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A Search for Long-Lived Particles in Signatures With Displaced
Vertex Using Novel Machine Learning Techniques at CMS

Ang Li

(ABSTRACT)

A search for long-lived particles produced in proton-proton collisions at a center-

of-mass energy of 13 TeV at the CERN LHC is presented. The search is based on

data collected by the CMS experiment in 2016–2018, which corresponds to a total

integrated luminosity of 137 fb−1. The search targets final states with at least one dis-

placed vertex and missing transverse momentum. Customized vertex reconstruction

and advanced machine learning algorithms are applied to increase the sensitivity of

the search. Moreover, the search is designed to be model-independent to be sensitive

to a wide range of new physics models. No significant excess over the background–

only prediction is observed. For the mean proper decay length in the range 1–100 mm,

the search excludes long-lived gluinos in the split supersymmetry model with masses

below 1800 or 2000 GeV, depending on the neutralino masses, at a 95% confidence

level.
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Chapter 1

Introduction

Elementary particle physics explores the basic components of the universe and the

principles that guide the interactions between them. Generations of particle physicists

strive to build theories that explain the universe and conduct experiments to verify

these theories. The discovery of the Higgs Boson by the ATLAS and CMS experiment

in 2012 heralded the tremendous success of the Standard Model (SM), which describes

three of the four fundamental interactions accurately.

Despite the remarkable success of the SM, there are still many mysteries, such as the

feebleness of gravity, the nature of dark matter, and the hierarchy problem, that are

not explained. To solve these problems, new physics hypotheses Beyond the Standard

Model (BSM) have been proposed which experiments then attempt to verify. Searches

for new physics have been conducted in experiments in the Large Hadron Collier

(LHC) located at the European Organization for Nuclear Research (CERN) but no

solid evidence of new physics has yet been found. The lack of observation of evidence

for new physics suggests that we should search for unconventional signatures, which

are typically harder to reconstruct and analyze.

One category of such unconventional signatures that are possible to be detected by the

LHC detector is the displaced vertex signature. Most of the SM particles produced

at the LHC decay almost instantly when they are generated, resulting in prompt

signatures in the detector. However, many BSM theories predict the existence of
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long-lived particles (LLPs), which are likely to travel a significant distance before they

decay and create displaced signatures in the detector. Such signatures are generally

harder to reconstruct since the detectors are designed to optimally detect prompt

signatures.

This thesis presents a search that targets LLPs that result in displaced vertices and

missing transverse momentum and uses data taken by the CMS detector. The search

utilizes customized reconstruction and a machine learning algorithm to identify dis-

placed vertices and to discriminate signal events from background events efficiently.

A data-driven background estimation method is developed based on the vertex re-

construction and machine learning algorithms.

The thesis is structured as follows. Chapter 2 introduces the basic information about

the Standard Model and some of the physics models. Chapter 3 presents an overview

of the Large Hadron Collider and the Compact Muon Solenoid experiment. Chap-

ter 4 discusses the long-lived particles and the displaced vertex signature. Chapter 5

describes the data and simulated samples. Chapter 6 introduces object selection,

trigger requirements, and event preselection. Chapter 7 describes the track selection,

vertex reconstruction, vertex selection, and search variables. Chapter 8 describes the

machine learning algorithm construction, including the architecture, training, test-

ing, and performance. Chapter 9 summarizes the analysis selection and defines the

search regions. Chapter 10 explains the data-driven background estimation proce-

dure. Chapter 11 explains the systematic uncertainties in the signal efficiency and

background estimate. Chapter 12 describes the data events in the signal region and

statistical interpretation. And Chapter 13 summarizes the thesis.
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Chapter 2

Theoretical Foundations

2.1 The Standard Model

The Standard Model (SM) [1] describes our current knowledge of the fundamental

particles and their interactions. Specifically, there are four fundamental interactions

as far as we know, namely the electromagnetic interaction, the weak interaction, the

strong interaction, and gravity. The SM describes three of them, the electromagnetic,

weak, and strong interactions.

2.1.1 Particles

A diagram that shows the elementary particles described by the SM is shown in

Fig.2.1. Elementary particles have different properties, including their masses, charges,

and spins. The spin is a quantum number that describes the intrinsic angular momen-

tum of a particle. Particles with a spin of a half-integer are referred to as fermions

while particles with a spin of an integer are referred to as bosons. Regarding the

elementary particles in the SM, particles can be divided further into three categories

based on the exact value of their spins: spin− 1/2, spin− 1, and spin− 0 particles.

Particles with a spin of 1/2 are the basic components of daily matter. There are

three generations of those particles and each generation consists of two quarks and
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Figure 2.1: A diagram of the Standard Model [2].

two leptons. The first generation of quarks includes up and down quarks; the sec-

ond generation includes charm and strange quarks; the third generation includes top

and bottom quarks. Quarks are the basic components of hadrons: a quark and an

antiquark form mesons while three quarks form baryons. Quarks participate in elec-

tromagnetic, weak, and strong interactions and they carry electrical charges of either

2/3 or -1/3 and color charges of red, blue, and green. However, due to color confine-

ment, quarks can only be observed in the form of hadrons but cannot be observed

as single quarks. Meanwhile, each generation of leptons consists a charged lepton

and a neutral lepton: the first generation of leptons includes the electron and elec-

tron neutrino; the second generation includes the muon and muon neutrino; the third

generation includes the tau and tau neutrino. Electrons, muons, and taus carry an

electric charge of -1 and they participate in the electromagnetic and weak interac-

tion. Neutrinos do not carry electric charges and they only participate in the weak
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interaction.

Particles with a spin of 1 are the carriers of the interactions. Spin-1 particles include

the photon, 8 gluons, two W bosons (W+ and W−), and the Z boson. Photons,

which are the mediator of the electromagnetic interaction, and gluons, which are the

mediator of the strong interaction, are massless. W and Z bosons, which are mediators

of the weak interaction, are massive.

There is only one elementary particle in the SM with a spin of 0, namely the Higgs

boson. The Higgs field makes the W and Z massive through the Higgs mechanism.

All particles have corresponding anti-particles. A particle and its anti-particle have

the same mass and spin, but with opposite charges. Anti-particles can be obtained in

the language of quantum field theory by applying charge conjugation on a particle.

Anti-particles can annihilate with their corresponding particles, releasing energy in

the form of photons.

2.1.2 Interactions

Interactions in the SM, namely the electromagnetic, strong, and weak interaction,

are described as quantum fields. The formation of such fields is guided by gauge

invariance. In quantum field theory, Lagrangians L[ψ(x)] are used to describe how

fields ψ(x) interact and evolve with time. The symmetry of the physics described by

a given Lagrangian is described as L[ψ(x)] being invariant under transformations of

ψ(x) in the symmetry group. The transformation is referred to as global transforma-

tion if it does not depend on x. We can further require L[ψ(x)] to be invariant under

a local transformation, which is dependent on x. Doing so introduces a gauge field,

which is the mediator of the corresponding interaction.
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The electromagnetic interaction is the interaction that acts on electrically charged

particles. It is described by quantum electrodynamics (QED). QED is formed by

promoting a global U(1) symmetry of a Dirac field to local, thus introducing the

photon field as the mediator of electromagnetic interaction. The Lagrangian of QED

is

LQED = −1

4
F µνFµν + iψ̄γµDµψ −mψ̄ψ (2.1)

with a covariant derivative

Dµ = ∂µ − ieAµ (2.2)

where Aµ is the new field (photon) introduced by the local symmetry, Fµν is defined

as ∂µAν − ∂νAµ, γµ are the Dirac matrices, and e is the electrical charge.

The strong interaction acts on particles with color charges, which confines quarks

into hadrons. Quantum chromodynamics (QCD) describes the strong interaction.

By promoting a global SU(3) symmetry to local, the Lagrangian of QCD can be

obtained:

LQCD = −1

4
F µνaF a

µν +
¯ψf (iγ

µDµ −m)ψf . (2.3)

with a covariance derivative

Dµ = ∂µ − igsA
a
µt

a (2.4)
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where F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , gs is the coupling constant of the strong

interaction, Aa
µ is the new field (gluon) introduced by the local symmetry, fabc and ta

are the structure constants and the representation matrices for the generators of the

symmetry group. The index a corresponds to the generators of the SU(3) symmetry

group, and the index f corresponds to the quark flavors.

The weak interaction changes the flavor of particles, such as changing electrons to

electron neutrinos, and u quarks to d quarks. The weak interaction can be unified

with electromagnetic interaction by the electroweak model. The model utilizes the

symmetry group of SU(2) × U(1). That gives rise to four additional boson fields,

Aa (a = 1, 2, 3) and B. The covariance derivative is

Dµψ = (∂µ − igAa
µI

a − ig′BµY )ψ. (2.5)

where g and g′ are the coupling constants, Aa and B are the boson fields. Linear

combinations of the boson fields define the fields of the photon, W, and Z bosons in the

SM. When applying the covariant derivative on the Higgs field, the non-zero vacuum

expectation value of the Higgs field makes the W and Z massive while keeping the

photon massless. Ia is the weak isospin, Y is the hypercharge. The electrical charge

of a particle Q can be calculated as Q = I3 + Y .

2.1.3 Open Questions

Although the SM is very successful in describing the fundamental particles and their

interactions, there are still many questions that are not answered:

• One of the four fundamental interactions, gravity is not described in the SM;
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• Particles described in the SM only consist of about 5% of the universe. Dark

matter and dark energy, which compose 26% and 69% of the energy density of

the universe, are not explained by the SM;

• Assuming that the universe is created by the Big Bang, the amount of matter

and anti-matter is supposed to be the same. However, much more matter par-

ticles are observed today compared with anti-matter particles. This imbalance,

referred to as the matter-antimatter asymmetry, is not addressed in the SM;

• Neutrino oscillations, –the property of neutrinos that allows them to change

flavors as they travel, and which indicates that neutrinos have masses, – is not

explained in the SM;

• The SM is affiliated by the hierarchy problem [3], which depicts the huge differ-

ence between the vacuum expectation value of the Higgs field v and the Plank

scale MP , as shown in Eq. 2.6;

v ∼ 250GeV << MP ∼ 1019 GeV. (2.6)

• It is desired to have an ultimate “theory” that described all the interactions in a

single form. But the SM does not unify the strong and electroweak interactions.

All these unsolved questions motivate physics beyond the Standard Model.

2.2 The Physics Beyond the Standard Model

As described in Sec. 2.1.3, the SM is not the ultimate theory. To address the open

questions, many physics models Beyond the Standard Model (BSM) are proposed.
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One elegant and charming BSM model is Supersymmetry(SUSY) [4].

2.2.1 Supersymmetry

Supersymmetry is the symmetry between bosons and fermions. Specifically, every

particle in the SM has its superpartner, referred to as a sparticle. The superpartner

of a boson is a fermion and vice versa. The masses of the SM particles and their

superpartners are supposed to be the same if supersymmetry is unbroken. The fact

that no superpartners are observed with masses equal to particle counterpartners

shows that the supersymmetry is broken.

As a popular SUSY theory, the Minimal Supersymmetric Standard Model (MSSM)

extends the SM to realize supersymmetry. It is composed of the fields of SM particles

and their superpartners, in addition to the two-Higgs-doublet field. The MSSM as-

sumes the breaking of supersymmetry at a relatively low-energy scale, which results

in superpartners having masses below a few TeV.

Many open questions in the SM are solved by the MSSM theory. In the case of R-

parity conservation, which ensures the stableness of the lightest SUSY particle, the

lightest SUSY particle can be a candidate for dark matter. The hierarchy problem

is solved with the low-energy supersymmetry breaking. Also, the SUSY unifies the

gauge coupling constants in the SM at high energy scales. As shown in Fig. 2.2, the

gauge coupling converges to the same value at high energy scales in the SUSY while

in the SM the coupling constants do not converge.

Although SUSY solves many of the problems elegantly, there is no experimental

evidence of the existence of SUSY particles. To explain the lack of evidence of SUSY

and solve some new questions brought up by SUSY, a modification of SUSY, called
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Figure 2.2: The inverse of the SM gauge coupling constant α as a function of en-
ergy [4]. The dashed lines show the SM case while the solid lines show the results for
the MSSM with different thresholds of the sparticle masses.
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split SUSY [5, 6], is proposed. In this model, SUSY breaks at very high energy scales

mS (near 109 GeV). The high-energy breaking of SUSY forces the scalars of SUSY

to have masses around mS, except for the two Higgs doublets. It keeps most of the

advantages of SUSY, including the potential candidate of dark matter and gauge

coupling unification. However, the hierarchy problem cannot be addressed under the

assumption of supersymmetry breaking at high-energy scales.

One unique signature predicted by the split SUSY is the long-lived gluino. Gluinos

can decay to a quark, an antiquark, and the lightest SUSY particle. The decay is

suppressed because it happens through virtual squarks, which have masses close to

mS. This suppressed decay process makes gluinos long-lived, with a lifetime of

τ ∼ 3× 10−2sec( mS

109 GeV
)4(

1TeV
mg̃

)5, (2.7)

where the mg̃ is the gluino mass.

The search presented in this thesis uses the split SUSY model as the benchmark signal

model, specifically the pair-produced gluinos that decay to a quark, an antiquark,

and a neutralino (lightest SUSY particle). The mass splitting, defined as the mass

difference between gluino and neutralino, is often used to describe the kinematics

of the decay of gluinos. Different parameters, including the gluino mass, neutralino

mass, and the proper decay length (cτ) of the gluino, are explored to cover a wide

parameter space.
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Figure 2.3: The Feynman diagram of the pair-produced long-lived gluinos in split
SUSY. Each gluino (g̃) decays into a quark (q), an antiquark (q̄), and a neutralino
(χ̃0

1).
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Chapter 3

The Large Hadron Collider and

the Compact Muon Solenoid

Experiment

3.1 The Large Hadron Collider

The Large Hadron Collier (LHC) [7] is the most powerful collider in the world. It

is a 27km ring that is about 100m under the Swiss-French border near Geneva and

located at the European Organization for Nuclear Research (CERN). The LHC is

designed to accelerate two beams of protons to 7 TeV (or sometimes two beams of

heavy ions to 2.8 TeV) and collides them at four interaction points on the LHC ring.

A primary goal of accelerating and colliding particles in the LHC is to explore new

physics beyond the Standard Model. The number of events for a given process gen-

erated by the LHC collisions is:

Nprocess = Lσprocess (3.1)

where L is the luminosity of the LHC and σprocess is the cross section of the process.
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The luminosity is defined as:

L =
N2

b nbfrevγr
4πεnβ∗

F (3.2)

where Nb is the number of particles per bunch, nb is the number of bunches per

beam, frev is the revolution frequency, γr is the relativistic gamma factor, εn is the

normalized transverse beam emittance, β∗ is the beta function at the collision point,

and F is the geometric luminosity reduction factor.

The LHC layout is shown in Fig.3.1. Two counter-rotating beams are accelerated and

collided in the four interaction points. Each of the interaction points corresponds to

an experiment, A Toroidal LHC Apparatus (ATLAS) [8], Compact Muon Solenoid

(CMS) [9], LHC-beauty (LHCb) [10], and A Large Ion Collider Experiment (AL-

ICE) [11]. The ATLAS and CMS experiments are high-luminosity experiments, which

are general-purpose experiments and target the peak luminosity of 1034 cm−2s−1 for

proton collisions. The LHCb is a dedicated experiment to study B-physics and targets

the peak luminosity of 2×1029 cm−2s−1 for proton collisions. The ALICE experiment

is designed for ion collisions, which targets the peak luminosity of 1027 cm−2s−1 for

heavy-ion collisions.

Protons are accelerated and collided in the LHC in bunches. Every beam includes

2808 bunches, with a spacing of 25ns. The beams of protons are accelerated step

by step. The CERN accelerator complex is shown in Fig. 3.2. Protons are first

accelerated to 50 MeV by the linear accelerator (Linac2). They are then sent to

the Proton Synchrotron Booster (PSB) to be accelerated to 1.4 GeV. The Proton

Synchrotron (PS) and Super Proton Synchrotron (SPS) will accelerate the protons to

25 GeV, and then 450 GeV. When the protons are accelerated to 450 GeV, they are
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Figure 3.1: The layout of the LHC [12].
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injected into the LHC to reach the final desired energy. As described above, the peak

energy of protons that LHC can deliver is 7 TeV. The LHC achieves such high energy

through the cutting-edge technology of superconducting magnets and radio-frequency

cavities.

Given the fact the protons are grouped as bunches during the collisions, more than

one collision could happen during a single bunch crossing, which is referred to as

pileup. Pileup is normally treated as background and it increases with the increase

of the instantaneous luminosity.

The search presented in this thesis is based on the data taken by the CMS experiments

during the Run 2 data-taking period, which extends from 2016 to 2018, with the

center-of-mass energy of 13 TeV. The center-of-mass energy is slightly lower than

the designed value (14 TeV) because some of the magnets are not able to sustain

the current needed for the 14 TeV energy while maintaining the super-conducting

condition [13].

The LHC will undergo a major upgrade after 2025, referred to as high-luminosity

LHC (HL-LHC) [14], to achieve a peak luminosity of 5 × 1034cm−2s−1 and an in-

tegrated luminosity of 250 fb−1 per year to achieve 3000 fb−1 in about 12 years of

high-luminosity running.

3.2 The Compact Muon Solenoid Experiment

The Compact Muon Solenoid (CMS) experiment [9] is a general-purpose detector

that is capable of identifying electrons, muons, photons, and hadrons [16, 17, 18].

The CMS detector is composed of a tracking system, electromagnetic calorimeter
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Figure 3.2: The diagram that shows the CERN accelerator complex [15].

(ECAL), hadron calorimeter (HCAL), superconducting solenoid, and muon system.

The 3D sketch of the CMS detector is shown in Fig. 3.3.

The superconducting solenoid is 13m long with an inner diameter of 6m so it pro-

vides enough space to include the tracking system, ECAL, and HCAL inside the

solenoid. The solenoid provides a 3.8T magnetic field to apply a large bending power

on charged particles. The trajectory of the bent charged particles will be measured

by the tracking system, which is composed of silicon pixel layers and silicon strip

layers. Particles that pass through the tracking system will then deposit their energy

in the ECAL, which is a homogeneous crystal calorimeter made of lead tungstate

(PbWO4) crystals, and HCAL, which is a sampling calorimeter made of brass and

scintillator. The materials in the calorimeters, such as PbWO4 crystal and brass, are

dense enough so that incoming particles will interact with the material, creating sec-
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ondary particles and forming “showers”. The showering process deposits the energy

carried by the incoming particles inside the calorimeters. Most particles deposit all of

their energy in the calorimeters and thus stop traveling further in the CMS detector.

However, muons travel further beyond the calorimeters because they are typically

minimum ionizing particles, which do not lose much energy when traveling through

materials. To have a better measurement of muons, a muon system is built beyond

the superconducting solenoid, based on the returning magnetic field of the solenoid.

The muon system is composed of aluminum drift tubes (DT), cathode strip chambers

(CSC), and resistive plate chambers (RPC).

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000A

PRESHOWER
Silicon strips ~16m2 ~137,000 channels

SILICON TRACKERS
Pixel (100x150 μm) ~16m2 ~66M channels
Microstrips (80x180 μm) ~200m2 ~9.6M channels

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

STEEL RETURN YOKE
12,500 tonnes

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels

CRYSTAL 
ELECTROMAGNETIC
CALORIMETER (ECAL)
~76,000 scintillating PbWO4 crystals

Total weight
Overall diameter
Overall length
Magnetic field

: 14,000 tonnes
: 15.0 m
: 28.7 m
: 3.8 T

CMS DETECTOR

Figure 3.3: The 3D image of the CMS detector [19].

3.2.1 Coordinate System

The CMS uses a right-handed coordinate system. The coordinate system is centered

at the nominal collision point at the center of the detector. The x-axis points from the
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interaction point to the center of the LHC ring. The y-axis points upwards vertically.

The z-axis is oriented along the direction of the beam, with the positive direction

defined as counterclockwise when viewed from above. The radial distance in the x-y

plane is defined as r. The azimuthal angle ϕ is calculated as the angle from the x-axis

in the x-y plane and the polar angle θ is calculated as the angle from the z-axis.

Pseudorapidity is then defined based on θ as η = −ln[tan(θ/2]).

3.2.2 Tracking System

The tracking system of the CMS experiment is designed to provide accurate mea-

surements of the trajectories of charged particles with |η| < 2.5. A sketch of the

cross-section of the CMS tracking system is shown in Fig. 3.4. The CMS tracking

system is comprised of two main parts: the silicon pixel tracker and the silicon strip

tracker.

The silicon pixel tracker uses n-on-n type silicon sensors as the basic sensor elements

while the silicon strip tracker uses single-sided p-on-n type silicon micro-strip sensors

as the basic sensor elements. The pixel tracker includes three cylindrical layers of pixel

modules as the barrel part, distributed at radii of 4.4, 7.3, and 10.2 cm surrounding

the interaction point, and four disks of pixel modules as the endcap part, with two

disks on each side of the barrel.

The silicon strip tracker is composed of the Tracker Inner Barrel and Disks (TIB/TID),

the Tracker Outer Barrel (TOB), and the Tracker EndCap (TEC). The silicon strip

tracker fills the radial region between 20 cm and 116 cm. The TIB/TID includes four

barrel layers in the radii range from 20 cm to 55 cm with three disks at each end.

The TOB is installed beyond the TIB/TID. It is composed of six barrel layers, cov-
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ering the radial space up to 116 cm in the |z| < 118 cm region. On the endcap, the

TEC, which is composed of nine disks on each side of the barrel, covers the region of

124 cm < |z| < 282 cm and 22.5 cm < |r| < 113.5 cm.

The CMS silicon pixel tracker underwent an upgrade [20] during the year-end technical

stop of LHC from December 2016 to April 2017. The goal of the upgrade was to

make the CMS pixel tracker perform better for higher rate capability, to increase its

tolerance to radioactive damage, and to provide more robust tracking. To achieve

the goal, more layers are utilized in the upgraded pixel tracker. It is composed of

four concentric barrel layers, distributed at the radii of 29, 68, 109, and 160 mm, and

three disks on both ends of the barrel, with a distance of 291, 396, and 516 mm from

the center of the detector. A sketch that compares the original and upgraded pixel

tracker is shown in Fig. 3.5.

Figure 3.4: The sketch of cross section of the CMS tracking system [18].

3.2.3 Electromagnetic Calorimeter

The CMS electromagnetic calorimeter (ECAL) is designed to measure the energy

of particles that interact mainly by the electromagnetic interaction. As a hermetic
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Figure 3.5: Comparison of the CMS pixel tracker layout before and after the up-
grade [20]. The BPIX stands for the barrel pixel layers and the FPIX stands for the
endcap pixel layers.

homogeneous calorimeter, the ECAL is composed of 61200 lead tungstate (PbWO4)

crystals in the barrel part and 7324 crystals in each endcap. The characteristics of the

PbWO4 crystals, as shown in Tab. 3.1, make the ECAL fast, have fine granularity,

and are tolerant to radiation damage. The high density and small radiation length

(X0) make the ECAL compact; the low Molière radius makes it possible for the ECAL

to have fine granularity. The layout of the ECAL is shown in Fig. 3.6.

Table 3.1: Characteristics of the lead tungstate crystals.

Characteristics value
Density 8.28 g/cm3

Radiation length 0.89 cm
Molière radius 2.2 cm
Scintillation decay time within 25ns for 80% of the scintillation light

In the barrel part of the ECAL, there are 360 crystals in ϕ and (2 × 85) crystals in

η, covering the space of |η| < 1.479 with 61200 crystals in total. The crystals are

installed to make their axes have a 3◦ angle with the vector from the interacting

point. A tapering form is designed for the crystal, with a cross-section of 22×22mm2

at the front face and 26× 26mm2 at the rare face. The crystal is 230 mm long, which

corresponds to 25.8 X0. The photodetectors used in the barrel part are the modified
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avalanche photodiodes (APDs). Each pair of APDs form a capsule and is attached

to a crystal. The APDs operate at a voltage between 340 and 430 V, with a mean

gain of 50.

In the endcap part of the ECAL, crystals are grouped into supercrystals (SCs), each

with 5× 5 crystals arranged in a rectangular grid in the x-y plane. The endcap part

consists of 7324 crystals on each side, covering the region of 1.479 < |η| < 3.0. The

crystals have a similar shape as those in the barrel part, with the cross-section at the

front face of 28.62× 28.62mm2 and 30× 30mm2 at the rare face. The length of the

crystal is 220 mm, corresponding to 24.7 X0. The photodetectors used in the endcap

part are vacuum phototriodes (VPTs). Each VPT is attached to a crystal. The VPTs

operate at a gain of 10 by biasing the dynode with 600V and the anode with 800V.

Figure 3.6: The layout of the CMS ECAL [9]. A Dee corresponds to half of the
endcap part of the ECAL. The preshower serves to identify neutral pions in the
region 1.653 < |η| < 2.6 and identify electrons out of minimum ionizing particles.
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3.2.4 Hadron Calorimeter

The CMS hadron calorimeter (HCAL) is composed of four parts: the hadron barrel

(HB), endcap (HE), outer (HO), and forward (HF) calorimeters. Figure 3.7 shows

the longitudinal view of the CMS detector, with different parts of HCAL labeled.

Figure 3.7: The longitudinal view of CMS detector [9]. Positions of different parts of
the CMS HCAL are labeled on the diagram.

The HB, HE, and HO are sampling calorimeters, which are composed of alternating

layers of absorbers and scintillators. Wavelength shifting fibers and clear fibers are

used to guide the scintillated light into the hybrid photodiode (HPD).

The HB, which uses steel and brass as absorbers and tiles as scintillators, covers the

region |η| < 1.3. It has 36 wedges, with 18 wedges distributed in the ϕ direction and

2 wedges in the η direction for each ϕ segment. Each wedge has four segments in ϕ

direction and 16 segments in η direction, thus forming a ∆η × ∆ϕ ≈ 0.087 × 0.087

granularity.

The HE shares a similar design to the HB, with brass as absorbers and tiles as
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scintillators. It covers the region of 1.3 < |η| < 3 with a granularity of ∆η × ∆ϕ ≈

0.087× 0.087 for |η| < 1.6 and ∆η ×∆ϕ ≈ 0.17× 0.17 for |η| ≥ 1.6.

The HO, which is designed to measure showers that start late or are not fully deposited

in the HB, is placed outside the solenoid. Iron together with the solenoid is used as

absorbers and tiles are used as scintillators. The layout of the HO depends on the

structure of the iron yoke that returns the magnetic field. The iron yoke is composed

of five 2.536 m wide rings, labeled as -2, -1, 0, +1, +2, which correspond to their

central z position at -5.342 m, -2.686 m, 0, +2.686 m, +5.342 m. For each ring, the

HO is installed as the first sensitive layer. Given the fact that the HB absorber length

increase with the increase of η, the HB has the smallest absorber length around the

central region with η = 0. To account for such an effect, the HO has two layers on

the central ring 0, distributed before and after the iron absorber. For all the rest of

the rings, the HO has only one layer located after the iron absorber.

The HF covers the region 3 < |η| < 5. The high particle flux in that region drives the

use of quartz fibers as the active medium to make the HF able to maintain the desired

performance under such high radiation. The HF is designed differently compared with

other parts of HCAL, the quartz fibers are embedded inside the steel absorber, to

capture the Cherenkov light generated by the charged particles. The captured light is

read out by photomultiplier tubes. Furthermore, the HF is divided into two sections

in the longitudinal direction to distinguish showers generated via electromagnetic and

strong nuclear interactions.
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3.2.5 Muon System

As indicated by the name of the CMS experiment, measuring muons precisely is one

of the major tasks of the CMS detector. The muon system is expected to have good

performance on muon identification, momentum measurement, and triggering.

The muons system is composed of three gaseous subdetectors: drift tube (DT) cham-

bers, cathode strip chambers (CSC), and resistive plate chambers (RPC). Determined

by the structure of the solenoid, the muon system has one barrel part and two endcap

parts.

The DT is installed in the barrel part of the muon system, covering |η| < 1.2. It

is organized into four muon stations, which are concentric cylinders centered at the

beam line along the z-axis. The three inner cylinders hold 60 drift chambers while

the outer cylinder holds 70 drift chambers. Each chamber consists of groups of layers

of rectangular drift cells, which measure the muon tracks in the r − ϕ plane or the z

positions.

The CSC resides in the endcap part of the muon system and covers the region 0.9 <

|η| < 2.4. The CSC chambers are made using seven cathode panels alternating with

six anode wire planes. The cathode panels have strips along the r direction in the x−y

plane and the anode wire planes have wires along the ϕ direction. The intersection

of the strips and wires provides position measurements in the r − ϕ plane.

To identify the corresponding bunch crossing a muon track is associated given the

high rate and background, the RPC, which is a muon detector capable of precise time

of arrival measurement. The RPC is distributed in both the barrel and endcap parts

of the muon system, covering the region of η up to 1.6. In the barrel part, the RPC

chambers are distributed in the four muons stations, located on the inner side of the
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DT chambers or the inner and outer sides of the DT chambers, depending on the

stations. In the endcap, the RPC chambers are distributed on the endcap disk.

3.2.6 Trigger

The LHC collides proton bunches with an interval of 25 ns, corresponding to an event

rate of 40 MHz. However, the resulting amount of data is too large for every chan-

nel from every collision to be stored and processed. To reduce the event rate to an

acceptable level, triggers are applied. The triggers are expected to have high efficien-

cies to physics objects, inclusive selections to include unexpected new phenomena,

and satisfy the data recording technology. [21] CMS uses a two-step trigger system,

referred to as Level-1 Trigger (L1T) and High-Level Trigger (HLT).

The L1T output limit is 100kHz. It is mostly based on customized and programmable

electronics, such as Field Programmable Gate Arrays (FPGA), Application-specific

Integrated Circuit (ASIC), and programmable memory lookup tables (LUT). The

architecture of the L1T is shown in Fig. 3.8. The L1T is composed of local, re-

gional, and global elements. The L1T takes coarse segmented information from the

muon system and calorimeters. The hits, track segments, and energy deposits in the

muon system and calorimeters are determined and combined to form the preliminary

reconstruction of objects. The Global Trigger takes the reconstructed objects and

determines whether to accept the events for further processing by the HLT. The L1T

has to deliver the trigger decision within 3.2 µs to be able to process all the events

delivered by the LHC in time.

Events that are accepted by the L1T are further processed by the HLT [21], to bring

down the event rate to O(100) Hz. Different from the L1T, the HLT is based on
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Figure 3.8: The CMS Level-1 Trigger architecture [9].

software with the complete information read out from the electronics. Those features

make HLT capable to reconstruct objects more precisely. Also, since the HLT depends

mainly on software, it can be updated with offline reconstruction algorithms to achieve

better efficiencies as the reconstruction algorithms improve.

3.2.7 Particle Reconstruction

Most particles are expected to be detected by more than one CMS subdetectors. A

longitudinal view of the CMS detector with the responses of subdetectors to different

particles is shown in Fig. 3.9.

The CMS experiment uses a particle-flow (PF) algorithm to reconstruct physics

objects. The PF algorithm correlates information from all subdetectors, including

charged-particle trajectory measured by the tracker, clusters of energy deposits mea-
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Figure 3.9: The longitudinal view of the CMS detector [22].

sured by the ECAL and HCAL, and measurements from the muon system, to re-

construct every final-state particle. The advantage of the PF algorithms is that the

combined information improves the reconstruction significantly compared with the

traditional way of reconstruction, which processes information individually for dif-

ferent subdetectors. CMS is suitable to utilize the PF algorithm because of its fine

granularity, which enables good separation between different particles to combine

information from all subdetectors for individual particles.

The PF algorithm is based on charged-particle trajectories (tracks) and calorimeter

clusters. The tracks are reconstructed by applying the track finder algorithm on

signals (hits) measured from the tracking system in several iterations. Each iteration

is composed of three major steps: seed trajectory generation with a few hits; pattern

recognition, which gathers hits along the seed trajectory from all layers in the tracking

system; final fitting to evaluate the characteristics of the charged particle. The track
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finder starts with iterations that look for tracks with at least three hits in the pixel

layers, followed by iterations that recover tracks that have only one or two hits in

the pixel to account for the detector inefficiencies. In the next iterations, displaced

tracks, which have no hits measured in the pixel layers, and tracks in the dense core

of high-pT jets, which may have several tracks merged as one single track because

of the inaccurate position measurement, are reconstructed. Special treatments are

applied for tracks originating from electrons and muons. To account for the energy

radiated by electrons, a Gaussian-sum filter (GSF) is used to fit the electron tracks

and information from the tracking system and ECAL is combined to reconstruct

electrons. Muon tracks are reconstructed using the measurements from both the

tracking system and the muon system.

The calorimeter clusters are reconstructed separately in different subdetectors. Calori-

meter cells with energy above the seed threshold and higher than the energy of all

the neighbor cells are used as cluster seeds. Based on the seeds, clusters are grown

by merging cells that have energy above the threshold and close to the seeds. A

Gaussian-mixture model is applied to the clusters to reconstruct the clusters. Cal-

ibrations are applied to obtain accurate measurements of the energy deposited by

neutral particles.

Basic elements, namely tracks and clusters, are connected together to form the PF

blocks with the link algorithm to be further processed in the PF to reconstruct the

events. A track-to-cluster link is established when the extrapolated position of the

track is within the region of a cluster, or the extrapolated positions of tangents to the

GSF tracks fall in the region of an ECAL cluster to account for the photons emitted

by electrons. A cluster-to-cluster link is established between different calorimeters

when a cluster from the fine granularity calorimeter is within the region of a cluster
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from the coarse granularity calorimeter. Track-to-track links are formed by secondary

vertices to account for nuclear interactions. Tracks are also linked with measurements

from muon detectors for muon reconstruction.

For a given PF block, the PF algorithm identifies and reconstructs different particles

in steps. Elements are masked out after each step so no element is reused in the

reconstruction. Muons are first reconstructed, using tracks or track segments from

both the tracker and the muon detector. Electrons are reconstructed with the in-

formation provided by the tracker and the calorimeters, especially the GSF tracks

and ECAL clusters. Isolated photons are reconstructed with ECAL clusters without

links to GSF tracks. Hadrons and nonisolated photons are then reconstructed using

the remaining elements. Charged hadrons, neutral hadrons, and nonisolated photons

are reconstructed based on whether the cluster is linked with a track or has com-

patible energy with the linked track momentum. Hadrons that undergo the material

interactions are reconstructed from the selected nuclear-interaction vertices. A post-

processing step is performed after all the blocks are processed and all the particles

are reconstructed to reduce the possibility of mis-reconstructed pmiss
T .
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Chapter 4

Long-Lived Particles and Displaced

Vertices

Most of the searches performed in experiments at the LHC target particles that decay

promptly. As shown in Fig. 4.1, particles in the SM cover a wide range of lifetimes.

However, the lack of new discoveries in recent years motivates new searches to study

unexplored phase space, such as Long-Lived Particles (LLPs) [23]. As opposed to

prompt decaying particles, LLPs have relatively long lifetimes.

Additionally, many BSM models, such as the split SUSY described in Sec. 2.2.1,

predict new LLPs, which are likely to leave unique signatures in the detector, referred

to as displaced signatures, as shown in Fig. 4.2. Since the signatures of LLPs from the

SM are already studied and understood, the unique signatures of LLPs in the BSM

models can be very powerful handles to discover new physics. However, since the

experiments at the LHC are designed to be sensitive to prompt particles, the detector

structure and the reconstruction algorithm are optimized for prompt signatures. That

requires careful treatment to efficiently reconstruct the displaced signatures.

The search presented in this thesis targets displaced vertices. Displaced vertices, as

one of the displaced signatures that can be produced by BSM LLPs, are a powerful

strategy of looking for new physics. When an LLP is produced in the proton-proton

collision, if it travels a detectable distance, decays within the tracker volume, and has
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Figure 4.1: Masses of lifetimes of particles in the SM [23]. Different colors represent
different types of particles: red corresponds to leptons, blue corresponds to hadrons,
green corresponds to mesons, yellow corresponds to bosons, and purple corresponds
to quarks.

Figure 4.2: Signatures that LLPs predicted by BSM theories can create in detec-
tors [23].
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at least part of the decay products as SM particles that are “visible” to the detector,

its “visible” decay products will be measured as tracks by the tracker, which converge

at the position where the LLP decays. The LLP decay point will then be recognized

as a displaced vertex. The signature of displaced vertices is illustrated in Fig. 4.3.

The ATLAS and CMS Collaboration have previously performed searches for LLPs

decaying to displaced vertices [24, 25, 26, 27]. The searches performed by the ATLAS

Collaboration target LLPs that decay at least 1 mm away from the interaction point,

while the searches performed by the CMS Collaboration target heavy LLPs that decay

to more energetic final states with a mean proper decay length of at least 100µm.

The search presented in the thesis goes beyond the previous CMS search for displaced

vertices [26] by targeting displaced vertices with transverse missing momentum. It is

designed to cover the gaps left by previous searches, which include a wider range of

LLP cτ , from 0.1 mm to 1000 mm, and LLPs in “compressed” scenarios, which have

most of the energy carried away by “invisible” particles and only 100–200 GeV energy

carried by particles that can be detected by the CMS detector.

Given the fact that LLPs are predicted by a wide range of BSM models and the

similarity of LLP signatures from different models, it is helpful to design model-

independent searches that target a given signature instead of a specific BSM model.

Doing so increases the chance of discovering new physics. If the search does not show

evidence of new physics, the results can be interpreted into different BSM models to

check whether a given model is excluded by the search. The search presented in this

thesis is designed to be model-independent to be sensitive to a wide range of potential

BSM models that could give rise to the specific signature that the search targets.



34

Figure 4.3: One collision with displaced vertices in the detector. A transverse view,
with the beam axis (z axis) perpendicular to the paper, is shown. The protons collide
at the interaction point (yellow point). Two LLPs (black dashed lines) are produced
and travel away from the interaction point. The LLPs then decay at the displaced
vertices (red points). The “visible” decay products (blue lines) are measured by the
detector. Also present are background particles (cyan lines) that overlap with the
decay of LLPs.
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Chapter 5

Data Sets and MC Simulation

5.1 Data Sets

This analysis uses proton-proton collision data taken by the CMS experiment in 2016,

2017, and 2018 at a center-of-mass energy of
√
s = 13TeV and with a total integrated

luminosity of 137 fb−1. Due to different detector conditions, data taken in different

years are analyzed individually. Data taken in the same year are split into different

eras. In 2016, the data are further divided into two parts are analyzed individually:

• 2016 preVFP: reconstructed with a reconstruction including HIP mitigation

(eras B-F, with 31 runs coming from F);

• 2016 postVFP: reconstructed with the default track reconstruction (eras F-H,

with 7 runs coming from F).

Data events are triggered by the missing transverse momentum pmiss
T , as described

in Sec. 6.2. Table 5.1 lists the datasets used in this analysis, with definitions of

the data-taking eras. The data events are reconstructed using the most up-to-date

reconstruction algorithm, labeled as UltraLegacy (UL).
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Table 5.1: Datasets used in this analysis, with the “/MiniAOD” suffix dropped.

Era Dataset
2016B-v1 /MET/Run2016B-ver1_HIPM_UL2016_MiniAODv2-v2
2016B-v2 /MET/Run2016B-ver2_HIPM_UL2016_MiniAODv2-v2
2016C /MET/Run2016C-HIPM_UL2016_MiniAODv2-v2
2016D /MET/Run2016D-HIPM_UL2016_MiniAODv2-v2
2016E /MET/Run2016E-HIPM_UL2016_MiniAODv2-v2
2016F /MET/Run2016F-HIPM_UL2016_MiniAODv2-v2
2016F /MET/Run2016F-UL2016_MiniAODv2-v2
2016G /MET/Run2016G-UL2016_MiniAODv2-v2
2016H /MET/Run2016H-UL2016_MiniAODv2-v2
2017B /MET/Run2017B-UL2017_MiniAODv2-v1
2017C /MET/Run2017C-UL2017_MiniAODv2-v1
2017D /MET/Run2017D-UL2017_MiniAODv2-v1
2017E /MET/Run2017E-UL2017_MiniAODv2-v1
2017F /MET/Run2017F-UL2017_MiniAODv2-v1
2018A /MET/Run2018A-UL2018_MiniAODv2-v2
2018B /MET/Run2018B-UL2018_MiniAODv2-v2
2018C /MET/Run2018C-UL2018_MiniAODv2-v1
2018D /MET/Run2018D-UL2018_MiniAODv2-v1

5.2 Simulated Samples

Monte Carlo simulated signal and background events are used to design the search

strategy, understand the behavior of signal and background events, and interpret the

search results. The simulated events are referred to as “MC” or “simulation” in the

remainder of this thesis.

Details of the generation of signal and background events are described below. For

both signal and background events, a GEANT4-based[28] package is used to simulate

the CMS detector response to generated events. To reproduce the pileup distribution

in data, simulated minimum-bias events are superimposed on the hard interaction in

simulated events.
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5.2.1 Signal

As described in Sec. 2.2, the benchmark signal model used in this search is the pair-

produced long-lived gluinos in the split SUSY model.

Using PYTHIA 8.240 [29], signal samples with varying gluino and neutralino masses

and gluino cτ values were produced. The generated mass and cτ ranges were chosen

to target the parameter space that is not excluded by previous prompt or non-prompt

searches and focus mainly on compressed split SUSY scenarios. The analysis sensitiv-

ity decreases at the low and high gluino lifetimes due to several analysis requirements

that target displaced objects and the requirement that displaced vertices are within

the beam pipe, respectively. Despite the beam pipe constraint, the search remains

sensitive to models with cτ ’s up to 1000 mm because particle decay lengths follow

an exponentially falling distribution. As a result, the produced masses and cτ ’s are

summarized in Tab. 5.2.

Table 5.2: Mass of gluino, neutralino, and cτ of gluino produced. Two neutralino
masses are produced for each gluino mass, as shown in the center column. For each
gluino and neutralino mass, nine gluino cτ ’s are generated, as shown in the right-hand
column.

Gluino mass Neutralino mass Gluino cτ
1400 (1200, 1300)

100µm, 300µm,
1 mm, 3 mm,
10 mm, 30 mm,
100 mm, 300 mm,
1000 mm

1600 (1400, 1500)
1800 (1600, 1500)
2000 (1800, 1700)
2200 (2000, 1900)
2400 (2200, 2100)
2600 (2400, 2300)

The cross sections of signal models are determined by gluino-gluino production cross-

sections computed at next-to-next-leading-order (NNLO) + next-to-next-leading-logarithm

(NNLL) [30] and it is not correlated with gluino lifetime and neutralino mass.
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Signal simulations are generated with the NNPDF3.1LO [31] set of parton distribution

functions (PDFs) using the CP2 tune [32]. In these generated samples, gluinos are

produced in pairs; each gluino is forced to undergo a three-body decay to two (anti-

)quarks and a neutralino. The (anti-)quarks that the gluinos decay to are light

quarks including u, d, c, and s quarks, with equal branching fraction of 25%. When a

colored SUSY particle is long-lived, it could have time to hadronize into an R-hadron,

which can lead to material interactions and alter the kinematics of the LLP decay

products. Since this search targets displaced vertices within the beam pipe, material

interaction is not a concern. The production and decay of R-hadrons are allowed

in the simulation, so the effect of R-hadrons on LLP decay products is taken into

account.

5.2.2 Background

The dominant background processes include pair production of top quarks and events

with jets produced by the strong interaction. Besides the dominant processes, W or Z

boson produced in association with jets from the strong interaction, single top quark

production, and di-boson production such as W W, W Z, and Z Z also contribute

to background events in this search. The pair-production of top quarks, events with

jets produced through the strong interaction with or without W and Z bosons, are

generated using MADGRAPH5_aMC@NLO 2.4.2 [33] at next-to-leading-order (NLO) in

quantum chromodynamics (QCD). To match jets from the matrix-element calculation

with parton showers, the MLM prescription [34] or FxFx approach [35] are applied.

The single top quark production process is generated using POWHEG [36, 37] at NLO in

QCD and the di-boson processes are generated using PYTHIA 8. The NNPDF3.1 [38]

is used to describe the proton contents in event generation. PYTHIA 8 with the CP5
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tune [32] is used to simulate the hadronization and showering.

Different background processes, as described above, are combined together and la-

beled as background simulation or background MC in studies presented in this thesis.
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Chapter 6

Event Selection

6.1 Object Selection

This section defines the selection and reconstruction of objects that are used in the

search. The selection and reconstruction of the secondary vertices that serve as the

main analysis objects are described in Sec. 7. Data and simulated events are processed

using the standard algorithms, provided in the CMS Software CMSSW 10_6_29 for

2016, 2017, and 2018.

Primary vertices are required to consist of at least four tracks, have |r| < 2 cm, and

|z| < 24 cm to be considered as successfully reconstructed. The leading primary ver-

tex is the primary vertex that has the largest summed p2T of physics objects associated

with it.

Jets are clusters of collimated particles that are likely to come from the hadronization

of quarks or gluons. They are formed by clustering PF candidates within a cone with

∆R = 0.4 using the anti-kT algorithm [39, 40]. To avoid including particles from

pileup interactions in jets, charged PF candidates are removed if their associated

tracks come from pileup primary vertices. The standard set of jet energy corrections

(JEC), including L1FastJet, L2Relative, L3Absolute, and L2L3Residual [41] if in

data, is applied. PF jets are required to satisfy the “TightLepVeto” PF jet id provided
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in the CMSSW, which consists of the following requirements:

• pT > 20 GeV;

• |η| < 2.5;

• Number of constituents > 1;

• Neutral hadron energy fraction < 0.9;

• Neutral EM energy fraction < 0.9;

• Muon energy fraction < 0.8;

• For |η| < 2.4:

– Charged hadron energy fraction > 0;

– Charged multiplicity > 0;

– Charged EM energy fraction < 0.80.

To identify heavy-flavor jets, we use the DeepJet/DeepFlavour neural network-based

tagger [42] developed by the CMS B-Tagging and Vertexing group to discriminate jets

originated from b quarks and light quarks. The jet tagger has several work points,

namely “loose”, “medium”, and “tight”, to achieve the mis-tag rate of 10%, 1%, and

0.1%. In addition to the neural network-based jet tagger, jets are required to have pT

> 20 GeV and |η| < 2.5 to be considered as heavy-flavor jets. Heavy-flavor jets are

not used in the search selection but are used in the studies to understand background

behaviors and signal efficiency.

Missing transverse momentum (p⃗miss
T ), also known as missing transverse energy (E⃗miss

T

or MET) is calculated as the negative sum of the pT of all reconstructed PF candidates
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that originate from the primary vertex in an event. As described above, jets receive

the JEC, which could have an effect on the p⃗miss
T . The Type-1 corrections are applied

on the p⃗miss
T to propagate the JEC to p⃗miss

T . Also, an xy-shift correction is applied

to the p⃗miss
T to account for the effect of detector misalignment. To reject events

with large p⃗miss
T from sources such as detector noise, a set of p⃗miss

T filters are applied.

In addition to the p⃗miss
T filters, a fake MET veto, which vetoes events if they have

|METPF − METCALO|/METCALO > 0.6, is applied to reduce mismeasured p⃗miss
T

originating from the calorimeter.

E⃗miss
T NoMu is the negative vector sum of all reconstructed physics objects in an event,

except muons. It is calculated by adding the x and y components of muons back into

p⃗miss
T .

A per-event weight is applied to simulated events to ensure consistent pileup distribu-

tions between the simulation and data. The pileup weights are calculated as the ratio

of pileup distribution between data and the simulation events before any selections

are applied. The weights are derived individually for 2016, 2017, and 2018.

6.2 Trigger Selection

Since the search targets the signature of displaced vertices with p⃗miss
T , triggers relevant

to p⃗miss
T are a natural choice. The trigger used in this analysis is:

• HLT_PFMETNoMu120_PFMHTNoMu120_IDTight,

with an online E⃗miss
T NoMu threshold at 120 GeV.

Specifically, for the split SUSY benchmark signal samples, the neutralinos produced



43

by the decay of gluinos, which cannot be detected by the detector, are expected to

be the source of p⃗miss
T . Figure 6.1 shows the E⃗miss

T NoMu distribution of split SUSY. The

plots show that split SUSY samples with 200 GeV mass splitting are more likely to

have large E⃗miss
T NoMu compared with 100 GeV mass splitting.

Besides the E⃗miss
T NoMu distribution of signal samples, trigger efficiencies of signal sam-

ples with different gluino masses, neutralino masses, and cτ ’s are compared between

different triggers, as shown in Fig. 6.2. The trigger efficiencies shown in the plots are

trigger-only efficiencies that no other event selections are applied besides the trigger

requirements.

The signal trigger efficiency plot shows that the trigger efficiency is approximately

ten times larger than that of other triggers considered in the early stages of analysis

design. Fig. 6.2 also shows that the efficiency to pass the trigger is higher with larger

gluino-neutralino mass splitting and decreases with increasing gluino cτ . Also, as

shown in the plots, for signal samples with the same cτ and mass splitting, different

gluino masses have very similar trigger efficiencies because kinematics are similar for

events with the same mass splitting. For small mass splittings, since gluinos are likely

to be generated back-to-back, neutralinos are more likely to be back-to-back because

most of the gluino momentum is carried away by the neutralino, resulting in low

p⃗miss
T , thus having lower trigger efficiency. For large cτ ’s, fewer particles can be well

reconstructed because the gluino can decay beyond the beam pipe, resulting in less

accurate p⃗miss
T calculation, thus having lower trigger efficiency.
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Figure 6.1: E⃗miss
T NoMu distribution of split SUSY signal samples with cτ as 100µm

(red), 10 mm (blue), and 1000 mm (green) without any selection applied in 2017.
(Top left) Gluino mass 1400 GeV with mass splitting 200 GeV;
(Top right) Gluino mass 1400 GeV with mass splitting 100 GeV;
(Bottom left) Gluino mass 2000 GeV with mass splitting 200 GeV;
(Bottom right) Gluino mass 2000 GeV with mass splitting 100 GeV.
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Figure 6.2: Trigger efficiency, i.e. fraction of signal events that pass a given trigger
with no other selection applied for samples with 1400 GeV (left) and 2000 GeV (right)
gluinos as a function of neutralino mass and lifetime. Red points correspond to the
E⃗miss

T NoMu trigger; other points show triggers considered for but not used in this search.

6.2.1 Data-Driven Trigger Efficiency Measurement

The trigger reduces the amount of events recorded in the experiment, which has an

effect on the rate of physics processes. It is crucial to understand the trigger efficiency

to accurately interpret the search results.

The E⃗miss
T NoMu trigger efficiency is measured with the help of reference triggers. Events

that fire a given reference trigger and the corresponding quality requirements are used

to measure the trigger efficiency, calculated as the fraction of the number of events

that fire the E⃗miss
T NoMu trigger out of all events. A muon-based trigger is used as the

reference trigger in this search. To avoid potential bias, an electron-based reference

trigger is used as the cross-check. The measurements are conducted on both data

and simulated events. The data events are taken from data sets that correspond to

the muon and electron-based triggers. The simulated events are taken from lepton-

enriched simulated data sets that represent the most relevant processes and have large
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cross sections. The simulated data sets are listed in Tab. 6.1.

Table 6.1: Simulated datasets used in the trigger efficiency study.

Process Dataset name
W+jets, W → ℓν /WJetsToLNu_TuneCP5_13TeV-madgraphMLM-pythia8
Z/γ

∗+jets, Z/γ
∗ → ℓℓ, gen. 10 < Mℓℓ < 50GeV /DYJetsToLL_M-10to50_TuneCP5_13TeV-madgraphMLM-pythia8

Z/γ
∗+jets, Z/γ

∗ → ℓℓ, gen. Mℓℓ > 50GeV /DYJetsToLL_M-50_TuneCP5_13TeV-madgraphMLM-pythia8
tt̄ /TTJets_TuneCP5_13TeV-amcatnloFXFX-pythia8

All events used in the trigger efficiency measurements are required to fire the single

muon trigger or single electron trigger and satisfy a set of event selections:

• Fire the single muon trigger (HLT_IsoMu27) or the single electron trigger

(HLT_Ele35_WPTight_Gsf);

• Fake MET veto: |METPF −METCALO|/METCALO < 0.5;

• Reconstructed p⃗miss
T passes all MET filters;

• For muon triggered events: leading global muon pT > 35 GeV, |η| < 2.4, and

satisfying tight muon id CutBasedIdTight:

– Global muon and PF muon;

– Normalized global track χ2 < 10;

– Number of inner tracker layers with hits > 5;

– Number of pixel hits > 0;

– Number of muon hits > 0 and number of matched muon stations > 1;

– Muon tracker track transverse impact parameter dxy < 2 mm w.r.t. the

primary vertex;

– Muon tracker track longitudinal distance dz < 5 mm w.r.t. the primary

vertex;
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• For electron triggered events: leading global electron pT > 38GeV, |η| < 2.5,

and satisfying tight electron id cutBasedElectronID-Fall17-94X-V2-tight,

impact parameter cut including d0 and dz are not applied.

These selections help select events with real p⃗miss
T and well-measured muons or elec-

trons. The cut on lepton pT is selected to make sure all events are in the plateau

region of the reference lepton triggers.

The trigger efficiency is plotted as a function of the offline E⃗miss
T NoMu in Fig. 6.3 for dif-

ferent data-taking periods. To account for the difference in trigger efficiencies between

data and simulation, bin-by-bin correction factors are derived from the data/MC trig-

ger efficiency ratio as a function of E⃗miss
T NoMu, which are shown in the lower panels of

plots in Fig. 6.3. The correction factors are then applied to simulated events.

The trigger efficiency measurements performed on muon-triggered and electron-triggered

events shown in Fig. 6.4, and Fig. 6.5 compare the trigger efficiency as a function of

E⃗miss
T NoMu between muon-triggered and electron-triggered events for data and simu-

lation. The comparisons show consistent behavior for muon-triggered and electron-

triggered events. The slight difference in trigger efficiencies measured using muon-

triggered and electron-triggered is accounted for in Sec. 11.1.5.

6.3 Event preselection

The event preselection is kept as simple as possible to maintain sensitivity to a wide

range of physics models. To ensure that the trigger efficiencies (Sec. 6.2) are well

understood and consistent between data and simulation, the E⃗miss
T NoMu is required to

be greater than 200 GeV. Events with E⃗miss
T NoMu < 200GeV are used to train the ML
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Figure 6.3: HLT_PFMETNoMu120_PFMHTNoMu120_IDTight trigger efficiency as a func-
tion of E⃗miss

T NoMu. Data (black) and background (red) events used in the measurement
are taken in 2016 preVFP (top left), 2016 postVFP (top right), 2017 (bottom left),
and 2018 (bottom right).
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algorithm of the search, as described in Sec. 8.

To pass the event preselection, events must :

• Fire the HLT_PFMETNoMu120_PFMHTNoMu120_IDTight trigger;

• Pass the fake MET veto: |METPF −METCALO|/METCALO < 0.6;

• Pass the MET filters;

• Have E⃗miss
T NoMu ≥ 200GeV.

The fake MET veto is not only useful in getting rid of mismeasured p⃗miss
T , but also help-

ful in rejecting background events. A comparison of the fake MET veto distribution

between signal and background is shown in Fig. 6.6. For events with reconstructed

secondary vertices that have at least 5 tracks, as introduced in Ch. 7, the fake MET

veto removes ∼ 25− 30% of background events. While for signal events with gluino

mass of 2000 GeV and cτ of 1 mm, removing the fake MET veto only helps us gain

∼ 7% for mass splitting as 100 GeV and ∼ 5% for mass splitting as 200 GeV.

The events that pass the event preselection are further analyzed as described in the

remainder of the thesis.
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Figure 6.6: Distributions of the fake MET veto value between background simulation
(red) and signal (blue) with gluino mass of 2000 GeV, mass splitting of 200 GeV, and
cτ of 1 mm in 2017. The black line and arrow show where are how the fake MET veto
is applied. Events in the plot are required to satisfy the preselection, except the fake
MET veto.
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Chapter 7

Vertex Reconstruction

Reconstructed secondary displaced vertices are the main feature used to identify po-

tential signal events in this search. This chapter introduces how secondary displaced

vertices are reconstructed and selected. The vertex reconstruction algorithm is used

in [26].

7.1 Track Selection

In each event, tracks measured by the CMS tracker are used to reconstruct secondary

displaced vertices. To ensure that tracks used in vertex reconstruction are precisely

measured, criteria are imposed on track pT, the number of pixel layers in which a hit is

measured for each track (npxl), the innermost barrel pixel layer that has a measured

hit for each track (rmin), and the number of strip tracker layers in which a hit is

measured for each track (nstl).

Specifically, tracks must satisfy the following requirements:

• pT > 1GeV;

• rmin = 1, e.g. have a hit in the innermost barrel pixel layer;

• npxl ≥ 2;
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• nstl ≥ 6.

These requirements constitute the track quality requirements used for the search.

Having rejected tracks that are poorly measured, we then select displaced tracks by

applying one last requirement on the track transverse impact parameter significance

(|dxy|/σdxy):

• |dxy|/σdxy > 4.

The track variables are shown in Fig. 7.1 for 2017 MC. To ensure the selection is

well understood in the data and the simulation, a comparison is performed on data

and simulation about track variables and corrections are applied on the simulation

to mitigate the differences. The details of the comparisons of track variables between

data and simulation are described in Appendix B.1.

7.2 Vertex Reconstruction

The vertex reconstruction algorithm is performed in steps. First, seed vertices are

formed by all pairs of tracks that satisfy the above requirements using the Kalman

Filter [43] approach. Seed vertices with a χ2 per degree of freedom (χ2/dof) less than

5 are kept for the next steps. At this stage, all vertices are composed of only two

tracks, and many of them share tracks.

Next, an iterative merging process is applied on vertices that share tracks. Each pair

of vertices that share tracks are merged or split depending on the distance between

the vertices: if the three-dimensional (3D) distance is smaller than four times its

uncertainty, a vertex fit is applied to the complete set of tracks from both vertices.
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Figure 7.1: Track variable distributions used for track selection. All events in the
distributions are from the 2017 simulation and satisfy all event preselection. Tracks
shown in the plots satisfy all the track selections except the one shown on the x-axis.
The red line labels the selection applied to the shown variable in the plots. In most
of the plots, tracks on the right of the red line are taken as tracks that satisfy the
selection, while for rmin, tracks on the left of the red line are selected.
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If the resulting fit satisfies the χ2 requirement, the two vertices are replaced by the

merged vertex. Pairs of vertices that are not merged but share tracks are split, in

which case shared tracks are assigned to one of the vertices or removed, depending

on the distance between shared tracks and vertices. If the track impact parameters

with respect to both vertices are smaller than 1.5 standard deviations, the track is

assigned to the vertex with more tracks; if the track impact parameters with respect

to both vertices are greater than 5 standard deviations, the track is dropped from

both vertices; if none of the conditions above is satisfied, the significance of the track

impact parameters with respect to both vertices is compared, and the track is assigned

to the vertex with a smaller impact parameter significance. With the newly assigned

tracks, all the remaining vertices are refitted and kept if the χ2 requirement is met.

Following the merging and splitting process, it is found that some background vertices

are formed with tracks from pileup primary vertices. To mitigate such an effect, each

reconstructed vertex is further processed by iterating over each track included in the

vertex and refitting the vertex without the given track. If the refitting causes a shift

in the z direction by more than 50µm, the track is dropped from the vertex. The

iterative process stops when the resulting vertex has only two tracks.

7.3 Vertex Selection

The reconstructed vertices are further selected to discriminate signal and background

vertices. Each vertex must:

• Be composed of at least three tracks;
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• Be within the beam pipe to suppress vertices from material interactions (i.e.

x-y distance of the vertex from the center of the beam pipe must be less than

20 mm in 2016 and 20.9 mm in 2017 and 2018);

• Have σdBV
, defined as uncertainty in x-y distance of the vertex from the beam

axis (dBV ), less than 25µm, to select only well-reconstructed vertices and get

rid of vertices from decays of boosted particles.

The beam pipe center, whose positions relative to the geometric center of CMS are

(0.124, 0.070) cm in 2016, (0.113, -0.180) cm in 2017, and (0.171, -0.175) cm in 2018,

is used when calculating the x-y distance of the vertex from the center of the beam

pipe. The variables used for selection, namely the number of tracks per vertex and

σdBV
, are shown in Fig. 7.3 for 2017.

Events with at least one vertex satisfying the above requirements are further analyzed

as described in the remainder of this thesis. Specifically, events with vertices that

are composed of at least five tracks are used as the potential signal region and events

with vertices that are composed of three or four tracks are used as potential control

regions.

The vertex reconstruction efficiency as a function of two-dimensional (2D) LLP travel

distance is shown in Fig. 7.2 for mass splittings of 100 and 200 GeV. The efficiency is

obtained by calculating the ratio between the 2D LLP travel distance distributions.

The denominator histogram includes all LLPs in events that satisfy the event pre-

selection except offline E⃗miss
T NoMu selection. The numerator histogram includes LLPs

that can be matched with reconstructed vertices that satisfy the vertex selection and

have at least five tracks. LLPs are matched with vertices by distance: if there is only

one vertex in the event, the LLP that is closest to the vertex will be matched; if there
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is more than one vertex in the event, both LLPs in the events will be matched.

As shown in the efficiency plots, the efficiencies are low when the LLP decay length is

less than 500µm. Then the efficiencies reach a plateau for larger LLP decay lengths

until the LLP decay length is close to the beam pipe, where the efficiency drops again.

Figure 7.3 shows the distributions of vertex variables used in the selection. A double-

peak structure of the σdBV
is observed. The first peak with lower σdBV

corresponds

to vertices that come from track random crossing while the second peak with larger

σdBV
comes from B meson decays. The structure is discussed in detail in Sec. 10.1.

Other vertex variables are checked, such as vertex invariant mass and ∆ϕ between

p⃗miss
T and the vector from the primary vertex and secondary vertex, as shown in

Fig. 7.6 and Fig. 7.7 for 2017. For each set of plots, the top two plots include

vertices with at least five tracks that satisfy other vertex requirements while the

bottom two plots include vertices with at least three tracks that satisfy other vertex

requirements to reduce the statistical uncertainty. Comparisons of vertex invariant

mass and ∆ϕ between p⃗miss
T and the vector from the primary vertex and secondary

vertex between signal and background MC do not suggest additional selections based

on those variables.

Figure 7.4 shows the distribution of the number of reconstructed vertices. Most events

have only one reconstructed vertex, even for signal events, due to the low energy

and small number of displaced tracks we have in p⃗miss
T -triggered event, in which a

noticeable fraction of energy escapes the detector as p⃗miss
T . The number of charged

particles from the decay of LLP at the generator level is calculated and shown in

Fig. 7.5 to confirm the small number of tracks effect in the generator level. Note that

generator level information can be sometimes hard to interpret, there are cases where
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Figure 7.2: Vertex reconstruction efficiency as a function of 2D LLP travel distance.
2016 preVFP (top left), 2016 postVFP (top right), 2017 (bottom left), and 2018
(bottom right) are shown separately.
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Figure 7.3: Distributions of variables used for vertex selection in the split SUSY signal
sample with mass splitting ∆M = 100 GeV (top) and ∆M = 200 GeV (bottom),
and background MC. The signals are scaled up by 10 to make a better comparison.
All events in the distributions are from the 2017 simulation and satisfy the event
preselection. All vertices satisfy the vertex selection except the one that is shown on
the x-axis of the plot. The red line labels the selection applied to the shown variable
in the plots. For the number of tracks per vertex, vertices on the right of the line are
kept, while for σdBV

, vertices on the left of the line are kept.
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quarks have no generator level decay daughters and sometimes quarks end up having

all neutral daughters, which results in LLPs that have zero charged decay product in

the generator level. Comparisons of vertex variables between data and the simulation

and studies to understand the differences are shown in Appendix. B.2.
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Figure 7.4: Distributions of the number of reconstructed vertices in 2017 split SUSY
signal sample with mass splitting ∆M = 100 GeV (left) and 200 GeV (bottom), and
background MC. The signals are scaled up by 10 to make the comparisons easier
to visualize. All events are required to pass event preselection and all vertices are
required to have at least 5 tracks and satisfy other vertex requirements.
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Figure 7.5: Number of charged particles that come from the LLP decay in generator
level in 2017 for split SUSY samples with cτ of 1 mm and gluino mass of 2000 GeV.
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Figure 7.6: Distributions of the invariant mass of reconstructed vertices in 2017 split
SUSY signal sample with mass splitting ∆M = 100 GeV (left) and 200 GeV (right),
and background MC. The signals are scaled up by 10 to make a better comparison.
All events are required to pass event preselection and all events are required to have
at least one vertex with at least five (top) or three (bottom) tracks and satisfy other
vertex requirements.
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Figure 7.7: Distributions of ∆ϕ between p⃗miss
T and the vector from the primary vertex

to the secondary vertex in 2017 split SUSY signal sample with mass splitting ∆M =
100 GeV (left) and 200 GeV (bottom), and background MC. The signals are scaled up
by 10 to make a better comparison. All events are required to pass event preselection
and all vertices are required to have at least 5 (top) or 3 (bottom) tracks and satisfy
other vertex requirements.
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Chapter 8

Machine Learning

Machine Learning (ML) [44] is an approach that is able to make predictions based on

its previous experience, given the input features. The ML is constructed as a model

with a large number of parameters. It takes input data and calculates the output

using parameters in the model. The output is taken as the prediction of the ML. To

obtain the desired predictions, ML models undergo a training process, which happens

iteratively by fitting the models using the input data.

Based on the method of training the ML models, an ML model can be classified as

supervised learning, unsupervised learning, and reinforced learning. For supervised

learning algorithms, input features together with the “truth” values, which are the

correct output, are fed into the ML during the training process. Supervised ML mod-

els are expected to make predictions that are close to the “truth” values. Depending

on the output of the ML models, supervised learning algorithms can be categorized

as classifiers and regressors. Classifiers predict the class of the given set of input

features while regressors predict the values of desired variables based on the input

features. For unsupervised learning algorithms, only the input features are provided

during the training. Unsupervised ML models are expected to learn the underlying

patterns of the input features. Reinforced learning is often used for decision-making.

It is able to interact with the environment and thus can explore different possibilities

and learn from the successes and failures of the feedback of the environment based
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on the decision it makes.

The ML algorithm used in this search is a classifier trained with supervised learning.

8.1 Introduction to Interaction Network

With our event preselection and vertex selection, the number of background events

is further reduced by introducing an Interaction Network (IN) [45], an ML algorithm

to this search.

INs are a kind of Graph Neural Network (GNN) [46], which is a novel ML algo-

rithm that shows its powerful performance in many different applications. GNNs

take graphs, a data structure that is composed of nodes and edges, as input. Nodes

are used to represent objects while edges are used to represent relations between dif-

ferent nodes. Special architectures are designed in GNNs to make them able to learn

not only the information about objects but also the relations between objects. For

INs, nodes are used to describe different physical objects and edges between nodes are

used to describe possible interactions between nodes. Calculations are performed to

take care of both the object itself and possible interactions between the object and all

other objects. With all these features, INs are capable of calculating the interactions

for different objects in a multi-body system and thus predicting the final states of all

physical objects in the system. Similarly, proton-proton collisions can also be viewed

as multi-body interactions. All the tracks reconstructed in the detector are physical

objects and interact with each other, so the IN is used to calculate the interactions

between tracks and trained as the classifier to predict whether there are LLP decays

in a given event.
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In this search, the vertex reconstruction is already very effective at reconstructing

displaced vertices and distinguishing signal events from background events. To further

improve the signal significance, the IN introduced in this search is expected to exploit

as much additional information about the displaced vertices as possible but not the

information that is already available from the existing vertex reconstruction. As a

result, the reconstructed vertex information is not directly used to avoid the IN only

learning information from vertex reconstruction. Only tracking information is fed

into the IN. In that way, the IN can learn the difference between the topology of

tracks in signal and background events and thus classify a given event as signal or

background. The IN makes predictions by outputting a score ranging from 0 to 1

for a given event, where 0 corresponds to the background and 1 corresponds to the

signal. The IN output score (MLScore) is used as a discriminator to distinguish

signal events from background events. Tracks are implemented as nodes in the graph

while edges are composed of relations between any pairs of tracks. The output of the

IN will be used together with variables from reconstructed vertices to improve search

efficiency.

The following seven track variables are used in the ML so the spatial and kinematic

information of tracks is available to ML: pT, η, ϕ, xy-distance between the beam spot

and the closest approach of the track dxyBS and its significance, z distance between

beam spot and the closet approach of the track dzBS and its significance.

Comparisons of track variables used in the ML between signal and simulated back-

ground events are shown in Fig. 8.1 and 8.2. As shown in the plots, the signal and

background distributions are similar. The IN learns the track topology for LLP de-

cays, which is hard to observe directly from the distributions of track variables.
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Figure 8.1: Comparisons of track pT, η, and ϕ between signal and background in
2017. The signal used in the comparison is the split SUSY sample with 1 mm cτ ,
2000 GeV gluino mass, and 200 GeV mass splitting.
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Figure 8.2: Comparisons of track dxy, η, and ϕ between signal and background in
2017. The signal used in the comparison is the split SUSY sample with 1 mm cτ ,
2000 GeV gluino mass, and 200 GeV mass splitting.
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8.2 Architecture of Interaction Network

As described in the last section, the IN takes the track variables as input. For each

track, it calculates the “interactions” the track applies on other tracks and the “inter-

actions” the track receives from other tracks. The applied and received interactions

are used to calculate the “effect” of all the “interactions” acted on individual tracks.

The IN then combines the original input information of tracks with the “effects” on

the tracks to understand how the “interactions” affect the track behaviors and infer

the underlying topology of tracks in the events and predict whether an event has

tracks from LLP decays.

The detailed architecture of the IN is shown in Figure 8.3 and described as follows to

achieve the calculations described above. The standard deep neural network building

blocks including multilayer perceptrons (MLP) and matrix operations are used when

implementing the IN. Assume we have N events and we define our number of objects,

namely tracks, to be fed into ML as No, each track has Ds variables that are available

to the IN. The graph, which is the input of the IN, includes basic information about

tracks and relations between all pairs of tracks. The input graph is constructed

using several matrices: variable matrix O (dimension N × No × Ds) that includes

the information (such as pT, η, ϕ, etc. ) of tracks used in the IN; receive relation

matrix Rr (dimension N×No×Nr) that represents the “interactions” a track receives

from other tracks; send relation matrix Rs (dimension N ×No ×Nr) that represents

the “interactions” a track sends to other tracks, and a general characteristic relation

matrix Ra (dimension N × 1×Nr) that represents the general characteristics for all

relations. Since the IN calculates relations between all pairs of objects, the number

of relations Nr is No · (No − 1) (not including objects reacting with themselves). All
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relations between different tracks are considered relevant so all elements in Rr and

Rs except the elements that correspond to the relations between a track and itself

are set to 1, and all elements in Ra are set to 1.

The IN calculates the state after tracks receive and send relations with other tracks

by O ·Rr and O ·Rs and combine all those calculated elements together as one whole

matrix by O · Rr − O · Rs. This matrix is then combined together with Ra to form

the full relation matrix. The calculated matrix is passed into an MLP called ϕR with

five layers with 50 nodes in each layer. The output of ϕR, called E, is interpreted

as the “effects” of all relations acted on each track. The dimension of matrix E is

N×Nr×De where De is a tune-able hyperparameter that represents the dimension of

effect for each track. The “effect” matrix E is multiplied with the transpose of matrix

Rr to calculate the effect acted on individual tracks. The result is combined together

with the original variable matrix O to form a new matrix C containing the original

information together with the tracks after the “effects” are applied. The dimension of

the new matrix C is N ×No × (Ds +De). The matrix C is passed into another MLP

with two parts. The first part, labeled as ϕO, has two layers with 50 nodes in each

layer and the output of the first part of the MLP is a matrix, referred to as P , with

dimension N×No×Dp. The second part, labeled as ϕoutput, has three layers with 100

nodes in each layer. It takes matrix P as input and outputs a matrix with dimension

N × 1, the 1 denotes the calculation results from the MLP for each event, which is a

single value. This output is finally processed with a sigmoid function to obtain the

final result which corresponds to the final MLScore. The MLScore ranges from 0 to

1, with 0 corresponding to “background-like” and 1 corresponding to “signal-like”.
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Figure 8.3: The architecture of the IN. The arrows show the flow of data. The rect-
angular boxes represent matrices and diamonds represent MLPs in the architecture.

8.3 Training and Testing

The IN is computationally expensive because it calculates the “interactions” between

each pair of tracks fed into the algorithm. It is impossible to feed all tracks in a given

event because the computing resources cannot handle such heavy computations. As

a result, we select tracks that satisfy the track quality requirements described in

Sec. 7.1 but without the displaced track requirement on |dxy|/σdxy . Then the first 50

pT-ordered tracks from the set of tracks selected above in each event are used to feed

into the network. If an event has less than 50 tracks, “fake tracks” are made with all

variables set to 0 to make all events have the same number of selected tracks to be

processed by the algorithm.

We used 2016, 2017, and 2018 data and MC samples mixed together to train and
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test the IN. Data events with 3-track and 4-track vertices are used as part of the

background events. Background MC samples are combined together according to their

cross sections. To have enough background events for training, simulated background

events with an effective luminosity of 200000 pb−1 are used. Given the fact that QCD

samples with low HT have very large cross sections, it is not feasible to generate

enough events to reach 200000 pb−1 luminosity. For such samples, we can only use as

many events as possible but cannot strictly choose the number of events according to

their cross sections. Signal samples with different lifetimes and masses are combined

together as the total sample of signal events used in the training and testing. Given

the number of signal samples with different lifetimes and masses, there are much more

signal events than background events that can be used to train the IN. To make the

number of signal and background events similar in the training, not all signal events

are used to train the IN. From each signal sample, we pick at most 250 events in 2016

preVFP and 2016 postVFP, and 500 events in 2017 and 2018 for the training.

Events are divided for training and testing purposes by the following selection:

• Training Selection:

– Fire E⃗miss
T NoMu trigger, pass MET filters and fake MET veto;

– 80GeV < E⃗miss
T NoMu < 200GeV;

– Have at least 1 vertex that:

∗ Satisfy beam pipe constraints described in Sec. 7.3;

∗ Be composed of at least three tracks;

∗ Have σdBV
< 25µm.

• Testing Selection:
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– Fire E⃗miss
T NoMu trigger, pass MET filters and fake MET veto;

– E⃗miss
T NoMu > 200GeV;

– Have at least 1 vertex that:

∗ Satisfy beam pipe constraints described in Sec. 7.3;

∗ Be composed of at least three tracks for MC and be composed of 3 or

4 tracks for data to avoid unblinding the signal region;

∗ Have σdBV
< 25µm.

Given the fact that the ML is trained using events with E⃗miss
T NoMu trigger but low

E⃗miss
T NoMu, distributions of the magnitude and ϕ of E⃗miss

T NoMu and p⃗miss
T are checked on

data and background events used in the training. Only events with 3-track vertices

are checked in order to avoid accidentally unblinding the signal region in this analysis.

The plots are shown in Fig. 8.4.

Since different variables in data have very different features, different variables can

have very different contributions to the IN and make the IN converge slower while

training. To make every variable have a similar impact on the IN, data pre-processing

is applied. Generally, data pre-processing is done by normalizing all variables by

(x−µx)/σx where x corresponds to a given variable, µx corresponds to the mean of x

and σx corresponds to standard deviation of x. The variable distribution is not nec-

essarily Gaussian to apply this normalization. The main point of this normalization

is to make all the input variables have similar value ranges to accelerate the training

process. In this search, a special approach is used to achieve the normalization. The

IN is trained and tested using a mixture of data and simulation but will be used only

on data in the end. Since the simulation is not perfect, data and simulated events

can be slightly different because of the mis-modeling of the simulation. To make the
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Figure 8.4: Distribution of the magnitude and ϕ of E⃗miss
T NoMu and p⃗miss

T in 2017. Data
events are shown in red and simulated background events are shown in blue.
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IN perform consistently in data and the simulation, pre-processing is used to make

the simulation and data have more similar distributions. However, the differences

between distributions in data and simulation come not only from mis-modeling, but

also from the lack of events in some background simulation samples, which should not

be accounted for in pre-processing. To solve this problem in background simulations,

weighted histograms are made for background simulations to account for different

number of events, cross section, pileup reweighting, and other corrections recom-

mended by CMS. The pre-processing parameters µx and σx are extracted from the

weighted histograms so those parameters only account for mis-modeling in simulation

but not for lack of statistics.

While we train the IN, more signal events are used compared with the background.

The different numbers of signal events and background events during training can

make the trained model biased in the way that it tends to predict any event as the

class with more events during training. To avoid this, weights are applied on signal

and background events to make every signal event count as Nbkg/Nsig events so the

signal and background are effectively equal during training.

We used an 85/15 splitting when training the model: 85% events out of the training

events are used to update the parameters in the model and 15% events out of the

training events are used to check the performance of ML after every iteration. The

splitting is done in the following order: At the beginning of every iteration, we shuffle

those events and randomly pick 15% of the events for validation and use the remaining

85% events to update the parameters in the model. Doing this makes the validation

events different in every iteration to avoid over-training on the validation events.

With the training events prepared, the IN is trained by minimizing the loss func-

tion [47] iteration by iteration. As a typical loss function for the binary classifier, bi-
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nary cross entropy Lbce [47] is used as the loss function. In order to avoid over-fitting,

L2 regulation Lreg [48] is added to the loss function. In addition to discriminating

signal events from background events, the IN is also used for background estimation,

as described in Sec. 10. To ensure the background estimation developed based on

the IN is valid, the ABCDisCo [49] method is used to decorrelate the output of the

IN with the number of tracks in reconstructed vertices for background events. It is

done by calculating the distance correlation Ldcorr [50] between the ML output and

the number of tracks in vertices in the background events, then adding a penalty

term based on Ldcorr in the loss function of the IN. So the more the output of the

IN is correlated with the number of tracks in the vertex, the larger value the loss

function outputs. When calculating Ldcorr, only one vertex is used per event. Most

events have no more than one vertex after reconstruction. If there are more than one

vertices reconstructed, the vertex with the highest number of tracks will be selected

to use for decorrelation in the IN. Having all those terms for loss function together,

the loss function of the IN is L = Lbce + λreg · Lreg + λdcorr · Ldcorr, where λreg and

λdcorr are hyperparameters that control the strength of those restrictions.

In each iteration, the IN runs through all the training events by dividing all events into

several batches with Nbatch events in each batch and update the model parameters

after running over each batch using the Adam [51] algorithm to minimize the loss

function.

The model that results in the lowest value of the loss function on the validation events

is saved as the final trained model. After the training is finished, the saved model is

tested on the testing events to evaluate the performance.

Hyperparameters are tuned to ensure the decorrelation requirement is satisfied while

having good discriminating power. All values of hyperparameters for the currently
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used model are shown in Tab. 8.1.

Table 8.1: Hyperparameters in ML

Hyperparameter value
λreg 0.00005
λdcorr 0.65
learning rate 0.0003
No 50
Ds 7
De 20
Dp 20
Number of epochs 250
Nbatch 128

8.4 The IN Performance

The IN performance is evaluated in two aspects: the discriminating power and model

independence. Stronger discriminating power helps in improving the sensitivity of the

search by separating signal and background events apart, while model independence

maintains the capability of the search being able to discover or set limits on not only

the benchmark signal models but all other potential signal models that result in the

target final state.

The testing events described in Sec. 8.3 are used to test the discriminating power

of the IN. As described above, the training and testing events are selected to be or-

thogonal so all events used for training are not used for testing, which avoids biasing

the testing result. Specifically, events with E⃗miss
T NoMu > 200 GeV are used to check

the IN performance. To evaluate the discriminating power, we compared the distri-

bution of the MLScore between signal and background MC for events with at least

one secondary vertex with at least five tracks, as shown in Fig. 8.5. As shown in the

plots, the MLScore separates signal from background events in that most background



79

events have an MLScore of around 0 while most signal events have an MLScore of

around 1. To ensure the ML performs consistently between data and the simulation,

the MLScore distribution in data and simulated events are compared and consistent

behavior is observed. The detailed comparisons are described in Appendix B.3. The

obvious differences between the MLScore distributions of background and signal sam-

ples show that the ML learns track topology that cannot be easily captured by the

secondary vertex reconstruction.

Meanwhile, a small bump around 0.4 is observed in MLScore distributions of signal

samples, especially for signal models with large mass splitting and cτ ’s. The small

bump should result from the restriction we applied to decorrelate the MLScore and the

number of tracks in vertices: signal samples with larger mass splitting and lifetimes

are more likely to have well-reconstructed vertices with more tracks, thus making the

IN give such events smaller MLScores to satisfy the decorrelation restriction.

Overall, signal samples with larger track multiplicity, which are more likely to result

in well-reconstructed vertices with more tracks, have more events with an MLScore

around 0.4; signal samples with smaller track multiplicity, which are less likely to

result in well-reconstructed vertices with more tracks, have fewer events with MLScore

around 0.4.

The correlation between MLScore and variables related to vertex reconstruction is

studied to understand the behavior of the IN. The correlation between MLScore and

the number of tracks per vertex is visualized as the 2D distribution of the number of

tracks per vertex vs. MLScore, as shown in Fig. 8.6. The plots show that the number

of tracks per vertex stays stable for different MLScore, which proves that applying

the ABCDisCo technique makes the MLScore and the number of tracks per vertex

decorrelated successfully.
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The correlation between MLScore and dBV is studied by comparing 2D MLScore vs.

dBV distribution, as shown in Fig. 8.7. For signal events, as dBV goes larger, more

events will have MLScore around 0.4, which makes the average MLScore go lower.

For background events, as dBV goes larger, the MLScore will go slightly higher, but

still much lower than signal events.
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Figure 8.5: MLScore distribution for background MC and signal events with at least
one secondary vertex with at least five tracks in 2017. Background (red), split SUSY
samples with cτ as 100µm (blue), 300µm (green), and 1 mm (pink) for a given gluino
mass and neutralino mass are shown together on the same canvas.
(Left) ML score comparison between background MC and split SUSY sample with
gluino mass as 2000 GeV and neutralino mass as 1800 GeV.
(Right) ML score comparison between background MC and split SUSY sample with
gluino mass as 2000 GeV and neutralino mass as 1900 GeV.

The model independence of the IN is tested by running the IN on different signal

samples and checking the MLScore distribution. Two models are used for the test

because their topologies are very different from that of the split SUSY model. The

first model is the associated production of exotic Higgs [52] with W boson. The exotic

Higgs decays to a pair of scalar particles, which are long-lived and decay to four b

quarks or d quarks in total. The mass of the scalar particles (S) used in this test is

55 GeV. The process is symbolized as WH → SS → bbbb/dddd. The second model
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Figure 8.6: Number of tracks per vertex vs. MLScore for background MC in 2016
preVFP (top left), 2016 postVFP (top right), 2017 (bottom left), and 2018 (bottom
right). The profile plot (red) that shows the average Number of tracks per vertex as
a function of MLScore is overlaid on the 2D plot.



82

3−10

2−10

1−10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
dBV (cm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
LS

co
re

2−10

1−10

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
dBV (cm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
LS

co
re

1

10

210

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
dBV (cm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
LS

co
re

Figure 8.7: MLScore vs. dBV background MC and signal for events with 3, 4, or
5-track vertices in 2017. The profile plot (red) that shows the average MLScore as a
function of dBV is overlaid on the 2D plot.
(Top left) Split SUSY samples with 100 GeV mass splitting;
(Top right) Split SUSY samples with 200 GeV mass splitting;
(Bottom) Background simulations.
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is the R-parity violated SUSY [53]. In this model, neutralinos (χ̃0) are pair produced

and long-lived. Each of the neutralinos decays to t, b, and s quarks. The neutralino

masses used in this test are 400 GeV and 1600 GeV. The model is symbolized as

χ̃0 → tbs.

All events used in the test satisfy the testing selection described in 8.3. For some

models, the number of events available is limited because of the low trigger efficiency

and vertex reconstruction efficiency. The MLScore distributions for models described

above are shown in Fig. 8.8 for WH → SS → bbbb/dddd and Fig. 8.9 for χ̃0 → tbs. As

shown in the plots, the MLScore distributions behave consistently as described before:

for low track multiplicity signal samples like WH → SS → bbbb/dddd, most events

have MLScore around 1; for high-track multiplicity signal samples like χ̃0 → tbs, part

of the events have an MLScore of around 0.4, and part of the events have an MLScore

of around 1.

As a result, the model independence study shows that the IN behaves consistently

for different topologies with displaced vertices resulting from long-lived particles with

different masses.

In conclusion, the IN has a strong discriminating power to select signal events out of

background events and it is capable to recognize signal models with different topolo-

gies. Those features ensure that the IN helps improve the sensitivity and keep the

model-independent feature of this search.
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Figure 8.8: MLScore distribution for WH samples in 2017. WH samples with different
cτ ’s as 100µm (red), 1 mm (blue), and 10 mm (green) for a given decay channel are
shown together on the same canvas.
(Left) MLScore distributions for WH → SS → bbbb.
(Right) MLScore distributions for WH → SS → dddd.

Figure 8.9: MLScore distribution for χ̃0 → tbs samples in 2017. Different cτ ’s of
100µm (red), 1 mm (blue), and 10 mm (green) for a given decay channel are shown
together on the same canvas.
(Left) MLScore distributions for χ̃0 mass of 400 GeV.
(Right) MLScore distributions for χ̃0 mass of 1600 GeV.
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8.5 The IN Selection

To pick a reasonable selection on the MLScore for the search, different selection

thresholds ranging from 0.15 to 0.25 are applied on events with all preselections1

and vertex requirements applied to check the effect of varying MLScore selection, as

shown in Tab. 8.2, 8.3, and 8.4 for selection thresholds at 0.15, 0.20, and 0.25. The

uncertainties in the table are purely statistical uncertainties.

The tables show that loosening the ML selection to 0.15 makes the number of back-

ground events increase by about 30% or 40% for events with vertices that have exactly

3 tracks (labeled as 3-track) and events with vertices that have exactly 4 tracks (la-

beled as 4-track) events, which might result in too many background events in the

search. Tightening the ML selection can only help decrease the number of background

events by about 15% in 3-track events but 0% in 4-track events, which may not be

very helpful in further reducing background events. In the meanwhile, tightening

the selection threshold could also result in the possibility of cutting off an obvious

fraction of heavy mass LLP signal samples, such as the χ̃0 → tbs signal samples

shown in Fig 8.9. As a result, to avoid including too many background events while

maintaining sensitivity to a wide range of signal models, an MLScore of 0.2 is used

to separate signal and background events.

ML selection = 0.15 4-track 3-track
Measured high ML events 17.00 ± 4.12 88.00 ± 9.38
Measured low ML events 399.00 ± 19.98 2072.00 ± 45.52

Table 8.2: Number of events in 2017 data with ML selection at 0.15.

1the fake MET veto threshold used in this study is 0.5, which is slightly different from the one
used in the search 0.6
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ML selection = 0.20 4-track 3-track
Measured high ML events 12.00 ± 3.46 66.00 ± 8.12
Measured low ML events 404.00 ± 20.10 2094.00 ± 45.76

Table 8.3: Number of events in 2017 data with ML selection at 0.20.

ML selection = 0.25 4-track 3-track
Measured high ML events 12.00 ± 3.46 55.00 ± 7.42
Measured low ML events 404.00 ± 20.10 2105.00 ± 45.88

Table 8.4: Number of events in 2017 data with ML selection at 0.25.
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Chapter 9

Analysis Selection

This search is a counting experiment. A set of selections are applied to get rid of

background events while maintaining most of the signal events. The region formed

by applying all the selections in the search is referred to as the signal region, which

is most likely to include signal events. The search strategy is then to predict the

number of events based on the assumption that there are no BSM physics processes

present and compare the observed and predicted number of events in the signal re-

gion to determine whether the observation and prediction match with each other.

V alidation region and control regions are used to verify the search strategy, predict

the number of events in the signal region, and study the behavior of background

events. Those regions are defined by applying almost all the selections but with one

of the selections reversed or relaxed.

The analysis selection is defined by integrating the event preselection described in

Sec. 6.3 with vertex reconstruction described in Ch. 7. Events must:

• Fire the HLT_PFMETNoMu120_PFMHTNoMu120_IDTight trigger;

• Pass Fake MET veto: |METPF −METCALO|/METCALO < 0.6;

• Have reconstructed p⃗miss
T pass all MET filters;

• Have E⃗miss
T NoMu > 200GeV;
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• Have at least 1 reconstructed vertices that satisfy:

– at least 3 tracks;

– x-y distance of the vertex from the (year-dependent) beam pipe center of

less than 20 mm for 2016 and 20.9mm for 2017 and 2018;

– uncertainty in dBV of less than 25µm.

Figure 9.1 shows the distribution of E⃗miss
T NoMu after the analysis selection is applied.

With the addition of the ML described in Ch. 8 developed in the search as the final

piece of the selection, the signal region, validation region, and control regions are de-

fined based on the number of tracks in the leading reconstructed vertex (nTracks/SV)

and the output of ML (MLScore), as shown in Fig. 9.2:

• Signal Region

– A (5-track highML): nTracks/SV≥5, MLScore≥0.2

• Validation Region

– C (4-track highML): nTracks/SV=4, MLScore≥0.2

• Control Regions

– B (5-track lowML): nTracks/SV≥5, MLScore<0.2

– D (4-track lowML): nTracks/SV=4, MLScore<0.2

– E (3-track highML): nTracks/SV=3, MLScore≥0.2

– F (3-track lowML): nTracks/SV=3, MLScore<0.2



89

0 100 200 300 400 500 600 700 800 900 1000
 (Gev)miss

T NoMuE

1

10

210

310

E
ve

nt
/5

0 
G

eV Multijet events

tt

Single top

WJets

ZJets

diboson

MC stat. uncertainty

 = 1 fb,σsplitSUSY signal: 

 = 1 mm, M = 2000 GeV, dM = 200 GeVτc

 (13 TeV)-119.7 fbCMS Simulation Preliminary

0 100 200 300 400 500 600 700 800 900 1000
 (Gev)miss

T NoMuE

1

10

210

310

E
ve

nt
/5

0 
G

eV Multijet events

tt

Single top

WJets

ZJets

diboson

MC stat. uncertainty

 = 1 fb,σsplitSUSY signal: 

 = 1 mm, M = 2000 GeV, dM = 200 GeVτc

 (13 TeV)-117.0 fbCMS Simulation Preliminary

0 100 200 300 400 500 600 700 800 900 1000
 (Gev)miss

T NoMuE

1

10

210

310

E
ve

nt
/5

0 
G

eV Multijet events

tt

Single top

WJets

ZJets

diboson

MC stat. uncertainty

 = 1 fb,σsplitSUSY signal: 

 = 1 mm, M = 2000 GeV, dM = 200 GeVτc

 (13 TeV)-1  40.6 fbCMS Simulation Preliminary

0 100 200 300 400 500 600 700 800 900 1000
 (Gev)miss

T NoMuE

1

10

210

310

E
ve

nt
/5

0 
G

eV Multijet events

tt

Single top

WJets

ZJets

diboson

MC stat. uncertainty

 = 1 fb,σsplitSUSY signal: 

 = 1 mm, M = 2000 GeV, dM = 200 GeVτc

 (13 TeV)-1  59.7 fbCMS Simulation Preliminary

Figure 9.1: Comparisons of distributions of E⃗miss
T NoMu for events that pass the analy-

sis selection between simulated background events and simulated split SUSY signal
events with gluino cτ = 1mm, M = 2000GeV, neutralino M = 1800GeV, and pro-
duction cross section 1 fb in 2016 preVFP (top left), 2016 postVFP (top right), 2017
(bottom left), and 2018 (bottom right).
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Figure 9.2: Signal region, validation regions, and control regions are shown in the
cartoon as red, yellow, and grey blocks.

The cutflow plots and tables that show the number of signal and background MC

events after each single event selection for 2016 preVFP, 2016 postVFP, 2017, 2018,

and Run 2 are shown in Fig. 9.3 and Tab. 9.1, 9.2, 9.3, 9.4, 9.5.

background MC signal cτ=1 mm
∆m=100 GeV ∆m=200 GeV

Trigger & at least one 3 track vertices 75409.06 3.24 7.39
fake MET veto & MET filters 52163.56 2.66 6.47

E⃗miss
T NoMu >200 GeV 12094.78 1.84 4.78

Vertices with σdBV
<25um 696.08 0.85 3.03

Vertices with at least 5 tracks 12.88 0.67 2.69
MLScore>0.2 0.73 0.66 2.67

Table 9.1: Number of events after each selection for background MC and signal with
mg̃ of 2000 GeV, cτ of 1 mm, and different mass splittings in 2016 preVFP.
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Figure 9.3: Cutflow plots that show the number of signal and background events after
each step of event selection. The signal used in the plots is split SUSY samples with
gluino mass 2000 GeV and cτ 1 mm. In each plot, mass splitting as 100 GeV and
200 GeV are shown together.
(Top left) 2016 preVFP;
(Top right) 2016 postVFP;
(Bottom left) 2017;
(Bottom right) 2018.
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background MC signal cτ=1 mm
∆m=100 GeV ∆m=200 GeV

Trigger & at least one 3 track vertices 61847.41 2.63 5.99
fake MET veto & MET filters 42247.89 2.15 5.23

E⃗miss
T NoMu >200 GeV 9761.40 1.50 3.81

Vertices with σdBV
<25um 407.24 0.63 2.34

Vertices with at least 5 tracks 9.87 0.49 2.07
MLScore>0.2 1.13 0.49 2.06

Table 9.2: Number of events after each selection for background MC and signal with
mg̃ of 2000 GeV, cτ of 1 mm, and different mass splittings in 2016 postVFP.

background MC signal cτ=1 mm
∆m=100 GeV ∆m=200 GeV

Trigger & at least one 3 track vertices 338357.00 7.30 16.00
fake MET veto & MET filters 216081.84 6.15 14.11

E⃗miss
T NoMu >200 GeV 31611.00 4.56 10.79

Vertices with σdBV
<25um 1127.27 2.73 8.01

Vertices with at least 5 tracks 20.92 2.15 7.14
MLScore>0.2 0.24 2.10 7.03

Table 9.3: Number of events after each selection for background MC and signal with
mg̃ of 2000 GeV, cτ of 1 mm, and different mass splittings in 2017.

background MC signal cτ=1 mm
∆m=100 GeV ∆m=200 GeV

Trigger & at least one 3 track vertices 343956.03 9.67 21.91
fake MET veto & MET filters 224057.13 8.28 19.45

E⃗miss
T NoMu >200 GeV 43643.50 6.46 15.23

Vertices with σdBV
<25um 1747.35 3.75 11.00

Vertices with at least 5 tracks 23.12 2.95 9.83
MLScore>0.2 -0.07 2.84 9.64

Table 9.4: Number of events after each selection for background MC and signal with
mg̃ of 2000 GeV, cτ of 1 mm, and different mass splittings in 2018.
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background MC signal cτ=1 mm
∆m=100 GeV ∆m=200 GeV

Trigger & at least one 3 track vertices 819569.51 22.84 51.29
fake MET veto & MET filters 534550.42 19.24 45.25

E⃗miss
T NoMu >200 GeV 97110.67 14.36 34.61

Vertices with σdBV
<25um 3977.94 7.95 24.39

Vertices with at least 5 tracks 66.78 6.26 21.73
MLScore>0.2 2.03 6.09 21.40

Table 9.5: Number of events after each selection for background MC and signal with
mg̃ of 2000 GeV, cτ of 1 mm, and different mass splittings in Run 2.
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Chapter 10

Background Estimation

10.1 Source of Background

There are two main categories of background vertices:

• B decay vertices: vertices reconstructed from B meson decays;

• Track random crossing vertices: vertices reconstructed from irrelevant tracks

crossing through each other by coincidence.

Figure 10.1 compares the σdBV
and ∆ϕ of the vector connecting from the beam spot

to the vertex and b-jets between the two categories. B-jets are selected as described in

Sec. 6.1 using the tight working point (tight b− jets). As shown in the plots, vertices

with σdBV
≥ 25µm tend to have ∆ϕ around 0 with tight b-jets, which means that

they overlap with b-jets and thus are dominated by B decay vertices. For vertices with

σdBV
< 25µm, the vertex ∆ϕ to tight b-jets distribution shows that they are mostly

not overlapping with tight b-jets so they are dominated by track random crossing

vertices.

The reason for such a phenomenon is that B mesons are generally boosted so their

decay products are more collimated compared to track random crossing vertices,

which results in a higher σdBV
.
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Figure 10.1: Comparison between vertices with σdBV
smaller and larger than 25µm

shows different types of background vertices for 2017.

10.2 Background Estimation Method

The search targets displaced vertices, which is a unique signature that might be

mis-modeled in the simulation. To avoid potential uncertainty introduced by the

mis-modeling, a data-driven background estimation method that does not depend on

the simulation is developed based on the ABCD method. The background estimation

method uses signal region, validation, and control regions defined by nTracks/SV and

MLScore, as described in Sec. 9.

ABCD method requires the two discriminants that define the search regions to be

statistically uncorrelated with each other. The uncorrelation is checked by comparing

the MLScore distribution between events with nTracks/SV as 3, 4, ≥ 5 for background

simulation, as shown in Fig. 10.2. To see the distribution better for events with low

MLScores, the distributions in Fig. 10.2 are zoomed in MLScore range (0,0.4), as

shown in Fig. 10.3. All the plots used fine binning in the small MLScore region

and coarse binning in the large MLScore region because the statistical uncertainty
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in the large MLScore region is large. The comparisons of MLScore distributions for

events with different nTracks/SV shown in Fig. 10.2 and nTracks/SV vs. MLScore

2D distributions and profiles shown in Fig. 8.6 prove that MLScore and nTracks/SV

are statistically uncorrelated.

Figure 10.2: MLScore distribution for simulated background events with 3-track (red),
4-track (blue), and ≥5-track (green) vertices in 2016 preVFP, 2016 postVFP, 2017,
and 2018.

When the two discriminators are independent of each other, the number of background

events in the signal region and validation region is predicted based on the number of

events measured in 3-track regions by NA
bkg =

N
B
bkg ·N

E
bkg

N
F
bkg

and NC
bkg =

N
D
bkg ·N

E
bkg

N
F
bkg

.
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Figure 10.3: MLScore distribution that are zoomed in range (0,0.4) for simulated
background events with 3-track (red), 4-track (blue), and ≥5-track (green) vertices
in 2016 preVFP, 2016 postVFP, 2017, and 2018.
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10.3 Signal Contamination

In the ABCD method, the calculation of expected background events in the signal

region is based on the assumption that the control regions are dominated by back-

ground events. A signal contamination check is performed to ensure the validation

and control regions are dominated by background events.

Two different split SUSY samples with the same cτ from 100µm to 1000 mm but

different gluino masses and different cross sections in 2017 are used to perform the

check:

• Gluino mass 2000 GeV with cross section 1.01 fb−1, which represents the target

sensitivity of this analysis

• Gluino mass 1400 GeV with cross section 28.4 fb−1, which represents the largest

unexcluded cross-section

The sample that contributes most in the control region B (≥5-track with low ML) is

reported in Table 10.1, 10.2, 10.3, 10.4, and 10.5.

Number of events data m(g̃) = 2000GeV m(g̃) = 1400GeV
A(5-track highML) 3.00 ± 1.73 0.506 ± 0.010 17.091 ± 0.310
B(5-track lowML) 56.00 ± 7.48 0.010 ± 0.001 0.235 ± 0.036
C(4-track highML) 12.00 ± 3.46 0.177 ± 0.006 4.935 ± 0.166
D(4-track lowML) 456.00 ± 21.35 0.008 ± 0.001 0.296 ± 0.041
E(3-track highML) 75.00 ± 8.66 0.099 ± 0.004 3.115 ± 0.132
F(3-track lowML) 2311.00 ± 48.07 0.022 ± 0.002 0.565 ± 0.056

Table 10.1: Signal contribution in signal, validation, and control regions in 2017 for
100µm cτ .

As shown in the tables, for the target cross section, the signal events contribute less

than one event in validation and control regions, which shows that those regions are
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Number of events data m(g̃) = 2000GeV m(g̃) = 1400GeV
A(5-track highML) 3.00 ± 1.73 7.444 ± 0.077 207.446 ± 2.158
B(5-track lowML) 56.00 ± 7.48 0.112 ± 0.009 3.727 ± 0.290
C(4-track highML) 12.00 ± 3.46 0.627 ± 0.022 16.601 ± 0.610
D(4-track lowML) 456.00 ± 21.35 0.017 ± 0.004 0.493 ± 0.105
E(3-track highML) 75.00 ± 8.66 0.261 ± 0.014 6.443 ± 0.380
F(3-track lowML) 2311.00 ± 48.07 0.009 ± 0.003 0.503 ± 0.106

Table 10.2: Signal contribution in signal, validation, and control regions in 2017 for
1 mm cτ .

Number of events data m(g̃) = 2000GeV m(g̃) = 1400GeV
A(5-track highML) 3.00 ± 1.73 10.576 ± 0.092 287.655 ± 2.539
B(5-track lowML) 56.00 ± 7.48 0.180 ± 0.012 5.521 ± 0.353
C(4-track highML) 12.00 ± 3.46 0.475 ± 0.020 13.283 ± 0.546
D(4-track lowML) 456.00 ± 21.35 0.004 ± 0.002 0.225 ± 0.071
E(3-track highML) 75.00 ± 8.66 0.129 ± 0.010 3.853 ± 0.295
F(3-track lowML) 2311.00 ± 48.07 0.004 ± 0.002 0.080 ± 0.041

Table 10.3: Signal contribution in signal, validation, and control regions in 2017 for
10 mm cτ .

Number of events data m(g̃) = 2000GeV m(g̃) = 1400GeV
A(5-track highML) 3.00 ± 1.73 5.202 ± 0.065 135.079 ± 1.739
B(5-track lowML) 56.00 ± 7.48 0.071 ± 0.008 1.457 ± 0.181
C(4-track highML) 12.00 ± 3.46 0.362 ± 0.017 9.212 ± 0.454
D(4-track lowML) 456.00 ± 21.35 0.006 ± 0.002 0.068 ± 0.039
E(3-track highML) 75.00 ± 8.66 0.104 ± 0.009 2.618 ± 0.242
F(3-track lowML) 2311.00 ± 48.07 0.002 ± 0.001 0.046 ± 0.032

Table 10.4: Signal contribution in signal, validation, and control regions in 2017 for
100 mm cτ .

Number of events data m(g̃) = 2000GeV m(g̃) = 1400GeV
A(5-track highML) blinded 0.719 ± 0.012 17.788 ± 0.315
B(5-track lowML) 56.00 ± 7.48 0.012 ± 0.002 0.302 ± 0.041
C(4-track highML) 12.00 ± 3.46 0.054 ± 0.003 1.380 ± 0.088
D(4-track lowML) 456.00 ± 21.35 0.002 ± 0.001 0.017 ± 0.010
E(3-track highML) 75.00 ± 8.66 0.017 ± 0.002 0.460 ± 0.050
F(3-track lowML) 2311.00 ± 48.07 0.002 ± 0.001 0.006 ± 0.006

Table 10.5: Signal contribution in signal, validation, and control regions in 2017 for
1000 mm cτ .
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dominated by background events. For the largest unexcluded cross section, there is

some signal contamination in validation E and control region B, but the huge number

of events in the signal region will lead to an obvious discovery.

10.4 Closure Test

To check whether the ABCD background estimation method works for this search,

closure tests are performed in the validation region C for data events by compar-

ing the prediction and observation of the number of events in the validation region

C. The closure tests results are shown in Tab. 10.6, 10.7, 10.8, 10.9, and 10.10 for

2016 preVFP, 2016 postVFP, 2017, 2018, and the full Run 2 added together. The

results show that the ABCD closure test works nicely for data in all four data-taking

campaigns.

As a result, a purely data-driven background estimation method is developed and the

closure test for validation regions works well in data for all years.

4-track 3-track
Predicted high ML events 5.16 ± 1.17 N/A
Observed high ML events 5.00 ± 2.24 25.00 ± 5.00
Observed low ML events 109.00 ± 10.44 528.00 ± 22.98

Table 10.6: Closure test results for data in 2016 preVFP.

4-track 3-track
Predicted high ML events 3.12 ± 0.91 N/A
Observed high ML events 5.00 ± 2.24 14.00 ± 3.74
Observed low ML events 83.00 ± 9.11 373.00 ± 19.31

Table 10.7: Closure test results for data in 2016 postVFP.
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4-track 3-track
Predicted high ML events 14.80 ± 1.87 N/A
Observed high ML events 12.00 ± 3.46 75.00 ± 8.66
Observed low ML events 456.00 ± 21.35 2311.00 ± 48.07

Table 10.8: Closure test results for data in 2017.

4-track 3-track
Predicted high ML events 17.94 ± 2.06 N/A
Observed high ML events 16.00 ± 4.00 89.00 ± 9.43
Observed low ML events 628.00 ± 25.06 3115.00 ± 55.81

Table 10.9: Closure test results for data in 2018.

4-track 3-track
Predicted high ML events 40.94 ± 3.14 N/A
Observed high ML events 38.00 ± 6.16 203.00 ± 14.25
Observed low ML events 1276.00 ± 35.72 6327.00 ± 79.54

Table 10.10: Closure test results for data in Run 2.
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Chapter 11

Systematic Uncertainties

Systematic uncertainties are used in the search to account for factors that could pos-

sibly have an impact on signal efficiency or background estimation. Generally, sys-

tematic uncertainties are evaluated individually for different factors. For each factor,

its variation is propagated to estimate the resulting change in the signal efficiency.

11.1 Correction Factors and Systematic Uncertain-

ties Related to Signal Distribution and Effi-

ciency

11.1.1 Track Reconstruction

The dominant sources of uncertainty in signal efficiency arise from the differences in

the reconstruction of tracks and vertices in data and simulation. The study relevant to

track reconstruction is described in this section and the study of vertex reconstruction

is described in Sec. 11.1.2.

Track reconstruction efficiency is studied by reconstructing vertices from K0
S decays.

The procedure is modified based on the study described in [26]. The study focuses

on K0
S ’s that decay to π− and π+, resulting in two tracks. The track reconstruction
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efficiency difference between data and simulation will then be inferred from the K0
S

reconstruction efficiency.

The events used in this study are required to satisfy the event preselection described

in Sec. 6.3. Every pair of tracks in the events is used to reconstruct vertices and

vertices that satisfy χ2/dof < 7 are kept. To get rid of most background vertices,

vertices are further required to:

• Have cτ > 268µm;

• Have ρ > 0.268 cm;

• Have the cosine of the 2D angle between fitted candidate momentum and flight

direction from primary vertex > 0.99975;

• Be within the beam pipe.

Vertices that satisfy the selection are divided into two categories depending on the

invariant mass:

• Vertices with mass in the range [0.490, 0.505] GeV: used as “signal region” that

most of the K0 candidates reside in;

• Vertices with mass out of range [0.490, 0.505] GeV: used as side band to estimate

the background in the “signal region”.

The invariant mass distribution of K0
S vertices is shown in Fig. 11.1. To get rid of

background vertices, a linear fit is performed using the distribution in the side band.

The fit result is used to calculate the expected number of background vertices in the

K0
S signal region. The number of vertices that come from K0

S ’s is calculated from the
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difference between the total number of vertices and expected background vertices in

the K0
S signal region. The purity of K0

S vertices, calculated as the ratio of the number

of vertices from K0
S decays and the total number of vertices, are reported in Tab. 11.1.

The similarity of the purity in data and simulation shows that data and simulated

events used in the study behave consistently.

Figure 11.1: The invariant mass distribution of reconstructed vertices in 2017. The
red line shows the fit result of background vertices using the side band.

year data simulation
2016 preVFP 0.69 0.68
2016 postVFP 0.66 0.67

2017 0.73 0.74
2018 0.73 0.74

Table 11.1: The purity of K0
S vertices, calculated as the ratio of the number of vertices

from K0
S decays and the total number of vertices in the K0

S signal region.

Distributions in the K0
S signal region are compared between data and simulation, as

shown in Fig. 11.2. The plots show that tracks and reconstructed K0
S vertices are

generally less energetic in data.

Since this study is designed to only account for the track reconstruction efficiency, dif-
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Figure 11.2: Comparisons of kinematic variables of vertices in 2017 between data
(red) and simulation (blue) before corrections are applied.



106

ferences between data and simulation that are not relevant to the track reconstruction

efficiency, such as the pT of tracks and reconstructed K0
S vertices, should be mitigated

to get a more precise result. The difference in track pT is mitigated by applying

correction weights on simulated events. Weights are calculated as the data/MC ratio

of K0
S vertex track pT distribution in the signal region. To avoid the effect of the

mis-modeling of background events in the simulation, the distribution is obtained by

subtracting the background distribution from the distribution of the K0
S signal region.

The background distribution is obtained by normalizing the distribution of the side

band to the number of expected background vertices in the K0
S signal region. The K0

S

track pT distribution in data and simulation are compared in Fig. 11.3. Distributions

after the weights are applied are shown in Fig. 11.4. As shown in the plots, applying

the corrections mitigates most of the inconsistency of the K0
S vertices between data

and simulation.

Figure 11.3: Comparison of K0
S vertex track pT between data and MC in 2017. The

derived correction weights are shown in the lower panel.

The transverse distance between the K0
S vertices and the beam spot distribution is

compared between data and simulation and is used to infer the track reconstruc-
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Figure 11.4: Comparisons of kinematic variables of vertices in 2017 between data
(red) and simulation (blue) after corrections are applied.
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tion efficiency difference, as shown in Fig. 11.5. The distributions are obtained by

subtracting normalized background distributions from K0
S signal region distributions.

As shown in the plots, the region of [0.2,0.4] cm is the “turn-on” region, with a low

number of vertices; the region of [0.4,1.6] cm is the plateau of the distribution, which

shows that the K0
S reconstruction efficiency is almost a constant as a function of dis-

tance in that region; the region of [1.6,2.0] cm is the “turn-off” region, the number of

vertices start to decrease because of the beam pipe exclusion.

MC distributions are normalized in the way that MC and data have the same number

of vertices in the [0.5,0.8] cm region. This region is selected to be relatively close to

the beam spot and not in the “turn-on” region to reduce the inaccuracy resulting

from large statistical uncertainty.

The data and MC behave slightly differently in the ”turn-off” region. That results

from different positions of the beam pipe center and the beam spot in data and MC.

This discrepancy is not relevant to track reconstruction efficiency but has an effect on

K0
S vertex reconstruction efficiency because of the beam pipe constraints. The effect

of this discrepancy is accounted for in the vertex reconstruction efficiency study, as

described in Sec. 11.1.2. As a result, regions that are close to the beam pipe are

excluded to mitigate the effect.

Finally, the histograms are rebinned to reduce statistical uncertainties and are shown

in Fig. 11.6. For each data-taking year, the bin that has the largest difference between

data and MC is reported in Tab. 11.2.

Since the K0
S vertices are composed of exactly two tracks, the K0

S vertex reconstruction

efficiency is proportional to the square of track reconstruction efficiency. The track

reconstruction efficiency can be inferred as the square root of the K0
S reconstruction
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Figure 11.5: Transverse distance from K0 vertices and the beam spot in data and
MC.

year data/MC
2016 preVFP 0.9746 ± 0.0268
2016 postVFP 1.0803 ± 0.0477

2017 0.9753 ± 0.0170
2018 0.9712 ± 0.0206

Table 11.2: Maximum of Data/MC ratio of K0
S vertex reconstruction efficiency.
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Figure 11.6: Transverse distance from K0 vertices and the beam spot in data and
MC.
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efficiency. The track reconstruction efficiency has an impact on signal efficiency be-

cause the number of tracks in the displaced vertices is used as one of the discriminants

to define the signal region. Specifically, the signal region requires vertices to have at

least five tracks. In cases where a vertex has exactly five tracks, failure to reconstruct

any track will cause the vertex to drop out of the signal region, and the impact of track

reconstruction on such vertices is calculated as the track reconstruction efficiency to

the power of five. On the other hand, for vertices with more than five tracks, the

failure to reconstruct any of the tracks will not necessarily cause the vertex to be

excluded from the signal region, as long as there are at least five tracks remaining, so

the impact of track reconstruction efficiency is negligible on those vertices. System-

atic uncertainty associated with the track reconstruction efficiency is assigned as the

difference between the data/MC ratio of the efficiency of reconstructing five tracks

and the unity. The systematic uncertainty for different years is reported in Tab. 11.3.

year uncertainty
2016 preVFP 0.0632 ± 0.0645
2016 postVFP 0.2130 ± 0.1339

2017 0.0606 ± 0.0409
2018 0.0705 ± 0.0493

Table 11.3: Systematic uncertainty associated with track reconstruction efficiency.

11.1.2 Vertex Reconstruction

With the track reconstruction difference between data and simulation accounted for

in Sec. 11.1.1, the vertex reconstruction is studied assuming that track reconstruction

is consistent in data and simulation. The study is performed by applying the vertex

reconstruction algorithm described in Ch. 7 on artificial “moved” vertices, which are

signal-like vertices made by artificially displacing real background tracks away from
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their original positions.

The procedure of this study is developed based on [26] and organized as follows:

events are selected to satisfy the preselection cuts outlined in Sec. 6.3 and to have

a well-measured primary vertex. Within these events, jets with pT > 20GeV and

at least three matched particle-flow candidate tracks are randomly selected to be

moved away from their original positions. In order to match the qualities of these

selected jets to those arising from the signal, which can originate from light quarks

and b quarks, the number of light jets nl and b-tagged jets nb are specified in the

jet selection based on the signal model. For the split SUSY benchmark signal model,

since the long-lived gluino decays to two light quarks and a neutralino, nl is set to be

2 and nb is set to be 0.

Next, the flight direction of the artificial signal-like vertex is determined by taking

the vector sum of the chosen jets’ momenta. However, for the split SUSY benchmark

signal model, the flight direction is supposed to be defined by the vector sum of the

chosen jets that represent the quarks and an “invisible particle” that represents the

neutralino. To account for the effect of the invisible particle, the flight direction

is smeared by 2.0 radians in θ and ϕ. The relatively large smearing is designed

to ensure that we have enough artificial “moved” vertices to mimic cases in signal

when jet momentum vector sum has large angular differences with the LLP flight

direction. The angular difference is corrected accordingly for different signal samples,

as shown in the bottom two plots in Fig. 11.11 and 11.13. The flight distance is then

generated by sampling from an exponential distribution with the cτ of 300µm and

10 mm. Events with a cτ of 300µm are rescaled to signal samples with a cτ of 100µm

and 300µm. Events with a cτ of 10 mm are rescaled to signal samples with the cτ

of {1 mm, 10 mm, 30 mm, 100 mm, 300 mm, 1000mm} individually. The rescaling is
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based on the LLP travel distance distributions. The xy-projection of flight distance

is required to be less than 2 cm, which is approximately the fiducial cut used in the

search region. The 3D displacement vector of the artificial vertex is formed by adding

the flight vector to the location of the primary vertex.

All tracks associated with the selected jets are moved by adding the displacement

vector to their impact parameters. The vertex reconstruction algorithm is applied

on moved tracks together with non-moved tracks. To be considered as successfully

reconstructed, vertices are required to have at least five tracks, pass the vertex qual-

ity cuts described in Ch. 7, and be within 200µm of the generated positions of the

artificial vertices. The requirement of the distance between reconstructed and gen-

erated vertex positions to be less than 200µm reduces the possibility of taking the

background vertices as successfully reconstructed vertices while keeping at least 95%

of vertices for signal samples with different cτ ’s and masses. Figure 11.7 shows the

3D distance between reconstructed vertices and their closest generator level LLP de-

cay positions. The vertex reconstruction efficiency is calculated as the number of

successfully reconstructed vertices divided by the total number of artificial “moved”

vertices.

To check whether the artificial “moved” vertices are similar enough to signal vertices,

background events with artificial “moved” vertices are compared with signal events, as

shown in Fig.11.8. Comparisons show that the angular distributions of moved jets and

the number of tracks in each jet are not very similar to the signal. The inconsistency

is expected given the very different topologies of generic Standard Model background

and exotic LLPs. Based on the comparisons, a set of signal-mocking selections on

the artificially moved jets are applied to mitigate the differences. It is found that

the highest pT jet in the event tends to result in p⃗miss
T that points in the opposite
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Figure 11.7: The 3D distance between reconstructed vertices with at least five tracks
and its closest LLP decay position for split SUSY signal samples with 1 mm cτ ,
2000 GeV gluino mass, and mass splitting as 100 GeV (red) and 200 GeV (blue) in
2017. The black line shows the selection at 200µm. Histograms are normalized to
unity.

direction, as the jet and p⃗miss
T recoil off of one another. As this is quite different from

the signal topology where stable neutralinos and low pT jets are the decay products

of a heavy gluino, we require that the highest pT jet not be considered as part of this

artificial displacement procedure, and only consider “moving” the other jets in the

event. Besides, it is also required that the angular distance between the two moved

jets to satisfy ∆R > 0.4, and the ∆ϕ (p⃗miss
T , moved jet) > 1.0 for each of the two

moved jets. This selection is helpful in mimicking the kinematic relations between

the two jets from LLP decays. In addition, to make the kinematic relations of the two

“moved” jets similar to the signal, we order all jets in an event by decreasing pT, and

assign to them an index representing their pT ordering. A 2D jet index distribution for

split SUSY samples with 2000 GeV gluino mass, 200 GeV mass splitting, and 10 mm

cτ is shown in Fig. 11.9. The plot shows that less than 1% of LLP decays in the

signal sample have jet indices that differ by more than five. According to the result,
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we require that the index difference between the harder artificially-moved jet and the

softer moved jet to be within five.
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Figure 11.8: Comparisons of variables between background MC and signal samples
with 200 GeV mass splitting and 10 mm cτ before the “signal-mocking cuts” are ap-
plied. Signal and background histograms are normalized to the unity.

With the selections applied, there are still some differences between the artificially

moved jets and the signal. Figure 11.10 and 11.11 show some of the differences after

the selections described above are applied in the 2017 simulation. The ∆η and ∆ϕ

between jet momentum vector sum and the chosen flight direction of “moved” vertex
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Figure 11.9: Jet index 2D distribution for signal sample with 200 GeV mass splitting
and 10 mm cτ before the “signal-mocking cuts” are applied. The histogram is nor-
malized to the unity.

distributions for background MC are relatively flat due to the large radian smearing

we set when we determine the flight direction. As a result, further corrections are

needed to mitigate the differences and reliably use this procedure to approximate the

signal vertices.

The variables that are corrected are: the number of tracks in both moved jets, η of

both moved jets, ∆η and ∆ϕ between the 4-vector momentum vector sum of both

moved jets and the chosen flight direction of artificial “moved” vertices. The jet pT

is not corrected because correcting jet pT makes the jet number of tracks not match

and vice versa.

Weights for corrections are derived from the ratio between signal MC and artificial

“moved” vertices in background MC distributions. For the number of tracks and η of

moved jets, weights are derived from the ratio of 2D histograms such as η of moved

jet 0 vs. η of moved jet 1. Doing that accounts for not only the single jet differences

but also the correlations between both moved jets. For the correction for ∆η and ∆ϕ

between the vector sum of pT of both moved jets and the artificial flight distance, 2D
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histograms are also used to account for the correlation between ∆η and ∆ϕ. Finally,

the lab-frame decay lengths are not the same as the cτ due to the different momentum

carried by LLPs. The xy-projection of flight distance is corrected. One example of the

weight we use to correct the artificial “moved” vertices is shown in Appendix D. The

corrections are applied on both artificially moved background MC and data events.

Different weights are derived for different mass splittings and cτ ’s. For split SUSY

samples with the same mass splitting and cτ , the event topology and kinematics

are found to be similar for different gluino masses. However, the signal efficiency is

still correlated with gluino masses, especially for signal samples with 100µm cτ . To

understand whether the data/MC efficiency ratio change with different gluino masses,

a check is performed to measure the data/MC vertex reconstruction efficiency ratio

for different gluino masses, namely 1400 GeV, 2000 GeV, and 2600 GeV with the mass

splitting of 100 GeV and 200 GeV. The cτ ’s considered in the check are 100µm, 10 mm,

and 1000 mm to cover a wide range of lifetimes. The data and MC used in this check

are from 2017. The results are shown in Tab. 11.4. The data/MC efficiency ratio

measured from different gluino masses with the same mass splitting and cτ does not

differ by the order of percent. The difference is covered by the systematic uncertainty

associated with the study, which is described in the last paragraph of this section. As

a result, to save time and computation resources, split SUSY samples with a gluino

mass of 2000 GeV are used to derive the weights.

The comparisons between artificially moved background MC and signal are shown in

Fig. 11.12 and 11.13 for 2017.

With all the selections and corrections in place, the vertex reconstruction efficiencies

for artificially moved background MC and data are calculated. The comparisons

of vertex reconstruction efficiency between background MC and data are shown in
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mg̃ ( GeV) ∆m ( GeV) 100µm 10 mm 1000 mm
1400 100 0.7577 ± 0.0289 0.8286 ± 0.0254 0.7346 ± 0.0977
2000 100 0.7894 ± 0.0500 0.8177 ± 0.0163 0.7935 ± 0.0265
2600 100 0.7959 ± 0.0482 0.8079 ± 0.0176 0.7853 ± 0.0241
1400 200 0.7655 ± 0.0241 0.8450 ± 0.0150 0.8174 ± 0.0192
2000 200 0.7899 ± 0.0323 0.8362 ± 0.0121 0.8249 ± 0.0155
2600 200 0.7699 ± 0.0292 0.8379 ± 0.0136 0.8132 ± 0.0156

Table 11.4: The data/MC ratio of vertex reconstruction efficiency for gluino mass of
1400 GeV, 2000 GeV, and 2600 GeV with different mass splittings and cτ ’s.
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Figure 11.10: Comparisons of jet pT between background MC and signal samples with
100 GeV mass splitting and 10 mm cτ after the “signal-mocking cuts” are applied but
before corrections are applied. Signal and background histograms are normalized to
the unity.
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Figure 11.11: Comparisons between background MC and signal samples with 100 GeV
mass splitting and 10 mm cτ after the “signal-mocking cuts” are applied but before
corrections are applied. Signal and background histograms are normalized to the
unity.
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Figure 11.12: Comparisons of jet pT between background MC and signal samples with
100 GeV mass splitting and 10 mm cτ after the “signal-mocking cuts” are applied and
after corrections are applied. Signal and background histograms are normalized to
the unity.

Fig. 11.14, 11.15, 11.16, and 11.17 for 2016 preVFP, 2016 postVFP, 2017, and 2018.

The difference in vertex reconstruction efficiency between data and MC mainly comes

from different vertex reconstruction efficiency as a function of the number of displaced

tracks selected for vertex reconstruction, which is shown in Fig. 11.18.

The vertex reconstruction efficiencies measured for data and MC show that the ratio

between data and MC does not depend on the cτ . This motivates using one universal

ratio to represent all lifetimes for a given mass splitting. As a result, for a given

year and mass splitting, a universal efficiency correction scale factor is derived using

the 10 mm sample data and MC efficiency ratio. The results for different years and

mass splittings are shown in Tab. 11.5. The scale factors are applied to the signal

event yields to reflect the expected number of signal events to be observed in the

data events. The systematic uncertainty associated with this scaling procedure is

calculated as the difference between the MC and data efficiency ratio and the unity.
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Figure 11.13: Comparisons between background MC and signal samples with 100 GeV
mass splitting and 10 mm cτ after the “signal-mocking cuts” and corrections are both
applied. Signal and background histograms are normalized to the unity.
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Figure 11.14: Vertex reconstruction efficiency for data (black) and background MC
(red) in 2016 preVFP as a function of cτ . Mass splittings of 100 GeV (left) and
200 GeV (right) are shown separately.
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Figure 11.15: Vertex reconstruction efficiency for data (black) and background MC
(red) in 2016 postVFP as a function of cτ . Mass splittings of 100 GeV (left) and
200 GeV (right) are shown separately.



123

0

0.2

0.4

0.6

0.8

1

1.2

ef
fic

ie
nc

y

210 310 410 510 610
tau[um]

0.7

0.8

0.9ra
tio

0

0.2

0.4

0.6

0.8

1

1.2

ef
fic

ie
nc

y
210 310 410 510 610

tau[um]

0.7

0.8

0.9ra
tio

Figure 11.16: Vertex reconstruction efficiency for data (black) and background MC
(red) in 2017 as a function of cτ . Mass splittings of 100 GeV (left) and 200 GeV (right)
are shown separately.
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Figure 11.17: Vertex reconstruction efficiency for data (black) and background MC
(red) in 2018 as a function of cτ . Mass splittings of 100 GeV (left) and 200 GeV (right)
are shown separately.
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Figure 11.18: Vertex reconstruction efficiency for data (black) and background MC
(red) in 2017 as a function of the number of selected displaced tracks. Corrections
for the signal sample with gluino mass of 2000 GeV, mass splitting of 200 GeV, and
cτ of 10 mm are applied to both data and background MC.

year ∆m = 100GeV ∆m = 200GeV
2016 preVFP 0.8532 ± 0.0288 0.9062 ± 0.0173
2016 postVFP 0.8042 ± 0.0309 0.8338 ± 0.0203

2017 0.8155 ± 0.0182 0.8385 ± 0.0129
2018 0.8210 ± 0.0137 0.8321 ± 0.0103

Table 11.5: Scale factor derived from ratios of vertex reconstruction efficiency between
data and MC.
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11.1.3 ML Tagging Efficiency

This section accounts for the differences between data and MC in ML tagging effi-

ciency. The artificial displaced vertex procedure described in Sec. 11.1.2 is also used

to evaluate the ML tagging efficiency. The IN is applied to background events with

artificial “moved” vertices. The resulting MLScore is checked and the ML tagging

efficiency is calculated for data and MC. Unlike what is done in the vertex recon-

struction efficiency study, which uses events with 300µm and 10 mm cτ ’s, the ML

tagging efficiency study uses only events with 10 mm cτ . Results of other lifetimes

are derived by reweighting the 10 mm events to those lifetimes.

The artificial “moved” vertices in the background events are obtained following the

same procedure, selections, and corrections described in Sec. 11.1.2. Since the IN takes

track information as input, comparisons of track variables used in the ML between

background MC events with artificial “moved” vertices and signal events, shown in

Fig. 11.19 and 11.20, are performed to ensure that the artificial “moved” vertices are

good proxies of signal vertices in the track level.

The artificial “moved” events first undergo the vertex reconstruction process and

events that have successfully reconstructed displaced vertices are passed to the IN.

After applying the IN to the artificially moved events, the MLScore distribution

comparison between artificially moved data and background MC events is shown in

Fig. 11.21. As shown in the plot, most of the artificially moved events have MLScores

around 1, which are tagged as signal events. The fact that the IN recognizes the

artificially moved events with only one displaced vertex as signal events further shows

that the IN is model-independent and robust.

The ML tagging efficiency is calculated as the ratio of the number of events with
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Figure 11.19: Comparisons for track kinematic variables used in the IN between
background MC and signal samples with 200 GeV mass splitting and 10 mm cτ after
the “signal-mocking cuts” and corrections are both applied. Signal and background
histograms are normalized to the unity.
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Figure 11.20: Comparisons for track displacement variables used in the IN between
background MC and signal samples with 200 GeV mass splitting and 10 mm cτ after
the “signal-mocking cuts” and corrections are both applied. Signal and background
histograms are normalized to the unity.
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MLScore > 2 and all events that are fed into the IN. The efficiencies are shown in

Fig. 11.22, 11.23, 11.24, and 11.25 for 2016 preVFP, 2016 postVFP, 2017, and 2018,

as a function of the cτ . The ratios of ML tagging efficiency between data and MC

does not depend on lifetimes, which implies that we can use a universal data/MC

ratio to represent all lifetimes.

The data/MC ML tagging efficiency ratios are shown in Tab. 11.6. Since the efficiency

ratios are very close to the unity, no scale factor is used for ML tagging efficiency.

Systematic uncertainty associated with the ML tagging efficiency is calculated as the

difference between the MC and data efficiency ratio and the unity.

year ∆m = 100GeV ∆m = 200GeV
2016 preVFP 1.0049 ± 0.0397 0.9943 ± 0.0224
2016 postVFP 1.0005 ± 0.0460 0.9990 ± 0.0256

2017 0.9743 ± 0.0252 0.9726 ± 0.0170
2018 0.9849 ± 0.0177 0.9838 ± 0.0138

Table 11.6: Data/MC ratios of ML tagging efficiency.

11.1.4 Fake MET Veto Efficiency

To get rid of events with fake MET, the fake MET veto, calculated as

|METPF −METCALO|/METCALO < 0.6, is applied in the event selection. The fake

MET veto results in a signal event yield loss of 5–8%. To account for the potentially

inaccurate modeling of the fake MET veto in the simulation, a systematic uncertainty

is calculated as the difference between the fake MET veto efficiency from the unity.

The values of this uncertainty are reported in Tab. 11.7.
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Figure 11.21: ML score distribution in 2017 for artificially moved data and back-
ground MC that mimics signal sample with 100 (left) and 200 (right) GeV mass
splitting and 0.1 (up) and 10 (down) mm cτ .

year ∆m = 100GeV ∆m = 200GeV
2016 preVFP 0.069 ± 0.033 0.048 ± 0.019
2016 postVFP 0.072 ± 0.033 0.052 ± 0.018

2017 0.075 ± 0.019 0.055 ± 0.011
2018 0.066 ± 0.020 0.051 ± 0.012

Table 11.7: Systematic uncertainty of the modeling of fake MET veto.
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Figure 11.22: ML tagging efficiency for data (black) and background MC (red) in
2016 preVFP as a function of cτ . Mass splittings as 100 GeV (left) and 200 GeV
(right) are shown separately.
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Figure 11.23: ML tagging efficiency for data (black) and background MC (red) in
2016 postVFP as a function of cτ . Mass splittings as 100 GeV (left) and 200 GeV
(right) are shown separately.
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Figure 11.24: ML tagging efficiency for data (black) and background MC (red) in
2017 as a function of cτ . Mass splittings as 100 GeV (left) and 200 GeV (right) are
shown separately.
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Figure 11.25: ML tagging efficiency for data (black) and background MC (red) in
2018 as a function of cτ . Mass splittings as 100 GeV (left) and 200 GeV (right) are
shown separately.
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11.1.5 Trigger Efficiency

The trigger efficiency is described in Sec. 6.2. Differences in the measured efficiency

of the trigger between data and simulation are used to scale the signal efficiency. The

relative difference of event yield in the signal region due to the statistical uncertainty

of the scale factor is used as systematic uncertainty of trigger efficiency. The value of

the uncertainty is 0.7–1.3%. In addition, given the slightly different trigger efficiency

measurements from muon-triggered and electron-triggered events, the difference be-

tween trigger efficiencies measured from muon-triggered and electron-triggered events

is also taken as the systematic uncertainty. The value of this uncertainty is 1.0–2.1%.

11.1.6 Pileup

To study the influence of the pileup distribution on this search, different event weights

derived from varied cross section of proton-proton collision are applied to the simu-

lated events. The difference between signal yield before and after shifting the pileup

weight is taken as the systematic uncertainty associated with pileup. The value of

the systematic uncertainty associated with pileup is 3.2–5.5%.

11.1.7 Integrated luminosity

The uncertainty in the integrated luminosity is 1.2% in 2016 preVFP, 1.2% in 2016

postVFP, 2.3% in 2017, and 2.5% in 2018.
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11.1.8 Issues in Run 2 data

During the data-taking period from 2016 to 2018, there were some issues with the

operation of the CMS detector, which had effects on the data. Some of those issues

are not simulated in the simulation, which introduces additional differences between

data and simulation, thus becoming additional sources of systematic uncertainty in

this search. Special treatments are applied to mitigate those effects, as described

below.

EE L1 prefiring (2016 + 2017) During the data-taking in 2016 and 2017, the

ECAL experienced a gradual timing shift, which made the L1T EE trigger rate af-

fected in the high η range. A check is performed by rerunning the search on 2016

and 2017 signal MC by removing events with jets with pT > 100 GeV and 2.25 < |η|

< 3.0. The signal MC used is split SUSY samples with cτ of 10 mm, gluino mass of

2000 GeV, and mass splittings of 100 and 200 GeV. The number of expected events in

the signal region change in the range of 1.69–3.63%. To mitigate the effect, correction

weights provided centrally by the CMS experiment are applied in the MC. Weights

are shifted up and down to determine the uncertainty, which is 0.5–1.0%.

HEM 15/16 failure (2018) Following the power interruptions generated by false

fire alarms on Saturday, June 30th, negative endcap HCAL sectors HEM15 and

HEM16 could no longer be operated until the end of the 2018 run. The first reg-

ular physics run affected is 319077 and a 40-degree section (η from -3.0 to -1.3 and ϕ

from -1.57 to -0.87) in HCAL is effectively off. We tried mitigating the effect by veto-

ing events that have jets in the problematic region after the first affected run in 2018.

The ϕ distribution of p⃗miss
T before and after the mitigation is shown in Fig. 11.26. It
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shows that the mitigation removed the excess of events in the problematic region.

Figure 11.26: Comparison of p⃗miss
T ϕ before and after the HEM issue mitigation. The

problematic region is labeled between the two black solid lines.

A summary of systematic uncertainties on signal efficiency is shown in Tab. 11.8.

Table 11.8: Summary for systematic uncertainties that can affect the signal yield.

Systematic uncertainty (%) 2016 preVFP 2016 postVFP 2017 2018
Track reconstruction 6.32 21.30 6.06 7.05
Vertex reconstruction 9.38-14.68 16.62-19.58 16.15-18.45 16.79-17.90

ML tagging 0.49-0.57 0.05-0.10 2.74-2.57 1.51-1.62
fake MET veto efficiency 4.8-6.9 5.2-7.2 5.5-7.5 5.1-6.6

Trigger efficiency (scale factor) 1.30 1.30 0.74 0.66
Trigger efficiency (electron&muon) 2.10 1.72 1.00 1.25

Pileup 5.5 5.0 3.5 3.2
Integrated luminosity 1.2 1.2 2.3 2.5

L1 EE prefiring 0.50 0.10 0.82 0
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11.2 Systematic Uncertainties Related to Background

Estimation

11.2.1 ABCD Method

The background estimation method, as described in Sec. 10, uses 3-track control

regions to predict the number of background events in the signal region. Besides

that, 4-track control regions can also be used to predict the number of background

events in the signal region. Ideally, if the two variables that define the search regions,

namely nTracks/SV and MLScore, are totally decorrelated, the prediction using 3-

track and 4-track control regions are supposed to be exactly the same.

The number of predicted background events in the signal region using 3-track and 4-

track control regions are reported in Tab. 11.9. The results show that the 3-track and

4-track-based predictions are consistent with statistical uncertainty. So systematic

uncertainty associated with the background estimation method is not assigned.

Table 11.9: Number of the predicted number of background events in the signal region
using 3-track and 4-track based control regions.

2016 preVFP 2016 postVFP 2017 2018
3-track based 0.90 ± 0.28 0.26 ± 0.12 1.82 ± 0.32 2.00 ± 0.32
4-track based 0.87 ± 0.45 0.42 ± 0.25 1.47 ± 0.47 1.78 ± 0.50
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Chapter 12

Statistical Interpretation and

Results

12.1 Observed Events in the Signal Region

With the signal region unblinded, the observed events compared with the prediction

in the search regions are shown in Tab. 12.1, 12.2, 12.3, and 12.4. The predicted and

observed numbers of events in total are reported in Tab. 12.5. The uncertainty in the

prediction only represents the uncertainty resulting from the statistical uncertainty of

the observed number of events used in the background estimation. In total, 9 events

are observed in the signal region while the prediction of background estimation is

4.98± 0.55 events.

Table 12.1: Event yield for data in 2016 preVFP.

5-track 4-track 3-track
Predicted high ML events 0.90 ± 0.28 5.16 ± 1.17 N/A
Observed high ML events 2.00 5.00 25.00
Observed low ML events 19.00 109.00 528.00

Distributions of data events in the signal region are shown in Fig. 12.1. The distribu-

tions show that all of the events have only one displaced vertex and each vertex has

five tracks, with relatively low dBV .
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Table 12.2: Event yield for data in 2016 postVFP.

5-track 4-track 3-track
Predicted high ML events 0.26 ± 0.12 3.12 ± 0.91 N/A
Observed high ML events 0.00 5.00 14.00
Observed low ML events 7.00 83.00 373.00

Table 12.3: Event yield for data in 2017.

5-track 4-track 3-track
Predicted high ML events 1.82 ± 0.32 14.80 ± 1.87 N/A
Observed high ML events 3.00 12.00 75.00
Observed low ML events 56.00 456.00 2311.00

Table 12.4: Event yield for data in 2018.

5-track 4-track 3-track
Predicted high ML events 2.00 ± 0.32 17.94 ± 2.06 N/A
Observed high ML events 4.00 16.00 89.00
Observed low ML events 70.00 628.00 3115.00

Table 12.5: Event yield for data in Run 2. The predicted numbers of events are
calculated as the sum of the predictions from all individual data-taking years.

5-track 4-track 3-track
Predicted high ML events 4.98 ± 0.55 41.02 ± 3.15 N/A
Observed high ML events 9.00 38.00 203.00
Observed low ML events 152.00 1276.00 6327.00
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Figure 12.1: Distributions of data events in the signal region with 2016 preVFP, 2016
postVFP, 2017, and 2018 summed together.
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12.2 Upper Limits on Signal Cross Section

Since no significant excess is observed in this search, the 95% confidence level (CL)

upper limit on the product of production cross section and branching ratio of the given

decay for signal samples considered in this search is estimated1. The estimation is

performed simultaneously in all search regions, including the signal region, validation

region, and control regions described in Ch.9.

The resulting upper limits are then compared with the theoretical prediction of the

production cross section to exclude points of the parameter space of signal models in

this search.

The upper limits of long-lived gluino as a function of gluino mass for different cτ

values are shown in Fig. 12.2, 12.3, and 12.4. The upper limits as a function of cτ is

shown in Fig. 12.5.

A comparison of the observed upper limits of this search with the ATLAS 2016

results [24] and the CMS 2016 results [54] for split SUSY samples with gluino mass of

1400 GeV and neutralino mass of 1300 GeV is shown in Fig. 12.6. This search covers

low cτ such as 100 and 300µm, which is not included in the ATLAS results. Also,

this search achieves better sensitivity for cτ in the range from 1 mm to 100 mm.

In conclusion, considering the split SUSY benchmark signal, for 100 GeV mass split-

ting, the search excludes gluinos with masses below 1800 GeV within the cτ range of

1–100 mm; for 200 GeV mass splitting, the search excludes gluinos with masses below

2000 GeV within the cτ range of 1–100 mm.

1The estimation is performed using the HybridNew statistical method in the “Combine” package
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Figure 12.2: The 95% CL upper limits on cross section times branching fraction
squared in Run 2 for split SUSY long-lived gluinos, as a function of gluino mass.
Different cτ values of 0.1 mm (top), 0.3 mm (middle), and 1 mm (bottom) and mass
splittings of 100 GeV (left), 200 GeV (right) are shown.
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Figure 12.3: The 95% CL upper limits on cross section times branching fraction
squared in Run 2 for split SUSY long-lived gluinos, as a function of gluino mass.
Different cτ values of 0.1 mm (top), 0.3 mm (middle), and 1 mm (bottom) and mass
splittings of 100 GeV (left), 200 GeV (right) are shown.
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Figure 12.4: The 95% CL upper limits on cross section times branching fraction
squared in Run 2 for split SUSY long-lived gluinos, as a function of gluino mass.
Different cτ values of 0.1 mm (top), 0.3 mm (middle), and 1 mm (bottom) and mass
splittings of 100 GeV (left), 200 GeV (right) are shown.
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Figure 12.5: The 95% CL upper limits on cross section times branching fraction
squared in Run 2 for split SUSY long-lived gluinos, as a function of gluino cτ . Dif-
ferent gluino masses of 1400 GeV (top) and 2000 GeV (bottom) and mass splittings
of 100 GeV (left), 200 GeV (right) are shown.
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Chapter 13

Conclusion

A search for long-lived particles (LLPs) that result in at least one displaced vertex

and missing transverse momentum is presented in this thesis. The search utilizes

proton-proton collision data with a center-of-mass energy of 13 TeV taken in the

CMS experiment at the LHC during Run 2 (from 2016 to 2018), which corresponds

to an integrated luminosity of 137 fb−1. This search explores a new final state, which

consists of at least one displaced vertex inside the beam pipe of the CMS detector

and missing transverse momentum. Only requiring one displaced vertex makes the

search sensitive to LLPs with a wider cτ range. However, this makes it harder to

discriminate signal events from background events. To increase the search sensitivity,

customized vertex reconstruction and advanced machine learning algorithms based

on the Graph Neural Network are applied. A data-driven background estimation

method is developed with vertex reconstruction and ML algorithms. This search

achieves a world-leading sensitivity. The 95% confidence level upper limits are set

for the split SUSY benchmark signal model. In the cτ range of 1-100 mm, gluinos

with masses below 1800 GeV are excluded for 100 GeV mass splitting, and gluinos

with masses below 2000 GeV are excluded for 200 GeV mass splitting. The search

results will become public soon, once the review process within the CMS experiment

is finished.

With the model-independent design of this search, it is not only able to provide clues
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to the benchmark split SUSY model, but also able to help reveal any other BSM

model that could produce the targeted final state containing the displaced vertex

and missing transverse momentum. Given the unclear direction of new physics, the

capability of detecting a wide range of potential signal models provided by this search

is an attractive feature of the approach.

Although this search brings new sensitivity, there are still some limitations. The

exclusion of vertices beyond the beam pipe makes the search sensitivity decrease in

the large cτ region. The decorrelation between the machine learning and the vertex

reconstruction makes the machine learning tagging efficiency slightly worse for signal

events with more tracks.

To further improve the search in the future, the beam pipe constraint on displaced ver-

tices can be removed and a material map veto can be applied to get rid of background

vertices from material interactions. Also, the machine learning can be modified to

recognize tracks that are likely to result from LLP decays and the selected tracks

can be further used to reconstruct displaced vertices. This procedure is expected to

identify more tracks from LLP decays, and thus improve the vertex reconstruction

efficiency. What’s more, the high-luminosity LHC, which will result in much more

data and bring the addition of a dedicated timing detector, will increase the search

sensitivity even more. Specifically, with the help of the timing detector, the tim-

ing information will be available for tracks, which can be helpful in removing pileup

tracks. The timing information of tracks can also be propagated to displaced vertices

and the velocity of the LLPs can be estimated with the timing information and the

distance from the proton-proton interaction point to the displaced vertices.
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Appendix A

Background Estimation Closure

Test on Simulation

The closure test in MC is done using slightly different events selection. The only

difference is the fake MET veto. In the nominal analysis, we require |METPF −

METCALO|/METCALO < 0.6, while for this test, we required |METPF−METCALO|/METCALO <

0.5 because the selection was not fully determined when the check is performed.

The closure test results are shown in Table A.1, A.2, A.3, A.4, and A.5 for 2016

preVFP, 2016 postVFP, 2017, 2018, and all Run 2 added together.

However, given the low number of events, it is hard to draw conclusion about the

closure. Given the large uncertainties we observed in MC and the fact that the

ABCD method is purely data-driven, the differences observed in simulation is not a

concern.

Table A.1: Closure test results for background MC in 2016 preVFP.

5-track 4-track 3-track
Predicted high ML events 1.08 ± 0.42 10.14 ± 3.25 N/A
Measured high ML events 0.73 ± 0.31 3.09 ± 1.08 45.64 ± 13.74
Measured low ML events 12.14 ± 2.94 114.46 ± 10.70 515.40 ± 29.55
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Table A.2: Closure test results for background MC in 2016 postVFP.

5-track 4-track 3-track
Predicted high ML events 0.59 ± 0.27 4.40 ± 1.11 N/A
Measured high ML events 1.13 ± 0.54 2.52 ± 0.84 20.75 ± 4.01
Measured low ML events 8.74 ± 3.49 64.90 ± 9.55 306.13 ± 21.52

Table A.3: Closure test results for background MC in 2017.

5-track 4-track 3-track
Predicted high ML events 0.91 ± 0.40 6.77 ± 1.08 N/A
Measured high ML events 0.24 ± 0.48 18.57 ± 8.96 38.62 ± 3.45
Measured low ML events 20.68 ± 8.76 154.71 ± 18.18 882.01 ± 53.10

Table A.4: Closure test results for background MC in 2018.

5-track 4-track 3-track
Predicted high ML events 0.98 ± 0.39 9.11 ± 2.18 N/A
Measured high ML events -0.07 ± 0.32 13.91 ± 7.69 59.45 ± 12.91
Measured low ML events 23.19 ± 7.71 215.95 ± 19.22 1409.62 ± 65.78

Table A.5: Closure test results for background MC in Run 2.

5-track 4-track 3-track
Predicted high ML events 3.42 ± 0.78 29.06 ± 3.90 N/A
Measured high ML events 2.03 ± 0.85 38.09 ± 11.89 164.45 ± 19.58
Measured low ML events 64.76 ± 12.53 550.02 ± 30.09 3113.16 ± 92.11



158

Appendix B

Data/Simulation Comparison

With the search strategy defined, data and simulated events are compared to under-

stand the potential differences between data and simulation. Also, since the search

strategy is largely dependent on the simulation, comparing data with simulation en-

sures that the search strategy works in data.

B.1 Track Variables

It is noticed that track uncertainty distributions between data and simulation are

different. This section compares the differences and describes a method to correct the

differences. All the variables and uncertainties relevant to the displacement studied

in this section are calculated with respect to the beam spot. Most of the plots in

this section use 2017 data and MC as examples. All events studied in this section

are required to pass the event preselection defined in Sec. 6.31 and the events do

not necessarily have a reconstructed secondary vertex. All the tracks are required

to satisfy the track quality selection defined in Sec. 7.1. Track displacement, namely

|dxy|/σdxy , is not required for this study. The detailed plots for 2016, 2017, and 2018

are shown in Appendix C.

Comparisons are made between 10% of data and a subset of background simulation
1The fake MET veto threshold is 0.5 instead of 0.6 in this study
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samples:

• tt̄

• QCD, 500 < HT < 700GeV

• QCD, 700 < HT < 1000GeV

• QCD, 1000 < HT < 1500GeV

• QCD, 1500 < HT < 2000GeV

• QCD, HT > 2000GeV

Figure B.1, B.2, and B.3 show the comparison of track pT, absolute impact param-

eter |dxy|, and impact parameter uncertainty σdxy distributions between data and

simulation for tracks with |η| < 1.5. The track pT and absolute impact parameter

distributions show that tracks in data are generally softer and more displaced. The

impact parameter uncertainty plots show that the simulation tends to overestimate

the track impact parameter uncertainty for 2016 but underestimate that for 2017 and

2018. Track impact parameter uncertainty σdxy is used during vertex reconstruction

to decide whether to assign tracks to vertices. Because of that, different distributions

of σdxy can make vertices reconstructed from different sets of tracks and have different

vertex uncertainties. As a result, rescaling track σdxy to make the distribution similar

in data and simulation can be helpful to make reconstructed vertices behave in a

consistent way in data and simulation. The rescaling process is developed based on

the procedure in [26].

The idea of rescaling σdxy is applying scale factors to σdxy for simulated samples so

data and simulation have similar values. Since the tracks reconstructed in the barrel



160

Figure B.1: Comparisons of track pT for tracks with |η| < 1.5 between data and
simulation.
(Top left) Tracks in 2016 preVFP.
(Top right) Tracks in 2016 postVFP.
(Bottom left) Tracks in 2017.
(Bottom right) Tracks in 2018.
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Figure B.2: Comparisons of track absolute impact parameter for tracks with |η| < 1.5
between data and simulation.
(Top left) Tracks in 2016 preVFP.
(Top right) Tracks in 2016 postVFP.
(Bottom left) Tracks in 2017.
(Bottom right) Tracks in 2018.
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Figure B.3: Comparisons of track impact parameter uncertainties for tracks with
|η| < 1.5 between data and simulation. Units are cm.
(Top left) Tracks in 2016 preVFP.
(Top right) Tracks in 2016 postVFP.
(Bottom left) Tracks in 2017.
(Bottom right) Tracks in 2018.
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can be different compared with tracks reconstructed in the endcap, tracks are treated

individually in two |η| bins divided at 1.5. The track measurement in CMS depends

on pT of tracks. Normally tracks with higher pT have smaller uncertainties. Based

on that, for each η range, the rescaling is made as a function of track pT. Profiling

is used to study the relationship between σdxy and pT, and the data/simulation ratio

of the profiles is used to derive the scale factors for tracks. Different eras during the

same year can be different so the comparison between data and simulation is done

separately for every single data-taking era. The profile and data/simulation ratio

that shows the track mean impact parameter as a function of pT is shown in Fig. B.4

for 2017.

With the data/simulation ratio plot, scale factors can be derived by fitting functions

to the ratio plot. Figure B.5 shows an example of the fit for 2017B data. When

corrections are applied on a given simulated track for a specific data-taking era, the

original track σdxy is scaled by the scale factors that are calculated using the fitted

function.

Figure B.6 shows the σdxy for tracks in 2017B after the simulation is corrected. The

mean σdxy profile shows that the relationship between σdxy and pT is consistent be-

tween data and simulation. The remaining difference between the σdxy distribution

results from the difference between track pT distribution, as shown in Fig. B.1. Fig-

ure B.7 shows the data/MC ratio of mean σdxy as a function of track pT after the

corrections are applied. The ratios are close to 1, which proves that the correction

works as expected.

Besides σdxy , there are other track covariance matrix elements that behave differently

between data and simulation. Although other covariance matrix elements do not

directly participate in vertex variable calculations, they can make the calculation of
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Figure B.4: Mean σdxy profiles (top) and mean σdxy data / MC ratios (bottom) for
η < 1.5 (left) and η > 1.5 (right) in 2017.
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Figure B.5: Fit applied to the 2017B era data/simulation σdxy ratio vs. pT curve for
|η| < 1.5 (left) and |η| > 1.5 (right). The graphs below the fits show the residuals of
the actual values to the fitted curve, i.e. their difference divided by the uncertainty.

Figure B.6: Distribution of σdxy (left) and mean σdxy profile after the scaling applied
on tracks for 2017B. Units are cm.
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Figure B.7: Mean σdxy data / MC ratios for |η| < 1.5 in 2016 preVFP (top left), 2016
postVFP (top right), 2017 (bottom left), and 2018 (bottom right).
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vertex position uncertainties or different sets of tracks assigned to the vertex different,

which will make the vertex variables different in the end. As a result, corrections on

other track covariance matrix elements, namely σdsz and the cross-term σdxy−σdsz , are

worth considering. Figure B.8 shows the difference of σdsz and σdxy −σdsz distribution

between simulation and data.

Figure B.8: Comparison of σdsz (top) and σdxy − σdsz (bottom) for η < 1.5 (left) and
η > 1.5 (right) between simulation and 2017 data. Units are cm.

To rescale for track covariance matrix elements, the same procedure can be used.

The mean profile of σdsz is compared between data and MC, as shown in Fig. B.9.
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Correctional fit functions will be derived from the data/simulation ratio plot for each

data-taking era as shown in Figure B.10.

Figure B.9: Mean σdxy profiles (top) and mean σdsz data / MC ratios (bottom) for
η < 1.5 (left) and η > 1.5 (right) in 2017.

The σdxy − σdsz , as the last correction we are going to make on the track impact

parameter uncertainty, has been already rescaled when σdxy and σdsz are rescaled

because they are correlated. The σdxy−σdsz is further rescaled after applying rescaling

on σdxy and σdsz to make the final rescaled σdxy − σdsz similar in data and simulation.

The same procedure is applied, Fig. B.11 shows the mean profile of σdxy − σdsz and



169

Figure B.10: Fit applied to the 2017B era data/simulation σdsz ratio vs. pT curve for
|η| < 1.5 (left) and |η| > 1.5 (right). The x-axis shows track pT in GeV.

the data/simulation ratio plot. Figure B.12 shows the correctional fit function for

2017B data.

In conclusion, the track covariance matrix elements, especially σdxy , σdsz , and σdxy −

σdsz distributions are different between data and simulation. To correct for this, the

mean profile of those elements as a function of pT is made and a function is fitted

on the data/simulation ratio plot of the profile plots. With the fitted functions, the

matrix elements can be rescaled to make the simulation describe data better.

The track rescaling is applied to both signal and background simulation. Tracks are

rescaled before they are used in this search so tracks used in track selection, vertex

reconstruction, and ML are all rescaled.
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Figure B.11: Mean σdxy profiles (top) and mean σdxy−σdsz data / MC ratios (bottom)
for η < 1.5 (left) and η > 1.5 (right) in 2017B.
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Figure B.12: Fit applied to the 2017B era data/simulation σdxy − σdsz ratio vs. pT
curve for |η| < 1.5 (left) and |η| > 1.5 (right).

B.2 Vertex Variables

We compared data and MC in control regions of data taken in 2016, 2017, and 2018.

The number of events with 3-track vertices that satisfy vertex selection described

in Ch. 7 predicted by simulation and observed in data is compared as summarized

in Tab. B.1. To quantify the agreement of event yield in simulation and data, the

ratio of the prediction in MC and observation in data is calculated. We expect

the simulation/data ratio to be 1 when the simulation matches the data perfectly.

According to the table, the number of events in simulation and data matches in 2016

while do not match in 2017 and 2018.

Table B.1: Number of events in 3-track CR. 100% data is reported in the table.

year Prediction by
simulation

Observation in
data

Simulation /
Data

2016 preVFP 565.773 ± 32.68 484.00 ± 22.00 1.17 ± 0.09
2016 postVFP 330.21 ± 21.95 344.00 ± 18.57 0.96 ± 0.08
2017 929.36 ± 53.36 2162.00 ± 46.50 0.43 ± 0.03
2018 1494.51 ± 68.04 3178.00 ± 56.37 0.47 ± 0.02
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We used 10% of data evenly spread among the data-taking eras in 2016, 2017, and

2018 to study the data and MC differences. To understand the difference described

above, different distributions are compared between data and simulation; comparisons

reveal that the difference mainly comes from the different distribution of vertex σdBV
,

as shown in Fig. B.13. The comparison shows that data has much more vertices with

σdBV
< 0.005 cm compared with simulation. The reasons for the discrepancy might

come from 2 possible sources. First, data has more low-pT tracks compared with the

simulation, as shown in Fig. B.14. Second, the number of tracks from tight b-jets in

vertices Nbtracks, calculated by looping over all tracks in a given secondary vertex and

counting the number of tracks that are included in a tight b-jet, differ in simulation

and data, as shown in Figure B.15. The two factors The impacts of those factors on

vertices are discussed below.

Figure B.13: Distribution of σdBV
, the red histogram corresponds to simulation and

the blue histogram corresponds to data.
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Figure B.14: Distribution of vertex seed track pT, the red histogram corresponds to
simulation and the blue histogram corresponds to data.

Figure B.15: Distribution of Nbtracks, the red histogram corresponds to simulation
and the blue histogram corresponds to data.
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B.2.1 Impact of Low-pT Tracks

The first factor is that data has more low-pT tracks. To understand whether low-

pT tracks make vertex σdBV
distribution in data and simulation different, we tried

removing low-pT tracks in vertex reconstruction and comparing data and simulation

after the reconstruction. As discussed in Ch. 7, the vertex reconstruction is performed

using seed tracks with pT > 1GeV. According to the vertex seed track pT distribution

in Fig. B.14, data and simulation are similar when tracks have pT > 5GeV. As a

result, tracks with pT < 5GeV are temporarily removed in vertex reconstruction to

study the effect of low-pT tracks. Figure B.16 compares the σdBV
distribution after

the vertex seed track pT selection is tightened in vertex reconstruction. As shown

in the plot, the difference between data and simulation at σdBV
< 0.005 cm is still

obvious. Also, the number of events in the simulation/data ratio is 0.43, which is

still far from the unity. These comparisons show that tightening the seed track pT

selection does not mitigate the difference observed between data and simulation.

In the meanwhile, comparing the σdBV
distribution before and after tightening the

seed track selection, as shown in Fig. B.17, shows that the shape of σdBV
changes in

the way that the first peak shifts to the left and the second peak shift to the right

after the seed track selection is tightened. As discussed in Sec. 10.1, the two peaks in

σdBV
distribution correspond to two different types of background vertices: the peak

at smaller σdBV
is dominated by vertices from track random crossing while the peak at

larger σdBV
is dominated by vertices from B meson decays. The shift of peaks can then

be interpreted as that after the seed track pT criteria is tightened, the σdBV
of track

random crossing vertices become smaller while that of vertices from B meson decays

become larger. To understand this effect, we study the relation between low-pT track

and different types of vertices one by one. We define vertices with σdBV
< 25µm as
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track random crossing vertices and vertices with σdBV
> 25µm as B decay vertices.

The study is done using the original reconstructed vertices with seed track pT > 1GeV

selection. To quantify the relation of vertex track pT and σdBV
, profiles are made to

show how σdBV
changes as a function of minimum track pT in the vertex (min(ptrackT ))

for track random crossing vertices and B meson decay vertices in Fig. B.18. The left

plot corresponds to track random crossing vertices and it shows that as the track

pT in the vertex gets larger, the σdBV
gets smaller. The right plot corresponds to B

decay vertices and it shows that as the track pT in the vertex gets larger, the σdBV
gets

larger. The profile plots are consistent with what the observation described above.

To investigate the reason for such behaviors, vertices are divided into two categories:

• Soft vertices: vertices with min(ptrackT ) < 5GeV

• Hard vertices: vertices with min(ptrackT ) ≥ 5GeV

For track random crossing vertices, since softer tracks usually have larger uncertainties

and tracks are assigned to vertices by the significance of the transverse distance

between vertex and tracks, larger track uncertainty makes a track be assigned to a

vertex that has a relatively large transverse distance to the track. That will make

the uncertainty of the vertex larger. This can be proved by performing an “n-1” refit

to vertices and checking how the transverse position of those vertices changes. The

“n-1” refit is done by iterating over each track in the vertex and refitting the vertex

with the given track removed. If the explanation is true, soft vertices should shift

more than hard vertices after the “n-1” refit. Figure B.19 shows the maximum shift

of transverse position during the “n-1” refit for vertices. In the plot, the soft vertices

shift more than the hard vertices, which proves the correctness of the hypothesis.
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For B decay vertices, soft vertices have lower pT and thus are generally less boosted.

That makes tracks from soft B decay have larger open angles, resulting in smaller

σdBV
. This can be proved by examining generator level b quark pT and the ∆ϕ

between track in B decay vertices. If the hypothesis is true, the generator level b

quark pT should be smaller for soft vertices and ∆ϕ between pairs of tracks should

be larger for soft vertices. Figure B.20 shows that the generator level b quark pT for

soft vertices are smaller than hard vertices and Fig. B.21 shows that tracks from soft

vertices have larger open angles than hard vertices, which proves the correctness of

the hypothesis.

In conclusion, removing low-pT tracks in the vertex reconstruction does not solve the

discrepancy, so this study does not lead to any correction in this search.

Figure B.16: Distribution of σdBV
after applying seed track pT > 5GeV selection in

2017.
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Seed track pT>5GeV

Seed track pT>1GeV

σdBV(cm)

σdBV(cm)

Figure B.17: Distribution of σdBV
before and after applying seed track pT > 5GeV

selection in 2017.
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Figure B.18: Profile of σdBV
vs. min(ptrackT ). The plot on the left is made with track

random crossing vertices while the plot on the right is made with B decay vertices.

Figure B.19: Maximum of the transverse distance between “n-1” refitted vertices and
the original vertex for track random crossing vertices. Soft vertices shift more than
hard vertices after the “n-1” refit.
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Figure B.20: Generator level b quark pT for B decay vertices. Soft vertices correspond
to softer b quarks, and thus are less boosted than hard vertices.

Figure B.21: Minimum (left) and maximum (right) track ∆ϕ between pairs of tracks
in B decay vertices. Soft vertices have larger ∆ϕ between pairs of tracks, which shows
that soft vertices tracks have larger opening angles than hard vertices.
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B.2.2 Number of Tracks from Tight B-jets in Vertices

The second possible reason for the data vs. MC control region yield differences is that

data and simulation have differentNbtracks distribution, as shown in Fig. B.22, B.23, B.24,

B.25 for 2016 preVFP, 2016 postVFP, 2017, and 2018.

The plots show that data and simulation have different distributions but the σdBV

selection efficiency as a function of Nbtracks are similar for data and simulation. That

means the σdBV
distribution can be similar for data and simulation for vertices with

a given Nbtracks. This motivates applying a correction on Nbtracks to make the distri-

bution in data and simulation the same. Correcting for Nbtracks is helpful in checking

whether the different number of events between data and simulation results from the

different distribution of Nbtracks.

Weights are derived from the data/simulation ratio plot of Nbtracks distribution and

each vertex has a weight value. Since the correction is used to correct for the number

of events, the correction needs to be at the event-level instead of the vertex-level.

Since most events in this search have only one vertex, the vertex-level weights can

be directly used as event-level weights. For events with more than one vertices, the

vertex with the most number of tracks in the event is used to derive the weight.

After the correction is applied, the Nbtracks and σdBV
distributions are compared be-

tween data and simulation, as shown in Fig. B.26. The plots show that the correction

made Nbtracks distributions the same for data and simulation successfully, and the

σdBV
distributions in data and simulation look much closer after the correction is

applied. The number of events predicted by the simulation after Nbtracks correction

applied is compared with the number of events observed in data, as shown in Tab. B.2.

Comparison of the simulation/data ratios between Tab. B.1 and Tab. B.2 show that
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the number of events predicted by simulation are much closer to data after the Nbtracks

correction.

Table B.2: Number of events in 3-track CR after Nbtracks correction. 100% data is
reported in the table.

year Prediction by
simulation

Observation in
data

Simulation /
Data

2016 preVFP 672.43 ± 39.04 484.00 ± 22.00 1.39 ± 0.10
2016 postVFP 383.73 ± 21.95 344.00 ± 18.57 1.12 ± 0.09
2017 1742.85 ± 104.22 2162.00 ± 46.50 0.81 ± 0.05
2018 2909.57 ± 131.43 3178.00 ± 56.37 0.92 ± 0.04

This concludes that the different σdBV
distribution between data and simulation

mainly comes from the different Nbtracks distribution. Correcting for Nbtracks distribu-

tion in simulation solves the vast majority of the difference. However, the reason for

different Nbtracks distributions between data and simulation is not fully understood

and the efficiency difference is still present when there are zero tracks from tight B

jets in Fig. B.22, B.23, B.24, B.25. A potential reason is the low number of events

in some of our background MC samples (such as QCD with HT below 500GeV) or

some modeling differences (e.g. b quark fragmentation). Also, the fact that differ-

ent numbers of events are observed in 2017 and 2018 but not in 2016 implies that

the difference could be caused by the different tracking detectors used in 2016 and

2017/2018. In the simulation, we tend to overestimate track dxy uncertainties in

2016 and underestimate that in 2017 and 2018, as shown in Fig. C.1 - Fig. C.4 in

the thesis, which show the dxy uncertainty data/MC ratio is below 1 for 2016 and

above 1 for 2017 and 2018. That difference might make the track selection and vertex

reconstruction different.

In conclusion, it is found that correcting for Nbtracks could solve part of the discrep-

ancy of the number of events between data and background MC in 2017 and 2018.
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However, the discrepancy corresponds to the reconstruction of background vertices,

which is mainly composed of random track crossings or tracks crossing b-jets. These

background vertices are very different from the signal vertices. So the discrepancy

in background vertices is not able to represent the modeling of reconstructing signal

vertices. The modeling and efficiency of reconstructing signal vertices are studied by

the artificial displaced vertex study, as described in Sec. 11.1.2. Besides the fact that

the discrepancy is not relevant to the signal efficiency of this search, the background

estimation is also not affected because the background estimation method is purely

data-driven. As a result, this study does not lead to any correction.
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Figure B.22: Plot on the left is Nbtracks distribution and plot on the right is the σdBV

selection efficiency as a function of Nbtracks for 2016 preVFP.

B.3 Machine Learning

The MLScore distribution is compared between all data and background in 2016

preVFP, 2016 postVFP, 2017, and 2018 in 3-track vertex control regions and 4-track

validation region, as shown in Fig. B.27 and B.28. The comparisons show consistent
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Figure B.23: Plot on the left is Nbtracks distribution and plot on the right is the σdBV

selection efficiency as a function of Nbtracks for 2016 postVFP.
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Figure B.24: Plot on the left is Nbtracks distribution and plot on the right is the σdBV

selection efficiency as a function of Nbtracks for 2017.
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Figure B.25: Plot on the left is Nbtracks distribution and plot on the right is the σdBV

selection efficiency as a function of Nbtracks for 2018.

Figure B.26: Plot on the left is Nbtracks distribution after the correction is applied
and plot on the right is the σdBV

distribution after the correction applied.
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behavior between background simulation and data.

Figure B.27: MLScore distribution comparison between background simulation and
data in 3-track control regions. Histograms are all normalized to 1.
(Top left) 2016 preVFP.
(Top right) 2016 postVFP.
(Bottom left) 2017.
(Bottom right) 2018.
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Figure B.28: MLScore distribution comparison between background simulation and
data in 4-track validation regions. Histograms are all normalized to 1. (Top left)
2016 preVFP; (Top right) 2016 postVFP; (Bottom left) 2017; (Bottom right) 2018.



187

Appendix C

Track Rescaling

The detailed plots are documented here. Figure C.1, C.2, C.3, C.4 shows the profile

of mean σdxy as a function of track pT in 2016 preVFP, 2016 postVFP, 2017 and 2018.

Figure C.1, C.2, C.3, C.4 shows the profile of mean σdsz as a function of track pT in

2016 preVFP, 2016 postVFP, 2017 and 2018.
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Figure C.1: Mean σdxy profiles (top) and mean σdxy data / MC ratios (bottom) for
η < 1.5 (left) and η > 1.5 (right) in 2016 preVFP.



189

Figure C.2: Mean σdxy profiles (top) and mean σdxy data / MC ratios (bottom) for
η < 1.5 (left) and η > 1.5 (right) in 2016 postVFP.
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Figure C.3: Mean σdxy profiles (top) and mean σdxy data / MC ratios (bottom) for
η < 1.5 (left) and η > 1.5 (right) in 2017.
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Figure C.4: Mean σdxy profiles (top) and mean σdxy data / MC ratios (bottom) for
η < 1.5 (left) and η > 1.5 (right) in 2018.
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Figure C.5: Mean σdxy profiles (top) and mean σdsz data / MC ratios (bottom) for
η < 1.5 (left) and η > 1.5 (right) in 2016 preVFP.
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Figure C.6: Mean σdxy profiles (top) and mean σdsz data / MC ratios (bottom) for
η < 1.5 (left) and η > 1.5 (right) in 2016 postVFP.
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Figure C.7: Mean σdxy profiles (top) and mean σdsz data / MC ratios (bottom) for
η < 1.5 (left) and η > 1.5 (right) in 2017.
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Figure C.8: Mean σdxy profiles (top) and mean σdsz data / MC ratios (bottom) for
η < 1.5 (left) and η > 1.5 (right) in 2018.
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Appendix D

Weights Applied on Artificial

Displaced Vertices

The weights used for correcting artificial “moved” vertices to make them similar

with signal samples with 10 mm cτ as 100 GeV mass splitting in 2017 are shown in

Figure D.1.
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Figure D.1: The weights applied on artificial “moved” vertices that serve as mock-ups
for signal samples with 10 mm cτ as 100 GeV mass splitting in 2017.
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