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CHAPTER 1

Introduction

Presently we know of four kinds of fundamental interactions of elementary particles. Three of
these are described within the context of quantum field theory by the Standard Model of particle
physics (SM) [1, 2]. It is a gauge field theory with gauge group

GSM = SU(3)× SU(2)×U(1)Y ,

where the Lie group SU(3) corresponds to the strong and SU(2)×U(1)Y describes electroweak
interactions. The fundamental matter is represented by chiral spin-1/2 fermions that transform
as (bi-) fundamental representations of the gauge group. It comes in three copies, so-called
families, of the same set of particles which is given by1

(3, 2)1/6
↑

Q

+ (3̄, 1)−2/3
↑

ū

+ (3̄, 1)1/3
↑

d̄

+ (1, 2)−1/2
↑

L

+ (1, 1)1
↑

ē

,

where we have given the U(1)Y charge as a subscript and Q = (u d) and L = (e ν) denote the
quark and the lepton doublet respectively. The couplings, on the other hand, are mediated by
spin-1 gauge bosons which transform as adjoint representations of GSM. By construction all
fundamental particles of the Standard Model are necessarily massless, which is in conflict with
experimental observations. Their masses can however be generated dynamically by the Higgs
mechanism [3, 4]. By giving a non-trivial vacuum expectation value (vev) to an additional scalar
SU(2) doublet (1,2)1/2 the Yukawa couplings of that field with the Standard Model matter give
rise to effective mass terms. At the same time the gauge symmetry of the Standard Model is
spontaneously broken according to GSM → SU(3) × U(1)em. The experimental evidence for
the new massive spin-0 particle that is introduced in the Standard Model, was lacking for a
long time. Very recently, however, two experiments at the Large Hadron Collider, ATLAS and
CMS, finally announced the observation of a ”Higgs-like resonance“ corresponding to a mass
of around 125 GeV [5, 6]. The experimental confirmation of the existence of the Higgs particle,
about 50 years after it was first predicted, displays the latest of a long list of successes of the
Standard Model.

1 The right-chiral fields are represented by the corresponding left-chiral CPT conjugate fields which transform as
the conjugate representation.
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1 Introduction

The nature of the fourth fundamental interaction, gravity, is completely different. While the
interactions described by the Standard Model arise from the invariance of the theory under
local gauge transformations, the origin of gravity is the nature of spacetime itself. It is de-
scribed by Einstein’s theory of general relativity, which in contrast to the Standard Model is a
classical theory. The unification of general relativity with quantum mechanics is one of the
fundamental problems of contemporary theoretical physics.

Physics Beyond the Standard Model

Despite its many successes the Standard Model also has drawbacks. There are some exper-
imental hints which clearly require an extension of the Standard Model. The first one is the
observation of neutrino oscillations [7] which requires small but non-vanishing masses for the
neutrinos. However, not only has the existence of a mass to be explained but also its value,
which needs to be extremely small compared to the masses of the SM matter. A possible way
out could be the existence of one or more right-handed neutrinos together with the see-saw
mechanism, which explains the small value of the mass of the SM neutrinos by the huge mass
of the right-handed neutrinos. The second experimental hint is the evidence for dark matter,
which is needed to explain several astronomical and cosmological observations, such as the
rotational curves of spiral galaxies or the formation of structure in the universe. In order to
explain the origin of dark matter, a new kind of fundamental particle is required, which only
interacts very weakly with the SM particles. A third experimental hint on physics beyond
the Standard Model comes from the energy dependence of the strengths of the gauge coup-
lings. More specifically, the coupling constants of strong, weak and electromagnetic interac-
tions come very close to each other at an energy scale of about 1015 GeV which suggests that
there could be a simpler theory, the gauge group of which contains GSM and is spontaneously
broken at that energy scale. Such theories are called Grand Unified Theories (GUTs) [8].

Furthermore, the Standard Model also faces some theoretical challenges. Within the SM,
the one-loop contribution to the Higgs mass turns out to be quadratically divergent. As a
consequence quantum effects would drive the Higgs mass up to the natural cut-off scale, i.e.
the Planck mass which is of order 1018 GeV. In order to cancel the contributions to the Higgs
mass an enormous amount of fine-tuning of parameters would be needed. This problem can
be rephrased as the hierarchy problem which describes the lack of an explanation for the fact
that the electroweak scale is about 16 orders of magnitude smaller than the Planck scale or,
equivalently, why the weak force is about 1032 times stronger than gravity.

The most obvious drawback of the Standard Model is the fact that it does not include gravity,
i.e. that it does not contain a quantum theory of gravity which unifies the description of all
known forces. A quantum theory of gravity is important to describe physical processes at
energies at which the strength of gravity becomes comparable to those of the other forces. Such
processes need to be understood in order to describe the dynamics of black holes or the big
bang. Furthermore there is experimental evidence for a small, positive cosmological constant
which drives the accelerated expansion of our universe and which contributes about 70% to
the total energy density of the universe [9]. The value of this constant vacuum energy cannot
be explained within general relativity and the attempt to explain its presence by the ground
state energy of the SM quantum vacuum leads to a value which differs from the measured
value by a factor of 10120.

Many of the questions about physics beyond the Standard Model can be explained within
grand unified theories, supersymmetry (SUSY) and extra dimensions, which we briefly com-
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ment on in the following.

Grand Unified Theories

The most prominent GUT groups are SU(5) and SO(10), since each of them serves to unify the
gauge interactions of the Standard Model within one simple group. Furthermore the Standard
Model families fit nicely into the lowest dimensional representations of these groups. Namely
the anti-fundamental representation 5̄ together with the anti-symmetric tensor representation
10 of SU(5) contain exactly one family of quarks and leptons, as can be seen from the decom-
position of these representations under the breaking SU(5)→ SU(3)× SU(2)×U(1),

5̄ −→ (3̄, 1)1/3 + (1, 2)−1/2 ,

10 −→ (3, 2)1/6 + (3̄, 1)−2/3 + (1, 1)1 .

Intriguingly, the embedding of U(1)Y into the non-Abelian GUT group therefore yields an
explanation for the quantization of the electric charge. In this picture, the Standard Model
Higgs boson arises as a further 5 of SU(5), which however leads to the presence of an un-
wanted triplet (3, 1)1/3 in the spectrum of the GUT. The difficulty to decouple this state by
making it very heavy and at the same time keeping the doublet light is known as the doublet
triplet splitting problem. Finally, the gauge bosons of the Standard Model can be embedded
into the adjoint 24 of SU(5), which however contains two additional bosons which are called
leptoquarks. One can go further and embed the SU(5) into SO(10). In that case a complete
Standard Model family can be allocated in the spinor representation 16 of SO(10), as can be
seen from the decomposition of this representation under the breaking SO(10)→ SU(5),

16 −→ 10 + 5̄ + 1 .

It is interesting that the additional singlet that is contained in the 16 carries exactly the quantum
numbers of a right-handed neutrino. Similar to the case of SU(5) the Higgs can be obtained
from the fundamental 10 of SO(10), which decomposes according to 10 → 5 + 5̄ and there-
fore gives rise to several exotic fields that need to be decoupled from the spectrum in order to
obtain the Standard Model.

While the picture of GUTs is very appealing, a generic feature of such theories is rapid
proton decay, which is mediated by the exotic particles. As the lifetime of the proton is experi-
mentally bound to be bigger than 5.9 · 1033 years [10], the corresponding couplings need to be
heavily suppressed. However, generically GUTs lack a mechanism to explain this.

Supersymmetry

Due to a no-go theorem by Coleman and Mandula [11] supersymmetry is the only possible
extension of spacetime Poincaré symmetry within the Standard Model [12]. It is fundament-
ally different from all other symmetries, as it transforms bosons and fermions to each other. In
principle it is possible to write down theories with N = 1, 2, 4 and 8 supersymmetries. How-
ever only the N = 1 theory gives rise to chiral fermions. The simplest and most well studied
supersymmetric extension of the Standard Model is the Minimal Supersymmetric Standard Model
(MSSM) in which every Standard Model particle gets exactly one superpartner of the corres-
pondingly other statistics but with all other quantum numbers equal. However, in addition
this model needs a second Higgs doublet in order for it to be possible to give masses to all
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1 Introduction

fermions [13].
When supersymmetry is exact, the masses of superpartners are necessarily equal. Therefore
it must be broken at some higher scale. Only then can the fact be explained, that the massive
superpartners of the Standard Model particles have not been observed yet. If SUSY is softly
broken at around the TeV scale, it offers a natural solution to the hierarchy problem. The su-
perpartners contribute to the Higgs one-loop amplitude in such a way, that they exactly cancel
the contributions of the Standard Model fermions and in that way stabilize the electroweak
scale. Furthermore the additional particles vary the running of the coupling constants such
that they actually nearly meet in one point at a scale of about 1016GeV. This makes supersym-
metric GUTs very appealing.

It is intriguing that by making supersymmetry local one automatically obtains a theory
which involves gravity, called supergravity (SUGRA). Although this theory turns out to be
non-renormalizable, it plays an important role in the context of string theory.

Just like GUTs, the MSSM suffers from the problem of rapid proton decay caused by dimen-
sion four and five operators. Many of these operators can be forbidden by imposing matter
parity, that is a Z2 discrete symmetry which implies that Standard Model particles and their
superpartners can only be created in pairs [14]. The presence of this symmetry automatically
renders the lightest supersymmetric particle (LSP) stable, making it a good candidate for dark
matter [15].

Further problems of the MSSM are concerned with the mass term of the SUSY partners of
the Higgs bosons (µ problem), the appearance of flavour changing neutral currents and CP
violation and are mostly problems of understanding the parameters of the theory.

Extra Dimensions

Already a few years after the foundations of general relativity were laid by Einstein, Kaluza
and Klein realised the possibility to unify four dimensional gravity and electromagnetism by
a five dimensional theory of gravity. It was the first example of a mechanism tracing back the
features of a lower dimensional theory to the properties of the compactification of a simpler,
higher dimensional theory. Assuming large extra dimensions it is for instance possible to
explain the weakness of gravity [16–18]. While the SM interactions and fields are confined
to a four dimensional brane embedded in a higher dimensional space (bulk), gravity spreads
over the whole space. Therefore its coupling strength is diluted over the bulk and looks much
smaller from a four dimensional perspective.

More complicated set-ups allow extra dimensional models explaining supersymmetry break-
ing, the breaking of GUT groups or the origin of discrete symmetries.

String Theory

String theory is a theory combining all of the previously mentioned ideas. It is based on the
assumption that the fundamental degrees of freedom describing our world are not point-like
particles, but extended, one dimensional objects called strings. At a length scale much bigger
than the string length, the excitations of strings effectively look like particles. As the spectrum
of string theory necessarily contains an excitation of spin 2, it automatically includes a theory
of quantum gravity. The string length then introduces a natural cut-off scale and serves as a
regulator of the divergences that would otherwise render the theory unphysical.

It is intriguing that consistency requirements make it mandatory to combine string theory
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with supersymmetry and further fix the number of spacetime dimensions to be ten. There are
five different ten dimensional superstring theories, which are connected by a web of dualities.
This has lead to the interpretation that they are all limiting descriptions of a more fundamental
theory called M-theory, for which a description in terms of fundamental degrees of freedom,
however, is lacking. In the low energy regime all five string theories are approximated by 10D
supergravity theories, while the effective theory of M-theory is the unique eleven dimensional
SUGRA.

In order to make contact with the four dimensional world that we observe, string theory
needs to be compactified on a six-dimensional space. Requiring the resulting four dimensional
theory to preserve exactlyN = 1 supersymmetry requires any smooth compactification space
to be of a special kind, named Calabi-Yau [19]. While generic Calabi-Yau spaces are extremely
complicated, some have singular limits which are called orbifolds, in which the curvature of the
space gets concentrated to a finite number of points. In this work we will deal with orbifold
compactifications [20, 21] of the heterotic string theory [22–24] with gauge group E8 × E8.
These theories have the advantage that an exact description in terms of a superconformal field
theory is known [25], such that quantities such as the couplings of string states are, in principle,
exactly computable. Consequently orbifolds have turned out to serve as a very successful
patch for building (semi-) realistic models within the landscape of string compactifications.
The most prominent set of such models is the heterotic mini-landscape [26–28].

As described above, within the context of model building, global discrete symmetries can
solve numerous problems by constraining possible couplings. In this way they can lead to
natural explanations of why certain effects are sub dominant or why parameters are small.
As an example we already mentioned matter parity in the context of the MSSM. A special
class of discrete symmetries are those under which fermions and bosons do not transform in
the same way. These discrete symmetries, which do not commute with supersymmetry, are
called discrete R-symmetries. They have been proven to be particularly useful as symmetries
forbidding dimension four and five proton decay operators [29–31], but their presence is also
linked to the breaking of supersymmetry itself [32, 33]. In compactifications of string theory
the R-symmetries of the resulting low energy effective field theory arise as remnants of the
Lorentz symmetry of the compactified directions. In this work we discuss the origin of discrete
R-symmetries within the orbifolded heterotic string. We give a complete exploration of such
symmetries arising from orbifolds for which the point group is Abelian. Then we discuss the
phenomenological consequences of these R-symmetries and further discrete symmetries in
the context of the Z6-II orbifold. Using the concept of Hilbert bases we are able to deduce the
superpotential to all orders in the fields.

Outline

This thesis is organized as follows.
In chapter 2 we review the bosonic construction of heterotic string theory, emphasizing es-

pecially the superconformal field theory describing the dynamics on the worldsheet. Then we
introduce toroidal orbifolds and review a classification scheme for space groups of such orbi-
folds. Using these two building blocks we discuss orbifold compactifications of the heterotic
string, where we highlight the consequences of orbifolding for the conformal field theory. We
conclude this section by discussing the Z3 orbifold as the simplest possible example.

Chapter 3 deals with the calculation of string correlation functions and the coupling selec-
tion rules that can be deduced from them. We consider general correlation functions that give
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1 Introduction

rise to terms in the superpotential of the corresponding low energy effective field theory. From
the structure of these correlation functions, it is possible to extract several different selection
rules. We start by reviewing how gauge invariance,H-momentum conservation and the space
group selection rule arise. Then, specializing to a subclass of orbifolds, we discuss the world-
sheet instanton contributions to the couplings and explain how further selection rules can arise
from symmetries of these instantons. Remarkably we find the instantons to be the origin of the
discrete nature of R-symmetries. Motivated by this finding we start an exploration of all pos-
sible R-symmetries arising in orbifolds with Abelian point groups. We present a scheme that
allows us to infer the R-symmetries from the isometry groups of the orbifold. Then we apply
this scheme to the classification of all space groups leading to six dimensional orbifolds with
N = 1 SUSY, which was performed in [34]. In this way we are able to present a complete list
of R-symmetries arising in these theories. As a consistency check we calculate the anomalies
of each of the R-symmetries for a vast set of models. We find that for 101 out of the 107 classes
of orbifolds that are non-trivial, the anomalies fulfil the required universality conditions and
therefore pass the consistency check.

In chapter 4 we make use of the previously identified R-symmetries for the Z6-II orbifold
and discuss their impact on a model of the mini-landscape. We review the technique of Hilbert
bases which allows to find a complete basis of solutions of a given set of diophantine equa-
tions. Then we apply this technique to our model, in order to deduce the superpotential to all
orders and discuss its phenomenology.

In the last chapter we conclude and discuss possible extensions of this work.
Note, that throughout this work we use units in which α′ = 2, l = π, ~ = 1.
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CHAPTER 2

Heterotic Orbifolds

2.1 Bosonic Construction of the Heterotic String

In this section we briefly review the bosonic construction of heterotic string theory [22–24]. It
is a theory of closed strings which consists of two parts, namely

• a right-moving 10 dimensional superstring with bosonic and fermionic degrees of freedom
described by Xµ

R(τ − σ) and the Majorana-Weyl fermions ψµR(τ − σ) respectively, and

• a left-moving 26 dimensional bosonic string with bosonic degrees of freedom denoted by
Xµ

L(τ + σ) and XI
L(τ + σ),

where µ = 0, . . . , 9 and I = 1, . . . , 16.
The right-moving degrees of freedom are related byN = 1 worldsheet supersymmetry and the
left-moving theory is compactified on a 16 dimensional torus. Modular invariance of the par-
tition function requires the torus lattice to be even, self-dual and Euclidean. The only lattices
satisfying these requirements in 16 dimensions are the root lattice of E8 × E8 and the weight
lattice of Spin(32)/Z2

1, which contains the root lattice of SO(32) [35]. For the remainder of this
work we restrict ourselves to the case of E8 × E8. As a consequence, the internal momenta of
the left-moving strings are elements of the root lattice of E8 ×E8, which we denote by ΓE8×E8 .
We will see later, how the 16 left-moving bosons XI

L give rise to a gauge theory.

2.1.1 Equations of Motion and Mode Expansions

In superconformal gauge, the classical action of the heterotic string theory takes the form2 [35,
36]

S = − 1

2π

∫
d2z

(
∂X · ∂̄X + ψR · ∂ψR + δIJ∂X

I
L∂̄X

J
L

)
, (2.1)

1 Spin(32) has centre Z2 × Z2. Here we divide by one of these Z2 such that the resulting lattice contains the root
lattice of Spin(32) as well as the weights of the spinor representation. Dividing by the other Z2 would result in
a lattice containing the roots as well as the weights of the cospinor representation, while dividing by a diagonal
Z2 would result in a lattice containing the roots as well as the weights of the vector representation.

2 Note that in writing the action we have assumed the anti-symmetric tensor background field Bµν as well as the
background gauge field AIµ to vanish.

7



2 Heterotic Orbifolds

with the additional constraint

∂̄XI
L = 0 (2.2)

ensuring that the 16 internal bosons are indeed purely left-moving. Here we have made use
of the Wick rotated, complex worldsheet coordinates

z = e2(τ+iσ) , z̄ = e2(τ−iσ) , (2.3)

written shorthand ∂ = ∂
∂z , ∂̄ = ∂

∂z̄ and have combined the ten dimensional left- and right
moving bosonic fields according to X(z, z̄) = XL(z) +XR(z̄).

Using the action we can deduce the classical Euler-Lagrange equations of motion for the
fields. They are given by

∂∂̄Xµ = 0 ,

∂ψR = 0 ,

∂∂̄XI
L = 0 .

(2.4)

The first equation tells us that Xµ indeed splits into a left- and a right-moving part and the
second one dictates the fermionic field ψR to be anti-chiral as expected. The equation of motion
for XI is actually trivial once the additional constraint (2.2) is imposed.

Now one can write down the mode expansions of the fields that solve the classical equations
of motion, as well as the closed string boundary conditions

Xµ(e2πiz, e−2πiz̄) = Xµ(z, z̄) ,

ψµR(e−2πiz̄) =

{
−ψµR(z̄) (R)

ψµR(z̄) (NS)
,

XI
L(e2πiz) = XI

L(z) + 2πλI , with λ ∈ ΓE8×E8 ,

(2.5)

where we abbreviate the Ramond (Neveu-Schwarz) sector by R (NS). They are given by3

Xµ
L(z) =

1

2
xµ + pµ ln z + i

∑
n 6=0

1

n
α̃µn z

−n , (2.6)

Xµ
R(z̄) =

1

2
xµ + pµ ln z̄ + i

∑
n 6=0

1

n
αµn z̄

−n , (2.7)

ψµR(z̄) =


∑
n∈Z

bµn z̄
−n− 1

2 (R)∑
r∈Z+1/2

bµr z̄
−r− 1

2 (NS)
, (2.8)

XI
L(z) = xI + 2P I ln z + i

∑
n6=0

1

n
α̃In z

−n . (2.9)

3 Note that for writing the mode expansion of the left-moving internal bosons we have implicitly used the fact
that the compactification lattice is self-dual [23].
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2.1 Bosonic Construction of the Heterotic String

The (on-shell) N = 1 worldsheet supersymmetry acts on the right-moving fields according to

δεX
µ
R = −iεψµR , δεψ

µ
R = iεXµ

R , (2.10)

where ε is an infinitesimal Grassmann parameter.

2.1.2 Light-Cone Gauge Quantization and Spectrum

Let us now quantize the theory in light-cone gauge by introducing canonical (anti-)commutation
relations. Using the light-cone coordinates

X± =
1√
2

(
X0 ±X1

)
, (2.11)

and the mode expansions (2.6)-(2.9) we impose for the transverse coordinates

[xi, pj ] = i δij , [αin, α
j
m] = [α̃in, α̃

j
m] = n δn+mδ

ij ,

[αin, α̃
j
m] = 0 ,

{bir, b
j
s} = δijδr+s ,

(2.12a)

where i = 2, . . . , 9. In the case of the internal left-moving bosons we have to take the secondary
class constraint ∂̄XI

L = 0 into account. Hence the quantization proceeds via Dirac brackets,
which results in the commutation relations

[α̃In, α̃
J
m] = n δn+mδ

IJ ,

[xI , P J ] =
1

2
i δIJ .

(2.12b)

The R and NS ground states of the theory are defined as the states that are annihilated by all
positive modes, that is

αµm |0〉R/NS = α̃µm |0〉R/NS = 0 , ∀m > 0 ,

α̃Im |0〉R/NS = 0 , ∀m > 0 ,

bur |0〉R/NS = 0 , ∀r > 0 .

Note that while the NS ground state is unique, the states of the form bµ0 |0〉R all have the same
mass eigenvalue and hence the R ground state is degenerate. Since the fermionic zero modes
fulfil the Clifford algebra, {bµ0 , bν0} = ηµν , we can represent the states as

bµ0 |α〉R =
1√
2

(γµ)αβ |β〉R ,

where α, β are SO(9, 1) spinor indices and γµ denote the Dirac matrices in 10 dimensions and
satisfy {γµ, γν} = 2ηµν .

In order to get the spectrum of the theory we have to gauge fix the remaining symmetries of

9



2 Heterotic Orbifolds

the worldsheet theory. This is done by going to the light-cone gauge choice, which is given by

X+ = x+ + p+ ln zz̄ ,

ψ+ = 0 ,
(2.13)

and completely fixes the reparametrisation as well as local supersymmetry invariance. This
breaks Lorentz symmetry to its little group SO(8). The equations of motion for the metric then
result in the constraints

α−n =
1

2p+

∑
i

∑
m

: αimα
i
n−m : +

∑
r+φ

(n
2
− r
)

: birb
i
n−r : +aR δm

 ,

α̃−n =
1

2p+

∑
m

(∑
i

: α̃imα̃
i
n−m : +

∑
I

: α̃Imα̃
I
n−m : +aL δm

)
,

b−r =
1

p+

∑
q

∑
i

αir−qb
i
q ,

(2.14)

where we have used the notation αi0 = α̃i0 = 1
2p
i, αI0 = P I and for the R (NS) sector φ takes

the value 0 (1
2 ). The normal ordering constants are given by [36]

aL = −1 , aR =

−
1

2
(NS)

0 (R)
. (2.15)

Similarly p+, the generator of τ -translations conjugate to X+ is determined. Using this we can
write down the mass operator M2 = M2

L +M2
R = 2p+p− − (ptrans)

2,

2M2
R = NR + aR and 2M2

L =
1

2
P 2 +NL − 1 , (2.16)

where P 2 =
∑

I P
IP I and the number-operators are given by

NR =
9∑
i=2

 ∞∑
n=1

αi−nα
i
n +

∞∑
r=φ

r bi−rb
i
r

 ,

NL =
∞∑
n=1

(
9∑
i=2

α̃i−nα̃
i
n +

16∑
I=1

α̃I−nα̃
I
n

)
.

(2.17)

The physical states of the theory are tensor products of states of the Fock states of the left- and
right-moving strings fulfilling the level-matching condition

M2
L = M2

R , (2.18)

which follows from the requirement of invariance of the states under translations in the σ
direction. Due to this condition the lowest mass state of the theory has mass eigenvalue zero,
such that there is no tachyon in the spectrum.

Now we can write down the massless spectrum of the heterotic string on a 10D Minkowski
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2.1 Bosonic Construction of the Heterotic String

spacetime. It consists of the following states:

• α̃i−1 |0〉 ⊗ b
j
−1/2 |0〉NS graviton, antisymmetric tensor and dilaton,

• α̃I−1 |0〉 ⊗ b
j
−1/2 |0〉NS 16 Cartan generators of E8 × E8,

•
∣∣P 2 = 2

〉
⊗ bj−1/2 |0〉NS 480 generators of E8×E8 corresponding to the root vectors,

as well as their supersymmetry partners which are obtained by replacing bj−1/2 |0〉NS by the
Ramond vacuum which, as we have seen above, transforms as a Majorana-Weyl spinor of the
transverse SO(8). The quantum numbers of the bosonic massless states are summarized in
table 2.1.

State E8 × E8 SO(8)

α̃I−1 |0〉 ⊗ b
j
−1/2 |0〉NS (248,248)

8v∣∣P 2 = 2
〉
⊗ bj−1/2 |0〉NS 8v

α̃i−1 |0〉 ⊗ b
j
−1/2 |0〉NS singlet 8v × 8v = 1 + 28 + 35v

Table 2.1: Quantum numbers of the bosonic massless states of heterotic string theory on 10D Minkowski
spacetime.

2.1.3 Worldsheet Conformal Field Theory

In the superconformal gauge, superstring theory becomes a superconformal field theory
(SCFT) on the worldsheet. Here we want to briefly describe the basic features of the het-
erotic string worldsheet superconformal field theory. We will not give a general introduction
to conformal field theory here but instead refer to [36, 37]. However, in order to settle our
notation let us start by writing down some basic objects.
Here and in the remainder of this work we use Wick rotated spacetime coordinates, such that
the ten dimensional metric is given by δµν and the Lorentz group is SO(10).

Superconformal Algebra

The heterotic SCFT splits into a bosonic left-moving and a supersymmetric right-moving con-
formal field theory. The generators of (super)conformal transformations are the conserved
energy-momentum tensor T (z), T̄ (z̄) and the conserved fermionic supercurrent T̄F(z̄). They
are expanded as

T (z) =
∑
n∈Z

z−n−2Ln ,

T̄ (z̄) =
∑
n∈Z

z̄−n−2L̄n ,

T̄F(z̄) =
1

2

∑
r∈Z+φ

z̄−
3
2
−rḠr .

(2.19)

11



2 Heterotic Orbifolds

Here φ = 0 corresponds to the R sector and φ = 1
2 corresponds to the NS sector. The modes

satisfy
(Ln)† = L−n , (L̄n)† = L̄−n , (Ḡr)

† = Ḡ−r , (2.20)

as well as the algebra

[Lm, Ln] = (m− n)Lm+n +
c

8
(m3 −m)δm+n ,

[L̄m, L̄n] = (m− n)L̄m+n +
c̄

8
(m3 −m)δm+n ,

[L̄m, Ḡr] =

(
1

2
m− r

)
Ḡm+r ,

{Ḡr, Ḡs} = 2L̄r+s +
c̄

2

(
r2 − 1

4

)
δr+s .

(2.21)

We call c, c̄ the central charges of the theory. For φ = 1
2 the right-moving algebra has a finite

dimensional subalgebra, generated by L̄0, L̄±1, and Ḡ± 1
2
. This is the super-algebra osp(1|2).

Meanwhile, the left-moving algebra has the finite-dimensional subalgebra sl(2,R) generated
by L0 and L±1.

Vacuum Structure

The vacuum of the theory is described, just as any other state in the theory, as a product of the
left- and right-moving vacuum,

|0〉 = |0〉L ⊗ |0〉R .

Note that a unitary CFT always has a unique vacuum4, while we have seen that the right-
moving vacuum falls into two distinct sectors. This issue is solved by introducing the so
called spin fields S±α (z̄) which are related by [38, 39]

T̄F(w̄)S+
α (z̄) =

1
2

(w̄ − z̄)
3
2

S−α (z̄) + . . . .

Then the R vacuum is given in terms of the NS vacuum by5

|α〉R = S+
α (0) |0〉NS (2.22)

and has conformal dimension h̄ = 1
16 c̄. The presence of the spin fields introduces branch cuts

into the operator algebra. This means that when an NS fermion is transported around the spin
field, it feels the branch cut and changes sign, i.e.

ψµ(e−2πiz̄)Sα(0) = −ψµ(z̄)Sα(0) ,

ψµ(z̄)Sα(w̄) =
1

(z̄ − w̄)
1
2

(γµ)αβS
β(w̄) + . . . .

(2.23)

4 This follows from the fact that the unit operator is the only field with h = h̄ = 0. For details see for instance [36].
5 The state S−α |0〉NS

is a null-state in the case of unbroken worldsheet SUSY. Hence we will ignore it and suppress
the label + from now on.
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2.1 Bosonic Construction of the Heterotic String

Note that in principle this renders the theory non-local. Locality is restored by certain require-
ments on the spectrum, which in the case of the heterotic string arise from the level-matching
condition (and the restrictions on the lattice). The unique vacuum of the heterotic worldsheet
SCFT is now the SL(2,R)×OSP(1|2) invariant state

|0〉 = |0〉L ⊗ |0〉RNS , (2.24)

that is annihilated by all positive frequency operators,

L0 |0〉 = L±1 |0〉 = 0 ,

L̄0 |0〉 = L̄±1 |0〉 = Ḡ± 1
2
|0〉 = 0 ,

Lm |0〉 = 0 , ∀m > 0 ,

L̄m |0〉 = 0 , ∀m > 0 ,

Ḡr |0〉 = 0 , ∀ r > 0 .

(2.25)

Field Content

We have seen above that the fields involved in the heterotic SCFT are Xµ, ψµ and XI
L. We can

deduce their two-point functions using the commutation relations (2.12) and find6

〈Xµ(z, z̄)Xν(w, w̄)〉 = −δµν log(z − w)(z̄ − w̄) ,〈
XI

L(z)XJ
L (w)

〉
= −δIJ log(z − w) ,〈

ψµR(z̄)ψνR(w̄)
〉
NS

=
δµν

z̄ − w̄
,

〈
ψµR(z̄)ψνR(w̄)

〉
R

=
1

2
δµν

1

z̄ − w̄

(√
z̄

w̄
+

√
w̄

z̄

)
,

(2.26)

where (here and always) we assume radial ordering, that is |z| > |w|, |z̄| > |w̄|. The energy-
momentum tensor and fermionic supercurrent following from the action (2.1) are given by

T (z) = −1

2
: ∂X · ∂X(z) : −1

2
δIJ : ∂XI

L∂X
J
L (z) : ,

T̄ (z̄) = −1

2
: ∂̄X · ∂̄X(z̄) : −1

2
: ψR · ∂̄ψR(z̄) : ,

T̄F(z̄) = i : ψR · ∂̄X(z̄) : .

(2.27)

Note that since the right-moving sector of the theory is supersymmetric, the corresponding
fields combine into anti-chiral superfields according to

Ψµ
R(z̄) = Xµ

R(z̄) + θ̄ψµR(z̄) , (2.28)

6 Here we suppress some unphysical regulators in the two-point functions, which are not important for our pur-
poses [36].
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2 Heterotic Orbifolds

where θ̄ is the fermionic superspace coordinate. The components of the superfields are related
by

T̄F(z̄)Xµ
R(w̄) =

1
2ψ

µ
R(w̄)

z̄ − w̄
+ . . . ,

T̄F(z̄)ψµR(w̄) =
hXµ

R(w̄)

(z̄ − w̄)2
+

1
2∂X

µ
R(w̄)

z̄ − w̄
+ . . . ,

(2.29)

where the dots denote terms that are finite as z → w, z̄ → w̄.

Using equations (2.26) and (2.27) we can calculate the OPEs of the fields with the energy-
momentum tensor to determine the conformal primaries and their conformal weights h and
h̄. This can be done employing the identities

T (z)Φ(w) =
h

(z − w)2
Φ(w) +

∂Φ(w)

z − w
+ . . . ,

T̄ (z̄)φ0(w̄) =
h̄

(z̄ − w̄)2
φ0(w̄) +

∂̄φ0(w̄)

z̄ − w̄
+ . . . ,

T̄ (z̄)φ1(w̄) =

(
h̄+ 1

2

)
(z̄ − w̄)2

φ1(w̄) +
∂̄φ1(w̄)

z̄ − w̄
+ . . . ,

(2.30)

which hold for any conformal field Φ(z) or superconformal field φ(z̄) = φ0(z̄) + θ̄φ1(z̄).

When looking at the field content of the heterotic SCFT, the first observation is that the
OPEs of the fields Xµ with themselves involve logarithms which means that, although they
fulfil (2.30) with h = 0, they cannot be highest weight states of a representation of the con-
formal algebra [39]. Their derivatives ∂Xµ and ∂̄Xµ, however are conformal primaries with
conformal dimensions (h, h̄) = (1, 0) and (h, h̄) = (0, 1). Meanwhile, the ψR are themselves
conformal primary fields of dimension (h, h̄) = (0, 1

2). Further primaries can be constructed
from normal ordered exponentials7 of Xµ. They fulfil

: eip·X(w,w̄) : : eiq·X(z,z̄) : = |z − w|2p·q
{

: ei(p+q)·X(w,w̄) :

+i p (z − w) : ∂X(w)ei(p+q)·X(w,w̄) :

+i p (z̄ − w̄) : ∂̄X(w̄)ei(p+q)·X(w,w̄) :
}

+O
(
(z − w)p·q+2

)
,

∂Xµ(z) : ei p ·X(w,w̄) : = − i pµ

z − w
: ei p ·X(w,w̄) + . . .

(2.31)

from which one can deduce that their conformal dimensions are given by (h, h̄) = (1
2k

2, 1
2k

2).

Physical string states are created from the vacuum by means of Vertex operators, the con-
struction of which we will discuss below. We have already seen that in order to create string
states in the R sector, we need to make use of the spin fields (2.22). These have a complic-
ated expression in terms of ψµ [40]. A much simpler representation can be constructed using
bosonization on the worldsheet.

7 In the supersymmetric language, one can further construct normal ordered exponentials of
Ψµ(z, z̄, θ̄) = Xµ(z, z̄) + θ̄ψµ(z̄). However, due to θ̄ being Grassmann, i.e. θ̄2 = 0, there are no terms
beyond linear order in ψ and eik·Ψ = (1 + iθ̄k · ψ)eik·X .
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2.1 Bosonic Construction of the Heterotic String

Bosonization

The main idea of bosonization is that two conformal field theories are indistinguishable if all
their correlation functions are identical. However, the correlation functions are completely
determined by the OPEs of the fields. Hence, different representations of a physical field are
interchangable provided they have the same OPEs among themselves and with all other fields
of the theory.

Consider the right-moving fermion sector of the heterotic worldsheet SCFT. It is given by
the fields ψµR(z̄) which we represent by the complexified fermions

ψmR =
1√
2

(
ψ2m

R + iψ2m+1
R

)
,

ψ̄mR =
1√
2

(
ψ2m

R − iψ2m+1
R

)
,

(2.32)

where m = 0, . . . , 4. Then their non-vanishing mutual OPEs are given by

ψmR (z̄)ψ̄nR(w̄) =
δmn

z̄ − w̄
+ . . . .

Let us introduce five right-moving bosonic coordinates Hm, which fulfill

Hm(z̄)Hn(w̄) = −δmn log (z̄ − w̄) + . . . .

Now we can represent the fermions ψmR by

ψmR (z̄) =: eiHm(z̄) : cm ,

ψ̄m̄R (z̄) =: e−iHm(z̄) : cm ,
(2.33)

where the cm are so called cocycle factors, which ensure that the fermion representations with
m 6= n actually anti-commute. They are given by [40]

cm = (−1)N
1+···+Nm−1

, (2.34)

where Nm is the fermion number operator for the mth fermion. In terms of the bosonized
coordinates the Nm can be expressed as

Nm =
1

2πi

∮
dz̄ ∂̄Hm(z̄) = ∂̄Hm

0 ,

i.e. by the zero modes of ∂̄Hm. It is easy to verify that indeed

[∂̄Hm
0 , : eikHn(z̄) :] = kδmn : eikHn(z̄) : .

In the light of (2.31), it is clearly possible to write down more general operators of the form

Oλ =: eiλ·H : cλ , (2.35)

where λ is a five dimensional vector with integer valued entries and cλ is the corresponding
cocycle operator. These cocycle operators consists of products of the primitive operators (2.34)
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2 Heterotic Orbifolds

and can be written as [40]
cλ = exp (iπλ ·M∂H0) , (2.36)

where M is a constant, integer-valued, lower-triangular 5 × 5 matrix. The fusion rule (2.31)
then becomes

Oλ(z̄)Oλ′(w̄) = (z̄ − w̄)λ·λ
′
eiπλ·Mλ′ei(λ·H(z̄)+λ′·H(w̄))cλ+λ′ (2.37)

= (z̄ − w̄)λ·λ
′
Oλ+λ′(w̄) (1 +O(z̄ − w̄)) . (2.38)

Closure of the operator product algebra requires that the vertex operator Oλ+λ′ exists and
generates a state |λ+ λ′〉 of the theory. In this way one can associate the set of operators {Oλ}
to a lattice. It is not a coincidence that the lattice generated by the fermions (2.33) contains the
vector weight lattice and the root lattice of SO(10). Indeed we can construct the currents

J
(—)

m
(—)

n(z̄) =: e±iHm(z̄)±iHn(z̄) : cmcn m 6= n ,

Jmm̄(z̄) = i∂Hm(z̄) ,
(2.39)

which fulfil the so(10) current algebra and where J
(—)

m
(—)

n with m 6= n correspond to the root and
Jmm̄ to the Cartan generators. Their operator product expansions with the fermions (2.33)
show that the Ψm transform in the vector representation of this algebra.

This is an example of the Frenkel-Kač-Segal construction of a Kač-Moody algebra, in which
a set of free bosons compactified on a torus represent the generators of the algebra, which is
determined by the torus lattice. The idea is then, that the fact that the generators of the algebra
commute with the mass operator means, that the string states form a representation of the
algebra at each mass level, which proves the existence of the corresponding symmetry [41].
In precisely this way one can describe the E8 × E8 gauge symmetry arising from the toroidal
compactification of the 16 internal left-moving bosons.

In this framework it is now much easier to describe the spin fields (2.22). We have seen in
(2.23) that their OPEs with the fermions Ψm have square-root branch-cuts. Using the fusion
rule (2.37), it is easy to guess the form of the spin fields in the bosonic language. They are
associated with lattice vectors with half-integer entries,

Sα(z̄) =: eiλ·H(z̄) : , with λ = (±1/2 ,±1/2 , . . . ,±1/2) , (2.40)

where we have suppressed the cocycle operators for convenience8. In fact the set splits into
two subsets containing the vectors with an even or odd number of minus signs, corresponding
to the spinor or cospinor weight lattice of SO(10) respectively.

Superconformal Ghost System

In order to write down the states and vertex operators of the quantized theory, one more
ingredient is missing. Namely we need to gauge-fix the worldsheet symmetries. This is done
in a manifestly Lorentz invariant way by introducing the Faddeev-Popov superdeterminant
compensating the Jacobian from reparametrisation and local supersymmetry transformations.
This determinant may be represented by the path integral over

8 The cocycle operators of the spin fields can be found in [40].
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2.1 Bosonic Construction of the Heterotic String

• a left-moving conjugate pair of dimension (−1, 0), (2, 0) ghost fields

cz , bzz ,

• a right-moving conjugate pair of dimension (0,−1), (0, 3
2) ghost superfields

C z̄ = cz̄ + θ̄γ z̄ , Bz̄θ̄ = βz̄θ̄ + θ̄bz̄z̄ ,

with action
Sgh =

1

2π

∫
d2z

(
bzz∂̄c

z + bz̄z̄∂c
z̄ + βz̄θ̄∂γ

z̄
)
. (2.41)

Note that β,γ (b,c) (anti-)commute. They have OPEs9

cz(z)bzz(w) =
1

z − w
+ . . . ,

cz̄(z̄)bz̄z̄(w̄) = γ z̄(z̄)βz̄θ̄(w̄) =
1

z̄ − w̄
+ . . .

(2.42)

and the energy-momentum tensor is given by

Tgh(z) =: −2bzz∂c
z − (∂bzz)c

z : ,

T̄gh(z̄) =: −2bz̄z̄∂̄c
z̄ − (∂̄bz̄z̄)c

z̄ − 3

2
βz̄θ̄∂̄γ

z̄ − 1

2
(∂̄βz̄θ̄)γ

z̄ : ,

T̄F gh(z̄) =:
1

2
bz̄z̄γ

z̄ − (∂̄βz̄θ̄)c
z̄ − 3

2
βz̄θ̄∂̄c

z̄ : .

(2.43)

It is straightforward to check that the ghost system fulfils the left- (right-) moving
(super)conformal algebra (2.21) with central charges cgh = −26 and c̄gh = −10. These charges
cancel precisely the central charges arising from the matter fields so that the superconformal
symmetry of heterotic string theory is anomaly free.

The ghost fields can be expanded in modes according to

cz(z) =
∑
n∈Z

z−n+1c̃n , bzz(z) =
∑
n∈Z

z−n−2b̃n ,

cz̄(z̄) =
∑
n∈Z

z̄−n+1cn , bz̄z̄(z̄) =
∑
n∈Z

z̄−n−2bn ,

βz̄θ̄(z̄) =
∑

r∈Z+φ

z−r−
3
2βr , γ z̄(z̄) =

∑
r∈Z+φ

z−r+
1
2γr ,

(2.44)

where, as above, φ = 0 (1
2 ) in the R (NS) sector. Then the OPEs (2.42) are equivalent to

{c̃m, b̃n} = {cm, bn} = δm+n , [βr, γs] = δr+s .

and the modes of βz̄θ̄ are anti-Hermitean while all other ghost modes are Hermitean.

9 Note that here ’=’ only means equal up to non-singular terms.
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The action (2.41) is invariant under two global U(1)s consisting of(
cz

bzz

)
→
(

eiα cz

e−iα bzz

)
and

(
C z̄

Bz̄z̄

)
→
(

eiα C z̄

e−iαBz̄z̄

)
(2.45)

respectively. The chiral Noether currents corresponding to these transformations are given by

j(z) = − : bzz(z)c
z(z) :=

∑
n

z−n−1j̃n , j̃n =
∑
m

: c̃n−mb̃m : ,

j̄(z̄) = j̄bc(z̄) + j̄βγ(z̄) ,

(2.46a)

where

j̄bc(z̄) = − : bz̄z̄(z̄)c
z̄(z̄) :=

∑
n

z̄−n−1j(bc)
n , j(bc)

n =
∑
m

: cn−mbm : ,

j̄βγ(z̄) = − : βz̄θ̄(z̄)γ
z̄(z̄) :=

∑
n

z̄−n−1j(βγ)
n , j(βγ)

n =
∑
r

: γn−rβr : .
(2.46b)

Note that due to the form of the action and the energy-momentum tensor we can define the
two auxiliary currents j̄bc, j̄βγ . However only their sum j̄ is a Noether current. The OPEs of
the ghost fields b and c (β and γ) with the j reflect the fact that they have charges −1 and 1
respectively. The OPEs of the currents with the energy-momentum tensor are given by

T (z)j(w) =
Q

(z − w)3
+

j(w)

(z − w)2
+
∂j(w)

z − w
+ . . . with Q = −3 ,

T̄ (z̄)j̄bc(w̄) =
Q̄bc

(z̄ − w̄)3
+

j̄bc(w̄)

(z̄ − w̄)2
+
∂j̄bc(w̄)

z̄ − w̄
+ . . . with Q̄bc = −3 ,

T̄ (z̄)j̄βγ(w̄) =
Q̄βγ

(z̄ − w̄)3
+

j̄βγ(w̄)

(z̄ − w̄)2
+
∂j̄βγ(w̄)

z̄ − w̄
+ . . . with Q̄βγ = 2 .

(2.47)

As Q and Q̄ = Q̄bc + Q̄βγ are non-vanishing, the U(1)s are anomalous, which implies that the
ghost number currents j and j̄ are not conserved. The anomalies are related to the existence of
ghost zero modes, the number of which may be calculated using the Riemann-Roch theorem.
The result reads [39]

Nc −Nb = Nc̄ −Nb̄ = −3(g − 1) ,

Nγ −Nβ = −2(g − 1) ,
(2.48)

where g is the genus of the worldsheet10. As a consequence of the anomalies, one finds from
the OPEs (2.47) that while j†n = −jn for all three currents, the zero modes are not (anti-
)Hermitean. Instead they fulfil (

j
(a)
0

)†
= −j(a)

0 −Qa ,

10 As we will only be dealing with tree-level amplitudes, we restrict to g = 0 for the remainder of this work.

18



2.1 Bosonic Construction of the Heterotic String

where a labels the three currents. Let
∣∣q(a)

〉
be a state of charge q(a), i.e. j(a)

0

∣∣q(a)

〉
= q(a)

∣∣q(a)

〉
and let O be an operator of charge qO(a), i.e. [j

(a)
0 , O] = qO(a)O. We find

qO(a)

〈
q′(a)

∣∣∣O ∣∣∣q(a)

〉
= (−q′(a) + q(a) +Qa)

〈
q′(a)

∣∣∣O ∣∣∣q(a)

〉
. (2.49)

Only for qO(a) = (−q′(a) + q(a) +Qa) the result is non-vanishing, i.e. the operator insertions have
to cancel the background charges Qa.

Just as the right-moving fermions, the superconformal ghost system may be bosonized ac-
cording to11

bzz(z) =: e−φbc(z) : , cz(z) =: eφbc(z) : ,

bz̄z̄(z̄) =: e−φ̄bc(z̄) : , cz̄(z̄) =: eφ̄bc(z̄) : ,

βz̄θ̄(z̄) =: e−φ̄βγ(z̄)eχ̄(z̄)∂̄χ̄(z̄) : , γ z̄(z̄) =: e−χ̄(z̄)eφ̄βγ(z̄) : ,

where

φbc(z)φbc(w) = log(z − w) , φ̄bc(z̄)φ̄bc(w̄) = log(z̄ − w̄) ,

φ̄βγ(z̄)φ̄βγ(w̄) = − log(z̄ − w̄) , χ̄(z̄)χ̄(w̄) = log(z̄ − w̄)

and we have as well "bosonized" the Bose fields β,γ. Note that the bosonized representations
of β,γ are in the NS sector. To create fields in the R sector ghost spin fields e±

1
2
φ̄βγ have to be

inserted.
In terms of the bosonized fields the currents are given by

j(z) = ∂φbc(z) , j̄bc(z̄) = ∂̄φ̄bc(z̄) , j̄βγ(z̄) = −∂̄φ̄βγ(z̄) .

Further conformal primaries may be constructed as exponentials of φa ∈ {φbc, φ̄bc, φ̄βγ}. They
fulfil

j(z) : eqφbc(w) : =
q

z − w
: eqφbc(w) : + . . . ,

j̄a(z̄) : eqφ̄a(w̄) : =
q

z̄ − w̄
: eqφ̄a(w̄) : + . . . ,

T (z) : eqφbc(w) : =
1
2q(q +Q)

(z − w)2
: eqφbc(w) : +

1

z − w
: ∂weqφbc(w) : + . . . ,

T̄ (z̄) : eqφ̄a(w̄) : =
1
2εq(q + Q̄a)

(z̄ − w̄)2
: eqφ̄a(w̄) : +

1

z̄ − w̄
: ∂̄w̄eqφ̄a(w̄) : + . . . ,

(2.50)

where ε = +1 (−1) for the b,c (β,γ) system and a ∈ {bc, βγ}. These operators hence shift the
ghost charges of states by q units. They are vertex operator for states12

|qa = q〉 =: eqφa(0) : |0〉 , (2.51)

11 Analogously to the discussion of bosonization above, cocycle factors are necessary to achieve the correct
(anti-)commutation relations of the fields. For simplicity we suppress them in the following expressions.

12 Note that the states |qa〉 can have a lower energy than the vacuum state |0〉 and for the Bose fields β,γ the energy
is not even bounded from below. For a discussion of why this does not lead to an instability of the vacuum we
refer to [39]. Note further that L−1 annihilates only the state |0〉, so the SL(2,R) × OSP(1|2) invariant vacuum
remains unique.
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2 Heterotic Orbifolds

where q ∈ Z for the b,c systems and the NS sector of the β,γ system and q ∈ Z + 1
2 for the R

sector of the β,γ system. We find

〈0| : e3φbc(0)+3φ̄bc(0)−2φ̄βγ(0) : |0〉 = 1 .

As the fields of the b,c ghost systems follow Fermi statistics there is only a finite number of
states (2.51) of different ghost charge. For the β,γ system however, the fact that the fields
follow Bose statistics leads to the existence of infinitely many such states.
Note that regularity of the energy-momentum tensor implies that the SL(2,R) × OSP(1|2)
invariant vacuum |0〉 fulfils

b̃n |0〉 = bn |0〉 = 0 , n ≥ −1 ,

c̃n |0〉 = cn |0〉 = 0 , n ≥ 2 ,

βr |0〉 = 0 , r ≥ −1

2
,

γr |0〉 = 0 , r ≥ 3

2
.

BRST and Covariant Vertex Operators

In the framework of BRST quantization the physical asymptotic states of the theory are ob-
tained as cohomology classes of the BRST operator, i.e. the vertex operators must be BRST
closed but not exact. They have to fulfil

QBRST |phys〉 = Q̄BRST |phys〉 = 0 ,

|phys〉 6= QBRST

∣∣phys′
〉

6= Q̄BRST

∣∣phys′
〉
.

(2.52)

The BRST operator of heterotic string theory is given by [39]

QBRST =

∮
dz

2πi

{
cz(z)

(
T (z) +

1

2
Tgh(z)

)}
,

Q̄BRST =

∮
dz̄

2πi

{
cz̄(z̄)

(
T̄ (z̄) +

1

2
T̄gh(z̄)

)
− γ z̄(z̄)

(
T̄F(z̄) +

1

2
T̄F gh(z̄)

)}
,

(2.53)

where the energy-momentum tensors of the matter and ghost systems are given in (2.27) and
(2.43). The BRST transformations of the fields can be straightforwardly calculated. The results
read [

QBRST, X
µ
L(z)

]
= cz∂Xµ

L(z) ,
[
QBRST, X

I
L(z)

]
= cz∂XI

L(z) ,

{QBRST, c
z(z)} = cz∂cz(z) , {QBRST, bzz(z)} = T (z) + Tgh(z)

and [
Q̄BRST, X

µ
R(z̄)

]
= cz̄∂̄Xµ

R(z̄) +
i

2
γ z̄ψµR(z̄) ,{

Q̄BRST, ψ
µ
R(z̄)

}
=

1

2
(∂̄cz̄)ψµR(z̄) +

1

2
cz̄∂̄ψµR(z̄)− i

2
γ z̄∂̄Xµ

R(z̄) ,
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2.1 Bosonic Construction of the Heterotic String

as well as{
Q̄BRST, c

z̄(z̄)
}

= cz̄∂̄cz̄(z̄)− 1

4
(γ z̄)2(z̄) ,

{
Q̄BRST, bz̄z̄(z̄)

}
= T̄ (z̄) + T̄gh(z̄) ,[

Q̄BRST, γ
z̄(z̄)

]
= −1

2
(∂̄cz̄)γ z̄(z̄) + cz̄∂̄γ z̄(z̄) ,

[
Q̄BRST, βz̄θ̄(z̄)

]
= −T̄F(z̄)− T̄F gh(z̄) .

Further Q2
BRST = Q̄2

BRST = 0 and the BRST operator (anti-)commutes with the total energy-
momentum tensor (fermionic supercurrent) so that the algebra closes.

Note that BRST invariant operators come in different ghost pictures. This is a consequence of
the existence of ghost zero modes, just analogous to the existence of the states (2.51). For the
b,c systems the situation is rather simple. Conformal invariance requires the vertex operators
to be conformal dimension h = h̄ = 1 operators that are either integrated over, or multiplied
by c and c̄, i.e. ∫

d2z Vh=h̄=1(z, z̄) or c(z)c̄(z)Vh=h̄=1(z, z̄) . (2.55)

Note that in a tree-level L-point function, exactly three of the operators have to be of the
latter form in order to cancel the background ghost charges. However, the situation in the β,γ
system is more complicated. There each vertex operator has infinitely many representations
of different ghost picture, which we label by a subscript on the operator. We will see below
that states in the NS (R) sector have (half-)integral ghost picture charge. The β,γ ghost picture
of a vertex operator can be changed by means of a picture changing operation. The only such
operation we will need in the following is the one changing the picture from −1 to 0. This can
be done using an insertion of the fermionic supercurrent,

(V−1eφ̄βγ T̄F)(z, z̄) = V0(z, z̄) . (2.56)

Note that, as is required, picture changing does not change the conformal dimension h, h̄ of
the vertex operator. Correlation functions are independent of the ghost pictures of the vertex
operators they contain, as long as the background ghost charge is cancelled [39].

Let us start our discussion of vertex operators corresponding to massless physical states
with the NS sector. Note that since the superconformal ghost fields are associated to T̄F they
need to have the same periodicity as that operator. Hence they need to have the same period-
icity as the ψR.
The general BRST invariant, massless NS vertex operator in canonical ghost picture13 has the
form V−1 =

∫
d2zV−1(z, z̄), where14 [36, 39]

V−1(z, z̄) = e−φ̄βγ(z̄) ζ
(q)
µ/I∂X

µ/I
L (z) eiq·H(z̄) eiPIX

I
L(z) eip·X(z,z̄) . (2.57)

Here q is an SO(10) vector weight lattice vector, P is an E8 × E8 vector weight lattice vec-
tor and p denotes the momentum of the state. The q-dependent polarization of the state
is described by ζ

(q)
µ/I . We have refrained from writing possible right-moving oscillators be-

13 Canonical ghost picture just means that it is the ghost picture in which the vertex operator takes its simplest
form. Of course it can be brought to any other ghost picture by means of picture changing.

14 Note that for the remainder of this work we suppress cocycle factors arising from the bosonization of various
fields wherever they occur, as they will not be important for our purposes.
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2 Heterotic Orbifolds

cause vertex operators containing such oscillators can not have conformal dimension (1, 1)
due to the contribution of the ghosts to h̄. There are two kinds solutions to the constraint
h = h̄ = 1. Namely p2 = 0, q2 = 1 and (P 2, N) = (0, 1) or (P 2, N) = (2, 0), where N is zero
or one, depending on whether the oscillator ∂Xµ is present or not. The corresponding vertex
operators are15

V−1(z, z̄) = e−φ̄βγ(z̄) ζ(q)
µ ∂Xµ

L(z) eiq·H(z̄) ,

V−1(z, z̄) = e−φ̄βγ(z̄) ζ
(q)
I ∂XI

L(z) eiq·H(z̄) ,

V−1(z, z̄) = e−φ̄βγ(z̄) eiPIX
I
L(z) eiq·H(z̄) .

These vertex operators are in one-to-one correspondence with the NS states we identified in
section 2.1.2. The first class corresponds to graviton, anti-symmetric tensor and dilaton, the
second to the 16 Cartan generators of E8 × E8 and the third one to the 480 root generators of
E8 × E8.

Let us now turn to the R sector. We have seen above that the R vacuum is created out
of the NS vacuum by the spin fields Sα of conformal dimension h̄ = 5

8 . As the ghost fields
have to have R boundary conditions as well, we need an additional twist field that creates
the ghost R vacuum. We have seen above that such a ghost spin field is given by16 e−

1
2
φ̄βγ

of conformal dimension h̄ = 3
8 . With this information at hand, we can write down the gen-

eral BRST invariant, massless R vertex operator in its canonical ghost picture. It is given by
V− 1

2
=
∫

d2zV− 1
2
(z, z̄), where

V− 1
2
(z, z̄) = e−

1
2
φ̄βγ(z̄) ζ

(q)
µ/I∂X

µ/I
L (z) eiq·H(z̄) eiPIX

I
L(z) eip·X(z,z̄) ,

where now q is a vector in the SO(10) spinor or cospinor weight lattice. Solving the constraints
h = h̄ = 1, we arrive at the spacetime N = 1 superpartners of the massless states from the NS

sector,

V− 1
2
(z, z̄) = e−

1
2
φ̄βγ(z̄) ζ(q)

µ ∂Xµ
L(z) eiq·H(z̄) ,

V− 1
2
(z, z̄) = e−

1
2
φ̄βγ(z̄) ζ

(q)
I ∂XI

L(z) eiq·H(z̄) ,

V− 1
2
(z, z̄) = e−

1
2
φ̄βγ(z̄) eiPIX

I
L(z) eiq·H(z̄) .

2.2 Toroidal Orbifolds

Toroidal orbifolds form the class of spaces one obtains by dividing the action of a discrete
symmetry group G out of a d dimensional flat torus,

O =
T d

G
.

15 We suppress normal ordering symbols in the vertex operators.
16 Another candidate would be e

1
2
φ̄βγ , which however has conformal dimension h̄ = − 3

8
. Hence the combination

Sαe
1
2
φ̄βγ of conformal dimension h̄ = 1

4
cannot be combined with other right-moving fields to yield a vertex

operator of h̄ = 1.
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2.2 Toroidal Orbifolds

Here G is a finite discrete subgroup of the isomorphism group of the torus and is called orbi-
folding group. We will only consider the case d = 6, in which case the six dimensional torus can
be described by the six dimensional flat space modulo a lattice Λ, T 6 = R6/2πΛ. This leads to
the definition of the space group S,

O =
T d

G
=
R6

S
. (2.58)

Consider as an example the two dimensional orbifold T 2
SU(3)/Z2, where T 2

SU(3) is the torus
obtained by taking the quotient of R2 by the root lattice of SU(3). As depicted in figure 2.1,
the fundamental region of this orbifold forms a tetrahedron [25].

Figure 2.1: The shaded region is the fundamental region of the two dimensional orbifold T 2
SU(3)/Z2,

which forms a tetrahedron. The arrows display the basis vectors of the torus lattice and the coloured
dots mark the loci of fixed points. Those with the same colour are equivalent on the orbifold.

Any space group element may be written as a pair (ϑ, λ), where ϑ ∈ O(6) and λ is a transla-
tion. The action on a point X is

S 3 (ϑ, λ) :
R6 −→ R6 ,

X 7−→ ϑX + 2πλ
, (2.59)

from which the group product can be determined to be (ϑ, λ) · (ϑ′, λ′) = (ϑϑ′, ϑλ′ + λ). As a
consequence the orbifold may be described by points X inR6 with the identification

X ∼= ϑX + 2πλ , ∀ (ϑ, λ) ∈ S . (2.60)

The subset of space group elements of the form (ϑ, 0) forms a finite discrete group, called the
point group P . If the point group is a subgroup of the space group then S is a semi-direct
product of P and Λ, S = P nΛ and G = P . This is the case if the space group does not contain
roto-translations, i.e. elements of the form (ϑ, λ) such that (ϑ, 0) 6∈ S.
Note that if S = P n Λ the generators of the space group are given by the generators of P ,
denoted ϑk, and the basis vectors of the lattice, denoted by ei,

S = 〈(ϑ1, 0), . . . , (ϑN , 0), (1, e1), . . . , (1, e6)〉 ,

whereN = rank(P ). In the presence of roto-translations however, the space group can contain
elements with fractional lattice vectors, (ϑ, niei) where ni 6∈ Z.

The action of the space group on R6 is in general not free, that means its elements can have
non-trivial fixed hypersurfaces F ,

ϑX + 2πλ = X ∀X ∈ F . (2.61)
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2 Heterotic Orbifolds

The space group element g = (ϑ, λ) is called the constructing element of F . In the following we
will only be dealing with fixed hypersurfaces of even dimension, that is with fixed points Xf ,

g Xf = ϑXf + 2πλ = Xf , (2.62)

and fixed tori.
Let g be the constructing element of the fixed hypersurface F and let h be another space group
element, such that hg 6= gh. Then

(hgh−1)hX = h gX = hX , ∀hX ∈ hF ,

i.e. hF is a fixed hypersurface of hgh−1. Hence fixed hypersurfaces are in one-to-one corres-
pondence to conjugacy classes17 [g] of S, given by

[(ϑ, λ)] =
{(

ϑ, (1− ϑ)λ̃+ ϑ̃λ
) ∣∣∣ (ϑ̃, λ̃) ∈ S

}
. (2.63)

Unlike manifolds, orbifolds can have discrete
holonomy groups. Indeed the holonomy
group of a toroidal orbifold is given by its point
group, as can be seen as follows. Take two
points x and y = ϑx+2πλ on the orbifold and a
vector v in the tangent space of x as displayed
in figure 2.2. By the action of (ϑ, λ) the vec-
tor v is mapped to ϑv in the tangent space of y.
Now parallel transport the vector along a path
γ from y to x. As the points are identified, this
is a closed loop on the orbifold and as the torus
is flat, the vector ϑv does not change along the
path.

x

y

v

ϑ

ϑv

γ

ϑv

Figure 2.2: Orbifolds have discrete holonomy
groups.

As a result, on the orbifold space, the vector v has been mapped to ϑv by means of parallel
transport along a closed loop.

2.2.1 Classification of Space Groups

There are different classification schemes for space groups [42]. We choose the classification
into Q, Z and affine classes as depicted in figure 2.3. As we will see later, this classification
allows for a physical interpretation in the context of heterotic orbifolds.

Q class Z class affine class

Figure 2.3: Classification of space groups intoQ, Z and affine classes.

Let S1 and S2 be two space groups with associated point groups P1 and P2 respectively.

17 Two space group elements g and g′ are conjugate, g ∼ g′, iff there is an element h ∈ S such that hgh−1 = g′.
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Then S1 and S2 belong to the sameQ class iff

∃V ∈ GL(6,Q) s.t. V P1V
−1 = P2 .

As a consequence space groups within the sameQ class have identical holonomy groups.
Further, two space groups belong to the same Z class, iff

∃V ∈ GL(6,Z) s.t. V P1V
−1 = P2 .

As the elements of Pi can be represented by GL(6,Z) matrices themselves, this means that the
point groups are related by a change of basis. Equivalently the Z class specifies the lattice Λ
of the space group. If two space groups belong to the same Z class, they clearly belong to the
sameQ class as well.
If not only the point groups are equal up to a change of basis but the space groups are related
by an affine transformation A : R6 → R6,

AS1A
−1 = S2 ,

the space groups belong to the same affine class. The action of any affine transformations can
be written as A : x 7→Mx+ b, where M is a linear transformation and b is a translation vector.
Hence the action on the space group elements is given by

∀g = (ϑ, λ) ∈ S AgA−1 = (MϑM−1, Mλ+ (1−MϑM−1)b) .

The classification of the space groups relevant for the compactification of the heterotic string
to four dimensions was performed in [34]. We will review the classification of space groups
with abelian point groups, which is the case we will restrict ourselves to for the remainder of
this work, in section 3.2. We will see that the point groups that are of interest to us, are ZN or
ZN × ZM subgroups of SU(3). Let us denote the point group generators by θ (θ and ω for the
case of ZN × ZM ). As they can be embedded in the Cartan subgroup of SO(6), we may write
them as

θ = e2πi(v1
θJ12+v2

θJ34+v3
θJ56) ,

ω = e2πi(v1
ωJ12+v2

ωJ34+v3
ωJ56) ,

(2.64)

where J12, J34 and J56 are the Cartan generators of SO(6). We call (v1, v2, v3) and (w1, w2, w3)
the twist vectors of the point group. Consequently every point group element ϑ may be repres-
ented by a twist vector vϑ. If there is a basis of the lattice, such that the matrix representation
of θ and ω takes the form

M =

M12 0 0
0 M34 0
0 0 M56


in that basis, the orbifold is called factorizable.
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2.3 Compactification of the Heterotic String on Toroidal Orbifolds

We will consider heterotic string theory compactified on six dimensional orbifolds, such that
the spacetime background is

M3,1 ×O =M3,1 × R
6

S
.

As the orbifold geometry is flat everywhere but at the loci of fixed hypersurfaces, the heterotic
SCFT remains free and hence exactly solvable. Therefore many of the features of the heterotic
string on a ten dimensional Minkowski spacetime, which we discussed in section 2.1, remain
valid.

There are restrictions on the space groups that give rise to well-defined string theories. For
the representation of the point group generators (2.64) on the R spinors to be well-defined it
is required that

N(a)

3∑
i=1

vi(a) = 0 mod 2 , (2.65)

where a ∈ {θ, ω}. Further, in order to preserve (at least) N = 1 supersymmetry, the holonomy
group, that is the point group, should be a discrete subgroup of SU(3) [19]. For the point group
generators this means [21],

3∑
i=1

|vi(a)| = 0 ,

where it is always possible to choose the signs of the vi(a) such that

3∑
i=1

vi(a) = 0 . (2.66)

Hence the condition (2.65) is trivial once (2.66) is fulfilled.

2.3.1 Gauge Embedding

It is possible, and we will see that it is required in most of the cases, to extend the action of
the space group to the 16 internal gauge degrees of freedom. If the point group is abelian,
the action can always be realized by a shift in the gauge coordinates [21], such that the group
homomorphism reads18

ϕ : g = (ϑ, nαeα) 7−→ Vg = Vϑ + niWi , (2.67)

where Vϑ is called the shift embedding and Wα are six discrete Wilson lines, which correspond to
a constant gauge background. This means that a transformation of the compactified coordin-
ates by a space group element g, X 7→ gX , is always accompanied by a shift in the gauge
coordinates, XI

L 7→ XI
L +πV I

g . Note that the embedding breaks the E8×E8 gauge group down

18 More complicated actions of the space group on the gauge coordinates are possible and lead to continuous
Wilson lines [43]. We will, however, not consider such embeddings.

26
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to a subgroup of the same rank. The map ϕ is a homomorphism, provided

ngVg ∈ ΓE8×E8 , ∀g ∈ S ,
(1− ϑ)α

βWβ ∈ ΓE8×E8 , ∀ϑ ∈ P ,
(2.68)

where ng is the order of the element g, gn = 1, and ϑα
βeβ = (ϑe)α. The shift embedding

vectors are subject to further consistency conditions arising from modular invariance. They
read [21]

N(a)

(
V 2

(a) − v
2
(a)

)
= 0 mod 2 . (2.69)

As for many point groups v2
(a) 6= 0 mod 2, it is in general necessary to extend the point group

action non-trivially into the gauge coordinates.

2.3.2 Boundary Conditions, Mode Expansions and Hilbert Space

In the following discussion we will use complexified coordinates for the bosons,

Zm =
1√
2

(
X2m + iX2m+1

)
,

Z̄m =
1√
2

(
X2m − iX2m+1

)
,

(2.70)

where m = 0, . . . , 4, as well as the complexified fermions (2.32). We will often use the index
i = 1, 2, 3 to denote the internal directions, i.e. i = 1, . . . corresponds to m = 2, . . . in (2.32). In
this basis, the action of the point group elements on the internal string coordinates is given by

Zi
ϑ7−→ e2πiviϑZi , Z̄i

ϑ7−→ e−2πiviϑZ̄i , ψiR
ϑ7−→ e2πiviϑψiR , ψ̄iR

ϑ7−→ e−2πiviϑψ̄iR .

The most immediate consequence of the identification (2.60) is that the closed string bound-
ary conditions (2.5) of the internal degrees of freedom get generalized to

Zi(e2πiz, e−2πiz̄) = e2πiviϑZi(z, z̄) + 2πnαeiα ,

ψiR(e−2πiz̄) =

{
−e2πiviϑψiR(z̄) (R)

e2πiviϑψiR(z̄) (NS)
,

XI
L(e2πiz) = XI

L(z) + 2π(V I
ϑ + nαW I

α) + 2πγI ,

(2.71)

where {eα , α = 1, 2, 3} denotes a complexified basis of the torus lattice and γ ∈ ΓE8×E8 . Similar
boundary conditions hold for Z̄i, ψ̄i. If a string state fulfils such a boundary condition it is
called a twisted string and (ϑ, nαeα) is called the constructing element of the string. Strings, the
constructing elements of which are given by the identity element, are called untwisted. Twisted
and untwisted strings on an orbifold are visualized in figure 2.4.
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The mode expansion of Zi fulfilling these boundary conditions is given by

Zi(z, z̄) = zi + pi ln zz̄ + i
∑
n∈Z

(
1

n− wiϑ
α̃in−wiϑ

z−n+wiϑ +
1

n+ wiϑ
αin+wiϑ

z̄−n−w
i
ϑ

)
,

Z̄i(z, z̄) = z̄i + p̄i ln zz̄ + i
∑
n∈Z

(
1

n+ wiϑ

¯̃αin+wiϑ
z−n−w

i
ϑ +

1

n− wiϑ
ᾱin−wiϑ

z̄−n+wiϑ

)
,

(2.72)

where wiϑ = viϑ − bviϑc. If g = 1, the mode expansion reduces to (2.6), (2.7).
If the string is twisted, we find
that the boundary conditions re-
quire the momentum to vanish,
p = p̄ = 0, and the center of mass coordin-
ate of the string to be a fixed point19,
zi = zif = e2πiviϑzif + 2πnαeiα. That means,
twisted strings are localized at the fixed points
and cannot propagate away. Furthermore
twisted strings involve fractional oscillators
and hence the eigenvalues of the number
operator N are no longer necessarily integers.
We have seen above that inequivalent fixed
points are in one-to-one correspondence
with the conjugacy classes of the space group.

Figure 2.4: An untwisted and a twisted string
on a 2D Z2 orbifold.

Similarly let g be the constructing element of a string state and h another space group element
such that gh 6= hg. Then under the action of h the initial point of the string is mapped to
hZ(z) while the final point is mapped to hgZ(z) = hgh−1 hZ(z), i.e. the image of the string
has constructing element hgh−1. Of course the string Hilbert space H must be space group
invariant. Therefore it is constructed as [20, 21]

H = ⊕[g] H[g] , (2.73)

whereH[g] are the Hilbert spaces of states, the constructing elements g′ of which are conjugate
to g. They are space group invariant themselves and are constructed as sums

H[g] = ⊕g′∈g Ph∈CS(g′)(Hg′) ,

where Hg′ denotes the Hilbert space of states with constructing element g′, CS(g′) is the cent-
ralizer of g′ in S and Ph∈CS(g′) projects onto the subspace invariant under space group elements
h that commute with g′.

Instead of first performing the light-cone gauge quantization as for the uncompactified het-
erotic string, we will directly discuss the modifications of the superconformal field theory that
are required for the description of the orbifolded heterotic string. For this discussion we will
restrict ourselves to orbifolds with ZN point group and assume that there are no rototransla-

19 As ϑ might not have full rank, the more general statement is that the center of mass of twisted string is fixed to
the locus of the fixed hyperplane of g. We will, for simplicity, often make statements about fixed points which
straightforwardly generalize to fixed hypersurfaces.
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tions, i.e. that the space group is a semi-direct product of the point group with the lattice.

2.3.3 Orbifold Superconformal Field Theory

We have seen above that the main new feature arising in orbifold compactifications of the
heterotic string is the presence of twisted sectors. In the worldsheet SCFT these sectors are,
analogously to the R sector, created by twist fields [25].

Twist Fields

While the SL(2,R) invariant vacuum is in the untwisted sector, twisted string states are created
by acting with the various untwisted fields on the twisted vacuum states

|g〉 = Σg(0, 0) |0〉 .

Unlike the spin fields that create the R ground state out of the vacuum, the twist fields twist
all physical degrees of freedom of the string, i.e. the worldsheet bosons Zi and XI as well as
the fermions ψµ. The ghost fields are not twisted because that would correspond to a change
of the worldsheet topology [25]. The total twist field Σ may be split into components which
only act on one kind of worldsheet fields each. We will denote the field twisting the bosonic,
fermionic and gauge degrees of freedom by σg, sg and s̃g respectively.

The fields most complicated to deal with are the bosonic twist fields σg. In the presence of a
twist field σg(0, 0) at the origin, Z(z, z̄) is subject to the global monodromy condition

Zi(e2πiz, e−2πiz̄) = e2πikviθZi(z, z̄) + 2πλi , (2.74)

when transported along a closed loop around the origin. Here we have written g = (θk, λ).
If the field Z(z, z̄) is split into a classical and a quantum part Z = Zcl + Zqu, then only the
classical part is subject to the full global monodromy, while the quantum part ignores the shift

Ziqu(e2πiz, e−2πiz̄) = e2πikviθZiqu(z, z̄) . (2.75)

This is intuitively clear, as only the classical part of the field knows about the center of mass of
the string. The same is true for the derivatives ∂Z and we can write down the OPEs with the
twist fields that reflect these local monodromies [25]

∂Zi(z)σig(w, w̄) ∼ (z − w)−(1−wig) τ ig (w, w̄) + . . . ,

∂Z̄i(z)σig(w, w̄) ∼ (z − w)−w
i
g τ ′ ig (w, w̄) + . . . ,

∂̄Zi(z)σig(w, w̄) ∼ (z̄ − w̄)−w
i
g τ̃ ′ ig (w, w̄) + . . . ,

∂̄Z̄i(z)σig(w, w̄) ∼ (z̄ − w̄)−(1−wig) τ̃ ig (w, w̄) + . . . ,

(2.76)

where wig = vig − bvigc and we have factorized the twist fields σg into three two-dimensional
twist fields twisting only one component of the Zi each. While this in general fails for non-
factorizable orbifolds because of the lattice part in the global monodromy condition, the local
monodromy conditions, that the ∂Zi fulfil, do not involve the lattice. Hence in writing the
OPEs it makes sense to use the factorization. The OPEs define four different excited twist fields
τ . While the primes distinguish fields of different conformal weights, the tildes denote fields
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that are related by complex conjugation. The conformal dimensions of these fields can be
calculated rather indirectly, by calculating the expectation value of the energy-momentum
tensor in the presence of the twist fields. The results are summarized in table 2.2.

As we have seen in section 2.1, the discussion of the spin fields S is considerably simplified
after going to a bosonized description. The same holds true for the twist fields sg. They can be
represented as20

sg(z̄) = ei
∑
i v
i
gH

i(z̄) , (2.77)

so that their action on the bosonized worldsheet fermions eiq·H can be described by a shift

q 7→ qsh = q +
(
0, 0, v1

g , v
2
g , v

3
g

)
. (2.78)

Just as in the bosonic case, the OPEs of the fermion twist fields with the ψi

ψi(z̄)sig(w̄) = (z̄ − w̄)v
i
g t′ ig (w̄) ,

ψ̄i(z̄)sig(w̄) = (z̄ − w̄)−v
i
g tig(w̄) + . . . ,

(2.79)

define excited twist fields which can be represented as t′ ig = ei(vig+1)Hi
, tig = ei(vig−1)Hi

. Note
that there is no singularity in the OPE of ψi and sig, so ψ annihilates the twisted vacuum state
created by sg.

Finally, since the twisted sector boundary conditions can be realized as a shift in the gauge
coordinates, the fields s̃g, take the form

s̃g(z) = ei
∑
I V

I
g X

I
L(z) , (2.80)

where Vg is the embedding of g defined in (2.67). Hence, the twist in the gauge coordinates
can be described by a shift in their gauge momentum P ,

P 7→ Psh = P + Vg . (2.81)

The conformal dimensions of the twist fields are summarized in table 2.2.

σig τ ig τ ′ ig sig tig t′ ig s̃Ig

h
1
2w

i
g(1− wig)

1
2w

i
g(3− wig) 1

2w
i
g(−1− wig) + 1 0 0 0 1

2

(
V I
g

)2
h̄ 1

2w
i
g(1− wig) 1

2w
i
g(1− wig) 1

2

(
vig
)2 1

2

(
vig − 1

)2 1
2

(
vig + 1

)2
0

Table 2.2: Conformal dimensions of the twist fields σg , sg , s̃g acting on Xi, ψi, XI
L and their excitations.

The OPE with the fermionic supercurrent, T̄F(z̄) = i : (∂̄Z · ψ̄+ ∂̄Z̄ ·ψ) :, shows that the susy
partner of Σg is given by Σ̃g = −1

2τgtg s̃g.
We have seen above that the twisted Hilbert space splits into a sum of sectors

H[g] = ⊕g′∈[g] Ph∈CS(g′)(Hg′) .

That means, if we want to describe a twisted string we have to take a linear combination of

20 The proper bosonized description of the twist fields sg involves cocycle factors, which we suppress.
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twist fields within the same conjugacy class,

Σ[g] =
∑
g′∈[g]

e2πiγ̃(g′)Σg′ , (2.82)

where γ̃ are phases to be determined. Then under the space group automorphism g → hgh−1

the sum changes according to

Σ[g] →
∑
g′∈S

e2πiγ̃(g′)Σhg′h−1 =
∑
g′∈S

e2πi(γ̃(g′)−γ̃(hg′h−1))e2πiγ̃(hg′h−1)Σhg′h−1 .

That means, the phases have to fulfil

γ̃(g)− γ̃(hgh−1) = γ̃(g′)− γ̃(hg′h−1) mod 1 ∀h, g ∈ S, g′ ∈ [g]

for the Σ[g] to transform with a phase under g → hgh−1. Thus we are lead to the definition

γ(g, h) = γ̃(g)− γ̃(hgh−1) mod 1 (2.83)

and we find the transformation behaviour of Σ[g] under the automorphism g → hgh−1 to be

Σ[g] → e2πiγ(g,h)Σ[g] . (2.84)

Note, that we were able to express the twist fields sg and s̃g in terms of the free bosonic fields
Hm and XI

L. As sg = ei
∑
i v
i
gH

i
and (for abelian point groups) the twist vectors of g and hgh−1

are always equal, vg = vhgh−1 , we can move sg out of the sum and write

Σ[g] = sg
∑
g′∈[g]

e2πiγ̃(g′)s̃g′σg′ .

Further, as we have seen in (2.81) the space group acts on the gauge coordinates by a shift,
i.e. the action is abelian. Hence Vhgh−1

∼= Vh + Vg + Vh−1
∼= Vh + Vh−1 + Vg ∼= Vg, where ∼=

means identification up to E8 × E8 lattice vectors. Vertex operators with non-vanishing gauge
momentum always have a contribution e2πiP IshX

I
L with a fixed P 2

sh (because h = 1
2P

2
sh). If we

take two elements of the sum in Σ[g] corresponding to g and hgh−1 respectively, then their Psh

are

Psh = P + Vg ,

P ′sh = P + Vhgh−1 = P + Vg + γE8×E8 = P ′ + Vg ,

that is the difference in the gauge embedding vectors can be reabsorbed in the untwisted mo-
mentum P , such that Psh remains the same for both contributions to the state. As a con-
sequence we can as well move s̃g out of the sum in Σg,

Σ[g] = sg s̃g
∑
g′∈[g]

e2πiγ̃(g′)σg′

= sg s̃gσ[g] .

(2.85)
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Note, however, that this identity only holds within a physical vertex operator.

Vertex Operators

Now we can write down the vertex operators corresponding to physical massless states of the
orbifolded heterotic string.

Let us start with the untwisted sector. It corresponds to compactifying the string theory on a
six-dimensional torus. As all winding modes are massive, the vertex operators take the same
form as in the uncompactified theory,

V−1(z, z̄) = e−φ̄βγ(z̄) eiq·H(z̄) eiPIX
I
L(z) × osc. ,

V− 1
2
(z, z̄) = e−

1
2
φ̄βγ(z̄) eiq·H(z̄) eiPIX

I
L(z) × osc. ,

(2.86)

where we have used the abbreviation osc. for possible contributions of ∂Xµ/I
L (z) and ∂

(—)

Zi(z).
We have seen above that the requirement h = h̄ = 1 restricts the quantum numbers of the bo-
sonic states to fulfil q2 = 1 and either (P 2, N) = (0, 1) or (P 2, N) = (2, 0). Provided the break-
ing of the 10D Lorentz group, the fields however split into various 4D components which
can be distinguished by the first two components of the SO(10) weight vector q. Namely21

(q0, q1) = (0, 0), (q0, q1) = (±1, 0) and (q0, q1) = (±1
2 ,±

1
2) correspond to spacetime scalars,

vectors and fermions respectively. From the left-moving part of the string there can be os-
cillator contributions in addition, which modify the 4D Lorentz group representation of the
states depending on whether they are excited along the internal or external directions. We will
use the index µ = 0, 1, 2, 3 to label 4D spacetime directions and i = 1, 2, 3 for the complexified
compact dimensions.
As we have seen in the discussion of the Hilbert space in section 2.3.2, we further have to
require invariance of the states under general space group elements h ∈ S. From the con-
siderations above it follows that the untwisted fields transform under h = (ϑ, λ) according
to

Zi(z, z̄)
h7→ e2πiviϑZi(z, z̄) + 2πλ , Z̄i(z, z̄)

h7→ e−2πiviϑZ̄i(z, z̄) + 2πλ ,

∂Zi(z)
h7→ e2πiviϑ∂Zi(z) , ∂Z̄i(z)

h7→ e−2πiviϑ∂Z̄i(z) ,

eiq·H(z̄) h7→ e2πiqiv
i
ϑeiq·H(z̄) , eiPIX

I
L(z) h7→ eiPIV

I
h eiPIX

I
L(z) .

Hence the space group invariant, conformal dimension (1, 1) vertex operators in the untwisted
sector are the following:

• e−φ̄βγ(z̄) ζ
(q)
m ∂Xm(z) eiq·H(z̄) q = (±1, 0, 0, 0, 0) , m = 0, 1 ,

4D SUGRA multiplet

• e−φ̄βγ(z̄) ζ
(q)
i ∂

(—)

Zi(z) eiq(±i)·H(z̄) qj(±i) = ±δji ,

complex structure and Kähler moduli

21 In our notation (a1, . . . , an, an+1) abbreviates all vectors obtained by permuting the components a1 to an of the
vector (a1, . . . , an, an+1).
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• e−φ̄βγ(z̄) ζ
(q)
I ∂XI

L(z) eiq·H(z̄) q = (±1, 0, 0, 0, 0) ,

16 Cartan generators

• e−φ̄βγ(z̄) eiq·H(z̄) eiPIX
I
L(z) q = (±1, 0, 0, 0, 0)

P · Vh = 0 mod 1 ∀h ∈ S ,

root generators

• e−φ̄βγ(z̄) eiq·H(z̄) eiPIX
I
L(z) q = (0, 0, ±1, 0, 0)

P · Vh + q · vh = 0 mod 1 ∀h ∈ S ,

chiral multiplets

Here we list the vertex operators in the NS sector. The R operators can be obtained from them
by substituting

e−φ̄βγ(z̄) → e−
1
2
φ̄βγ(z̄) and q → q ± (±1

2 , ±
1
2 ,

1
2 ,

1
2 ,

1
2) , (2.87)

where the sign in the second substitution is to be taken such that q2 = 5
4 .

The twisted sector vertex operators are obtained by additional insertions of the twist fields
Σ[g], i.e. we can write them as

V−1(z, z̄) = e−φ̄βγ(z̄) eiqsh·H(z̄) eiPsh·XL(z) σ[g] × osc. ,

V− 1
2
(z, z̄) = e−

1
2
φ̄βγ(z̄) eiqsh·H(z̄) eiPsh·XL(z) σ[g] × osc. .

(2.88)

Note that due to the presence of bosonic twist fields, the oscillator contributions are mod-
ified. As we have seen in (2.72), the oscillator expansions of Z involve twisted oscillators.
Hence the left-moving oscillator terms of Z and Z̄ in the sectors twisted by e2πivg , are given
by ∂

∂zw
i
g+n

Zi(z, z̄) and ∂

∂zn−w
i
g
Z̄i(z, z̄) such that their conformal dimension are (wig + n, 0) and

(n− wig, 0) respectively [44].
The conditions for V−1 to be a conformal dimension (1, 1) field are

1 =
1

2
P 2

sh + h(osc.) +
1

2

∑
i

wig(1− wig) ,

1 =
1

2
+

1

2
q2

sh +
1

2

∑
i

wig(1− wig) .
(2.89)

In the R sector, the contribution of 1
2 to h̄ from the ghost sector is replaced by 3

8 . As in the
untwisted case, conformal dimension (1, 1) vertex operators cannot have right-moving oscil-
lators. Also the possible contributions from left-moving oscillators are rather constrained, the
only ones allowed being ∂Z/∂zw

i
g and ∂Z̄/∂z1−wig . Thus let us define the oscillator number

operators
NL =

∑
i

(
wigN i

L + (1− wig) N̄ i
L

)
, (2.90)

such that h(osc.) = NL and N i
L (N̄ i

L) count the number of oscillators ∂Z (∂Z̄) present in the
vertex operator.
In the light of the fact that the conditions (2.89) are far more model dependent than the ones
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in the untwisted sector, we will discuss their solutions for the example of a Z3 orbifold in the
next section.

Provided the condition (2.66) the spectrum of heterotic orbifolds is N = 1 spacetime super-
symmetric22. However there may be subsectors of the Hilbert space which enjoy enhanced
N = 2 spacetime supersymmetry23. In addition the spectrum enjoys CPT invariance: Given a
massless state twisted by g with quantum numbers (qsh, Psh,NL, N̄L), in the sector twisted by
g−1 there is a state with (−qsh,−Psh, N̄L,NL) that solves the condition (2.89).

Orbifold GSO Projectors

The set of solutions to (2.89) has to be projected onto space group invariant subspaces in order
to obtain physical string states. The constituents of the vertex operators transform according
to

Zi(z, z̄)
h7→ e2πiviϑZi(z, z̄) + 2πλ , Z̄i(z, z̄)

h7→ e−2πiviϑZ̄i(z, z̄) + 2πλ ,

∂zaZ
i(z)

h7→ e2πiviϑ∂zaZ
i(z) , ∂zaZ̄

i(z)
h7→ e−2πiviϑ∂zaZ̄

i(z) ,

eiqsh·H(z̄) h7→ e2πiqsh·vϑeiqsh·H(z̄) , eiPsh·XL(z) h7→ eiPsh·VheiPsh·XL(z) .

(2.91)

under the action a space group element h. We still need to determine the transformation
behaviour of the twist fields σ[g]. For the case of non-commuting elements hg 6= gh we have
already discussed it above. Namely the global transformation of spacetime by the space group
element h induces the space group automorphism g → hgh−1, such that gX 7→ (hgh−1)hX =
hgX . The twist fields transform according to (2.84). The requirement that a given vertex
operator be invariant under the action of h then fixes the phase γ(g, h),

Va
h7→ e2πi((qsh+NL−N̄L)·vh+Psh·Vh+γ(g,h))Va

!
= Va , (2.92)

where a ∈ {−1,−1
2} denotes the ghost picture. Note that the gamma phases are in general

different for different states. As a consequence there is not only one twist field σ[g] for every
space group conjugacy class, but one such field for every possible set of values of γ(g, h).

For elements h ∈ S commuting with the constructing element g of a state, the gamma phase
is zero. The twist fields might however still transform with a phase, called vacuum phase, under
such elements,

σ[g]
h7→ e2πiΦvac(g,h)σ[g] , ∀h ∈ S s.t. hg = gh , (2.93)

which arises as a collective phase of each of the auxiliary twist fields σg
h7→ e2πiΦvac(g,h)σg. For

non-commuting elements we absorbed a similar phase into the gamma phases. Modular in-
variance of the one-loop partition function requires the vacuum phase to be [46]

Φvac(g, h) = −1

2
(Vg · Vh − vg · vh) mod 1 . (2.94)

Provided this information we can write down the transformation behaviour of the vertex op-
22 The existence of N = 1 spacetime supersymmetry can be traced back to the worldsheet theory being globally
N = 2 supersymmetric. We will not discuss this issue further but refer to [45].

23 If a twisted sector contains a fixed torus, then in that sector the compactification looks like O4 × T 2, where O4

is a four dimensional orbifold. As a consequence the theory is N = 1 supersymmetric in six dimensions, that is
N = 2 supersymmetric in 4D.
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erators under commuting elements h ∈ S and the corresponding projection condition for
twisted string states,

Va
h→ e2πi((qsh+NL−N̄L)·vh+Psh·Vh+Φvac(g,h))Va

!
= Va . (2.95)

These conditions are called orbifold GSO projection conditions.

2.3.4 Example: Z3 Orbifold

To illustrate the general results obtained above, let us discuss the Z3 orbifold and determine
its spectrum for two different gauge embeddings of the space group.

The unique (up to equivalence) Z3 space group giving rise to aN = 1 supersymmetric spec-
trum is generated by the twist vθ = (1

3 ,
1
3 ,−

2
3) which acts on the torus obtained by quotiening

R6 by three copies of the SU(3) root lattice. The lattice basis can be written as

e2i−1 = ê2i−1 − ê2i , e2i =
−1 +

√
3

2
ê2i−1 +

1 +
√

3

2
ê2i ,

where êij = δji denotes the standard orthonormal basis of R6. The action of the point group
generator θ on this basis is given by

θe2i−1 = e2i , θe2i = −e2i−1 − e2i ,

so the orbifold is obviously factorizable. The action of θ does not possess fixed tori but only
fixed points, which are given by the 33 = 27 combinations(

X2i−1
f , X2i

f

)
∈ {(0, 0), (1

3 ,
2
3), (2

3 ,
1
3)} , i = 1, 2, 3

and are depicted in figure 2.5. As θ2 = θ−1 the fixed point content of the sectors twisted by θ
and θ2 is equal.

e1 e3 e5

e2 e4 e6

Figure 2.5: The Z3 orbifold and its fixed points. The fundamental regions of the orbifolded tori are
highlighted in gray.

In order to have a well-defined orbifold theory, we still have to specify the embedding of the
space group into the gauge group. Let us first consider the standard embedding. It is defined as

Vθ = (v1
θ , v

2
θ , v

3
θ , 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0) ,

Wα = (0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0) , α = 1, . . . , 6 .
(2.96)

The untwisted root generators surviving the projection P · Vθ = 0 mod 1 split into two sets:

• The states fulfilling±(P 1, P 2, P 3) ∈ {(1,−1, 0), (0, 1,−1), (1, 0,−1)} give rise to an SU(3)
gauge group.
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• The states fulfilling (P 1, P 2, P 3) = (0, 0, 0) or (P 1, P 2, P 3) = ±(1
2 ,

1
2 ,

1
2) give rise to an

E6 × E8 gauge group

In addition, the untwisted sector contains three chiral multiplets fulfilling the condition
P · V + q · v = 0 mod 1, that transform as a (27, 3, 1) under the gauge group.
There are two kinds of solutions to the condition h = h̄ = 1 in the sector twisted by θ:

• The states with q2
sh = 1

3 , P 2
sh = 4

3 , NL = 0, fulfilling the projection condition
qsh · vθ + Psh · Vθ = 0 mod 1, give rise to a chiral (27, 1, 1) multiplet.

• The states with q2
sh = 1

3 , P 2
sh = 2

3 , NL = 2
3 , surviving the projector give rise to three chiral

(1, 3, 1) multiplets.

As no Wilson lines are switched on, the location of the states enters neither the conditions (2.89)
nor the orbifold GSO projection conditions (2.95). Hence each fixed points allocates the same
matter content and theZ3 orbifold in standard embedding contains 3 (27, 3, 1), 27 (27, 1, 1) and
81 (1, 3, 1) chiral matter multiplets.

Let us break the fixed point degeneracy by switching on a Wilson line in the first plane24,

W1 = W2 =
1

3
(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 1, 1, 1, 1, 1, 1) .

This breaks the gauge group further down to E6 × SU(3) × E6 × SU(3). It also breaks the
degeneracy in the spectra of different fixed points. Namely, as visualized in figure 2.6, the
fixed points split into three groups depending on their location in the first plane:

• Those with (X1
f , X

2
f ) = (0, 0) support one (27, 1, 1, 1) and three (1, 3, 1, 1) each.

• Those with (X1
f , X

2
f ) = (2

3 ,
1
3) support one (1, 3, 1, 3) each.

• Those with (X1
f , X

2
f ) = (1

3 ,
2
3) support one (1, 3, 1, 3) each.

e1 e3 e5

e2 e4 e6

W1 = W2

(27, 1, 1, 1)

3(1, 3, 1, 1)

(1, 3, 1, 3)

(1, 3, 1, 3)

Figure 2.6: The Wilson line configurationW1 = W2 6= 0 breaks the degeneracy between the fixed points.
They split into three groups depending on their location in the first plane.

While this orbifold model does not at all look phenomenologically appealing it serves as an
easy example. We will present more realistic orbifold models based on a Z6 point group in
chapter 4.

24 Note that since θe1 = e2, the Wilson lines W1 and W2 are identified up to lattice vectors as can be seen from
(2.68).
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CHAPTER 3

Coupling Selection Rules

In order to determine the phenomenology of a given string compactification it is important
to study its dynamics, i.e. the couplings of physical states. As we have seen the conformal
field theory describing the world sheet dynamics of orbifold compactifications of the heterotic
string is free and hence it is in principle possible to calculate any correlation function explicitly.
However, many phenomenological questions can be addressed without knowing the explicit
coupling strengths, only using the information about whether a specific coupling is possible or
not. This information is encoded in so called selection rules. In this chapter we want to discuss
the stringy origin of such selection rules in heterotic orbifold compactifications. We will restrict
ourselves to couplings corresponding to terms in the superpotential of the four dimensional
low energy effective field theory (EFT). As the superpotential of an N = 1 supersymmetric
field theory is a d2θ integral of a holomorphic polynomial P in the superfields Ψα,

W =

∫
d2θP({Ψα}) ,

the relevant couplings in the string theory are L-point correlators of two chiral fermions and
L− 2 scalar bosons,

〈ψ1ψ2φ1 . . . φL−2〉 .

Holomorphicity of the superpotential has a far reaching consequence. Namely it does not get
any corrections from string loop amplitudes [47], so that we only need to consider tree-level
correlators.

We will pay special attention to the origin of R-symmetries of the low energy theory within
the orbifolded string theory. As bosonic and fermionic components of the same superfield
have different charges underR-symmetries, it is natural to expect them to arise from remnants
of the Lorentz symmetry of the compactified directions, i.e. from isometries of the compacti-
fication space. We will identify the relevant isometries of the orbifold geometry and deduce
the corresponding R-charge conservation rules. As we will see, a special role is played by the
worldsheet instanton solutions which are the reason that the resulting R-symmetries are not
continuous but discrete.
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3 Coupling Selection Rules

3.1 Correlation Functions

We will write the vertex operators (2.86), (2.88) as

Va = eaφ̄βγ (∂Zi)N
i
L (∂Z̄i)N̄

i
L eiqsh·H eiPsh·XL σ[g] , (3.1)

where a ∈ {−1,−1
2} denotes the ghost picture, ∂Zi is short for ∂Zi

∂zw
i
g

and analogous for ∂Z̄.
Untwisted string states are obtained by replacing shifted momenta by unshifted ones and
σ[g] by 1. Note that according to (2.56) the bosonic vertex operator in the 0-picture is obtained
as1

V0 = i
∑
m

(
∂̄Zm ei q(−m)·H + ∂̄Z̄m ei q(m)·H

)
V−1 , (3.2)

where qn(±m) = ±δnm. As we have seen in section 2.1.3, the operators in a string tree-level
correlation function have to cancel the background ghost charge Q̄βγ = 2 on the sphere. Hence
the correlators we need to discuss are of the form

F =
〈
V− 1

2
V− 1

2
V−1V0 . . . V0

〉
. (3.3)

As the presence of picture changed vertex operators introduces right-moving oscillators into
the correlation function, let us introduce the number operators

NR = wigN i
R + (1− wig) N̄ i

R , (3.4)

such that, just as in the left-moving case h̄(osc.) = NR and N i
R (N̄ i

R) count the number of
oscillators ∂̄Z (∂̄Z̄) present in the vertex operator. We will sometimes use q̃sh to denote the
total H-momentum of a vertex operator, that is qsh together with the possible contribution
from picture changing, such that any vertex operator just includes one factor eiq̃sh·H .

The crucial feature of correlation functions (3.3) is that they factorize, such that the OPE of
any pair of fields involved in different pieces of the correlator vanish. This means we can write

F = Fgh(φbc, φ̄bc, φ̄βγ)×FH(Hm)×Fgauge(X
I
L)×Fbos(∂Z, σ) (3.5)

Note that, as explained in (2.55), three of the vertex operators have their worldsheet position
fixed (we choose 0, 1 and∞) and contribute the fields φbc and φ̄bc to the correlator. All other
vertex operators are integrated over their worldsheet insertions. The ghost part of the correl-
ator Fgh then integrates to factors related to the infinite volume of the SL(2,R) × OSP(1|2)
invariance group of the worldsheet [25]. These factors get cancelled by similar ones arising
from other parts of the correlator such that the correlation function is finite2.

1 Note that when an insertion of T̄F is used to picture change a twisted state vertex operator, the internal right-
moving oscillators contained in T̄F are twisted as well.

2 We will ignore such factors in the following. For a discussion see e.g. [36, 41].
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3.1 Correlation Functions

3.1.1 Gauge Invariance and H-momentum conservation

The contributions of FH(Hm) and Fgauge(X
I
L) are easily dealt with since they only contain

exponentials of free fields. Hence they contribute factors [41]

FH(Hm) ∼
〈

: e2πiq̃sh 1·H(z̄1) : · · · : e2πiq̃shL·H(z̄L) :
〉

∼ δ(5)

(∑
α

q̃shα

) ∏
α<β

(z̄α − z̄β)q̃shα·q̃sh β
(3.6)

and

Fgauge(X
I) ∼ δ(16)

(∑
α

Pshα

) ∏
α<β

(zα − zβ)Pshα·Psh β . (3.7)

From these expressions follow the first two selection rules. Namely any coupling of the form
(3.3) vanishes unless

L∑
α=1

q̃mshα = 0 (H-momentum conservation) , (3.8)

L∑
α=1

P Ishα = 0 (gauge invariance) . (3.9)

We will rewrite the H-momentum conservation rule for the compact directions in a more
useful way. First we split the sum into the part coming from the quantum numbers of the
states and the one that is specific to the correlator,

L∑
α=1

q̃ishα =
L∑
α=1

qishα +
L∑
α=4

(
N̄ i

Rα −N i
Rα

)
While gauge invariance is really a selection rule, the situation withH momentum conservation
is more complicated, as it depends on the unphysical right-moving oscillators in the correlator.
Now observe that for chiral superfields of positive chirality, which is the case of our interest,
the sum of qsh over the compact directions is always −1 for the bosons and 1

2 for the fermions.
That is

3∑
i=1

L∑
α=1

q̃ishα = −(L− 2) + 1 +
3∑
i=1

L∑
α=4

(
N̄ i

Rα −N i
Rα

)
.

Using the fact that
∑3

i=1

∑L
α=4

(
N̄ i

Rα +N i
Rα

)
= L− 3 we find

N i
R = 0 ,

3∑
i=1

N̄ i
R = L− 3 , (3.10)

i.e. each of the picture changed vertex operator contains a right-moving oscillator ∂̄Z̄i in one
of the internal directions. Finally, one might rewrite the shifted right-moving momenta qsh of
the fermions contributing to the correlator in terms of those of the bosons from the same left-
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3 Coupling Selection Rules

chiral 4D multiplet. Using the relation (2.87), we find the internal H-momentum conservation
rule

L∑
α=1

q
(boson) i
shα = 1−

L∑
α=4

N̄ i
Rα . (3.11)

So the question of whether a coupling is allowed by H-momentum conservation is the ques-
tion of whether it is possible to find a set of N̄ i

Rα such that (3.11) as well as the constraints
N̄ i

Rα ∈ {0, 1} and
∑

i N̄ i
Rα = 1 are fulfilled.

3.1.2 Space Group Selection Rule

The bosonic piece of the correlation function (3.5) takes the form

Fbos ∼
∏
α

∏
i

(
∂Zi(zα)

)N iLα (∂Z̄i(zα)
)N̄ iLα (∂̄Z̄i(zα)

)N̄ iRα σ[gα](zα, z̄α) . (3.12)

Since a general operator expansion of the twist fields is not known, the calculation of this
correlator is usually performed in the path integral formalism. Furthermore, as the action of
the theory is quadratic in the fields ∂Z, we can split them into a classical and a quantum part
∂Z = ∂Zcl + ∂Zqu, where ∂Zcl is a solution to the classical equation of motion with the correct
monodromy (2.74) around the locations of the twist fields [25]. Then the correlator can be
expanded as3

Fbos ∼
∑
Zcl

e−Scl

3∏
i=1

N iL∑
r=0

N̄ iL∑
s=0

N̄ iR∑
t=0

(
N iL
r

)(
N̄ iL
s

)(
N̄ iR
t

)
×
(
∂Zicl

)N iL−r (∂Z̄icl

)N̄ iL−s (∂̄Z̄icl

)N̄ iR−t
×
∫
DXqu e−S

i
qu
(
∂Ziqu

)r (
∂Z̄iqu

)s (
∂̄Z̄iqu

)t
σi[g1] . . . σ

i
[gL] ,

(3.13)

The quantum part is independent of the classical solutions and the fields involved are subject
only to the local monodromy conditions (2.75). Note that the non-trivial monodromy condi-
tions mean that the fields ∂Z are multi-valued fields on the worldsheet. Therefore one has to
go to a surface that covers the worldsheet multiple times, such that the fields become single-
valued [44]. We will not go into the details of the calculation of these amplitudes that have
been carried out in [25, 48, 49] and more recently in [50], but analyse the structure of the cor-
relator (3.13) to find further selection rules.

Of particular importance are the classical solutions ∂Zcl, which correspond to worldsheet
instantons. As the complete correlator Fbos is proportional to a sum over these solutions, we
find that it can only be non-zero if such solutions exist. The worldsheet coordinate dependence

3 Here
a
b

= a!
b!(a−b)! denote the binomial coefficients.
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3.1 Correlation Functions

of the classical solutions is determined by the local monodromy conditions to be [25, 48, 51]

∂Zicl(z) =
(
∂̄Z̄icl

)∗
=

L−M i−1∑
l=1

al
i hl

i(z) ,

∂̄Zicl(z) =
(
∂Z̄icl

)∗
=

M i−1∑
l=1

bl
i h̄l

i
(z̄) ,

(3.14)

where M i =
∑

αw
i
gα . Here, the basis functions are

hl
i(z) = zl−1

∏
α

(z − zα)w
i
gα
−1 ,

h̄l
i
(z̄) = z̄l−1

∏
α

(z̄ − z̄α)−w
i
gα .

(3.15)

The L− 2 coefficients al, bl are determined by the global monodromy conditions∫
γp

dz ∂Zicl +

∫
γp

dz̄ ∂̄Zicl = νip ,∫
γp

dz ∂Z̄icl +

∫
γp

dz̄ ∂̄Z̄icl = ν̄ip ,

(3.16)

where γp are zero-twist loops, i.e. they close on the N -fold covering of the worldsheet. This
must be the case, since a loop that encircles all twist insertions on the sphere can be pulled
off to infinity, i.e. it must have trivial homology. On the other hand, however, consider a loop
starting at a base point p. As the loop encircles the insertion points of all twist fields and comes
back to p, it has been multiplied by g1g2 . . . gL. As a consequence such loops can only exist,
provided ∏

α

[gα] = [1] . (3.17)

This is the space group selection rule. It can also be understood from a more intuitive point of
view [44]. Suppose |g〉 is a string in the Hilbert space H[g] and |h〉 in the Hilbert space H[h]. If
the two strings join, as displayed in figure 3.1, they form a string in the Hilbert space H[hg].
More generally, a process

|g1g2 . . . gm〉 → |h1h2 . . . hn〉

is possible only if [g1][g2] . . . [gm] = [h1][h2] . . . [hn], i.e. [g1][g2] . . . [gm][gm+1][gm+2] . . . [gm+n] =
[1], where we have substituted the outgoing string by the CPT conjugate ingoing state using
the replacement gm+j = h−1

n−j+1.

As we may write the space group elements gα as (ϑα, λα) the space group selection rule may
be split into a rule for the twist part,

ϑ1 ϑ2 . . . ϑL = 1 , (3.18)
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3 Coupling Selection Rules

x

gx hgx

x hgx

Figure 3.1: A twisted string with constructing element g and one with constructing element h join to
form a string with constructing element hg.

called the point group selection rule and a lattice part which can be written as

L∑
α=1

 L∏
β=α+1

ϑβ

(ϑ̃αλα + (1− ϑα)λ̃α

)
= 0 , (3.19)

where the selection rule rule is fulfilled iff L space group elements hα = (ϑ̃α, λ̃α) can be found
such that (3.19) is satisfied. Often the space group selection rule can be rewritten as a set of
simpler discrete symmetries. For the case of theZ3 orbifold discussed above one finds the four
discrete symmetries [52, 53] ∑

α

kα = 0 mod 3 ,∑
α

kαni = 0 mod 3 , i = 1, 2, 3 ,
(3.20)

where we have written ϑα = θkα and, in each plane, have labelled the three fixed points (0, 0),
(1

3 ,
2
3) and (2

3 ,
1
3) by n = 0, 1 and 2.

3.1.3 Classical Solutions and their Symmetries

Let us investigate the classical solutions (3.14) a bit further. The coefficients al and bl can be
obtained from (3.16) as

al
i = νp

i(W−1)i
p
l ,

ll
i = νp

i(W−1)i
p
L−M i−1+l ,

(3.21)

where we have used the period matrices [54]

W i l
p =

∫
γp

dz hl
i(z) , l = 1, . . . , L−M i − 1 ,

W i L−M i−1+l
p =

∫
γp

dz̄ h̄l
i
(z̄) , l = 1, . . . ,M i − 1 .

The sum over classical solutions in (3.13) therefore becomes a sum over the coset vectors νp. The
calculation of the coefficients ai and bi proceeds as follows4. One chooses a basis of all possible

4 Here we restrict ourselves to space groups with ZN point group.

42



3.1 Correlation Functions

zero twist loops enclosing the twist fields, which has (L−2) [54] elements. One such basis [48,
49, 54, 55] is given by the loops that encircle the fixed point fp clockwise rp times followed by
the fixed point fp+1 counter-clockwise sp times, where rp and sp are the smallest integers such
that rpkp = spkp+1 mod N . The corresponding coset vectors can be written as

νp = (1− θrpkp)(fp+1 − fp + λ) , (3.22)

where λ is some lattice vector of the internal torus. As it turns out, the homologically not linear
independent (L−1)th loop leads to a consistency condition and thereby to a further restriction
on the coset vectors [49]. For instance, for the three-point function the νp are restricted as

ν =
(

1− θr1k1

)(
f2 − f1 − λ̃2 + λ̃1 +

1− θk1+k2

1− θgcd(k1,k2)
λ

)
, λ ∈ Λ , (3.23)

where λ̃1, λ̃2 are the lattice vectors that appear in the space group selection rule (3.19).
However, before we proceed to discuss the properties of the coset vectors, there is one more

selection rule to be discussed. Namely suppose we are considering a coupling of states that
are all located at the same fixed point. Then for every coset vector ν, its Z2 image −ν is a coset
vector as well. If the order of the ZN point group generator θ is odd, this symmetry is not
contained in the point group and the classical solutions of such couplings enjoy an enhanced
ZN × Z2 symmetry that can forbid couplings. This selection rule, called Rule 4 [56], however
possesses a rather strange feature. It was shown [52] that the way in which this rule forbids
couplings cannot be explained by effective symmetries from the point of view of a low energy
theory, i.e. it is not possible to define effective quantum numbers, the conservation of which
explains the vanishing of the couplings. As a consequence one might expect that couplings
forbidden by Rule 4 may be induced by perturbative and non-perturbative effects when going
from the string to the electroweak scale.

Let us go back to the general case. Having obtained the explicit form of the coset vectors
we can investigate their symmetries. Recall that the bosonic part of the correlator is propor-
tional to powers of the classical solutions and hence to powers (of sums) of the coset vectors.
Any isometry of the internal space that maps the set of allowed coset vectors to itself should
manifest as a symmetry of the correlation function and hence lead to a selection rule5. Inspec-
tion of (3.22) and (3.23) reveals that the relevant symmetries are automorphisms % of the torus
lattice Λ that commute with all point group elements: If fi and fj are fixed points and λ̃i and
λ̃j are the corresponding lattice vectors from the space group selection rule, then there is a
loop γ with corresponding coset vector ν(λ). At the same time %fi and %fj are fixed points
and %λ̃i and %λ̃j are the corresponding lattice vectors from the space group selection rule. So
there exists a loop γ′ with corresponding coset vector ν ′(λ′). However, as the automorphism %
commutes with all point group elements, we find ν ′(λ′) = %ν(λ).

Note that this result is in particular intriguing because it shows that the continuous R-
symmetries that one would expect in smooth compactifications of heterotic string theory get
broken to discrete ones by worldsheet instanton effects on the orbifold. The quantum part of
the correlator (3.13) does not know about the relative positions of the fixed points at which the
states live. Hence, if there were no instantons one could indeed find three independent U(1)
R-symmetries, just in the way we will deduce the discrete R-symmetries in section 3.3.2. The

5 There are further restrictions, as we will see. The isometries also have to respect the fact that different fixed
points in general support different states and hence cannot be exchanged.
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3 Coupling Selection Rules

information about the presence of the lattice and its fixed points is encoded in the classical
solutions, that is the worldsheet instantons that mediate the couplings between states located
at different (copies of) fixed points. Although we have shown it explicitly only for the case
of three-point couplings in ZN orbifolds, we will use this result in the following sections as a
motivation to identify the R-symmetries for all heterotic orbifolds with Abelian space groups.

Before we can discuss the systematics of our exploration of R-symmetries, we need to ex-
amine the classification of all heterotic orbifolds with Abelian point groups leading to N = 1
supersymmetry in four dimensions.

3.2 Abelian Orbifolds with N = 1 Supersymmetry

This classification has been performed in [34] according to the scheme introduced in section
2.2.1. There we saw that the possible space groups split intoQ, Z and affine classes, which we
can now interpret more physically. As we have seen, the Q class of the space group specifies
the point group, i.e. the holonomy group of the orbifold and thereby the amount of super-
symmetry of the resulting 4D theory. Furthermore the number of geometrical moduli is fixed
by the Q class. Since the Z class specifies the lattice of the space group, it fixes the nature of
the moduli and by determining the automorphism group of the lattice, restricts the isometries
of the internal space. However, two representatives of the same Z class can be inequivalent
because of different actions of the orbifolding group on the lattice, i.e. depending on the pres-
ence of roto-translations. This is determined by specifying the affine class of the space group
which fixes many phenomenological features of the model, such as the nature of gauge sym-
metry breaking (c.f. section 4.1). Affine transformations correspond to moving in the moduli
space of the orbifold theory, so that only one representative of each affine class is needed in
the classification.

The program of the classification is now to find all Q classes of space groups such that the
point group is a subgroup of SU(3) and then to construct all Z and affine classes contained in
these Q classes. A catalogue of all possible affine classes of space groups in up to six dimen-
sions was created in [57] and the results can be accessed using the computer program Carat
[58]. A nice way to determine the Q classes leading to N = 1 supersymmetry proceeds via
representation theory [34]. Clearly all point groups are discrete subgroups of O(6). Having
selected those ones, the generators of which have determinant 1, one can make use of the
breaking of the vector representation 6 of SO(6) into the representations of SU(3), which takes
the form

6SO(6) → 3SU(3) ⊕ 3̄SU(3) .

The six-dimensional representation of the point group P is reducible in general and hence
splits into irreducible components according to 6P = ⊕kn(k)r

(k)
P . Using the character table of

the point group P and the relation

n(k) =
1

|P |
∑
g∈P

χ
r
(k)
P

(g) (χ6P (g))∗

one can determine the multiplicities n(k) and check whether the sum splits according to
6P = aP ⊕ āP , where aP denotes the representation originating from 3SU(3) and āP is its
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conjugate. If this is the case and the determinant of the matrix representation of aP has de-
terminant 1, the point group is indeed a subgroup of SU(3). Then one can check whether
or not the breaking of 3SU(3) into irreducible representations of P contains the trivial repres-
entation and in this way whether the orbifolded theory preserves more than one spacetime
supersymmetry or not.

As a result, out of the 7103 Q classes of six dimensional space groups, 52 lead to heterotic
orbifolds preserving exactly N = 1 supersymmetry. Out of these 17 contain Abelian point
groups and split into 60 Z classes and 138 affine classes [34].

This set of 138 affine classes provides us with the starting point for the determination of
R-symmetries for all Abelian orbifolds with N = 1 supersymmetry that we will perform in
the next section.

3.3 R-Symmetries

As discussed above, R-symmetries of the effective theory of massless states can originate from
symmetries of the internal space, i.e. from its isometries. In this section we want to describe
the isometries of orbifold compactifications and discuss the coupling selection rules that we
can deduce from them.

3.3.1 Orbifold Isometries

The isometries of six dimensional flat tori split into two classes. The continuous isometries
form the first class and are given by translations along the cycles of the torus. They form the
group [U(1)]6. The second class contains discrete isometries that are given by the automorph-
isms of the torus lattice. As the continuous isometries are clearly broken by orbifolding, we
have to determine the lattice automorphisms which are compatible with taking the quotient
of the torus and the orbifolding group. Let us therefore consider various subgroups [59] of the
lattice automorphism group, Aut, as depicted in figure 3.2.

Aut NAut(P ) CAut(P ) Stab(zf) RotStab(zf)

NAut(P )
CAut(P )

CAut(P )
Stab(zf )

Stab(zf )
RotStab(zf )

Figure 3.2: Decomposition of the automorphism group Aut of the torus lattice Λ into the subgroups
described in the text.

• NAut(P ) ⊂ Aut denotes the normalizer of the point group in the automorphism group,
i.e. the subgroup

NAut(P ) =
{
% ∈ Aut

∣∣ ∀ϑ ∈ P %ϑ%−1 ∈ P
}
. (3.24)
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• CAut(P ) ⊂ NAut(P ) denotes the centralizer of the point group in the automorphism
group, i.e. the subgroup

CAut(P ) =
{
% ∈ Aut

∣∣ ∀ϑ ∈ P %ϑ%−1 = ϑ
}
. (3.25)

• Stab(zf) ⊂ CAut(P ) denotes the “stabilizer” of the fixed point conjugacy classes, i.e. the
subgroup

Stab(zf) = {% ∈ Aut | ∀zf fixed point of S, ∃h ∈ S s.t. %zf = hzf } . (3.26)

• RotStab(zf) ⊂ Stab(zf) denotes the subset of the stabilizer, the elements of which have
determinant 1, i.e. the subgroup

RotStab(zf) = {% ∈ Stab(zf) | det % = 1} . (3.27)

As can be straightforwardly shown the subgroups defined above fulfil the normalcy relation

NAut(P ) B CAut(P ) B Stab(zf) B RotStab(zf) , (3.28)

such that we can define the quotient groups NAut(P )/CAut(P ), CAut(P )/Stab(zf) and Stab(zf)/RotStab(zf).
Clearly only those automorphisms of the lattice, that are compatible with the point group,

i.e. which are elements of the normalizer of the point group in the automorphism group sur-
vive as isometries. Let us discuss the action of the different elements in the light of heterotic
orbifold compactifications. In order to distinguish the different types of elements it is more
useful to discuss the quotient groups instead of the subgroups themselves.

• The elements of NAut(P )/CAut(P ) map different point group elements to each other.
As we have seen for the Z3 orbifold, such automorphisms may indeed be a symmetry of
the spectrum of the orbifolded string theory. For instance a symmetry mapping the Z3

generator to its inverse would actually interchange twisted states with their CPT conjug-
ates in the inverse twisted sector.

• Elements of CAut(P )/Stab(zf) map different fixed point conjugacy classes to each other that
are twisted by the same point group element, i.e. % : (ϑ, λ) 7→ (ϑ, λ′) such that
(ϑ, λ) 6∼ (ϑ, λ′).
Such isometries can in general be symmetries of the spectrum as well, as we have seen in
section 2.3.4 for the Z3 example. There, if no Wilson lines are switched on, the spectrum
of each inequivalent fixed point is the same, so that linear combinations of states with
equal quantum numbers which are located at different fixed points can be eigenstates of
such automorphisms. We will discuss these isometries further in section 3.3.3.

• The elements of Stab(zf)/RotStab(zf) are isometries that leave the fixed point structure in-
variant but are not rotations. Hence, although they might manifest as symmetries of the
theory, those symmetries will never be R.

Finally, the elements of RotStab(zf) are symmetries of the orbifold geometry in all twisted
sectors and of the spectrum. Hence they are the kind of isometries which give rise to R-
symmetries in the low energy effective theory. We will discuss these lattice automorphisms in
detail in the next section.
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Before we proceed a comment is in order. Many lattices give rise to unfixed moduli, such
as the lengths of basis vectors and angles between them. One example are the relative sizes
of the tori in the Z3 orbifold. If such moduli are fixed to special values the symmetry of the
geometry is enhanced, which manifests itself in the appearance of outer automorphisms of the
lattice. We do not consider such enhanced symmetries in our exploration, because the mod-
uli would be charged under the respective R-symmetries and therefore moduli stabilization
would generically break these symmetries.

3.3.2 R-Symmetries from Orbifold Isometries

Now let us investigate the selection rules that arise from orbifold isometries in the group
RotStab(zf). As we have seen in section 3.1.3 such isometries are symmetries of the classical
solutions and hence we expect the correlation functions to be invariant under the correspond-
ing transformations. Therefore we will investigate the transformation behaviour of each of the
vertex operators involved in the correlators and then deduce the selection rule by asking the
complete correlator to be invariant.

Recall that % ∈ RotStab(zf) maps any given fixed point zf with constructing element g to a
conjugate one, i.e. there is a space group element hg such that %zf = hgzf . On the corresponding
constructing element g = (ϑ, λ), ζ acts according to

% : (ϑ, λ) 7→ (ϑ, %λ) . (3.29)

The space group element hg fulfils ρ(g) = hggh
−1
g . If we write hg = (ϑhg , λhg), it is given by a

solution to the equation
(1− ϑ)λhg = (ρ− ϑhg)λ . (3.30)

As we will see later, it turns out that for all cases considered, every element of RotStab(zf) can
be embedded into the Cartan subgroup of SO(6). Hence it can be written as

% = e2πi(ξ1J12+ξ2J34+ξ3J56) . (3.31)

Using this information it is easy to write down the transformation behaviour of vertex operat-
ors of the form (3.1) once we know how the bosonic twist fields transform. Consider the linear
combination (2.85). We can make use of the “local” identity ρ(g) = hggh

−1
g , to deduce that

under g 7→ %(g) the twist fields transform with the gamma phases,

σ[g] 7→ e2πiγ(g, hg)σ[g] . (3.32)

Therefore the transformation behaviour of the vertex operators (3.1) is determined to be

Va
%7→ e2πi [ ξi(N iL−N̄

i
L+qish)+γ(g, hg) ] Va . (3.33)

Now, correlation functions involve not only vertex operators of the form (3.1) but also picture
changed bosonic operators (3.2). Observe however, that these are constructed using insertions
of eφβγTF which are manifestly SO(6) invariant. Therefore vertex operators in the 0-picture
transform just according to (3.33).

Asking the correlation function to be invariant under % transformations we arrive at the
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selection rule

∑
α

(
3∑
i=1

ξi
[
N i

Lα − N̄ i
Lα + qishα

]
+ γ(gα, hgα)

)
= 0 mod 1 .

Note however, just as we saw when we discussed the H-momentum rule, that two of the qsh

are those of the fermionic part of a supermultiplet while the rest are those of the bosons. Let
us therefore rewrite the selection rule in terms of purely bosonic qsh,

∑
α

(
3∑
i=1

ξi
[
N i

Lα − N̄ i
Lα + q(boson) i

shα

]
+ γ(gα, hgα)

)
=

3∑
i=1

ξi mod 1 . (3.34)

Let M be the smallest integer such that Mξi is an integer for all i and define

R = M
3∑
i=1

ξi (3.35)

Then we can rewrite (3.34) according to

L∑
α=1

rα = R mod M , with

rα =
3∑
i=1

Mξi
[
N i

Lα − N̄ i
Lα + q(boson) i

shα

]
+Mγ(gα, hgα) .

(3.36)

Here rα is the charge of the bosonic component of the αth superfield.
If
∑3

i=1 ξ
i 6∈ Z this corresponds to an R-charge selection rule. Thus, by asking the correla-

tion function (3.3) to be invariant under transformations % ∈ RotStab(zf), we have derived a
selection rule that can be interpreted as a ZRM discrete symmetry from the point of view of the
low energy effective theory.

Observe that we could have derived exactly the same selection rule by determining the
transformation behaviour of the correlation function (3.12) under % and asking the correlator
to be invariant. In that way it is obvious that we have to require that % indeed be a symmetry
of the classical solutions and thereby of the coset vectors. Otherwise the classical solutions
would not transform with a phase and it would be impossible to make the correlation function
invariant.

Examples

Let us discuss the symmetries % ∈ RotStab(zf) that lead to R-charge selection rules for two
examples. The first one is the Z3 orbifold which we already discussed in section 2.3.4. There
one finds the following symmetry generators6:

%1 =
(

1
3 , 0, 0

)
, %2 =

(
0, 1

3 , 0
)
, %3 =

(
0, 0, 1

3

)
.

6 Clearly not all threeR-symmetries are independent, as their combination leads to the orbifold generator θ which,
by construction, acts trivially on all states.
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We find that the action of the orbifold generator θ on each of the planes separately gives rise
to an R-symmetry. Consequently one finds the selection rules

L∑
α=1

riα = 1 mod 3 , riα =
[
N i

Lα − N̄ i
Lα + q(boson) i

shα

]
+ 3γ(gα, hgα) (3.37)

for all three internal directions i = 1, 2, 3. Note that if there are no Wilson lines switched on,
the γ phases are all vanishing and the R-charge conservation rules reduce to those already
discussed in [52].
The second example is the Z4 orbifold with twist vector vθ = (1

4 ,
1
4 , −

1
2) based on the

SO(4)2 × SU(2)2 root lattice. There one finds the RotStab(zf) generators [60]

%1 =
(

1
4 ,

1
4 , 0

)
, %2 =

(
1
2 , 0, 0

)
, %3 =

(
0, 0, 1

2

)
.

Therefore from the exploration of the lattice automorphisms we find that the generalization of
our result in the Z3 orbifold is not straightforward: Not always does the action of the orbifold
generator θ on each of the planes separately gives rise to an R-symmetry. We can deduce the
following selection rules,

L∑
α=1

rα = 2 mod 4 , rα =
2∑
i=1

[
N i

Lα − N̄ i
Lα + q(boson) i

shα

]
+ 4γ(gα, hgα) ,

L∑
α=1

riα = 1 mod 2 , riα =
[
N i

Lα − N̄ i
Lα + q(boson) i

shα

]
+ 2γ(gα, hgα) i = 1, 3 .

(3.38)

The complete exploration of R-symmetries of Abelian orbifolds will be discussed in section
3.3.6. Before we attempt this let us discuss furtherR-symmetries that can arise from isometries
of the orbifold.

3.3.3 Further R-Symmetries

In the previous section we have considered only symmetries % ∈ RotStab(zf), that is symmet-
ries acting trivially on the fixed point conjugacy classes. However we have seen in section
2.3.4 that, depending on the Wilson line configuration of the model, it can happen that dis-
tinct fixed points allocate precisely the same twisted matter. If that is the case, isometries
ζ ∈ CAut(P )/Stab(zf) can actually be symmetries of the theory if one considers states that are su-
perpositions of the copies of matter located at the fixed points that get mapped to each other.
In this way those ζ that are rotations can lead to R-symmetries of the theory. Here we will
make use of the fact that, as it turns out, it is always possible to write any of the relevant
ζ in terms of the Cartan generators of SU(3) such that we can represent it by a twist vector
ηζ = (η1

ζ , η
2
ζ , η

3
ζ ).

Assume ζ ∈ CAut(P )/Stab(zf) interchanges the two conjugacy classes [g] and [g′], i.e.

ζ(g) = hg′g
′h−1
g′ , ζ(g′) = hggh

−1
g , (3.39)

where such hg and hg′ exist for any pair of representatives g and g′ of the conjugacy classes.
Let V and V ′ be the vertex operators of two states with identical quantum numbers, except
that V has constructing element g and V ′ has constructing element g′. Let σ[g] and σ[g′] the
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corresponding twist fields. Then we find that under ζ these fields transform according to

σ[g]
ζ7→ e2πi[γ̃(g)−γ̃′(ζ(g))] σ[g′] ,

σ[g′]
ζ7→ e2πi[γ̃′(g′)−γ̃(ζ(g′))] σ[g] .

(3.40)

Now let us consider the linear combinations Ṽ (s) of V and V ′,

Ṽ (s) = V + e2πi(δ+s)V ′ , s = 0, 1
2 , (3.41)

where δ is to be determined such that Ṽ (s) are eigenstates of ζ. We can make use of the explicit
form of ζ and (3.40) to write down the transformation behaviour of V and V ′,

V
ζ7→ e2πi [ ηi(N iL−N̄

i
L+qish)+γ̃(g)−γ̃′(ζ(g)) ] V ′ ,

V ′
ζ7→ e2πi [ ηi(N iL−N̄

i
L+qish)+γ̃′(g′)−γ̃(ζ(g′)) ] V

(3.42)

and use this information to determine δ to be

δ =
1

2

(
−γ̃′(g′) + γ̃(hggh

−1
g ) + γ̃(g)− γ̃′(hg′g′h−1

g′ )
)
. (3.43)

Then the transformation behaviour of the ζ eigenstates is given by

Ṽ (s) ζ7→ e2πi [ ηi(N iL−N̄
i
L+qish)+ 1

2(γ(g,hg)+γ(g′,hg′ ))+s ] Ṽ (s) , (3.44)

where we have used
γ(g, hg) = γ̃(g)− γ̃(hggh

−1
g ) ,

γ′(g′, hg′) = γ̃′(g′)− γ̃′(hg′g′h−1
g′ )

and the fact that, as the physical gamma phases γ′(g′, hg′) are determined by the other quantum
numbers of the state, which are equal for V and V ′, we can suppress the prime on γ′(g′, hg′).

Now consider correlators of A states, the constructing elements of which are mapped to
their conjugates by ζ, and B linear combinations of states of the form (3.41),〈

V(1) . . . V(A)V
(s1)

(1) . . . V
(sB)

(B)

〉
. (3.45)

Such correlators7 are supposed to be invariant under the action of ζ and we can deduce an
R-charge selection rule. Observe that the states V(α) transform under these isometries just as

in (3.33) so their charges are as in (3.36). Then it follows from (3.44) that the states Ṽ (s)
(α) have

R-charges

rα s =

3∑
i=1

Mηi
[
N i

Lα − N̄ i
Lα + q(boson) i

shα

]
+

1

2
M
(
γ(gα, hgα) + γ(g′α, hg′α)

)
+Ms . (3.46)

It is remarkable that we were able to deduce further R-charge selection rules from isomet-

7 Note that correlation functions of this form make sense, because if a coupling
〈
V(1) . . . V(L−1)V

〉
is allowed by

all selection rules, so is its partner
〈
V(1) . . . V(L−1)V

′〉.
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ries that do not leave all fixed point conjugacy classes invariant. Note that these symmetries
may in general be broken by a Wilson line configuration which spoils the degeneracy in the
spectrum of fixed points that are mapped to each other by ζ. It can however happen that this
degeneracy is protected due to the restrictions (2.68) on the Wilson lines, which do not allow
them to be switched on in such a way. In our exploration of possible R-symmetries we will
also consider those isometries from CAut(P )/Stab(zf) for which exactly this happens8. Therefore
the R-symmetries we give in section 3.3.6 are valid for generic Wilson line configurations.
Before we go on, let us discuss an example of an R-symmetry arising from an
isometry ζ ∈ CAut(P )/Stab(zf).

Example

Let us consider the Z4 orbifold of the previous section. The fixed point/torus structure is de-
picted in figure 3.3. As we will see, exploration of the orbifold isometries yields the generators

ζ1 =
(

1
4 , 0, 0

)
, ζ2 =

(
0, 1

4 , 0
)
,

of CAut(P )/Stab(zf). As they are not independent we will consider only ζ = ζ1, which interchanges
the two fixed tori

zf =
e2 + e3

2

ζ←→ z′f =
e2 + e4

2

of the sector twisted by θ2, which are generated by g and g′ respectively. All other conjugacy
classes of fixed points/tori are left invariant by ζ.

e1 e3 e5

e2 e4 e6

e1 e3 e5

e2 e4 e6

ζ

Figure 3.3: Fixed point/torus structure of the θ and θ2 twisted sector of the SO(4)2×SU(2)2 Z4 orbifold.
The fixed points and tori are given by the combinations of red dots. In the θ2 sector there is an additional
fixed torus located at the blue crosses. The fixed tori that get interchanged by ζ are marked by a purple
box. Possible Wilson lines are indicated by blurred green arrows.

8 Note that the conditions on the Wilson lines are identifications up to lattice vectors. The degeneracy is protected
in general only in the cases in which the identified Wilson lines are taken to be exactly equal. Shifts of only
one out of two (or more) identified Wilson lines, by a lattice vector, can therefore in general break these R-
symmetries.
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Note that because of the Wilson line identifications, W1 = W2 and W3 = W4, these two fixed
tori support exactly the same states. Indeed if we consider the embedding

Vθ =
1

4
(1, 1,−2, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0) ,

W3 = W4 =
1

4
(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 1, 1, 1, 1) ,

the gauge group breaks down to [E6 × SU(3)] × [SO(16) × U(1)] and both fixed tori support
one (1,2,16)0. The space group elements hg and hg′ that fulfil (3.39) are given by

hg = (θ, e3) and hg′ = (θ, 0) .

In the last section we found that in this Z4 orbifold, not all restrictions of the point group
generator to individual planes give rise to anR-symmetry, because those in the first two planes
exchange fixed point conjugacy classes. Now we see that, due to the identifications of Wilson
lines, those symmetries are actually there and give rise toR-symmetries. The reason is that the
spectra of states located at the fixed points being interchanged are equal. Therefore the states
coming from the two fixed points are indistinguishable from the low energy point of view. We
can however form linear combinations Ṽ of those states, such that they become eigenstates of
ζ and have different quantum numbers under the corresponding R-symmetry.

3.3.4 Universal R-Symmetry Anomalies

We have discussed the identification ofR-symmetries in the last sections quite generally. How-
ever we have explicitly discussed three-point functions of ZN orbifolds only. Therefore a con-
sistency check of our findings which works more generally is needed. Such a check is provided
by the cancellation of discrete anomalies.

TheR-symmetries we have deduced in the previous sections are clearly classical symmetries
of the geometry and can in principle be broken by quantum effects, i.e. be anomalous. Just as
for continuous symmetries this can be most easily analysed by determining the transformation
behaviour of the path integral measure [61, 62],

DψDψ̄ → ei
∫

d4x ADψDψ̄ , (3.47)

where the anomaly functionA is a sum of gauge and gravity contributions. Namely it is given
by

A = −2π

M

(∑
a

AG2
a−ZRM

· 1

16π2

∫
tr [Fa ∧ Fa] +Agrav2−ZRM

· 1

384π2

∫
tr [R∧R]

)
, (3.48)

for the case of discrete ZM R-symmetries [63–66]. Here Fa is the field strength corresponding
to the gauge group Ga andR denotes the Riemann tensor. The anomaly coefficients are given
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by [67]

AG2
a−ZRM

= C2(Ga)
R

2
+
∑
α

(
rα −

R

2

)
T (Rα

a ) ,

Agrav2−ZRM
=

(
−21− 1−NT −NU +

∑
a

dim[adj(Ga)]

)
R

2

+
∑
α

(
rα −

R

2

)
dim(Rα) .

(3.49)

Here α labels the left-chiral states in the spectrum, C2(Ga) denotes the quadratic Casimir of
Ga and T (Rα

a ) is the Dynkin index of the representation Rα
a of the state α under Ga. NT and

NU denote the number of twisted and untwisted modulini of the theory and the contributions
of −21 and −1 are due to the gravitino and dilatino respectively. Recall that the Pontryagin
indices

T (F a)

16π2

∫
tr [Fa ∧ Fa] and

1

2

1

384π2

∫
tr [R∧R] (3.50)

are integer valued, where F a denotes the fundamental representation of the gauge group Ga.
It is well-known that, if present, such anomalies can be cancelled via the Green-Schwarz mech-

anism [68]. The idea is to introduce a term into the Lagrangian that is explicitly not invariant
under the anomalous symmetry and the transformation of which cancels the transformation
of the path integral measure. This proceeds via fields that transform with a shift under the
respective symmetry. However in orbifold compactifications of the heterotic string the only
field able to cancel anomalies via this mechanism is the four-dimensional two-form b2 arising
from the reduction of the Kalb-Ramond field B2, that is dual to the imaginary part of the axio-
dilaton. As a consequence, the anomaly coefficients of any ZRN symmetry have to fulfil the
universality conditions,

AG2
a−ZRM

mod MT (F a) = AG2
b−Z

R
M

mod MT (F b) ,

AG2
a−ZRM

mod MT (F a) =
1

24

(
Agrav2−ZRM

mod
M

2

) (3.51)

if the anomalies are to be cancelled by the Green-Schwarz mechanism.
A non-trivial check of whether the R-symmetries we identify do actually make sense at a

quantum level is therefore given by anomaly universality which can be checked using the
conditions (3.51). Note however that since the anomalies discussed above are chiral, this con-
sistency check is only available when considering models with a chiral spectrum.

3.3.5 Family Symmetries

Arguments similar to the one we have used in section 3.3.3 have been applied to identify
non-Abelian family symmetries of the low energy theory [69]. One can consider permutation
symmetries of the fixed points with equal spectra and form linear combinations of the states,
just as in (3.41), which transform in a given representation of the permutation group. Further-
more, as we have seen in (3.20), one can often rewrite the space group selection rule in terms of
a set of ZN symmetries. These discrete symmetries can then combined with the permutation
symmetries to form non-Abelian flavour groups of the effective theory.

One would expect that those permutation symmetries arise from symmetries in CAut(P )/Stab(zf)
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that are not rotations and therefore not R. However, comparison with the results in [69], re-
veals that, geometrically, many of the permutation symmetries are realised by translations and
therefore not covered by our scheme. Note that in the sector twisted by a given orbifolding
group element o ∈ G, translations by any fixed point of o are a symmetry of the geometry.
However this does not necessarily hold for sectors twisted by a different orbifolding group
element o′ ∈ G.

Let us illustrate this by an example. Consider again the Z3 orbifold. As we have seen in
section 2.3.4, in the absence of Wilson lines, all fixed points in a given sector allocate exactly
the same states. Therefore the low energy theory can be argued to be invariant under the rela-
belling of fixed points, i.e. an S3 permutation symmetry arises from each of the three planes.
Further we have seen that the space group selection rule can be written according to (3.20) as
a discrete (Z3)4 symmetry. As a consequence the flavour symmetry group is generically

(S3 × S3 × S3) ∪ (Z3)4 ,

but may be enhanced further if the angles between and lengths of the basis vectors take spe-
cial values. Let us try to identify the geometric symmetries that lead to the S3 permutation
symmetry. For simplicity we restrict ourselves to one plane. If we label the fixed points (0, 0),
(2

3 ,
1
3) and (1

3 ,
2
3) by 1, 2 and 3 respectively, the permutation group S3 can be generated by the

two elements
s = (123) and m = (132) . (3.52)

They can be realized geometrically by a shift by s = 2
3e1 + 1

3e2 and by a reflection about the
axis e1 + e2 respectively. This is depicted in figure 3.4.

(a) (b)

1

2

3

1

2

3

s

Figure 3.4: Permutation symmetry generators of one Z3 plane: (a) shows a shift by s = 2
3e1 + 1

3e2.
Because of lattice identifications, the fixed points get interchanged periodically, i.e. this corresponds to
(123) ∈ S3. (b) shows the reflection about the axis e1 + e2. The fixed points 2 and 3 are interchanged,
i.e. this corresponds to (23) ∈ S3.

As discussed above, we do not cover shifts in our exploration of isometries, so let us consider
the reflection m. Indeed m is an automorphism of the lattice. However its action on the
restriction of the point group generator θ to the first plane, θ1 = e2πi 1

3 is non-trivial. Namely,

mθ1m
−1 = (θ1)−1 , (3.53)

that means, the action of m is not only to interchange the fixed points 2 and 3, but the images
of the fixed points are in the inverse twisted sector. Therefore states located at the fixed point 2
get mapped to CPT conjugates of their partners at the fixed point 3. This is clearly not what we
expect from a family symmetry. Moreover, the six-dimensional point group generator θ does
not even get mapped to another point group element by m. Therefore it seems like the flavour
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symmetries, at least in this example, cannot be understood by isometries of the compactifica-
tion space in this way. However inspiration of (3.23) shows that these lattice automorphisms
are still symmetries of the instanton solutions. Note, that the flavour symmetries we just dis-
cussed, unlike the extra R-symmetries of section 3.3.3, can be broken by generic Wilson line
configurations.

3.3.6 Catalogue of R-Symmetries for Abelian Orbifolds

Employing the scheme we developed in sections 3.3.1, 3.3.2 and 3.3.3 we can find all R-
symmetries of six-dimensional toroidal orbifold compactifications of the heterotic string, the
space group of which contains an Abelian point group. We use the results of the classification
of such orbifolds performed in [34] and discussed in section 3.2.

Provided these results, for every affine class we follow the steps:

1. Find the generators of the automorphism group of the lattice.

2. Generate the complete automorphism group of the lattice.

3. Calculate the subgroups NAut(P ), CAut(P ), Stab(zf), RotStab(zf) as well as the quotient
groups NAut(P )/CAut(P ), CAut(P )/Stab(zf) and Stab(zf)/RotStab(zf).

4. Find a set of generators of RotStab(zf) ∪ (CAut(P )/Stab(zf) ∩ SU(3)).

5. For each of the generators calculate the space group elements hg defined in (3.30) and
(3.39).

The first step is done using the software Carat [58] which uses an algorithm introduced in
[70]. Steps 2-5 are performed using code we developed within Mathematica [71].

The results can be found in appendix A. In order to perform the consistency check of an-
omaly universality for the R-symmetries identified in this way, we use the Orbifolder [72]
which we modified such that it can calculate the charges of the fields under the R-symmetries
using the space group elements hg. For each affine class we perform a scan over 10000 ran-
domly generated gauge embeddings and check the universality conditions for each of the
R-symmetries. The results can be found in appendix A. Note that out of the 138 Abelian orbi-
folds we consider, there are 23 which do not have a chiral spectrum. Hence there are no chiral
R-symmetry anomalies and consequently we cannot perform the consistency check.

Recall that every single massless string state of the orbifold compactification which has a
non-vanishingR-charge contributes to the chiral anomalies of theR-symmetries, which makes
this consistency check far from trivial. It is an intriguing result, that although we have motiv-
ated our search strategy by the explicit form of the correlation functions of three-point coup-
lings in ZN orbifolds only, nearly all of the R-symmetries identified in this way pass the check
of anomaly universality. Namely there are only four Z2 × Z2 and two Z2 × Z4 orbifolds in
which it fails. These are listed in table 3.1. It is interesting that those Z2 × Z2, for which the
R-symmetries do not have universal anomalies are exactly those which can be described by
modding a freely acting involution out of a different geometry. For instance the Z2 × Z2-5-1
space group, which was discussed in [73], is obtained by modding the involution generated
by the shift τ = 1

2(e2 + e4 + e6) out of the Z2 × Z2-1-1 geometry [34]. One might speculate
that the reason the R-symmetries do not seem to be good symmetries of the quantum theory
in these cases is due to the fact, that two states located at two fixed points of Z2×Z2-1-1 which
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3 Coupling Selection Rules

get identified under the shift τ transform with different phases under the R-symmetries. This,
as well as whether and how the R-symmetries might be repaired and finally whether this way
of arguing extends to the problematic Z2 × Z4 cases remains to be understood and is under
current investigation.

Q class Z class affine class R-symmetries
ρ M −R

Z2 × Z2 5 1
(
0, 0, 1

2

)
2 −1(

1
2 , 0, 0

)
2 −1(

0, 1
2 , 0

)
2 −1

9 1
(
0, 0, 1

2

)
2 −1(

1
2 , 0, 0

)
2 −1(

0, 1
2 , 0

)
2 −1

10 1
(
0, 1

2 , 0
)

2 −1(
0, 0, 1

2

)
2 −1(

1
2 , 0, 0

)
2 −1

12 1
(
0, 1

2 , 0
)

2 −1(
0, 0, 1

2

)
2 −1(

1
2 , 0, 0

)
2 −1

Z2 × Z4 1 6
(
0, 0, 1

4

)
4 −1(

1
4 , 0, 0

)
4 −1

2 4
(
0, 1

2 , 0
)

2 −1

Table 3.1: R-symmetries, the chiral anomalies of which are not universal.

One more comment on the R-symmetries from a point of view of the low energy effective
theory is in order. Note that the property of being R is conserved if an R-symmetry mixes
with a non-R-symmetry. Sources of such non-R-symmetries may be family symmetries or
discrete remnants of broken U(1) gauge symmetries (c.f. e.g. [74, 75]). Furthermore, multiple
R-symmetries may be combined to form different R and non-R-symmetries. Therefore using
the results we obtained here one can engineer many different R-symmetries in a phenomeno-
logical model. Recall also that in N = 1 supersymmetric field theories there can only be one
linear independent R-symmetry.
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CHAPTER 4

R-Symmetries and a Heterotic MSSM

In this chapter we will make use of the R-symmetries we identified to evaluate a phenomeno-
logically attractive heterotic orbifold model based on theZ6-II orbifold1. We start by reviewing
the heterotic mini-landscape that was developed in [26–28] and more recently discussed and
extended in [76, 77]. Then we discuss the impact of the R-symmetries identified in section
3.3.6 on these models2. We choose a configuration of vacuum expectation values (VEVs) of
Standard Model singlets in the spectrum and analyse it using the technique of Hilbert bases
[79].

4.1 The Heterotic Mini-Landscape

We consider the Z6-II orbifold based on the root lattice of G2×SU(3)×SU(2)2, which in terms
of the classification we discussed in section 3.2, corresponds to Z6-II_1_1. The point group
generator θ with shift vector vθ = (1

6 ,
1
3 ,

1
2) acts on the basis vectors according to

θe1 = 2e1 + 3e2 , θe2 = −e1 − e2 ,

θe3 = e4 , θe4 = −e3 − e4 ,

θe5 = −e5 , θe6 = −e6 .

The fixed point/torus structure is depicted in figure 4.1.

Space Group and Family Symmetries

As the space group is factorizable we might split the lattice part of the space group selection
rule (3.19) into three rules, one for each plane3. We have already seen that the selection rule of

1 Note that, in order for our results to be comparable to the standard literature we choose a different convention
for the right-moving momenta in this chapter. The qsh that occur in the formulas of this chapter are obtained
from the qsh in the previous chapters by multiplication with −1.

2 For the case of the Z6-II orbifold that we consider here, the R-symmetries were identified independently also in
[78].

3 Note that while the lattice factorizes according to Λ = ΛG2 × ΛSU(3) × ΛSU(2)2 , the orbifold does not factorize
according toO 6= (TG2/Z6)×(TSU(3)/Z3)×(TSU(2)2/Z2) because the point group generator θ acts on all three planes
simultaneously.
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4 R-Symmetries and a Heterotic MSSM

the TSU(3)/Z3 plane can be written in the simple form (3.20). The same holds true for the TSU(2)2/Z2

plane. For the TG2/Z6 plane however it does not seem to be possible to identify a simple discrete
symmetry resembling the space group selection rule in that plane [53]. Therefore we find the
following discrete symmetries arising from the space group selection rule∑

α

kα = 0 mod 6 ,∑
α

kαmα = 0 mod 3 ,∑
α

n5
α = 0 mod 2 ,∑

α

n6
α = 0 mod 2 ,

(4.1)

where the constructing elements of the states involved in the coupling are written as
gα = (θkα , λα) and the relation between their locations and the quantum numbers (m,n5, n6)
are displayed in figure 4.1. Note that states in the θ2 (θ3) sector have charge n5 = n6 = 0
(m = 0).

The space group allows for an order three Wilson line, namely W3 = W4 and two order two
Wilson lines, namely W5 and W6. Note that, as we have seen before, in the absence of Wilson
lines all fixed points allocate the same massless matter. This however does not hold for the
fixed tori in the sectors twisted by θ2, θ3 and θ4. Some of them, e.g. the θ2 fixed torus located
at 2e1/3, are not fixed under θ, i.e. the space group element (θ, 0) does not commute with their
constructing elements. Therefore for states supported at these “special” fixed tori the number
of space group elements giving rise to projection conditions (2.95) is reduced as compared to
those of the states that are located at “ordinary” fixed tori.

We have discussed the non-Abelian flavour structure of TSU(3)/Z3 already in section 3.3.5.
While the TG2/Z6 plane does not enjoy any family symmetry, the TSU(2)2/Z2 plane possesses a
further (D4 ×D4)/Z2 symmetry [69]. As the orders of the restrictions of θ to these two planes
are coprime the complete family symmetry of the Z6-II orbifold we consider, in the absence of
Wilson lines, is given by

∆(54)× (D4 ×D4)/Z2 . (4.2)

However realistic models need non-trivial Wilson line configurations. We have seen in section
2.3.4 how the presence of a non-trivial Wilson line breaks the degeneracy of the fixed point
spectra and therefore the permutation symmetry S3 ⊂ ∆(54) in the second plane. Therefore,
if the order three Wilson line is switched on, ∆(54) breaks according to

∆(54)
W3=W4 6=0−−−−−−−→ Z3 × Z3 . (4.3)

Furthermore the presence of the order two Wilson line W5 and/or W6 breaks (D4 × D4)/Z2

according to

(D4 ×D4)/Z2
W5 6=0−−−−→ D4 × Z2

W6 6=0−−−−→ Z2 × Z2 × Z2 . (4.4)
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θ1

e1 e3 e5

e2

e4
e6

m = 0

2

1

(n5, n6) = (0, 0) (1, 0)

(1, 1)(0, 1)

θ2

e1 e3 e5

e2

e4
e6

θ3

e1 e3 e5

e2

e4
e6

Figure 4.1: The sectors twisted by θ, θ2 and θ3 of the Z6-II orbifold we are considering. The possible
Wilson lines are depicted by dotted green arrows, copies of fixed tori in the fundamental domain of the
torus are marked by blurred red dots. In the θ sector the charges (m,n5, n6) of states, that are located at
the respective fixed points, under the symmetries (4.1) are displayed.

Local GUTs and Gauge Embedding

The search strategy of the Mini-Landscape is based on the concept of local GUTs [26]: Recall
that the conditions for a state to be massless, (2.89), and the projection conditions (2.95) in
general depend on the fixed loci of twisted fields. That is, locally, the gauge group can look
different at different fixed points and states located at these fixed points come in representa-
tions of the respective local gauge group. The untwisted sector states on the other hand are
subject to projection conditions arising from all space group elements and are hence charged
only under the bulk gauge group which is the intersection of the local gauge groups of all fixed
points.

A local GUT is obtained by selecting embeddings of the space group into the gauge coordin-
ates (2.67), such that they admit a local SO(10) or E6 GUT structures. This means that there are
fixed points in the sector twisted by θ1 or θ5 (T 1 or T 5), the massless spectra of which contain
16- or 27-plets respectively. The Wilson lines are chosen such that the untwisted sector gauge
group breaks down to the Standard Model gauge group, in such a way that

SU(3)× SU(2)×U(1)Y ⊂ SU(5) ⊂ SO(10) or E6 . (4.5)
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4 R-Symmetries and a Heterotic MSSM

There are two shift embeddings leading to a local SO(10) GUT, namely

V
SO(10), 1
θ = (1

3 ,
1
2 ,

1
2 , 0, 0, 0, 0, 0)(1

3 , 0, 0, 0, 0, 0, 0, 0) ,

V
SO(10), 2
θ = (1

3 ,
1
3 ,

1
3 , 0, 0, 0, 0, 0)(1

6 ,
1
6 , 0, 0, 0, 0, 0, 0)

and two shift embeddings leading to a local E6 GUT, namely [26]

V E6, 1
θ = (1

2 ,
1
3 ,

1
6 , 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0) ,

V E6, 2
θ = (2

3 ,
1
3 ,

1
3 , 0, 0, 0, 0, 0)(1

6 ,
1
6 , 0, 0, 0, 0, 0, 0) .

In principle there are two straightforward ways of obtaining three-family models from such
orbifolds. The first one is to switch on the Wilson lines W5 and W6 such that T 1 (T 5) contains
at least three 16- or 27-plets. However such models always contain chiral exotics [26]. The
second strategy is to switch on one order two Wilson line, i.e. W5 or W6, as well as the order
three Wilson line W3 = W4 such that T 1 (T 5) contains two 16- or 27-plets. The reason for
exactly two families to survive the projection conditions arising from the Wilson lines is the
D4 family symmetry (4.4). The third family then arises from states of the untwisted or other
twisted sectors. Note that while the two Standard Model families arising as 16- or 27-plets are
true GUT multiplets, the third family only has the SM quantum numbers of an additional 16-
or 27-plet. Therefore the third family is often called patchwork [76].

Exploring the Mini-Landscape

The program of the mini-landscape exploration was composed of the following steps:

1. Generate inequivalent4 Wilson line configurations fulfilling (4.5)

2. Select models with three (3, 2)

3. Select models with non-anomalous U(1)Y ⊂ SU(5)

4. Select models with 3 SM families + Higgses + vector-like exotics

As a result 223 models, 218 of which are based on the SO(10) shift embeddings, were obtained.
Provided this set of models one can proceed by specifying a supersymmetric VEV configura-
tion and discussing the phenomenological properties that depend on Yukawa couplings, such
as

• quark and lepton masses,

• the Higgs sector,

• proton decay,

• decoupling of exotics,

• the possibility for hidden sector gaugino condensation and susy breaking.

We will address these model dependent questions within a specific VEV configuration in sec-
tion 4.3. Before we proceed in that direction, let us review the technique of Hilbert bases,
which we will use as a very efficient tool for analysing the VEV configuration.

4 Models are considered inequivalent if they have identical spectra with respect to the non-Abelian gauge groups
and the same number of non-Abelian singlets.
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4.2 Hilbert Bases

4.2 Hilbert Bases

We have seen that selection rules are an efficient tool to determine whether or not a given term
occurs in the superpotential of the low energy effective theory. While the relative coefficients
of the terms cannot be determined in this way, still a lot can be learned about the structure of
the superpotential.

Assume we are given a set of fields, which we denote by Φ1, . . .ΦN and a set of selection
rules. Then we expect the superpotential to contain every monomial Φi1 . . .Φim that satis-
fies all of these selection rules. However, if such terms are allowed by the selection rules, so
will be all their powers and products with each other5. Then it is a natural question to ask,
whether there is a set of monomials, such that any allowed combination of fields can be writ-
ten as a product of these “basis monomials”. For those selection rules, which can be expressed
by conditions that are linear in the charges of the fields the answer is positive and the basis
monomials are given by the Hilbert basis [79–82].

4.2.1 Hilbert Basis for U(1)s

Consider, for simplicity, a set of M U(1) symmetries, under which the fields Φ1, . . .ΦN carry
charges Q(a)

1 , . . . Q
(a)
N , a = 1, . . . ,M . Then a monomial Φn1

1 . . .ΦnN
N is allowed by the selection

rules if and only if

Qn =


Q

(1)
1 . . . Q

(1)
N

...
. . .

...
Q

(M)
1 . . . Q

(M)
N



n1
...
nN

 = 0 . (4.6)

This displays a set of linear diophantine equations, and as the superpotential is holomorphic
in the fields, we are interested in solutions for which nα ∈ N0, α = 1, . . . N .

Therefore, Mathematically speaking, the problem of finding the basis monomials is the prob-
lem of finding the set of minimal solutions of the monoid6 of non-negative, integral solutions
of a system of linear diophantine equations. It is a non-trivial statement that such a minimal
set exists and that it has only finitely many elements. While, in general, the Hilbert basis can-
not be determined analytically, efficient algorithms have been developed, that make use of the
geometrical interpretation of the set of solutions [83–87].
We will not go into details about how these algorithms work, but use the publicly available
computer program normaliz [88, 89] to compute the Hilbert basesH of systems of diophant-
ine equations.

4.2.2 Extension to Other Symmetries

The method described above can be extended to other kinds of symmetries for which the
selection rules can be written as conditions that are linear in the charges of the fields.

5 Properly speaking this is true only for the non-R-symmetries. We will discuss this issue in detail later.
6 A monoid is a set together with a binary operations which is associative and for which a neutral element exists.

If for every element of the set there exists an inverse with respect to the binary operation, the monoid forms a
group. As the natural numbers form a monoid under addition, the set of allowed monomials forms a monoid
under multiplication.
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4 R-Symmetries and a Heterotic MSSM

Non-Abelian Gauge Symmetries

Let us start with the non-Abelian gauge symmetries of the theory. A monomial of fields is
invariant under the gauge group G, if and only if it transforms trivially under all U(1)s gen-
erated by the Cartan subalgebra of the group [79]. Therefore, we can write the invariance
condition in the way (4.6) with rank(G) diophantine equations. However, there is a subtlety.
There can be monomials which are zero by construction, because of the way symmetric and
anti-symmetric indices are contracted. An example is the monomial Φ2, where Φ transforms in
the fundamental representation of SU(2). Therefore elements of the Hilbert basis which have
this property must be eliminated from the basis a posteriori.

Discrete Non-R Symmetries

Let us turn to discrete symmetries. For non-R-symmetries we can straightforwardly write a
condition similar to (4.6) by exchanging equations with congruences. Consider, for simplicity,
a single discrete symmetry, under which the fields carry charges Q1, . . . QN . Without loss of
generality we can assume these charges to be positive. Then a monomial Φn1

1 . . .ΦnN
N is allowed

by the corresponding selection rule if and only if

(
Q1 . . . QN

)n1
...
nN

 = 0 mod m. (4.7)

This congruence relation can be rephrased as a diophantine equation by introducing an auxil-
iary variable a and asking the monomial to fulfil

(
−m Q1 . . . QN

)

a
n1
...
nN

 = 0 . (4.8)

Again allowed monomials are characterized by non-negative, integral solutions to this dio-
phantine equation, the first entry of the solution vectors being unphysical. Accordingly, for
the case of M discrete symmetries, the system of linear congruences is rewritten in the form


−m1 . . . 0 Q

(1)
1 . . . Q

(1)
N

...
. . .

...
...

. . .
...

0 . . . −mM Q
(M)
1 . . . Q

(M)
N





a1
...
aM
n1
...
nN


= 0 . (4.9)

Discrete R-Symmetries

For the case of R-symmetries the situation is more involved, as we are dealing with an in-
homogeneous system of linear congruences. It is possible to rewrite any such system as a
system of homogeneous and inhomogeneous diophantine equations by the method described
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above. Let us therefore consider an inhomogeneous system of linear diophantine equations
instead. Observe that we can rewrite the inhomogeneous system

Q
(1)
1 . . . Q

(1)
N

...
. . .

...
Q

(M)
1 . . . Q

(M)
N



n1
...
nN

 =


x1
...
xM

 , (4.10)

as the homogeneous system
−x1 Q

(1)
1 . . . Q

(1)
N

...
. . .

...
−xM Q

(M)
1 . . . Q

(M)
N



n0

n1
...
nN

 = 0 . (4.11)

We are interested in solutions with n0 = 1 or n0 = 0, because adding any solution of the homo-
geneous analogue of (4.10) to a solution of the inhomogeneous system again yields a solution
of the inhomogeneous system. Assume H = {h1, . . . , hD} is the Hilbert basis of the system
(4.11), i.e. any solution of this system can be written as a linear combination n =

∑D
i=1 λihi

with positive integral coefficients, λi ∈ N0. Then it is clear that any solution of (4.11), for
which n0 = 1, can be written as a linear combination of those Hilbert basis elements, whose
first component is 0 or 1. Therefore

Hinhom = H(0)
inhom ∪H

(1)
inhom , where

H(a)
inhom =

{
h ∈ H

∣∣h0 = a
}

a ∈ {0, 1} ,
(4.12)

serves as a basis of solutions of the system (4.10). Each solution to this system may be written
as a linear combination

n = h(1) +
∑
i

λih
(0)
i , (4.13)

where h(1) ∈ H(1)
inhom, h(0)

1 , . . . , h
(0)
K ∈ H(0)

inhom and λ1, . . . , λK ∈ N0 are positive, integral coeffi-
cients.

Combinations of Different Symmetries

We have motivated the concept of Hilbert bases, as a method to find the set of basis monomials
of fields that are allowed by the selection rules of a given theory. These monomials of course
have to fulfil all selection rules at the same time. Therefore one has to combine the systems
of equations of the different kinds of symmetries we have discussed above into a single set of
diophantine equations and compute the Hilbert basis of this set. We will discuss the resulting
system for the Z6-II model under consideration in the following section.
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4 R-Symmetries and a Heterotic MSSM

4.3 A Semi-Realistic String Model

The model we will consider is leaned against model I of [27], i.e. we choose the gauge embed-
ding

V = ( 1
3 ,−

1
2 ,−

1
2 , 0, 0, 0, 0, 0)( 1

2 ,−
1
6 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2) ,

W3 = W4 = (−1
2 ,−

1
2 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6)( 1

3 , 0, 0, 2
3 , 0, 5

3 ,−2, 0) ,

W5 = ( 0,−1
2 ,−

1
2 ,−

1
2 ,

1
2 , 0, 0, 0)( 4,−3,−7

2 ,−4,−3,−7
2 ,−

9
2 ,

7
2) .

(4.14)

This embedding breaks the gauge group to

SU(3)× SU(2)× SU(4)× SU(2)×U(1)anom ×U(1)Y ×U(1)7 , (4.15)

where we have chosen the generator of one of the nine U(1)s such that it gives the desired
hypercharge of the Standard Model. Furthermore, we have rotated the Abelian anomaly into
a single U(1). Note that this anomaly is cancelled, just as the discrete R-symmetry anomaly,
via the Green-Schwarz mechanism by a shift in the axion field.

4.3.1 Spectrum

The complete spectrum of the model is presented in appendix C. We use the same labels for
the fields as in [27], in order to make comparisons simpler. There are three families of quarks
and leptons, two of which arise as local SO(10) multiplets in the θ5 sector at the fixed points 0
and 1

2e6. In agreement with the general statement in section 4.1, the third family constitutes of
states in the bulk (q3, ū3, ē3) as well as from fixed tori in the θ2 and θ4 sectors. Further, there is
a single pair of massless Higgs fields, φ1 and φ̄1 in the bulk.

In addition to these Standard Model states there are several vector-like exotics in the spec-
trum which need to be decoupled.

4.3.2 Couplings and Hilbert Basis

In order to discuss further phenomenological features which arise from the allowed coup-
lings, let us discuss the selection rules in the model. According to our exploration of section
3.3.6 the geometry gives rise to a Z6 × Z3 × Z2 R-symmetry, which corresponds to the charge
conservation laws [60, 78]

L∑
α=1

r1
α =

L∑
α=1

[
q(boson) 1

shα −N 1
Lα + N̄ 1

Lα − 6γ(gα, h
θ1
gα)
]

= −1 mod 6 ,

L∑
α=1

r2
α =

L∑
α=1

[
q(boson) 2

shα −N 2
Lα + N̄ 2

Lα − 3γ(gα, h
θ2
gα)
]

= −1 mod 3 ,

L∑
α=1

r3
α =

L∑
α=1

[
q(boson) 3

shα −N 3
Lα − N̄ 3

Lα − 2γ(gα, h
θ3
gα)
]

= −1 mod 2 ,

(4.16)

where the space group elements hθigα needed to compute the charges are listed in appendix B.
These conditions differ from the ones used in [27], which we will refer to as the “old rules”, by
the contributions of the γ phases. We will devote the remainder of this section to studying the
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phenomenological consequences of these modified selection rules. We will not aim at finding
a vacuum configuration that fulfils all phenomenological constraints. Instead, we choose a
benchmark VEV configuration which is semi-realistic and allows us to check, whether candid-
ates for realistic models within the mini-landscape remain at all.

Differences due to the newR-symmetries arise already at order 3 in the superpotential. Sev-
eral new terms, which were forbidden by the old rules, appear. In the following we show a
simple example. TheR-charges of the considered fields are displayed in table 4.1. We immedi-
ately see that the coupling s0

13s
0
14s

0
30 was forbidden by the old rules but is allowed by the new

R-symmetries.

r1
old r2

old r3
old r1

new r2
new r3

new

s0
13

11
6 −1

3 −1
2

11
6 −1

3 −1
2

s0
14

11
6 −1

3 −1
2

11
6 −1

3 −1
2

s0
30 −5

3 −1
3 0 4

3 −1
3 0

Table 4.1: Differences between our R-charges of the fields s013, s014 and s030 and the ones in [27].

This example shows that the modifiedR-symmetries can have important phenomenological
implications. If all fields s0

13, s0
14 and s0

30 get a VEV in a given configuration, the superpotential
W gets a VEV as well. Since the superpotential is linked to the µ-term in such models, the µ-
term will be generically too large. We will discuss this issue for our VEV configuration later in
more detail. There are also couplings forbidden by the newR-symmetries which were allowed
by the old ones. The first example occurs at order 4 in the superpotential.

We have discussed the space group selection rule of the model in (4.1). The gauge symmetry
is given in (4.15). As the fields obtaining non-trivial VEVs are singlets under the non-Abelian
gauge group SU(3)×SU(2)×SU(4) and either singlets or doublets under the remaining SU(2),
we will only consider the non-anomalous U(1) symmetries to calculate the Hilbert basis. The
basis elements vanishing due to the way the SU(2) indices are contracted, will be removed a
posteriori. The same holds for the monomials forbidden by the space group selection rule in
the TG2/Z6 plane, as we were not able to rewrite it as a diophantine equation. The last missing
ingredient are the R-symmetries discussed in (4.16).

Therefore the system of diophantine equations, that is fulfilled by any monomial Φn1
1 . . .ΦnL

L

allowed by the selection rules, is given by

r1
1 . . . r1

L

r2
1 . . . r2

L

r3
1 . . . r3

L

qZ6
1 . . . qZ6

L

qZ3
1 . . . qZ3

L

qZ2
1 . . . qZ2

L

q
Z
′
2

1 . . . q
Z
′
2

L

qU(1)8
1 . . . qU(1)8

L


·

n1
...
nL

 =



−1
−1
−1
0
0
0
0
0


mod



6
3
2
6
3
2
2
0


. (4.17)
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4.3.3 VEV Configuration and Phenomenology

We proceed by choosing a VEV configuration, which, as we will see, gives rise to a semi-
realistic model. Namely, we give the 14 Standard Model singlets

s̃ = {h1, h2, h3, h4, s
0
3, s

0
4, s

0
9, s

0
10, s

0
12, s

0
21, s

0
24, s

0
28, s

0
29, s

0
30} (4.18)

a non-trivial VEV. As the hi are charged under the hidden SU(2), this VEV configuration breaks
the gauge group of the model to GSM × SU(4).

In order to determine the phenomenological properties of this configuration, we consider
those coupling of the s̃ with the other fields which give rise to the quark and lepton Yukawa
couplings, give masses to the exotics and neutrinos or mediate proton decay. In contrast to
[27], we do not calculate the couplings order-by-order in the singlet fields, but instead con-
struct the corresponding Hilbert bases. In this way we obtain the complete information about
the phenomenologically relevant effects for all orders in the singlet fields.

The Superpotential and the µ-Term

Let us exemplify how we determine the Hilbert basis of couplings corresponding to a specific
phenomenological property by looking at the µ-Term. It gets induced by couplings φ1φ̄1f(s̃),
so we need a basis for allowed monomials of the form φn1

1 φ̄n2
1 s̃n3

i1
. . . s̃

nM+2

iM
, where only solu-

tions with n1 = n2 = 1 are physical. We can make use of this requirement to absorb the in-
homogeneity arising from the R-symmetries in a redefinition of the R-charges of these fields.
If we write r̃i = ri1 + ri2 + 1, the system (4.17) takes the form

r̃1 r1
3 . . . r1

M+2

r̃2 r2
3 . . . r2

M+2

r̃3 r3
3 . . . r3

M+2

qZ6
1 + qZ6

2 qZ6
3 . . . qZ6

M+2

qZ3
1 + qZ3

2 qZ3
3 . . . qZ3

M+2

qZ2
1 + qZ2

2 qZ2
3 . . . qZ2

M+2

q
Z
′
2

1 + q
Z
′
2

2 q
Z
′
2

3 . . . q
Z
′
2

M+2

qU(1)8
1 + qU(1)8

2 qU(1)8
3 . . . qU(1)8

M+2


·


n1

n3
...

nM+2

 =



0
0
0
0
0
0
0
0


mod



6
3
2
6
3
2
2
0


. (4.19)

After determining the Hilbert basis H, in order to obtain physical viable solutions, we split it
into a homogeneous and an inhomogeneous part, similar as in (4.12). Elements with n1 = 1 are
assigned to H(1)

inhom and basis elements with n1 = 0 are assigned to H(0)
inhom. Then, the physical

solutions are given by{
n

(1)
inhom +mn

(0)
inhom

∣∣∣n(1)
inhom ∈ H

(1)
inhom, n

(0)
inhom ∈ H

(0)
inhom, m ∈ N0

}
. (4.20)

Note that, as φ1φ̄1 is a complete singlet under all symmetries of the theory, the terms inducing
the µ-term also give a VEV to the superpotential itself. This is known as gauge-Higgs unifica-
tion and was identified as one of the features rendering the models of the mini-landscape so
phenomenologically attractive [76]. It was argued that this feature is a consequence of the
presence of R-symmetries in the model [27, 31, 90]. This argument is not altered by the modi-
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fication of the definition of the R-charges, as the Higgs fields are bulk fields and therefore the
contribution of the γ phases to their R-charges vanishes.

We find that up to order 10 in s̃, the superpotential is given by7

Ws̃ = (M1,inhom +M2,inhom +M3,inhom)(1 +M1,hom +M2,hom) (4.21)

with
M1,inhom = s0

3s
0
4s

0
29, M1,hom = (s0

21s
0
31)3

M2,inhom = s0
9s

0
10s

0
29, M2,hom = h1h2s

0
21s

0
24s

0
28s

0
31

M3,inhom = h3h4s
0
21s

0
31.

(4.22)

In principle we know all Hilbert basis elements and therefore all monomials which means we
know the exact form of W to all orders.

Quark and Lepton Yukawa Couplings

Employing a similar strategy to the one outlined above, we are able to identify the Yukawa
interactions

WYuk = Yu(s̃)qūφ̄1 + Yd(s̃)qd̄φ1 + Ye(s̃)lēφ1 (4.23)

where the Yukawa matrices Yi(s̃) depend on the fields s̃. At lowest order in the singlets, the
results read

Yu =

 M1 M2 M3 +M4

M2 M1 M5 +M6

M7 +M8 +M9 +M10 M11 +M12 +M13 +M14 1

 (4.24)

with

M1 = h1h3s
0
4s

0
21s

0
29s

0
31, M2 = h1h3s

0
10s

0
21s

0
29s

0
31

M3 = h1h3s
0
3s

0
10s

0
21s

0
29s

0
31 = s0

3M2, M4 = h1h3s
0
4s

0
9s

0
21s

0
29s

0
31 = s0

9M1

M5 = h1h3s
0
3s

0
4s

0
21s

0
29s

0
31 = s0

3M1, M6 = h1h3s
0
9s

0
10s

0
21s

0
29s

0
31 = s0

9M2

M7 = h1h3s
0
4s

0
12s

0
21s

0
29s

0
31 = s0

12M1, M8 = s0
3s

0
4s

0
10s

0
21(s0

29)2s0
31

M9 = s0
9(s0

10)2s0
21(s0

29)2s0
31, M10 = (s0

4)2s0
9s

0
21(s0

29)2s0
31

M11 = h1h3s
0
10s

0
12s

0
21s

0
29s

0
31 = s0

12M2, M12 = s0
4s

0
9s

0
10s

0
21(s0

29)2s0
31

M13 = s0
3(s0

10)2s0
21(s0

29)2s0
31, M14 = s0

3(s0
4)2s0

21(s0
29)2s0

31.

(4.25)

As well as for the down quarks and leptons,

Yd =

M1 M2 M3 +M4

M2 M1 M5

M6 M7 M8 +M9

 , Ye =

M1 M2 M10 +M11

M2 M1 M12

M13 M14 M15 +M16

 (4.26)

7 For practical purposes it seems reasonable to truncate the solution at some finite order in the fields s̃.
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with

M1 = h1h2s
0
9s

0
12s

0
29, M2 = h1h2s

0
3s

0
12s

0
29

M3 = h1h2(s0
9)2s0

12s
0
29 = s0

9M1, M4 = h1h2(s0
3)2s0

12s
0
29 = s0

3M2

M5 = h1h2s
0
3s

0
9s

0
12s

0
29 = s0

3M1, M6 = h1h2s
0
9(s0

12)2s0
21s

0
29 = s0

12s
0
21M1

M7 = h1h2s
0
3(s0

12)2s0
21s

0
29 = s0

12s
0
21M2, M8 = h1h2(s0

9)2(s0
12)2s0

21s
0
29 = s0

12s
0
21M3

M9 = h1h2(s0
3)2(s0

12)2s0
21s

0
29 = s0

12s
0
21M2, M10 = (s0

9)2s0
12s

0
21s

0
29

M11 = (s0
3)2s0

12s
0
21s

0
29, M12 = s0

3s
0
4s

0
12s

0
21s

0
29

M13 = h1h2s
0
9(s0

12)2s0
29, M14 = h1h2s

0
3(s0

12)2s0
29

M15 = (s0
9)2(s0

12)2s0
21s

0
29 = s0

12M10, M16 = (s0
3)2(s0

12)2s0
21s

0
29 = s0

12M10.

(4.27)

Note, that as expected, two further properties of the mini-landscape that were identified as
crucial in [76] become apparent here. First, the top quark coupling is at order one. The reason
for this behaviour is the connection of the coupling to the higher dimensional gauge coupling
[91], guaranteeing a realistic top quark mass. Second, there is a D4 symmetry for the first two
generations which is a consequence of the localization of these fields in the extra dimensional
space [69, 92]. Note, that this symmetry needs to be broken at a lower scale to explain the
difference between the first and second generation [93].

While the impact of the D4 symmetry and gauge-top unification remain unaltered by the
modification of the R-symmetries, the detailed form of the Yukawa matrices is varied notice-
ably. We have switched on VEVs for 14 Standard Model singlets, as compared to 32 in the
VEV configuration IA of [27]. At the same time, the mass matrices we obtain are more densely
populated with allowed monomials in the singlets.

Decoupling of exotics

The decoupling of exotics by giving them high masses remains possible with the new R-
symmetries. We will discuss one example in detail and skip the details for the other exotics.
As can be seen from table 4.2, the charges of y1 and y2 under theR-symmetry in the third plane
have changed due to the modification of theR-symmetries. However, as the two fields always

r1
old r2

old r3
old r1

new r2
new r3

new

y1 −1
6 −1

3 −1
2 −1

6 −1
3

1
2

y2 −1
6 −1

3 −1
2 −1

6 −1
3

1
2

Table 4.2: Differences between the R-charges for y1 and y2 from model 1 of [27].

appear in pairs and the R-charge selection rule in the third plane reads∑
α

r3
α = −1 mod 2 , (4.28)

the mass matrix remains unchanged. Similarly, we find that all exotics get a high mass and
therefore decouple from the low energy particle spectrum. Hence, the massless spectrum of
our model is precisely that of the MSSM.
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Proton decay

The situation concerning proton decay does not differ substantially from the previous results
described in [27]. We find that qqql operators as well as couplings with massive exotic triplets
like q1l1δ̄4 and q1q1δ4 are allowed. Furthermore, after integrating out the exotic triplets, the
corresponding trilinear operators induce rapid proton decay, which displays a problem of
these models.

Supersymmetry

As the VEVs of the fields s̃ take values at the string scale, these configurations should not break
supersymmetry. Instead supersymmetry breaking proceeds via gaugino condensation in the
hidden SU(4) gauge group. However, we have seen in (4.21) that the superpotential develops
a VEV. Therefore we need to check for F -flatness, i.e. we need to search for solutions to F = 0.
Once such solutions are found, F = 0 and D = 0 can be simultaneously fulfilled by making
use of complexified gauge transformations [53, 94].

We use the technique of Gröbner bases, which is known in computational algebraic geo-
metry and was discussed in the context of high energy physics and string theory for example
in [95–97]. We are looking for solutions to the system of equations

Fi =
∂W

∂s̃i
= 0, ∀i. (4.29)

To find a solution we have to truncate the superpotential W at a given order. We start with W
up to order 10 in Standard Model singlets which was given in (4.21). Note that, for simplicity,
we set all coupling coefficients to unity. We use Singular [98] to compute the Gröbner basis
of the ideal generated by the F -term equations. Then we compute its primary decomposition
and search for F -flat solutions Fi = 0.

We find only one branch of solutions, which is in agreement with our assumption that all
fields s̃ develop non-trivial VEVs. This branch can be solved for example by

〈
s0

28

〉
= −

1 +
〈
s0

21

〉3 〈
s0

31

〉3

〈h1〉 〈h2〉
〈
s0

21

〉 〈
s0

24

〉 〈
s0

31

〉 , 〈
s0

29

〉
= −

〈h3〉 〈h4〉
〈
s0

21

〉 〈
s0

31

〉〈
s0

3

〉 〈
s0

4

〉
+
〈
s0

9

〉 〈
s0

10

〉 , (4.30)

which results in Fi = 0. That means we can solve all 14 F -term equations simultaneously by
fixing only two VEVs. This is nearly the opposite behaviour to the one discussed in [82], where
a remnantZR4 symmetry has been used to restrict the superpotential. There it seems to be more
fertile to look for minima in which all singlets get fixed by the F -term equations. It remains as
an interesting open question how the symmetries of the superpotential determine the solution
structure of the F -term equations. At this stage we are satisfied by finding a consistent, non-
trivial solution. Note however, that the systematics of generating a potential that dynamically
fixes the VEVs of the fields remains to be understood.

Remarkably, the requirement of F -flatness implies that the VEV of the superpotential, 〈W 〉,
vanishes. As the µ-term is directly linked to the VEV of the superpotential, this implies a van-
ishing µ-term for the supersymmetric minima. Note, that since we know the superpotential
not only to order 10 in singlets, but to all orders, it seems to be possible to address the question
of F -flatness to all orders. Due to computational restrictions, we have not been able to find
such a solution. Already at order 11 in the singlets, the Gröbner basis consists of extremely
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many polynomials and we have not been able to find a primary decomposition.
Our exploration of the impact of the modified definition of the R-symmetries on the mod-

els of the Z6-II mini-landscape shows, that their main appealing features remain unaltered.
The “three lessons for successful model building” that were identified8 in [76, 77] remain un-
altered because the modification of the R-symmetries does not affect the R-charges of the
Higgs doublet. In general, more couplings enter the mass matrices and Yukawa couplings.
This makes it easier to give masses to the Standard Model particles and the exotics. On the
other hand a µ term gets induced already at order 3 in the singlets. At the same time, however,
F -flatness implies a vanishing of the superpotential VEV. As these models face gauge-Higgs
unification this sets the µ term to zero up to order 10 in the singlets. Using the technique of
Hilbert bases, we were able to compute the VEV of the superpotential to all orders in the sing-
lets attaining a VEV. Furthermore it enabled us to determine the mass matrices for the exotics
as well as the Yukawa couplings of Standard Model fields with much less computational effort
as compared to calculating the allowed couplings order-by-order in the singlets. Therefore we
find that Hilbert bases serve as a very powerful tool to analyse the phenomenology of such
models.

8 The fourth lesson of the mini-landscape deals with supersymmetry breaking, which we do not discuss here.
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CHAPTER 5

Conclusions

In this thesis we discussed the geometric origin of discreteR-symmetries within orbifold com-
pactifications of the heterotic string. We examined the results of exact CFT calculations of the
string correlation functions corresponding to superpotential terms of the low energy effect-
ive theory for a subclass of heterotic orbifolds. In this way we were able to determine the
symmetries of the worldsheet instanton solutions. We found that the origin for the discrete
nature of the R-symmetries lies in the form of these solutions. Based on this result we presen-
ted a scheme allowing us to identify the symmetries of the orbifold space groups that lead to
R-charge selection rules in the low energy theory. Then, by determining the transformation
behaviour of the string states under such symmetries we were able to calculate the R-charges
of the corresponding fields.

We found two kinds of automorphisms of the space group lattice that give rise to
R-symmetries. Those that leave the fixed point structure of the theory invariant are imme-
diate symmetries of the theory, under which the string states are eigenstates. By asking the
correlators to transform trivially under these symmetries, the precise form of the R-charge se-
lection rule can be deduced. Additionally, the compactification geometry can in some cases
lead to a degeneracy in the spectrum. Namely two or more fixed points might allocate ex-
actly the same string states. As these states are indistinguishable from the point of view of
the low energy effective theory, isometries that exchange such fixed points lead to further R-
symmetries. Linear combinations of the states from different fixed points then transform with
a definite R-charge under these symmetries.

We applied our scheme to a recent classification of all space groups leading to theories with
N = 1 supersymmetry in 4D. In this way we were able to give a complete exploration of all
R-symmetries arising in orbifolds that are based on space groups, for which the point group
is Abelian.

As a consistency check of the results we obtained, we calculated the anomalies of the R-
symmetries. As heterotic orbifold compactifications contain only a single axion, these an-
omalies must fulfil certain universality requirements if they are to be cancelled by a discrete
Green-Schwarz mechanism. We modified the C++ orbifolder such that it is able to calculate
the correctR-charges of the string states and the corresponding anomaly coefficients. Then we
checked anomaly universality for all R-symmetries that we obtained in random sets of 10000
orbifold models each. We found that out of the 107 geometries for which the anomaly check
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is non-trivial, only in 6 cases the R-symmetry anomalies were non-universal. A first analysis
showed that these orbifolds might be related to geometries in which a freely acting involution
is divided out. If that is the case, our algorithms may need refinement in order to take the
effects of a non-trivial fundamental group into account. Most notably, among these orbifolds
is the Z2 × Z2_5_1 orbifold which has been shown to be a fertile patch for model building.
Furthermore, the R-symmetries that were assumed to arise in these models have been used to
provide a string theoretical realisation of the phenomenologically attractive ZR4 [82]. Therefore
it is an important open question whether theseR-symmetries can be made anomaly universal.
It would further be interesting to try to extend the results to the non-Abelian case. However
much less is known about the details of the CFT that describe these string theories.

As theR-symmetries can have important consequences on the phenomenological properties
of string models we reconsidered a successful class of string models. Choosing a vacuum
configuration, we analysed the impact of the new R-symmetries on a representative of this
Z6-II mini-landscape using the technique of Hilbert bases. This method allowed us to examine
phenomenological features such as Yukawa matrices for the standard model particles or mass
matrices for the exotics to all orders in the standard model singlets that develop a vacuum
expectation value. We were able to obtain the precise MSSM spectrum and to find F -flat
directions.

Our analysis showed that the main attractive features of the models from the mini-landscape
remain unaltered by the new R-symmetries. The lessons for successful model building that
were identified in the context of these models are not affected by the R-symmetries. Using
the technique of Hilbert bases enabled us to determine the mass matrices for the exotics as
well as the Yukawa couplings of standard model fields with much less computational effort as
compared to calculating the allowed couplings order-by-order in the singlets.

It would be interesting to study how, in such models, discrete remnants of the broken U(1)
symmetries and non-R-symmetries mix with the R-symmetries we identified, to give a phe-
nomenologically attractive R-symmetry for the low energy theory.
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APPENDIX A

Catalogue of R-Symmetries for Abelian
Orbifolds

The results of our exploration ofR-symmetries in abelian orbifold compactifications of the het-
erotic string are presented in the following table. For each affine class we list all R-symmetry
generators together with the quanta M and R that enter the R-charge conservation rule (3.36).
Those generated marked with an asterisk originate from the group CAut(P )/Stab(zf) and there-
fore interchange fixed points allocating the same twisted matter, as explained in section 3.3.3.
For each R-symmetry we further display the result of the check of universal chiral anom-
alies which has been performed by a scan over 10000 randomly generated gauge embeddings.
Those affine classes which do not have an entry in this column do not possess a chiral spec-
trum, so that the check cannot be performed.

Q class Z class affine class R symmetries Anomaly

(twist) ρ M −R Universality

Z3 1 1
(
0, 1

3
, 0

)
3 −1(

1
3
, 1

3
, − 2

3

) (
0, 0, 1

3

)
3 −1(

1
3
, 0, 0

)
3 −1

Z4 1 1
(

1
4
, 0, 0

)∗ 4 −1(
1
4
, 1

4
, − 1

2

) (
0, 1

4
, 0

)∗ 4 −1(
0, 0, 1

2

)
2 −1

2 1
(
0, 1

4
, 1

2

)
4 −3(

1
4
, 0, 0

)
4 −1

3 1
(

1
4
, 1

4
, 1

2

)
4 −4(

1
2
, 0, 0

)
2 −1

Z6-I 1 1
(

1
6
, 1

6
, 0

)
6 −2(

1
6
, 1

6
, − 1

3

) (
0, 0, 1

3

)
3 −1

2 1
(

2
3
, 2

3
, 2

3

)
3 −6
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Q class Z class affine class R symmetries Anomaly

(twist) ρ M −R Universality(
0, 1

2
, 0

)∗ 2 −1(
1
6
, 0, 0

)∗ 6 −1

Z6-II 1 1
(
0, 1

3
, 0

)
3 −1(

1
6
, 1

3
, − 1

2

) (
1
6
, 0, 0

)
6 −1(

0, 0, 1
2

)
2 −1

2 1
(

1
6
, 1

3
, 0

)
6 −3(

0, 0, 1
2

)
2 −1

3 1
(

1
6
, 0, 1

2

)
6 −4(

1
3
, 0, 0

)
3 −1(

0, 1
3
, 0

)
3 −1

4 1
(

1
6
, 1

3
, 1

2

)
6 −6

Z7

1 1(
1
7
, 2

7
, − 3

7

)
Z8-I

1 1
(
0, 1

4
, 0

)∗ 4 −1(
1
8
, 1

4
, − 3

8

)
2 1

3 1

Z8-II 1 1
(

1
8
, 3

8
, 0

)
8 −4(

1
8
, 3

8
, − 1

2

) (
0, 0, 1

2

)
2 −1

2 1
(

1
8
, 3

8
, 1

2

)
8 −8

Z12-I 1 1
(

5
12
, 0, 11

12

)
12 −16(

1
12
, 1

3
, − 5

12

) (
0, 1

3
, 0

)
3 −1

2 1

Z12-II 1 1
(

1
12
, 5

12
, 0

)
12 −6(

1
12
, 5

12
, − 1

2

) (
0, 0, 1

2

)
2 −1

Z2 × Z2 1 1
(
0, 0, 1

2

)
2 −1(

0, 1
2
, − 1

2

) (
1
2
, 0, 0

)
2 −1(

1
2
, 0, − 1

2

) (
0, 1

2
, 0

)
2 −1

2
(
0, 0, 1

2

)
2 −1(

1
2
, 0, 0

)
2 −1(

0, 1
2
, 0

)
2 −1

3
(
0, 1

2
, 0

)
2 −1(

0, 0, 1
2

)
2 −1(

1
2
, 0, 0

)
2 −1
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Q class Z class affine class R symmetries Anomaly

(twist) ρ M −R Universality

4
(
0, 0, 1

2

)
2 −1(

1
2
, 0, 0

)
2 −1(

0, 1
2
, 0

)
2 −1

2 1
(

1
2
, 0, 0

)
2 −1(

0, 0, 1
2

)
2 −1(

0, 1
2
, 0

)
2 −1

2
(

1
2
, 0, 1

2

)
2 −2(
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APPENDIX B

Space Group Embedding of R-Symmetry
Generators in Z6-II

Here we list the space group elements hg fulfilling %(g) = hggh
−1
g for all constructing elements

g of the fixed points/tori and all R-symmetries % of the Z6-II orbifold discussed in chapter 4.

g hθ1g hθ2g hθ3g

1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)

θ, (0, 0, 1, 1, 1, 1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0,−1,−1, 0, 0) 1, (0, 0, 0, 0,−1,−1)

θ, (0, 0, 1, 1, 1, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0,−1,−1, 0, 0) 1, (0, 0, 0, 0,−1, 0)

θ, (0, 0, 1, 1, 0, 1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0,−1,−1, 0, 0) 1, (0, 0, 0, 0, 0,−1)

θ, (0, 0, 1, 1, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0,−1,−1, 0, 0) 1, (0, 0, 0, 0, 0, 0)

θ, (0, 0, 0, 0, 1, 1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0,−1,−1)

θ, (0, 0, 0, 0, 1, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0,−1, 0)

θ, (0, 0, 0, 0, 0, 1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0,−1)

θ, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)

θ, (0, 0, 1, 0, 1, 1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0,−1, 0, 0, 0) 1, (0, 0, 0, 0,−1,−1)

θ, (0, 0, 1, 0, 1, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0,−1, 0, 0, 0) 1, (0, 0, 0, 0,−1, 0)

θ, (0, 0, 1, 0, 0, 1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0,−1, 0, 0, 0) 1, (0, 0, 0, 0, 0,−1)

θ, (0, 0, 1, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0,−1, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)

θ2, (−1, 1, 0, 2, 0, 0) θ, (0, 0, 2, 2, 0, 0) 1, (0, 0,−2,−2, 0, 0) 1, (0, 0, 0, 0, 0, 0)

θ2, (−1, 1, 0, 0, 0, 0) θ, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)

θ2, (−1, 1, 0, 1, 0, 0) θ, (0, 0, 1, 1, 0, 0) 1, (0, 0,−1,−1, 0, 0) 1, (0, 0, 0, 0, 0, 0)

θ2, (0, 0, 0, 2, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0,−2,−2, 0, 0) 1, (0, 0, 0, 0, 0, 0)

θ2, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)

θ2, (0, 0, 0, 1, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0,−1,−1, 0, 0) 1, (0, 0, 0, 0, 0, 0)

θ3, (1, 0, 0, 0, 1, 1) θ, (0, 0, 0, 0, 1, 1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0,−1,−1)

θ3, (1, 0, 0, 0, 1, 0) θ, (0, 0, 0, 0, 1, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0,−1, 0)
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g hθ1g hθ2g hθ3g

θ3, (1, 0, 0, 0, 0, 1) θ, (0, 0, 0, 0, 0, 1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0,−1)

θ3, (1, 0, 0, 0, 0, 0) θ, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)

θ3, (0, 0, 0, 0, 1, 1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0,−1,−1)

θ3, (0, 0, 0, 0, 1, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0,−1, 0)

θ3, (0, 0, 0, 0, 0, 1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0,−1)

θ3, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)

θ4, (−1, 1, 1, 1, 0, 0) θ, (0, 0, 1, 1, 0, 0) 1, (0, 0,−1,−1, 0, 0) 1, (0, 0, 0, 0, 0, 0)

θ4, (−1, 1, 0, 0, 0, 0) θ, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)

θ4, (−1, 1, 1, 0, 0, 0) θ, (0, 0, 1, 0, 0, 0) 1, (0, 0,−1, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)

θ4, (0, 0, 1, 1, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0,−1,−1, 0, 0) 1, (0, 0, 0, 0, 0, 0)

θ4, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)

θ4, (0, 0, 1, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0,−1, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)

θ5, (0, 0, 0, 2, 1, 1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0,−2,−2, 0, 0) 1, (0, 0, 0, 0,−1,−1)

θ5, (0, 0, 0, 2, 1, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0,−2,−2, 0, 0) 1, (0, 0, 0, 0,−1, 0)

θ5, (0, 0, 0, 2, 0, 1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0,−2,−2, 0, 0) 1, (0, 0, 0, 0, 0,−1)

θ5, (0, 0, 0, 2, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0,−2,−2, 0, 0) 1, (0, 0, 0, 0, 0, 0)

θ5, (0, 0, 0, 0, 1, 1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0,−1,−1)

θ5, (0, 0, 0, 0, 1, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0,−1, 0)

θ5, (0, 0, 0, 0, 0, 1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0,−1)

θ5, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0, 0, 0, 0, 0)

θ5, (0, 0, 0, 1, 1, 1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0,−1,−1, 0, 0) 1, (0, 0, 0, 0,−1,−1)

θ5, (0, 0, 0, 1, 1, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0,−1,−1, 0, 0) 1, (0, 0, 0, 0,−1, 0)

θ5, (0, 0, 0, 1, 0, 1) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0,−1,−1, 0, 0) 1, (0, 0, 0, 0, 0,−1)

θ5, (0, 0, 0, 1, 0, 0) 1, (0, 0, 0, 0, 0, 0) 1, (0, 0,−1,−1, 0, 0) 1, (0, 0, 0, 0, 0, 0)
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APPENDIX C

Spectrum of the Z6-II Model

Here we present the spectrum of the orbifold model considered in 4.3. We use the notation
of [27]. Our results differ from the ones obtained in [27] by the modified definition of the R-
charges of the fields. Therefore we highlight those R-charges that differ from the old ones by
red colour.

label (k, λ) R1 R2 R3 representation qY q2 q3 q4 q5 q6 q7 q8 q9 qanom qB−L

n̄3 0, (0, 0, 0, 0, 0, 0) −1 0 0 (1, 1, 1, 1) 0 − 1
2
− 1

2
1
2

5
2

0 0 0 0 − 1
3

−1

ē3 0, (0, 0, 0, 0, 0, 0) −1 0 0 (1, 1, 1, 1) −1 − 1
2

1
2
− 1

2
1
2

0 0 0 0 2
3

−1

ū3 0, (0, 0, 0, 0, 0, 0) −1 0 0 (3̄, 1, 1, 1) 2
3
− 1

2
1
2
− 1

2
1
2

0 0 0 0 2
3

1
3

f̄1 0, (0, 0, 0, 0, 0, 0) −1 0 0 (1, 1, 4̄, 1) 0 0 0 0 0 − 1
2

1 1
2

1
2

5
3

1

f1 0, (0, 0, 0, 0, 0, 0) −1 0 0 (1, 1, 4, 1) 0 0 0 0 0 − 1
2
−1 1

2
− 1

2
2
3

−1

φ1 0, (0, 0, 0, 0, 0, 0) 0 0 −1 (1, 2, 1, 1) 1
2

0 0 −1 1 0 0 0 0 2 0

φ̄1 0, (0, 0, 0, 0, 0, 0) 0 0 −1 (1, 2, 1, 1) − 1
2

0 0 1 −1 0 0 0 0 −2 0

s0
2 0, (0, 0, 0, 0, 0, 0) 0 −1 0 (1, 1, 1, 1) 0 0 0 0 0 −1 0 −1 0 − 5

3
0

s0
1 0, (0, 0, 0, 0, 0, 0) 0 −1 0 (1, 1, 1, 1) 0 0 0 0 0 −1 0 1 0 7

3
0

q3 0, (0, 0, 0, 0, 0, 0) 0 −1 0 (3, 2, 1, 1) − 1
6

1
2
− 1

2
− 1

2
1
2

0 0 0 0 4
3

− 1
3

n12 2, (−1, 1, 0, 2, 0, 0) − 2
3

2
3

0 (1, 1, 1, 1) 0 − 5
6

1
2
− 1

6
− 5

6
− 1

3
2
3

0 1
3

− 1
9

1

f̄4 2, (−1, 1, 0, 2, 0, 0) − 2
3

2
3

0 (1, 1, 4̄, 1) 0 1
6
− 1

2
− 1

6
− 5

6
1
6
− 1

3
1
2
− 1

6
8
9

0

δ6 2, (−1, 1, 0, 2, 0, 0) 7
3
− 1

3
0 (3, 1, 1, 1) 1

3
− 1

3
0 1

3
2
3
− 1

3
2
3

0 1
3

− 1
9

2
3

n̄9 2, (−1, 1, 0, 2, 0, 0) 7
3
− 1

3
0 (1, 1, 1, 1) 0 1

6
− 1

2
− 1

6
− 5

6
2
3

2
3

0 − 2
3
− 1

9
−1

η̄3 2, (−1, 1, 0, 2, 0, 0) 7
3
− 4

3
0 (1, 1, 1, 2) 0 1

6
− 1

2
− 1

6
− 5

6
− 1

3
− 1

3
0 − 2

3
− 1

9
−1

d̄3 2, (−1, 1, 0, 2, 0, 0) − 2
3
− 4

3
0 (3̄, 1, 1, 1) − 1

3
1
6

1
2
− 1

6
1
6
− 1

3
2
3

0 1
3

8
9

1
3

s0
31 2, (−1, 1, 0, 2, 0, 0) 7

3
2
3

0 (1, 1, 1, 1) 0 2
3

0 1
3

5
3
− 1

3
2
3

0 1
3

8
9

0

δ4 2, (−1, 1, 0, 0, 0, 0) − 2
3
− 1

3
0 (3, 1, 1, 1) 1

3
− 1

3
0 0 −1 2

3
0 0 0 − 7

9
2
3

h8 2, (−1, 1, 0, 0, 0, 0) − 2
3
− 1

3
0 (1, 1, 1, 2) 0 2

3
0 0 0 − 1

3
−1 0 0 2

9
0

δ̄4 2, (−1, 1, 0, 0, 0, 0) − 2
3
− 1

3
0 (3̄, 1, 1, 1) − 1

3
− 1

3
0 0 1 2

3
0 0 0 − 1

9
− 2

3

h7 2, (−1, 1, 0, 0, 0, 0) − 2
3
− 1

3
0 (1, 1, 1, 2) 0 2

3
0 0 0 − 1

3
1 0 0 8

9
0

s0
25 2, (−1, 1, 0, 0, 0, 0) − 2

3
− 1

3
0 (1, 1, 1, 1) 0 2

3
0 0 0 − 1

3
0 −1 0 − 13

9
0

s0
24 2, (−1, 1, 0, 0, 0, 0) − 2

3
− 1

3
0 (1, 1, 1, 1) 0 2

3
0 0 0 − 1

3
0 1 0 23

9
0

s0
30 2, (−1, 1, 0, 0, 0, 0) 4

3
− 1

3
0 (1, 1, 1, 1) 0 2

3
0 0 0 2

3
0 0 0 2

9
0

s0
26 2, (−1, 1, 0, 0, 0, 0) − 2

3
2
3

0 (1, 1, 1, 1) 0 2
3

0 0 0 2
3

0 0 0 2
9

0

δ̄6 2, (−1, 1, 0, 1, 0, 0) 7
3

2
3

0 (3̄, 1, 1, 1) − 1
3
− 1

3
0 − 1

3
− 2

3
− 1

3
− 2

3
0 − 1

3
− 1

9
− 2

3
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C Spectrum of the Z6-II Model

label (k, λ) R1 R2 R3 representation qY q2 q3 q4 q5 q6 q7 q8 q9 qanom qB−L

n̄11 2, (−1, 1, 0, 1, 0, 0) − 2
3
− 1

3
0 (1, 1, 1, 1) 0 1

6
− 1

2
1
6

5
6
− 1

3
4
3

0 − 1
3

5
9

−1

n̄10 2, (−1, 1, 0, 1, 0, 0) − 2
3
− 1

3
0 (1, 1, 1, 1) 0 1

6
1
2
− 5

6
5
6
− 1

3
− 2

3
0 − 1

3
14
9

−1

η̄4 2, (−1, 1, 0, 1, 0, 0) − 2
3

2
3

0 (1, 1, 1, 2) 0 1
6
− 1

2
1
6

5
6

2
3

1
3

0 − 1
3
− 1

9
−1

f̄6 2, (−1, 1, 0, 1, 0, 0) 7
3
− 4

3
0 (1, 1, 4̄, 1) 0 1

6
− 1

2
1
6

5
6

1
6

1
3
− 1

2
1
6

− 7
9

0

s0
32 2, (−1, 1, 0, 1, 0, 0) 7

3
− 4

3
0 (1, 1, 1, 1) 0 2

3
0 − 1

3
− 5

3
− 1

3
− 2

3
0 − 1

3
2
9

0

l̄1 2, (−1, 1, 0, 1, 0, 0) 7
3
− 1

3
0 (1, 2, 1, 1) − 1

2
1
6

1
2

1
6
− 1

6
− 1

3
− 2

3
0 − 1

3
− 4

9
−1

n̄16 2, (−1, 1, 0, 1, 0, 0) 4
3
− 4

3
0 (1, 1, 1, 1) 0 1

6
− 1

2
1
6

5
6
− 1

3
− 2

3
0 − 1

3
− 1

9
−1

n̄12 2, (−1, 1, 0, 1, 0, 0) − 2
3
− 1

3
0 (1, 1, 1, 1) 0 1

6
− 1

2
1
6

5
6
− 1

3
− 2

3
0 − 1

3
− 1

9
−1

n13 2, (0, 0, 0, 2, 0, 0) − 2
3

2
3

0 (1, 1, 1, 1) 0 − 5
6

1
2
− 1

6
− 5

6
− 1

3
2
3

0 1
3

− 1
9

1

f̄5 2, (0, 0, 0, 2, 0, 0) − 2
3

2
3

0 (1, 1, 4̄, 1) 0 1
6
− 1

2
− 1

6
− 5

6
1
6
− 1

3
1
2
− 1

6
8
9

0

d̄4 2, (0, 0, 0, 2, 0, 0) − 2
3
− 4

3
0 (3̄, 1, 1, 1) − 1

3
1
6

1
2
− 1

6
1
6
− 1

3
2
3

0 1
3

8
9

1
3

δ5 2, (0, 0, 0, 0, 0, 0) − 2
3
− 1

3
0 (3, 1, 1, 1) 1

3
− 1

3
0 0 −1 2

3
0 0 0 − 7

9
2
3

h10 2, (0, 0, 0, 0, 0, 0) − 2
3
− 1

3
0 (1, 1, 1, 2) 0 2

3
0 0 0 − 1

3
−1 0 0 2

9
0

δ̄5 2, (0, 0, 0, 0, 0, 0) − 2
3
− 1

3
0 (3̄, 1, 1, 1) − 1

3
− 1

3
0 0 1 2

3
0 0 0 − 1

9
− 2

3

h9 2, (0, 0, 0, 0, 0, 0) − 2
3
− 1

3
0 (1, 1, 1, 2) 0 2

3
0 0 0 − 1

3
1 0 0 8

9
0

s0
28 2, (0, 0, 0, 0, 0, 0) − 2

3
− 1

3
0 (1, 1, 1, 1) 0 2

3
0 0 0 − 1

3
0 −1 0 − 13

9
0

s0
27 2, (0, 0, 0, 0, 0, 0) − 2

3
− 1

3
0 (1, 1, 1, 1) 0 2

3
0 0 0 − 1

3
0 1 0 23

9
0

s0
29 2, (0, 0, 0, 0, 0, 0) − 2

3
2
3

0 (1, 1, 1, 1) 0 2
3

0 0 0 2
3

0 0 0 2
9

0

n̄14 2, (0, 0, 0, 1, 0, 0) − 2
3
− 1

3
0 (1, 1, 1, 1) 0 1

6
− 1

2
1
6

5
6
− 1

3
4
3

0 − 1
3

5
9

−1

n̄13 2, (0, 0, 0, 1, 0, 0) − 2
3
− 1

3
0 (1, 1, 1, 1) 0 1

6
1
2
− 5

6
5
6
− 1

3
− 2

3
0 − 1

3
14
9

−1

η̄5 2, (0, 0, 0, 1, 0, 0) − 2
3

2
3

0 (1, 1, 1, 2) 0 1
6
− 1

2
1
6

5
6

2
3

1
3

0 − 1
3
− 1

9
−1

n̄15 2, (0, 0, 0, 1, 0, 0) − 2
3
− 1

3
0 (1, 1, 1, 1) 0 1

6
− 1

2
1
6

5
6
− 1

3
− 2

3
0 − 1

3
− 1

9
−1

s+
14 3, (1, 0, 0, 0, 1, 1) − 5

2
0 − 1

2
(1, 1, 1, 1) − 1

2
0 0 0 −1 − 1

2
1 − 1

2
0 − 5

6
0

s−14 3, (1, 0, 0, 0, 1, 1) − 5
2

0 − 1
2

(1, 1, 1, 1) 1
2

0 0 0 1 − 1
2
−1 − 1

2
0 − 5

6
0

s+
13 3, (1, 0, 0, 0, 1, 1) − 1

2
0 − 1

2
(1, 1, 1, 1) − 1

2
0 0 0 −1 1

2
1 1

2
0 5

6
0

s−13 3, (1, 0, 0, 0, 1, 1) − 1
2

0 − 1
2

(1, 1, 1, 1) 1
2

0 0 0 1 1
2
−1 1

2
0 5

6
0

f̄+
2 3, (1, 0, 0, 0, 1, 1) 3

2
0 1

2
(1, 1, 4̄, 1) − 1

2
0 0 0 −1 0 0 0 − 1

2
− 1

2
−1

f̄−2 3, (1, 0, 0, 0, 1, 1) 3
2

0 1
2

(1, 1, 4, 1) 1
2

0 0 0 1 0 0 0 1
2

1
2

1

s+
11 3, (1, 0, 0, 0, 1, 0) − 5

2
0 − 1

2
(1, 1, 1, 1) − 1

2
0 0 0 −1 − 1

2
1 − 1

2
0 − 5

6
0

s−11 3, (1, 0, 0, 0, 1, 0) − 5
2

0 − 1
2

(1, 1, 1, 1) 1
2

0 0 0 1 − 1
2
−1 − 1

2
0 − 5

6
0

s+
9 3, (1, 0, 0, 0, 1, 0) − 1

2
0 − 1

2
(1, 1, 1, 1) − 1

2
0 0 0 −1 1

2
1 1

2
0 5

6
0

s−9 3, (1, 0, 0, 0, 1, 0) − 1
2

0 − 1
2

(1, 1, 1, 1) 1
2

0 0 0 1 1
2
−1 1

2
0 5

6
0

f̄+
1 3, (1, 0, 0, 0, 1, 0) 3

2
0 1

2
(1, 1, 4̄, 1) − 1

2
0 0 0 −1 0 0 0 − 1

2
− 1

2
−1

f̄−1 3, (1, 0, 0, 0, 1, 0) 3
2

0 1
2

(1, 1, 4, 1) 1
2

0 0 0 1 0 0 0 1
2

1
2

1

h6 3, (1, 0, 0, 0, 0, 1) 3
2

0 − 1
2

(1, 1, 1, 2) 0 0 − 1
2

1
2

0 0 1 0 0 − 1
2

0

h5 3, (1, 0, 0, 0, 0, 1) 3
2

0 − 1
2

(1, 1, 1, 2) 0 0 1
2
− 1

2
0 0 −1 0 0 1

2
0

χ2 3, (1, 0, 0, 0, 0, 1) 3
2

0 − 1
2

(1, 1, 1, 1) 0 0 − 1
2

1
2

0 0 0 0 1 − 1
2

2

χ1 3, (1, 0, 0, 0, 0, 1) 3
2

0 − 1
2

(1, 1, 1, 1) 0 0 1
2
− 1

2
0 0 0 0 −1 1

2
−2

h4 3, (1, 0, 0, 0, 0, 0) 3
2

0 − 1
2

(1, 1, 1, 2) 0 0 − 1
2

1
2

0 0 1 0 0 − 1
2

0

h3 3, (1, 0, 0, 0, 0, 0) 3
2

0 − 1
2

(1, 1, 1, 2) 0 0 1
2
− 1

2
0 0 −1 0 0 1

2
0

χ4 3, (1, 0, 0, 0, 0, 0) 3
2

0 − 1
2

(1, 1, 1, 1) 0 0 − 1
2

1
2

0 0 0 0 1 − 1
2

2

χ3 3, (1, 0, 0, 0, 0, 0) 3
2

0 − 1
2

(1, 1, 1, 1) 0 0 1
2
− 1

2
0 0 0 0 −1 1

2
−2

s+
12 3, (0, 0, 0, 0, 1, 1) − 1

2
0 − 1

2
(1, 1, 1, 1) − 1

2
0 0 0 −1 1

2
1 1

2
0 5

6
0

s−12 3, (0, 0, 0, 0, 1, 1) − 1
2

0 − 1
2

(1, 1, 1, 1) 1
2

0 0 0 1 1
2
−1 1

2
0 5

6
0

s+
10 3, (0, 0, 0, 0, 1, 0) − 1

2
0 − 1

2
(1, 1, 1, 1) − 1

2
0 0 0 −1 1

2
1 1

2
0 5

6
0

s−10 3, (0, 0, 0, 0, 1, 0) − 1
2

0 − 1
2

(1, 1, 1, 1) 1
2

0 0 0 1 1
2
−1 1

2
0 5

6
0
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label (k, λ) R1 R2 R3 representation qY q2 q3 q4 q5 q6 q7 q8 q9 qanom qB−L

s0
22 4, (−1, 1, 1, 1, 0, 0) − 1

3
1
3

0 (1, 1, 1, 1) 0 − 2
3

0 1
3

5
3

1
3

2
3

0 1
3

− 2
9

0

f5 4, (−1, 1, 1, 1, 0, 0) − 1
3

1
3

0 (1, 1, 4, 1) 0 − 1
6

1
2
− 1

6
− 5

6
− 1

6
− 1

3
1
2
− 1

6
7
9

0

l3 4, (−1, 1, 1, 1, 0, 0) − 1
3
− 2

3
0 (1, 2, 1, 1) 1

2
− 1

6
− 1

2
− 1

6
1
6

1
3

2
3

0 1
3

4
9

1

n10 4, (−1, 1, 1, 1, 0, 0) 8
3
− 2

3
0 (1, 1, 1, 1) 0 − 1

6
− 1

2
5
6
− 5

6
1
3

2
3

0 1
3
− 14

9
1

n9 4, (−1, 1, 1, 1, 0, 0) 8
3
− 2

3
0 (1, 1, 1, 1) 0 − 1

6
1
2
− 1

6
− 5

6
1
3
− 4

3
0 1

3
− 5

9
1

η5 4, (−1, 1, 1, 1, 0, 0) 8
3

4
3

0 (1, 1, 1, 2) 0 − 1
6

1
2
− 1

6
− 5

6
− 2

3
− 1

3
0 1

3
1
9

1

δ2 4, (−1, 1, 1, 1, 0, 0) − 1
3

4
3

0 (3, 1, 1, 1) 1
3

1
3

0 1
3

2
3

1
3

2
3

0 1
3

1
9

2
3

n7 4, (−1, 1, 1, 1, 0, 0) 2
3

1
3

0 (1, 1, 1, 1) 0 − 1
6

1
2
− 1

6
− 5

6
1
3

2
3

0 1
3

1
9

1

n11 4, (−1, 1, 1, 1, 0, 0) 8
3
− 2

3
0 (1, 1, 1, 1) 0 − 1

6
1
2
− 1

6
− 5

6
1
3

2
3

0 1
3

1
9

1

h1 4, (−1, 1, 0, 0, 0, 0) 8
3
− 2

3
0 (1, 1, 1, 2) 0 − 2

3
0 0 0 1

3
1 0 0 − 2

9
0

δ̄1 4, (−1, 1, 0, 0, 0, 0) 8
3
− 2

3
0 (3̄, 1, 1, 1) − 1

3
1
3

0 0 1 − 2
3

0 0 0 7
9

− 2
3

h2 4, (−1, 1, 0, 0, 0, 0) 8
3
− 2

3
0 (1, 1, 1, 2) 0 − 2

3
0 0 0 1

3
−1 0 0 − 8

9
0

δ1 4, (−1, 1, 0, 0, 0, 0) 8
3
− 2

3
0 (3, 1, 1, 1) 1

3
1
3

0 0 −1 − 2
3

0 0 0 1
9

2
3

s0
18 4, (−1, 1, 0, 0, 0, 0) 8

3
− 2

3
0 (1, 1, 1, 1) 0 − 2

3
0 0 0 1

3
0 −1 0 − 23

9
0

s0
17 4, (−1, 1, 0, 0, 0, 0) 8

3
− 2

3
0 (1, 1, 1, 1) 0 − 2

3
0 0 0 1

3
0 1 0 13

9
0

s0
15 4, (−1, 1, 0, 0, 0, 0) 2

3
− 2

3
0 (1, 1, 1, 1) 0 − 2

3
0 0 0 − 2

3
0 0 0 − 2

9
0

s0
19 4, (−1, 1, 0, 0, 0, 0) 8

3
4
3

0 (1, 1, 1, 1) 0 − 2
3

0 0 0 − 2
3

0 0 0 − 2
9

0

s0
20 4, (−1, 1, 1, 0, 0, 0) − 1

3
4
3

0 (1, 1, 1, 1) 0 − 2
3

0 − 1
3
− 5

3
1
3
− 2

3
0 − 1

3
− 8

9
0

d1 4, (−1, 1, 1, 0, 0, 0) 8
3

1
3

0 (3, 1, 1, 1) 1
3
− 1

6
− 1

2
1
6
− 1

6
1
3
− 2

3
0 − 1

3
− 8

9
− 1

3

η3 4, (−1, 1, 1, 0, 0, 0) − 1
3

1
3

0 (1, 1, 1, 2) 0 − 1
6

1
2

1
6

5
6

1
3

1
3

0 2
3

1
9

1

f4 4, (−1, 1, 1, 0, 0, 0) 8
3

4
3

0 (1, 1, 4, 1) 0 − 1
6

1
2

1
6

5
6
− 1

6
1
3
− 1

2
1
6

− 8
9

0

n̄8 4, (−1, 1, 1, 0, 0, 0) 8
3

4
3

0 (1, 1, 1, 1) 0 5
6
− 1

2
1
6

5
6

1
3
− 2

3
0 − 1

3
1
9

−1

n5 4, (−1, 1, 1, 0, 0, 0) − 1
3
− 2

3
0 (1, 1, 1, 1) 0 − 1

6
1
2

1
6

5
6
− 2

3
− 2

3
0 2

3
1
9

1

δ̄2 4, (−1, 1, 1, 0, 0, 0) − 1
3
− 2

3
0 (3̄, 1, 1, 1) − 1

3
1
3

0 − 1
3
− 2

3
1
3
− 2

3
0 − 1

3
1
9

− 2
3

s0
23 4, (0, 0, 1, 1, 0, 0) − 1

3
1
3

0 (1, 1, 1, 1) 0 − 2
3

0 1
3

5
3

1
3

2
3

0 1
3

− 2
9

0

f6 4, (0, 0, 1, 1, 0, 0) − 1
3

1
3

0 (1, 1, 4, 1) 0 − 1
6

1
2
− 1

6
− 5

6
− 1

6
− 1

3
1
2
− 1

6
7
9

0

l4 4, (0, 0, 1, 1, 0, 0) − 1
3
− 2

3
0 (1, 2, 1, 1) 1

2
− 1

6
− 1

2
− 1

6
1
6

1
3

2
3

0 1
3

4
9

1

δ3 4, (0, 0, 1, 1, 0, 0) − 1
3

4
3

0 (3, 1, 1, 1) 1
3

1
3

0 1
3

2
3

1
3

2
3

0 1
3

1
9

2
3

n8 4, (0, 0, 1, 1, 0, 0) 2
3

1
3

0 (1, 1, 1, 1) 0 − 1
6

1
2
− 1

6
− 5

6
1
3

2
3

0 1
3

1
9

1

s0
16 4, (0, 0, 0, 0, 0, 0) 2

3
− 2

3
0 (1, 1, 1, 1) 0 − 2

3
0 0 0 − 2

3
0 0 0 − 2

9
0

s0
21 4, (0, 0, 1, 0, 0, 0) − 1

3
4
3

0 (1, 1, 1, 1) 0 − 2
3

0 − 1
3
− 5

3
1
3
− 2

3
0 − 1

3
− 8

9
0

η4 4, (0, 0, 1, 0, 0, 0) − 1
3

1
3

0 (1, 1, 1, 2) 0 − 1
6

1
2

1
6

5
6

1
3

1
3

0 2
3

1
9

1

n6 4, (0, 0, 1, 0, 0, 0) − 1
3
− 2

3
0 (1, 1, 1, 1) 0 − 1

6
1
2

1
6

5
6
− 2

3
− 2

3
0 2

3
1
9

1

δ̄3 4, (0, 0, 1, 0, 0, 0) − 1
3
− 2

3
0 (3̄, 1, 1, 1) − 1

3
1
3

0 − 1
3
− 2

3
1
3
− 2

3
0 − 1

3
1
9

− 2
3

s+
4 5, (0, 0, 0, 2, 1, 1) − 1

6
2
3

1
2

(1, 1, 1, 1) − 1
2
− 1

3
0 − 2

3
2
3

1
6
− 1

3
1
2

1
3

37
18

0

ν2 5, (0, 0, 0, 2, 1, 1) − 1
6

2
3
− 1

2
(3, 1, 1, 1) − 1

6
− 1

3
0 1

3
− 1

3
1
6
− 1

3
1
2

1
3

1
18

2
3

s−3 5, (0, 0, 0, 2, 1, 1) − 1
6
− 1

3
− 1

2
(1, 1, 1, 1) 1

2
1
6
− 1

2
− 1

6
1
6

1
6
− 1

3
− 1

2
− 2

3
− 17

18
−1

m6 5, (0, 0, 0, 2, 1, 1) − 1
6
− 1

3
1
2

(1, 2, 1, 1) 0 1
6

1
2
− 1

6
− 5

6
1
6
− 1

3
1
2

1
3

19
18

1

s+
3 5, (0, 0, 0, 2, 1, 1) − 1

6
− 4

3
− 1

2
(1, 1, 1, 1) − 1

2
2
3

0 1
3

2
3

1
6
− 1

3
1
2

1
3

19
18

0

s−4 5, (0, 0, 0, 2, 1, 1) 5
6

2
3

1
2

(1, 1, 1, 1) 1
2

1
6
− 1

2
− 1

6
1
6

1
6
− 1

3
1
2

1
3

25
18

1

s+
2 5, (0, 0, 0, 2, 1, 0) − 1

6
2
3

1
2

(1, 1, 1, 1) − 1
2
− 1

3
0 − 2

3
2
3

1
6
− 1

3
1
2

1
3

37
18

0

ν1 5, (0, 0, 0, 2, 1, 0) − 1
6

2
3
− 1

2
(3, 1, 1, 1) − 1

6
− 1

3
0 1

3
− 1

3
1
6
− 1

3
1
2

1
3

1
18

2
3

s−1 5, (0, 0, 0, 2, 1, 0) − 1
6
− 1

3
− 1

2
(1, 1, 1, 1) 1

2
1
6
− 1

2
− 1

6
1
6

1
6
− 1

3
− 1

2
− 2

3
− 17

18
−1

m5 5, (0, 0, 0, 2, 1, 0) − 1
6
− 1

3
1
2

(1, 2, 1, 1) 0 1
6

1
2
− 1

6
− 5

6
1
6
− 1

3
1
2

1
3

19
18

1

s+
1 5, (0, 0, 0, 2, 1, 0) − 1

6
− 4

3
− 1

2
(1, 1, 1, 1) − 1

2
2
3

0 1
3

2
3

1
6
− 1

3
1
2

1
3

19
18

0

s−2 5, (0, 0, 0, 2, 1, 0) 5
6

2
3

1
2

(1, 1, 1, 1) 1
2

1
6
− 1

2
− 1

6
1
6

1
6
− 1

3
1
2

1
3

25
18

1
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C Spectrum of the Z6-II Model

label (k, λ) R1 R2 R3 representation qY q2 q3 q4 q5 q6 q7 q8 q9 qanom qB−L

η2 5, (0, 0, 0, 2, 0, 1) − 1
6

2
3
− 1

2
(1, 1, 1, 2) 0 1

6
0 − 2

3
− 5

6
− 1

3
− 1

3
0 1

3
19
18

1

n̄5 5, (0, 0, 0, 2, 0, 1) − 1
6

2
3
− 1

2
(1, 1, 1, 1) 0 1

6
0 − 2

3
− 5

6
− 1

3
2
3

0 − 2
3

19
18

−1

n2 5, (0, 0, 0, 2, 0, 1) − 1
6
− 4

3
− 1

2
(1, 1, 1, 1) 0 1

6
0 − 2

3
− 5

6
2
3

2
3

0 1
3

19
18

1

η1 5, (0, 0, 0, 2, 0, 0) − 1
6

2
3
− 1

2
(1, 1, 1, 2) 0 1

6
0 − 2

3
− 5

6
− 1

3
− 1

3
0 1

3
19
18

1

n̄4 5, (0, 0, 0, 2, 0, 0) − 1
6

2
3
− 1

2
(1, 1, 1, 1) 0 1

6
0 − 2

3
− 5

6
− 1

3
2
3

0 − 2
3

19
18

−1

n1 5, (0, 0, 0, 2, 0, 0) − 1
6
− 4

3
− 1

2
(1, 1, 1, 1) 0 1

6
0 − 2

3
− 5

6
2
3

2
3

0 1
3

19
18

1

y2 5, (0, 0, 0, 0, 1, 1) − 1
6
− 1

3
1
2

(1, 2, 1, 2) 0 − 1
3

0 0 0 1
6

0 1
2

0 13
18

0

m3 5, (0, 0, 0, 0, 1, 1) − 1
6
− 1

3
1
2

(1, 2, 1, 1) 0 − 1
3

0 0 0 1
6

1 − 1
2

0 − 17
18

0

m4 5, (0, 0, 0, 0, 1, 1) − 1
6
− 1

3
1
2

(1, 2, 1, 1) 0 − 1
3

0 0 0 1
6
−1 − 1

2
0 − 29

18
0

y1 5, (0, 0, 0, 0, 1, 0) − 1
6
− 1

3
1
2

(1, 2, 1, 2) 0 − 1
3

0 0 0 1
6

0 1
2

0 13
18

0

m1 5, (0, 0, 0, 0, 1, 0) − 1
6
− 1

3
1
2

(1, 2, 1, 1) 0 − 1
3

0 0 0 1
6

1 − 1
2

0 − 17
18

0

m2 5, (0, 0, 0, 0, 1, 0) − 1
6
− 1

3
1
2

(1, 2, 1, 1) 0 − 1
3

0 0 0 1
6
−1 − 1

2
0 − 29

18
0

d̄1 5, (0, 0, 0, 0, 0, 1) − 1
6
− 1

3
− 1

2
(3̄, 1, 1, 1) − 1

3
1
6

0 0 − 3
2
− 1

3
0 0 0 − 5

18
1
3

ē1 5, (0, 0, 0, 0, 0, 1) − 1
6
− 1

3
− 1

2
(1, 1, 1, 1) −1 1

6
0 0 1

2
− 1

3
0 0 0 7

18
−1

ū1 5, (0, 0, 0, 0, 0, 1) − 1
6
− 1

3
− 1

2
(3̄, 1, 1, 1) 2

3
1
6

0 0 1
2
− 1

3
0 0 0 7

18
1
3

l1 5, (0, 0, 0, 0, 0, 1) − 1
6
− 1

3
− 1

2
(1, 2, 1, 1) 1

2
1
6

0 0 − 3
2
− 1

3
0 0 0 − 5

18
1

q1 5, (0, 0, 0, 0, 0, 1) − 1
6
− 1

3
− 1

2
(3, 2, 1, 1) − 1

6
1
6

0 0 1
2
− 1

3
0 0 0 7

18
− 1

3

n̄1 5, (0, 0, 0, 0, 0, 1) − 1
6
− 1

3
− 1

2
(1, 1, 1, 1) 0 1

6
0 0 5

2
− 1

3
0 0 0 19

18
−1

s0
12 5, (0, 0, 0, 0, 0, 1) 5

6
− 1

3
− 1

2
(1, 1, 1, 1) 0 2

3
− 1

2
1
2

0 − 1
3

0 0 0 − 5
18

0

s0
11 5, (0, 0, 0, 0, 0, 1) 5

6
− 1

3
− 1

2
(1, 1, 1, 1) 0 2

3
1
2
− 1

2
0 − 1

3
0 0 0 25

18
0

s0
14 5, (0, 0, 0, 0, 0, 1) 11

6
− 1

3
− 1

2
(1, 1, 1, 1) 0 − 1

3
− 1

2
− 1

2
0 − 1

3
0 0 0 13

18
0

s0
13 5, (0, 0, 0, 0, 0, 1) 11

6
− 1

3
− 1

2
(1, 1, 1, 1) 0 − 1

3
1
2

1
2

0 − 1
3

0 0 0 − 17
18

0

s0
10 5, (0, 0, 0, 0, 0, 1) − 1

6
2
3
− 1

2
(1, 1, 1, 1) 0 − 1

3
− 1

2
− 1

2
0 − 1

3
0 0 0 13

18
0

s0
9 5, (0, 0, 0, 0, 0, 1) − 1

6
2
3
− 1

2
(1, 1, 1, 1) 0 − 1

3
1
2

1
2

0 − 1
3

0 0 0 − 17
18

0

d̄2 5, (0, 0, 0, 0, 0, 0) − 1
6
− 1

3
− 1

2
(3̄, 1, 1, 1) − 1

3
1
6

0 0 − 3
2
− 1

3
0 0 0 − 5

18
1
3

ē2 5, (0, 0, 0, 0, 0, 0) − 1
6
− 1

3
− 1

2
(1, 1, 1, 1) −1 1

6
0 0 1

2
− 1

3
0 0 0 7

18
−1

ū2 5, (0, 0, 0, 0, 0, 0) − 1
6
− 1

3
− 1

2
(3̄, 1, 1, 1) 2

3
1
6

0 0 1
2
− 1

3
0 0 0 7

18
1
3

l2 5, (0, 0, 0, 0, 0, 0) − 1
6
− 1

3
− 1

2
(1, 2, 1, 1) 1

2
1
6

0 0 − 3
2
− 1

3
0 0 0 − 5

18
1

q2 5, (0, 0, 0, 0, 0, 0) − 1
6
− 1

3
− 1

2
(3, 2, 1, 1) − 1

6
1
6

0 0 1
2
− 1

3
0 0 0 7

18
− 1

3

n̄2 5, (0, 0, 0, 0, 0, 0) − 1
6
− 1

3
− 1

2
(1, 1, 1, 1) 0 1

6
0 0 5

2
− 1

3
0 0 0 19

18
−1

s0
6 5, (0, 0, 0, 0, 0, 0) 5

6
− 1

3
− 1

2
(1, 1, 1, 1) 0 2

3
− 1

2
1
2

0 − 1
3

0 0 0 − 5
18

0

s0
5 5, (0, 0, 0, 0, 0, 0) 5

6
− 1

3
− 1

2
(1, 1, 1, 1) 0 2

3
1
2
− 1

2
0 − 1

3
0 0 0 25

18
0

s0
8 5, (0, 0, 0, 0, 0, 0) 11

6
− 1

3
− 1

2
(1, 1, 1, 1) 0 − 1

3
− 1

2
− 1

2
0 − 1

3
0 0 0 13

18
0

s0
7 5, (0, 0, 0, 0, 0, 0) 11

6
− 1

3
− 1

2
(1, 1, 1, 1) 0 − 1

3
1
2

1
2

0 − 1
3

0 0 0 − 17
18

0

s0
4 5, (0, 0, 0, 0, 0, 0) − 1

6
2
3
− 1

2
(1, 1, 1, 1) 0 − 1

3
− 1

2
− 1

2
0 − 1

3
0 0 0 13

18
0

s0
3 5, (0, 0, 0, 0, 0, 0) − 1

6
2
3
− 1

2
(1, 1, 1, 1) 0 − 1

3
1
2

1
2

0 − 1
3

0 0 0 − 17
18

0

ν̄2 5, (0, 0, 0, 1, 1, 1) − 1
6
− 4

3
− 1

2
(3̄, 1, 1, 1) 1

6
− 1

3
0 − 1

3
1
3

1
6

1
3

1
2
− 1

3
25
18

− 2
3

s−8 5, (0, 0, 0, 1, 1, 1) − 1
6
− 4

3
1
2

(1, 1, 1, 1) 1
2
− 1

3
0 2

3
− 2

3
1
6

1
3

1
2
− 1

3
− 11

18
0

s+
7 5, (0, 0, 0, 1, 1, 1) − 1

6
2
3

1
2

(1, 1, 1, 1) − 1
2

1
6
− 1

2
1
6
− 1

6
1
6

1
3
− 1

2
2
3
− 17

18
1

m8 5, (0, 0, 0, 1, 1, 1) − 1
6

2
3
− 1

2
(1, 2, 1, 1) 0 1

6
1
2

1
6

5
6

1
6

1
3

1
2
− 1

3
19
18

−1

s−7 5, (0, 0, 0, 1, 1, 1) − 1
6
− 1

3
− 1

2
(1, 1, 1, 1) 1

2
2
3

0 − 1
3
− 2

3
1
6

1
3

1
2
− 1

3
31
18

0

s+
8 5, (0, 0, 0, 1, 1, 1) 5

6
− 4

3
− 1

2
(1, 1, 1, 1) − 1

2
1
6
− 1

2
1
6
− 1

6
1
6

1
3

1
2
− 1

3
13
18

−1

ν̄1 5, (0, 0, 0, 1, 1, 0) − 1
6
− 4

3
− 1

2
(3̄, 1, 1, 1) 1

6
− 1

3
0 − 1

3
1
3

1
6

1
3

1
2
− 1

3
25
18

− 2
3

s−6 5, (0, 0, 0, 1, 1, 0) − 1
6
− 4

3
1
2

(1, 1, 1, 1) 1
2
− 1

3
0 2

3
− 2

3
1
6

1
3

1
2
− 1

3
− 11

18
0

s+
5 5, (0, 0, 0, 1, 1, 0) − 1

6
2
3

1
2

(1, 1, 1, 1) − 1
2

1
6
− 1

2
1
6
− 1

6
1
6

1
3
− 1

2
2
3
− 17

18
1

m7 5, (0, 0, 0, 1, 1, 0) − 1
6

2
3
− 1

2
(1, 2, 1, 1) 0 1

6
1
2

1
6

5
6

1
6

1
3

1
2
− 1

3
19
18

−1
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label (k, λ) R1 R2 R3 representation qY q2 q3 q4 q5 q6 q7 q8 q9 qanom qB−L

s−5 5, (0, 0, 0, 1, 1, 0) − 1
6
− 1

3
− 1

2
(1, 1, 1, 1) 1

2
2
3

0 − 1
3
− 2

3
1
6

1
3

1
2
− 1

3
31
18

0

s+
6 5, (0, 0, 0, 1, 1, 0) 5

6
− 4

3
− 1

2
(1, 1, 1, 1) − 1

2
1
6
− 1

2
1
6
− 1

6
1
6

1
3

1
2
− 1

3
13
18

−1

f3 5, (0, 0, 0, 1, 0, 1) − 1
6

2
3
− 1

2
(1, 1, 4, 1) 0 1

6
0 − 1

3
5
6

1
6

1
3
− 1

2
1
6

1
18

0

f̄3 5, (0, 0, 0, 1, 0, 1) − 1
6

2
3
− 1

2
(1, 1, 4̄, 1) 0 1

6
0 − 1

3
5
6

1
6

1
3

1
2

1
6

37
18

0

η̄2 5, (0, 0, 0, 1, 0, 1) 5
6
− 1

3
− 1

2
(1, 1, 1, 2) 0 1

6
0 − 1

3
5
6
− 1

3
1
3

0 − 1
3

19
18

−1

n4 5, (0, 0, 0, 1, 0, 1) 5
6
− 1

3
− 1

2
(1, 1, 1, 1) 0 1

6
0 − 1

3
5
6
− 1

3
− 2

3
0 2

3
19
18

1

n̄7 5, (0, 0, 0, 1, 0, 1) 5
6

2
3
− 1

2
(1, 1, 1, 1) 0 1

6
0 − 1

3
5
6

2
3
− 2

3
0 − 1

3
7
18

−1

f2 5, (0, 0, 0, 1, 0, 0) − 1
6

2
3
− 1

2
(1, 1, 4, 1) 0 1

6
0 − 1

3
5
6

1
6

1
3
− 1

2
1
6

1
18

0

f̄2 5, (0, 0, 0, 1, 0, 0) − 1
6

2
3
− 1

2
(1, 1, 4̄, 1) 0 1

6
0 − 1

3
5
6

1
6

1
3

1
2

1
6

37
18

0

η̄1 5, (0, 0, 0, 1, 0, 0) 5
6
− 1

3
− 1

2
(1, 1, 1, 2) 0 1

6
0 − 1

3
5
6
− 1

3
1
3

0 − 1
3

19
18

−1

n3 5, (0, 0, 0, 1, 0, 0) 5
6
− 1

3
− 1

2
(1, 1, 1, 1) 0 1

6
0 − 1

3
5
6
− 1

3
− 2

3
0 2

3
19
18

1

n̄6 5, (0, 0, 0, 1, 0, 0) 5
6

2
3
− 1

2
(1, 1, 1, 1) 0 1

6
0 − 1

3
5
6

2
3
− 2

3
0 − 1

3
7
18

−1
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