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Abstract
The interaction of swift, free-space electrons with confined optical near fields has recently
sparked much interest. It enables a new type of photon-induced near-field electron microscopy,
mapping local optical near fields around nanoparticles with exquisite spatial and spectral
resolution and lies at the heart of quantum state manipulation and attosecond pulse shaping of
free electrons. The corresponding interaction of optical near fields with slow electrons has
achieved much less attention, even though the lower electron velocity may enhance
electron-near-field coupling for small nanoparticles. A first-principle theoretical study of such
interactions has been reported very recently by N Talebi (2020 Phys. Rev. Lett. 125 080401).
Building up on this work, we investigate, both analytically and numerically, the inelastic
scattering of slow electrons by near fields of small nanostructures. For weak fields, this results
in distinct angular diffraction patterns that represent, to first order, the Fourier transform of the
transverse variation of the scalar near-field potential along the direction perpendicular to the
electron propagation. For stronger fields, scattering by the near-field component along the
electron trajectory results in a break-up of the energy spectrum into multiple photon orders.
Their angular diffraction patterns are given by integer powers of the Fourier transform of the
transverse potential variation and are shifting in phase with photon order. Our analytical model
offers an efficient approach for studying the effects of electron kinetic energy, near field shape
and strength on the slow-electron diffraction pattern and thus may facilitate the experimental
observation of these phenomena by, e.g. ultrafast low-energy point-projection microscopy or
related techniques. This could provide simultaneous access to different vectorial components
of the optical near fields of small nanoparticles.
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1. Introduction

When free swift electrons pass an optically excited nanostruc-
ture at close distance, their wave function acquires a phase
modulation. This phase modulation lies at the heart of photon-
induced near-field electron microscopy (PINEM) [1–3] and
resulted in the development of electron energy-gain spec-
troscopy [4, 5]. These comparatively novel spectroscopic tech-
niques enable local (transmission) electron spectroscopy with
an energy resolution limited by the spectral width of the optical
field rather than by the energy resolution of the electron beam.
For sufficiently strong fields this phase modulation can be used
to tailor the quantum state of free electron wave functions [6],
opening up exciting new ways for the creation of attosecond
electron pulse trains [7], or to directly measure the quantum
state of nanolocalized optical fields [8].

Inducing such a phase modulation of the electron wave
function is most efficient if phase matching between the local-
ized field and the passing electron wave is satisfied: in this case,
the optical wave vector component parallel to the propagation
direction of the electron matches the ratio of optical frequency
and electron velocity [3]. For swift electrons with veloci-
ties on the order of 2/3c0, with c0 the speed of light in vac-
uum, this relation can be fulfilled, e.g. by letting the electrons
pass evanescent fields at interfaces [9–11], in the vicinity of
dielectric resonators [12, 13], or for optical near fields around
nanostructures with dimensions below the optical wavelength
[1, 2, 14]. Since the electron beam width employed in trans-
mission electron microscopes (TEM) typically is on the order
of only a few nm, the spatial variation of the optical field across
the electron beam can be neglected and the phase modulation is
described reasonably well in one-dimensional models [3]. Due
to their high velocities, electrons in a TEM pass the optical
field around particles with dimensions below 100 nm within
less than an optical cycle. Since their transit time through
the near field decreases even more with decreasing particle
size, reaching a discernible phase modulation of swift elec-
trons becomes increasingly demanding. Only recently, PINEM
was demonstrated for highly localized near fields of plasmonic
nanostars [15] and most PINEM experiments have studied
nanostructures with dimensions far above 10 nm [1, 16].

For small nanostructures, efficient electron near-field cou-
pling can be improved by using sufficiently slow electrons.
For such slow electrons, however, phase matching can only be
reached in the near field of very small particles and, in fact, has
not been demonstrated experimentally yet. Recent progress in
low-energy electron microscopy brings such studies into reach
[17–20]. An especially promising realization lies in an ultra-
fast point-projection electron microscope (UPEM) [21, 22],
where plasmonic nanofocusing is used to trigger photoemis-
sion from the apex of a metal tip, creating a free-standing
source of low-energy electrons [23–25]. A specific advan-
tage of UPEM is its intrinsically high time resolution of cur-
rently∼20 fs, reached in the absence of advanced compression
schemes [26, 27].

So far, the interaction between slow electrons and confined
optical fields has not yet been studied in much detail. Recently,
a first-principle description of such interactions showed that

new phenomena arise, which are not observed for swift
electrons [28]. Photon-order sidebands in the kinetic energy
spectra, similar to those seen for swift electrons, are induced
by the phase-matched longitudinal optical field component. In
addition, the simulations show pronounced angular electron
deflections with complex diffraction patterns.

Here, we analyze such slow-electron near-field couplings
by presenting numerical as well as analytical solutions of
the two-dimensional time-dependent Schrödinger equation.
For electron wavepackets passing the confined dipolar fields
of small nanostructures we observe quantized modulations
of the electron momentum distribution in transverse direc-
tion. In some analogy to the Aharonov–Bohm effect [29],
the resulting light-driven double-slit-like interference pattern
is caused by a transversely-varying phase modulation of the
electron wavepacket. The pattern reflects the Fourier transform
of the transverse near-field component perpendicular to the
propagation direction. The experimental investigation of these
interferograms could pave the way towards a full vectorial
characterization of optical near-field dynamics of individual
nanostructures with few-femtosecond time resolution.

2. Methods

We model the propagation of a single-electron wavepacket
ψ(x, y, t) by solving the time-dependent Schrödinger equation
in two dimensions

ih̄
d
dt
ψ (x, y, t) = Ĥψ (x, y, t) , (1)

using the minimal coupling Hamiltonian

Ĥ =
1

2m
(p̂ − qA)2 + qΦ. (2)

Here, p̂ = −ih̄∇ is the momentum operator, A(x, y, t) the
classical vector potential and Φ(x, y, t) the classical scalar
potential. The electron mass and charge are m and q = −e,
respectively. In numerical solutions of equation (1), we use a
linearly polarized, monochromatic plane-wave incident laser
field with vector potential AL(x, y, t). Its electric field, with
spatially homogeneous amplitude EL optically excites a nanos-
tructure and induces a local optical near field with the poten-
tial ΦNF(x, y, t). For sufficiently slow electrons, this near field
dominates the interaction with the electron, while the induced
vector potential is negligible. In the analytic model described
below, we neglect the interaction of AL(x, y, t) with the elec-
tron due to the finite wavevector mismatch. The Hamiltonian
thus reduces to Ĥ = p̂2/ (2m) + qΦNF.

We follow the approach introduced by Park et al [3] for
solving a one-dimensional Schrödinger equation model. We
assume that the electron propagates in longitudinal x-direction
with initial momentum k0 = k0ex and separate its wavefunc-
tion into a product

ψ(x, y, t) = g(x − v0t, y, t) ψ0(x, y, t). (3)

Here g(x − v0t, y, t) is the envelope moving with veloc-
ity v0 = h̄k0/m, and ψ0(x, y, t) = exp(ik0x − iE0/h̄t) is the
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carrier wave with initial electron kinetic energy E0. Insert-
ing equation (3) into equation (1) yields ih̄ġ = −h̄2Δg/2m
+ qΦNFg. Neglecting wavepacket dispersion during the few-fs
interaction time, the solution is given by

g(x′, y, t) = g(x′, y, t0) exp

[
− iq

h̄

∫ t

t0

ΦNF(x′ + v0t′, y, t′)dt′
]
.

(4)
Here we introduced x′ = x − v0t as the coordinate for the

moving frame of reference of the envelope function g. In the
integrand, we substitute x′′ = x′ + v0t′ and find that the enve-
lope at time t after interaction differs from that at t0 only by a
phase factor:

g(x′, y, t) = g(x′, y, t0) exp

[
− iq

h̄v0

∫ x′′(t)

x′′(t0)
Φ

(
x′′, y,

x′′

v0
− x′

v0

)

× dx′′
]
=: g(x′, y, t0)eiΔϕ(x′ ,y). (5)

In contrast to the well-known 1D result [2, 3], the phase fac-
tor Δϕ

(
x′, y

)
now depends on both spatial coordinates. In the

following, we analyze the phase modulation that is acquired
by a wave packet during its interaction with optically excited
nanostructures.

For monochromatic excitation at optical frequency ω, the
near field potential ΦNF can be written as:

ΦNF = Φ0(x, y) · cos(ωt + ϕNF). (6)

Inserting ΦNF into equation (5), the phase modulation Δϕ
is

Δϕ = − q
h̄v0

∫ x′′(t)

x′′(t0)
Φ0(x′′, y) cos(Δkx′′ −Δkx′ + ϕNF)dx′′,

(7)
with the wavevector mismatch Δk = ω/v0. Using angle sum
identities, equation (7) can be written as:

Δϕ = I1(y) cos(Δkx′) + I2(y) sin(Δkx′). (8)

The phase modulation thus is given by the sum of an even
and an odd function multiplied with the coupling integrals
I1(y) and I2(y), respectively:

I1(y) = − q
h̄v0

∫ x′′(t)

x′′(t0)
Φ0(x′′, y) cos(Δkx′′ + ϕNF) dx′′

I2(y) = − q
h̄v0

∫ x′′(t)

x′′(t0)
Φ0(x′′, y) sin(Δkx′′ + ϕNF)dx′′.

(9)

These coupling integrals depend on the transverse coor-
dinate y and are given by Fourier components of Φ0(x′′, y)
along the dimension x′′ at frequency Δkx . The y-dependence
of the coupling constant is the essential difference between the
two-dimensional and one-dimensional simulations.

3. Results and discussion

Using the derived formalism, we simulate the interaction of a
single-electron wavepacket with an infinitely long, thin wire

of dielectric function ε and radius R. The electron is propa-
gating in x-direction and the wire is oriented perpendicular to
the simulation (x–y) plane. In quasi-static approximation, the
wire potential Φ0 for a linearly y-polarized excitation at field
amplitude EL can be written as [30]:

Φ0 =

⎧⎪⎪⎨
⎪⎪⎩

ELy

∣∣∣∣ε− 1
ε+ 1

∣∣∣∣ , r < R

ELy
R2

r2
·
∣∣∣∣ε− 1
ε+ 1

∣∣∣∣ , r � R
(10)

ϕNF = atan

(
ε− 1
ε+ 1

)
. (11)

Here, ϕNF is the phase retardation with respect to the inci-
dent laser field that is induced by the complex-valued dielec-
tric function ε. Since the vector potential AL has no direct
consequence on the electron propagation and since the elec-
tron pulse duration is longer than one optical cycle, a vari-
ation in ϕNF does not affect the result (see supplementary
material (https://stacks.iop.org/JPB/54/174001/mmedia)). In
the following, we set this phase to zero. As a consequence,
the coupling integral I2(y) in equation (9) vanishes due to the
symmetry of Φ0. To mimic a carbon nanotube (CNT) that
is transparent even for slow electrons, we take the dielectric
function of a CNT film [31]. The resulting scalar potential
of a 10 nm radius CNT at a wavelength of 2000 nm and for
EL = 0.2 V nm−1 is seen in figure 1(a). Initially, we consider
a slow electron wavepacket with E0 = 100 eV and longitudinal
and transverse broadenings of 60 nm and 20 nm, respectively.
The longitudinal broadening corresponds to a temporal spread
of ∼10 fs. The initial electron density at time t0, |ψi(x, y)|2, is
displayed on the left side in figure 1(a). After t − t0 = 60 fs
of propagation the electron wavepacket has passed the CNT,
and a pronounced modulation of |ψf(x, y)|2 due to its interac-
tion with the optical near field emerges. The quiver motion of
the electron creates an oscillatory bunching pattern along both,
longitudinal and transverse directions. In momentum space
this modulation leads to distinct peaks in the associated den-

sity distribution
∣∣∣ψ̃f(kx , ky)

∣∣∣2 (figure 1(b)) with well-defined

spacing Δkx along the longitudinal direction and spacing Δky

along the transverse direction. The resulting diffraction pattern
is quantitatively reproduced by a numerical solution of the 2D
Schrödinger equation (figure 1(c)). These numerical simula-
tions include the effect of the vector potential on the electron
motion as well as the dispersion of the wavepacket during the
near-field interaction.

For understanding the diffraction pattern, it is important
that the near-field interaction couples the initial momen-
tum state k0 = k0ex of the incident electron to differ-
ent momentum states on the free-electron dispersion rela-
tion. In principle, all final states are allowed that fulfill
energy- and momentum-conservation in this electron-near-
field interaction. For weak driving fields, the change in
the electron kinetic energy ΔE can be approximated as
ΔE ∝ (k0ex ±Δk)2 − k2

0 ≈ ±2k0Δkx , since the transferred
momentum |Δk| from the near field is much smaller than k0.
Hence, the near-field interaction causes a defined longitudi-
nal momentum change Δkx = ω/v0. The energy change is
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Figure 1. Low-energy electron wavepacket propagation through the
near-field potential of a thin wire with a radius of 10 nm and a
dielectric function matching that of a CNT. The wire is optically
excited at 2000 nm with a linearly y-polarized field with an
amplitude of 0.2 V nm−1. The field enhancement at the surface of
the wire is 1.5. (a) The density distribution of the incident 100 eV
electron has a width of 60 nm along the propagation direction (x),
corresponding to a 10 fs pulse, and 20 nm in transverse (y) direction.
The phase modulation introduced by the near-field coupling results
in a bunching of the electron density along both coordinates. (b) and

(c) Final wavepacket density
∣∣
∣ψ̃f

(
kx , ky

)∣∣
∣
2

in momentum space

calculated analytically (b) and numerically (c), showing diffraction
peaks with distinct spacings Δkx and Δky along both momentum
directions. (d) Allowed k-space transitions for the near-field
interaction. Vertical black lines represent electron states with
energies spaced by the photon energy. (e) Calculated coupling
integral I1(y) and its Fourier transform Ĩ1(ky) (inset). (f) and (g)

Crosscuts through
∣
∣
∣ψ̃f

(
kx , ky

)∣∣
∣
2

at multiples of the spacings Δky (f)
and Δkx (solid lines in (g)). Dashed lines in (g) show the same
crosscuts, obtained by using the approximation in equation (13).

essentially independent of Δky for slow as well as for swift
electrons, and energy- and momentum-conservation implies
no selection rule for Δky. Thus, in principle all transverse
momentum components Δky of the near field can be trans-
ferred. The observation of well-defined peaks along ky in
figures 1(b) and (c) therefore implies that only selected com-
ponents Δky are available in the near field. Effectively, the
diffraction pattern thus provides, for sufficiently weak field
amplitudes of the incident laser, the momentum components
Φ̃NF(kx = ±Δkx, ky) of the transverse Fourier transform of
ΦNF(x, y) at the wavevector Δkx . The allowed first-order
transitions are depicted as blue arrows in figure 1(d). Here
the electron k-states that are populated by near-field scat-
tering are depicted as blue circles and the solid black lines
define states with constant kinetic energy, spaced by integer
multiples n of the photon energy h̄ω. The peaks along kx

appear at the positions of the well-known PINEM sidebands
in the electron kinetic energy spectrum [3]. To elucidate the
structure in y-direction, we perform a Taylor expansion of
eiΔϕ(x′ ,y) (equation (5)) and sort the terms by photon orders
n of cos(nΔkx x′). The final wavefunction, after the near-
field interaction, for a given order n then can be expressed
as [32]:

ψ̃f(kx = nΔkx + k0, ky) ∝ ψ̃i(kx = k0, ky)

⊗ FT

⎧⎨
⎩

∞∑
�=|n|

i2�

22�(�− |n|)!�! I1(y)2�−|n|

⎫⎬
⎭ . (12)

Equation (12) represents a summation over all possible
excitation paths in different powers of I1 (y) that lead to
the final states at

(
kx = k0 + nΔkx , ky

)
. Here, the exponent

2�− |n| can be understood as the number of photons
exchanged between electron and near field. The magnitude
squared of ψ̃f provides the probability for occupying a certain
final momentum state as a consequence of the multilevel Rabi
oscillations [2] that are driven by multiple near-field-photon
absorption and stimulated emission processes (figure 1(d))
[33]. For sufficiently weak fields, the contribution of higher-
order scattering terms with � > |n| can be neglected and the
above equation can be approximated as:

ψ̃f (kx = nΔkx + k0, ky ) ∝ ψ̃i(kx = k0, ky) ⊗ FT {I1(y)n}

∝ ψ̃f(kx = (n − 1)Δkx + k0, ky) ⊗ Ĩ1(ky).
(13)

This retains only the most direct scattering path between
initial and final state and neglects all scattering paths that con-
tain both absorption and stimulated emission. In this limit,
the wavefunction along ky for a certain order n thus can be
obtained by a convolution of the wavefunction at the previous
order (n − 1) and the Fourier transform Ĩ1(ky) of the coupling
integral I1(y).

The coupling integral for the case of the CNT is shown in
figure 1(e). The magnitude of its Fourier transform, shown in
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Figure 2. Effect of the electron kinetic energy E0 on the near-field-induced diffraction by a 10 nm radius wire. The simulation parameters
are chosen as in figure 1, except for an initial longitudinal width of the electron wavepacket of 500 nm and an increased field amplitude of

EL = 0.5 V nm−1. (a)–(d) Final momentum density
∣
∣
∣ψ̃f

(
kx , ky

)∣∣
∣
2

for electron energies between 50 eV and 10 keV, showing a maximum
number of diffraction orders at E0 = 650 eV. (e) and (f) Energy dependence of the final momentum density for ky = 0 (e), showing a
reduction in Δkx with E0, and for kx = 0 (f). The insets show sections of (e) and (f) of the lower-kinetic energy region. A high Δky and thus
a strong transverse deflection can be seen for kinetic energies around 100 eV due to the increased interaction time with the optical near field
(inset in (f)). For slower electrons, phase matching is no longer fulfilled.

the inset, reveals the peak splitting of ∼2Δky that defines the
peak positions in the diffraction pattern. Figures 1(f) and (g)
show crosscuts of the final momentum distribution of the elec-

tron,
∣∣∣ψ̃f

∣∣∣2, along the colored lines in figure 1(b). For a given

Δky, the cross sections in figure 1(f) show dominant peaks that
are separated by 2Δkx , since the final states differ by an even
number of photon transitions. In addition, fainter peaks can
be seen between these due to the finite transverse momentum
spread of the initial wavepacket and the finite width of Ĩ1(ky).
Crosscuts along ky at different photon orders (solid lines in
figure 1(g)) show peaks that are spaced by 2Δky, for the same
reason as in figure 1(f). For such comparatively weak driv-
ing fields, the pattern is reasonably well reproduced by the
approximation in equation (13) (dashed lines).

It is evident that the interference patterns for cross sections
at consecutive photon orders shift by Δky. This shift resem-
bles the phase shift of the double-slit interference pattern in
the Aharonov–Bohm effect that is induced by the local vec-
tor potential of a current-carrying solenoid. There, the elec-
tron passes on opposite sides of the solenoid, traveling either
parallel or antiparallel to the vector potential. This introduces
a transverse phase modulation on the electron wavefunction
that leads to the fringe shift. In our case, the phase modula-
tion is induced by traversing the scalar potential in the vicinity
of the nanostructure (equation (5)). The near-field potential
flips sign on the opposing sides of the nanowire (figure 1(a)),
introducing a transverse phase modulation. The amplitude of
the phase modulation scales linearly with laser field strength.
The field-controlled change in Δϕ(x, y) induces the π-phase
shifts of the diffraction pattern along ky between consecutive
photon orders n. This light-driven phase modulation offers
a conceptually novel approach towards coherent control of
ultrafast electron diffraction by strong local optical near fields.

In order to investigate how the coupling between electron
and near field scales with the kinetic energy of the electron, we
now perform the same calculation with different E0. To obtain
sufficiently high coupling for all considered energies, the inci-
dent field strength is increased to EL = 0.5V nm−1. The longi-
tudinal spread of all wavepackets is adjusted to 500 nm, such
that all examined electrons have a temporal spread exceeding
one optical period. Exemplarily, the resulting final momen-

tum distributions
∣∣∣ψ̃f

∣∣∣2 for four different energies are shown in

figures 2(a)–(d). Since an increase in electron energy leads to a
decrease in the longitudinal momentum change Δkx , the axes
in the figures are scaled accordingly. For low-energy electrons,
the increased field strength leads to significant contributions
from multiple interfering excitation pathways, including both
absorption and stimulated emission of photons. This results in
a more complex diffraction pattern in figures 2(a) and (b) than
seen in figure 1(b). With increasing electron kinetic energy
(figures 2(c) and (d)) the phase mismatch increases, reducing
the effective coupling strength. Figure 2(e) shows crosscuts

of
∣∣∣ψ̃f

∣∣∣2 at ky = 0 along the kx-direction as function of ini-

tial kinetic energy. Here, higher photon orders are only visible
for an efficient electron-near-field coupling, which appears for
the given CNT radius R = 10 nm only between 100 eV and
2 keV. Additionally, a full depletion of the ground state is
visible around 650 eV and 3.3 keV. Analogously, figure 2(f)

shows crosscuts of
∣∣∣ψ̃f

∣∣∣2 along ky at kx = 0. As for figure 1(e),

occupation of higher ky-states decreases with increasing elec-
tron energy. More importantly, the resulting angular deflection
α = atan

(
ky/k0

)
for a fixed ky increases for lower electron

velocities, leading to angles of up to α ≈ 1◦ for electron ener-
gies around 100 eV, which can be easily resolved in UPEM.

In a next step we investigate the influence of the CNT radius
on the scattering for an initial electron energy of 100 eV. For
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Figure 3. Effect of the wire radius R on the near-field-induced diffraction of a 100 eV electron wavepacket. The transverse width of the
electron is adapted to 2R and the field amplitude EL is set to 0.5 V nm−1, all other simulation parameters are chosen as in figure 1. (a)–(d)
Final momentum density for wire radii between 7 nm and 60 nm. (e) and (f) Cross sections through the final momentum density along kx (e)
for ky = 0 and along ky (f) for kx = 0. For wire radii below 5 nm, the interaction time is too short to reach meaningful coupling strengths.
Phase matching cannot be fulfilled with radii much above 10 nm, resulting in an oscillating behavior of the coupling strength as a function of
wire radius for fixed kx. On top of that, an overall decrease in interaction strength with radius is apparent.

each radius, the transverse width of the electron wavepacket
is set to 2R, to ensure that it passes the opposing sides of
the CNT. Figures 3(a)–(d) show resulting diffraction patterns
at four selected radii. It is evident that the coupling strength
reduces with increasing radius. In figure 3(e) crosscuts of the
diffraction pattern along kx at ky = 0 are shown in dependence
of the radius. Here, additionally to the overall decrease in cou-
pling strength, peaks up to the sixth photon order can be seen
in kx direction for different radii. The emerging and vanish-
ing of the higher order peaks with increasing radius shows
recurrent efficient coupling also for larger radii. Similar oscil-
lations in coupling efficiency are also observed in the crosscuts
along ky at kx = 0 in figure 3(f), but with decreasing Δky for
increasing radius. This can be explained by the reduced ampli-
tude of the Fourier components of Φ̃(kx = Δkx , ky) at large ky

values for increasing CNT radii. For 100 eV electrons and a
laser wavelength of 2000 nm, we find an optimum coupling
efficiency for a radius of 10 nm. Treating the electron as a
classical point-particle this would correspond to a transit time
through the near-field of exactly a half period of the optical
cycle 2R = vT/2 = π/Δkx ≈ 20 nm [28].

The simulations show how efficient coupling between the
near field of an optically excited, nanometer-sized structure
and low-kinetic-energy electrons can be achieved. However,
wires with 10 nm radius that are transparent for slow elec-
trons are not readily available experimentally. In figure 4 we
extend these simulations to a realistic sample geometry, pro-
viding a similar near-field potential. We consider a nanores-
onator, which is milled into a free-standing gold film with a
thickness of 13 nm, shown in figure 4(a). The scalar potential
for this geometry is modelled as the potential of two dipole
distributions, separated by 23 nm in y-direction, in Lorenz
gauge. The dipole distributions account for the finite sam-
ple size by convoluting a point dipole potential with a 2D-
Gaussian function with 13 nm FWHM in both dimensions.
The resulting potential ΦNF(x, y) is displayed in figure 4(b),

Figure 4. Simulation of near-field low-energy electron diffraction
by a realistic sample geometry. (a) SEM image of a nanoresonator
milled into a 13 nm-thick free-standing gold film. The gap is 10 nm
wide (see inset). (b) Near field potential around the optically excited
structure, approximated by dipole distributions on both tips of the
nanoresonator. Typical field enhancement factors of such gap
antennas are above 20, suggesting that such potentials can be
reached with incident amplitudes EL below 0.03 V nm−1. (c) Final
momentum density for an incident electron wavepacket with 20 fs
time resolution, 100 eV energy and 6 nm transverse spread. The
transverse spread is chosen to let the electron pass through the
nanogap. The energetic width of this bandwidth-limited wavepacket
is 0.05 eV. (d) Same as in (c) but for a wavepacket with a larger
kinetic energy spread of 2 eV, which is chirped to the same
longitudinal spread of 20 fs. Both simulations reveal a pronounced
angular deflection of the electron by the localized near-field
interaction.

reproducing the potential of a plasmonic gap mode obtained
by FDTD simulations reasonably well. The amplitude of the
potential is chosen such that the maximum field strength inside
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the resonator is 0.5 V nm−1, corresponding to an incident field
strength of EL < 0.03 V nm−1 for typical field enhancement
factors, defined as the ratio between local and incident field
amplitudes, of ∼20 for such resonators. For the simulation we
assume electrons with 100 eV kinetic energy, propagating in
the x-direction, perpendicular to the sample plane. The longi-
tudinal spread is chosen to give a bandwidth-limited temporal
spread of 20 fs. The transverse spread is limited to 5 nm to
emulate the measurable signal of electrons passing the gap
and impinging on a detector. The resulting diffraction pattern∣∣∣ψ̃f

(
kx , ky

)∣∣∣2 resembles the results obtained for the wire geom-

etry and is shown in figure 4(c). However, the spread in kinetic
energy for such a bandwidth-limited electron is only 0.05 eV,
which is magnitudes smaller than what is experimentally feasi-
ble. To resemble a possible experiment more closely, the band-
width is increased to 2 eV, while the temporal spread is kept
at 20 fs by propagating the initial wavefunction through vac-
uum for about 2 ps. The resulting diffraction pattern is shown
in figure 4(d). Compared with the bandwidth-limited result,
the individual photon orders in kx are more washed out. How-
ever, a pronounced deflection of more than 1◦ remains visible,
which appears to be readily detectable with available UPEM
setups. The physical principles underlying the generation of
the diffraction patterns are very similar to those discussed
above.

4. Conclusion

We analyzed the 2D diffraction of nonrelativistic electron
wavepackets by the optical near field potential of individual,
small nanostructures. For this, we have performed analytical
and numerical calculations of the 2D Schrödinger equation.
Their solutions show rich diffraction patterns in momentum
space. In the direction along the electron propagation, we
observe the well-known PINEM sidebands at multiples of the
photon energy. Additionally, a diffraction pattern is seen in the
transverse direction, which becomes even more pronounced
for slow electrons with ∼100 eV kinetic energies. This mod-
ulation of the wavepacket at the specific photon orders is
defined by the transverse variation of the near field potential
at the corresponding longitudinal Fourier components. Higher
photon-order interactions emerge through higher powers of the
transverse potential variation and result in stronger structured
transverse diffraction patterns.

The analytical calculations allow for an efficient study of
the effect of experimental parameter variation on the diffrac-
tion pattern like, for example, the electron kinetic energy,
structure size, the shape of the potential, or the electric field
strength. Specifically for slow electrons, we identify the con-
ditions for optimum coupling. For nanostructures in the 10 nm
range, the simulations predict efficient scattering with wide-
angle angular deflection patterns that appear well resolvable
in existing ultrafast low-energy electron microscopes. Mak-
ing use of the intrinsic high temporal resolution of UPEM,
this opens the way to using slow electrons for a full vectorial
characterization of the dynamics of transient, localized near

fields around single nanostructures. The introduced analyti-
cal approach can furthermore easily be expanded to include
more elaborated electron-near field interaction schemes, like
for example more complex geometries or multiple, consecu-
tive excitations. Such an expanded model will be a significant
support for future experiments.
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