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Abstract Recently, a study on shadow of quantum cor-
rected Schwarzschild black hole in loop quantum gravity
appeared in (Ye et al. in Phys Lett B 851:138566, 2024,
https://doi.org/10.1016/j.physletb.2024.138566) assuming a
fixed value of Barbero—Immirzi parameter y . Following this
approach, we considered its rotating counterpart being a
quantum corrected Kerr black hole in effective loop quantum
gravity and studied its deviation from Kerr black hole for a
fixed value of y. We proposed and proved a theorem describ-
ing the location of unstable circular null orbits for all such
Kerr-like metrics. The deviation between the shadows of the
Kerr and quantum corrected Kerr black holes has also been
studied, and the spin parameter is constrained by compari-
son with the EHT results for M87* and Sgr A* to precisely
probe the quantity of deviation due to quantum correction.
Lastly, we immersed the quantum corrected Kerr black hole
in an inhomogeneous plasma and studied its impact on the
shadow size. We found that the unstable null orbits for the
quantum corrected Kerr black hole are always smaller than
the unstable null orbits for Kerr black hole. The effect of
Barbero—Immirzi parameter allows the quantum corrected
Kerr black hole to mimic Sgr A* with a higher probability
than the Kerr black hole. However, the quantum corrected
Kerr black hole does not mimic M87%*. The plasma reduces
the size of the shadow of quantum corrected black hole, and
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the plasma parameter in the case Il is more sensitive than that
in case L.

1 Introduction

Soon after the foundation of General Relativity, Schwarzschild
[1] proposed a black hole metric as the pioneering solution of
Einstein field equations in vacuum. However, this black hole
metric encompasses a spacetime singularity, a region where
all physical laws breakdown and nothing can be explained
[2]. Though, in classical regime, General Relativity is a well
understood theory and may explain various phenomena in
gravitational physics. However, it has failed to resolve the
singularity problem. Penrose [3] proposed that the spacetime
singularity is inevitable, and later, Hawking and Penrose [4]
proposed the inevitability of the singularity in Big Bang.

To resolve the singularity issue, various attempts have
been made over the years and thus one may expect a quantum
theory of gravity may resolve the issue. One of the proposed
theories for quantum gravity is loop quantum gravity (LQG),
characterized by its independence from a fixed background
and its non-perturbative approach [5-9]. The theoretical and
numerical aspects of Loop Quantum Cosmology (LQC) have
provided solutions to the cosmological big-bang singularity
[10-14]. Some approaches to resolve the singularity of the
Schwarzschild black hole involve quantization of its inte-
rior using techniques derived from LQG [15-22]. Moreover,
studies have explored the LQG corrections related to black
hole formation and gravitational collapse in different theo-
retical models [23-27].
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Recently, Lewandowski et al. [28] investigated gravita-
tional collapse of a dust ball by incorporating quantum effects
from LQG, using a LQC framework. They found that the col-
lapse halts when the dust ball’s energy density reaches the
Planck scale, causing the dust to bounce instead of continuing
to collapse. By matching the metrics at the boundary between
the collapsing dust ball’s interior and exterior, they derived
a quantum corrected Schwarzschild metric for the external
spacetime. This work highlights how quantum gravity influ-
ences the behavior of collapsing structures. Later, Ye et al.
[29] studied the shadow and photon rings of this quantum
corrected black hole. He found that this quantum corrected
black hole can be distinguished from the Schwarzschild black
hole in terms of shadow images in some illumination mod-
els. They assumed the fixed value of the Barbero—Immirzi
parameter and hence the parameter o was not treated as a
free parameter. Their findings were presented in comparison
with the results of Schwarzschild black hole. Motivated by
this, assuming the fixed value of the Barbero—Immirzi param-
eter, we will accomplish our analysis in comparison with the
results of Kerr black hole for the rotating case.

In 2000, Falcke et al. [30] predicted the possibility of
imaging black holes especially Sgr A*, which got verified
by the discovery of images of the supermassive black hole
M87* [31,32] and Sgr A* [33,34] by the Event Horizon
Telescope (EHT) that has opened up new avenues in black
hole physics. These images comprise light rings and shad-
ows of black holes with nearly equal radii. A light ring is
formed by the trapping of light and appears as a glowing
image of radius greater than the event horizon. Whereas,
the shadow is not a physical entity, but a dark 2D silhou-
ette formed by the disappearing of photons from the sight of
an observer at infinity. Since then, many studies have been
accomplished to understand the shape and size of the black
hole shadow in various different models and frameworks, see
Refs. [35-48]. The images of M87* and Sgr A* provided the
data which has been useful in testing various gravity theories
by determining constraints on the parameters associated with
the theories, see Refs. [49-66]. In particular, Islam et al. [53]
investigated LQG by using the EHT data for M87* and Sgr
A*. They considered a rotating polymerized black holes in
LQG which acts as Kerr black hole asymptotically. Using the
shadow analysis, the LQG parameter has been constrained
and found that a significant part of parametric spaces for
one and two horizon black holes is consistent with the EHT
results for both M87* and Sgr A*. Moreover, the EHT results
for Sgr A* also agree with the triple horizon black hole, but
not for the M87%*. Afrin et al. [54] investigated the LQG for
the results of M87* and Sgr A* by considering two rotating
LQG-inspired black holes and found that the upper bound
for LQG parameter obtained from the results of Sgr A* is
more precise than the upper bound from M87%*. The astro-
physical black holes are surrounded by plasma due to a huge
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gravity and in-falling matter [67]. This may certainly last an
impact on the light propagation causing deviation in shadows.
The study of light propagation in magnetized plasma with no
pressure, is governed by the Hamiltonian derived by Breuer
and Ehlers [68,69]. Later, Perlick and Tsupko [70] derived
the Hamiltonian formulation for a rather simpler case of a
plasma without pressure and magnetization. Perlick et al.
[71] also explored the shadow of static and spherically sym-
metric black holes immersed in a plasma medium. Recently,
various black hole solutions have been considered to inves-
tigate their shadows in the presence of plasma, see Refs.
[58,72-77].

Inspired by [29], we consider the recently developed
rotating counterpart [78-80] of the quantum corrected
Schwarzschild black hole [28], since the supermassive black
holes are rotating in nature. Our major goal is to test the LQG
effects under the influence of Barbero—Immirzi parameter, by
comparing its shadow results with the EHT data and for Kerr
black hole. In particular, we investigate the deviation of the
quantum corrected Kerr black hole from the Kerr black hole
via EHT results. We also study the impact of plasma on the
shadow of quantum corrected Kerr black hole. The paper is
organized as: In Sect. 2, we present a brief overview of the
static and rotating black hole metrics, and further discuss its
horizon structure in terms of black hole spin. In Sect. 3, we
employ the dynamical methods for the null geodesics, and
effective potential and shadows are studied in comparison
with result of Kerr black hole. The Sect. 4 comprises the con-
straints on the spin of black hole parameters in comparison
with EHT data. In Sect. 5, we investigate the impact of plasma
on shadows. Lastly, in Sect. 6, we present a brief conclusion
and future prospects. Note that, we consider G =i = ¢ = 1
in our calculations, unless otherwise mentioned.

2 The static and rotating quantum corrected black hole
metrics

In this section, we review the basic concepts and the
development of the quantum corrected Schwarzschild black
hole metric and its rotating counterpart. The Oppenheimer—
Snyder model [81] describes the collapse of dust matter.
Since, the model describes the Big Bang singularity, there-
fore, it was proposed to consider a Big Bounce instead of the
Big Bang [82]. It is also proposed that quantum gravity can
resolve the singularity problem, therefore, a Big Bounce is
also supported by LQC [12,83,84]. A 4D spherically sym-
metric Ashtekar—Pawlowski—Singh (APS) metric [12] given
as

dsZps = —dr® + a(0)?di? + a(1)*72de3, (1)

where, dQ% = d0? + sin? €d¢2 is the metric of a 2-sphere
and a(t) satisfies a deformed Friedmann equation in terms
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of Hubble parameter H given as

o\ 2
o (f) _ 87Gp (1 _ ﬁ), P
a 3 Pc

such that the energy density of the collapsing dust ball is
givenas p = 3M/ (471178513). The dot in Eq. (2) denotes the
differentiation with respect to the proper time t. Moreover,
the critical energy density p. causes the deformation with a
constant value equal to v/3/ (32712)/3G2h). Note that M is
the mass of the dust ball with radius a(t)ry, y is the Barbero—
Immirzi parameter of LQG [85,86], whereas, G and 7 are
Newton’s and Planck’s constants, respectively. The mass of
the dust ball does not vary due to the conservation of the
energy-momentum tensor. The classical regime corresponds
to p K pc, whereas, the energy density of the ball is never
infinite for which the APS metric does not exhibit any singu-
larity. Any particle inside the dust ball satisfies the inequality
0<r <ry.

The quantum Oppenheimer—Snyder (qOS) model is given
by the metric

dr?

2 _ . 2
dsgos = — (1= F() di* 4 ——— o

+ r2dQ3. 3)
The interior region is described by the APS metric as a dust
ball, and the exterior one is depicted by vacuum qOS met-
ric. The 0 and ¢ coordinates are same for both metrics,
whereas, the coordinates t and 7 in the ball are matched
on to the coordinates ¢ and r in the exterior region. The
dust interface 7 = ry is important region in APS spacetime,
with coordinates (¢(t), r(7), 0, ¢) in the other spacetime.
Using the Israel junction conditions, which require conti-
nuity of the metrics and extrinsic curvature on the inter-
face between dust and vacuum, the coordinates are matched
as (1,79, 60,¢) ~ (t(r), (1), 0, ¢), generating a quantum-
corrected Schwarzschild metric in LQG given by [28]

) oM aM?\ ,
dSqOSZ—(l—T+r—4>dt

2M
+(1-=—+
r

2\ —1
%) dr? + r2dQ3, )
,

where, the quantum correction parameter o = 16+/37 y3l§
causes the deformation in the Schwarzschild metric, and
I, = +/Gh defines the Planck length. It is understood that
the Barbero—Immirzi parameter has a fixed value y =~ 0.2375
[85,86] that gives a fixed value of the parameter o« ~ 1.1663
under the assumption 7 = G = 1 = ¢ in natural units.

At the interface, the radius of the dust ball being a(t)rg
is equal to the radius r(7) in the other spacetime, therefore,
taking the derivative on both sides and then squaring gives
the value of H (r (7)), (for complete derivation, see Appendix
A in Ref. [28]). Along the radial geodesic, when 77 = 0, we
have H(r) = 0 which gives the lower bound of the radial

coordinate, that is,

aM 3

This implies that the radius of the dust surface a(r)rg €
[rp, 00) and thus r > ry. The mass M of the dust ball is
now the mass of the quantum-corrected black hole that has

ey /my

a minimum value My, =
min 3 %

value of M, there exists no horizon; however, there exist two
horizons for M > My, given as

zg(lia/zg—l)\/&
Ja+oa -7

where, ¢ € (1/2, 1) is arbitrary parameter such that 4a¢* =
M2 (1 -2

Recently, in Refs. [79,80,87,88], the authors have not
considered the above-mentioned fixed value of the Barbero—
Immirzi parameter, but accomplished their analyses by incor-
porating the variation of «. It is now well understood that y
has a fixed value, therefore, the minimum mass My, and
the deformation parameter « also have fixed values. There-
fore, only M is the free parameter in the black hole metric
(4). The extra term with « describes only the deviation in
the quantum regime from the Schwarzschild metric depend-
ing on M. Generally, for each particular value of M, the
deviation between the quantum corrected black hole and the
Schwarzschild black hole is fixed due to the fact that « has a
fixed value and cannot be varied around its prescribed value.
Therefore, the studies mentioned above with variable o do
not account for rigorous and feasible analyses.

The significance of studying rotating black holes can be
highlighted through a comparison of their shadows with the
EHT data on supermassive black holes as they are predom-
inantly rotating in nature. Thus, considering rotating black
holes allow us to establish a more accurate and rigorous anal-
ysis. The rotating counterpart of the metric (4) with effective
geometry was derived in Refs. [78-80] so that the quan-
tum corrected Kerr black hole in effective LQG in Boyer—
Lindquist coordinates reads

. Below this minimum

(©)

r+

A(r)—a®sin?0 ,  p> 5 5,
ds2e = — dr* + dr* + p*dé
. P2 A(r)
(2 +a2)*sin? 0 — A(r)a®sin*6
p? d
2asin? 6 (a® +r2 — A(r
- ( 5 ( ))dlddh (7
0
where,
) ) aM?
A(r)y=r"4+a —2Mr+—2, 8)
r
0> =r’+a*cos’ 0, 9
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where, a is the spin parameter. Since, the prescribed value
of y yields, Mmin =~ 0.8314 < M is a valid limit for the
black hole mass, therefore, we consider M = 1 throughout
this work to focus on influence of a within the LQG regime.
For the static metric (4), it is now well understood that the
covariance is modified and therefore is not classical anymore.
Therefore, for the time-like diffeomorphisms, in general, a
coordinate transformation that involves also the ¢ coordinate,
transforms the metric as in such a way that the tensors do not
transform classically. However, it is not proved anywhere
that this leads to inconsistent physics, even if by the other
side also the opposite has not been proved. One should be
capable, in principle, to construct scalars that are invariant
under the new symmetry group, and derive consistent (modi-
fied) gauge invariant physics, but also this has not been done
yet. Due to which it remains an open question. The underly-
ing spherically symmetric model has classical covariance for
the spatial diffeomorphisms as proved in the Refs. [89,90],
whereas, the model does not exhibit covariance under time-
like diffeomorphisms. In the Refs. [91,92], it has been proved
that the model in the dust-time gauge is equivalent to a clas-
sically covariant mimetic model with the same gauge fixing.
This does not imply that the effective model is classically
covariant, but that the two are identical only in the dust-time
gauge. Therefore, if one starts with the covariant mimetic
model, gets the same result for the effective one in the dust-
time gauge, and by the other side has classical covariance.
Since, the covariance is modified in static case for the
spherical symmetry, the rotating metric may not be exact line
element for its static counterpart giving rise to an effective
geometry. For this reason, the metric (7) serves as an effec-
tive metric and therefore describes a quantum corrected Kerr
black hole in effective LQG which encompasses the most
probable properties of the exact rotating metric. For instance,
the metric (7) reduces to the metric (4) when a = 0. By
removing the quantum effects, the metric (7) reduces to the
Kerr metric, just as the metric (4) reduces to Schwarzschild
one. Moreover, the metric function A(r) can be written as

aM?
A(r) = Bken(r) + =5 (10)

which shows that the metric (7) is a quantum corrected Kerr
black hole metric with an additional term comprising LQG
parameter. We have mentioned that the parameter o has a
fixed value and we consider M = 1, thus, the only free
parameter for the rotating metric is the spin a. Hence, we
can rigorously analyze the deviation of quantum corrected
Kerr black hole from the Kerr black hole. Like the Kerr
metric, the quantum corrected Kerr metric also exhibits the
time-translational and rotational invariance isometries corre-
sponding to the Killing vector fields (3,)" and (94)".

The last term in Eq. (10) has no dependence on a, there-
fore, the horizon curve will be unique with a certain deviation

@ Springer

from the horizon curve of Kerr black hole. It is generated
numerically by solving the equation A(r) = O for real and
positive roots. A clear deviation in two curves is shown in
Fig. 1 in terms of horizon radii ry, with respect to a. It can
be seen that the event horizon of the quantum corrected Kerr
black hole is smaller than the event horizon of Kerr black
hole. While the Cauchy horizon of Kerr black hole is signif-
icantly smaller than the event horizon of quantum corrected
Kerr black hole. Moreover, the extremal quantum corrected
Kerr black hole has spin ~0.4952 which is marginally less
than half of the extremal spin of Kerr black hole.

3 Unstable null orbits and black hole shadow

The photons emerging from a bright source may get trapped
in unstable and stable circular null orbits in the vicinity of
a black hole. Some of them in the unstable orbits fall into
the event horizon, while the rest scatter away to the infinity.
This is how the optical image of the black hole is formed,
termed as shadow [93,94]. These orbits are characterized by
an effective potential function. Therefore, we derive the null
geodesic equations to study the effective potential and shad-
ows of quantum corrected Kerr black hole in effective LQG,
in order to understand the influence of LQG via Barbero—
Immirzi parameter in terms of unstable orbits and optical
images. For the quantum corrected Kerr black hole in effec-
tive LQG, the null geodesic equations can be obtained by
employing the Hamilton—Jacobi formalism [95] which has
been widely incorporated in the literature over the years. One
can also begin with the Lagrangian or Hamiltonian meth-
ods, generating two constants of motion, the energy E and
the angular momentum L along with mass of the particle
under motion. The geodesic equations become completely
integrable if we introduce a fourth constant of motion. The
separation of variables arising in Hamilton—Jacobi formal-
ism enables us to introduce a constant known as the Carter
constant [95]. We consider the Hamilton—Jacobi equation

20;S = —g"’ 0 uSo,w S (11)
with the Jacobi action of the form

S = %mgr —Et+ Lo+ A (r) + Ag(0), (12)
where, T being the proper time is considered as an affine
parameter and mp = 0 is the photon mass. The functions
A, (r) and Ag(f) are arbitrary functions that can be deter-
mined easily (for complete derivation, see Ref. [95]). The
constants £ = —p; and L = py can be obtained from
the relation p, = gu,x". Since, the three constants of
motion, namely, mass of the particle, its energy and angular
momentum can be derived from Lagrangian or Hamiltonian
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Fig. 1 Horizon structure of Kerr and quantum corrected Kerr black
holes with respect toa for M = 1 and o &~ 1.1663

methods. However, for the fourth constant, Hamilton—-Jacobi
method is introduced with Jacobi action assuming two arbi-
trary functions. These functions are considered dependent
on r and 6 because the associated fourth constant of motion
must appear from the radial and 0-equations. Ultimately, the
geodesic equations come out to be of the usual form as for
the Kerr metric given as [94]

2 2
p2f= rta (E (r2+a2)—aL)+a (L—aE sin? 0) ,
A(r)

(13)
pPF = £JR(), (14)
0%0 = +,/0(0), (15)

. a
pPp=—

NG (E <r2 + a2) _ aL) + (L csc? 6 — aE) ,

(16)

where,

R(r) = ((ﬂ + az) E— aL>2 — AG) (z (L - aE)2> ,
(17

0(0) = Z +cos?0 (a2 — L2 esc?0), (18)
where, Z denotes the Carter constant. The function R(r) is
of prime importance in studying the effective potential and
behavior of unstable orbits as it connects the radial geodesic
equation with the effective potential, that is 7 + 2V (r) =
0. In this case, for equatorial trajectories, it can also be

expressed as

R(r) = —2r*vel(r)

o (Z + (L — aE)z) M?

= Rxer(r) — ) ’ (19)

r

where, the second term on right hand side of Eq. (19) is the
deviation factor of R(r) from Rker (7). The deviation in the
metric function is fixed as it is independent of free parame-
ters, however, the deviation in R(r) is dependent on a due to
which it varies for each case of black hole spin. Note that the
quantum correction does not affect the function ®(6). The
photon moving in a circular orbit is subjected to centripetal
force to keep it in its orbit with an opposing force called
the centrifugal force. The centrifugal force corresponds to
a potential known as centrifugal potential that together with
real potential makes up the effective potential. From the radial
null geodesic equation, it can be written in terms of effective
potential for Kerr black hole for equatorial trajectories as
o (Z + (L — aE)z) M?
26 '
As in the case of R(r), the quantum correction term in the
effective potential also depends on spin a that causes a vari-
able deformation in the null orbits. This deviation is generally
in terms of either shrinking or expansion of null orbits. How-
ever, depending on the type of spacetime metric, the shape of
deformation term in metric function and effective potential
functions, we can determine whether the null orbits shrink
or expand. For a concrete and robust result under certain
assumptions, we establish a theorem and present a simple
proof to it as follows:

Veff(r) — Veff (r) +

Kerr

(20)

Theorem Suppose a Kerr-like metric described by A(r) =
Akerr(r) + byr? with VIE(r) = VET (r) + bord such that
r? and r9 be decreasing functions in an open interval 7 =
(0,s) € RT, and by, by € R*. If an unstable null orbit
for Kerr black hole exists at a radial distance r; € Z, then
the unstable null orbit corresponding to A(r) exists at some

ro € Z such that ro < rg.

Proof Given that A(r) = Axer(r) + bir? and V() =
Vlggrr(r) + bor? with decreasing functions r? and r¢ such
that p,q € R™, and by, b, € RT depend only on spin a.
Now, if an unstable null orbit for Kerr black hole exists at
some r;y € Z, then the function Vlggr(r) is concave at ry

that is 92VEL (re) < 0 and 8, VI (rx) = 0. Since, r7 is
decreasing V r € Z, therefore, o, Veﬁ(rk) < 0. From this,

one of the following two possibilities holds:

() If V() is concave at ro, then 3 o € Z such thatry < ry
and 3, Vi (ry) = 0.

(1) If Veff(r) is convex at rg, then 3 r¢ € 7 such that ro > ry
and 3, Ve (r) = 0.

@ Springer
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Fig. 2 Behavior of effective potential and unstable null orbits for Kerr and quantum corrected Kerr black holes for different values of @ with M = 1

and o ~ 1.1663

To prove the theorem, we either prove (i) holds or (ii)
does not hold. Contrarily suppose that (i7) holds, then
0 Vlggrr (ro) > O but VIE‘;frr (r) must be decreasing at ryp under
the given statement. This gives a contradiction which implies
that (i7) does not hold and thus (i) holds automatically.
Therefore, it proves that the unstable null orbits shrink under
the given assumptions. Note that we have not proved ry € Z.
Since, the lower bound of the interval Z is 0 and ro < rg,
therefore, ryp € Z. We have also omitted the case when
ro = ry because by, by # 0. Moreover, the interval Z is
arbitrary and may have multiple extrema, however, the local
maximum corresponding to the unstable orbit is unique.

The result proved in the above theorem can be viewed in
Fig. 2 in terms of location of peaks of the curves. That is, the
unstable null orbits for quantum corrected Kerr black hole
are smaller than the unstable null orbits for Kerr black hole
for all cases. Moreover, for each case of extremal spin of
quantum corrected Kerr black hole, the difference between
the sizes of unstable orbits for both black holes increases,
which is specifically due to the presence of spin parameter
in the deviation term in Eq. (20). Furthermore, with increase
in spin, the unstable orbits of quantum corrected and Kerr
black holes shrink.

The effective potential function governs the behavior of
timelike and null orbits around a black hole. Whereas, the
types of these orbits, whether stable or unstable, are deter-
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mined mathematically by solving the equations Veff(rp) =
0= 8,Veff(rp) and then identifying the concavity or con-
vexity of the function as 3,2 Veff(rp) < 0 for unstable orbits
or 8,2 Veff(rp) > 0 for stable orbits. Since, the photons are
trapped in circular orbits and these orbits together in all ori-
entations make up a sphere whose radius is denoted by .
On the surface of sphere, the radial component of these pho-
tons satisfies the equation r = constant. Therefore, we have
7 = 0 = ¥ which is equivalent to R(rp) = 0 = 9,R(rp) by
Eq. (14). Hence, solving the equations for critical orbits in
terms of effective potential is equivalent to solving in terms
of R(r). These equations give the values of impact param-
eters £ = L/E and n = Z/E? as a function of arbitrary Tp
given as

20 M?rp (Akere(rp) + 1pT")
al’ (on2 - rSl")

S(rp) = ";:Kerr(rp) + s 21

4otM2rS

n(rp) = NKerr(rp) + 5 [2Fr§(M -

2 <OlM2 — FrS)

—aM+

2 —2r) [ m (aM_3r§p>+r,S]}
a? ;

(22)
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where, I' = rp— M. Fora = 0, the quantum correction terms
in Eqgs. (21) and (22) vanish, and the impact parameters for
Kerr black hole are recovered. These impact parameters then
determine the celestial coordinates [96]

d do
X(rp) = —rgngorzsined—f, Y(rp) = rli)ngorzz (23)

6—6o 0—06o

to sketch a projective 2D image of the black hole shadow,
given in the form

X (rp) = —£(rp) csc b, 24)

Y(rp) = :t\/n (rp) + a? cos? 6y — £2(rp) cot? by. (25)

The limits in Eq. (23) correspond to the radial and angu-
lar components of observer’s location. For an equatorial
observer, the celestial coordinates reduce to

X(rp) = =§@rp), Y(rp) = £/n(rp). (26)

Since, the shadows are formed as circular contours and often
deformed for the rotating black hole cases. Therefore, one
can assume the condition Y (r,) = 0 corresponding to the
extreme points on the shadow contour on the X-axis of the
celestial plane which ultimately correspond to the extreme
values of the interval [r;)ni“, rp'**] for the photon sphere. How-
ever, the photon sphere around a static black hole has aunique
width which cannot be considered as a parameter. To deal
with this, one can modify the impact parameter 7 in the form
mm = (£ + (L — aE)*) /E* and consider ¢ as the parame-
ter. The extreme values of the interval containing & are deter-
mined by solving the equation ®(6y) = 0. The celestial
coordinates in Eq. (26) can also be expressed as O

20 M?rp (Aker(rp) + rpT")
al ((xM2 — rSF)

X(rp) = XKerr(rp) - , 27

ZaMzrg

Y(”p) = YKerr(rp) + 5
r2 NKerr (p) (aM2 - FVS)
[rg(M —or) [M (aM — 3r§F) + Frg]
X
2

a

+ 2Fr§ (M-T)— on3] F higher order terms,
(28)

which further reduce to the celestial coordinates for Kerr
black hole under the limit « = 0. The extra terms on the
right hand side of Egs. (27) and (28) describe the deviation
of shadow due to LQG effects from the shadow of Kerr black

hole. The Y-coordinate in Eq. (28) is expressed in terms of an
alternating infinite series contributing to the deviation of the
shadow from the shadow of Kerr black hole. To quantify this
deviation in the shadow, we plot some shadow contours for
a few cases of spin parameter values as given in Fig. 3. From
the difference of sizes of the Kerr and quantum corrected Kerr
black holes for all cases, one can deduce that the quantum
corrected Kerr black hole will appear smaller to a visualizing
observer at infinity as compared to the Kerr black hole. As
the value of spin parameter increases, the distortion starts
appearing in the shadows of quantum corrected Kerr black
hole. That is, the difference between the shadow contours on
the left side increases with increase in spin. It suggests that
the spin parameter influences the elongation of shadows for
quantum corrected Kerr black hole more than the Kerr black
hole up to a = 0.4952. The third plot with three contours
show a huge difference between the shadows of quantum
corrected and Kerr black holes for their respective extreme
spin values. Therefore, one may not expect to visualize a
perfectly flattened shadow for extreme quantum corrected
Kerr black hole. Moreover, the deviation in shadow contours
for a = 0.4952 for both black holes can also be measured.
For smaller values of spin, both black holes are centered
closer to the origin and will certainly be centered at origin
fora = 0.

4 Constraints on spin parameter

In this section, we will explore the constraints on the spin
parameter a for both Kerr and quantum corrected Kerr black
holes, using observational data from the EHT collaborations.
These observations, focusing on M87* and Sgr A*, will allow
us to determine the limits on the spin values of these black
holes. We will compare the constraints obtained for both
black holes to gain insights into how LQG might influence the
characteristics of the rotating black hole, providing a deeper
understanding of the potential effects of quantum gravity on
black holes. To do this, we calculate the angular radii of the
shadows of both black holes to establish a comparative analy-
sis with the angular radii of M87* and Sgr A*. Corresponding
to such a bound on the spin parameter, the black hole is con-
sidered to mimic either M87* or Sgr A* if the angular diame-
ter of black hole shadow falls within 1-o interval. This study
specifically examines rotating black holes, as supermassive
black holes are naturally expected to exhibit significant rota-
tional features due to their formation and evolution processes.
A coordinate-independent formalism, commonly referred to
as the Kumar—Ghosh method [97,98], is employed, where
the shadow area is utilized which is defined as
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Fig. 3 Behavior of shadows for a=0.1

a=0.45

Kerr and quantum corrected

Kerr black holes for different
values of a with M = 1 and 4
o &~ 1.1663, visualized by an
equatorial observer at radial
infinity 2
Y 0
=2
—4

-2

—4

,
Ash = 2/ : dx"Y (r)o, X (r). (29)
r—
The values r and r_ represent the size of the retrograde and
prograde stable circular orbits as measured from the origin,
respectively. Suppose that the separation between the black
hole and observer is described by the linear distance d, then
the diameter of the black hole shadow is measured as [54,99]
2 [As
04 = N
By utilizing the relations (29) and (30), the angular diameter
of the black hole shadow can be written in terms of spin a,
rp and 6. For the comparison of the shadows, the EHT data
determines the distance d of Earth from M87* and Sgr A*,
the mass M and the shadow size 84 of M87* and Sgr A*.
For M87%, we get d = 16.8Mpc, M = 6.5 x 10°My, and
0q = 42 +3 pas [31,100,101]. Whereas, for Sgr A*, we get
d = 8kpe, M = 4 x 106M@ and 63 = 48.7 + 7 pas [102,
103]. Here, M denotes the solar mass, kpc and Mpc stand
for kilo and mega parsec, and pLas stands for micro arcsec.
For simplicity, we have not considered uncertainties in the

(30)

@ Springer

— Kerr (a=0.4952)

-=== Extreme LQG

-=-= Extreme Kerr

measurements of mass and distance. The EHT conducted the
observations at the inclination angles of 17° for M87* and
< 50° for Sgr A*. Therefore, we will also consider the angles
of 17° for M87* and 45° for Sgr A* for the calculations of
shadows.

The impact of LQG that deviates the quantum corrected
Kerr black hole from Kerr black hole is obvious in Fig. 4.
We have plotted the shadow angular diameters of the Kerr
and quantum corrected Kerr black holes with respect to spin a
and compared it with M87* and Sgr A*. The 1-o uncertainty
levels are indicated by dark gray regions. For the comparison
with M87%*, we found that the shadow diameter of Kerr black
hole lies within 1-o uncertainty level for 0 < a < 0.586,
while, for other values of a, the shadow diameter of Kerr
black hole lies within 2-o uncertainty level. The upper bound
of spin is denoted by amax & 0.586 at which the transition of
shadow diameter is observed from 1-o level to 2-o. There-
fore, the Kerr black hole can be regarded identical with M&7*
for 0 < a < 0.586. However, the quantum corrected Kerr
black hole does not mimic M87%* as its shadow diameter lies
within 2-0 uncertainty level for all values of spin which is
a tremendous impact of LQG on quantum corrected Kerr
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Fig. 4 Comparison of shadow angular diameter 64 for quantum corrected Kerr black hole (dashed red curve) and Kerr black hole (solid black
curves) with the EHT data for M87* (at inclination angle of 17°) and Sgr A* (at inclination angle of 45°) for the bounds on spin a within 1-o

intervals

black hole. Generally, the 2-o uncertainty level is also con-
sidered for the comparison, however, we ignore this region
in order to reduce the possibility of uncertainty. This essen-
tially eliminates the possibility for the quantum corrected
Kerr black hole to behave like M87*. However, an entirely
opposite impact of LQG is visualized for the case of Sgr A*.
The Kerr black hole behaves identical with Sgr A* for all
values of spin as its shadow diameter lies within 1-o uncer-
tainty level and 6y approaches the median value 48.7 jLas as
a approaches its maximal value. For the quantum corrected
Kerr black hole, the shadow diameter also lies within 1-o
uncertainty level. However, under the influence of LQG, the
shadow diameter for quantum corrected Kerr black hole is
closer to the median value 48.7 pas for each value of spin.
Therefore, one may regard the quantum corrected Kerr black
hole to mimic Sgr A* for all values of spin which is more
likely than the Kerr black hole within its interval of spin.

5 Effect of plasma on shadow

We know that astrophysical black holes are generally sur-
rounded by plasma. Moreover, excited states of matter at
high temperatures with their constituent particles (positive
and negative charges) may have significant impact on the
quantum corrected Kerr black hole at Planck scales. This
being an important aspect in theoretical physics, we investi-
gate the influence of plasma on the appearance of quantum
corrected Kerr black hole. We consider pressureless and non-
magnetized plasma with distribution functions dependent on
r and 8. We begin by considering the plasma electron fre-
quency defined as

47 e?

wp(r,0) = Ne(r, 0) (€28

(S

that modifies the Hamiltonian describing the photon motion

in a plasma medium given as [70]
1

H=3[8" pups + 0} 0)]. (32)

where e, m. and N, are the charge, mass and number density

of the electron, respectively. The plasma electron frequency
is related to the refractive index n(r, 6) as

| w3, 6)
_ __p
n(r,0) =,/1 200’ (33)

where w (7, 6) is the frequency of photon measured by a static
observer outside the event horizon. The Hamilton’s equations
are defined as

i = 9xt =8, H,  pu=0cpu=—0wH (34)

with T being an affine parameter. Since, a plasma medium
is dense and dispersive, therefore, the motion of photons
is affected by the frequencies of electrons in the plasma.
Therefore, the frequency of the propagating photon must
be greater than the frequency of the electrons in plasma,
that is, w? (r,0) > a)g(r, 6). The observer is assumed static
with the four-velocity in comoving coordinates given as
Urt(r,0) = (—gu(r, 9))_1/2 and the photon frequency is

o, 0) = —pU*@T,0) = —p:U'(r,0). The Planck’s
relation connects the energy and the angular frequency as
E = hwo which gives p; = —wq by setting the units for

fi = 1. Therefore, one obtains

o(r, 0) = o (—gu(r,0)) 2 . (35)

We obtain ¢ and ¢ components of geodesic equations corre-
sponding to two constants of motion, energy E and angu-
lar momentum L. For other two equations, we consider

@ Springer
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Hamilton—Jacobi equation in the form
8" 9SS + w7 (r,0) =0 (36)

with Jacobi action given by Eq. (12) with mp = 0 as the
third constant of motion. For the given metric, the Hamilton—
Jacobi equation

A (- A (1)) + (L2 csc? 6 — a2E2) cos2 6

(2 +a?) E —aL)’
A(r)
2 2 _
+ p @y (r,0) =0 (37)

+ (L —aE)* + (8.4 (9))* —

cannot be separated until we assume [70]

N Ir(r) + fo(0)
I

wp(r, 0) = (38)

where, f,(r) and fy(0) are arbitrary functions that ensures
the separability of the Eq. (37). Therefore, generating the
Carter constant Z as fourth constant of motion, the null
geodesic equations are of same form as Eqs. (13)-(16) but
with the functions

R(r) = (aL — (r2 + az) E)2
—A(r) (f,(r) +Z+ aE - L)Z) : (39)
Q) = Z+a’E*cos0 — L*>cot’ 0 — fy(0). (40)

The impact parameters £ and 7 in presence of plasma become

E(rp) = aA,—l(rp)[ (2 +a®) 2 0p) = Al (21

+ \/4r§ - f,’(rp)A’(rp))]» (41)

n(rp) = [S;ﬁA(rp)[a2 - A(rp)] — [r;L

_
a2 A% (rp)
+a? )| A% (rp) + [4r) — (@
— A(p) £ ) [AGp) A (rp) + 2rp A(rp)[2(a?
— Ap) + A )|\ 412 = [ N ) | 42)

Now considering two cases for the functions f;(r) and fy(6),
we will construct celestial coordinates to investigate shad-
ows. The case I corresponds to the assumption f.(r) =
wg M3r and fy(0) = 0, where, w, has the dimensions
of frequency. The celestial coordinates for this case are of
the same form as in Egs. (24) and (25) with their respective
impact parameters given in Egs. (41) and (42). For the equa-
torial observer, the celestial coordinates reduce to the same
form as in Eq. (26). The case II corresponds to the assump-
tion f,(r) = 0 and fy(0) = wZM? (1 + 2sin*6) with the
same parameter .. The horizontal component of the celes-
tial coordinates for this case is of the same form as in Eq. (24),

@ Springer

however, the vertical component is modified. For an observer
at (00, 6p), it becomes

Y(rp) = :I:[n(rp) + a? cos? 6y — gz(rp) cot’ 6o
1
—wM? (1 +25sin? 90) ] 2 (43)

and for the equatorial observer, it reduces to

Y (rp) = £/ n(rp) — 3w§M2. (44)

For both of above mentioned cases, we have plotted the shad-
ows in Fig. 5 for a few values of plasma parameter o, and
keeping a fixed spin of the quantum corrected Kerr black
hole. The spin deviates the shadow from a pure circular loop
causing a distortion. While, the plasma parameter o, reduces
the size of the shadow. It can also be seen that w in case II
is more significant and has higher sensitivity as compared
to the case I. The variation in the shadow size for case II is
greater than the variation observed in case L.

6 Discussion

By a smooth matching of APS and qOS spacetimes by iden-
tifying a set of suitable coordinate transformation, a quan-
tum corrected Schwarzschild black hole in LQG is obtained
with a relatively weak extra term of order » ~* depending on
Barbero-Immirzi parameter y [28]. During the collapse of
the dust ball, corresponding to a lower bound of the radial
coordinate, a lower bound on the mass of this black hole is
obtained, below which, there exists no horizon, whereas, a
two horizon system is obtained for all mass values above the
minimum mass limit. Ye et al. [29] studied the shadows of
this black hole to determine the effect of LQG on the black
hole. They considered the fixed value of the Barbero—Immirzi
parameter and hence the parameter . They presented their
findings in comparison with the results of Schwarzschild
black hole. Motivated by this, we considered the rotating
counterpart of the quantum corrected Schwarzschild black
hole, in effective LQG and accomplished our analysis in com-
parison with the results for Kerr black hole.

The rotating black hole metric (7) being an effective met-
ric still encompasses various features of Kerr-like black hole,
especially the existence of time translation and rotational
invariance isometries. Additionally, on removing the spin,
its exact static counterpart is recovered, and on removing
the quantum effects, the rotating metric reduces to Kerr met-
ric and the static metric reduces to Schwarzschild metric.
The parameter « though appears as the LQG parameter in
the black hole metric, however, it does not behave as a free
parameter and has a fixed value that cannot be varied. The
metric function of the quantum corrected Kerr black hole is
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Fig. 5 Influence of w, in case |

a=0.45

(left panel) and case II (right

panel) on shadows of quantum

corrected Kerr black hole for a 4
fixed value of a

-4

expressed in terms of the metric function of Kerr black hole
for which the effect of LQG can be observed in the Eq. (10)
and from the Fig. 1. The quantum corrected Kerr black hole
in effective LQG also exhibits two horizons, though the event
horizon being small as compared to the event horizon of Kerr
black hole, reduces the size of black hole due to LQG effects.
Its extreme spin value is also reduced to the half of extreme
spin of Kerr black hole.

The function R (r) plays a vital role in particle orbits and
shadow analysis. Like the metric function, it is also expressed
in terms of the function corresponding to the Kerr black hole
which generates an identical form of effective potential as
well. This form enables us to generalize the location of unsta-
ble null orbits for such kind of metrics. We proved a theorem
based on convexity and the familiar results of effective poten-
tial of Kerr black hole, which ensures that the unstable orbits
for such a quantum corrected Kerr black hole will be smaller
than the unstable orbits for Kerr black hole. This result holds
true only if the extra term in effective potential function is
decreasing function of r. The result in this theorem is then
verified numerically in the Fig. 2. The impact parameters
and celestial coordinates for quantum corrected Kerr black
hole are also expressed in terms of the impact parameters and
celestial coordinates for Kerr black hole. The deviation terms
in the celestial coordinates determine the deviation of shadow
of quantum corrected Kerr black hole from the shadow of
Kerr black hole. The LQG effects influences both the size of
the shadow and the distortion in it. Since, the extreme spin for
quantum corrected Kerr black hole is ~0.4952, so the ergo-
sphere does not get enough strength to create a flat shadow
like the shadow of Kerr black hole.

The astrophysical impact of LQG on quantum corrected
Kerr black hole is investigated through the comparison of the
shadow size for Kerr and quantum corrected Kerr black holes
with the size of M87* and Sgr A*. Along with the images,
the data from EHT results enabled us to draw an analysis to
determine the constraints on the black hole spin parameters

and the influence of LQG on it. The Kerr black hole is defined
for 0 < a < 1, however, it becomes identical with M87* for
0 < a < 0.586. Whereas, the effect of LQG on quantum
corrected Kerr black hole inhibits it to behave like M87* for
all spin values. On the other hand, both Kerr and quantum
corrected Kerr black holes mimic Sgr A* for all spin values,
however, due to LQG effects, the quantum corrected Kerr
black hole is more likely to mimic Sgr A* than Kerr black
hole.

The plasma surrounding the quantum corrected Kerr black
hole in effective LQG has a great impact on the light prop-
agation. The shadow size is reduced by increasing the value
of w. in both cases. However, the quantity of variation in
shadow size reveals that w. in case II is more sensitive and
has greater impact than that in case I.

This study can be further extended to understand the influ-
ence of plasma and LQG on each other in the vicinity of M87*
and Sgr A*. As a future project, one may also investigate the
effect of LQG on the deflection of light in strong and weak
regimes of quantum corrected Kerr black hole. The study of
black hole evaporation rate, Hawking radiation via tunneling
process and Unruh effect would also be an intriguing anal-
ysis. Moreover, it will be interesting to study the effect of
LQG on the quantum corrected Kerr black hole behaving as
a particle accelerator.
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