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Introduction

Flavor mixing of neutral mesons is a long and well known phenomenon in particle physics.
Experimental evidence of mixing of the neutral kaon was obtained in 1956, followed in
1987 by the evidence of Bd mixing. In 1974, A. Pais and S. B. Treiman firstly introduced
the idea of charm mixing and CP violation. Even though many searches were conducted
over time, it was clear that the small scale at which both amplitude and frequency of
the oscillation took place made any possible observation challenging. In 2007, both the
BABAR and Belle experiments announced the first evidence of mixing in the charm sector.
The analyses concerned the study of a two body decay of the D0 meson. Few months
later, BABAR presented the analysis of the decay D0 → K+π−π0 . This is the main topic
of this thesis.

In the first Chapter, we present a general overview of the theoretical aspects of mixing,
within and beyond the Standard Model. The current experimental scenario is also shown.
The main characteristic of this analysis is the study of the complete amplitude of the
decay, which allows to exploit the full interference term to get information on mixing. As
this analysis was the first attempt to extract mixing parameters with this procedure, most
of the formalism was sorted out by the author. Belle previously studies the decay D0 →
KSπ

+ π−; this is a self conjugate final state and the technique used to extract the mixing
parameters differs significantly from our case. This is described in Chapter 2, along with
detailed information on the Dalitz plot technique and the common parametrizations used
to described the resonances contributions to the total amplitude.

In Chapter 3, the BABAR experimental apparatus is described. As tracking precision
and particle identifications are two key components for this analysis, more detail are given
on the detectors responsible for this task. Chapter 4 describes the selection criteria used
to select signal events from the BABAR dataset (384 fb−1). These criteria were optimized
in order to have the highest statistical power on the sample.

To perform a fit to the data sample and obtain the information on the oscillation
parameters, the signal yields must be determined. This is described in Chapter 5. The
number of signal and background events are determined performing a two-dimensional

1
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maximum likelihood fit on the D0 mass and on the difference in mass between the D0

and a reconstructed excited state, the D∗+. The efficiency of reconstruction of our signal
will depend on the kinematic quantities of the particles in the final state. An appropriate
Dalitz plot analysis requires a careful momentum-dependent efficiency correction. This is
described in Chapter 6.

One of the originalities of this analysis is the use of the clean and abundant D0 →
K−π+π0 decay to get information to the decay channel we are interested to. It is relevant
that part of the amplitude that describes the D0 → K+π−π0 decay can be determined
by fitting the D0 → K−π+π0 . This is described in Chapter 7. Information on the signal
experimental resolution is needed. Again, the D0 → K−π+π0 channel can be used to
obtain this information, as it is topologically identical to our signal. More details on this
are found in Chapter 8.

Once all these ingredients are sorted out, we describe the signal and background
parametrizations in Chapter 9. As this analysis is the first time-dependent fit of this
sample, a lot of work was needed to have a detailed study of the background on both
the Dalitz plot and the D0 lifetime. Chapter 10 covers the validation of the probability
density function and of the maximum likelihood fit procedure.

In Chapter 11 we report the results of our fit, and the extraction of the mixing param-
eters from it. As this parametrization of signal was firstly introduced here, a lot of care
was needed to determine the correct and most powerful approach to interpret the result.
Studies on the systematic uncertainties are reported in Chapter 12. Finally, Chapter 13
describes a possible approach to compare this result with other mixing measurements and
an outlook on future experiments on D0-D0 mixing.



Chapter 1

D0-D0 mixing introduction

1.1 D0D0 mixing in the Standard Model

D0-D0 mixing is a quantum oscillation between the eigenstates, |D0〉 and |D0〉, of the
Strong and Electromagnetic Interactions. These states do not diagonalize the full Stan-
dard Model (SM) Hamiltonian. Given a state that is initially the superposition of D0

and D0, its time evolution is determined by a 2x2 effective Hamiltonian H that is not
hermitian. Any complex matrix, such as H, can be written in term of hermitian matrices
as

H = M− i

2
Γ. (1.1)

M and Γ are associated with (D0,D0) ↔ (D0,D0) transitions via on-shell and off-shell
intermediate states. Diagonal elements of M and Γ are associated with flavor-conserving
transitions, while off-diagonal elements are associated with flavor-changing transitions D0

↔ D0. Note that CPT invariance requires M11 = M22 and Γ11 = Γ22.

The time evolution of this system is described by the Schroedinger equation

i
∂

∂t

(

D0(t)
D0(t)

)

=
(

M − i

2
Γ
)

(

D0(t)
D0(t)

)

, (1.2)

The eigenvectors of H have well defined masses and decay widths. They can be
expressed in terms of the above eigenstates as

|D1,2〉 = p|D0〉 ± q|D0〉 (1.3)

where p and q are complex numbers. We use the phase convention CP |D0〉 = −|D0〉
and CP |D0〉 = −|D0〉. If CP is an exact symmetry, then |p

q
| = 1 and D1 is CP -odd, D2

is CP -even.

3
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Two physical parameters that characterize D0-D0 mixing are

x = 2
m2 −m1

Γ1 + Γ2
and y =

Γ2 − Γ1

Γ1 + Γ2
(1.4)

where m1,2 (Γ1,2) are the mass (width) parameters for the D1,2 eigenstates.

Since we don’t know which between |D1〉 and |D2〉 is the most massive state, there is
an ambiguity in this definition of x and y. Where needed, we resolve this ambiguity by
choosing |D2〉 as the state with higher mass, so x is positive by construction. Most of the
formalism and results presented herein are independent of this particular convention, and
it is noted when this convention is applied.

CP violation might be observed in an experimental search for D0-D0 mixing. As in
other cases, such as the B0-B0 or K0-K0 systems, it could appear in any of three ways.
The first way would be a modification of the mixing rate because p 6= q in Equation 1.3
above. The second and third ways would be modifications of either the decay rates of D0

with respect to the D0 or the interference between mixing and decay for the particular
decay channels chosen in an analysis. As explained below, an observation of CP violation
would be the most suggestive sign of New Physics (NP) in this system.

1.2 Origin of the contributions to mixing parameters

In the SM, the mixing rate in the D0-D0 system is expected on general grounds to be very
small, but precise predictions are hard to make because of significant contributions from
long distance effects of hadronic interactions. This theoretical uncertainty relative to the
non-perturbative regime limits, but does not eliminate, the potential for identifying signs
of NP.

One can easily show that x may be sensitive to the quark-level (“short range”) contri-
butions on mixing, while y can only be affected by hadron level effects (“long range”). As
shown in Equation 1.1, mixing arises from ∆C = 2 interactions generating off-diagonal
terms in the mass matrix M. The expansion of the off-diagonal terms of M to the second
order of perturbation theory is

(

M− i

2
Γ
)

12
=

1

2MD0

〈D0|H∆C=2
W |D0〉 +

1

2M0
D

∑

n

〈D0|H∆C=1
W |n〉〈n|H∆C=1

W |D0〉
M0

D − En + iε
(1.5)

where H∆C=1,2
W is the effective ∆C = 1, 2 hamiltonian and |n〉 is the intermediate

state that is eigenstate of the strong interaction. The first term of Equation 1.5 sums the
∆C = 2 contributions that are local at the mass pole. So it contributes to the M12 part of
the mixing matrix, and not to the Γ12. For this reason, x is believed to be more sensitive
to the short range contributions. Note that H∆C=2

W may also include NP contributions.
The second term of Equation 1.5 arises from the insertion of two ∆C = 1 operators in



1.2. ORIGIN OF THE CONTRIBUTIONS TO MIXING PARAMETERS 5

the Lagrangian, and it contributes to both M12 and Γ12. It is dominated by SM even if
NP would be present.

At small distances, neutral-meson mixing proceeds via flavor-changing neutral currents
(FCNC). Since there are no tree-level FCNC contributions in the SM, processes such as
mixing occur at the quark level primarily via box diagrams, as shown in Figure 1.1. In the
B0-B0 or K0-K0 systems, the mesons comprise down-type quarks. In the D0-D0 system,
it involves up-type quarks. D mixing is therefore sensitive to the contributions of virtual
down-type quarks coupled to the Weak Interaction, making it a process that might reveal
physics not seen in the B or K systems. One immediate result of this difference is that
there is no contribution from heavy quarks in the D-mixing box diagram. This particular
type of contribution breaks the Glashow-Iliopoulos-Maiani (GIM) [3] cancellation in the
B or K systems1 and allows sizable mixing rates. The heaviest quark in the D-mixing
box diagram is the b-quark. Because the suppression from Cabibbo-Kobayashi-Maskawa
(CKM) [1], [2] mixing factors VcbV

∗
ub outweighs the potential contribution of the b-quark

in the box, the b-quark does not significantly affect the D-mixing rate [4],[5].

Thus, the short distance contribution to x comes primarily from transitions to d- and
s-quarks, and this is estimated to be:

xbox ≈ O(10−6) – O(10−5). (1.6)

Short distance contributions to y are further suppressed by the absence of ∆C = 2
contributions to Γ.

Figure 1.1: Standard-Model box diagrams of flavor-changing neutral currents contributing
to D0-D0 mixing at the quark level

Long distance contributions to D mixing are expected to be dominant, but these
contributions are non-perturbative and cannot be calculated from first principles. They
come from transitions to real final states |f〉 that are accessible to both |D0〉 and |D0〉.
This appears in the second term of Equation 1.5. For example, a contribution to mixing
comes from transitions to two pseudoscalars.

1In K mixing, it is m2
c −m2

u that is relevant; in B mixing, it is m2
t −m2

c .
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1.3 Theoretical predictions on the mixing parame-

ters

As shown in Section 1.6, the present results on the search of D0-D0 mixing bound x and
y to be of the order of 10−2. These results are expected to improve significantly in the
coming years. To discern possible new physics contributions from the SM contributions
to mixing, precise predictions on the x and y value are needed. It has been shown [7]
that x and y are generated only at second order in flavor SU(3)F breaking in the SM, so
schematically

x , y ∼ sin2 θC × [SU(3)F breaking]2, (1.7)

where sin θC is the Cabibbo angle. The problem is then shifted to the estimation of
the SU(3)F breaking. Although y is expected to be determined by SM processes, its value
affects significantly the sensitivity of D mixing to NP.

Because D mixing only involves the first two quark generations, CP violation from
SM sources is very small on general grounds. Observing CP violation in a search for D
mixing would be a clear sign of NP.

There is a vast literature on estimating x and y within and beyond the SM, and the
results span many orders of magnitudes. Roughly speaking, there are two approaches to
estimate the SU(3)F breaking, neither of which is very reliable, because mc is in some
sense between heavy and light.

Another significant problem in the theoretical calculation of the mixing parameters is
that nobody knows the phase between the SM contribution and a possible NP contribution
to mixing. For this reason, given any estimation of mixing, the true value of x and y will
be in the limits of the constructive and destructive interference.

To give a pictorial view of the several orders which the predictions on the mixing
parameters span, in Figure 1.2 we report the expected values of x and y in the SM for
several theoretical calculations [5].

1.3.1 The inclusive approach

The inclusive approach is based on the operator product expansion (OPE) [7]. In the
mc >> Λ limit, where Λ is a scale characteristic of the strong interactions, ∆M and ∆Γ
in Equation 1.5 can be expanded in terms of matrix elements of local operators [7]. For
example, one can consider the width difference between the two mass eigenstates:

Γ12 =
1

2M0
D

ℑ〈D0|i
∫

d4xT{H∆C=1
W (x)HδC=1

W (0)}|D0〉 (1.8)

In this approach, the time ordered product in Equation 1.8 is expanded in local oper-
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Standard Model mixing predictions
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Figure 1.2: Theoretical predictions on the |x| (open triangles) and |y| (open squares)
mixing parameters. Horizontal line references are presented in Table 5 of [6].

ators of increasing dimension. The higher dimension operators are suppressed by powers
of Λ/mc.

The use of OPE relies on local quark-hadron duality [7] (i.e. the duality between the
partonic rate and the sum over the hadronic final states) and on Λ/mc being small enough
to allow the truncation of the series after the first few terms. However, the charm mass
may not be large enough for these to be good approximations for nonleptonic D decays.
The result of this type of approach is a prediction of

x ∼ y ∼ 10−3 . (1.9)

A generic feature of OPE based analyses is that x > y, which seems to be disfavored
by the recent experimental results. It is important to note that at present time these
methods are useful for understanding the order of magnitude of x and y, but not for
obtaining reliable results.

1.3.2 Exclusive approach

One may question if the OPE approach described in Section 1.3.1 can correctly describe
the D mixing phenomenology. A purely long distance analysis of D mixing is comple-
mentary to the OPE, and seems favored by data in the present experimental scenario.
Instead of assuming that the D meson is heavy enough, one explicitly examines certain
exclusive decays. This is particularly interesting for studying ∆Γ, which depends on real
final states. On the other hand, the usual recipe to compute ∆M is to first calculate
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∆Γ and then use a dispersion relation to obtain the mass difference (like Equation 49
in [7]). This is appropriate, as the contributions from b quarks (a short distance effect, so
it appears in ∆M but not in ∆Γ) is negligible.

Unfortunately, D decays are not dominated by a small number of final states. More-
over, the D0 meson is not light enough to approximate its decays into a purely two-body
process. Since there are cancellations between states within a given SU(3)F multiplet,
one needs to know the contribution of each state with high precision. While most studies
find x , y ∼ 10−3, it has also been argued that SU(3)F violation is of the order of unity
and so x , y ∼ 10−2 is possible [8].

Two different exclusive approaches are particularly interesting, as they shed more light
on the mixing phenomenology. They involve the estimation of the SU(3)F breaking from
Phase Space (PS) calculations and the inclusion of narrow resonances effects.

Phase Space determination of y

In this case y is estimated considering the on-shell final states. Every decay common to
D0 and D0 contributes to the D1,2 width difference. If SU(3)F were an exact symmetry,
the sum of all the different contributions over the SU(3)F multiplets would cancel, giving
a zero y value. These cancellations are present both in the decay matrix and in the
phase space characterizing the final state. With some simple assumptions, it is possible
to calculate the SU(3)F violation in the phase space. It has been proved that values
of y of the order of the percent can be obtained solely from the phase space symmetry
breaking [7].

From Equation 1.5 one can derive that for final states common to D0 and D0 y is

y =
1

Γ

∑

n

∫

[PS]n 〈D0|HW |n〉〈n|HW〉 (1.10)

in which the sum is over distinct final states and the integral is over the phase space
for the state n.

If one considers the sum over the final states F belonging to the same SU(3)F multiplet
R, one ends up with a contribution to y like

1

Γ
〈D0|HW



ηCP (FR)
∑

n∈FR

|n〉ρn〈n|


HW |D0〉 (1.11)

where ηCP is the eigenvalue of the CP transformation, and is always properly defined
within the same SU(3)F multiplet. ρn is the phase space available to the state n. In the
SU(3)F limit, all the quantities in square bracket in Equation 1.11 are equal within the
same Fr. Since the ρn depend on the masses of the particles in the final state only, it is the
place where the symmetry breaking manifests itself, and is the origin of this contribution
to y.
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If one neglects CP violation in the charm sector, a relation is known between 〈D0|HW |n〉
and 〈D0|HW |n̄〉. Since |n〉 and |n̄〉 are in the same SU(3)F multiplet, they are determined
by the same effective hamiltonian. As a consequence, it is possible to compute the quan-
tity

yF,R =

∑

n∈FR
〈D0|HW |n〉ρn〈D0|HW |n〉

∑

n∈FR
〈D0|HW |n〉ρn〈D0|HW |n〉 =

∑

n∈FR
〈D0|HW |n〉ρn〈D0|HW |n〉
∑

n∈FR
Γ(D0 → n)

(1.12)

which represents the value of y if the particles belonging to FR were the only possible
D0 decay.

Besides the need of assuming CP conservation, this approach has other disadvantages.
Firstly, to have the true contribution of yF,R to y, one must rescale yF,R to the total
branching ratio to all states in FR. This is difficult, as a final state can frequently be
decomposed into a sum over more than one multiplet FR. Moreover, there are other
sources of SU(3)F symmetry breaking besides the phase space. These are the matrix
elements and the final state interactions.

Determination of y using nearby resonances

One can also exploit the fact that there are several excited mesons with masses near the
D0 mass. In particular, K resonances play an important role in the D0 decays. It is
possible to give an estimation of those resonances contributions to mixing.

In this approach, processes like D0 → R→ D0 are considered. The resonance R, with
mass mR and width ΓR, is considered to be spinless 2. It is possible to demonstrate that
the contribution of R to the mixing parameters is:

xR ≡ ηR
2|HR|2
Γm0

D

m2
D0 −m2

R

(m2
D0 −m2

R)2 +m2
D0Γ2

R

(1.13)

yR ≡ ηR
|HR|2

Γ

ΓR

(m2
D0 −m2

R)2 +m2
D0Γ2

R

(1.14)

with HR ≡ 〈D0|HW |R〉〈R|HW |D0〉 being the coupling of R to D0 and D0, and ηR

being the CP eigenvalue for the SU(3)F multiplet to which R belongs. Again, ignoring
direct CP violation, a relation can be found between 〈D0|HW |R〉 and 〈R|HW |D0〉. We
can consider the ratio:

xR

yR
=

2(m2
D0 −m2

R)

m0
DΓR

(1.15)

2One can demonstrate that only spin zero resonances are relevant to this calculation.
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If D mixing is mediated by a resonance, then we can expect that x and y are of the
same size, as in most of the cases m2

D0 −m2
R ∼ m0

DΓR. This scenario seems to be favored
by the current experimental results.

1.4 New Physics contributions to D mixing

As far as NP is concerned, the variable which contains more information is x. As explained
in Section 1.2, x is more sensitive than y to short range contributions. As any NP
effect would be far off-shell at the D0 mass energy region, non-SM phenomena are visible
in the short distance only. Even though a value of x much greater than y may not
be an indication of NP, knowing it at a high level of precision is very useful to tune
the theoretical modelling and rule out some scenarios. In many cases, theorists have
suppressed the FCNC contributions to K and B decays with mechanisms that enhance
the mass difference between the D0 and D0. The most evident case in which this happens
is the SUSY extension of the SM.

1.4.1 x in the Minimal Supersymmetric Standard Model

The SUSY extension of the SM was firstly introduce to solve the hierarchy problem [10].
Its minimal supersymmetric (MSSM) extension requires the doubling of the particle spec-
trum by considering all the SM fermions in chiral supermultiplets and all the SM bosons
in vector supermultiplets. In this way, many new parameters are introduced. In general,
fermion superpartners (sfermions) masses are not related to the fermion masses at all. For
example, if we choose to rotate the squark fields with the same matrices that diagonalize
the quark mass matrices, the squark mass matrices are not diagonal. In this basis, one
can expand the squark propagators so that non-diagonal terms in the mass matrix result
as mass insertions that change the squark flavor.

One can parametrize in a model-independent way the mass insertions:

(δu
ij)λλ′ =

(Mu
ij)

2
λλ′

M2
q̃

(1.16)

where i 6= j are the generation indices, λ, λ′ indicate the chirality, (Mu
ij)λλ′ are the

off-diagonal elements of the up-type squark mass and Mq̃ is the average squark mass. For
the down quark sector, the constraints for FCNC in the K and B sectors have lead to
very small values for the mass insertions. This leads to an increase in the up sector mass
insertions values for the soft breaking mechanism to hold.

It has been shown [11] that in several MSSM scenarios the current experimental knowl-
edge of the mixing parameters (along with the constraints on CP violation in theD sector)
can lead to constraint on the lower limits of the masses of squarks and gluinos up to 2
TeV/c2.
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1.5 CP violation

Within the SM, CP violation in the D sector is expected to be negligible with respect to
the K and B sector. Any observable effect of CP violation in the charm system with the
current experimental scenario would be a sign of NP. In this section we consider some
general features of CP violation in the SM and beyond.

1.5.1 CP violation in the decay

In the SM, CP violation is originated from a weak phase in the Cabibbo-Kobayashi-
Maskawa (CKM) matrix. The most efficient way to measure this effect experimentally
is to look at a decay that proceeds both with a CP conserving contribution (“spectator”
amplitude) and with a CP violating contribution (“penguin” amplitude). In this way, in
the interference term of the total amplitude, information on the weak phase is accessible.
This typically happens in singly Cabibbo-suppressed decay, where a strong phase is also
present. One can demonstrate that the size of the CP violation in the SM is in this case

ACP ≃ ℑ[VcdV
∗
udVcsV

∗
us]

λ2
sin δs

P

S
≃ 10−3 (1.17)

where δs is the strong relative phase between the spectator (S) and the penguin (P)
amplitudes. Several calculations for ACP were made [9] in the D0 → KK, ππ cases as
well as in several three-body decay modes. All estimations yield to values of ACP similar
to that reported in Equation 1.17. NP effects could enhance the penguin amplitude,
increasing the value of ACP up to 1%.

On the other hand, CF and DCS decays do not present two amplitudes with different
weak phases, so no CP violation is expected within the SM. Nevertheless, several NP
scenarios introduce a weak phase difference in the CF processes.

1.5.2 CP violation in mixing

Another way in which CP violation could manifest itself is in the mixing of D0 and D0.
In this case one can demonstrate that

ACP ∼ −2 sin
ℑ[VcdV

∗
udVcsV

∗
us]

2λ2
(x cos δs + y sin δs)(Γt) (1.18)

So NP in x could induce a larger ACP . So even if x would be much smaller than y,
CP violation could be visible if the strong phase between the final states is significantly
large.
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1.6 Current experimental status

Evidence of D0-D0 has been claimed by the BABAR and Belle experiments [12],[13]. The
first in the study of the D0 → K+π− decays, the latter in a lifetime ratio analysis.
Later, also the CDF collaboration claimed an evidence in the same channel as BABAR [16].
BABAR also claimed the evidence of mixing in a lifetime ratio [14] and in a time-dependent
amplitude analysis of D0 → K+π−π0 [15]. The second one is the analysis described in
this thesis. All the different measurements agree in providing values of x and y of the
order of 10−2, within some of the SM predictions. Since a positive value of y is favored
by data, the CP -even state is short lived, as in the K0-K0 system. However, since x also
appears to be positive, the CP -even state is heavier, unlike the K0-K0 system.

The study of D0 → K+ π− has for long been considered the golden mode for mixing
observation. The main advantages of this analysis are a clean signal and the ability to
compare the signal distributions to the high statistics D0 → K− π+ sample, eliminating
many sources of systematic bias. The main disadvantage is that this analysis is not
sensitive to x and y, but rather to x′ and y′, which are related to the mixing parameters
by an unknown strong phase. Moreover, this analysis is not sensitive to the sign of x′.

The study of D0 decays into final states that are CP eigenstates (also known as lifetime
ratio analysis) exploits the feature that if mixing exists, the mean lifetime of D0 → CP is
distorted by a factor proportional to y. Historically, the variable measured is called yCP ,
and corresponds to y if CP is conserved. It is not possible to extract any information
on x from this analysis. The two channels where both BABAR and Belle found evidence
of mixing are D0 → K+ K− and D0 → π+ π−. The advantages of this decays is that
the samples obtained are very pure, and that the measurement of the D0 lifetime is quite
straightforward.

One can also analyze the semileptonic decays of the D0. This has been done by BABAR

[17] and Belle [18], but no signal for mixing has been found. The main problem with
this analysis is the high level of background in the sample, due to the unreconstructed
neutrino in the event. Also, this analysis is sensitive to the value of x2+y2

2
only.

The description of the three-body decay analyses is given in detail in Section 2.2.
That section focuses on the three body decays which are not self-conjugate. A notable
exception is the study of a three body decay which is a CP -conjugate final state. In this
case, the strong phase of any chosen CP component of the amplitude can be fixed. In
such a scenario, the mixing parameters can be determined without the problem of the
unknown strong phase rotation that affects most of the other mixing analyses. Belle
presented the study of the D0 → K0

S
π+ π− decay [19], which showed no evidence for

mixing. Even so, this represents the only direct constraint to x to date.

Lastly, one possible way to measure charm mixing is by studying the coherent pro-
duction of D0-D0. This can be done exploiting for example the decay of the ψ(3770).
Being in a quantum-coherent state, it is possible to fix the strong phase of the D0 decay
analyzed and have a direct measurement of x and y. This has been done by CLEO [20].
There is a main drawback in this technique: the D mesons produced from the ψ decay
have a low momentum spectrum, because the mass of the ψ is relatively small. For this
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Observable Value Comment

yCP

AΓ

(1.132 ± 0.266)%

(0.123 ± 0.248)%
WA D0 → K+ K−/π+ π− results [22]

x (no CPV )

y (no CPV )

|q/p| (no direct CPV )

φ (no direct CPV )

(0.811 ± 0.334)%

(0.309 ± 0.281)%

0.95 ± 0.22+0.10
−0.09

(−0.035± 0.19 ± 0.09) rad

No CPV :

WA D0 → K0
S
π+ π− results [22]

x

y

|q/p|
φ

(0.81 ± 0.30+0.13
−0.17)%

(0.37 ± 0.25+0.10
−0.15)%

0.86 ± 0.30+0.10
−0.09

(−0.244± 0.31 ± 0.09) rad

CPV -allowed:

Belle D0 → K0
S
π+ π− results.

RM (0.0173 ± 0.0387)% WA D0 → K+ l−ν results [22]

RM (0.019 ± 0.0161)% BABAR D0 → K+ π− π+ π+ result.

RM

y

RD
√

RD cos δ

(0.199 ± 0.173 ± 0.0)%

(−5.207 ± 5.571± 2.737)%

(−2.395 ± 1.739± 0.938)%

(8.878± 3.369 ± 1.579)%

CLEOc results from “double-tagged”

branching fractions ψ(3770) → DD

decays. The only external input are

branching fractions.

x′2+

y′+
(−0.024± 0.052)%

(0.98 ± 0.78)%
BABAR D0 → K+ π− results.

x′2−

y′−
(−0.020± 0.050)%

(0.96 ± 0.75)%
BABAR D0 → K− π+ results.

x′2+

y′+
(0.032 ± 0.037)%

(−0.12 ± 0.58)%
Belle D0 → K+ π− results.

x′2−

y′−
(0.006 ± 0.034)%

(0.20 ± 0.54)%
Belle D0 → K− π+ results.

Table 1.1: Summary of the experimental measurements of the charm mixing parameters.

reason, it is impossible to perform a time-dependent measurement with the experimental
resolution feasible at this date. One alternative would be to study the D0-D0 coherent
production from the decay of the Υ resonances [21]. In this case, the momentum spectra
of the D0 s would match the experimental capabilities. Unfortunately, because of the low
rate of this process, this analysis would only be possible at a high-statistics flavor factory.

In Table 1.1, a summary of the up-to-date experimental measurements is reported.
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Chapter 2

Analysis strategy

In this chapter, we present the main features of D0-D0 mixing in a multibody decay. In
particular, we show the formalism to be considered in a three body decay. We obtain
the formulas by extending the case of a decay of a D meson into two particles. Detailed
information on the parametrization of the amplitudes involved in the process is provided.
The Dalitz plot technique is described too. Finally, we try to visualize the mixing effects
over the Dalitz plot by looking at the change in average D0 lifetime.

A search for mixing attempts to identify the process1 |D0〉 → |D0〉 by analyzing the
decay products of a particle known to be created as a |D0〉. In practice, this means
reconstructing the state |f̄〉 in an attempt to observe the transition

|D0〉 → |D0〉 → |f̄〉. (2.1)

The difficulty comes from the fact that for nonleptonic final states, the decay

|D0〉 → |f̄〉 (2.2)

can occur directly, without any mixing at all. Distinguishing the process 2.1 from 2.2 is
the primary goal of this analysis, and it relies on the fact that the decay-time distribution
of the final state |f̄〉 is different for the two processes. The highest sensitivity to mixing
will be found when the amplitude for the process 2.2 is as small as possible, and therefore
doubly Cabibbo-suppressed (DCS) decays are preferred for this type of analysis. DCS
decays have very small branching fractions relative to the CF decays, on the order of

| sin2(θC)|2 ≈ 0.0023 (2.3)

1Charge conjugation is implied except where otherwise stated.

15
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where θC is the Cabibbo angle. To the extent that Process 2.2 has a smaller amplitude
for a particular decay compared to others, it will yield more sensitivity to the observation
of mixing.

2.1 The two-body decay scenario

To derive the mixing formalism for this analysis, it is easier to firstly consider a simpler
case: the decay of a D0 to a two-body final state that is not a CP eigenstate. Most of the
formulas derived in this section can be applied to a multi-body decay with some simple
caveats.

Following from Equation 1.2, and ignoring the possibility of direct CP violation2, one
can derive the time-dependent solutions:

|D0(t)〉 = a+(t)|D0〉 + a−(t)|D0〉 (2.4)

|D0(t)〉 = a−(t)|D0〉 + a+(t)|D0〉, (2.5)

where

a+(t) =
1

2
(e−im1t− 1

2
Γ1t + e−im2t− 1

2
Γ2t) (2.6)

a−(t) =
1

2
(e−im1t− 1

2
Γ1t − e−im2t− 1

2
Γ2t). (2.7)

We are interested in the measurable, time-dependent rate:

Γf̄ (t) = |〈f̄ |H|D0(t)〉|2

=
(

|Af̄ |2|a+(t)|2 + Af̄ Ā
∗
f̄a+(t)a∗−(t) + Āf̄A

∗
f̄a−(t)a∗+(t) + |Āf̄ |2|a−(t)|2

)

(2.8)

where

Af̄ = 〈f̄ |H|D0〉 (2.9)

Āf̄ = 〈f̄ |H|D0〉. (2.10)

Here, H is the hamiltonian described in Equation 1.1.

2CP violation in the charm sector is strongly suppressed within the SM, especially in CF and DCS
decays [23].
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In general, there is a phase difference between Af̄ and Āf̄ arising from the Strong
Interaction. To understand this, consider the set of strong eigenstates |n〉 that can scatter
into the final state |f̄〉. Similar to Equations 2.9–2.10, we can write the amplitudes for
decay into these eigenstates:

An = 〈n|H|D0〉 = bne
iδn (2.11)

Ān = 〈n|H|D0〉 = b̄ne
iδn , (2.12)

where bn, b̄n are real numbers. In terms of these eigenstates,

Af̄ =
∑

n〈f̄ |n〉〈n|H|D0〉 =
∑

n cnbne
iδn (2.13)

Āf̄ =
∑

n〈f̄ |n〉〈n|H|D0〉 =
∑

n cnb̄ne
iδn . (2.14)

In the general case,

bn = knb̄n (2.15)

kn 6= km for n 6= m, (2.16)

where kn are constants. Unless there is a unique k such that kn = k for all n, then
there is a phase shift between Af̄ and Āf̄ . Therefore, we can write

Af̄ Ā
∗
f̄ = |Af̄ ||Āf̄ |e−iδ, (2.17)

where δ is the strong phase difference. We can simplify Equation 2.8 under the as-
sumptions

|Af̄ | ≪ |Āf̄ |, |x|, |y| ≪ 1 (2.18)

and we have

|Af̄ |2|a+(t)|2 = |Af̄ |2
e−Γt

2
[cosh(yΓt) + cos(xΓt)] ≈ |Af̄ |2e−Γt (2.19)

|Āf̄ |2|a−(t)|2 = |Āf̄ |2
e−Γt

2
[cosh(yΓt) − cos(xΓt)] ≈ |Āf̄ |2e−Γt

(

x2 + y2

4

)

(Γt)2 (2.20)

Af̄ Ā
∗
f̄a+(t)a∗−(t) + Āf̄A

∗
f̄a−(t)a∗+(t) =

= |Af̄ ||Āf̄ |
e−Γt

2

(

e−iδ(sinh(yΓt) − i sin(xΓt)) + eiδ(sinh(yΓt) + i sin(xΓt))
)

≈ |Af̄ ||Āf̄ |e−Γt (y cos δ − x sin δ) (Γt) (2.21)
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where Γ = Γ1+Γ2

2
.

In this way, we can obtain the standard form of the time-dependent decay rate, in-
cluding D mixing:

Γf̄(t) = e−Γt

(

|Af̄ |2 + |Af̄ ||Āf̄ | (y cos δ − x sin δ) (Γt) +
x2 + y2

4
|Āf̄ |2(Γt)2

)

. (2.22)

As shown, D mixing is characterized in the decay rate by a deviation from a pure
exponential. In order to have the highest sensitivity to x and y, a decay channel for which
|Af̄ |2 is relatively small is desired. The analysis technique benefits from the ability to
compare the signal distribution, given by Equation 2.22, to the Cabibbo-favored decay
distribution, which may be treated as a pure exponential. In this way, systematic bias is
significantly limited.

One quantity which is often quoted, as it is the only one accessible to the mixing
analysis of semileptonic decays, is the time-integrated mixing rate:

Rmix =
x2 + y2

2
. (2.23)

2.2 The three-body decay scenario

2.2.1 The Dalitz plot

In the case of a multi-body decay, the amplitudes describing the CF and DCS transitions
vary according to the kinematic configurations of the final states. Given a three-body
decay D → 123, in Dalitz plot two independent kinematic quantities of the process are
represented. This method was firstly developed by Richard Dalitz to analyze the decay of
K+ → π+ π+ π− [32]. The axes on the two dimensional plane correspond to the invariant
mass of two of the three possible pairs one can construct. Let us consider for instance:

m12 = (p1 + p2)
2

(2.24)

m13 = (p1 + p3)
2

where p2 = E2+
→
p

2
. Here p1,2,3 are the four-momenta of the particles in the final state.

For a generic process, the region of the Dalitz plot that will be populated is constrained
by the four-momentum conservation.

For a three-body final state of a scalar resonance, the decay rate is known to be3:

3This formula is correct if one ignores the particle-antiparticle mixing of the parent meson. If one
includes the mixing phenomenon, dΓ will also depend on the decay time, similarly to Equation 2.26.
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Γ =
1

(2π)332
√
s3
|M|2dm2

12dm
2
13 (2.25)

If M is constant, the Dalitz plot will be uniformly populated. This is generally not
the case: the dynamics of the strong interactions generate resonances structures along the
Dalitz plot.

For this analysis, we choose the invariant masses m2
Kπ and m2

Kπ0 to describe the
Dalitz plot.

2.2.2 Mixing in a three-body decay

In a three-body process, such as D0 → K+π−π0 , the decay rate described in Equation
2.22 will become a function of the invariant masses of the resonances involved in the decay.

One strategy may be to consider the decay rate integrated over a particular Dalitz
plot region. This was previously done by BABAR [24], but no mixing signal was observed.
Although this technique avoids the study of the complete Dalitz plot of the decay, it is
sensitive to y′ and the time-integrated rate Rmix only. Moreover, by considering only a
small fraction of the phase-space, one gives up the extreme richness that the interference
term may come up with if all the possible contributions to the final states are considered.
As the interference term is linear in the mixing parameters, the harder path of doing an
amplitude analysis may reward with a larger statistical power in characterizing mixing.

In our case the decay rate described in Equation 2.22 becomes:

Γf̄(m12, m13, t) = e−Γt[|Af̄ (m12, m13)|2 + |Af̄(m12, m13)||Āf̄(m12, m13)| ·
·
(

y cos δf̄ (m12, m13) − x sin δf̄ (m12, m13)
)

(Γt)

+
x2 + y2

4
|Āf̄(m12, m13)|2(Γt)2]. (2.26)

where

δf̄(m12, m13) = arg(A∗
f̄(m12, m13)Āf̄(m12, m13)) (2.27)

and f̄ = K+π−π0.

Note that this equation is valid for intermediate resonances which are not CP eigen-
states. Here, the Dalitz plot variables are m12, m13 and the amplitudes and strong phase
difference are explicit functions of the location on the Dalitz Plot.

The CF amplitude Āf̄(m12, m13) can be determined up to an overall phase in a time-
independent Dalitz Plot analysis of a CF decay to the same final state, with one reference
resonance given an arbitrary amplitude. Likewise, in the Dalitz plot analysis of the DCS



20 CHAPTER 2. ANALYSIS STRATEGY

amplitude, one reference resonance is fixed. The interference between the CF and DCS
amplitudes, parametrized with δf̄ (m12, m13), can be determined up to a phase in a time-
dependent analysis using Equation 2.26 as long as there are at least two well-measured
DCS resonances in the Dalitz plot.

Because both Āf̄(m12, m13) and Af̄ (m12, m13) now appear in the same Dalitz plot, one
of the two arbitrary amplitudes can be determined with respect to the other. We define

Af̄(m12, m13) = r0A
DCS
f̄ (m12, m13) (2.28)

Āf̄(m12, m13) = ĀCF
f̄ (m12, m13) (2.29)

In this way the module and the phase of the reference resonance for the DCS amplitude
can be set to a fixed value. The arbitrary phase between the CF reference and the DCS
reference resonances, δ0, cannot be extracted from the fit 4. To better understand the
physical meaning of r0 and δ0, one should consider that the ratio of the DCS and the CF
amplitudes is a global complex number. r0 is the module of that complex number, while
δ0 is the phase.

Using the Euler’s relations in order to expand δf̄ (m12, m13), we find

Γf̄(m12, m13, t) = e−Γt[r2
0|ADCS

f̄ (m12, m13)|2 + r0(y
′ℜ(A∗DCS

f̄ (m12, m13)Ā
CF
f̄ (m12, m13))

−x′ℑ(A∗DCS
f̄ (m12, m13)Ā

CF
f̄ (m12, m13)))(Γt)

+
x2 + y2

4
|ĀCF

f̄ (m12, m13)|2(Γt)2]. (2.30)

where

y
′

= y sin(δ0) − x cos(δ0)

x
′

= −y cos(δ0) + x sin(δ0)

The δ0 phase cannot be determined within this analysis. Nevertheless, fitting the WS
Dalitz plot allows to extract x′ and y′. Note that in general this phase is different from
the equivalent δ in the D0 → K+ π− analysis.

A convention must be adopted to define δ0. We consider it as the phase difference
between the D0 → K−ρ+ and the D0 → K+ρ− amplitudes.

4Note that this phase could not have been parametrized inside the ADCS
f̄

amplitude and extracted

from a fit; Equation 2.26 has no predictive power on δ0.
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2.3 D mixing analysis of D0 → K+π−π0

This analysis considers the decay D∗+ → D0π+, D0 → K+π−π0 , indicated in the fol-
lowing as ”Wrong sign” (WS) decay. The charge of the pion from the D∗ decay tags
the initial flavor of the D0, while the charge of the kaon form the D0 defines the flavor
at decay. If one ignores the mixing contribution, the final state we consider is reached
through a DCS transition. If we also include the mixing effect, a further contribution
comes from the CF D0 decays that undergo a mixing transition. We thus expect to have
an interference term arising from the sum of the two contributions. These are the second
and third terms in Equation 2.30.

We can have a parametrization of the CF amplitude by fitting separately the process
D0 → K−π+π0 , indicated in the following as ”Right Sign” (RS) decay. We can assume
that the only contribution to this process is a CF transition, since the DCS amplitude
could only intervene through mixing5.

Our goal is to fully analyze the Dalitz plot structure of both the RS and WS decays.
In this way we will be able to measure x′ and y′ separately.

2.4 |M|2 parametrization: the Isobar model

In order to specify the matrix element |M|2 defined in Section 2.2.1, an Isobar model
approach is adopted [33, 34]. The basic idea in this model is that the original three-body
decay (in our case the D0 decay) can be considered as a two steps phenomenon: the D0

decays into a long living particle (typically a pion or a kaon) and into a resonance. The
resonance then decays into two particles. This is pictorially shown in Figure 2.1. Each
vertex of the process includes a spin factor that in Figure 2.1 is indicated as ǫλ. This
differs if one considers scalars, vectors or tensors in the final state.

The matrix element is written in terms of a sum of resonant terms plus a non-resonant
contribution:

M =
∑

i

aie
iδiAi(m

2
12, m

2
13) + a0e

iδ0 (2.31)

where ai and δi are the strong amplitudes and phases of the ith resonance. Generally,
the Ai are parametrized with relativistic Breit-Wigner functions, which contain a kinetic
term and an angular function describing the spin dynamics of the decay. We follow this
tradition in order to describe the vectorial and tensorial components of our process. As
shown in Section 2.5, the scalar part of the process will be treated differently.

The amplitude for the decay D0 → 123 with an intermediate spin 1 resonance (12) is:

5Given that mixing has a rate of the order 10−2 and that the ratio between the DCS amplitude and
the CF amplitude is of the order 10−3, we expect approximately 1 mixing event every 100,000 CF events
in the RS sample
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Figure 2.1: Pictorial view of the Isobar model for the decay D0 → ABC

A = FrFD(pD0 + p3)µ

∑

λ ǫ
µ∗
λ ǫ

ν
λ

m2
r −m2

12 − imrΓ12
(p1 + p2)ν (2.32)

where mr is the nominal mass of the resonance. If instead one considers a tensorial
resonance:

A = FrFD(pD0 + p3)µ(pD0 + p3)ν

∑

λ ǫ
µν∗
λ ǫαβ

λ

m2
r −m2

12 − imrΓ12
(p1 + p2)α(p1 + p2)β (2.33)

Here FD and Fr are form factors that quantify the finite nature of the decaying meson
and of the intermediate resonance. They will be described in more detail in Section
2.4.2. The rest of the numerator is the angular contribution to the amplitude and will be
described in Section 2.4.1.

The denominator of both Equations 2.32 and 2.33 is the relativistic propagator. It
is generally accepted to consider a good approximation of the propagator the standard
Breit-Wigner function used here:

Breit-Wigner =
1

m2
r −m2

12 − imrΓ12
(2.34)

This approximation holds particularly well if the resonance is narrow. Here, Γ12 is a
function of the reconstructed mass m12, the momentum p12 of either daughter in the (12)
rest frame, the momentum pr of either daughter in the resonance rest frame, the spin J
of the resonance, and the width Γr of the resonance. The explicit expression is

Γ12 = Γr

(

p12

pr

)2J+1 (
mr

m12

)

F 2
r . (2.35)
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2.4.1 Spin dynamics

If the resonance has a non zero spin, it is necessary to provide the amplitude with a
description of the angular distribution. In order to determine the angular properties, we
start from the spin-sum rule. For a vector resonance, the numerator of Equation 2.32 is:

∑

λ

ǫµ∗λ ǫ
ν
λ = −gµν +

pµ
12p

ν
12

m2
12

(2.36)

with λ being the helicity state. Note that in the denominator of the second term
of the Equation, we consider the reconstructed invariant mass of the resonance instead
of a constant value. This enforces a spin 1 current in the process (ǫµλ(pµ

12) = 0). This
assumption is generally called Zemach tensor formalism. On the opposite, using a constant
in the denominator is the assumption on the base of the helicity model. If the W is near
the on-shell region, it is characterized by a spinless component. On the contrary, if the
W is far off-shell, it has an effective spin 0 component into its current, and the helicity
formalism is more appropriate. It is not established, and is still controversial, where
exactly in the mass spectrum one of the two formalisms becomes more appropriate than
the other.

2.4.2 Blatt-Weisskopf penetration factors

The coefficients FD and Fr in Equations 2.32 and 2.33 are the form factors which attempt
to model the underlying quark structure of theD0 meson and the intermediate resonances.
To parametrize them, we use the Blatt-Weisskopf penetration form factors with the same
convention used by the CLEO experiment [34]. In Table 2.1 the parametrization of the
form factors is given6. Note that they depend on the parameter R, which can be thought
of as the effective radius of the meson. To be consistent with the previous Dalitz plot
analyses, we choose theD meson to have R = 5 GeV−1 and all the intermediate resonances
to have R = 1.5 GeV−1.

2.4.3 Final parametrization for vector and tensor resonances

Using the information in the previous sections, we can rewrite the formulas in Equations
2.32 and 2.33 in their final form. For a spin 1 resonance AB we can describe the amplitude
as

A1(ABC|r) = FDFr

m2
BC −m2

AC +
(m2

D
−m2

C
)(m2

A
−m2

B
)

m2
r

m2
r −m2

AB − imrΓAB

. (2.37)

6The basic assumptions behind this parametrization is that the potential for a finite size particle
can be derived from the spherical well potential. The solution of the spherical well problem are the
Hankel spherical functions. The Blatt-Weisskopf barrier penetration factors are given by the logarithmic
derivative of the Hankel wave functions evaluated at R.
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Spin Form Factor

0 1

1

√
1+R2p2

r√
1+R2+p2

AB

2

√
9+3R2p2

r+R4p4
r√

9+3R2+p2
AB

+R4p4
AB

Table 2.1: The Blatt-Weisskopf penetration form factors parametrization. pr is the mo-
mentum of the meson calculated using the nominal mass value. pAB is the momentum of
the meson using the reconstructed mass.

Similar expressions hold for tensor particles:

A2(ABC|r) =
FDFr

m2
r −m2

AB − iΓABmr





(

m2
BC −m2

AC +
(m2

D −m2
C)(m2

A −m2
B)

m2
r

)2

−1

3

(

m2
AB − 2m2

D − 2m2
C +

(m2
D −m2

C)2

m2
r

) (

m2
AB − 2m2

A − 2m2
B +

(m2
A −m2

B)2

m2
r

)]

.

(2.38)

2.5 LASS parametrization for scalar resonances

For scalar particles, a different parametrization is used. For the Kπ S-wave component of
the model we use a parametrization extracted in a scattering experiment (LASS,[35])7. It
consists of aK∗

0 (1430) resonance together with an effective range non-resonant component:

A0 = F sin δF e
iδF +R sin δRe

iδRei2δF (2.39)

where

δF = φF + ctg−1(1/(apAB) + (rpAB)/2) (2.40)

δR = φR + tg−1(
M · Γ

M2 −m2
Kπ

) (2.41)

7In the early 1990’s, the LASS experiment at SLAC studied the scattering process K− p→ K− π+

n at 11 GeV of energy to study the Kπ system. They found a scalar resonance, the K∗ (1430), with a
broad width, that was not possible to describe with the usual Breit-Wigner lineshape.
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The first term represents a non-resonant contribution, while the second term represents
a resonant contribution. The phases δF and δR depend on theKπ invariant mass, while the
parameters F , φF , R and φR are constants and left floating in the nominal fit. Since the
LASS parametrization already includes a non-resonant term, there is no need of further
including a global non-resonant contribution.

The central values of the LASS parameters may depend on whether they are mea-
sured in a scattering or in a production experiment. In order to illustrate the differences
between scattering and production experiments we show in Figure 2.2 the modulus of
transition amplitude for the E791 analysis of the D+ → K− π+ π+ decay [25] and the
LASS scattering data. The reader should be made aware that in the LASS case, the 1/2
isospin component only is represented, while in the E791 case the amplitude in the figure
represents a superposition of 1/2 and 3/2 isospin amplitudes. The FOCUS experiment
analyzed the separate 1/2 and 3/2 isospin components of the amplitude, and proved that
the 1/2 isospin contribution is consistent with the LASS scattering production [26]. As
shown in Table 7.3, our parameters differ from the LASS findings. Nevertheless, the large
correlation among the parameters in our fit makes any comparison hard.
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Figure 2.2: Modulus of transition amplitude as a function of mKπ for LASS (left) and the
E791 analysis of D+ → K− π+ π+ (right). The parameters used in these plots are given
in Table 2.2.

Parameter E791 LASS
Mass MeV/c2 1428 +/- 16 1435 +/- 5
Width MeV/c2 266 +/- 28 279 +/- 6

a 5.73 +/- 0.78 1.95 +/- 0.09
r -1.32 +/- 0.38 1.76 +/- 0.36
F -0.96 +/- 0.06 1.0

φF [deg] -71.1 +/- 0.1 0.0
R 0.57 +/- 0.04 1.0

φR[deg] 13.4 +/- 0.3 0.0

Table 2.2: Parameters of LASS K∗
0 model as extracted in LASS data and the E791 D∗+

→ K− π+ π−.

The strategy we adopt in this analysis is to determine the values of the LASS parame-



26 CHAPTER 2. ANALYSIS STRATEGY

ters by fitting the D0 → K−π+π0 sample, and then use these values as a parametrization
of the S-wave in the D0 → K+π−π0 fit.

2.6 Average lifetime over the Dalitz plot

This analysis is particularly sensitive to mixing in the interference term, because the
second term of Equation 2.30 is linear in the mixing parameters. Mixing varies the
average D0 lifetime, increasing or decreasing its value if the interference is constructive or
destructive respectively. Therefore we expect to see a variation of the average lifetime over
the Dalitz plot. In order to test this statement, and to see which parts of the Dalitz plot
are more sensitive to mixing, we plot the average lifetime in two different mixing scenarios.
Each bin of these figures is represented with a box whose dimensions are proportional to
the statistics for that bin. This helps in understanding not only which bins vary with the
mixing, but also which ones have the higher statistical sensitivity.

For each scenario we perform a MC generation of the Dalitz plot variables and the D0

lifetime for the signal PDF, using for the Dalitz plot the model obtained from the blind fit
described in Section 10.1. We divide the Dalitz plot in bins, and in each bin we calculate
the average lifetime. The value of the lifetime used for the generation is the PDG central
value of 0.4101 ps [37].

In Figure 2.3 we show the plot of the average lifetime for the no-mixing scenario. As
expected, the average is the same all over the Dalitz plot, and is within the range expected
given the generated value of the lifetime.

In Figure 2.4 we show the plot of the average lifetime for the scenario where x′ = 0.8%
and y′ = 1%. This is the preferred scenario looking at the 2008 averages of the HFAG
group [22]. It appears from this plot that in the regions where the statistics is higher,
the average lifetime is generally higher. An exception seems the region of the interference
between the K∗0 (892) and the ρ(770): on one side of the interference lobe the average
lifetime is lower than the generated value. There is also a central region of the Dalitz plot
where the statistic is low and the average lifetime is lower than the PDG central value.
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Figure 2.3: Average D0 lifetime over the Dalitz plot for the no-mixing scenario.
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y′ = 1%.



Chapter 3

The BABAR experiment

3.1 Introduction

The design of BABAR detector [27] was planned to allow studies of CP violation, together
with the study of several B and D meson decays. The PEP-II B factory is a high
luminosity e+e− collider, which operates at the center-of-mass (CM) energy of 10.58 GeV
on the Υ (4S) resonance.

While the main purpose of BABAR is the study of B decays from the Υ (4S) resonance,
the cross section of e+e− → cc events is of the same order of magnitude as the one of e+e−

→ bb events (see Table 3.2). Therefore, high statistics D meson samples are expected.

In PEP-II the electron beam of 9 GeV collides head-on with the positron beam of
3.1 GeV, thus resulting in a Lorentz boost of the Υ (4S) resonance of βγ = 0.56 in the
laboratory frame. Many analyses in the B sector require a knowledge of the time interval
between the two B decays ∆t. If the B momenta are known, ∆t can be obtained by
measuring the decay point distance ∆z. Using a symmetric e+e− collider operating at the
Υ (4S) resonance, the two B are created almost at rest and the decay point distance would
be calculated considering the small phase space left once B masses have been subtracted
from the Υ (4S) mass

EΥ (4S) = 10.580 GeV → EB =
EΥ (4S)

2
= 5.290 GeV.

Given the total energy of each B, the kinetic energy is

√

E2
B −m2

B = p = mBβγ = 0.341 GeV

getting:

βγ = 0.065 ∼ β

29
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with the approximation of γ ∼ 1 (the system is non-relativistic). The B decay length
would then be

λB = βτc = 0.065 · 468 µm ≃ 30.42 µm

which is a quite small value with respect to a typical vertex detector resolution (∼
50µm). If a boost is applied along the z-axis, it results in a larger value of βγ so that the
average B meson decay distance ∆z is increased to values within the detector resolution.
Notice that the typical decay length of a D0 is approximately λD = 23.22µm. This makes
its lifetime measurement challenging in the BABAR experimental environment.

The very small branching ratios of B meson to CP eigenstates, typically of the order
of 10−4, the need for full reconstruction of final states with two or more charged particles
and several π0 and the need of tagging the second neutral B place stringent requirements
on the detector, which should have:

• a large and uniform acceptance down to small polar angle, relative to the boost
direction (forward);

• excellent reconstruction efficiency for charged particles down to momenta of 60
MeV/c and for photons of energy down to 20 MeV;

• very good momentum resolution to separate small signals from background;

• excellent energy and angular resolution for photons detection from π0 and η0 decays,
and from radiative decays in the range of energy from 20 MeV to 4 GeV;

• very good vertex resolution, both transverse and parallel to beam direction;

• efficient electron and muon identification. This feature is crucial for tagging the B
and D flavor, for reconstruction of charmonium states, and for studies of decays
with leptons;

• efficient and accurate identification of hadrons over a wide range of momenta for B
and D flavor tagging and for exclusive states reconstruction.

Figure 3.1 (top) shows a longitudinal view of the detector, while an end view is shown
in Figure 3.1 (bottom). A conventional right-handed coordinate system is defined: the z-
axis coincides with the principal axis of the DCH , oriented toward the positron direction,
while the x-axis points upward. The polar angle coverage extends down to 0.35 mrad in
the forward direction and to 0.4 mrad in the backward region. These limits are determined
by the permanent dipole (B1) and permanent quadrupoles (Q1) magnets of PEP-II. In
order to improve the coverage in the forward region, the whole detector is offset relative
to the interaction point (IP) by 37 cm in the forward direction.

In the following, a detailed presentation of design, construction and performance of
the main components of the BABAR detector is provided.
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3.2 The PEP-II B Factory

PEP-II is an e+e− storage ring system, designed to operate at a CM energy equal to the
Υ (4S) resonance mass, 10.58 GeV. Design parameters of PEP-II are presented in Tab.
2-1. Instant luminosity and daily integrated luminosity exceed the project values, having
achieved the peak value of 1.2 ·1034cm−2s−1 and a daily integrated luminosity of 891 pb−1

before the end of the data taking.

Parameters Design Typical

Energy HER/LER ( GeV) 9.0/3.1 9.0/3.1
Current HER/LER (A) 0.75/2.15 0.7/1.3
# of bunches 1658 553-829
Bunch spacing (ns) 4.2 6.3-10.5
σLx(µm) 110 120
σLy(µm) 3.3 5.6
σLz (mm) 9 9
Luminosity (1033cm−2s−1) 3 10
Luminosity ( pb−1/d) 135 700

Table 3.1: PEP-II beam parameters. Values are given both for the design and for typical
colliding beam operation. HER and LER refer to the high energy e− and low energy e+

ring, respectively. σLx,σLy and σLz refer to the horizontal, vertical and longitudinal RMS
size of the luminous region.

Data are collected mostly at Υ (4S) peak; they are referred to as on-resonance data.
The main processes active at the Υ (4S) are summarized in Table 3.2; light (u, d, s) and
charm quark pairs production is usually referred to as continuum production. While most
of the data are recorded at peak, about 10% are taken at a CM energy 40 MeV lower
than Υ (4S) resonance, to allow studies of continuum, and are called off-resonance data.
In addition, in 2008 BABAR undertook a data taking at different Y excited states energy,
nominally the Υ (2S), the Υ (3S) and an energy scan between the Υ (4S) and the Υ (6S)
mass. These datasets are not considered in the present analysis.

3.2.1 Luminosity

The luminosity L of the machine depends on the careful tuning of several parameters.
This dependence is expressed as:

L =
nfN1N2

A

where n is the number of bunches in a ring, f is the bunch crossing frequency, N1,2 are
the number of particles in each bunch, and A is their overlap section.

The machine has surpassed the design performances, reaching a peak luminosity of
L = 1.2 · 1034 cm−2s−1, with a significantly lower number of bunches.
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e+e− → Cross-section (nb)

bb̄ 1.05
cc̄ 1.30
ss̄ 0.35
uū 1.39
dd̄ 0.35
τ+τ− 0.94
µ+µ− 1.16
e+e− ∼ 40

Table 3.2: Production cross-sections at
√
s = M(Υ (4S)). The e+e− cross-section is the

effective cross-section, expected within the experimental acceptance.

Figure 3.2.1 shows the integrated luminosity provided by PEP-II collider in the period
October 1999 - April 2008, along with the integrated luminosity recorded by the BABAR de-
tector, that is 432.89 fb−1 collected at the Υ (4S) resonance, plus 53.85 fb−1off-resonance,
14.45 fb−1 at the Υ (2S) resonance and 30.23 fb−1 collected at the Υ (3S) resonance. This
analysis uses a subsample of 384 fb−1.

3.2.2 Machine background

Beam-generated background causes high single-counting rates, data acquisition dead
times, high currents and radiation damage of both detector components and electronics.
This resulted in lower data quality and may have limited the lifetime of the apparatus.
For this reason the background generated by PEP-II was studied in detail and the inter-
action region was carefully designed. Furthermore, background rates were continuously
monitored during data acquisition to prevent critical operation conditions for the detector.

The primary sources of machine-generated background are:

• synchrotron radiation in the proximity of the interaction region. A strong source of
background (many kW of power) is due to beam deflections in the interaction region.
This component is limited by channeling the radiation out of BABAR acceptance with
a proper design of the interaction region and the beam orbits, and placing absorbing
masks before the detector components;

• interaction between beam particles and residual gas in either ring. This can have
two different origins: beam gas bremsstrahlung and Coulomb scattering. Both types
of interaction cause an escape of beam particles from their orbit. This background
represents the primary source of radiation damage for the inner vertex detector and
the principal background for the other detector components;

• electromagnetic showers generated by beam-beam collisions. These showers are due
to energy degraded e+e− produced by radiative Bhabha scattering and hitting the
beam pipe within a few meters of the IP. This background is proportional to the
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luminosity of the machine and whereas now is under control, is expected to increase
in case of higher operation values.

3.2.3 Detector Overview

The BABAR detector was designed and constructed in such a way to fulfill all the above
requirements. A cutaway picture of the detector is shown in Figure 3.1. The main
subsystems are:

1. the Silicon Vertex Tracker (SVT ), which provides very accurate position informa-
tion for charged tracks. In addition, it is the only tracking device for charged
particles with very low transverse momentum, down to transverse momenta of
p⊥ ∼ 50 MeV/c. This is especially important to reconstruct D∗ → D0 π±

s decays,
where the ’slow’ pion π±

s has very low energies;

2. the Drift Chamber (DCH), surrounding the vertex detector, has a helium-based gas
mixture in order to minimize multiple scattering. It provides the main momentum
measurements for charged particles. In addition, the specific ionization measure-
ments (dE/dx) are used for identification of low momentum particles;

3. the Detector of Internally Reflected Čerenkov light (DIRC) is a novel device designed
for charged hadron particle identification;

4. the Electromagnetic Calorimeter (EMC), which consists of Cesium Iodide crystals,
is the most important detector for electron identification (by means of the ratio E

p
of

the deposited energy E and measured momentum p). It has a forward endcap to take
into account the laboratory frame boost which the decay products are affected of.
In addition, its measurements of neutral particles are crucial for the determination
of the distributions of interest in many decays;

5. a superconducting solenoid surrounds the detector and produces a 1.5 T axial mag-
netic field;

6. the Instrumented Flux Return (IFR) which provides muon and neutral hadron iden-
tification.

The next few sections will describe the individual detector components.

3.3 Tracking System

The charged particle detection and track parameter determination system consists of
two components: the Silicon Vertex Tracker (SVT ) and the Drift Chamber (DCH). In
particular, angles and positions, measured by the SVT , are used to determine the B
and D meson decay vertices, whereas the track curvature, in the DCH , gives momentum
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determination. Tracks reconstructed in SVT and DCH are also extrapolated to the other
detector components (DIRC, EMC and IFR). Since the average momentum of charged
particles is less than 1 GeV/c , the precision of the measured track parameters is mostly
affected by multiple Coulomb scattering in the detector material. Thus a special attention
is devoted to the components design in order to limit the overall amount of active material
in the tracking region. The global coordinate system is defined by the DCH position.
Because of either seismic activity or local deformation due to magnet quenches or detector
access, the SVT modules move with respect to the DCH . The alignment procedure is
performed using tracks from e+e− → µ+µ− events and cosmic rays.

3.3.1 Silicon Vertex Tracker

The charged particle tracking system is made of two components, the SVT and the DCH ,
and its principal purpose is the efficient detection of charged particles and the measure-
ment of their momentum and angles with high precision.

The SVT [28] has been designed to provide precise reconstruction of charged particle
trajectories and decay vertices near the interaction region for the measurement of the
time-dependent CP asymmetry, which requires a vertex resolution along the z-axis better
than 80µm. A resolution of ∼100µm in the plane perpendicular to the beam line is
achieved. Many of the decay products of B and D mesons have low pT . The SVT also
gives stand-alone tracking for particles with transverse momentum less than 120 MeV/c,
the minimum that can be measured reliably in theDCH alone. This feature is fundamental
for the identification of slow pions from D∗ decays: a tracking efficiency of 70% or more is
achieved for tracks with a transverse momentum in the range 50-120 MeV, with respect
to an efficiency of ∼ 95% for pT > 300 MeV/c. The SVT is composed of five layers of
detectors (see Figure 3.3) that are assembled with modules with readout at each end, thus
reducing the inactive material in the acceptance volume.
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cone

Front end 

electronics

Figure 3.3: Schematic view of the SVT : longitudinal section

The inner three layers provide position and angle information for vertices and are
mounted as close to the beryllium beam pipe as practical (first layer at a radius r = 3.2
cm), thus minimizing the impact of multiple scattering in the beam pipe. The outer two
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layers are at much larger radius (fourth layer at r = 12.4 cm), providing the coordinate
and angle measurements needed to link SVT and DCH track segments (see Figure 3.4).

To fulfill the physics requirements, the spatial resolution, for perpendicular tracks,
must be 10–15µm in the three inner layers and about 40µm in the two outer layers. The
inner three layers perform the impact parameter measurements, while the outer layers
are necessary for pattern recognition and low pT tracking, give redundant information
to inner modules and allow track association between SVT and DCH . The five layers of
double-sided silicon strip sensors, which form the SVT detector, are organized in 6, 6,
6, 16, and 18 modules, respectively. The modules of the inner three layers are straight,
while the modules of layers 4 and 5 are arch-shaped (see Figure 3.3 and 3.4). This arch
design was chosen to minimize the amount of silicon required to cover the solid angle,
while increasing the crossing angle for particles near the edges of acceptance. In order
to minimize the material in the acceptance region, the readout electronics are mounted
entirely outside the active detector volume. The total active silicon area is 0.96 m2 and the
material traversed by particles is ∼ 4% of a radiation length. The geometrical acceptance
of SVT is 90% of the solid angle in the CM system, and typically the 86% is used in
charged particle tracking.

Beam Pipe 27.8mm radius

Layer 5a

Layer 5b

Layer 4b

Layer 4a

Layer 3

Layer 2

Layer 1

Figure 3.4: Schematic view of the SVT : transverse section

The spatial resolution is determined by measuring the distance (in the plane of the
sensor) between the track trajectory and the hit, using high-momentum tracks in two
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prong events. The SVT hit resolution for z and φ side hits as a function of track incident
angle for each of the five layers is shown in Figure 3.5.
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Figure 3.5: SVT hit resolution in the z (left) and φ (right) coordinates, plotted as a
function of track incident angle. Each plot shows a different layer of the SVT . The plots
in the φ coordinate for layers 1-3 are asymmetric around φ = 0 because of the “pinwheel”
design of the inner layers.

The measured resolutions are in excellent agreement with expectations from Monte
Carlo simulations. The double-sided sensors provide up to ten measurements per track
of dE/dx. For every track with signals from at least four sensors in the SVT , the dE/dx
mean is calculated. For minimum ionizing particles (MIPs), the resolution on dE/dx is
approximately 14%. A 2σ separation between kaons and pions can be achieved up to
momenta of 500 MeV/c and between kaons and protons beyond 1 GeV/c.

3.3.2 Drift Chamber

The Drift Chamber, or DCH , is the BABAR main tracking device. It supplies high precision
measurements of charged particle momenta and angles, through measurements of track
curvature inside the 1.5 T magnetic field and it contributes also to particle identification
(PID) process by measuring the energy loss due to ionization (dE/dx ); a resolution of
about 7.5% allows a π/K discrimination in the momentum range up to 700 MeV/c. The
DCH is a compact design, 280 cm-long cylinder with an inner radius of 23.6 cm and an
outer radius of 80.9 cm.

The forward and rear aluminum end-plates are 12 mm and 24 mm thick respectively.
The readout electronics are mounted on the backward end-plate, minimizing, in this
way, the amount of material in the forward direction and thus preventing performances
degradation for the outer BABAR detector components.
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Figure 3.6: Longitudinal section of the DCH with principal dimensions; the chamber
center is offset by 370 mm from the interaction point. Numbers are in mm

Since momentum resolution is limited by multiple scattering in the inner cylinder,
DCH is built using light materials, low mass wires and helium-based gas mixture. The
mixture of 80% helium and 20% isobutane is chosen to provide good spatial and dE/dx
resolution, and a reasonably short drift time, while minimizing the material.

A longitudinal section of the BABAR DCH is shown in Figure 3.6. The DCH may
be imagined organized into 7104, 1.2 x 1.8 cm, hexagonal cells clustered in 40 concentric
layers. Each hexagonal cell consists of one sense wire surrounded by six field-shaping wires;
in such a configuration an approximate circular symmetry of the equipotential contours
is reached over a large portion of the cell. The field wires are at ground potential, while
a positive high voltage is applied on the sense wire.

The 40 layers are grouped by into super-layers. Figure 3.7(b) shows the four innermost
superlayers. A complete symmetry along the z-axis does not allow the track position
reconstruction along that direction. For this reason two different wire types are used: the
wire type A, parallel to the z-axis, provides position measurements in the x − y plane,
while longitudinal position information is obtained with wires placed at small angles with
respect to the z axis (U or V wire type). Sense and field wires have the same orientation
in each super-layer and are alternating following the scheme AUVAUVAUVA.

The design value for the spatial resolution for single hits in DCH is 140 µm. The
single cell resolution, obtained from all charged tracks in hadronic events, is shown in
Figure 3.8(a) for a working voltage around 1960 V ; its mean value is ∼ 125 µm. The
chamber hit timing information is reconstructed using TDCs. Flash-ADCs are used to
monitor the shape of pulse signal as a function of time. Both information are fundamental
to reconstruct the energy deposit inside the cells. A correction for the gain factor is
computed as function of a known injected amount of charge.

Apart from precise measurements of charged particle momenta and directions, the
drift chamber also provides particle identification by the determination of the ionization
loss dE/dx. Corrections to dE/dx due to saturation, cell internal and single wire path
lengths and layer gain are computed during offline reconstruction phase1. Bhabha events
(i.e. e+e− → e+e−) are used to determine the resolution on the mean of energy loss, which
is (Figure 3.8(b)) of about 7.5%.

1All correction have been proved to be stable as a function of time
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Figure 3.8: (a) DCH single hit resolution. (b) dE/dx resolution for Bhabha electrons.
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3.4 Detector of Internally Reflected Čerenkov Light

(DIRC)

Above ∼ 700 MeV/c the dE/dx information does not allow to separate pions and kaons.
BABAR has therefore a dedicated PID subdetector. It is a new type of ring-imaging
Čerenkov detector called DIRC [29]. It was designed to be able to provide π/K separation
of ∼ 3σ or greater for all tracks from B or D meson decays from the pion Čerenkov
threshold up to 4.2 GeV/c. The phenomenon of Čerenkov light emission is widely used
in particle detectors technology. A charged particle traversing a medium with a velocity
of β greater than the speed of light in that medium (that is β > 1

n
, where n is the medium

refraction index) emits directional electromagnetic radiation (called Čerenkov light). The
angle of emission θc of the photons with respect to the track direction is called Čerenkov
angle and is determined by the velocity of the particle with the relation

cosθc =
1

nβ

where β = v
c
, v is the particle velocity, and c the light velocity.

Thus, the measurement of θc determines β and, given the momentum of the particle
(measured in the DCH), the mass of the particle can be obtained. The DIRC (Figure 3.9)
is placed before the electromagnetic calorimeter. In order to minimize the worsening of
the energy resolution and volume, and hence cost, of the electromagnetic calorimeter, the
DIRC has been designed to be thin and uniform in terms of radiation lengths. Moreover,
for operation at high luminosity, it needs fast signal response, and should be able to
tolerate high background.

Figure 3.10 shows a schematic view of DIRC geometry and basic principles of Čerenkov
light production, transport and image reconstruction.

Since particles are produced mainly forward in the detector because of the boost, the
DIRC photon detector is placed at the backward end: the principal components of the
DIRC are shown in Figure (3.9). The DIRC is placed in the barrel region and consists of
144 long, straight bars arranged in a 12-sided polygonal barrel. The bars are 1.7 cm-thick,
3.5 cm-wide and 4.90m-long: they are placed into 12 hermetically sealed containers, called
bar boxes, made of very thin aluminum-hexcel panels. Within a single bar box, 12 bars are
optically isolated by a ∼ 150 µm air gap enforced by custom shims made from aluminum
foil.

The radiator material used for the bars is synthetic fused silica: the bars serve both
as radiators and as light pipes for the portion of the light trapped in the radiator by total
internal reflection. Synthetic silica has been chosen because of its resistance to ionizing
radiation, its long attenuation length, its large index of refraction, its low chromatic
dispersion within its wavelength acceptance.

The Čerenkov radiation is produced within these bars and is brought, through succes-
sive total internal reflections, in the backward direction outside the tracking and magnetic
volumes: only the backward end of the bars is instrumented. A mirror placed at the other



42 CHAPTER 3. THE BABAR EXPERIMENT

Figure 3.9: Exploded view of the DIRC mechanical support structure without the iron
magnetic shield.
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Figure 3.10: Schematics of the DIRC fused silica radiator bar and imaging region.
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end on each bar reflects forward-going photons to the instrumented end. The Čerenkov
angle at which a photon was produced is preserved in the propagation, with some discrete
ambiguities (the forward-backward ambiguity can be resolved by the photon arrival-time
measurement, for example). The DIRC efficiency grows together with the particle inci-
dence angle because more light is produced and a larger fraction of this light is totally
reflected. To maximize the total reflection, the material must have a refractive index
(fused silica index is n = 1.473) higher than the surrounding environment (the DIRC is
surrounded by air with index n = 1.0002).

Once photons arrive at the instrumented end, most of them emerge into a water-filled
expansion region, called the Standoff Box: the purified water, whose refractive index
matches reasonably well that of the bars (nH2O = 1.346), is used to minimize the total
internal reflection at the bar-water interface.

The standoff box is made of stainless steel and consists of a cone, cylinder and 12
sectors of PMTs: it contains about 6000 liters of purified water. Each of the 12 PMTs
sectors contains 896 PMTs in a close-packed array inside the water volume: the PMTs are
linear focused 2.9 cm diameter photo-multiplier tubes, lying on an approximately toroidal
surface.

The DIRC is intrinsically a three-dimensional imaging device, giving the position and
arrival time of the PMT signals. The three-dimensional vector pointing from the center
of the bar end to the center of the PMT is computed, and then is extrapolated (using
Snell’s law) into the radiator bar in order to extract, given the direction of the charged
particle, the Čerenkov angle. Timing information is used to suppress background hits
and to correctly identify the track emitting the photons.

3.4.1 DIRC performance

The DIRC detector offers a powerful mean to discriminate kaons and pions. In Figure 3.11
the Čerenkov angle distribution for several particles is shown. As can be noted, kaons
and pions present a large discrepancy for low momenta. The discrimination between
pions and leptons is guaranteed by the associated information of the EMC and IFR
detectors. Performance plots for kaons and pions identification and fake rates as a function
of momenta are shown in Section 4.1.2.

3.5 The Electromagnetic Calorimeter EMC

The electromagnetic calorimeter (EMC) is designed to measure electromagnetic showers
with excellent efficiency, energy and angular resolution over the energy range from 20
MeV to 9 GeV. The understanding of CP violation in the B meson system requires the
reconstruction of final state containing a direct π0, or that can be reconstructed through
a decay chain containing one or more π0. Moreover, by identifying electrons the EMC
contributes to the flavor tagging of neutral B-mesons via semi-leptonic decays, to the
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Figure 3.11: Čerenkov angle distribution in the DIRC for different particles.

reconstruction of vector mesons like J/ψ and to the study of semi-leptonic and rare
decays of B and D mesons, and τ leptons.

The upper bound of the energy range is set by the need to measure QED processes,
like e+e− → e+e−(γ) and e+e− → γγ for calibration and luminosity determination. The
lower bound is set by the need for highly efficient reconstruction of B-mesons decays
containing multiple π0 s and η0s. The measurement of very rare decays containing π0 s in
the final state (for example, B0 → π0π0) puts the most stringent requirements on energy
resolution, expected to be of the order of 1 − 2%. Below 2 GeV energy, the π0 mass
resolution is dominated by the energy resolution, while at higher energies, the angular
resolution becomes dominant and it is required to be of the order of few mrad. The EMC
is also used for electron identification and for completing the IFR output on µ and K0

L

identification. It also has to operate in a 1.5 T magnetic field.

The EMC has been chosen to be composed of a finely segmented array of thallium-
doped cesium iodide (CsI(Tl)) crystals. The crystals are read out with silicon photodiodes
that are matched to the spectrum of scintillation light. The energy resolution of a homo-
geneous crystal calorimeter can be described empirically in terms of a sum of two terms
added in quadrature:

σE

E
=

a

4
√

E( GeV)
⊕ b

where E and σE (measured in GeV) refer to the energy of a photon and its r.m.s.
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error. The energy dependent term a arises from the fluctuations in photon statistics.
Other sources are the electronic noise of the photon detector and electronics and from
the beam-generated background that leads to large numbers of additional photons. This
first term dominates at low energy, while the constant term b is dominant at higher
energies (> 1 GeV). The latter derives from non-uniformity in light collection, leakage or
absorption in the material in front of the crystals and uncertainties in the calibration.

The angular resolution is determined by the transverse crystal size and the distance
from the interaction point: it can be empirically parameterized as a sum of an energy-
dependent and a constant term

σθ = σφ =
c

√

E( GeV)
+ d (3.1)

where E is measured in GeV. In CsI(Tl), the intrinsic efficiency for photon detection is
close to 100% down to a few MeV, but the minimum measurable energy in colliding beam
data is about 20 MeV for the EMC: this limit is determined by beam and event-related
background and the amount of material in front of the calorimeter. Thallium-doped CsI
meets the needs of BABAR in several ways. Its properties are listed in Table 3.3. The high
light yield and small Molière radius allow for excellent energy and angular resolution,
while the short radiation length allows for shower containment at BABAR energies with a
relatively compact design.

Parameter Values

Radiation length 1.85 cm
Moliére radius 3.8 cm

Density 4.53 g/ cm3

Light yield 50.000 γ/ MeV
Light yield tem. coeff. 0.28% /C
Peak emission λmax 565 nm

Refractive index (λmax) 1.80
Signal decay time 680 ns (64%)

3.34 µs(36%)

Table 3.3: Properties of CsI(Tl)

The BABAR EMC consists of a cylindrical barrel and a conical forward end-cap: it
has a full angle coverage in azimuth, while in polar angle it extends from 15.8◦ to 141.8◦

corresponding to a solid angle coverage of 90% in the CM frame. Radially the barrel is
located outside the particle ID system and within the magnet cryostat; the barrel has
an inner radius of 92 and an outer radius of 137.5 cm and it’s located asymmetrically
with respect to the interaction point, extending 112.7 cm in the backward direction and
180.1 cm in the forward direction. The barrel contains 5760 crystals arranged in 48
rings with 120 identical crystals each: the end-cap holds 820 crystals arranged in eight
rings, adding up to a total of 6580 crystals. They are truncated-pyramid CsI(Tl) crystals:
they are tapered along their length with trapezoidal cross-sections with typical transverse
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dimensions of 4.7 × 4.7 cm 2 at the front face, flaring out towards the back to about
6.1 × 6.0 cm 2. All crystals in the backward half of the barrel have a length of 29.6 cm:
towards the forward end of the barrel, crystal lengths increase up to 32.4 cm in order to
limit the effects of shower leakage from increasingly higher energy particles. All end-cap
crystals are of 32.4 cm length. The barrel and end-cap have total crystal volumes of 5.2
m3 and 0.7 m3, respectively. The CsI(Tl) scintillation light spectrum has a peak emission
at 560 nm: two independent photodiodes view this scintillation light from each crystal.
The readout package consists of two silicon PIN diodes, closely coupled to the crystal and
to two low-noise, charge-sensitive preamplifiers, all enclosed in a metallic housing.

A typical electromagnetic shower spreads over many adjacent crystals, forming a clus-
ter of energy deposit: pattern recognition algorithms have been developed to identify
these clusters and to differentiate single clusters with one energy maximum from merged
clusters (bumps) with more than one local energy maximum. Clusters are required to
contain at least one seed crystal with an energy above 10 MeV: surrounding crystals are
considered as part of the cluster if their energy exceeds a threshold of 1 MeV or if they are
contiguous neighbors of a crystal with at least 3 MeV signal. The level of these thresholds
depends on the current level of electronic noise and beam-generated background.

A bump is associated with a charged particle by projecting a track to the inner face
of the calorimeter: the distance between the track impact point and the bump centroid is
calculated and if it is consistent with the angle and momentum of the track, the bump is
associated with this charged particle. Otherwise it is assumed to originate from a neutral
particle.

On average, 15.8 clusters per hadronic event are detected: 10.2 are not associated to
any charged particle. Currently, the beam-induced background contributes on average
with 1.4 neutral clusters with energy above 20 MeV.

At low energy, the energy resolution of the EMC is measured directly with the ra-
diative calibration source yielding σE/E = 5.0 ± 0.8% at 6.13 MeV. At high energy, the
resolution is derived from Bhabha scattering where the energy of the detected shower can
be predicted from the polar angle of the electrons and positrons. The measured resolution
is σE/E = 1.9 ± 0.1% at 7.5 GeV.

The angular resolution measurement is based on the analysis of π0 and η decays to
two photons of approximately equal energy: the resolution varies between about 12 mrad
at low energy and 3 mrad at high energies.

Left plot in Fig. 3.13 shows the two-photon invariant mass in BB̄ events: the recon-
structed π0 mass is measured to be 135.1 MeV/c2 and is stable to better than 1% over
the full photon energy range. The width of 6.9 MeV/c2 agrees well with the prediction
obtained from detailed Monte Carlo simulation.

The EMC electron identification is based on the shower energy, lateral shower moments
and track momentum to separate electrons from charged hadrons. In addition, the dE/dx
energy loss in the DCH and the DIRC Čerenkov angle are required to be consistent with
an electron. The most important variable for hadron discrimination is the ratio of shower
energy to track momentum (E/p). Right plot in Fig. 3.13 shows the efficiency for electron
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and the π0 s are required to exceed 30 MeV and 300 MeV respectively.

identification and the pion mis-identification probability as functions of momentum. The
electron efficiency is measured using radiative Bhabha and e+e− → e+e−e+e− events,
while the pion mis-identification uses selected charged pions from K0

S decays and three-
prong τ decays: a tight selector results in an efficiency plateau at 94.8% above 1 GeV/c
and a pion mis-identification probability of the order of 0.2%.

3.6 The Instrumented Flux Return IFR

The Instrumented Flux Return (IFR) is designed to identify muons and neutral hadrons
(primarily K0

L
and neutrons). Muons are important for tagging the flavor of neutral B

mesons via semi-leptonic decays, for the reconstruction of vector mesons, like the J/ψ ,
and the study of semi-leptonic and rare decays involving leptons from B and D mesons
and τ leptons. K0

L
detection allows for the study of exclusive B decays, in particular CP

eigenstates; it could also help in vetoing charm decays and improve the reconstruction
of neutrinos. The principal requirements for IFR are large solid angle coverage, good
efficiency and high background rejection for muons down to momenta below 1 GeV/c. For
neutral hadrons, high efficiency and good angular resolution are most important.

The IFR uses the steel flux return of the magnet as muon filter and hadron absorber.
Single gap resistive plate chambers (RPC) with two-coordinate readout, operated in lim-
ited streamer mode constitute the active part of the detector [30]. RPCs detect streamers
from ionizing particles via capacitive readout strips. They offer the advantage of simple
and low cost construction. Further benefits are large signals and fast response allowing
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for simple and robust front end electronics and good time resolution, typically 1-2 ns.
The position resolution depends on the segmentation of the readout; few millimeters are
achievable. A cross section of an RPC is shown schematically in Figure 3.14. The planar
RPCs consist of two bakelite sheets, 2 mm thick and separated by a gap of 2 mm. The
bulk resistivity of the bakelite sheets has been especially tuned to 1011 − 1012Ω cm. The
external surfaces are coated with graphite to achieve a surface resistivity of approximately
100 kΩ/ cm2. These two graphite surfaces are connected to high voltage (approximately
8 kV) and ground, and protected by an insulating mylar film. The bakelite surfaces facing
the gap are treated with linseed oil to improve performance. The modules are operated
in limited streamer mode and the signals are read out capacitively, on both sides of the
gap, by external electrodes made of aluminum strips on a mylar substrate.

Aluminum
X Strips
Insulator

2 mm

Graphite
Insulator

Spacers
Y Strips

Aluminum

H
.V

. ���� ���� ���� ���� ���� ���� ���� ����Foam

Bakelite

Bakelite
Gas

Foam

������Graphite

2 mm
2 mm




Figure 3.14: Cross section of a planar RPC with the schematics of the HV connection.

The RPC are installed in the gaps of the finely segmented steel of the six barrel
sectors and the two end-doors of the flux return, as illustrated in Figure 3.15. The steel
segmentation has been optimized on the basis of Monte Carlo studies of muon penetration
and charged and neutral hadron interactions. The steel is segmented into 18 plates,
increasing in thickness from 2 cm of the inner 9 plates to 10 cm of outermost plates for a
total 65 cm. In addition, two layers of cylindrical RPCs are installed between the EMC
and the magnet cryostat to detect particles exiting the EMC.

Soon after the installation (which took place in Summer 1999), the efficiency of a
significant fraction of the chambers (initially greater then 90%) started to deteriorate at
a rate of 0.5-1%/month. In order to solve some of the inefficiency problems an extensive
improvement program was developed and made relevant advances. The RPCs in the
forward end-cap region were replaced in Summer 2002 with new ones based on the same
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Figure 3.15: Overview of the IFR Barrel sectors and forward and backward end-doors;
the shape of the RPC modules and the way they are stratified is shown.

base concept but with improved fabrication technique and quality controls. The RPCs in
the barrel region were replace with limited streamer tube (LST) detectors.

A “standard” LST configuration [31] consists of a silver plated wire 100µm in diameter,
located at the center of a cell of 9x9µm2 section. A plastic (PVC) extruded structure,
or profile, contains 8 such cells, open on one side (see Figure 3.16). The profile is coated
with a resistive layer of graphite, having a typical surface resistivity between 0.1 and 1
MΩ/square. The profiles, coated with graphite and strung with wires, are inserted in
plastic tubes (“sleeves”) of matching dimensions for gas containment. The signals for the
measurement of one coordinate can be read directly either from the wires or from external
strip planes attached on both side of the sleeve.

More than one year of R&D studies have been done before choosing the final LST
design. R&D program has been concentrated on several critical issues like: selection
of safe gas mixture, rate capability, wire surface quality and uniformity, aging test and
performance of the prototypes. Final results led us to a 15x17µm2 cell design (which is
more reliable and efficient) where each tube is composed by 7 or 8 cells and assembled in
modules. We use wire readout for the azimuthal coordinate, φ, and strips plans for the
z coordinate (along the beam direction). In order to obtain high performances and to
respect the safety requirements it has been chosen a ternary gas mixture of Ar/C4H10/CO2

(3/8/89)%.

Two of the six sextants of the barrel have been replaced in Summer 2004 (affecting
data of Run5 and later) while the remaining four sextants have been replaced in Summer
2006 (affecting data of Run6 and later). Extensive quality control studies have been
performed before the installation to check the reliability of these detectors, which are
expected to operate until the end of the experiment with ≈ 90% efficiency, as measured
in cosmic ray runs.
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Figure 3.16: Schematic of the “standard” Limited Streamer Tube configuration.

3.6.1 Detector performance

The efficiency of the RPCs and LSTs is evaluated from samples of high momentum muons
collected both in normal collision data (from the process e+e− → µ+µ−) and monthly
dedicated cosmic ray runs. The efficiency is found by counting the number of times a hit
found in a certain chamber when a charged track is expected, based on information from
the other chambers and from the tracking system, to traverse it. The absolute efficiency
at the nominal working voltage (typically 7.6 kV for RPC, 5.5 kV for LST) is stored in
the BABARcondition database for use in the event reconstruction software.

Following the installation and commissioning of the IFR system all the RPC modules
were tested with cosmic rays and their average efficiency was measured to be approxi-
mately 92%.

As previously said, soon after installation, a progressive, steady efficiency deterioration
has been observed in a significant fraction of the chambers. Detailed efficiency studies
revealed large regions of very low efficiencies in the modules, but no clear pattern was
identified. The overall effects are shown into Figure 3.17. Tests to understand the ef-
ficiency decrease excluded several possible causes as the primary source of the problem,
such as a change in the bakelite bulk resistivity, gas flow or composition. On the other
hand, it was found that a number of prototype RPCs developed similar efficiency prob-
lems after being operated above a temperature 36◦C2 for a period of two weeks: in some
of these modules evidence was found that the linseed oil had accumulated at various spots
under the influence of the electric field.

The LST performance has proved itself quite constant with time. The tubes perfor-
mances have proved insensitive to most of the external conditions. The system efficiency

2Similar temperatures had been reached inside the iron during the first summer of operations due to
the temperature in the experimental hall and the absence of a water cooling system
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Figure 3.17: Efficiency history for 12 months starting in June 1999 for RPC modules
showing different performance. Top: highly efficient and stable. Middle: slow continuous
decrease in efficiency. Bottom: faster decrease in efficiency.

has been constant over time, but for small periods of time in which depletions in effi-
ciency have been observed. These were mainly due to impurities in the gas mixture that
affected the streamer features inside the detector. Figure 3.18 shows the efficiency in a
four months period.

3.7 The trigger

The PEP-II high luminosity is also due to the 1.2m bunch spacing: the bunch time
spacing is 4.2ns corresponding to a cross frequency of 238MHz. At design luminosity,
beam-induced background rates are typically about 20 kHz each for one or more tracks in
the drift chamber with pt > 120 MeV/c or at least one EMC cluster with E > 100 MeV.
This rate is to be contrasted with the desired logging rate of less than 120Hz. The trigger
and data acquisition subsystems are designed to record data at no more than the latter
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Figure 3.18: Efficiency history for 4 months starting in May 2007 for LST modules. The
dip at the beginning of August was due to a flawed valve in the gas mixing system.

rate: the purpose of the trigger is to reject backgrounds while selecting a wide variety of
physics processes. The total trigger efficiency is required to exceed 99% for all BB events
and at least 95% for continuum events. The trigger should also contribute no more than
1% to dead time.

The BABARtrigger has two levels: Level 1 which executes in hardware and Level 3 which
executes in software after the event assembly. The Level 1 trigger system is designed to
achieve very high efficiency and good understanding of the efficiency. During normal
operation, the L1 trigger is configured to have an output rate of typically 1 kHz, while the
L3 filter acceptance for physics is ∼ 90Hz.

Event signatures are used to separate signal from background. Combinations of the
following global event properties are used in the L1 trigger as general event selection
criteria: charged track multiplicity, calorimeter cluster multiplicity and event topology.
These selection criteria have associated thresholds for the following parameters: charged-
track transverse momentum (pt), energy of the calorimeter clusters (Eclus), solid angle
separation (φ) and track-cluster match quality. The trigger definition can contain selection
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criteria that differ only by the values of thresholds. A small fraction of random beam
crossings and events that failed to trigger are also selected for diagnostic purposes.

For a given trigger level, the global selection is a logical OR of a number of specific trig-
ger selection lines, where each line is the result of a boolean operation on any combination
of trigger objects: Table 3.4 shows some examples of trigger objects.

It is important to notice that the trigger configuration doesn’t influence our analysis
because it doesn’t rely on any cut on the vertex impact parameter. This is not true at
hadronic machines.

object description threshold
B Short track reaching DCH super-layer 5 120 MeV/c
A Long track reaching DCH super-layer 10 180 MeV/c
A′ High pt track 800 MeV/c
M All-θ MIP energy 100 MeV/c
G All-θ intermediate energy 250 MeV/c
E All-θ high energy 700 MeV/c

Table 3.4: Trigger objects for the Level 1 trigger.

Level 1 Trigger ǫBB̄(%) ǫcc̄(%) ǫuds(%) ǫee(%) Rate (Hz)
A ≥ 3&B∗ ≥ 1 97.1 88.9 81.1 − 180

A ≥ 1&B∗ ≥ 1&A′ ≥ 1 95.0 89.2 85.2 98.6 410
M ≥ 3&M∗ ≥ 1 99.7 98.5 94.7 − 160
E −M ≥ 1 71.4 77.1 79.5 97.8 150

B ≥ 3&A ≥ 2&M ≥ 2 99.4 94.8 87.8 − 170
M∗ ≥ 1&A ≥ 1&A′ ≥ 1 95.1 90.1 87.0 97.8 250
E ≥ 1&B ≥ 2&A ≥ 1 72.1 77.7 79.2 99.3 140

Combined Level 1 Triggers > 99.9 99.9 98.2 > 99.9 970

Table 3.5: Trigger efficiencies and rates at a luminosity of 2.2 1033 cm−2s−1 for selected
triggers applied to various physics samples. Symbols refer to the counts for each object
in Table 3.4.

Table 3.7 shows some trigger lines together with their L1 trigger rates and their effi-
ciencies for various physics processes: the star (*) symbol next to a trigger object indicates
that a minimum angular separation was required in order to count more than one object
(typically 90◦). Back-to-back topologies among clusters are written like E −M meaning
an E cluster back to back to an M cluster, while the & symbol denotes requiring clusters
and tracks in coincidence, a non-orthogonal selection criterion.

Level 3 trigger is part of the online farm and consists of a network of commercial
processors: input are the L1 trigger data and the full event data for events that passed
the L1 trigger. Output to mass storage is the full event and trigger data of events accepted
by L3. L3 trigger algorithms have all event information available and they operate by
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refining and improving the selection methods used by L1: better DCH tracking (vertex
resolution) and EMC clustering filters allow for greater rejection of beam backgrounds
and Bhabha events. A cut on the vertex position can be made to reject events that
did not originate at the interaction point. L3 trigger also includes a variety of filters to
perform event classification and background reduction: the logging decision is based on
two orthogonal filters, one relying exclusively on DCH data and the other relying only on
EMC data.

The drift chamber filters select events with one tight (pt > 600 MeV/c) track or two
loose (pt > 250 MeV/c) tracks originating from the IP: track selection is based on the
x − y closest approach distance (d0) to the IP and the corresponding z coordinate for
that closest approach point (z0). The IP is a fixed location close to the average beam
position over many months. Tight (loose) tracks have to satisfy a vertex condition defined
as |d0| < 1.0 cm (|d0| < 1.5 cm) and |z0 − zIP | < 7.0 cm (|z0 − zIP | < 10.0 cm).

The calorimeter filters select events with either high energy deposits (ECM > 350 MeV)
or high cluster multiplicity (at least 4 clusters): they also require a high effective mass
(> 1.5 GeV/c2) calculated from the cluster energy sums and the energy weighted centroid
positions of all clusters in the event assuming mass-less particles. A Bhabha veto filter
is also used: it selects one-prong (only a positron in the back part of the detector) and
two-prong events (with both e+ and e− detected) and it applies stringent criteria on EMC
energy deposits relying on the track momenta and E/p values.

During a typical run on the Υ (4S) peak with an average luminosity of 2.6 1033 cm−2s−1,
the physics events represent the 13% of the total L3 output (with a rate of 16Hz), while
the calibration and diagnostic samples comprise 40% (with a rate 49Hz): the total output
rate is 122Hz. The remaining fraction of events comprises two-photon events, Bhabha
backgrounds and beam-induced backgrounds.
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Chapter 4

Event selection

In this chapter, we describe the main event selection criteria we consider in order to isolate
our signal in the BABAR dataset. The sample we use consists of both on-peak and off-peak
events, for a total luminosity of 384 fb−1.

To allow for background studies and cut optimization, we also consider Monte Carlo
(MC) events in which the full detector reconstruction has been simulated. The MC sample
consists of ∼ 400 fb−1 events, reproducing the following production mechanisms: e+e−

→ [cc, B0B0, B+B−, uds and τ+τ− ].

The optimization of the selection criteria is done, unless otherwise reported, maximiz-
ing in the MC sample the statistical significance, defined as:

statistical significance =
S√
S +B

(4.1)

where S is the number of signal events and B is the number of background events in the
MC sample.

4.1 Selection criteria

4.1.1 The π0 selection

π0 s are reconstructed in the decay π0 → γγ. Photons are taken from a list of candi-
dates which present a cluster in the electromagnetic calorimeter not associated with a
reconstructed track. Since the acceptance of the tracking system is slightly smaller than
the acceptance of the EMC, a cut on the azimuthal angle rejects as a neutral particle a
bump in the calorimeter outside the BABAR tracking system. In order to consider only
candidates with a good energy information, we select photons which have Eγ > 100 MeV.
This cut also reduces the combinatoric background.

Besides photons, there are other neutral particles that can leave a signal into the

57
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calorimeter. These are mainly K0
L

s. These particles can produce an hadronic shower
in the detector. Photons typically interact while crossing the CsI(Tl) crystals of EMC,
through the formation of electromagnetic showers. These showers have a transverse spa-
tial distributions which are at 99% contained in 3RMolière, where RMolière is the Molière
radius, whose value is 3.8 cm for the BABAR calorimeter. A K0

L
typically interacts in the

EMC through a hadronic shower, which is at 99% transversally contained inside an ab-
sorption length (∼ 34 cm for the EMC). For this reason it is natural, for a reliable K0

L
/γ

discrimination, to parameterize the calorimeter cluster shapes using a variable sensitive
to the different particle interactions inside the detector. We define the Lateral moment
(LAT ) to be:

∑

i=2,nEi · r2
i

(
∑

i=2,nEi · r2
i ) + 25(E0 + E1)

(4.2)

with the i-th crystal in descending energy order. LAT is very sensitive to cluster
shapes. In the case of a signal due to a photon shower LAT is expected to be small,
since the two most energetic crystals are not considered in the numerator. By the other
hand, a hadronic shower is characterized by a more spread energy distribution; in this
case, numerator and denominator are not supposed to be very different. We only select
photons which have 0.01 < LAT < 0.8. In Figure 4.1, the typical distribution of the LAT
for a photon is shown. As can be noted, a discrepancy between data and MC is present.
We correct our MC sample for this efficiency discrepancy, as explained in Section 6.1.
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Figure 4.1: LAT distribution for photons in the RS sample. Data (dots) and MC (solid
histograms) are shown. The MC sample is divided for photons coming from a true π0 and
those coming from a fake π0.
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Once the two photons are selected, we perform a fit to the π0 candidate constraining
the total invariant mass to the PDG value of 134.9766 MeV/c2 [37]. The probability of
the fit χ2 is required to be higher than 1%. The momentum of the fitted π0 is required to
be higher than 350 MeV/c. In Figure 4.2 we show the distribution of the unconstrained
π0 mass for both data and MC. As can be observed, a discrepancy arises. This does not
influence our result, as we constraint the π0 mass to the PDG value. One could argue that
constraining the mass to a fixed value might move this discrepancy to the π0 momentum
distribution. In Figure 4.3 the π0 momentum shows a good agreement between data and
MC for the selected region.
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Figure 4.2: Mass distribution for the π0 s of the RS sample before the mass constrained
fit. Dots show the data, while the solid histograms show the MC.

4.1.2 Pions and kaons selection

Both the π± and the K± candidates are taken from lists of particles produced at the
Event Processing stage. These lists provide a Particle Identification (PID) for the different
candidates given by a selector. For each track, the selector calculates likelihoods L for
several particle hypotheses. The particle types checked are π, K, e, p and µ. The
likelihood calculations use information from the SVT andDCH , such as dE/dx and number
of hits; information from the EMC such as E/p; information from the DIRC, such as the
Čerenkov angle and the number of photons. The selector combines the likelihoods into
ratios, and makes cuts to select tracks with a given efficiency and fake rate. The most
powerful information in the K − π discrimination is the Čerenkov angle.

In Figure 4.4, the efficiency of pion reconstruction for this selector is shown. As kaons
are the main source of background for this selector, in Figure 4.5 we report the kaon fake
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Figure 4.3: Momentum distribution for the π0 s of the RS sample after the mass con-
strained fit. Dots show the data, while the solid histograms show the MC.

rate. In order to understand our efficiency and fake rate, we present in Figure 4.6 the
typical momentum distribution of pions from RS data. It is important to note that most
of the reconstructed pions have a momentum in the region where efficiency is the highest
and fake rate is the lowest.

Figure 4.4: Efficiency for selecting π±s in MC and data. The histograms show the ef-
ficiency as a function of momentum for the entire detector acceptance range. The left
shows the efficiency for selecting π+ s, the center shows the efficiency for selecting π− s,
and the right shows the ratio of efficiency in data to that in MC.

In Figure 4.7, the efficiency of kaon reconstruction for this selector is shown. As
pions are the main source of background for this selector, in Figure 4.8 we report the
pion fake rate. Again, in Figure 4.9 we show the typical momentum distribution of the
reconstructed kaons from RS data. Kaons too have typical momenta that lie in the region
where efficiency is the highest and fake rate is the lowest.
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Figure 4.5: Efficiencies for selecting K± using the pion selection in MC and data. The his-
tograms show the efficiency as a function of momentum for the entire detector acceptance
range. The left shows the efficiency for selecting K+ s, the center shows the efficiency for
selecting K− s, and the right shows the ratio of efficiency in data to that in MC.
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Figure 4.6: Distribution of pion momentum for the RS data.

Figure 4.7: Efficiency for selecting K±s in MC and data. The histograms show the
efficiency as a function of momentum for the entire detector acceptance range. The left
shows the efficiency for selecting K+ s, the center shows the efficiency for selecting K− s,
and the right shows the ratio of efficiency in data to that in MC.
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Figure 4.8: Efficiencies for selecting π± using the kaon selection in MC and data. The his-
tograms show the efficiency as a function of momentum for the entire detector acceptance
range. The left shows the efficiency for selecting π+ s, the center shows the efficiency for
selecting π− s, and the right shows the ratio of efficiency in data to that in MC.
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Figure 4.9: Distribution of kaon momentum for the RS data.
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4.1.3 Slow pion reconstruction

As the pion from the D∗ decay is characterized by a very slow momentum, some additional
care is needed for its reconstruction. Firstly, the PID criteria described in Section 4.1.2
cannot be applied here: most of the π±

s s do not reach the DIRC detector. As all the
charged particle selectors use the DIRC information in their likelihood, this makes them
not effective for low momentum pions.

The π±
s reconstruction can suffer a large background contribution due to slow electrons

misidentified as slow pions. This background can be removed without compromising the
signal efficiency. A first selection looks for gamma conversions and Dalitz π0 decays in
the event. Two charged tracks are combined to form a photon, constraining the mass of
the photon candidate to be lower than 150 MeV/c2. To fit this decay chain, a particular
fitting algorithm for γ conversions is used. These photon candidates are also combined
with other photons to create a π0 candidate. The overlap of the electrons used for these
photon lists is used to veto π±

s candidates.

Another selection criterion that can dramatically reduce the contamination of slow
electrons and muons is a cut on the dE/dx information for the π±

s candidate. Using the
dE/dx information calculated in the Event Processing a pull is built for the distribution
of the measured dE/dx with respect to the theoretical estimation. Both the SVT and
DCH information is used to construct the pull. We request the absolute value of the pull
to be lower than 2.58, which brings to a signal efficiency of ∼ 98%. Most of the electrons
and muons are removed with this selection.

For completeness, in Figure 4.10 we report the distribution of π±
s momentum from

RS data.
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Figure 4.10: Distribution of π±
s momentum for the RS data.
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4.1.4 Final selection

Once all the particles have been selected, we construct the decay chain D∗ → D0 π±
s , D0

→ K± π∓ π0. The entire decay tree is refitted, with the following constraints:

• A constraint on the π0 mass to be the nominal value from the PDG;

• A constraint to the D0 mass to be the value of the PDG, i.e. 1864.84 MeV/c2. This
constraint ensures that the Dalitz plot of the D0 will have sharp, well defined limits,
avoiding the smearing effect on the kinematical borders due to detector resolution.
The D0 mass prior to the constrained fit is saved to be used later for signal and
background characterization;

• The D0 mass prior to the fit must satisfy: 1.74 < mKππ0 < 1.98 GeV/c2;

• For the entire decay chain, the probability of the fit χ2 must be higher than 1%;

• p∗D0 > 2.4 GeV/c, where p∗D0 is the D0 momentum in the center of mass frame. This
cut ensures that no D0 candidates from B decays are retained. Charmed neutral
mesons coming from B decays will have a momentum lower than the momentum of
D0 s coming from the continuum and therefore a worse vertex resolution requiring
a dedicated effort to analyze them;

• From the full decay chain fit: 0.139 < ∆m < 0.155 GeV/c2, where ∆m = m∗
D−mD0 ;

• σt < 0.5 (ps) where σt is the the D0 lifetime error. This requirement discards all
the events with poorly reconstructed D0 vertexes. Further details on this cut are
provided in Section 8.1.

4.1.5 Best candidate selection

Based on the selection described above, we expect to have a multiplicity of ∼ 1.2 D∗

candidates per event. In most cases, simple criteria to select the best candidate of the
event can allow to retain the composite which is more likely to be a signal event. The
algorithm we use for the best candidate determination is proceeds with the following
steps:

1. If two π0 candidates share a γ, the π0 in the decay with the higher p(χ2) value is
selected. Approximately 5% of events exhibit this;

2. If two D0 candidates share a π0, the D0 in the decay with the higher p(χ2) value is
selected. Approximately 2% of events exhibit this;

3. Consider two D∗+ candidates reconstructed as follows:

D∗+ → D0π+
1 , D0 → K−π+

2 π
0

D∗+ → D0π+
2 , D0 → K−π+

1 π
0
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It is found that the ambiguity can be resolved correctly in 90% of these cases by
choosing the candidate that has mass values mKππ0 and ∆m closer to the expected
signal values. This ambiguity occurs in cases where the D0 decays through the
channel D0 → K−ρ+. If the ρ+ is emitted in the direction of the D0 momentum,
its consequent longitudinal decay will often produce a π+ that is traveling with
almost the same momentum magnitude and direction as the π+ from the D∗+ decay.
Approximately 6% of events exhibit this;

4. If two D∗+ candidates share either a D0 or a π+
s candidate, the D∗+ with the higher

p(χ2) value is selected. Approximately 0.6% of events exhibit this;

5. If two D0 candidates share one track and one π0, the D0 with the higher p(χ2) value
is selected. Fewer than 0.1% of events exhibit this;

6. If two D0 candidates share both tracks, the D0 with the higher p(χ2) value is
selected. Fewer than 0.05% of events exhibit this;

7. If a D0 can be associated with either a π+ (D0 → K−π+π0 ) or π− (D0 → K+π−π0

), the D0 → K−π+π0 combination is selected, as its prior probability is two orders
of magnitude higher. Approximately 7% ofD0 → K+π−π0 events exhibit this. This
selection eliminates 10% of the WS mistag background, while it has a very large
signal efficiency (∼99.5%). Since the WS mistag background has the RS Dalitz-plot
structure, the presence of which reduces the precision with which the WS Dalitz
structure can be determined, this selection is well motivated.

Approximately 0.15% of events have two reconstructed D∗+ candidates with no shared
tracks or clusters. In these cases, both of the candidates are kept. This fraction agrees
generally with expectations, based on charm fragmentation and the branching fractions
involved.

4.2 Background composition

Using the selection criteria described in the previous sections, we apply them on the MC
sample.

We consider the reconstructed WS sample in the signal region of the mKππ0 and ∆m
distributions, defined as

1.8495 < mKππ0 < 1.8795 GeV/c2

0.1449 < ∆m < 0.1459 GeV/c2 (4.3)

We identify different sources of background that will need particular care. Since we
will use the mKππ0 and ∆m shapes to discriminate the remaining background from the
signal, it is important to know what the behavior of the background sources in those two
variables is. The background sources we isolated are:
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• Mistag: events where an uncorrelated π±
s candidate has been chosen. Since the D0

has been correctly reconstructed, this background presents a peak in the D0 mass
distribution similar to signal. In the ∆m distribution we expect it not to show any
significant peak (see Figure 4.11). For the RS sample, this background consists of RS
events with an uncorrelated π±

s . For the WS sample, this background is composed
of RS events with an uncorrelated π±

s having an opposite charge. This statement
is based on the observation that in the mistag sample, the D0 has been correctly
reconstructed, and its probability of belonging to a RS decay is much larger that
that of belonging to a WS decay;
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Figure 4.11: Distribution of the MC events corresponding to the mistag background.

• D+ candidates: events where the K± and the π∓ belong to a D+ decay. These
events are expected not to show any significant peak in both of the variables;

• Swapped K-π (bad-D0 ): events where the kaon has been misidentified as a pion, and
the pion as a kaon. Since the masses of the K± and of the π∓ have been wrongly
assigned, the D0 mass distribution is expected to have no particular peak. The ∆m
distribution, instead, may present a peak due to the fact that the mis-ID contributes
at a higher order in the ∆m calculation (see Figure 4.12);

• Signal bad-D0 : events where a signal D0 was present, but was not correctly recon-
structed. These events are supposed not to show any significant peak in both the
discriminating variables;
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Figure 4.12: Distribution of the MC events corresponding to the bad-D0 background.

• Background bad-D0 : events where aD0 was present, but decayed through a different
channel. Again, no significant peak is expected:

• Fake π - Fake K: events where the kaon or the pion have been wrongly identified.
No significant peak is expected here too.

The contribution of the different categories to the total background are shown in Table
4.1. They have been isolated using the MC information. We also select the signal region
of mKππ0,∆m distribution defined in Equation 5.8. It must be noted that some events
are present in more than one category, so the sum of the fractions doesn’t return 100%.
The category “Other” covers all the background that does not apply for the categories
described above. They are mainly combinatorial background. They are expected to
produce no peaking distribution in mKππ0 and ∆m (see Figure 5.3). We notice that the
main contributions come from the mistag and the combinatorial events.

The total number of BB, B+B−, uds and τ+τ− events that pass all the selection
criteria and are found in the signal region is reported in Table 4.2.

4.2.1 Signal events in b− b̄ events

Since the B0 and B+ can decay in many modes with a D∗+ resonance, we must test that
we do not reconstruct D∗+ candidates from those channels. This would be very dangerous:
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Category Fraction of background
Mistag 43%
D+ candidates 3%
Swapped Kπ 1%
Signal bad-D0 2%
Background bad-D0 8%
Fake π 1%
Fake K 4%
Other 39%

Table 4.1: Contribution of different background categories to the total WS background.
Some events overlap between the categories.

Background event category Number of events in 400 fb−1

BB 319
B+B− 233
uds 438
τ+τ− 0

Table 4.2: Number of MC events of BB, B+B−, uds and τ+τ− that pass all the selection
cuts and are found in the mKππ0,∆m signal region.

firstly, these candidates would produce aD0 daughter that would have a distorted lifetime.
Moreover, since the D0 decay would happen after the B decay only, its lifetime would
mimic the D-mixing features.

Considering the b− b̄ MC, we find 552 signal events in ∼ 400 fb−1 before the kinematic
cuts described in Section 4.1.4 and the signal region of mKππ0,∆m distribution. Only 2
events, though, survive the cuts in the signal region.



Chapter 5

Fit to the mKππ0 and ∆m

distributions

In order to discriminate signal and background events, a binned χ2 fit is performed to
the reconstructed D0 mass and to ∆m = mD∗ −mD0 variables. The 2D scatter plots for
both RS and WS are in Figure 5.1. During the fit procedure, we allow to float both the
Probability Density Functions (PDF) shape parameters and the number of events in each
signal and background categories. Since the PDF describing the signal is expected to be
the same for both the RS and WS samples, a simultaneous fit is performed to reduce the
systematic errors due to the shapes chosen. Since the shape of the signal distribution on
the WS category will mainly be driven by the RS sample, where the statistics is higher,
and the WS presents a lot of background events, the results of the binned fit are identical
to those obtained from an unbinned fit within the numerical precision of the minimization
program. The number of bins chosen for the fit procedure is 65x65 in the two variables.
Several choices of binning were made to examine the fit dependency with number of bins.
We found that any choice of binning between 50 to 80 for both variables gives the same
number of events of signal and of the different background categories within the statistical
error. For choices of number of bins larger than 80, the statistical error for the WS sample
starts to be too large, and the fluctuations in the bins too severe, hence compromising the
fit quality. For number of bins lower than 50, the binning starts to be comparable with
the typical resolution of the D0 mass; this worsens our knowledge of the signal PDF.

Some of the background categories described in Section 4.2 present significant peaks in
the signal region of the two discriminating variables. Therefore it is necessary to perform a
two-dimensional fit. The different categories showed in Table 4.1 can then be summarized
in three categories: non-peaking (also called combinatorial) background, mKππ0 peaking
(also called mistag) background and ∆m peaking (also called bad-D0 ) background.

69
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Figure 5.1: Reconstructed D0 mass versus ∆m for the RS and WS samples.
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5.1 Signal and background parametrization

5.1.1 Signal PDF

The signal category has significant peaks in both mKππ0 and ∆m distributions. Figure
5.2 shows the distribution of the two variables in the MC sample for signal. As can be
noted, the mKππ0 distribution is asymmetric with respect to the peak. This is due to the
presence of radiative losses in the left tail of the distribution, and must be accounted for in
the signal description. The peak in mKππ0 is expected to be wider than the one obtained
from the reconstruction of the D0 → K− π+ channel, because of the uncertainty in the
determination of the π0 momentum. This feature is not present in the ∆m distribution,
where the π0 uncertainty contributes at higher orders.
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Figure 5.2: Distribution of the MC events corresponding to signal.

As observed in a previous analysis of this channel [24], a correlation between the two
discriminating variables is expected. The signal PDF takes into account this correlation.
The shapes used to compose the PDF are:

g(x; x, σ) = exp

(

−(x− x)2

2σ2

)

(5.1)
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cbs(x; x, σ, α) =















exp
(

− (x−x)2

2σ2

)

if (x−x)
σ

< α

a
(

b+ (x−x)
σ

)−2
if (x−x)

σ
≥ α

(5.2)

a = (2/α)2 exp(−α2/2), b = (2/α) − α

s(x, y; x, σx, y, σy, c) = exp

(

−(x− x)2

2σ2
x

)

exp

(

− (y − y)2

2 (σy + c((x− x)/σx)2)2

)

. (5.3)

Given these components, the complete signal PDF is:

S(m,∆m) = fs1 · s1 + (1 − fs1) · {fs2 · s2 + (1 − fs2) · [fs3 · s3 + (1 − fs3) · s4]} (5.4)

with

s1 = s(m,∆m;m1, σm1,∆m1, σ∆m1, c1)

s2 = s(m,∆m;m2, σm2,∆m2, σ∆m2, c2)

s3 = s(m,∆m;m3, σm3,∆m3, σ∆m3, c3)

s4 = g(m;m4, σm4) × cbs(∆m; ∆m4, σ∆m4, α4).

There are several interesting features of this parametrization that are worth to be
pointed out:

• As can be noted, the PDF takes into account the correlation between the measured
value of the D0 mass and the ∆m error in an event. The reason for this is that
the closer the reconstructed D0 mass value is to the nominal value of the PDG, the
better ∆m is determined;

• What was defined as cbs is also known as Crystal Ball function, named after the
omonimous Collaboration; it consists of a Gaussian core portion and a power-law
low-end tail. This parametrization is useful to take into account the asymmetric
tail in the D0 mass distribution due to the radiative losses;

• the sum of the single components of signal in Equation 5.4 seems peculiar: it has
been proved that when summing more than two components, this recursive approach
gives a more stable fit 1.

1If one adds two components with a single fraction, one can impose the fraction parameter between 0
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5.1.2 Combinatoric background

The combinatoric background is composed by candidates which have been reconstructed
using uncorrelated tracks or clusters. This background is expected to have no significant
peaks in the two discriminating variables. The distribution of this background can be
estimated considering the MC sample, and is shown in Figure 5.3.
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Figure 5.3: Distribution of the MC events corresponding to the combinatoric background.

The mKππ0 dependence can be represented using a straight line, with different slopes
for the RS and the WS samples. The ∆m distribution chosen is:

a(x; c) = x
√

(x/x0)2 − 1 exp
(

−ξ
(

(x/x0)
2 − 1

))

· θ(x > x0), (5.5)

where x0 = 0.13957 GeV/c2 is the kinematic endpoint (i.e. the π± mass). Since there
are different contributions in the RS and WS samples to the non-peaking background, ξ
is expected to be different in the two cases. The complete PDF is:

C(m,∆m) = (1 + b1(m− 1.865 GeV/c2)) × a(∆m; ξ). (5.6)

and 1. If one has three components and two fractions, the physical region is that where the sum of the
fraction parameters is less than one. One can only require each fraction to be between 0 and 1, and may
end up with a solution where the sum if greater than one and consequently one of the coefficients becomes
negative. By defining the fractions recursively, all solutions are well defined as long as the fractions are
inside the {0,1} range.
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5.1.3 mKππ0 peaking Background (mistag)

This category is composed by D∗ candidates made by a signal D0 and an uncorrelated
π±

s . The distribution of this background category for the MC sample is shown in Figure
4.11.

On the mKππ0 projection, this background is expected to have the same distribution
as signal. Therefore, a one-dimensional version of 5.4 is used. As far as ∆m is concerned,
this background is expected to have a shape similar to the non-peaking background. To
prove this assumption we plot the ∆m MC distributions for the combinatoric and mistag
background on the same plot (see Figure 5.4).

F(m,∆m) = fs1 · s1D,1 + (1 − fs1) · {fs2 · s1D,2

+ (1 − fs2) · [fs3 · s1D,3 + (1 − fs3) · s1D,4]} × a(∆m; c) (5.7)

with

s1D,1 = g(m;m1, σm1)

s1D,2 = g(m;m2, σm2)

s1D,3 = g(m;m3, σm3)

s1D,4 = g(m;m4, σm4).
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Figure 5.4: Comparison between the mistag and combinatoric ∆m lineshape for both
RS(left) and WS (right) MC samples. In both plots, the black line is the combinatoric
background, the blue line is the mistag background.

5.1.4 ∆m peaking background (bad-D0 )

This background category is composed by different reconstruction scenarios for the RS
and the WS samples. For the RS sample, it comprises candidates with both a real D0
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and a real π±
s , but where the D0 has been wrongly reconstructed. An example of this

would be D0 → K− π+ π0 π0 where one of the π0 candidates is missing. The WS bad-D0

sample contains events with doubly misidentified tracks, where the K− has been called a
π− and the π+ has been called a K+. This background for the MC sample is shown in
Figure 4.12. This background category has a clear peak in the signal region for both the
RS and WS ∆m distributions.

Given the small amount of events for this background category, fitting their {mKππ0,∆m
}distribution from the data is difficult. We determine this background shape from the
MC, and construct a two dimensional empirical PDF from it. We extract the number of
events of this category from the data fit.

5.2 Fit results

The fit results for the simultaneous fit of the RS and WS samples are shown in Table 5.1.
The plots of the corresponding data are in Figures 5.5 and 5.7. Since the RS sample has
a very little background contribution, it is convenient to show it on a logarithmic scale,
in Figure 5.6. Looking at the ratio

Nsig,WS

Nsig,RS
, it is noticeable to observe that it agrees very

well with the PDG value ((2.20 ± 0.10) · 10−3) [37].

Since the WS sample is affected by an high amount of background, we define a signal
region in the {mKππ0,∆m } plane where we will perform the fit of the WS time dependent
Dalitz plot. To determine the number of events for signal and for the different background
categories in the signal region, we perform a Monte-Carlo integration of the PDFs. We
generate 106 events in each category using the PDF obtained from the fit. We generate
separately the WS and the RS samples. Then we determine the fraction of events of each
of the two samples in the region where

1.8495 < mKππ0 < 1.8795 GeV/c2

0.1449 < ∆m < 0.1459 GeV/c2. (5.8)

Note that this selection of the signal region is symmetric with respect to the mKππ0

and ∆m expected values.

The number of events in the signal region is then the fraction of generated events for
each category multiplied by the corresponding number of events extracted from the fit of
the whole data sample. The number of events generated is chosen so that the error on the
fraction of events is negligible with respect to the error on the number of events from the
fit. In order to propagate correctly the error on the number of events in the signal region,
we add in square to the rescaled statistical error we have from the fit result the binomial
error we obtain from the fluctuations of the total number of events in the sample. To
better show our choice of the signal region, we report the 2D scatter plot of {mKππ0,∆m
} in a restricted region and indicate Equation 5.8 in Figure 5.8. The results are reported
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Variable Value
m̄1 1.85780 ± 0.00013
m̄2 1.864000± 0.000046
m̄3 1.84580 ± 0.00058
m̄4 1.864800± 0.000039
σm,1 0.02332 ± 0.00016
σm,2 0.012348± 0.000080
σm,3 0.0742 ± 0.0013
σm,4 0.008130± 0.000073
∆̄m1 0.1453900± 0.0000029
∆̄m2 0.1454300± 0.0000019
∆̄m3 0.145650± 0.000010
∆̄m4 0.1453800± 0.0000025
σ∆m,1 0.0005199± 0.0000046
σ∆m,2 0.0002142± 0.0000013
σ∆m,3 0.001693± 0.000022
σ∆m,4 0.0002657± 0.0000028
c1 0.0000175± 0.0000014
c2 0.00003138± 0.00000076
c3 0.000141± 0.000014
α4 −1.4546 ± 0.015
fs,1 0.2209 ± 0.0031
fs,2 0.5168 ± 0.0096
fs,3 0.3458 ± 0.0080
ξWS 1.518 ± 0.060
ξRS 4.574 ± 0.058
b1,RS 0.624 ± 0.072
b1,WS −0.2236 ± 0.056
Nsig,RS 1198329± 2575
Ncomb,RS 254222 ± 9515
Nmistag,RS 46676 ± 685
Nbad−D0,RS 46683 ± 11397
Nsig,WS 2760 ± 96
Ncomb,WS 85261 ± 444
Nmistag,WS 18946 ± 263
Nbad−D0,WS 1011 ± 214

Table 5.1: Fit results for the {mKππ0,∆m} fit.
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Figure 5.5: Projections of the χ2 fit to the RS data into mKππ0 (left) and ∆m (right). On
bottom the pull distributions are shown. Dots are data and the blue line is the fit result.
The green area is the combinatorial component of the fit, the red is the misreconstructed
D0 component and the blue is the mistag background.
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Figure 5.6: Projections of the χ2 fit to the RS data into mKππ0 (left) and ∆m (right), on
a logarithmic scale. Dots are data and the blue line is the fit result. The green area is the
combinatorial component of the fit, the red is the misreconstructed D0 component and
the blue is the mistag background.

in Tables 5.2 and 5.3. The plots for the RS and WS data samples and fit in the signal
region are shown in Figures 5.9-5.10.

In the signal region, the RS sample is ∼ 99% pure, while the WS sample is ∼ 50%
pure.

Category Number of events Cut efficiency
Signal 653962 ± 1581 54.6%
Combinatoric 2255 ± 51 0.9 %
Mistag 2218 ± 52 4.7%
bad-D0 551 ± 23 1.2%

Table 5.2: Number of RS events of signal and background in the mKππ0 and ∆m signal
region

5.2.1 Study of the fit results in the sideband regions

Another interesting information comes from the study of the fitted PDF behavior in the
sidebands of mKππ0 and ∆m distributions, where signal is largely suppressed. This gives
a good information on the ability of the PDF in interpreting the different background
components of the data sample. We firstly consider the left sideband on the mKππ0

distribution, defined as 1.74 < mKππ0 < 1.81 GeV/c2. In this region, both signal and
mistag background should be depleted, since they both significantly peak in the D0 mass



5.2. FIT RESULTS 79

)2 (GeV/c0π+π-Km

1.75 1.8 1.85 1.9 1.95

Ev
en

ts 
/ (

 0
.0

03
42

85
7 

)

0

500

1000

1500

2000

2500

3000

3500

)2 (GeV/c0π+π-Km

1.75 1.8 1.85 1.9 1.95

Ev
en

ts 
/ (

 0
.0

03
42

85
7 

)

0

500

1000

1500

2000

2500

3000

3500

)2 m (GeV/c∆
0.14 0.1420.1440.1460.148 0.15 0.1520.154

Ev
en

ts 
/ (

 0
.0

00
31

19
51

 )

0

500

1000

1500

2000

2500

3000

)2 m (GeV/c∆
0.14 0.1420.1440.1460.148 0.15 0.1520.154

Ev
en

ts 
/ (

 0
.0

00
31

19
51

 )

0

500

1000

1500

2000

2500

3000

1.75 1.8 1.85 1.9 1.95

}2 Χ{±

-5

-4

-3

-2

-1

0

1

2

3

4

5

1.75 1.8 1.85 1.9 1.95

}2 Χ{±

-5

-4

-3

-2

-1

0

1

2

3

4

5

0.14 0.1420.1440.1460.148 0.15 0.1520.154

}2 Χ{±

-5

-4

-3

-2

-1

0

1

2

3

4

5

0.14 0.1420.1440.1460.148 0.15 0.1520.154

}2 Χ{±

-5

-4

-3

-2

-1

0

1

2

3

4

5

Figure 5.7: Projections of the χ2 fit to the WS data into mKππ0 (left) and ∆m (right). On
bottom the pull distributions are shown. Dots are data and the blue line is the fit result.
The green area is the combinatorial component of the fit, the red is the misreconstructed
D0 component and the blue is the mistag background.

Category Number of events Cut efficiency
Signal 1508 ± 49 54.6%
Combinatoric 663 ± 61 0.8 %
Mistag 791 ± 39 4.2%
bad-D0 47 ± 12 4.7%

Table 5.3: Number of WS events of signal and background in the mKππ0 and ∆m signal
region
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Figure 5.8: Reconstructed D0 mass versus ∆m for the RS and WS samples, in the region
of 1.825 < mKππ0 < 1.905 GeV/c2 and 0.143 < ∆m < 0.148 GeV/c2. The box in the plot
indicates the signal region defined in Equation 5.8.
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Figure 5.9: Projections of the χ2 fit to the RS data into mKππ0 (left) and ∆m (right)
in the signal region. Dots are data and the blue line is the fit result. The green area is
the combinatorial component of the fit, the red is the misreconstructed D0 component
and the blue is the mistag background. The left plot requires 0.1449 < ∆m < 0.1459
GeV/c2, while the right plot requires 1.8495 < mKππ0 < 1.8795 GeV/c2. On bottom the
pull distributions are shown.
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Figure 5.10: Projections of the χ2 fit to the WS data into mKππ0 (left) and ∆m (right)
in the signal region. Dots are data and the blue line is the fit result. The green area is
the combinatorial component of the fit, the red is the misreconstructed D0 component
and the blue is the mistag background. The left plot requires 0.1449 < ∆m < 0.1459
GeV/c2, while the right plot requires 1.8495 < mKππ0 < 1.8795 GeV/c2. On bottom the
pull distributions are shown.
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region. We can consider the ∆m distribution in that range, by reducing the dataset to the
left mKππ0 sideband and projecting the total PDF (previously fitted to the whole sample)
integrated in the D0 mass range considered. Figure 5.11 shows, for RS and WS cases, the
data in that region, along with the projected PDF. Using the same procedure, we define
the right sideband of the D0 mass distribution to be 1.91 < mKππ01.98 GeV/c2.

The corresponding plots for the ∆m distribution are in Figure 5.12. One can notice
that in both sidebands, the fit results agree reasonably well with the data. As far as the
RS sample is concerned, the small discrepancies that one may observe are very small if
compared with the size of the number of signal events in the data sample. For the WS
sidebands, one can notice a tiny underestimation of the number of background events
in the right sideband. This effect is mitigated in the left sideband. Assuming that
this behavior is linear with the D0 mass, one can expect that in the signal region, the
discrepancy will be an intermediate case between the two sidebands. This will be treated
as a systematic uncertainty in our final fit, as described in Section 12.5.

On the other side, one may want to look at the sidebands regions of the ∆m distri-
bution. We define the left sideband as 0.138 < ∆m < 0.143 GeV/c2. The corresponding
plots of mKππ0 are shown in Figure 5.13 for both RS and WS. The right sideband of ∆m
is defined to be 0.149 < ∆m < 0.155 GeV/c2. The corresponding plot for the D0 mass
is in Figure 5.14. Also in this case, the small discrepancies observed in the RS sidebands
are tiny if compared with the size of the number of events of signal in the sample. The
WS fit, instead, reasonably matches the data.
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Figure 5.11: Projections of the χ2 fit to the RS (left) and WS (right) data in the far
left sideband of mKππ0 into the ∆m distribution. Dots are data and the blue line is
the fit result. The green area is the combinatorial component of the fit, the red is the
misreconstructed D0 component and the blue is the mistag background. The left sideband
of mKππ0 is defined as 1.74 < mKππ0 < 1.81 GeV/c2.
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Figure 5.12: Projections of the χ2 fit to the RS (left) and WS (right) data in the far
right sideband of mKππ0 into the ∆m distribution. Dots are data and the blue line
is the fit result. The green area is the combinatorial component of the fit, the red is
the misreconstructed D0 component and the blue is the mistag background. The right
sideband of mKππ0 is defined as 1.91 < mKππ0 < 1.98 GeV/c2.
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Figure 5.13: Projections of the χ2 fit to the RS (left) and WS (right) data in the far
left sideband of ∆m into the mKππ0 distribution. Dots are data and the blue line is
the fit result. The green area is the combinatorial component of the fit, the red is the
misreconstructed D0 component and the blue is the mistag background. The left sideband
of ∆m is defined as 0.138 < ∆m < 0.143 GeV/c2.
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Figure 5.14: Projections of the χ2 fit to the RS (left) and WS (right) data in the far
right sideband of ∆m into the mKππ0 distribution. Dots are data and the blue line
is the fit result. The green area is the combinatorial component of the fit, the red is
the misreconstructed D0 component and the blue is the mistag background. The right
sideband of ∆m is defined as 0.149 < ∆m < 0.155 GeV/c2.
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Chapter 6

Dalitz plot efficiency

In order to fit both the RS time-independent and the WS time-dependent Dalitz plots, a
parametrization of the reconstruction efficiency over the Dalitz plot is needed. For this
estimation we used 15 million signal MC events, where the D0 is allowed to decay isotrop-
ically, constrained only by the kinematics of the phase space (PHSP MC). This sample
comprises both D∗+ and D∗− particles in the generation. The efficiency is determined
ignoring any charge asymmetry in reconstruction.

Using the MC information, we isolated a reconstructed signal sample which passed
all the selection criteria described in Section 4. The efficiency is estimated with a
parametrization dependent on the helicity angle of a pair of the D0 decay products. This
technique has proved before to be convenient to avoid fit uncertainties on the borders of
the non-rectangular kinematical region of the Dalitz plot [36], where rectilinear efficiency
bins have reduced statistics.

The m2
Kπ invariant mass and the cosine of the K±π∓ helicity angle cosθ (i.e. the

angle between the K and the π directions in the D0 rest frame) are considered in the fit
1. Notice that the efficiency determination is independent on the particular pair chosen
to calculate the helicity angle. The efficiency of the Dalitz plot can be parametrized as:

ǫ(cosθ) =
dN j

reco

dcosθ
/
dN j

0

dcosθ
=
N j

reco

∑

i c
j
iPi(cosθ)

N j
0P0(cosθ)

(6.1)

where j indicates the j-th bin of m2
Kπ , N j

reco is the number of reconstructed D0’s in
the j-th bin, N j

0 is the number of generated D0’s in that bin and Pi is the i-th Legendre
polynomial. We divide m2

Kπ in 40 bins, and for each bin we do a binned χ2 fit to ǫ(m, cosθ)
to determine the cji coefficients. The fit is a binned χ2 fit, where cosθ was binned in 30
divisions. The fit is performed extracting the coefficients of the Legendre polynomials
up to the 5th order. The bins with a reasonably flat distribution could be fitted with a
lower order polynomial. However, the fit in m2

Kπ bins with high statistics show a cj5 non

1On the side, one could describe the Dalitz plot structure by using the invariant mass and the helicity
angle. This description would be equivalent to the use of two invariant masses.
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compatible with zero within the error. For this reason we decide to use the Legendre
polynomials up to the 5th order.

6.1 π0 efficiency correction

Since the π0 reconstruction efficiency is generally underestimated in the BABAR simulation,
we apply a correction to the efficiency calculated in each bin of m2

Kπ . This correction
depends on the π0 momentum, so it is not constant along the Dalitz plot. We reweight
each MC event using the relation:

W(pπ0) = 0.976776 + 0.00591363pπ0 (6.2)

where pπ0 is the π0 momentum in the laboratory frame.

This π0 efficiency correction is determined using a control sample of τ decays, simu-
lating and reconstructing the process e+e− → τ+τ−. The channels τ → ρν (ρ → π+π0)
and τ → πν are considered, and the double ratio

επ0 =
Nτ→ρν,DATA

Nτ→ρν,MC
· Nτ→πν,MC

Nτ→πν,DATA
(6.3)

is considered in bins of the π0 momentum. Using this double ratio technique, the π0

efficiency is independent on the particular control sample used for the calculation 2.

6.2 Dalitz plot efficiency determination

In Figures 6.1 and 6.2 we show the MC events and fits of cos θ in bins of m2
Kπ . We observe

that the helicity angle distributions are generally flat. In Figure 6.3 we report the Dalitz
plot efficiency both from the PHSP MC events and from the fit result. In the PHSP MC
Dalitz plot the efficiency in the jth bin is defined as Nreco,j/N0,j. To easily evaluate the
compatibility between the two distributions we also plot the pull (Figure 6.4 top). In each
bin the pull is calculated by considering the difference between the fit result and the PHSP
MC efficiency, divided by the error on the fit result. Bins with less than 5 reconstructed
events have been excluded from this plot, as the statistical fluctuations become too severe.
It can be noted that the values of the pull in each bin are equally distributed among the
range considered, and no particular structure is present. Considering the one dimensional
projection of the pull distribution (see Figure 6.4 bottom), we find that the mean value
of the pull is 0.01± 0.06, indicating that no bias is present. The RMS of the distribution

2This efficiency correction has a systematic uncertainty of ∼ 2%. Since this uncertainty does not
depend on the π0 momentum, it does not vary along the Dalitz plot. For this reason, we can ignore this
effect: we are only interested in the shape of the efficiency, not in the absolute size. Varying the integral
of the functional description of the efficiency by any value will not change our result.
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Figure 6.1: Fit of the helicity angle cosine in bins of m2
Kπ . The dots are the MC events,

the blue line is the fit result. These plots refer to the 15 bins of m2
Kπ in the range

0.40 < m2
Kπ < 1.29 GeV/c2. The first bin corresponds to the top left plot, the second to

the top middle plot, the last to the bottom right plot.

is 1.37± 0.05; this indicates that the errors on the efficiency in each bin of the Dalitz plot
may be underestimated. This is not a problem, as we do not use these errors to evaluate
the efficiency parametrization systematic uncertainty.
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Figure 6.2: Fit of the helicity angle cosine in bins of m2
Kπ . The dots are the MC events,

the blue line is the fit result. These plots refer to 15 bins of m2
Kπ , in the range to

1.29 < m2
Kπ < 2.99 GeV/c2. The first bin corresponds to the top left plot, the second to

the top middle plot, the last to the bottom right plot.
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Figure 6.3: Dalitz plot efficiency for PHSP MC (left) and from the fit (right) on the m2
Kπ

and m2
Kπ0 plane. The χ2/ndof between the two distributions is 0.73
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Kπ0

plane (top) and on a one-dimensional histogram (bottom). The value in each bin of the
Dalitz plot is in units of the statistical error.
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Chapter 7

Fit of the time-independent RS
Dalitz plot

In Equation 2.22 it appears that a reliable Dalitz fit of the RS sample is necessary in order
to perform this mixing analysis. The RS Dalitz can be fitted separately with respect to the
WS sample, and its results can be used to fix the Cabibbo-favored amplitude in the decay
rate formula for the WS sample. The Dalitz plot of the RS sample is shown in Figure
7.1. Many structures emerge from this plot. Firstly, it is clear from the accumulation
of events on the diagonal of the Dalitz plot that the main contribution comes from the
ρ+(770) resonance. Next to this, the second largest contribution comes from the K∗−

(892) resonance and the third from the K∗0 (892). Clear destructive interference patterns
emerge when the ρ+ and K∗ s distributions cross each other.

Since theD mixing is a small effect, we expect that only the main components (in terms
of fit fractions) of the CF amplitude will contribute; the ACF contributes to the D0 →
K+π−π0 total amplitude with terms proportional to the mixing parameters x and y, so
the smaller resonant components of this amplitude will not add much to our sensitivity.
Therefore, a high precision fit of the RS sample is not needed. Nevertheless, the high
statistics available allows a rather precise determination of the various contributions.

7.1 Signal parametrization

The total signal amplitude as a function of m2
Kπ and m2

Kπ0 is parametrized as a sum of
isobar components, as described in Section 2.4. The list of resonances considered in the
fit and their main properties are reported in Table 7.1.

The reader should be reminded that for the scalar contribution to the amplitude, we
use the LASS effective range parametrization described in Section 2.5. For consistency, we
extract from our data sample the mass M and the width Γ along with a and r that play
the role of a scattering length and effective interaction length respectively. The LASS
parameters are differentiated for the K∗−

0 (1430) and K∗0
0 (1430) contributions. The δR

95



96 CHAPTER 7. FIT OF THE TIME-INDEPENDENT RS DALITZ PLOT

0

50

100

150

200

250

300

]4/c2 [GeV+π-K
2m

0.5 1 1.5 2 2.5

]4
/c2

 [
G

eV
0 π-

K2
m

0.5

1

1.5

2

2.5

Figure 7.1: Dalitz Plot of the RS data sample. The two squared invariant masses m2
Kπ

and m2
Kπ0 are used to represent the Dalitz plot. The data sample considered is in the

signal region defined in Section 5.8. As described in the event selection section. a D0

mass constrain is applied to the decay tree fit. Therefore the data has a sharp edge on
the borders of the Dalitz plot.
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Resonance JPC Mass ( GeV/c2) Width ( GeV/c2)
ρ+(770) 1−− 0.7755 ± 0.0004 0.1494 ± 0.001
ρ+(1700) 1−− 1.720 ± 0.020 0.250 ± 0.100
K∗−(892) 1− 0.89166 ± 0.000026 0.0508 ± 0.009
K∗−(1410) 1− 1.414 ± 0.015 0.232 ± 0.021
K∗−

0 (1430) 0+ 1.414 ± 0.006 0.290 ± 0.021
K∗−

2 (1430) 2+ 1.4256 ± 0.0015 0.0985 ± 0.0027
K∗−(1680) 1− 1.717 ± 0.027 0.322 ± 0.110
K∗0(892) 1− 0.89600 ± 0.00025 0.0503 ± 0.006
K∗0(1410) 1− 1.414 ± 0.015 0.232 ± 0.021
K∗0

0 (1430) 0+ 1.414 ± 0.006 0.290 ± 0.021
K∗0

2 (1430) 2+ 1.4324 ± 0.0013 0.109 ± 0.005

Table 7.1: Summary of the Dalitz plot contributions considered in the RS time-
independent fit. The masses and widths considered are taken from the 2006 PDG val-
ues [37].

mass dependence is described by a Breit-Wigner parametrization.

7.2 Background characterization

The background categories that enter this Dalitz Plot are the combinatoric and the bad-D0

. Since the mistag background is composed by correctly reconstructed RS D0 candidates,
the Dalitz structure is the same as signal, and is effectively treated as such. As the fit on
the D∗ candidate had a constraint on the D0 mass (see Section 4.1.4), we expect that the
background shape will change along the mKππ0 distribution. This is because the combi-
natoric background is composed by tracks whose kinematic responds only to the PHSP
constraints. Imposing the D0 mass means that when the fitter encounters a background
event, it will distort the momenta of the particles in order to match the constraint. It is
therefore necessary to include this dependence with mKππ0 in the description.

In order to parametrize the background, we consider two different sidebands of mKππ0.
We choose those sidebands to be:

left region: 1.75 < mKππ0 < 1.77 GeV/c2

right region: 1.95 < mKππ0 < 1.97 GeV/c2 (7.1)

In this way we have two samples which are a mixture of combinatoric and bad −D0

events. The samples are considered in the signal region of the ∆m distribution. Since
the fraction of combinatoric and bad-D0 events depends also on the cut on ∆m, this
selection is necessary to avoid underestimating the bad-D0 contribution in the sidebands.
The distribution in the sidebands of the three invariant masses for both data and MC are
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shown in Figures 7.2-7.4 .It can be noted that data and MC show similar distributions
within the statistical error. From these plots, we conclude that the data and the MC
have similar behaviors. Nevertheless, the MC cannot be trusted to perfectly mimic the
background in data, as many rare charm decays are missing in the simulation.
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Figure 7.2: Distribution of m2
Kπ for the left and right mKππ0 sidebands of the RS data

(dots) and MC (line). The MC distribution is normalized to the data.

In order to estimate the Dalitz plot structure of the background in the signal region,
we prefer to use the information from the data, but use the MC to know the fractional
contribution of each sideband to the signal region description. We perform the following
procedure:

• We select the sidebands of the MC sample, and construct an interpolation of the
distributions. The right distribution is normalized to the left one;

• We construct the PDF of the background in the signal region as the sum of the
interpolations of the two sidebands, i.e.

bkg(m2
Kπ, m

2
Kπ0) = fBbkgleft(m

2
Kπ, m

2
Kπ0) + (1 − fB)bkgright(m

2
Kπ, m

2
Kπ0)

• We consider the Dalitz plot distribution of the MC background in the signal region;

• We fit the MC background in the signal region using the PDF and extract fB;

• We consider the sidebands in the data sample, construct their interpolation, and
consider the background parametrization in the signal region as the sum of the two
interpolations, using the fraction fB.;
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Figure 7.3: Distribution of m2
Kπ0 for the left and right mKππ0 sidebands of the RS data

(dots) and MC (line). The MC distribution is normalized to the data.
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Figure 7.4: Distribution of m2
ππ0 for the left and right mKππ0 sidebands of the RS data

(dots) and MC (line). The MC distribution is normalized to the data.
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This procedure takes into account that the behavior of the background in the signal
region is a weighted sum of the behavior in the two sidebands. Since the distribution of
m2

Kπ and m2
Kπ0 in the two sidebands is not very different in data and MC, we expect

that the value of fB is similar in the two cases. The fit result is

fB = 0.738 ± 0.026

The plot of the MC background in the signal region and of the weighted sum of the
sidebands can be found in Figure 7.5.
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Figure 7.5: Comparison between the truth matched RS MC background in the signal
region (black) and the weighted sum of the sidebands used to characterize it (blue). The
χ2/ndof for the three distributions is 1.12, 1.32 and 0.98 for m2

Kπ ,m2
Kπ0 and m2

ππ0

respectively.

Since the RS sample is very pure, one may consider to cut tightly in the signal region
of mKππ0 and ∆m and fit neglecting the background contributions. This strategy would
then need an estimation of the systematic error arising from this assumption. This test
has been performed and can be found in Appendix A. As can be observed comparing the
results in the Appendix with the nominal fit, the resonances which contribute the most
to the RS Dalitz plot (i.e. the ρ+(770), the K∗0 and the K∗−) are compatible with each
other within the statistical error. This is a good hint that we don’t need a very accurate
characterization of the RS background in order to have a valid CF amplitude estimation.

7.3 Fit strategy

Using the parametrization described above, we perform a binned χ2 fit of the RS sample.
The fit is performed in 500 bins in the two invariant masses chosen to represent the Dalitz
Plot, m2

Kπ and m2
Kπ0 . We notice from Equation 2.31 that all the resonance amplitudes

and phases can be determined up to an overall complex number. Therefore during the
fit procedure we must fix the parameters of one resonance. To reduce the systematic
errors, we choose to fix the resonance which contributes most, that is the ρ+(770). This
also allows to easily compare the fit results with the ones obtained by other experiments,
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which used the same convention [34]. The ρ+(770) amplitude and phase are fixed to 1
and 0 respectively.

We select the RS data sample in the signal region of mKππ0 and ∆m, that is in the
intervals 1.8495 < mKππ0 < 1.8795 GeV/c2 and 0.1449 < ∆m < 0.1459 GeV/c2. The
purity of the sample in this region is ∼ 99% .

Since the determination of LASS parameters from the fit leads to a non accurate error
matrix (the parameters are too correlated), we let them float together with the resonance
amplitudes and phases. Then we fix them and refit the other parameters.

For the Dalitz plot model, we consider all the possible spin 0, 1 and 2 resonances that
may contribute to the amplitude. Among them, we consider a possible contribution from
the ρ+(1770). Note that this resonance has a mass higher than the kinematical limits in
the process. Nevertheless, its width is enough large to contribute to the D0 → K−π+π0

Dalitz plot with its lower tail. One may also consider that the same is valid for the
ρ+(1450). Since both the ρ+(1450) and ρ+(1770) are outside the kinematically allowed
region, the fit is unable to distinguish between their tails. We decide to adopt the same
choice as CLEO by choosing to include the ρ+(1770) only.

A parameter we can extract from the resonance amplitudes and phases is the fit
fraction of a given resonance. It allows to better compare results with other experiments,
as the conventions on amplitudes and phases may not always be the same. It is defined
as:

Fit fraction =

∫ |are
iδrBWr(DP )|2dDP

∫ |∑r areiδrBWr(DP )|2dDP (7.2)

so it is the integral of one component divided by the coherent sum of all components.
Note that the sum of the fit fractions of all resonances does not generally give 100%
because of interference. It is a general rule, though, that the closer the fit fraction is
to 100%, the more likely is that the orbital components of the amplitude are properly
described. In the general case, a fit fraction much larger than 100% may be an indication
of problems in the model.

One must also consider the error on the fit fractions. In order to do so, we use the final
parameters value and the covariance matrix to generate 300 sets of parameter values. For
each of these sets we calculate the fit fractions and record them in histograms. The mean
value of the final histogram is taken as the central value of the fit fraction, the RMS is its
error. In this way, all the correlations between the fit parameters are taken into account.

7.4 Fit results

In Figure 7.6 the plot of data and fit result for the three invariant masses is shown.
The corresponding results for the amplitudes and phases, the fit fractions and the LASS
parameters are shown in Tables 7.2 and 7.3. We notice that the fit fraction is close to
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100% , indicating that the model used to fit the Dalitz is appropriate.

Resonance Amplitude Phase (degrees) Fit Fraction (%)
ρ(770) 1 (fixed) 0 (fixed) 63.6 ± 5.2
K∗−(1680) 4.46 ± 0.04 141.4 ± 0.7 4.0 ± 0.3
K∗−

2 (1430) 0.023 ± 0.001 −147.9 ± 2.6 0.12 ± 0.01
K∗0

2 (1430) 0.0408 ± 0.0008 −8.4 ± 1.1 0.51 ± 0.04
K∗−(1410) 0.16 ± 0.01 43.1 ± 4.4 0.09 ± 0.01
K∗−

0 (1430) 2.28 ± 0.04 170.9 ± 0.9 2.2 ± 0.2
K∗−(892) 0.380 ± 0.001 162.1 ± 0.2 9.2 ± 0.7
K∗0(1410) 0.19 ± 0.01 −281.5 ± 2.6 0.15 ± 0.02
K∗0

0 (1430) 2.67 ± 0.01 82.8 ± 0.4 7.8 ± 0.6
K∗0(1680) 5.07 ± 0.04 −40.4 ± 0.6 6.0 ± 0.5
K∗0(892) 0.399 ± 0.001 0.5 ± 0.3 9.5 ± 0.8
ρ(1700) 4.06 ± 0.07 152.9 ± 0.9 1.9 ± 0.2

Total fit fraction = 105%

Table 7.2: Fit results for the RS data sample. Amplitudes, phases and fit fractions are
reported.

Parameter Value
FK∗− 1.064 ± 0.031
FK∗0 −1.469 ± 0.017
RK∗− 0.471 ± 0.006
RK∗0 0.257 ± 0.008
aK∗− 15.9 ± 1.1
aK∗0 0.943 ± 0.022
φF,K∗− −93.3 ± 2.1
φF,K∗0 −67.6 ± 0.6
φR,K∗− 186.8 ± 2.8
φR,K∗0 155.3 ± 1.4
rK∗− −1.78 ± 0.17
rK∗0 −3.81 ± 0.08

Table 7.3: Fit results for the LASS parameters.

As a cross-check, one may consider the previous Dalitz plot fit results obtained by the
CLEO experiment [34]. Since we adopted the same phase conventions, a comparison of
the amplitudes and phases should straightforward. Nevertheless, in our model the non-
resonant contribution is treated inside the LASS parametrization of the K − π S-wave.
Moreover, they use a simple Breit-Wigner description for the K − π S-wave, which is
expected to be less accurate in describing scalar contributions. The results are reported
in Table 7.4. If one considers only the two resonances that contribute the most (besides
the ρ+, which has fixed parameters), i.e. the K∗− (892) and K∗0 (892), the results for the
amplitudes and phases seem reasonably similar. It must be noted that they excluded the
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Figure 7.6: RS Dalitz plot data and fit results (top) along with the residuals of the fit (bottom). The dots are the RS data sample,
the blue line is the fit result.
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contributions from some resonances, whose amplitude was compatible with zero within
the error.

Resonance Amplitude Phase (degrees)
ρ(770) 1 (fixed) 0 (fixed)
K∗−(1680) 2.50 ± 0.3 103 ± 8
K∗−

0 (1430) 0.77 ± 0.08 55.5 ± 5.8
K∗−(892) 0.44 ± 0.01 163 ± 2.3
K∗0

0 (1430) 0.85 ± 0.06 166 ± 5
K∗0(892) 0.39 ± 0.01 −0.2 ± 3.3
ρ(1700) 2.5 ± 0.3 171 ± 6
NonRes 1.75 ± 0.12 31.2 ± 4.3

Table 7.4: Fit results for the RS Dalitz plot fit of the CLEO analysis [34].

As a crosscheck of the ability of our Dalitz fit to reproduce the CLEO results we have
fit the signal MC events. They were produced with this CLEO result (see Table 7.4).
We have configured the fit to use the same model components with the same parameters
and we obtain the results given in Table 7.5. Most of the discrepancies are related to the
resonances that sit on the boundary of the Dalitz region (K∗−(1680) and ρ(1700)). This
may be due to an inability of the efficiency mapping to perfectly describe the boundaries
of the Dalitz. In order to take this systematic into account, we consider the difference
between the MC generated value of the amplitude of these two resonances, and the value
extracted from the fit. We apply this discrepancy as a systematic in the WS fit.

Resonance Amplitude Phase (degrees)
ρ(770) 1 (fixed) 0 (fixed)
K∗−(1680) 2.953 ± 0.029 101.39 ± 0.61
K∗−

0 (1430) 0.7801 ± 0.0074 53.98 ± 0.82
K∗−(892) 0.4494 ± 0.0010 162.41 ± 0.39
K∗0

0 (1430) 0.8652 ± 0.0081 166.51 ± 0.42
K∗0(892) 0.3908 ± 0.0011 −1.41 ± 0.72
ρ(1700) 2.731 ± 0.063 174.12 ± 0.64
NonRes 1.742 ± 0.015 30.34 ± 0.41

Table 7.5: Fit results for the RS signal MC sample generated with the CLEO model.



Chapter 8

Signal resolution function

In this chapter we describe the study of the D0 lifetime resolution properties. Due to
experimental effects (detector misalignments, granularity, inefficiency among them), the
lifetime of the D meson will be smeared with respect to its natural distribution.

In order to characterize the resolution function of the decay time distribution of the
signal, we considered the RS sample. The RS decay D0 → K−π+π0 has the same
topology as our signal, so it is proper to assume that the resolution function will be the
same as the D0 → K+π−π0 one. Being pure and with high statistics, the RS sample
allows to easily study the resolution function of a D0 decay through a simple exponential
law.

8.1 D0 lifetime error from the reconstruction fit

In order to reject events with a poorly measured D0 decay time, a cut on the time error
σt is imposed for both the RS and WS samples. This error is calculated from the fit to
the decay chain described in Section 4.1.4. Its magnitude is determined considering the
whole covariance matrix from the fit. As explained in Section 4.1.4, we require σt < 0.5 ps,
and this cut is taken into account in the Dalitz plot efficiency determined in Chapter 6.
A plot of the RS and WS decay time error distributions is shown in Figure 8.1. As
can be observed, data and MC present a substantial disagreement in the lifetime error
distribution. This is mainly due to the fact that in the BABAR MC sample, the beamspot
position simulated in any event is fixed, while in real data it is normally oscillating around
the center of the beam pipe. Since the D∗ candidate is constrained to be produced in
the beamspot region, this difference affects the lifetime of the D0. One can also easilier
appreciate this discrepancy by looking to the ratio between data and MC; this is shown
in Figure 8.2.

The mean lifetime error for data is ∼ 0.43 ps, higher to the correspondent variable
in a two-body decay (like D0 → K+ π−). The D0 vertex information is given by the
charged tracks that belong to its decay. It can be demonstrated that when a vertex is
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determined using two tracks, the larger is the angle between the directions of the two
particles the better can the vertex be determined. In D0 → K+π−π0 , the K+ and π−

have a lower momentum with respect to their equivalents in D0 → K+ π−. This is due
to the π0 presence. Since the momentum of the two tracks is lower, the angle between
their two directions is smaller.
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Figure 8.1: Decay time error distributions for the RS (left) and WS (right) samples.
Data and the different MC contributions are shown. The samples are required to have
0.1449 < ∆m < 0.1459 GeV/c2 and 1.8495 < mKππ0 < 1.8795 GeV/c2.

A cut in σt can dramatically change the Dalitz plot structure, as the σt distribution and
the m2

Kπ distribution are highly correlated. As said above, higher momentum tracks lead
to a better vertex determination, which means lower σt. This is not by itself a problem, as
long as the Dalitz efficiency parametrization takes this effect into account. Nevertheless
problems may arise if the region which is most affected by the cut had a difficult efficiency
estimation in the MC. An example of that is the region where the low-momentum π0 s
lie. In Figure 8.3 the distribution of the average σt along the Dalitz can be seen. One
can note that the region most affected by the σt cut is the high-momentum π0 s, which is
expected to be well simulated. The region where low momentum π0’s lie is not affected
by this cut.

Another important property to study is the dependence of the mean value of the D0

lifetime on the Dalitz Plot. Is is also necessary to see if the lifetime has any evident
offset in a particular region of the Dalitz plot. For this reason we consider the average
distribution of the pull of D0 lifetime over the Dalitz plot, i.e.
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Figure 8.2: Data/MC ratio for the decay time error distribution of the RS sample. The
samples are required to have 0.1449 < ∆m < 0.1459 GeV/c2 and 1.8495 < mKππ0 <
1.8795 GeV/c2.

pull =
tD0 − τPDG

σt
D0

(8.1)

where τPDG = 410.1 ± 1.5 (ps) [37].

The plot for this quantity is shown in Figure 8.4. It can be observed that no particular
structure is evident on the Dalitz plot. Hence, no variation of the pull distribution is
expected along the Dalitz plot. It is interesting also to look at the plot of the mean pull
distribution in bins of m2

Kπ . Since the resolution is strongly connected to the K − π
vertex, it is important to check that the pull does not depend on the K − π momentum.
This is shown in Figure 8.5.

We also consider the plot of tD0 − τPDG, shown in Figure 8.6. It can be noted that
there is no evident dependence on the Dalitz plot position, but a general offset for negative
values of the D0 lifetime is observed. This suggests that it may be appropriate to consider
an offset in the resolution function.

8.2 Signal resolution function parametrization

To parametrize the signal PDF of the RS decay time, we consider an exponential function
convolved with a Gaussian resolution function.
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ρRS,i(t; τ, k) = e−
t
τ ⊗ e

−
(t−t0)2

2(kσi)
2 (8.2)

This PDF explicitly depends on the event measured errors on the D0 decay time σi.
The parameter k specifies the resolution model. This is a scale factor of order ≈ O(1). It
takes into account that, even though the event uncertainties are relatively accurate, they
may be under or overestimated by a global scale factor. t0 is the offset introduced in the
resolution function, justified by Figure 8.6. We allow the contribution of three different
resolution models. This is the same parametrization of the resolution function chosen in
all the BABAR charm mixing analyses. The complete signal PDF is:

PRS,i(t) = f1 · ρ1,i + (1 − f1) · [f2 · ρ2,i + (1 − f2)ρ3,i] (8.3)

with

ρ1,i = ρRS,i(t; τ, k1)

ρ2,i = ρRS,i(t; τ, k2)

ρ3,i = ρRS,i(t; τ, k3)

(8.4)

As explained for Equation 5.4, this recursive parametrization of the fractions of each
component in the total PDF is numerically more stable.

Note that the fractions f1,2 and the scale factors k1,2,3 are very correlated. A change
in the scale factor can be balanced by an appropriate change in the normalization of the
Gaussian, which affects the fraction, obtaining the same PDF.

8.3 RS background parametrization

We select the signal region of the RS sample by requiring 0.1449 < ∆m < 0.1459 GeV/c2

and 1.8495 < mKππ0 < 1.8795 GeV/c2 . The mistag background is fitted with the
same PDF as signal, since its temporal distribution is expected to be the same. The
combinatoric and bad-D0 backgrounds are treated as a whole. The method used for
their estimation is similar to the one used in Section 7.2. We consider the left and right
sidebands of the mKππ0 distribution, defined in 7.1 in the signal region of ∆m. We merge
the two distributions of the D0 lifetime according to the different fractions of background
in the mKππ0 and ∆m fit. We consider this as a representation of the background in
the signal region. To test this method we applied it to the MC sample, and compared it
with the background in the signal region obtained using the MC information. The plot
of the background and of its estimation from the sidebands can be found in Figure 8.7.
We notice a discrepancy, that will be taken into account in the systematics determination
(see Section 12.2.4).
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In Appendix C, we perform the same fit described in this chapter, ignoring any back-
ground contribution. We find values of the resolution function compatible with the values
found in the nominal fit described here. This is a good hint of the fact that the background
is so tiny that an extremely precise description of it is not necessary.
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Figure 8.7: RS sample: comparison between the MC background sample (dots), selected
using the MC truth, and the background estimation from the sidebands (blue histogram)
for the D0 lifetime. The χ2/ndof of the two histograms is 0.98.

The number of events in each background category is determined from the mKππ0 and
∆m fit.

8.4 Fit results

Since the scale factors k and the Gaussian fractions f are very correlated, after the fit
has converged we fix the scale factors and refit. This is done to allow an accurate error
matrix. The fit results are reported in Table 8.1. The corresponding plot is in Figure 8.8.
The D0 mean lifetime is compatible with the PDG value within the error.

We observe than even though the offset is very small, it is not negligible. It has several
different origins: tracking system misalignments and selection criteria are the two main
components. The detector performance may differ in different regions of the acceptance.
For this reason, we split the RS sample in bins of the polar angle θ and the azimuthal
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Parameter Value
f1 0.0052 ± 0.0005
f2 0.179 ± 0.049
t0 0.0042 ± 0.0007 (ps)
τ 0.4099 ± 0.0009 (ps)
k1 3.20 ± 0.48
k2 1.42 ± 0.08
k3 0.94 ± 0.01

Table 8.1: Fit results for the RS time distribution
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Figure 8.8: Plot of the RS decay time distribution (dots) and its fit (blue line) in a
logarithmic scale. The red plot represents the combinatoric and bad-D0 background
contributions. On bottom, the ±

√
χ2 of the fit is shown.
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angle φ of the D0 momentum in the CM frame. We fit the same resolution function in
those bins. We consider 12 divisions in φ and 4 divisions in θ. In Tables 8.2 and 8.3 we
report the value of t0 as extracted from the fits in bins of φ and θ respectively. A plot
of t0 as a function of the azimuthal angle is shown in Figure 8.9. The lifetime resolution
function parameters are reasonably compatible within the different bins of θ and φ, for
this reason we do not differentiate the resolution function in bins of the two angles.

Bin in φ(deg) t0 value (ps)
−180 < φ < −150 0.0034 ± 0.0029
−150 < φ < −120 0.0018 ± 0.0026
−120 < φ < −90 0.0134 ± 0.0027
−90 < φ < −60 0.0043 ± 0.0026
−60 < φ < −30 0.0030 ± 0.0028
−30 < φ < 0 0.0027 ± 0.0028
0 < φ < 30 0.0001 ± 0.0027
30 < φ < 60 −0.0016 ± 0.0023
60 < φ < 90 0.0074 ± 0.0023
90 < φ < 120 0.0104 ± 0.0023
120 < φ < 150 −0.0010 ± 0.0025
150 < φ < 180 0.0022 ± 0.0028

Table 8.2: Values of the offset t0 in different φ bins.

Bin in θ(rad) t0 value (ps)
0.3 < θ < 0.8 0.0062 ± 0.0016
0.8 < θ < 1.3 0.0042 ± 0.0011
1.3 < θ < 1.8 −0.0007 ± 0.0015
1.8 < θ < 2.5 0.0094 ± 0.0034

Table 8.3: Values of the offset t0 in different θ bins.
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Figure 8.9: Plot of t0 as a function of the azimuthal angle φ.



Chapter 9

Description of the WS
time-dependent Dalitz plot fit

In this chapter, we describe the main features of the parametrization of signal and back-
ground in the time-dependent Dalitz plot fit of the WS sample. One of the main innova-
tions of this work, besides the amplitude analysis, is the identification of a different base
of the mixing parameters in which mixing effects are more visible. This both eases up the
fit procedure and gives larger sensitivity.

9.1 Signal parametrization

Equation 2.30 shows that we can extract both x’ and y’ performing a time-dependent
Dalitz fit of the WS sample. In general, one could fit the data and determine x’, y’, r0
and the 2n − 2 amplitudes and phases simultaneously. However, one can factorize a r2

0

term our of Equation 2.30, and absorb it into the normalization of the PDF.

The differential decay rate will be described by the following PDF

PDFsig(m
2
12, m

2
13, t) =

=
1

N
· e−Γt

[

|ADCS
f̄ (m2

12, m
2
13)|2 +

(

c1ℜ(A∗DCS
f̄ (m2

12, m
2
13)Ā

CF
f̄ (m2

12, m
2
13))

−c2ℑ(A∗DCS
f̄ (m2

12, m
2
13)Ā

CF
f̄ (m2

12, m
2
13))

)

(Γt)

+
c21 + c22

4
|ĀCF

f̄ (m2
12, m

2
13)|2(Γt)2

]

(9.1)

where

c1 =
y′

r0
and c2 =

x′

r0
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.

N is a normalization coefficient such that:

∫∫∫

PDFsig(m
2
12, m

2
13, t)dtdm

2
12dm

2
13 = 1 (9.2)

One can notice that in presence of mixing c1 and c2 must be different from zero. The
parametrization in Equation 9.1 has two main advantages with respect to the standard
mixing rate parametrization shown in Equation 2.30:

1. This PDF leads to a much more stabler fit, as there is one less parameter to be
determine. This lowers the errors and the correlation among the remaining param-
eters;

2. c1 and c2 are more sensitive to mixing with respect to x’ and y’, because the uncer-
tainty on r0 is left out.

Since the parameters of interest for combining the results on mixing are x’ and y’, our
final goal remains to extract them. Knowing c1 and c2 from the fit result, we will then
extract x’ and y’ using the correlation matrix from the fit (see Section 11.2.2).

The amplitude for the DCS transition ADCS
f̄ can in general be expressed as a super-

position of nDCS isobar component as for the CF transition (see Section 2.31):

ADCS
f̄ =

∑nDCS
i=1 aie

iδiAi(m
2
12, m

2
13)

√

∫

dm2
12dm

2
13|
∑nDCS

i=1 aieiδiAi(m2
12, m

2
13)|2

(9.3)

where ai and δi
1 are the isobar coefficients and phases that are extracted from the data

along with c1 and c2. In general, they are different for the DCS transition with respect to
the CF. The ai and δi for the ĀCF

f̄ are taken from the previous fit to the RS sample and
are held fixed in the fit to the WS sample. Table 9.1 shows the main properties of the
resonances chosen to describe the DCS amplitude. To parametrize the K∗+

0 (1430) and
K∗0

0 (1430) lineshapes, we use again the LASS parametrization described in Section 2.5.
The values of the parameters F , R, r, a and φ are fixed to the values obtained from the
RS fit.

We must notice that the normalization N in Equation 9.1 can be evaluated partly
analytically and partly numerically. The integral in the D0 lifetime variable can be done
analytically. The integral over the Dalitz plot can be done numerically with simple nu-
merical observations.

It can be demonstrated that N depends on the integral of bilinear products of the
isobar components

1In general ai and δi can be different for f and f̄ if direct CP violation is allowed. We completely
neglect direct CPV in this analysis.
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Resonance JPC Mass ( GeV/c2) Width ( GeV/c2)
ρ−(770) 1−− 0.7755 ± 0.0004 0.1494 ± 0.001
ρ−(1700) 1−− 1.720 ± 0.020 0.250 ± 0.100
K∗+(892) 1− 0.89166 ± 0.000026 0.0508 ± 0.009
K∗+

0 (1430) 0+ 1.414 ± 0.006 0.290 ± 0.021
K∗0(892) 1− 0.89600 ± 0.00025 0.0503 ± 0.006
K∗0

0 (1430) 0+ 1.414 ± 0.006 0.290 ± 0.021
K∗0

2 (1430) 2+ 1.4324 ± 0.0013 0.109 ± 0.005

Table 9.1: Summary of the Dalitz plot contributions considered in the DCS amplitude.

Iij =
∫ ∫

Ai(m
2
12, m

2
13)A

∗
j (m

2
12, m

2
13)dm

2
12dm

2
13 (9.4)

The Iij integrals can be evaluated using a numerical integration on a grid of points over
the Dalitz plot. In the case when the parameters describing the shapes of the functions
(mass and width of the resonances) are constant, these values can be cached, as they do
not vary during the fit.

Consider the integrals:

I1 =
∫∫

|ADCS
f̄ (m2

12, m
2
13)|2dm2

12dm
2
13 (9.5)

I2 =
∫∫

(

c1ℜ(A∗DCS
f̄ (m2

12, m
2
13)Ā

CF
f̄ (m2

12, m
2
13))

−c2ℑ(A∗DCS
f̄ (m2

12, m
2
13)Ā

CF
f̄ (m2

12, m
2
13))

)

dm2
12dm

2
13 (9.6)

I3 =
∫∫

|ĀCF
f̄ (m2

12, m
2
13)|2dm2

12dm
2
13 (9.7)

In terms of these integrals, we find:

∫∫∫

PDFsig(m
2
12, m

2
13, t)dtdm

2
12dm

2
13 =

1

N
· e−Γt

[

I1 + I2r0Γt+ I3
c21 + c22

4
(Γt)2

]

(9.8)

Using Equation 9.4, I2 can be written in terms of the Iij integrals:

I2 =
c1
2
ℜ(

nDCSnCF
∑

ij

aDCS
i aCF

j eiδDCS
i eiδCF

j Iij)

+
c2
2
ℑ(

nDCSnCF
∑

ij

aDCS
i aCF

j eiδDCS
i eiδCF

j Iij) (9.9)

Only events on the signal region of the {mKππ0,∆m } distribution (as defined by
Equation 5.8) enter the dataset that is fit to extract the signal parameters.
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The number of signal and background events is fixed in the fit to the number in
Tab.5.3. The statistical error on these event yields are accounted for in the systematics
uncertainty evaluation. Having less background events in the final sample simplifies in
fact the extraction of the Dalitz model parameters.

9.2 WS background parametrization

Since the WS sample is affected by a high level of background, it is necessary to parametrize
it both on the Dalitz plot and in the D0 lifetime component. The mistag background is
very easy to parametrize: since it is composed of RS D0 decays associated to an un-
correlated π±

s with an opposite charge, we can use the RS data sample to parametrize
both the Dalitz plot and the lifetime distribution. We then construct a three dimensional
histogram from the RS data. This allows our parametrization to take into account any
possible correlation between the RS Dalitz plot and the RS D0 decay time. Since the RS
sample has very high statistics, the three dimensions histogram retains enough events in
each bin. Alternatively, one could use the RS Dalitz plot fit result obtained in Section
7.4, along with a simple exponential parametrization as the one used in Section 8.4 for the
temporal dependence. Though this would be correct, it would also introduce a systematic
error due to the parametrization chosen.

The combinatorial and bad-D0 backgrounds require more study. We consider the
contribution of the two categories to this background together. In order to estimate it
we consider the left and right sidebands of mKππ0 distribution, defined in Section 7.1.
The two samples are taken in the signal region of the ∆m distribution. This avoids
to underestimate the bad-D0 contribution. The distribution of this background in the
three invariant masses and of the lifetime is shown in Figures 9.1-9.4 for both data and
MC. Though the MC describes the data in many regions reasonably well, some discrep-
ancies emerge. For this reason, we do not use the MC information for the background
parametrization.

In order to estimate this background we consider the left and right sideband distri-
butions of data and construct a three dimensional histogram-based PDF in m2

Kπ , m2
Kπ0

and the D0 lifetime. In this way, any correlation between the Dalitz plot and the lifetime
is preserved. The distribution of the right sideband is normalized to that of the left one.
This normalized three dimensional histogram-based PDF is used as a parametrization for
the background in the signal region. An alternative way to describe the WS background
is presented in Appendix B.

It is also interesting to look at the background time dependence. In order to do this, we
plot the two invariant masses m2

Kπ and m2
Kπ0 for the background histogram description

in five bin of time (Figure 9.5). No difference in the Dalitz plot projections emerges in
the five bins.



9.2. WS BACKGROUND PARAMETRIZATION 121

πK
2m

0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

 distribution for the left sidebandπK
2m  distribution for the left sidebandπK
2m

πK
2m

0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

 distribution for the right sidebandπK
2m  distribution for the right sidebandπK
2m

Figure 9.1: Distribution of m2
Kπ for the left and right mKππ0 sidebands of the WS data

(dots) and MC (line).
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Figure 9.2: Distribution of m2
Kπ0 for the left and right mKππ0 sidebands of the WS data

(dots) and MC (line).
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Figure 9.3: Distribution of m2
ππ0 for the left and right mKππ0 sidebands of the WS data

(dots) and MC (line).
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Figure 9.4: Distribution of the D0 lifetime for the left and right mKππ0 sidebands of the
WS data (dots) and MC (line).
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Figure 9.5: Comparison of WS Dalitz plot background description in five different bins of
D0 lifetime for m2

Kπ (left) and m2
Kπ0 (right). All the histograms are normalized to the

first bin of time (−2 < tD0 < 0 ps).

9.2.1 Test the absence of D+ → K+ π+ π−

One possible source of background in the bad-D0 category is the decay channel

D∗+ → D+ π0

→ K+π+π−

(9.10)

This channel may be easily mistaken for signal if the π0 is swapped with a charged
pion of the D+ decay. This process would represent a problematic structure in the WS
background, having a peculiar Dalitz plot structure. Moreover, since the D+ has a long
lifetime it would be present in the far regions of the D0 lifetime background, where the
mixing signal should be more evident. To test the contribution of this decay mode, we
generated 3.5 · 105 MC events reproducing this decay, corresponding to ∼ 400 fb−1. The
MC is produced with a phase-space amplitude. Looking at the previous analyses of this
Dalitz plot [38] this approximation is enough accurate to estimate the efficiency of our
reconstruction against this particular background. We applied the selection described in
Section 4.1. Zero events are observed for the WS sample, and 2 for the RS. We make the
request that if both a RS and a WS D0 are found in event, and they share the π±

s , the
WS D0 is discarded. Since both the π+ and the π− from the D+ decay have the same
probability to be assigned the π±

s hypothesis, the selection on the best candidate only
retains the RS candidate.

9.2.2 Validation of the mistag background description

To test if the RS data appropriately describe the WS mistag, we analyze the MC sample.
We compare the RS MC sample with the MC WS mistag. The plots are shown in Figures
9.6-9.9. We observe that the behavior of the two samples is reasonably similar.
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Figure 9.6: Comparison between the MC WS mistag sample (dots), selected using the
MC, and the RS MC sample (solid histogram) for the m2

Kπ invariant mass. Both samples
are considered in the signal region of {mKππ0,∆m }. We observe a χ2/ndof = 0.99.
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Figure 9.7: Comparison between the MC WS mistag sample (dots), selected using the
MC, and the RS MC sample (solid histogram) for the m2

Kπ0 invariant mass. Both samples
are considered in the signal region of {mKππ0,∆m }. We observe a χ2/ndof = 1.01.
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Figure 9.8: Comparison between the MC WS mistag sample (dots), selected using the
MC, and the RS MC sample (solid histogram) for the m2

ππ0 invariant mass. Both samples
are considered in the signal region of {mKππ0,∆m }. We observe a χ2/ndof = 0.85.
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Figure 9.9: Comparison between the MC WS mistag sample (dots), selected using the MC,
and the RS MC sample (solid histogram) for the D0 lifetime distribution. Both samples
are considered in the signal region of {mKππ0,∆m }. We observe a χ2/ndof = 0.88.
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9.2.3 Validation of the combinatoric and bad-D0 background

description

To verify this background description, we consider the MC sample and apply the method
described in the previous section. Then, we compare the Dalitz plot background distri-
bution obtained using this technique with the MC sample in the signal region where the
MC is applied to reject signal and mistag events. The plots for the three invariant masses
projections and for the D0 lifetime are shown in Figures 9.10-9.13. The projections are
made with 30 bins for the invariant masses and 15 for the D0 lifetime. The χ2 is calcu-
lated for each plot, and reported in Table 9.2. We conclude that the method leads to a
reasonable representation of the background distribution in the signal region.
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Figure 9.10: Comparison between the MC background sample (dots), selected using the
MC, and the background estimation from the sidebands (blue histogram) for the m2

Kπ

invariant mass of the WS sample.

Variable χ2/ndof value
m2

Kπ 0.908
m2

Kπ0 0.331
m2

ππ0 0.439
D0 lifetime 0.508

Table 9.2: χ2 values for the comparison between the MC background sample and the
background estimation from the sidebands for the WS sample.
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Figure 9.11: Comparison between the MC background sample (dots), selected using the
MC, and the background estimation from the sidebands (blue histogram) for the m2

Kπ0

invariant mass of the WS sample.
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Figure 9.12: Comparison between the MC background sample (dots), selected using the
MC, and the background estimation from the sidebands (blue histogram) for the m2

ππ0

invariant mass of the WS sample.
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Figure 9.13: On top, comparison between the MC background sample (dots), selected
using the MC, and the background estimation from the sidebands (blue histogram) for
the D0 lifetime of the WS sample. On the bottom, difference between the sideband-
interpolated D0 lifetime distribution and the background in the signal region selected
using the MC (dots). The black line is the fit result for a linear distribution y = p0 + p1x.
The fit results are also shown. The χ2 between the histogram and the linear fit is 0.969
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The D0 lifetime comparison shows a possible offset between the interpolation of the
sidebands and the background in signal region from the MC. In order to test this observa-
tion, we subtract the two histograms and fit the resulting fit with a linear parametrization.
The plot and fit result are also in Figure 9.13. We will apply a systematic error to take
this discrepancy into account (see Section 12.2.4).

One can also compare the MC background in the signal region with the interpolation
from the sidebands in bins of time, for the Dalitz plot variables. This is shown in Figures
9.14-9.15.
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Figure 9.14: Comparison of the m2
Kπ distribution, in different bins of time, for the MC

background (dots) and the sidebands interpolation (solid line). The time bins chosen are
the same as those considered in Figure 9.10, in increasing values of time from left to right,
from top to bottom

9.3 Distribution of σt for signal and background

One must also consider the difference in the distributions of σt for the signal and back-
ground categories to properly fit the tails of the lifetime distribution. This difference can
lead to a significant bias if ignored, even if the background information on σt is not used;
this is called Punzi bias [39]. To parametrize these distribution, we use the signal region
of the RS and the two sidebands of the WS sample. The distribution are then interpo-
lated and multiplied with the respective PDFs. The RS signal interpolation of σt is used
for both signal and mistag background, as their events present the same topology. The
plots of the two distributions are shown in Figures 9.16 and 9.17. We also tested that the
MC distributions of background interpolated from the sidebands regions and from MC in
signal region are compatible. The plot of the comparison between the two distributions
is in Figure 9.18.
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Figure 9.15: Comparison of the m2
Kπ0 distribution in different bins of time, for the MC

background (dots) and the sidebands interpolation (solid line). The time bins chosen are
the same as those considered in Figure 9.11, in increasing values of time from left to right,
from top to bottom
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Figure 9.16: D0 lifetime error distribution for signal and mistag background
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Figure 9.17: D0 lifetime error distribution for the combinatoric and bad-D0 background
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Figure 9.18: D0 lifetime error distribution for the interpolation of the sidebands (black
dots) and for the background events in the signal region selected using the MC (blue
dots). The χ2 between the two distributions is 0.341 .
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Chapter 10

Validation of the WS fit

The functional form for signal and background described in Chapter 9 is used in the
nominal fit of the WS data sample. Before fitting the data, it is necessary to validate this
parametrization and the fitting code. In this chapter, several procedures are adopted for
this purpose. Firstly, we fit the data sample blinding the fit code to the final result on the
parameters c1 and c2, and obtain a parametrization for the DCS Dalitz plot. Secondly,
we fit the MC sample and extract the mixing parameters. Finally, we perform toy-MC
studies to test the robustness of our fit.

10.1 Partial blind fit of the WS sample

In order to have a reasonable model for the DCS amplitude, we perform a fit to the data,
with c1 and c2 blinded. Because of the minor statistics, we expect to have a sensitivity
to few resonances compared to the CF amplitude in the RS sample. The model used to
parametrize the DCS resonances structure in the WS Dalitz plot is similar to the one
used for the fit of the RS sample, described in Chapter 7.

The signal model used for this fit is described in detail in Section 9.1. The CF am-
plitude parametrization is chosen to be the one extracted from the fit of the RS sample.
The background parametrization is described in Section 9.2.

We firstly allow to vary all the resonances contributions (all the charge conjugate
resonances of those in Table 7.1), then exclude those with an amplitude compatible with
zero, and refit for the remaining contributions. We use an unbinned maximum likelihood
fit. Since one phase of the DCS model can be absorbed in the c1 and c2 parameters and
one module can be absorbed in the r0 calculation, we are allowed to fix the amplitude and
phase of one resonance. For consistency with the RS results, we choose to fix the ρ(770)
contribution. Note that, besides the mixing results which are the main purpose of this
thesis, this is the first fit of the DCS amplitude in the D0 → K+ π− π0 decay.

The final model and the fit results are summarized in Table 10.1, along with the fit
fractions for the resonances. The method used to extract the fit fractions is the same

133
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used for the Dalitz plot fit of the RS sample (see Section 7.3. The projection of the fitted
PDF along with the data are in Figure 10.1 for the Dalitz, and in Figure 10.2 for the
D0 lifetime. It is interesting to notice that the total fit fraction is very close to 100%
, suggesting that the Dalitz plot model chosen is appropriate. The errors on the blind
values of c1 and c2 are also reported. The χ2 is calculated for the 2D projection of the
PDF on the Dalitz plot. We use an adaptive binning for the calculation. The Dalitz plot
is initially divided in 40x40 bins in m2

Kπ and m2
Kπ0 . The bins with less than 9 events

are merged with the next bins until the total bin has at least 9 events.

Notice that in the DCS amplitude the K∗+ (892) contribution to the Dalitz plot (in
terms of fit fractions) is of the same order of the ρ(770) contribution. This differs from
the CF case; if one look in Table 7.2, the ρ(770) contribution is by far the largest.

We also report the covariance matrix obtained from the fit. It is shown in Tables
10.2-10.3.

Resonance Amplitude Phase (degrees) Fit Fraction (%)
ρ(770) 1 (fixed) 0 (fixed) 39.8 ± 6.5
K∗0

2 (1430) 0.088 ± 0.017 −17.2 ± 12.9 2.0 ± 0.7
K∗+

0 (1430) 6.78 ± 1.00 69.1 ± 10.9 13.1 ± 3.3
K∗+(892) 0.899 ± 0.005 −171.0 ± 5.9 35.6 ± 5.5
K∗0

0 (1430) 1.65 ± 0.59 −44.4 ± 18.5 2.8 ± 1.5
K∗0(892) 0.398 ± 0.038 24.1 ± 9.8 6.5 ± 1.4
ρ(1700) 5.4 ± 1.6 157.4 ± 20.3 2.0 ± 1.1

χ2/ndof = 188/215 = 0.876
Total fit fraction = 102%

c1 = xxxx ± 0.091
c2 = xxxx ± 0.090

Table 10.1: Fit results for the WS data sample.

10.2 Fit of the MC sample (no mixing)

Another important test to perform is to fit the WS MC sample to extract the mixing
parameters. The BABAR MC has been generated without mixing, so this test is can
exclude that the background may produce a fake signal structure. It also gives an upper
limit at the total systematic error we can determine for this analysis.

In the BABAR simulation, the DCS amplitude is generated phase space like. No analysis
before the one presented in this thesis had ever attempted a Dalitz plot fit of the WS
sample, so no results were available as an input for the simulation. We fit the MC sample
with a non-resonant component only for the DCS Dalitz. In our MC, the CF model,
and hence the mistag Dalitz plot model, is the one obtained by the CLEO analysis of
D0 → K−π+π0 [34] . Since there is a no mixing assumption for D0 s in the BaBar
MC, one can use any CF model to perform this test. We use the same parametrization
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aK∗0
2 (1430) φK∗0

2 (1430) aK∗−

0 (1430) φK∗−

0 (1430) aK∗− φK∗− aK∗0
0 (1430)

aK∗0
2 (1430) 0.00028 -0.0091 0.0021 -0.023 0.0001 -0.026 -0.0011

φK∗0
2 (1430) -0.0091 1.6e+02 -0.19 59 0.044 3.3 0.18

aK∗−

0 (1430) 0.0021 -0.19 0.67 -2.9 0.023 -0.78 0.11

φK∗−

0 (1430) -0.023 59 -2.9 1.2e+02 -0.14 16 -0.92

aK∗− 0.0001 0.044 0.023 -0.14 0.003 -0.13 0.0078
φK∗− -0.026 3.3 -0.78 16 -0.13 31 0.22
aK∗0

0 (1430) -0.0011 0.18 0.11 -0.92 0.0078 0.22 0.19

φK∗0
0 (1430) 0.0013 21 -3.3 1.3e+02 -0.45 25 -3.3

aK∗0 6.7e-05 -0.0019 0.0016 -0.077 0.00083 -0.048 -0.00093
φK∗0 -0.015 26 -1.7 41 -0.078 9.3 -0.049
aρ(1700) 0.0045 12 -0.17 18 0.01 -0.84 -0.4
φρ(1700) -0.19 1.3e+02 -13 70 -0.12 38 1.6
c1 0.00014 -0.34 0.028 -0.72 0.0027 -0.16 0.012
c2 -1.6e-06 0.3 -0.018 0.7 -0.0021 0.17 -0.0062

Table 10.2: Covariance matrix from the fit result for the WS data sample (I).

φK∗0
0 (1430) aK∗0 φK∗0 aρ(1700) φρ(1700) c1 c2

aK∗0
2 (1430) 0.0013 6.7e-05 -0.015 0.0045 -0.19 0.00014 -1.6e-06

φK∗0
2 (1430) 21 -0.0019 26 12 1.3e+02 -0.34 0.3

aK∗−

0 (1430) -3.3 0.0016 -1.7 -0.17 -13 0.028 -0.018

φK∗−

0 (1430) 1.3e+02 -0.077 41 18 70 -0.72 0.7

aK∗− -0.45 0.00083 -0.078 0.01 -0.12 0.0027 -0.0021
φK∗− 25 -0.048 9.3 -0.84 38 -0.16 0.17
aK∗0

0 (1430) -3.3 -0.00093 -0.049 -0.4 1.6 0.012 -0.0062

φK∗0
0 (1430) 3.4e+02 -0.15 46 17 -62 -1.2 1.1

aK∗0 -0.15 0.0013 -0.1 0.0033 0.075 0.00068 -0.00071
φK∗0 46 -0.1 70 5.2 69 -0.26 0.27
aρ(1700) 17 0.0033 5.2 5 -2.6 -0.095 0.081
φρ(1700) -62 0.075 69 -2.6 7.7e+02 -0.18 -0.0015
c1 -1.2 0.00068 -0.26 -0.095 -0.18 0.0082 -0.0066
c2 1.1 -0.00071 0.27 0.081 -0.0015 -0.0066 0.0084

Table 10.3: Covariance matrix from the fit results for the WS data sample (II).
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Figure 10.1: WS Dalitz plot data and fit results. The dots are the WS data, the blue line is the fit result.
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Figure 10.2: WS D0 lifetime data and fit results. The dots are the WS data sample,
the blue line is the fit result. The red histogram represents the interpolation of the WS
combinatoric and bad-D0 background, while the blue histogram is the mistag background
contribution.
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described in Chapter 8 for the resolution function of the MC. The background description
uses the method described in Section 10.1.

In Table 10.4 we report the values of c1 and c2 extracted from the fit. They are both
compatible with zero within the error. It must be noticed that the error on c1 and c2
depends on the Dalitz model itself. In this fit of the BABAR MC sample we do not extract
any amplitude or phase for the DCS Dalitz model (since none is generated) and therefore
the errors on the mixing parameters are smaller. This is different with respect to the case
of no-mixing (but not trivial DCS Dalitz model) discussed in the toy-MC Section 10.3.

Another important test is to use the RS Dalitz fit result as a model for the mistag
background and CF amplitude. One must notice that using this parametrization is wrong,
since the BaBar MC is produced using the CLEO model and the CLEO fit results (a
comparison can be found in Section 7.4). Anyway, this test is very useful to have an
hint on how the result is sensitive to the RS parametrization. The result for c1 and c2 is
reported in Table 10.5. One can notice that also in the second case the mixing parameters
are compatible with zero, and are very close to the values in the case where the correct
CF parametrization is used.

Parameter Fit value (%)
c1 −1.32 ± 2.27
c2 2.13 ± 2.64

Table 10.4: Values of c1 and c2 from the fit of the WS MC sample

Parameter Fit value (%)
c1 −1.98 ± 2.27
c2 2.02 ± 2.72

Table 10.5: Values of c1 and c2 from the fit of the WS MC sample, using the RS fit as the
mistag parametrization

10.3 Toy-MC studies

Another important test is to verify that the fitting procedure gives a correct estimation of
the errors on the mixing parameters, and that c1 and c2 are not affected by any bias. For
this reason, we perform toy-MC studies. We generate MC samples using our signal and
background PDFs with a particular choice for the mixing parameters, and then fit each
sample. With the fitted values and errors on c1 and c2 we construct pull distributions to
study the statistical features of the parameters.

The model chosen for the generation and for the fit of the DCS amplitude is the one
obtained from the blind fit described in Section 10.1. We initially consider two different
mixing scenarios:
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1. The no-mixing case → c1 = 0 and c2 = 0

This scenario is useful to have a good hint of the sensitivity of the analysis.

2. c1 = 0.25 and c2 = 0.18

With an estimate of r0 ∼ 10−3, this scenario represents the values of c1 and c2 more
likely from the world average 1 of x and y (see Section 1.6).

We generated and fitted 2000 samples for each D0 mixing scenario. Once the fit has
converged the distribution of the pulls is considered for several fit parameters. The pulls
are defined as:

pull =
xfit − xtrue

σX
(10.1)

where xfit is value of the parameter x obtained from the fit, xtrue is the value of x
used for the generation, and σx is the error of x from the fit. The pulls are fitted with
a Gaussian distribution to check the absence of bias and to determine the spread of the
error for the parameter. We report the results for c1, c2. We also present the results of
the fit of the pulls for amplitude and phase of one resonance of the DCS Dalitz plot, the
K∗0 (892). The behavior of the other resonances is similar.

Since the presence of a small bias is found for c1, we test its statistical dependence by
generating a set of 1000 toy-MC, each one having 10 times the statistics we have for this
analysis. The bias disappears with the increase of statistics. It is due to the non-Gaussian
features of our likelihood at the statistic regime we are in our data sample. We will correct
the final result for the offset found in the toy-MC studies for c1.

The toy-MC study also shows that the pulls in each set of experiments have a standard
deviation compatible with 1 within the error. This demonstrates that the error from the
fit describes accurately the statistical fluctuation of the parameters.

For each scenario, the plot of the fitted values for the parameters, the errors and the
pulls are shown in Appendix D.

10.3.1 The no-mixing scenario

The fit results for the pull distributions are in Table 10.6. As can be observed, the pull
show a Gaussian behavior within the statistical error. A small bias is observed for c1 and
the amplitude of the resonance.

10.3.2 The c1 = 0.25 and c2 = 0.18 scenario

This case takes into account the possibility of having both c1 and c2 with large values.
With a rough estimation of r0 ∼ 10−3 this leads to values of x′ and y′ of the order of 10−2,

1This preliminary estimation assumes δ0 = 0
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Parameter Value
c1 pull mean value −0.22 ± 0.02
c1 pull σ 0.94 ± 0.03
c2 pull mean value −0.05 ± 0.02
c2 pull σ 1.05 ± 0.02
aK∗0(892) pull mean value 0.07 ± 0.02
aK∗0(892) pull σ 0.98 ± 0.02
δK∗0(892) pull mean value −0.05 ± 0.02
δK∗0(892) pull σ 1.02 ± 0.02

Table 10.6: Mean value and σ for the pull distributions of c1, c2 and the K∗0 (892)
amplitude and phase for the no-mixing scenario.

in good accord with the current estimation on x and y. c1 and c2 are assigned a value of
0.25 and 0.18 The fit results for the pull distributions are in Table 10.7.

As in the previous scenario, a small bias is observed for the c1 value and the K∗0(892)
parameters.

Parameter Value
c1 pull mean value −0.13 ± 0.02
c1 pull σ 0.90 ± 0.01
c2 pull mean value 0.04 ± 0.02
c2 pull σ 1.06 ± 0.02
aK∗0(892) pull mean value 0.13 ± 0.02
aK∗0(892) pull σ 0.97 ± 0.02
δK∗0(892) pull mean value −0.11 ± 0.03
δK∗0(892) pull σ 1.01 ± 0.01

Table 10.7: Mean value and σ for the pull distributions of c1, c2 and the K∗0(892) Dalitz
plot parameters for the c1 = 0.25 and c2 = 0.18 mixing scenario.

10.3.3 Toy MC linearity test

From the previous sections it is clear that c1 is affected by a bias, though small compared
with the statistical error. The value of the bias seems to depend on the true value of c1
used in the generation. For this reason, we extend the study of the previous subsection
to a full set of (c1, c2) generated values. We produce a set of 500 toy experiment for
each (c1, c2) value in the range ([-0.2,0.2]; [-0.2,0.2]). The fitted values averaged over each
set and the RMS of the fitted values are plotted versus the generated values. Each toy
experiment has the same statistics of our data sample. The results are show in Figure
10.3 and Fig.10.4 for c1 and c2 respectively. They are compared with a line (45o degree).
The error bars represent the RMS of the fitted value in each toy-MC set.
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Figure 10.3: Mean value of fitted c1 versus generated c1 in various set of toy-MC experi-
ments. Each plot corresponds to a different generated value of c2, which varies from -0.2
(top left) to 0.2 (bottom). The error bars represent the RMS of the distribution of the
fitted c1 values.
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Figure 10.4: Mean value of fitted c2 versus generated c2 in various set of toy-MC experi-
ments. Each plot corresponds to a different generated value of c1, which varies from -0.2
(top left) to 0.2 (bottom). The error bars represent the RMS of the distribution of the
fitted c2 values.
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It can be observed that no particular trend for the fitted vs generated values is observed
for the two parameters. This linearity test shows that there is no trend biasing our
extraction of c1 and c2. Nevertheless, a small offset with respect to the 45 line is observed.
Though small, this offset cannot be ignored. We will correct our final result for c1 and c2
for the offset.

10.4 Time independent Dalitz plot fit in bins of D0

lifetime

A simplified version of the fit to the WS signal sample can be used as a sanity check of
a positive result of mixing. We have considered one toy-MC experiment with y′ = 0.012
and x′ = 0.008 and the statistics equivalent to 10 times the data statistics. It has been
divided into 5 time bins of unequal size. The binning has been chosen so that for each
bin resides the same number of events. In each bin a time independent Dalitz plot fit
has been performed. The Dalitz model is based on the blind fit result to the WS sample
described in Section 10.1. In each bin the fit fractions have been computed for all the
components. In Table 10.8 we show the fit fraction evolution for the main components,
the ρ(770) and K∗+ (892). If mixing occurs, it is expected to see an increase of the ρ fit
fraction (main contribution of the CF amplitude) over time. We observe this behavior in
the toy-MC.

time bin (ps) ρ(770) K∗+(892)
-2.0 - 0.0 7.4 ± 1.5 49.3 ± 5.8
0.0 - 0.2 12.2 ± 1.8 53.6 ± 5.0
0.2 - 0.4 14.3 ± 2.0 43.9 ± 5.2
0.4 -0.8 18.5 ± 2.3 47.9 ± 5.3
0.8 - 4.0 24.9 ± 3.5 44.6 ± 6.0

Table 10.8: Fit fraction in time bins for ρ−K+ and π−K∗+ in a toy-MC experiment.
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Chapter 11

Interpretation of the results and
extraction of x’ and y’

In this chapter, we present the final results in terms of c1 and c2. After a brief discussion
on the method to convert the result in terms of x′ and y′, we present the values on
the mixing parameters too. Particular care is required in order to take into account all
the correlations between the fit parameters when the transformation (c1, c2) → (x′, y′) is
made. We will also extract the mixing parameters separately for the D0 and D0, to have
some information on the CP violation in this channel in mixing.

11.1 Fit results on c1 and c2

We obtain from the fit to data:

c1 = −0.002 ± 0.090 (stat.) ± 0.059 (syst.) (11.1)

c2 = 0.346 ± 0.091 (stat.) ± 0.052 (syst.) (11.2)

The determination of the systematic errors is presented in Chapter 12. We find that
c1 = y′

r0
is compatible with zero, while c2 = x′

r0
is not compatible with zero within 3σ.

11.1.1 Correction of the results for the offset on c1 and c2

In order to estimate the size of the expected offset on c1 and c2, we run 2000 toy-MC,
using our fit results in the generation. The fit results to the pull distributions are shown
in Table 11.1. As can be seen, a bias is present in the c2 distribution. This offset will be
corrected in the final result.

Given these results for the pull distributions, we can correct the final results on c1 and

145



146CHAPTER 11. INTERPRETATION OF THE RESULTS AND EXTRACTION OFX’ AND Y ’

Parameter Value
c1 pull mean value −0.01 ± 0.02
c1 pull σ 1.02 ± 0.02
c2 pull mean value −0.08 ± 0.02
c2 pull σ 1.03 ± 0.02

Table 11.1: Mean value and σ for the pull distributions of c1 and c2 in the fit result
scenario (2000 toy-MC experiments).

c2 for the offset. We shift the c2 distribution of +0.08σc2, with σc2 being the statistical
error on c2. In this way, the final result on the parameters is

c1 = −0.002 ± 0.090 (stat.) ± 0.059 (syst.) (11.3)

c2 = 0.353 ± 0.091 (stat.) ± 0.052 (syst.) (11.4)

11.1.2 Significance of the result

We want to test the compatibility of the no-mixing hypothesis with our results in a
frequentistic approach. In other words, we want to know how likely it is that, in case
mixing doesn’t exist, our data fluctuated to the result we find1. This is called the coverage
probability, which we indicate with α. In order to test this hypothesis, we measure

−2∆Log(L) = −2[Log(L(c1,fit, c2,fit)) − Log(L(0, 0))] (11.5)

We take twice the difference in log likelihood between the fit with mixing and another
fit where x′ = y′ = 0. All the other parameters are allowed to float in both fits. It can
be demonstrated that in a Gaussian regime, −2∆ logL is distributed as a χ2 distribution
with n degrees of freedom. The probability of α for exceeding χ2 with n degrees of freedom
is given by

α(χ2, n) =
[

2
n
2 Γ(

n

2
)
]−1 ∫ ∞

χ2
t

n
2
−1e−

t
2dt (11.6)

For two degrees of freedom, Equation 11.6 becomes

α(χ2, 2) =
1

2

∫ ∞

χ2
e−

t
2dt = e−

χ2

2 (11.7)

1It is much better to determine the statistical significance of the result in the {c1, c2} base instead
of the {x′, y′} base. This is because in order to extract the values of the mixing parameters we need to
use an information on r0, which will suffer on of own uncertainty. One can think this uncertainty as an
additional smearing to the likelihood that will dilute our significance.
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Systematic errors (described in Chapter 12) were included in the statistical significance
calculation by smearing the likelihood function before taking the −2∆ logL value. The
smearing function is a two dimensional Gaussian in the mixing parameters, whose error
is the systematic uncertainty on each parameter. The correlation between the parameters
was included in the Gaussian function.

We find −2∆ logL = 13.5. With two degrees of freedom, the confidence level that the
result is due to no-mixing is 0.1%. Hence, this is an evidence of mixing. The significance
of the result corresponds to 3.2 standard deviations.

In Appendix F we discuss the test of the statistical coverage of this method.

11.1.3 Contour plots on the c1 and c2 plane

It is also interesting to look at the probability contour plot for c1 and c2. In other words,
we want to identify on the {c1, c2} plane regions were the points belong to the same
likelihood probability interval. In order to do so, we generate a sample of {c1, c2} values.
At each generation step, we take the covariance matrix and generate a set of parameters
using the matrix elements. In this way, all correlations between the fit parameters are
taken into account in the {c1, c2} generation. This is done with a square root method [40].
With these generated values, we construct the two dimensional histogram on {c1, c2} and
integrate it to find the probability contour regions. The contour plot for the statistical
error only is shown in Figure 11.1. As can be noted, the contours differ from an elliptical
distribution. This tells us that the Gaussian assumption doesn’t hold in this statistical
regime.

We also want to produce the contour plots with the systematic error included. For
this reason, we sum the systematic covariance matrix described in Section 12.6.3 to the
statistical covariance matrix from the fit before generating the parameters. This can be
thought as an equivalent of summing the square of the errors. The contour plot with the
systematic errors included is shown in Figure 11.2.

11.2 Extraction of x′ and y′ from the fit result

11.2.1 Determination of r2
0

From Equation 9.1 it is clear that in order to do the transformation (c1, c2) → (x′, y′)
we need to know the value of r2

0. As stated in Section 2.2 we explained that r0 is the
module of the relative complex number between the CF and DCS amplitudes. If there
was no mixing, r2

0 would simply be the ratio of the DCS and CF widths, and could be
determined, for example, measuring the ratio between the measured WS and RS signal
events. In order to have the signal PDF in Equation 9.1 normalized, we must have that
N = NWS/(NRSr0). Hence, we can measure r2

0 by computing
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Figure 11.1: Probability contour plot for c1 and c2 (statistical error only). The 68.3%,
95.5%, 99.7%, 99.9% and 99.99% probability contour lines are shown.
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Figure 11.2: Probability contour plot for c1 and c2 (statistical and systematic errors
included). The 68.3%, 95.5%, 99.7%, 99.9% and 99.99% probability contour lines are
shown.
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r2
0 =

NWS

NRS

∫

PDFsig(m
2
12, m

2
13, t)dm

2
12dm

2
13dt

(11.8)

NWS and NRS are known from the fit to the data sample described in Chapter 5.

11.2.2 Extraction of the mixing parameters

Given the method to extract r2
0 described in the previous section, we can now determine

the values for the mixing parameters. This is done by generating all the useful parameters
for the calculation of x′ and y′ simultaneously, in order to take all the correlations into
account. With the distributions of the generated values we will estimate the best value
for x′ and y′.

Since Figure 11.1 shows a non-Gaussian behavior for c1 and c2 at higher probability
intervals, we must take this effect into account for the determination of the mixing pa-
rameters. For this reason, we use the probability contour plot distribution described in
Section 11.1.3 for the generation.

We generate 2000 sets of parameters; for each step

• we generate c1 and c2 using the probability distribution of Figure 11.1;

• we generate all the Dalitz plot amplitudes and phases, using a Gaussian generation,
taking into account the correlations from the fit covariance matrix;

• we generate NWS and NRS with a one dimensional Gaussian distribution for each
parameter, using as a mean and error the values contained in Table 5.1;

• given the values of c1, c2 and the amplitudes and phases, we can calculate
∫

PDFsig(m
2
12, m

2
13, t)dm

2
12dm

2
13dt.

Knowing the integral value and knowing NWS and NRS we calculate r2
0;

• knowing c1, c2 and r2
0, we can finally compute x′ and y′.

Note that this procedure decouples the generation of c1 and c2 from the generation of
the Dalitz plot amplitudes and phases. This procedure is correct as long as c1 and c2 and
the Dalitz plot model are poorly correlated.

The central values and errors on the mixing parameters are extracted using a Bayesian
approach, integrating the likelihood transformed in the {x′, y′} base using a flat prior
distribution. We determine:

x′ = (2.61+0.57
−0.68)%

y′ = (−0.06+0.55
−0.64)% (11.9)
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where the error is statistical only.

We can also produce the probability contour plot for x′ and y′. It is shown in Figure
11.3. Note that our procedure perfectly reproduces the non-Gaussian behavior.
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Figure 11.3: Probability contour plot for x′ and y′ (statistical error only). The 68.3%,
95.5%, 99.7%, 99.9% and 99.99% probability contour lines are shown. The fuzzy behavior
of the 99.99% region is due to the low toy-MC statistic in the region far from the central
value.

11.2.3 Final results on x′ and y′ with systematic errors included

In Section 12.6.3, we describe a method to determine a systematic errors covariance
matrix. In order to propagate the systematic errors to x′ and y′, we sum the systematic
errors covariance matrix to the statistical one before performing the method described
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in Section 11.2.2. This is equivalent to sum in square all the errors accounting for the
correlations.

The final result on the mixing parameters is:

x′ = (2.61+0.57
−0.68 (stat.) ± 0.39 (syst.) )%

y′ = (−0.06+0.55
−0.64 (stat.) ± 0.34 (syst.) )% (11.10)

with a linear correlation of -0.75. We can also produce the probability contour plot
for x′ and y′ with the systematic error. It is shown in Figure 11.4.
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Figure 11.4: Probability contour plot for x′ and y′ (statistical and systematic errors
included). The 68.3%, 95.5%, 99.7%, 99.9% and 99.99% probability contour lines are
shown.
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11.2.4 Measurement of r2
0

Another parameter determined during the extraction of x′ and y′ is the ratio

r2
0 =

NWS

NRS

∫

PDFsig(m2
12, m

2
13, t)dm

2
12dm

2
13dt

(11.11)

From the distribution obtained in the generation (with the systematic covariance ma-
trix included), we obtain

r2
0 = 0.00525+0.00025

−0.00031 (stat.) ± 0.00012 (syst.) (11.12)

The probability plot for r2
0 with the systematic error included is shown in Figure 11.5.

Notice that this is the first measurement of this quantity.
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Figure 11.5: Probability contour plot for r2
0 with the systematic error included. The 68.3%

and 95.5% probability intervals are shown.

11.3 D0-D0 mixing result for separate flavors

It is also very interesting to measure x′ and y′ separately for the D0 and D0 samples.
This can give an important information to constraint new physic models using the limits
on CP violation obtained by this result.
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We perform a separate fit to the WS sample for the D0 and D0 categories. We call
x′+ and y′+ the mixing parameters of the D0 and x′− and y′− those of the D0. The fit
procedure and the x′ and y′ parameter extraction are performed with the same method
described for the flavor integrated case in the previous sections of this chapter.

Performing the x′ and y′ extraction and systematic error propagation described for
the flavor integrated case in Section 11.2.3 we obtain the following values of the mixing
parameters:

x′+ = (2.53+0.54
−0.63 (stat.) ± 0.39 (syst.) )%

y′+ = (−0.05+0.63
−0.67 (stat.) ± 0.50 (syst.) )% (11.13)

x′− = (3.55+0.73
−0.83 (stat.) ± 0.65 (syst.) )%

y′− = (−0.54+0.40
−1.16 (stat.) ± 0.41 (syst.) )% (11.14)

We observe that the parameters x′±(y′±) are compatible within one standard deviation.
Therefore, no signal for CP violation is present within the error. The no-mixing point is
compatible at the 2.9% level for the D0 case and 2.8% level for the D0 case (including
systematic uncertainties). The correlation between x±

′

and y±
′

is -0.69 for the D0 case
and -0.66 for the D0 case. The contour plots for x±

′

and y±
′

for the D0 and D0 cases are
in Figures 11.6 and 11.7 respectively.
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Figure 11.6: Probability contour plot for x+′

and y+′

with statistical error only (top)
and with statistical and systematic error (bottom). The 68.3%, 95.5%, 99.7% and 99.9%
probability contour lines are shown.
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Figure 11.7: Probability contour plot for x−
′

and y−
′

with statistical error only (top)
and with statistical and systematic error (bottom). The 68.3%, 95.5%, 99.7% and 99.9%
probability contour lines are shown.



Chapter 12

Studies on systematic uncertainties

In this chapter, we discuss the study on systematic uncertainties for the c1 and c2parameters.
We mainly considered as a source of systematic error the signal and background parametriza-
tions, the event selection criteria and the Dalitz plot efficiency evaluation. After this, we
describe a method to propagate the error from the {c1, c2} base to the {x′, y′} base.

In all the systematic error evaluations, the technique used was to vary the analysis
for a particular systematic, refit the data sample, and determine the variation of the
parameters with respect to the standard fit. In order to avoid accidental systematics, we
performed the systematic error estimation using the blind fit described in Section 10.1.
The blinding has been performed by adding to c1 and c2 from the fit an unknown constant
offset. In this way the blinded fit can be a useful tool for the study in this chapter.

12.1 Signal Dalitz plot model

12.1.1 CF amplitude systematics

Since the mixing is a small effect, we expect that the CF contributions in the WS sample
will be dominated by the resonances with the highest fit fraction in the RS Dalitz plot
fit. We can estimate the systematics due to the model assumptions using the CLEO
model [34] of the Dalitz plot fit of D0 → K−π+π0 . We refit this model to our RS data,
and use the result as the parametrization of the CF amplitude in the WS fit.

12.1.2 DCS amplitude systematics

The systematic contributions coming from the DCS amplitude description are due to the
parameters which are fixed in the standard fit and the Dalitz plot model chosen. The
first are essentially the mass and width of the resonances and the LASS parametrization
coefficients taken from the RS fit. They are estimated by varying the parameters of ±1σ.

157



158 CHAPTER 12. STUDIES ON SYSTEMATIC UNCERTAINTIES

The systematic associated to the LASS parametrization can be tested by using a Breit-
Wigner function to describe the K∗ (1430) s-wave and a flat non-resonant contribution.
This systematic is reported as “LASS WS” in Tables 12.1-12.2.

In Section 9.1 we explained that for the nominal fit, only the resonances with an ampli-
tude different from zero within 3σ were retained for the DCS amplitude parametrization.
We can test the choice of the model for the Dalitz plot by considering in the fit also those
resonances which are not compatible with zero at a 2σ level. These resonances are the
K∗0 (1680) and K∗+ (1680). This systematic is reported together with the CF Dalitz
model systematic as “Dalitz Model” in Tables 12.1-12.2.

12.1.3 Systematic uncertainties for K∗± (1680) and ρ(1700)

As shown in 7.4, the resonances that lie outside our Dalitz plot, and contribute to our
amplitudes with their tails, are determined with a shift in their amplitude value. This
is mainly due to the inability of our efficiency map to perfectly describe the boundaries
of our Dalitz plot. In order to take this effect into account, we determine the difference
between the MC generated amplitude value and our fit result of the MC sample, and
apply this shift as a systematic to the K∗± (1680) and ρ(1700) amplitudes.

12.1.4 Resolution effects along the Dalitz plot

Resolution effects along the Dalitz plot may influence our mixing result. This is particu-
larly true for those resonances whose strong phase is rapidly shifted of 180 degrees close
to the peak position. One considers this to be rapid if the invariant mass interval in
which this shift occurs is compatible with the resolution. To test this effect, we produced
a toy-MC of 104 signal events. For the generation we considered the Dalitz plot model
described for the nominal fit in Section 10.1. For the mixing parameters used in the gen-
eration we chose the values obtained from the unblinded fit. We then smeared the Dalitz
plot distribution with a Gaussian function having a width of 10 MeV/c2 in both m2

Kπ and
m2

Kπ0. No correlation between the two Dalitz plot variables is considered in the resolution
function. We then refitted the smeared sample and compared the mixing results with
the values used in generation. No significant change in the parameters is observed within
0.1σ, with σ being the statistical error. Hence we neglect this systematic error.

12.2 Signal resolution function

12.2.1 Resolution offset

We test the source of systematic error due to the presence of a resolution offset by both
fixing it to zero and by allowing a different offset for each of the three Gaussian of the
resolution model. Floating the offset of the three Gaussian gets the parameters t0,1 = 1.2,
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t0,2 = 2.4 and t0,3 = 6.1 fs.

12.2.2 D0 mean lifetime

In the standard fit the value of the D0 mean lifetime is taken from the 2006 PDG world
average [37]. In order to test this assumption, we use the value extracted from the fit of
the RS sample.

12.2.3 Gaussian fractions and scale factors

The Gaussian fractions and scale factors of the resolution function are fixed to the RS D0

lifetime fit in the standard fit. In order to test the contribution of this assumption to the
systematic error, we fit varying them of ±1σ. They are indicated as “Res. factor k” and
“Res. fract. f” in Tables 12.1-12.2.

12.2.4 Background parametrization of the RS sample

As shown in 8.3, our estimation in MC of the D0 lifetime for the RS shows a discrepancy
with respect to the MC truth matched background. Assuming that the same behavior is
present in the WS data, we must take into account this effect in the resolution function
parametrization systematics. To do this, we refit the RS D0 lifetime data, using the
MC truth matched background. We determine the systematic variation for the Gaussian
fractions, the scale factors and the resolution offset. We sum in quadrature this errors
with the statistical ones, and use them to vary the values of the resolution parameters, as
described in the previous subsections.

12.3 Dalitz plot efficiency parametrization

The efficiency parametrization described in Chapter 6 uses one of the invariant masses
used to describe the Dalitz plot (m2

Kπ ) and the helicity angle between theK−π directions.
One way to test this possible source of systematic is using another couple of particles of
the final state to extract the parametrization. We choose to perform it with the K − π0

couple. This is reported as “Dalitz plot eff.” in Tables 12.1-12.2. Additional plots for
the K −π0 efficiency calculation and comparison with the nominal choice are reported in
Appendix E.

12.4 Combinatoric background parametrization

For the combinatoric and bad-D0 parametrization, one can estimate the systematic using
the truth-matched background from the MC sample in the fit. Since Figure 9.13 shows
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a possible shift between the true D0 lifetime background distribution and our estimation
from the sidebands, this effect is taken into account in this approach. This estimation is
reported as “Comb. backgr.” in Tables 12.1-12.2.

12.5 Parameters from the {mKππ0,∆m } fit

To determine the contribution of the choice of these parameters to the systematic error,
we vary them of ±σ of the statistical error. This systematics effects are indicated as Nsig,
Nmis and Ncomb + Nbad−D0 in Tables 12.1-12.2. Since in Figure 5.12 it appears that the
number of bad-D0 events can be underestimated, we conservatively inflate the systematic
error on the number of signal events by varying this parameter of ±1.5σ of the statistical
error.

Another potential source of systematic error is the choice of the signal region of
mKππ0,∆m } distribution. In order to estimate this systematic, we vary the signal re-
gion definition. We firstly redefine the cut in the D0 mass, by moving it from 1.8495 <
mKππ0 < 1.8795 to 1.846 < mKππ0 < 1.882 GeV/c2. This cut is still symmetric with
respect to the PDG value of the D0 mass. The systematic effect is reported as “mKππ0

region” in Tables 12.1-12.2.

To estimate the systematic effect due to the choice of the ∆m signal region, we move
the cut from 0.1449 < ∆m < 0.1459 to 0.14485 < ∆m < 0.14595 GeV/c2. Also this cut is
symmetric with respect to the PDG value of ∆m. This effect is reported as “∆m region”
in Tables 12.1-12.2.

12.6 Selection criteria

12.6.1 Proper time and proper time error selection

In the standard fit, we require the D0 lifetime to be −2 < t < 4 (ps). We test the
sensitivity of c1 and c2 to this cut by both restricting the interval to −1 < t < 3.5 (ps)
and by widening it to −5 < t < 10 (ps). We cannot select a lifetime range with positive
values only because in that region we cannot disentangle the RS lifetime and the resolution
function distributions.

The standard cut on the D0 lifetime error is σt < 0.5 (ps). We test the sensitivity of
c1 and c2 to this cut by both restricting the cut to σt < 0.4 (ps) and by widening it to
σt < 0.6 (ps).

12.6.2 Best candidate selection systematic

We determine this contribution to the systematic by either varying and removing the
selection of the best candidate of the event. Only the one which has the highest variation
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is taken as a systematic estimation.

12.6.3 Systematic errors propagation to x′ and y′

In order to propagate the systematic errors to the x′ and y′ determination, we construct
a systematics covariance matrix, for a given variation of the fit, based on the variation of
the signal parameters from the nominal values. The (i, j) matrix element is given as

sij = δiδj (12.1)

where δi is the difference between the two fits for the variable i. The total system-
atics covariance matrix is obtained by adding together the covariance matrices from the
different systematics sources linearly, which is equivalent to sum the square of the errors
with correlations included. We then sum the total systematics covariance matrix to the
statistical covariance matrix and use this sum to generate x′ and y′ as described in 11.2.2.

12.7 Summary of systematic errors

The contributions to the systematic error on the signal parameters in the fit are summa-
rized in Tables 12.1-12.2, in units of the statistical error of the standard blind fit. For
completeness we also report the total systematics covariance matrix, obtained summing
all the systematics matrices from each contribution, in Tables 12.3-12.4.
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aK∗0
2 (1430) φK∗0

2 (1430) aK∗−

0 (1430) φK∗−

0 (1430) aK∗− φKstarm aK∗0
0 (1430)

K∗− mass 0.00233 0.0421 0.0221 0.0614 0.0372 0.00269 0.018
K∗− width 0.000536 0.00713 0.00276 0.000738 0.0357 0.0123 0.00395
ρ mass 0.0176 0.0551 0.0779 0.151 0.112 0.0925 0.0428
ρ width 0.00392 0.0226 0.00927 0.0488 0.0178 0.0206 0.0167
K∗0 mass 0.00182 0.0116 0.0144 0.0338 0.0196 0.0115 0.0114
K∗0 width 0.00147 0.000857 0.000183 0.00591 0.0076 0.0041 0.00325
K∗−(1430) mass 0.00386 0.0167 0.0112 0.0329 0.000842 0.00787 0.00404
K∗−(1430) width 0.00211 0.00618 0.0212 0.00821 0.000539 0.00576 0.0296
K∗0(1430) mass 0.00614 0.001 0.00342 0.00414 0.00583 0.00037 0.00561
K∗0(1430) width 0.000588 0.00239 0.00199 0.00593 0.00176 0.00192 0.00797
K∗0

2 (1430) mass 0.0349 0.0344 0.00217 0.00759 0.00691 0.014 0.00782
K∗0

2 (1430) width 0.2 0.0518 0.0174 0.0443 0.00585 0.0513 0.03
Res. factor k1 0.000492 0.00511 0.00675 0.00913 0.00452 0.00425 0.00138
Res. factor k2 0.0015 0.0189 0.00756 0.0418 0.00204 0.02 0.00596
Res. factor k3 0.00121 0.00858 0.0011 0.0138 0.00116 0.00919 0.00362
Res. fract. f1 0.000157 0.00205 0.00238 0.00443 0.00116 0.00191 0.00049
Res. fract. f2 0.000413 0.0274 0.00179 0.0508 0.00238 0.0291 0.0118
Nsig 0.0882 0.00343 0.0372 0.0547 0.176 0.0351 0.0153
Nmis 0.083 0.05 0.22 0.101 0.161 0.0739 0.158
Ncomb +Nbad−D0 0.0173 0.077 0.314 0.271 0.0389 0.0749 0.304
Lifetime error 0.327 0.28 0.348 0.536 0.539 0.34 0.844
Lifetime range 0.0894 0.0453 0.193 0.132 0.242 0.11 0.0787
Mean D0 lifet. 0.000842 0.00143 0.000538 0.00427 0.000369 0.00408 0.00228
Res. offset 0.024 0.0215 0.0624 0.0415 0.0561 0.023 0.0713
Dalitz Plot eff. 0.0836 0.0047 0.0654 0.137 0.0389 0.123 0.0567
Dalitz model 0.2 0.0556 0.138 0.0281 0.0418 0.0484 0.0883
ρ(1700) param. 0.0283 0.545 0.182 0.494 0.0655 0.0863 0.213
LASS WS 2.11 4.83 0 0 0.0671 0.407 0
Comb. backgr. 0.0889 0.0744 0.202 0.086 0.0274 0.124 0.0497
mD0 region 0.246 0.0555 0.198 0.05 0.0258 0.0457 0.0609
∆m region 0.0909 0.103 0.323 0.217 0.0669 0.0905 0.321

Total 2.18 4.878 0.7483 0.8658 0.6664 0.6089 1.006

Table 12.1: Systematic error contributions summary (I), the contributions are in units of
σ of the parameters.
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φK∗0
0 (1430) aK∗0 φK∗0 aρ(1700) φρ(1700) c1 c2

K∗− mass 0.0429 0.0195 0.0264 0.0417 0.0082 0.0746 0.0757
K∗− width 0.00893 0.00438 0.000508 0.00339 0.00994 0.012 0.000222
ρ mass 0.148 0.0456 0.078 0.0763 0.0302 0.192 0.193
ρ width 0.0452 0.00274 0.0228 0.034 0.00221 0.0657 0.0499
K∗0 mass 0.0303 0.00343 0.00356 0.0215 0.000479 0.0373 0.0394
K∗0 width 0.00904 0.0186 0.00698 0.0026 0.00479 0.0127 0.00812
K∗−(1430) mass 0.0223 0.00646 0.00016 0.0262 0.00904 0.0188 0.016
K∗−(1430) width 0.00688 0.00278 0.00359 0.00139 0.00595 0.00712 0.00482
K∗0(1430) mass 0.00665 0.00198 0.00134 0.00402 0.00279 0.00683 0.00462
K∗0(1430) width 0.00478 0.000305 0.00237 0.00618 0.00102 0.0062 0.00678
K∗0

2 (1430) mass 0.00409 0.0056 0.00393 0.0109 0.00548 0.0118 0.00389
K∗0

2 (1430) width 0.0296 0.00896 0.0275 0.00868 0.0393 0.0436 0.0504
Res. factor k1 0.00587 0.00211 0.00798 0.00469 0.00582 0.00659 0.0117
Res. factor k2 0.022 0.0144 0.0314 0.0263 0.00696 0.00433 0.0539
Res. factor k3 0.00711 0.00659 0.0113 0.00833 0.00216 0.00132 0.0184
Res. fract. f1 0.00258 0.00103 0.00351 0.00272 0.00186 0.00191 0.00521
Res. fract. f2 0.0266 0.0212 0.0397 0.0313 0.00673 0.00322 0.0683
Nsig 0.0204 0.0827 0.0779 0.0424 0.0252 0.00351 0.0954
Nmis 0.0579 0.00417 0.0039 0.109 0.0546 0.0768 0.0243
Ncomb +Nbad−D0 0.135 0.143 0.13 0.267 0.135 0.125 0.203
Lifetime error 0.578 1.12 0.652 0.39 0.785 0.421 0.271
Lifetime range 0.306 0.123 0.0806 0.0461 0.0786 0.231 0.155
Mean D0 lifet. 0.00273 0.00224 0.00382 0.000949 0.000359 0.00073 0.00933
Res. offset 0.0501 0.00987 0.0105 0.0553 0.00575 0.11 0.0114
Dalitz Plot eff. 0.106 0.0627 0.0706 0.106 0.0525 0.0947 0.102
Dalitz model 0.169 0.135 0.0188 0.00948 0.134 0.0225 0.0579
ρ(1700) param. 0.0678 0.0761 0.245 0 0 0.213 0.116
LASSWS 0 0.819 0.163 1.99 0.688 0.221 0.234
Comb. backgr. 0.212 0.0198 0.186 0.123 0.261 0.0241 0.000666
mD0 region 0.177 0.0429 0.054 0.0494 0.292 0.0215 0.188
∆m region 0.272 0.0721 0.00769 0.354 0.000507 0.147 0.0374

Total 0.8221 1.418 0.7714 2.091 1.137 0.6656 0.5712

Table 12.2: Systematic error contributions summary (II), the contributions are in units
of σ of the parameters.
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aK∗0
2 (1430) φK∗0

2 (1430) aK∗−

0 (1430) φK∗−

0 (1430) aK∗− φK∗− aK∗0
0 (1430)

aK∗0
2 (1430) 0.0013 2.1 0.0017 0.018 -0.00025 0.086 -0.0019

φK∗0
2 (1430) 2.1 3.7e+03 -1.3 25 -0.17 1.3e+02 0.61

aK∗−

0 (1430) 0.0017 -1.3 0.37 -1.6 0.0031 -0.15 0.094

φK∗−

0 (1430) 0.018 25 -1.6 87 -0.21 6.9 -3.3

aK∗− -0.00025 -0.17 0.0031 -0.21 0.0013 -0.06 0.013
φK∗− 0.086 1.3e+02 -0.15 6.9 -0.06 11 -0.5
aK∗0

0 (1430) -0.0019 0.61 0.094 -3.3 0.013 -0.5 0.2

φK∗0
0 (1430) 0.032 -28 -3 1e+02 -0.42 15 -5.7

aK∗0 -0.0012 -1.7 -0.011 -0.23 0.0011 -0.092 0.009
φK∗0 -0.029 -80 -0.21 48 -0.16 5.6 -2.2
aρ(1700) -0.15 -2.7e+02 -0.33 9.9 -0.015 -9.4 -0.55
φρ(1700) -0.81 -1.1e+03 -8.2 -1.1e+02 0.57 -55 6
c1 -0.00085 -1.3 0.011 -0.47 0.0018 -0.12 0.021
c2 0.00089 1.3 -0.013 0.21 -0.00078 0.12 -0.011

Table 12.3: Global systematics covariance matrix (I).

φK∗0
0 (1430) aK∗0 φK∗0 aρ(1700) φρ(1700) c1 c2

aK∗0
2 (1430) 0.032 -0.0012 -0.029 -0.15 -0.81 -0.00085 0.00089

φK∗0
2 (1430) -28 -1.7 -80 -2.7e+02 -1.1e+03 -1.3 1.3

aK∗−

0 (1430) -3 -0.011 -0.21 -0.33 -8.2 0.011 -0.013

φK∗−

0 (1430) 1e+02 -0.23 48 9.9 -1.1e+02 -0.47 0.21

aK∗− -0.42 0.0011 -0.16 -0.015 0.57 0.0018 -0.00078
φK∗− 15 -0.092 5.6 -9.4 -55 -0.12 0.12
aK∗0

0 (1430) -5.7 0.009 -2.2 -0.55 6 0.021 -0.011

φK∗0
0 (1430) 2.3e+02 -0.31 63 18 -1.9e+02 -0.71 0.33

aK∗0 -0.31 0.0026 -0.17 0.11 1.4 0.002 -0.0006
φK∗0 63 -0.17 42 11 -70 -0.27 0.078
aρ(1700) 18 0.11 11 22 70 0.028 -0.064
φρ(1700) -1.9e+02 1.4 -70 70 1e+03 1 -0.45
c1 -0.71 0.002 -0.27 0.028 1 0.0036 -0.0021
c2 0.33 -0.0006 0.078 -0.064 -0.45 -0.0021 0.0027

Table 12.4: Global systematics covariance matrix (II).



Chapter 13

Impact of the result and conclusions

In this chapter, we make an educated evaluation of the impact of this result to the
knowledge of the mixing parameters. As explained in Section 2.2, this analysis is not
sensitive to x and y directly, but rather to those parameters rotated by an unknown
strong phase. Nevertheless, using other constraints on the mixing parameters, one can
obtain information on mixing using this result. It is also possible to get a sense of the
size of the strong phase.

13.1 Combination of results

13.1.1 Input parameters considered

In most cases, the input values considered for different parameters were taken from the
official 2008 averages made by the HFAG group [22]. They are summarized in Table 1.1.
Where provided by the authors, correlation coefficients were used during the extraction
procedure. When no correlation was provided, we considered a negligible correlation be-
tween the mixing parameters. We generate 107 events for the extraction of the parameters.

13.1.2 Combination procedure

We perform the combination of all the measurements using a Bayesian approach. We
generate the mixing parameters x and y, the strong phases δKπ (present in the D0 → K+

π− mixing analysis) and δ0 with a flat distribution. We reweight each uniformly generated
event with the distribution of the experimental results shown in Table 1.1. All the results
are considered to be in a Gaussian regime. We then plot the distribution of the reweighted
events and integrate it to get probability intervals.
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13.1.3 Combination of the experimental results with and with-

out this analysis

The first exercise, is to plot the distribution of x, y and δKπ using all the results except
the one presented in this analysis. The one dimensional probability distributions for the
three parameters are in Figures 13.1-13.3 (top). A summary of the combined values for
the three parameters are presented in Table 13.1. In any case, the most important plot is
the two dimensional probability contour plot in the x − y plane. This plot allows to see
with which precision the no-mixing point is excluded. For the combination of all results
except the D0 → K+π−π0 , it is shown in Figure 13.4 (top). One can determine directly
from the probability contour plot that the no-mixing point is excluded with a probability
of 0.001%.

Parameter Central value and error 95% interval
x 0.742 ± 0.329 % [0.11-1.39]%
y 0.694 ± 0.178 % [0.34-1.05]%
δKπ 17.6 ± 26.9 [-66.8-61.1]

Table 13.1: Summary of the combined values of x, y and δKπ without the D0 → K+π−π0

result.

The next step is to add the D0 → K+π−π0 result presented in this thesis to the
combination. Note that in this case, we can also determine the δ0 phase from the combi-
nation. We use the same procedure described above for the previous combination. The
probability plots corresponding to the x, y, δKπ and delta0 are shown in Figures 13.1-13.5
(bottom). In this case the no-mixing point is excluded with a probability of 0.0004%,
which constitutes an improvement over the previous scenario. It is also very interesting
to notice that the central value of the two strong phases seem compatible. One should
remember that these phases can be directly determined by performing an analysis of co-
herently produced D0-D0 couples. This analysis could be performed in the CLEOc or
BESIII environments.

Parameter Central value and error 95% interval
x 0.901 ± 0.325 % [0.24-1.52]%
y 0.736 ± 0.181 % [0.38-1.09]%
δKπ 21.1 ± 22.8 [-58.0-61.9]
δ0 10.2 ± 32.8 [-59.1-72.8]

Table 13.2: Summary of the combined values of x, y and δKπ with the D0 → K+π−π0

result.
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Figure 13.1: Probability distribution for the combined x without the D0 → K+π−π0 re-
sult (top) and with it (bottom). The red (yellow) area represent the 68% (95%) probability
interval.
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Figure 13.2: Probability distribution for the combined y without the D0 → K+π−π0 re-
sult (top) and with it (bottom). The red (yellow) area represent the 68% (95%) probability
interval.
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Figure 13.3: Probability distribution for the combined δKπ without the D0 → K+π−π0

result (top) and with it (bottom). The red (yellow) area represent the 68% (95%) proba-
bility interval.
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Figure 13.4: Probability contour plot on the x − y plane for the combination of all the
mixing results excluding D0 → K+π−π0 (top) and including it (bottom). The contours
correspond to the 68%, 95%, 99%, 99.9% and 99.99%.
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Figure 13.5: Probability distribution for the combined δ0 adding the D0 → K+π−π0

result. The red (yellow) area represent the 68% (95%) probability interval.

13.2 Conclusions

In the previous section, we show with a very simplified combination technique that this
analysis provides a significant constraint on the mixing parameters. The no-mixing point
in the x−y plane is excluded with significantly higher precision (from 0.001% to 0.0004%).
This proves that the time-dependent Dalitz plot technique used to extract the mixing
parameters is competitive with the two-body decays analyses. Moreover, the PDF in our
case presents a linear dependence in both the parameters x′ and y′. Using the measured
value of yCP (in the CP conservation limit) or an external input on the unknown strong
phase δ0, this analysis can put a powerful (indirect) constraint on x.

It has to be pointed out that one of the strengths of this work is the possibility to
use the D0 → K−π+π0 decay as a source of information on our signal, as it shares its
topological structure. Other decay channels, like D0 → KSπ

+ π− can provide a direct
measurement of x but do not have a similar control sample. For that reason, the study of
self-conjugate final states is much more difficult, and higher systematic errors are expected.

Another observation can be made at this point. D0-D0 mixing is a small effect. It is
much more natural to look for it on top of a process that has a small rate too (so a DCS
decay like D0 → K+π−π0 ). The search for mixing in CF decays (like D0 → KSπ

+ π−)
or SCS (like D0 → π+ π− π0) is instead an attempt to look for a small effect inside a
sample with higher statistics.

This analysis is also the first determination of the DCS component of the D0 →
K+π−π0 decay. Previous studies of this decay neglected any mixing contributions, so in
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fact the superposition of a DCS and a CF amplitude times the mixing parameters was
studied.

13.3 Prospectives

As pointed out in Chapter 1, it is very difficult to give a prediction of the mixing pa-
rameters within and beyond the SM. Though it is important to have the most precise
determination of x and y, it seems unlikely that any NP contribution will be evident
solely in mixing. From the combination of the results in Section 13.1 it appears that x
and y are of the same order of magnitude. One could have had an hint of the presence
of NP contributions if |x| was found to be at least one order of magnitude larger than
|y|. This is because, as explained in Section 1.2, x is more sensitive to the short-range
contributions, where NP would have been more likely to appear.

As this is not the case, the next step one should proceed with is the search of CP
violation in the charm sector. In this case, a good knowledge of the mixing parameters is
crucial, as CP could be violated in mixing or in the interference between mixing and the
direct decay.

Though much information can still be determined within the B-factories dataset, the
statistics at disposal in the present scenario limits any finding. The most optimistic
expectation of CP violation in the SM limits its size to at best 0.1% [41]. The current
uncertainty on the CP violation parameters is of the order of 0.4-0.8% (for example in
[42]), and the statistical error is still dominant. It is obvious that for one to be able to
probe the scale of CPV in the SM and beyond a high luminosity flavor factory will be
needed.



Appendix A

RS time independent Dalitz plot fit
with no background

As a first estimation of the RS Dalitz plot, we performed a fit to the sample selecting the
signal region of mKππ0 and ∆m, neglecting the background contributions. For signal, the
model used is the same as the one described in Section 7.1. The plot of the fit results for
the three invariant masses projections is shown in Figure A.1, while the summary of the
results are in Tables A.1 and A.2.

πK
2m

0.5 1 1.5 2 2.5

E
ve

n
ts

 / 
( 

0.
00

25
90

25
 )

0

200

400

600

800

1000

1200

1400

1600

1800

2000

πK
2m

0.5 1 1.5 2 2.5

E
ve

n
ts

 / 
( 

0.
00

25
90

25
 )

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0πK
2m

0.5 1 1.5 2 2.5

E
ve

n
ts

 / 
( 

0.
00

25
80

18
 )

0

500

1000

1500

2000

2500

0πK
2m

0.5 1 1.5 2 2.5

E
ve

n
ts

 / 
( 

0.
00

25
80

18
 )

0

500

1000

1500

2000

2500

0ππ
2m

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

E
ve

n
ts

 / 
( 

0.
00

18
03

77
 )

0

500

1000

1500

2000

2500

3000

0ππ
2m

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

E
ve

n
ts

 / 
( 

0.
00

18
03

77
 )

0

500

1000

1500

2000

2500

3000

0.5 1 1.5 2 2.5
-5

-4

-3

-2

-1

0

1

2

3

4

5

0.5 1 1.5 2 2.5
-5

-4

-3

-2

-1

0

1

2

3

4

5

0.5 1 1.5 2 2.5
-5

-4

-3

-2

-1

0

1

2

3

4

5

0.5 1 1.5 2 2.5
-5

-4

-3

-2

-1

0

1

2

3

4

5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-5

-4

-3

-2

-1

0

1

2

3

4

5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-5

-4

-3

-2

-1

0

1

2

3

4

5

Figure A.1: RS Dalitz plot data and fit results (top) along with the residuals of the fit
(bottom). The dots are the RS data sample, the blue line is the fit result. This fit is
performed ignoring the background contributions.
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Resonance Amplitude Phase (degrees) Fit Fraction (%)
ρ(770) 1 (fixed) 0 (fixed) 68.9 ± 7.6
K∗−(1680) 1.91 ± 0.07 178.0 ± 2.0 0.65 ± 0.09
K∗−

2 (1430) 0.017 ± 0.001 −168.5 ± 3.4 0.13 ± 0.01
K∗0

2 (1430) 0.0374 ± 0.0007 40.6 ± 1.1 0.56 ± 0.05
K∗−(1410) 0.16 ± 0.01 46.6 ± 5.5 0.09 ± 0.01
K∗−

0 (1430) 3.14 ± 0.04 175.6 ± 0.9 3.5 ± 0.3
K∗−(892) 0.384 ± 0.001 163.3 ± 0.2 10.6 ± 1.1
K∗0(1410) 0.07 ± 0.01 −272.9 ± 8.3 0.017 ± 0.006
K∗0

0 (1430) 2.65 ± 0.02 85.4 ± 0.4 4.6 ± 0.5
K∗0(1680) 3.18 ± 0.06 −12.4 ± 1.2 1.18 ± 0.22
K∗0(892) 0.396 ± 0.001 5.7 ± 0.3 11.3 ± 1.2
ρ(1700) 5.67 ± 0.10 131.5 ± 1.1 3.9 ± 0.4

Total fit fraction = 106%

Table A.1: Fit results for the RS data sample, ignoring the background contributions.
Amplitudes, phases and fit fractions are reported

Parameter Value
BK∗− 0.9 ± 0.008
BK∗0 −1.2 ± 0.009
RK∗− 0.4 ± 0.005
RK∗0 0.3 ± 0.007
aK∗− 4 ± 0.09
aK∗0 7 ± 0.1
φB,K∗− −78 ± 1
φB,K∗0 −167 ± 1
φR,K∗− 139 ± 1
φR,K∗0 87 ± 1
rK∗− −2.4 ± 0.06
rK∗0 −6.6 ± 0.2

Table A.2: Fit results for the LASS parameters, with background contributions ignored.



Appendix B

An alternative WS background
parametrization

In this appendix we present an alternative method to describe the WS background both
on the Dalitz plot and on the D0 lifetime. This method was not chosen for the nominal
fit: this method has the weakness of ignoring any dependence of the background Dalitz
plot with respect to the D0 lifetime distribution. The method described in 9.2, on the
contrary, explicitely takes any possible correlation into account.

B.1 Dalitz plot parametrization

As far as the Dalitz plot is concerned, the combinatoric and bad-D0 backgrounds are
described using a third order polynomial in the two invariant masses m2

Kπ and m2
Kπ0 .

Since this sample is composed also by partially reconstructed D0 s, one can expect to find
significant peaks for the mainly contributing resonances of the decay. For this reason,
an incoherent sum of Breit-Wigners is added to the polynomial for the ρ, K∗+ and K∗0

resonances. The total Dalitz background parametrization is:

A(m2
Kπ, m

2
Kπ0) = fr

3
∑

i=1

|aiBWi(m
2
Kπ, m

2
Kπ0)|2 + (1 − fr)|1 + a1m

2
Kπ + a2m

2
Kπ0

+a3m
4
Kπ + a4m

2
Kπm

2
Kπ0 + a5m

4
Kπ0 + a6m

6
Kπ + a7m

4
Kπm

2
Kπ0

+a8m
2
Kπm

4
Kπ0 + a9m

6
Kπ0| (B.1)

The interval in which we isolate the two sidebands samples are:

left region: 1.76 < mKππ0 < 1.78 GeV/c2

right region: 1.93 < mKππ0 < 1.95 GeV/c2
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Since we used a D0 mass constraint in the reconstruction procedure, the mass of the
resonances in the two sidebands may vary along the mKππ0 distribution. For this reason
the following procedure is adopted to interpolate the background shape of the Dalitz plot
in the signal region:

• we consider the interpolated histogram of the left and right sidebands separately.
We generate the two samples of background according to the histogram;

• we merge the two samples. The number of events of the merged sample corresponds
to the number of events of background in the mKππ0 signal region:

• the background parametrization is fitted to this sample and the polynomial coeffi-
cients are extracted along with the amplitudes associated to the Breit-Wigner’s.

In Figure B.1 the distribution of the merged sample and the fit result are presented.
The corresponding values of the fit parameters are reported in Table B.1.
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Figure B.1: Plot of the three invariant squared masses of the merged WS background
Dalitz plot. Dots are the data, the blue line is the fit result.

B.2 D0 lifetime parametrization

In order to describe the D0 lifetime distribution in the sidebands region of mKππ0 , the
sum of a Crystal Ball and a Cruijff functions is considered. The total PDF is:

cb(t, t̄, σ, α, n) =











exp(− (t−t̄)2

2σ2 ) if t−t̄
σ
< α

a(b+ t−t̄
σ

)−n if t−t̄
σ
> α

(B.2)

α > 0, a =
e−α2/2

α
, b =

1

α
− α
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Parameter Value
aρ 1.33 ± 0.12
mρ 0.814 ± 0.214
aK∗+ 0.972 ± 0.169
mK∗+ 0.898 ± 0.004
aK∗0 0.980 ± 0.199
mK∗0 0.902 ± 0.004
a1 11.2 ± 3.0
a2 −80.7 ± 1.7
a3 −39.8 ± 1.5
a4 44.6 + /− 0.9
a5 44.8 ± 3.1
a6 8.7 ± 0.4
a7 −8.0 ± 0.3
a8 −11.1 ± 0.8
a9 −8.8 ± 1.2
fr 0.07 + /− 0.05

Table B.1: Fit results for the WS background merged sample.

Cf(t, t0, σL,R, αL,R) =



















exp(− (t−t0)2

2σ2
L
+αL(t−t0)2

) if t < t0

exp(− (t−t0)2

2σ2
R

+αR(t−t0)2
) if t > t0

(B.3)

Pbkg(t, t̄, σ, α, n, t0, σL,R, αL,R) = fc · cb(t, t̄, σ, α, n)

+(1 − fc) · Cf(t, t0, σL,R, αL,R) (B.4)

The fit results for these parameters are reported in Table B.2. The plot of the data
and fit is shown in Figure B.2.

Parameter Value
t̄ 0.0757 ± 0.0159
σ 0.210 ± 0.026
α −0.469 ± 0.073
n 9.9 ± 8.9
t0 −0.013 ± 0.027
σL 0.330 ± 0.016
σR 0.407 ± 0.019
αL 0.110 ± 0.006
αR 0.091 ± 0.060
fc 0.273 ± 0.104

Table B.2: Fit results for the WS background time distribution.
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Figure B.2: Data and fit result for the time distribution of the WS background in the
sidebands regions of mKππ0. Dots are data, the blue line is the fit result.

B.3 Dalitz Plot temporal dependence

The background description obtained in Sections B.1 and B.2 assumes that the Dalitz
structure of the background does not evolve in time. To test this assumption, we compare
the time dependence of three different regions of the Dalitz of the mKππ0 sidebands. The
regions are chosen to be:

• Region 1: m2
Kπ < 1 GeV/c2, which mainly includes the K∗0 contribution to the

Dalitz

• Region 2: m2
Kπ0 < 1 GeV/c2, which includes the K∗+ contribution

• Region 3: m2
Kπ > 1 GeV/c2 and m2

Kπ0 > 1 GeV/c2, essentially the rest of the Dalitz
plot.

We took the region 3 D0 lifetime distribution as a reference, and normalized the
distributions of the lifetime of the other two regions to it. The plot of the difference of
the lifetime between the regions is shown in Figure B.3. It can be noted that differences
in time between the regions selected are visible.
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Figure B.3: Difference of D0 lifetime between three regions of the WS background Dalitz
Plot.
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Appendix C

Resolution function determination
ignoring the background
contributions

Since the RS sample is very pure, one can think of determining the resolution function
parameters ignoring the background contributions to the D0 lifetime. This assumption is
not adopted in the nominal fit in Section 8.4. However, this simple test gives a good hint
of how sensitive are the resolution function parameters to the presence of background, or
to a bad characterization of it.

The model used to fit the RS D0 lifetime signal shape is the same as the nominal
one, i.e. a convolution of three gaussians with an exponential decay law. The resolution
function can be therefore written as:

PRS,i(t) = f1 · ρ1,i + (1 − f1) · [f2 · ρ2,i + (1 − f2)ρ3,i] (C.1)

with

ρ1,i = ρRS,i(t; τ, k1)

ρ2,i = ρRS,i(t; τ, k2)

ρ3,i = ρRS,i(t; τ, k3)

(C.2)

Since the scale factor parameters ki and the fraction of each gaussian contribution fi

are strongly correlated, for the comparison we fix the scale factors to the values obtained
from the nominal fit. In this way we can better compare the other parameters between
the two configurations.

The fit results are reported in Table C.1. As can be noted from the fit result, both
the offset and the D0 lifetime fit results are compatible with the nominal case within the
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error. This is a good sign, since any mixing sign in the D0 lifetime distribution could
be distorced by an uncorrect knowledge of the resolution function. The fractions of the
gaussians seem to be less compatible. This is expected, considering that the fraction of
the first and second Gaussians increase with respect to the nominal case. They have an
higher scale factor with respect to the third gaussian. This tells us that the fit is trying
to compensate the presence of the background underneath the t ∼ 0 region by enlarging
the resolution function contribution.

Parameter Value
f1 0.0057 ± 0.0006
f2 0.221 ± 0.006
t0 0.0042 ± 0.0008 (ps)
τ 0.4108 ± 0.0009 (ps)
k1 2.84 (fixed)
k2 1.36 (fixed)
k3 0.93 (fixed)

Table C.1: Fit results for the RS time distribution



Appendix D

Validation of the fit procedure using
toy-MC studies

In Section D we performed toy-MC studies in order to test the robustness of the fit
procedure. In this appendix, we show the plot for the fitted values, errors and pull
distributions for the cases we considered in the validation.

D.1 The no-mixing scenario

The summary plots for c1 and c2 for this generation and fitting mode are in Figure D.1.
The distributions for the K∗0 (892) Dalitz plot parameters are shown in Figure D.2.

D.2 The c1 = 0.25 and c2 = 0.18 scenario

The summary plots for c1 and c2 for this generation and fitting mode are in Figure D.3.
The distributions for the K∗0 (892) Dalitz plot parameters are shown in Figure D.4.
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Figure D.1: Summary plot of c1 and c2 for the no-mixing toy-MC.
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Figure D.2: Summary plot of K∗0 (892) Dalitz plot parameters for the no-mixing toy-MC.
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Figure D.3: Summary plot of c1 and c2 for the c1 = 0.25 and c2 = 0.18 mixing scenario.
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Figure D.4: Summary plot of the K∗0(892) Dalitz plot parameters for the c1 =
0.25 and c2 = 0.18 mixing scenario.
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Appendix E

Dalitz plot efficiency parametrization
using the K − π0 pair

To test the systematic effect due to the Dalitz plot efficiency parametrization chosen in
Chapter 6, we perform the same procedure using a different choice of pair for the invariant
mass and the helicity angle, i.e. K−π0. The systematic effect is described in Section 12.3.
Here, we report the efficiency parametrization with the K − π0 couple along the Dalitz
plot (i.e. the equivalent of Figure 6.3) in Figure E.1. As a qualitative comparison between
the two choices, we plot the pull distribution, along the Dalitz plot, between the efficiency
parametrization using the K − π couple and the one using the K − π0 couple. This is
shown in Figure E.2. As can be noted from the pull distribution, the two parametrizations
are reasonably compatible.
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Appendix F

Test of the significance coverage

It is necessary to prove that this method to determine the exclusion of the no-mixing
scenario described in Section 11.1.2 is appropriate. In particular, we have to prove that
−2∆Log(L) is χ2 distributed. We consider three points on the {c1, c2} to test this as-
sumption: the origin, the central value, and a case where both c1 and c2 present central
values different from zero. The three points are:

{c1, c2} = {0, 0} , {−0.001966, 0.3535} , {0.15, 0.15}

In each case, we generate 2000 toy-MCs, and fit each experiment both floating the mix-
ing parameters and fixing them to the generated value. We then calculate the −2∆Log(L)
between the likelihood in the fit where c1 and c2 were floating and the likelihood in the
fit where the parameters were fixed. Then, we plot the distribution of the probability
of the χ2 for each toy-MC set, assuming two degrees of freedom. If −2∆Log(L) is χ2

distributed, the probability should be flat.

The plots for the three different scenarios are shown in Figures F.1-F.3. For each set,
we fitted the probability distribution with a linear polynomial and found it compatible
with a flat distribution within the error.
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Figure F.1: Distribution of the probability for the χ2 with two degrees of freedom in the
no-mixing toy-MC scenario. The probability was fit with a linear distribution p0 + p1x.
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Figure F.2: Distribution of the probability for the χ2 with two degrees of freedom in the
{−0.001966, 0.3535} toy-MC scenario. The probability was fit with a linear distribution
p0 + p1x.
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Figure F.3: Distribution of the probability for the χ2 with two degrees of freedom in the
{0.15, 0.15} toy-MC scenario. The probability was fit with a linear distribution p0 + p1x.
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