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1. Introduction 

IN a series of papers [1-3], the first two authors attempted to use the quark model as a probe 
of higher symmetries for the hadrons (and hopefully for the leptons as well). It is immediately 
evident that a triplet of quark fields with common mass m yields an internal SU3 group structure 
(in addition to invariance under the Poincare group !!J' and the discrete transformations P, C, 
T); that is to say, the general quark Lagrangian ft': 

ft' = .!t'k + .!t'm + fi'1 

3 

.!t'k = I '1'iYµ 0 µ'1'i 
i=l 

3 ( 1) 
.!t'm = m ! 'I' i 'I' i 

i=I 

5 

gn(!l ;iQn'1'i)
2 

fi'1 = ! 
n=l 

where Qn =scalar (S), pseudoscalar (P), vector (V), axial vector (A), or tensor (T), is in­
variant under !!J' ® [!) @SU3 [4]. However, it was shown in the very first paper that ft' is 
invariant under a higher (chiral) symmetry group if one chooses m = 0 in .!t'm and selects a 
particular Qn in ft'r. Indeed, the choice Qn = S, P or T led to higher symmetry groups which 
were physically uninteresting since all their irreducible representations involved SU3 repre­
sentations with both zero and non-zero trialities. Only a combination of V and A four-fermion 
interactions led to a higher chiral symmetry group which contained irreducible representations 
involving onlySU3 representations with zero triality (which are the only types of representa-

- - (+) (--} 
tions observed for hadrons). The resulting chiral group, r?J ® W3 (where W3 = U3 ® U3 with 

(+) (-) 
U3 (U3 ) spanned by the three positive (negative) chiral projected fields: (1 ± y 5)'1'i) mixes 
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parity with SU3 and can be used to deduce mass relations [5] between hadrons of opposite parity 
(and the same spin). 

Independently of our work, Gell-Mann [6] was led to the SW3 group [7] by looking for the 
group generated, under equal-time commutation, by the space integrals of the fourth components 
of the vector and axial vector weak hadron currents. It is simple to show that the space inte­
grals of the fourth components of the vector and axial vector currents defined in terms of quark 
fields lead to the equal-time commutation relations postulated by Gell-Mann. One might inquire 
into the relative advantages of the two formulations. It seems that the quark model is gener­
ally more useful if one is interested in the higher symmetry group as a "spectrum-generating" 
group [s] since it lends itself naturally to a prescription for the tensor structure (T.S.) of 
the symmetry-breaking interactions which then yields the desired mass relations among the 
hadrons. On the other hand, current algebras are more useful as "transition operator" groups 
[s], in which role they may be employed to perform dynamical calculations - which at the pre­
sent stage is really not possible with the quark model. 

The usefulness of the quark model as a probe of higher symmetry groups which belong to the 
"spectrum-generating" class was demonstrated anew by our study of the consequences of a non­
chiral rather than a chiral decomposition of the triplet of quark fields. We showed [2] that 
with non-chiral decomposition one may obtain a compact group [9] as large as w6 = u~+) ® u~·-) 
[where the plus and minus signs now refer to the non-chiral projected fields: (1 ± y 4 )~i]· This 
non-chiral W6 group, which we first derived on the basis of the quark model, has recently be­
come quite popular [10], and contains the collinear and coplanar groups as sub-groups [11]. 
In contrast, the generalization of the current algebra approach [12] led to the chiral W6 group 
which has not been particularly useful as a "spectrum-generating" group. It is to be noted that 
in the quark model, !I:' m and !l:'r (with gn = S or P) are invariant under the non-chiral W6 group. 

While the non-chiral W6 group is very attractive as a "spectrum-generating" group, it 
suffers from the usual difficulties of relativistic SU6 theories (which mix the Poincare and 
SU3 internal symmetry groups) - the conflict between unitarity and crossing [13], the need to 
work with an infinite dimensional Lie algebra [2] (if one wishes to save Lorentz covariance), 
and so on. Moreover, the current algebra which corresponds to the non-chiral W6 group involves 
currents (tensor, scalar, etc.) which do not play a direct physical role in either the electro­
magnetic or weak interactions. This has led to the point of view [8] that the non-chiral W6 

group is the maximal compact "spectrum-generating" group whereas the chiral W3 group is the 
maximal compact "transition operator" group for the hadrons. From the point of view of the quark 
model, this would imply that somehow the mass term is more important than the kinetic part of 
the Lagrangian (1) when one deals with the mass spectra of the hadrons and the reverse is true 
[14] when one is concerned with the algebra of the physical (V and A) currents. While this is 
a possible attitude to take, it would seem more satisfactory if the quark model could suggest 
a higher symmetry group which would serve the purpose of generating both the mass spectra of 
the hadrons as well as a physically interesting algebra of currents. In Section 2, we carry 
forth this program and determine the maximal chiral group suggested by the quark model which 
mixes spin and unitary spin in the mass spectra of hadrons, while in Section 3 this group is 
discussed as a current algebra. Finally, the Appendix contains a rather complete tabulation of 
the various higher symmetry groups obtainable with the quark model and justifies our statement 
concerning the maximal chiral and non-chiral groups which are possible. 

2. W3 ® N3 Group as a Spectrum-Generating Group 

Our starting point is the Lagrangian (1) with m = 0, rewritten in the form: 
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!l' = !l'K + !l'I 

3 

!l'K = ! '1'iYµ 0µ'1'i ( 2) 
i=l 

( ~ o/iYµ'l'i) 

2 C!
1 

o/iYµYs'l'i) 

2 

~I = gy + gA 
i=l 

with gy. gA the· vector and axial vector coupling constants. Making the usual chiral decomposi­

tion: 
(1 ± Ys> 

'l'i{±) = ------~---'l'i· equation (2) is transformed into: 
2 

3 {-{+) (+) -<-> <->} ZK = ! 'l'i Yµ 0 µ'1'i + 'l'i Yµ 0 µ'1'i 
i=l 

U, -{+) ( +) -(-) {-)} 2 
!l'r = gy 'I' i Yµ'l'i 'l'i Yµ'I' i 

L!l 

-{+) (+) -(-) (-)} 2 
+ gA 'I' i Yµ'l'i + 'l'i Yµ'l'i 

( 3) 

- (+) ® (-) 
If gy F gA, equation (3) is invariant under the group W3 = U3 U3 where the two U3 groups, 

. (+) (-) 
as remarked before, refer respectively to the positive ('l'i ) and negative ('l'i chiral pro-
jections of the triplet of quark fields. There is no mixing with the Poincare group, &>, so that 

we are in fact dealing with the group W3 (g) fJ; this was the case previously considered in I. 

Now suppose we choose gy = gA = g, a choice made attractive by the invariance of the result­
ing (V - A) interaction under Fierz rearrangement [ts]; then equation (3) assumes the compact 
form: 

[ <+>] [ <->] ft'= !l' 'l'i + ft' 'l'i 

3 [ ~ 
2 

[ (+)] {-<+> <+>} -{+) <+>] 
!l' 'I' i = ! 'l'i Yµ 0 µ'1'i + g 'l'i Yµ'l'i ( 4) 

i=l i=l 

[ (-)] 3 { -(-) (-)} [ 3 -(-) (-)r 
ft' 'I' i = ! 'l'i Yµ 0 µ'1'i + g ! 'l'i Yµ'l'i 

i=l i=l 

We observe that equation (4) separates completely into two distinct parts, one part depending 
(+) (-) 

only on 'l'i and the other part depending only on 'l'i . It follows that the equations of motion 
for 'I'~+> and 'I'~-> are completely decoupled and hence the Lagrangian (4) when integrated over 

, . . 
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(+) (-) 
space-time is invariant under two independent Poincare transformations r!J> and r!J> operat-

e+> <-> - . . 
ing on ljii (x) and ljii (x) respectively, in addition to its invariance under the two independent 
U~+> and u~-> transformations. If we write [16) PA = r!J> <+> ® r!J>. (-), then we can say that the 

cV - A) theory (defined by equation 4) is invariant urider the· iarger group W3 ® PA in contrast 

to the general (V, A) c~e (defined by equation ,3) which is invariant under W3 ® r!J>. 

We now propose to con:si.der. the ·~ix.ed ; chiral group W3. ® PA a's a "spectrum-generating" group 
and to remove the mass degeneracy associated with each irreducible representation of this large 
group by switching on the (common) mass term in the Lagrangian, namely: 

3 

.Pm=m L ljii ljii = m 
i=l 

3 [-(+) (-) -(-) .(_+)] 
! lji i. , .lji i + lji i lji i · 

i= l 

t'O ,L (+) '1}} (-) • 

The symmetry-breaking ~m collapses the two Poincar~ spaces r!J> and :r into a single 

( 5) 

Poincare space and the tw~ unitary spaces U~+l and U~-> foto a single U3 so that the sub-group 
of invariance [17) is U3 ® 1f; In point of fact, the symm:etry-;breaking mass term performs 
another very useful function; as Coleman [18) has pointed out, the invariance of our Lagrangian 

( 4) under the product of the two Poincare groups &> < +l and &> < - l implies the following relation 
between the four-momentum P of a hadron and the four-momenta P+ and p_ respectively of the posi­
tive and negative chiral quark fields: 

(6) 

The above relation will lead to a continuous range of mass ·values unless P+ or p_ is identically 
zero. Since we know that the free Lagrangian ( .9! K + .9! m) does not yield a mass continuum, we 
believe that the symmetry-breaking mass term (5) must somehow help us out of this difficulty 
although its precise mechanism is not ciear. Coleman [19) had already pointed out a related 
diffiCUlty for any group (containing SU3 ® r!J>) wh'ich mixes space-time with internal symmetries, 
to wit one is led to a continuum of masses or to a continuously infinite number of irreducible 
representations of SU3 ® .&> associated with the same mass m. Despite this objection, the non­
relativistic su6 group has been subjected to symmetry-breaking terms which formally lead to 
relations among discrete masses. We take a similarly optimistic attitude and remark, moreover, 
that our quark model with chiral decomposition may be used as a guiding principle to suggest the 

larger group W3 ® PA and that this enlarged group could equally well be indentified as the 
"transition operator" group of an appropriate current algebra (see Section 3). 

If we consider hadrons in their rest systems - which is permissible if we may limit our-
<+> (-) selves to a consideration of the compact rotation sub-groups R3 and R3 of the non-compact 

(+) (-) . . (+) ® (-) 
groups r!J> and r!J> · respectively. If we next &et N3 = R3 R3 , it follows that we are . - . . 
restricting ours,.elves to t~e compact group W3 ® N3 with 24 generators. Let us denote an irre-

ducible representation of W3 ® N3 by (Rv d 1; R2 , d 2) where R1 (R2 ) is the dimension of the 
(+) (-) . -

irreducible representation of the U3 (U3 ) group while d1 (d2) denotes the dimension of 

R~+l (R~->). The quantities d 1 and d2 are, of course, related to j 1 and }2, the angular momenta 
respectively of the positive and negative chiral field combinations: 

d 1 = 2j 1 + 1; d2 = 2j 2 + 1 

[ J ( +) ' ( - ) p d dS. As before 5 , the parity operation P interchanges the role of 'l'i ~.and ljii , 1. e. eman · 
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(7) 

Sim.ilarly, the. charge conjugation operati.on C requires: 

.( 8) 

where R~ (R;) represents the conjugate representation of R1 (R 2 ). Hence, ' in general, particles 
of opposite P and C [20] arise in the 3ame irreducible representation of W3 (8) N3 • Since thes~ · 
questions are handled in the same way as in the W3 theory discussed elsewhere [5], we shall not 
go ·into detail. Instead, we focus our_attention pn the new features introduced into the theory 
of hadrons by enlarging the group to W3 ® N3. 

When one reduces an irreducible representation of W3 ® N3 into those of its subgroup 

W3 ® N3 . one can determine the spin values of the particles contained in the representation . 

The reduction of N3 = R~+> ® R~-> into the common R3 subgroup is well-known, and a representa­
tion of (R1, di; R2 1 d2) contains particles with spins J given by [21]: 

1 = .< i i + i 2) • < i i + i 2 - 1) • · · · I i i - i 2 I .. (9) 

Thus, for each spin value of J given in equation (9), we have an irreducible representation 

(R1, R2) of W3. As an example, consider the case of mesons assigned to the particle representa­
tion (P.R.): 

(3, 2; 3•, 2) (f) (3*. 2; 3, 2) (10) 

The second representation in (10) is needed in order to achieve an eigenstate of the parity 
(equation 7) and hence we are forced into a parity doublet P.R. However, this P.R. is self­
conjugate for the charge conjugation operation (equation 8) so that in this case we are not in­
volved in charge conjugation doubling. Equation (9) then tells us that this P.R. contains four 
nonets with J = o± and l ±. The parity doublet structure is essentially due to the W3 subgroup, 
whereas the N3 subgroup has led to the grouping together [22] of J = 0 and J = 1 mesons into a 
larger P.R. If one wishes to group together J = 0, 1 and 2 mesons in a single P.R. of · W3 ® N3; 

one may choose: 

• a.. • (3, 3; 3 • 3) l;J7 (3 • 3; 3, 3) (11) 

The P.R. (11) is again self-conjugate for C and leads to six nonets of J = o±, 1± and 2± mesons; 
it can easily be shown that C = +1 for J = o±, ~±and C = -1 for J = 1±. On the other hand, if 
one wishes to place only J = 1 and 2 in the same P.R., one is compelled to consider: 

(3, 2; 3*, 4) @ (3•, 4; 3, 2) (12) 

-
The P.R. (12) now raises some interesting complications. At the level of W3 ® R3, the J = 1 
and J = 2 mesons are decoupled and we can assign a definite charge conjugation parity to the 
opposite space parity particles; we have P but no C doubling. However, we must now acknowledge 
that because of (8), the P.R. (12) is not an eigenstate of C and we must take a linear combina­
tion of it with the P.R.: 

• l.'.i:\ • (3, 4; 3 • 2) ~ (3 • 2; 3, 4) (13) 
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But the combination of (12) and (13) leads to both parity and charge conjugation doublets, i.e. 
four nonets each of J = 1 and of J = 2 mesons. Our pr'eference will be for the P.R. (11) (see 
below). 

-
Having explained how W3 ~ N3 performs as a •spectrum-generating• group, we now show how we 

may use the (V - A) theory to deduce mass relations between hadrons of different J and P (and C 
if necessary) when we switch on the !Rm and IR' symmetry-breaking terms; !Rm is the mass part 
of the Lagrangian (5) and IR' is the medium-strong (MS) symmetry-breaking interaction defined 
in I and specified below. Since the effect of !Rm is expected to be rather large, we should con­
sider the effect of 

co 

(IR• ) n (14) 

n=l 

where ( IR 
11

) n means symbolically the effective interaction in n-th order perturbation with re­
!pect to IR11 ; we shall continue to write !Rm as the symmetry-breaking term which reduced 
W3 ~ N3 to U3 (8) R3 but shall understand that in an actual calculation (14) will be used. In 
any case, the mass splitting due to !Rm (or (14)) is according to sub-multiplets belonging to 
different U3 ® R3 representations until we introduce the U3-violating interaction IR'. At the 
W3 level, we considered two possibilities [5] for the (R1, R2) tensor structure (T.S.) of IR', 
namely: 

3 3 
I 

{'O "' T I + T .z, 3 , 3 ( 15a) 

(15b) 

where the undashed (dashed) index refers to the U~+> [U~->] group. In I, we were not interested 
in the transformation property of IR' with respect to the N3 group but now we wish to specify 
it and we do so by resorting to the quark model. In view of the evidence presented in I, it is 
suggestive to choose: 

Note that IR' is again of the form of a (V - A) interaction and we assume, of course, that 

lm'I << lml-2
. This choice corresponds to equation (15b). 

(16) 

Using the chiral decomposition of 'Iii• one finds that IR' defined by (16) possesses the T.S. 
with respect to W3 ® N3: 
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(8, 1; 1, 1) (f) (1, 1; 8, 1) (17) 

Moreover, we note that: 

{18) 

where J1 and J2 are the angular momentum operators with respect to R~+> and R~-> respectively. 
Equation (18) implies that the interaction Hamiltonian: 

(19) 

is a scalar with respect to Na. We may therefore compute the mass splitting of particles in our 
theory by taking the expectation values of the operator (Hm = fd 3x fi'm): 

(20) 

The effect of Hm is simply to remove the mass degeneracy with respect to different spin, parity 
and Ua sub-groups whereas H' removes the mass degeneracy within U3 • 

We now wish to demonstrate that the general mass formula, say for mesons, under the action 
of (20) Will have the form: 

( 21) 

where m0 is the contribution from Hm and depends on spin J, parity P and the chief U3 quantum 
number a but is independent of the U3 sub-quantum numbers~ (i.e. I and Y). On the other hand, 
m1 is the contribution from H' and depends upon a and ~. but is common for the same U3 repre­
sentation with different J and P. The nature of m0 follows directly from the fact ~hat Hm mixes 

(+) (-) (+) (-) . -R3 and R3 in addition to Ua and Ua leading to a reduction of the initial Wa ~ N3 group 
to Ua ® Ra. It requires more care to prove the assertions concerning m1. Consider first the 
mass degeneracy with respect to the spin value J; a particle with spin J and z-component M can 
be decomposed by means of (9): 

I J., M; (o) > = ~ C ( J' i 1 , i 2 ; M' m 1 ' m 2 ) / j 1 •: m 1 ; i 2 ' 

ml' m2 

(o) > 
(22) 

where C(J, ji, }2; M1, mi, m2) is the Clebsch-Gordon coefficient for the coupling of two spins 
}1 and i2 into J and oo refers to all other quantum numbers such as parity, Wa indices, etc. The 
next step is to argue that because of the invariance of H' with respect to Na (equation 18), we 
may write: 

< . ' 
J l' '. ml, . ' 

J 2' 
, . 

m 2• Ci> I H' I j l' m1: j 2' m2; (o) > 
( 23) 

= s. ~ . s . , . s , s , < j 1' j 2; 
, 

II H' II j l' j 2: (o) > Ci> 
J tJ 1 J 2J 2 m 1 111 1 111 2 111 2 

Further, taking account of the orthogonality of the Clebsch-Gordon coefficients, equation (22) 
yields: 

( 24) 



280 MAXIMAL CHIRAL GROUP Vol. 2, No. 6 

The important point is that the r.h.s. of equation (24) is independent of the total spin J 
and hence m1 (equation 21) is independent of the spin value J for all possible values allowed 
by equation (9). Similarly, we can show that m1 is also independent of parity in general be­
cause two parity states are given by: 

IP=+ 1 > 

(25) 

IP = - 1 > • ~ 2 [In,. R 2> - R,, jn,> J 

where, for simplicity, we have neglected the spin indices and omitted a possible complication 
due to charge conjugation doublets. Then, we must compute: 

flE+ = < p = + 1 IH' I p = + 1 > 
( 26) 

llE_ = < p = - 1 IHI I p = - 1 > 

Both mass displacements in (26) would be equal if: 

(27) 

Equation (27) is certainly satisfied for the choice of !£'' given by equation (16) except when 
R1 =R2. In this argument, we have neglected complications due•to charge conjugation doublets 
since then equation (25) is insufficient to define particles with definite charge conjugation 
parity. In that case, the representations of particles with C = ± 1 would be in general given 
by: 

Ip 1 {' 
/R2 1 i2: = + 1, c = ± 1 > = - I R1, ii: R2 I i2 > + R 11 i l 

2 (28) 

±IR;,i2: Rt, j 1 >± !Rt, i1: R;, i2 >} 

where now we have explicitly referred to the spins j 1 and j 2. With the P.R.'s (28), the inde­
pendence of the mass splitting due to H' with respect to P and C is still, in general, main­
tained unless we have R1 =R; and i1 = }2. Apart from this exception, m1 depends only upon its 

W3 sub-quantum numbers a and ~ which we have already investigated in I. Thus, we have proved 
the validity of the mass fonnula (21) for mesons under assumptions which follow plausibly from 
the (V - A) quark model with chiral decomposition. 

Actually, the tensor structure of the symmetry-breaking tenn !£'' given by equation (16) is 
supported by the mass spectra and decays of the J = 1 and J = 2 mesons (cf. I and reference 
[22]). Indeed, it is tempting to place all the known J = 0, 1 and 2 mesons in the same particle 

representation of the W3 ® N3 group; this leads quite naturally to the P.R. (11) and to the 
use of the T.S. (17) for !£''. We may therefore take over the mass formula (21) where the struc­
ture of m1 (a, ~) is determined by our knowledge of the P.R. [(3, 3•) ± (3•, 3)] and the T.S. 
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-
of ff'' [(8, 1) + (1, 8)] within the framework of the W3 group. This was investigated previously 
in I where we derived the result: 

(29) 

where K(JP) and n(JP) denote the m2 of K-type and n-type mesons respectively with spin J and 
parity P. The implication of equation (21) is that equation (29) now holds for the nonets of 
mesons with J = 0, 1 and 2 as well as with opposite parity, namely: 

(30) 

In addition, of course, the "Schwinger" formula [23] must hold separately for each of the six 
nonets J = o±, 1 ±, 2±. If we insert numbers, equation (30) as well as the individual "Schwinger" 
formulas are fairly well satisfied [24] but since much of the experimental information is still 
preliminary, we do not wish to press the agreement with theory. However, it should be remarked 
that equation (30) contains as one of its predictions a major argument for assigning the J = o­
and J = 1- mesons to the "35" representation of su6. namely that: 

( 31) 

If equation (30) holds up for the J = 2 mesons as well as the opposite parity mesons, the 
particle representation (11) would acquire great interest [25], In terms of our quark model, 
this P.R. requires us to couple two quark-antiquark pairs with no relative orbital angular 
momentum. The unit spin for each quark-antiquark pair follows from the requirement that only 
a left-handed quark and a right-handed antiquark can be combined together. Our six nonets of 
J = o±, 1± and 2± would, on this picture, be contructed out of two quark-antiquark pairs -
which is certainly not unreasonable. 

Thus far, we have shown how to construct a theory of mesons on the basis of the W3 ® N3 
group, regarded as a "spectrum-generating" group. A theory of baryons can also be constructed 
on the basis of this larger group with due regard paid to the usual complication of building up 
4-component spinors for the hadrons out of the 2-component quark fields_~f+l and ~i-l (in order 
to define the parity). The procedure is essentially the same as in the W3 case [1] and we need 
not go into detail. Suffice to say, we may assign the P.R.: 

(3, 2; 6, 3) ® (6. I 3; 3, 2) (32) 

to the lowest mass baryons and we would then expect to have SU3 octet and decuplet baryons with 
J = 1/2 and J = 3/2. The relative parity of these particles would be determined by whether the 
effect of the symmetry-breaker ff'm must be computed to first order or to higher orders. The P.R. 
(32) could easily reduce at the U3 ® R3 level to [26]: 

J = 1/2+ octet; J = 3/2+ decuplet; 
( 3 3) 

J = 1;2- decuplet; J = 3/2- octet 

Adding the symmetry-breaking ff'' with a tensor structure (17) would give rise to a mass formula 
analogous to (21) but we shall not write this down. We merely note that the P.R. (32) is rather 
attractive for the lowest mass baryons if the P.R. (11) is appropriate for the lowest mass 
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mesons; a di-quark with unit spin is combined with a J = 1/2 quark triplet. 

3. W 3 ® N 3 Group as a Current Algebra 

-
Rather than pursue further the consequences of the W3 ® N3 group as a "spectrum-generating" 

group, we wish to point out the possibility of regarding the 24 generators of this group as de­
fining a current algebra which goes beyond the current algebra defined by the 18 generators of 
- (+) (-) 
W3 group. We recall that the generators of the U3 and U3 groups defined by 

(34) 

obey the equal-time commutation relations: 

[A<+>) j A<+> ) ;]= S~A<+>) z /+>) ~ - Si 
i' 

[A<->) j A<->) ; ] = si A<->) z A<->) j 

i' K i - Si K (35) 

[A<+>){, <->) z J A K _ = 0 

(+) . (-) ' 
If we define positive and negative linear combinations of A ){ and A ){, to wit: 

(36) 

then the new quantities must satisfy the commutation relations : 

r A{ , A~ J si z l Ai = Ai Si K K 

[ B{, B;] si A~ l Ai = Bi K \ K 
(37) 

[A{, B~] j I l Bi = BK Bi B. 
t K 

From the definitions (34), it follows that: 
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( 38a) 

(38b) 

The generators (38a) and (38b) are the integrals over all space of the fourth components of the 
vector and axial vector quark currents respectively. We may think of the quark currents as re­
placed by the physical hadron currents and continue to use the equal-time commutation relations 
defined by (37). This was Gell-Mann's starting point and explains the connection with the W3 
group of the (V, A) quark model with chiral decomposition. 

-
The current algebra suggested by the maximal chiral group W3 ~ N3 of the quark model can be 

derived following the above procedure. If we recall that we are dealing only with particles at 
rest, we may neglect the orbital angular momentum of the left and right-handed quark systems 

( ±) 
and consider only the spin contributions; the generators of R3 are then defined by: 

( ±) 
Jµv ( t) 

2 i=l 
(39) 

It is to be noted that in the definition (39), a trace is being taken in each U3 space. We now 
(+) (-) 

show that the generators J µv , J µv can be expressed as linear combinations of a certain sub-
group of generators of the chiral w6 group [12]; thus, if we define 

3 

2: J d 3
x 

-
vµ = 4'iYµ4'i ( 40a) 

i=l 

3 

Aµ = 2: J d 3 x 4'iYµYs4'i (40b) 
i=l 

then we have: 

(+) 
Jµv + 

(-) 

Jµv - - e4µvi\Ai\ + Bµ4Vv sv,vµ ( 4 la) 

(+) ( -) 

Jµv Jµv - - e 4µvi\ Vi\ + 8µ4Av Bv 4Aµ (4lb) 

-
In equations (41a) and (41b), two of the generators V4 and A4, are already contained among the 

- 3 i - 3 . 
generators of W3 since V = - L: A · and A = - L: B ~ (cf. equations 38a and 38b). The totality 

4 i=l t 4 i=l t 
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of 24 generators - the 18 of W3 and the 6 of N3 - form a closed system and the current algebra 
associated with these generators - reinterpreted in terms of physical hadron currents - is the 
proposed generalization of Gell-Mann's original current algebra. Some of the consequences of 
this current algebra between the physical hadron states, following the procedure of Fubini and 
Furlan [27] will be discussed elsewhere . 

-
It is apparent from the above that the 24 generators of the W3 ~ N3 group constitute a sub-

group of the 72 generators of the chiral W6 group. This explains why some of the consequences 

of the W3 ® N3 group - treated as a "spectrum-generating" group - bear a resemblance to some 
of the results obtained with the chiral W6 theory. However, it seems that the chiral W6 group 
is too large to be useful either as a "spectrum-generating" or as a "transition operator" group. 
It is conceivable that the maximal chiral group, W3 ~ N3, suggested by the quark model may 
serve this double purpose or at least prove useful to motivate a current algebra which beyond 
the one used so successfully at present. Certainly, if experiment supports this large chiral 
group as both a "spectrum-generating" and "transition operator" group, it would then be justi­
fied to look into the deeper meaning of the (V - A) quark model with chiral decomposition [15]. 
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Appendix 
-

It is important, in order to appreciate the unique properties of the group W3 ~ B con-
sidered in the text, to determine all the groups admissible with the quark model. Explicitly, 
we are looking for all groups which contain U3 ® {J}> as a •subgroup, and conserve parts of the 
Lagrangian ~K + ~m +~I [cf. equation (1) in the text]. In order to simplify the discussion, 

t we shall restrict ourselves to the proper orthochronous Lorentz group L+ rather than the 
Poincare group fl'. Furthermore, we assume throughout that a definite baryon number can be 
assigned to the triplet of quarks (or if one prefers the 12-component quark 'fl - see below). 

Since the quark Lagrangian is a polynomial (of the 4-th degree) in the 12-dimensional 'fl and 
'fl+, it is clear that the largest relevant group must be some "quasi-unitary" group, namely, a 

group UB(12) ={A}, the elements A of which fulfill A~ A= B, or A-IB =B A- 1 for a fixed 
12 x 12 matrix B; here B must not be the identity matrix (although B is Hermitian). Since 
rw t 
UB(12) ::J L+ (8) SU3, B must be a combination of Yo~ 13 and iysro ® 13 (where l3 is the 3-
dimensional identity matrix): 

B = (a+ l3iYs)Yo ® 13; a, 13 real; 2 2 2 
a + 13 = 1; B = 1 (A. 1) 

When some particular B is chosen, define 

(A.2) 

It follows that when 'fl --+ Alfi, iji--+ ijiA - 1
. 

Let E: (1 ~ i, k ~ 12) be a 12 x 12 matrix with unity at the intersection of the i-th row 
and k-th column and O everywhere else. Denote 
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(A.3) 

L Wh A TKi ~ (A-l)Pi AqTpq emma. en 'I'-+ 'I'· ~ K 

i Proof. The Ek form an algebra with the rule of multiplication 

EkE ~ = B/(E ! (A.4) 

Also, the Et form a linear basis for the algebra of all 12 x 12 matrices in the sense that 
each such matrix A ma.v be written in the form: 

k . 
A = A iAk (A. 5) 

At are complex numbers. According to the foregoing: 

T i T' i -A- 1E iA (A- 1 ) qA 8 - EPE iEp k-+ k='I' k'I'= pr'I' qks'I' 
(A.6) 

q. e. d. 

According to (A.6), the only bilinear invariant under U(12) is rt. There are, however, two 
. 2 . k ,.., 

invariants of the 4-th degree: <Ti) and Tk, Ti· Let Sp(12) be a symplectic subgroup of U(12) 
with some invariant tensor Gik = - Gik. If L! (8) SU3 is a subgroup of Sp(12), then either 

2 
G = - I (A. 7) 

in a representation in which y5 is diagonal. If we use a general y-matrix representation, then 
a 31 can be replaced by the ordinary charge conjugation matrix C. The terisor cik ma.v be used to 
raise and lower indices, and therefore no real distinction exists between covariant and contra­
variant indices. Accordingly, we define: 

r.:2 T~ksl = G Tp + G TP II/~ • ip k kp i 

T~k>r<sHk and T~t>r<Alik are invariant under Sp(12). 

It is readily verified that the following chain of groups exists 

, . 

(A.8) 
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Table 1 summarizes the correspondence between groups and Lagrangians. 

TABLE 1 

Lagrangians and corresponding symmetry groups for B = Yo @ 13 

Lagrangian Symmetry group Maximal compact 
subgroup 

i k 
S or TkTi 

T <slT<slik T<AlT<Alik 
ik or ik 

-P+V-A+T 

- P + V or - A + T 

- P - A or V + T 

V-A 

V or A 

U(12) 

U(12) 

Sp ( 12) 

"' 
U(4) ® U3 

Sp1(4) ® Ug 

Sp2(4)@ Ug 

LJ<+l ® L!(-) ® W3 

L! ® W3 

U Sp(6) ® U Sp(6) 

N~dl ® Ug 

N31 ® Ug 

Ng1 ® Ug 

Ng@ W3 

SU2 ® W3 

In Table 1, Sp1(4) leaves invariant icrg1 whereas Sp 2 (4) leaves invariant icrg1Ys· Ng, Ng1 are 
isomorphic to SU2 ® SU2 , but not identical with each other. N~dl is isomorphic to 

Ng® ( cxI
2 0 

) , where I 2 is the 2x 2 identity matrix and lal = 1. USp(6) is the unitary 
o a•I 2 

symplectic group in 6 dimensions. We recall that Ng = R~+J ® R~-J. 

A similar table may be obtaineu by choosing iy5y0 ® I 3 as the Hermitian form B. This will 
( ) . 

introduce U P (12) associated with the pseudoscalar four-~ermion interaction; corresponding 
changes will be induced in some other interactions, as summarized in Table 2. 

In Table 2, the superindex (p) is inserted whenever the definition of the relevant object 
depends on the fact that B = i YsYo ® I g rather than B = Yo ® I g. 

tC+J tC-l -According to the above tables, two properties single out L+ ® L+ ® W3: 
(1) It is the maxi~al group which leaves invariant both .Ii'k and a pure current-current inter-

action; N3 ® W3 is the maximal compact subgroup possessing the same property. 

(2) It is the intersection of all groups U(12) which contain Lt® U3 • 

, . . 
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TABLE 2 

Analog of Table 1 for B = iYsYo ® I3 

Lagrangian Symmetry group 

P r <p>ir<p>k 
or k i [j<p) (12) 

T(ps)T(ps)ki r<pA>r<pA)ik 
ik or ik Sp Cpl (12) 

-S+V-A+T 

- S + V or - A + T 

- S - V or V + T 

'j'j(p> (4) ® U3 

Splp>(4)@ U3 

Sp~p> (4) ® U3 

Maximal compact 
subgroup 

U Sp(6) @ U Sp(6) 

N~p> ® U3 

N31 ® U3 

N31 ® U3 
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