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Abstract

The Standard Model of particle physics is performing quite well when describing fundamental
physics at small scales, but at the same time it is unable to account for some clearly observed
phenomena, such as dark matter, leading to the conclusion that additional new physics mod-
els are needed. Within the Standard Model, di-higgs production processes provide a valuable
insight into possible new physics models. The measurement of such processes proves to be
difficult however and has not been conducted yet as a result. The reason for this difficulty
is that production of a higgs pair is exceptionally rare and overshadowed by background
processes, making it tough to achieve a clean classical analysis.

In order to deal with this problem an event classification using neural networks is applied,
in particular to distinguish di-higgs events from one of its background processes, the produc-
tion of a higgs and Z boson pair, based on event jet information in simulated Monte Carlo
data. In order to improve classification results from such a previous analysis, experiments
aiming to find additional variables sensitive to these two final states and able to aid a neural
network in its classification task were conducted. Further, effects of changes to the provided
neural network infrastructure were investigated. Both of these analyses efforts lead to a big
performance improvement over the previous analysis. This results suggest that usage of neu-
ral network based event classifications is a viable method for enabling di-higgs production
measurements and analyses.
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Chapter 1

Introduction

Particle physics has done a successful job at broadening our understanding of the fundamental
rules and functionality of our universe by constructing and extensively testing its fundamental
theory, the Standard Model of particle physics. Countless of its theoretical predictions were
verified to a high degree of precision, leading to the discovery of its final unobserved building
block, the higgs boson, in recent history. However, the model is far from complete, because
it is still missing explanations for observed phenomena such as dark matter. Further, the
Standard Model’s precise predictions were mostly verified by experiments, which is starting
to become a problem since there are only a few areas left where theoretical uncertainty could
lead to a further expansion of the model. One of these areas is physics concerning the higgs
boson, which is still hardly understood despite its discovery a decade ago. In particular, the
production of this boson in pairs is predicted but still remains undiscovered so far, making
it interesting for potential physics models that go beyond the Standard Model. Because of
this, measuring such a higgs boson pair production process with high accuracy can provide
certainty for both the higgs boson’s exact properties and the possibility of expanding the
Standard Model with new and potentially verified theories.

One of the biggest obstacles for such a di-higgs production measurement is the extreme
rarity of the process, combined with far more common irreducible backgrounds given by
similar processes, overshadowing the desired signal. An example for a process like this is the
production of a Z and higgs boson pair, which happens through a process similar to higgs
pair production, including a similar final state, making them hard to distinguish. Facilitating
this selection is an important step necessary for a proper analysis of pair production for higgs
bosons to make sure a sample collection of these processes is clean and large enough to arrive
at a definitive conclusion.

A possible approach to improve selection of the correct processes is to employ artificial neural
networks for this data classification task. This work aims to improve a previous attempt to
make this classification on simulated Monte Carlo data by providing event jet information
to a neural network, with the goal of making it more accurate. For this purpose a variety
of potential variables will be investigated regarding their abilities to distinguish between the
aforementioned processes, to increase the amount of relevant information a neural network
model will receive from its input data. Further, the model structure given by the provided
neural network will be expanded and adjusted through various tests in order to expand its
classification capabilities.

This work will firstly introduce the necessary theoretical and experimental particle physics
background in chapter 2. Afterwards an introduction to artificial neural networks is given in
chapter 3. Finally the conducted experiments are summarized, where chapter 4 presents the
results of the searches for new variables and chapter 5 covers all investigated neural network
experiments.
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Chapter 2

Physics Background

Particle physic aims to explain the very fundamental constituents and laws of our universe.
These elemental building blocks are called elementary particles and their behavior and inter-
action is described by the Standard Model of particle physics (SM), the theoretical basis for
particle physics. This theory has been really successful over the years and was continually
expanded to answer further questions, but still remains incapable to account for all phenom-
ena observed in our universe so far.

This chapter will establish the theoretical concepts in particle physics, necessary for the con-
siderations made in later sections as well as an outlook on other current developments inside
of the field. Further, the basics of experimental particle physics present at colliders are ex-
plained, where a special focus will be placed on the ATLAS experiment currently operating

at CERN.

2.1 Theory of Particle Physics

Elementary particles exist in two physical regimes due to their typical sizes and energies,
which are described by different theories. Since these particles are very small, they must
obey the rules of quantum mechanics and because they are highly energetic and move at
speeds close to the speed of light, their behavior is influenced by relativistic mechanics as
well. The theory combining these two descriptions into a single framework is called quantum
field theory (QFT) and describes an elementary particle as an excitation of an underlying field
at the smallest scale. These fields can interact with each other via the rules of the fundamental
forces of our universe. As both, a simplification and visualization of QFT, Feynman invented
diagrams named after him, making it easy to create pictures representing particle processes.
An example for such a feynman diagram for a particle anti-particle annihilation can be seen
in figure 2.1. Resulting from a description of all known fundamental forces in the universe,
except for gravity, using QFT one arrives at the Standard Model of particle physics.

2.1.1 Elementary Particles

Elementary particles describe the smallest set of particles we know of without any apparent
further substructure, which make up all visible matter as fundamental building blocks. These
particles can be distinguished and classified into different groups via their quantum numbers.
The most general separation is based on the spin quantum number in units of A, where
fermions are particles which have half integer spin whereas bosons have integer spin. Fur-
thermore each elementary particle has a corresponding antiparticle, these particle-antiparticle
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o
Figure 2.1: Feynman diagram example for annihilation of an electron positron pair via elec-
tromagnetic interaction, producing a photon. The vertical axis represents space, whereas the
horizontal axis represents time.

pairs can be created from the vacuum or annihilate each other to create energy. An antiparti-
cle has the exact same properties as the opposing particle, but charge-like quantum numbers
have the opposite sign. There are two groups of fermions, the leptons and quarks, each with
a total of six particles and three different so called families or generations consisting of par-
ticle pairs. The lepton families are given by a pair, which consists of a negatively charged
particle £~ and a corresponding charge and massless neutrino vy. Out of the three massive
leptons only the electron is stable, meaning the other two will decay in some form after
a while whenever they are produced from a fundamental process. Quarks are grouped by
their electrical charge into up and down type quarks with +% and —% of electrical charge
respectively. The quark family arrangement is then done by grouping up and down types of
similar mass value together. An overview of the different fermions can be seen in table 2.1.
Quarks cannot exist as free particles and engage in a process called hadronization whenever
not part of a bound state. Hadronization produces hadrons, bound states of multiple quarks,

1st Generation 2nd Generation 3rd Generation
Quarks U d c S t b
Charge +2/3 -1/3 +2/3 -1/3 +2/3 -1/3
Mass 2.16 MeV  4.67 MeV 1.27 GeV  93.4 MeV 173 GeV  4.18 GeV
Leptons e~ Ve W vy T Vs
Charge -1 0 -1 0 -1 0

Mass 511 keV <1.1eV 106 MeV <0.19eV 1.78 GeV <18.2 MeV

Table 2.1: The three fermion generations for leptons and quarks, charges are given in units
of the elemental charge e. The six quarks up, down, charm, strange, top and bottom are
represented by their first letter, while the leptons electron, muon, tau and their respective
neutrinos are represented via the letter e and the greek letters for mu u, tau 7 and nu v.
Values for neutrino masses are an upper limit since they are very light particles and exact
measurements do not exist yet, which is why the standard model assumes them to be mass
less. Values are taken from the pdg listing [1].

which can be both bosons in case of a quark anti-quark pair and fermions for a bound state
of three quarks. On top of that there are five fundamental bosons in the standard model,
which are responsible for mediating forces between particles. For simplicity in theoretical
calculations, natural units given by ¢ = A = 1 are used. Energies and masses are therefore
both given in the same units, for which commonly electronvolts (eV) are used. Gravity does
not have a significant influence at scales of elementary particles and is therefore ignored for
now. The effects of the other three fundamental forces (electromagnetism, weak and strong
nuclear force) on all these elementary particles is then described in a complete theory, the
Standard Model. This enables the calculation of observable quantities concerning particle
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reactions like scattering, decays and particle lifetimes [2].

2.1.2 The Standard Model

The SM describes everything in the life of a particle, but most importantly it provides a
theory for interactions via three of the fundamental four forces in nature, weak and strong
nuclear force and the electromagnetic force. Each of these forces has their own underlying
theory with a lagrangian as a mathematical base for the theoretical description. These
lagrangians were constructed in a way such that they would reproduce known equations of
motions, for instance the dirac equation describing electromagnetic interactions for massive
fermions, which were normally found based on phenomenology. Symmetries play a large
role in physical descriptions because of their close connection to conservation laws due to
Neother’s theorem, which yields for instance a conservation of angular momentum from a
rotational symmetry in a system. Beyond that other types of symmetries such as gauge
and discrete symmetries are also relevant in these theories. All three forces have different
characteristics for their interactions and each force acts on a different property of the particles
involved. Electromagnetism acts on the electrical charge of a particle, while the weak force
acts on a quantum number called weak isospin and the strong force acts on colour charge
of particles. The latter being a property exclusive to quarks and therefore this force only
affects quarks. Gauge bosons and their properties represent the field mediating an interaction
and therefore share characteristics of the respective force and are normally massless. Terms
in the lagrangians can be interpreted as different processes within the force, for instance a
particle or gauge boson propagating freely. Adding the additional requirement of local gauge
invariance leads to a new term which can be interpreted as an interaction of a free particle
with a gauge field.

Global gauge invariance is derived from the observation, that adding a divergence term of
the form 0, M*(¢;, 0,¢i) does not change the resulting equations of motion and has therefore
no impact on the physical result. Demanding that such a global gauge variance should also
hold locally, meaning the transformation now shows a space-time dependence, has proven
to be valuable for particle physics, as shown in the following. The dirac lagrangian, which
reproduces the dirac equation, is given by

L =iUy*9,U — mP ¥ (2.1)

and can be modified to be invariant under a local gauge transformation of the form ¥ — () ¥
by adding a term containing a gauge field A, transforming like A, — A, — 8HM with a

q
coupling constant g. The now locally gauge invariant lagrangian looks like
L= [iVy*9,¥ — mP¥] — (qU"¥)A, (2.2)

where the final term can be interpreted as an interaction of a fermion given by its spinor ¥
with a gauge field A, via a coupling constant g affecting the strength of this interaction. Each
fundamental force has its own coupling constant, depending on specific particle properties, for
example the strength of an electromagnetic interaction is given by the charge of participating
particles. The first term describes free propagation of the fermion and the second term its
mass m. Repeating the same steps for the electromagnetic boson gauge field A, yields an
expression which cannot contain a mass term anymore, since such mass terms contain a
factor A*A,, which breaks local gauge symmetry for boson lagrangians. In consequence this
means that in order to eliminate this term, all gauge fields in the standard model need to
be massless [3]. Even though fermions can theoretically be massive, visible in equation (2.2)
above, they are still regarded as massless in the SM which allows for splitting right and left
chiral parts of the spinor into distinct parts allowing an interpretation as separate particles [4].
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This procedure works well for the electromagnetic and strong interactions, because their
respective gauge bosons the gluons and photons are really massless, but the weak force is
mediated by W and Z bosons, which are both massive and have been observed in experiment.
Combining the electromagnetic and weak force into the electroweak theory did not help to
explain this either, however the observed gauge bosons W, Z and photon were now created
through mixing of massless gauge fields B# and W*# via the weak mixing angle 0y,. This
means that the only thing still needed to make the theory work is a way to explain the
generation of masses for fermions and the weak gauge bosons. This theory was provided by
Higgs in 1964, further predicting a new boson named after him, which could then be used
in 2012 to confirm the theory [3].

2.1.3 The Higgs Mechanism

In order to tackle the problem of masses in the SM one needs to find a modification of local
gauge invariance that allows for a mass term. This can be achieved by introducing a potential
term to the lagrangian which has the characteristic of a nonzero vacuum state, meaning its
minimum is not located at the origin. The existence of a lagrangian with such a potential can
be interpreted as describing a background field, always existing even in vacuum. This field,
called the higgs field, is essential for the creation of mass terms in the SM, made possible by
the properties of its potential, as shown in the following. An example for such a potential of
a complex field ¢ = ¢1 + i¢2 in three dimensions is given in equation (2.3) and illustrated in
figure 2.2, this is the simplest possible potential showing the desired properties.

2 )\2
V(9) = =516l + ol (2:3)

Parameters p and A are not fixed by the theory and have to be determined experimentally.
The potential has a rotational symmetry and its multiple minima all lay on a circle as well,

[Glonin = £5 (24)
but in order to bring the lagrangian into a form showing couplings and eventually a mass
term, one of the minima has to be chosen as the ground state in order to make the following

coordinate substitution for the real and imaginary parts of ¢
n=d1 5 and €= (2.5)

which breaks the symmetry. By further using a specific choice of gauge transformation ¢ — ¢/,
allowing the resulting ¢’ to be real by demanding that ¢, = 0, eliminates the second field £
from the new lagrangian. As a result one obtains mass terms for gauge fields and a new
massive particle described by the 7 field, the higgs boson. This procedure is known as sponta-
neous symmetry breaking, which describes the case when the symmetry of a lagrangian is not
shared by its ground state, achieved here through the coordinate transformation performed
above, and is the foundation of the higgs mechanism. The exact shape of the higgs poten-
tial remains unknown, but the underlying principle of using spontaneous symmetry breaking
to generate particle masses always works the same, so reality might be more complex than
described here, but still makes use of the same underlying principles and steps as discussed
above [3].

In 2012 both ATLAS and CMS experiments at CERN confirmed the existence of a boson
showing the predicted properties of a higgs boson, which validated the theory [5][6]. During
the following years lots of further measurements were conducted, confirming couplings and
branching ratios predicted by theory. A coupling of the higgs to masses of fermions for in-
stance was already confirmed and measured for the heavy top and bottom quarks and most
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9]

Figure 2.2: Cross section through the three dimensional higgs potential along an arbitrary
axis containing the origin. Via the choice of a ground state |@|min, used for description,
breaking of the potential’s rotational symmetry is achieved.

major decay processes have been quantified. The higgs boson was found to most likely be
a spin 0 particle with even parity and has a measured mass of about 125 GeV, implying a
high likelihood for a meta stable electroweak vacuum. The most likely production mecha-
nism at a proton-proton collider such as the LHC is via gluon fusion with a cross section of
roughly 48.5 pb at a center of mass energy of 13 TeV, which is relatively small making the
occurrence of higgs events overall rare. A higgs particle mainly decays into a pair of bottom
quarks (= 58%) or a W boson pair (= 21%). Apart from a series of measurements regarding
higgs properties there are currently also various experiments searching for possible signs of
an extended higgs sector or Standard Model extensions [1].

Higgs selfcoupling
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Figure 2.3: Feynman diagrams for the two possible self coupling processes of higgs bosons.

Spontaneous symmetry breaking does not only create a massive higgs particle, but it also
leads to the appearance of further terms in the lagrangian showing that vertices where three
or four of these newly created particles are interacting exist. So the higgs boson possesses
the ability to self couple, meaning it can interact with other particles of its kind, as shown in
figure 2.3. The terms appearing in the lagrangian are further proportional to the potential
parameters p and A, where p is also being proportional to the higgs mass, making it possible
to learn more about the higgs potential by measuring these self coupling processes [3].
Higgs self coupling also plays a role as one of the possible processes responsible for producing
higgs pairs in the final state. Searches for higgs pair production are an important measure-
ment in the search for various models extending the Standard Model. However the existence
of self coupling further diminishes the already small cross section of this process making it
incredibly rare [1].
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2.1.4 Open Questions

The SM is very successful in describing physics at the elementary scale and has been verified
to a high accuracy. However nature still exhibits phenomena not explainable through this
theory alone. Examples for this are dark matter and energy postulated based on observations
in astronomy and cosmology, as well as the fact that our universe seems to mostly consist
of matter. Furthermore this model has some inherent deficiencies since it does not offer a
description of the fourth fundamental force of gravity and it cannot offer a solution to the
hierarchy problem. These observations suggest that the Standard Model has to be expanded
in some way in order to explain nature more accurately, these expansions of the Standard
Model are called new physics or physics beyond the Standard Model [4]. The direction these
expansions should have remains unclear since the theory seems accurate to an incredible de-
gree making it tough to spot potential issues with the model. This problem leads to a large
variety of searches for new physics ranging from precision measurements to tests of specific
models beyond the SM. A selection of such investigations into new physics and their results
are discussed in the following.

The higgs sector is rich of potential investigations, since experiments so far might have con-
firmed its existence, but values found in these experiments can still be explained through mul-
tiple different models aside from the most simple one used in the SM. Further uncertainties
concern the fact that some higgs decay channels were not measured yet due to experimental
challenges and it is still unclear whether the higgs is even an elementary particle opposed
to a composite one. Especially measurements of the self coupling of higgs bosons, which is
proposed in the SM, but has not been measured yet due to its rarity, are important since it
provides a way to measure the trilinear higgs coupling. Additionally searching for resonant
higgs boson pair production is important for several new physics models. As a conclusion the
higgs sector is currently an important field in the search for new physics [1].

There are a few recently found numerical deviations from the SM in specific experiments
which have not yet been explained, possibly hinting at the explicit nature of new physics.
Some of these are a deviation of the measured muonic dipole moment by 4.2 at the g-2
experiment at Fermilab [7] and a significantly larger measured mass of the W boson by 7o
obtained from a precision measurement conducted by the CDF collaboration [8].

Due to the lack of guidance from the SM, many different models and theories for new physics
outside of the SM have been created. One such theory involves introducing right-handed
neutrinos to the SM, using the see-saw mechanism to explain generation of neutrion masses
and especially their small value. Another model is the WIMP model for dark matter, intro-
ducing very heavy particles only interacting via the weak force to explain the nature of dark
matter. Neither WIMPs, nor right-handed neutrinos have been discovered by an experiment
so far [9].

2.2 Experimental Framework

Particle physics is mostly concerned with processes at high energies which means that it
is studied at particle colliders which can provide this high energy environment by colliding
highly energetic particles with each other. This will then produce various particles, most
of which will decay due to their instability, making analysis of physical processes present in
those decays possible. Another way to test our understanding of particle physics with this
setup is to directly produce particles predicted by theory and identify them through their
expected final state properties. A significant amount of work in the field of experimental
particle physics has been done at the various colliders present at the european center for
nuclear research CERN in Geneva, Switzerland.
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This section will give an introduction to important scientific results obtained at CERN in the
past, its current methods and goals as well as future challenges and perspectives. Further an
explanation of detector experiments will be given with a focus laying on ATLAS since the
scope of this work only considers an analysis to be conducted at this experiment.

2.2.1 History of CERN

The first physics run at CERN started in 1958 after construction of the Synchro-Cyclotron,
which could reach proton energies of 600 MeV. This first accelerator was used to study meson
physics and discovered new decays of pions. It also contributed to u physics for instance by
measuring the constant g-2. Around the same time the more energetic Proton-Cyclotron
was build, producing proton beams of 1.4 GeV energies and creating more advancements in
beam physics and accelerator technology. The achievements and insights gained from this
experiment were mostly of organizational and technological nature laying the foundation for
the next generation of accelerators. After construction and usage of more new colliders,
for example the proton-antiproton collider IRS, knowledge of accelerator physics improved
more and more which then led to the construction of a powerful electron-positron collider
called LEP. This collider started running in 1989, colliding beams at the energy of the Z
boson at first and later on increasing the beam energies to produce W pairs. LEP was very
successful in producing numerous results confirming the Standard Model, but discovering
the higgs boson remained out of reach [10]. From 2001 onward LEP was replaced by the
large hadron collider LHC, a proton-proton collider which started running in 2007 and is
described in more detail in section 2.2.2. This collider made studying higgs boson physics
finally possible and lead to its discovery in 2012. After multiple luminosity and detector
upgrades the LHC will finish running in 2038. Current plans suggest a large 100 km future
collider using proton-proton collisions at energies of the order 100 TeV, to probe the existence
of weakly interacting dark matter particles, as a long term goal. As an intermediate stage an
electron-positron collider, energetic enough to function as a higgs factory, is planned making
more precise measurements of the electroweak theory possible. Regardless of the results these
future initiatives will further deepen our understanding of the fundamentals of the universe
and lead to more technological advancements similar to the achievements CERN has already
reached in the past [11].

2.2.2 The Large Hadron Collider

The LHC is located inside of the roughly 27 km long circular tunnel beneath CERN previously
used for the LEP experiment. Within this collider bunches of protons are colliding at a center
of mass energy of 14 TeV achieved by having two proton beams traveling in opposite directions
and intersecting at various collision points located around the ring, which lay inside of the
several detectors. Proton beams are guided and focused using strong, superconductive dipole
and quadropole magnets. The detector output produced by a single beam collision is called
an event. The number of times a specific event is created Negyent is given by the relation

Nevent = Locyent (26)

only depending on the event cross section oeyen: and the machine luminosity L. Since rare
events are characterized by a small cross section, large luminosities need to be achieved at
the LHC to make measuring these rare events possible. Luminosity on the other hand is
only dependent on properties of the collider, mainly the beam properties, so in order to allow
measurements of rare events high beam energies and intensities are required.

There are four detectors located around the LHC belonging to different experiments. These
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are LHC-B investigating B physics, ALICE focused on ion experiments, using collisions of
ion beams and two all purpose detectors ATLAS and CMS collecting data of proton-proton
collisions [12].

One of the goals for the LHC was achieved in 2012 by discovering the higgs boson, since this
verified the theory for mass generation of elementary particles via a higgs field. However this
was not the only unsolved question in particle physics the experiments at LHC wanted to
answer. Further problems include the nature of dark matter observed in our universe and
finding an explanation for the apparent matter-antimatter asymmetry [13]. The SM so far
seems to be unable to explain these phenomena, while also not showing any obvious signs
of problems within the theory. This is why CERN conducts precision measurements of rare
and forbidden SM processes to search for possible inconsistencies of the SM, which could
give hints to the nature of a desired theory needed to explain unanswered questions as well
as a deeper understanding of the higgs particle [14]. In addition there are a lot of analyses
regarding new physics beyond the SM at LHC trying to find new particles associated with
new physics models developed as possible explanations for open questions. Examples for
this include a more complicated higgs sector with an additional scalar field, allowing for dark
matter coupling and heavy neutral neutrinos, related to a mechanisms for generating neutrino
masses [9].

Future upgrades to the collider entering the second phase of the LHC program aim to provide
a significant increase in luminosity, which will be achieved by further improving the beam
parameters. This high luminosity LHC (HL-LHC) will be able to produce a significantly larger
amount of data, leading to various improvements for different analyses. In the case of higgs
boson studies the high luminosity enables more precise results for precision measurements
and in addition makes studying rare higgs decays and even di-higgs production and higgs self-
coupling possible. Further direct creation and observation of rare new particles becomes more
viable, enabling tests for various new physics models. It is expected that the significantly
larger dataset provided by the HL-LHC will improve its ability to detect new physics directly
by discovery of new particles, or indirectly through precision measurements significantly [15].

2.2.3 ATLAS Detector

Detectors at particle colliders are used to determine all particles present in the final state of a
collision so the collected data can be analyzed later. A detector is made up of multiple parts
with different responsibilities. These include a tracking device to find particle trajectories,
different calorimeters to capture certain types of particles and measure their energy and a
muon detector for collecting muon information. Tracking is done by the inner detector which
uses a strong magnetic field and pixel detectors to locate charged particles, measure momenta
and identify electrons. The first calorimeter, the electromagnetic calorimeter, is located as
the next layer above the inner detector. Here precision measurements of electron and photon
properties take place. Around this the hadronic calorimeter is placed, where hadrons decay
leading to their quarks hadronizing, which produces a large number of lighter hadrons in
the final state. These roughly share the same direction of travel the original particle had,
which leads to the created particles being distributed within a cone surrounding it. When
processing the data, an approximation of the properties possessed by the original particle
can be found by searching and combining closely located final state particle into a single one.
The resulting combination of these final state particles, representing the original particle, is
called a jet. Apart from measuring hadronic decay products, the measurements of missing
transverse energy also takes place within the hadronic calorimeter. Finally, located on the
very outside of the detector, is the muon system, which is again inside of a magnetic field
as the inner detector. Within this part of the detector muons are identified and their tracks
measured. The ATLAS detector is shown in figure 2.4.
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Figure 2.4: Schematic cross section through the ATLAS detector highlighting the most im-
portant components for particle detection and measurements [16].

For the design and performance goals several of the intended experimental measurements to
be conducted at CERN were taken into account, for example possible higgs decay channels
needed for its discovery. Since the possible decays depend on the mass range of the higgs,
which was unknown at the time of construction, the detector would have to be able to per-
form well enough for a discovery regardless of the scenario. Similarly discoveries for several
new physics models such as SUSY particle and heavy gauge boson W/, Z' measurements
should be possible, leading to even more performance requirements, such as for instance
lepton measurements with a resolution up to TeV in pr for the heavy gauge boson decays.
Furthermore, the main challenge of proton-proton collision is that QCD backgrounds are
large, making discoveries of rare processes even harder, since specific characteristics of these
desired rare process must be identified. This leads to the additional requirements of a large
integrated luminosity and particle identification abilities of the detector. The detector com-
ponents mentioned above were all constructed with these challenges in mind and try to go as
far as currently technologically possible to fulfill all requirements.

Due to the high rate of generated events far exceeding the possible speed of data recording,
many events need to be rejected before even finishing to process them. This work is done
by the trigger system which is responsible for deciding whether or not an event is of interest
and should be recorded. There are multiple layers to the trigger system which lead to a more
specific reduction of data in each step. This ensures that data obtained will most likely be of
interest for current experimental searches and analysis, in the case of LHC research most of
these are characterized by high transverse momentum or a large amount of missing transverse
energy, which are the main criteria for the triggers.

The coordinate system used by the detector and within this work is described as follows. The
origin lays at the point where the protons collide, with the z-axis pointing along the beam
axis. The z-axis points towards the center of the LHC and the y-axis points upwards. The
azimuth angle ¢ is measured around the beam axis and the polar angle 8 describes the angle
from the beam axis. However instead of the polar angle often pseudorapidity n given by

n = —Intan(6/2) (2.7)

is used. Further the transverse momentum, energy and missing energy pr, Er and E}mss are
defined in the z-y plane [16].
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Chapter 3

Artificial Neural Networks

Among the numeral machine learning techniques introduced over the years, Artificial Neural
Networks (ANN) and especially their deep variants, have become the most popular way of
approaching machine learning in recent times. They have proven to be highly capable of a big
number of different tasks, producing results rivaling or even outclassing human performance
as well as outperforming other machine learning techniques. The main strength of ANNs
lays in their ability to learn from large amounts of data and use the acquired knowledge
for a variety of different applications [17]. ANN are commonly used nowadays for a wide
range of problems within the field of data analysis, including face recognition on images,
automated language translations, creating self driving cars and a lot of applications within
medical analysis [18]. Furthermore ANNs can be used for the task of classifying data into
different categories, which is a particularly useful application when trying to find specific
processes within datasets created by particle physics experiments.

The following chapter will introduce the basic theoretical concepts of how an ANN is struc-
tured and the procedure it can apply to learn correlations and connections of data, in order
to solve a wide variety of problems. Furthermore common issues that can appear when trying
to work with an ANN as well as possible solutions and workarounds are presented.

3.1 Motivation for Artificial Neural Networks

Artificial Neural Networks are — as the name suggests — based on our current understanding
of the human brain and nervous system, trying to mimic their structure and functionality
in order to replicate their enormous information processing capabilities. A nervous system
consists entirely of a large number of neural cells, called neurons, which can be combined
into various complex structures. In a simplified way the main properties of neurons are a
cell body with complex interior for processing information and a way to receive and transmit
it. Further, an information storage capacity exists at the contact point of two neuron cells.
Artificial neurons simulate these properties and therefore have input, output and a cell body
for processing and information storage as well. Furthermore the flow of information will
always occur in a specific direction in a biological context which is represented in an ANN
by using directed graphs, an example of which is depicted in figure 3.1. For a neuron to
actually react to an input a certain activation threshold must be surpassed by the electrical
input signals. This is combined with each input signal being assigned an importance, since
the produced activation strength varies, depending on which connection the signal originated
from. To include these observed functionalities in an artificial structure, numerical weights
for each connection as well as a specified activation function for each of the artificial neurons
are introduced [19].
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Figure 3.1: Example of a feed forward neural network with 4 different inputs x1_4 entering
an input layer (green) of size 4, which the network then converts into 2 output values o; 2 of
the output layer with 2 neurons (red) via the use of a hidden layer (blue) with 4 neurons

Using these basic building blocks one can assemble an information processing network, which
in the following will simply be referred to as a Neural Network (NN). The following sections
will now show how learning can be achieved using NNs.

3.2 Learning in a Neural Network

After introducing all the essential parts needed, they can now be combined to form a full
neural network. An example for a simple NN is shown in figure 3.1, where information in the
form of data is fed into the network to the left and is converted into an output, while traveling
through the network towards the right, which can then be interpreted as a classification for
instance. This means that in general a Neural Network will receive input data of a set size
and produce an output of a set size based on these inputs, while essentially functioning as a
black box, because their inner proceedings are not easy to interpret. This section will deal
with the intricacies and mathematical formulations that make this procedure possible, while
also focusing on the features enabling a network to find and learn relations between data
points and use this information to make predictions.

3.2.1 Structure of a Neural Network

A NN is a graph of interconnected artificial neurons arranged in a way that information
traverses the network from start to end without any loops, by collecting neurons in so called
layers, where neurons share the same input and output directions without distributing infor-
mation among themselves. Every neuron can typically take on any real value. The collection
of neurons belonging to the same layer are arranged in a vertical line of neurons in figure 3.1.
There are three general classes of layers: The input layer on the very left that accepts the
data input, the output layer on the far right, producing final values in its neurons which can
then be accessed and interpreted to get a result and all the layers in between called hidden
layers. As a result the input data as a whole is passed from layer to layer, affecting all neuron
values, which in the end generates a network output. NNs are commonly classified based
on their hidden layer structure as deep for a large number of layers, and wide for a large
amount of neurons within each hidden layer. Every single possible connection between two
neurons has an associated weight, which influences the importance of all received input values
of a neuron when calculating the propagation of data through the network. A layer can also
have different types depending on how its neurons are connected to the next layer, which
are further explored in section 5.2.3. For now only fully connected or linear layers will be
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Figure 3.2: Plot of the historically used sigmoid activation function, chosen due to its simi-
larity to measurements of the biological activation function.

considered, where each neuron of a layer is connected to every single neuron in the next layer.
Located inside of neurons are their respective activation functions used when calculating a
neuron value from its inputs [19]. An example for a possible activation function is shown in
figure 3.2. This is the Sigmoid s, activation function, given by the expression

1

R 3.1
14ec® (3.1)

se()
where ¢ is a constant which can be chosen freely. The main reason for using a Sigmoid is
motivated by its closeness to measured biological activation functions. However, nowadays
it is clear that other types of activation functions, for instance ReLU and its variants are
more beneficial for NNs. A more detailed explanation of these activation functions can be
found in section 5.2.4. It was shown that ReLU outperforms the more classical approach
with Sigmoids in deep networks [20]. Another advantage of sigmoids, which is also shared by
ReLU, is that its derivative, given by

d ce *

= W = csc(x)(1 — sc(2)) (3.2)

can be expressed through the original sigmoid function, which is helpful for computations
that are required in the learning step explained in section 3.2.3, improving computational
speed. Further, values in the network are restricted to a range between 0 and 1, which helps
keeping activations from becoming too large.

When calculating the output of a network one needs to find the values of all neurons in the
network given by the input data and weights of neuron connections. The values of a neuron
in the next layer will be computed from the values of all neurons connected to it from the
previous layer multiplied by the respective weight of the connection, resulting in a weighted
sum of neuron values. This weighted sum is then passed to the activation function of the
layer and the final result of all calculations is then assigned to the neuron as its value. A
simple example for this procedure is visualized in figure 3.3. As a result the general way to
calculate a neuron value v is given by

v = f(Z n; w;) (3.3)

where ¢ is the number of connected nodes from the previous layer with respective values n;
and connection weights w;, while f denotes the activation function. This is repeated until the
output layer is reached, where the values assigned to the output neurons allow for a conclusion,
for instance the classification of an image, where each output neuron value represents the
probability of the input belonging to a certain class [19]. Because the weights are normally
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Figure 3.3: Example for calculating the neuron value v of a neuron connected to three neurons
(n1,n2,n3) in the previous layer via weights w, we, w3 using an activation function f. First
the weighted sum gets created from the inputs and weights, which is then passed to the
activation function to produce the neuron value. In this case the value of v can be calculated

via v = f(20_, nyw;).

chosen from a random distribution in the initial state of a network, this result will be bad in
general. Hence, in order to make learning possible using this structure further methods are
necessary. More precisely a way to measure the accuracy of the NN output is needed which
will be the focus of section 3.2.2. Further, a method allowing the network structure to use
this information to learn from its mistakes is needed, which will be discussed in section 3.2.3.

3.2.2 Error Function

The error function of a neural network will give an estimation of the prediction quality a given
neural network provides in each step. There are multiple ways to realize an error function
and the most effective method depends on the problem at hand. To make usage of an error
function possible in the first place, a labeled dataset is required, meaning that each data
point has an identifier (often called target value) which takes some kind of numerical form,
describing the network output this given data point should produce, so the results predicted
by the network can be compared to the expected result. The goal of learning is to make the
network generate an output, which is as close as possible to these expected values. In general
the error function is given by a non-negative function of the network weights, that yields zero
only if all output values are identical to all targets for a given dataset [21]. During training
the error values start rather large since weights are normally initialized in a random fashion
and should decrease with each successful training step.

Example: Mean Square Error

In a network with n output nodes producing the values o; and their corresponding targets ¢;
with a label i = 1,...,n, where n is the total number of data points in the dataset, the Mean
Square Error of the network is given as

n

1
E = §Z\oi—ti|2 (3.4)
=1
This example also shows that the error function can be regarded as a function of the network
output and therefore can be seen as a composite function of all the activation functions and

neurons in the entire network. As a result the error function will inherit properties from
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the activation functions such as differentiability and continuity given these properties are
provided by all activation functions [19].

Because a good result is characterized by a small valued error function, the problem of
learning in the network can be described as finding the minimum of the error function. So a
requirement for learning in a NN is to minimize the error by making subsequent changes to
the general architecture to slightly alter the output results. Since the only free parameters of
a network are the weights, these will have to be slightly altered in each step until a minimum,
or at least a state close to the minimum, of the error function is found.

3.2.3 Backpropagation and Gradient Descent

The idea behind making learning possible in a NN is to let the network learn from its (clas-
sification) errors by slightly adjusting the weights, going backwards from the final to initial
layer in a way that ultimately minimizes the error function. This process is called backprop-
agation, which is a commonly used algorithm for implementing learning in neural networks.
This entire problem is essentially the same as minimizing the error function in weight space,
which is achieved by the backpropagation algorithm using a method called gradient descent.
This means, that updates of the weight values are done in small steps into the direction the
gradient is pointing to in each calculation step, since the gradient of an error function points
towards a minimum in high dimensional weight space. This procedure is repeated until a
minimum is reached, the corresponding weight values are then the most optimal parameters
of the network found through training.

Explicitly this means that one wants to calculate the gradient of the error function E with
respect to the entire network, so all calculations that arrived at the output are taken into
account, and find the minimum of E, which is the state of the network which yields VE = 0.
This also shows that a useful activation function must be differentiable and its derivative
should be easy and fast to compute for a computer, in order to not waste too much time
during computation (e.g. ReLU, Sigmoid, etc.). This also ensures that the error function is
both differentiable and continuous. Because of this the gradient of the error function is given

by
OFE OF OF
VE = <8w1, R awm> (3.5)

for a total number of m weights in the entire network. Using the method of gradient descent
we now get a way to update the weights after each step defined as

OFE
Aw; = . fori=1,...,m. (3.6)

The parameter « in this context describes a constant of learning, influencing the step size,
called learning rate. Its value can be chosen freely but should be kept relatively small to
make sure the learning process converges towards a solution in weight space.
Backpropagation is now achieved by explicitly calculating the gradients of the error function
regarding the weights, which will, due to the error function’s composite structure and the
chain rule, result in a calculation backwards through the network.

Instead of using the calculated output neuron values for calculation, the ”input” value prop-
agating through the network from end to start is 1 in backpropagation. Because of this the
output value of a neuron is regarded as a constant in backpropagation, but the gradient is
calculated implicitly with respect to the final output value. The results of backpropagation
up to a certain node is stored as a value inside of the node (called backpropagated error §
from now on) together with its output value calculated when determining all neuron values.
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Using all of this information for all nodes in the network one can now achieve a learning
algorithm used to update the weights based on gradient descent and backpropagation.

Example for a two-layer network

Considering a simple network with only one input and output layer each and no hidden
layers, where w;; denotes the weight of a connection between input node j and output node i.
Backpropagation computes the gradient of the error function E with respect to an output o;,
treating it as a constant which means the gradient of E with respect to the weight w;; can
be expressed as

0B  0E
6wij — o 801'8101‘]‘

(3.7)

where the right hand side can be further simplified to 0;d; by expressing the partial derivative
part as the backpropagated error at node j called ¢;. Inserting this into equation (3.6) one
arrives at an explicit expression for the weight update given by

Awij = —’}/Oi(Sj . (38)

For networks with hidden layers one would need to repeat this step for each layer starting from
the output and also take all possible routes through the network possible from the current
node location into account. This will in general lead to more complicated expressions for ¢
depending on the previously calculated layers, but the general method remains the same. It
is important however to only update the weights after all calculations for the backpropagated
error are done, to avoid corrections influencing backpropagation calculations of the current
step and therefore produce wrong gradient directions [19].

3.2.4 Validation

It was shown, that by providing labels of expected results a given set of data should produce,
the network can use an error function and backpropagation to learn from its mistakes. This
will ultimately lead to a point where the network is able to reproduce values similar to the
targets from the input data. At this point it is still unclear however, if the network simply
learned to reproduce the given dataset or if learning of underlying principles in the dataset
really occurred. This is an important distinction, since in reality the use case for NNs is to
classify data on their own, without the ability to check the correctness of labels produced by
the network. To make sure the network has actually learned something from the data it was
provided, its performance has to be judged on data not used for this training step yet.

For this reason providing a setting where the network is forced to classify data it has never
seen and therefore also never used in training before, during the process of creating a network
is absolutely necessary. This is achieved by splitting up the dataset into data points used
purely for training and optimizing the network referred to as training set and another set
used to simply judge performance, without further adjusting weights, on unseen data called
validation or test set. Because all of this is labeled data the NN performance on validation
data can be judged and the result be taken into account for further network design. The
ability of a NN to classify unseen data well, based on a good classification of the training
data is called the generalization ability of the NN. A network that generalizes well has no
problem labeling unseen data correctly and is therefore desired [21].
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3.3 Issues of Neural Networks

Because of their black box nature and statistical predictions, NNs suffer from a variety of
issues which have to be accounted for when applying them to solve problems. In the following
a short list of the biggest and most common issues, as well as possible solutions and ways to
avoid the problems outright, will be discussed.

Underfitting

Underfitting describes a case where the NN cannot learn the inherent structure of the data
leading to a bad performance in both training and testing. It is normally caused by a network
model which is too simple and therefore has not enough available parameters to accurately
fit the data. Solving this problem is normally relatively easy, since introducing complexity
into the network is generally easy to achieve by adding more neurons and/or layers. This
however comes at the risk of replacing the problem of underfitting with overfitting.

Overfitting

Similar to underfitting, overfitting describes another case where the network is unable to learn,
but this time instead of not being able to model the data in training at all, the network learns
everything from the data, even including noise, which leads to a high error when exposing
the network to data it has not seen before, due to noise being unrelated to the general data
structure. Consequently a network which shows signs of overfitting learns well in training but
generalizes poorly. The main cause for this is that a network has too many free parameters,
which are then used to memorize the input data. However reducing the model complexity is
not always possible, which is why other ways of dealing with this problem are needed as well.
The techniques used to fight overfitting are called regularization. Because overfitting is one
of the most prominent issues users of neural networks have to deal with, there exist many
different ways to implement a regularizing effect into a network. The main ones are L1 and
L2 regularization, dropout and batch normalization. Another way to reduce overfitting is

Error

—— Training
—— Validation

Epoch

Figure 3.4: schematic comparison of error performance in training and validation data for an
overfitting NN. When the gap between the graphs begins to increase the network entered a
state of overfitting. For underfitting the error would not show a significant decrease in value
instead.
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also to provide bigger datasets to the networks, since this increases the amount of parameters
a model can have without being capable of memorizing the dataset [21]. The details of some
of these methods are discussed in section 5.3. Figure 3.4 shows a visual representation of the
effects of overfitting on the error function values in training and validation data.

Data requirements

Neural Networks as a whole, but especially deep NNs require a large amount of data to
assure best possible performance and avoid overfitting as mentioned above. Most of the time
there is a sufficient amount of data available, but even when this is not the case there are
ways of expanding the available data to circumvent this issue. One such method is data
augmentation, where additional data is for instance created by mirroring or rotating existing
data points. Especially when working with images this method has proven useful, but it can
also be used for any kind of numerical dataset to introduce new points in data space [17].

Computational issues

Because of the need for big datasets and large network structures with lots of parameters, the
memory requirement for using NNs becomes enormous for certain use cases (e.g. healthcare).
Furthermore a large network requires a lot of computations to derive all needed values for
arriving at an output value, which makes the NN require a lot of computational resources as
well. This means that running complex networks on computers with limited computational
power becomes impractical or at least very time intensive. One approaches to fix this is
model compression, where the number of needed computations can be reduced by a variety
of simplifications, whereas another way of solving this is using parallel processing provided
by different hardware such as GPUs [17].

In addition the introduction of quantum computers in the future might help with solving
computational shortcomings of current hardware. Quantum algorithms for neural network
implementations are already in development and it is expected that a working quantum
computer hardware will lead to a significant speedup in performance for learning with neural
networks [18].



Chapter 4

Preliminary Analysis

Before the actual classification of final states using neural networks is investigated, a further
analysis step to identify potentially useful jet variables needs to be conducted. These will then
be used in the network model tests to provide new information in addition to the jet variables
of energy, momenta and particle number already used in the previous analysis work [22]. In
order to achieve this performance goal, the new variables have to be capable of distinguishing
higgs pair events (HH) from its main background, the production of a higgs and Z boson
pair (HZ). The analysis presented in this chapter was conducted to find such variables, which
can then be tested in a neural network environment afterwards. Several of the investigated
variables and their performance regarding final state classification will be discussed here.

4.1 Methodology

The analysis uses two Monte Carlo datasets generated using the programs POWHEG [23]
and PYTHIA 8 [24], both of them containing a total of 1.2 million events each. One of them
is the dataset producing signal events, a higgs pair final state from gluon fusion, while the
other contains processes created from gluon fusion with a HZ final state. All possible decay
modes of higgs and Z bosons are allowed and no detector noise or other types of irreducible
background are added. These datasets are then further analyzed via ROOT [25]. Feynman
diagrams of the most common physical processes of HH final states are shown in figure 4.1,
while figure 4.2 shows the dominant diagram for the background process, where a higgs boson
is radiated from a produced Z boson instead, leading to a HZ final state.

This analysis aims to find variables, that are sensitive to the differences found between these

Figure 4.1: Dominant diagrams for higgs boson pair production at CERN. On the left is a
self coupling interaction which has a strength dependent on the higgs potential parameter \.
On the right a box diagram where two higgs are produced independently with their coupling
strengths depending on the yukawa coupling y is shown.
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two final states. In order to keep matters relatively simple, only the most common decay
mode of higgs particles shall be used for analysis, which is a decay into b quarks. This
simplification is chosen since most decays of HH final states create at least one b quark pair
(~ 82%) and roughly a third of decays are exclusively into b quarks [26]. As a result this
approach should still cover a significant fraction of total processes. In the end jet information
is supposed to be analyzed, meaning properties of jets resulting from b quarks are compared
for both different final states. Further, comparisons between jets from b quarks and all jets
inside of an event, may show ways to reduce statistical background, which in the end might
also benefit the neural network. Lists of jets for each event are produced using algorithms
provided by FastJet [27]. Jets are created via the exclusive variant of the kt algorithm, using
a radius parameter of R = 1 and a dcut parameter value of 400 for clustering.

Figure 4.2: Main production process for the background HZ final state via radiation of a
higgs off of the created Z boson. This process is very similar to a HH final state from a self
coupling process making it hard to distinguish them.

B jets are formed by using the list of b quark information provided by the Monte Carlo
generator and adding up 4-vectors of particles in close vicinity to the decayed quark. The
final b quark jet will be made up of particles located within a cone of radius 1 around the
original b quark 4-vector. Jets of b quarks created that way will be referred to as cones
as opposed to jets from the kt algorithm from now on. Only pairs of b quarks that have
a combined invariant mass of roughly the higgs mass at 125 GeV are considered for this
step, where the majority of pairs in this group is expected to truly come from a higgs decay
due to its high probability to decay into b quark pairs and two higgs bosons being present
in all events. Further, cone pairs, where at least one of the cones contains only one or no
particles at all are discarded, leading to a minimum number of two particles making up a
cone. This step ensures that all of the quark cones in the analysis are actually relevant and
have a high chance of being created by a decayed higgs without directly relying on Monte
Carlo exclusive information. Furthermore the cones created this way are expected to have
similar properties as the actual jets b quarks would produce, while also containing statistical
background producing a similar jet pair mass, making it possible to investigate differences
between all jets and only those jets originating from higgs decays while including some of
the statistical uncertainty prominent when creating jet pairs to reconstruct decayed particles.
No implementation of b tagging was used for this analysis, however this technique is of great
value when identifying b jets in experiment data and should therefore be used outside of
simulated data.

4.2 Variables

In this section the main variables that show the most potential for distinguishing between
the datasets are presented. Hereby the focus will lay on variable values characterizing jet
pairs, or in other words, variables showing the relation between potential decay products of
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the higgs or Z bosons from their decay into a b quark pair. Further, these variables are able
to hint at useful characteristics of jets to be included in a network dataset. As a result not
only the variable related to the jet pair, but also the jet variables used to calculate it will be
provided to the network.

4.2.1 Relative Mass

Since the higgs decay into a quark pair leads to the creation of two identical particles, their
properties and therefore also the properties of their final state particles produced through
hadronization, should be pretty similar. The idea behind this variable is therefore, that the
jets created from these final state particles are expected to share these similarities. Especially
the invariant masses given by the jet 4-vector variables should be of around the same size
for pairs originating from a higgs decay, making for a great variable identifying possible b jet
pairs created through the same decay opposed to a random jet combination only having the
jet mass by pure chance. As a result this variable is expected as a possible way to reduce
statistical error when reconstructing higgs particles from jet pairs. The resulting Relative
Mass variable for a pair of jets is given via

Mype = b — 21 (4.1)

which takes on values from 0, for the case of jets with identical mass, to 1 when one of the
jets is significantly heavier than the other. In theory this variable provides a possible statis-
tical background recognition or even reduction tool for the neural network since quark pairs
from higgs or Z decays are expected to have mostly small values, while the distribution for a
collection of randomly formed jet pairs is expected to be even on most of the interval.
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Figure 4.3: Histogram showing the distribution of relative mass values for cone pairs on
the left and jet pairs on the right. Different shapes of the distributions lead to a possible
background reduction when providing this variable to the network.

The results depicted in figure 4.3 show, that these assumptions appear to be correct. The
distributions for cone and jet cases show different qualitative shapes leading to a possible sep-
aration into relevant and irrelevant jet pairs by the network. This is because the distribution
for cone pairs falls linearly whereas the jet pair distribution stays mostly even with a sharp
drop toward higher values, leading to relative mass values of relevant jet pairs being mostly
small while the variable value is much closer to an even distribution for arbitrary jet pairs.
As a result the desired background reduction is possible to achieve for a network using this
variable and its effect on model performance shall be tested. However the plots also show
that background reduction is hard to achieve due to the sheer amount of possible jet pairs,
so useful variables to the network should be able to achieve an effect beyond simply reducing
background. As a result, further variables should combine an ability of discriminating the
datasets while possibly also separating important jet pairs from statistical background.
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4.2.2 Angle Difference

This variable describes a distance of two points in the angle plane given by the relation

AR = \/(¢1 — $2)? + (m — n2)? (4.2)

with azimuth ¢ and pseudorapidity n of the two jets forming the pair. To ensure AR is always
the smallest possible distance, the difference ¢1 — ¢ is chosen in a manner that the absolute
value is smaller than 180 degrees. Now this Angle Difference variable can be interpreted
as describing the closeness of two jets in the angle plane. Due to the significantly different
masses of higgs and Z, this variable is expected to have at least slightly different distributions
between the two datasets because of the differing kinematic conditions. Further, since a higgs
decay happens into two particles of the same mass, this distribution is expected to have a
characteristic peak for the most common configuration of these decay products, which should
still be reflected by their jets. Since the b quark pair of a higgs or Z decay is always produced
into the original direction the mother particle was traveling, the difference in pseudorapidity
should be small for these pairs. This further introduces background reduction since in general
for any possible jet pair this n difference is not small leading to a bigger Angle Difference
value.
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Figure 4.4: Histogram comparing the distribution of angle difference values for cone pairs
from HH and HZ final states. While the general shape of the distribution is similar and there
is a large amount of overlap, the peak values are distinct which might allow for a better
dataset discrimination by the network.

Figure 4.4 shows a comparison of the distributions for this variable for cone pairs in the
different datasets. The general shape of these distributions is similar and there is a large
region of overlap, however the peak regions are slightly shifted. Because of this the angle
difference value expected for most of the jet pairs belonging to each final state is also slightly
different, which is expected to be beneficial for a neural network to differentiate between
datasets. Further, the values are relatively small for most of the cone pairs also leading to
the expected background reduction. Due to these observed properties this variable shall also
be tested in the neural network model later on.

4.2.3 Angle Between Jets

Another way to make use of the aforementioned expected kinematic differences of higgs and
7 decays into b quark pairs is by looking at the angle between the two produced jets. This
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angle can be calculated from 4-vector information of the two jets as follows

6 = arccos ( ‘],1 .],2 > (4.3)
1711172

where j; and jy are the momentum 3-vectors of the two jets. This variable serves a similar
purpose as the angle difference discussed above and the expectations are mostly the same, but
it is calculated using different properties of the jet pair, making it a potentially worthwhile
addition to the network. Since jets from b quark pairs formed as a result of a higgs or Z
boson decay are roughly of same mass and boosted into the movement direction of the original
particle, this angle is expected to be significantly smaller than 90 degrees for most cone pairs.
Because of this a background reduction effect is also expected from this variable, since the
angle between two random jets in an event should be roughly equally distributed.
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Figure 4.5: Comparison of the angle between cones for the two datasets. The different peak
values here are not as prominent as for the angle difference, but this variable shall be tested
nevertheless.

Figure 4.5 compares this angle for both datasets. In general the peaks of these distributions
are very wide and therefore cover mostly the same regions, but again a very slight shift
between the maxima is visible. This means, that the angle between a jet pair might also be
useful for the network to help with its decision. On top of that this variable also shows the
expected background reduction, potentially further helping the network. The main reason for
adding this angle variable to the network was the hope it could teach new relations between
variables to the network due to its similarity to angle difference while being calculated from
different jet properties.

4.2.4 Transverse Momentum

In a particle physics context the Transverse Momentum pp describes the part of the mo-
mentum perpendicular to the beam axis. Since momentum in this direction exists due to
physical processes happening in the collision, this variable is of great importance when con-
ducting experimental searches at colliders. In this case the expectation would be that the
different nature of interactions leading to either a HH or a HZ final state leads to specific
values for the transverse momentum, which are different in both cases. This would not only
be the case for the jet pair but also for the two jets themselves compared to other jets in
the event and jets from Z bosons. Transverse momentum describes the momentum located
in the z-y-plane and is given by the expression

pr =\/p3 +p; (4.4)
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using the z and y components of the momentum. There is no expected difference from all
possible jet pairs in the distribution of this variable, meaning that no significant background
reduction is predicted.
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Figure 4.6: Comparison for the histograms showing transverse momentum of cone pairs for
the different datasets. Similar to the previous variables a clear difference in the peak positions
can be observed.

Figure 4.6 shows the results of studies of pr in the datasets. The distributions have similar
shapes with lots of overlap and a slight difference in peak regions. Due to the clearly visible
different peak values this variable seems suited for distinguishing between the two datasets.
As expected, the distribution for all possible jet pairs looks qualitatively similar with a
slightly shifted peak value, making this variable unsuited for background reduction. Since
discrimination between the datasets is more important than background reduction however,
this variable shall still be tested in the neural network model.

4.2.5 Dataset Creation

The information gathered from this analysis step will be collected into a comma separated
value (csv) file which can be imported into the neural network structure. In order to test
different combination of variables and structures of the dataset, multiple different csv files
were created for the experiments conducted in chapter 5. No further restrictions to the jets
used from an event are made for now and all jets of each event will be collected into the
csv files. For each jet a set of variables will be saved in the csv file, which will then be
used to train a neural network. In the case of variables for pairs of jets, as described above,
all possible jet pairs inside of an event are created. The corresponding variables are then
calculated for all these pairs and saved in the file. More details on the exact shape of these
datasets will be mentioned in the related experiment sections later.

4.3 Additional Results

The aforementioned variables are not the only ones investigated over the course of this anal-
ysis. The following section will show a selection of other attempts to find variables sensitive
to HH and HZ final state discrimination. Most of these variables might still have general
value when provided to the network, even if some of them are unable to provide a significant
distinction of the final states on their own, the information they add to the data may still be
valuable for the network. These variables were not tested in the neural network, but some
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could potentially be used for follow up analyses as they are sensitive to the differences in
final states, at least in theory, and their information could be desired for an improved clas-
sification. Similarly searching for further variables with theoretically predicted differences in
HH and HZ final states beyond the selection presented here, might prove useful for future
studies.

Decay Angles

Figure 4.7: Visualization of the decay angle 6, from the decay of a W boson in the top quark
rest frame, produced from the decay of a top quark into W boson and b quark. This angle is
expected to be characteristic for the given decay process allowing for background reduction
and possibly even discrimination between datasets.

A produced top quark pair t¢ can mimic the final state of a HH or HZ boson pair via decays
into a WV bb final state due to the most common top quark decay t — Wb. To avoid wrongly
identifying these produced final states, the spin properties of W and higgs bosons are used. W
and Z bosons are spin 1 particles whereas the higgs is a scalar spin 0 particle. Because of this
a W boson pair produced from a decay has a kinematic restriction due to spin conservation,
which will affect its decay angle based on its origin from a HH or tt pair. The reason for this
being, that a HH pair has no spin correlation opposed to the top quark pair. This difference
should be visible in the decay angle variable which might therefore help a neural network
decide which particles to consider for its classification.

The setup considered is shown in figure 4.7, from this one can derive the decay angle 6,4, from
the kinematic relations with respect to the angle given by

E1 11— Bacos(ba)
Ey 1+ Bycos(y)

with relativistic beta factor 84 of the decaying W boson and energies F4 for the quark and
E for the anti quark in figure 4.7. This then makes it possible to determine 6y via

(4.5)

|

— 2
= B
This was implemented for all used cones in the hope of observing a significant peak or other
qualitative difference in the distributions for each particle type or between the datasets.
Figure 4.8 shows, that the distributions of the decay angle for the two datasets are pretty much
identical. This means the desired effect was not achieved with this variable. However the
described influence of the particle decay kinematics on the variable value given the different
datasets might still be reflected in a more complicated variable relations inside the dataset,
in which case this decay angle variable would still be helpful. It is hard to tell whether this
is really the case, without further testing or revisiting the assumptions and approximations
done in calculations. For this reason the decay angle variable was not used in the neural
network tests.

(4.6)
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Figure 4.8: Comparison of histograms showing the decay angle variable for cone pairs for
the two different dataset. No qualitative difference is noticeable when comparing these two
distributions.

Relative Energy

Similar to the idea of using relative mass for a reduction of background, another possible
relative variable for jet pairs capable of reducing background effects was defined. This variable
is the relative energy, which is given by

_ B — By

= 4.7
rel El + E2 ( )

The reasoning behind this variable comes from the observation that higgs decays happen
mostly into a pair of the same particle type like a b quark or W boson pair. Because of this,
energy is expected to be distributed relatively evenly leading to jets resulting from the higgs
decay still having relatively similar energy values. This is also not expected to be the case
for an arbitrary pair of jets where values are again expected to be more evenly distributed.
To test this hypothesis the relative energy variable was calculated and plotted for all cone
pairs in each of the events and then compared with the distribution of relative energy for all
possible jet pairs present in the event.

The resulting histograms are shown in figure 4.9. It can be seen that the distributions for
cone and jet pairs have the same qualitative shape. As a consequence, the relative energy
variable seems to offer no help in background reduction. This also means that the premise
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Figure 4.9: Histograms comparing the relative energy variable for pairs of cones on the left
and jets on the right. The distribution shapes are very similar which is why no background
reduction effect is achievable using this variable.
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of jet pairs from higgs and Z boson decays producing jets with similar energies does not
appear to be true for these processes. As a result this variable is seen as useless for the neural
network classification task and shall therefore not be tested in the network later on.

Higgs momentum

Another way the kinematic differences between processes producing HH and HZ final states
respectively could be visible, would be the total momentum of the decaying bosonic particle.
The idea being that a different momentum value would be favored for higgs bosons of the
different final states due to the available energy not being the same because of an approximate
difference in higgs and Z bosons masses of 35 GeV. This might be enough to lead to a
variance of peak positions in the momentum distributions between the data sets, which would
be another helpful distinction to be used in the neural network analysis. This difference
should then also be visible in the same momentum distributions for cone pairs since these
pairs roughly represent the properties of a decayed higgs particle. This distribution shape
is expected to be the same for all jet pairs in the event, meaning that there is no possible
background reduction achievable using this variable. To test the effectiveness of this variable
for dataset discrimination, distributions were plotted for cone pairs from higgs decays in both
datasets.
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Figure 4.10: Histogram showing the total momentum for higgs particles reconstructed via
cone pairs in the two different datasets. A clear difference in peak values is visible, meaning
that this criterion is very promising for helping the neural network with its classification task.

The result of comparing this variable for the different datasets is shown in figure 4.10. For
both datasets the shape of the distribution is the same with a peak at relatively low values.
The position of those peaks are significantly different however, verifying the expectation.
Due to this fact the total higgs momentum is another variable helping to make distinctions
between the two datasets possible and is therefore most likely helpful to the network. As
expected, a background reduction is not possible to achieve using this variable since the
qualitative shape of the distribution of cone and jet pairs are pretty much identical. Despite
its promising results this variable was not directly tested in the neural networks due to time
constraints, it was however included in the final experiment discussed in section 5.4.2, due to
the dataset set up. Furthermore future efforts might benefit from this result as well.
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Higgs angle distributions

Goal of this analysis was to establish whether or not the decaying higgs bosons from the
different processes prefer certain directions in the coordinate system. This was tested by
looking at the pseudorapidity and azimuth angle distributions of recreated higgs particles
using the Monte Carlo information about b quarks from higgs decays. The expected result
was mainly concerning the polar angle since physics should be symmetrical in ¢ because
of the experiment’s symmetry with respect to that variable, which would lead to an equal
distribution along that axis. The same variable analysis was done for constituent b quarks
to see if they have a preferred decay direction as well. It is expected that no such preferred
direction in both variables exists for both the higgs boson and its decay products.
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Figure 4.11: Plots showing the distributions of the azimuth angle on the left and pseudora-
pidity on the right for higgs bosons in the event. These plots look as expected and show no
signs of any direction being favored for higgs decays

The results show that, as expected, there is an even distribution for the azimuth angle and
also for the pseudorapidity no significant differences from the expected distributions can be
observed as can be seen in figure 4.11. As a conclusion there seems to be no preferred
direction of higgs production or decays, meaning the absolute angle values are not useful for
the network. As a result of these observation, the focus for angle related variables was shifted
towards higgs decay products and their angle relations as discussed in section 4.2 above.



Chapter 5

Neural Network Analysis

To improve the neural network classification of HH and HZ final states, which was conducted
in a preceding bachelor thesis [22], its original neural network model structure shall be im-
proved. In order to achieve this, alternative designs for the neural network were tested to
construct a final model, able to include the pair variables introduced in the previous chapter
and producing an overall better result than the original model. This chapter will describe the
initial neural network used as a base model and all tested modifications leading to its final
structure. Further, the dataset used is expanded by new potentially beneficial variables from
the previous chapter and their impact on the model performance is compared. In the end it
is expected that these changes to the original neural network model will lead to a significant
improvement of its classification abilities.

5.1 Introduction

The neural network analysis was implemented in Python 3.7 using a plugin called Py-
Torch [28], which provides tools for neural network training. Starting from an initial model,
both the network and dataset structure shall be changed in multiple steps to increase perfor-
mance. These changes will include various expansions and restructurings of the initial model
and the addition of more different input information into the dataset. This section will intro-
duce the initial model, its problems and the methods used in the following analysis to judge
classification performance. Since the overall network structure will be made up of multiple
smaller neural networks, in the following the term model will be used when talking about the
structure as a whole and the term network when talking about the individual model parts.

5.1.1 Initial Model

This section provides an overview over the basic structure of the initial model. It will act
as a base for further expansions and experiments, but the core ideas and principles of the
model will remain unchanged. The goal will be to make major improvements to this model
via slight changes, which are tested individually and combined in the very end to form a
final model, which should lead to a significant boost of model performance. Furthermore the
basic set up of the datasets is explained, which will also be subject to change when trying to
improve the data processing abilities of the model by adding further jet information.

There are two different datasets, one for each final state considered, created with the cor-
responding Monte Carlo file, but the structure of both datasets is identical. For each jet a
total of six variables is saved in these files, the jet energy, its momentum components in x,y

31



32 CHAPTER 5. NEURAL NETWORK ANALYSIS

Header Line

Collection of variables for 30 jets

Event number
Label

Figure 5.1: Schematic view of the structure used for the csv file. The contents of each line
represent the information of one event. Variables for each of the 30 jets are always arranged
in the same order to make processing easier.

and z direction, the number of particles that make up the jet and a boolean value stating
whether or not the jet originated from a b quark. All jets of an event are listed one after
another in one line of the dataset with a total of 30 jets per event, where the remaining jets
not present in the actual event are filled up with 0 values. At the very end there is an extra
column for each event, used for labeling the datasets with target values. These are 1 for
events of the signal HH final state events and a value of 0 for the background HZ process.
When importing the datasets into the model, further processing steps are conducted. First
the signal and background datasets are combined using 60 thousand events each, leading to
a total number of 120 thousand data points used by the model. Data is imported from the
csv file into a pandas data frame used to do the following processing steps. Each variable is
divided by the rough order of magnitude its largest values can have (e.g. energy is divided
by 1000, number of particles by 100 etc.), which results in all variable values being roughly
restricted to the range from 0 to 1. Then for each row in the dataset jets are created and
collected into a n x m matrix saved as a PyTorch tensor object accessible to the network
functions, where n is the number of jets in the event and m the number of jet variables in
the datasets. Because of the way the model is set up a minimum value for n of five is used, if
there are less than five jets in an event the remaining lines are filled up with zero values for
each variable. This matrix is then used as an input for the model. A schematic representation
of the dataset structure is shown in figure 5.1.

Figure 5.2 visualizes the general model and neural network structure. The model consists of
two consecutive networks, where the first one does preprocessing of all jets individually and
the second network receives the results as inputs to do the final event classification. The first
network consists of two hidden layers and a skip connection from the input to the second hid-
den layer, where all network layers are fully connected liner layers. The skip connection uses
the output value of the input layer and adds it to the value of the second hidden layer before
applying its activation function. Network layers use leaky ReLU as an activation function
with a slope of 0.1 and the network’s input and output layers have a size of five with hidden
layers containing ten neurons. The produced result is therefore a n x 5 matrix, which then
gets reduced to a 5 x 5 matrix by selecting the five biggest values for each variable among all
jets. All of these 25 variables are then passed to the second network all at once, which has
a similar structure to the first one. Differences are the new number of input neurons at 25,
hidden layer size of 15 and an output layer size of two. The final layer also uses a softmaz
activation function here, which is given by the equation

exp(z;)

Z]’ exp(z;)

Softmax(x;) = (5.1)
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Figure 5.2: Overview over the basic model structure on the left and general structure of both
neural networks. The topk function is used to select the five biggest values per variable to
create an input for the classification network. Both neural networks have a skip connection,
combining the output of their input and final hidden layers.

and ensures the sum of the two output neuron values is always 1, this makes a probabilistic
interpretation of the classification result possible. Because of this setup, the first component
of the two final outputs is compared to the labels, where the threshold chosen is 0.5, meaning
that all values larger than that are classified as signal and smaller values are labeled as
background. To initialize the weights He initialization is used, which randomly distributes
weight values according to a Gaussian distribution with zero mean and a standard deviation
of \/2/n;, where n; is the number of the current layer in the network whose weights should
be initialized, and with a bias of 0. This is optimized for usage of ReLLU activation functions
and makes sure weights are initialized in a way that allows for proper scaling of input signals,
which helps to create converging deep networks [29]. As a result, this weight initialization
technique is well suited to be used with the current neural network setup.

The loss (= error) function chosen for the network is called cross entropy, which is really
useful for the task of labeling multiple classes and is implemented in PyTorch like

ch log (Zexp(asc) ) Ye (5.2)

) 1exp( )

for a total of M different classes with target value y. and weight w, from an output x.. This
loss function is minimized via the ADAM optimization algorithm. The loss and optimizer
functions will remain unchanged over all of the experiments, but changes within this structure
might be needed as well since PyTorch uses a softmax to calculate the output probabilities
which is already done in the final layer of the classification network in the initial and all later
models.

The model is run using a batch size of 10 thousand, which is the number of data samples
an epoch uses to calculate its weight update. Further, network runs will be conducted over
one thousand epochs with a learning rate of 0.01. These values will be kept the same over
all experiments so long term performance, such as network convergence and improvement
over time can be evaluated. The theoretical differences for different batch sizes and possible
advantages of specific values are explained in section 5.2.5, but in practice no real benefit of
changing this parameter were found.

Figure 5.3 shows plots for the performance of the initial model. In a test environment the
model achieves an accuracy of roughly 63.5%, which is not really sufficient to reliably select
states for physical analysis, since the statistical errors are quite high and a clean selection is
needed for these rare processes to ensure a good analysis result. Further the network shows



34 CHAPTER 5. NEURAL NETWORK ANALYSIS

Figure 5.3: Accuracy and loss plots for the initial model. Strong overfitting effects can be
observed from epoch 100 onward, which is one of the biggest weaknesses of the initial model.
The highest accuracy achieved in testing was roughly 63.5 %.

clear signs of strong overfitting, which has to be addressed in order to enable significant
improvements of its result. In the following sections the experiments made to address these
two main issues with the initial model are described. In section 5.3 the efforts done to reduce
overfitting are discussed while section 5.2 deals with attempts to improve the model structure
and dataset information provided to the networks inside the model.

Because all input variable values are normalized to a value range between 0 and 1 and
further the boolean variable saying whether a jet originated from a b quark or not can only
take absolute values of either 0 or 1, it is expected that the impact of this variable on the
final result is rather large. To avoid this variable to potentially overshadow effects caused by
introducing new structure and variables it will be ignored for the further analysis. Rerunning
the model while omitting this variable leads to a slightly worse performance of roughly 60%,
which will be used as a comparison value for future models.

Furthermore these unambiguous b jet classifications are unrealistic and a network trained
with them has the risk of a diminished performance on real data, due to adding a variable
that essentially uses Monte Carlo information unavailable in actual experiments. A more
accurate way to include such a variable in future studies would be a simulation of b tagging
for jets in the dataset.

5.1.2 Analysis Methods

A classification of values into two possible classes, called positive and negative here, can result
in four different outcomes.

1. An item belonging into the positive class is correctly classified as positive. This case is
called True Positive or TP.

2. An item belonging to the negative class is correctly classified as negative. This case is
called True Negative or TN.

3. An item belonging to the negative class is incorrectly classified as positive. This case
is called False Positive or FP.

4. An item belonging to the positive class is incorrectly classified as negative. This case
is called False Negative or FN.

All results of a classification task can be identified as one of the four above cases, which allows
to define variables that can be used to judge the performance of a classification result. One
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of these is the accuracy given by

TP+TN
TP+TN+ FP+FN

and describes the fraction of correctly classified results. Accuracy will be the main variable
besides the loss values used to evaluate model performance. Under normal circumstances
this characteristic variable is expected to increase quickly in the beginning of training and
then converge toward a final value. It is however not suited to observe overfitting since the
increasing error does not necessarily lead to a shrinking accuracy it might only fluctuate or
stagnate, which makes overfitting harder to spot when only focusing on accuracy.

Loss is the error calculated by the model in order to make weight updates and create a learning
effect. As such, it is expected to start at an arbitrary value and then diminish in value as the
model learns. After a while it should converge when the maximum learning capacity of the
model is reached. This variable will be the main factor in comparing performance of different
network models, where a model able to achieve smaller error values is seen as superior.
On top of that, overfitting is relatively easy to spot when comparing loss in training and
test environments. The absolute loss values however are not really suited for quantitative
evaluation of the model output which is why accuracy is used as well.

As explained in section 3.2.4 testing a model outside of its training environment is important
to assure its results are useful. For this reason the datasets used are split into Training and
Test data where a fifth of the data is used for testing and the rest for training of the model.
Because a good training performance is practically useless if a model fails in the test stage,
the testing values of variables will be considered for model evaluation and since the best
possible state of the model can be extracted and saved, the peak values will be considered.
Due to time constraints the models could not be run multiple times to get rid of statistical
fluctuations present in the results, because of the statistical nature of neural networks. As
an attempt to make up for this, only sufficiently large differences in performance will be seen
as a clear sign of a significant qualitative difference in classification results produced by the
models.

Other performance variables are also recorded when running the models, but these are not
the primary source for the final judgment. These variables are precision, recall and specificity.
Their definitions are given below.

(5.3)

accuracy =

TP

1810N = ——— 5.4
precision = mm s (5.4)
TP
= —F—= .
reca TP+ FN (5.5)
Ficity — TN (5.6)
specificity = 0 .

The differences between these variables are small but each of them offers a unique perspective
on the qualities of obtained results. Precision shows the percentage of samples classified as
positive, that are actually labeled correctly. On the other hand recall measures the fraction
of positive events classified into the correct class while specificity does the same for negative
events. Depending on the desired result, for instance a clean background suppression, this
introduces different constraints on the values these quantifiers should have for a model to
be considered adequate. This also means that a complete evaluation would use all of these
variables and then decides whether or not the model fulfills the demanded requirements. To
keep things relatively simple, this analysis only considers loss and accuracy as its main per-
formance metrics with the goal of a high accuracy while minimizing loss as far as possible.
The three quantities defined above will then only be used to further evaluate the final results,
by comparing their values at the point of best model performance, meaning lowest loss, to
get more insight into the quality of obtained final results.
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The experiments will be structured as follows. In general models are compared to a corre-
sponding baseline model performance, based on their achieved accuracy and loss metrics. The
baseline model in each experiment is a simple common starting point all models tested had,
while making small adjustments or changes, for example different parameter values. After
each comparison step, introducing a new feature or structure, that proved to be beneficial to
the model, into the final model can be evaluated. There are three major experimental parts
with different areas of change for the model. First were structural changes to the networks,
then afterward regularization efforts were tested and finally, after constructing a final model
based on the previous results, different datasets for the variables found in the preliminary
analysis were tested. The experiment results of these efforts will be discussed in more detail
over the next sections.

5.2 Restructuring

The first effort done to improve performance of the initial model was to do extensive re-
structuring of its networks with the goal of improving performance and potentially reducing
overfitting effects. These changes also made it possible to add the new variables which are
based on jet pairs. This made additional infrastructure in the model necessary to account for
these pairs. Experiments in this section only consider adding one of the pair variables, the
angle difference. Further the output size of the first network was changed to six in order to
match its input size. A large variety of changes to the model structure were tested and will
be described within this section.

5.2.1 Adding Pair Variables

In order to test different implementations capable of providing pair variables to the model,
values of the angle difference variable were added to the dataset for all possible jet pairs in
an event as a block of values between the result column and the rest of the jet variables for
each line. Because of the qualitative difference between jet pair and other jet variables, the
preprocessing of them should happen separately.

The general idea of a preprocessing network and a final classification network shall be kept
even after the structure change, so the pair variable will be processed in its own network
and afterwards the results of the two initial networks will be combined into an input for the
classification network. The general structure of the pair variable processing network will be
the same as of the jet variables, with an equal amount of hidden layers and layer neurons,
while still including a skip connection. Similar to other inputs the pair variables will also be
normalized to values between 0 and 1 via division by 10. For the realization of a pair variable
processing network two different approaches were considered

1. All nonzero pair variable values are given to the network at once, without using a certain
jet pair twice. This includes padding to reach a minimum number of five inputs for the
network, then select the five biggest output values via topk function and add them to
the final network input.

2. Construct a total of n variable-jets, where n is the number of nonzero jets in the event.
The i-th variable of the j-th jet would be the pair variable value for the i-j jet pair.
Input and output size of the pair variable network are then n and from the output
the five biggest values per column are selected as input for the final net, similar to the
original preprocessing network. The number of variable-jets is padded to a minimum
number of n =5 using 0 values.
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Both of these approaches require variable input sizes of the additional preprocessing network
which are implemented such that the output size will always match the input size. When
varying the input size it is important for the network performance that the input variables
in the same position always have the same meaning. This is the case for the second option
but not for the first, so the expectation would be that the second structure performs better.

Figure 5.4: Test performance comparison of the two methods for implementing the pair
variables. As expected the second method outperforms the first one, the differences are small
however.

Comparing these two realizations of a pair variable preprocessing network yields the results
visualized in figure 5.4. This shows that the second approach for adding these variables seems
to perform better and is therefore chosen as the way of implementing pair variables for all
future models. The addition of an entire additional network introduced more parameters
to the model, which seems to have counteracted the regularization effect from the added
information to the network by introducing the new variables. As a result, overfitting is still
clearly visible in these performance plots and has to be solved differently.

Future experiments will then aim to improve this model, capable of adding pair variables,
further by testing alternatives to the initial model structure. In addition, as an attempt
to show the network more connections between variables and adding more information at
the same time, relevant jet variables such as the angle ¢ and pseudorapidity 7 in the case
of angle difference, are added to the datasets for the pair variables from now on. These
are normally related to the pair variable by either being the same variable for jets or being
used for calculating the pair variable. This step seems to have a slight positive effect on
training while slightly affecting the test runs negatively, which is expected to lead to an
overall improvement of performance as soon as overfitting is reduced.

5.2.2 Input Normalization

So far the normalization of inputs has been rather arbitrary by simply picking a power of 10
that is the closest to the order of magnitude of the given variable and dividing its value by
that number. This procedure already helps the network by making sure all variables are of
a roughly equal size while keeping the relative sizes of variable values intact, but it is not
optimal. This is the case, because outlier values larger than 1 are still possible and variables
are normalized to different ranges of the 0 to 1 interval. In an attempt to improve these
sub-optimal variable normalizations, several other possible normalization techniques were
tested.
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Statistical Normalization

These types of normalization are a transformation of the input data, fulfilling specific statis-
tical properties for the transformed data. Two of these possible transformations were tested
for normalizing the input data, in order to see if they have a positive impact on model
performance. The first method is centering of data achieved via the transformation

z=xz—E(x) (5.7)

using the statistical mean of all data points E(z), which ensures the transformed data will have

a mean of zero by subtracting the mean of the input data from each data point. The other

tested method is standardizing of the data which is done via the following transformation

rule

x — E(x)
o

T = (5.8)
Here centered data is further scaled using the square root of its variance o2, which leads to
the transformed data having zero mean and a unit variance [30].

Since padded zero values for variables should not end up in the used data samples in the
majority of cases, they are ignored when calculating statistical properties of the input data.
Further, two types of tests were conducted, one where each variable is transformed individ-
ually and another one, where the entire input data is transformed together. These different
scenarios are then compared to the initially used normalization for both centering and stan-
dardizing of data.

Figure 5.5: Comparing the effect of centered input data on model test performance. No clear
improvement is visible, the initial normalization procedure shows the best performance.

Figure 5.5 shows the results of testing centered data, whereas figure 5.6 illustrates the same
comparisons for standardized inputs. In general both approaches perform worse than the
initial method used for normalization, meaning that the specific statistical properties of the
transformed input data do not help the model learn. Because of this another approach for a
new normalization procedure needs to be found.

Max Value Normalization

The idea of this normalization technique is pretty much the same as with the initial normal-
ization procedure. Variables shall be normalized such that their values are of similar size,
while still respecting outliers and statistical distribution of values. This value range will be
from -1 to 1 for angle and momentum variables and from 0 to 1 for all others. To achieve
this, all variables are divided by the biggest absolute value it can take on within the entire
dataset. This change is expected to further enhance the performance boosting effect achieved
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Figure 5.6: Comparison of model test performance for the initial normalization and standard-
ized input data. The model does not seem to benefit from standardized input since there is
no significant difference in performance visible.

Figure 5.7: Comparison of test performance between initial and max value normalization.
The results show a clear improvement over the old method by using max value normalization.

from the initial normalization by making sure all desired properties are always present.
Comparing this approach with the old way of normalizing the input data yields figure 5.7. A
clear difference in performance is visible using this new normalization technique, meaning the
model benefits from this data preprocessing step. Due to the success of this normalization
procedure, input data of the final model shall be normalized using their respective maximum
absolute value.

5.2.3 Layers

For this restructuring step different design philosophies with respect to the layer structure
were considered. These are residual networks where layers can additionally be connected
via skip connections similar to the initial model, deep networks which are classified by a
large number of hidden layers and convolutional networks using a special type of layer in
combination to the simple linear layers used so far. There is no clear separation between
these different network structure types and elements can be freely combined which was done
in order to find a new overall architecture for the network model, which should outperform
the initial model. For the purpose of this investigation a slightly altered model was used
as a comparison. This model differs from the initial model in the number of hidden layers
and the lack of skip connections, all networks have three instead of two hidden layers for
the comparison. Reason for this change is to compare each of the different structures with a
common base model lacking all features to be compared.
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Deep networks

For the purpose of this comparison a deep network is defined as having twice the amount of
total layers compared to the baseline model, which has three hidden layers, meaning the total
number of layers is five, leading to eight hidden layers present in a deep network. Further,
performance of various models where different networks of the model are deep while others
remain unchanged are tested and compared. The three experiments conducted concern mod-
els where either the preprocessing or classification network are deep and a final test where
all networks are deep. The number of neurons for all additional hidden layers will stay the
same as in the initial model for their respective network.

Figure 5.8: Comparison of the test performance of various deep network models tested. The
results suggest that making the classification network deeper is beneficial for the overall model
performance.

The results visualized in figure 5.8 show that making all networks deeper improves test perfor-
mance. However, the computational resources needed for this change are quite large making
it unsuited for further testing within this framework. Despite the added model complexity
and capacity there are no significant increases in overfitting effects observed however, mean-
ing this change to the model structure is possible without making the problem worse. Due
to these results, adding hidden layers to the classification network is considered for usage in
the final model as a compromise between improving the model and keeping computational
requirements as low as possible, since a small improvement can be seen for this change to the
model structure.

Residual Networks

Residual networks commonly use skip connection as illustrated in figure 5.9 and present in
the initial network. These kinds of structures are common in large deep models used for
image recognition and have proven to be really successful in aiding their training. They were
introduced to fight a saturation effect observed for training loss when stacking a significant
amount of layers, which was only related to model depth regardless of overfitting. Due to
the elimination of this saturation a residual network structures enables an even deeper model
while benefiting training performance [31]. The way skip connections are implemented for
the following tests is different from the initial model and closer to the implementation used in
residual networks for image recognition. The skip connection will connect the network input
to the output layer in preprocessing networks and the final hidden layer in the classification
network. Afterwards the input will then be added to the respective layer output, before
applying the activation function to produce a network result. Similar to the deep network
experiments, various model versions in which different networks have these residual skip
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Figure 5.9: Schematic representation of a skip connection as used in the initial model. In a
residual network often the input is added to a later layer output instead. Skip connections
between layers have proven to be useful in deep networks for image recognition.

Figure 5.10: Plots for the test performance of the different tested residual model structures.
In general the models perform equally well and improvements over the comparison model are
small.

connections are tested and compared.

These tests result in the plots visualized in figure 5.10, which show no major differences
between the different experiments. Further the improvements compared to the comparison
model are minor and mostly only due to slightly less overfitting occurring. In addition only
one of the tested models is able to achieve a slight improvement in training accuracy. Because
of this skip connections seem to offer only a small value to the model and will be disregarded
for future model structure changes.

Convolutional Networks

These types of networks use special types of layers called convolution layer typically followed
up by a few fully connected linear layers to make a classification in the end. They are
commonly used in image recognition tasks, due to their grid based data processing. The
general principle behind a convolution layer is depicted in figure 5.11, together with a so called
pooling layer it is often combined with in practice. Advantages of these networks include a
reduction of parameters useful for efficient neural network training involving large data inputs
and therefore also lessening the impact of overfitting due to a smaller model complexity. In
a convolutional layer the kernel scans through the input and creates a different output value
for each area in the data, reducing the dimensionality of the original input. Further, a kernel
can learn and recognize patterns in its input, which is a helpful property for learning of the
model as a whole. Pooling layers then reduce the dimension of its input even further by
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Figure 5.11: Schematic illustration of the two main components in convolutional networks.
A two dimensional convolution layer using a 3 x 3 kernel is shown on the left and a type of
pooling layer called max pool, which selects the biggest input value in a 2 X 2 region on the
right. While kernels in convolutional layers may overlap, using certain input values multiple
times when calculating outputs, the same behavior is normally avoided for pooling layers.

selecting a part of its input and compressing it into a single number via averaging its inputs
or selecting the maximum value for instance [32].

For testing, convolutional layers were only used within the classification network due to their
strong reduction of data dimensions. Two different setups were considered only distinguished
by the amount of linear layers following the convolution. The first experiment only used a
shallow version of the classification using a single hidden linear layer before the output layer,
whereas the second version adds six hidden linear layers, making the classification network
deep. The convolution layers used are one dimensional as provided by PyTorch and each
of them is followed by a max pooling layer. Used parameters for all of these layers are
summarized in table 5.1. This added structure produces a 30 variable input for the linear
layers, which use 15 neurons as before and reduce the output to two dimensions in the final
layer using a softmax activation.

1st Convolution 2nd Convolution 3rd Convolution Maxpool

In-Channels 1 10 15 -
Out-Channels 10 15 5 -
Kernel Size 1 3 3 2
Stride 1 1 1 2

Table 5.1: Parameters chosen for all layers used in the convolution network tests.

Figure 5.12: Test performance of various models using different structures implementing
convolution layers. Usage of these structures seems to have a positive impact on the model,
improving its performance slightly.
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The results of these tests are shown in figure 5.12 and compared to a model which is not
using convolutional layers. It can be seen that both convolution model variants perform well
in comparison, but they cannot reach the level of improvement shown by the simpler fully
connected deep networks discussed above. As a result of this, using convolutional layers in
the final model was not considered despite their positive effect on the model performance.

5.2.4 Activation Functions

ReLU Leaky ReLLU Random ReLU

Figure 5.13: Comparison of a standard ReLU (left), a leaky ReLU (middle) and random
ReLU (right) activation functions.

Compared to historically used activation functions such as the sigmoid function introduced
in section 3.2.1, for more modern deep networks the use of non-saturated activation functions
has proven to be superior, since they solve the problem of exploding and vanishing gradients
while also improving the speed of convergence. The model uses a function of this type as
activation function, the rectified linear unit, or ReLU for short, given by

z forxz>0

ReLU(z) = { (5.9)

0 forxz<O

It was initially created to introduce sparsity to a network, which was believed to improve
performance and was proven to outperform the sigmoid function in deep networks [20]. There
are however further different types of ReLU functions, which were also tested and compared
to see if using any of them increases the model performance. Plots for these different ReLLU
functions are shown in figure 5.13. Other types of ReLU considered here are all variations
of the leaky ReLU function, which adds a slope parameter a for negative x values and is
therefore given via the expression

for >0
leaky ReLU(z) ={ & O © < (5.10)
ax forxz <0

Variants considered here are the parametric and random ReLU. They differ from its leaky
variant by the way its parameter a is defined. For a leaky ReLLU this parameter is simply
chosen when creating the network, but for a parametric ReLU it is a parameter that is trained
through backpropagation along with the neural network model and for the random ReLU it
is randomly sampled from a uniform distribution [33]. The initial model uses a leaky ReLU
activation function for its linear layers with a value of 0.1 for the negative slope, which will
act as a comparison to judge the impact of tested ReLU variants have on the model.

Comparing test performance for models only differing in the used activation function yields
the plots shown in figure 5.14, which illustrate a significant improvement for a model using
the random ReLU activation function. As an additional side effect, this activation seems
to have a regularizing impact on a model since it is the only one out of all tested models
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Figure 5.14: Comparison of the effect different types of the ReLLU activation functions have
on the test model performance. From this one can conclude that the random ReLU shows
the greatest benefit for the model visible through a clear performance advantage.

that only shows slight overfitting effects. Due to these two advantages using a random ReLLU
has over the other tested alternatives, it shall be used as the activation function in the final
model.

5.2.5 Batch Size

The batch size parameter of a neural network determines how many data samples are used
to compute a weight update in each iteration. Typical batch sizes have values from 64 to 512
meaning that the number of 10,000 used within the initial model is relatively large. There is
empirical evidence that models using large batch sizes show issues with generalization [34],
which is why a variety of smaller batch sizes and their effect on the model performance were
tested.

Figure 5.15: Plots comparing different values of batch size in the model. Lowering this size
does not improve the results and leads to strong fluctuations.

Test results are shown in figure 5.15 and compare batch sizes of 1,000 and 64 to the standard
batch size of 10,000 used so far. The model used for these comparisons is the final network
model further described in section 5.4, which includes all investigated changes resulting from
the conducted experiments. Results of the comparisons show that no advantage can be
gained from smaller batch sizes for the model, since the test performance is equal or worse
and training times as well as generalization capabilities did not improve. Due to these results
the batch size for all further experiments was kept unchanged at 10,000.
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5.3 Regularization

This section will try to solve the problem of overfitting present in the initial model. Different
regularization techniques were used on the model and their effects compared, to find an
optimal solution. As mentioned before the problem of overfitting is a common one in neural
network analysis and therefore a lot of approaches exist to minimize the effects it has on
training results. However, currently there does not appear to be a standard procedure or
method that can deal with overfitting to great effect independent of the problem. Because of
this, there is a lot of trial and error involved in fighting overfitting. In general regularization
only affects the training process with the goal to adjust training in a way that makes the
predictions more reliable. The several approaches tested and their effects on the model
performance are discussed in the following.

5.3.1 Batch Normalization

This method tries to create similar data distributions within the mini batches used in training.
Since this decreases the variance of layer inputs, it will have a regularizing effect on the
network. In order to achieve this, data points in a batch are normalized to zero mean and
unit variance with respect to the batch mean pp and the batch variance 0123, meaning that a
normalized input data point Z; is calculated via

A T; — UB

Ty — —F/———
/2
JB+6

where € is a small constant number added for numerical stability. This is done for each input
dimension of a layer separately. As a second step of this transformation the batch normalized
values y; are produced using the relation

Yi =i+ B (5.12)

and afterwards passed to the layer. The parameters v and (8 scale and shift the normalized
data and are further parameters to be learned by the network. Batch Normalization applying
the mini batch statistics is only used when training the network whereas during testing the
normalization is given with respect to the mean and variance of the population [35].

Batch normalization was tested for all three different model structures discussed in sec-
tion 5.2.3. The effect of this regularization was then compared to the original network per-
formance showing overfitting. At first batch normalization was added to all layers except the

(5.11)

Figure 5.16: Comparison between identical models where one uses batch normalization and
the other one does not. It is clearly visible that batch normalization harms the model and is
therefore unsuited for regularizing the current model.
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output layer, but this lead to a strong decrease in overall performance of the model, which
is why for the comparison tests it was only used on the input layer for each network. The
networks use the one dimensional batch norm layer provided by PyTorch using the order
Layer — Activation — Batch Norm. Results for these tests were mostly the same across all
tested configurations, as an example figure 5.16 shows the comparison for the deep network
test. It can be seen that applying batch normalization leads to a major reduction in training
and test performance, therefore making it unsuited to fight overfitting within the current
model. This is the case for all different tested model structures and does not change when
adjusting batch normalization parameters or the ordering of layers. Due to these results
another method for regularization needs to be found for this model.

5.3.2 Weight Decay

The most intuitive way to reduce complexity of a model is to simply lower the total number
of weights through changes in the model structure which decrease the number of neuron
connections. Weight decay uses a different approach to yield a lower complexity model
by keeping weights from growing arbitrarily large. This works as a simplification, since a
restriction on the model is introduced reducing its complexity. It can be achieved by adding
a penalty term for large weights to the error function, for instance given by

E(z) = Eo(x) + ;)\Zw? (5.13)

where FEj is the original error function and the parameter A influences the strength of the
weight decay effect. Using gradient descent this then further introduces an extra term —Aw;
to the weight updates, effectively creating exponential decay for large weights. This method
has the potential to regularize a neural network model, because of its reduction of model
complexity [36].

Figure 5.17: Test results for comparing different weight decay parameter values. it can be
seen that the choice of 107 as a weight decay parameter leads to a significant regularization
effect for the model.

In practice one needs to find a balance between making the parameter A too large so it disturbs
the network too much, which hinders learning, and making it too low to have an impact on
the model at all. Two values trying to strike this balance were tested with figure 5.17 showing
their results for evaluating model test performance. It can be seen that a value of 1079 is
too small to significantly affect the model as test performance is only slightly enhanced while
still showing strong overfitting. The other tested value however is able to effectively fight
overfitting and converge to better test metrics than the model without weight decay. These
results are nevertheless not clear enough to consider weight decay for the final network model.
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In addition better results could be obtained by using dropout, which is why weight decay
was not implemented into the final model.

5.3.3 Dropout

Dropout was developed to reduce overfitting by reducing co-adaptations of neurons, which
describes an effect where the results a neuron produces are only useful in the context of
other specific neurons. This co-adaptation reduction is achieved by creating a variety of
sparse networks only featuring a subset of the original neurons, to make sure that features
learned from these neurons are helpful for the network in general. Such a sparse network is
obtained by randomly deactivating a fraction of neurons in each layer according to a random
distribution, where the probability to switch a neuron off is a parameter which can be chosen
arbitrarily. This procedure is visualized in figure 5.18 and can prove to be really valuable in
regularization. The reasoning why dropout helps to regularize the network is that its neurons
can not rely on each other anymore, producing feature recognition, which is generally more
helpful for the specific task of a model and leads to a better generalization in the end.

Figure 5.18: Example for a network after applying dropout to all three hidden layers, where
inactive nodes are marked by X. The random deactivation of nodes is repeated in every
iteration, creating a variety of different neuron connection configurations. Since deactivating
a node essentially removes its contribution from the network, this forces it to generalize
better.

During testing a mean network using all neurons is considered, which is making up for
using more neurons than the training network by multiplying all weights with a factor of 1-p,
where p is the dropout probability. Due to the nature of dropout preventing some information
to advance through the layer it is not used on output layers, using dropout on the input layer
is proven to be possible, but was not considered in the experiments conducted here. Further,
the dropout probability parameter has to be chosen carefully since the training accuracy is
diminished as an effect of dropout usage. Because of this an optimal parameter value needs
to be found to obtain the regularization effect needed while doing as little harm as possible
to the training process [37].

Dropout was placed on every hidden layer after the activation function during experiments.
The base network model used is the same as in section 5.2.3, not using skip connections.
Multiple different dropout probabilities were tested to find an optimal value for the desired
regularization effect, without penalizing the network training too much. Due to the relatively
low numbers of neurons in all layers, the tested values are relatively small. A comparison
of the achieved model performances provided by different dropout values is illustrated in
figure 5.19, where the comparison does not use dropout at all. The results show a clear
reduction of overfitting from using dropout for all tested probability values, visible by the
fact that test runs either converge or keep increasing in accuracy while dropping in loss value.
Out of all tested probabilities, a dropout of 5% shows the best performance, which is also
slightly better than the best performing weight decay test. Because of this a 5% dropout
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Figure 5.19: Comparison of different dropout values and their effect on model test perfor-
mance. In general all tested values are able to achieve regularization, but the higher dropout
probabilities only lead to small improvements, while a 5% probability seems to work best.

value shall be used in the final model for regularization. Attempts to create a model using a
combination of weight decay and dropout for regularization in the hopes of an even stronger
regularized network model failed.

5.3.4 Bigger Datasets

As was mentioned in section 3.3 overfitting occurs when the model capacity is big enough
to practically memorize the data. This leads to the conclusion that more data is an effec-
tive method of fighting overfitting in the model. This experiment aims to test the extend
of this effect by comparing two models where the only difference is the size of their input
dataset. One model uses 120 thousand events while the other works with twice the amount
of 240 thousand events.

Figure 5.20: Comparing the impact of different sizes for used datasets on the model. Maxi-
mum achieved performance metrics remain roughly the same, however for a bigger data set
the overfitting effect is reduced slightly.

The results illustrated in figure 5.20 clearly show a slight reduction of overfitting when dou-
bling the amount of input data. This however comes at the cost of a reduced training
performance similar to dropout. While large increases in dataset size can clearly lessen or
even eliminate the overfitting effect this also comes at the cost of longer computing times
and bigger memory requirements as discussed in section 3.3. This means a trade off between
regularization achieved by using this method and keeping computational cost as low as pos-
sible has to be made. Because of this it was chosen that dataset size in the model should
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be increased whenever possible but only to a maximum of 240 thousand events, even though
in theory a total of 2.4 million events would be available. As another consequence of this,
regularization can not be achieved by simply adding a significantly larger dataset and the
usage of dropout in the final model is also required.

5.4 Dataset Comparisons

After the considerations made in the previous sections a final model was constructed, which
shall now be used to compare the effects of investigated variables from chapter 4. In order to
achieve this, each of the jet pair variables is tested in the model on its own and the results
are compared with each other. As a comparison two further experiments with the final model
are conducted, one where only the basic jet variables are used, which also only uses a single
preprocessing network similar to the initial model and one where all jet variables added to
the datasets in various experiments are tested using a total of five preprocessing networks in
the final model. The former will provide an estimation of the influence structure changes and
added jet variables have on performance compared to the initial model, while the latter shows
the maximum performance achievable with all changes made to the model and including all
tested variables. Furthermore, comparing these two extra experiments allows to estimate the
negative impact additional preprocessing networks have on model performance.

Input Data
Jet variable Pair variable . Pair variable
Network Network Network

—

Classification Network

I

Output

Figure 5.21: Schematic overview of the overall design of the final network. An Input dataset is
split over multiple preprocessing networks, where the produced outputs are combined into an
input for the final network handling the classification task. There are as many pair variable
networks in the used model as there are pair variables tested in an experiment.

The final model is now structured as illustrated in figure 5.21. Other changes to the network
details are summarized in table 5.2. The various tests of different datasets, testing the
effectiveness of previously found variables are as follows. There is one test for each pair
variable, judging its performance when adding its information and an additional preprocessing
network to the model. Further, related jet variables are also added to the dataset, meaning
they are used to calculate the pair variable or show similar properties of jets. These variables
are the ¢ angle and pseudorapidity 7 in the case of angle difference, the mass of jets m; for the
relative mass variable, the absolute momentum |j| for the angle between jets and transverse
jet momentum pr; in the case of jet pair transverse momentum variable. These jet variables
are added on top of the basic energy, momentum component and particle number jet variables
present in all datasets so far. In addition the two extra experiments use all jet variables.
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Preprocessing Classification =~ Number of Activation Skip

Layers Layers total Events Function Connections Dropout
Initial
Model 4 4 120000 Leaky ReLLU Yes No
Final 5 10 240000  Random ReLU No 5%
Model

Table 5.2: List of the differences in model structure between the initial and final models. Not
changed were the neuron numbers, learning rate, batch size and used optimization and loss
functions.

5.4.1 Pair Variables

Each of the conducted experiments will be compared to each other and to the result achieved
by the initial network model when used without the b jet information but with a doubled
dataset size of 240 thousand events to make it more comparable to results obtained by the
other experiments.

Figure 5.22: Performance of the initial model when using twice the amount of input data
while excluding the b jet truth variable from its dataset. Qualitatively the results did not
change significantly, however the highest achieved accuracy in testing is slightly higher than
it was when using less events.

The performance results of this comparison run are depicted in figure 5.22. The results
are generally similar to the original initial network performance metrics using less events,
while showing a slightly higher maximum accuracy achieved at approximately 60.7%. When
considering the other performance metrics mentioned in section 5.1.2, it can be seen that
this model achieves a relatively high specificity of 68%, while scoring a relatively low recall
of 53%. This means that the comparison model is performing well when it comes to correctly
identifying HZ events but is lacking a good performance when trying to classify HH events
into the correct category.

Figure 5.23 now shows a comparison between the four different pair variable datasets using
the final model. Improvements over the comparison model are in general minor and differ
slightly for each tested dataset. Relative mass and the pair angle between jets both perform
poorly at a maximum test accuracy of roughly 60.8%, only barely better than the compar-
ison. Both other variables, angle difference and transverse momentum perform better with
the highest accuracy out of these tests at around 61% being achieved by the transverse mo-
mentum dataset, while the performance of the angle difference lies between the two extremes
at approximately 60.9%. The other performance metrics for these runs show further differ-
ences between these various variable datasets. The relative mass dataset shows roughly the
same values as the comparison model while the angle difference dataset has similar problems
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Figure 5.23: Plots for the model performance using different datasets containing one of the
pair variables and their respective related jet variables. In general performance is similar and
only slightly better than the comparison run using a simple dataset on the initial model.

with its classification achieving an even higher specificity at 75% and a lower recall only
achieving 48%. the other two datasets lead to an improvement of recall while reducing the
specificity to 60% and 61% respectively compared to the comparison model. As a result no
general improvement for these additional performance metrics could be observed for these
tested variable datasets.

Results from the other two dataset experiments are shown in figure 5.24, comparing their
test performance. While these results are better than the previous ones in general, the differ-
ences are again only minor. The full dataset using all variables can easily achieve the same
maximum accuracy as the transverse momentum dataset, but no significant improvement be-
yond that. The jet variable data set however can slightly improve the results of the previous
experiments to an accuracy of roughly 61.1% in testing.

Figure 5.24: Comparison of the two additional data sets using all tested variables or only all
used jet variables. Despite the significant difference in the amount of relevant data points
provided to the model both models perform equally well.

These results suggest, that multiple preprocessing networks are not optimal for improving
model performance and as a result a different approach for implementing the tested pair vari-
ables is necessary. Further, an improvement in accuracy and loss was observed for a model
adding more variables to the dataset, meaning the model is still capable of learning more
features provided the data. Evaluating other performance metrics shows that using both of
these datasets leads to a slight improvement of recall while keeping the specificity at the same
level as the comparison model. In particular the jet variable dataset performs better with a
recall of 58% compared to the recall value of the full variable dataset at 55%. This shows
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again that a model using all tested variables suffers from its additional networks making it
perform worse despite its informational advantage. Precision was unchanged between all con-
ducted model tests at a value slightly above the achieved model accuracies and was therefore
irrelevant for an evaluation of model performance.

5.4.2 Jet Pairs

Because only minor improvements were achieved in the previous tests, a slightly altered ap-
proach for the dataset and model input set up shall be tested. This final experiment aims
to test if using all possible jet pairs of an event instead of a list containing all jets leads
to an improvement of the results without major changes to the derived model structure.
Setting up the model and dataset in this way has both advantages but also new challenges.
An advantage over the previously used model is that no additional preprocessing networks
are needed since the variables of all jet pairs contain all of this information already, which
makes the model simpler and eliminates the need for networks with variable input size. One
big downside of this approach however is that the number of possible pairs becomes quite
large for most events in the Monte Carlo simulation, which leads to bigger datasets and more
memory and computing time needed when using this model. Because of this, the maximum
number of jet pairs is restricted to a maximum of 30 per event, but even for events with more
pairs than that the most important pairs will still end up in the dataset since jets created
by FastJet are sorted by transverse momentum, meaning the most relevant created jets of an
event will always be present in the dataset provided to the model. When applying this model
to experimental data the input would need to be configured in a similar manner to make the
model usable.

Figure 5.25: Performance of the new network model using only basic variables of jet pairs.
Both accuracy (61%) and loss of this model are already comparable to most previous results.

Two experiments were conducted, one only considering the basic variables energy E, mo-
menta p;, py, p. and particle number as a comparison, to check the effects of this dataset
structure change, and a full run containing all variables tested before both for jets and jet
pairs. The results for the comparison experiment, are shown in figure 5.25. Even without
adding any further variables this model can now already achieve performance similar to most
of the previously tested datasets at roughly 61%. This result already shows that the possible
classification capability of this newly arranged model seems to be higher, therefore an even
better result is expected when adding all tested variables to the dataset in the next experi-
ment.

Performance results for the model after adding all variables to the jet pair dataset are shown
in figure 5.26. A massive improvement over the previous experiments is visible and the model
outperforms any other experiment conducted significantly. The highest accuracy achieved in
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Figure 5.26: Final results for the model performance when using a full variable list for all
possible jet pairs as an input. There is a significant improvement compared to the initial
model visible leading to a far higher accuracy of around 68.5%. Further, an even stronger
over-regularization effect compared to other data set tests exists within this model as can be
seen by the test accuracy and loss clearly outperforming the training results.

this run is approximately 68.5%, which is also better than the initial model when using the
b jet boolean variable. As a conclusion the model previously used, adding one or multiple
additional preprocessing networks, does not seem to be suited for this problem and shifting
the focus from singular jets to pairs of them is a significantly better approach for organizing
the model input data.

Because of the big success of this change in approach, an even stronger restriction on input
accessible to the network could be helpful for even better results, however this comes at the
cost of a more work and time intensive preliminary analysis and data selection. One possible
approach would be to find a small number of jet pairs for each event believed to be highly
likely to be higgs particles through classical or neural network analysis and only using these
pairs in the current or a similar model to classify the type of final state. This would also help
to make the model simpler and lessen the hardware requirement due to a large reduction in
the amount of input data, leading to shorter training times, which would make this analysis
more applicable, or alternatively, would enable using larger dataset sizes given the resources.
But even without going this extra step improving the current state of the model is still pos-
sible. For instance there is still model fine tuning for the parameters possible, networks are
still relatively small and shallow limiting their capacity. Additionally the model is overall
over-regularized due to the combined regularization effect of a bigger dataset and applied
dropout, which is visible by the fact that test performance is better than training. Other
alternatives such as deep convolution structure allowing for a large number of input variables
are also possible directions for model enhancements.

As a general conclusion, it was shown that distinguishing between HH and HZ final states
using neural networks is in principle possible, but a lot of improvements still have to be made
in order to create a model capable of showing the necessary performance to allow its usage
for analyses in the field of di-higgs production. Further the best possible approach to this
issue might still be fairly different from the current model making more research into this
topic necessary.
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Chapter 6

Conclusion

This work has successfully introduced new variables and clearly shown their ability to dis-
criminate HH and HZ final states. Further, drastic changes to the structure of both the
neural network model and its input dataset used in this analysis lead to the desired improve-
ment of final state classification accuracy. This was able to solve prominent problems of the
original neural network model and further investigate effects of alternative structures on its
performance.

Due to time limitations only relatively general variables were able to be tested, however for
the purpose of classification there might still be more specific variables to be found, which
are sensitive to differences in particle properties such as spin to enable an even more effective
discrimination. It was also discussed that a stronger preselection of input data has the poten-
tial to improve the model further. The neural network model used also has the potential to
be expanded into an even deeper network to improve performance, which could not be done
due to hardware and time limitations. Both of these potential improvements to the model
are expected to make even better classification performance of the model achievable.

Future work could therefore focus on finding more useful variables or extensively expanding
the data preselection and model structure to allow a further improvement in its classification
capabilities. In addition tests so far were conducted on purely simulated data without any
noise or other background processes, so additional work testing and optimizing the network
model for these circumstances is certainly required.

In general it was proven that the used approach of classifying the HH and HZ final states via a
neural network model works and still shows enough room for further improvement to achieve
accuracies sufficiently high to make usage for an analysis possible. This approach could
then be used for discovery and measurement of higgs pair production with the possibility of
discovering new physics along the way.
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