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Abstract Finite temperature lattice QCD is probed by varying the temporal boundary conditions of the
fermions. We develop the emerging physical behavior in a study of the quenched case and subsequently
present first results for a fully dynamical calculation comparing ensembles below and above the phase tran-
sition. We show that for low temperature spectral quantities of the Dirac operator are insensitive to boundary
conditions, while in the deconfined phase a non-trivial response to a variation of the boundary conditions sets
in.

1 Introduction

Understanding the nature and mechanisms of the QCD phase transition has recently become one of the great
issues of non-perturbative QCD studies. Questions such as “How can one characterize the high temperature
plasma phase?”, or “What are the field excitations that drive the transition?”, are still far from having a
generally accepted answer. A powerful approach to analyzing such questions is the formulation of QCD on
a Euclidean space time lattice. In this setting Monte Carlo simulations allow one to obtain non-perturbative
results from an ab-initio calculation.

In the Euclidean formulation one dimension, the Euclidean time, is compactified, turning the base man-
ifold into a (hyper) cylinder. The circumference of the cylinder is the inverse temperature. Thus increasing
the temperature means shrinking the temporal extent of the lattice. If the temperature is sufficiently high,
the temporal extent is shorter than the relevant scale Aqcp, and correlations around the compact time direc-
tion change the physics. The onset of such a strong self-correlation around time corresponds to the critical
transition temperature 7.

This qualitative insight about the relation of the scale Aqcp and the time extent given by the inverse
temperature can be tested on the lattice. A powerful approach to such an analysis is the use of the temporal
boundary conditions as a tool. Instead of using the canonical choice—periodic boundary conditions for the
gauge fields and anti-periodic boundary conditions for the fermions—one may implement more general tem-
poral boundary conditions to probe the system. According to the qualitative picture outlined above, one is
inclined to expect that below 7, the system remains relatively unchanged under varying boundary conditions,
while above 7 the response of the system to a change of the boundary conditions should be strong.

In a series of papers the strategy of probing finite temperature QCD with the help of boundary conditions
has been explored in quenched calculations. In particular generalized fermion boundary conditions have been
considered. Various spectral quantities of the Dirac operator were studied [} 2} (3§ 45 1S5 165 [75 185 O]. A new
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observable was proposed and studied [10; [115 [12; [13]], the dual chiral condensate, which probes the depen-
dence on the boundary conditions and provides a link between the Polyakov loop and the conventional chiral
condensate.

The analysis was also extended beyond the gauge group SU(3). Quenched studies for the center-trivial
group Gy [14] and for SU(2) gauge theory with adjoint fermions [[15] were conducted.

In all these quenched studies it was established, that below 7, the Dirac spectrum is insensitive to the
temporal fermion boundary conditions. Above the deconfinement transition, which in the quenched case is
characterized by the emergence of a non-vanishing expectation value of the Polyakov loop, a non-trivial re-
sponse to changing temporal boundary conditions sets in for fermionic quantities such as the chiral condensate
and the spectral gap. It was furthermore observed [IL; [10; [115 12} |16} [17]] that only the relative phase between
the phase of the Polyakov loop and the phase in the fermionic boundary condition is relevant for the physics.
This even holds for the center-trivial group G;, which behaves similar to SU(N) when one restricts the high
temperature ensembles to the center sector characterized by a real Polyakov loop.

Interesting is also the case of SU(2) [more generally SU(N)] with adjoint fermions [15]], a theory where
the deconfinement and chiral symmetry restoration temperatures do not coincide, the latter being considerably
higher than the former. In agreement with the picture outlined above, at the deconfinement temperature the
spectrum becomes sensitive to the boundary conditions. The intermediate phase between the deconfinement
and chiral restoration temperatures is characterized by a non-vanishing density of eigenvalues near the origin,
and thus, due to the Banks—Casher relation [18]] by a non-vanishing chiral condensate, which, however, varies
in size with the boundary condition. Only above the chiral restoration temperature the condensate vanishes
completely for the physical anti-periodic fermion boundary conditions.

In the first part of this contribution, in Sect. 2] we discuss the physical situation for the interplay of
boundary conditions and spectral observables for the quenched case. In the second part, in Sect.[3] we present
first preliminary results for lattice QCD with dynamical fermions. In particular, we analyze publicly available
dynamical SU(3) configurations generated for two flavors of staggered sea quarks by the MILC collaboration
[19]. Ensembles below and above the QCD transition are studied with the staggered Dirac operator and we
compare the response of various spectral quantities below and above 7, to changing boundary conditions. In
Sect. f] we summarize our results and give an outlook.

2 The Physical Situation for the Quenched Case

As outlined in the introduction, the interplay of fermionic boundary conditions and the spectral quantities of
the Dirac operator below and above T, so far was analyzed only for the quenched case. Although by neglecting
the dynamical quark effects the quenched case certainly does not reflect the full problem, as a toy model it
has one important conceptual advantage: it represents the passive response of the (fermionic) observables
for a sudden [smooth for SU(2)] transition of the gluonic environment. For SU(N), N > 2, there is a first
order transition between the two phases and one can expect to find a distinctly different behavior of the Dirac
operator below and above T;.. The fully dynamical theory, on the other hand, shows only a crossover, thus
leading to a gradual variation of the properties rather than a sharp change. For that reason the quenched case
is an interesting model laboratory.

The calculations were done on SU(3) gauge ensembles with 100 configurations each, generated with the
Liischer Weisz gauge action [20;[21] with tadpole improvement. When we quote results in physical units, these
were obtained from a determination of the scale [22] using the Sommer parameter. Our fermionic observables
were computed for the staggered Dirac operator (we here set the lattice spacing to a = 1)

D(x,y) = Y Mu(0) [Up(®) Serpy — Un(x— )" 8piy ] 1
u

where 7, (x) is the staggered sign function 1 (x) = Hﬁ;ll (—=1)*. For the massless staggered lattice Dirac
operator (1) we evaluate complete eigenvalue spectra using a parallel implementation of standard linear alge-
bra routines. The staggered Dirac operator is anti-hermitian and consequently the eigenvalues AU) are purely
imaginary. The eigenvalues for the Dirac operator with mass m are then given by A () 4 m. From the complete
eigenvalue spectra all our fermionic observables may be computed.

As outlined in the introduction, we probe the system by changing the temporal fermionic boundary con-
ditions. These are introduced as,

Y(x,Nr) = € y(x,0), )
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Fig. 1 The bare quenched chiral condensate — () in GeV? for anti-periodic (lhs. plot) and periodic (rhs.) temporal fermion
boundary conditions as a function of temperature

Fig. 2 The quenched spectral gap in MeV for anti-periodic (lhs. plot) and periodic (rhs.) temporal fermion boundary conditions
as a function of temperature

where N7 is the number of lattice points in the compact time direction and the “boundary angle” ¢ € [0,27]
parameterizes the boundary conditions. Bilinear combinations (which are bosons) are periodic. A value of
¢ = 7 corresponds to the usual anti-periodic boundary conditions. Other values are adopted to analyze the
system. In particular, we consider a total of eight (for some tests also 16 up to 128) equally spaced intermediate
values of ¢ in the interval [0,27]. For completeness we stress, that all other boundary conditions, i.e., the
spatial fermionic boundary conditions and the boundary conditions for the gauge fields, were kept periodic.
We work with various lattice sizes ranging from 83 x 4 to 143 x 6, with typically 100 configurations per
ensemble. All errors we show are statistical errors determined with single elimination Jackknife.

Let us begin the discussion of observables with the bare (unrenormalized) chiral condensate. In terms of
the eigenvalues it is given by

— N | 1 | 1

(Wy) = lim Jim &Tr(D+m)"" = i%vlflov;mum’ )
where V is the four-volume and m the quark mass parameter. Obviously it is not possible to perform the
thermodynamic limit on a finite lattice. Two alternative approaches are possible. First, one may analyze the
condensate for finite volume as a function of the mass parameter m and extrapolate to m = 0, ignoring the
sharp drop to 0 at m = 0, which must appear as long as the volume is finite. Second, one can use the Banks—
Casher formula [18]], which relates the chiral condensate to the spectral density p(0) at the origin,

— (vy) = 7p(0), @

and determine p(0) to compute the chiral condensate. It can be shown [[14] that for a fixed volume both
methods give rise to perfectly consistent results.

In Fig. We show the bare chiral condensate —(yy) as a function of the temperature. In the lhs. plot we
display the results for the physical anti-periodic temporal fermion boundary conditions, while the rhs. plot is
for periodic boundary conditions. It is obvious, that the two cases behave rather differently. For the physical
anti-periodic boundary conditions the condensate starts to melt near the critical temperature of 7, ~ 280 MeV,
while for the periodic case the bare condensate even rises beyond 7. Below the critical temperature the
anti-periodic and the periodic data essentially agree, thus reinforcing the expectation that below 7, the system
is insensitive to the imposed boundary conditions, while above 7, (many) physical quantities show a non-
trivial dependence on the boundary conditions.

According to the Banks—Casher relation [[18] a vanishing condensate, as we observe it for the anti-periodic
boundary conditions at high temperatures, must coincide with a vanishing spectral density p(0). Such a van-
ishing density above 7. is usually attributed to the opening up of a gap in the spectrum. We analyze the
spectral gap using the expectation value (|Amin|), where An, is the smallest eigenvalue of the Dirac opera-
tor.

In Fig. 2] we show the results for the spectral gap as a function of the temperature, where we again compare
the physical anti-periodic boundary conditions (lhs.) to the periodic case (rhs.). As for the condensate, we
find also for the spectral gap that up to 7. ~ 280 MeV the two cases give roughly the same results, while
above 7. we observe a non-trivial response to a change of the boundary conditions. For the anti-periodic
boundary conditions, we find that above T the spectral gap opens up quickly in accordance with the vanishing
condensate for that case demonstrated in the lhs. plot of Fig. [Tl When inspecting the periodic case on the rhs.
plot of Fig. 2] we do not observe the opening up of a spectral gap. There is a slight upward trend, but way
less pronounced than for the anti-periodic boundary conditions. This upward trend for the periodic case also
becomes weaker as the spatial volume is increased and thus is probably a finite size effect, similar to the
“microscopic gap” o< 1/Vipace known from random matrix theory [23].

Although the picture for the spectral gap seems rather clear, there is an interesting alternative scenario
to be considered. The vanishing spectral density at the origin, p(0), which according to the Banks—Casher
formula is necessary for a vanishing chiral condensate, does not necessarily imply a spectral gap. An
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Fig. 3 The expectation value of the shift variable s(4) as a function of |A| (both in lattice units). The data are for the quenched
143 x 6 lattices and we compare two ensembles below (7" = 236.5 MeV) and above 7. (T =412,5 MeV)

Fig. 4 We show the lowest 40 eigenvalues of the lattice Dirac operator for various values of the boundary angle ¢ using our
143 x 6 quenched ensembles (83 x 4 for the bottom plot). The top plot is for a temperature below 7, while the other two plots
are for T > T... They differ by the sector of the Polyakov loop. In the center plot we use a configuration in the real Polyakov loop
sector, while at the bottom the eigenvalues are shown for the sector where the phase of the Polyakov loop is close to 27/3

alternative would be a spectral density that is non-vanishing for all non-zero eigenvalues but continuously
goes to zero at the origin. This would imply that the spectral gap of the lattice Dirac operator, shown in the
lhs. plot of Fig.|2| closes as the spatial volume is sent to infinity. The currently available data do not allow one
to decide between a closing gap at infinite spatial volume or a finite limit for the gap [[7; 124].

In this context we also stress that the staggered lattice Dirac operator is numerically cheap, but certainly
not the first choice for analyzing the chiral condensate and the spectral gap. The reason is that the staggered
Dirac operator does not discriminate between low lying eigenvalues and eigenvalues that correspond to zero
modes originating from topological excitations. The latter, however, should be removed in both the determi-
nation of the spectral gap, as well as for the evaluation of the spectral density p(0). Using, e.g., the overlap
operator would allow for a cleaner study — at a considerably higher computational cost, however.

We have seen that above T, the spectral gap and the chiral condensate, which in turn through () is related
to the spectral density p(0) at the origin, are sensitive to the fermionic boundary conditions. Both the spectral
gap and the density p(0) are infrared properties of the Dirac spectrum. An interesting question is how the
other parts of the Dirac spectrum respond to changing boundary conditions. This question was analyzed
numerically in [[10; [115[12] and analytically in [[6]. It was found that the IR modes of the Dirac spectrum are
most sensitive to a change of the boundary conditions, while the shift of the eigenvalues under a variation of
the boundary angle ¢ decreases exponentially as one moves towards the UV end of the spectrum.

In order to quantify this shift, in Fig. We show the shift s(A4) of the eigenvalues when comparing boundary
conditions with ¢ = /2 and boundary conditions with boundary angle ¢ = 7. More explicitly, the shift
variable s(A) is defined as
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S(A) =Im (A(p:n-/z — 2,(1,:7;) . (5)

In Fig. [3] we plot this shift observable as a function of the size of the physical (¢ = 7) eigenvalue (both
quantities in lattice units), and compare the results below and above 7. It is obvious that in both cases a
noticeable shift is seen only for the IR part of the spectrum, and s(A) decreases quickly towards the UV end
of the spectrum. The plot also again confirms that only above 7. there is a sizable shift of the eigenvalues
when changing the boundary conditions. Let us finally comment on the drop of the shift variable at A ~ 0.
We attribute this effect to the would-be zero modes of the staggered Dirac operator. For a chiral operator
such as the overlap operator, they would be frozen at the origin when changing the boundary conditions. The
staggered operator does not protect them from a shift, but the nature of the would-be zero modes is at least
manifest in a drop of the shift variable s(A) at A ~ 0.

So far we have only compared two values of the boundary angle ¢. In Fig. ff] we now show how the
lowest 40 eigenvalues of the Dirac operator in the quenched case behave as a function of ¢. It is obvious,
that for ensembles below 7, (top plot) the eigenvalues are essentially independent of ¢. Above T, they show
a sine-like behavior as a function of ¢. For the sector where the Polyakov loop is essentially real (center
plot), the lowest eigenvalues come close to zero for the case of periodic boundary conditions (¢ = 0). For the
case of configurations in a sector with complex Polyakov loop (bottom plot), the displacement pattern of the
eigenvalues is shifted by +27/3.

For the quenched case the Polyakov loop is an order parameter for the deconfinement transition [25]].
It signals the breaking of the center symmetry, which for the quenched theory is manifest below 7, and
the expectation value of the Polyakov loop is zero then. Above 7. the center symmetry becomes broken
spontaneously and the Polyakov loop acquires a non-vanishing expectation value. Its phase spontaneously
selects one of the three [for SU(3)] values, 0,27 /3, —27/3.

One of the original motivations [2;3;4] for analyzing the connection between boundary conditions and the
Dirac spectrum, was to find out, how the change of the Polyakov loop at the phase transition affects properties
of spectral sums of Dirac eigenvalues. The Polyakov loop is an order parameter for confinement, while certain
spectral sums of the Dirac operator, e.g., the one in Eq. (3)), are related to chiral symmetry. Thus understanding
the relation between the Polyakov loop and the Dirac spectrum might provide an understanding of a possible
relation between chiral symmetry breaking and deconfinement. It is natural to expect that the Dirac operator
and its spectral properties connect both, confinement and chiral symmetry. After all, the quark-propagator,
i.e., the inverse Dirac operator, should know whether the quark it describes is in the chirally symmetric or the
chirally broken phase, and if it is confined or not.

For understanding the relation between the chiral condensate and the Polyakov loop we write the conden-
sate in a rather general form. The chiral condensate is a gauge invariant quantity, and as such may be written
as a sum of (traced) gauge transporters along closed loops on the lattice,

-y = Y c()Tr [] Uu). (©6)

ley (el

Here £ is the set of all loops that contribute, / is an individual loop in this set, ¢(I) a complex valued
coefficient, and the product runs over all links in /. We remark that the structure in Eq. (6)) is universal and
different lattice discretizations of the lattice Dirac operator only lead to different values for the coefficients
c(l).

On a finite lattice it is possible to order all loops / in (6) according to their winding number ¢ around the
compact time direction. If we implement the boundary condition , then the loops pick up a phase exp(i¢)
with every winding. Thus we can write the condensate for the general boundary condition (2)) as

_W"¢ =Y Y ()T [] Uulx), (7

4EZ le. @) (x,p)€l

where 2@ is the set of all loops that wind exactly g-times. Using a Fourier transformation with respect to
the boundary angle we can project to the contributions that wind exactly once, and in this way define the dual
chiral condensate X (U,

s _ _/@W,’q)ﬂﬁ = Y T[] V), ®)

0 lez) (x,p)el
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Fig. 5 The integrand S(¢) of the dual chiral condensate in the quenched case as a function of the boundary angle ¢. We show
the results for two bare quark masses and compare ensembles below and above 7, (Figure from [10])

Fig. 6 The quenched dual chiral condensate in physical units as a function of the temperature (Figure from [10])

where we used [ d¢exp(i¢(q— 1)) = 278, in the second step. The dual chiral condensate X(!) consists of
the loops of the conventional chiral condensate, but restricted to winding number 1. These loops, however,
transform under a center transformation in exactly the same way as the Polyakov loop. Consequently, X (1)
also serves as an order parameter for the breaking of the center symmetry and thus in the quenched case is
an order parameter for confinement. We remark that the technique of using a Fourier transformation with
respect to the boundary angle has been used in various contexts, in particular for the construction of canonical
determinants, i.e., fermion determinants that describe a fixed quark number.

We stress at this point, that we have not performed the limits V — e and m — 0 in the Definition (8) of
the dual chiral condensate, but of course these two limits are necessary when one wants to use > for the
analysis of chiral symmetry. On the other hand, since the weight factors ¢(/) in behave for large m as
c(1) o< m~!l, where |I| is the length of the loop I, the infinite mass limit reduces the dual condensate (1) to
the shortest loops that wind exactly once, i.e., the conventional straight Polyakov loops.

For a practical evaluation of the dual condensate, we make use of the spectral representation (3)) and obtain

2n
O [ gore i wi _1
)) 7.0 Zns(q))e ,  with S(q))fV;

1

P ©)

where ).qgj ) denotes the Jjth eigenvalue computed for boundary angle ¢. The ¢-integral is evaluated numerically

using the eight intermediate values of ¢ in the interval [0,27]. Increasing the number of intermediate values
further leads only to corrections smaller than 1%.

The dual chiral condensate @) is the first Fourier component of the spectral sum S(¢). For small quark
mass m this spectral sum is obviously dominated by the IR end of the spectrum and thus should show a non-
trivial dependence on ¢ above T, where the IR eigenvalues move when changing boundary condition. Below
T, the eigenvalues are essentially independent of ¢ and thus S(¢) is approximately constant, and @) implies
a vanishing dual chiral condensate below 7. This behavior of the spectral sum S(¢) is obvious from Fig.
where we show S(¢) as a function of ¢ at two different bare quark masses m for two ensembles below and
above 7.

Finally in Fig. Elwe present the (unrenormalized) dual chiral condensate X ag a function of the tempera-
ture 7. We show results for different lattice volumes and lattice spacings. The bare quark mass was chosen to
be m =100 MeV for all these ensembles. Obviously the dual chiral condensate vanishes below 7. ~ 280 MeV,
while above the transition it acquires a non-vanishing value which rises quickly with 7. It is remarkable that
the data points from the rather different ensembles fall essentially on a universal curve, which cannot a priori
be expected for an unrenormalized quantity (the conventional thin Polyakov loop is a counterexample). This
hints at simple renormalization properties of the dual chiral condensate.

3 Results for QCD with Dynamical Fermions

We now come to discussing the results for QCD with dynamical fermions. Several aspects change when
turning on the sea quarks. There is no longer a sharp transition, but a continuous crossover. Consequently, we
can expect only a gradually changing behavior of the system. Also the center symmetry is broken explicitly
by the fermion determinant. Thus the Polyakov loop and also the dual chiral condensate have a non-vanishing
expectation value at low temperatures, which predominantly comes from contributions of the sector with
quark number g = —1.

Although several aspects are different for the dynamical case, one can ask the question how much of
the physical properties which we discussed for the quenched case are manifest also in the full theory. We
will show, that indeed the qualitative behavior is unchanged, with a small sensitivity to the temporal fermion
boundary conditions at low temperatures, and a strong response to a variation of the boundary angle ¢ in the
high temperature regime.
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Fig. 7 The bare chiral condensate of the dynamical theory as a function of the boundary angle ¢ for various temperatures

Fig. 8 The 40 lowest eigenvalues in lattice units at low (7' = 149.8 MeV, top plot) and high (T = 160.4 MeV, bottom) tempera-
tures as a function of the boundary angle ¢

Fig. 9 The integrand S(¢) of the chiral condensate for the dynamical case below and above T, as a function of the boundary
angle ¢

Fig. 10 The bare dual chiral condensate X(1) for the dynamical case as a function of the temperature

The dynamical configurations we analyze are from the publicly available ensembles for two flavors
of staggered fermions, provided by the “Gauge Connection” [[19]. In particular we consider the 123 x 4
lattices, and focus on the configurations generated with a bare quark mass of m = 0.008 in lattice units.
They are available for six temperature values in a small band near 7, ~ 153 MeV, with temperatures T =
149.8,151.5,153.2,155.0,156.8 and 160.4 MeV, according to the scale determined in [27]. The generation of
these configurations was done with the canonical anti-periodic temporal boundary conditions for the fermions.

We begin the discussion of the dynamical case with showing in Fig. [/| the bare chiral condensate as a
function of the boundary angle ¢. It is obvious, that for the two lowest temperatures there is only a small
variation with ¢, while for the larger values of T a much stronger response to changing boundary conditions
has developed.

In Fig. [§| we study the variation of the 40 lowest eigenvalues with the boundary angle ¢. We compare the
situation in the low temperature phase (7" = 149.8 MeV, top plot) and above 7. (T = 160.4 MeV, bottom).
A comparison with the quenched case in Fig. [2| shows that the situation is very similar here. Below 7, the
spectrum is almost independent of ¢, while above 7, the sine-like variation is observed. We stress again,
that for the unquenched case the Polyakov loop is real, since the fermion determinant is much larger for that
Polyakov loop sector (see, e.g., [26]]). Thus the shifted scenario depicted in the bottom plot of Fig. d]is absent
for the dynamical case. In this respect the dynamical case is very similar to the behavior of pure G, lattice
gauge theory [[14], where the triviality of the center also allows only for a sector with real Polyakov loop.

The behavior of the IR part of the spectrum shown in Fig. [8|is inherited by the integrand S(¢) defined in
@). In Fig. E] we show S(@) as a function of the boundary angle ¢ and again compare the situations in the
low temperature phase (7' = 149.8 MeV) and above T, (T = 160.4 MeV). The quark mass m in the definition
@]) of the integrand S(¢) was set to the sea quark mass m = 0.008 (in lattice units). It is obvious from Fig. E]
that the integrand below T is rather insensitive to the boundary angle, while in the high temperature phase we
observe a strong variation with ¢, which in turn gives a larger value for the dual chiral condensate.

In Fig. we finally show the dual chiral condensate XM (without any renormalization) as a function of
the temperature. Again the quark mass m in the definition (@) of XM was set to the sea quark value m = 0.008
(in lattice units). The plot shows clearly that below 7. the dual chiral condensate is small but non-vanishing,
and above T, rises quickly with 7. The observable underlines the physical picture of a strongly increased
sensitivity to boundary conditions above T.

It is obvious, that the dynamical results presented here have still a preliminary character. In particular
the temperatures available to us through the MILC ensembles come from a rather narrow range around 7. It
would be interesting how quickly the sensitivity to changing boundary conditions goes away for temperatures
deeper in the low temperature phase. Also a study with a chiral lattice action for the fermions, e.g., the overlap
operator would be desirable, since this would allow one to cleanly remove the contributions of the zero modes.

4 Summary, Discussion and Outlook

In this contribution we have analyzed the interplay of fermionic temporal boundary conditions and spectral
quantities of the Dirac operator for finite temperature lattice QCD. The temporal boundary conditions are
used as a tool to probe the system. The underlying working hypothesis is that for low temperature, where the
temporal extent of the lattice is large—Ilarger than the scale Aqcp of the system—the spectral quantities (and
also other observables) are essentially insensitive to a change of the boundary conditions. As the temperature
T is increased, the temporal extent of the lattice shrinks, and near 7. becomes smaller than Aqcp, and a non-
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trivial response to changing boundary conditions sets in. In particular the following qualitative features were
demonstrated:

e For low temperature the chiral condensate is essentially independent of the boundary conditions. At high
temperature it varies with the boundary angle ¢, and has a minimum for anti-periodic boundary conditions,
i.e., ¢ = m. This observation holds for the dynamical case as well as for quenched configurations in the
real Polyakov loop sector. For the quenched case with configurations in the complex Polyakov loop sectors
the ¢ dependence is shifted by £27/3.

o For low temperatures the spectrum of the Dirac operator is insensitive to changing boundary conditions,
while above T, the IR modes show a sine-like dependence on the boundary angle ¢. For the quenched
case, again the variation pattern with ¢ is shifted by £27/3 when ensembles for the complex Polyakov
loop sectors are considered. The sensitivity of the eigenvalues to changing boundary conditions decreases
quickly as one moves towards the UV end of the spectrum.

o The dual chiral condensate is defined as the first Fourier component of the conventional chiral condensate
with respect to the boundary angle ¢, and thus is an observable testing the sensitivity to the boundary
conditions. Furthermore, under center rotations (flips) it transforms like the Polyakov loop and thus is
also an order parameter for center symmetry. In the quenched case it is zero below 7, and non-vanishing
above T.. For the fully dynamical case it is essentially real and positive, with a small but non-vanishing
value below T, and a quickly increasing value above the transition.

We stress again that the results for the dynamical case still have a preliminary character (see the last
paragraph of Sect.[3). However, the fact that also for the full theory the finite temperature transition goes along
with a strong increase of the sensitivity to temporal fermionic boundary conditions is certainly established.

At this place one may speculate what excitations of the gluon field could drive the effects observed in the
fermionic spectra. Dyons (see, e.g., [28;[29]]) are natural candidates as their index theorem [30; 31]] is sensitive
to the boundary conditions: For dyons of given electric and magnetic charge the zero modes exist only in a
certain range of boundary angles. These zero modes then mix and form a near-zero mode band. Dyons can
be combined into calorons [32} [33]], which are neutral and always possess zero modes, the latter then hop
between the constituent dyons [34]].

In a dyon gas model the different dyons appear independently according to their masses, which in turn
are governed by the holonomy. For a holonomy corresponding to the confined phase all dyons are equally
abundant and changing the boundary conditions will therefore not affect the number of zero modes. For a
holonomy corresponding to the deconfined phase, however, some dyons become heavier than others and the
abundance of zero modes depends on the boundary angle. For SU(2) the relation to the angle of the Polyakov
loop is just as described above [17]]. This suppression effect has been investigated on the lattice [35] and
might also explain the decrease of the topological susceptibility above 7, [36]]. These ideas certainly should
be substantiated further with lattice methods—a task which we leave for future studies.

Another interesting and important challenge is to analyze the role of temporal boundary conditions as a
tool for probing finite temperature QCD using non-lattice methods. Only very little has been attempted in
this direction so far [6;[13]. Understanding better the response of the system to changing boundary conditions
certainly will help to characterize the phases of QCD and the mechanisms driving the transition.
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