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1. Introduction

The D term was originally introduced to complete the para-
metrization of the generalized parton distributions (GPDs) in hard
exclusive reactions in terms of double distributions, and restore
the polynomiality property of the singlet moments of unpolarized
GPDs [1]. This term turned out to be a crucial contribution in the
phenomenological description of deeply virtual Compton scatter-
ing (DVCS) observables, where different forms have been assumed
with parameters tuned to DVCS data [2,3]. On the theoretical side,
the D-term is poorly known, and information is available only
from a few models, such as the chiral quark soliton model [4-8],
the Skyrme model [9], a Regge-improved diquark model [10], as
well as a first moment from lattice simulations [11,12]. Interesting
studies have been also performed for the nucleon in nuclear mat-
ter [13,14], for Q -ball systems [15,16] and within different variants
of chiral perturbation theory [17-23]. Recently, the D-term form
factor acquired a new significance in the dispersive representation
of DVCS amplitudes [3,24-31]. In particular, it was shown that the
DVCS amplitudes satisfy subtracted dispersion relations (DRs) at
fixed t with the subtraction function defined by the D-term form
factor [26]. In the present Letter we set up dispersion relations in
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the t channel for this subtraction function. The advantage of this
dispersive representation is to provide a microscopic interpreta-
tion of the physical content of the D-term form factor in terms of
t-channel exchanges with the appropriate quantum numbers. The
plan of the Letter is as follows. In Section 2, we review the deriva-
tion of the s-channel subtracted dispersion relations for the DVCS
amplitudes. In Section 3, we derive t-channel DRs for the D-term
form factor. The unitarity relation for the t-channel amplitudes is
saturated with two-pion intermediate states, using the two-pion
distribution amplitude for the y*y — mm subprocess and recon-
structing the 77t — NN subprocess from available information on
pion-nucleon partial-wave helicity amplitudes. We then discuss the
dispersive predictions for the D-term form factor in Section 4, and
we conclude summarizing our results.

2. Subtracted dispersion relations in the s-channel

We consider the DVCS process

Y*@N(p) — y(q)N(p'). (1)

where the variables in brackets denote the four-momentum of the
participating particles. The familiar Mandelstam variables are

s=p+9?  t=(q-q), u=(@@-p)° (2)
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and they are constrained by s+ u +t =2M% — Q2, with My the
nucleon mass and Q% = —q2. We will consider the Bjorken regime,
where the photon virtuality Q2 and s are large, and —t <'s, Q2.

To calculate the DVCS amplitude, one starts from its definition
as a nucleon matrix element of the T-product of two electromag-
netic currents:

B, = =i [ e NG )T 00 ONG. )
(3)

where the four-vector index u (v) refers to the virtual (real) pho-
ton, and Ay (A} ) is the helicity of the incoming (outgoing) nucleon.
The DVCS amplitude is obtained from the DVCS tensor in Eq. (3)
by contracting it with the photon polarization vectors as

To 3y gin = €n(@s e )le , (4)

V
where 1, ()»3,) denotes the helicity of virtual (real) photons re-
spectively.

The DVCS amplitude for unpolarized nucleon and at leading or-
der in Q can be parametrized as
—g'"
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where we introduced the lightlike vector n* = 1/(~2P)(1,0,
0,—1), with P = (p + p’)/2, and the symmetric tensor gﬁv =
gV —nhpY —nVpH, with p* = PT/4/2(1,0, 0, 1). Furthermore, the
light-front component for a generic four-vector a* is defined as
(@ + a®)/+/2. In Eq. (5), the invariant amplitudes C9 and F9 are
given by

1

C‘I(g,t)=/dx[H<+>(x,g,r)+E(+>(x,s,t)]
0

1 1
X [x—s+ie +x+g—ie]

. (6)

1
+x+§—ie}

, (7)

1
(+) +
:/dxH X E D+ ETRXE L)

x—§&+ie
-1

1
q — (+)
F (g,t)_fde (X’S’t)[x—g-‘—i—ie

1
(+)

=/de (6.0
x—§&+ie

-1
with the skewedness variable defined as & = Q2/(2s + Q2).
HP (x, &,t) = HI(x,&,t) — HI(—x,£,t) denotes the singlet
(C = +1) combination of nucleon helicity-conserving GPDs, and
analogously for the nucleon helicity-flip GPD E‘"). The invariant
amplitudes and the GPDs in Eqgs. (6) and (7) depend also on the
renormalization scale p? which is not explicitly displayed and it
is identified with the hard scale of the process Q2. In the follow-
ing we will consider the invariant amplitude F9 in the v —t plane

at fixed Q2, with v = (s — u)/4My = Q%/4Mpé&. In this plane, F9
satisfies the following fixed-t subtracted relation [26,29]

dv'2 ImFI(V',t
Fi(v,t) = Fi(0, t)+*/%%y (8)
v —

Vo

where the lower limit of integration is vo = Q2/4My and the
nucleon pole term residing in this point may be considered sep-
arately. Following Refs. [26,28], we can relate the subtraction func-
tion F9(0, t) to the D-term form factor DY(t) [1] as follows

=4DI(t). (9)

+1 Dd
t
FI(0,t) = zf dz#

-1

The dispersive representation for the D-term form factor DI(t) of
Eq. (9) is obtained by applying unsubtracted DRs, this time in the
variable t:

1+C>o Im:F9(0, t/
m, ,t
Fq(O,t)=—/dt/¥+

T t'—t

—a
1 Im; F9(0, t
_/dt/mf—(’). (10)
T t'—t

2
4ms

The imaginary part in the integral from 4mf, — +o0 in Eq. (10) is
saturated by the possible intermediate states for the t-channel pro-
cess, which lead to cuts along the positive-t axis. For low values
of t, the t-channel discontinuity is dominated by 77r intermedi-
ate states. The second integral in Eq. (10) extends from —oo to
—a=-2(m2 +2Mymy) — Q2. As we are interested in evaluat-
ing Eq. (10) for large Q2 values and small (negative) values of t
(|t| <« a), the integral from —oo — —a is suppressed, and will be
neglected in this work. Consequently, we shall saturate the integral
in Eq. (10) by the contribution of mwm intermediate states, which
turns out to be a good approximation for small t.

Using the expansion of the D-term D(z,t) in Eq. (9) in terms
of Gegenbauer polynomials C; for v =3/2, the solutions of the
leading-order ERBL evolution equations, one obtains the following
series for the D-term form factor

Di(t) = Zd;’,(t). (11)
n=1
odd

In the following, we will explicitly evaluate the contribution from
the n=1 term in (11).

3. t-channel dispersion relations for the D-term form factor

The invariant amplitudes F9(v,t) and C9(v, t) are related to the
t-channel helicity amplitude by [32,33]

t tp

Ty, = = & (qe Ay)ev(dr. ) T SN
—g'")
—SM(Qty)Ly)Sv(qt, ) >
[U(Pt’AN)V v pt’)“N Ze 1
— (Pt ANV (Pp A) 3 Ze Fﬂ (12)
where AT u and the hadronic tensor T”” is defined
as
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o =1 [ e NG ), (Bl )|
x T[J*(x)]"(0)]|0). (13)

In the c.m. system of the t-channel process y*y — NN we choose
the real photon momentum gq; (helicity k;,) to point in the z direc-
tion and the nucleon momentum p; in the xz plane at an angle 6;
with respect to the z axis, i.e. pf‘ = (E, ptsin6, 0, p; cos 6;) with

pr = |Pel = 4/t/4— M,ZV. In this framework, the t-channel helicity
amplitude in Eq. (12) can be written as

t _ _\1/24AN

N 2q
~+coset§ eqC
q
L_]E equi|
2 q
4My, 7

Ve
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q

Since the dispersion integral in Eq. (10) runs along the line v =0,
we are interested to Im; F9(0,t) in Eq. (14). The relation between
the scattering angle in the t-channel and the invariant v and t

is cosf; = 4MyV/[Bn(t + Q?)] with By = /1 — 4MZ /t. Therefore
v =0 corresponds to 90° scattering for the t-channel process. In
this limit, the relations (14) reduce to

. [t
T4 21211 (t. 6 =90°) = — W—1Ze§F‘1(o,t), (15)
N q

At
Tt t, 6, =90°) = ——— Y €290, ). 16
1/2 1/2,11( t ) 2«/§A+Xq: q (16)

The imaginary part of the t-channel Compton amplitude is de-
termined by using unitarity relation, and taking into account the
dominant contribution coming from mm intermediate states. Fol-
lowing the derivation in Appendix B of Ref. [34], we start by de-
composing the t-channel helicity amplitude for y*y — NN into a
partial wave series,

2] +1
t _ Jr* V%NN)
T,\NAN,AyA’y(”’t)—Z 3 g 2

J

(f)dANA o, (17)

where A, =2}, — Ay, AN =iy — Ay, and &},
d-functions. The unitarity relation reads

are Wigner
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where py = |pr| = /t/4 —m2 is the c.m. momentum of the pion.
The partial wave expansion for y*y — 7w reads

* 2] +1 «
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Furthermore, the partial wave expansion for 77w — NN reads

N 2] +1 NN
TXIJVTﬁNN(t, 6’)) — Z T[]}([\jl’ﬂ—) )(t)
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]
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Combining Egs. (19) and (20), we can now construct the imaginary
parts of the Compton t-channel partial waves,

J*y—NN)
2ImT; Y ()

e e (A0 EYARDI B ab

For the calculation of Im F9(0, t) from Eq. (15
Eq. (21) for A, =0 and Ay =0.

The partial wave amplitudes T] (7

), we should consider

”_)NN) of Eq. (20) are related

to the amplitudes f 1 (t) of Frazer and Fulco [35] by the relation

](nn—>NN)
TAN 0 t) =

—(p[pn)’ flo.

The reaction y*y — mm at large Q2 and small ¢ can be described
in a factorized form [32,36], as the convolution of a short-distance
contribution, y*y — qq, perturbatively calculable, and nonpertur-
bative matrix elements describing the exclusive fragmentation of a
qq pair into two-pion. These nonperturbative functions correspond
to two-pion generalized distribution amplitudes (GDAs), denoted
as <I>"IT 7. For transversely polarized photons, the helicity amplitude
for y*y — mm at leading twist reads [32]

o2

where z is the fraction of light-cone momentum carried by the
quark with respect to the pion pair and ¢ is the fraction of light-
cone momentum carried by the pion with respect to the pion pair,
ie.

yry—nmw _

Ay=0 ‘D””(Z,C,t), (22)

2
§=1+;‘3c059,m7 f= ]_4&. (23)
2 t

In Eq. (22), we can distinguish the neutral and charged pion chan-
nel production. The process y*y — wtm~ is only sensitive to
the C even part of <15g+”_, since the initial two-photon state has
positive C-parity. On the other side, the 7% pair has positive
C-parity as well, so that 45;70”0 has no C-odd part at all. Isospin
invariance implies that the pion pair is in a state of zero isospin
and @ = @], where the index + denotes the C-even contribu-
tion. As a result, we have

oI =T — o (24)
The GDAs have the following partial wave expansion [36-38]
oo n+l
=6z(1-2) Y > BLOC P @z- P2 —1),  (25)
5ad even

where C, /2 are Gegenbauer polynomials and the expansion coef-
ficients le contain a dependence on the factorization scale, which
is not shown explicitly. The expansion of the ¢-dependence in Leg-
endre polynomials is directly related to the partial-wave expansion
of the two-pion system. As a matter of fact, one can rewrite the
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polynomials P;(2¢ — 1) = Pj(8cosOz5) in terms of Py(cos6rr)
with k <[, with the series (25) transforming in

oo n+l

=6z(1-2) Y > BL®OCY? (22— 1)Pi(cosbrr).  (26)

n=1 [=0
odd even

where the coefficients B are linear combinations of the form

By = B'[Bui + ciir2Bnia + - + Cnp1 Bunt1l, (27)

with polynomials ¢y in B2
Inserting Eqs. (22) and (26) in the partial wave expansion of the
helicity amplitude in Eq. (19), one finds

with

00 1

6
T 2741 2

n=max(1,J—-1) 0
odd

dz(2z— DB, (0¢cy? 2z - 1).

(29)

Using the partial wave expansion of Eq. (21) and Eq. (15), we can
finally express the 27 t-channel contribution to Im; FI(v = 0,t)
by the partial wave amplitudes for the reactions y*y — wm and
nmw — NN

]thq(nn):_MNPﬂ 2]"‘1(_1)]/2 (J—-nn
Vip 42 gt
even
x (pep) TRV £l @), (30)

For the numerical estimate, we restrict ourselves to the S- and
D-wave contributions in Eq. (30). The partial-wave amplitudes of
the 77w — NN subprocess are taken from the work of Hohler and
collaborators [39], in which the lowest wm — NN partial wave
amplitudes were constructed from a partial wave solution of pion-
nucleon scattering, by use of the mm phaseshifts of Ref. [40]. In
Ref. [39], the wr — NN amplitudes are given for t values up to
t ~ 40 - m2 ~ 0.78 GeV2, which is taken as upper limit of inte-
gration in the t-channel dispersion integral (10). The latter value
corresponds to the onset of inelasticities in the 7w phase shifts.

The S- and D-wave amplitudes of the y*y — mm subpro-
cess are calculated from Eq. (29), taking into account only the
n =1 term. This corresponds to restrict our dispersion evaluation
to the d‘ll (t) term in the series (11). The two-pion GDAs are calcu-
lated through dispersion relations using the Omnés representation
which was first discussed in Ref. [37] and further used in Refs. [38,
41-43]. Following the derivation of Ref. [43], the results for the S-
and D-wave coefficients reads

’3 fo(®), (31)

B, (t) = p*B! 2(0)fz(t) (32)

where the Omnés functions fo » can be related to 7 phase-shifts
88 ,(t) using the Watson theorem and dispersion relations derived
in [37]:

o g o)

2
4ms;

Bl ()= qu(O)

i, S R

0 02 04 06 08 1
-t (GeV?)

Fig. 1. d%
butions in the pion qf Solid curve: results with qf from Ref. [45]. Dashed curve:
results with q from Ref. [46]. The results refer to the scale Q2 =4 GeV?.

as function of —t, obtained with different inputs for the quark distri-

In Eq. (31), the constant C is taken from Ref. [38], using the es-
timate from the instanton model [44] at low energies, C =1 +
bmZ 4+ O(m%) with b~ —1.7 GeV~2, while the coefficient Bj3(0)
is obtained using the crossing relations between the quark 27t DA’s
and the corresponding parton distributions in the pion, i.e.

0 1 _
B%,(0) = K/dxxN—f > g% @ + a5 ). (34)
f
As final result, taking into account only the contribution with
J=0and J =2, Eq. (30) simplifies to

S3MNpPx
7 = S S B0
x [(3C = %) fo(®O) fY*(©) + (pxp)*B* 2O f2* (1)].

(35)

In Eq. (35), the dependence on the renormalization scale enters
only through the coefficient BL{Z evaluated at t =0, and therefore
is factorized from the t dependence of the amplitude. Furthermore,
the coefficients B‘%z evolve in the same way as the quark momen-
tum fraction in the pion, in accordance with Eq. (34).

4. Results

In Fig. 1 we present the dispersive predictions for d1Q =
Zq d‘f (t) as function of t, with the sum over flavors restricted to
up and down quarks. The solid and dashed curves are obtained
using as input in Eq. (34) the parametrization of the pion dis-
tributions at Q2 = 4 GeV? from Ref. [45] and [46], respectively.
The different inputs for the pion distributions change the results
by an overall normalization factor, without affecting the t depen-
dence. As outlined above, the Q% dependence enters only through
the quark momentum fraction of the pion, which changes only
by a few percent in the range of Q2 =[1,10] GeVZ2. At t =0, we
find d? (0) = —1.59 and d]Q (0) = —1.92 for the solid and dashed
curve in Fig. 1, respectively. These values compare with the re-
sults obtained, at a low normalization scale, in the yQSM [5],
d? (0) = —2.35, in the Skyrme model [9], dlQ (0)=—4.48, and in a
recent calculation with effective light-front wave functions from a
Regge-improved diquark model [10], d? (0)=-2.01.

Among the form factor in Eq. (11), d1Q (t) aroused a particular
interest, as it enters in the parametrization of the quark part of
the energy momentum tensor of QCD, and provides information



B. Pasquini et al. / Physics Letters B 739 (2014) 133-138 137
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Fig. 2. Model calculation of d]Q(t) (solid curve) in comparison with the function in
Eq. (38).

on how strong forces are distributed and stabilized in the nu-
cleon [47]. In all theoretical studies so far as well as in the present
dispersive calculation, d? (t) at zero-momentum transfer t =0 is
found to have a negative sign. The negative values of this constant
has a deep relation to the spontaneous breaking of the chiral sym-
metry in QCD [47,48], and has also an appealing connection with
the criterion of stability of the nucleon [5].

Furthermore, d; determines the behavior of the D-term form
factor in the asymptotic limit 4> — co. In this limit, all the terms
with n > 1 in the series (11) go to zero, and one has

3Ny

DL () = d(t) ——,
O=d035 ~ 16

(36)

where d(t) = de(t) + df(t) is the total, scale-independent, contri-
bution from quark and gluon.

In the dispersive calculation, the asymptotic limit of D2 (t) can
be obtained from the asymptotic limit of B1(0) in Eq. (34), i.e.

10 3Ny

Q.as
B5¥(0) = — .
20 9 3Ny +16

(37)

As a result, d(t) has the same t-dependence of d? (t) shown in
Fig. 1, and differs only for the value at t = 0 which is found d(0) =
—3.32.

In most of phenomenological studies of DVCS, the t dependence
of D-term form factor is parametrized by a dipole function [2].
However, the dispersive results favor a different functional form,
as shown in Fig. 2 where we compare the result for d? as func-
tion of t with the following parametrization

d? (0)

= Mz G8)

with Mp = 0.487 GeV and « = 0.841.

In Fig. 3 we show the convergence of the t-channel inte-
gral from 4m§r to oo in the unsubtracted DR of Eq. (10) for
t = —0.1 GeV2. We do so by calculating the dispersion integral as
function of the upper integration limit typper and by showing the
ratio to the integral for typper = 0.78 GeV2. The latter value corre-
sponds to the onset of inelasticities in the 7t phase shifts. One
sees from Fig. 3 that the unsubtracted t-channel DR shows only a
slow convergence.

In order to improve the convergence of the dispersion integral,
we may introduce subtracted DRs, with the subtraction constant at
t=0:

N; [
D 1 L
&} L
- [
< 0.75F
Il [
=
O -
= 0.5
0.25f
0 L Il Il Il
0 0.2 0.4 0.6 0.8
2
tupper (GEVY)

Fig. 3. The results at t = —0.1 GeV? for the unsubtracted (solid curve) and the
subtracted (dashed curve) t-channel dispersion integrals in Eq. (10) and (39), re-
spectively, are shown as function of the upper integration limit typper. Both results
are normalized to their respective values at typper = 0.78 GeV2.

Im; F9(0,t")

v —t (39)

+00
t

DY(0,t) = D1(0) + — / dt’
4

4m2

where we omitted the contribution from the negative t-channel
cut. In Fig. 3 we see that the subtracted dispersion integral con-
verges faster, reaching its final value around t ~ 0.6 GeV?. The
price to pay is the appearance in Eq. (39) of the subtraction con-
stant that has to be fitted to experimental data. To have a rough
indication for the contribution expected above the inelastic thresh-
old, we extended the integration up to typper = 1.78 GeV?, includ-
ing the inelasticities in the wm phase shifts and approximating
the N partial-wave amplitudes with the Born contribution. The
results of the unsubtracted DRs are affected by ~ 10%, while the
subtracted dispersion integrals are quite stable and change just by
a few percent.

5. Conclusions

We have presented a dispersive representation for the quark
contribution to the D-term form factor in hard exclusive reactions
in terms of unsubtracted t-channel dispersion relations. The uni-
tarity relation for the t-channel amplitudes is saturated with two-
pion intermediate states, taking into account the contribution from
S-and D-wave intermediate states in the numerical estimate. The
input for the imaginary part of the dispersion relation is the two-
pion GDAs, determined through the first-x moment of the flavor-
singlet pion PDFs, the w phase shifts up to the inelastic thresh-
old, and the partial waves for the rm — NN amplitudes obtained
from dispersion theory by analytical continuation of 7 N scattering.
We found that the t and Q2 dependence of the D-term form factor
are disjoined. The t-dependence is not trivial and it does not fol-
low a dipole behavior as normally assumed in phenomenological
parametrizations. On the other hand, the Q2 dependence enters
only in the normalization point at t = 0, which is proportional
to the first x-moment of the flavor-singlet pion PDFs. The value
at t =0 is also compatible with estimates in chiral-quark soliton
model and a Regge-improved diquark model. In order to improve
the convergence of the dispersion integral, we also discussed sub-
tracted dispersion relations, which can be used to determine the
t-dependence of the D-term form factor, but leave the value at
t =0 as free parameter to be fitted to experimental data.
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