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Abstract: We show that, as in the case of the principle of minimum action in classical and quantum

mechanics, there exists an even more general principle in the very fundamental structure of quantum

spacetime: this is the principle of minimal group representation, which allows us to consistently and

simultaneously obtain a natural description of spacetime’s dynamics and the physical states admissi-

ble in it. The theoretical construction is based on the physical states that are average values of the

generators of the metaplectic group Mp(n), the double covering of SL(2C) in a vector representation,

with respect to the coherent states carrying the spin weight. Our main results here are: (i) There exists

a connection between the dynamics given by the metaplectic-group symmetry generators and the

physical states (the mappings of the generators through bilinear combinations of the basic states).

(ii) The ground states are coherent states of the Perelomov–Klauder type defined by the action of the

metaplectic group that divides the Hilbert space into even and odd states that are mutually orthogonal.

They carry spin weight of 1/4 and 3/4, respectively, from which two other basic states can be formed.

(iii) The physical states, mapped bilinearly with the basic 1/4- and 3/4-spin-weight states, plus

their symmetric and antisymmetric combinations, have spin contents s = 0, 1/2, 1, 3/2 and 2.

(iv) The generators realized with the bosonic variables of the harmonic oscillator introduce a natural

supersymmetry and a superspace whose line element is the geometrical Lagrangian of our model.

(v) From the line element as operator level, a coherent physical state of spin 2 can be obtained and

naturally related to the metric tensor. (vi) The metric tensor is naturally discretized by taking the

discrete series given by the basic states (coherent states) in the n number representation, reaching the

classical (continuous) spacetime for n→ ∞. (vii) There emerges a relation between the eigenvalue α

of our coherent-state metric solution and the black-hole area (entropy) as Abh/4l2
p = |α|, relating the

phase space of the metric found, gab, and the black hole area, Abh, through the Planck length l2
p and

the eigenvalue |α| of the coherent states. As a consequence of the lowest level of the quantum-discrete-

spacetime spectrum—e.g., the ground state associated to n = 0 and its characteristic length—there

exists a minimum entropy related to the black-hole history.

Keywords: quantum spacetime; fundamental principle; minimum group representation; symmetry;

metaplectic group; phase space; quantum coherent states

1. Introduction

A key concept for a full quantum theory of gravity, as well as for quantum theory on its
own, is quantum spacetime. The basic motivation of this paper is to demonstrate that, as in
the case of classical and quantum mechanics, in which the minimum action is the regulating
and determining principle, there is an even more general principle that intervenes in the
fundamental structure of quantum spacetime: this is the interplay between dynamics and
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symmetry or, alternatively, matter/energy and spacetime. The maximum simplicity by
which to achieve this goal is based on the metaplectic group Mp(n), which is the double
covering of the Sp(2C) group, and which for the illustrative case that we intend to establish
here we fix to Mp(2).

We characterize quantum spacetime as originating from a mapping P(G, M) between
the real-spacetime manifold M and the quantum-phase-space manifold of a group G. Once
one component of the momentum P operator is identified with the time T, the spacetime
metric of M is found, using the metric gab on the phase-space group manifold.

The group’s compactness or noncompactness determines the metric’s signature;
nonetheless, noncompact groups are necessary for the majority of physical situations
of interest because of the real spacetime signature and its hyperbolic structure.

The quantum spacetime established from the harmonic oscillator’s phase space repre-
sents the more obviously fundamental examples of this development. In the case of the
normal (real-frequency) oscillator, refer to Refs. [1–3] and the mapping (X, P)→ (X, iT)
or, alternatively, (X, P)→ (X, T) in the situation of the imaginary frequency (the inverted
oscillator), which appears in many physical examples—in particular, in cosmology (e.g.,
in the propagation eqs of classical and quantum perturbations). The quantum-spacetime
algebra of non-commutative operator coordinates is the quantum-oscillator algebra. The
line element arises from the Hamiltonian (Casimir operator), and its discretization yields
the quantum-space levels. The zero-point energy yields the new quantum region, splitting
the light-cone origin because the classical generating lines X = ±T are replaced by the
curves X2 − T2 = [X, T], which are the quantum hyperbolae due to the non-zero space and
time commutators, and generate, in particular, the quantum light cone [4,5].

The inverted oscillator is associated to the hyperbolic spacetime structure, while the
normal oscillator yields a Euclidean (imaginary-time) signature (quantum gravitational
instantons).

In various forms, the inverted oscillator can be found in a multitude of fascinating
physical scenarios, including black holes, particle physics, and contemporary cosmology
(which includes inflation and dark energy), Refs. [4–9].

An important point in this principle of minimum group representation is the de-
scription of quantum-spacetime symmetries: “algebro-pseudo-differential correspondence”
plays a key role. This correspondence establishes that a radical operator (e.g., a Hamilto-
nian) is equivalent, in the context of the metaplectic description, to a Majorana–Dirac-type
operator with internal variables in the oscillator representation. This correspondence is
exemplified in the expression in Equation (13), Section 4 in this paper. This algebraic inter-
pretation is significant because it allows for a connection with pseudodifferential operators
and semigroup (Fourier-integral) representations, as shown below [10]:

algebraic
interpretation

↗ ↖
pseudo differential operators ←→ semigroup

(Fourier− integral representations)

In this theoretical and physical context, the resulting solution consists of two types: the
basic state and the observable physical state, which is bilinear with respect to the basic state
(e.g., the mean value). The basic state is a coherent state corresponding to the metaplectic
group, which is the double covering of the SL(2C) group, Refs. [10–15].

We use as our example Ref. [10], an N = 1 superspace with an invertible and non-
degenerate supermetric, where the unconstrained quantization is precisely carried out
using novel techniques based on coherent states and keeping the Hamiltonian form. Thus,
from the discrete spectrum of the states themselves, a discrete structure of spacetime
automatically arises without any prescription of discretization (Figure 1).
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Figure 1. Quantum gravity regime and that of a dynamical quantum microscopic picture (the

complete process of black hole emission in all its stages being a clear example).

Due to the metaplectic representation (the double covering of the SL(2C)) of the
coherent-state solution representing the emergent spacetime, the crossover from the quan-
tum microscopic regime to the macroscopical regime (classical or not) is natural and
consistent. This important fact allows us to conciliate such apparently different pictures
as that of a macroscopical-quantum-gravity regime and that of a dynamical-quantum-
microscopic picture (the complete process of black-hole emission in all its stages being a
clear example).

Despite its simplicity, the framework introduced here has provided physically and
geometrically significant responses concerning an accurate description of quantum gravity.

It is convenient to think of this kind of coherent state as arising from a Lie group G
operating on a Hilbert spaceH through a unitary, irreducible representation T. The set of
vectors ψ ∈ H, such that ψ = T(g)ψ0 for some g ∈ G, is what we describe as the coherent
state system{T, ψ0} for a fixed vector ψ0. We define the states |ψ⟩ corresponding to these
vectors inH as generalized coherent states.
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2. The Metaplectic Group and the Principle of Minimal Representation

Mp(2), SU(1,1) and Sp(2)

We briefly describe now the relevant symmetry group to achieve the realization of
the Hamiltonian operator of the problem. Specifically, this group is the metaplectic Mp(2)
group; the groups SU(1, 1) and Sp(2) are topologically covered by it. In the function of the
(q, p) operators, or equivalently the operators (a, a+) of the standard harmonic oscillator,
the generators of Mp(2) are

T1 =
1

4
( q p + p q ) =

i

4

(
a+2 − a2

)
,

T2 =
1

4

(
p2 − q2

)
= − 1

4

(
a+2 + a2

)
, (1)

T3 = −1

4

(
p2 + q2

)
= −1

4

(
a+a + a a+

)
,

with the commutation relations,

[ T3 , T1 ] = i T2 ; [ T3 , T2 ] = − i T1 ; [ T1, T2 ] = − i T3.

The commutation relations can be written as [T3, T1 ± iT2 ] = ± (T1 ± i T2); [ T1 + i T2,
T1 − iT2] = −2 T3. It is then easy to see that T1 + i T2 = − i

2 a2 and T1 − i T2 = i
2 a+2.

Therefore, the oscillator states | n ⟩ of the number operator are eigenstates of the T3 generator:

T3 | n ⟩ = − 1

2

(
n +

1

2

)
| n ⟩.

3. The Mp(2) Vector Representation and Its Coverings

The commutation relation that specifies the generators Li is the main feature of the
specific representation that was introduced in [2] :

[ Li, aα ] =
1

2
aβ(σi)

α
β . (2)

The representation above is non-compact Lie algebra with the matrix form

σi = i

(
0 1
1 0

)
, σj =

(
0 1
−1 0

)
, σk =

(
1 0
0 −1

)
(3)

obeying, in a geometrical way,

σi ∧ σj = −iσk, σk ∧ σi = iσj, σj ∧ σk = iσi. (4)

We want to remark on the following equivalence:
The generators in the representation of Equation (2) fulfill the relation

Li =
1

2
aβ (σi)

α
β aα = Ti, (5)

where Ti are the metaplectic generators, namely [10,11]:

T1 =
i

4

(
a+2 − a2

)
, (6)

T2 = − 1

4

(
a+2 + a2

)
, (7)

T3 = − 1

4

(
aa+ + a+a

)
. (8)
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Proof. We can write the generators Li in matrix form as

Li = u Mi v (9)

u ≡
(

a+ a
)
, v ≡

(
a

a+

)
.

The representation of Equation (2) is faithful. We take into account that σk is entered as a
“metric” in the sense given in Ref. [16]—that is, it introduces the signature in the quadratic
terms in a and a+ in Equation (9), explicitly giving rise to the expression in Equation (5).
Therefore, we have

M1 =
i

4

(
0 1
−1 0

)
=

1

4
σk σi , (10)

M2 = − 1

4

(
0 1
1 0

)
= − 1

4
σk σj , (11)

M3 = − 1

4

(
1 0
0 1

)
= − 1

4
σ2

k . (12)

Consequently, and by inspection, Equation (2) coincides with Equation (9). Thus, the
equivalence in Equation (5) is proved.

4. Symmetry and Dynamics Principle: Steps to Follow

A fundamental component of the dynamic description is the square-root-type Hamilto-
nian or Lagrangian, which is, in theory, a non-local and non-linear operator. This is because
the right physical spectrum is generated by the invariance under reparametrizations, both
as a Lagrangian and as a corresponding Hamiltonian. The fundamental principles of our
strategy here are based on certain elements that are explicitly mentioned in the following.

4.1. The Invariant Action

(i) Considering the spacetime–matter structure, the geometric Lagrangian (functional
action) of the theory is the elementary distance function, which is defined as the positive
square root of the line element.

At the least, the line element’s symmetry matches that provided by the super-Poincaré
or Cartan-Killing form of Osp(1,2), enabling a bosonic realization based on the a and a+

operators of the conventional harmonic oscillator. This leads to the metric being non-
degenerate and having extra odd (Fermionic) coordinates.

4.2. Extended Hamiltonian of the System

The geometric Hamiltonian, which is the fundamental classical–quantum operator, is
obtained from (i) in the conventional manner.

From the perspective of the physical states, this universal Hamiltonian (square-root
Hamiltonian) has an enlarged phase space because it includes a zero moment P0 character-
istic of the entire phase space at its highest level.

Time “disappears” from the dynamic equations in a proper time system when the evo-
lution coincides with the time coordinate. This is prevented by including a zero-momentum
P0, which would otherwise lead to the arbitrary nullification of the Hamiltonian.

4.3. Relativistic Wave Equation and the Algebraic Interpretation

(iv) The Hamiltonian Hs, rewritten in differential form, defines a new relativistic
wave equation of second order and degree 1/2 (square-root form). This fact can be reinter-
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preted as a Dirac–Sudarshan-type equation of positive energies and internal variables (e.g.,
oscillator-type variables) contained as components of the auxiliary or internal vector Lα,

Hs Ψ ≡
√
F | Ψ ⟩ ↔

{
[ F ]αβ Lα

}
Ψβ, (13)

having the basic solution states of the system, a para-Bose or para-Fermi interpretation of

| Ψ ⟩. This gives rise to the main justification for an algebraic interpretation of the radical
operator: we have a clean action at operator level and a consistent number of states of the
system (the Lagrange-multiplier method eliminates the square root in a non-physical way,
doubling the spectrum of physical states).

4.4. Basic States of Representation and the Spectrum of Physical States

The basic states | Ψs ⟩ belong to the group Mp(n) and have a spin weight s = 1/4, 3/4
in the simplest case, Mp(2): They contain even and odd sectors (s = 1/4, 3/4) in the number
of levels of the Hilbert space, respectively, and, therefore, they span non-dense irreducible
spaces.

In this way, states that are bilinear in fundamental functions (corresponding to∣∣ Ψs=1/4, 3/4

〉
form the full physical spectrum. In the case of the metaplectic group Mp(2),

these fundamental functions are f1/4 and f3/4, having a spin weight s = 1/4 and 3/4,
respectively. A physical-state characteristic of Mp(2) is given by Φµ = ⟨ s | Lµ | s′ ⟩, with
(s, s′ = 1/4, 3/4 ) and Lµ being the vector representation of one of the generators of
Mp(2).

With the Mp(2) interpretation, we can also describe a complete multiplet spanning spins
from ( 0, 1/2, 1, 3/2, 2 ). This is a consequence of the fact that with the fundamental
states and the allowed vectorial generators, the tower of states is finite and all the states
involved are physical, as it must be in the physical context.

5. Statement of the Problem

Geometrically, we take as the starting point the functional action that will describe the
worldline (measure on a superspace) of the superparticle, as follows:

S =
∫ τ2

τ1

dτ L
(

x, θ, θ
)
= −m

∫ τ2

τ1

dτ

√
◦

ωµ

◦
ωµ + a

.
θ

α .
θα − a∗

.

θ

.
α .

θ .
α, (14)

where
◦

ωµ =
.
xµ − i (

.
θ σµθ − θ σµ

.

θ ) and the dot indicates the derivative, with respect to
the parameter τ, as usual. The above Lagrangian was constructed considering the line
element (e.g., the measure, the positive square root of the interval) of the non-degenerated
supermetric,

ds2 = ωµ ωµ + a ωαωα − a∗ ωα̇ωα̇,

where a superspace ( 1, 3 |1 ) is composed of the bosonic term and the Majorana bispinor
with coordinates (t, xi, θα, θ̄α̇), being the Maurer–Cartan forms of the supersymmetry
group—ωµ = dxµ − i ( dθσµ θ̄ − θσµdθ̄ ), ωα = dθα, ωα̇ = dθα̇—with evident supertransla-
tional invariance.

As our manifold has been extended to include Fermionic coordinates, it is natural to
extend also the concept of the trajectory for a point particle to the superspace. Consequently,

we take the coordinates x(τ), θα(τ) and θ
.
α
(τ), depending on the evolution parameter τ.

The Hamiltonian in square-root form, namely,

√
m2 −P0P0 −

(
PiP i +

1

a
ΠαΠα −

1

a∗
Π

.
αΠ .

α

)
|Ψ⟩ = 0,

is constructed defining the supermomenta, as usual, and the Lanczos method for con-
strained Hamiltonian systems is used, due the nullification of this Hamiltonian.
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Therefore, an algebraic realization of the pseudo-differential operator (square root)
does exist in the case of an underlying Mp(n) group structure:

√
H |Ψ⟩ ≡

√
m2 −P0P0 −

(
PiP i +

1

a
ΠαΠα −

1

a∗
Π

.
αΠ .

α

)
|Ψ⟩ = 0 (15)

{
[H ]αβ (ΨLα )

}
Ψβ ≡

{[
m2 −P0P0 −

(
PiP i +

1

a
ΠαΠα −

1

a∗
Π

.
αΠ .

α

)]α

β

(ΨLα)

}
Ψβ = 0 (16)

Therefore, both structures can be identified: e.g.,
√
H ←→ [H ]αβ (ΨLα ), being the

state Ψ, the square root of a spinor Φ (on which the “square root” Hamiltonian operates),
in such a manner that it can have the bilinear expression Φ = ΨLαΨ.

Equation (15) in the context of our work has its equivalent second-order Dirac-like
operator in the expression given by Equation and Equation (16). This type of operator
has been developed by Majorana, Dirac (e.g., [17,18]) and others [19], containing internal
variables of the harmonic-oscillator type, and in our original and particular case it gives an
algebraic interpretation to the radical operator, with two fundamental objectives fulfilled:
interpreting the action of the square-root operator and describing the relationship between
the physical (bilinear) states and the fundamental (basic) states, as described in detail in
Section 6 here.

Equation (16) is nothing more and nothing less than the algebraic interpretation of the
radical operator: a Majorana–Dirac-type operator—that is to say, an equation with internal
variables in the sense of Dirac, Majorana and others (refs, e.g., [17–19]), with a different
spinorial decomposition structure. The curly brackets in Equation (16) define the limit of
the equivalence to the radical operator expression given by Equation (15).

The key observation here is that the operability of the pseudo-differential “square root”
Hamiltonian can be clearly interpreted if it acts on the square root of the physical states.
The square root of a spinor certainly exists in the case of the metaplectic group [16,20],
Refs. [17,18] making our interpretation, Equations (15) and (16), fully consistent from both
the relativistic and group theoretical viewpoints.

Regarding Equation (16), we want to emphasize that our paper refers to the role of the
generator of the metaplectic group both in the dynamics and in the physically admissible
states of the model. We stress that the variables of the harmonic oscillator are internal
from the point of view of the equations, and the origin of these variables is the faithful
and fundamental representation of the symmetry of the generators of the dynamics of
the spacetime through the physical states, such as the mappings of the generators in that
particular representation, as explained in the paper.

The concept and underlying logic of Equations (15) and (16) are clear: quantum
symmetries contain—give rise to—the classical structure. The physical states, as well as the
metric (spin 2) are emergent under the action of the symmetry operator via Equation (15).
(Moreover, concrete examples of this concept can be found in Refs. [21–24] by these authors).
Spin and supersymmetry do not need the Minkowskian structure. A clear example can be
seen for the case of spin 2, in Sections 8–10 of this paper.

Our Equation (16) here is fully relativistic and capable of including a complete (super)
multiplet spanning spins from 0, 1/2, 1, 3/2, 2 of physical states.

In the next section, we will describe the states (truly spinorial and relativistic ones)
coming from the algebraic correspondence.

6. Physical States from Symmetries

Generators (dynamical symmetries) being in an oscillator-like vector representation
(spinorial) are mapped through their mean values, with respect to the basic states (the
Mp(n) coherent states) giving rise to the observable physical states. That is to say, there is an
interrelation between symmetries and physical states. This gives rise to the first important
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consequence that, taking into account the unobservable basic states, the bilinear states that
are observable can only contain spins (0, 1/2, 1, 3/2, 2).

Next, we will provide a brief theoretical justification of the above construction, and then,
in the following section, we describe the emergent spacetime-discretization mechanism.

It should be noted that the family of representations can be increased—e.g., like those
of the Hilbert-space operators in the Weyl representation—for a great variety of groups and
asymmetric representations of various forms. In our case, the large group involved is the
metaplectic group Mp(2) (the covering group of SL(2C)). This important group Mp(2) is
also closely related to the para-Bose coherent states and squeezed states (CS and SS).

Let us consider the concept of generalized coherent states (CS) based in a Lie group G
acting on a Hilbert space H through a unitary, irreducible representation T in the following.
The coherent-state system {T, ψ0} is defined as the set of vectors ψ ∈ H, such that ψ =
T(g)ψ0 for some g ∈ G, given a fixed vector ψ0. These vectors’ equivalent states in H are
known as generalized coherent states (states |ψ⟩).

The following coherent-state-reproducing kernel for any operator A (not necessarily
bounded) serves as the foundation for our analysis:

K
Â

(
α, α′; g

)
= e

[
|α|2 − |α′ |2

] 〈
α | A | α′

〉
, (17)

where α and α′ are complex variables that characterize a respective coherent state, and g is
an element of Mp( 2 ). The possible basic CS states are classified as

|Ψ1/4 (t, ξ, q) ⟩ = f (ξ) | α+(t) ⟩

|Ψ3/4 (t, ξ, q) ⟩ = f (ξ) | α−(t) ⟩, (18)

with the following independent, non-equivalent symmetric and anti-symmetric combinations:

∣∣∣ ΨS
〉

=
f (ξ)√

2
( | α+ ⟩ + | α−⟩ ) = f (ξ)

∣∣∣ αS (t)
〉

,

∣∣∣ ΨA
〉

=
f (ξ)√

2
( | α+ ⟩ − | α−⟩ ) = f (ξ)

∣∣∣ αA (t)
〉

. (19)

The important fact, in order to evaluate the kernels of Equation (17), is the action of a and
a2 over the states previously defined:

a|Ψ1/4⟩ = α|Ψ3/4⟩; a|Ψ3/4⟩ = α|Ψ1/4⟩; a
∣∣∣ΨS

〉
= α

∣∣∣ΨS
〉

; a
∣∣∣ΨA

〉
= −α

∣∣∣ΨA
〉

,

a2|Ψ1/4⟩ = α2|Ψ1/4⟩; a2|Ψ3/4⟩ = α2|Ψ3/4⟩; a2
∣∣∣ΨS

〉
= α2

∣∣∣ΨS
〉

; a2
∣∣∣ΨA

〉
= α2

∣∣∣ΨA
〉

,

and similarly for the states Ψ.
We have established that the physical states are particular representations of the op-

erators Lab and Lab ∈ Mp(2) in spinorial form, in the sense of quasi-probabilities (to-
mograms in the Ψs plane) or as mean values, with respect to the basic coherent states,
Equations (18) and (19): |Ψλ⟩, λ = (1/4, 1/2, 3/4, 1 ). There are six possible general-
ized kernels from Equation (17): two g ( t, s,± α ), s = 1, 2 in the Heinsenberg-Weil-
(HW)-oscillator representation corresponding to the symmetric and anti-symmetric states,
respectively:

gab ( t, 2, α ) |HW =
〈

ΨS(t)
∣∣∣Lab

∣∣∣ ΨS ( t)
〉

= F
(

α

α∗

)

(2) ab

(20)

gab ( t, 1, − α ) | HW =
〈

ΨA(t)
∣∣∣ Lab

∣∣∣ ΨA(t)
〉

= F
(
−α

−α∗

)

(1) ab

(21)
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where

F = e
[−

(
m√
2 | a |

)2

[ ( α+ α∗ )− B ]2 + D ]
e [ ξ ϱ ( α+ α∗ ) ] | f ( ξ ) |2,

and four gab ( t, s, α2 ) , s = ( 1, 2, 1/2, 3/2 ) for SU(1, 1), with the symmetric ΨS, anti-
symmetric ΨA, and Ψ1/4, Ψ3/4 states:

gab

(
t, 2, α2

)
SU(1,1)

=
〈

ΨS(t)
∣∣∣Lab

∣∣∣ΨS(t)
〉

= F
(

α2

α∗2

)

(2) ab

(22)

gab

(
t, 1, α2

)
SU(1,1)

=
〈

ΨA(t)
∣∣∣Lab

∣∣∣ΨA(t)
〉

= F
(

α2

α∗2

)

(1) ab

(23)

gab

(
t, 3/2, α2

)
SU(1,1)

= ⟨Ψ3/4(t)|Lab|Ψ3/4(t)⟩ = F
(

α2

α∗2

)

(3/2)ab

(24)

gab

(
t, 1/2, α2

)
SU(1,1)

= ⟨Ψ1/4(t)|Lab|Ψ1/4(t)⟩ = F
(

α2

α∗2

)

(1/2) ab

(25)

where B and D are given by

B =

( | a|
m

)2

c1, , D =

( | a | c1√
2 m

)2

+ c2, (26)

c1 and c2 being constants characterizing the solution or its initial conditions.
The dynamical structure of (quantum) spacetime clearly encodes the metric through

the coherent basic states, solutions of Equations (15) and (16). Therefore, the spacetime
structure defined in this paper through the metrics in Equations (20)–(25) fully and rigor-
ously respect all the properties required in the fundamental quantum regime, as well as in
the classical domain.

Equation (25) is expressed in the so-called Sudarshan’s-diagonal representation that leads,
as an important consequence, to the physical states with spin content λ = ( 1/2, 1, 3/2, 2 ).
Precisely, the generalized coherent states here generate a map that relates the metric solution
of the wave equation gab to the specific subspace of the full Hilbert space where these
coherent states live. Moreover, there exists for operators ∈ Mp(2) an asymmetric—kernel
leading, in our case, to the following λ = 1 state:

gab( t, 1, α) |HW = ⟨Ψ3/4(t)|Lab|Ψ1/4(t)⟩ = ⟨Ψ1/4(t)|Lab|Ψ3/4(t)⟩ = F
(

α

α∗

)

(1) ab

.

This is so because the non-diagonal projector involved in the reconstruction formula of Lab

is formed with the Ψ1/4 and Ψ3/4 states, which span completely the full Hilbert space.

Observation 1. Due to the non-observability of isolated basic states, the spin-zero physical states
appear as bounded states ( g g ), where gab ( t, s, w ) and gab ( t, s, w ) are given by the bilinear
expressions in Equation (25).

Observation 2. Each kernel represents a global physical state composed of fundamental states that
separately are basic and unobservable.

Note that the spectrum of the physical states is labeled not only by their spin content

λ, but also by the “eigenspinors”

(
α

α∗

)

(λ) ab

and

(
α2

α∗2

)

(λ) ab

corresponding to the

vector representations of Lab and Lab, respectively (maps over a region ofH).
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7. Supermetric and Emergent Spacetime

The Lagrangian density from the action of Equation (14) represents a free particle in a

superspace with coordinates zA ≡
(

xµ, θα, θ ·
α

)
. In these coordinates, the line element of the

superspace reads

ds2 −→ żA żA = ẋµ ẋµ − 2 i ẋµ ( θ̇ σµ θ̄ − θ σµ
˙̄θ ) +

(
a− θ̄α̇ θ̄α̇

)
θ̇α θ̇α − (a∗ + θαθα ) ˙̄θα̇ ˙̄θα̇.

It is important to note that, following the steps detailed in Section 4, the quantization
is exactly performed, providing the correct physical and mathematical interpretation to the
square-root Hamiltonian and the correct spectrum of physical states.

Without loss of generality, and for simplicity, we take the solution of Equation (20) to
represent the metric, and with three compactified dimensions (s = 2 spin fixed) we have

gAB (t) = e A(t) + ξ ϱ (t) gAB (0), (27)

where the initial values of the metric components are given by

gab (0) = ⟨ψ(0)|
(

a

a†

)

ab

|ψ(0)⟩, (28)

or, explicitly,

gµν(0) = ηµν , gµα(0) = − i σµαα̇ θ̄α̇ , gµα̇(0) = − i θασµαα̇ , (29)

gαβ(0) = (a− θ̄α̇ θ̄α̇) ϵαβ , gα̇β̇(0) = − (a∗ + θαθα) ϵα̇β̇ . (30)

The bosonic and spinorial parts of the exponent in the superfield solution of Equation (27)
are, respectively,

A(t) = −
(

m
|a|

)2
t2 + c1 t + c2,

ξ ϱ(t) = ξ( ϕα (t) + χ̄α̇ (t) )

= θα

( ◦
ϕα cos (ω t/ 2 ) + 2

ω Zα

)
− θ

·
α
(
−
◦
ϕ ·

α
sin (ωt/2 )− 2

ω Z .
α

)

= θα
◦
ϕα cos(ωt/2 ) + θ̄

·
α
◦
ϕ ·

α
sin(ωt/ 2 ) + 4 | a | Re( θZ ),

(31)

where
◦
ϕα, Zα, Z .

β
are constant spinors, ω = 1/| a | and the constant c1 ∈ C, due to the

obvious physical reasons and the chiral restoration limit of the superfield solution. We see
in the next section the associated emerging discrete spacetime structure.

8. Superspace and Discrete Spacetime Structure

Let us see in this section how the discrete spacetime structure emerges naturally from
the model under consideration. Expanding on a basis of eigenstates of the number operator,

∑
m

|m⟩ ⟨m| = 1, (32)

we have
gab (0) = ∑

n,m

⟨ψ(0) |m⟩ ⟨m | Lab | n ⟩ ⟨ n |ψ(0) ⟩. (33)

Then,
gab(t) = eA(t) + ξ ρ(t)

︸ ︷︷ ︸
f (t)

∑
n,m

⟨ψ(0) |m⟩ ⟨n |ψ(0) ⟩ ⟨m| Lab | n⟩

⟨m | Lab | n⟩ = ⟨m|
(

a

a†

)

ab

|n⟩ =
( ⟨m|n− 1⟩√n

⟨m|n + 1⟩
√

n + 1

)

ab

=

(
δm,n−1

√
m

δm,n+1

√
m + 1

)

ab

(34)
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It follows,

gab(0) = ∑
n,m

⟨ψ(0) |m⟩
(

δm,n−1
√

m

δm,n+1

√
m + 1

)

ab

⟨ n |ψ(0) ⟩

gab(0) = ∑
n

√
n ⟨ψ(0) | n− 1 ⟩ ⟨ n|ψ(0)⟩

(
1
0

)

ab

+ ∑
m

√
n + 1 ⟨ψ(0) |n + 1⟩ ⟨n|ψ(0) ⟩

(
0
1

)

ab

According to the equation above, the splitting of ψ into the fundamental states of the
metapletic representation is the only explanation that makes sense:

| ψ(0) ⟩ = A |α+⟩+ B |α−⟩. (35)

Consequently, at the macroscopic level, the arbitrary constants A and B govern the spec-
trum’s classical behavior. Without losing generality, we assume for the purposes of this
discussion that A = B, such that |ψ(0)⟩ = |α+⟩+ |α−⟩. However, we will come back to
this crucial point later.

This is the outcome of the SO(2, 1) group’s breakdown into two irreducible represen-
tations of the metaplectic group Mp(2), spanning even and odd n, respectively.

Let us highlight the important property of the state |ψ(0) ⟩ = | α+ ⟩ + |α−⟩, which
(if A = B) is invariant to the action of the operators a and a†. This is a consequence of
the fact that in the metaplectic representation the general behaviors of these states are
a |α+⟩ = a† |α+⟩ = |α−⟩ and a |α−⟩ = a†|α−⟩ = |α+⟩.

Statistical Distributions and Classical Limit

From the Poissonian distribution for the coherent states, we can see

Pα(n) = | ⟨ n | α ⟩ |2 =
αne−α

n!

fulfilling
∞

∑
n=0

Pα(n) = 1,
∞

∑ n
n=0

Pα(n) = α.

This is different from the individual distributions defined from each one of the two
irreducible representations of the metaplectic group Mp(2) (which span even and odd n,
respectively):

∞

∑
n=0

Pα+(2n) = e−α cosh(α)

∞

∑
n=0

Pα−(2n + 1) = e−α sinh(α)




→

∞

∑
n=0

(Pα+(n) + Pα−(n)) = 1. (36)

Note that in spite of the different form between the above equations the limit n→ ∞

is the same for both—the sum of the two distributions arising from the Mp(2) irreducible
representations (IR) and for the SO(2, 1) representation, as it must be.

Taking this into account, the explicit form of | α+ ⟩, |α−⟩ is given by

| α+ ⟩ ≡ |Ψ1/4(0, ξ, q) ⟩ =
+∞

∑
k=0

f2k(0, ξ)|2k⟩ =
+∞

∑
k=0

f2k(0, ξ )

(
a†
)2k

√
(2k)!

|0⟩ (37)

|α−⟩ ≡ |Ψ3/4 ( 0, ξ, q ) ⟩ =
+∞

∑
k=0

f2k+1(0, ξ) |2k + 1⟩ =
+∞

∑
k=0

f2k+1(0, ξ)

(
a†
)2k+1

√
(2k + 1)!

|0⟩,

where all the possible odd n dependence is stored in the parameter ξ.
Consequently, |α+⟩ connects only with the even vectors of the basis number and

|α−⟩ with the odd vectors of the basis number. Therefore, using the decomposition of
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Equation (35), and decomposing the base number |n⟩ into even and odd, we obtain the
following explicit result for the spacetime metric:

gab(t) =
f (t)

2 ∑
m

{
[ Pα+ (2m) · 2m + Pα−(2m + 1) · (2m + 1) ]

(
1

0

)

ab

+ (38)

+
[

Pα∗+ (2m) · 2m + Pα∗− (2m + 1) · (2m + 1)
]( 0

1

)

ab

}

The expression above is an important pillar of our findings here: in this equation,
the discrete structure of spacetime is shown explicitly as the fundamental basic feature of a
consistent quantum-field theory of gravity.

On the other hand, in the limiting case n→ ∞ our solution for metric is the continuum,
as it must be:

∞

∑
n=0

[Pα+(2m) · 2m + Pα−(2m + 1) · (2m + 1)] = α e−|α|(cosh(α) + sinh(α)) = α

Similarly, for the lower part (spinor down) of the above equation, we obtain

∞

∑
n=0

[Pα+(2m) · 2m + Pα−(2m + 1) · (2m + 1)] = α∗.

Therefore, when the number of discrete levels increases, our metric solution goes to
the general-relativistic-continuum-“manifold” behavior:

gab(t)n→∞ →
f (t)

2

{
α

(
1
0

)

ab

+ α∗
(

0
1

)

ab

}
= f (t)⟨ψ(0)

(
a

a†

)

ab

|ψ(0) ⟩, (39)

as expected.

9. The Lowest n = 0 Level and Its Length

It is not difficult to see that for the number n = 0 the metric solution takes the value

gab(t) =
f (t)

2

[
Pα (1)

(
1

0

)

ab

+ Pα∗− (1)

(
0

1

)

ab

]
(40)

=
f (t)

2
e−| α |

[
α

(
1

0

)

ab

+ α∗
(

0

1

)

ab

]
.

This evidently defines an associated characteristic length for the eigenvalues α, α∗

because of the metric axioms in a Riemannian manifold. In principle, fundamental symme-
tries such as the Lorentz symmetry can be preserved at this level of discretization, due to
the existence of discrete Poincare subgroups of this supermetric.

10. Implications for Black-Hole Entropy: A Superspace Solution

Black-hole entropy, S = kB Abh /4 l2
P—where A is the horizon area and lP ≡

√
ℏG/c3

is the Planck length—as is well known, was first found by Bekenstein and Hawking [25,26],
using the thermodynamic arguments of the preservation of the first and second laws of
thermodynamics.

Also found by Bekenstein was an information-theory proof, in which black-hole
entropy is treated as the measure of the “inaccessible” information for an external observer
in an actual internal configuration of the black hole in a given state. Such a state is described
by the values of mass, charge and angular momentum.

From the statistical-mechanics viewpoint, the entropy is the mean logarithm of the
density matrix. About this issue, Bekenstein proposed a model of quantization of the
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horizon area with the title “Demystifying black hole’s entropy proportionality to area”,
Refs. [27,28].

Following the same reasoning, the horizon is formed by patches or cells of equal area
δl2

P. Consequently, the horizon can be considered as endowed with many fundamental
degrees of freedom: one degree per each patch. Therefore, the horizon does appear to be
composed of fundamental patches, all having an equal number χ of quantum states.

Then, the horizon has a total number of quantum states given by ΩH = χAbh / δ l2
P , and

the Boltzmann statistical entropy due to the horizon is S = kB ln ΩH = kB

(
Abh / δ l2

P

)
ln χ.

The choice δ = 4 ln χ yields the expected thermodynamical-black-hole Bekenstein’s
formula.

Introducing δ into the original black-hole entropy formula, one obtains the Poisson
expression for the total number of states:

ΩH = eAbh / 4 l2
P . (41)

This expression is explicitly the bridge with the structure of the emergent coherent-state
metric of our approach here. We consider a similar Poissonian expression for the number
of states from gab, namely e|α|; therefore, the relation between the coherent-state eigenvalue
α corresponding to our coherent-state metric solution and the above equation does appear:

Abh / 4 l2
P = | α |. (42)

This expression links the black-hole area Abh and the phase space of the coherent-state
solution metric gab through the Planck length l2

P and the eigenvalue |α| characterizing the
coherent states.

11. Implications for Hawking Radiation

• As is known, the area of a black hole is related to its mass. Consequently, the black-hole
mass in our approach here is quantized as well. The emitted radiation from the black
hole does appear because of the quantum jump from one quantized value of the mass
(energy) to a lower quantized value. The decreasing of the black-hole mass occurs
because of this process.

• Therefore, (and because radiation is emitted at quantized frequencies corresponding to
the differences between energy levels), quantum gravity implies a discretized emission
spectrum for black-hole radiation.

• The spectral lines can be very dense in macroscopic regimes, leading physically to
no contradiction with Hawking’s prediction of a continuous thermal spectrum in the
semi-classical regime.

• From the point of view of our approach here:
• If we now suppose simply that the constants A, B in the state solution, e.g.,

Equations (27) and (35), are different, A ̸= B, we have

|ψ(0)⟩ = A | α+ ⟩ + B | α− ⟩.

• Therefore, the thermal (Hawking) spectrum at the macroscopic or semi-classical level
does not appear.

• This fact is clearly explained because an exact balance between the superposition of
the two irreducible representations of the metaplectic group is needed.
This will lead, as a result, to non-classical states of radiation in the sense of [29], as can
be easily seen by making, for example, one of the constants, B (or A), equal to zero:

gab(t) = A
f (t)

2 ∑
m

[Pα+(2m) · ( 2m ) + Pα−( 2m + 1 ) · ( 2m + 1 ) ]

(
1
0

)

ab

(43)
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• Note that only the up spinor part survives in this case, and the classical thermal limit
is not attained. This is so, even in the continuous limit for this case, in which the
number of levels increases accordingly to

gab(t) n→∞ →
f (t)

2
A α

(
1
0

)

ab

= A f (t)⟨ ψ(0) |
(

a
0

)

ab

| ψ(0) ⟩. (44)

• Consequently, in such a case, where A = 0 (or B = 0), the spectrum will take only even
(or odd) levels, becoming evidently non-thermal.

Therefore,

• In cases where A = B, the thermal Hawking spectrum is attained at the continuum
classical gravity level, e.g., the Poissonian behavior of the distribution is complete.

• In cases where A ̸= B, the spectrum is non-classical, and the quantum properties of
gravity are manifest at the macroscopic level.

12. Concluding Remarks

Here, we have demonstrated that there is a principle of minimal group representation
that allows us to consistently and simultaneously obtain a natural description of the
dynamics of spacetime and the physical states admissible in it.

The theoretical construction is based on the fact that the physical states are, roughly
speaking, average values of the generators of the metaplectic group Mp(n) in a vector
representation, with respect to the coherent states that are not observable (carrying the
weight of spin). Schematically, we have the following picture, where Mab = Lab(Lab):

gab = ⟨ ψ | Mab | ψ ⟩︸ ︷︷ ︸
Physical States, spacetime metric

(Observables)

↗ ↖

Mp(n) ∋
Coherent States
(basic states)

{
ψ+, ψ−,
ψA, ψS

←→
Generators : Mab

(group mani f old,
phase space
symmetries)

In summary:
(1) We have demonstrated that there is a connection between the dynamics given by

the generators of the symmetries and the physically admissible states.
(2) The physically admissible states are mappings of the generators of the relevant

symmetry groups covered by the metaplectic group, in the simplest case, according to the
chain Mp(2) ⊃ SL(2R) ⊃ SO(1, 2), through a bilinear combination of basic states.

(3) The ground states are coherent states defined by the action of the metaplectic group
(the Perelomov–Klauder type); these states divide the Hilbert space into even and odd states,
and are mutually orthogonal. They carry a weight of spin of 1/4 and 3/4, respectively.

(4) From the basic states combined symmetrically and antisymmetrically, two other
basic states can be formed. These new states manifest a change of sign under the action of
the creation operator a+.

(5) The physically admissible states, mapped bilinearly with the basic states with spin
weight 1/4 and 3/4, plus their symmetric and antisymmetric combinations, have spin
contents s = 0, 1/2, 1, 3/2 and 2.

(6) A symmetry of the superspace is formed by a realization of the generators with
bosonic variables of the harmonic oscillator as Lagrangian. Taking a line element corre-
sponding to such a superspace, a physical state of spin 2 can be obtained and related to the
metric tensor.
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(7) The metric tensor is discretized simply by taking the discrete series given by the
basic states (coherent states) in the number n representation; consequently, the metric tends
to the classical (continuous) value when n→ ∞.

(8) The results of this paper have implications for the lowest level of the discrete
spectrum of spacetime, the ground state associated to n = 0 and its characteristic length, in
the black-hole history of black-hole evaporation.

(9) Moreover, recently we have successfully applied this general approach in physical
scenarios of current interest, obtaining coherent states of quantum spacetime for black holes
and de Sitter spacetime, in our Ref. [21].
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