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Abstract We give a detailed and self-contained description of a recently developed theoretical and numerical
method for the simulation of three identical bosonic alkali-metal atoms near a Feshbach resonance, where the
Efimov effect is induced. The method is based on a direct construction of the off-shell two-body transition matrix
from exact eigenfunctions of the embedded two-body Hamiltonians, obtained using realistic parameterizations
of the interaction potentials which accurately reproduce the molecular energy levels. The transition matrix is
then inserted into the appropriate three-body integral equations, which may be efficiently solved on a computer.
We focus especially on the power of our method in including rigorously the effects of multichannel physics on
the three-body problem, which are usually accounted for only by various approximations. We demonstrate the
method for 7Li, where we recently showed that a correct inclusion of this multichannel physics resolves the
long-standing disagreement between theory and experiment regarding the Efimovian three-body parameter.
We analyze the Efimovian enhancement of the three-body recombination rate on both sides of the Feshbach
resonance, revealing strong sensitivity to the spin structure of the model thus indicating the prevalence of
three-body spin-exchange physics. Finally, we discuss an extension of our methodology to the calculation of
three-body bound-state energies.

1 Introduction

The Efimov effect constitutes a central result of few-body quantum physics, describing the sudden appearance
of an infinite tower of three-body bound states in any system with short-range but resonant pairwise interactions
[1–6]. In the simplest case of zero-range contact interactions, parameterized by an s-wave scattering length a,
the associated spectrum of Efimov states has discrete scale invariance relative to a characteristic scaling factor
λ = eπ/s0 , where s0 = 1.00624 is a universal dimensionless number. In configuration space this invariance
originates from an induced attractive interaction scaling precisely as 1/R2, where R is the size of the three-
body system. For more realistic interactions with a finite range, the scale invariance of the Efimov spectrum
is broken through the appearance of a characteristic length scale, now typically referred to as the three-body
parameter. Initially, the three-body parameter was expected to be highly sensitive to short-range details of the
system, thus making any reasonably universal prediction for its value from two-body physics unlikely unless
the interaction could be characterized by a large universal effective range [7,8].

Interest in the Efimov effect found a resurgence once it was realized that it could be experimentally accessed
in trapped ultracold atomic gases, where precision control of the scattering length is enabled through the use
of magnetic Feshbach resonances [9–11]. In this scheme, an Efimov state can be experimentally characterized
by scanning the scattering length on both the repulsive and attractive side of the resonance, whilst monitoring
the loss of atoms from the trap. Then, Efimovian enhancement of three-body recombination processes leads
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to a log-periodic modulation of the atomic loss rate as a function of scattering length, at a characteristic
frequency set by the Efimov constant s0 [3,4,12]. The three-body parameter, typically expressed in terms of
the characteristic scattering lengths a± and trimer widths η±, can then be directly extracted from the absolute
phase of the oscillations.

By exploiting Feshbach resonances, the three-body parameter has been measured in a wide array of different
atomic species amicable to laser cooling. Surprisingly, these experiments have revealed that the three-body
parameter for broad Feshbach resonances is universally determined as a− ≈ −9.7 rvdW, where rvdW is the
range of the two-body interaction [13–15]. This van der Waals universality contradicts the earlier expectation
that the three-body parameter would be sensitive also to the nonuniversal atomic structure, thus reigniting
theoretical interest in the Efimov effect. Detailed studies of the three-body problem subsequently revealed that
van der Waals universality originates from a characteristic repulsive barrier in the three-body potential, which
shields the particles from probing the non-universal short range [16,17]. Later, this framework was extended
further to show how the three-body parameter obeys distinct universality classes dependent on the shape of
the two-body interaction [18].

The studies of van der Waals universality provide a satisfactory picture of the Efimov effect for broad
Feshbach resonances, where the effective range of the two-body interaction is small [11]. In the opposite limit
of a narrow Feshbach resonance, with large effective range, the three-body parameter is also expected to be
universally determined [8,19], although experimental verification in this regime is lacking due to difficulties
in working with very small magnetic field ranges. Experimental data is available however, in the much more
challenging regime of intermediate resonance widths, where no single dominant two-body length scale can be
defined. Here, theoretical models based on multichannel two-body interactions generally predict an increase of
the value of |a−| as the resonance narrows, which then smoothly connects to the analytic regime of very narrow
resonances where a− starts to scale directly with the effective range [20–23]. Experimental measurements of
a− obtained near intermediate Feshbach resonances in 39K are generally in line with this prediction [24–
26], giving credence to the fundamental assumptions about the relevant microscopic physics on which these
models are based. Puzzling however, has been the case of 7Li, where the value of |a−| has been measured to be
smaller than the universal van der Waals value, even though the associated Feshbach resonances are actually
narrower than those used in potassium [27–30]. Furthermore, most known theoretical models, even those that
attempted to include non-universal details of the two-body interaction, could not reproduce these findings
to any satisfactory degree [31–33]. This lithium few-body puzzle, became additionally interesting when new
measurements revealed the existence of an Efimov state above the atom-dimer scattering threshold, which
was subsequently found to originate from a universal reshape of the three-body interaction for intermediate to
narrow Feshbach resonances [34]. At roughly the same time, the anomalous value of a− was finally reproduced
in a numerical calculation, which included the effects of strong three-body spin-exchange interactions, thus
resolving the long-standing discrepancy between theory and experiment [35].

Following up on the developments above, in this article we discuss in detail a theoretical and numerical
method for the three-body problem which allows for the inclusion of all spin degrees of freedom of the
interacting atoms, as was required in resolving the lithium three-body puzzle regarding the three-body parameter
[35]. We subsequently discuss the extension of this method to also calculate the energy of Efimov resonances,
which are finding increased experimental relevance [34], and apply the method for a study of three-body
recombination in 7Li on both sides of the Feshbach resonance, including also the regime of positive scattering
length where a shallow dimer state exists. The paper will be structured as follows. In Sec. 2 we discuss in
detail our theoretical and numerical methods for obtaining both the three-body recombination rates and the
energies of Efimov states in systems of three interacting ultracold alkali-metal atoms. Then in Sec. 3 we give
and discuss the results we obtain upon applying this model to the 7Li system specifically. Finally we conclude
this paper in Sec. 4, and give some outlook for further research.

2 Method

In this section we describe in detail our multichannel method for calculating both the three-body recombination
rate and three-body bound state energy near a Feshbach resonance, for three bosonic alkali-metal atoms with
mass m labelled with Latin indices j = 1, 2, 3. We work in Jacobi coordinates [36], meaning that the three-
body system is subdivided into a pair + a third particle. We specify the choice of pair by a Greek index α, equal
to the index j of the third particle. For example if α = 3, and particles have individual positions x j relative to
some arbitrary origin, then the set of Jacobi coordinates is defined as,
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r3 = x1 − x2,

ρ3 = x3 − 1

2
(x1 + x2),

R = 1

3
(x1 + x2 + x3).

(1)

Similarly, if particles have individual momenta k̃ j ,

k3 = 1

2

(
k̃1 − k̃2

)
,

p3 = 2

3
k̃3 − 1

3
(k̃1 + k̃2),

K = k̃1 + k̃2 + k̃3.

(2)

We refer to r3,k3 as the dimer separation/momentum and ρ3,p3 as the atom-dimer separation/momentum. We
assume translational invariance of the total three-body system, meaning that the trapping potential is essentially
flat in the regime of interest, such that it is valid to set R = 0 or K = 0. We also note that the particles are
indistinguishable, so any choice of Jacobi set is arbitrary, and we will see later that all equations are by nature
symmetrized with respect to different choices of α.

2.1 Hamiltonian

In absence of interactions, a system of three alkali-metal atoms moving in an external magnetic field B is
described by the sum of single-particle Hamiltonians [22,37],

Ĥ0 =
3∑
j=1

[
T̂ j + Ĥhf

j + ĤZ
j (B)

]
. (3)

Here T̂ j is the kinetic energy operator for particle j , and Ĥhf
j , ĤZ

j (B) are the single-particle hyperfine and
Zeeman Hamiltonians which account for the spin state of the particle. They are defined explicitly as,

Ĥhf
j = Ahf

j ŝ j · î j ,
ĤZ

j (B) =
(
γ n
j î j + γ e

j ŝ j
)

· B,
(4)

where ŝ j and î j are the electronic and nuclear spin operators, Ahf
j is the hyperfine energy, and γ

n/e
j are the

nuclear and electronic gyromagnetic ratios. Upon diagonalizing Ĥhf
j + ĤZ

j one obtains a spectrum of single

particle eigenstates with magnetic field dependent energy εc j , as shown in Fig. 1a for the case of 7Li. By
convention, these states are labelled in alphabetical order with respect to increasing energy, or alternatively by
the hyperfine state | f j ,m f j 〉 to which they adiabatically connect when |B| → 0. Here f̂ j = ŝ j + î j , and m f j
is the associated projection on the magnetic field direction.

The total Hamiltonian including interactions is written as,

Ĥ = Ĥ0 +
∑
α

V̂α, (5)

where V̂α represents the two-body interaction for the pair α. For neutral atoms at large interparticle separations
(rα → ∞), the dominant contribution to the interaction is given by the attractive van der Waals interaction, i.e.
Vα(rα) → −C6/r6

α . Here the dispersive coefficient C6 defines the characteristic van der Waals length scale

rvdW = 1
2

(
mC6
h̄2

) 1
4 ≈ 32.4863a0. At shorter separations, where rα � rvdW, the overlapping wave functions

of the valence electrons are projected into either singlet (S = 0) or triplet (S = 1) spin configurations. In this
regime, the interaction accordingly decomposes into two components,

V̂α = V̂ 0
α P̂0

α + V̂ 1
α P̂1

α, (6)
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Fig. 1 Characteristics of the coupled-channels few-body problem [38]. In a we show the spectrum εc j of channel states for a
single 7Li atom, using the labelling convention as explained in the main text. States highlighted in red correspond to the initial
states studied in this work, which possess Feshbach resonances at the magnetic field values indicated by the vertical dashed lines.
In (b) we plot the two-body singlet and triplet potential energy surfaces V S

α (rα), as formulated for 7Li in Ref. [39]

where P̂ S
α projects the pair into the electronic spin state S. The detailed shape of the singlet and triplet molecular

potentials V̂α
S

is generally very complicated, depending on non-universal detail of the atomic structure. We
use a realistic parameterization of the molecular potential energy surface obtained by fitting two-body coupled-
channels calculations to low-energy scattering and spectroscopic data [39], as plotted in Fig. 1(b).

2.2 Three-Body Basis

In a uniform system, the state of the paired particles can be represented by the plane wave state |kα〉 [40],
where,

〈rα|kα〉 = 1

(2π)
3
2

eikα ·rα ,
∫

d3kα|kα〉〈kα| = I (7)

These basis states are not very efficient for the present computations since they do not exploit the spherical
symmetry of the pairwise interaction. Instead, we work in a partial wave basis |kα, lα,mlα 〉, where lα is the
orbital angular momentum quantum number of the dimer subsystem, and mlα the associated projection on the
quantization axis. The normalization reads [41],

〈k′
α, l ′α,m′

lα |kα, lα,mlα 〉 = 1

4π

δ(k′
α − kα)

k′
αkα

δlαl ′α δmlαm
′
lα

,

∑
lα,mlα

∞∫

0

dk 4πk2
α|kα, lα,mlα 〉〈kα, lα,mlα | = I.

(8)

As follows from the Wigner-Eckart theorem, any spherically symmetric operator in this basis is independent
of mlα and diagonal in lα . The position and momentum projections are,

〈rα|kα, lα,mlα 〉 = i lα√
2π

ĵlα (kαrα)

kαrα
Y
mlα
lα

(r̂α),

〈k′
α|kα, lα,mlα 〉 = 1

2
√

π

δ(kα − k′
α)

kαk′
α

Y
mlα
lα

(k̂′
α),

(9)

where ĵlα (kαrα) is the Riccati-Bessel function [40], and Y
mlα
lα

(k̂α) a spherical harmonic.
The extension to the three-body sector follows naturally by defining an equivalent basis state |pα, λα,mλα 〉

for the atom-dimer degree of freedom. As before, pα is the atom-dimer momentum, λα the atom-dimer angular
momentum, and mλα its projection. Total rotational symmetry of the system then motivates coupling the dimer
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Fig. 2 Three-body channel energies EC̄,c for 7Li as a function of magnetic field, for two values of the total magnetic quantum
number MF relevant to this work. The state with lowest energy, setting the three-body scattering threshold, is drawn in red.
Vertical dashed lines show the location of the Feshbach resonance studied in this work

and atom-dimer angular momenta to obtain the total angular momentum L = lα + λα [41]. The associated
basis states are formed as,

|lα, λα, L , ML〉 =
∑

mlαmλα

〈lα,mlα , λα,mλα |L , ML〉|lα,mlα , λα,mλα 〉. (10)

Here 〈lα,mlα , λα,mλα |L , ML〉 is a Clebsch-Gordan coefficient. Spherical symmetry dictates that L , ML are
both good quantum numbers. Including also the absolute momenta, we now write the total three-body partial
wave basis as |kα pα(lαλα)LML〉 [41]. It is an eigenstate of the kinetic energy operator,

∑
j

Tj |kα pα(lαλα)LML〉 =
(
h̄2k2

α

m
+ 3

4

h̄2 p2
α

m

)
|kα pα(lαλα)LML〉. (11)

Going forward we assume L = ML = 0, as this term gives the dominant contribution to the three-body
recombination rate at low energies [42]. This immediately enforces that λα = lα , so we only need a single
orbital quantum number lα to specify the three-body state.

To describe the spin state of particles, we do not work directly with the hyperfine states | f j ,m f j 〉 as defined
in the previous section, but instead use the basis of atomic or Zeeman single-particle states |ξ j 〉 = |msj ,mi j 〉,
where msj ,mi j are the magnetic projections of the electronic and nuclear spin respectively. In the three-body
sector, the only rigorously conserved quantum number is the total magnetic spin projection MF ,

MF =
3∑
j=1

msj +
3∑
j=1

mi j ≡
3∑
j=1

m f j . (12)

This means that, for any particular choice of Jacobi set α, the spin projection for the dimer particles equals
MF −m fα , which is known to be preserved by Vα . Hence the spin state of the third particle, |ξα〉, will determine
the set of coupled spin states for the dimer subsystem, henceforth notated as |
α〉. For identical particles, the
dimension of this set can be reduced by symmetrization,

|
̄α〉 = 1 + (−1)l P̂α√
2 (1 + δα)

|
α〉, (13)

Here P̂α denotes a permutation operator that exchanges the two paired particles, and δα equals unity when
the two particles are in identical states and zero otherwise. The factor (−1)l corrects for the spatial parity due
to the angular momentum. Now, in the three-body sector, matrix

∑3
j=1〈
̄′

α, ξ ′
α|Ĥhf

j + ĤZ
j |
̄α, ξα〉, which is

diagonalized to obtain eigenstates |C̄α, cα〉, referred to as channel states, with energies EC̄α,cα = εC̄α
+ εcα . In

Fig. 2 we illustrate this three-body channel spectrum for 7Li, given two distinct values of the total projection MF .
Here one observes clearly how MF sets the total number of coupled spin states, and accordingly influences the
complexity of the three-body calculation. For the remainder of this section, we will set E = 0 at the three-body
scattering threshold, given by the lowest three-body channel energy as highlighted in red in Fig. 2.

This concludes the definition of the three-body basis, |kα pαlα; C̄αcα〉 ≡ |kα pα(lαlα)00〉 ⊗ |C̄αcα〉. For
notational brevity, we will suppress the Jacobi index α on momenta and quantum numbers going forward, as
the appropriate Jacobi index can always be inferred from the surrounding equation.



   85 Page 6 of 17 J. van de Kraats , S. J. J. M. F. Kokkelmans

2.3 Off-Shell Two-Body Transition Matrix

As input to the three-body calculation, we require knowledge of the two-body transition operator for a given
partial wave l and third particle state c, denoted as t̂ lcα (z). Here z is the two-body energy, which will have to
be evaluated off-shell as the two-body subsystem may lose or gain energy by interacting with the third particle
[36]. In general, the transition operator can be defined through the Lippmann-Schwinger equation, which has
the formal solution [40],

t̂ lcα (z) = V̂α + V̂α ĝ
lc
α (z)V̂α, (14)

with ĝlcα (z) = (z − ĥlcα )−1 the two-body Green’s operator, and two-body Hamiltonian ĥlcα . Defining two-body
eigenstates as ĥlcα |ψν

lc〉 = εν
lc|ψν

lc〉, with state index ν, the Green’s operator can be expanded as,

ĝlcα (z) =
∑
ν

|ψν
lc〉〈ψν

lc|
z − εν

lc
, (15)

Inserting this expansion into Eq. (14) and evaluating in the two-body partial wave and spin basis gives,

〈k′l; C̄ ′|t̂ lcα (z)|kl; C̄〉 = 〈k′l; C̄ ′|V̂α|kl; C̄〉 +
∑
ν

〈k′l; C̄ ′|V̂α

|ψν
lc〉〈ψν

lc|
z − εν

lc
V̂α|kl; C̄〉. (16)

Here we have integrated away the angular degrees of freedom, such that the inconsequential quantum number
ml drops out. We will now use Eq. (16) to construct the transition matrix from the two-body eigenfunctions
|ψν

lc〉, which we obtain by solving the associated quantum mechanical scattering problem in position space.
First, we exploit spherical symmetry of V̂α by expanding the wave function as,

〈r |ψν
lc〉 =

∑

C̄

uν

lcC̄
(r)

r
|C̄〉, (17)

where uν

lcC̄
(r) is the radial wave function for each individual two-body scattering channel. It obeys the

radial Schrödinger equation,
[
h̄2

m

(
− d2

dr2 + l(l + 1)

r2

)
+ Vα(r)

]
uν

lcC̄
(r) = (

εν
lc − εC̄

)
uν

lcC̄
(r). (18)

We solve Eq. (18) via a discrete variable representation (DVR) [43], with a transformed grid in r for increased
efficiency [44,45]. Although such methods are typically used to calculate molecular binding energies, construct-
ing the transition matrix requires not just the bound states but also the scattering states, for which εν

lc −εC̄ > 0.
In the DVR these states are not exact, due to the discretization of the coordinate space via a hard-box boundary
condition at some (large) two-body separation rb, which should far exceed all other length scales. For a detailed
study of the effects of this box on the resulting transition matrix and three-body observables, we refer to ref.
[46]. Based on the findings of that reference, we will use rb = 2000rvdW in all our numerical calculations for
7Li.

Upon obtaining uν

lcC̄
(r) and εν

lc we calculate the matrix elements 〈k′l; C̄ ′|t̂ lcα (z)|kl; C̄〉 directly from
Eq. (16). The momentum grid k is composed using Nk zeros of the spherical Bessel function, such that
jl(krb) = 0, up to a maximum two-body momentum kmax. Once the transition matrix is obtained, we diago-
nalize to obtain the spectral expansion,

〈k′l; C̄ ′|t̂ lcα (z)|kl; C̄〉 =
∑
n

〈k′; C̄ |χn
lc(z)〉τ nlc(z)〈χn

lc(z)|k; C̄〉, (19)

with eigenvalues τ nlc(z) and form factors 〈k; C̄ |χn
lc(z)〉. Once more we suppress the Jacobi index α on the right-

hand side. Note that we represent eigenfunctions of the two-body Hamiltonian with index ν and eigenfunctions
of the transition matrix with index n, and will maintain this convention going forward.

The number of terms n for each l, c and a given value of the energy z equals the number of grid points in k
times the number of two-body channels. As this number is typically too large to store the full transition matrix in
memory, we sort the spectral expansion (19) with respect to decreasing magnitude of τ nlc(z), and subsequently
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truncate the expansion at a term ncut, which sets the precision to which we include the transition matrix. In
that case, Eq. (19) represents a separable approximation to the formal transition matrix, which will allow us to
write the three-body equations in the next sections into a one-dimensional form that can be efficiently solved
on a computer [36]. For further discussion of different separable approximations to the transition matrix and
their consequences for studying Efimov physics, we refer the interested reader to Ref. [47].

2.4 Three-Body Recombination Rate

We are interested in the transition rate from a free zero-energy three-body state |�in〉 to an outgoing atom-dimer
state |(p, c), ϕν〉. The latter describes a state in which the pair is in the molecular state |ϕν〉, while the third
particle is in a plane wave state |p; c〉 with atom-dimer momentum p and spin state c. Such a process induces
a particle density loss dn/dt = −K3 n3, where the recombination rate constant K3 is determined as [48–50],

K3 = 12πm

h̄
(2π h̄)6 lim

E→0

∑
ν,c

∫
dp̂ p|〈(p, c), ϕν |Ûα0(E)|�in〉|2. (20)

Here Ûα0(E) is the appropriate three-body transition operator. By inserting a complete set of three-body
partial-wave basis states, one finds,

∫
dp̂|〈(p, c), ϕν |Ûα0(E)|�in〉|2 = 4π

∑
l

|〈ϕν
l pl; c|Ûα0(E)|kp0; C̄incin〉|2. (21)

Here we have defined explicitly the s-wave incoming state |�in〉 = limE→0 |kp0; , C̄incin〉, and have decom-
posed the bound state |ϕν〉 into partial-wave components |ϕν

l 〉 which capture the state of the pair. Accordingly,
the full three-body state can then be written as |ϕν

l pl; c〉.
To evaluate the matrix elements of Ûα0(E), we solve the appropriate integral equations for three identical

particles as introduced by Faddeev [51],

Ûα0(E) = Ĝ−1
0 (E) + P̂ T̂α(E)Ĝ0(E)Ûα0(E), (22)

known also as the Alt-Grassberger-Sandhas (AGS) equations [41,52]. Here Ĝ0(E) = (E − Ĥ0)
−1 is the

uncoupled three-body Green’s function, and P̂ = P̂+ + P̂− is the sum of cyclic and anticyclic permutation
operators of the three particle indices. The two-body problem of the previous section enters through the
generalized two-body transition matrix, defined as,

T̂α(E) = V̂α + V̂αĜα(E)V̂α, (23)

where Ĝα(E) = (E − Ĥ0 − V̂α)−1. Note that by this definition T̂α(E) is diagonal in the coordinates of the
third particle, and its action on the pair is equivalent to the two-body transition matrix. The AGS equation can
be rewritten to,

Ûα0(E) = 1

3
Ĝ−1

0 (E)(1 + P̂) + P̂ T̂α(E)Ĝ0(E)Ûα0(E). (24)

Since the first term vanishes on the energy shell, we may as well define a new operator ˆ̄Uα0(E) =
P̂ T̂α(E)Ĝ0(E)Ûα0(E), which then obeys,

ˆ̄Uα0(E) = 1

3
P̂ T̂α(E)(1 + P̂) + P̂ T̂α(E)Ĝ0(E) ˆ̄Uα0(E). (25)

Finally, for identical particles it is valid to write P̂ = 2 P̂+, such that,

ˆ̄Uα0(E) = 2

3
P̂+T̂α(E)

(
1 + 2 P̂+

)
+ 2 P̂+T̂α(E)Ĝ0(E) ˆ̄Uα0(E). (26)
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This equation may now be used to evaluate the matrix element 〈ϕν
l pl; c|Ûα0(E)|kp0; C̄incin〉, by inserting

complete sets of three-body basis states |kpl; C̄c〉 between all operators. The required matrix elements of the
transition operator read,

〈kpl; C̄c|T̂α(E)|k′ p′l ′; C̄ ′c′〉
= 1

4π

δ(p − p′)
pp′ δll ′δcc′

∑
n

〈k; C̄ |χn
l (Zc(p))〉τ nl (Zc(p))〈χn

l (Zc(p)) |k′; C̄ ′〉, (27)

where we have inserted the spectral expansion in Eq. (19). We have also defined,

Zc(p) = E − 3

4

h̄2 p2

m
− εc, (28)

which represents the non-interacting energy of the pair. For brevity we suppress the third particle index c for
τ and χ , as it can be inferred from the energy argument Zc. To write the AGS equation we also need the
matrix elements of P̂+, referred to as the recoupling coefficients [41]. We follow Ref. [22] and decompose the
operator as P̂+ = P̂s+ P̂c+, where P̂s+ acts only on the spin indices and P̂c+ acts only on coordinates. The matrix
elements of P̂c+ are well known in literature and read [41],

〈kpl|P̂c+|k′ p′l ′〉 = 1

32π2 (−1)l
′√

(2l + 1)(2l ′ + 1)

×
1∫

−1

dx
δ

(√
p′2 + 1

4 p
2 + pp′x − k

)

k
√
p′2 + 1

4 p
2 + pp′x

δ

(√
p2 + 1

4 p
′2 + pp′x − k′

)

k′
√
p2 + 1

4 p
′2 + pp′x

× Pl

⎡
⎣

1
2 p

2 + pp′x

p
√
p′2 + 1

4 p
2 + pp′x

⎤
⎦ Pl ′

⎡
⎣

1
2 p

′2 + pp′x

p′
√
p2 + 1

4 p
′2 + pp′x

⎤
⎦ ,

(29)

where Pl(x) is the Legendre polynomial. Upon inserting into the AGS equation and integrating away the
δ-functions, one finds that the recoupling of angular momenta can be conveniently expressed by the function,

Pll ′(p, q, x) = (−1)l
′√

(2l + 1)(2l ′ + 1)Pl

[
1
2 p

2 + pqx

pπ(q, p, x)

]
Pl ′

[
1
2q

2 + pqx

qπ(p, q, x)

]
, (30)

where we have adopted the following notation from Ref. [41],

π(p, q, x) =
√
p2 + 1

4
q2 + pqx . (31)

The spin permutation operator may be calculated following the method of Ref. [22]. For example, if we choose
α = 3 it is given as,

〈C̄3c3; l|P̂s+|C̄ ′
3c

′
3; l ′〉 = 1√

2(1 + δc1c2)

1√
2(1 + δc′

1c
′
2
)

[
δc1c′

2
δc2c′

3
δc3c′

1
+ (−1)lδc2c′

2
δc1c′

3
δc3c′

1

+ (−1)l
′
δc1c′

1
δc2c′

3
δc3c′

2
+ (−1)l+l ′δc2c′

1
δc1c′

3
δc3c′

2

] (32)

Here it is useful to note that for single-channel interactions, where particles are always in identical spin states,
P̂s+ forbids coupling to dimer states with l odd. Finally, to write the AGS equation as a linear set of algebraic
equations we realize that the atom-dimer state can be written explicitly in terms of the eigenfunctions of the
two-body transition matrix, following from the spectral expansion of Eq. (23),

T̂α(z) ≈ V̂α|ϕν
l pl; c〉〈ϕν

l pl; c|V̂α

z − εlν − 3
4
h̄2 p2

m − εc

for z ≈ εν
l + 3

4

h̄2 p2

m
+ εc. (33)
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It follows that we can write,

|ϕν
l pl; c〉 = Ĝ0(E)|χn

l (Zc(p))〉|pl; c〉, (34)

connecting each eigenstate ν of the two-body Hamiltonian with a unique term n in the spectral expansion of
the two-body transition matrix.

We are now finally in a position to write the AGS equation in the partial-wave representation. For notational
convenience we will write the recombination matrix element as,

Ū n
lc(p) = 〈ϕn

l pl; c| ˆ̄Uα0|000; C̄incin〉, (35)

which is stored numerically as a vector. The full AGS equation can then be written as,

Ū n
lc(p) = 2

3

∑
n′

∑
c′

Znn′
l0;cc′ (p, 0) τ n

′
0 (Zc′(0))

∑

C̄

〈χn′
0 (Zc′(0)) |0; C̄〉〈C̄c′|1 + 2 P̂s+|C̄incin〉

+ 8π
∑
l ′

∑
n′

∑
c′

∞∫

0

dq q2 Znn′
ll ′;cc′ (p, q) τ n

′
l ′ (Zc′(q)) Ū n′l ′

c′ (q).

(36)

Here we have defined the kernel function as,

Znn′
ll ′;cc′ (p, q) =
1

2

∑

C̄C̄ ′

1∫

−1

dx
〈χn

l (Zc(p)) |π(q, p, x); C̄〉〈π(p, q, x); C̄ ′|χn′
l ′ (Zc′(q))〉

E − h̄2

m

(
q2 + p2 + qpx

) − EC̄,c

Pll ′(p, q, x)〈C̄c|Ps+|C̄ ′c′〉. (37)

In these equations q is an integrated atom-dimer momentum, and x = p̂ · q̂.

2.5 Three-Body Bound States

The energy of three-body bound states can be obtained from a similar but homogeneous integral equation
[36,41,51]. It reads,

|�α(E)〉 = 2Ĝ0(E)T̂α(E)P̂+|�α(E)〉, (38)

for a bound state |�(E)〉 = (1+ P̂)|�α(E)〉 at three-body energy E < 0. Just like for the AGS/recombination
equation, the bound-state equation can be expressed in the partial-wave three-body basis. For a separable
transition matrix it can then be reduced to a one-dimensional integral equation by splitting off the dimer
degrees of freedom as,

〈kpl; C̄c|�α(E)〉 =
∑
n

τ nl (Zc(p)) 〈k; C̄ |χn
l (Zc(p; E))〉�nl

c (p; E)

E − h̄2k2

m − 3
4
h̄2 p2

m − EC̄,c

. (39)

The bound-state equation becomes,

�n
lc(p; E) = 8π

∑
l ′

∑
c′

∑
n′

∞∫

0

dq q2Znn′
ll ′;cc′ (p, q) τ n

′
l ′ (Zc′(q))�n′

l ′c′(q; E), (40)

again dependent on the kernel function defined in Eq. (37).
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2.6 Poles in the Transition Matrix

As follows from Eq. (33), the function τ nl (Zc(q)) has a pole whenever q = q̄nlc, where,

q̄nlc =
√

4m

3h̄2

(
E − εc − εnlc

)
, (41)

correspondent to the momenta where the energy of the dimer subsystem is exactly equal to a two-body bound
state. As is typical in scattering theory we circumvent these poles by adding an infinitesimal imaginary part
i0 to the energy [40,47], after which we can write,

τ nl
(
Zc(q ≈ q̄nlc)

) ≈ 4m

3h̄2

1

(q̄nlc)
2 − q2 + i0

. (42)

This ensures that the integrals in the recombination and bound-state equations converge to a finite but complex
value. In numerical practice we adjust our integral equations by subtracting and adding all integrals over the
divergent parts of the transition matrix. The subtracted term then ensures convergence of the discretized integral,
while the added term is evaluated analytically via the Sokhotski-Plemelj theorem, such that one obtains,

8π
∑
l ′

∑
n′

∑
c′

∫
dq q2 Znn′

ll ′;cc′ (p, q) τ n
′

l ′ (Zc′(q)) Ū n
l ′c′(q)

= 8π
∑
l ′

∑
n′

∑
c′

∫
dq q2 Znn′

ll ′;cc′ (p, q) τ n
′

l ′ (Zc′(q)) Ū n′
l ′c′(q)

− 8π
4m

3h̄2

∑
l ′

poles∑
n′

∑
c′

∫
dq(q̄n

′
l ′c′)2 Znn′

ll ′;cc′
(
p, q̄n

′
l ′c′

) 1

q̄n
′2

l ′c′ − q2
Ū n′
l ′c′(q̄n

′
l ′c′)

+ 8π
4m

6h̄2

∑
l ′

poles∑
n′

∑
c′

q̄n
′

l ′c′ Znn′
ll ′;cc′

(
p, q̄n

′
l ′c′

) [
ln

(
qmax + q̄n

′
l ′c′

qmax − q̄n
′

l ′c′

)
− iπ

]
Ū n′
l ′c′(q̄n

′
l ′c′)

(43)

Here the terms n ∈ poles are associated with dimer energies εnlc that fall in the range,

E − εc − 3

4

h̄2q2
max

m
< εnlc < E − εc − 3

4

h̄2q2
min

m
. (44)

Here qmin(max) is the minimum(maximum) momenta in the numerical grid used for q (see next section). At
the momenta q̄nlc the three-body recombination process is exactly on-shell. Hence, to obtain the three-body
recombination rate, we sum all |Ū n

cl(q̄
n
lc)|2. For the bound state energies we use Eq. (43) with Ū n

lc(p) → �n
lc(p).

2.7 Numerical Method and Parameters

To solve Eqs. (36) and (40) we first discretize the atom-dimer momenta p and q using Gauss-Legendre
quadrature [53], segmented into three sections as q1rvdW ∈ [

10−5, 10−2
]
, q2rvdW ∈ [

10−2, 1
]

and q3rvdW ∈
[1, qmaxrvdW]. Here qmax acts as an ultraviolet cut-off, which limits the maximum binding energy of dimers
that couple to the three-body complex. After discretization, both equations may be written as straightforward
matrix equations,

U = Z0 + Z τ U, (45)

whereU is a vector containing the elements Ū n
lc(p) or �n

lc(p). The vectorZ0 contains the inhomogeneous term,
which vanishes in the bound-state equation. The matrix Z contains the kernel function Z , and the diagonal
matrix τ contains the values of τ . In numerical practice, we are typically limited by the considerable memory
required to store the matrix Z , which restrains us both in the ultraviolet cut-off qmax and the maximum orbital
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quantum number lmax. We can however reduce the dimension of the matrix equation by separating all terms
into two distinct spaces, after which we can write a matrix equation for the terms in space 1 as,

U1 = Z̃0 + Z̃ τ 1 U1, (46)

where,

Z̃0 = Z0,1 + Z12

(
τ−1

2 − Z22

)−1
Z0,2

Z̃ = Z11 + Z12

(
τ−1

2 − Z22

)−1
Z21,

(47)

Such a two-space approach is more generally used in quantum physics when one desires to eliminate a subspace
of states whilst retaining the effects of their coupling to the states that remain, including for example the formal
theory of scattering resonances [10], and the mapping between the Hubbard and Heisenberg Hamiltonians in
condensed matter physics [54].

Assuming that the terms τ2 are small, we can make the first order approximation,

Z̃0 ≈ Z0,1 + Z12τ 2Z0,2

Z̃ ≈ Z11 + Z12τ 2Z21,
(48)

which significantly reduces the required memory as we do not need the elements Z22. Essentially the method
above amounts to another reduction on the number of terms in the expansion (19) for the transition matrix,
although now the terms are included to first order instead of neglected entirely.

Although the bound-state equation looks superficially simpler than the recombination equation, finding its
solution requires some iterative procedure in the three-body energy E until one obtains a bound state energy.
This iteration is complicated by the fact that the Efimov trimers we look for are embedded in the atom-dimer
continua associated with deep dimer states. Hence, the Efimov state is not a true bound state but rather a
three-body resonance with complex energy E∗ = Re(E∗) − i�/2, where � is the energetic width of the state
which defines a characteristic lifetime τtrimer = h̄/�. To simplify the search for bound states, we assume the
Efimov state to be long lived enough such that Re(E∗) � �. Then we scan the absolute logarithm of the

determinant D(E) = det
(
Z̃τ 1 − I

)
along the real axis of E , noting that D(E∗) = 0. Upon passing this root,

we can expand the determinant to lowest order in �,

ln|D(E)| ≈ ln|dD

dE
|E=E∗ + ln

(√
(E − Re(E∗))2 + 1

4
�2

)
. (49)

It follows that the location of a minimum in ln|D(E)| corresponds with the value of Re(E∗), which we extract
to obtain the energy of the Efimov trimer. Note that this approach will only work if the root in the determinant
lies close enough to the real axis such that Eq. (49) is valid. Following experiment [34], we will be primarily
interested in the trimer-dimer energy difference �E = εres−Re(E∗), measuring the three-body energy relative
to the energy of the Feshbach dimer εres. To illustrate our method and the general behavior of �E near a two-
body resonance, we plot in Fig. 3 scans of ln|D(E)| along the appropriately shifted energy axis εres − E . We
use here a single-channel van der Waals potential at the 8’th s-wave potential resonance [23], allowing us to
compute the determinant at a large number of points thus illustrating the appearance of sharp local minima
which we identify as Efimov resonances, fitted well by Eq. (49). Plotting the resulting values of the trimer-
dimer energy difference �E as a function of scattering length then shows the characteristic behavior of the
Efimov trimer, merging with the atom-dimer continuum at the critical scattering length a∗ ≈ 1.1a+ [3,29].

2.8 Spin Models

An inherent advantage of our method, based on integral equations, is that it is reasonably simple to exclude
specific three-body channels from the computation if so desired. Up until this point, the method that we have
formulated is quantum mechanically rigorous, except for the omission of non-additive three-body forces, which
we assume to be negligible in the systems of interest [4]. We will refer to this as the Full Multichannel Spin
(FMS) model [37,55]. In the literature, FMS calculations are rare, and it is instead common practice to reduce



   85 Page 12 of 17 J. van de Kraats , S. J. J. M. F. Kokkelmans

Fig. 3 Illustration of the numerical solution to the three-body bound-state equation for an Efimov resonance in a single-channel
van der Waals potential near the 8’th two-body potential resonance. In the left-hand panel we plot scans of ln|D(E)| as a function
of the shifted three-body energy εres − E , for a set of (positive) scattering lengths. Local minima in ln|D(E)| signify the location
of Efimov resonances, as follows from Eq. (49). Solid lines show fits of this equation to the minima. In the right-hand panel we
show the resulting dependence of the trimer-dimer energy difference �E on the scattering length, where the scatter points match
with the fits in the left-hand panel

Table 1 Parameters of the two Feshbach resonances studied in this work [29,30,60]

State B0 [G] abg [a0] �B [G] sres MF

aa 738.2(2) −18.24 −237.8 0.56 3
bb 893.7(3) −20.98 −171.0 0.493 0

Here B0 is the resonant magnetic field, abg the background scattering length, �B the magnetic field width, sres the resonance
strength parameter [11], and MF the total magnetic projection quantum number for the three-body calculation

the spin degrees-of-freedom of the total system by various approximations, see e.g. [8,19–22,25,56–59]. We
will study a specific simplifying approach to the spin structure known as the Fixed Spectating Spin (FSS)
approximation [55], which turns off the two-body interaction whenever the third particle (the spectator) is not
in the incoming spin state cin. Formally, this is achieved through the replacement V̂α → V̂ FSS

α , where,

V̂ FSS
α = V̂α|cin〉〈cin|. (50)

It follows that the two-body transition matrix similarly vanishes whenever the spectating particle has changed
spin, meaning that in both the recombination and bound-state equations we can simply set c → cin everywhere.
This leads to a significant reduction in the dimension of the integral equations, such that the resulting numer-
ical computation is much less expensive. The validity of the FSS approximation relies on the characteristic
suppression of three-body probability in the short-range, which should make it relatively unlikely for three par-
ticles to approach within the spin-exchange regime simultaneously [16,17,23]. Numerical studies have shown
however that for some systems, the effects of three-body spin-exchange where all three particles change their
spin can still be significant [37,55], and are essential in reproducing the correct three-body parameter for 7Li
specifically [35]. In the next section we will expand on these results, comparing the FSS and FMS approaches
also for positive scattering lengths.

3 Results

As an application of our model, we will study the rate of three-body recombination K3 near two high-field
Feshbach resonances in 7Li, whose characteristic properties we collect in Table 1. Both resonances are of
intermediate width with sres ∼ 1 [11], well into the non-universal regime for the three-body parameter [23].

As we are interested in Efimovian signatures, it is useful to recast our results for K3 using the theoretical
prediction K3(a) = 3C±(a)h̄a4/m [3]. Here the function C±(a) captures the Efimovian modulation of the
universal a4 scaling of K3 near resonance, for positive (+) and negative (−) scattering lengths respectively.
Closed form expressions for C±(a) can be obtained within a zero-range effective field theory upon introducing
a three-body parameter [3,13,29],

C−(a) = 4590
sinh(2η−)

sin2(s0 ln(a/a−)) + sinh2(η−)
, (51)
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Fig. 4 Efimovian enhancement C±(a) of the three-body recombination rate near both Feshbach resonances in table 1. FMS
results (red) and FSS results (blue) are compared with the experimental data of Ref. [29] (grey). Dash-dotted lines show fits of
the data to the predictions of effective field theory in Eqs. (51) and (52), which we use to extract the three-body parameters a±
and trimer widths η±

Table 2 Three-body parameters a± and trimer widths η± obtained from the fits to universal expressions for C±(a), as shown in
Fig. 4, compared with similar fits to the experimental data

State Model a−/rvdW η− a+/rvdW η+ a+/|a−|
FSS −40.5 0.63 43.1 0.91 1.06

MF = 3 FMS −8.79 0.27 8.69 0.13 0.99
Experiment [29] −8.43(37) 0.253(62) 8.16(49) 0.170(41) 0.97(8)
FSS −36.3 0.78 33.6 0.35 0.92

MF = 0 FMS −12.7 0.38 20.0 0.37 1.57
Experiment [29] −8.62(37) 0.180(48) 7.33(77) 0.213(79) 0.85(11)

C+(a) = 67.1e−2η+ (
cos2(s0 ln(a/a+)) + sinh2(η+)

) + 16.8(1 − e−4η+). (52)

We will assume a priori that our calculated values of K3(a) obey the a4 power law, and subsequently extract
the associated Efimovian functions C±(a) = mK3(a)/3h̄a4. We can then fit the data directly using Eqs. (51)
and (52), thus checking the validity of these universal expressions in 7Li, and obtaining explicit values for the
three-body parameters a±, with associated trimer widths η±. The results, for both Feshbach resonances, are
shown in Fig. 4 and Table 2. Here we note that the results for K3 for negative scattering lengths have been
published previously elsewhere [35].

Our results show significant differences between FSS and FMS spin models, clearly indicating that the FSS
approximation is inadequate for 7Li atoms in the strongly interacting regime. For negative scattering lengths,
where no two-body bound state exists, we find that the FSS approximation produces a broad Efimov resonance
at relatively large scattering length, in accordance with the general expectation that the Efimov trimer is shifted
towards the three-body threshold for intermediate strength Feshbach resonances [20–23]. In contrast, upon
going to the FMS model we observe a dramatic shift of the position of the Efimov resonance to lower absolute
scattering lengths, with the three-body parameter for the MF = 3 case even receeding below the universal van
der Waals value. The resonance itself is also significantly narrowed, indicating a non-trivial stabilizing effect
of the additional spin channels on the Efimov trimer. Both these effects significantly improve on the match
between the theoretical calculations and the experimental data, indicating the strong presence of three-body
spin-exchange in experiments, and the accuracy of our numerical model. One will note however that for the
case MF = 0, a significant discrepancy between the experimental data and FMS results remains. We attribute
this mismatch to a lack of convergence of our numerical method, originating from the fact that the Mtot = 0
channel has a much larger number of coupled three-body channels, which limits us in the choice of numerical
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parameters. Specifically, for the MF = 3 channel we use lmax = 12 and qmaxrvdW = 40, which we have
confirmed gives adequate convergence in the value of a−. For the MF = 0 channel numerical limitations force
us to reduce the maximum partial wave to lmax = 8, which is not sufficient to fully converge the result, thus
explaining the mismatch with the experiment. For further discussion of this point we refer the reader to the
Supplemental Material of Ref. [35].

For positive scattering lengths, we find once more that the value of a+ is decreased significantly in the
FMS model compared to an FSS calculation. For the MF = 3 channel, this shift again leads to an excellent
match with the experiment of Ref. [29], while the associated FSS results fail to reproduce the data to any
satisfactory degree. In addition, the ratio a+/|a−| of our FMS results matches well with both the experimental
data and the theoretical prediction a+/|a−| = 0.96(3) [3,29]. A similar shift of the Efimov resonance is seen
in the MF = 0 channel, although as before the numerical complexity in this more highly coupled three-body
channel does not allow us to fully converge the calculations. As for negative scattering lengths however, the
general trend of our numerics suggest that a converged calculation will give a further decrease of a+, towards
the experimental data.

Next to the comparison with experiment, our results for positive scattering length additionally reveal that
the universal prediction for C+(a), as given in Eq. (52), can not give a good fit to the recombination data
over the full range of scattering lengths we study, indicating the presence of finite range effects which are
unaccounted for in the universal theory. This effect is especially prevalent for the FSS results, where the fit
of Eq. (52) is very poor leading also to a large uncertainty in a+ and η+. This observation however, is fully
in line with the experimental data, which is also quite poorly fitted by the universal expression, and actually
finds better match with our numerical computations. Similarly, in Ref. [30] it was found that a good fit of the
Efimov resonance for a > 0 could only be obtained by adding an overall scaling factor to Eq. (52), which is
also suggested by our FMS data in the MF = 3 channel. These discrepancies indicate that an extended form
of Eq. (52) which accounts for finite range corrections may be required to match the data. Approaches for
adding such corrections to the universal Efimovian theory have indeed been discussed in the literature, see for
example Ref. [61].

4 Conclusion

In this article we have described a state-of-the-art multichannel method for computing the three-body recom-
bination rate and three-body bound state energy in a system of alkali-metal atoms near a Feshbach resonance,
using realistic molecular pairwise interaction potentials. We have subsequently applied this method to study
Efimovian signatures near two experimentally relevant Feshbach resonances in 7Li, where we show strong
influence of spin-exchange effects which are typically neglected in the three-body literature. In particular, we
find that such effects are essential in reproducing experimental data.

Our work poses several opportunities and challenges for further research. First it is clear that the numer-
ical complexity of simulating interacting three-body systems at the level of accuracy required to reproduce
experiment is considerable, requiring expensive high-performance computing facilities and considerable time
investments. These points motivate further searches for accurate simplifying assumptions or improvements on
the numerical efficiency of our method, which may then allow us to fully converge all numerical computations
and thus close the remaining gaps between theory and experiment, which are highlighted once more in the
present article. It may also allow for an application of the bound state method introduced in this work to
realistic multichannel systems, which poses an even more challenging problem numerically due to the larger
number of three-body energies required.

Looking towards the future, our model can be applied generally in the search for non-universal features
in three-body physics in ultracold atomic gases. We have shown that our method, once converged, accurately
reproduces the experimentally observed three-body recombination rate, even when this rate deviates strongly
from the universal expectation. We have thus developed a tool which can be used to guide future experiments,
by predicting the three-body loss rate in general systems to a high degree of accuracy. For example, quantum
gas experiments and technologies are typically limited by the lifetime of the gas [62,63], and thus may wish
to exploit non-universal minima in the three-body loss rate, which can be searched for using our method.
Finally, it is interesting to extend our method to also capture elastic three-body scattering, which is known to
significantly affect the phase diagram of Bose-Einstein condensates in the regime of small scattering lengths,
and can provide a mechanism for the stabilization of quantum droplets [64–67]. The direct observation and
characterization of this scattering remains an elusive challenge to contemporary experiments, making accurate
numerical models invaluable.
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