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1. Imtroduction

IN a series of papers [1-3], the first two authors attempted to use the quark model as a probe
of higher symmetries for the hadrons (and hopefully for the leptons as well). It is immediately
evident that a triplet of quark fields with common mass m yields an internal SU; group structure
(in addition to invariance under the Poincaré group 2 and the discrete transformations P, C,
T); that is to say, the general quark Lagrangian %:

$=gk+$m+$1
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where Q, = scalar (S), pseudoscalar (P), vector (V), axial vector (A), or temsor (T), is in-
variant under 2 ® 2 @ SU; [4]. However, it was shown in the very first paper that % is
invariant under a higher (chiral) symmetry group if one chooses m = 0 in %, and selects a
particular Q, in #j. Indeed, the choice Q, =S, P or T led to higher symmetry groups which
were physically uninteresting since all their irreducible representations involved SUz repre-
sentations with both zero and non-zero trialities. Only a combination of V and A four-fermion
interactions led to a higher chiral symmetry group which contained irreducible representations
involving only SU; representations with zero triality (which are the only types of representa-

+ X
tions observed for hadrons). The resulting chiral group, ? ® Wy (where W; = U; )® U; ) with

& -)
U; ) (U; ) spanned by the three positive (negative) chiral projected fields: (1 % y5)y;) mixes

* This work was supported in part by the U.S. Atomic Energy Commission.
t John Simon Guggenheim Fellow.

273



274 MAXIMAL CHIRAL GROUP Vol.2, No.6

parity with SU; and can be used to deduce mass relations (5] between hadrons of opposite parity
(and the same spin).

Independently of our work, Gell-Mann (6] was led to the SW; group (7] by looking for the
group generated, under equal-time commutation, by the space integrals of the fourth components
of the vector and axial vector weak hadron currents. It is simple to show that the space inte-
grals of the fourth components of the vector and axial vector currents defined in terms of quark
fields lead to the equal-time commutation relations postulated by Gell-Mann. One might inquire
into the relative advantages of the two formulations. It seems that the quark model is gener-
ally more useful if one is interested in the higher symmetry group as a "spectrum-generating"
group [8] since it lends itself naturally to a prescription for the tensor structure (T.S.) of
the symmetry-breaking interactions which then yields the desired mass relations among the
hadrons. On the other hand, current algebras are more useful as "transition operator" groups
[8], in which role they may be employed to perform dynamical calculations — which at the pre-
sent stage is really not possible with the quark model.

The usefulness of the quark model as a probe of higher symmetry groups which belong to the
"spectrum-generating" class was demonstrated anew by our study of the consequences of a non-
chiral rather than a chiral decomposition of the triplet of quark fields. We showed [2] that

with non-chiral decomposition one may obtain a compact group [9] as large as We = Ué+) ® Ué—)
[where the plus and minus signs now refer to the non-chiral projected fields: (1 * y4)wi]_ This
non-chiral W6 group, which we first derived on the basis of the quark model, has recently be-
come quite popular [10], and contains the collinear and coplanar groups as sub-groups [l

In contrast, the generalization of the current algebra approach [12] 1ed to the chiral Ws group
which has not been particularly useful as a "spectrum-generating" group. It is to be noted that
in the quark model, ¥, and %7 (with g, =S or P) are invariant under the non-chiral Wg group.

While the non-chiral W¢ group is very attractive as a "spectrum-generating” group, it
suffers from the usual difficulties of relativisticASUs theories (which mix the Poincaré and
SU; internal symmetry groups) — the conflict between unitarity and crossing [13], the need to
work with an infinite dimensional Lie algebra (2] (if one wishes to save Lorentz covariance),
and so on. Moreover, the current algebra which corresponds to the non-chiral Wg group involves
currents (tensor, scalar, etc.) which do not play a direct physical role in either the electro-
magnetic or weak interactions. This has led to the point of view (8] that the mon-chiral We

group is the maximal compact "spectrum-generating" group whereas the chiral W; group is the
maximal compact "transition operator" group for the hadrons. From the point of view of the quark
model, this would imply that somehow the mass term is more important than the kinetic part of
the Lagrangian (1) when one deals with the mass spectra of the hadrons and the reverse is true
(14] when one is concerned with the algebra of the physical (V and A) currents. While this is
a possible attitude to take, it would seem more satisfactory if the quark model could suggest
a higher symmetry group which would serve the purpose of generating both the mass spectra of
the hadrons as well as a physically interesting algebra of currents. In Section 2, we carry
forth this program and determine the maximal chiral group suggested by the quark model which
mixes spin and unitary spin in the mass spectra of hadrons, while in Section 3 this group is
discussed as a current algebra. Finally, the Appendix contains a rather complete tabulation of
the various higher symmetry groups obtainable with the quark model and justifies our statement
concerning the maximal chiral and non-chiral groups which are possible.

2. W3 ® N; Group as a Spectrum-Generating Group

Our starting point is the Lagrangian (1) with m = 0, rewritten in the form:
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with gy, g4 the vector and axial vector coupling constants. Making the usual chiral decomposi-
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tion: “’i( o= —vy;,» equation (2) is transformed into:
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If gy # g4, equation (3) is invariant under the group W3 = U; '® U; ) Where the two Us groups,

. + -
as remarked before, refer respectively to the positive (wﬁ )) and negative <w§ . chiral pro-
jections of the triplet of quark fields. There is no mixing with the Poincaré group, 2, so that

we are in fact dealing with the group W3@D Z : this was the case previously considered in I.
Now suppose we choose gy = g4 = g, & choice made attractive by the invariance of the result-

ing (V - A) interaction under Fierz rearrangement [15]; then equation (3) assumes the compact
form:
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We observe that equation (4) separates completely into two distinct parts, one part depending
only on w£+) and the other part depending only on wg_). It follows that the equations of motion

for w§+) and wg*) are completely decoupled and hence the Lagrangian (4) when integrated over

s
®
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(+)

space-time is invariant under two independent Poincaré transfor:pations P and g‘(" operat-

ing on w£+)(x) and wl_ (x) respectively, in addition to its invariance under the two independent
Uéﬂ and U§" transformations. If we write [16) 4 = AN ® 2t }, then we can say that the
(V A) theory (defined by equation 4) is invariant under the larger group W3 ® % in contrast
to the general (V, A) case (defined by equation 3) which is invariant under W3 ® 2.

We now propose to consider the mixed’ chiral group Wa ® # as a "spectrum-generating" group
and to remove the mass degeneracy associated with each irreducible representation of this large
group by switching on the (common) mass term in the Lagrangian, namely:

@ oen w D mm g o mRLASE L lo) i)
=8 X YT Wir Mot Yo o (5)

m
i=1 i=1

The symmetry-breaking £, collapses the two Pomcaré spaces 9’ and 2 ) into a single

Poincaré space and the two unitary spaces U ) and U3 =4 into a single U3 so that the sub-group
of invariance [17] is U; @ £ . In point of fact, the symmetry-breaking mass term performs
another very useful function; as Coleman (18] has pointed out the invariance of our Lagrangian
(4) under the product of the two Poincaré groups 9’( .) and W 1mplies the following relation
between the four-momentum P of a hadron and the four- momenta p+ and p_ respectively of the posi-
tive and negative chiral quark fields:

2 - '(P+ + p_)2 (6)

The above relation will lead to a continuous range of mass values unless p4 or p_ is identically
zero. Since we know that the free Lagrangian ( £ g + £ ,) does not yield a mass continuum, we
believe that the symmetry-breaking mass term (5) must somehow help us out of this difficulty
although its precise mechanism is not clear. Coleman [19] had already pointed out a related
difficulty for any group (containing SU3® Z ) which mixes space-time with internal symmetries,
to wit one is led to a continuum of masses or to a continuously infinite number of irreducible
representations of SU; @ £ associated with the same mass m. Despite this objection, the non-
relativistic SUg group has been subjected to symmetry-breaking terms which formally lead to
relations among discrete masses. We take a similarly optimistic attitude and remark, moreover,
that our quarl_(_ model with chiral decomposition may be used as a guiding principle to suggest the
larger group W3 @ Z% and that this enlarged group could equally well be indentified as the
"transition operator" group of an appropriate current algebra (see Section 3).

If we consider hadrons in their rest systems — which is permissible if we may limit our-
selves to a consideration of the compact rotation sub-groups R(+) and Ré_) of the non-compact
groups 2" and 27 respectively If we next set Nj —R;H ® Rg—):, it follows that we are
restricting ourselves to the compact group Ws ® N; with 24 generators. Let us denote an irre-
ducible representation of W3 ® N, by (Bl, dl, Ry, dy) where Ri(Ry) is the dimension of the
irreducible representation of the U3 (U3 ) group while d; (dy) denotes the dimension of

R§+’ (Ré )y. The quantities d; and dy are, of course, related to j; and j,, the angular mome
respectively of the positive and negative chiral field combinations:

nta

dy = 2j, +1; dy = 2j, +1

As before [5], the parity operation P interchanges the role of lp( ),_and ‘Pi_)- i.e. P demands:
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PL (R did  Bou do) 4~ (R, dot . Bay dy) v &) (7

Similarly, the charge‘conjugation operation C requires:
C: (RI‘ d~1;' RQ: dz) b (R;; dz; Ri; dl) (8)

where R} (R3) represents the conjugate representation of Rj(Ry). Hence, in genéral, particles
of opposite P and C [20] arise in the same irreducible representation of W3 C) Né, Since theSé
questions are handled in the same way as in the W3 theory discussed elsewhere [5], we shall not
go ‘into detail. Instead, we focus our attention jon the new features introduced into the theory
of hadrons by enlarging the group to W3 @ Nj.

When one reduces an irreducible representation of W3 (® N3 into those of its subgroup
W3 ® Nj, one can determine the spin values of the particles contained in the representation.

+ e 5
The reduction of N3 = R; : ® R; ) into the common R3 subgroup is well-known, and a representa-
tion of (Rj, dy; Rs, dj) contains particles with spins J given by [21]:

J=(j; T iqg)y (g, F Jg =1, ... ljl ‘le (9)

Thus, for each spin value of J given in equation (9), we have an irreducible representation

(R1, Ry) of W3, As an example, consider the case of mesons assigned to the particle representa-
tiont (B.R.):

(3, s@eci) 2 80 (10)

The second representation in (10) is needed in order to achieve an eigenstate of the parity
(equation 7) and hence we are forced into a parity doublet P.R. However, this P.R. is self-
conjugate for the charge conjugation operation (equation 8) so that in this case we are not in-
volved in charge conjugation doubling. Equation (9) then tells us that this P.R. contains four
nonets with J = 0% and 1%. The parity doublet structure is essentially due to the W3 subgroup,
whereas the N3 subgroup has led to the grouping together [22] of J =0 and J = 1 mesons into a
larger P.R. If one wishes to group together J =0, 1 and 2 mesons in a single P.R. of W3® Nj;,
one may choose:

(3, 3; 3%, 3) @ (3°, 3; 3, 3) (11)

The P.R. (11) is again self-conjugate for C and leads to six nonets of J = 0%, 1% and 2% mesons;
it can easily be shown that C = +1 for J = 0%, 2% and C = -1 for J = 1%, On the other hand, if
one wishes to place only J =1 and 2 in the same P.R., one is compelled to consider:

(3, 2; 3%, @B, 4 3, 2 (12)

The P.R. (12) now raises some interesting complications. At the level of W3 ® Rj, the J =1
and J = 2 mesons are decoupled and we can assign a definite charge conjugation parity to the
opposite space parity particles; we have P but no C doubling. However, we must now acknowledge
that because of (8), the P.R. (12) is not an eigenstate of C and we must take a linear combina-
tion of it with the P.R.:

(3, 4; 3%, 2 ® (3%, 2; 3, 4 (13)
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But the combination of (12) and (13) leads to both parity and charge conjugation doublets, i.e.
four nonets each of J = 1 and of J = 2 mesons. Our preference will be for the P.R. (11) (see
below).

Having explained how W3 ® N; performs as a "spectrum-generating" group, we now show how we
may use the (V - A) theory to deduce mass relations between hadrons of different J and P (and C
if necessary) when we switch on the %, and ¥’ symmetry-breaking terms; %, is the mass part
of the Lagrangian (5) and %' is the medium-strong (MS) symmetry-breaking interaction defined
in I and specified below. Since the effect of “a 18 expected to be rather large, we should con-
sider the effect of

,,2::1 (z’_)n (14)

vhere ( £ ,)" means symbolically the effective interaction in n-th order perturbation with re-
spect to Zn; Wwe shall continue to write %, as the symmetry-breaking term which reduced

W ® N3 to U3 ® R; but shall understand that in an actual calculation (14) will be used. In
any case, the mass splitting due to £, (or (14)) is according to sub-multiplets belonging to

different Uy ® R, representations until we introduce the Us-violating interaction &£'. At the

W, level, we considered two possibilities (5] for the (R1, R3) tensor structure (T.S.) of &',
namely:

2~ T+ 1Y (158)

£~ T3 + T (15b)

where the undashed (dashed) index refers to the U§+) [U;—)] group. In I, we were not interested
in the transformation property of £’ with respect to the N3 group but now we wish to specify
it and we do so by resorting to the quark model. In view of the evidence presented in I, it is
suggestive to choose:

gz = M'{ wsruva) ( z w,-ruw,-) + (w;yuyswa) ( z w,-yuvsw;-)
i=1 i=1

(16)

Note that %' is again of the form of & (V -~ A) interaction and we assume, of course, that
In’| << |m|-%. This choice corresponds to equation (15b).

Using the chiral decomposition of y;, one finds that %' defined by (16) possesses the T.S:
with respect to W3 @ Nj:
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8, L1, H@ (1, 1,8, 1 (17)

Moreover, we note that:

[Jl, [ 3= 3'(75)] = [Jz, [ d= 5?'(x)] =0 (18)

+ =
where J; and J, are the angular momentum operators with respect to R; ) and Rg ) respectively.
Equation (18) implies that the interaction Hamiltonian:

H' = - fd’x L' (%) (19)

is a scalar with respect to N3. We may therefore compute the mass splitting of particles in our
theory by taking the expectation values of the operator (H, = Jd¥« £

AE =H +H' (20)

The effect of H, is simply to remove the mass degeneracy with respect to different spin, parity
and Uz sub-groups whereas H' removes the mass degeneracy within Usj.

We now wish to demonstrate that the general mass formula, say for mesons, under the action
of (20) will have the form:

n? = moCa, J, Py + m;(x, P) (21)

where my 18 the contribution from H, and depends on spin J, parity P and the chief U; quantum
number « but is independent of the U; sub-quantum numbers P (i.e. I and Y). On the other hand,
mj is the contribution from H' and depends upon « and P, but is common for the same Us repre-
sentation with different J and P The nature of mg follows directly from the fact that H, mixes

R(+) nd Ra in addition to U3 ) and U3 leading to a reduction of the initial W3 ® N; group
to U3® Rj3. It requires more care to prove the assertions concerning m;. Consider first the
mass degeneracy with respect to the spin value J; a particle with spin J and z-component ¥ can
be decomposed by means of (9):

e s = 3 C(J, iis Jgi M, my, mz)

ml, mz

Jyn myi Jg» mgi @ >

(22)

where C(J, ji1, j2; M1, my, mg) is the Clebsch-Gordon coefficient for the coupling of two spins
Jj1 and jo into J and o refers to all other quantum numbers such as parity, W3 indices, etc. The
next step is to argue that because of the invariance of H' with respect to N3 (equation 18), we
may write:

<iioomii dg omy oo |8 iy da mgs 0
’ (23)

= 5,1, S ’ < g [ o ¢ . J P >
81111 51212 Smiml 5m2m2 Ji1s Jgi @ "H ” Jis Jg» @

Further, taking account of the orthogonality of the Clebsch-Gordon coefficients, equation (22)
yields:

<J, M 0 |8 g M oe> =<y, Gy et |8 iy Gy 0> (24)
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The important point is that the r.h.s. of equation (24) is independent of the total spin J
and hence m; (equation 21) is independent of the spin value J for all possible values allowed
by equation (9). Similarly, we can show that m; is also independent of parity in general be-
cause two parity states are given by:

1
|P=+1>= .J—Ellﬂl' R,> + Rz,|31>]
(25)
1
et > :;% [lﬂx' B> = Rz'|31>]

where, for simplicity, we have neglected the spin indices and omitted & possible complication
due to charge conjugation doublets., Then, we must compute:

AE, =<P=+1|H|P=+1>
(28)
AE_ =<p=a1|B|Pa=y>
Both mess displacements in (26) would be equal if:
<R,, R, |H'| Ry, Ry > =00 (27)

Equation (27) is certainly satisfied for the choice of ¥’ given by equation (16) except when
Ry =Ry. In this argument, we have neglected complications due:to charge conjugation doublets
since then equation (25) 1s insufficient to define particles with definite charge conjugation
parity. In that case, the representations of particles with C = * 1 would be in general given
by:

2 (28)

* |R3, joi Ry, jy > % |RY, jyii B3, J, >}

where now we have explicitly referred to the spins j; and j,. With the P.R.’s (28), the inde-
pendence of the mass splittigg due to H' with respect to P and C is still, in general, main-
tained unless we have Ry =Ry and j; = j,. Apart from this exception, mi depends only upon its

W3 sub-quentum numbers o and P which we have already investigated in I. Thus, we have proved
the validity of the mass formula (21) for mesons under assumptions which follow plausibly from
the (V - A) quark model with chiral decomposition.

Actually, the tensor structure of the symmetry-breaking term %' given by equation (16) 18
supported by the mass spectra and decays of the J =1 and J = 2 mesons (cf. I and reference
[22]). Indeed, it is tgmpting to place all the known J = 0, 1 and 2 mesons in the same parti°1°

representation of the W3 @ N; group; this leads quite naturally to the P.R. (11) and to the
use of the T.S. (17) for #'. We may therefore take over the mass formula (21) where the struc-
ture of mj; (a, B) 1s determined by our knowledge of the P.R. [(3, 3*) £ (3%, 3)] and the T.S.
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of &' [(8, 1) + (1, 8)] within the framework of the W3 group. This was investigated previously
in I where we derived the result:

KEJgh - wtdh =K(J - aD) (29)

where K(JP) and nQIP) denote the m? of K-type and m-type mesons respectively with spin J and
parity P. The implication of equation (21) is that equation (29) now holds for the nonets of
mesons with J =0, 1 and 2 as well as with opposite parity, namely:

k2t - we2h = kah - vaah = keohH - weoh
(30)

= K(27) ~ w(27) = K(17) - w(17) = K(07) - w(07)

In addition, of course, the "Schwinger" formula (23] must hold separately for each of the six
nonets J = 0*, 1*, 2%, If we insert numbers, equation (30) as well as the individual "Schwinger"
formulas are fairly well satisfied [24] but since much of the experimental information is still
preliminary, we do not wish to press the agreement with theory. However, it should be remarked
that equation (30) contains as one of its predictions a major argument for assigning the J = 0~
and J = 1~ mesons to the "35" representation of SUs, namely that:

K(17) - w(17) = K(07) - w(0") (31)

If equation (30) holds up for the J = 2 mesons as well as the opposite parity mesons, the
particle representation (11) would acquire great interest [25]. In terms of our quark model,
this P.R. requires us to couple two quark-antiquark pairs with no relative orbital angular
momentum. The unit spin for each quark-antiquark pair follows from the requirement that only
a left-handed quark and a right-handed antiquark can be combined together. Our six nonets of
J = 0%, 1% and 2% would, on this picture, be contructed out of two quark-antiquark pairs —
which is certainly not unreasonable.

Thus far, we have shown how to construct a theory of mesons on the basis of the W3QD Ny
group, regarded as a "spectrum-generating" group. A theory of baryons can also be constructed
on the basis of this larger group with due regard paid to the usual complication of building up
4-component spinors for the hadrons out of the 2-component quark fields y{*) and p$=) (in order
to define the parity). The procedure is essentially the same as in the W3 case [1] and we need
not go into detail. Suffice to say, we may assign the P.R.:

(3, 2; 8, & @ (6", 3; 4, D) (32)

to the lowest mass baryons and we would then expect to have SU; octet and decuplet baryons with

= 1/2 and J = 3/2. The relative parity of these particles would be determined by whether the
effect of the symmetry-breaker %, must be computed to first order or to higher orders. The P.R.
(32) could easily reduce at the Uz ® Rz level to [26]:

J 1/2+ octet; J = 3/2% decuplet;

(33)

df 3/27 octet

1/2~ decuplet; J

Adding the symmetry-breaking %' with a tensor structure (17) would give rise to a mass formula
analogous to (21) but we shall not write this down. We merely note that the P.R. (32) is rather
attractive for the lowest mass baryons if the P.R. (11) is appropriate for the lowest mass
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mesons; a di-quark with unit spin is combined with a J = 1/2 quark triplet.

3. W; ® N; Group as a Current Algebra
Rather than pursue further the consequences of the ﬁﬁ ® N; group as a "spectrum-generating"

group, we wish to point out the possibility of regarding the 24 generators of this group as de-

fining a current algebra which goes beyond the current algebra defined by the 18 generators of
= *)

W3 group. We recall that the generators of the U; ' and U;_) groups defined by :

‘ 1
A(i’)) -i(t) = - ;—fdax lPiY4(1 o YS)\I’I'. P

obey the equal-time commutation relations:

RN BN N CS RN Y B CO RN
[A”)’. A())K]‘SKA i =584 K
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(=>)Jj (=) 1t]_ J (-))l ! (-))j
[A )i,A )K]—SKA ; -5, 4 - (35)

7 L
If we define positive and negative linear combinations of A( ))i and A( ))i, to wit:

i [, =) 5]
- - (36)
5 " 5 ol
3 _ (+)\ j (=)\ Jj
Bi = |4 ) ;- A ) i
then the new quantities must satisfy the commutation relations:
i 1] i1 j
PR N I SO R g
[Bi' BKJ =8y A, - 8, Ay (37)
W 8L - 5 Bl _ 5 B
) A | (R ¢ 5 K

From the definitions (34), it follows that:
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J g
A(t) = = fd XYY a¥y (384a)

j -
Bi(t) = - fdax YiYeYs¥y (38b)

The generators (38a) and (38b) are the integrals over all space of the fourth components of the
vector and axial vector quark currents respectively. We may think of the quark currents as re-
placed by the physical hadron currents and continue to use the equal-time commutation relations

defined by (37). This was Gell-Mann’s starting point and explains the connection with the W,
group of the (V, A) quark model with chiral decomposition.

The current algebra suggested by the maximal chiral group W; ® Nj; of the quark model can be
derived following the above procedure. If we recall that we are dealing only with particles at
rest, we may neglect the orbital angular momentum of the left and right-handed quark systems

+
and consider only the spin contributions; the generators of R; ) are then defined by:

1 3
(£)
Jomitt) =—2- Z fdax v [YW Yv] (1 % 75) Y (39)

i=1

It is to be noted that in the definition (39), a trace is being taken in each U; space. We now

+ —
show that the generators JLV), J&v) can be expressed as linear combinations of a certain sub-

group of generators of the chiral W¢ group [12]; thus, if we define

3
"~ 3 i
v,= > [ wivpw; (408)
i=1
= 3
= 3 -
A, = Z fd X 9YLYsYy (40b)
i=1

then we have:

(+) (=) i - -
N A TPV N A N (41a)
(+) J(—) - - - -
wv T Yuv T T EguvaAva + 5u4Av - 8v4Au (41b)

In equations (41a) and (41b), two of the generators V, and A4, are already contained among the

: = 3 :
A} and A4EE—'21 B; (cf. equations 38a and 38b). The totality
1=

I Mw

generators of W3 since V,=-

=1
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of 24 generators — the 18 of W3 and the 6 of N3 — form a closed system and the current algebra
associated with these generators — reinterpreted in terms of physical hadron currents — is the
proposed generalization of Gell-Mann’s original current algebra. Some of the consequences of
this current algebra between the physical hadron states, following the procedure of Fubini and
Furlan [27] will be discussed elsewhere.

It is apparent from the above that the 24 generators of the W3 @ N3 group constitute a sub-
group of the 72 generators of the chiral W6 group. This explains why some of the consequences

of the W3() N3 group - treated as a "spectrum-generating" group - bear a resemblance to some
of the results obtained with the chiral Wy theory. However, it seems that the chiral W¢ group
is too large to be useful either as a "spectrum- generatlng" or as a "transition operator" group.
It is conceivable that the maximal chiral group, W3 ® N3, suggested by the quark model may
serve this double purpose or at least prove useful to motivate a current algebra which beyond
the one used so successfully at present. Certainly, if experiment supports this large chiral
group as both a "spectrum-generating" and "transition operator" group, it would then be justi-
fied to look into the deeper meaning of the (V — A) quark model with chiral decomposition (15].
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meson) may be due to the fact that X belongs to an I = 1 triplet and has nothing to do
with the usual J = 0~ octet [see W. KIENZLE et al., Phys. Letters 19, 438, 1966]. Equa-
tion (30) is reasonably well satisfied if we follow I in assigning J = 2~ to the 4,
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Phys. Letters 19, 434, 1966].

25. It should be pointed that while our theory assigns J = 0--, ot-, 1-%, 11t 2-- 2% o
the lowest mass w-type mesons, the SUg; theory (and the non-relativistic quark model)
agrees with five of these assignments but differs in preferring J = 1t~ to J = 2--. This
critical difference as well as an alternative set of mass relations to (30) (cf. R. GATTO,
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Appendix

It is important, in order to appreciate the unique properties of the group W; GD B con-
sidered in the text, to determine all the groups admissible with the quark model. Explicitly,
we are looking for all groups which contain Us C) % as a.subgroup, and conserve parts of the
Lagranglan %g + &, + ¥1 [cf. equation (1) in the text]. In order to simplify the discussion,

we shall restrict ourselves to the proper orthochronous Lorentz group Li rather than the
Poincaré group Z. Furthermore, we assume throughout that a definite baryon number can be
assigned to the triplet of quarks (or if one prefers the 12-component quark y — see below).

Since the quark Lagrangian is a polynomial (of the 4-th degree) in the 12-dimensional ¢ and
w+, it is clear that the largest relevant group must be some "quasi-unitary" group, namely, &

group Up(12) = {A}, the elements A of which fulfill A'B A = B, or A™B =B A-1 for a fixed
12 x 12 matrix B; here B must not be the identity matrix (although B is Hermitian). Since

Ug(12) O Ll ® SUs, B must be a combination of yo @ I3 and iysyo ® I3 (where I3 is the 3-
dimensional identity matrix):

B = (a+ Biys)yo @ Is; «, P real; @+ pz =1; B =17 (A.1)

When some particular B is chosen, define
y = y*B (A.2)
It follows that when y — Ay, ¢ — PA™ ",

Let Ei (1<1i, R<12) be a 12 x 12 matrix with unity at the intersection of the i-th ro¥
and k-th column and O everywhere else. Denote
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Tk = ¢ Eg ¢ (A.3)

Lemma. When ¢ - Ay, T - (A‘l); ARTY

Proof. The Ej form an algebra with the rule of multiplication
EXE; = SKE; (A. 4)

Also, the Ei form a linear basis for the algebra of all 12 x 12 matrices in the sense that
each such matrix A may be written in the form:

A = AiA, (A.5)

A; are complex numbers. According to the foregoing:

Ti— T'F = A7 'EjAy = (A™D) JA7 GEPELED y

(A.6)

(A™Y ARTS a.e.d.

According to (A.6), the only bilinear invariant under U(12) is T There are, however two
invariants of the 4-th degree: (T ) and Tk, T Let Sp(12) be a symplectic subgroup of U(12)
with some invariant tensor Gl - G‘k. 1f L+ QD SUz is a subgroup of Sp(12), then either

; ; 2
G = io03: ®I;, or iysoz1 @ I3 G =-1 (A.T)
in a representation in which ys is diagonal. If we use a general y-matrix representation, then
031 can be replaced by the ordinary charge conjugation matrix C. The tensor Gik may be used to
raise and lower indices, and therefore no real distinction exists between covariant and contra-
variant indices. Accordingly, we define:

A/"‘ T(s)

GipTh + GppTt
(A. 8)

A2 T3y = Gy TR G TR

ng)T(”ik and Tﬁ'z)T('“ik are invariant under Sp(12).

It is readily verified that the following chain of groups exists

U4y ®@ Us—>Sp(4) ® Us

U(IZ)/ / =l e,
T(+) ® l.T(") ® Ws,/’///)'

SP(IZ)———>L
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Table 1 summarizes the correspondence between groups and Lagrangians.

TABLE 1

Lagrangians and corresponding symmetry groups for B = y, Q@ Iy

Lagrangian Symmetry group Maximal compact
subgroup

2, LY e L19e ¥ N ®

£, U(12) We

S or TjT" U(12) [

piilplal ik pllipldb ik Sp(12) U Sp(6) ® U Sp(6)

“P+V-A+T U4y ® Us MY ® v,

-P+V or —A+T Sp1(4) ® Us Ni1 ® Us

~P-A or V+T Spa(4) @ Us N3 @ Uy

V- A el @, Ny @ Wy

V or A e, SU, @ Wy

In Table 1, Sp;(4) leaves invariant ios; whereas Sp,(4) leaves invariant ioz;ys. N3, N3; are
isomorphic to SU; ® SU,, but not identical with each other. N3 is isomorphic to

NB(@(OJ2

0 (X.Iz
symplectic group in 6 dimensions. We recall that N3 =

) , where Iy is the 2x 2 identity matrix and |«| = 1. USp(6) is the unitary
® Ry,

A similar table may be obtained by choosing iysys ® I3 as the Hermitian form B. This will

introduce U(P’(12) associated with the pseudoscalar four-fermion interaction; corresponding
changes will be induced in some other interactions, as summarized in Table 2.

(+)

In Table 2, the superindex (p) is inserted whenever the definition of the relevant object
depends on the fact that B = iysyy ® I; rather than B = y; ® I3.

+ =
According to the above tables, two properties single out L.Ty( )® Ll( =l ® Ws:

(1) It is the maximel group which leaves invariant both Z) and & pure current-current inter-
action; N3 ® W; is the maximal compact subgroup possessing the same property.

(2) It is the intersection of all groups U(12) which contain Ll ® Us.

PRY
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Analog of Table 1 for B = iysyp () I3

MAXIMAL CHIRAL GROUP

TABLE 2

289

Lagrangian Symmetry group Maximal compact
subgroup

P or TP iriPk U'P (12) W

T££S)T(p8)kl or TgiA)T(pA)lk Sp(p)<12) U Sp(6) QD U Sp(6)

-S+V-A+T
-S+V or -A+T
-S-V or V+T

7P 4y @ Us
SpiP) 4y ® Us

(p)
Sp2P 4y ® U,

NP @ Uy
N3; @ Us

N3y ® Us



