that the 4 × 4 matrix above has determinant zero, so we may take a vector
(C, B, A, 1) in the left kernel, and then it is apparent that the entries of this vector are invariant
under shifting t. This kernel gives the second linear relation (64). �

In the course of the proof, we observed the following result, which is also proved for (17)
in [37].

Corollary 5.2. For any solution us,t of (18), the corresponding 4 × 4 Casorati matrix has
vanishing determinant, that is∣∣∣∣∣∣∣∣

us,t us,t+1 us,t+2 us,t+3

us+1,t us+1,t+1 us+1,t+2 us+1,t+3

us+2,t us+2,t+1 us+2,t+2 us+2,t+3

us+3,t us+3,t+1 us+3,t+2 us+3,t+3

∣∣∣∣∣∣∣∣
= 0.

5.2. Linear relations for travelling wave reductions

Upon applying the reduction (61), the linear relations (63) and (64) for the lattice equation (18)
reduce to linear recurrences with periodic coefficients for (19).

Proposition 5.3. The iterates of the equation (19) for the (l,−k) travelling reduction of
(18) satisfy linear recurrence relations with periodic coefficients, given by

xn+3k − (Jn+k + 1)xn+2k + (Jn + 1)xn+k − xn = 0, (68)

xn+3l + Anxn+2l + Bnxn+l + Cnxn = 0, (69)

where the coefficient Jn is periodic with period l, and An, Bn, Cn are periodic with period k.
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Proof. The travelling wave reduction (61) applied to (18) gives the nonlinear recurrence
(19), and under this reduction the quantity J(t) defined by (65) becomes

Jn :=
xn+2k + xn + a

xn+k
(70)

which is periodic with period l, while the coefficients A(s), B(s) and C(s) in (64) become
k-periodic quantities, denoted An, Bn, Cn. The linear relations (68) and (69) can also be con-
structed directly from the observation that Jn defined by (70) has period l. (See [35] for details
in the case k = 1.) �

Making appropriate adjustments compared with the case of Little Pi, we redefine

Ψn :=

⎡
⎣ xn xn+k xn+2k

xn+l xn+k+l xn+2k+l

xn+2l xn+k+2l xn+2k+2l

⎤
⎦ ,

and set

Ln :=

⎡
⎣0 0 1

1 0 −Jn − 1
0 1 Jn+k + 1

⎤
⎦ , L̃n :=

⎡
⎣ 0 1 0

0 0 1
−An −Bn −Cn

⎤
⎦ ,

so that we have the linear matrix equations

Ψn+k = ΨnLn, Ψn+l = L̃nΨn. (71)

As before, we can make the assumption gcd(k, l) = 1, since otherwise (19) splits into several
copies of lower dimension.

Theorem 5.4. When gcd(k, l) = 1, the iterates of (19) satisfy the constant coefficient linear
relation

xn+3kl −Kxn+2kl +Kxn+kl − xn = 0 (72)

where K is the trace of the monodromy matrix,

K = tr (Mn), Mn :=LnLn+k · · · Ln+k(l−1),

which is a first integral, as well as the linear relation

xn+(2k+1)l − xn+2kl − (K− 1)(xn+(k+1)l − xn+kl) + xn+l − xn = 0. (73)

Proof. From the matrix linear relations (71) we have

Ψn+kl = ΨnMn = M̃nΨn,

where the second monodromy matrix is

M̃n := L̃n+(k−1)lL̃n+(k−2)l · · · L̃n+lL̃n.

Then since the entries of Ln and L̃n have periods l and k respectively, it follows that K
= tr (Mn) = tr (M̃n) has period gcd(k, l) = 1, by assumption. By an analogous permutation
argument to the one used in the proof of proposition 4.2 and in the proof of proposition
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4.5, we have that tr (Mn) = tr (M−1
n ), and then the relation (72) follows by applying the Cay-

ley–Hamilton theorem to Mn, just as in the proof of theorem 4.4. However, we can get a stronger
result by considering (70), and defining the matrices

Φn =

[
xn xn+k

xn+l xn+k+l

]
, L∗

n =

[
0 −1
1 Jn

]
, C∗ =

[
0 1
0 1

]
,

which are related by the inhomogeneous equation

Φn+k = ΦnL∗
n − aC∗.

Then paraphrasing the steps of the proof of theorem 4.5 in [35], we introduce the 2 × 2
monodromy matrix

M∗
n = L∗

nL∗
n+k · · · L∗

n+k(l−1),

and find a matrix equation of the form

Φn+2kl − κΦn+kl +Φn = C̃∗
n, (74)

with

κ = tr (M∗
n),

where (like those of L∗
n) the entries of the matrix C̃∗

n are periodic with period l. The top leftmost
entry of (74) gives the equation

xn+2kl − κ xn+kl + xn = J̃n, (75)

for some l-periodic quantity J̃n, and if we apply the operator Skl − 1 then we obtain (72)
together with the relation

tr (Mn) = K = tr (M∗
n) + 1; (76)

this also gives an independent proof that tr (Mn) = tr (M−1
n ). However, we can instead apply the

operator S l − 1 to (75), giving the homogeneous linear relation (73), which is of lower order
than (72) when k > 1. �

Remark 5.5. For k = 1, the quantity κ = tr (M∗
n) is given by the explicit formula

κ =

l−1∏
i=0

(
1 − ∂2

∂Ji∂Ji+1

) l−1∏
n=0

Jn,

and the formula for k > 1 is obtained by a permutation of indices. The term of each distinct
homogeneous degree in the above expression corresponds to a first integral of the dressing
chain for one-dimensional Schrödinger operators (see [35] and references). With minor mod-
ifications, the preceding argument shows that the trace of the 3 × 3 monodromy matrix Mn in
(51), defined by a product over matrices Ln as in (50), is related via (76) to the trace of a 2 × 2
monodromy matrix M∗

n expressed in terms of l-periodic entries Jn = Kn − 1, and this gives
an independent proof of proposition 4.2, deriving tr(Mn) = tr (M−1

n ) as an equality between
cyclically symmetric functions of K0, K1, . . . , Kl−1.
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Remark 5.6. The birational map ϕ in dimension 2k + l defined by (19) is measure-
preserving, with the volume form

Ω =
dx0 ∧ dx1 ∧ · · · ∧ dx2k+l−1

xkxk+1 · · · xk+l−1

such that

ϕ∗Ω = (−1)lΩ.

There should be l independent l-periodic quantities Jn, which appear as coefficients in (68), but
it is unclear how many of the k-periodic quantities appearing in (69) should be independent,
so the question of superintegrability of (19) remains open.

6. Laurent property for linearizable lattice equations

In this section we discuss the Laurent property for both of the six-point lattice equations (17)
and (18). Following van der Kamp [39], we construct a family of bands of initial values, as well
as some special sets, that give well-defined solutions on the whole Z2 lattice. Given suitable
conditions on the initial values, linear relations with coefficients fixed in one lattice direction
can be used to prove the Laurent property. We show that the band sets of initial values satisfy
the necessary criteria.

Definition 6.1. Let I denote a set of initial values for a lattice equation, and let L denote the
ring of Laurent polynomials generated by I, that is

L :=Z[I, I−1]

where I−1 = {1/u : u ∈ I}. For this I, given an additional set of coefficients A appearing in the
lattice equation, we say that a two-dimensional lattice equation satisfies the Laurent property,
or is Laurent, if

us,t ∈ L[A]

for all s, t ∈ Z2.

In the equation (18) there is a single coefficient a, so we have A = {a}, and we write L[a]
for the ring of Laurent polynomials associated with an initial value set I.

6.1. Construction of band sets of initial values

In [39] an algorithm is given which finds (in almost all cases) a unique solution to a lattice
equation on an arbitrary stencil, given a band of initial values I. We apply this to the six-point
domino-shaped stencil that (18) is defined on.

First we define the lines L1 and L2, each with positive rational gradient, such that L2 =
L1 + (1,−2). For a given pair of lines L1, L2 related in this way, the associated band set of initial
values I = I(L1, L2) consists of all the lattice points lying between these two lines, including
the points on L1 but not those on L2. An example with gradient 1/3 is shown in figure 1, where
the points in the band set I are coloured yellow. We will consider each of the points on L1 to
be the top left corner of a six-point domino, hence L2 will pass through the points diagonally
opposite. By the results of [39], taking initial values between these lines and on L1 (but not
on L2) allows us to find a unique solution of (18) for each choice of gradient. The first step is
to calculate the values on L2, drawn in blue, using the yellow initial values. We then shift the
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Figure 1. Initial values on the band with gradient 1/3.

lines perpendicularly to their direction until they pass through another point of the domino,
corresponding to the dashed lines in the figure. The new L2 will pass through the next points
to be calculated, drawn in red. This process is continued until we fill the whole lattice below
L1. We can also shift the lines in the opposite direction to fill the whole lattice above L1.

6.2. The Laurent property for lattice equation (18)

To prove the Laurent property we will use the linear relation (66), but first we must prove that
the coefficients J(t) belong to the ring of Laurent polynomials.

Lemma 6.2. If we have an s̃ such that us̃,t+1 ∈ I and

{us̃,t, us̃,t+2} ⊂ L[a]

then J(t) ∈ L[a].

Proof. Since J(t) defined by (65) is independent of s we may shift it in the s direction until
the index value s̃ appears, and then we have

J(t) =
us̃,t+2 + us̃,t + a

us̃,t+1
∈ L[a]

as required. �

Theorem 6.3. For a given initial value set I, if lemma 6.2 holds for each t, and if for each
s there is some t̃ such that

{us,̃t, us,̃t+1} ⊂ L[a],

then (18) has the Laurent property for this I.

Proof. For each s we use induction on t and the relation

us,t+2 = J(t)us,t+1 − us,t − a
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Figure 2. The points marked green are in the Laurent ring.

noting that, by the previous lemma, J(t) is in the Laurent ring. The base case for the induction
is given by

us,̃t+2 = J(̃t)us,̃t+1 − us,̃t − a.

This proves Laurentness for t > t̃ + 1, and the proof for t < t̃ is similar. �

Theorem 6.4. The Laurent property for (18) holds for the band sets of initial values I, as
described in subsection 6.1.

Proof. To calculate us,t we only have to divide by us+1,t+1 and vice versa, so we know all the
values we calculate are Laurent polynomials until we have to divide at one of the blue points
in figure 1, and the corresponding points above L1. These we mark in green in figure 2. We
draw L′

2 parallel to and below L2 through the first non-green point and L′
1 parallel to and above

L1 through the last green point. Equivalently

L′
2 = L2 + (−1,−1), L′

1 = L1 + (−1, 1),

hence L′
2 = L′

1 + (1,−4). Since the minimal distance between L′
1 and L′

2 is
√

17 > 4 any line
that intersects I will intersect at least four elements of L. For lemma 6.2 we take horizontal
lines with height t and see that they intersect at least four green or yellow points, at least one of
which will be yellow. Hence J(t) ∈ L for all t. For theorem 6.3 we take vertical lines for each
s and see that these intersect at least two green or yellow points. Hence the conditions of the
preceding theorem hold and we have the Laurent property for these initial values. �

In the special case where the gradient is 0 it is prescribed in [39] that we should take an
extra line of initial values perpendicular to L1 and L2, as shown in figure 3, and this case also
has the Laurent property. However, we note that Laurentness does not hold for all well-posed
initial value problems, for example the yellow set shown in figure 4. In this case one can see
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Figure 3. Initial values on the band with gradient 0 with Laurentness.

Figure 4. An example of initial values without the Laurent property.

from the form of (18) that to calculate the value of us,t at the blue node we must divide by a
polynomial (not a monomial) in the surrounding initial values.

Note that the Laurent property for the reductions (19) is easily seen from (70). In fact,
since Jn has period l, the only initial variables that can appear in the denominator are
xk, xk+1, . . . , xk+l−1. In particular, setting each of these to be 1 will give a polynomial sequence
in the remaining initial values. So we have

Corollary 6.5. The equation (19) has the Laurent property in the form

xn ∈ Z[a, x0, . . . , xk−1, x±1
k , . . . , x±1

k+l−1, xk+l, . . . , x2k+l−1] ∀n ∈ Z.
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Figure 5. The yellow dots are initial values and the green are Laurent in the initial values.

6.3. The Laurent property for the lattice Little Pi

The Laurent property for the lattice equation (17) was proved in [37] for points (s, t) in the
positive quadrant with the initial value set

I = {us,0, us,1, u0,t : s, t ∈ N}

(note that we switched s and t compared with the original reference). We have drawn the above
set I in yellow in figure 5, extended to include indices s, t in the whole of Z. Again we can
define the associated Laurent ring L (without the coefficient a, since we set a → 1 here), and
provide a different proof of Laurentness, similar to the proof for (18).

From theorem 2.1 and proposition 2.6 in [37], respectively, we have that

us,t+6 − β(t + 1)us,t+4 + β(t)us,t+2 − us,t = 0 (77)

with β = β(t) (independent of s) being given by

β(t) =
1 + u0,tu0,t+3 + u0,t+1u0,t+4 + u0,t+2u0,t+5

u0,t+2u0,t+3
(78)

Note that in this expression s has been set to zero, but due to the fact that β is s-independent the
same formula is valid with each term u0,j replaced by us,j for j = t, t + 1, . . . , t + 5. Similarly
to the proof of theorem 6.4, we colour the values that only require division by elements of I in
green in figure 5. Due to the shape of (17) we end up with more green vertices than we had for
(18).

Proposition 6.6. The lattice equation (17) has the Laurent property for the initial values

I = {us,0, us,1, u0,t : s, t ∈ Z}.
Proof. Again we fix s and use induction on t. The induction starts with the vertical line of
six values in L, shown in yellow and green in figure 5. We can see from (78) that, for this I,
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β(t) ∈ L for all t, and we increase t by solving (77) for us,t+6 to obtain Laurent polynomials
for all t > 0, while to extend to t < 0 we solve for us,t instead. �

For the band sets of initial values we have to work harder.

Lemma 6.7. For a set of initial values I, suppose that there is an s̃ such that

{us̃,t, us̃,t+1, us̃,t+4, us̃,t+5} ⊂ L

and

{us̃,t+2, us̃,t+3} ⊂ I;

then β(t) ∈ L.

Proof. In the expression for β(t) in (78), we shift s until us̃,t+2 and us̃,t+3 appear in the
denominator, and the terms in the numerator belong to L by assumption, so the result
follows. �

Theorem 6.8. For a given initial set I, if the conditions of lemma 6.7 hold for all t, and if
for all s there is a t̃ such that

{us,̃t, us,̃t+1, us,̃t+2, us,̃t+3, us,̃t+4, us,̃t+5} ⊂ L,

then equation (17) has the Laurent property.

Proof. The proof is the same as for proposition 6.6. �

Theorem 6.9. The equation (17) has the Laurent property if I is a band of initial values.

Proof. Similarly to the proof of theorem 6.4 we have

L′
1 = L1 + (−1,−2), L′

2 = L2 + (1,−2),

so L′
2 = L′

1 + (3,−6) and the minimal distance between them is
√

45 > 6. Hence for any ver-
tical or horizontal line intersecting the lattice we have at least six consecutive values in L, and
at least two of these will be neighbours and in I. �

7. Concluding remarks

We have constructed linear relations with constant coefficients for the Little Pi family (11), and
given an alternative derivation of the linear relations with periodic coefficients found in [37],
using them to show that these systems are maximally superintegrable. For the new family of
recurrences (19) we have also derived linear relations with constant and periodic coefficients,
but the question of superintegrability remains open.

Each of the two families of nonlinear recurrences we have considered provides travelling
wave solutions of a partial difference equation defined on the same six-point stencil in Z2,
namely the equation (17) introduced by Kamiya et al, and the new equation (18), respec-
tively. As was shown in [37], the lattice equation (17) is integrable in the sense that it admits
linearization, and here we have shown the same for (18).

While, in the continuous setting, the theory of solitons and integrable partial differential
equations is very well established, discrete integrable systems are much less well understood.
For example, for partial difference equations defined on quadrilateral lattices, the classification
of equations on four-point stencils was pioneered by Adler et al [1], based on the condition

5993



Nonlinearity 33 (2020) 5961 A N W Hone and J Pallister

of 3D consistency around a cube (see also [4] for systems of quad-equations); for another
approach to classification, based on generalized symmetries, see [27]. The recent monograph
[34] surveys the current state of the art in discrete integrable systems. As far as we are aware,
there are no classification results for integrable 2D lattice equations on stencils with five or
more points, so it would be interesting to find other integrable equations on the same six-point
stencil as (17) and (18).

The recurrences and lattice equations considered here all possess the Laurent property, but
go beyond the setting of cluster algebras. The role of the Laurent property in discrete integrable
systems is rather intriguing: on the one hand, most recurrences with the Laurent property are
not integrable; and on the other hand, most discrete integrable systems do not possess the
Laurent property, when written in their standard coordinates. However, the Laurent property
is an essential feature of discrete Hirota equations for tau functions [38, 44], and, in a suitable
algebro-geometric setting, there is an expectation that all discrete integrable systems should
admit ‘Laurentification’ [31, 32], that is, a lift to a new set of coordinates (tau functions or their
analogues) in which the Laurent property does hold. For a recent review of cluster algebras in
the context of discrete integrable systems, see [29].
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