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ABSTRACT

EFFECTIVE GAUGE THEORIES FROM FUZZY EXTRA
DIMENSIONS

Unal, Goniil
Ph.D., Department of Physics

Supervisor : Assoc. Prof. Dr. Seckin Kiirk¢iioglu

October 2016, pages

In this thesis, we investigate the formulation and various aspects of gauge theo-
ries with fuzzy extra dimensions. In SU(N') gauge theories coupled to a suitable
number of adjoint scalar fields, we determine a family of fuzzy vacuum con-
figurations dynamically emerging after the spontaneously symmetry breaking
of the gauge symmetry. The emergent models are conjectured to be effective
U(n) (n < N) gauge theories with fuzzy extra dimensions. Making use of the
equivariant parametrization technique and focusing on the simplest member of
the family of fuzzy vacua, we obtain all the SU(2) x SU(2)-equivariant gauge
fields in a U(4) model which characterize its low energy degrees of freedom.
Low energy effective action of a U(3) gauge theory on R? x S% is also deter-
mined and its vortex type solutions are investigated in detail. In this thesis, we
also formulate the quantum Hall effect (QHE) on the complex Grassmannians
Gr,(CY). We use the group theoretical techniques to solve the Landau prob-

lem and provide the energy spectrum and eigenstates of charged particles on



this space under the influence of Abelian and non-Abelian background magnetic

monopoles.

Keywords: Gauge Theory in Higher Dimensions, Fuzzy Spaces, Equivariant
Parametrization, Dimensional Reduction, Quantum Hall Effect in Higher Di-

mensions
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0z

FUZZY EKSTRA BOYUTLARDAN EFEKTIF AYAR TEORILERI

Unal, Goniil
Doktora, Fizik Boliimii

Tez Yoneticisi : Dog. Dr. Seckin Kiirk¢tioglu

Ekim 2016 , sayfa

Bu tez ¢alismasinda, fuzzy ekstra boyutlara sahip ayar teorilerinin formiilasy-
onu ve gesitli yonleri incelenmigtir. Uygun sayida adjoint skaler alanla eslesmig
SU(N) ayar teorilerinin spontane simetri kirthm ile dinamik olarak olugan bir
kiime fuzzy vakum konfigiirasyonlar1 belirlenmistir. Bu bi¢imde ortaya c¢ikan
modellerin fuzzy ekstra boyutlu efektif U(n) (n < N') ayar teorileri olarak yo-
rumlanmasi {izerinde durulmustur. Simetrik parametrizasyon teknigiyle ve bahsi
gecen fuzzy vakum kiimesinin en basit liyesine odaklanarak, U(4) modelinde
diisiik enerjili serbestlik derecelerini karakterize eden tiim SU(2) x SU (2)-simetrik
ayar alanlar elde edilmigtir. R? x S% iistiindeki U(3) ayar teorisinin diisiik en-
erjili eylemleri hesaplanip, vorteks tipi ¢éziimleri de incelenmistir. Ayrica, bu
tezde kompleks Grassmann manifoldlarinda, Gry(C"), kuantum Hall etkisi for-
miile edilmistir. Grup teori teknikleri kullanarak, Landau problemini ¢oziiliip,
bu uzayda abelyen ve abelyen-olmayan manyetik monopollerin etkisi altindaki

yiiklii parcaciklarin enerji spektrumlar: ve 6zdurumlar: belirlenmigtir.
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Anahtar Kelimeler: Yiiksek Boyutlarda Ayar Teorisi, Fuzzy Uzaylar, Simetrik
Parametrizasyon, Boyutsal Indirgeme, Yiiksek Boyutlarda Kuantum Hall Etkisi
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CHAPTER 1

INTRODUCTION

In the past few decades, non-abelian gauge theories with extra dimensions have
been a continually appearing theme in theoretical physics studies attempting
to explore physics beyond the Standard Model. One of the early motivations
in this context was to explore Grand Unified Theories (GUTS) by formulat-
ing gauge theories whose extra dimension are symmetric spaces with the coset
structure K = G/H and subsequently dimensionally reducing the models to the
Minkowski space in certain a manner that captures some new ingredients coming
from extra dimensions. In the literature, this approach is known by the name
of coset space dimensional reduction (CSDR) [1,2] (See also, 3| in this context)
and we will have much more to say on it later on in this introduction, to make
its connection to the research presented in this thesis as concrete as possible.
Another motivation for their study, which is in fact not completely disconnected
from the first, is the appearance of extra dimensions in (super)string theories
and related supersymmetric Yang-Mills theories. Dimensional reduction of su-
persymmetric (SUSY) N = 1 Yang-Mills theory in 9 + 1-dimensions to N = 4
SUSY Yang-Mills (SYM) in 3 + 1-dimensional Minkowski space is an extremely
well-known example, essentially due to a several numbers of physically appeal-
ing properties of the N =4 SYM. As a quantum field theory (QFT), the latter
has several appealing properties, among which its conformal invariance and UV
finiteness, may be indicated at first glance. It is invariant under S-duality, in-
terchanging the coupling constants gy, and gi—”M and it plays a central role in
gauge/gravity duality as it is the most prominent example on the conformal

field theory (CFT) side for AdS/CFT correspondence [4,5]. However, it is gen-



erally considered that this theory is not realistic as it has too much symmetry.
One possible route for accessing phenomenologically more viable theories and

its connection to our work will presented in the ensuing discussions.

New directions of research have opened up after it was shown by Arkani-Hamed
et. al. [6] that extra dimensions may emerge dynamically in a four-dimensional
renormalizable and asymptotically free gauge theory. As widely known, idea of
extra dimensions goes back to the works of Kaluza and Klein |7,/8] in which the
product M* x K,, of Minkowski space M* and a compact space K, is considered
in an attempt to unify the theories gravitation and electromagnetism. It is
important to stress that extra dimensions are input in Kaluza-Klein theory.
However, in [6], extra dimensions appear spontaneously and it brings forth a new
perspective in approaching field theories with extra dimensions. In the present
literature, this phenomenon is frequently referred to deconstruction. One such
new direction which was recognized by Aschieri et. al. [9] is the dynamical
generation of the fuzzy sphere S% as an extra dimension in an SU(N') gauge
theory coupled to a triplet of scalar fields in the adjoint representation of the
gauge group. Dynamical generation of product of two fuzzy spheres, S% x S% was
examined subsequently in a model which contains six scalar fields in the adjoint
representation of the gauge group and which is essentially a deformation of the
bosonic sector of N =4 SYM containing quadratic and cubic interaction terms
in addition to the usual quartic one. As these results have a crucial standing for
the research conducted in this thesis, we will have more to say on them soon.
However, before doing so we also would like to draw the attention of the reader
to the connection of these developments to certain facts and results in string

inspired matrix models.

A so-called BFSS matrix model due to Banks, Fischler, Shenker and Susskind
[10] proposes to give a non-perturbative description of M-theory on flat back-
grounds. This matrix model can be shown to emerge from the dimensional
reduction of N = 1 supersymmetric Yang-Mills theory in 9+ 1-dimensions down
to the zero volume limit, i.e. to 0 + 1 dimensions. In other words, one could
say that the M-theory on flat backgrounds is described by “matrix quantum

mechanics”. Massive deformations of the BFSS model have also been studied



in the literature [11,/12]. One such model is the Berenstein-Maldacena-Nastase
(BMN) matrix model and it proposes to give a non-perturbative description
of the M-theory on maximally supersymmetric pp-wave backgrounds. Fuzzy
sphere, S%, or more generally direct sum of fuzzy spheres S% := ®S% at dif-
ferent levels provide nontrivial vacuum configurations in this model. Another
model providing a dual description of BF'SS was developed by Ishibashi, Kawai,
Kitazawa, and Tsuchiya (IKKT) [13]. It is obtained by reducing the SYM in
10-dimensions to a pure matrix model. Fuzzy spaces emerge from this model
too [14}{18]. For example, noncommutative U (1) and U(n) gauge theories on S%
can be constructed from the IKKT matrix model supplemented by the Chern-
Simons term [14]. One of the most interesting feature of fuzzy spaces in matrix
models is that they are not an input in the model but they arise as brane-type
solutions which are generically given as direct sums of fuzzy spheres Sz := ®S%,
that of products of fuzzy spheres Sz x S := ®S% x S%, or higher dimensional
fuzzy spaces such as fuzzy four sphere [19,20]. Thus, the analogy to the models
in [9,)21] and in general to the phenomenon of deconstruction is evident in this
respect. In the present context, it is also useful to mention that fluctuations
around such fuzzy vacua may be examined to yield gauge field excitations living

on the world volume of the brane configurations.

After these cursory remarks indicating some of the connections between string
theoretic matrix models and gauge field theories of interest in this thesis, we can
now return to elaborate on the latter. As already mentioned, for the SU(N)
YM theory on Minkowski space M* coupled to a triplet of adjoint scalar fields,
fuzzy sphere S% vacuum was investigated in [9]. In this model, three matrices
describing the S% are the vacuum expectation values of the scalar fields and the
SU(2) symmetry of S% is inherited from the global SU(2) gauge symmetry of the
YM model. Nonzero vacuum expectation values (VEVs) of the scalar fields imply
that the SU(N') gauge symmetry is spontaneously broken down to a U(2(+1)®
U(n), where N, n and the level £ of the fuzzy sphere are related as N’ = (20+1)n.
Fluctuations around this vacuum configuration are found to have the structure
of U(n) gauge fields over S%, which preliminarily indicates that the emerging

model after symmetry breaking may be conjectured to be an effective U(n)



gauge theory over M* x S% in which fuzzy sphere appears as extra dimensions.
The effective U(n) gauge theory interpretation over M* x S% can be supported
by two different approaches. A Kaluza-Klein (KK) type mode expansion of the
gauge fields over the fuzzy extra dimensions can be considered and a detailed
analysis of its low lying modes can be performed. This is already carried out
in [9] and placed the effective gauge theory interpretation on firm grounds. A
complementary treatment is given by the equivariant parametrization approach
[22-26]. This involves imposing proper symmetry conditions on the fields of
the model so that they transform covariantly under the action of the symmetry
group of the extra dimensions up to the gauge transformations of the emergent
model E] These conditions may be solved using the representation theory of Lie
groups and explicit equivariant parametrizations of all the fields in the model
can be obtained providing strong evidence for the interpretation of such models
as effective gauge theories, since, subsequently, an effective low energy action
(LEA) may be obtained by integrating out (i.e. tracing over) the fuzzy extra
dimensions and dimensionally reducing the theory. Models with non-Abelian
gauge symmetry groups, U(2) and U(3) for the case of M x 8%, and a U(4)
model for M x 8% x 8% have been investigated in [22,24,27] and LEAs were
obtained. These LEAs are generalized Abelian Higgs type models with several
U(1) gauge fields and complex and real scalars with vortex solutions for M = R2.
We present the detailed results of two approaches [22,24] in chapter 3 and our
new results on U(3) theory over M x 8% in chapter 5 [27].

Fuzzy vacua in the form of S% x S% is spontaneously generated from a deforma-
tion of N = 4 SYM containing cubic and quadratic terms in the scalar fields.
These deformation terms breaks supersymmetry completely and the SO(6) R~
symmetry down to a global SU(2) x SU(2). After breaking of the gauge sym-
metry, the latter serves as the isometry group of the S% x S% vacua. That the
emergent model behaves as an effective gauge theory on M* x S% x S% was shown
using equivariant parametrization techniques and computing the LEA for a U(4)

model [24]. These results are reviewed in some detail in chapter 3.

! In this aspect it is equivalent to the CSDR approach adapted to the present case of fuzzy extra
dimensions.



This thesis is based on three articles [26-28], two of which are on the general
framework described here while the last treats a separate problem. We conclude

this introduction by giving a brief summary of our results.

In chapter 4, we further investigate the model which is a particular deformation
of the N = 4 SYM theory with cubic SSB and mass deformation terms given
in [21,]24]. We determine a family of fuzzy vacua which are expressed in terms
of direct sums of product of two fuzzy spheres, i.e SZ"™ x S2Int .= ©S2 x SZ.
Structure of these vacuum configurations is revealed by permitting splittings of

the scalar fields that involve the introduction of k; + k9 component multiplets

transforming under the representation ('“2_ L 0)o(0, k22_ L) of the global symmetry
and it is found that all fuzzy monopole sectors over S% x S% are systematically
accessed thorough projections of these vacua. Focusing on the simplest member
SZInt » S2Int of this family, we demonstrate that the fluctuations about this
vacuum have precisely the form of gauge fields, which allow us to conjecture
that the emerging model is an effective U(n) (n < N') gauge theory on M* x
SZint 5 S2Int - To support this interpretation, we study the U(4) model and
obtain all the SU(2) x SU(2)-equivariant fields by equivariant parametrization
technique, which characterize its low energy degrees of freedom and also examine
the monopole sectors with winding numbers (£1,0), (0, £1), (£1,+£1) in some
detail. We note that spinorial modes that naturally come out of this analysis do
not comprise independent degrees of freedom in the effective theory, but they
may be used to find the "square roots" of the equivariant gauge field modes.
Moreover, stability of our vacuum solutions is addressed by showing that they
may be interpreted as mixed states with non-zero von Neumann entropy. Finally,
we show that S2/"t x S2I" jdentifies with the bosonic part of the product of two
fuzzy superspheres with OSP(2,2) x OSP(2,2) supersymmetry and discuss how
this comes about. Our results applies just as well to matrix models with the
same type of vacua and methods are quite versatile to investigate other fuzzy

vacuum configurations, which may be of physical interest.

In chapter 5, we explore the low energy structure of a U(3) gauge theory over
spaces with fuzzy sphere(s) as extra dimensions. In particular, we determine the

equivariant parametrization of the gauge fields, which transform either invari-



antly or as vectors under the combined action of SU(2) rotations of the fuzzy
spheres and those U(3) gauge transformations generated by SU(2) C U(3) car-
rying the spin 1 irreducible representation of SU(2). The cases of a single fuzzy
sphere S% and a particular direct sum of concentric fuzzy spheres, S2™ cover-
ing the monopole bundle sectors with windings +1 are treated in full and the
low energy degrees of freedom for the gauge fields are obtained. Employing the
parametrizations of the fields in the former case, we determine a low energy
action by tracing over the fuzzy sphere and show that the emerging model is
abelian Higgs type with U(1) x U(1) gauge symmetry and possesses vortex solu-
tions on R?, which we discuss in some detail. Generalization of our formulation
to the equivariant parametrization of gauge fields in U(n) theories is also briefly

addressed.

In chapter 6, we formulate Quantum Hall Effects (QHES) on the complex Grass-
mann manifolds Gry(CY) which are generalizations of complex projective spaces
CPN. We set up the Landau problem in Gry(C") and solve it using group theo-
retical techniques and provide the energy spectrum and the eigenstates in terms
of the SU(N) Wigner D-functions for charged particles on Gry(CY) under the
influence of abelian and non-abelian background magnetic monopoles or a com-
bination of these thereof. In particular, for the simplest case of Gry(C*) we
explicitly write down the U(1) background gauge field as well as the single and
many-particle eigenstates by introducing the Pliicker coordinates and show by
calculating the two-point correlation function that the Lowest Landau Level
(LLL) at filling factor » = 1 forms an incompressible fluid. Our results are
in agreement with the previous results in the literature for QHE on CPY [29]
and generalize them to all Gry(C") in a suitable manner. At first sight, the
discussions in this subject may look irrelevant from the rest of the thesis. How-
ever, there is an interesting connection between QHE and fuzzy spaces. The
Landau problem on two- and higher-dimensional spaces has close connections
to the physics of strings and D-branes in the matrix theory, and to fuzzy spaces
such as S% and CPY. These connections were studied in the literature [30-32]
where it was shown that construction of fuzzy spaces using geometric quantiza-

tion methods yields that Hilbert spaces Hy of wave functions are holomorphic



sections of U(1) bundles over the commutative parent manifold, and the matrix
algebras Maty of linear transformations on Hy’s form the fuzzy spaces [32].
It has been observed that the LLL in Landau problems over S?, CPY in U(1)
backgrounds define Hilbert spaces that are identical to H y as they are also holo-
morphic sections of U(1) bundles over these spaces. Similar structural relations
between St and the QHE on S* also exist [32]. Building upon this connection,
observables of the QHE problem are also contemplated as linear transformations
in Maty acting on Hy . From this angle, we see that there appears almost an
immediate connection of our findings for the QHE problem on Gry(CY) to fuzzy

Grassmann spaces, which are discussed in some detail in the literature [33-35].






CHAPTER 2

FUZZY SPHERE

In this chapter, we introduce the basic formalism of noncommmutative spaces,
in particular the noncommmutative or fuzzy two sphere, S%, and S% x S% and
subsequently we give some essential features of the formulations of classical
field theories over S% and S% x S%. Our discussion does not attempt to give
a full review of the vast literature on the subject but focuses on a number
of selected topics which provide the necessary background required to put the
developments of ensuing chapters on a broader perspective, and make the thesis
as self-contained as possible. There are several approaches to obtain the fuzzy
spheres S%, the product of two fuzzy spheres S% x S%, their supersymmetric
generalization [36-44] and fuzzy complex projective space CPY [45,46|. Here,
we will follow the practical and the transparent approach given in [3841] which
is essentially based on quantizing the chain of manifolds such as C? — S% — §?
to obtain the fuzzy sphere S%, or CN*1 — S2N+1 — CPY to obtain CPY.
Another, somewhat more rigorous approach is given by the canonical (Dirac)
quantization of Lagrangians composed of appropriate Wess-Zumino terms to
achieve the desired form of the quantization of S? and several other compact
manifolds [37], which fall into the broad class of coadjoint orbits of compact Lie

groups.

In order to make this chapter self-contained, before discussing the quantization
of S?, we give a review of some basic properties of commutative manifolds S®,
S? and the descent chain C? — S — S? which will be necessary for the quan-

tization process. In particular, we explain how S* form a fiber bundle of S?



with a U(1) fiber, i.e. the first Hopf fibration. Harmonic expansion of functions
over S? is recalled and a simple description of a scalar field theory over S? is
also provided in this chapter. Our goal is to give the relevant aspects of field
theory on S?, once the scalar field theory on the fuzzy sphere S% is constructed,
this will allow us to observe its continuum limit in a transparent manner. We
also describe the topologically nontrivial configurations of scalar fields over S?
as sections of complex line bundles over S? with non-vanishing winding numbers
following the exposition given in [38], which is amenable to obtain their fuzzy

version. A discussion on the latter is also provided in the present chapter.

For quantization, our departure point is to obtain the noncommutative complex
plane C? by replacing its coordinates with the annihilation-creation operators.
Making use of the first Hopf fibration provides the construction of noncomm-
mutative three sphere, S% and the noncommmutative two sphere, S%. We focus
our attention on the latter and discuss its structure and properties in consider-
able detail. Subsequently, we investigate the formulation of scalar field theories
on S% [37] including monopole sectors with nonvanishing winding numbers |38].
Finally, we turn our attention to gauge theories on S%. Using the matrix model
approach of [47], we first construct the U(1) gauge theory on S% and provide
also a brief description of U(n) gauge theories over S%. Monopole sectors of

these gauge theories are also discussed in some detail.

2.1 Hopf Fibration

First Hopf fibration describes the three sphere S® as a fiber bundle over the
base space S? via the U(1) fibers. Tt is possible to say that every point on S?

corresponds to a circle on S3. In order to explain this relation, let us start with

the embedding of S® in R* as
wWwitwitwitwi=1. (2.1)
Using the coordinate transformation,

2 2 2 2
T = 2((4)1(,&)3 + CL)QCL)4) , Tg9 = 2(&)20)3 — W1W4) , X3 = W + Wy —Wg — Wy,

(2.2)
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we can obtain the coordinates of S? in R? since
i+ oy +as=1. (2.3)

There is a simple way to describe S? using the coordinates of a two-dimensional
complex plane C? [41]. This description will be very useful to obtain the non-
commutative version of S and S%. Let us denote by z = (z; , 22) the coordinates
of C? and remove the origin 0 = (0, 0), i.e. consider C*\{0} so that we are able

to define the coordinates of S? in the following form

2 .
& = o i=12, |z|=+V|=x1?+|2/?, (2.4)

since z # 0. It can be easily seen that these coordinates are normalized to 1

de—1, e=| ). (2.5)
&

Now, we are ready to give the projection map 7 from S® to the base manifold

S? as
T 53 — 527 S’L — 5E1<€) = gTTifa (26)
where 7; are the Pauli matrices. This map can be written explicitly as follows

v =&+ 66,
Ty = —i&& + 16560,
T3 = fikfl - 5552- (2-7)

We observe that the coordinates z; are left invariant under the U(1) action

€ — €?¢ and also satisfy
T(E)" = #(¢), (&) 1) =1. (2.8)
Hence, we have obtained the first Hopf fibration which may be denoted as
U(l) = 5% — 52, (2.9)

Now, we would like to focus on S2. In the next section, we will present some
basic geometrical properties of S? and also discuss the Harmonic expansion of

functions on it.
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2.2 Two-sphere

Two-sphere S? is a two-dimensional compact, real manifold which may be simply
described by embedding it into the three dimensional Euclidean space R? by

imposing the constraint
o]+ a5+ 25 =17, (2.10)

where 7 is the radius of S?. These coordinates may be given in terms of spherical

angles 0 , ¢ as follows
x1 =rcospsinf, xy=rsinpsinf, x3=rcosb, (2.11)
where 0 <6 < 7,0 < <27.

The coordinates z; fulfilling generate an infinite dimensional commutative
algebra A of smooth functions on the two-sphere with the standard point-wise
product (fg)(z;) = f(x;)g(x;). Any continuous function f on S? can be ex-
panded in terms of the coordinate functions x; as
f(@) = Z Qiy iy iy Ty, - (2.12)
i1y-in
It is possible to express the expansion of functions in terms of the spherical

harmonics, Y;,,,(6, ¢) as

F@ =YY amYm(d), (2.13)

=0 m=—j

where the spherical harmonics fulfill the following orthogonality relation

oo
/ O Y)Y () = 6160 (2.14)

where dQ) = sinfdf dy is the solid angle. The derivations on S? are given by
the “angular momentum” operator L; = —i(Z A V); = —i€;j,2,0k, which satisfy

the SU(2) commutation relations
[Li, L] = i€y Ly, (2.15)

It is known that the eigenvectors of the square of “orbital angular momentum”,

L?, and its third component, Ls, are the spherical harmonics with the following
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eigenvalue equations
LYjm(®) = 3G+ DYjm(®), j =01,
L3Y;(Z) = mY (), m=—j,---,7]. (2.16)

2.2.1 Scalar Fields on 5?2

Using the properties of functions on S? given in the previous section, we can
examine a few basic properties of a simple scalar field theory on S?. Let us
construct the complex scalar fields on S?. For a massless complex scalar fields
on S?, it is possible to write the following action by using the Laplacian —L* =
—(—iZ AV)? on 52
ds)

S = E¢*L2¢. (2.17)
For a real scalar field, we need to impose the reality condition ¢* = ¢. As we
mentioned earlier in , we can expand the complex scalar fields on S? in
terms of spherical harmonics as follows

6= > GmYim(d). (2.18)

=0 m=—j

Using ([2.14)) and ({2.16|), the action (2.17]) becomes
dQ) * . 79 . Q0.

jm  kn im  kn

=> > i+ 1) bim - (2.19)

=0 m=—j
We note that it is possible to add a potential term in the form of V(¢*¢) in the
action . The mode expansion in is given here for future comparison
that will be derived on S% later on subsection . It is certainly possible to
study quantum field theory of scalar, spinor and gauge fields on S?. For the

developments along these lines existing literature may be consulted [48].

2.2.2 Monopole Sectors

In this subsection, we would like to discuss some features of the topologically

nontrivial configurations of a complex scalar field on the two sphere. Following
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the exposition given in [38|, we will demonstrate how complex line bundles char-
acterized by a winding number can be given a form amenable to a quantization

to obtain their counterparts over the fuzzy sphere S%.

Let us start with the stereographic coordinates in order to describe S? in R3.
It is well-known that all points on S?, say Ug, except the north pole, can be

defined by two coordinates (X,Y’) where

(X,Y)z(lfz,lfz), (2.20)

and similarly all points on S2, say Uy, except the south pole, are well-defined

by (U, V)

(U,V):(liz,—liz). (2.21)

Using the coordinates (6, ¢), they may be written as

(X,)Y) = (Cotgcosgp,cotgsingo), (U, V)= (tangcosgo,—tangsingo).
(2.22)

Defining two complex number Z = X + Y and W = U + iV, we obtain the

following inhomogeneous coordinates of S? on Ug and Uy respectively
0 . 0 _,
Z = cot 56“" , W =tan ¢ . (2.23)

We may as well introduce the homogeneous coordinates on Ug, these may be

given as
0 0 .
X1 = sin 50 Xz =cos 56” : (2.24)
while on Uy, we may take
/ : 0 —ip /
Xy =singe™™, Xy =cosg, (2.25)

Using these coordinate systems, we can expand the complex scalar fields on Ug

as

B0GXT) =D Conmamna X3 "X (2.26)

whereas on Uy as
¢(X/7 X/*> _ Z c;nlanlnz X/1*m1 X/Q*mz X/1n1 X/2n2 ) (227)
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It is easily seen that on equator (f = 7), the expansions and ( -
include the phases e/(=™21m2)¢ and e (m—m1)¢  regpectively and, therefore the

complex scalars are related by
Flog = cilmmm-malog), (2:28)

Let us define the number k = %(ml +mg —ny —ng), 2k € Z. Let us take k fixed
and consider the expansion of ¢, ¢’
6= 06X) = Y Commamna X3 X5 "X NG (2:29)

¢ =00 X)) =D Crnmamma Xi XXX (2.30)

with the same coefficients. Then we see that the scalar fields ¢ and ¢’ form the
local sections of a U(1) line bundle which we denote by G;. For k = 0, the scalar
fields ¢ and ¢’ are smooth functions in the algebra A = C>(5?) = Go while for
k # 0, they form the modules over the algebra A, i.e. A-modules. This means
that éoék = g}ﬁg}) = Gk On Uy N Ug, we have the following transformation
between ¢ and ¢’

¢ =", (2.31)
where kK = 2k € 7Z is the topological winding number.

The gauge transformation in (2.31]) enables us to define the covariant derivatives

on Ug and Uy, respectively as
D,=1i0,+A,, D:L = i@L + A; , (2.32)

where A, and A, are the topological gauge fields, whose explicitly form may be
defined in terms of y and x’

A, =irx'0,x, A, = mx’fa;x’. (2.33)

We know that the transformation property of the covariant derivative should be
same with complex scalar fields in order to obtain gauge invariant Lagrangian,
i.e it must be of the form D) ¢" = e"?D,¢. Making use of this fact, we can

construct the relation between A4, and AL as

A=A, — ig 0.9, g=¢e"". (2.34)
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It is important to note that the gauge fields given in steam from the
nontrivial topological structure of complex scalar fields on S?, can be called
the topological k-monopole gauge field. It is the same monopole gauge field
encountered in discussion of Berry’s phase and it has noting to do with the

dynamical gauge fields.

The action for the complex scalar fields on S? with topological k-monopole gauge

field can be written as

|5 Do v (2.35)

for a suitably given potential V' (¢*¢) satisfying the standard field theoretical

requirements such as being bounded from below.

Now, we would like to describe this topological nontrivial field configuration
without making any specific coordinate choice. It can be easily seen that the
coordinate system ([2.24)) and correspond to the coordinates of S? in the
Hopf fibration map . To be more precise, setting & = y or £ = x’ in the map
, we can obtain x; = cos psinf ,xy = sinpsinf and x3 = cosf. Hence, we
can write those complex scalar fields ¢ in S® with k& = %(ml + mg — ny — na)

fixed as

A& €)= Commamms& ™ ETEE? (2.36)

This corresponds to the set functions denoted by Gy, 2k € Z. As we mentioned
before, under the U(1) action, the coordinates of S? in (2.7) does not change.
Under U(1) action

€ esve, ¢ o ematet (2.37)
we see that ¢ € G, transforms as
b v, (239)
Let us introduce the operator Ky in the form
1 *
Ky = §(§a3£; —&a0k,) - (2.39)

16



It can be easily seen that ¢ € Gy are the eigenvectors of this operator with the

eigenvalue k;

1
Koéb - 5(52(95:; - §aa£a)¢
1 % % XM % M2 ¢N1 N2
= 5(51351 + 850 — £10¢, — §20,) Zcmlmznnmfl § 28118

= %(ml +mg —ng —n2)p =ko. (2.40)

Here, we again stress that when k& = 0, the complex scalar fields are just the
scalar fields given in section with the commutative algebra A = C*°(S?),
while k # 0, they are the element of A-bimodules, G;. Furthermore, we see that
Kop* = —k¢* for ¢ € Gy, therefore ¢* € G = G_; and also that G;G; C Gi4y.

It is also possible to define the operators mapping G onto itself as follows
Ji = 5 (gaTaBagg - §a7a6855> . (241)

They form a differential realization of SU(2) generators (in S coordinates)

satisfying the commutation relation [J;, J;] = €;jxJi.
Under the action of the generators J;, ¢ transform as spinors
Jigs = ETO‘B&“ Jils = _ZTaﬁga (2.42)

and x; transform as vectors in R®. It can be easily seen that z? = r? is an
invariant function under the action of J; as expected. We can also define the

operators which map Gy to Gr,1 and G to Gi_1, respectively as
K¢ =icapl (0e,0), K_¢ = i€ap(0er0)Es, (2.43)
satisfying
(Ko, Ki]=+Ky, [K, K ]=2Kj. (2.44)
Let us explicitly show the first relation in ([2.43)

Ki¢p= (Zglkaﬁz - Zé-;agl) Z lemgnlmﬁf mlé;"”ﬂ”fg”
. 1 -1 . 1 -1
= Z Cmimaning (Z?’ngf e &M — g ™ME met i 32)

= i(n2¢’ — n1¢//) s (245)
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where ¢' and ¢” have the topological number k + 1. We note that although K,
K. commute with the operators J;, they depend on each other by the following
relation

1
J? = K3+ §(K+K_ +K_Ky). (2.46)

Now, we are ready to write the action for the complex scalar field with the
topological monopole charge x = 2k in terms of the operators K, and K_ as

follows

/% (¢*%(K+K_ + K _ K )p+ V(¢*¢)) - /% (gb*(‘]g - k2)¢ + V(¢*¢)) ’

(2.47)

where ¢ € Gi, and we have used (2.40|) and (2.46]) to get the second line in ([2.47)).
It can be easily seen that for £k = 0, we obtain the action given in section ([2.2.1)).
The noncommmutative version of this complex line bundles will be given in

section ([2.5.1]).

2.3 Noncommutative Version of the Hopf Fibration

So far, we have given the necessary information which prepared us to take up
task of describing the noncommutative or the fuzzy sphere S%. In this section,
we construct the noncommutative version of the first Hopf fibration [41] by using
the quantization of C?. The quantized version of the first Hopf fibration enables
us to construct the noncommmutative three sphere, S3, and subsequently the
noncommmutative two sphere, S%, by exploring descent chain C* — S3 — 5?2

given in section [2.1]

Let us first quantize C2. On C2, the Poisson bracket of two functions may be

defined as

0AO0B 0AO0OB .
{A,B}—Ejja—zja—%—a—%a—zj, j=(12) (2.48)
where
{Zi, Zj} = 0, {Zi, 2]'} = 0, {Zi, Zj} = 51’]‘ . (249)
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We want to quantize the manifold C? by replacing the Poisson bracket with an
appropriate commutator {fl, B} = AB — BA of operators A, B acting on an
infinite dimensional Hilbert space which may be conceived as the two-particle
Fock space. This is equivalent to take the coordinates z; as harmonic oscilla-
tor annihilation operators A; and z; as their adjoint AI. Then, we obtain the
two-dimensional noncommmutative complex plane C2 with the commutation

relations
(A, Aj] =0, [ALAll=0, [A;,Al=066;, (2.50)

where we have introduced the noncommmutative parameter § with dimension
length squared. Taking 6 — 0, we obtain the classical manifold C?. With the
scaling A; — f}—%, we can express non-trivial commutation relation simply as
[A;, A;] = 0;;. With the same method, we can achieve the quantization of the
N + 1-dimensional complex plane CN*! for any N using suitable number of
pair of annihilation-creation operators. The noncommmutative complex space
CJ* can be employed to obtain the fuzzy version of complex projective plane

CPY |41). We will explain this relation later.

Now, using the definition ([2.4]) and these annihilation-creation operators, we can

obtain the noncommmutative version of S° as

P 1 1

Si__l_)fi:Ai — = = A;,
|| VN VN+1
¥ A 1 1

="t =—cAl=Al—nx, (2.51)
2| VN VN +1

where N is the number operator: N = 3 A}Aj with the condition N # 0. This
condition means that we omit the vacuum state from Hilbert space of states
which is like removing the origin from C? in section ([2.1)). To be more precise,
S3. is defined on the Hilbert space which is the orthogonal complement of the
vacuum in the Fock space. We note that this construction of S% does not yield
a truncated finite dimensional Hilbert space and it is ill-defined as acting on
any state in this Hilbert space with some suitable power of the operator Ai#,
the vacuum state will eventually be created. S3 may be viewed as an auxiliajl\"fy
space in the construction of the fuzzy two sphere S% and this is the reason why

it is introduced here. Let us also note that this space has nothing to do with
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the fuzzy three sphere construction given in [49).

Making use of the Hopf fibration map given in (2.7), the “coordinates” of the

fuzzy sphere can be given by the operators

N 1 1 t ~ Al

1 1
$$(€) — T = = A =
VN VN N A2

We investigate the properties of this noncommutative manifold in the next sec-

tion.

2.4 Fuzzy Sphere

In the previous subsection, we have shown that we obtain the noncommmuta-
tive two sphere S% by replacing the commutative coordinates x; of S? by the
noncommmutative coordinates Z; and expressing them in terms of annihilation

creation operators as
1 .
& = ﬁATTiA, N#0 (2.53)

We point out that these coordinates commute with the number operator

[#;, N] =0, (2.54)
and this means that z; can be restricted to the subspace H,, of the Fock space
for N=n#0. H,is a (n + 1)-dimensional subspace of the Fock space which is
spanned by the following orthogonal vectors

(AD™ (ah)"
vV 711! AV 712!

The algebra of (n + 1) x (n + 1) matrices, Mat(n + 1) is completely generated

0,0) = |ny,n2), ni+na=n#0. (2.55)

by the polynomials in z; restricted to the subspace H,,.

We know that there exist a connection between the algebra of angular momen-
tum and two independent harmonic oscillators, namely this is the Schwinger

construction |50]. Consider the operators L; defined in the form

A
Li—tatrna, a=[ ™ (2.56)
2 A,
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where A, and Al fulfill (2.50)). Then it is straightforward to verify that
[L;, L] = i€ Ly, (2.57)

which is the commutation relation of angular momentum operator familiar to us
from quantum mechanics. L; generate the su(2) Lie algebra and also the SU(2)
Lie group. Here, we can see that annihilation and creation operators carry the
spin 3 IRR of SU(2) and thus they transform as spinors under the action of
SU(2)
1 1
[Li, Ao] = —§(Ti)aﬁf457 [Li, Af] = 5( i)pa A (2.58)

This means that by the following n-fold symmetric product of these spinors

1 1 n

Ry Ry = = — 2.59
2® ®2 5 (2.59)
R

n—fold

n

we can obtain the angular momentum ¢ =

irreducible representation of SU(2)
with the Casimir

n.n
L*ny ,ng) = 5(5 +1)|n1,na) . (2.60)

Using (2.52)) and ([2.56]), we have the relation between the coordinates of S% and
the generators of SU(2) as follows

R 2
Tiny ,ng) = ﬁLilnl ,N2) 5 (2.61)
Hence, we obtain

. 2. 9 2
[T, T;] = ;%zjk%, Z:CZ =(1+ ﬁ)’ (2.62)

where it is understood that these relations are given on the Hilbert space H,,.

As n — oo, we see from (2.62)) that two-sphere S? is recovered.

We note that with the scaling z; — \/% and recalling that n = 2¢, (2.61) and

P
(2.62) can be rewritten in the following form
N L; 1

b= P (i) = ey, S A= 1. 2.63
Jiirn Bl = eyt 2 (2.63)

These relations summarize the description of the fuzzy sphere and they will be

frequently used throughout this thesis. If we need, we can make the scaling
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%, = R#; to introduce the radius R for S% and work with the dimensionful

quantities.

Any element m € Mat(2¢ + 1) is an element of the fuzzy sphere S% and it is
finitely generated by ;. We may express this fact by writing

m = Z Cilf"yiki’il s "%ik . (264)

A scalar product S% can be defined as

(my, ms) = Tr(mim,) = Tr(mims), m; € Mat(n+1), (2.65)

n+1

where Tr = %_HTT is the normalized trace. Commutative limit of this product

may be shown to correspond to integration over S2. In particular, we see that

@ —1.

Trl =1 corresponding to | =

Left acting and right acting linear operators may be defined on Mat(2¢ + 1).

Let us consider the two linear operator o and . We can write
ofm=am, offm=ma, o mec Mat(20+1). (2.66)
It is easy to see that o’ and off satisfy
(aB)r =atph, (aB)f =pRa’, [aF, %] =0 for any a,B € Mat(20+1).
(2.67)

Here, we have two commuting matrix algebras Mat(2¢ + 1) and Matr(2(+ 1)
generated by the left acting and right acting operators. As we mentioned earlier,
the matrix algebra Mat(2¢+1) is generated by the coordinates Z; which contain
the terms A!A; with the domain #,. Hence, the algebras Maty, z(2¢ + 1) are
generated by the operators (Al A;)5R.

We may as well write
Alm o= Aym,  A'm = Alm, AR=m4,, AR =mal. (2.68)

However, the operators AL, AR take H, to H,_; while A" AR take H, to

H,11. Such operators play a role in the description of fiber bundles over S% as

we will see in subsection 2.5.11
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Now, we are ready to define the derivations on S%. It is known that since su(2)
act on Mat(2¢ + 1) by the adjoint action, the derivations on S% can be defined

as
Lim :=adLym = (L¥ — LFYm = [L;,m]. (2.69)

This provides a map from Mat(2¢ 4+ 1) onto itself and it satisfies the Leibniz

rule:
Ei(mlmg) = (Eiml)mg —+ ml(ﬁimg) s (270)

which means that it is indeed a derivation over the algebra Mat(2¢+1). It is also
seen that the action of the operator £; on the identity matrix 1 is zero. These
facts are analogous to the chain rule in differentiation and the annihilation of
constant functions by the continuum orbital angular momentum operator. From
these facts, we can conjecture that the operator L£; is the fuzzy sphere “orbital
angular momentum” which reduces to the usual derivative operator L; on S? as
{— oo;
- 0

Li— Li=—i(F(E)AV); = —iﬁijk$(f)jm- (2.71)

To make this correspondence precise, we determine the spectrum of the orbital
angular momentum operator on S%. Equation in (2.69)) indicates that the oper-
ator £; includes both the left and the right SU(2) actions on Mat(2¢ + 1), L¥
and L each carry the IRR ¢ of SU(2). This is readily seen from the fact that

LELE =00 +1), LELE=10+1), (2.72)

on Mat(2¢ + 1). Consequently its representation content is given by tensor

product
(RL=0D1--- D2, (2.73)
Spectrum of £2? is then given as
jG+1), j=0,1---,2¢. (2.74)

This is exactly the spectrum of L?, but now truncated at j = 2¢ and corresponds

to it in the limit ¢ — co. Thus, it is justified to have L£; as the “orbital angular
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momentum” over Sz. What are the corresponding eigenvectors of £2 and L3 in
the fuzzy case. These are given by so called the polarization tensors T}, (¢) ,j =
0,--+,20,m = —j,---,j which are (2¢ + 1) x (2¢ 4+ 1) matrices [51]. These
matrices form a basis in Mat(2(+1) since there are (2(+1)? linearly independent
Tjm(€)s. This can easily be seen from the fact that since for a given j, there are
27 + 1 different values for m and therefore there are Z?io(Zj +1) = (20 + 1),
independent degrees of freedom in Tj,,(¢). These tensors have the following

eigenvalue equations and the orthogonality relation

LTy = 3G+ Vs LsTjm = [Ls, Tym] = mTjm s (Tyrmrs Tjm) = 6j1j0rmim -
(2.75)

Tjm(€) carry the spin ¢ IRR of SU(2) just as their continuum counter parts Yj,,.
Under SU(2) rotations, Tj,,(£) transform as

Tjor (£) = D(g) Ty (€)(D(9) ™" =Y D(g) Tim () , (2.76)

where D(g) ., are Wigner functions for SU(2), i.e. elements of the SU(2)

mm

rotation matrices.

We note that S% preserves the rotational symmetry of two-sphere S2. In other
words, it is invariant under the SU(2) action. This fact can be easily seen
by the transformation property of commutation relation of the coordinates on
S%. A group element g of SU(2) act on #; adjointly: Ad#; = g#;g~" and the
commutation relation in becomes

i

I Wl 92.77
T R (2.77)

l92:97", 9297 =

which means that rotational symmetry is preserved by S%. As S% is a truncation
of S? with finite numbers of degrees of freedom and it preserves the rotational
symmetry of S?, it appears to be well suited setting for investigating classical

and quantum field theories. This is the task we take up next.

2.5 Scalar Fields on S%

Our aim is to adopt the formulations of scalar fields on S? given in section [2.2.1]
to the fuzzy case. Let us first expand the complex scalar field ® € Mat(2¢ + 1)
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in terms of the polarization tensors as

=" PpTim(l). (2.78)

Euclidean action for a massless field on S% may be written as

S = (L;®, L;®) = (P, L°P) = Tr(®TL2D). (2.79)

(20+1)
Using the expansion (2.78)), this action becomes

S =Tr(®'L®) = > " k(k + 1)Tx(T},, Tin) @, Opn

jm  kn
2w
=3 > GG+ )@l (2.80)
=0 m=—j
This action has finite degrees of freedom and approaches to (2.19)) in the limit
¢ — co. It is possible to add the potential term consisting of polynomials P(®)

of @ in this action

V(®) = (1, P(®)) = Tr(P(®)). (2.81)

20+1)
We note that the action with or without the potential term V' (®) is invari-
ant under SU(2) transformations. This can be checked both for finite SU(2)
transformation, taking ® — ¢ '®g, g € SU(2) or by taking an infinitesimal
SU(2) transformation ® — ® + ie;[L;, ®], using Adg = e'i*i ~ 1 + ie;adL; for
infinitesimal ¢;. It is instructive to check this for the infinitesimal case. Under

the infinitesimal action & — ® + i¢;[L;, @], the action becomes
S=Tr ((cp +ie L, ) L2 (@ + ;| L, @])) ,
= Tr (®TL°® + ie;[L;, DT L2® + ie;®TL2[L;, @]) + O(€y),
=Tr (cpw?cb +ie;(®TL°L;® + 'L, ®L* — 20T, L,®L; — dTL*PL,
— ®OL,L* +20'L;®L,L; + L;®'(L°® + ®L* — 2L;PL;)
—®'L;(L*® + ®L* - 2ch1>Lj))> ,
= Tr (¢'£%9) (2.82)

For finite SU(2) transformation, the invariance is already observed due to cyclic

property of the trace.
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2.5.1 Monopole Sectors

In subsection [2.2.2| we have constructed the topologically nontrivial complex line
bundles over S2. Here, our goal is to carry that construction to the fuzzy setting
and obtain the corresponding quantized version of line bundles over S% follow-
ing the treatment given in [38]. As explained in section , in the quantized
version of first Hopf fibration, the coordinates on S3 may be defined in terms of

annihilation-creation operator as follows

Gi=A——, & =——Al. (2.83)
VN VN
Consider the monomial
ErmEmEn g (2.84)
where k£ = %(ml + mg — ny — ngy) is fixed. Let us denote the linear space

which is spanned by monomials of this form as G,. For k = 0, it collapses to
the noncommutative algebra Go = A generated by the operators L; in ([2.56))
satisfying . For nonzero k, Gy, form the bimodules over A and the operator
L; act adjointly on the elements of this space as J;- := [L;,-|. The quantization

of G to (j’k is evident from these facts.

Now, just like the commutative case, the complex scalar fields are the elements

of fl—bimodules7 Qk, in the form

Q=) Gmmanmabi ™66 (2.85)

with k = %(ml +may—ny—ny) fixed. Let us define m = my+mso,n = ny+ny and
k = 3(m—mn). As we mentioned earlier, (n + 1)-dimensional subspace H,, of the
Fock space for the eigenvalue of the number operator n # 0 can be spanned by
the annihilation-creation operators explicitly given in . Making use of this
information, it can be seen that the complex scalars in (2.85)) are the operators
which map H,, to H,, since it contains n annihilation and m creation operators.

Precisely, they are the (m + 1) x (n + 1) matrices.

Let us denote this linear mapping space as an instead of (jk C;nn = C;o is the

(n+1) x (n+ 1) matrix algebra with the restriction n # 0. Hence, for this case,
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the complex scalar fields ® are (n+ 1) x (n + 1) matrices with n = 2/ given in
the previous section. On the other hand, Gyun forms a left module over G,y and

a right module over G,,. The su(2) rotation operators act on ® as
Ji®=LI"®—PLY, (2.86)

where L are (m + 1) x (m + 1)-dimensional su(2) generators whereas L} are
the su(2) generators with (n 4 1) X (n + 1) dimension. su(2) IRR content of J;
can be seen from the following tensor product

Tos=kek+1)- e, (2.87)

where k = $(m—n) and J = 1(m+n). The eigenvectors of the operator J? and

J3 can be given by the generalized harmonics (I)‘j]ks with the eigenvalue equations
P =i+ 1), S, =Pl
jg=1kl, |kl +1,--, s=—j,---J, (2.88)

where there are (m + 1)(n + 1) linearly independent @, . Equation (2.88) may

be compared with 1} Any element of Gyun can be expanded in terms of the

operators &7, .

Let us introduce the operator that gives the eigenvalue k = %(m —n) under the

action on the scalar fields ® € G,,,, as

1 - A
Ko® =[N, @], N = Al A, (2.89)
In order to avoid any confusion, let us note that N|ny,ny) = n|ni,ns) and
N|my ,ms) = m|my ,ms). Equation (2.89) can be checked as
1, - 1, - .
Ko® = S[N, ] = S (N0 — &)
1

FEmy F¥ma Fny én 1 N
=3 <<A1A1 + A;AQ) Zamlm2n1n2€1 Emagr 522) . 5@]\7

= 3 a7 (Al + Ay

1 1 -
+ §(m1 + Mo — Ny — n2)> — éq)N
1 1 . .
= §(m1 +mg —ng —ng)d + §(®N — ®N)
=k, (2.90)
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where k = 2k is the winding number. We can also give the operators K, and

K _ which increase and decrease the topological number k& by 1, respectively as
Ky ® =ieqgAL[®, Al], K _® =ieqpAq, ®|Ag. (2.91)

They can be readily compare with their commutative counterparts in ([2.43)).
Finally, it remains to write down the action for the complex scalar fields with

nonzero winding number . This is given as

S = Tr((I)‘%(KJrK_ + K K)®+V(®1d)) = Tr(d(J* — k)0 + V(9TD)) .
(2.92)

A comparison with (2.47)) reveals the analogy and summarized the result that

we were set to achieve in this section.

2.6 U(n) Gauge Theory on S%

Scalar, spinor and gauge theories on S% and their various aspects have been
investigated in the recent past [36,38,52-62|. In this thesis, we will be essentially
concerned with the aspects of gauge theories over S%, S% x S%, we therefore focus
on the latter and refer the interested reader to the references [53,57,59] to find
out more on scalar and spinor fields on S%. Here, we investigate the gauge
theory on S% by using a matrix model. Following the approach in [47], we will
first give the gauge theory on S% which reduce to a U(1) gauge theory on S?
in the commutative limit £ — oo and then generalize this construction to U(n)

gauge theory on S%.

2.6.1 U(1) Gauge Theory

Let us consider the following matrix model with the action

S = TrV(A)) = —— ok ((A2 — 0+ l)212(2”1))2> , (2.93)

(20 +1 2

where A is a 2(2¢+ 1) x 2(2¢ + 1) Hermitian matrices, i.e. A € Mat(2(2¢+ 1)).

It can be easily seen that this action is invariant under the adjoint action of
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U220+ 1))

AN—UTAU, UeU@220+1)). (2.94)

The equation of motion can be obtained as

AN — (0 + %)2) =0. (2.95)

This means that for the vacuum configuration, the eigenvalues of A are +(¢+1),0
with some multiplicities, say ni,ng. With ny +n_ +mng = 2(2(+ 1), up to a
unitary transformation, the matrix A satisfying (2.95)) can be written explicitly

as follows
(t43)1ny 0 0
A= 0 —(+H1. o0 : (2.96)
0 0 01,
Let us focus on the specific case by choosing ng = 0,n, =20+ 2 and n_ = 2/.

We will show that by a unitary transformation of U(2(2¢ + 1)), this matrix can
be transformed in the following form

1

where 7; are the Pauli matrices and L; are the generators of spin ¢ IRR of SU(2)
which were used to define the fuzzy sphere as explained earlier. In order to see

this, we note that the square of A and Tr(A) are

1 1 1
A = ltLlion+ LiLj (055 + i€ijnTi) = LT Lili= (¢ + 5)21 ;o (298)

Tr(A) = %2(2“ )= (204 1). (2.99)

Hence, the eigenvalues of A are +(¢ + %) and the multiplicities can be easily

found by using
1
Tr(A) = (ny —n_)(l+ 5) =20+1, ny+n_=220+1), (2.100)

from which we see that the (¢ + 3) eigenvalue has the multiplicity n, = 20 + 2
while the —(¢+ 1) eigenvalue has multiplicity n_ = 2¢. Tt is instructive to obtain
these results in a slightly different manner as well. Let us introduce the operator
Ji = L;i ® 13 + 13441 ® § which has the SU(2) representation content

£®%:(€—%)@(£+%). (2.101)
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Hence, the cigenvalues of J? are (¢ — 1)(¢ + 3) and (¢ + 3)(¢ + 2). Since J* =
L;L; + L;7; + 77/4, our matrix A can be written in terms of J?,L? and 77 as

follows
AN=J*—L*—72/44+1/2=0> —((L+1)—1/4. (2.102)
Here, we can read the eigenvalues of A as (£ + 1) and —({ + 1).

All these results prove that there exists a unitary transformation such that

1 1 1

and the equation of motion (2.95)) is satisfied by A given in (2.97)). In fact, we
see that the equation of motion in (2.95)) takes the form L;L; = ¢(¢ + 1) which

is used to describe a fuzzy sphere at level /.
Let us consider a general 2(2¢ 4 1) x 2(2¢ 4+ 1) Hermitian matrix A;
1
A:A“®T‘u = (5—#5)12(254_1)—’—31’@7}'7 (2104)

where B; is a (20 + 1) x (2¢ + 1) matrix whereas ( is a 2(20 + 1) x 2(20 + 1)
matrix. If we insert this matrix into the action (2.93)), we obtain

2 4 2 1 2
— ey (64172 = 2+ 122G + 57 + B.B)

1
+ (5 + B)* + B;iBi(28% 4+ 68 + 3/2) + 48B;3B; + 2ie; By, B; B,

S =Tr(V(A))

+ 4Z€Z]kﬂBkBZB] — EijkBiBjElnkBan + BZBZB]BJ) (2105)

2 _ .
= mTT ((Bsz — Lsz)Q + (Bz + ZeijszjBk)(Bi + ZeijkBjBk)
+[B:, Al[Bi, Bl + (20 + 1)°8 + 25° + 8* + 656(8 + 1)(B:B; — L; ;)

where we have used T'ra11) = Tr2041) @ T'rs.

At this point, if we impose the constraint § = 0, we get Tr(A) = 2¢ + 1 and

equation ([2.106|) becomes

2 . .
S = mTT((BzBZ — g(@ + 1))2 + (Bz + ZeijkBjBk)<Bi + ZeijkBjBk)) .

(2.107)
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We will show that this is indeed a possible form of a U(1) gauge theory action on
S%. Let us first note that imposing the constraint 3 = 0 cause the breaking of
SU(2(2¢+ 1)) symmetry of (2.93) down to a smaller group SU(2¢ + 1). Indeed,
it is easy to see that the action in (2.106) is invariant under the adjoint action
of SU(2¢ + 1)

Bi—=U'BU, UeSU>20+1). (2.108)
Now, we can derive the equation of motion from the action (2.107)) as

<5Z)hn(%;U%Br—ﬂf+1DM%&Bf—ae+1»&

+ Z(BZ + ieijkBjBk)aﬁ(Bi + ifijk;BjBk)Ba) =0
af

{BZ‘, Bij — g(f —|— 1)} + (BZ —I— ieijkBjBk) —|— ieijk[Bj, Bk —|— ieklmBle] = 0 .
(2.109)

It is straightforward to see that is satisfied if we take B;B; —(({+1) =0
and B; + i€, B; B, = 0 and this corresponds to taking B; = L; up to a unitary
transformation with U € U(2¢ + 1). Since S in is positive definite, we
also see that with B; = L;, S is minimized, S = 0. Consider now the fluctuations

A; around this vacuum by writing

then, we get

1

where

This means that the fluctuation around vacuum solution provide the kinetic
terms in Fj; automatically and (2.112)) precisely has the form of the field strength
term for a U(1) gauge field A; on S%. Does this interpretation indeed hold? To

see this, let us investigate the transformation property of A; under the U €
SU(2¢ + 1) gauge transformations. Using ([2.108]) and (2.110)), we can write
B =U'B{U=UYL; + A)U = U"AU + U ' L,U
=U AU+ UYL, U]+ L;. (2.113)
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Noting also that S is covariant under (2.108]), we can write B; = L; + A, which
yields from ([2.113))

Al =UTAU + UYL, UJ. (2.114)

This is indeed the correct form for the gauge transformation of a connection
in a non-abelian theory. The latter is clearly due to the fuzzy structure of the
theory. In the commutative limit with U = e**(®)| this takes the form of a usual

abelian gauge transformation
Al = A; —iea 0
= A+ LA (2.115)
We note that z;L;A = 0 and therefore L;A is a vector field on S? for A(z) €
C°°(S?). Indeed on S?, there are only two independent components of a gauge

field. When S? is embedded in R3, this requirement on the gauge fields A; may

be satisfied by imposing the gauge invariant condition
2iA =0, (2.116)

on A;’s. (From (2.115), we immediately see that xz;A; = z;A;). The condition
(2.116) means that the component of A; normal to S? is set to zero. It can also
be read as being able to write any gauge field on S? as A; = ez-jkxjflk with /L

on R3.

(2.116)) can not be imposed on A; on S% due to the fuzzy nature of the latter.
However, a gauge invariant condition that approaches to (2.116)) as ¢ — oo can
be proposed as [41}59,63]

(Li+AM? =L =(((+1)1. (2.117)

Gauge invariance of (2.117) may be checked as follows. Consider a scalar field
® € Mat(2(+1) on S% which is coupled to the gauge fields A; in the fundamental
representation of the gauge group. Thus we have [41}59, 63|

d—U'®, UecSURI+1), (2.118)
and
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We can write

Di(U'®)=DiU'® -U'®L;
=LU '+ AU '®-U 'L,
=LU'® U 'L+ (U AU+ UYL, U)U '@
=U"'Di(®), (2.120)
which verifies that D;(®) transform covariantly under the left action of the gauge
group. We may write D/(-) = U 'D;(U-) and also that D}- = U~'D,U-. This
gives
DD, =U'DUU'D,U
— 00+ 1)1, (2.121)

where we have used (2.117) in the second line. (2.121)) explicitly shows that
(2.117)) is a gauge invariant condition.

An alternative way to handle this problem is to interpret the normal component
of A; on S% as a scalar field ¢ with a large mass, which can not be easily
excited and becomes infinitely heavy in the £ — oo limit. In the latter case, this
interpretation becomes equivalent to the initial solution offered for this problem.

The term B; B;—/{({+1) in action is used to suppress the scalar ¢. More precisely,

using ([2.63)), we get

((0+1) ((0+1)
1
(&, 4i} W+ (2.122)

and as £ — 00, it reduces to 2x;A; which is twice the radial component of gauge

fields on S%. Consequently as £ — oo the first term in ([2.107)) becomes

5 ) 0 8 )
?@ﬁjfwaa_ww+n)Z;i/zgﬂw+nuﬁg
raas )

indicating that ¢ has the mass m = %5\/6(6 + 1) for £ — oo. Thus essentially
¢ decouples from the rest of theory as it achieves a large mass in this limit.

In chapter 3, we will see the same phenomenon happening in the context of
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a model where the gauge theory on S% emerges dynamically from an SU(N)

gauge theory coupled to a triplet of adjoint scalar fields.

In the commutative limit ¢ — oo, the action (2.107)) becomes
L [dQ~ - - , .
S = ? EE]F s Ej = ZLiAj - ZLJ'AZ‘ + EijkAk (2124)

and it is the action of a U(1) gauge theory on the unit sphere S?. In the
planar limit, two independent component of the gauge fields can be obtained
by imposing the constraint as follows. Consider for instance the plane
obtained from the sphere at the north pole (0,0, 1) by taking the radius of the
sphere to infinity. The constraint indicates that A3 = 0 and iL; = 2903 — 2305 =
—0y,1Ly = —x103 + £30; = 0;. Hence, we have only Fis nonvanishing and it is

given as
Flo = —00A; + 014y + Az = 01 Ay — OhAy (2.125)

which is the more familiar form for the field strength in U(1) theory on 2-

dimensions.

2.6.1.1 Monopole Sectors

It is possible to obtain the monopole sectors over S% by using the matrix model
whose essential ingredients were given in the previous section. We continue
to follow discussion in [47]. Taking A as a 2(2¢ + 1) x 2(2¢ + 1) matrix and
considering the action with

1 ~
A= 5 Larin + Bi®Ti, (2.126)

where ¢ ~ ¢, we observe that the equation of motion (2.109) is going to be valid
with B; replace by Bf. Now, if we assume that Bf contains only spin ¢ IRR of
SU(2) with the eigenvalue of Casimir Cy = (¢ + 1) ~ (¢ + 1), i.e. B! = aLf

with a being a constant, the relevant equation of motion gives

{aLf, 2LILEY + Ll + ieijka'Li + ieijk[osz, oaLj +ioPeun L{LL]) = 0.
(2.127)
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It is possible to simplify this equation as follows
alLf (2a22(57+ =20l +1)+1—a—2a(l - a)> ~0

(20— 1)(a — 1) +a®20(0 + 1) — 20(2¢ +1) = 0. (2.128)

The solution for the equation (2.128) can be found by expansion of « at the
order ZLQ and it gives
1+ Lo 20 — 7) < (2.129)
20+ 1 2 ’
Hence, Al = % + aLf ® 7; is a vacuum solution for the matrix model 1D and

we obtain in the large ¢ limit (¢ — o0)
2

Bl e BB — (a2 —aLf = (™ m e i1
7,+'l€1]k 7k (Oé O{) 3 (2£+1+<2£+1)2)J}1 €(£+ )
1 1 1 m m2 m
oy, o, m P m
= 28(1 2€+4€2)\/€ + 0 —ml 5 + 1 Z; Qx“
BIBI — 6(0+1) = a2U(i + 1) — 0(C + 1)
2m m2 9 m m2
_(1+2€+1+ (2€+1>2)(€ +l—ml = o+ =) = (0 +1)
=0(m’). (2.130)

This means that in the commutative limit (¢ — o0), we obtain the classical

action for the magnetic field strength with the magnetic monopole number m as

2 mI; m; m?
s= o (30070) =5 21y

Here, it is possible to write down the magnetic field as G; = —%qijjk = I
and using ([2.124)), we get the same action as follows

m2

S = %/%(—Gijka)(—GiﬂGl) o2 (2.132)
We note that since we use the dimensionless matrices Bf, G; does not look like
the magnetic field strength of the magnetic monopole which should have the
inverse length square dimension expected from a monopole. However, we can

~ = £
easily restore the dimensions by taking Bf = %, then the magnetic field appears

m;

52 and the action reads

in the more familiar form CNJZ =

1 sy .~ ~ m?
S=— [ —r2G,Gi = —. 2.133

g? / i 2g°r? ( )
In (2.133]), g has the dimension of inverse length while it is dimensionless in

@.132).

35



2.6.2 Nonabelian Gauge over S%

In order to construct a U(n) gauge theory on S%, we may start with a 2N x 2N
matrix A for the model described by the action given in (2.93) where N >
(20+1). Assuming that N = n(2¢+ 1) and choosing ng = 0,n, = n(2¢+2) and
n_ = n(2¢) in (2.96), the vacuum solution for this matrix model in a suitable
basis can be written as

1

where has the eigenvalue (¢ + 1) with multiplicities N +n, N —n, respectively.
The latter follows from Tr(A) = (ny —n_)({+3) = n(2(+1) = N and n+n_ =
2N. Full set of the vacuum solutions are given by a unitary transformation of
A in as UT'AU with U € U(n(2¢+1)). We want to note that this block
matrix contains n copies of solution given in section (2.6.1). Hence, we can
define the fluctuation about this vacuum configuration by the following matrix
(with the choice 8 = 0 again)

1

where B; are N x N matrices. This enables us to obtain the same action as

(2.107) with N x N matrices as

2
S =

(2.136)

and the vacuum solution for this action is B; = L;1,,. We stress that the action

(2.136]) is invariant under the adjoint action of U(N);
B = U'BU, U&cU(N). (2.137)

We now want to show that this matrix model yields a U(n) gauge theory over
S%. To do so, we first use u(n(20+1)) = u(n)®@u(2¢+1) and see that the matrix
B; should naturally carry an additional index for u(n). To be more precise, we

need to write the fluctuations of B; as

B; = Bi N = L\ + A M\ Ay = Ao\ + Ao\, (2.138)
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where \° = 1,, and A, are the Gell-man matrices of su(n) which satisfy

5 1 ,
Ay = Fbln + 5 (dae + ifun)Ae (2.139)

where fu. is anti-symmetric structure constant and d,. is totally symmetric

tensor.
With the fluctuation term A;, we obtain the field strength tensor as
. 1 . . .
Bi + ZGijk;BjBk = 56@'1@};}'1@ s Ej = Z[Li, AJ] — Z[Lj, Az] + Z[Ai, AJ] — EijkAk .
(2.140)

This suggest that, then A; = A; A" are the su(n) valued gauge fields over S%.

For ¢ — oo, we obtain a U(n) gauge theory on S? with the action
1 [dQ 1 [dQ g g
S=— | —F,F9=— [ —(F,;(F"° + F,; ,F"7%) , 2.141
[ = [ EEer s R, )
where
Fijo=1LiAj0 —iL;Aio + €ijrAro,
Ej,a == iLiAj,a — iLin,a —+ Z‘Aiijchgc + eijkAk,a . (2142)
Just like we did in the previous section, let us assume that A is an N x N
matrix with N = n(20 4+ 1) = n(2¢ + 1) — m for small m € Z. We see that
equation of motion in (2.109) can be fulfilled by a reducible representation of

SU(2) consisting of block matrices in the form of (2.126). Therefore, after a

suitable unitary transformation A can be written

AL o 0
i ..
Almsm) [0 4% 0 ) (2.143)
0 0 - Al

where A% is given by (2.126)), m; = () and >

Following the similar steps of calculation given in the previous section, we obtain

the action in the large ¢ limit as

1 —

which is the action for the instantons with the topological numbers m; # 0,i =

1,---,n on the fuzzy sphere SZ. This can be understood as the value of the
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classical action in certain instanton solutions of U(n) Yang-Mills theories [64}65].
As the details of these works are not related to the main themes of this thesis,

they will not be discussed in this thesis.

2.7 Higher Dimensional Fuzzy Spaces

So far, we have focused our attention on the fuzzy two-sphere and provided all
the necessary background on fuzzy spaces that is going to be exploited in the rest
of the thesis. However, it is also possible to construct the higher dimensional
fuzzy spaces using the annihilation-creation operator method given in section
2.3} In this section, we would like to discuss briefly the fuzzy version of higher
dimensional spaces, in particular the complex projective space CPY and the

product of two spheres S? x S2.

2.7.1 Fuzzy CPV

Here, we construct the N-dimensional fuzzy complex projective space by gen-
eralizing the technique given in section [2.3] For this purpose, we continue to
follow the idea of [41]. CPY is the N-dimensional complex projective space. It
is possible to describe this space using the chain CN*! — S§2VN+1  CPY as we

explain below. We have that S?V*! is a 2N + 1-dimensional sphere described as

SV ={e= (&, &), £€CTVN{0}, &6 =1}. (2.145)

S2NF1 forms a fiber bundle with U(1) fibers since S?Y*1 admit the U(1) action

¢ — €?¢ which may be defined as

G2N+1
U(l) — S2N+1 — (CPN, or CPN = W . (2146)

The projection map of this fibration may be given as
Xa(6) =& €, e s, (2.147)

where A\,,a = 1,--+-,N? — 1 are the Gell-Mann matrices of SU(N + 1). We

note that this map gives the embedding of CPY into RN*+2N where we have the
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following constraints for the coordinates X, [45]

N 2(N —1
dachaXb - \/_( )

XoXo = =7 T
N+1 N +1

(2.148)

where dg,. is totally symmetric tensor given in (2.139)). Let us note that another

realization of CP" may be given by the coset space

cpy = SUWN+1)  SU(N+1)
T UWN) T SUWN)xU®Q)’

(2.149)

Now, we are ready to construct the fuzzy complex projective space CPY by
quantizing the chain CN*! — §2V+1 — CPN. To proceed, let us remove the

origin of N + 1-dimensional complex plane and so we can define the coordinates

of S2N+1 g

Zi
gi = m, 2 € CN—H s |Z| = \/|21|2 + -4 |ZN+1|2 . (2150)

Replacing the coordinates z; and z; by annihilation and creation operators A;

and AI, respectively, we obtain N + 1 dimensional noncommutative complex

plane Cév 1 with N + 1 sets of commutation relations
[Ai, Aj] =0, [AlLAll=0, [4;,Al=05;. (2.151)

Using the definition in (2.150|) and the fibration map (2.147)), the coordinates of

CPY can be constructed as follows

Zi 1 -
Z‘iz—z—>Ai—A, N:CLT(IZ' 0,
) 1
X (&) =€ € =X, = NAT/\QA. (2.152)

Just as before, X, can be restricted to the subspace H,, of the Fock space for
N =n. In a similar manner, we can define the coordinate X, of CPY in terms
of the SU(N + 1) angular momentum operator using the generalized Schwinger

construction as

A

2 PN 2 N
Xa = [Xa; Xb] - _ifachk: (2153)
n n

where fu. is the structure constant of SU(N + 1). Since (CP};V is not used in
this thesis, we will not discuss the details of this space any further and refer the

interested reader to the reference [41].
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2.7.2 Fuzzy S? x §?

In this section, we give a brief review of the product of two fuzzy sphere S% x
S% by following [24]. For detailed discussion on this space and QFT on it,
the reader is referred to the references [43,|44]. The fuzzy version of 5% x S?
can be obtained by modifying the results of quantization of sphere into the
product of two spheres. As we have shown in section [2.4] the fuzzy sphere
coordinates can be described by the generators of spin ¢ IRR of SU(2) in (2.63))
and Mat(2¢ + 1) is completely generated by polynomials in these coordinates
acting on (2¢ + 1)-dimensional Hilbert space. In a similar manner, S% x S% is
the algebra Mat[(2¢, + 1)(2¢r + 1)]. This algebra is generated by the matrices
120, +1)(205+1)s LF = LE%LH) ® Laept1) and LE = 1, 41) @ LZWRH

(LE, LE) are the generators of (¢1,¢r) IRR of SU(2); x SU(2)r with

) where

[LiLa Lf] = ieijkLl€> [LZR> Lf] = ieijkLkR’ [LiL7 LZR] =0,

LELE = 00 + Do, ety LT = Cr(lr 4+ 1) Lar, 41y@epr1)  (2.154)

The coordinates of S% x S% can be described in terms of these six matrices as

1

~L (2¢r+1)
T, = ——=L; @ L(2ep+1) 5
gL(gL‘i‘ 1) (2p+1)
1
PR = Tgp, 1) ® ——=LP" =123 (2.155)

lr(lr +1)

acting on a (2¢1, + 1)(2¢g + 1)-dimensional Hilbert space. They satisfy

i i
if, )] = ——————eipi},  [2],2]] = ],

g 0,00, +1) 7" g 0,00, +1) 7"
&7, 21 =0, @raf =1, &j@t=1. (2.156)

In the commutative limit (¢, ¢r — 00), these coordinate become the standard
coordinates of S? x S? embedded in RS and generate an infinite dimensional
algebra of smooth functions C°°(S? x S?) which can be expanded in terms of

the product of two spherical harmonics Yy, i, (0, 0)Yimg (€', ¢).

Following a similar line of development as in the fuzzy sphere, the derivations

on S% x S% can be obtained by the adjoint action of su(2) @& su(2) = so(4) as

Lim =L @ 1y, 01 ,m],  LFm =1y, 41 @ L™ m]  (2.157)
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where m € Mat(20y, + 1)(2(g + 1). In the commutative limit, these derivations

reduce to the usual derivations iL¥ = e, .220F and iLE = €2 R0 on S? x S2.
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CHAPTER 3

DYNAMICAL GENERATION OF FUZZY SPHERE(S)
AND EQUIVARIANT PARAMETRIZATION

So far, we have given the essential geometric structure of fuzzy sphere S% and
also brief summary of field theory on S%. Now, we focus our attention to the con-
cept of dynamical generation of fuzzy sphere from an SU(N) Yang-Mills theory
coupled to a suitable number of scalar fields. We give the details of these results
by following the work of Aschieri et. al. [9]. We start with a renormalizable
SU(N) gauge theory in 4-dimensional Minkowski space M* coupled to a triplet
of scalar fields transforming adjointly under the action of SU(N) and as vectors
under the global action of SO(3) = SU(2). Working on this model with the
most general renormalizable potential term which spontaneously breaks SU(N)
symmetry down to a smaller group shows that the vacuum expectation value of
scalar fields takes the form of fuzzy sphere S% and fluctuations around this vac-
uum have the structure of gauge fields over S%. These results enables to interpret
that after the spontaneously symmetry breaking, SU(N') gauge theory on M*
behaves as an effective U(n) gauge theory on M* x S% where n(2¢+1) = A and
¢ is the level of fuzzy sphere. Here, the fuzzy sphere S% emerges dynamically as
extra dimensions from 4-dimensional renormalizable gauge theory. In order to
support this interpretation, we construct the Kaluza-Klein (KK) mode expan-
sion of gauge fields on fuzzy extra dimensions and we investigate the low-energy

effective action of U(n) gauge theory on M* for the lowest lying KK modes.

Afterwards, we continue to develop the effective gauge theory interpretation by

another complementing viewpoint approach which is so-called the equivariant
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parametrization technique. This technique impose the proper symmetry con-
dition on the fields on M x X where M is any physical space and X is some
coset space so that the fields transform covariantly under the action of symmetry
group of extra dimensions X up to a gauge transformation. This method enables
us to construct the low-energy limits of the effective gauge theory on M since
with equivariant modes of gauge fields, it is possible to integrating out (tracing
over) the extra dimensions. We would like to mention that this technique is the
application of the coset space dimensional reduction techniques (CSDR) |1, 2]
(see also [3] in this context). In this chapter, we are particularly concern to
the cases where X is the form of fuzzy sphere S% and the product of two fuzzy
sphere S% x S% and we will explain the detail of these concepts from the results
of |22,24], respectively. First, we focus on the equivariant parametrization of a
U(n) gauge theory on M x S% and for the minimal non-abelian gauge symmetry
n = 2, we construct the SU(2)-equivariant modes of gauge fields on M x S% up
to U(2) gauge transformation. After tracing over S%, we obtain the low-energy
effective action on M which leads to Abelian Higgs type model and for M = R?

the vortex type solution can be found in certain limits [22].

In the last section of this chapter, we turn our attention to the models where
extra dimensions take the form of the product of two fuzzy sphere S% x S% by
following [21},24]. First, we would like to explain how the product of two fuzzy
sphere dynamically emerges from a SU(N) gauge theory coupled to suitable
number of scalar fields. We consider the deformed N = 4 supersymmetric Yang-
Mills theory with SU(N') symmetry [21]. We work on the bosonic part of the
N = 4 supersymmetric Yang-Mills theory where we have six scalar fields in the
adjoint representation of SU(N') transforming as vectors under the global action
of SO(6) =~ SU(4). We consider the cubic and quadratic interaction terms in
the scalar fields in addition to usual quartic one. These deformation terms break
both the supersymmetry and global SO(6) symmetry of the model. Indeed, it
breaks the global SO(6) symmetry down to SU(2) x SU(2). Then, we show
that the vacuum expectation value of scalar fields appear as the product of two
fuzzy sphere and the fluctuations around this vacuum gives the gauge fields on

S% x S%. Hence, it seems possible to interpret this model as an effective gauge
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theory on M x 5% x S%. Making use of the equivariant parametrization technique
given in |24], we obtain the SU(2) x SU(2)-equivariant modes of gauge fields on
M x 8% x S% and integrating out the extra dimensions, we construct low-energy
effective action of this theory on M. We show that this models leads to abelian
Higgs type model with U(1) x U(1) x U(1) symmetry and we find the vortex

type solutions in this model.

3.1 Dynamical Generation of Fuzzy Extra Dimensions from an SU(N)

Gauge Theory

Let us consider an SU(N) gauge theory on the Minkovski space M* and label
the coordinates on M* by y* (u = 0,1,2,3). We have three anti-Hermitian
scalar fields @, , (a = 1,2,3) coupled to the su(N') valued anti-Hermitian gauge
fields A,. Our scalar fields @, are N'x N/ matrices transforming adjointly under
the action of SU(N)

o, - U®,U, UeSUW). (3.1)
Let us consider the action [9]

1 174
S = /d4y Tr (—4—92FJVF“ — (DMQG)T(D“CDG)) —V(®), (3.2)
where we have the covariant derivative in the form of D, = 0, + [A,,, -] and the
field strength tensor F), = 9,4, — 0,A, + [A,, A)]. We note that the kinetic
and the gradient part of the action (3.2)) have also a global SO(3) symmetry

under which the scalar fields transform in the vector representation of SO(3).

The most general renormalizable potential which preserves both the SO(3) and

the SU(N') symmetries can be written as

V(q)) =Tr (glq)aq)aq)bq)b + gQQ)a(I)bq)aq)b - g3€abc®aq)bq)c + g4q)aq)a)

+%Tr(q>aq>a)Tr(q>bcbb) i %ﬁ(@a@b)ﬁ(@a@b) tgr, (3.3

where g;, (i =1,---,7) are coupling constants with appropriate dimensions. It
is possible to obtain a more useful expression for the potential term (3.3)). If we

define the dimensionless scalar fields as &/ = R®, where R has the dimension of
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length[[] we can rewrite the potential (3.3) in the following form for the suitable

choice of the constants R, g, b, ¢, d;
1 - h
V) =T (LE 4 @0 4TI ) 4 i, (34)
where

~ d
Fiy = [0, 0f] — e, F =b+ THOLE), gy = TH(@8]). (35)

The constants b, c,d, h, g, g and R may be found in terms of ¢;,2 =1,---,7 by

solving the following equations;

2R 2R 4R3

2 pd
G =0 ~m =0 =%
2g°bdR?>  2R? 2RYg%’d  d’R*g®> g5
2g°bR? — = = =
g + N §2 94, N + NQ N 9
R*h
Nl i—ﬁf, Tr(g*?®) + Tr(c) = gr. (3.6)

Here, we can see that the suitable choice of R is

_ 2
g3

R (3.7)

Now, taking g’ = R%*g,V = % g = % and I/ = R*h, we can suppress R and
after dropping the primes and omitting ¢, we obtain the potential V' (®);

1 . h
V(®) = ?Tr(Fijab) + g*Tr (PP, + b1)% + 7 Jab et

= Vi(®) + Vo(®) + Vi), (3.8)
where

= —g2, h = Jde - (39)

922914‘92,

It is easy to see that the potential is positive definite if

2
g2 >0, ?>o, h>0, (3.10)

and from now on we assume that g2, g are positive and we are going eventually

set h = 0, although V5 term is kept in some of the formulas in order to work in

L Since ®, has dimension of mass in 4-dimension, ®, = R®, are dimensionless.
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a more general setting. For the minimum of the potential, we can see that the

following conditions should be fulfilled

Fab = [(I)m cI)b] - 6abc(I)c = 07

— D, D, = bly . (3.11)
Here, we observe that the condition F,, = 0 indicates that the scalar fields
might be in any reducible representation of SU(2) but the second condition
—®,®, = bl restrict the scalar fields to be in an IRR of SU(2) according to

the value of b. In order to find the solutions to these equation, the value of b

plays a significant role.

3.1.1 Vacuum Configuration: Type 1

If we take b as the eigenvalue of quadratic Casimir of the (2¢ + 1)-dimensional

irreducible representation of SU(2) labeled by ¢
b=Cy=((l+1), 20€TZ, (3.12)
and also assume that
N =20+ 1)n, (3.13)
then, up to gauge transformations (U~'®,U,U € SU(N)), we can write the
vacuum configuration as
o, =XV e1,, (3.14)
where X**Y are the anti-Hermitian generators of (2¢ 4+ 1)-dimensional IRRs

of SU(2) which are used to define the fuzzy sphere S% as explained earlier E|

These generators satisfy

[X(2£+1) X(2£+1)] _ 6achC(2”1), XC52£+1)X§2€+1) =—((l+1). (3.15)

a (i}

With the help of these representation properties, it is easy to check that the vac-
uum configuration ([3.14)) satisfy the conditions (3.11) minimizing the potential
V(®) given in (3.8) with A = 0 as noted previously.

2 In chapter 2, we have used the Hermitian generators L; of SU(2) IRR. Here, we switch our
conventions and use anti-Hermitian generators. It is readily seen that with X; = —iL;, we can switch
between those two.
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We observe that the vacuum configuration in (3.14)) spontaneously breaks SU(N)
symmetry down to U(n). Here, the commutant of ®, is U(n), i.e. the maximal

commuting subgroup of SU(N) with ®, is given by U(n).

Let us consider the fluctuations about the vacuum ({3.26|)
o, =X, + A, (3.16)

where A, € u(2¢ + 1) ® u(n) and we have introduced the short-hand notation
XCS%H) ® 1, =: X,. With the fluctuation term A,, F}, becomes

Fab - [Xa 5 Ab] - [Xb ) Aa} + [Aa ) Ab] - Z':(11)0140' (317)

This means that A, (a = 1,2,3) can be interpreted as the three components of
a U(n) gauge field on S%. We can say that ®, are the “covariant coordinates”

on S% with the associated curvature tensor Fyy .

At the beginning of this section, we have started with an SU(N') gauge theory
on M*. Now, it can be conjectured that after spontaneously symmetry breaking,

an effective U(n) gauge theory emerges on M* x S% with the gauge fields
Ay = (A, A) €uln) @u(20+1), (3.18)
and field strength tensors Fi,n

F,uzz = 8;LA1/ - 81/A,u + [A,Lu Au] )
F,ua = D,uq)a = a,uq)a + [A;u (I)a] )
Fab = [Xa 5 Ab] - [Xb ) Aa} + [Aa ) Ab] - 6abcfélc . (319>

Let us remark that Ay, transform as a vector under the product group SO(3,1) x
SU(2). It should be clear from our notation that, here A, transform as a vector
under SO(3,1) and trivially i.e. as scalar under SU(2) and A, transform as
a vector under SU(2) and trivially under SO(3,1). This interpretation will be

made manifest in section (3.2)).

3 In this chapter, we work with anti-Hermitian fields for convenience.
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3.1.2 General Consideration for the Type 1

If we consider the solution for generic b, the conditions in (3.11)) can not be
fulfilled by the finite-dimensional matrices ®,. However, as the potential (3.8))
is positive definite, the vacuum configuration for generic b exist and it must be

given by a solution of the equation 6%2 = 0;

0 (Tr (%FabTFab + g*(®, P, + 51)2) + ﬁgabgab)
8(q)a)lm
Let us calculate the derivative of each term in equation (3.20]) separately; the

—0. (3.20)

first term gives

OTr(P, P, +01)2 1 d
( ) = — <2((I)aq)bq)b)ml + 2(@1,(1)(,(13(1)”1[ + 2—((I)a)mlTI‘((I)bq)b)

O(Py)im N N
- d ~ bd
+2b(¢)a)ml —|— 2K/Tr(@b©b)<¢a)ml + Q(CDa)mlb —|— QJT/’(@a)ml
bd d? d?
+2(q)a)ml/T/ —f- QW(q)a)mlTr(q)b@b) —|— QWTr<(I)bq)b)(q)a)ml s
(3.21)
and the second term can be calculated as
O Tr(F Fy) 1 )
D N <a<<1>a>lm 2_(Fue)y(F bc)ﬂ)
1 0
Y (m(Z(@b)m(@c)m — (Pe)ir(Po)ks)
ajme ik
_ Z Gbcd(q)d)ij) +1 & j)
ij
1
= _./T/ (2(®0Fac)ml - 2(Elc(I)c)rrLl + 2(F’ba(pb)ml - 2(q)bF’ba)ml
- 26bca(Fbc)ml)
= %/(4[Faca q)c] + 2€achbc)ml . (322)

For the last term, we have

d GbcGbe o 0 Tr((Db(I)c)Tr((qu)c)
a(‘:I)a)lm a((I)a)lm

:J\% (ﬁ <Z(q)b)ij(q)6)ji> ) = J%/-Zlgab<q)b)lm7 (3.23)
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where we have used the identity g,, = %dd,Tr((I)-(I)). Hence, the equation % =0

can be written as follows

. d ~ 2h 1
g {®, & - P+ b+ jvTr(CD O+ )} + Ngabcbb + = (2[Fup, @] + €apeFre) = 0.

(3.24)

Although the general solution to this equations is not known for generic b, a
possible vacuum configuration (up to unitary transformation) can be proposed

as follows
®, = diag (a, XP M @1, XF TV ®1,,) (3.25)

for suitable constants ;. We aim to construct examples of vacuum configura-
tions in the form of (3.25)) which satisfy the minimal potential conditions (3.11)

at least approximately.

If we assume that the vacuum configuration consist of only a single SU(2) IRR
with Casimirs Cy = £(¢ + 1) and b has the value which is very close to Cy =
((+1), and then with the factorization N' = (2¢ + 1)n, a vacuum configuration

up to unitary transformation can be constructed as
P, =aXP V1, (3.26)

This vacuum configuration can be made to satisfy the minimum potential con-
ditions (3.11) approximately as we demonstrate below and it may be taken as

the general form of the type 1 vacuum configuration in (3.14]).

In order to find «, we insert the solution ([3.26)) in the equation ((3.24))

; d 2h
2g%a X 2+ (—a202 +b— a’Chd + N (b — a’Cad) N) - ?O;@Q X (26+)
1
+= (—4X§2”1)a(a2 _ a) + 2X(§2”1)(a2 . a)) —0.

J
(3.27)

(26+1)

Multiplying both side with the inverse of and dividing 2«a, we get

a?(a*Cy = b)(d + 1) + goﬂog — %(a —1)(1-2a)=0. (3.28)
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It is possible to find the exact solutions to the equation (3.28]), but we are

interested in the expansion around a = 1 solution. Let us assume that d =h =0
L

and g? ~ 2;. Taking

@

b={(((+1), (3.29)

where / is a real number (not necessarily integer or half integer), we obtain the

solution for o to the order e% as

o= —;@—+mé% for mct, m=20—10).  (3.30)

With the vacuum solution (3.26) and the expansion of «, the leading term of
potential V(&) can be found

1 t 1 m? (2041) (26+1)
Vi(®) = ?Tr(FabFab) = —?Tr S CaeXe €abaXy

20+ 1)2
2m? m? 1
2 72 2 2 7\2 g’*m? 1
‘/Q(CD) =4 Tr(@aq)a + b) =4 TI'(—Oé Cg + b) = m = O(€—2> . (332)

For the type 1 vacuum solution, {="/(in and , both V; and V5 tend
to zero at large ¢, which is the minimum of V(®). On the other hand, taking
{ ~ ¢ yields essentially another vacuum, V; still survives for large ¢ and has the
value %. As we mentioned in chapter 2, this is the value of classical action of
field strength with magnetic monopole number m when 2/ is an integer. Hence,
it is possible to interpret that the vacuum configuration (3.26)) as a fuzzy sphere

carrying the magnetic monopole strength m [9].

3.1.3 Vacuum Configuration: Type 2

Let us again consider the vacuum configuration in (|3.25)) with n; blocks of size
(2; + 1) = (20 + 1) 4+ m; which eventually will be a vacuum solution given as
the direct sum of two fuzzy spheres. If we assume that ¢ is large and m7 < 1,

the result of previous case can be generalized as

1 , 1 ;
V(®)=Tr (2—§2 zi:nimil(zziﬂ)) ~ 2§—2k’ Znimi , (3.33)

7
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with the constraint > n;m; = N — k(20 + 1) where k is the total number of
IRRs k = ) n;. This result can be interpreted that the solution ([3.25)) is the
internal fuzzy sphere carrying the instantons with the action ((3.33)).

We note that with the approximation given above, the vacuum configuration

(3.25) can be written in terms of only two distinct block diagonal as follows

au X Vo1, 0
D, = sttt , (3.34)
0 OZQXa 2 X ]-ng

where N' = (201 + 1)ng + (202 + 1)ny and £y = ¢ + % This can be seen from
convexity of . The overall dimension of vacuum configuration (3.25)) (with
the assumption 201 +1 < 20y + 1 < -+ < 2{;, + 1) does not change, if we lower
ny and ny by one and add two blocks with size 2¢; 4+ 2 and 2/, and the action
in becomes smaller due to convexity. It is possible to apply this method
until we obtain two distinct blocks or one block with maximal size which means
that we can get the vacuum configuration from in the form of either
or (13.34)).

3.2 Kaluza-Klein Modes

So far, we have shown that it is possible to interpret that, after the spontaneously
symmetry breaking, SU(N) Yang-Mills theory on M* coupled to a triplet of
adjoint scalar fields behaves as an effective U(n) gauge theory on M* x SZ%,
where the extra dimensions are dynamically generated in the form of fuzzy a
sphere. This interpretation can be supported with the construction of Kaluza-
Klein mode expansion of the fields over the fuzzy extra dimensions. In this
thesis, we will show that for the vacuum configurations and , the
Kaluza-Klein mode expansion yields the mass spectrum of the excitations with

large mass gaps [9], corroborating with the effective gauge theory interpretation.
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3.2.1 Kaluza-Klein Mode Expansion of Type 1 Vacuum

Let us start with the construction of Kaluza-Klein modes for the vacuum con-

figuration given in or in with = 1. We will inspect a # 1 in the
next subsection. As we have noted in the equation , after the breaking
of SU(N) gauge symmetry down to U(n), A, and A, are interpreted as u(n)
valued gauge fields of the emerging model over M* x S%. Consider first the
field A, € u(n) ® u(2¢ + 1), we can expand into their modes over S% using the
polarization tensor T}, on S% introduced in section of chapter 2. Thus, we

may write

A, _ZZ Tim @ Apjm(y)  §=0,1,--- 20, (3.35)

j=0 m=—j
where Tj,, are (20 + 1) x (2¢ + 1) matrices, and A, ;,(y) are u(n) valued gauge
fields on M*. Therefore, A, can be interpreted as u(n) valued functions on

M* x S% with the Kaluza-Klein modes expansion on S%.

We can consider the mode expansion of the fluctuations modes A, around the
vacuum configuration in a similar manner. Kaluza-Klein mode expansion of A,

can be written as

Ag = Z Z ij ® Aa,jm(y) ) (336)

where A, jm(y) are u(n) valued functions (scalar fields) on M*. Equations (3.35)
and (3.36) make our earlier remark following (3.19)) manifest, as promised.

3.2.2 Mass Spectrum of the Gauge Sector

Now, let us determine the masses of the KK modes. To do so, let us focus on

the term

/ Tr(D,®,) D'®, = / Tr (0,®L0"®, + 2(9,01)[A", @] + [A,, B.]T[A*, @) ,
(3.37)

in the action (3.2). First, we will show that the second term in is of

no relevance for the calculation of the masses since it includes only the cubic
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interaction terms. Using the cyclic property of the trace, this term can be

written as

[ @0l e) = [ Tr.00) -~ [T, 00). 635

Now, let us consider y-dependent o which enables us to define the scalar fields

in the most general form as follows

Oo(y) = a(y) XFT @1, + A, (3.39)
In order to see the interaction terms, we insert into and we have
/ Tr(A*[®,, 0,®1]) = — / TrA* (o[ Xa, 0,A4] + (0,0)[Aa, Xa] + [Aa, 0, A4])

_ / TrA" (0, ([Xas Ad]) + (3,0) [ Ags Xa] + [Ans D Ad])
(3.40)

Imposing the gauge condition [ [X,, A,] = 0 we get
/ Tr(A*[®,, 5,01]) = — / TrA (A, 9,A,)] . (3.42)

Hence, no mass terms can be derived from this part of the action.

The last term in the equation (3.37)) gives the mass for the gauge field A, and
some higher order interaction terms. To see this, we use (3.39) and find

/Tr[Au, D)1 [A", ®,] = /Tr(aQALELEGA“) + higher order terms, (3.43)

where L£,- = i[X,, -] are the derivations on fuzzy sphere in terms of anti-Hermitian
generators of SU(2) (2.69)). Let us introduce the notation S;,, for all higher order

interaction terms coming from (|3.37)).

The relevant part for the mass can be calculated as
2 j 2 k
[ aicie, ) = [T Y 3T 3T ST Kk 1A, A5, T, T
7=0 m=—j k=0 n=—k
2
= / Trn(z Z a?j(j + DAL AN (3.44)

=0 m=—j

4 In the commutative limit £ — 0o, the adjoint action [X, ] reduces to —iL, = —€abcrs0c =
€abeZcOb, then the gauge condition [X,, Aq] = 0 becomes

[qu Aa} l—> Ea,bcmcab!qa, - 6abc(ab(mc»Aa) - (abxc)Aa) = 6 . (f X A‘) = 6 . g’ =0 (341)
— 00

where A’ = 7 x A is on S? since #.A’ = 0. This is the Lorenz gauge on S2.
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Here, in order to obtain the last line in (3.44]), we have used the orthogonality
properties of the polarization tensors given in ([2.75)). Now, it is easy to see that
u(n) gauge fields A, j,(y) acquire the masses

2 2

(6] L
m}:}§]@+1% (3.45)

where we have inserted back the parameter R.

From (3.45)), we immediately see that there is only one massless mode in KK
spectrum and it is obviously given by the 7 = 0,m = 0 mode A, o9. Other KK
modes are separated from each other and A, oo with ever increasing mass gaps,

with the model truncating at j = 2¢.

Focusing only on the gauge sector of the effective theory and ignoring all the
KK modes with the character mass scale 1/ R, we have the Low-energy effective
action (LEA) written down as
1 v
&mz—/&%?ﬁJﬁWﬂ, (3.46)
where F}), is the fields strength associated with the massless mode A, 0. We
see that Sppa corresponds to an SU(n) gauge theory on M*. Inclusion of j # 0

modes brings in the corresponding field strength terms as well as the mass terms

as derived in ({3.44)).

Finally, let us note that we can predict the radius of internal fuzzy sphere as

rg2 = % . (347)

3.2.3 Mass Spectrum of the Scalar Sector

In order to inspect mass spectrum of scalar fields, we may proceed as follows.
We consider the splitting of A, into its radial and tangential components A" , A"

as

Ay = AT + AL =ip(y) X, + A, (3.48)

_ XaAa
0(e+1)

the scalar fields ®, by writing out the radial component of fluctuations ¢(y)

are u(n) valued and X, A’ = 0. Then, we may expand

where ¢(y) =
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explicitly

Oo(y) = X2V @ (ol + 0(y) + Y | Aak(z) ® 0il(y) - (3.49)

In this expression, A, ;(x) represent the fluctuation modes of gauge fields on the
fuzzy sphere S% given in a suitable basis which is labeled by k. It is possible
to find out how the expansion and relevant part of are related
to each other but being unnecessary for our purpose, it will not be carried
out here. In the light of the analysis of the previous subsection, one would
expect that A, acquire masses with large gaps of the order of KK scale and
therefore they will not contribute the LEA of the scalar sector. A detailed
analysis proving this result is given in the appendix C of [9] and will not be
discussed here. The same analysis also show that the lowest lying mode 7 = 0
yields the mass of the fluctuations ¢(y) in the radial component of A,. We
can find out the mass of this excitations as follows. If we insert the vacuum
configuration ®,(y) = X8 g (a1, + ¢(y)) into the potential term in ,
1

assuming, g° ~ =5, we obtain

Vie(y)) = QZTT(@)a(I)a + 6)2)
2
_ g2Tr <(X£2€+1)X(S2Z+1) (a2 + 2a<p(y) + 902@)) + 5) + 0(903)>
= g*Tr (C§a4 + (40202 + 2020 — 2050) 0 + (4C20° — 4CHab) e
9Cshe® + 7 + o<¢3>)

= T, (8°C30(y)* + O(¢%)) (3.50)
where we have taken o? ~ 1 and b &~ C,. This means that after the spon-
taneously symmetry breaking of SU(N') symmetry, the field ¢ acquire a mass
(mg) which can be interpreted as the order parameter of the Higgs mechanism
and we will give its explicit form below. All these results indicate that the model
emerging after the breaking of SU(N') symmetry behaves as an effective U(n)

gauge theory over M* x S%; with KK modes on S% of the radius given in ([3.47)).

Putting together the gauge and scalar sectors LEA action given at the lowest
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KK modes reads

1
Sipa = — / d*yTr, (4—92F3lF % + Dyup(y) D o(y)Cs + 9202290(,@)2) + Sint

(3.51)

where ¢(y) have the mass m?, = %;202 reinserting R.

3.2.4 Kaluza-Klein Mode Expansion of Type 2 Vacuum

Now, let us consider the Kaluza-Klein mode expansion for the vacuum con-
figuration (3.34). Here, the maximal subgroup of SU(N) commuting with ®,

K :=SU(ny) x SU(ng) x U(1), (3.52)

and it will turn out to be the gauge group of the emerging effective model over
M* x S%. Our purpose is to determine the mass spectrum of the KK modes of
the gauge fields. The analysis outlined here is based on the extensive discussion
given in [9]. To proceed we write the gauge field as follows
AL g+
A= " R (3.53)
A, A
where AE}) and A,(f) are square matrices of size, (2¢; + 1)ny x (2¢; + 1)n; and
(2054 1)ny x (2€5 + 1)y, respectively, while AT and A are rectangular matrices
of the size (21 4+ 1)ny x (203 4+ 1)ny and (205 + 1)ng X (261 + 1)ny, respectively.
Since A,, is anti-Hermitian, we have for the blocks in (3.53))

(A = —(AD), (A = —(4?), (AN = —(47), (A =—(4}).
(3.54)

The KK expansion of the gauge field component Aftl)’(z) can be given by intro-

ducing the polarization basis tensors as before

2@1 ] 262 .]

AV =SS 1WAl (), AP =SS 12 A%, (), (355)

=0 m=—j =0 m=—j



where T](;) and Tj(fn) are (201 + 1) x (20, + 1) and (205 + 1) x (205 + 1) matrices
respectively. As we mentioned earlier, the polarization tensors are the eigenstate

of the operator £; given in (2.69)). Here, we have

LT =G+ VIS, LT = (G + DT (3.56)

jm

We note that A") (y) and A®

ot om(y) are u(ny) and u(ng)-valued gauge fields

respectively and they transform as vectors on M*.

Since AZ and A are the rectangular matrices, we can not expand them in terms
of these polarization tensors. However, it is possible to define the specific tensors
which form a basis for the vector space including the rectangular matrices. These
tensors are closely related to the spherical harmonics Y}, on S? and encountered
in discussion of spin orbit coupling in non-relativistic quantum mechanics [66|.
In the subsection (2.5.1]), we have shown that how su(2) rotation generators act
on the complex scalar fields in the form of rectangular matrices. Here, modifying
this formalism for any gauge field A of the size (2¢; + 1) x (205 + 1), we see that
the su(2) rotation acting on A is defined by

LiA=LYA— AL (3.57)

where L' are (26, +1) x (2(; 4 1)-dimensional while L are (2054 1) x (205 +1)-
dimensional su(2) generators, respectively and the SU(2) representation content

of the operator £; in is given by the Clebsch-Gordan decomposition
U@Ly = |l — by @ -+ (b + Lo). (3.58)
Hence, the spectrum of £2 is deduced from to be
JG+1), J= =, (G + ). (3.59)

The corresponding eigenstates of the operator £? can be expressed in terms
of the generalized harmonics given in (2.88]). In this section, we prefer to use
the following notation for these generalized harmonics in order to avoid any

notational confusion

k
71j’WL? j/:§7”'7£1+€27 m:_jlu"'7j17 (36())
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where k = 2(¢y — (1) . For given (¢1,/(s), there are nyl_z&)(% +1) = (20, +
- -2
1)(2¢2 + 1) linearly independent tensors Tj,,. Hence, they form a basis for the
algebra of (2¢; 4+ 1) x (203 + 1) matrices. We may summarize these results by
writing
L2Tji = 3'(j" + )T, (3.61)
[38]. For completeness let us note that £? is determined by applying the formula

(3.57) twice. This gives

L2A = (L)2A — 200 AL + A(L2)?. (3.62)

. . . . . . +
Using these information, it is possible to expand the gauge field components A}

and A; as
L+t J' li+ey §
=3 Y LA, A= Y T, 04y, (363
j'=§ m=—j’ j,zg m=—j’

where T;,r and T o are (20, +1) x (20,4 1) and (265 + 1) x (24 + 1) matrices,
respectively and it is seen that Awm(y) is a vector field in the bifundamental
representation (n,n2) of u(n1) x u(nz) while A, (y) is in the bifundamental

representation (ng, nq) of u(ny) x u(ny).

The mass of spectrum of KK modes of A, can be determined from by the last
term of (3.37)). With both diagonal and off-diagonal contributions we have

201

/ Tr([Ay: @] [A%, ®,]) = T, ( > o mi AL ) AT w)
j=0
24 £1+L2
(2
+ ij QAM;In + Z 2m ’:t ,uj m( ))TA-ZI’Am(y))
+ higher order terms. (3.64)

The diagonal components of the commutator [A4,, ®,] gives the adjoint actions
—[Xfel“), A,(})] and —[Xé”?*”, A,(f)} and for the off-diagonal components, we

obtain the following terms

(_alXC(L%H)A: + ong:[XL(L%“)) : (_azxémzﬁl)A; + oqA;Xé%“)) '
(3.65)
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Spectrum of the diagonal fluctuations is easily determined by straightforward

calculations for each diagonal blocks, similar to the one performed in ([3.43)) and

3.44). We find that A;(ngm and A,(f;m acquire the masses
aig? .. .
m?’lz ;22 j(j+1), j=0,---,20,,
azg® .. .

For the off-diagonal contribution, it is better to use the following identity;

T (A, @] T[A*, ®,]) = —Tr ([, A,][@,, A")
= 2T (D A, D A — BB A, AM) | (3.67)

that follows from the cyclicality of the trace. Then, we obtain the following

contribution from the off-diagonal terms

—2Tr (alazXél)A:Xf)Au + o XP A XMVAY

a

—af(Xy))?A;A; _ ag(X(Q))QAMA:[> , (3.68)

where we have introduced the notations X240+ = X" and X241 .= x[?.

First two terms in (3.68)) can be written as
—20 a0 Te(X} AT X2A, + X2A, XA
_ —zalaQTr((X;Aj — ATXD(XGA, — AL X,) + (X2 AT AL
+ (X§)2A;A;j)
- —2a1a2Tr((£aA:)(£aA;) + (X PATA, + (X2)?A, AL )
- —2a1a2Tr( — (L2AD)A, + (XD2AL A, + (X2)%A, A ) :
(3.69)

It is instructive to give the calculation required for the first term in descending
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form. The second line to the last line of this equation, we have

Tr((L.A})(LaA)) = Tr<(L§1A; — A;Lﬁz)(LffA; — AuLﬁl))
€1 @2 — €1 él 52 24— Z2 - él
=Tr (La AFL2AL — LUATAT LY — AF(L2) A, + ATL2A L, )
- _ Tr(((Lf;l)ZA:[ + A;(Lf;l)2 — 2(L§1A;L§2))A;)
=—Tr((L*A))A,), (3.70)

(1) (2 _ (2) - -y Dy _ -
where we have used (Xo ' Af — AT X,”) = L, AT and (Xo" A, —A; Xo") = LA
from (3.57)). Substituting for the relevant terms in (3.68) and (3.69) and using
the expansion (3.63)) and noting that Tr (T+ ,TT, ,,) = 0;/j#Ommy, We have

m

Z( 205 X7 —203X5 + 200005/ (5' + 1)

J'm

XL (X2) ))(A:]m< WA ). @7

The off-diagonal excitations have therefore the mass spectrum given by
e

m?,’i R2 (ranf’ (5" + 1) + (a1 — o) (Xjao — Xian)) - (3.72)

Using (X})? = —01(61+1), (X?)? = —{5(3+1) and the following approximation
for ci; and a5 (as discussed in section (3.1.2)

mq 1 ~
—1— — —2(fy —
(65} 2€1+1+O(€%>, mq (51 6),
mo 1 . )
Qg = 1— 262 1 -+ O(@), mo = 2(62 £)7 (373)

the mass spectrum of my 4 in (3.72) can be written as
2

9 (.. 1
e 2 (04 1)+ ma = e +

O(5; ) (3.74)
~ 9 (J"(j' + 1)+ (b — 6)? )

RZ

From ( , we see that zero mass KK modes are those given by the lowest
lying modes Au 0o and Af,())o in the diagonal blocks. These are su(n;) and su(ns)
valued gauge fields. From ({ , it can be seen that there is no massless gauge

fields from the off-diagonal bifundamental fluctuations fields, i.e. A’ . since

u@m’

there is an additional term in - with ¢y — 01 = 5 # 0. This indicates
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that because of nonzero magnetic monopole number 2k, we can not obtain the

massless KK modes from the off-diagonal fluctuations fields.

Considering only the lowest lying KK modes AL{%D and AEE%O, we obtain the LEA
in the form of (3.51f) for each mode A/%O and ASB)O. Noting that AI%O and Af}m

are su(ny) and su(ny) valued, respectively, we observe that our gauge theory
on M* behaves like an the effective SU(ny) x SU(ng) x U(1) gauge theory on
M* x S% after the symmetry breaking of SU(N).

3.3 Equivariant Parametrization of Yang-Mills Theory on M x S%

Let us consider the action in (3.2)) with the same field content written on d-
dimensional manifold M
1 5 1
S = / dy Tr( — S E, " = (D,,) (D“(I)a)> — —Tr(F,Fu)
M 9 g
—g*Tr ((®,2, +0)?)  (3.75)

where y* = (y',---,y?) stands for a set of local coordinates on M, ®, are
dimensionless and we have suppressed a scaling constant y~2 in the covariant
derivative term where  has the dimensions [m]%?~!. We see that g has di-

—d/2+2 while restoring the dimension of ®,, § has the dimension of

mensions [m]
[m]%/?=2, Without the constraint term V5(®), it is possible to express the action
of emerging model on M X S% as the L?norm of Fyy by the scaling
®, = v/29®, and taking gj = 1. Then, we may have [26]

S = / d*y %gQTrn(%H)FLNFMN + g% V(). (3.76)
We are primarily interested in the vacuum configuration for the action
(3.75]). Clearly, the discussion in section indicates that a U(n) gauge theory
on manifold M x S% can be conjectured to emerge after the spontaneous breaking
of the SU(N) gauge symmetry of by the vacuum configuration . In
this section, we are going to focus on the U(2) gauge theory on M x S% and
initially treat the problem of determining the SU(2)-equivariant modes of the
gauge fields. Subsequently, this data is going to employed to obtain a low energy

effective action (LEA) on M by integrating out (tracing over) the fuzzy sphere
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S%. Equivariant field modes and LEA obtained in this manner provides us
with another viewpoint, complementing the KK-modes analysis of section [3.2]
supporting effective gauge theory interpretation of the model on M x S%. Our

discussion in this section is based on the treatment given in [22].

3.3.1 Equivariant Fields on M x 5%

In order to proceed, we consider choosing the SU(2)-symmetry generators as

We =X 91, — 19, ® % , weEu(20+1)@u(2), (3.77)

where 7, are the Pauli matrices. It is easy to check that these generators satisfy

the SU(2) commutation relations
[waa wb] = €abcWe - (378)

w, carries the tensor product representation ¢ ® 1/2 = ((+1/2) & (€ — 1/2).
What physics do w,’s describe? We observe that adjoint action of w, imposes
rotational symmetry up to a SU(2) gauge transformation. This is seen, since ad-
joint action of X, generates the infinitesimal rotations on S%, while the adjoint
action of the Pauli matrices generate the infinitesimal SU(2) gauge transforma-

tion.
Let us impose the SU(2)-equivariance conditions on the gauge fields as follows

way Au] =0, (3.79)
[wm Ab] = GabcAc . (380)

First of these equations means that we require A, to transform as a scalar under
combined action of rotations of S% and SU(2) gauge transformation while the

second equation indicates that A, transform as a vector under the same action.

It is possible to derive the dimensions of set of solutions to A, and A, from the
SU(2) IRR content of the adjoint action of w,. We can expand the representation

content of the adjoint action of w, into Clebsch-Gordan series as

1 1
te)ele;)=200410", (3.81)
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where the coefficients in bold denote the multiplicities of respective IRR in front
of which they appear. From this expansion , we observe that under the adjoint
action of w,, there are two linearly independent objects transforming as scalars
(spin 0) and four linearly independent objects transforming as vectors (spin
1). Hence, the solution space of A, is two-dimensional and that of A, is four-

dimensional.

In order to parametrise A, and A,, let us first find the rotational invariants under
the adjoint action of wj,. Xé%H) ® 7, and 1(¢41)2 are the rotational invariants
under the adjoint action of w, since 1(g¢11)2 trivially commutes with w, and we

find

1T,
wa, XZ @ 1) = [XPHD @ 1y — 1y ® 5 XD @7,
_ Eaché%—H) ® 7T+ EachIS%H) ®7. =0,

=0, (3.82)

where anti-symmetry of the permutation symbol is used in the last line of the

calculations.

Let us consider a linear combination of X, ® 7, and 15(2¢41) which will allow us
to express several formula in what follows in a compact manner and simplify the

several of the ensuing calculations:

C Xa® 7o — $l(aes)e

Q: T (3.83)

Here, () is an anti-Hermitian “idempotent” since Qf = —Q and Q? = —1o02041).-
Therefore, the parametrization of A, in terms of () and identity matrix 1 may

be written as

1 1.
A, = 5%(9)62 + §Zbu(y)12(2e+1) ; (3.84)

where a,(y), b,(y) are Hermitian U(1) gauge fields on the manifold M. We stress
that imposing the symmetry constraint causes the breaking of U(2) gauge
symmetry down to U(1) x U(1). Under the action of U = e2?1®Q¢z02W1 [ ¢
U(1) x U(1), A, remains covariant with a, = a,, + J,6, and b, = b, + 9,0, Let
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us explicitly show this invariance;

1
A#—>UAJT4+¢LUU”e:Au+§«L&Q+waﬂﬂ)

1 1
= 5( pt (%91)@ + §(bu + 8u02) )

2 |
= SQ+ SH1= A, (3.85)

For the parametrization of A,, we can write

Aa = 3er0)Xar 0+ 53(0) — DQUXer Q)+ 1530005

2 2 (+3)
L1
200+ 1)

{Xa, @}

P4 (y)w& >

(3.86)
where {-, -} stands for anti-commutator and ; are Hermitian scalar fields over

M. Tt can be easily shown that the four basis [X,, @], Q[X., @], {X., Q},ws
elements fulfill the vector condition in the equation (3.80); As an example, let

us show the first one
[waa [va QH - [Wa, Xb]Q - Q[waa Xb] + Xb[waa Q] - [wav Q]XIH
= 6abc[)(ca Q] ) (387)

where last two terms in the first line are zero because () is rotational invariant.
We would like to note that we have introduced the real scalar fields ¢ , @2, 3
and ¢, on M as coefficients of these vectors. We will show that some of these
scalar fields naturally combine to form complex scalars after we trace over the

extra dimension S%.

In the commutative limit ¢ — oo, using A, becomes

Ay — - (%y)zaq + 2 (6a(y) — 1) aLag + 505(y)raq + 1w4<y>wa) -

£—00 2 2 2 4
(3.88)
It can be seen from and that ¢ is the commutative limit of ) given
as ¢ := —i7 - X. In this limit, the fuzzy sphere S% reduces to ordinary two

sphere S? and it is seen that we have three components of A,. As we mentioned
before in section [2.6] we can eliminate the normal component of gauge fields by
imposing the constraint x,A, = 0. This constraint is fulfilled if and only if by
taking @3 = @4 = 0. At this point, we can see that this theory have the same

structure as the spherical symmetric gauge field over M x S? [67].
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3.3.2 Obtaining the Low Energy Effective Action

Now, we are ready to substitute the equivariant gauge fields A, in (3.84) and A,
in ([3.86]) into the Yang-Mills action (3.75)) and trace it over S%. It is convenient

to denote the reduced action in the form
S ::/ddy (Lr+ Lo+ Vi+Vs), (3.89)

where each term in the integrand in (3.89) is evaluated below. In the calculations

leading to the result below, the identities

{Q,[X0,Ql} =0, {Xo,[Xo,Q} =0, [Q {X,,Q}]=0,
[Xo, {Xa, @} =0, sum over repeated a is implied , (3.90)

are repeatedly made use of. We obtain

Cr= Ty (I, F™) =

2
49 2 <fu1/fwj + hw/hwj 20 + 1fuyhuy) , (3.91)

where f,, = d,a, — 0,a, is the field strength tensor of the U(1) gauge field a,
whereas h,, = d,b, — 0,0, is that of b,. With the equivariant gauge fields, the

covariant derivative of scalar fields becomes

D,uq)a = (D,u901 + QD;AOQ) [Xay Q] u903{ as Q} + au(;p4 a s

1
2(0+ 1)

N —

(5 +3)
(3.92)

where D,p; = 0,0; + €j;a,p;. Then, the gradient term can be evaluated to be

Lo =Tr ((D®,) (D ®,))

= gt (Pup+ (D) + T R g
(£+1) p ((*+10+3/4)
200+ 1) 577 T Ty3 Oups0"pa + W@u%) : (3.93)

Here, it is possible to interpret 1 + iy as a complex scalar field carrying charge

+1 under a, since D, p = J,¢ + ta,p. it can easily be seen that

(Dyup1)” + (Dyup2)? = (8up1)? + (0up2)? + 20,010,002 — 2a,020,01
=D,pD,p. (3.94)
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Proceeding to write the potential term V7, let us first indicate that the dual of

F,, can be written in the compact form

1 1
§€achab = §€abc[q)aa (I)b] - (I)c
1 1 {Xa Q} W3 We
——W Xo, Q] + S(|g]2 — W) et | 88 ,

(3.95)

where we have introduced, for notational brevity, W; , (i = 1,2, 3) which are the
certain combinations involving the scalar fields 3 and @, are listed in Appendix

[Al Then, the potential term V; can be calculated to give
1 f 1 4 2
Vi = ?TT(FabFab) -7 (Xilol* + Xl + Xs5) (3.96)

where, one again A}, (i = 1,2, 3) are introduced for notational brevity and their
explicit form as certain combinations involving the scalar fields 3 and ¢, are

also given in appendix [A]

For the evaluation of the last term in (3.89)), an intermediate step is given as
D, 0, + L(L+1) = Yy +iduQ, (3.97)

where Yy, s are given in appendix [A] After another few steps of calculation,

this yields the V5 term as
Vo = g Tr((@,D, + 0)?) = g*Tr (9P, + £(£ + 1))?)
1
=g’ (y% +Y5+ —ylyQ) . (3.98)

(+3

3.3.3 Vacua of the Reduced Potential V; + V,

Another step forward is to examine the vacua of our potential terms V; and V5.
We recall that both V; and V5 are positive definite. To get the field configura-
tion minimizing V4, this simply implies that we need to determine the zeros of
F,p. Since [X,, Q], Q[X., Q], { X4, Q} and w, are linearly independent, it can be

easily seen that in order to obtain Fj;, = 0, the second and third terms in ([3.95|)
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imply |¢|?> — W, = 0 and W3 = 0, so we have the following conditions

|ol* = (1~ v3) TR L (3.99)

Pl = Y3 €+%SO4 2(£+%)2903 ) :
e+1, , o 20+ 0—1/4)

0= 9 . 3.100
(g+%)2(903 P3) + i + EEg (3.100)

Multiplying the first part in (3.95) with (¢ — ¢2@Q), we obtain

Wi(e1 + 02Q) (91 — p2Q) = Wilp]> =0, (3.101)

which can be rewritten as

C+0—1/4 1 )
0= — Y3+ ——= . 3.102

Solving these three conditions (3.99), (3.100) and (3.102), we can obtain the

vacua of potential V;. There are five sets of solution for these equations given

as follows
i) lel=1, 93=0, @=0, (3.103a)
g 202 +1—1/4
ZZ) |SO| = 17 Y3 = 27 Pq = ( / 1 / ) 5 (3103b)
T3
1
=0, =1, = 3.103c
iit) gl ¥s3 ¥4 201 1) ( )
. —20(0 +1
w) ol =0, w3=1, 4= %, (3.103d)
T3
1 Crr—1/4 1
v) lpl =0, @s=1£(+7), s04:——/ - (3.103e)

2 (+3 2"

When we also consider the zeros of potential term V5 which are given by Y; = 0
and ), = 0, we see that only (3.103a}) fulfills this conditions so V; and V5, has
the vacua given by (3.103a)) in (3.103)).

In commutative limit (¢ — 00), the potentials V; and V3 take the form

1 /1 1
V(@) = & (G0 +i = 17 +lePi+ 3 ) (3.104)
Va(®) — g°C(h + ¢3) - (3.105)

In (3.105), we consider in fact the limit ¢ — oo, g — 0 with g/ finite but small.

The reason for this will be clear in the next section. It can be easily seen that

(3.103a)) is the vacuum configuration for V; and V5 in the stated limit.
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3.3.4 Vortex Type Solutions

We now examine the large ¢ limit of the low energy action in detail. Focusing
on M = R? we determine the vortex type solutions for i) £ — oo, g — 0 with
g/ is finite but small and ii) where ¢ is large but finite and g — oco. These two
different limits governed by ¢ and g enable us to handle the constraint term V5

in effectively two extreme cases.

3.3.4.1 Case i)

In the commutative limit ¢ — oo, we obtain the reduced LEA

1 1 1
i d2y<—16 5 L™ hyuh™) + 51 Dol 4 4 ((Bups)? + (D))
{—00 g 2 4

1 /1 1
T2 (§(|90|2 + 03— 12 + |o|*03 + 5@3) ) 7

(3.106)

where we have not written down the V5 term with the proviso that g¢ is small.
Here, we can see that there are no interaction terms for both the real scalar
field ¢4 and gauge field b, so they are decoupled from the rest of action. Since
they do not give any additional information in the equation of motions, from
now on we can ignore these fields. The remaining fields are the U(1) gauge
field a,, the complex scalar field ¢ and the real scalar field ¢3. The vacuum
configuration given in has the structure of S! with first homotopy group
7(S') = Z. This indicates that the vortex solution on R? are characterized by
an integer winding number. To search for the vortex solutions, let us consider

the SO(2) =~ U(1) rotationally symmetric ansatz [68] as
o =£&r)e™N . p3=p(r), a=ay(r)dd, a,=0, (3.107)

written in polar coordinate on R? where g, = 1,909 = 1?,99 = 0 and N is

winding number. The form of f,, f* and |D,¢|* with this ansatz can be found
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as follows

1 1
Ju f* = ﬁfr@fr@ = T—Q(arae)z,

. _ 1 . .
Dupl® = (9rp + i) (9 — i0rp) + 5 (Doip + ia0p) (Do — o)

1
= (0" + 5N + )’ (3.108)
then our action becomes

& 1 2 r .92 1 )
S =2 dr| ——ap” + ="+ —(N 224
7T/O T( Pl o 5 (N a7

r (1
T RV ) B 3
g% \ 2
where primes are denoting the derivatives with respect to r.

The Euler-Lagrange equations can be derived from (|3.109) to be
1

1 2
fﬂ‘f‘;f/_ <E(N+a9)2_‘_?(€2+p2+p_1))520’

1
ap — ;ag —4¢*(ag + N)E* =0,
1 2
,0"+;p'—?(§2+2§2p+p—1) =0. (3.110)
These are nonlinear coupled differential equations and we do not know their
analytic solutions. However, it is possible to find their approximate solutions in

the small r» and large r regions. For » — 0, using the Frobenius method, and

power series expansion around r = 0, we obtain the solutions
E=&rY + 00V, ag=ar® +0(r"), p=po+O(r?). (3.111)

For » — oo, finiteness of the action indicates some important features of our
fields. It is easy to see that the action is finite if £(r) — 1,a4(r) =
—N ,p(r) — 0 as r — oco. Using these profiles, the asymptotic behavior of our
fields can be determined by adding small fluctuations to these vacuum values

and thus writing
E=1-06, ap=—-N+da, p=idp. (3.112)

Now, it is possible to solve dx,da and O\ by inserting our fields (3.112)) in
the Euler-Lagrange equations (3.110). Assuming that (‘57“)2 is subleading corre-
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sponding to 6 and dp, we obtain the following differential equations

2
5" + 55 ~ 2 (=0p+20) =0, (3.113)
1
da" — ;5&' —4¢%*6a =0, (3.114)
1 2
'+ 500/ — =5 (30p —20€) = 0. (3.115)

Let us start with finding the solution to the differential equation (3.114)). Here,
setting da = rda, this equation becomes the modified Bessel equations at order

1
r28a” + réa — da(4g’r* +1) = 0. (3.116)

Two linearly independent solutions to this modified Bessel equation are modified
Bessel function of the first kind I; (2¢r) and second kind K;(2gr). Here, since we
are looking for solution for large r and I;(2gr) diverges in this limit, the solution

to this equation is K;(2gr). Hence, the solution to (3.114)) is constructed as
da = a;rKq(2¢gr) . (3.117)

For the solution to coupled differential equations (3.113) and (3.115), let us

define a linear operator D = a 241 8 , then they become
(D — —)5§ + 5p =0, (D- g—)5p+ 55 =0. (3.118)

Multiplying first equation by (D — g%), we obtain (D — g%)(D - g%)(sg =0
This means that there are two second order differential equation for 0 in the

following form
6&" + 55 + 55 =0, 06"+~ 55 + 55—0 (3.119)

These are the modified Bessel equations at order 0. Taking the regular solutions

at r — oo, we have
0 = aaKo(V2r/§) + asKo(2v/2r/3) . (3.120)

It is easy to see that we have the same differential equation (3.119) for dp and

after a straightforward calculation, its solution is found to be

5p = asKo(V2r /) — 2a5K0(2V2r/§) . (3.121)

71



Here, our assumption that (67“)2 is subleading to & ,0p yields the condition

V2
4g > i

It is known from general consideration in Vortex dynamics that if field strength
dominates the asymptotic profile than the vortices repel and they attract if
scalars are dominant [68]. We can easily determine the leading order behavior of

the field profiles in (3.117)), (3.120) and (3.121)). Since K (2v/2r/§) is subleading

to Ko(v/2r/§), we should deal with the latter which indicates that scalar fields

2,

decay like \/L;e* 7 as r — oo. Whereas for the field strength, we have B =

1 —2gr

fi2 = %&ae and it decays like e . Hence, the attractive-repulsive nature

of forces depends on the value of the coupling constants such that they are
attractive for gg > \/75 and repulsive for */TE < gg < */75 Thus, vortices of the
LEA corresponding to the standard Yang-Mills theory in (3.76]) attract since

gg = 1 in this case.

3.3.4.2 Case ii)

Here, we would like find the vortex solutions by taking large but finite ¢ and
g — oo which is equivalent to imposing the constraint ®,®, + (¢ + 1) = 0 by
hand. This constraint is fulfilled by setting 3 = 0,)» = 0 in equation ({3.97))
and the solutions for 3 and ¢, in leading powers of % can be constructed in

terms of |p| as
= g (= leP) 1 0(5), eu= (1 -leP) +0(z).  (3122)
Inserting these real scalar in the reduced action at the order %, we get

1 . L, 1 y 1 1
S = /d2y1692 (flwfu + huuhu - Z.f;whu ) + 5 (1 - E) |DN(70|2

L 2y2 L L _ 212
+a Gulel”)” + 27 (1+ %2) (1—|g|?)?. (3.123)

fuv
g.We

Using the equation of motion of the field b, enables us to find h,, = —

substitute this in the action (3.123) to eliminate A, .
Making the same symmetric ansatz as in (3.107]), we construct the Euler-Lagrange
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equations for £(r) and ag(r)

’ 1 ! 1 1
(1- 452 222)(5 + § ) + 2625 - (1- @>ﬁ(N+a9)2£
2 1
— S+ 5E)E - 1E=0
(3.124)
" “7 AR )5 -0 (3.125)

The solutions to ¢ and ay around r = 0 are the same as in the previous case
(3.111)). For r — oo, the differential equations in (3.125]) can be solved in terms

of modified Bessel functions as

0é = ﬁlKO(g (1+1/40%)r), da = Pork, <29 (1-— %2) ) , (3.126)

where £ =1 —0&,a9 = N + da and (31, By are constants. Here, the interval for
the attractive and repulsive vortices can be determined by performing a similar

calculation just as in the previous case. It is found as

)
g9 >1/1+ ek for attractive vortices, (3.127)

For the standard Yang-Mills theory (gg = 1), since scalar fields decay faster
than the field strength, these vortices repel each other in this model. Finally, it
is worth to note that ¢ — oo limit in (3.123)) with h,, = f“” — 0 yields the
standard BPS vortex action [68].

3.4 Gauge Theory on M x 5% x S%

3.4.1 A Deformation of N =4 SYM

In this section, we focus our attention to the dynamical generation of the product
of two fuzzy sphere S% x S% from an SU(N') gauge theory coupled to suitable

number of scalar fields. Let us consider an SU(N) gauge theory coupled to six
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anti-Hermitian scalar fields ®; with the action [21}24]
1 ) .
S :/ ddyTr( — EFJVF“ — (Ducbi)T(D“d)i)) V@), i=1,---,6,
M g
(3.129)

where ®; transform adjointly under the SU(N') group action and also transform
in the vector representation of a global SO(6) ~ SU(4) symmetry and V(®) is
such that it is invariant under these actions. If we consider the 4-dimensional

Minkovski space and take the potential term V(®) as
1 6
Vv=a(®) = —ZQ%/M Z[q)i, P17, (3.130)
ij

the action becomes the bosonic part of the N = 4 supersymmetric Yang
Mills theory [4,/5]. The global SO(6) symmetry of is nothing but the
R-symmetry of the super Yang-Mills theory. We will show that considering the
action (3.129)) with the potential terms

V(®) = Viva(®) + Virear(®) - (3.131)

where Viear(®) contains cubic soft symmetry breaking and quadratic mass de-
formation terms which breaks N = 4 supersymmetry completely and global
SU(4) symmetry down to a subgroup. The product of two fuzzy sphere S% x S%
emerges as a vacuum configuration after the spontaneously symmetry breaking
of SU(N). Let us examine the action (3.129) with the potential term
which is written in the form of |21}24]

1 1 1
V(@) = 5 Vi(®") + 5 Vi(®F) + = Vi(®"7) + g7 Vo (") + g7 Va (@) |
9L IR IJLR
(3.132)

where we have divided six scalar fields ®; into two parts ®L = &, & =
®yy3, (a=1,2,3) and

Vi(®F) = TeFL FL . FL = (0L, OF] — € ®E

V1<(I)R) = TchfZTFﬁ ) FaRb = [(bfv (DI})%] - Eabcq)cR )

Va(@h) = Te(®LRL +B)?, Vo(®F) = Te(®ROE + bR,

V(@5 ) = TeFy, e FST = [of, ). (3.133)
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Here, the covariant derivative in the action (3.129) can be rewritten in terms of

®L and O as follows
(Du@i>T(Du(I)i) = (Duq)aL)T(Duq)g) + (Duq)f)T(Du(I)f) : (3-134)

We note that the model (3.129)) with the potential (3.133)) breaks the global
SU(4) R-symmetry down to a global SU(2) x SU(2). The scalar fields ®; =
(®L  ®F) transform under the (1,0) & (0,1) representation of this global sym-

metry.

3.4.2 5% x S% Vacuum

Let us focus on the construction of the vacuum configuration for this problem.
It is easy to observe that the potential terms are positive definite and the mini-

mization of these terms require
Ft=0, FR=0, —oloLl=pt —oReRF=pF FL.P—-0. (3.135)

The most general solution to these equations is not known. However, by fol-
lowing a procedure similar to the one used in section , it is possible to
construct a specific solution to these equations. Let us take b” as the eigenvalue
of quadratic Casimir of an SU(2); IRR labeled by ¢; and bf as the eigenvalue
of quadratic Casimir of an SU(2)r IRR labeled by /g

b=t (1), b =tr(lp+1), 20,,20R€Z. (3.136)

With the assumption N' = (20, 4+ 1)(2¢g + 1)n, we can choose the vacuum

configuration

Ol = X2+ g 12ntD) g1 |

Of = G0+ g Xt g 1

[z, @51 =0, (3.137)
where (XL?ZLH)7 X(?ZRH)) are the anti-Hermitian generators of SU(2), x SU(2)g
in the irreducible representation (IRR) (¢, () satisfying the relations in ([2.154]).

Clearly, this vacuum configuration spontaneously breaks the SU(N) symmetry
down to a U(n). Here, the commutant of &% and ®2 in (3.137) is U(n). In fact,
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this vacuum can be interpreted as the product of two fuzzy spheres Sz x S%

generated by £ and 2L where

555 _ 1 X£2£L+1) & 12rt1) 7
Vel +1)
.i'R — ;1(2@34-1) ® X(2£R+1) ’ (3138)
“ KR(KR + 1) “

are given in subsection [2.7.2]

Fluctuations about the vacuum configuration in (3.137)) can be written as

P = XL AL of = x4 AR (3.139)

where AL, AR € u(20,+1)@u(20r+1)®u(n) and the notation X2 = X+ g

1%+ @1, and X/ =1C4+) g x ) g 1,, has been introduced. With the

; L R pL pR pLR
fluctuation terms Ay and A, Fy;, F;, F,;”" become

Fa[é = [ch’ Alﬂ - [Xva Aﬁ] + [Aga Alﬂ - 6abCAAcLa (3140)
Ff = X2 Af = (X AR + [AF, AF] — eacAE, (3.141)
Fof=XE AR - [XF, AL + (AL, A (3.142)

It can be observed that (F5, FE F%™) have the form of curvature tensor on
the manifold S% x S%. Hence, we can interpret AL, AR (a = 1,2,3)) as six
components of a U(n) gauge field over Sz x S% and ® and ®F are “covariant
coordinates" on S% x S%. In other words, after the spontaneously symmetry
breaking the gauge theory on M can be interpreted as the gauge theory M x
5% x S% where the gauge fields are in the form of Ay, := (A,, AL, AF) and the

field strength tensor is Farw := (Fl, FL, FE FL FE FLT) with

F.,=0,A, —0,A,+[A,A],

FuLa = Duq)aL = 3MA§ - [XaL7Au] + [Au’Ag] )

F;ﬁz = DM(I)f = auAg - [Xf> Au] + [AmAaR] ) (3-143)
and the rest given in (3.142) above. We note that by scaling ® = /2g®L  dF =

V2g®f and taking g, = gr = V29L.r = § and g§ = 1, this model can be

expressed as follows

1
S = / dy 4—92Tr(FJLNFMN) + g2 Vo(®F) + giVa(). (3.144)
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This means that, apart from the constraint terms, it is possible to express the
Lagrangian of the emerging model on M x S% x S§% as the L?-norm of Fy;y with

given relation between couplings .

3.4.3 Equivariant Parametrization

Let us consider a U(4) gauge theory on M x S% x S% studied in [24]. In this
case, the symmetry group of S% x S% is SU(2) x SU(2). Our aim is to construct
the most general SU(2) x SU(2)-equivariant gauge fields. Let us define the
symmetry generators w, which generate SU(2) x SU(2) rotations up to a U(4)

gauge transformation as follows

a

L
CUL — XéZfL-i-l) ® 1(2£R+1) ® 14 _ 1(2([,4-1) ® 1(2£R+1) ® 2%

R
wf — 1(2‘€L+1) ® XCE2€R+1) ® 14 _ 1(2[[,4’1) ® 1(2@1{4’1) ® Z% ,

where w? and w? are required to satisfy so(4) = su(2) @ su(2) commutation

(3.145)

relations

(Wl wl] = e,  [WE W] = e, [wh wf]=0. (3.146)

A suitable choice for (LY, LE) is to take them to carry 4-dimensional (5, 3) IRR

of SU(2) x SU(2) [24] and satisfy the relations

[L£7 Llfj] = 22:EabcLL

c ?

[L(]j? LI})%] = 22.EabcLR

c )

[Lg’ Ll?] =0,
LELE = ieqpe Ll + 0aply,  LELE = ieqpe LE + 0414 (3.147)

For concreteness, explicit 4 x 4 matrix forms of LY and LF may be given as

00 0 — 0 0 ¢+ O 0 — 0 0

00 — 0 0 0 0 —g : 0 0 0
Lf — . ,L§ — . ,L§ —

047 0 O -5 0 0 0 0 0 0 —¢

: 0 0 0 0 2 0 0 0 0 ¢ 0

0 0 0 ¢ 0 0 ¢ 0 0 - 0 0

0 0 — O 0 0 0 4 i 0 0 O
L{z = 7L§ = 7[’?{%:

0 24 0 O — 0 00 0 0 0 =«

—3 0 0 0 0 —72 0 0 0 0 — 0

(3.148)
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To make this choice for (LL | LE) clear, let us indicate a few facts regarding the
IRRs of U(4). This group has sixteen generators and its fundamental represen-
tation is four dimensional. This representation can be spanned by the sixteen
4 x 4 matrices LY LE LLLE 1. (LL ) LE) generate the SU(2) x SU(2) sub-
group of U(4) as we see from which is why they have been introduced
n (3.145)). Relation of these generators to the more familiar Gell-Mann type
Ai,i=1,--- 15 will not be worked out here as it is not necessary for our pur-
pose. Since our aim is to construct the SU(2) x SU(2)-equivariant gauge fields
of U(4) gauge theory, the choice for (LL | LE) in are suitable in order to

define the generators (wl wf).

SU(2) x SU(2)-equivariance on the U(4) gauge theory may be imposed by re-

quiring the constraints

[wL Al=0, [wL Ab] = eabcAL

a’ a’

[Wf> Au] =0, [WR Ab] = EabcAR

a ?

[wa's A5 =0 = [, A7) (3.149)

In order to find the explicit parametrization of A,, AL and AF, we use the

a’?

Clebsch-Gordan series expansion of the adjoint action of (wl wf);

(2 0) @ (5 9] @ (62 ) @ (5, 5)] = 40, 0) @ 8(1,0) &80, D&+

(3.150)
This expansion implies that the solution of A, is 4-dimensional and each of
the solution space of AL and AP is 8-dimensional. Here, we may define two
“idempotents” ;, and Qg as
(26L+1) 2Rr+1 L i
Xo "M @1t @ L — 11

QL - EL —+ 1 ) QTL = _QL ) QL = 14 (201,4+2)(20r+1)
2
1(2€L+1) ®X(2KR+1) ® LaR _ 11
Qr= ZR T 2 Q}} =—Qr, Q%= L2ty 12)(20n41) -
2

(3.151)

The invariants under the adjoint action of (w’,wf) can be expressed in terms
of Qr, Qr, QrQr and 1. Then, A, may be parametrized in terms of these

invariants,

A, = %aL(y)QL + 1%( )Qr + 1za RQLQr + = b 1, (3.152)

2 2
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where a//(y), ai(y), a;"(y), bu(y) are all Hermitian U(1) gauge fields. Here, we

can also see that imposing the constraint (3.149)) causes the breaking of U(4)

symmetry down to U(1)®%. In a manner similar to the one given in section
B.3.1] it is possible to show that A, preserve the rotational symmetry under
the gauge transformation generated by U = 2Qr01(¥) ¢ 3Qr02(4) 03 QLQRI () 05102 (v)

with aﬁ’ = aﬁ + 0,01, af’ = af + 0,0, , aﬁ’R’ = aﬁ’R + 0,03, and b; = by, + 0,04

With the parametrization (3.152]), the field strength tensor takes the following

form

i
= —fWQL + QR+ ff;RQLQR + 5l (3.153)

where we have introduced

L L R __ R R
= =0, a &,au , = oua, — 81’%
= 0ual ™ — 0,0 hy = 0uby, — Dby (3.154)

For the parametrization of AL and A, a suitable basis may be chosen as follows

A% = (e + BIIXE Qi)+ e+ 5~ QUKL Qi) + i P XL Q1)
+ ﬁw i 501~ $0IQRIXEQul + (62— Po)QuIXE, Q1
+i (ELJF ){ 2 Qu}+ A %>wL), (3.155)

AL = S0+ RIS Qul + 50 + %o — DAXE. @l + i (X1 Q)

t Q(E:j_ %)wf +iQr (%(Xl — XX, Qr] + %(Xz — X2)Qr[X), QR
R
+i 10n + ){ ,Qr} + <R+%)wa), (3.156)

where ;, @i, Xi, Xi, (i =1,2,3,4) are Hermitian scalar fields over M. A con-

venient notation for future use is to write ALR = ALE 4 jQLR A/ LR,

Using the basis given above, the covariant derivatives can be constructed in
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terms of scalar fields as

1 . . 0
Dok = - (Du(% + 1) + Q"D,(p2 + 902)) (XE QM + ’L“—%l XE Q")
2 4(0r + 3)

0
+ ﬁf_%)w + ’LQR(l (D,u(gol — ¢1> + QLD#<(,02 _ @2))[)(5/7 QL]

4 . ,u(p3 {XL,QL} + ,u904 wL) ,

Ul + 5) 200 + 1)
and
D,®; = %(Dubﬁ +X1) + Q"D (x2 + ;(2)) XE O + ( OpuX3 ){ R OR)
+ Q(ZS—Y%)“? +iQ" (%(Du(Xl = X1) + Q" Dyu(x2 — x2)) (X5, Q"
T ﬂf—g (X5 Q7 (41::%%)""1%) !
where

Dugﬁz = 0upi + 531(1“903 + 5]1(1 90] ) Du@z‘ = ,u@i + 5jz‘a£@j + 5ija£7R§5j
DuXi = aqu + 5]za Xi + 5jza Xz ) Du)%z = u)%i + 5jia£>2i + 5ija£7R>~(j )
(3.157)

with 7 =1, 2.

We are ready to find the reduced action from these parametrizations. Using the

following notation for the reduced action
5;:/,cp+cg+£§+vf+vﬁ+vﬁﬂ+vf+vf, (3.158)

and the identities given in (3.90)) for both Q1 and Qg, it is possible to determine
each summand in the integrand of (3.158)). Since we are essentially interested in
the exploring vortex type solutions to this low energy effective action in certain

limits, we relegate explicit forms of (3.158) to Appendix |A| and consider the
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commutative limit (¢ ,¢r — o) of these terms. As ¢ ,lr — oo, they read

L

L LKV R ¢RHV L,R ¢L,RHV v
- 1692( MVf + w/f + f;u/ + h/u/hu ) )

N 1 N N
LG = |Du90|2 + |Du90’2 + 1 ((au903)2 + ((%903)2 + (au904)2 + (au@l)Z) )

- 1 - .
LE = Dux? + |Dux)? + = ((9uxs)® + (9uxXs)? + (8pxa)® + (0uXa)?)

4
V= (ol + o+ @ = D+ 0+ (60— = 1))
30t GaPlel? + o0 — PIRR + 5+ D),
= (0 o = D+ O + 0= = 1)
30+ S + 30 =PI+ 506+ 1) ).
ViR = o (o= oxl + o = 6 + 3 (ol + 16 + 12

(2 + 712 @2 + @i)))
Vi =070 (o3 + 05+ @3+ 37)
Vit =gnlh G+ X3+ X5+ X3) (3.159)

where in V' and V;®, we shall consider either g, — 0,gr — 0 such that gp¢r
and ggrlr small but finite corresponding to the first limit case we explore in
section or gr,gr — oo corresponding to the second case we explore in
section [3.3.4] It can be easily seen that the vacuum configuration for the scalar

fields is given by

el =16 = Il = Xl = 5., (3.1600)
P3=P3=pa=¢s =0, (3.160Db)
X3=X3=X4=Xa=0, (3.160c)
PX=OX, X =OX- (3.160d)

In fact, the two conditions given in the last line (3.160d|) are not independent
from each other. Using , we can derive one from the other. This means
that we have one constraint over our complex scalar fields ¢, ¢, x,X. In other
words, we can write one of them in terms of other three. This implies that the

vacuum configuration has the structure of a three torus, 7% = S! x S! x S1,
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with first homotopy group m(T?) = Z & Z & Z. This result indicate that LEA
has classical solution on R? with nontrivial topology which are characterized by
three integer winding numbers. Indeed, in the next section, we will give the

vortex type solutions for this problem with the winding numbers (nq, ns, ng).

3.4.4 Vortex Type Solutions

In subsection [3.3.4] we have constructed the vortex type solutions for the reduced
action on manifold M = R? after the integrating out the extra dimensions
S%. Here, we would like to examine the vortex type solutions for the reduced
action (3.158) obtained by tracing over the extra dimensions 5% x S%. In order
to proceed, we define our limits as follows. First, we consider the reduced action
in the commutative limit ¢, , /g — oo and g ,gr — 0 such that g, ¢, and grlr
are small but finite which is effectively equivalent to consider the commutative
limit of the action (3.158)) without the constraint terms Vi and V;. In the
second case, we take {; and (g large but finite and g, , gr — 0o, which actually
amounts to imposing the constraints by hand, i.e. taking ®L®L 4 ¢ (¢, +1) =0
and ®RPE 4 (n(lp+1) = 0.

3.4.4.1 Case i)

It can be easily seen from that in the limit ¢, , /g — oo and g1, gr — 0,
b, , ¢4 and x4 are decoupled from the rest of the action. This means that their
equations of motion do not affect the rest of the fields. Consequently, in this case
we have U(1)? gauge theory. In order to proceed, let us make the rotationally

symmetric ansatz

af =ak(rydd, of =ali(r)as, o =al"(r)dd, (3.161)



and

ingl im16 & imo6

Y= 90<T)6 ) 95 = @(T)e y X = X(T)€ y X = )2(7“)6 )
w3 =3(r), @G3=@3(r), @a=¢a(r), x3=x3(r), X3=x3(r)

It is important to note that n; ,ny, n3 and ny are not linearly independent. This

can be easily seen from (3.162)) and (3.160d)), they satisfy
(ny —ng) — (n3 —mny) =0. (3.163)

Using this relation, we can eliminate ny as ngy = ng — (ny; — ny). As mentioned
before, the nontrivial structure of complex scalar fields can be defined by three

winding numbers (n;,ny, n3) in this case. Now, the reduced action becomes

o 1 ]- ! / ]. ! ! 1 / !
S =2 dr —(—aL al + Zalal 4+ —qbft aL’R) + r?
7T/O {892 %o Qg -G Qo P %)

1 5 1 N
+—(m + ag +ag")Q" + 1@+ —(na +ag — 0P X
1 . 1 2
+ ;(Tlg +al + ag’R)2X2 +ry?% + ;(ng — (ny —ng) 4+ alf — ag’R) b
r - - N N T 1 N 1.2
+5 <90§,2 + P+ PN+ R+ xf) + (4(902 + —(p3+@3) — )
gr, 4 4
4(p? 1 — & _12 9 5.)202 1 9 2 \2x2 1~2
+4(F" + 7(ps = P3) = 7) + 2ps + P2)%0” + 2ps — 22)*5” + 5P
r 1 1.9 1 1.9
LN TV A A(V2 & Z(va — Vo) — =

N N9~ 1. r L
+2(x3 4 X3)°X° +2(xs — X3)°X° + §X421> + 7z (Q(SOX - @x)?
LR

N | —

- 1 L9\~ - ~9\ / ~ -
+20xp = X@) + 5 (¢* + &) (G + X)) + 5 (X + ) (@5 + wi))} . (3.164)
With a straightforward calculation, we can construct Euler-Lagrange equations
for our fields which are given in appendix [A] These are nonlinear coupled dif-
ferential equations and the analytic solutions to these equations are not known.
However, like the previous section, it seems possible to obtain the approximate

solutions by focusing on two regions; small r and large . With the expansion
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around r = 0, the profiles of our fields can be found as

plr) = gor™ + O™ ) x(r) = xor™ + 0("**?)

Br) = @or™ + O(r™*2), X(r) = Xor™ ") 4 O T,

ag (r) = agr® + O(r") . ai'(r) = agr® + O(r"), ag"(r) = ag""r* + O(r"),
ps=o+00%), xs=xo+00%), ¢s=¢+00"), Xs=xX;+007),
Pa=p5+0(r%), Xa=xXp+0(r?). (3.165)

For large r, let us first notice the asymptotic behavior of our fields is defined by

the finiteness of action (3.164)). This implies that

ny + No 2713 — (n1 — TLQ) ny — Ny
ag( ) = = ) g( ) ) %L’R(T) - = )
2 2 2
1 5 1 1 N 1
90(7’)—>§> 90(7’)—>§> X(T)—>§, X(T)_>§7 p3(r) =0, x3—0,
N

953_>07 )Z3_>07 @4_>7 564_>07 as r

Now, considering the small fluctuations around these vacuums, we can obtain

the asymptotic profile of our fields for large . These fluctuations can be written

as follows
1 1 1 1
—Z_5 5= G —Z_5 = %
4 5 Y, ¥ 5 ¥, X 5 Xs X 9 X s
DMyn — _

aeL——nl_gnQ—k(SaL, aff——ng (Zl n2)+5aR,

agR::-—Eiiiﬁz—%éaLR, (3.167)
and

p3=0p3, X3=0X3, @3=0pP3, X3=0X3, Pa=0Ps, Xa=0X4.
(3.168)
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Then, the equations of motion (A.20) for da’, da™® 6,060,003 ,0¢s, 00, re-

duce to

sa*" — —5 Y 4g?6a" =0, (3.169)
" 1 /
Sat " — —5 8925aL =0, (3.170)
1 4 1
6" + =09 + — (5g03 +0¢3) | — 5—(0p —6p) =0, (3.171)
r 9L gLR
o 4 1
0P +—= 5903 —0¢3) | — (09 —d0p) =0, (3.172)
gL gLR
5@3 + (5(,03 + 9—2 <(5Q0 + 5@ - —6@3> = 0, (3173)
L
1 4 1 ..
0ps + —0p5 + — | dp — 6P — —5g03 + ——0p3 =10, (3.174)
r gL 9dL.R
3! 1 2
r gL gLR

and the equations of motion for da*,dx, 0%, dxs, X3, X4 can be obtain by re-
placing g1, — gr,da” — da’*,0p — dx,dp — d¥ in the equations above. We
note that we have assumed that (%)2 : (@)2 and (2

L,R .
¢_—)? are subleading com-

pared to the complex and real scalar fields in order to get the above equations.

Since the equations (3.11453.175)) are linear differential equations, we can find
the exact solutions for each equations. For simplicity, let us consider the case

Jr = gr = \/§gL7R = g, for the solutions with general g1, gr, gL r, the reader is

referred to the reference [24]. Equations (3.169) and (3.170)) is in the same form
of (3.114]) and hence the gauge fields have the following asymptotic profile

Sa* = AFrK, (2gr)
sa™ = Afric, (2gr)
dalf = ALEr K (2v/2g7) . (3.176)

Following the linear operator method given in the previous section, we can con-
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struct the solutions for our scalar fields as follows

dp = BlKo(\/g_T) BQK0(2\/_T)+33K0(\/0~71T

g
2 QT
5@ = BlKo<fgr>+B2Ko< ?) B3K0(\/;

V2r 2v/2r
(5@3 BlKO( g )—QBQK()(

) + B4Ko(@r

),

\/OCQT

) — ByKo( )

F )
_ , oqr , QT
0Pz = B:),Ko(%) + B4K0(\/; )

V2r 2\/2r N NG

(SX ClKo( g) CQKQ( g )+C3K0( 3 )+C4K0( ),
5% = caKoWg_T) o220 chON?’")—@Ko( =2,

g
2
5X3 ClKo(\/g_r) — QCQKO( \/_T

)
R ) aqr QT
oX3 :C'3K0(\/; )+CA/LKO(\/; )

where a3 = 6 + 2v/3 and ay = 6 — 2¢/3 and for the fields @4 and x4, we have no
fluctuations. Taking (%2)2, (%%)2 and (%42")? are subleading to the complex
and real scalars implies a condition between the coupling constant g and g such
that 49 > */75. Since, the leading terms for the solutions both scalar fields and
gauge fields are the same as in the case explained in the subsection (3.3.4.1)), we
have the same condition for the attractive and repulsive forces between vortices

such that

2
attractive for gg > \/7— ,

V2

2
repulsive for % <gg < - (3.177)

For the standard Yang-Mills theory gg = 1 in (3.144)), we have attractive forces

between vortices.

3.4.4.2 Case ii)

Now, let us examine the vortex type solutions for the reduced action with large
but finite ¢, , g and g1 ,gr — oo. This corresponds to impose two constraints

OLPL + ¢, (07 +1) =0 and PEPL 4 (p(fr + 1) = 0. It can be easily seen from
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(A.13)) that these two equations is satisfied if we have

YE=0, Yy=0, Y=0, Yy=0,
YE=0, YE=0, YE=0, YE=0. (3.178)

These equations enable us to solve the real scalar fields in terms of the complex

scalars in powers of and as

1 1
_ 2 ~2 L _ 2 ~2
wg——gi(!wl + ¢ 2)> ©4 EW + || 2),

1 . . 1 -

By = ol — 161, @a =~ (I~ I2P). (3179)
L L

where 3, X4, X3, X4 can be obtained by ¢ — x and ¢ — x. Let us expand

the ¢;, and ¢ dependent coefficients in the reduced action (3.158|) to the order
Z% , e% and substitute the approximate solutions (3.179
L R

in it. Then, we obtain

1 v v v
EF — 1692 ( ;fnyu + fR# + fLR L,RH + h h,uu
+ (i ™ = Py f25) +(fR pLBE _ pL hw)(L — L)
201ln Z AT Y.
% v 1 1
+ (fuf T = b )(% @) :
1 1 1 1 1 1
Lh=(14— = — — \Duyl? T — = ))|D,gI?

1 1 1 1 1 1
BR_ (14— D2+ (1——+ — — —)ID,%?
o - 7)1 Duxl? + )10

+ g (@ o @

4 5} 1 1
L 1 2 1y2 12 1\2
V= g (el = 2+ (122 - 7).
4 ) 1 1
R _ 1 2 1y ~12 Lo
VI = St ) (0 - 2+ (18 4> ,
Vit = —— (2|905< —oxI* +2[xp — oxXPP + 55 (ISO\2 +12) (X = Ix[?)?
gLR 203,
toE (IXI2 + X)) (el ~ |s5|2)2) : (3.180)
The equation of motion for b, can be solved as follows
1 1 1 1 1
hy=|— — — | f& — — — | B —fLE 3.181
Z (zeL 4@) Juw ¥ <2£R 4@) TR (3-181)
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Inserting this solution for h,, into £Lr and making the rotationally symmetric

ansatz (3.166[) and (3.167)), our reduced action becomes

r

& ]_ 1 ]_ !/ / 1 1 / / 1 L,R, L,R,
52271'/0 dr [8_QQ< (1— @)Gé (15 +;(1 — @)Gf CLé12 +;(19 Qg )

V(1 1N w1 1 1N\ pow
T (ER 2%) % T, (zL 2@)“9 %
1 1 1 1
1 - - = 2 - L L,R\2, 2
+ ( +2€R ol 46%)<T<p —i—r(nl—i-ag +ay,") e
1 1 1 1
1o~ 4 - = =2, 1 L LR\2~2
+ ( 2€R+4€% 4@%)<T@ —|—r(n2—|—a9 ag”")
1 1 1 1
1 — = 2ot R, LR\2. 2
R 453%)(7”“ s e
+(1_L+L_L)) 7“5(’24—1(713—(nl—n2)+aR—aL’R)2>~<2
20;, 402 403 r o

2 2
+ g_;" (90280,2 i ¢2¢/2) 4 6_27” (XZX/2 i )225(/2)
L R

LRI SRR PR,
ras ) (- @ -

# o (8- P - )

dn 4
r - g
s (Q(SOX —PX)” + 2(x¥ — XP)
9i.R
1 R ~ 1 ~ B
+ -7 (902 + 902)(X2 . X2)2 +— (Xz + XQ)(QOQ . 902)2 ' (3.182)
203, 20k

Euler-Lagrange equations for this action can be found by straightforward cal-
culations but these are nonlinear coupled differential equations. In a manner
similar to the one given in section [3.3.4] we can obtain their approximate solu-
tions by focusing on two regions. The profile of our fields around r = 0 are the

same as ((3.165)). For large r, the solution for our fields can be found as follows

da* = ArrE,(29r) + Ay K, ( 29 1+1 i2+i2 r),
\z 7

1 /1 1
§aR:Aer1(29r)+A§“rKl 201+ (5+—5)])r).
4\0; G

11
Jalf = ARk, (Nﬁg (1 - g (@ + %)) r> , (3.183)
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s v (V50) 4 (V0.

5o - s (V0 1 (V).

ox = F1K <%7’) + K (?T) )

5V = F3K, (%r) + F, K, (%r) : (3.184)

where
a{ir ). V(i)
rea(ied). (sl h)
(3.185)

and g, = gg = \/ig,; r := g. The vortices are repulsive for the standard Yang-
Mills theory in (3.144)) with gg = 1.
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CHAPTER 4

GAUGE THEORY OVER M x S2/NT x G2INT

In this chapter, we explore another interesting aspect of the particular deformed
N = 4 supersymmetric Yang-Mills theory given in previous chapter. We have
already given the detail on the dynamical generalization of the product of two
fuzzy sphere S% x S% from SU(N') gauge theory coupled to six scalar fields in
the adjoint representation of SU(N'). Here, we examine the new form of vacuum
solutions of this deformed N = 4 SYM model which can be expressed in terms of
a particular direct sum of product of fuzzy sphere, denoted by Sz x S2/n [26].
To proceed, we suitably split the scalar fields in this model as ®L = ¢L + I'Z|
Ol = ¢F + T2 where (I'Z, T2) are defined by determining the four scalar fields
WL Wl (o =1,2) and their Hermitian conjugates, which are still in the adjoint
of the SU(N), but transforming under the (3,0) @ (0, 3) representation of the
global symmetry group SO(6). We show that (UL WZ) transform under the
(3,0)®(0, 3) of SO(6) and (T'}, T'E) transform in the (1,0)& (0, 1) representation
of SU(2) x SU(2) by the suitable definition, so do (®%, ®F). We would like to
stress that the degrees of freedom is preserved for both sides of this redefinition
of scalar fields and the equations of motion for ¢£# and WLT and WET simply
reproduce from the variations of ®L-%. Hence, there is no new degrees of freedom
in this model. However, this redefinition provides to obtain the vacuum solution

of the scalar fields which takes the form of direct sum of S% x S%.

To make this chapter self-contained, we would like to review of the original idea

1 This chapter is based on the work that has been published: S. Kurkcuoglu and G. Unal “Equiv-
ariant fields in an SU(N') gauge theory with new spontaneously generated fuzzy extra dimensions”
Phys.Rev. D93 (2016) 105019.
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of the redefinition of scalar fields in terms of bilinears which was first introduced
in [25]. This technique was applied to the SU(N) gauge theory coupled to
a triplet of scalar fields discussed in detail in chapter 3 and shown that it is
possible to obtain the vacuum solution of scalar fields in terms of the direct
sum of concentric fuzzy spheres. After a brief introduction of this technique, we
are ready to apply this technique to our problem. First, with the redefinition
given above, we show the vacuum configuration of scalar fields may be defined in
terms of direct sum of S% x S%. Considering the fluctuations about this vacuum,
we obtain the structure of gauge fields over S x SZ/™ and enables us to
conjecture that the spontaneous broken model is an effective gauge theory on the
product manifold M x SZ™ x 21" Tn order to support this interpretation, we
construct all of the SU(2) x SU(2)-equivariant field modes by using equivariant
parametrization technique. The redefinition of scalar fields in terms of bilinears
(TL TE) gives the interesting feature such that we find the equivariant spinor
field modes which do not constitute independent dynamical degrees of freedom
in the U(4) effective gauge theory, but it is readily conceived that their suitable

bilinears shall yield the equivariant gauge field modes on S2/" x S2Int,

In addition, with this redefinition, the monopole sectors with non-vanishing
winding number are accessed after certain projections of M x S2Imt x S2Int e
obtain the monopole sectors with winding numbers (£1,0), (0, £1), (£1,+£1)
from S x S2I™ and the equivariant fields in these sectors as a subset of those
of the parent model. The latter characterizes the low energy modes of the theory
and making contact with the results of |24] studied in detail in the section (3.4}
we show that tracing over the fuzzy monopole sectors is bound to yield two
decoupled Abelian Higgs-type models, each with a U(1)? gauge symmetry and
static multivortex solutions characterized by three winding numbers. It seems
possible to examine the splitting of the fields (®L | &%) with the composite part

involving a ky + ko component multiplets transforming under the representation

('“2_ L 0) @ (0, ]”2_ L) of the global symmetry and determine a family of fuzzy

vacuum solutions. It is manifestly seen from our results that suitable projections

of these vacuum solutions yield all higher winding number monopole sectors.

An unexpected feature of the vacuum configuration SZ/™ x SZ that it identifies
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with the bosonic part of the product of two fuzzy superspheres with OSP(2,2) x
OSP(2,2) supersymmetry. We present it by examining the decomposition of
typical superspin IRRs of OSP(2,2) x OSP(2,2) under SU(2) x SU(2) IRR
and how a particular typical IRR of this group matches with the SU(2) x SU(2)
IRR content of SZ x 21t Tn addition, we also give a construction of the gen-
erators of OSP(2,2) x OSP(2,2) in its nine-dimensional fundamental atypical
representation, by projecting a relevant set of 16 x 16 matrices, which appear
in our model as building blocks in the construction of the matrix algebra of the

composite fields.

In the last section of this chapter, we discuss another vacuum solution to this
model. Although, the structure we encounter looks superficially similar to the
one obtained in section [4.2] we find that there is in fact a crucial difference;
namely that the objects whose bilinears are I'L and T'Z, do not transform as
(3,0)®(0, 3) representation of SU(2) x SU(2). Nevertheless, treating this model

as one in its own right we examine it in some detail.

4.1 Review of Gauge Theory over M x SzInt

In this section, let us briefly give the idea of obtaining the vacuum configuration

as the direct sum of fuzzy sphere by splitting of scalar fields as

1 1
St . — S2(0) & S(0) B S (£+ 5) ® S% (E — 5) ; (4.1)

studied in [25]. Consider the SU(N') gauge theory given in the section [3.1] Let
us take the action (3.2)) as

1 , 1
S = /M %y T1"< — 4—92FJVF!L _ (D#QQ)T(DMI)Q)) — ?Tr(Fijab) . (4.2)

We note that in this case V5 term is omitted from the action and the reason
of its absence will be clear after the determining solution for the minimum

potential. The structure of the vacuum (4.1) was revealed by performing the

field redefinition

Dy =g +T,, To= —%\Iﬁ%axp, (4.3)
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where
, U, eMat(N), a=1,2, (4.4)

is a doublet of the global SU(2) symmetry of the action (4.2]). Here, ¢,, ¥, and
[, are all transforming adjointly under SU(N) and 7, = 7, @ 1u.

We note that is indeed a reparametrization of the fields ®,. Let us make
this fact clear by determining degrees of freedom in (4.3]). Noting that ¢, and
U, are N' x N matrices and they are anti-Hermitian, we can see that ¢, have
62 real degrees of freedom and 3N + 3(N? — N) constraints, so they have
3N? real degrees of freedom while ¥ have 4N? real degrees of freedom in total.
However, what enters into the definition of I', are the equivalence classes ¥ ~
UV, U € SU(N), as it can readily be observed that ', are invariant under the
left action UW of SU(N') on ¥. Since the unitary matrices U € SU(N) have N2
real degrees of freedom, it is thus clear that I', have in total 4N? — N? = 3N?
degrees of freedom [26].

As we mentioned earlier, since the potential term V] is positive definite, we have
the minimum potential condition as F,;, = 0. This condition indicates that the
vacuum configuration satisfying the minimum potential condition might carry
any reducible representation of SU(2). Hence, it is possible to obtain the vac-
uum configuration by the suitable choice of ¢, and I',. However, the
presence of the potential term V5(®) in restrict the vacuum configuration
in an irreducible representation of SU(2) by the minimum potential condition
—&,9, = b. Therefore, we omit the potential term V5 in order to obtain the
vacuum configuration consists of the direct sum of fuzzy sphere . Neverthe-
less, it is possible to impose it as a constraint as explained in the section [2.6.1

and given explicitly in (2.117]).

With the assumption N' = (20 4 1)4n, we see that up to gauge transformations
the vacuum configuration satisfying the minimum potential condition may be

chosen as
o, =(XPN@1L,®1L,)+ (a1 ®TL® 1) (4.5)
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where

I, = —%w*w, (4.6)
are 4 X 4 matrices satisfying

T8, T3] = eancle (4.7)

In order to determine I'Y explicitly, let us define two sets of fermionic annihilation-

creation operators a, ,aL
{aa, a5} =0, {aL,aL} =0, {aa,ag} = 0ap - (4.8)
These operators span the 4-dimensional Hilbert space with the basis vectors
Iny,no) = (a)™(a})™2]0,0), ny,ny=0,1. (4.9)
It can be seen that if the two-component spinor 1 is taken as

b = L I : (4.10)
(> as

then the forms of T'?’s become
0o _ o f o_ Lo i f o_ bt i
(4.11)

and they satisfy SU(2) commutation relations (4.7). Therefore, the vacuum
configuration (4.5)) fulfill the minimum potential condition F,, = 0. It is possible
to find SU(2) IRR content of 'Y by defining the ladder operators as

19 =19+l = —ialay, T° =T9—ilY= —iala,, (4.12)
then we have

0,0y =0, I%1,1)=0, TI°0,1)=0,
reo,1) =—il1,0y, T%1,0)=—i0,1), T%0,1)=0. (4.13)
From these equations, it can be easily seen that SU(2) IRR content of T'? includes

two singlets |0, 0), |1,1) which can be distinguished in terms of the eigenvalues

of number operator N = af,a, and a doublet. Therefore, IRR content of TV is

1
00 @028 -, (4.14)
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where Qg , 02 stand for the eigenvalues of the number operator which take the
values 0 and 2, respectively. It is easy to see that the projections to the singlet

and doublet subspaces respectively may be found on these representations as

Pozl—N+2N1N2,

1
P00:_§(N_2>P0:1_N+N1N27
P —1NP—NN = 1NJrlP

02_2 0 — 1 2 — 2 2 %’

P% =N —2N;N,, (4.15)
where N = Ny + Ny, N; = aial , Ny = agag.

SU(2) IRR content of vacuum configuration (4.5) can be derived from the

Clebsch-Gordan decomposition as

1 1 1

This indicated that the vacuum configuration (4.1])) can be interpreted as a direct
sum of four concentric fuzzy spheres as it has been already discussed and shown
that it is also possible to conjecture that after the spontaneously symmetry
breaking, the emergent model is an effective gauge theory on M x S% in [25]. In
order to find the most general SU(2)-equivariant gauge field modes, the SU(2)
symmetry generators w, may be chosen as
W, :(X(52é+1) 1@ 1s) + (1o RT? @ 1) — (1gpy1 @ 14 ® %Ta)
—:X, +T0 - %Ta
1

=D, — 3T we €u(20+ 1) @ u(4) @ u(2), (4.17)

and satisfying (3.78]). w, carries a direct sum of IRRs of SU(2), which is given

(ﬁ@f@ (€+%) &) (E—%))®%z(€—1)@2<(£+%)@(£—%))
+20+(0+1). (4.18)

Projections to the representations appearing in the r.h.s of (4.18)) is given in the
table [4.1, where
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Projector Representation

Moy = 12011 @ Fyy @ 15 ((=3)@(+3)
Mo, = 12011 @ By, @ 15 ((—=3)@(+3)
H+:%(iQ1+H%) (d(L+1)
I = %(—iQI+H%) (o (l—1)

Iy = oy + 1o, = 1op41 @ Fy @ 15 2((5_%>@(5+%>>

Table4.1: Projections to the representations appearing in the r.h.s of (4.18]).

1
3(0+3)
SU(2)-equivariant gauge fields can be obtained by imposing the symmetry con-
straints in (3.79)), (3.80) and the additional constraint

[wa ) \Ila] - %.(%a)aﬁ\llﬁ . (420)

Qr= (XL — =11), QF=—1l1. (4.19)

=

1
4

The dimensions of solution spaces for A, , A, and ¥, can be derived by the
Clebsch-Gordan decomposition of the adjoint action of w,. The relevant part of

this decomposition is

[(6—1)@2((“%)@@—%)) +2€+(£+1)}®2
;140@24%@301@---. (4.21)

This means that under the adjoint action of w,, there are 14 objects which trans-
form as scalars. All these equivariant scalars can be constructed by using the
projectors given in the table and the suitable projection of the “idempotent”

C Xe® 1, ®7, — $1es

4.22
QB €+% 9 ( )

and using the rotational invariants, it is possible to construct the equivariant
vectors and spinors as well. We omit the explicit form of these equivariant gauge
fields here and refer the interested reader to the original literature [25]. However,
we would like to stress that in that article, it was shown that after suitable

projections, the monopole sectors with winding number £1 can be accessed and
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the reduced model yields two decoupled Abelian Higgs-type models as found
in subsection B.3.1] and the vortex solutions determined in the subsection [3.3.4]

are valid within each sector. Now, we are ready to apply this technique on the

deformed N =4 SYM theory given in the section [3.4]

4.2 New Fuzzy Extra Dimensions from SU(N) Gauge Theory

Let us consider the deformed N = 4 SYM theory with SU(N') gauge symmetry

given in the section [3.4 and take the potential terms as follows

L __ L FL L
ab Fab - [CI)a,(I)b] - 6abc(I)c )

V(oL) = TryFLFL

V(R = TryFYFE FR = [0F oF) — ¢, 0%,
5 (4.23)

<

(@81 = Trxcky T EG™  Fy = [0F, ],

a

=0, OF=0,5, (a=1,23),

where the potential terms VI and V;F in (3.133)) are again absent because of
the same reason given in the previous section but we will impose these terms as

constraints.

Following and generalizing the developments in [25|, we are going to consider

that ®L and ®f are split in the form
Oy =y +T5, OF =¢f +T7, (4.24)
with the definitions

DE = —SUH7el, Tf = —S0R7uR, (4.25)
where the scalar fields U* and ¥ are doublets of the global SU(2);, x SU(2)g,

transforming under its IRRs (3,0) and (0, 3), respectively. Thus, we may form

the 4-component multiplet

ui
N2 vk
U= L= ; : (4.26)
v w!
vy
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transforming under the representation (1,0) & (0,%) of the global symmetry
group. We have that all the components (VZ UE) (o = 1,2) of ¥ are scalar
fields; they are N/ x N matrices, transforming adjointly (WL-F — UTWLEL)
under SU(N). Clearly, then (T'2 TZ) are bilinears of ¥’s transforming under
the (1,0) @ (0,1) of SU(2), x SU(2)g. Under the SU(N) gauge symmetry

(TL TE) transform adjointly (T2F — UTTLEU) as expected.

Note that there are 6% real degrees of freedom in (®L &%) and the doublets
Ul and ¥ have 4N? real degrees of freedom each. Just like the previous case,
here we also have equivalence classes for U2 and W¥. It is readily observed that,
under the left action WX — UWL ¥k — VU with U,V € SUN), we have
(PL  TH) remaining invariant. Thus, what essentially enters into the definition
of (T2 TE) are the equivalence classes (UX W) ~ (UWE VER). Since each
of the unitary matrices U,V € SU(N) have N? real degrees of freedom, this
means that each of I'Y and T'2 has 4N? — N? = 3N real degrees of freedom,
which yields exactly the same 6A? real degrees of freedom in (T'2 TE) as in

(Pg, 7).

In fact, it can also be shown in a straightforward manner that the variations
with respect to ¢Lf WLT and WET simply reproduce the same equations of
motion as those that emerge from the variation of ®L-% indicating that no new
degrees of freedom are introduced into the model by . This splitting is
rather premature as it lacks any physical motivation at the present stage, but
our reasons will become clear as we move forward and show that the model
spontaneously develops fuzzy extra dimensions, which may be written as direct

sums of the products S% x S% as we shall now demonstrate.

4.2.1 The Vacuum Configuration

With the absence of V;F and V), the conditions for minimum of the potential

terms (|3.135)) reduces to

Ft=0, Ff=0, FLE=0. (4.27)

2 See Appendix [B| for details.
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These equations indicate that the solution for minimum of potential are given
by N x N matrices carrying reducible representations of SU(2) x SU(2) that
decompose into direct sums of its IRRs. We want to consider such a solution to
the equations in which we can take advantage of the splitting of the fields
indicated in and in its construction. Let us emphasize that, the
particular vacuum solution we want to construct this way exists regardless of our

use of relations given in (4.24]) and (4.25)) as it is clear from our initial remark.

Keeping these in mind, we can proceed to observe that the requirements in

and naturally restrict the possible SU(2)., x SU(2) g representation
that ('L, I'E) may carry to the one for which (VX WZ) exists. In other words,
(TL TE) may not be in some arbitrary representation of SU(2) x SU(2), since
then the corresponding (WL W) will not exist in general. Here we consider
the only possible solution for which both (¢Z, ¢%) and (I'L, T'E) are nonzero

matrices.

We are going to show that the solution fulfilling the equations in (4.27)) with the
structure given in (4.24)) and (4.25) may be written, assuming that N factors in
the form N = (207 + 1) x (2(r +1) X 16 X n, as

@5 — (X(gQKL-‘rl) ® 1(21R+1) ® 116 ® ]—n) + (1(2€L+1) ® 1(253-&-1) ® FgL ® 1n) ’
(DGR _ (1(2eL+1) ® XéZZR-H) ® 116 ® 1n) + (1(2£L+1) ® 1(2¢r+1) ® FgR 2 1n) ’
(4.28)

up to gauge transformations ®; — UT®,U.

(FgL,FgR) are conceived, for reasons that will become clear shortly, as 16 x
16 anti-Hermitian matrices which satisfy the SU(2), x SU(2)r commutation

relations
L L L R R R L R
[Fg >F2 ] = Eabcrg ) [Fg >Fg ] = eabcrg ) [Fg 7F2 ] =0, (4'29>

and form a reducible representation of SU(2), x SU(2)r.

We will now see that I°" and T°" can be written as bilinears of spinors carrying
the IRR’s (3,0) and (0,3), respectively. For this purpose, let us introduce

four sets of fermionic annihilation-creation operators (b, ,b! ,cq,cl) with the
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anticommutation relations

{bou b}j} = 5&6 ) {Cou C%} = Oap (430)

and all other anticommutators vanishing. They span the sixteen-dimensional

Hilbert space H with the basis vectors
|n1, ng, N3, n4> = (bi)nl(bg)m(cbw (Cg)mma 07 07 0>’ (431)
with ni,n9,n3,ns =0, 1.

We can now take

o = Lyttryt, TOF = Lymtgn, (4.32)
where
b c
who=| |, wRe= ] (4.33)
b2 (&)

It is easy to see that (", T°%) fulfill the SU(2);, x SU(2)r commutation rela-
tions in (4.29)). We furthermore have that

L ? L oL l L R
e Tal=—5(aast . [W17 T8 = 5(m)sath ', [ T07] =0,
R ? R R { R L
[ 57F2 ] = __( a>aﬁ¢g7 [¢L 7F2 ] = §(Ta)ﬁa¢; ) [ gvrg } =0,

2
(4.34)

therefore ¥* and ¢® carry the (3,0) and (0,3) IRRs of SU(2), x SU(2)g,

respectively.

The quadratic Casimir of the representation spanned by (FgL,FgR) may be

straightforwardly calculated to give

0,4 0 0
Co= T2+ @2 =] 0 -31, 0o |. (4.35)
0o 0 =31
where we have used
3 3 3 3
(I9")? = — NP+ oNIN (19?2 = — N DN (4.36)
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with the number operators on the Hilbert space H given as

NP =blby, Ny =blby, N'=NI+ Ny, (437
.3
NlR:cIcl, Nf:cgc% N = NE L NF,

and we have taken the basis vectors of H oriented in the order [0000) , |0011)
0001) ,[0010), |1100),|1111),|1101),|1110),|0100),]0111),[0101),|0110),
11000) , |1011) , |1001) , |1010).

We can construct the SU(2), x SU(2) g representation content of (12", 1% by

the following ladder operators
105 =19 1ir9" = —ibiby, T =T9" +ir?" = —icle,, (4.38)
rO% =19 19" = —iplp,, O =107 i1 = —icle, . (4.39)

Using these ladder operators and the eigenvalues of these ladder operators on

the basis vectors in Hilbert space H, we obtain
10000) , [0011) ,|1100) , [1111) —» (0,0),
10010}, [0001) — (0, %) ,
|1110) ,|1101) — (O, %) ,
11000) , [0100) — (%,0),
11011, [0111) —s (%,0),

11
[1010), [1001)., [0110),, [0101) — (5. 5). (4.40)

Hence, (FOL FOR) has the representation content expressed as the following di-

a ) a

rect sum of IRR’s of SU(2), x SU(2)g:

4(0,0) @ 2(%,0) @ 2(0, 5) ®(5,3)- (4.41)

It is also possible to express (I°" T0%) as

M -rei,, =1, (4.42)

where TV given in (4.6) with the two-component spinor (4.10). Since T'? fulfill
the SU(2) commutation relations, it is clear that (I°", 19 as defined in (4.42)
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fulfill the commutation relations in (4.29). It is easily observed that
and describe unitarily equivalent representations and indeed yields
identically the same set of (FSL, I’?LR) as in Eq. if the basis vectors of H,
are taken in the order |0,0),]1,1),]0,1),]1,0).

Let us consider the SU(2);, x SU(2)g IRR representation content of (4.28)).

Clebsch-Gordan decomposition gives

(Cr,lr) ® <4(0, 0) & 2(1, 0) ®2(0, %) ® (%, %))

1 1 1 1
=4((y,lr) ®2((L — §,£R) ®2(0,+ §7£R) ®2(0r, lr — 5) ® 2(&,612 + 5)

1 1 1 1 1 1 1
EB(KL—Q,gR—5)@(£L+§,€R—§)€B(£L—§,£R+2) (€L+ £R+2)

(4.43)

(\V]

For convenience, we introduce the short-hand notation D := XL + FSL ,DE .=

X2 4+ 197 for the vacuum solutions (4.28)

In accordance with the decomposition in (4.43]), a unitary transformation puts
(DL DE) into the block diagonal form (DL, DE) = (UTDEU ,UTDEU) whose
entries can be inferred from the casimir of IRR’s appearing in (4.43]) and their

multiplicities (see Appendix . Therefore, we may interpret the vacuum con-

figuration of the gauge theory (3.129)) with the redefinition of scalar fields (|4.24])

in terms of direct sums of S% x S% given as

1
S2Int 2]nt =4 (S KL X SF ER)) SI%‘(KL — 5) X S}%‘*(fR))
SY

b2 512; EL —|— X SQ (ER (S%(KL) X S%(ER —

( 1)) 2 1
@2(5 (€r) x SZ( €R+2))®<S%(€L_§)XS%(€R_ )>
® (S% (Lr + ) x Si(lr — %)) ® (S%(EL - %) x S2(tp + %))
e ;

@ | SE(ly + ) X S%(lg + —)) : (4.44)

In order to obtain each summand occurring in (4.44]), we have the corresponding
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projections given in the form

Mos =[]

yF# o, 0#p

—(XE+T9%)2 — (XE+T9%)2 - AL +1) = AF(OF + 1)
ALAL +1) + Ag(Ag +1) =AML +1) = MNEOE+1) 7

(4.45)

where «, 3,7, = 0,+,— and AL AF take on the values ¢, ¢} + %,ER,KR +

% respectively. This gives nine projectors. Note that II,g does not resolve
the repeated summands in (4.44). For instance, Il projects to the sector
4(S4(01) x S%(lRr)). We will see, how the projection to each repeated sum-

mand is accomplished as we proceed.

It is important to note that these projectors may be expressed, after a unitary
transformation, in terms of the products of the projectors II}; and IIf, which
are given as

—(XF+T0%)2 = AL+ 1)

It = ,
g AL(AL+1) = AL(AL + 1)

R 0Ry2 R(\R (4.46)
=T
s£p BB o7
From , we may find that 15, TIF 114, TI¥ take the form
Ik =104+ g 124+ @ P91, ® 1,,
¢ =1C0+) 91+ 91, ® Py ®1,, (4.47)
M = S(iQf +118), T = S (iQf + 1),
where
,oXxime—snb 0 xRSt dnk
Q=1 T+ Q=1 Tt (4.48)

and 114 = Ik + 12, IIF = TI% + II%.
2 2

As Tlop and TIZIIE project to the same subspaces, they are unitarily equivalent,
IIyp = UTHQHgU, for some unitary matrix U. Using the notation Il,5 = Hgﬂg
to denote this equivalence, we can list these nine projections onto the distinct

IRRs in (4.43) as given in the table [4.2]
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Projector To the Representation
HOO = HéHOR 4(€L,€R)
HO:t = HOLHE Z(EL,KR :i: %)
H:EO = HiH(If Z(EL + %,ER)
— TILTIR 1 1
H:tq:EHiH§ (gL:t%7€R:f:%>

Table4.2: Projections Il

Projector | To the Representation
Hgoﬂé%o (€L7 KR)
Héoﬂé%z (€L> KR)
H(in(])?) (gLv KR)
H&Héz (gLv éR)

g, 1T (e, r £ 3)
H&Hﬁ (gb lr+ %)
LTI (€Lj:%,€R)
L IO (éLj:%,ﬁR)
MLk (01 tp+ 1)
LTI (b £35.0rF 3)

Table4.3: Projections to all fuzzy subspaces in r.h.s. of (4.44]).

It is possible to split IT§ to the projectors IT§ | I, and ITf to IIF | TI{, as

My =1t @1 g B @1, ® 1,
ng — 120+ 5 120+ o P, ®1,®1,, (.49
H(])%o — 1(%L+1) ® 1(%}3-‘:—1) ®R1® P()O ®1,,

H(I)D; — 1(2€L+1) ® 1(2£R+1) ® 14 ® PO2 ® 1n7

where Py, , Py, are given in (4.15)). Taking the above splitting of 11§ and II¥ into
account, we can resolve Iy, [1p4 , I11 into the projections, which project onto
subspaces carrying a single IRR as given in table [4.3] These constitute the 16

projectors onto the fuzzy subspaces appearing in the right hand side of equation

(T.44).
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4.2.2 Gauge Theory over M* x Sz x S2Int

We may now turn our attention back to the vacuum configuration (4.28)). The
latter breaks the SU(N') gauge symmetry to a U(n). Clearly, this is the com-
mutant of (®L, ®f) given in . In addition, the global symmetry is totally
broken by the vacuum. However, we note that, it is still possible to combine a

global rotation with a gauge transformation which leaves the vacuum invariant.
We may introduce the fluctuations (AL, AZ) about the vacuum as

L = XL 4 10" 4 AL = DE 4 AL,

R (4.50)
OF = XF4+T0" + Al =Dl + Al
where AL AR € u(20p +1) @ u(20p + 1) @ u(4) @ u(4) ® u(n).
Evaluating F%, FE FaLb’R, we find
Fcﬁ) = [D(f?Alﬂ - [D£7A£] + [AgaAlﬂ - EabCAcL7
Foy = [Dg' Ay = (D), A+ [A, AY] — eane AL (4.51)

Fa[I;RI [ngaAl?] - [Dl??Ag] + [AgvAl?]

This suggests that we can think of AL and AZ as the six components of a U(n)
gauge field living on SZ™ x S2I" including the two normal components. As
we mentioned earlier, we can eliminate these two normal components of gauge
fields by imposing gauge invariant conditions on the fields in the commutative
limit, ¢, fr — oo. Following the approaches in [41,59,/63|, we introduce the

conditions
Xy + 10"+ AL = (X + 100
= —(lr +7)(lr + v+ 1)L, 1) +1)@@ert1)n) 5

. p (4.52)
(XF+TY + AN = (X +T07)?

= —(lr+7)Ur + 7+ 1)L 24y +1) @20 +1)n) »

where v = 0,+3. In the commutative limit, {1, (g — oo, (4.52) yields the

transversality condition on FgL + AL and FgR + AZ to be
TR0+ AD) = =y, FH AT =, (453)
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as long as AL are smooth and bounded for ¢, g — oo and converge to
L R . . . . ._XL’R /\LR .
Az (z), Aj(x) in this limit. Here we have i=¢— — z»" as {, {r — oo, with

¢
(L 21) being the coordinates of 5% x S2.

a )

To summarize, we have a U(n) gauge theory on M x SZI" x S2Int  Writing
Ay = (Ay, Aa), the field strength tensor takes the form Fiyy = (F., Fl, , Ff,
FL FR FLTY with

ab >

Fw/ = auAu - &JA,u + [A,Lu Au] )
Fl, = D0} = 0,AL — [XF+ T3 A+ [A,, AL,
Fl = D@ = 0,AF — [XF+T0", A,] + [A,, AT

na
Fl = [XE+T0% A - (X[ + 197, AF) + [AF, AF] — AL,
FE = [XE 410 AR — [XF 4+ T8, AT 4 [AR, AF] — e AP

c )

FEP = [XE 410" AR — [XE 4+ 19" AL + [AL, AF).

4.3 The SU(2) x SU(2)-equivariant U(4) gauge theory

In this section, we investigate the U(4) gauge theory on M?* x Szt x S2Int,
Following a similar line of development as in the subsection [3.4.3] we introduce
SU(2) x SU(2) =~ SO(4) symmetry generators in order to construct the SU(2) x

SU (2)-equivariant gauge fields. Our anti-Hermitian symmetry generators are

(,UL — (X(g?éL-‘rl) ® 1(2£R+1) ® 116 ® 14) + (1(25L+1) ® 1(2€R+1) Q FgL ® 14)

L
(108 @ 1@t g i L2 )
o2 (a5
wR — (1(25L+1) ® XC(L%R'H) ® 116 ® 14) + (1(2ZL+1) ® 1(2£R+1) ® I‘g ® ]_4)

a
R

L
_(1(2£L+1) ® 1(2€R+1) ® 116 ® 27a) ,

and wl = XTI + FgL +iLE Wit = XL 4 FgR + £LE for short. L% and LY are

277a ’"a

chosen as in (3.148) so that w’ and w? satisfy (3.146)).
Since (L, LE) carry the (3, 1) IRR of SU(2) x SU(2), it is readily seen that the
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Projector To the Representation

IR | (+i g+ e +itg—Ya (-3 tr+3)o (-1, 0r
I i (&+5JR+96M&+2JR—QQN& TR+ )@l — 5l
MR | (+ 3 g+ )@ (0 + 2,63— DO — 3+ 2@ (0 — 5,0
MR | (o+ 3 e+ )@ (0 + 2,63 DO — 3+ 2)® (0 — 5,0
IT§ 1% (lr+ilpgtl)® (EL— Ril)@(6L+2,£R)@(£L 2. (R)
L 11 (&;+T£Ril)@( U69@L+2,€)@(@; 1. 0R)
I1EANES (bp+£1,0p+ 1 )@(&ptleR—-969@b£R+ O CIURT S
IEAIE (b1, lp+3)® U+ 1,lr—3)® (o, lp+35) D (UL, lr—3)
L IIR (0p £+ 1, ERil) (b £ 1,05) ® (bp,lr £ 1) ® ({1, LR)
Hil’[ﬁ (gLil,gR)@(ngl:l,gR:Fl) (EL,KR) (KL,ERQZ )

Table4.4: Projections to the representations appearing in the r.h.s of (4.55).

symmetry generators (wl, wE) have the SU(2) x SU(2) representation content

(&J@@(MQ@@2%¢D@%Q%HN%%O@M11)

1 1 1 1 1 1 1
= WLﬂL AR+ 2) (€L+§>€R_ 5)@(51: - §;€R+§) & (0 — 5753— 5)]
1 1 1 1
® 2[(0, —1,0p — 5) @l —1,lp+ 5)] ®4[(lr,lr+ 5) ® (b, lp — 5)]

1 1 1 1
2((0p + 1,05 — 5) @& WL+ 1,lg+ 5)] @ 2[(f, — 5751% -1 &l + §>€R —1)]
1 1 1 1
® 4l — 5743) @ (0 + 5763)] & 2[(lL, — 5,63 +1)® ({r + §,£R +1)]
©(lp—1,lr = 1)@ 2(ly — 1,lp) ®2({r,lr — 1) ©4(lr,lr) ® (fr +1,lr — 1)

@20+ 1,4g)d (U — 1 g+ 1)®2(Uplr+1)B (U +1,4lg+1)=1.
(4.55)

Adjoint action of (wk,w!) implies the SU(2) x SU(2)-equivariance conditions

in (3.149) and

wa, ol =

1 )
_(Ta)aB\IJL ) [Wfa \Ilf] = _(Ta)aﬁ\I/R )
2 g 2 g (4.56)

wa, Ua] =0 = [w,', wg].

For the U(4) theory under investigation, we list the projectors and the subspaces
to which they project in the equation (4.55) in the table (4.4). In order to

avoid the possibility of any notational confusion, we note that the representation

11

content of (w’,wf) includes the tensor product with the IRR (3, 1) as seen in
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the Lh.s. of (4.55) and ITZIT¥ project to the subspaces as listed in the table ,
while in the absence of the gauge symmetry generators (LZ, LEF), Héﬂg project

to the subspaces as listed in table [4.3]

We can find the dimension of solution space for 4, AL AR and UL WX using
the Clebsch-Gordan decomposition of the adjoint action of (wX, w) whose repre-
sentation content can be found by I ® I. The relevant part of this decomposition

gives
1 1
196(0,0) ® 336(5, 0) ® 336(0, 5) @ 420(1,0) ® 420(0,1) - - - . (4.57)

This means that there are 196 equivariant scalars (i.e rotational invariants under
(wk,wl)), 336 equivariant spinors in each of the IRRs (3,0) and (0, 1) and 420
vectors in each of the IRRs (1,0) and (0,1). Employing the matrices

SE =190, 11 @ 1o 1 @8 014@ 1y, SFE=1y,,1 01,11 @108 ® 1y,

;0
s=| 7, i=1,2, (4.58)
0y 09
XLLL i1
Qp = &—+§2 Qoo = 5, Q%, Qp, = 15,Q5,
1
L L 2L |\ 17l
Q+:mn+((2€[1+l) QB+2)H+7
1
L _ L 2L N\ T17L
Q‘_—4£L(€L+1)H— (20, + 1)?Qp — i) 1%, (4.59)
1 €ape XLTOVLE 1 1
L:FOLLL_Z'_HII,’ Lo _;fabea’b Ze T L +i—H§,
(lr + 3){Q%, Q7 } + 3117 XLSLLE _iglL
QBI:i 27 Qé: ala12l,
200 (0 + 1) g €L+§

and L — R in (4.59) for the right constituents, a judicious choice of a basis
for the equivariant scalars can be made so that they are “idempotents” in the

subspace they live in, and they can be listed as

M, IS TR, TQS, QTN QFSy, Q7Qf, Qs
(4.60)

where ¢ runs over 0Og, 02,4+, —, 7 runs over Og,0s,+,—, H, ' and k takes on

the values 1,2 and no sum over repeated indices is implied. Full lists of the
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equivariant spinors and vectors are not our immediate corcern in what follows

and therefore they are relegated to Appendix [B]

We note that that the index o (o = 1,2) of WX and ¥% implying the transfor-
mation properties of these fields under the global symmetry SU(2), x SU(2)g,
becomes, after symmetry breaking, the spinor index on SZ™ x SZI™  just like
the index a (a = 1,2, 3) of (®L, ®f) becomes the vector index. We stress that
the pure group theoretical result in equation predicts the presence of
equivariant spinor fields in the IRRs (3,0) and (0,3) of the symmetry group
SU(2)r x SU(2)g of the fuzzy extra dimensions Sz x S2™  Their explicit
construction, as listed in , is only facilitated by the splittings of ®¥ an
o in ([4.24) and . As it should be already clear from our discussions in
subsections and [£.2] these spinorial modes do not constitute independent
dynamical degrees of freedom in the U(4) effective gauge theory. Taking suit-
able bilinears of these spinors, we may construct all the equivariant gauge field
modes on S x 2™ In other words, it is in principle possible to express the
"square roots" of the equivariant gauge field modes through these equivariant

spinorial modes.

4.3.1 Projection to the Monopole Sectors

In this section, we derive the monopole sectors with the winding numbers (+1, 0),
(0,%£1), (£1,£1) from the suitable projections of SZ™ x S2™ and we gain much
insight on the structure of the model by examining projections to its subsectors.
We will see how to systematically access all higher winding number monopole

sectors in the next subsection.

We observe that Sp2™ x Sp2 1™ may be pro jected down to the monopole sectors

S2E % S% = (52 (01) x SZ(lg) ) (S ) x S2 (eR)> (4.61)
24+ 2 1

SF S (SF<£L) X SF KR ) <SF €L X SF gR 2)> (462)

S2E % §p2 = (SF(EL) x SZ(lg ) & (S (0 i ) x SE(lp £ %)) . (4.63)

with the winding numbers (£1,0), (0,41), (£1, £1), respectively. We can now
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probe the low energy structure of the U(4) model in these monopole sectors by

writing down their equivariant gauge field modes.

Let us inspect each of the sectors briefly.
i. S2E x S%:
We may consider, for instance, the projection
I I+ AT (4.64)

We note that the projection to this sector is not unique, in the sense that
there is in fact a set of projections which give the same monopole sector. We
infer from to which IRRs the projection restricts the direct sum
given in the r.h.s. of . After this projection, the number of equivariant
fields are greatly reduced and they can be most easily found by working out the

adjoint action of (wl,wX), which in this subspace takes the simple form

[ ((eL,£R> ® (0 + %,zR)) ® (3, 5)} —8(0,0)& 12(%, 0) @ 16(1,0)

©16(0,1)--- .

Thus, there are 8 invariants which we read from (4.60) as

L 1R L1TR L "R L "ZR
HOOHOO ) HiHOO ) HOOQOO ) Hj:QOO )

QIR QIIE ., QL. QL. (4.65)
16 vectors carrying the (1,0) IRR

g [DF, Qg,) s Mo Qs,[Dr, Q6] Tt {DE, Qg }

QoD Qs,) s QyQ6, (D, Q6] Qop{Dx, Qg }

Mg (DY, Q%), TgQLDL QL) Tg{DI QL}, (4.66)
Qo Dy, Q%] QoQLIDy, QL. Qi {Dy,QL},

R 7L , L R 7L, L R 7L , L R y7L, L
HOOHOOWG ) HOQHﬂ:wa ) Q00H00wa ) QOQH:I:wa ’
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and 16 vectors in the (0,1) IRR are

5, [Dg', Qop)s T, Qus [Dd', Qo ), T, {037, Qg b
Qt, D' Qosls Qo Qoo D3, Qi) Qo 1D, Qi b
IZ[Dg, Qog)s T3Q0[D4', Qo). TE{ Dy, Qg 3 (4.67)
Q%D Qnl, QXQR DY, Qgl, Q3{DE, Qs }
106 TIg i, TIETIE wi, QT wh, QEIIE wit .

We see that there are 12 equivariant spinor in the IRR (%, 0)

g M5, 5, QY » T Qp, 1LY, TI5 Q4 B2Q% . Qg 15, 82Q% Qo R, BaT1E
Qo Qoo Br Q% , T, Ik 575y, T 1L 57 Q5 , TG QY Q% , QouTILAYSy
Qo 1L85Q% , Qo QLBLQ%,

(4.68)

where L = 120+ @ 12:+1 @ b, ® 14 and due to the form of this monopole

sector, we find no equivariant spinors in the IRR (0, 3).

One, rather trivial alternative to (4.64)) is to change II{ with IIf in (4.64)), this
simply amounts to taking IT — TIf ,QF — QF in (4.65)),(4.60),(4.67) and
(4.68). Another choice is the projector

1§ I+ T (4.69)

Equivariant fields in this case can be obtained in a similar fashion.
i. S% x S3E:
We observe that the only change in (4.65)) is the replacement of (1,0) with (0, 1).

Bearing this fact in mind, results in (4.65)) to (4.69) apply with the exchange
L+ R.

o2, o2,
. SE x Sp

To obtain this monopole sector we can use any one of the projections

IR + TTETIE, i, j = 0o, 02 (4.70)
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In this case, the adjoint action of (wk, w®) yields the representation content

1

(e, tr) ® (L F %,KR F 5)) ® (

11

5 5)]@’2 = 8(0,0) @ 16(1,0) & 16(0,1) & - - - .

(4.71)

We immediately observe that equivariant spinors are completely absent in this

sector. Taking, for instance, 7,7 = Og we find that 8 scalars can be written as
H(IJIOH(?O ’ Hini ) HgoQ(}]zo ) Hi@ﬁ )

QLUE, Qimf, QLok., QLo (4.72)

and 16 vectors carrying the (1,0) IRR are

N5 [DF, Qg,), T16,Q5,[Dr, Q5] T {DY, QG,}

Qo [Dq, Qo] . Q0 Qi [Dss Q. Qo { D' Qg }

If[Dy. %], MNEQY[Dy, Q%], YD Qi},

Qf[Dy,QY], QIQL[Dr, QY. QH{D: Q%},

I wh, Mihw?, QFIf wl, Qftw!, (4.73)

00%a > 0oa

while the vectors carrying the (0,1) representation follow from (4.73|) by the

exchange L < R.

In all cases that we have discussed in this subsection, each summand of the

projectors (given in (4.64]), (4.69)), (4.70)), etc.) splits the equivariant fields into

mutually orthogonal subsectors under matrix product. For concreteness, let us
briefly discuss the consequences of this fact for the sector given by the projec-
tion in . We have found the rotational invariants under the symmetry
generators (wl, wk) given in , so the parametrization of the fields A, can
be defined in terms of two mutually orthogonal sets (H&QOLO ,H(%OQ(I)% ,Q(%OQORO,
115 11 ) and (I Q% TTEQE , QLQE ,TILIIY ). Comparing these two sets to the
paramet- rization of gauge field constructed in the section (3.4 we observe that
each set in the subspace it lives is equivalent to the basis for parametrization of
gauge field . Hence, the low energy effective action of this model consists
of two decoupled set of Abelian Higgs-type models with U(1)% gauge symme-
try and each set possesses static multivortex solutions characterized by three

winding numbers as given in the subsection [24].
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4.4 Generalization of the Model with k-component Multiplets

It is possible to search for other vacuum solutions for the deformed N = 4
SYM theory given in the section [4.2l We may generalize the construction of
this section by replacing the doublets UX and ¥¥ in equation with kq-,
ko-component multiplets of the global SU(2) x SU(2) as

41 24
\IfL \I’R \I’L

\I/L — :2 7 \I/R — :2 7 U = \IIR , (4,74)
143 v

transforming in its (¥52,0) and (0, %52) IRR, respectively. Then, ¥ is the

k1 + ka-component multiplet in the representation (2-1,0) & (0, 21). Compo-
nents Wy, Wi € Mat(N),(a«=1,--- k1), (8 =1--- ky) of ¥ are scalar fields
transforming in the adjoint representation of SU(N) as WL-E — UTWLEY . Bi-
linears I'2 and T'2 in % and U# are defined similarly as before in the form

Tt = —%@LTXGL@L, e = —%@RTXGR\IJR, MoB Z2\eR @1y (4.75)

kl”Rfl

5— ) representation of SU(2).

where now AR are the generators of spin (

In subsection we have seen that the vacuum configuration of our model
can be written as the direct sum of products of fuzzy spheres whose structure is
determined by the representation content of (FgL, FSR) with the corresponding
doublet scalar fields taking the form given in . In order to generalize the

latter, we need k = ki + ks sets of annihilation-creation operators which satisfy
{ba7b£’}:5a,37 047/8:17"',]{71, {Cp,CZ}:(SpO—, pao-:]-)"'ak27 (476>

with all other anticommutators vanishing. Thus, these operators span the 2k1++2.

dimensional Hilbert space with the basis vectors

|n17"' 3 MUy, T - = >mk2>:(bi) 1(621) kl(c]i) 1"'(622) k2|070"' 70)7

(4.77)
where n;,m; = 0,1, (i=1,--- ,k, j=1,--+ ko). For UF = ¢* and ¥F = ¢
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with

e N AR B I (4.78)

bk1 Ck2

It is straightforward to show that FgL = —%¢LTAG@DL and FgR = —%@Z)RT)\G@DR
satisfy the SU(2) x SU(2) commutation relations and in addition fulfill

L 7 R
05 T = —5Oash . [, T2 =0,
. ; . (4.79)
I = —5Oastf T2 =0,

implying that ¢~ and ¢f indeed carry the (21, 0) and (0, #2-1) IRRs, respec-
tively.

In order to obtain the vacuum configuration in the present case, first we have to
find out the SU(2) x SU(2) IRR content of (1", T9™). Number operators N* =
bl b, and NE = ¢l ¢, commute with I’gL and FgR. This means that, the number
of states in a given sector with eigenvalues (n%,nf) (n® = (0,--- k), ,nft =
(0, , ko)) of NI and N is equal to the dimension of one of the SU(2) x SU(2)
IRR sectors occurring in the decomposition of the representation of (FOL )
into the irreducibles of SU(2) x SU(2). Therefore, the IRRs of SU(2) x SU(2)
that appear in (I'°", T°") may be labeled as

(£, dk2) = ((’2) —! Ga) — 1) , (4.80)

noom 2 2

and the reducible representation carried by (FgL, FgR) decomposes into the direct

sum
1 2

LRk =N "N ek o). (4.81)
n=0 m=0

Since (];) = (k]in), we see that (% = ﬁz_n As a consequence, not all the

summands in (4.81)) are distinct IRRs. Noting also that fz occurs only once for

2
k; even, we may rewrite (4.81]) as the direct sum of distinct IRRs together with
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its multiplicities as

Fo1 g e
LFteven k2even :(g%ll’ 212722) P 2 Z(fﬁl,fﬁf) D2 Z (Efll,ﬁfg) )
(o4 (O o2 )y (60, 62)
3 3 oy — n=0 :
L
@2 (05 0k, (4.82)
o v 201
[Froaikzons —g Z Z (05, 0k (4.83)

Lhrevenbioss —4 3 Z (5, 0) @ 2 Z (.02, (4.84)

n=0 m=0

LFrodak2even can be obtained by taking k; <+ ko in equation ([4.84)).

With the assumption N = 2¥+*2(2¢; + 1)(2(5 + 1)n, the vacuum configuration
of our SU(N) gauge theory can be written as

QL = (XRAD) @ 164D © 1, 14, @ 1,) + (124D © 124D g FSL ©1,)
(I)aR — (1(2€L+1) ® XG(LQER'FU R 12k1+k2 & 1n> + (1(2@[,-"-1) ® 1(2€R+1) ® FgR ® 1n) ’
(4.85)

up to SU(N) gauge transformations.

Clebsch-Gordan decomposition of the tensor products (¢, {r) @ LFtevenk20dd and
(0p,lR) @ LFrevenk2cven and (01, ) ® LFtedak20da yeveal the vacuum configurations

in terms of direct sums of S% x S%. For instance, we have

2 Int 2 Int o
S k1 odd X SF koodd *

kp—1 ko—1

4y > {S%(& + ) X SRR+ 082) @ - @ SE(Lr, + ) x S|t — £12])

n=0 m=0

BSF(lr + 0 —1) x SE(lp+2) @ - @ Sh(lp + 5 — 1) x Sh(|er — £52])

é:
®Sp(|lL — 6) X Sh(lr+62) & -+ & SE(|lr — 61]) x Sg(1er — 621

(4.86)
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Remaining two cases are worked out explicitly in Appendix [B]

We easily see from (4.86) and (B.7), (B.§) that, all higher winding number
monopole sectors may be obtained from suitable projections of S/, x SE™,
in a systematic manner. As a quick example, let us consider the case with

ky = ky = 3. Then, (I°", 19" has the representation content
4(0,0) & (0,1) & (1,0) & (1, 1)], (4.87)
and the vacuum configuration takes the form

S xS 4 [45%(@ X S2(0p)  25%(01) X S2(Cg — 1)

@252(&) X S%(KR +1)a® 25%(& —1) x S%(KR)
®2S57(0y +1) x S7(lg) ® 2S7(0r, — 1) x S%(lg — 1)
®25% (0, — 1) x S2(lr +1) @ 25%(0y +1) x S2(fr — 1)

®2S7(0p + 1) x Sp(lr + 1)} : (4.88)

Monopole sectors with winding numbers (0, £2), (£2,0), (£2,+2), (£2, F2) are
all available through projections of S%I”tklz?’ X S%I”th?). Sectors with winding

numbers, such as (n,n — 1), appear through projections of Sz, x S3'™, for

I

Before closing this section, let us also remark that for the U(4) gauge theory over
S%I”tklzg X S%I"tb:g there are no equivariant spinors. This is quiet expected,
since, for k; = ky = 3, ¥ and ¥ transform under the IRRs (1,0) and (0,1)

respectively and under the adjoint action of the symmetry generators we have

[Wfa \Plﬂ = %(S‘a)bcqug = eabclpfa [w57 \I[l?] = %(:\a)bc\PCR = eabcqua (4.89)
since (5\(1) pe = —2i€qp. in the adjoint representation of SU(2). Thus these equiv-

ariant field modes are one and the same as those obtained from the equivariance
conditions on ®Z and ®%. From our results, we infer that the equivariant spinor
fields over left and right fuzzy extra dimensions do exist only for both k& and ks
even integers, while only left(right) spinor modes exist for k;(ky) even only, and

these modes do not exist at all for k; and ks both odd.
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4.5 Relation to Fuzzy Superspace ng) X 51(;2 2

It is possible to identify the vacuum configuration given in equation as the
bosonic (even) part of the fuzzy space S}Q 2 S}? ? with OSP(2,2) x OSP(2,2)
symmetry. This observation makes the vacuum configuration 3}2 2 % S}Z 2
especially interesting since, it simply comes out naturally and we have in no

way intended for it to emerge.

In order to reveal this relation, we have to write down the decomposition of
IRRs of OSP(2,2) x OSP(2,2) under the SU(2) x SU(2) IRRs. Irreducible
representations of OSP(2,1) x OSP(2,1) are characterized by two integer or
half-integer numbers

(J1, J2)osp21)xosp2,1) and it has the decomposition under the SU(2) x SU(2)
IRRs as

1 1
(j17\72) = (\717t72) ® (\71 - 57&72) D (t717\72 - 5)

1

1
& (J1 — 5> T2 — 5) (4.90)

SU(2)xSU(2) '

Irreducible representations of OSP(2,2) x OSP(2,2) can be divided into two
parts. These are the typical (J1, J2)r, and the atypical (71, J2)a representa-

tions. Typical representations (71, J2)r are reducible under the OSP(2,1) x
OSP(2,1) IRRs as

1 1 1 1
(J1, Fo)r =(Th, T2) @& (Jh — 57\72) ® (T, T2 — 5) @ (Jh — 5772 - 5)7 (4.91)

whereas the atypical ones are irreducible with respect to the group OSP(2,1) x
OSP(2,1) and in fact (J1, J2) is equivalent to the IRR (J1, J2) of OSP(2,1) x
OSP(2,1). All these facts follow from the generalization of the representation
theory of OSP(2,2) and OSP(2,1), which is extensively discussed in [41},/42]

69]. With the help of equations (4.90) and (4.91), we see that (J1, J2)r of
OSP(2,2) x OSP(2,2) has the decomposition in terms of the IRRs of SU(2) x
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SU(2) as

1 1 1 1
(T, Jo)r = | (1, o) ® 2(J1, T — 5) ®2(5 — §,~72) S 4T — 5 T2 5)

1 1
©(Nh—1,5)®2(0 — 1,52—5)@2(31 - §,j2—1)
@(j17j2_1)@(\71_17\72_1):| ) \717\72217

SU(2)xSU(2)
(4.92)
while the representation (3, 1)7 decomposes as
11, 11 1.1
11 1 1
= |(z,2)+2(0,2) ®2(=,0) @ 4(0, 0)} . (4.93)
22 2 2 SU(2)xSU(2)

It is now easy to see that, for (J1, Jo)r = ({1 + %, g+ %)T, we obtain precisely
the same IRR content from (4.92) as the one that appears for the vacuum con-
figuration given in (4.43)). This means that S2/™ x SZI"t can be identified with
the bosonic part of the OSP(2,2) x OSP(2,2) fuzzy space Sl(f 2 % 51(;2’2) at the
level (¢, + %,KR + %)T

We further observe that (71, J2) = ({1, +3,(r+3) IRR of OSP(2,1) xOSP(2,1)
matches with a particular sector of the representation given in (4.43)) and allows
us to identify

(820+ ) x $2tn+ 3)) @ (3060) x Shitx+ 3))

© (Shtu+ 5 x SH0m) ) @ (S0 x SHEw) . (190

with the bosonic part of OSP(2,1) x OSP(2,1) fuzzy space Sl(f’l) X Sg’l). The
subsector given in (4.94)) may be seen as the direct sum of two winding number
(1,0) monopole sectors as in where one monopole sector differs from the
other by the level of the right fuzzy spheres.

The superalgebra osp(2, 2) x 0sp(2, 2) has 16 generators A}, := (A}, Al, A}) i =

L, R which satisfy the graded commutation relations
[AZ ) AZ] = 7'gabCAc ) [Aa 7Au] = §(EG)VMAV ) [Aa ) AS] =0,

[Ag vAL] = :/WAZ ) {AL ) AIZJ} = E(Cza);w/\; + Z(:C)MVAZs )
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. 0 c 0 0 I
so=| 7 C= — 1, 90

Y

0 o, 0 -C I, 0

(1]

and C' is the two-dimensional Levi-Civita symbol and all the other graded com-
mutation are zero. Reality condition implemented by the graded dagger opera-

tion on the generators reads
A=Al =A,, AL=-CuA,, Al=Al=Aq, (4.97)
for both the left and the right generators.

Using the representation theory of osp(2,1) and osp(2,2), it is rather straight-

forward to construct the nine-dimensional fundamental representation (%, %) A

of 0sp(2,2) x osp(2,2) which is at the same time the (3, 1) IRR of osp(2, 1) x
0sp(2,1). Generators of the three-dimensional representation of osp(2,2) may

be written as

00 —1 01 0
0 0 1 1
Ao 1= A== =10 0], Xi== 000 |,
0 Lo, 2 2
2 00 0 100
(4.98)
00 —1 01 0 20 0
1 1
Aei=g [ 10 0], AMi=5f000 [, As=]010
00 0 100 00 1

Construction of these generators and a detailed exposition of the properties of
the osp(2,2) and osp(2, 1) superalgebras can be found in [25,/41]. 16 generators
(A%, A;) in the IRR (3, 3)4 can be given as
Aﬁ/lEAM@)lg, AaR:13®)\a, Af75201®)\475, Ag’7:—a®)\677,
Al = -13® )g, (4.99)
where oo = 3135 — 2)g.
The matrices T T9% b, co, bl cl N NE constitute a basis for the 16 x 16

matrices acting on the sixteen-dimensional module corresponding to the repre-

sentation space in (4.41), and coincides with that of (4.93). We can make use
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of these matrices to construct generators of the representation (%, %) given in
(4.99). To do so, we should restrict to one of the nine-dimensional submodules
with the representation content (3,3) ® (0,3) ® (3,0) @ (0,0). Clearly, there
exists a set of projectors which yield the same representation, and a particular

projector from this set is
._ pL DR L R RpL LR
P =Py, Py, + 770277% + 770277% + 77% 73% , (4.100)

where we have 730L2 =1, P, Pr=1,® P%, P(ﬁ =Py, ® 1y, PE = P% ® 14.
2 2
Using P, we can restrict to the nine-dimensional submodule and subsequently

get

1 . -
AP = —ipr0 AL = ipT" . AL = —ipTO" AL = —5 b+ B),

1~ - 1~ - 1~
AL = 5(5{ —by), AL:= §(b1 —bh)y, Ak.= 5(1;1 +by), AL:=PN,

(4.101)

and

1
AR = —pr9" AR = ipTO", AR =iPT0", AR = 5@+ &),
1 . 1 1,

A? C= —E(CI — Ca), Ag = 5(01 — c;), Af” = 5(01 + éa), Ag = —PM |,
(4.102)

where

by = PboP, bl =PblP, éy=Pc,P, & =PcP. (4.103)

We note in passing that the graded dagger operation on the matrices given in

(4.103)) reads

Bh=0bl, (O)=-b, & =é, ()=-c.. (4.104)

Finally, in (4.101)) and (4.102)), it is understood that the columns and rows of zero

are deleted after the projection and therefore, we have 9 x 9 matrices (A%, A%)

as intended.

4.6 Stability of the Vacuum Solutions

The recent new approach introduced in [70] has already been successfully em-

ployed in [25] to argue the stability of vacuum solutions in the form of direct
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sums of fuzzy spheres for an SU(N') gauge theory coupled to scalar fields in the
vector and spinor representation of a global SU(2) symmetry. In this section, we
follow the ideas of |70] which were adapted to the present context in [25] to inves-
tigate and demonstrate the stability of our vacuum configuration Sz x S2Imt.
As we have emphasized earlier we are working on a gauge theory matrix model,
which is a massive deformation of the N = 4 supersymmetric Yang-Mills theory.
For matrix models stemming from low energy limit of string theories, vacuum
configurations for the potentials are usually described either by a single fuzzy
sphere or its direct sums, or, as in the present model, in terms of the product
S% x S% or its direct sums. The critical observation that was made in [70] is
that, such direct sum of fuzzy spheres form mixed states if one or several of the
fuzzy sphere(s) at a given level occur more than once in the direct sum, whereas
the solutions given by a single fuzzy sphere are pure states. The stability of the
former type vacuum configurations are guaranteed due to the fact that mixed

states cannot unitarily evolve to pure states.

In order to understand the structure of the vacuum solutions in this work, we
now apply the ideas in [70] following [25]. Let us think of a state w on the matrix
algebra A = Mat(N'). All the matrices spanning the vacuum configuration are

in this matrix algebra. w is a linear map w : A — C which satisfies

w@®®) >0, VdeAd, w(1)=1. (4.105)

To describe a single fuzzy sphere S% at the level L in this setting, we demand

the following condition

W(XoX,) = L(L + Dw(1) = —L(L + 1), (4.106)

is satisfied. In a similar manner S%((;) x S%({g) is described by imposing the

condition

W XEXE 4+ XEXEY = —L(L+1) - R(R+1). (4.107)
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We have the vacuum configuration given in (4.44)) as :

) Si(tn))

® 2 <S§ (41, + ) x SE(lR) | @ (S%(EL) x SZ(lp —

SQInt « S%Int (S €L >< SF gR)) <S}27(£L _

1
©® (SIQ;(KL + 5) X S%(ER —

We list the projections to each summand in this expression and their rank in
the table below.

Projector Rank
I 10 1o 10 108 10 IO I | (20, + 1) (205 + 1)n
ITETIE | TIRIIE (201)(20g + 1)n
ITETIE | TR ITE (20, +2)(20g + 1)n
Ik 117, TIL 11 (201, +1)(20n)n
ITf 114, 106 11 (20, + 1)(20r + 2)n
IEIR (201)(20R)n
I I# (201)(20R + 2)n
12 (201, 4+ 2)(20R)n
ks (201, + 2)(2r + 2)n

Let us define the states w,s by the requirement
wap (IIE(DEYDY + DEDIIENY) = —Lo(La + 1) — Rg(Rs + 1), (4.109)

where the indices «, § take on the values (0o, 02, , —), Lo, Rs take on the
values (¢r, (r, {1, —|— A — ) and (¢g, lg, (g —|— Ar — ) respectively, and no
sum over «, (3 is 1mphed. In (4.109) we have used DL and DE introduced earlier

in (B.3). With the condition given in (4.109), the matrix algebra A is divided
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into the direct sum of the matrix algebras

A = 4 Mat (205, + 1) (205 + 1)n) ® 2 Mat((26;) (205 + 1)n)
® 2 Mat((201, + 2)(205 + 1)n) @ 2 Mat((2(1, + 1)(20)n)
® 2 Mat((20;, + 1)(205 + 2)n) @ Mat((2(1)(25)n)
® Mat((20;, + 1)(205 + 2)n) & Mat((20, + 2)(20g)n)
@ Mat((20y, +2)(20 + 2)n). (4.110)

We can conventionally label the basis kets of the module on which Ay acts as
|Lo, Ls; Rg, Rs). For brevity and clarity of notation, we suppress the labels
L and R, write the «a, 3 subscripts separately and hence write these kets as

|Ls, Rs;[a,f]). Projections IILITf can be expressed as

R L
IE = > > |Ls, Rs;la, B))(Ls, Rs;fa, 8], LIS € An.  (4.111)

R3=—R Lz=—1L

Although the projections to subsectors that appear only once in are
unique up to unitary transformations, this is not the case for the sectors of
that occur with multiplicities. In fact we observe that under the unitary
transformation u belonging to the group U(4) ®4U(2) ® 4 U(1) = U, basis kets

become

|L37 Rs; [OQBD = Zu[aﬁ} [Jp}‘L37 R3; [07 p]> : (4112>

ap
From (4.112), we find that the projectors (4.111]) transform as follows Hgl_[g —
UTILTIRU, which gives

L R
TG TI5 [u] Z Z D Uriagtoslionl L, Bsi oy p)){La, Ry [r,s]].

L=~ Rop], [rs]

(4.113)

Thus, after this unitary transformation, IILTIZ[u] are still projectors, since they

satisfy
(METIE u])? = TR ], (TIATIG [u])! = TIETIE u] . (4.114)

Here, it is important to note that we have ujag)jsp] = Ojag)op for a, 8 = +, —

which gives I TT% [u] = TIZTTE; this however does not hold for the remaining 12
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projectors. For instance, the projections to the four subsectors carrying the IRR
(Y1, lr) get mixed by the U(4) subgroup of Y. Likewise, there are four distinct
subsectors, in each of which two projectors get mixed by separate U(2) subgroups
of U. All this means is that, in general not all the transformed ITZ 1% [u] belong
to the algebra of observables Ar.

Let us consider the expectation value of an element O of Ay in the state w

= Maswlen (0), (4.115)
[aB]
where
w[aﬁ](o) Z Z <L3, Rs; Ozﬂ ‘O‘L Ré’ Oéﬁ> (4-116)

2L, +12R5+1L3R =

and A, is a probability vector satisfying
0< Mg <1, ) Aag = 1. (4.117)
ap

It is obvious that the state wiag(O) is invariant under the unitary transform
(4.112) and therefore it has the unitary symmetry U(4) ® 4U(2) ® 4 U(1). This

fact indicates that under U, A,p) transforms to

Mool () =Y Mol g tioslion = D Mg Ufasiipol]
[aB] [af]
no sum over [op| in the r.h.s.. (4.118)

Alluding to our remark after (4.114)), we note that we have A\ii(u) = Aig,
Aix(u) = Apgy while in general Mg (u) # Ajg) for a, 8 # +, —. Thus, the
decomposition of w(O) into wiee(O) is not unique, Consequences of this fact

may be most easily recognized in the density matrix language.

We first express wi5(O) by introducing a density matrix pjg.This is the density

matrix of the pure state

sl = ) Wostl = Y CrymCranslLs, Rsi[aB])(Ly, Ry;[af]|,
Ls. Rs L}, R,

(4.119)
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where

’w[aﬂ] Z CL3R3|L37 R3; Oéﬁ Z |CL3R3|2 =1,0< ‘CL’R’ CLsRa‘ <1

Ls,R3 Ls,R3
(4.120)

To construct the same state as in (4.115)) in this language, we introduce the

density matrix p

p = Z )‘[aﬁ] p[a,B 0< )\[ag] <1, Z )\[aﬁ] =1. (4.121)
[aB] (8]

Expectation values of O in the state wy,g and w are expressed as
Wiag)(O) = Tr(pagO), w(O)="Tr(pO). (4.122)

Noting that p[amﬂgﬂg = plag), We can easily check that wig(O) in 1' is
consistent with the condition give in and matches with the form given in
(4.116]) and therefore w(Q) agrees with the expression given in equation (4.115)).
Due to the unitary symmetry & transforming Aj,,(u)’s as given in (4.118)), the
decomposition of p into pjg is not unique. This means that p characterizes a

mixed state. The latter is also evident from the fact that

=) Pas) <1 (4.123)

[af]

2 Int 2 Int
SE™ xSt

Since is characterized by the density matrix p, we arrive at the

conclusion that our vacuum solution forms a mixed state. As mixed states

2 Int 2 Int
Se'™ x St

cannot unitarily evolve into pure states in time, cannot decay to

2Int 2 Int
SE™ xSt

S% x S%, a pure state, and hence the vacuum is stable. From

the same reasoning, it follows that the generalized vacuum solution obtained in

section 4 are also stable as they form mixed states too.

We can compute the von Neumann entropy of S&™ x S2™. This is given as

S(p) = —Tr(plogp)

= =) Mg (W) 108 Magy (1) + Y Aol (0) S (Prag) (4.124)
[of] o8]

= =) Ao () 10g Aag) (1),
(o8]
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where we have used the entropy theorem [71] in writing the second line and the
fact that S(pg) = 0 in writing the last line. Dependence of Ao (u) on u as
given in (4.118) indicates a Markovian process which is doubly stochastic since

Z [Ufag)ipol|* = Z |wagpol]* = 1. (4.125)
apf po

This process will increase the entropy of S2/™ x SZI™ since it is irreversible.

We see that S(p) has its maximal value S™*(p) = 4log2 which is attained if

Mgl = 75 for all [af]. We see that this maximal value may only be reached
if and only if the system starts with the probabilities \y1 = A1y = % since
Ars(u) = Ape, Aig(u) = Apg. If the latter is not the case, the quantum

entropy still increases but cannot reach the value 4 log 2.

4.7 Another Vacuum Solution

It is worthwhile to ask whether it is possible to find solutions to equations given

in (4.27) in the form
¢£ — (XC(L2€L+1) ® 1(2€R+1) ® 14 ® 177,) + (1(2€L+1) ® 1(2ZR+1) ® fgL ® 1n) ’
@f — (1(2£L+1) ® Xé?f}a-i-l) ® 14 ® ]-n) + (1(2€L+1) ® 1(2ZR+1) ® ng ® 1n) ’
(4.126)

with the factorization N' = (201, + 1) x (2{g + 1) x 4 x n and where fgL and
ng are 4 X 4 matrices instead of the 16 x 16 matrices determined in section
4.2.1] satisfying the relations in (4.29). The answer to this question is only
superficially affirmative as such fgL and ng exist, but against the very premise
of our initial requirement that fgL and ng are bilinears of the doublets W’
and U of SU(2) x SU(2) transforming under its (3, 0) and (0, 3) IRR’s. To be
more concrete, it turns out that it is possible to express FN(C)LL and ng in terms
of bilinears of some matrices x* and x%, which, however, do not transform as
(3,0) and (0, 1) under SU(2) x SU(2). This fact suggests that, we should expect
to find no equivariant spinor field modes at all for the emerging effective U(4)

gauge theory. It appears instructive to examine this case in some detail.

If we start with two sets of fermionic annihilation-creation operators a,, af, given
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in (4.8) and we choose

L a R aT
YE = ASH ! N A = " (4.127)
L R
X2 az X2 )
~ I . .
then, T0" = —%XLTTQXL , FgR = —%XRTTQXR satisfy
~ L ~L ~ L ~R ~R ~ R ~L ~R
O TY ] =€, [0 T9 | =€wl? , [T9,TY ]=0. (4.128)

However, we find that

~ L 1 ~ R
[X§7F2 ] = _Q(Ta)aﬁxga [X§7F2 ] 7£ O?

~ R 1 ~ L
[, T2 ] = =5 (Ta)asxs s e T 170, (4.129)
Thus, due to the two nonvanishing commutators in (4.129), x* and Y% are
not transforming in the IRRs (1,0) and (0, 3) of SU(2) x SU(2), respectively.
Bearing this fact in mind, we can nevertheless continue to work with the matrices

- L ~ R
% and I' " satisfying (4.128)), and investigate the structure of the emerging

model in its own right.

Using the identities

~ L 3 3 ~ R 3 3 3

9?2 =_->-N+ >N N. 02 =>"N—- NNy — > 4.1
where N = Ny + No, N; = aJ{al, Ny = agag, the quadratic Casimir operator
can be evaluated and we simply find

Oy = (T07)2 4 (02 = —214. (4.131)

a a

~ L =R
This means that (I') ", T9") carry the direct sum representation (3,0) @ (0, 1).

As we mentioned earlier in (4.9)), these annihilation-creation operators span the
4-dimensional Hilbert space which has four states: |0, 0), |0, 1), |1, 0), |1, 1).
With the choice (4.127)), 0" is reducible with respect to SU(2), and has two

a

inequivalent singlets, |0, 0), |1, 1) and a doublet, spanned by |0, 1), |1, 0). Sim-
ilarly, ng is reducible with respect to SU(2)r and has two inequivalent singlets,
|0, 1), |1, 0), and a doublet, spanned by |0, 0), |1, 1):

~ L 1

Fg — (0070)@<O270)@<§>O)7
5 1
[0 = (0,00) & (0,02) & (0, 5).

(4.132)
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Two inequivalent singlets of fgL can be distinguished by the eigenvalues 0, 2 of IV,
since [fgL, N] = 0. Likewise, the eigenvalues 0, 2 of the operator (14— (N7 —N2))

<R ~ R
distinguishes the two inequivalent singlets of 'Y since [['0 ', 1, — (N; — N3)] = 0.

Let us define the two projectors

072 43 702
Poz(a)?’ 4:—( ag) :1—N+2N1N2,
2 r, (4.133)
107)2 10712 4 3
P1:—<%) :(a):))+4:N—2N1N2,
2 =2 2
1 4
where P, projects to the singlets of fgL and to the doublet of ng, and P%

~ L ~ R
projects to the doublet of 'Y and to the singlet of I'Y . Projections to the

inequivalent singlets and spin up and down components of doublets read

1 1

POI(’):—é(N—Q)P():l—N‘i‘NlNQ? PoiziNPOZNljvéa
Pf+:P%N1:N1_N1N27 PlL_:P%NQZNZ_NlA&a (4134)
3 2

R _ pL R _ pL R _ pL R _ pL
PR =P, Pi=PL, PI =P, Pl =P

The Clebsch-Gordan decomposition of the vacuum configuration proposed in

equation (4.126)) is determined as

(1) ® (5.0 (5,0)) =+ 5. 0) © 61~ 5.00) © (U bt
® (0, bn — %). (4.135)

This means that the vacuum configuration can be written as the direct sum

1 1
S2int 5 G2Int — (S%(éL + 5) X S%(ER)) D (SI%“(EL - 5) X SJQT(ER)>

P (S%(EL) x SZ(lp + %)) & (S%(EL) x SZ(lg — %)) . (4.136)

Projections to each summand in can be obtained by adapting the for-
mula in to the present case. This yields the projectors II,5 = {Ilio,
o, Moy, Iy} (see, equation below) which, upon using the suitably
adapted version of , are unitarily equivalent to the product IIZI1Z, which

we write as 1,3 = Hﬁﬂg.
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For the projectors IT} T TTL | TTE | we have the explicit forms
Hé; — 1(2fL+1) ® 1(2€R+1) ® PO ® 1n7 HOR — 1(2([,-"-1) ® 1(2€R+1) ® P% ® ]-n;
(4.137)

1 1

2
where

XEro® _ iqpk XARTO" _ 1778

a’a 41 a~a 4771
QF =i 2 QF =i 2 4.138
P A (R (4138)

In observation of the relations given in (4.134)), we see that
Moy = HGTIE =114, (4.139)

o = LI =11
while all other products vanish. Therefore, 1§, 11 are simply the required four
projectors. For convenience, we list them in the table below.

Projector To the Representation

(EL j: %7 ‘gR)

(FiQF + Hg)
GRIE)

=1
$(HiQF + 11%)
2

Ik =

At this stage we can consider the fluctuations about the vacuum configuration

[A126)
(4.140)

oL = XF 410 4 AL .= DF 4 AL
O = X4 10 4 AR .— DR AR

where AL AR € u(20; +1) @ u(2lr + 1) @ u(4) @ u(n).

We can view AL and AZ (a = 1,2,3) as the six components of a U(n) gauge
FL FE FLT take the form of the curvature tensor

field on S2Imt x S2Int gince F%
Falll) = [Dclz/uAl%] - [D£7A£lj| + [A£7AbL] - EabcAga
F£ = [Df7 AE] - [Dl})%7 AaR] + [AaR7 AbR] - 6abchfa (4141)
Fa[ll;R = [D£7Al?] - [D£%7AaL] + [AilyAl?] .
Adapting the discussion, starting with equation (4.52), it can be seen that only

four of these six gauge fields constitute independent degrees of freedom in the

commutative limit, ¢, {r — oo.
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The emerging model has the structure of a U(n) gauge theory on M x SZI" x

S2Int with the gauge fields Ay = (A, , A,) and corresponding field strength
tensor Fyny = (Flu, FHLQ , Fﬁ, FL FZ. FaLb’R). We can quickly glance over some

of the essential features of the U(4) gauge theory on M x SZI"t x S2Int,

For the U(4) theory, taking the symmetry generators w’ and wl

wh = (XD 106+ © 1, @ 1,) + (124+D @ 136e+D) g fgL ®14)

a
L

L
— (10D g 1@ g 1, @ z‘?’) ., (4.142)

wi? _ (1(2€L+1) ® XzS%R—H) Q14 ® 14) + (1(2ZL+1) ® 1(2€R+1) ® ng Q 14)
LR
— (1(2£L+1) ® 1% ) 91, ® 2711) . (4.143)
with (LL, L) same as before, we can construct the SU(2) x SU(2)-equivariant
fields. SU(2) x SU(2) representation content of (wX w2) follows from the
Clebsch-Gordan expansion
1 1 11 1 1
lp, 0 -0 —,0 — =) =2l lp+ =)D 2(lp, lg — =
(4, R>®((27)@(27 )>®(2,2) (L,R+2)€B (Cr,lr 2)

1 1 1 1
@2(£L+5,63)@2(&—§,€R)@(£+1,€R—5)@(£+1,£R+5)
1 1 1
DU-1lr=5)@ - Llr+ )DL —5k—1)

1 1
@(€L+—,€R—1)@(€L+§,€R+1)

2
1
@ (0 — §,£R+1)
=1. (4.144)

4 T € Mat((207, +1) x (2¢g + 1) x 4 X 4) project to the representations in
the decomposition (4.144]) as given in the table below.

Projector To the Representation

I = J(HiQk + Hg) (U lrp+3)® (U lp— )@ (L £1,0p+2)
Sy £1,0g—3)
M = 3(#QF + 1) | (b +3,r) ® (( + 3, tr £ 1) @ (1 — 3, (n)
®l, — 5, 0p 1)
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The SU(2) x SU(2)-equivariance conditions indicate that A, , AX Al satisfy
the relevant adapted version of (3.149) and (4.56)). As before, we can determine
the dimensions of solution spaces for 4,, AZ and AZ using the Clebsch-Gordan

decomposition of the adjoint action of (wl,w!). We find
[&1=24(0,0)®52(1,0) & 52(0,1) & - - - . (4.145)

This means that there are 24-invariants. The solution space for each of AL AL
is 52-dimensional. We further see that there are no spinor representations (%, 0)
or (0, %) occurring in (4.145)). This corroborates perfectly with our initial ex-
pectations, in view of the fact that (I'%" T°") cannot be expressed through a
bilinear of fields with the desired symmetry properties. If the latter was possible,

it would have contradicted the absence of the equivariant spinor field modes and

vice versa.

A suitable set of 24 invariants is given by the following matrices
Iy, @Y, Imh, QF, I, Qf, I, QF, Qr, Qy, QF, Qf,
mLQE, MEQE, IfQs, QL. QTQF, QUQF, QrQF, QLQE.
Q. Q%Q5, QFQs. Q1Q%, (4.146)

where QL. QL. QL QL, are in same formal form as (£.59)) and likewise for the

set of matrices QF.

A set of 52 linearly matrices transforming under the (1,0) representation may

be provided as

(DY, Q%] QYIDL, QL] DL, QLY. QFIDL, QY] QFQLIDE QY] QE{DL, QLY
(DI, QM QUIDL, QY] {DL, QLY QEIDY, QY] QFQLIDY, QY] QF{DL,Q Y},
(DL, QF], QEDL QF], {DLQF}, QEIDY,QF), QFQEIDY, QF, QF{DL,QF},
[Dr,QF, QulDy, QFl, {Dy, QY QF[DY, Q. QEQHIDL, Qhl, QE{DY, QY
4Dy, Q5 EQE[DY, Ql, WHDL, QY. QDL QFl, QEQE[DY, Q]
Q¥{Dy,Q5}, IEDy, QF], NFQEDL, QF), NE{Dy,Q5}, QF[Dy, QFl,
QEQRIDE, QF], Q™{DL,QB}, QFIDE, QFl, QFQEIDE, QR QE{DY, Q%)
Qi[DY, QE), QEQEIDL QF], Qi{DL, Q). Mwy, Mrwy, QFIiw!,

QEIEGE, AL, TIRGE, QUul, Qb QIuwE, Qfuwt (1.147)

a —a
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while a linearly independent set transforming as (0, 1) is obtained from (4.147))
by taking L <> R.

Monopole sectors exist in this case too and they can be accessed by projecting

from S/ x SZI" We have, for instance

G2 5 g 2 _ (Sg(&) X S2(ln + %)) ® (si(zL + %) x s%wm),
(4.148)
5577 x 5¢2 = (830 + ) x SH) ) @ (SH6L - 5) x SHER) ).
(4.149)
5570 x 8¢ = (83(00) x S(tn + 3)) @ (8H(6n) x SHtx — 3))
(4.150)
with the winding numbers (£1, £1), (2,0), (0, 2), respectively.
We can project to the (1, £1) sector using
(1—I2)(1 —118). (4.151)

This projection leaves us with 8 equivariant scalars

Iy, mi, QY, QfF., QY. QFQY, QpIY, QpQY, (4.152)

and 16 vectors carrying the (1,0) representation,

[De, Q5. Qi[Dz, Q%] {D7,Q%}, QE[Dy, QL], Q5QL[Dy, QL]
Qp{Dy, Q%}, Mi[Dy, Qp), MEQE(D,, Qpl, Dy, Qp}, QE[Dy, Qp),
QIQ5(Dy, Q5] QH{Dy, Qp}, Mwy, Qplliwy, Miwy, Qfwy,  (4.153)

and another 16 carrying the (0,1) IRR which are obtained from (4.153]) by
L < R.

For the winding number sector (2,0) in the equation (4.149)), we can use the

projection operator
(1 -1 —11%). (4.154)
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In this case, the relevant part of the Clebsch-Gordan expansion gives the result
12(0,0) & 28(1,0) & 24(0,1). Equivariant scalars may be given as the following
subset of those in (4.146]

mp, mt,oQY, @, QF, Qn, QY. QY QFQY. QFQ-,
BQF  QEQH. (4.155)

28 vectors which carry the (1,0) IRR can be given as

D, Q%) Q1[Dy, QY] {Dy, Q1) QE[D;, QY] QEQY(Dy, 11, Qp{Dy, @Y},
[Ds, Q%] QF[Dy, Q). {Dy. Q"}, Qp[Dy. QY], QuQE([Dy, Q] QE{Dy, Q" },
[Ds'. QFl, QrlDy, QFl. {Dy. QF}, QlDy. QFl, Q5QE(Dy, QF], QE{Dy, Qr}
[Ds',Qpl, QulDy, Qnl, {Dy. @y}, Q5(Ds, Qnl, Q5Qu[Dy Q).
Qp{Dy, Qp}, My, Thwy, QpTiwy, QpIlwy . (4.156)

—Ya

while there are 24 matrices which carry the (0,1) IRR and they may be listed

as

L [DF, QF, MLQEIDE, QF], NH{DE, QF}, QLIDE, QF], QLQEIDY, QF],
QU{DY, QF}, LD, QF], NEQEDY, QF], NE{DF, QF}, QL[DY, Q.
QLQFDE, QF], QE{Df, QF}, Q¢[DE, QFl, QkQEIDE, QF], Q{DY, QF},
Qu[DY, QF], QrQFDY, QF], QE{DY, Q5}, Whw, MEwl, Qhwy,

Q wl, Qpwl, Qpuwl. (4.157)

To describe the monopole sectors with the winding number (0, 2), it is sufficient

to make the exchange L < R.
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CHAPTER 5

U(3) GAUGE THEORY OVER M x 52

In chapter 3, we have explained that a U(n) gauge theory over M x S% can
be interpreted as an effective gauge theory obtained from an SU(N') gauge the-
ory on M coupled to a triplet of scalar fields in the adjoint representation of
SU(N) with N’ = n(2¢+ 1) after the spontaneous symmetry breaking. This in-
terpretation has been supported by the construction of the Kaluza-Klein mode
expansion of gauge fields over the fuzzy extra dimensions. We have examined
the equivariant parametrization of this model as a complementing aspects of
developing the effective gauge theory interpretation. For concreteness, we have
focused on the specific emergent model; U(2) gauge theory on M x S% and
making use of the equivariant parametrization technique, we have shown that
the commutative limit of equivariant modes reduces to the gauge fields of spher-
ical symmetric gauge theory on M x S? [67] and the low energy limit of this
model yields abelian Higgs-type model [22]. In this chapter, we would like to
concentrate on this model. Taking a step forward, we investigate the low energy

structure of this model with larger gauge groups [27]]

Our initial attention is to determine in full detail the equivariant field modes of
a U(3) gauge theory over M x S% and obtain the corresponding LEA by tracing
over S%. In order to obtain the equivariant modes of gauge fields, we impose the
proper symmetry conditions on the fields of the model so that they transform
either invariantly or as vectors under the combined action of SU(2) rotations of

the fuzzy spheres and those U(3) gauge transformations. We find that equivari-

! This chapter is based on the work that has been published: S. Kurkcuoglu and G. Unal “U(3)
gauge theory on fuzzy extra dimensions” Phys.Rev. D94 (2016) 036003.
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ant scalars may be constructed by taking advantage of the dipole and quadrupole
terms, which appear in the branching of the adjoint representation of SU(3) as
8 — 5@ 3 when the SU(2) subgroup is maximally embedded in SU(3). Using
these considerations and other group theoretical input coming from the equivari-
ance conditions, we find the invariants as “idempotents" involving intertwiners
combining spin /¢ irreducible representation of SU(2) generating the rotations
of S% and those U(3) gauge transformations generated by SU(2) C U(3) car-
rying the spin 1 IRR of SU(2). There is also another invariant proportional
to the N-dimensional identity matrix, which essentially appears due to a U(1)
subgroup of U(3) ~ SU(3) x U(1). Equivariant vectors are built using these
invariants and the generators of S%. We show that how the commutative limit
of our equivariant field modes relate to the cylindrically symmetric gauge fields

of SU(3) Yang-Mills theory of Bais and Weldon [72].

Integrating out the extra dimension S%, we obtain the LEA in which there are
three abelian gauge fields and two complex scalars each coupling to only one of
the gauge fields and three real scalars interacting with the complex fields and
with each other through a quartic potential. From this LEA, we derive the
vortex solutions on M = R? in two different limits governed together by ¢ and
the coupling constant of the constraint term in the potential and for both two
limits, we need two winding numbers in order to express vortex solutions. In
particular, we point out the connection between the BPS vortices that we obtain

in a certain commutative limit in section and the instanton solution in |72]

Next, we briefly outline the generalization of equivariant parametrization (EP) of
gauge fields to U(n) theories over M x S%, and show that equivariant scalar are
obtained by employing the n—1 multipole terms, that appear in the branching of
the adjoint representation of SU(n) under SU(2), when the latter is maximally
embedded in SU(n).

Adapting the approach given in the previous chapter, we study the U (3)-equivari-
ant fields over M x S2" where S3/" := SZ2(0)®SE(()®SE ((+ 1) ®SE (¢ — 1)
was revealed in [25] via a certain field redefinition of the triplet of scalars for

the SU(N') Yang-Mills theory. The reason of interest on this vacuum is two
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fold. Firstly, through its certain projections it gives us access to fuzzy monopole
bundles with winding numbers £1 and secondly it naturally identifies with the
bosonic part of the N = 2 fuzzy supersphere with OSP(2,2) supersymmetry
as discussed in [25]. We express all the equivariant field modes characterizing
the low energy behaviour of the effective U(3) theory on M x SZ™ in terms of

suitable “idempotents" and projection operators.

5.1 SU(2)-equivariant Gauge Fields

In this section, we focus our attention on the equivariant parametrization of U (3)
gauge theory M x S%. All necessary and sufficient information on the dynamical
generation of an effective U(n) gauge theory on M x S% from an SU(N') gauge
theory on M coupled to suitably number of scalar fields has been given in the
section and the gauge field configuration of this model defined in (3.18)).
Focusing on the effective U(2) gauge theory, the equivariant parametrization
technique has been applied on this model and its the low energy limit has been
constructed in the section [3.3] Here, adapting the formulas and the approach in
the section , we construct the explicit form of SU(2)-equivariant gauge fields
in U(3) gauge theory M x S%. To be more precise, we impose the symmetry
condition on the gauge fields in so that they transform as scalars and
vectors under rotations of S% up to U(3) gauge transformation. For this purpose,

we introduce the infinitesimal symmetry generators w, as
Wq = X§2€+1) & 13 - 1(2@_,_1) & Z'EG, (51)

where ¥, are the spin 1 irreducible representation of SU(2) C SU(3): (¥.),; =
t€iq; and w, satisfy the condition . Clearly, the adjoint action adw, =
[wa, -], is composed of infinitesimal rotations over S% combined with those in-
finitesimal SU(3) transformations, which are generated by ¥,. The adjoint

representation of SU(3) decomposes to SU(2) IRR’s as

8—5d3. (5.2)
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In this branching, 3, generate the 3 (spin 1) IRR of SU(2), while the remaining

five generators of SU(3) may be given in the form of the quadrupole tensor

1 2
Qab - 5{2117 Eb} - §5Qb7 (5?))
2
(Qab)ij = (5ai5bj + 5aj5bi - géab(sij s (54)

carrying the spin 2 (i.e 5) IRR of SU(2). For each IRR of SU(2) in the branching
(5.2), we may expect to construct one rotational invariant under ad w, in addition
to the identity matrix 150413 and we will at once proceed to see that this
is indeed S(ﬂ These invariants may be simply taken as X,>, and X, X,Qu,
however we again prefer to express them as “idempotent" matrices for simplify
our future formulas and the explicit form of them will be given later in this

section.

In order to find the SU(2)-equivariant gauge fields, we impose the symmetry
constraints (3.79)) and (3.80]) which simply imply that, under the adjoint action

of w,, A, are rotational invariants and A, transform as vectors.

SU(2) IRR content of w, may be found by the following tensor product
(l=(-1)dld (l+1), (5.5)
and therefore IRR decomposition of the adjoint action of w, is
(-1 eleo(l+])(l-1)ele(l+1)]=300TLd---. (5.6)

From this Clebsch-Gordan expansion, it can be seen that the set of solutions
for A, is 3-dimensional. We span this space by the invariants @1, @2, as defined

below and 1(2.41)3 and introduce the following explicit parametrization of A,:

- (1) _ @
Ay = 5000+ 3o+ 5 (LD )1 6o

where ag), a,(f) ,b,, are Hermitian U(1) gauge ﬁeld on M and @1, ()> are anti-

2 Generalization of this construction to all U(n) gauge theories on M x S% is discussed in section

3 The reason for this particular form of the coefficients of Q1 ,Q2 and 1 in (5.7)) will become clear
as we proceed to perform the dimensional reduction over S% in the next section.
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Hermitian idempotents given as [73[f]

2iXySa 4 L+ (XS, + 1) — (L4 1)(20 + 1)1
= i(0+1)(20+1) ’

2(iXoSa — 0) (X5 + 1) — 620 + 1)1

2= 020+ 1) ! (5-8)

where

Q=01 Ql=-Liguy, Q=-Q, @G=-lyy. (59

Here, we see that imposing the symmetry conditions (3.79)) and (3.80)) cause the
breaking of U(3) gauge symmetry down to U(1) x U(1) x U(1). Just like we
explained in the chapter 3, it is possible to show that under the gauge trans-
formation generated by U = = 301(0)Q1 0 302(0)Q2 (501 (V)= §02()+303(v))1 Ay — A
with as)’ = aff) + 0,0; and b, = b, + 9,03, hence the rotationally symmetry of

A, is preserved.

Equation (5.6 shows that the dimension of the set of solutions for A, is seven

and its parametrization may be chosen as follows

Ao = 2o10)[Xe Q)+ 51 (0) X Qa] — 2 (2(0) + D@[Xe, Q1

+ %(m(y) — 1)Q2[ X4, Qo] + %2(20_?;_—% ({Xa, Q1} — iQ2[X,, Qz])

+ E% ({Xm Q2} - ZQl[XCH Ql]) + w( )E + ;/2 (51())

where we have introduced the real scalar fields @1, 2,93, X1, X2, X3 and ¥ on

M and some of these naturally combine to form complex scalars when the model

is dimensionally reduced over S%.

In the commutative limit, £ — oo, we have

i =q = (Eaia)2 + (Eaftﬁ -1,
Q2 = q2 = (Eai'a)2 - (Eai'a) -1, (5'11)

where ¢? = ¢ = 13. Another idempotent may be given as a linear combination

of ¢; and ¢o and 13 as g3 = —(q1 + q2) — 13 [73]. Using (5.11]), we find that the

4 In |73], these idempotents were introduced for the purpose of constructing the spin 1 Dirac
operator on the fuzzy sphere.
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commutative limit of A, in ([5.10)) takes the form

A, B sol(y)ﬁa o xl(y)ca - pa(y) + l)qlcaq1

(xa(y) — 1) ©3(y) x3(y) . UV(y) .

Logo+ 25 g gy + 28 5 0+ TN G (512
5 @2Lat + 5 Eat + T T Rale + 0 E (5.12)

+1

Imposing the constraint z,A, = 0 eliminates the radial component of the gauge
field. We see from that this condition is satisfied if and only if we set
w3 = x3 = ¥ = 0. The remaining terms of A, in and the commutative
limit of A, (apart from a b,-field due to the U(1) subgroup of U(3), which
decouples from the rest in the commutative limit, or eliminated by solving its
equation of motion in powers of %, as we shall see later on in section are
in agreement with the cylindrical symmetric ansatz for the SU(3) Yang-Mills
theory of Bais and Weldon [72].

5.2 Dimensional Reduction of the Yang-Mills Action

In this section, we pursue the dimensional reduction of U(3) gauge theory on
M x S% over S%. We can substitute our equivariant gauge fields A4, in (5.7)) and
A, in (5.10) into the action (3.75)), and then by tracing over the fuzzy sphere

5%, we obtain the reduced action on M. In the present case, the identities in

(3.90) take the form of

[Xm {Xm Qz}] = 07 [Qza {ch Ql}] - 07 {Xm [Xaa Qz]} = 07 {Q17 [Xm Qz]} = 07
(5.13)

where ¢ = 1,2 and sum over only the repeated index "a" is implied.

Now, we start to calculate each term in (3.89)) separately. For the field strength

term, the curvature F),, can be expressed in terms of the rotational invariants

Q1,02 and 1 as

1., 1, 1) — £
FMV = _5 'LSV)Ql + éf;(w)QQ + 25 T + h/W 1 <514)

where we have introduced

[0 =0, = 0,0\, ) =00 — 0,47, hy = 0.b, — b, (5.15)

N2 2 7
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Then, L takes the form

1
= —Tr(F}, F*
Ly i I ( )

1 (41 v
T (1) p(H
) ( ( fuyf +

1
(2) pHY L Z (1) p(2)H h LR

9(20 + 1) 16

1

* 6(20+1)

1
Dprv 4 —— f@p | (516
The covariant derivative term D,®, is calculated to be

(D) X Qi1+ 5 (D) [ Q] — 5 (D) QX Q1]

J 6u903 .
( uX2) Q2[Xa, Q2] + —m({X«m Ql} - 2@2[Xa, Q2])

OXs (1, Qo) — i [Xas Q1)) + o (0 was (5.17)

+Z(£+1/2) 2(0+1/2)

where D, p; = 0,p; + ejia,(})gpj and D,x; = Oux: + eﬂau X] After tracing, the

gradient term L reads

Le=Tr((D,®,)'D,®,) (5.18)
:3(€2ﬁ(f)€<;€3l 1y (Pup)”+ (Dupa)’) 2(2;?2?&; LD + (D))
. gggﬁ T)?fe T ?f (@) + O+ %@W
- %aﬂ%aﬂg - %gf;_ff); Vo0,
Syl 2)3u><33m. (5.19)

3(20+1)3
We note that @1, 9 and x7 , x2 naturally combine to two complex scalar fields
Q=1 +ipe, X = x1+ixe, with D,p = (8M+za( ))go and D, x = (8M+iafl2))x,

which we will make use of in the next section.

In order to calculate the potential term Vi, it is useful to work with the dual of

the curvature Fj;. We find

1
§€achab =N+ A2|90|2 + A3|X|2 + A4(‘P§ + x?»,) + Asps 4+ A xs + Arpsxs

+ Aspst) 4+ Agxsth + Aio(p1 + 02Q1) [ X, Q1]
+ A (xa + x2Q2)[Xa, Qo] + Aray) + Aizp?, (5.20)
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where A;,7 = 1,---,11 are the 3(2¢ 4+ 1) x 3(2¢ + 1) dimensional matrices
which are listed in the appendix . Using ((5.20]), the potential term Vi may be

determined as

Vi= %TT(FJbFab) = %(al — aglpl® — as|x|® — cuph — asx3 — asps + arxs
— agp3X3 — Qg3 — X3y + &11¢2 + 51’90’4 - 52\%0\2’X|2
+ Bslo0s + Balol®x3 — Bslol*es + Bslel*xs — Brlelwsxs
+ BsloPest) — Bolel*xat) + Brole*9? + mlx]* — v2lx[*¢3
+sIx X3 + alxPes = vslxPxs + vslxPeaxs — v lxPesy
— Yslx*xa¢ + 0l x1*0® — 61l + X5 + 693x3)
— 82(3 + 3p3x3) — d3(x3 + 3x395) — dalixs + X3ws)
— 5(30 + 3psx3¥) — 06 (XY + 3xs93Y) + 07(P3¢ + X30)

+ 8 (p310% + X31°) — Sopax3t — S10p3t0* — S11X30°
- 512803X3w2 - 513%03w2 - 514X3w3 - 515¢3 - 516w4> )

(5.21)
where all the (-dependent constants: «, 3,7, are given in the appendix [C]

In the ¢ — oo limit we find

1 /2 2 2 4
V@), =5 (el o1 S xam 14 S )+ el
1, 1, 1
g\a T 5¥ = gleaxs test ey | (5.22)

4 2.2 1 2

6
The potential Vi(®) = g%Tr(Fijab) is positive definite, although the r.h.s of
(5.21) and (5.22) are not manifestly so. For the limiting case (5.22)) we have

determined that minima occurs at the following configurations

D) el =1, [xIP=1, ps=x3=v=0, (5.23)
ii) |o|* = 0, |x*=0, @s=1,x3=-1,0=0, (5.24)
1 3 1
iii) |p* = E, IXI?=0, ¢3=0, X3 ="5 ¢:—§7 (5.25)

1 3

1
, |X|2:E’ ps=5. xa=0, ¥=5. (5.26)

w) o> = 0
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For the computation of the last term in (3.89)), we first obtain the expression

D, P, + (L +1) = Ry + RaiQ; + R3i Q- (5.27)

where R; , Ry and Rj are listed in the appendix [C] Then, the potential term V5

is determined to be

2(20 — 3) 2(20 4 5) 2
o) = a2 r2 2 2 _ _“ '
Vo(®) =g (R1+RQ+R3 3(2€+1)R1R2 3(2£+1>R1R3 33233
(5.28)
In the large ¢ limit, we find
1
V2(<1>)‘H = 592 ((R1 — Ry — R3)*+ (=R, + Ry — R3)?
+(=Ry— Ry + 33)2) .
l—o0
1
= 592€2 ((—¢ +os+x3)+ (W — o3+ x3)+ (W + s — X3)2) :
(5.29)

In the next section we will first consider the scaling limit g — 0, ¢ — oo, with

g/ kept finite but small. Then, among the minima of the potential V;(®) listed
above, only ([5.23|) minimizes (5.29) as can easily be observed.

5.3 Vortices

In this section, we would like to investigate the vortex type solutions for the
reduced action on M = R? which is obtained from the dimensional reduction of
U(3) gauge theory on M x S%. As we mentioned earlier in the subsection [3.3.4]
we focus on the exploring these vortex type solution in two different limits, 7)
¢ — 00,g — 0 with g¢ remaining finite but small and ii) g — oo and / is large
but finite.
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5.3.1 Case 1)

In this case the reduced action becomes

1

1692 h/W h#z/

1 v 5 ,

S = /de <Fg2(«f/5}/)f(lw —i—fls,%)f@)u +f,5,1,)f(2)“ )_|_
2 1

+ 51Dl + D) + 7((Dups)’ + (Buxa)® + (0,0)%)

1
— —(0u30,X3 + 0,030, + 0, X30,0) + ?Vl(@)‘e—m) . (5.30)

S| =

We observe that, the gauge field b, decouples from the rest of the action, and
does not play any role in the rest of this subsection. Thus we essentially have
a abelian Higgs type model with U(1) x U(1) gauge symmetry. The vacuum
configuration is given by and has the structure of 72 = S! x S', with
m(T?) = Z & Z, indicating that the vortex solutions constructed below are

characterized by two winding numbers, say (N, M).

To search for vortex solutions, we again work with the usual rotationally sym-

metric ansatz [68], which in this case may be written out as

p=(r)e™ x =)™, ps=p(r), xs=o(r), v=7(r), (531)

where the cartesian coordinates (y1, o) are replaced by the polar variables (r, 6).

With this ansatz the action reads

2

1 2
S = 27r/dr (—( Var' + a2 al + aa?) + %(C’Z +0%) + 3T(N + ag)*¢?

9g°r
2 2N\2 2 T2 /2 12 T,y / N
+§(M+a9)n +Z(p +o 47T )—g(pa + o'+ o'’
(=@ =)+ 20 + 0+ ) = p+ o — 2(po + pr+ 07)

352 8 4
+C At =GP+ G+ p) + 1P (0” — a))) :

(5.32)
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Euler-Lagrange equations for the fields are

¢ /1 2
- —2(N+aé)2+?(—1+2(’2—172+p2+p) (=0,

1 2
0+ - (—2(M+a3)2+?(—1+2n2—C2+02—0))n=0,

T T
1/ 2!
" a 1 1] a
o -5t — s =69 (N +a5)* =0,
ol agl I aél 2 2\ 2
CL@ _ — 5&0 —5 6g (M+a9)77 :0, (533)
/ "+ "+ 2p 8 2 8
H+p—0 — — =t =t = ——C%(2 1)=0,
P r 3r 3 g2 3g2+392(0+7) 392 (2p+1)
/ / / /! /!
) pP+7 pl4+T 20 8 8
I ——n“(20—-1)=0
! / ! /! 1!
" p+o  pto 2T 2 B
T + — 3 — 3 —~—2+ﬁ<,0—|—0')—0

We do not know any analytic solutions to these coupled non-linear differen-
tial equations. However, as pointed out earlier, we can construct the solutions

profiles for small and large r. For r — 0, the series solutions give

(=G + 00N, g =nrt + 00M) af = a4 00,
a; = CL(()2)T’2 + 00", p=po+0@F*), oc=00+0@F?, T=7+ 002,
(5.34)

1 2
where (y , 1o ,a(() ) ,a(() ) , Po 00, To are constants.

For large r, as we mentioned earlier, the asymptotic behavior of fields are en-
forced by the requirement of the finiteness of the action for the vortex type
solutions. We have ((r) — 1,n(r) — 1,aj(r) — N,ai(r) — M, p(r) —
0,0(r) = 0,7(r) — 0 as r — oo, where the integers N and M are the winding
numbers of the vortex configuration. In order to obtain the profiles for large
¢, we can consider the small fluctuations about these limiting values and write
(=1-0¢,n=1-0n,a) = —N+da', a2 = —M+da*. Assuming that (@)2 and

(%)2 are subleading compared to 0C,dn, p, o, 7, the Euler-Lagrange equations
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(5.33]) become

5¢! 9 on' 2
5g”+—<—g—(45g p—20m) =0, 5n”+7”—g—(45n+a—25§)—0
da’ da”
st — 2% 4 4g*0a® — 8g25a1 =0, 0 -2 4 4g°6a’ — 8g*a® =0,
' 10 4
, o 10 8
T2 4 4
”‘|‘T——~—27'—~—2p—~—20— (57]4‘ (5<_O
r g g g

We can solve these coupled linear differential equations in terms of the modified

Bessel functions K, and find

2\/_7’) AZKO(\/_T) AgKO(S\/_T

577—A2K0(\/g_r) A3K0(3\/_T) A4K0(2\/_T)

7 7
3 2
p= AQKO(\/Q_T)‘F?)AgK[)( \/_T)—2A4K0( \/_r

2\/_7") AQKO(\/g_T) 3A3K0(3\/_T) (5.36)

g
2\/_7" 3\/_T \/§r

0¢ = A1 Ko(

),

),

g = 2A1K0<

2
= g(z‘h Ay) Ko ) + 243 Ko( )+ AsKo(T);
da' = O1rKy(2g7) + CQTK1(2\/§QT) ,
da? = CyrK, (2gr) — CorK(2V/3gr)
where A;,2 = 1---,5 and C;,j = 1,2 are constants, which can only be de-

1
termined numerically. It is easy to see that our assumption that (&%)2 and

2
(&%)2 are subleading to 6 ,dn, p,o,7 gives the same condition as in the sub-

section(3.3.4.1 namely 4g > /2/§. We find from 1} that, the field strengths

= fly = 1fY = L0,ap and B? := f}, = 1f% = 10,4} are proportional to
V3
X %e_ gr whﬂe the scalar fields 6¢,0n,p,o and 7 decay like \%677% asymp-

totically. Thus, we obtain the same interval as in the subsection for the
repulsive and attractive forces on this model such that these vortices attract for
gg > ‘/75 and they repel in the parameter interval \/Ti < gg < \/75 Particularly,
for the case gg = 1 needed for the standard Yang-Mills , we have attractive

vortices.
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5.3.2 Case ii)

Taking the limit g — oo is equivalent to enforcing the constraint ®,®,+0((+1) =
0. It can be easily seen from that this constraint can only be fulfilled by
setting Ry = 0, Ry = 0 and R3 = 0. Using these three conditions, we can solve
3, x3 and ¥ in terms of || and |y| in powers of %. Substituting back into the
action should then give us an action with only two complex scalars ¢ and y. To

leading non-vanishing order in powers of % , we find that

g e eta-
¥ = 50— le) + (1~ Ix) + 0(5),

3 2041 1
w3=—4—£2(1—|¢\)— (=) + 0(55). (537)
20+1 1

Xs = 72(1~ ) = 2 (1= [o) + O(5).

Substituting from (5.37)) for o3, xs,%, expanding ¢ dependent coefficients to

order 2 72, we obtain the reduced action as follows

s— [y (181 [0+ 2% = MO 4 (= 3 = g
+%92< D FOM 4 20— (Dl + D)
+ o (@l + QU + ,lelBulnl?) + gi(gu + )
- el - S - €—2>|x\2 S0 TPl
+§<1 — o aplelt + 501+ 5 = sl
+ ool + e ) ), (5.3%)

where we wrote

_ 2 i
b = =37 = 5 U + 52, (5.39)

which follows from the equation of motion of b, at the e% order.

For this case too, we make the rotationally symmetric vortex solution ansatz
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(5.31) and find the action to take the form

1 13 .., 1 11 .
S=2r[d 1+ — Vab 1— — — —)aa?
7r/ T(Qg%"( Tor a0 % T oa (1o T @)

1 Y 2 1 s (N +ab)? (M +a2)?
1 - 17 2 1 o ! ] 2 / 0 2
(4C’2C + 4™ n? + 4¢Cy'n) + - 47“(1 + L)
E Z\3V e
4r 1 1. ., 4r 1 1., 4r S
S (1= 5+ )0 =+, = 5 = o (L 5
4r 1 1 .,  4r 1 Loy 7 s u

Equations of motion for the fields ¢, 7, aj , a2 after a straightforward calculation

are given in the appendix [C] Profiles of these fields around r = 0 are the same

as in the previous case ((5.34)).

For large r, it is easy to find the linearized equations for the fluctuations about

the vacuum values. We write as before ( = 1 -3¢, n = 1—0n,a) = —N +

da' ,ai = —M + da® and we obtain the equations
5 2, 2 2. 2 1
s+ 2 Z@24=)m=0
o2 29 5 1
o+ 242 24— )¢ =
T — ( t 7 62)774‘9( +2£2)C 0,
sat 2
1// _ . 2 _“ - - .
) . 2g°(4 7 62)(5& +2¢%(2 EZ)M =0,
da? 2 1 1
a?" — % — 27 (44— )00 + 2072 — )00’ =0, (5.41)

Solutions for these equations are given in terms of modified Bessel functions K,:

6¢C = Ey(—1+ 2 + %)KO(—W) + Ey(1 + % - 2%2)1(0(—“193/62) ,
on = EIKO(—VHE?’/M) + EQKO(—W) :
Sa' = (=1 + % — %Q)TKl(Q\/ggr) + Fr(1+4 %)rKl(Qgr) )
6a® = FyrK,(2V/3gr) + Fyr K (2gr), (5.42)

where FE;, FE>, F;,Fy are constants. Here, we can also define the parameter
intervals for the attractive and repulsive behaviour of forces between the vortices.

It is easy to see that for gg > —”43/£ the field strengths decay faster than the
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\/1-3/e2 -

scalar fields, so we have attractive vortices. On the other hand, for 1

i3/

gg < 5 we have repulsive forces between the vortices.

As ¢ — oo the action (5.38)) at the critical point gg = 1 becomes
1 nv nv 7% 2
5= [y S (DI + 27"+ J0O") + 21Dl + 1D,

#50 ((f = 174 (= 7+ o = ).

(5.43)

In this case, we may express the action in the form

1
5= [ @y 55 (B + 2@l ~ Ix ~ 1))

2 2
+ 1552 (B® +24°2IxI* — l¢l* = 1)) + 852 (B' + B* +2¢° (|l + [xI* = 2))
90 2o
+ 3 (D1 — iDa2) (D1 + iDyp) + 3 (D1x — iD3x) (D1x + iDsx)
P 2 2
+ S(B' + B) = Z(21(BD2p) — :(3D12)) — S (B1(XD2x) — (XD1))

(5.44)

where B! = fl,, B> = f% as we have noted previously. The last two terms
in (5.44) vanish as they can be expressed as line integrals around a circle at
infinity. Noting that the fluxes of B! and B? are 2rN and 27 M respectively,
N, M being the winding numbers of the vortex configuration, we see that the
action is bounded from below with S > %W(N + M). This bound is saturated,
when the fields satisfy the BPS equations:

Dip+iDyp =0, B'+2¢°(2l¢]*—|x|*-1) =0,

Dix +iDex =0, B*+2¢°(2x[* — ¢l — 1) = (5.45)

These equations give a particular generalization of the BPS equations for the
abelian Higgs model [68]. In fact, these equations appear to be formally the
same as the self dual instanton equations for the SU(3) Yang-Mills theory with
cylindrical symmetry studied by Bais and Weldon [72|. There is a clear dis-
tinction between the two however; the latter are in the context of Yang-Mills
theories over R* and the cylindrically symmetric ansatz essentially dimension-

ally reduces that theory to an abelian Higgs type model over H?, with the SU(3)
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instanton solutions being characterized by a Pontryagin index, which is given as
the sum of the two winding numbers of the abelian Higgs type model over H?
with U(1) x U(1) gauge symmetry, while our BPS equations are obtained for
U(1) x U(1) abelian Higgs type model over R?.

5.4 SU(2)-equivariant Gauge Fields for U(n) Gauge Theory

Now, we briefly indicate how the results of section |5.1| generalizes to U(n) gauge

theories over M x S%. For this purpose we write the symmetry generators w,
we = X @1, — 184D @ ink (5.46)

where ¥ are spin k irreducible representation of SU(2) with n = 2k + 1. Thus,
the SU(2) IRR content of w, is

(Qk=((l+k)(l+k—-1)---d|l—K|, (5.47)
and the IRR content of the adjoint action of w, can be found to be
(@K =2k+1)00 (6k+1)1d---. (5.48)

This decomposition means that under the adjoint action of w,, there are (2k+1)
scalars and (6k + 1) vectors. It indicates that with our symmetry constraints
and (3.80)), the set of solutions to A, should be (2k+ 1)-dimensional while
the set of the solutions to A, should be (6k + 1)-dimensional. It is possible to

find the parametrization of A, by using the following rotational invariants
1(2€+1)(2k+1) ) isXa 9 (i’;Xa)2 ) (isXa>3 ) T (25X04>2k . (549>

We may recall that the adjoint representation of SU(n) is n?* — 1 dimensional

and decomposes under the SU(2) IRRs as

n—1

n-l=e) (2j+1). (5.50)

j=1
This is a multipole expansion starting with the dipole term and going up to the
(n — 1)"-pole term. Thus, considering that we may construct one rotational

invariant per multipole term, together with the identity we have n = 2k + 1
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rotational invariants as we have already inferred from (5.48). The invariants
listed in (5.49) may be expressed in terms of the appropriate multipole tensors
and can further be combined into idempotents as we given in (5.8)) for the case

of £ =1 and the vectors can be obtained subsequently.

5.5 Other Vacuum Configurations

In this section, we turn our attention to the treatment of the structure of equiv-
ariant fields over other fuzzy vacuum configurations. In the section of chap-
ter 4, we have investigated the vacuum configuration of scalar fields in the U(n)
gauge theory on M x S2™ and shown that it can be expressed in terms of the

direct sum of fuzzy sphere as

1 1
S2 = S2(0) @ SA (L) @ S2 (ﬁ + 5) ® Sp (ﬁ - 5) : (5:51)

by performing the field redefinition . As we mentioned before, the structure
of equivariant gauge fields and the low energy of U(2) gauge theory over M x
S2Int was investigated in detail |25]. Here, our aim is to consider the U(3)
gauge theory over M x SZ™ and construct the SU(2) equivariant gauge fields
characterizing its low energy behavior E| In order to determine the latter, we

choose the SU(2) symmetry generators w, as

we =XV @1, @ 13) + (1or1 9 TO @ 13) — (Lo ® 14, @05,
=X, + IV —i%,
=D, —i3,, we €u(20+1) @ u(4) @ u(3), (5.52)

and they satisfy (3.78)). w, carries a direct sum of IRRs of SU(2), which is given

(E@é@ (é+%> ® (E—%))®152((£—1)@€@(€+1))

@2((£+%) ® (6—%)) @(6—;)@(€+;). (5.53)

Using the definitions in (4.15]), the projections to the representations appearing
in the r.h.s of (5.53)) can be constructed and listed in the table where

® Note that we omit Vo(®) term from the action (3.75) and we will impose it as a constraint as
discussed in [25].
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Projector Representation

My, = 1opr1 ® Py, ® 13 -1l (l+1)

Iy, = 19011 ® Py, ® 13 (-1l (l+1)
Iy = 3(iQr + 1) U-—Hd{l+3)®(C+32)
M= 5(=iQr +11) (=P -)@+3)
H0:H00+H02:12e+1®P0®13 2((6—1)@6@(6"‘1))

My =10 1 = 1o © P @ 1y 2((€+%) & (ﬁ—%)) dU-Hd(+3)
Tableb.1: Projections to the representations appearing in the r.h.s of (5.53]).

i 1 )

QI = m(XaFa — -II ) s QI = —1II1. (554)

=
N=

4

SU (2)-equivariant gauge fields can be obtained by imposing the symmetry con-

straints in (3.79)), (3.80]) and (4.20). The dimensions of solution spaces for A, , A,

and ¥, can be derived by the Clebsch-Gordan decomposition of the adjoint ac-

tion of w,. The relevant part of this decomposition is

[2((4—1)@6@(“1)) @2((“%)@(6—%)) DUl-35)@(l+3)

1
=220040 ©541@ .
(5.55)

This simply means that there are 22 rotationally invariants and A, may be
parametrized by these invariants. A suitable set may be listed as the following

projectors and “idempotents" (in the subspace they belong to)

HOO ’ H02 H+ ) - 5 ’ 157 ) Q(l)o = HOOQl ) ng = HOOQQ )
Q(l)z = HOle ) ng = HOzQQ ) £ ) 3 ) Q}f ) Qi ) Q}r, ) Q%Jr )

QSH = SlQl ) QS12 = SlQQ: QSQl = SZQl ) Q522 = S2Q27 QF? QHy
(5.56)
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where

1 .
QL = ) <(2€ + 10+ DI I — 2H> ,
20 +1) (20 +1)
O = Trnp- e i ey -9
i
U0+ 1)(20—1) (20 + 3)H—’
20+ 1)(0+1) (20+1)?
Qi = 020+ 3) Qi + (20— 1)(20 + 3)H+Q?H+
(A6 4P —(+1)
R CYASE N TCYANEE R
1 4
Q?i— = (f + 1)(2£ . 1) (6(26 + 1)H+Q2H+ - ZH—i—) )

QL =TT —ill, + 201, , Q*, =TI_QIT, —illy + %IT_,

o; 0O .
Si:12[+1®8i®12, S; = s 221,2, (557)
0y 0y
and
1 4
Qr = graza — 2i([,%,)% — igH% ,
0~ ACLED 120430 o, 20D+
7602 1110 +1 602+ 110+ 1 602 +110+1 +
320—-1)(t+1) AVACZ + 10042
- I a chF Ec
TeE e+l T TeE a1 et
) 16 9
+ Zm<€achanzc) )
00204+ 1 20 +1)2
o- ) pon @V pon

(C+1)(20-1)
_ACL8P430—2
DR 1D@eer3)
"y (20+1)
O = T Dy ) O
1

S N O e

(20— 1)(20 + 3)

20+ 1)(¢ +1)
020+ 3)

I Qi I1,

(5.58)

Using Mathematica it is easy to verify that
(ZSZ>2 - _H07 <Q60>2 - _HBO ? (Q62)2 - _HBZ ? (Qit>2 - _Hi ?
QL) =, (Q)°=-I, (Qs;)?=-1l,, Qb=
Q%4 =11 Q*=-1_, Q*=-II,. (5.59)

1
5

Y

N
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In the equation (5.55)), it is seen that under the adjoint action of w,, there are
54 objects which transform as vectors. Using the rotational invariant in (5.56]),

we can construct these as follows

[Da, Qo] s Qoo[Das Q] {Da, Qp}
Do, Qi), QolDas Qi) {0, Qi)
De.Q), QU[Du.@], {Da,@Q},
(Do, Q4] QL[Da,Q%Y], {Da,QL},
Do, Qul, QulDa.Qul, {De.Qu},
Do, Qr), QelDa.@rl, {Da,@Qr},
Do, Qsul, @bDa.Qsul, {Da,Qsii}, (5.60)
Do Qs1a), Q3[Du@s1a], {Da@sia}
DaQso)s @blDa,Qsl, {DuQsn}
Do Qszals @Du,Qs), {Da @5}
Do, Q). @L[Da.@L], {Da,QL},
Do, Q). @IDa, @), {Da, @2},

HOowa 3 H02wa ) waa ) Hera ) Slwa ) 52(-“-)0, .

Here Q) = TpQ1,Q3 = TiQ2,QF = ILQr, 2 = I1:Q>, and no sum over
2 2

repeated indices is implied. It is possible to parametrize A, in terms of these

54-objects. For the 40 objects which transform as spinors under the adjoint

action of w,, we can, for instance, take

HooﬂaQ—-‘r ) Q(l)oﬁan— 5 Q(Q)OBaH— 3 HOO/BOCQ“F_ ) Q(I)O/B(XH—I— ) ngﬁan—k )
Q(l)oﬁaQ—i-— ) ngﬁaQ—-i- ) H—/BaQéz ) H—B&ng ’ H+Ba@é2 ) H—i—/BOéng )
Qi——/BOCHOZ ) Q2—+BO{H02 ; Qi—ﬂa@[l)z ) QZ——}-/BOAng ; SlﬁaH-i- ) SlﬁaH— ;

(5.61)
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H75a52 ) H+5a52 ) QSIIBOZH+ ) QSuﬁaHf ) QS125aH+ ) quﬁaﬂ, )
H—ﬁa@SQl 5 H—BaQSm ; H—&—ﬁaQSlz ) H+/BQQS22 5 QSnBaQ}F_ ’
QSIQBQQ%+ ) QifﬁaQS?l ) Q%+BQQ522 ) HOQﬁQQ}r ) HOoﬁan )

QSII/BQQ}i- ) QSlQﬂaQQ— ) QiBaQSm ) QzﬁaQSQQ ) Qi—ﬁaH% ) QgﬁaH% :
(5.62)

Thus, we have determined all the equivariant low energy degrees of freedom
for the U(3) gauge theory over M x S2I"t A few remarks are now in order.
Firstly, we wish to emphasize once again that, from a geometrical point of view
the vacuum SZ™ may be interpreted as stacks of concentric D2-branes with
magnetic monopole fluxes and due to this fact it is possible to think of the
equivariant gauge field modes that we have found as the modes of the gauge
fields living on the world-volume of these D-branes. Let us also stress that
the equivariant spinors given above, do not constitute independent degrees of
freedom in the U(3) effective gauge theory over M x SZI"t. Their bilinears,
however, may be constructed to yield the equivariant scalars and vectors. In
other words, it is possible to use these equivariant spinor modes to express the

“square roots” of the equivariant gauge field modes.

It is possible to explore the dimensional reduction of the U(3) gauge theory
over S2/™ or over its projections, such as the monopole bundles S2* = SZ(f) ®
SE(¢ + %) with winding numbers 1. In this latter case, it easy to observe
that the reduced model will yield two decoupled abelian Higgs type model, each
carrying U(1)®? as found in section and the vortex solutions determined in
section [5.3| will be valid within each sector. Dimensional reduction over Sz is

quite tedious calculation-wise and will not be considered in this thesis.
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CHAPTER 6

QUANTUM HALL EFFECT ON GR,(CY)

This chapter is oriented to formulate the quantum Hall effect (QHE) problem
on the complex Grassmann manifolds Gry(CV) [} Although the subject of this
chapter does not seem related to the previous parts of the thesis at first sight,
there is an intimate connection between QHE problem and fuzzy spaces. We
may briefly explain this connection as follows: A well known fact about Landau
problems over compact manifolds such as S? , CPY is that the degenerate states
at the lowest Landau level (LLL) and for that matter at any Landau level is
finite. The finite dimensional Hilbert space of states H at the LLL correspond
to holomorphic sections of complex line bundles for the QHE problem with
abelian background gauge fields. Construction of fuzzy spaces via geometric
quantization methods also yield Hilbert spaces which are holomorphic sections
of complex line bundles over the commutative parent manifold. Thus there
is a one to one correspondence between the Hilbert spaces for LLL states on
S% . CPY, Gry(CY) and the Hilbert spaces for the fuzzy manifolds S%, CPY,
Gry(CY)p. Similar structural relationship between fuzzy even spheres S2¥ and
QHE on S?* also exists [74]. The matrix algebras describing fuzzy spaces such
as Sz, CPY act on this Hilbert space as linear transformations. Observables on
fuzzy spaces belong to these matrix algebras. Therefore it is possible to conceive
the observables of QHE on such spaces at LLL as linear transformations in the

corresponding matrix algebras.

In early 80s, with strong motivation emerging from condensed matter physics,

1 This chapter is based on the work that has been published: F. Balli, A. Behtash, S. Kiirkciioglu,
and G. Unal, “Quantum Hall effect on the Grassmannians Gry(C"™)” Phys.Rev. D89 (2014) 105031.
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Haldane has solved the problem of spherical cloud of electrons under the influ-
ence of Dirac monopole background fields |75]. With motivations from high
energy physics and string theory, Hu and Zhang [76] have introduced a 4-
dimensional version of QHE on 4-sphere, S* by generalizing the ideas of Hal-
dane. They have formulated and solved the Landau problem on S* for fermions
carrying an additional SU(2) degree of freedom and under the influence of an
SU(2) background gauge field. For the multi-particle problem in the lowest
Landau level (LLL) with filling factor ¥ = 1, it turns out that in the thermo-
dynamic limit, a finite spatial density is achieved only if the particles are in an
infinitely large irreducible representations of SU(2) (i.e. they carry infinitely
large number of SU(2) internal degrees of freedom). In this limit, two-point
density correlation function immediately indicates incompressibility property of
this 4-dimensional quantum Hall liquid. Appearance of massless chiral bosons
at the edge of a 2-dimensional quantum Hall droplet [77-80] also generalizes to
this setting. Nevertheless, it is found that among the edge excitations of this
4-dimensional quantum Hall droplet not only photons and gravitons but also
other massless higher spin states occur. The latter is essentially due to the pres-
ence of a large number of SU(2) degrees of freedom attached to each particle

and, as such, it is not a desirable feature of the model.

Other developments ensued the work of Hu and Zhang. Several authors have
addressed other higher-dimensional generalizations of QHE to a variety of man-

ifolds including complex projective spaces CPY, S8 83, the Flag manifold

SU(3)
UL)xU1)’

spheres [29,[81-84]. Of particular interest to us is the work of Nair and Kara-
bali on the formulation of QHE problem on CP¥ [29]. These authors solve the

as well as quantum Hall systems based on higher dimensional fuzzy

Landau problem on CPY by appealing to the coset realization of CPY over
SU(N + 1) and performing a suitable restriction of the Wigner D-functions on
the latter. In this manner, wave functions for charged particles under the in-
fluence of both U(1) abelian and/or non abelian SU(NN) gauge backgrounds are
obtained as sections of U(1) and/or SU(N) bundles over CPY. This formu-
lation simultaneously permits the authors to give the energy spectrum of the

LL, where the degeneracy in each LL is identified with the dimension of IRR
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to which the aforementioned restricted Wigner D-functions belong. An impor-
tant feature of these results is that the spatial density of particles remains finite
without the need for infinitely large internal SU(N) degrees of freedom, con-
trary to the situation encountered for the Hall effect on S*. It also turns out
that there is a close connection between the Hall effects on CP? and CP7 with
abelian backgrounds and those on the spheres S* and S® with SU(2) and SO(8)
backgrounds, respectively [29,[81}84].

In this chapter, we focus on the formulation of the QHE on the complex Grass-
mannians Gry(C") |28], which are generalizations of complex projective spaces
CPV and share many of their nice features, such as being a Kihler manifold.
Several of these features are effectively captured by their so-called the Pliicker
embedding into (CP(JIX)A. For the case k = 2, to which we will be restricting
ourselves in this chapter, the Pliicker embedding describes Gry,(CY) as a projec-
tive algebraic hypersurface in CPY. For Gry(C") this is the well-known Klein
Quadric in CP® [85]. The developments summarized above and the intriguing
geometry of Grassmannian manifolds motivates us to take up the formulation
of the QHE problem on the Grassmannians Gro(CY). Using group theoretical
techniques, we solve the Landau problem on Gry(CY) and provide the energy
spectrum and the eigenfunctions in terms of SU(N) Wigner D-functions for
charged particles on Gry(CY) under the influence of abelian and /or non-abelian

background magnetic monopoles, where the latter are obtained as sections of

bundles over Gry(CV).

The organization of this chapter is as follows: we first provide a short account
of the formulation of quantum Hall problem on CP' and CP? in section
for the purposes of orienting the developments in the subsequent sections and
making the exposition self-contained. In section [6.2] we focus our attention to
QHE on Gry(C*) which is the simplest and perhaps the more interesting case
and the solution for the most general case of non-zero U(1) and SU(2) x SU(2)
backgrounds are given. In particular, we show that at the LLL with v = 1,
finite spatial densities are obtained at finite SU(2) x SU(2) internal degrees
of freedom in agreement with the results of [29]. In section [6.3] we generalize

these results to all Gry(C"). The local structure of the solutions on Gry(C?) in
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the presence of U(1) background gauge field is presented in section . There
we give the single and multi-particle wave functions by introducing the Pliicker
coordinates and show by calculating the two-point correlation function that the
LLL at filling factor v = 1 forms an incompressible fluid. The U(1) gauge
field, its associated field strength and their properties are illustrated using the
differential geometry on Gry(C*). We also briefly comment on the generalization

of this local formulation to all Gry(CY).

6.1 Review of QHE on CP! and CP?

The formulation of the QHE on CP' = S? is originally due to Haldane [75].
Karabali and Nair |29] have provided a reformulation of QHE on CP! in a
manner that is adaptable to formulate QHE on CPY. Here, we closely follow
the discussion of [29] and while at it we provide the Young diagram techniques
for handling the QHE problem on CP?. In section and we employ the
latter to transparently handle the branching of the IRR of SU(N) under the

relevant subgroups appearing in the coset realizations of Gro(CY).

Landau problem on CP! can be viewed as electrons on a two-sphere under the
influence of a Dirac monopole sitting at the center. Our task is to construct the
Hamiltonian for a single electron under the influence of a monopole field. To
this end, let us first point out that by the Peter-Weyl theorem the functions on
the group manifold of SU(2) = S® may be expanded in terms of the Wigner-D
functions D(ngRs (9) where g is an SU(2) group element and j is an integral or a
half-odd integral number labeling the IRR of SU(2). The subscripts L3 and Rj

are the eigenvalues of the third component of the left- and right-invariant vector

fields on SU(2)P} The left- and right-invariant vector fields on SU(2) satisfy
[Li s Lj] = _Ez‘jksz s [Rl s R]] = Eiijk s [LZ s R]] =0. (61)

The harmonics as well as sections of bundles over CP' may be obtained from

the Wigner-D functions on SU(2) by a suitable restriction of the latter. The

2 Throughout this chapter we sometimes denote the left and right invariant vector fields of SU(N)
and their eigenvalues by L; and R;, respectively, which one is meant will be clear from the context.
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coset realization of CP! is

1 _ 2 SU2)
CP! =8 = (6.2)

This implies that the sections of U(1) bundle over CP' should fulfill
D(ge'™) = '2"D(g), (6.3)

where n is an integer. This condition is solved by the functions of the form

D(ng)% (9). In fact, the eigenvalue % of R3 corresponds to the strength of the Dirac
J)
as will be made clear shortly. In particular, D(ngo(g) correspond to the spherical

monopole at the center of the sphere and D! (g) are the desired wavefunctions
harmonics on S?, which are the wavefunctions for electrons on a sphere with

zero magnetic monopole background.

In the presence of a magnetic monopole field B, the Hamiltonian must involve
covariant derivatives whose commutator is proportional to the magnetic field.
Let us take this commutator as [D,,D_| = B. It is now observed that the
covariant derivatives D, may be identified by the right invariant vector fields
Ry = Ry £1R,, as

1
= WRj: :

where ¢ denotes the radius of the sphere. Noting that [R, , R_] = 2R3, for the

Dy (6.4)

eigenvalue 7 of R3 we have

n

B=—
202

(6.5)

for the magnetic monopole with the strength 7 in accordance with the Dirac

quantization condition. The associated magnetic flux through the sphere is 27n.

The Hamiltonian may be expressed as

1
H — W(D+D_ + D_D+)
1 3
= Sip (ORI -RY). (6.6)
=1

where M is the mass of the particle. We have that 337 R? = 377 12 = j(j+1).

In order to guarantee that 7 occurs as one of the possible eigenvalues of R3, we
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need to have j = %n + ¢ where ¢ is an integer. The spectrum of the Hamiltonian

reads

1 n n n?
B = — (gl -

q(qg+1)
oM

The associated eigenfunctions are D(szﬂ (g9) as noted earlier. In (6.7)), ¢ is readily
2

= Bogins
- o\

(6.7)
interpreted as the Landau level (LL) index. The ground state, that is the Lowest
Landau Level (LLL), is at ¢ = 0 and has the energy %. The LLL is separated
from the higher LL by finite energy gaps.

The degeneracy of the LL are controlled by the left invariant vector fields L;
since they commute with the covariant derivatives [L;,D;] = 0. Each LL is
(27 +1 = n+ 1+ 2¢)-fold degenerate. In other words, there are this many

wavefunctions ngﬁ (g9) at a given LL with Lj eigenvalues ranging from —j to j.
2

Local form of the wavefunctions may be written down by picking a suitable
coordinate system. We omit this here and refer the reader to the original lit-
erature |29] where this is done in detail. In particular, it is shown in [29] that
the LLL form an incompressible liquid by computing the two-point correlation
function for the wave-function density. We will address this crucial property of

the LLL for our case in section [6.4]

Let us now briefly turn our attention to the formulation of Landau problem on
CP?. This and its generalization to CPY is given in [29]. The coset realization
of CP? may be written as

,  SU®3) SU(3)
=T ~ st xoa)

Following a similar line of development as in the previous case, we can obtain

(6.8)

the harmonics and local sections of bundles over CP? from a suitable restriction
of the Wigner-D functions on SU(3). Let g € SU(3) and let us denote the left-
and the right-invariant vector fields on SU(3) by L, and R, (a: 1,---,8); they
fulfill the Lie algebra commutation relations for SU(3). We can introduce the
Wigner-D functions on SU(3) as

Dgg;7L8;R,R3,R8 (9), (6.9)
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where (p,q) label the irreducible representations of SU(3), and the subscripts
denote the relevant quantum numbers for the left- and right- rotations. In
particular, the left and right generators of the SU(2) subgroup are labeled by
Liand R; (¢:1,2,3) and L;L; = L(L+1), R;R; = R(R+1).

We note that the tangents along CP? may be parametrized by the right invariant
fields, Rq, (o : 4,5,6,7). Consequently, the Hamiltonian on CP? may be written

down as

7
1
H= —>Y R
1

_ ﬁﬁﬂ@m@—3m+n—3@, (6.10)

where Cy(p, q) is the quadratic Casimir of SU(3).

The coset realization of CP? implies that there can be both abelian and non-
abelian background gauge fields corresponding to the gauging of the U(1) and
SU(2) subgroups, respectively.

Let us first obtain the wave functions with the U(1) background gauge field.
This means that our desired D9 should transform trivially under the SU(2),
and carry a U(1) charge under the right actions of these groups. In other words,
these wave functions must be singlets under SU(2) with R = 0,R3 = 0 and a
non-zero Rg eigenvalue. We can utilize the Young tableaux to see the branching
of the SU(3) IRR satisfying this requirement. The SU(3) IRR labeled by (p, q)
may be assigned to a Young tableau with p columns with one box each and ¢
columns with two boxes on each. The branching SU(3) D SU(2) x U(1), which
keeps the SU(2) in the singlet representation, is therefore
q p q

p
—— — —~—

] e[

)

where the diagram on Lh.s. of the arrow represents the generic (p,q) IRR of
SU(3) and the first diagram on the r.h.s. of the arrow represent the SU(2) IRR,
which is singlet in this case. A general formula exits [86] for expressing the U(1)

charge of the branching SU(3) D SU(2) x U(1) (see equation for a more
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general case):

1
n:§(¢]1—2¢]2), TLEZ,

where J; is the number of boxes in the tableau of SU(2) and .J; is the number
of boxes in the rightmost tableau in the branching. Thus for the tableaux given
above, we conclude that n = ¢ — p. In order to fix the relation between Rg
eigenvalues and the integer n, we use the fundamental representation (1,0) with
the generators A, fulfilling the normalization condition Tr(A,\,) = %5(11), and
Ag = ﬁgdiag(l, 1,—2), so that
o __r—4
V3 V3

It is useful to note that the flux of the U(1) field strength corresponding to the

Rs = (6.11)

background gauge field is proportional to the number n. We omit the details of
this here and refer the reader to [29).

The spectrum of the Hamiltonian (6.10)) may be given as

where we have used the eigenvalue of the quadratic Casimir Cy(p, ¢) of the IRR
(p,q), which is

Calp.a) = 5 (plp+3) +ala +3) +pa) (6.13)

and expressed the energy levels in terms of ¢ and n only. In (6.12), g appears
as the Landau level index; the ground state energy may be obtained by setting

q = 0 and that gives LLL energy Errr = 537

The wave functions corresponding to this energy spectrum can be written in
terms of the Wigner-D functions as
(p,9)
DL,Lg,Lg;O,O,—%(g) . (6.14)
The degeneracy of each Landau level ¢ is given by the dimension of the IRR
(p,q), which is
(P+Dg+1)(p+q+2)

dim(p, q) = 5 . (6.15)

This means that the set of quantum numbers L, L3 and Lg can take dim(p, q)

different values.
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It is also useful to note that the case n = 0 simply reduces the Wigner-D
functions to the harmonics on CP?, corresponding to the wave functions of a

particle on CP? with vanishing monopole background.

Consider the case of filling factor v = 1, i.e. each of the LL states is occupied by
one fermion. We therefore have that p = n, ¢ = 0 and the number of fermions
N is equal to dim(n,0) = (n+ 1)(n 4+ 2)/2. The density of particles p is given
by

N

vol(CP?)’ (6.16)

p:

where vol(CP?) = 872¢*. In the thermodynamic limit £ — oo and N — oo, this

yields the finite result

N n? B\’
_ , v _ (L 1
P 820 100 Moo 167201 < 2%) ’ (6.17)

as first discussed in [29).

The wave functions can be expressed in suitable local coordinates and taking ad-
vantage of these functions, the multi-particle wave-function for the filling factor
v = 1 state can immediately be constructed. A straightforward calculation for
the two-point correlation function for the wave-function density may be given
which signals the incompressibility of the LLL. We refer the reader to |29| for
details.

The case of SU(2) and U(1) background gauge fields may be handled as follows.
In this case we allow for all possible right SU(2) IRR labeled by spin R. It is
possible to label SU(3) representations in the form (p+k, ¢+ k"). The branching
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SU(3) D SU(2) x U(1) may be represented by the Young tableaux

q+K p+k q k+k' P 14
—N——"—
N PN Y s
q+kK' k—k'+2x P fi
s HEE- Y
q+k' K —k p K
N S -y s

These tableaux represent the maximum, generic and minimum spin R-value
configurations that can result from the branching, and we have assumed without
loss of generality that &' > k and kK > x > 0. Here x is an integer introduced
to conveniently represent the generic case. From the tableaux, the range of the

spin R and Rg eigenvalues may be easily obtained as follows:

k- K k+ K
R o= S (6.18)
Ry = —_(=2(p—q)+(h—K)) = ——~. (6.19)

2V/3 V3
Noting that n is an integer restricts the spin R to integer values. Spectrum of

the Hamiltonian (6.10f) is now

E= Co(p+k,q+k)—RR+1)—R})

2M€2(

— 2M€2(q2+q(2k—m+n+2)+n(k+1)—I—k:2—|—2k+m2

—m(k+1) - R(R+ 1)) : (6.20)
where k' = k — 2m and m is an integer. As indicated in (6.18]), there is an

interval for the values of R. The LLL is obtained when we choose the maximum

value for R,

k+ Kk
Roas = +2 —k—m, (6.21)
where m should take only mteger values within the interval m = 0, - % if
k is even, and m = 0,--- , %=L if k is odd. Usmg in , the energy
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spectrum is expressed as

E

(@ +q2R+n+m+2)+n(R+m+1)+ (R+m)(m+1)) .
(6.22)

1
oM e?

For fixed n,R we observe from this expression that the LL are controlled by the

two integers ¢ and m. The LLL is obtained for ¢ = 0 and m = 0.

As discussed in [29], for pure SU(2) background, to ensure the finiteness of
energy eigenvalues R should scale like R ~ ¢? in the thermodynamic limit. For
v =1 we have N' = dim(R, R) = 3(R+ 1)(R + 1)(2R + 2) and this results in a
finite density of particles

3

p~ (2}%{1\—/—1)6‘1 e—>oo,—/\/>—>oo % : (6.23)

As for the case of both U(1) and SU(2) backgrounds, it is possible to pick either

n or R to scale like £2. Taking n ~ ¢? and R to be finite as £ — oo, gives again
a finite spatial density

_dim(R+n, R) n?

— 24
QR 1 10T (oo Nosoo 401 (6.24)

for v =1 with dim(R+n,R) = J(n+ R+ 1)(R+ 1)(n + 2R + 1).

6.2 Landau Problem on the Grassmannian Gr,(C*)

Starting in this section we will consider the quantum Hall problem on the
complex Grassmannians Gry(CV). In order to set up the Landau problem on
Gr,(CY), it is necessary to list a few facts about the Grassmannians and their

geometry.

The complex Grassmannians Gry(CY) are the set of all k-dimensional linear
subspaces of the vector space CV with the complex dimension k(N — k). They
are smooth and compact complex manifolds and admit Kéahler structures. Grass-
mannians are homogeneous spaces and can therefore be realized as the cosets of
SU(N) as

SU(N) SU(N)

Gri(C") = SIUN —k) x UK)] ~ SU(N —k) x SU(k) x U(1)’

(6.25)
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It is clear from this realization that Gr;(CY) = CPY. Gry(C*) is therefore
the simplest Grassmannian that is not a projective space. The coset space real-
ization of the Grassmannians is the most suitable setting for group theoretical

techniques that we will employ to formulate and solve the Landau problem on

Gr;(C*) first and subsequently on all Gry(CY).

In order to set up and solve the Landau problem on Gry(C?), we contemplate,
following the ideas reviewed in the previous section, that SU(4) Wigner D-
functions may be suitably restricted to obtain the harmonics and local sections
of bundles over Gry(C*). Let g € SU(4) and let us denote the left- and the right-
invariant vector fields on SU(4) by L, and R, (a : 1,---,15); they fulfill the
Lie algebra commutation relations for SU(4). We can introduce the Wigner-D

functions on SU(4) as

(p,g,7)
9= DL(l)Lél)L(2>Lg2)L15;R<1)R<31)R(2>R§2)R15 (9) (6.26)

where (p, ¢, ) are three integers labeling the irreducible representations of SU(4),
and the subscripts denote the relevant quantum numbers for the left- and right-
rotations. In particular, the left and right generators of SU(2) x SU(2) subgroup
are labeled by L, = (Lgl),LZ@)) and R, = (RZQ),RZ@)) (1:1,2,3, a:1,---.,6)
with corresponding SU(2) x SU(2) quadratic Casimirs C¥ = LW(L®M + 1) +
LAO(L® +1), CEF = RO(RY +1) + RA(R® +1),

The real dimension of Gry(C*) is 8 and tangents along Gry(C?*) may be parametrized
by the 8 right invariant fields R, (a: 7,--- ,14). Consequently, the Hamiltonian

on Gry(C*) may be written down as

14

1
0= et

a=7
= i Cp.ar) —CE - RY) (6.27)
where Cq(p, q,7) is the quadratic Casimir of SU(4) in the IRR (p, q,r) with the
eigenvalue
3, 5 9 1, 1
Co(p,q,7) = g(r +p*) + 54 + g(?pr + 4pq + 4qr + 12p + 16g + 12r). (6.28)

The dimension of the IRR (p,q,r) is

dim(p,q,r):1—12(p+q+2)(p+q+r+3)(CI+r+2)(p+1)(CI+1)(r~|—1). (6.29)
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The coset realization of Gry(C*) implies that, there can be both abelian and
non-abelian background gauge fields corresponding to the gauging of the U(1)
and one or both of the SU(2) subgroups. We list these as three distinct cases:

i. U(1) background gauge fields only
ii. U(1) background gauge field and a single SU(2) background gauge field,

iii. U(1) background gauge field and SU(2) x SU(2) background gauge field.

It is useful to remark that the second case may be viewed as a certain restriction

of the third. We will discuss these matters in detail in what follows.

Following [33,87], it is useful to list a few facts regarding the branching
SU(N, + No) > SU(N,) x SU(Ny) x U(1). (6.30)
We can embed SU(N;) x SU(Ny) x U(1) into SU(N; 4+ Ns) as

6iN2¢U1 0

| : (6.31)
0 6—1N1¢>U2

where Uy € SU(Ny) and Uy € SU(N3). Let us denote the IRR of SU(V;) and
SU(Ny) with J; and Jo. We also let J, be the total number of boxes in the
Young tableaux of SU(N,) (a : 1,2). The U(1) charge may thus be expressed

as
1

T NN,
Clearly, the IRR of U(1) is fixed by those of the SU(N,) factors and the IRR
content of the subgroup SU(N;) x SU(Ns) x U(1) may be denoted as (J1, Jo)n-
The decomposition of a given IRR J of SU(N; + Ny) under this subgroup is

(N2J1 - Nljg) . <632)

n

expressed as

J = D m%,5(7 o) (6.33)

J1, T2
where m?l, 7, are the multiplicities of the IRR (J1, J2)» occurring in the direct
sum. Further details may be found in the references [33},87] and in the original

article of Hagen and Macfarlane [88].
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6.2.1 U(1) Gauge Field Background

For the QHE problem on Gry(C*) we are concerned with the branching
SU(4) D SU((2) x SU(2) x U(1). (6.34)

Obtaining the wave functions with the U(1) background gauge field, requires us
to restrict D®%7) in such a way that they transform trivially under the right
action of SU(2) x SU(2), and carry a right U(1) charge, that is, they should
be singlets under SU(2) x SU(2) with C& = 0 eigenvalue and a non-zero Rj;

eigenvalue.

We can utilize the Young tableaux to see the branching of the SU(4) IRR ful-
filling this requirement. The SU(4) IRR labeled by (p, ¢, ) may be denoted as a
Young tableau with p columns with one box on each, ¢ columns with two boxes
on each, and r columns with three boxes on each. The branching , which
keeps the SU(2) x SU(2) in the singlet representation, is therefore

r q P r+q1 q2 r
—N— ——
RN RS
(6.35)
——

p
where we have introduced the splitting ¢ = ¢; + g2 in the representation in
order to handle the partition of columns labeled by ¢ in the branching. It is
important to realize that in the last row of the SU(4) representation there are
r (fully symmetrized) boxes, which are moved as a whole under this branching
to the second slot in the r.h.s. and the trivial representation of SU(2) x SU(2)
is obtained if and only if p is equal to r. Otherwise, we have a nontrivial

representation for the second SU(2) in the branching (6.34]).

Using the formula (6.32]) we compute the U(1) charge as

1
n=s (2r+2q)—(p+7+20) =0 — ¢, (6.36)

where we have used p = r.

In order to fix the relation between the eigenvalues of Ry5; and the U(1) charge

n, we need to use the 6-dimensional fundamental representation (0, 1,0) (Young
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tableaux: ) of SU(4). As opposed to CP?® ~ SU(4)/SU(3) x U(1) where
the branching of the 4-dimensional representations (i.e. (1,0,0) and (0,0,1))
of SU(4) contain singlets of SU(3), in the present case however, the smallest
SU(4) IRR containing the singlet of SU(2) x SU(2) is (0,1,0) and it has the

branching

- ( ®H)_l@ (H@ .)1 o (D® D>o’ (6.37)

where subscripts show the charge (6.36). Taking the generators A, of SU(4) ful-
filling the normalization condition Tr(A,\y) = %5ab, in one of the 4-dimensional
IRR ((1,0,0) or (0,0,1)), it is possible to show that in the 6-dimensional IRRf]
(0,1,0)

1
Ri5 = —=diag(0,0,0,0,—1,1), 6.38
15 \/§ g( ) ( )

and therefore we in general have

n :CJ1—C]2

M =5="x

(6.39)

It is now easy to give the energy spectrum corresponding to the Hamiltonian

(6.27), using (6.28), p = r, Ri5 taking the value in (6.39) and C& = 0:

1
E= SIE (p2 + 3p 4+ np + 2q§ +4q2 + 2pge + 2n(1 + C]2)) . (6.40)

The LLL energy at a fixed monopole background n is obtained for ¢ = p =0
and it is
n 2B

E L — 41
LLL = 302 M (6.41)

with the degeneracy dim(0,n,0) = &(n+1)(n+2)*(n+3). In (6.41), B = 2%
is the field strength of the U(1) magnetic monopole. The gauge field associated

to B and related matters will be discussed in section [6.4.

The wave functions corresponding to this energy spectrum can be written in
terms of the Wigner-D functions as

(b.d1+42.9) (g) = pPLE 2] #) (9).  (6.42)

LOLM AL L1550,0,0,0 3 LOLP LA L 115;0,0,0,0 3

3 Qeneralizing this result to the W—dimensional representations of SU(N) is used in the
subsequent sections. A proof is provided in appendix E
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The degeneracy of each Landau level is given by the dimension of the IRR
(p,q,p) in equation (6.29). This means that the set of left quantum numbers
{L™ Lg) L L3 Lg) ,Lis} can take on dim(p,q + ¢o,p) different values as a

set.

For the many-body fermion problem in which all the states of LLL are filled
with the filling factor v = 1, in the thermodynamic limit £ — co, N' — oo we
obtain a finite spatial density of particles
N n’ 2B\"
=Ty S (7) ’ (6.43)
12
where we have used N = dim(0,n,0) = 5 (n+1)(n+2)*(n+3) for the number

of fermions in the LLL with v =1, an vol(Gry(CY)) = %

We note that the case n = 0 simply reduces the Wigner-D functions to the
harmonics on Gry(C*) corresponding to the wave functions of a particle on

Gr,(C*) with vanishing monopole background.

It is possible to interchange the Young tableaux of the two SU(2)’s in (6.35]).
This flips the sign of the U(1) charge, n — —n; in the formulas for the energy

and degeneracy, etc, this fact can be compensated by substituting |n| for n.

In section [6.4] we give the single and many-particle wave functions (for the filling
factor v = 1 state) in terms of the Pliicker coordinates for Gry(C?) and use the
latter to obtain the two-point correlation function for the wave-function density

signaling the incompressibility of the LLL. An account of the U(1) gauge field

4 Tt may be useful to state that this volume is computed with the help of the repeated iteration
of (special) unitary group manifolds in terms of the odd dimensional spheres,

SU(N) _ SU(N —1) SU(3)
SUN) SUN-T) X su(N =2 * X 3o *V®
> SN §ANTE o 8% x S, (6.44)

(for N > 3) where ~ means “locally equal t0” and 2 indicates isomorphism. Considering this local
expression we can expand all the special unitary groups in (6.25) and employ the volume formula for
spheres to obtain an approximation for the volume of the Grassmannians [89|, namely,

vol(@re(€)) = 75— 1)1!’(2];‘ - é’;fl)('N (O, (6.45)

1

which produces the factor 5 for k = 2 and N = 4. This factor is in general subject to change upon

using other methods. Since this is immaterial for our purposes, we will stick to the approximation
(6.45)) throughout this chapter.
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is also provided for illustrative purposes.

6.2.2 Single SU(2) Gauge Field and U(1) Gauge Field Background

In this case, we need to restrict to D®%7) which transform as a singlet under
one or the other SU(2) in the right action of SU(2) x SU(2), and carry a U(1)
charge. Therefore, we have a range of possibilities within the branching ((6.34))

as given in the following Young tableaux decomposition:

r q P r+q1 q2 p+r
N~ — —N—
L. — ® 1]
(6.46)
r+q1 q2 z p+r—2x
I~ ————
— ® 1]
(6.47)
r+q1 q2 p—r
— —
— ® L[]
—— )
(6.48)

We have assumed that p > r and split ¢; + ¢ = ¢. We have introduced the
integer x (0 < x < r) to conveniently represent the generic case. From the

tableaux, Rj; eigenvalues may be easily obtained as:

n =

2@ —q)—(p-1), (6.49)

N —

and we observe that the first SU(2) in the branching remains a singlet while the

second may take on values over a range;

p—r “r—l—p
2 T2

(6.50)

Since n is an integer, we must have that p —r is an even integer. This condition

restricts the spin R® to integer values.
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Using C = R®(R® + 1), energy spectrum corresponding to the Hamiltonian
(6.27) is given as

!
oM

n

E (Cz(p, q,7) — RP(R® 1) — —2> : (6.51)

2

This can be rewritten in terms of ¢y, n,p using (6.28)), (6.49)), assuming p > r
and introducing m viar = p—2m (m =0,--- ,Lifpisevenandm =0, - -- ,p%l

if p is odd) as

E

1
- 2M€2(2q§+2q2(n+p+2)+n(p+2)+p2+3p+m2—m(p+1)

_ RO(RO 1)) _ (6.52)

In order to obtain the lowest energy we have to take the maximum value of the

spin R®, = # = p — m. Then, the energy spectrum becomes
1
E=rs (2q§ +2g2(n + R® +m +2) + n(R® +m + 2)
+ (R® +m)(2+ m)> : (6.53)

The LLL energy at fixed background fields R® and n, is obtained for g, = m = 0

as follows:
1

_ 2 2
Errn = gy (n(R® +2) + 2R®) . (6.54)

The wave functions in the present case can be written in the form

,q1+q2 7T)
D 6.55
L<1)L(31)L(2)Lg2)L15 .0,0,R(2) ,R:(,’Q) 7% (g) ) ( )

where R? is given in (6.50)).

In order to have finite energy eigenvalues in the thermodynamic limit ¢ —
0o, N — o0, the scales of n and R® in terms of the powers of ¢ have to
be determined. For a pure SU(2) background (n = 0, RV =0, R?® # 0), R®
should scale in the thermodynamic limit as R® ~ (2. The number of fermions

in the LLL with v =1 is

5
N = dim(R® @y — L (p@ 4 92(0p@ ) 4 12 (R®)
=dim(RY ,0,R¥) = —(RY +2)*(2R*™ + 3)(R¥Y +1)* — :
12 R(2) 500 6

(6.56)
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and the corresponding spatial density is

N o, @y
(2R®?) 4 1) too0Nsoo B

P~ g ) (657)

12

which is finite.

When both U(1) and SU(2) backgrounds are present (ie. n # 0,RY =
0,R® #£ 0), just like the case of CP? reviewed in the previous section, we
may choose either one of n or R® to scale like /2. Taking n ~ % and R® to be

finite in thermodynamic limit, we again get a finite spatial density

N nt

H - .
TL(2RM) 1) to0 Nooo 2m4SRA) (6.58)

pN

where we have the number of fermions N in the LLL with v = 1 given in this

case as

1
dim(R® ,n, R®) = E(R@) +n42)22R® +n+3)(R® + 1)} (n+1)

n4

(6.59)

— =
n—oo,R@ finite 12

Before closing this subsection, we note that interchanging the Young tableaux of
two SU(2)’s amounts to interchanging R and R® in (6.50)), and also a flip in
the sign of the U(1) charge. In the relevant formulas above, one can compensate

for these changes by replacing R with R(") and substituting |n| for n.

6.2.3 SU(2) x SU(2) Gauge Field Background

Now we need to restrict DP9 to those wave functions that transform as an
IRR (RW  R®) of SU(2) x SU(2), and carry a U(1) charge. It is useful to
partition IRR of SU(4) as (p1 + p2,q1 + g2 + x,r). There are now two classes
of branchings which differ in their U(1) charge as given in terms of p1,p2, ¢1, g2

and r below.
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If g, = 0, the branching with maximal R® value is

(6.60)

As R® decreases down from its maximal value R = 2% in increments
of 1, the total number of boxes in each SU(2) does not vary so we have, with
q9=q +,

n = %(2(]1 —(pa—p1—71)). (6.61)

Suppose now that ¢o # 0. This may happen only if all p-boxes are already in the
tableaux of the second SU(2) in the branching; thus we must have that p; = 0.

Once again, we have the branching with the maximal R® value as

r q p 7’ q1 z
—— — NN

1. HD

@H..D...D..D...

(6.62)
and the U(1) charge is now (with p = ps)
1
=3 2(q —q2) = (p2—1)) - (6.63)

Using both of the tableaux we observe that the first SU(2) in the branching

takes the value

R<1>:“T”, 0<z<q, 0<p <p. (6.64)
For this value of R() the second SU(2) takes on values between RE, = g and
R, = 2

|2M—2_S’§R<2>§§, S=p+z+r, (6.65)
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where M is defined as the largest among the integers po , 2 and 7.

We consider the cases ¢ = 0 and ¢o # 0 with the U(1) charges given in (6.61])
and separately to determine the energy spectrum corresponding to the
Hamiltonian . We have that
[ <C2(p, ¢,r) — RO(RW + 1) — RA(R® 4+ 1) — "—2) . (6.66)
2M (2 2
For the case ¢o = 0, we have the condition that

b2 —p1—T
m: = ————

> (6.67)

is an integer to ensure that n is so. Let us assume that ps > p; 4+ 7 so that m is

positive.

In order to obtain the lowest energy eigenvalues we use together with the
maximum value of R as given in . Next, we eliminate py , ¢; ,x and r in
favor of n, RM  R® p;, and m (explicitly we have p, = R® — RM 4 p; +m,
g =n+m,r=2RY —p, and r = R® — R — 2m) to get

1
E :—2M£2 (C2 (R(2) — R(l) + 2p1 +m,n+m+ 2R(1) — 1, R(Q) o R(l) _ m)
2
~“RORM L1y - RAO(R® 1+ 1) — n-
( +1) ( +1) 5
1
=537 W+ a(m o+ RO — RY 1) 4 m® 4 m(RY + R 40 +-2)
+n(RY + R® +2) + 2R®) | (6.68)

where R® > RM™ due to the assumption py > p; + 7. For fixed RV, R®) and n
Landau levels are controlled by the two integers p; and m. Taking py =m =0

results in the LLL energy

1

= i (n(RY + R® +2) + 2R®) . (6.69)

Errr
We note that assuming p, < p; + r flips the sign of m and in (6.68) m — —mf]

It is also important to remark that for RV = R? = R, we have p; = py +r
and thus

m = w =r, (6.70)

5 The energy levels are still, of course, positive as can easily be checked.
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and the energy levels are given by

1 n?
E = ST (Cg(2p1—r,n—r+2R—p1,r)—2R(R+1)—7)
1 - N -

The energy values here are positive since p; > m, n > m, and 2R —m > 0 by

construction. The LLL energy is given by p; = m = 0, which is indeed the same

as the one obtained from when R := RM = R®),

The case p; = 0 may be treated along similar lines. We have that

nu:p;r (6.72)

is an integer for the same reason that n is so. Let us assume p > r so that m
is positive. In this case we can write p, ¢,z and r in terms of n, RM , R® ¢

and m. Hence we find for the lowest energy eigenvalues

1
E= o (02 (R® — RW +m,2¢o + 2RY +n+m,R® — RV —m)
2
_RORD L 1) — RO(R® L 1)~
(B +1) (R +1) = 5
1
= S (245 +2g2(n + R + R® +m +2) + n(RY + R® 4 2) +m?

+m(RY + R® +n+2) +2R®). (6.73)

We note that here we do have the condition R > R as well. In this case ¢o
and m specify the Landau levels. We take ¢o = m = 0 in (6.73) to obtain the
LLL energy and this yields the same result given in as expected.

LLL energy for R®® < R can be found by interchanging RV and R® in
and taking n to —n where now n < 0. This gives

1
2M¢?

Erp, = (=n(R® + RW 4 2) + 2RW) . (6.74)

We do have two distinct cases to consider in the thermodynamic limit. For a
pure SU(2) x SU(2) background: n = 0, RY # 0, R? # 0, both RV and R?
should scale in the thermodynamic limit as ¢?. The number of fermions in the

LLL with v =1 is
dim(R® — RM 2RM  R® _ R} ~ 4RM°RA) (6.75)
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and the corresponding spatial density in this limit is

ARMW® R(®) i
P~ FERRD T DERD 1 1) Z_}m_m nite . (6.76)

For the nonzero background n # 0, R # 0, R® = 0 we have three parameters
n, RM and R®. We can choose, say n to scale like 2 and the others to remain

finite in thermodynamic limit. For v = 1 we get
dim(R® — RW 2RW 4 R® — R — p? (6.77)

and the spatial density is

n4

P™ TH5(2RD + 1)(2R® + 1)

— finite. (6.78)

6.3 Landau Problem on Gr,(C")

We are now ready to generalize the results of the previous section to all Grass-

mannians Gry(CV). It is useful to write down the coset realization

SU(N) SU(N)
G‘ N — ~ . :
“C) = Suw -2 v~ s -y < sv@ <o O
The SU(N) Wigner D-functions for g € SU(N),

D(P1,P2,P3 ,,,,, Pn_2,PN_1) (g) , (680)

LSUWN=2) L L3 ,Ly2_, ,RSUN=2 R .R3 Ry2 |

carrying the IRR (P, Py, Py, -+, Py_o, Py_1) labeled by N — 1 non-negative
integers, may be appropriately restricted to obtain the harmonics and local
sections of bundles over Gry(CY). Let us denote the left- and the right-invariant
vector fields on SU(N) by L, and R, (a: 1,---,N? — 1); they satisfy the Lie
algebra commutation relations for SU(N). In (6.80), L5VN=2) and RSV(N-2)
stand for the suitable sets of left and right quantum numbers, which we will not

need in what follows.

The real dimension of Gry(CV) is 4N — 8 and tangents along Gry(C") may be
parametrized by the 4N —8 right-invariant fields, Ry, (o : N>—4N+7,--+  N?—
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2). Consequently, the Hamiltonian may be written as

1 N2-2
_ 2
H = 2ml2 Z Ra
a=N2—4N+7
1 SU(N SU(N—2 SU(2
Here for future use we give the eigenvalue of CQS UN) in the IRR (Py,Py,0,---,0,

Pn_5, Py_1), which reads

N -1 N —2 N -2
Co(Pr, P, 0,...,0, Pyoa, Pya) = () PE+ (—5)Ps + (w7 ) Pas
N —1 N —2 2
+ (—ZN VPR , + (—N )PLP, + Nple—Q
1 4 2
+ NPIPN—I + szpzv—z + NPZPN—I
N -2 N -1
+ (T)PN_QPN_]_ + (T)Pl + (N —=2)P,
N -1
+ (N — 2)PN_2 + (T)PN_l, (682)

and the dimension of this representation is given in the appendix [D]

In order to obtain the wave functions with only a U(1) background gauge field,
we consider those D-functions that transform trivially under the right action
of SU(N — 2) and SU(2), and carry a right U(1) charge. This means these
wave functions remain singlets under SU(N — 2) and SU(2) with non-zero

SU(N-2) ASU(2) . :
Cy ( ),C2 @ eigenvalues and a non-zero Ry2_; eigenvalue.

The branching SU(N) D SU(N —2) x SU(2) x U(1) may be utilized for this
purpose. In order to have both SU(N —2) and SU(2) as singlets in the branching

we must require all P; except P, P>, Py_o, Py_1 to vanish, and also Py_; = P;.
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In terms of Young tableaux, this branching can be shown by

Py Pyn_2 P P Pn_1 Pyn_2
—N———— — — ————

—
p2 P
et NN
(9
—_——
Py_1

where the tableaux on the l.h.s represent the IRR (P, P,,0,---,0,Py_o, P;)
of SU(N). The tableaux on the r.h.s are those of SU(N — 2) and SU(2),

respectively, and both are singlets in this case.

From (/6.32]) we compute the U(1) charge as

1
n= gy - (N2

= Pyo—D. (6.83)

The relation between eigenvalues of Ry2_; and n is found to be (see Appendix

D)

2
RN2—1 = —/1- N?’L . (684)

The energy spectrum of the Hamiltonian is

_ 1 SUN) 4 2 9
E= YVTE (C2 (1 N)n

—— 4 2
— 2 2
_2M€2<P1 +2- B+ (N =14+20)P +2(n+ N =2+ )P

+4P Py + n(N — 2)) ,

where we have used (6.82) with Py_; = P, and Py_s = P+ n. The integers P,

and P, are in fact considered to be the Landau level indices. The LLL energy
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can be obtained by setting P, = P, = 0, which is

Nn —2n
Erpp=——m—1—. 6.85
LLE 2M 0?2 ( )
The corresponding wave functions may be expressed by
(Pl 7PQ ,O,"',O7Pn_2:P2+n ,Pn_lzpl) (g) . (686)

LSUWN=2) I L3 ,Ly2_1,0,0,0,—/1-2n

Spatial density of particles in the thermodynamic limit is computed in a man-
ner analogous to those for the case of Gry(C*). We have vol(Gry(CY)) =
(VS from ([6.45) and in the LLL, Py 5 =n, Py = P, = Py_y =0,
with » = 1. Correspondingly, the dimension formula (D.1]) for the LLL with

v = 1 reduces to

- — _ 2
N:dim(o,O,...7n70):(n+N 3)(n+N—4)(n+ N —2)

(N + DI(N —2)!

In the thermodynamic limit (¢ — oo and N’ — o0), the density of the states

takes the form

N n2N—4 B 2N—4
p = A2(N—2) JAN—8 — —£4N—8 = <§) . (688)
(N—2)[(N=1)!

For the case of both SU(2) and U(1) background gauge fields, the spectrum of
the Hamiltonian and the wave functions are obtained in a similar manner. We
still have to demand all P; except P, P>, Pnv_o, Py_1 to vanish, but no longer

impose the condition Py_; = P;. The relevant branching of SU(N) is now given
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by the Young tableaux below:

Py Pn_2 P, P Py Pn_2
N N —N— —N— e NN

Pyn_y Pyn_2 P P Pn_1 Pyn_2

Potzx Pi+Py_1—2x
—N— —

&
Prn_q Pn_o P, P, Pn_1 Prn_2
e N———— N— — — N
—
P+PNn_1 Pi—Pn_3
—
&
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where the branching rule for maximum, generic and minimum SU(2) spin are
given, respectively and 0 < x < Py_;. We have assumed that P, > Py_q. The
SU(2) spin interval is then

:PI_PNfl Py + P

R
2 ) ) 2 Y

(6.89)
and the U(1) charge is given by

n =

(Py_1+2(Py_s— Py) — P) . (6.90)

N | —

By the Dirac quantization condition n should be an integer so we must have

that
_ P— Py

: 6.91
m = T AL (6.91)
is an integer taking values within the interval m = 0, - - - | % if Py iseven and m =
0,---, L& 12_1 if P, is odd. The energy spectrum corresponding to the Hamiltonian
(16.81)) reads
Be L (gsven _ R(R+1)—(1— E)n2 (6.92)
2M 2 \ 7 N ' '

This equation can be re-written in terms of P, P, m and n by using (6.92]),

and (E0):

1 N-1, N—-2 ., N-2 9 9
E = I (( SN )P; +(T)P2 + ( N )(n® 4+ m*” 4+ 2nm + P,
N —1 N —2
2 1 4
+ NPl(n +m+ Py) — N(2mP1 — P} + NPQ(TL +m+ Py)
2 N —2 N -1
— NPQ(Qm —P) - (T)(2m —P)n+m+ P)+ (T)Pl
N -1 N -2
+ (N =2)P + (N =2)Pyos + (—5—)(=2m + P) = (—; )n’
— R(R+ 1)) : (6.93)
Taking the maximum value of the spin R,
Py_1+ P
R:NlT—h:Pl—m, (6.94)

184



the lowest energy becomes

1 ([ N-1__., )
E = 2M€2(( o )R+ 2m?)

N -2
+ T(2P22 +mn + 2nP; + 2RP, + 2mP, + Rn + Rm)

1
- N(ZR” +4RPy + 2mn + R* + m? + 2Rm + 4Pyn + 4Pym + 4Py)

b (DR + (N - 2)2P, 40+ m) —R(R+1)). (6.95)

Once again, the LLL at fixed background charges n and R are controlled by two
integers, m and P,. The LLL is found by putting P, = m = 0. This gives the

energy eigenvalue

1

which collapses to (6.54]) for N = 4 as expected. More generally, to match the
formulas of this section to those for N = 4, we note that the correspondence for

the IRR labels is determined to be

pa=qg+q,r) — (P,Po=¢,0,--- ,Pvo=q,Pn_1), (6.97)

For a pure SU(2) background n = 0, R # 0, R should scale in the thermody-
namic limit as R® ~ ¢2. The number of fermions in the LLL with v = 1 is
N =dim(R,0,--,0, R) where

1
(N —1D)I(N - 2)I(N — 3)I(R + 1)!R!

X (N —4)(R+N—=3)(R+ N —2)(R+1)(2R+ N — 1)
x (N =3)(R+ N —2)), (6.93)

dim(R,0,--- ,0,R) = (R+ N —3)!

and the corresponding spatial density is

N RQN—?)
PYNSRR 1) RONS(2R 1 1)

— finite . (6.99)

For both U(1) and SU(2) backgrounds n # 0, R # 0, we can choose the scaling
n ~ £? and keep R finite in thermodynamic limit. The N in the LLL with v = 1
Is

N =dim(R,0,---,n,R) — n*N™*, (6.100)
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and the spatial density reads

N n2N—4

~ finite. 101
PYANSQRYL)  RONSERYL) e (6.101)

Before ending this section, let us briefly list a few of the results of our analysis for
the Landau problem on Gry(C®). Labeling the IRR of SU(5) with (p,q,7,s),
we find that the energy spectrum due to only an abelian monopole background

18

_ 1 sU(s) _ 3, 2
E = o (CQ 5"

1
= oM (P* +2¢° + 2nq + 2qp + pn + 4p + 6¢ + 3n) ,  (6.102)

where we have used p = sand r = n+q in C2SU(5). The numbers p and ¢ play the
role of Landau level indices. So the ground state energy is obtained by letting

p = q = 0, which yields

3n
E = 1
Lip = 5y (6:103)
and wave functions take the form
D(p,q,nJrq p) (g> ) (6104)

LSUG) L, L3,L24,0,0,0 r\/?n

With reference to (D.1) the dimension of the (0,0,n,0) representation gives
the degeneracy of the LLL as follows:

(n+2)!(n+1)l(n+3)*(n+4)(n+2)

dim(0,0 0) = . 6.105
m(0,0,n,0) 413Inl(n + 1) (6.105)
Finally, the spatial density of fermions is readily computed to be
nb B\’
== . q
p— 73 (%) (6.106)
For SU(2) and U(1) backgrounds together, the energy spectrum reads
E=—1 (570 _ R(R+1)—2p2 (6.107)
2M 2\ 5° )7 '
where SU(2) has the spin range
pD—S S+p
R = e 6.108
2 ) ) 2 Y ( )
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assuming that p > s. The U(1) charge now reads n = 3 (s+2(r —q) —p).
Setting s = p — 2m, the maximal SU(2) charge R = p — m gives the energy

eigenvalues
1
E = 2M€2(m2—|—2q2+mn—|—2qn+2Rq+2mq+Rn+Rm+3R+6q+3n+3m) .
(6.109)
Here applying the LLL condition gives the lowest energy as
1
= — . 11

6.4 Local Form of the Wave Functions and the Gauge Fields

In this section, we first provide the local form of the wave functions for solutions
of the Landau problem on Gry(C*). For this purpose, we will utilize the well-

known Pliicker coordinates for Gry(C?).

The Pliicker coordinates for Gry,(CY) are constructed out of a projective embed-
ding, the so-called Pliicker embedding Gry(C") — P (/\k (C”), which provides
a one-to-one map between the set of k-dimensional subspaces of C" (i.e. the
Grassmannian Gry(C")) and a subset of the projective space of the k' exterior

power of the vector space C", where the latter is denoted as P </\k (C”). This

subset of P < /\k (C") is a projective variety characterized by the intersection of
quadrics induced by all possible relations between generalized Pliicker coordi-
nates. In what follows, we focus on the Pliicker embedding of Gry(C*); more

details and general discussions could be found in [85,90].

For Gry(C*) this construction entails the projective space P (C* A C*) = CP5.
Introducing two sets of complex coordinates v, ,w, (@ =1,--- 4), that is one
set for each C*, a fully antisymmetric basis for the exterior product space C*AC*

would be given in the form of

1
P, = E(vawlg — VgWy) - (6.111)

P,s may be contemplated as the homogenous coordinates on CP® with the

identification Pas ~ AP.s where A € U(1) and Y0, 5 |Pagl? = 1.
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The Pliicker embedding of Gry(C?*) in CP® is given by the homogeneous condi-
tion

EapysPapPys = PiaPsy — PigPoy + PiaPas =0, (6.112)
defining the Klein quadric Q4 in CP%, which is complex analytically equivalent

to Gry(C*). The homogeneous equation €apysPapPys = 0 is nothing but the

restriction to a projective hypersurface of degree two, which is the quadric Q4.

It is possible to employ P,s to parametrize the columns of g € SU(4) in the

IRR (0,1,0); we choose a parametrization of the form

P35y P
—P3 Pis
A U B Py Py
gi= || P P Py Py | (6.113)
—Piy P
Ply  Psy

where the orthogonality of the columns follow from the Pliicker relation in
(6.112). For a short-hand notation, we will employ gne = Pn = Pag, gns =
enm Py = €aprs Pl with N = [af], N =1,--- 6 and aff = (12,13, 14, 23,24, 34).

(07q1+‘I2 70)
(1) (2) .
LOLPY LA LS L15,0,0,0,0,%

gauge field. They are the sections of U(1) bundle over Gry(C*), which fulfill the

(g9) are the wave functions in the U(1) background

gauge transformation property

D(0,91+42,0) (gh) — P0,a1+g2,0) <gei>\159> — P0.a1+g2,0) (g)ei%B ) (6.114)

Using (6.38)) for A5 and (6.113)), this yields immediately
DO (g) ~ Pog. (6.115)

We point out that the (0,¢,0) IRR is the g-fold symmetric tensor product of
the (0, 1,0) representation; to wit, (0,¢,0) = [[,(0,1,0). This can be shown
by the symmetric tensor product (®s) of H tableaux as

q
A
- Y

P A |
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We infer that

D(O 01+a2.0) (9) ~ Pa1ﬂ1 Pa262 e Paqlﬂql 7*151 :/k252 e P’:qgfsqz (6116)
So the LLL wave functions are those with ¢, = 0:
(0,41,0)
DL<1>1L<1>L<2)L<2>L15 o,o,o,o,}( 9) ~ Pospr Py Fagy iy (6.117)

which are holomorphic in the Pliicker coordinates.

Another useful point to mention here is that, although the right-invariant vector
fields on SU(4) cannot be easily written down, the left-invariant vector fields

can be easily given as [35]

0
wi (Ak)ij

. 0
v; ()\k)_ + ij ow* )
J

0
wj(Ak)ig 7 — + i 507
J

0
L= —vj(M)ij5— — g

i (6.118)

where A\, (K = 1,...,15) are the Gell-Mann matrices for SU(4). Choosing

complex vectors v and w to satisfy the orthonormality conditions

vaw; =0, |[v[P=|w[*=1, (6.119)
and using the identity
NZ-1 1
Z AENE = —0injm — 777 0iiOmn (6.120)

for N = 4, the Casimir Cf v may be realized as the differential operator:

sow 15/ 0 9 0 WY
G = 8( %0 T Y g T Y gy ) T3\ UGy, B,

o DD 2 v.wiﬂ_ 00
wzw] awl aw] C.C. 8 ) ]a”Ui aw] Viw ] a aw

1 L, 0 0 , 0 0
+§(Uivja—via—v;+wiwja—wiaw; . )
w0 L0 e 0 0 0 0 0 9
TOv; Ow; Y Ovr Qwp Qv v Qw; Ow;

+ v, (6.121)

which clearly generates the eigenvalues §+2q when applied to the wave functions

(6.116).

The LLL with filling factor v = 1 has N = dim(0, 1,0) = & (n+1)(n+2)*(n+3)

number of particles. Its multi-particle wave-function is given in terms of the
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Slater determinant as

Uy, (P - W (Ph)

1 Uy, (P?) - Uy, (P2

Vip = A( ) AN:( )
Ua, (PY) - Upy (PY)

= e (PO U (PP - W, (PY). - (6.122)

Here P! denotes the " position fixed in the Hall fluid and correspondingly
Uy, (PY) refers to the wave function of the j™ particle located at the position
Pi. Now let us calculate the two-point correlation function in this fluid in the

presence of only a U(1) background. For a one-particle wave function in (6.115])

(with n = 1) our notation transcribes as
Uy (P)=Wl,~Ply. (6.123)
The LLL wave function given in (6.117) may now be denoted by

Uy, (P =) ~ (Pig)". (6.124)

[0}

The general form of the correlation function between a pair of particles, say 1

and 2, on a manifold M is given by
QL2 = [ (U Pdu(3)dutt) - du(N). (6.125)
M

with du(i) being the measure of integration on M in the coordinates of the "
particle and W, p represents the multi-particle wave function of the Hall fluid on
the manifold M. Expanding the determinant formula (6.122)) and using some

algebra one can show that 2(1,2) can be simplified as
0L2) = [ [WarpPdu(3)dn(a) - duN) = WPV~ [0R03R. - (6.120
M

In order to compute (6.126]) for our case, we take the normalized coordinate
chart ~; := %f where Py # 0

e

IRV

(1,7), (6.127)

1 a
L7155
Vv 1+l
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on the Grassmannian Gry(C?). In this coordinate patch (6.124)) becomes Wi ~
(P1)". Inserting this into (6.126]) yields

Q1,2) = 1-[PYPRI"

N 1_{ TR r
- 1|2 2|2 112 [~2]2
L+ 2"+ 217+ 2l V2
-1 2212 "
= 1-|1- 12” 23' | . (6.128)
L+ 2"+ 217+ 2l 12

Let us set X = ~¢. In the thermodynamic limit A/ — oo and n — oo, (6.128)

takes the form

- a2 .2 5o 02 2112 | 22/? -1
01,2) = 1-[1-|X - X2 {M\Xl RS ‘Xz}
— — 2 "
— 1—{1—%’){1—)(2 ]
— 1—6_23’X1_)?2|2
_ 1= () 2B (e ) (6.129)

i 73

where we have used n = 2B¢? and that I'' := ( 2 ) Note that the last
equality shows the two-point function of the particles located at the positions
71, 72 on Gry(C*), is extracted from that of the particles on CP5 at the positions
X 1 X2 by a restriction of these particles to the algebraic variety determined by
Xi = (detT" as expected. It is apparent from this function that the probability
of finding two particles at the same point goes to zero. This result indicates the

incompressibility of the Hall fluid.

Turning our attention to the U(1) gauge field we may write

m _
A= —ETr (Mg 'dg) . (6.130)

With the help of (6.113) and (6.39), one can express A in terms of the Pliicker
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coordinates as

mn

A= 5 008 7 G
- _% (_ (971)51\; (dg)NS + (971)6N (dg)NG)
= —% (=95 (d9) s + i (d9) )

- —% (—PydP}, + P;dPy)

= —inP5dPy (6.131)

where use has been made of the notational conventions stated below equation
(6.113)), and the fact that d(PxPx) = 0 due to (6.112). Under U(1) gauge
transformations A transforms to A+d (%) , which is consistent with the trans-

formation of the wave functions given in ((6.114)).

Let us introduce the notation P = (P,... Ps)T where T stands for transpose

and define a non-homogeneous coordinate chart Q = % with P; # 0 on Gry(C?)

as

Q=1,m, )", (6.132)

subject to the Pliicker relation ({6.112]) which in terms of the (affine coordinates)
v; takes the form

Vs =V2Y3 — NN (6.133)

Without (6.133]), Q is a non-homogenous coordinate chart in CP°. We can

express our gauge potential as
A = —inPldp

= —in|P|?Q'dQ — inP}|Q|*dP,

= —in|Q|2Q'dQ — inP;|P,|%dP,

= —in|Q|2Q'dQ — inP['dP,

= —indIn(|Q*) — indIn(P,)

= —indK —indIn(P). (6.134)
where K is the CP® Kihler potential given by

K=m|Q]*=mn(1+ |y, (6.135)
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and subject to the condition (6.133|).

The field strength is calculated via

mn
F=dA = ——=Tr(\gg 'dgAg'd
7 (A&)9~'dg A g~*dg)

= —indPy NdPy . (6.136)
We note that F' is an antisymmetic, gauge invariant, and closed two-form on

Gry(C*) and as such it is proportional to the Kéhler two-form 2 over Gry(C*).
This fact can be readily verified using (6.134]) and writing

F =dA =ind0*K = nf}, (6.137)

where 0, 0* are the Dolbeault operators in the coordinates ; and 7, respectively,

and d = 0+ 0*. The relation ((6.137]) with (6.135]) leads to the following form of
the field strength [90]:

F—=—in (d”ﬁk Ndry;  vdy] /\7] d%)

Lty ()2
being subject to the Pliicker relation ((6.133)). Let us associate with each index

(6.138)

i a dual index ¢ in the sense that i is dual to 7 if viy; appears in the Pliicker
relation. Hence 1,4 and 2,3 are dual to one another. Expanding 5 in ([6.133))

results in the Hermitian components for the Kéhler form €2 as

4 4
Qe = iN, [T+ J] el +0+ 1% D |,
a=1,azi,1 a=1,a#i
Qe = —iN, (1+ |%|2+ 7;1%) (ﬁvj+m§f> L i<j, j#1,(6.139)
. 1
G
_ 1( 2 H * % . < 2
S1ea | /R AN

J#i
—2
where N, = (1 + S, 17?) ~. In these formulas Einstein summation conven-

tion is not in use.

It is known from very general considerations [91] that the integral of F' over a

non-contractable two surface 3 in Gry(C?) is an integral multiple of 27:

1

— [ F=n. 6.140
o n (6.140)
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In the present context, this result signals an analogue of the Dirac quantization
condition with 7 identified as the magnetic monopole charge. Therefore, we do

have that the magnetic field is B = 5.

A number of remarks are in order. The generalization of our results to all
higher dimensional Grassmannians is fairly straightforward. Taking Gry(CY),
the only difference is that now both the vector potential A and field strength F

are subject to the Pliicker relations
Vik Vil = Vi Vel — YaYki, 1< i<k <ji<Il< 2(N —2), (6.141)

in terms of the non-homogeneous coordinates v;; := P;;/ P2 in the patch where
P12 # 0. The parametrization in can be generalized to N(N — 1)/2-
dimensional fundamental representations of the SU(N) group by means of these
Pliicker relations. Let us also note that the Grassmannians have a non-trivial
algebraic topological structure that, for the best of our purposes here, is re-
flected in their second cohomology group which is non-zero, or more precisely
H?(Gr(CN)) = Z [92|. This is the reason why the integral of the first Chern
character in is an integer. Similarly, one may consider the integral of the
d™ (d = 2(N — 2)) order Chern character for the Grassmannians Gry(CY) [93]:

1
d1(27)%vol(Gra(CN))

/ FAQ---NQ=n, (6.142)
Gr2(CN)

for F' = nf).
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CHAPTER 7

CONCLUSIONS

In this thesis, we have focused on the investigation of various aspects of fuzzy
vacuum configurations arising in the context of SU(N') gauge theories coupled
to a multiplet of adjoint scalar fields. In chapter 3, we discussed the results
of [9,121,22,124] which demonstrated how SU(N') gauge theories coupled to a
suitable number of scalar fields develop fuzzy vacuum configurations in the form
of fuzzy sphere, S%, or the product of two fuzzy sphere, S% x S%, after the spon-
taneously breaking of the SU(N') symmetry. We showed that the fluctuations
around these fuzzy vacua have the gauge field structure on fuzzy sphere(s) which
made it possible to conjecture the emergent theories as effective gauge theories
with fuzzy extra dimensions. KK-type mode expansion of the gauge fields and
their equivariant parametrization provided two complementary approaches in
understanding and interpreting these models and allowed us to compute their
low energy limits. As concrete examples, we have examined the low energy limit
of effective U(n) gauge theory M x S% by Kaluza-Klein mode expansion of gauge
fields and the low energy effective actions of U(2) gauge theory on M x S% and
that of U(4) gauge theory on M x S% x S% were constructed by using the equiv-
ariant parametrization of gauge fields. These two review chapters are followed
by three chapters covering the original results of research conducted for this

thesis.

In chapter 4, we considered a model [2124] in which an SU(N') gauge theory cou-
pled to six adjoint scalar fields which is in fact a particular deformation of N = 4

supersymmetric Yang-Mills theory with cubic soft supersymmetry breaking and
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mass deformation terms in scalar fields. We found new spontaneously generated
fuzzy extra dimensions emerging from this model which are expressed in terms
of a direct sum of product of two fuzzy spheres, SZ™ x S2™ The direct sum
structure of the vacuum was clearly revealed by a suitable splitting of the scalar
fields in the model in a manner that generalizes the approach of |25]. Fluctua-
tions around this vacuum have the structure of gauge fields over SZ/™ x Szt
and this enabled us to conjecture the spontaneous broken model as an effective
U(n) gauge theory on the product manifold M* x Sz x SZI" We supported
this interpretation by the equivariant parametrization technique. We examined
the U(4) theory and determined all of the SU(2) x SU(2) equivariant fields in the
model, characterizing its low energy degrees of freedom. Monopole sectors with
winding numbers (+1,0), (0,%1), (&1, +1) were accessed from Szint x S2Int
after suitable projections and subsequently equivariant fields in these sectors
were obtained. We indicated how Abelian Higgs type models with vortex so-
lutions emerge after dimensionally reducing over the fuzzy monopole sectors as
well. A family of fuzzy vacua was determined by giving a systematic treat-
ment for the splitting of the scalar fields and it was made manifest that suitable
projections of these vacuum solutions yield all higher winding number fuzzy
monopole sectors. We observed that the vacuum configuration SZ™ x S2Int
identifies with the bosonic part of the product of two fuzzy superspheres with
OSP(2,2) x OSP(2,2) supersymmetry and elaborate on this unexpected and
intriguing feature. Finally, stability of our vacuum solutions was addressed by
showing that they may be interpreted as mixed state with non-zero von Neu-

mann entropy.

As mentioned before, the low energy limit of effective U(2) gauge theory on
M x S% was studied in |22] and reviewed in chapter 3 of this thesis. In chapter
5, we took a step forward and investigated the low energy structure of models
with larger gauge group and obtained a new family of fuzzy vacua SZ™ by suit-
able splitting of scalar fields as well. We analyzed the low energy structure of the
U(3) gauge theory on M x S% by using equivariant parametrization technique
and subsequently determined the equivariant fields transforming invariantly and

as vectors under the combined adjoint action of SU(2) rotations over the fuzzy
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sphere and those U(3) gauge transformations generated by SU(2) C U(3) carry-
ing the spin 1 IRR of SU(2), when the SU(2) subgroup is maximally embedded
in SU(3). Our results revealed that the dipole and quadrupole terms, which ap-
pear in the branching of the adjoint representation of SU(3) as 8 — 5@ 3 under
SU (2) are the useful objects in constructing the equivariant scalars and we have
shown how this generalizes to U(n) theories over M x S% via employing the n—1
multipole terms which appear in the branching of the adjoint representation of
SU(n) under SU(2). The equivariance conditions that we have imposed on the
fields broke the U(3) gauge symmetry down U(1) x U(1) x U(1). Subsequently,
we determined the LEA emanating from the equivariant parametrization of the
fields and found that it consists of two complex scalars, each coupling to one
of the gauge fields aL, (1 = 1,2) only, and three real scalars coupling to the
complex fields and to each other through a quartic potential. We have seen
that in the ¢ — oo limit gauge field b, either decouples completely from the
rest of the LEA or it is eliminated by solving its equation of motion in pow-
ers of % Determining the vacuum structure of the effective potential for the
scalars, we were able to give two different vortex solutions for the LEA on R?,
both of which are characterized by two winding numbers in each case. We also
made clear, how the commutative limit of our results relate to the instanton
solutions in self-dual SU(3) Yang-Mills theory for cylindrically symmetric gauge
fields of Bais and Weldon [72]| and indicated the apparent connection between
the BPS vortices that we obtained in a certain commutative limit in section
and the instanton solution in [72]. Adapting the ideas in section [4.1] to this
model, we have provided a complete analysis of the U(3)-equivariant fields over
M x S2I" and determined the equivariant field modes characterizing the low
energy behaviour of the effective U(3) theory on M x SZ™ in terms of suit-
able “idempotents" and projection operators. We noted that SZ/™ may be seen
as stacks of concentric fuzzy D-branes carrying magnetic monopole fluxes from
a stringy viewpoint, and consequently equivariant gauge field modes found in
section may be interpreted as those living on the world-volume of these D-
branes, and may potentially be useful in bridging the effective gauge theory and

the string theoretic perspectives.
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In chapter 6, we gave a formulation of the quantum hall effects on the com-
plex Grassmann manifolds Gry(CY). We first focused on the simplest case
Gr,(C*) in order to solve the Landau problem. We constructed the solution for
the most general case of non-zero U(1) and SU(2) x SU(2) backgrounds and
showed that at the LLL with v = 1, finite spatial densities are obtained at finite
SU(2) x SU(2) internal degrees of freedom in agreement with the results of [29].
Subsequently, we generalized these results to all Gry(CY). Moreover, the local
structure of the solutions on Gry(C*) in the presence of U(1) background gauge
field was presented in this chapter, where we have computed the single and
multi-particle wave functions in terms of the Pliicker coordinates and showed
that the LLL at filling factor v = 1 forms an incompressible fluid by calculating
the two-point correlation function. The U(1) gauge field, its associated field
strength and their properties were illustrated using the differential geometry on
Gr,(C*?). We have also briefly commented on the generalization of this local

formulation to all Gry(CY).
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APPENDIX A

SOME DETAILS FOR CHAPTER 3

(P4l —-1/9) 1
Wl——(éJr%)Q 903+€+%904, (A1)
1 1
Mb=(1—¢@< €+1¢4 “+1P@Q, (A.2)
e+ 1) (2+0—1/4)
Wi (£+l)2¢3(@3—2)+2Ws@4+<ﬂ4 (A.3)
X1:£(£+1)(£2+£—1/4)
2(0+ 3)* ’
L+1) (1o (BHL—7) W
weir (M-S )
_HE+Y) e, 2 LGRS Y
3_2<€+%)4((£ + 0 — 1/4)W5 = WoWs) + SR Ws. (A.4)
1 ) 03 (2+0-1) @+e-1 , 1,
y1—§(1_|90|)_4(€+%>2_ (€_|_%) P4 — 4(€+%>2 903_1904 (A.5)
__P3¥4
400+ 1)
R SRR TN Gl St /NN SO S
R T Y e e I A T e 4
(Z+0-7) i
w%% - A0+ %) (A.6)

1 1 v v v
,Ep~=:———1¥(ﬁﬁ FH) = ____(ji;fL# **fﬁifR“ +j_wli;V,RfL,Ru + Ry W

442 16¢2
(flﬁ/fR.“V _ }wa,Rl“’) fL,R/“/ B )

200+ 5)(lr + 3) - ff”((& +50) (gt 1))

I fL,Rl“/ B hHv
R (e res') A7)

+
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€L<€L + 1)
2(0r+1)(0r + 1)2
10p(L + 1) (62 + 0, — 3)

4 (b +3)
2 3
bt (O + 05)
Cr(lr + 1) (03 + 10— %)
A(lr+3) (0 + 5)° ( (¢ +3)
1 G+l +1
4 (g + 30 +

LG =Te(D,®;)"(D,®y) = ((2¢r + 3)| Dyl

+(20r — 1)IDupl) + ((Ous)® + (0up3)?)

0,030,603 + 0,030,P4 + 8M¢38M904)

- 1006 +1
) (3Ng048“<p4) % (au903au904 + 6/1%03(9#904) )

(A.8)
where we have defined the complex scalar as ¢ = @1 +ips and @ = @1 +ipy. For
LE = Tr(D,®8)(D,®E), it is enough to replace ¢;, — (g and ¢; — x;, @ —
Xi,t = 1,--+,4 where x = x1 +ix2,X = X1 + X2 in (A.8)). For the potential
terms VL', VB we have

1 . N
Vil = ?TrFaLlchﬁ) = XE (" + 121" + Xp o + Xa | + X
L

1
V= S TeF g il = 0 (I ) + A+ AP+ A

IR
where
L (4 12 +40, -1
XlL:4L(L+)(L1+4L 4)7
(€L+§)
Xy =2 (W) — St O £ W
2+ (£L+§) ( l:l:) (EL_’_Q) ( 2 2)
~ 1 1
+—WLiWL)i (ol + 1)WEL)?
(e, + g EN <eR+%><eL+%>2<L“ SO
2€L(€ + )(€2+€L— ) 1 I ~ 1 I ~
1¥ = 4 - 4
(0, + 22 422()/\72 Wy) +2<£L+%)(W3 wi) |,
X = s (Wl + 0@ + - ) (M + 0V
S 2(0, + 1) L 2 >
1 3 ~ U
28 4 D) (OWEP  OREP) — el + DOVEWE + w;w;>)
1 1 1 (ol + 1)+, — ) .
+3 WEW.
2(lp+1) (€L+§)3< (lr+ %) ?
1(€%+€L+%) oL 1L LAL A LA IL
1T (e OV gV MW | (A.9)
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where X, Xft | X' can be obtained by replacing L — R and ¢, — (. Here,

we have introduced the variable W for simplicity as

02+ 0 —1/4 . 1 .
L=t (o= ———(ps =
Wl,:i: (£L+1/2)2 (903 903)—}_ £L+1/2((p4 904)a
L _(]_ 1 Y4 3
Wa = “03)( T2 20+ 127

- 1 P3
P\ 12 200, +1/2)2)
5 1 . P4 ©3P3
Wh= (14—
? ( +2(€L+1/2)2>¢3+<€L+1/2)+(€L+1/2>2

1 - N
- (€L+1/2) <§03Q04+%03904)7
0ty +1) 240, —1/4
L _ *L\*L 2 2 L L
W3 - (£L+1/2)2 (903 2903) +S04+2 €L+1/2 P4

(ol +1) 5
0y +1/2)273 %1
X 2007 +0p — 3) 205(0, + 1)
L L 1) ~ \fr . ~
- ————(ps—1 2
(éL + 1/2) SO4 (EL + 1/2>2 (903 )903 + 904904 s

(A.10)

and for Wit WJt, WE WE WE replace £, — (5 and the scalars (P, P4) by

the set (Y3, X4). The term V;*™ are constructed as

1 . _ = N . .
Vil = —— (2611 (Jox — &xI* + Ixe — X1 + (> + @) (%in + o X3

9i.r
" aixm) (P + IRP) (ol + ol + osz@g@)) | (A1)
where
o= Ol + Dl(te+ 1) 1l 4 Dea(Cr + 1) (G + tr — §)
O T E (b +3)*(r+5)* ’

0 (0 1)(0% + ¢ 3

of = 1LL(0L + 1)( Rt RlJr 1) ok 14(4r +11)£R(€R Jlr 1) ’ (A.12)
2 <€L+§)2<€R+§)2 2 (€L+§>2(€R+§)3

and ol aff ol can be obtained by exchanging (r <> (r in (A.12). For the

potential term Vi and V%, we find that

QLOL 4+ 0 (0, + 1) = VE +iQ"VE +iQR (V] +iQ™ YY),
OEQE 4 (5l + 1) = Y +iQRYS +iQM(VE +iQ YY) (A.13)

201



where

=~y +2lof - 1) - g - L),

- %(wi 8~ 4+ 8D~ gy (e + BB

(A.14)

Yy = m@w +2/g]* - 1) - %@3 - %%04 - %

— %(@3@4 + @3pa) — % ; (A.15)
V= —%@MZ +2|pf%) — 4(&%_ L2~ (E%Z%; %)954 - (EQ%(ZLif %_)2%>903¢3

- %@1@4 - m(%@ + P34) (A.16)
9 = el o) - g g i

- %(@3@4 + @34) — 2(24—?%) ; (A17)

and for V' and Y, (i = 1,2), it is enough to change {;, — (r and ¢ — Y in

the equations above. Then, we obtain

v#:a%Qyﬁz+o%f+wﬁBQ+0%V+

1 L~)L L~)L
Py (VEVE+VEVE) + 5

o (VR it
2
1

(lr+2)(lr+3) <

VivE+ 9 )

(A.18)

and

1
(KR + %)

(vt 901) )

(A.19)

VI = a1+ O + 91+ OB + (vvs + 30)

1 ROR RYR
+m(y1yl+y2y2)+2

1
(lr+ D)L+ 3)
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Euler-Lagrange equations

af" = ~af' = 89" ((af +ap™ +m)¢? + (af —af " +n2)?) =0,

1
afﬁ— ;af/—892((@§+a5’R+”3)X2+(aé%—ag’RﬂL”?’
— (n1 —n2))X ) =0,
" ]_
o e =8 <(a£+a9 +n1)¢? = (o5 — ay™ +n2)¢

+ (af + aé’R +n3)x* — (aR — ae Ry, — (ng — nz))>~<2> =0,

1 1 1 } }
orre = (sl o™ )+ S (86 G+ P 1)+ 2t ) )
L
1 ~2 2 R
s 20(x +X)—4XX90—§(X3+X4)90 =0,
L,R
" 1 ! 1 R L,R 2 1 8 2 1 ~ 1 9 ~ \2
X' = 5lag +ag™ +15)° + — (80" + 706 + X5 — 1)) +20xs + X3)°) | x
T T gR
1 3 I
7 <2X(902+902)—4wx—§(w§+¢i)x> =0,
L,R
a1 I 18~21 ~ 1 9 ~\2\ \ =
O = — —2(%—@9 + ny)? +—2( (@ +Z(903—903— ) + (903—<P3)) ®
r r 91
. 1 .
T2 <290(X2 +%%) — doxx — §(X3+X4)90) =0,
L,R
~I 1~/ 1 R 2 1 ~2 1 ~
XX = | 5l —a," +ny — (n — ny)) +g—2(8(x +Z(X3—X3—1))
R
-2 ~ 1 9 9 1
+2(x3 —X3)°) )X — 5 | 2x(¢ +<p)—4xs030—2(903+904)x =
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/i 1 / 4 2 ~2 1 8
Ort—phs— | 5 (@ + &+ =(p3 — 1)) + = ((p3 + @3)9” + (3 — P3)@ :
r g1, 2 g1,
" 1 / 4 2 ~2 1 8
Xat=-X5— (5O + P+ 06 —1) + 5 (s +x3)x* + (xs — X3)X
r 9r 2 R
~1 1~/ 4 2 ~2 1~ 8 ~ 2 =\, 52
Gi+—05 — | 5 (@* = @*+ =33) + — ((p3 + B3)@” — (93 — ¢3)8°)
g1, 2 gy,
2 o
_gg_(X2+X2>903—07
LR
L 4 2 =2 1 8 SN 2 VR
Vit=xXs— (7= +=%3) + = (06 + X3)X* — (6 — X3)%°)
r 9n 2 9n
2 o
- gg—(902 + &)X =0,
LR
1 9 )
~11 ~/ ~ 2 ~2\ %
A (—m——(x + X )w) =0,
R 9% 9%,1%
~ 11 1~/ 2 _ 2 2 ~2\ .~ A
Nat=Xs— | 5Xa — 55— (" +&7)Xa05 0, (A.20)
r dr 9I.R
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APPENDIX B

SOME DETAILS FOR CHAPTER 4

Variation of the action (3.75) with respect to ®!L gives

o . .
D,D"&.t + g—z(injk‘I’ZLFbe — EaneFy) =0, (B.1)
L

while the variation with respect to W.ET yields

. 1 . . .
(DuD#‘I’ZL + _Q(injkq)iLFbe - 8ach§cL)) Vimi(Ta¥ L)a =0, (B.2)

L

where ®L = ®iL); WL = WiL)\; with the anti-hermitian SU(N) generators \;
(2 = 1 s ,N2 — 1) fulﬁlhng )\l)\j = —%515 —|— (dzjk+f1jk)>\k and '-Yijk = dijk“‘fijk
for short. Clearly, these equations imply each other. Variation with respect to

PR and W' T yield analogous expressions with L — R.
The block diagonal form (DL, DE) indicated in the subsection is given as

DIDl + DD} = ( - (KL(KL + 1)+ lr(lr + 1))1(2ZL+1)(2ER+1)4m

1 1
— (b, = ) + =) + (g + 1)) L0, ) 200+1)2n5

2 2
1 3
5)(& + 5) + Cr(Cr + 1)) L (20, 12)(20n+1)2n5

1 1
— (€L(lp+1) + (r— —)(ER + 5))1(2€L+1)(2€R)2na

3
— (CL (L + 1)+ (L + )(53 + 2))1(25L+1)(%R+2)2m

— ((e, — 1)(€L + %) + (lp — —)(KR + 1))1(2&)(2@3)717

- ((EL +

3 1
— (0o + )(gL + 2) (lr—3)lr+ 3 5 ) 126, +2)200)n
1 1 3
- ((gL - 5)(& + 2) (lr + Yl + = 2 ) L20,)20n+2)n

(et D+ D+ e+ ><£R+§’>>1<%L+z><zz,z+z>n)- (B.3)
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The matrices in (4.58) and (4.59) square as

O

)2 = —1(2eL+1)(2£R+1)64, (QB) = 22L+1)(213R+1)647 (Qi)2 = —Hi,

P=-If, (QF) =-1f, (QF) =-I5, (Qf) =-II.,

=10, (81" =TIy, (s/)° = -1, (@) = —T1f.
I, (QE7=-nh (@) =-1f, (Qh)* = -1k,

(QéI)Q = _H[g ) (QgI)Q = _nga (Q%)Q = _ng

O
™ HX W
[\

N
~— ~—

[\

O

—~ —~ —~ o~~~
O
N
[N
I
|
=
wl= 5y

O O
= =

o
I

|

=3

(B.4)

justifying that they are “idempotent”s in the subspace they belong to.

Using the equivariant invariants in (4.60)), vectors in the (1,0) IRR may be listed

as

Dy, Qf], IHQF[Dy. Q). Dy, @5}, SDy. Q5] SYQf[Dy. Q5]
SPDL.QFY QFIDLQf1, QQIDLQY. QF{DLQI} Q4IDLQJ.
Q5,Q7 Dy, @7, Q.{Dy, Q7}, TD,, Qg,]. QG [Dy, Qs,), {Dy, Qs }
S{IDL. QL. SFQUDE QL. SHDEQE ). QDL QL) QDL QY
QMDL.QL}. QLIDLQE] QLQIDLQE). QE{DLQE). Tfmfw),
Sffwr Qfffwy Q§Mrwy, NfSfwy, SPStwl QFStwl QfStwr,
(B.5)

where Qf = Qf, + Qf,. Equivariant vectors in the (0,1) IRR is obtained from
(B.5)) simply by the exchange L <+ R.

336 equivariant spinors in the IRR (%, 0) parametrized as

RyTL L L Ry1L QL L RAL QLyTL RAL pLy7L RAL oL L RANL oL L
Hi Huﬂa@y’ H@ H /6 Q 9 Hz Q#/Ba]:[y7 Hz Qyﬁa]:[yJ Hl Qpﬁa@l/? Hz QVBQQ/J
Sy gEALy, L BySy, TQg ALy, T 61Qs5 , 11'Q5 BrQL, TIFQyBLQs,

Sl By Qy, SPLBE Q. SEQUBIIL, SiQuAL, S{QuBLQy, SiQyBQy

206



SiSy BNy, SPTL By Sy, SEQs BNy, SPTLBLQs,, SiQs,6aQy,
SiQyB:Qs5,, QL BQy, QT BQy, QF QLB QFQ, ALy,
QFQLBEQL, QFQLBLQy, QFSyBILL, QFBLSY, QFQs AL,

QI BEQS Qf@éﬁé@fa Qf@ﬁﬁé@éﬁ Qs I BEQL, QST BLQy,
QI QLML QR QLAMIE, QF QLAMQE, QEQLALQL, QL Skat:
QLTESESE, QLY AL, QLNESLQY,. OOk ALY, QROLAGY,
(B.6)
where L = 120t @ 122l @ b, @ 14, BE =120 @12 @, @1y, p=
0,02, v =+,—, p=1,2and where IT} ,Qf . S{", Q% on the left most and

I, QF. . 5%, Q% on the right most side in any of these expressions are excluded.

For the equivariant spinors carrying (0, l) representation, it is enough to take

2
L+ Rin (B9).

The vacuum configuration with (k; , ks) component multiplets can be calculated

for the cases k1 = even, ks = even and k; = even, ks = odd as follows

2 Int 2 Int o
SF k1 even X SF ko even "

SElr + ) x SE(lp+02) & - & SE(l + 032) x SE(|r — C2))
®:
eSE(J0r — g’;ﬂ) X St(lr +€]Z;§) O Sh(|lr — EEU x Sp([lr — EIED

E
E

1 2
Ho1%2-1

®4 {S%(KL + 0 X SE(lr+02) @ -+ @ SE(ly + 0) x Sh(|tg — £2])

n=0 m=0

SS2(10s — 9]) x S2(lr+ 62) @ - @ SE(10g — £51]) x S2(|6r - e’:,ﬂ)}
k1

Mg

2
®2 Z {S%(EL + ) ) SR+ 02) @+ @ Sh(lr + 05) x Sh(|[tr — 012 ])
2 2

n=0

®:

&Skl — ) x Si(lr +€’Z;2) & @ Sp(lle — 6']) < Si(|lr — f’%ﬁl)}
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®2 ) [S;(eL + ) X SE(Up+ 02 @ - @ SE(lr + 05) x Sh(|tr — £52])

®SE(|0e — 05y ) x Sp(lr +62) @ - @ SE(|er — L3 |) x Si(llr — £2])| -

(B.7)

2 Int 2 Int L
SF k1 even X SF koodd *—
k ko—1
517

4 Z {S%(KL + ) X SE(Up+02) @ - @ Sq(lp + €) x SE(|er — €12])

n=0 m=0

OSH(l, + 8 —1) x SE(lr+02) @ - ® Sp(lp + 05 — 1) x Sp(|tr — £22))
®:

SS2(|0y — 1)) x SE(Cr + ) & - @ S2(01 — 9]) x S2(10n —&’i%l)]

ko—1
2

®2) [S%(& F ) X SR+ 082) B - @ SRl + 08) x SE(|tr — €22])
m—0 2 2

P
BSE(er, — 51 ]) x SE(lr+ 2) & - & SE(|r — (L ]) x SE(|lr — gﬁf’)} :
2 2

(B.8)
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APPENDIX C

SOME DETAILS FOR CHAPTER 5

20 + 603 + 402 — 0 — 2

- — P
AR +4B + 02— —1)
W42 20— (-1 . w
A+ D)2 +4B +2 —0—1) > " 22420+ 1"

20+ )20 4B 20— 1)

40* 4 803 + 50

- _ P,

4(204 1) (204 + 403 + 02 — 0 — 1)
805 4+ 180* + 1103 + 3¢ lw,

BTSN C [ T Ry Gy e o
_ ([ 1)(8¢ + 146 + 52 - 30— 2)
MR+ )20 A2 - —1)
(C+1)(4063 + 402 +0+1) P (0 + 1w,

A204+ )04 +4B + 2 —(—1)" > 202 +20+1°
_ 408+ 1003 + 402 — 0 — 2 P
M2 4B 2 —1)

40+ 603 — 202 — 50— 3 We

+ P+ :

4204+ 120+ 1) (204 + 403 + 2 — 0 — 1) (204 1)2
200+ 100 + 140° 4302 — 30 — 2 P

2(0+1)(20+ 1) (204 + 46 + 02— — 1)
A+ 203 — 12— (—2 2w,
222+ 120 +4B + 2 —0—1) > 22+20+1°

204 + 60>+ 507+ —2

Py

20° — 603 — 2 +30+2 2w,

NCE DI+ )l P+ — =) 2 T v art 1
203+ 602 +30—3
20+ 1)(20+1)2(2 4+ ¢ —1)

205 _ 3042 2

P

P, —
M S (A R G IR
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1
AS . :Ag = —Alg = =

20+ 1)
PG e S Ll
0T 20+ ) T 220+ ) T a1
20240 —2
M=o ¢ T s P T
1
Ap = m(_Ql[Xc,Ql] - Qz[XC7Q2] —We + ZXC) (C‘D

where P := —Q1[X., Q1] — i{X,, Q2} and Py := —Qa[X., Qo] — i{X,, Q1}.

b=

By =

By =

Be =

Bs =

o 4002 +0 =122 +04+1) o 4(200 4+ 503 + 02 — ( + 3)
b 303(0+1)3 ST 31320 +1)
4204+ 30 — 202 — 40+ 2) B
@ = 363(20 1 1) p M
o — 2(—30% — 1207 — 140° + 130* + 1203 4+ 160% + 120 — 12)
°T 303(0+ 1)3(20 + 1)? ’
= AT 1000+ 207 — 207 — 367 — 1507 + 4)
o 3030+ 1)2(20 + 1)? ’
- 4(407 + 18(% 4 260> 4 20* — 35(% — 28(% 4 T( + 6)
T 302(0 +1)3(20 + 1)? ’
o 4(05 + 305 + 150 + 2503 — 300% — 420 + 24)
5 3C2(0+ 1)2(20 + 1)2 ’
e = 4200+ 2307 + 4307 — 1167 — 4507 + 6L + 6)
T 3000+ 1)%(20 + 1) ’
I 4(206 — 1105 — 420* — 705 + 4602 + 6/ — 12)
0 302(0+1)(20 + 1) ’
204 4 20% — 502 — 60 + 4)
N () I GTASYe (€-2)
AL (A03 + 1407 + 140 + 3) 4(40% + 40 — 3)

9 =

3(0+1)3(2041)2 320+1)2

4(80% 4 360° + 460* + 50> — 90 + T( — 3)
3(0+1)3(20+1)3 ’

A0+ 90° + 1502 + 70 — 3) A=At =80 + T + 114 — 6)
3(0+1)3(20+1)3  Ps= 3(04+1)2(20 +1)2 ’
A= 1)2(202 + 70+ 6) 8(80* 42203 470 — 100 + 3)
3041320412 br = 3(0+1)2(20+1)3
(43 + 1202 +7C — 3) 80(2¢ + 3)
(C+1)2(20+1)% (C+1)(20+1)3°

Bo = Pro =

210



A 1)P(A =202 =20+ 1) _2(—40t 4 20° — 81+ 4)
e 363(20 + 1) VTGV ANUE D E R
A(8(5 4 1265 — 1401 — 214° + 1202 4 12( — 6)

= 363(20 + 1)3 ’
AL+ 2)%(202 - 30+ 1) A4t 480 —T0* — 114 4 6)
WE T Es@er 12 0 P 302(20 + 1) ’
8(8¢* +100% — 1142 — 104 + 6) 8(0+1)(20—1)
Yo = 2 3 ) Y=Y = 3 ;
302(20+ 1) 0(20+1)
8(40 + 403 — 502 — 30 + 2)

_2(—=30% — 1207 — 1205 + 607 4 130" 4 20° 4 20 — 2)

o1 = 303(0+ 1)3(20 + 1)* ’
5 4(20% + 1507 4 2306 — 1105 — 230* + (3 — 1102 + 4)

2T 303(0+1)2(20 + 1) ’
5. A0+ 07— 260° — 5407 — 8L* + G4AL + 4442 — 13 — 10)

° 3C2(0+ 1)3(20 + 1)* ’
5, — 8(¢5 + 305 + 50* + 503 — 8% — 10/ + 6)

T 302(0 + 1)2(20 4 1)* ’
5 — 8(20° + 7¢° + 30* — 1503 — 150% + 3( + 3)

° T 3000+ 1)2(20 + 1)°
5 8(20° + 505 — 20* — 303 + 8% + ( — 2)

o 302(0+ 1) (20 + 1)° ’
5 4304 4 603 — 502 — 81 + 4) 5 A(304 4 603 — (2 — 40 + 2)
T 00+ 1)(20+1)3 T e+ D+
o 8(¢0 4 30° + 304 + (7 — 60 — 60 + 4)

T 0+ 1)2(20 4 1)3 ’

5o 4(204 4 303 — 502 — Al + 4) 4200 4505 — 202 — 70 + 2)
0 0(20 4 1)* A (0 +1)(20 + 1) ’
5o S+ _8ee-50—9) o 820 +11E2+ 70— 2)

BT e+t TP 3@e+1) 0 M T 3(2041)° ’
4(—02 -1 +2 2(—0?— (-2
b= (20 +1)3 L= (20+ 1) ) (C:5)
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14 ) (+1, 1
= — —1) - — 1)+ — —
204 + 403 — 20 — 1 , 202+20-1 1
T e T T Tt VT g e
C+li+1 ,
20+ 1) v (C.6)
l 5 204+0—-1,
= - — 1
2 4+20—1 X2+ 2 28 4202 —30+1 ©V3X3
_'_ 2 (X3_ )_ (903— )
(20+1)(2+ 1) 2(20+1) 020+ 1) 20+1
041 ? 202+ 30— 1 (41
B - Y] C.7
1V T D) T e YT mrr Y (C.7)
202 + 30 ) (41 )
Bs=serrara e =V @I -1
> -2 CINE . 23 1A -1 —4 X303
+ > (P3 — ) — (x3 — )
(204 1)(2+ 1) 2(20+1) (20+1)(0+1) 20 +1
( W2 14 202+ —2
R AT ans Phn (20 + 1)29"“/’ ENCTA T X3, (C.8)

Equations of motion that follow from the variations of the action (5.40) are

1 1 " ' 3 M + a2)?
(1 + @ )¢+ = (g Ot
(N + ap)” 3 99 4 1 (N+aé)2_i/2_ix2
e ) tEST gt 0 s g
1o AV
~ (- g+ g+ - PR )e=0.
1 .o 3 N +a})?
(1=t @)+ Ty — (= s g+ L
(M + a3)? 3090 T 4 Lo (M+ag)* 1 5 1
“ae )RS el w) T e o
13 1
g+ @ - B =0,
1 afl)/ 2y, 2 2 1y +2
Vo2 LM+ — (= 2+ SV ) =0,
! &2/ 2
-2 (N e = (5 = (M et =0, (C9)
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APPENDIX D

SOME DETAILS FOR CHAPTER 6

In this short appendix, we provide a derivation of the normalization coefficient
of Ry2_ in the Y= dimensional IRR of SU(N) for N > 3. Let 74" label
the N? — 1 generators of SU(N) in the defining N-dimensional representation.

Let us choose their trace normalization to be

a

1
Te(TPTP) = 50ab- (D.1)

It is a well-known fact in the representation theory of Lie groups that such a
choice fixes the trace normalization of the generators in all the IRR [94]. We

can proceed to write the trace normalization in an IRR R of SU(N) as

Te(THT) = kg, (D.2)

a

where £, is a rank-2 tensor invariant under SU(N) transformations. Since the

only rank-2 invariant SU(N) tensor is Kronecker delta, d,5,, we have
Kab = X(R)0ab , (D.3)

where X(g)y, commonly known as the Dynkin index of the representation R of
the group SU(N), is given by [94]

dim(R)

Xry = dim(SU(N))

Ca(R). (D.4)

We have that dim(SU(N)) is equal to N? — 1 and CI is the quadratic Casimir
of the IRR R. For either of the X2~ dimensional IRR, (0,1,0,---,0,0) or
(0,0,---,1,0) of SU(N), this gives, using ((6.82)),

N -2
Xp = —, (D.5)



and the trace formula (D.2]) then reads

N -2

T(T.Ty) = —;

6aba (D6)

in either of the W—dimensional IRR. Our aim is to find the coefficient of
Rx2_1 in these representations. In terms of the Young diagrams, the branching

of, say, (0,1,0,---,0,0) representation under SU(N —2) x SU(2) x U(1) gives

- (eB)e(Be), o (0e0),, ®

2
N—2 2(N—-2)

where the subscripts give the U(1) charge (6.32). Considering the dimension of

each representation in this branching, we find

N -1 N—4 -2 -2 (D8
2A0N—-2)"""2(N=2) ' N—2"""N—-2"")" '

2(N-2) (N—2)2(N—3)

RN2—1 = Cdlag(

where ( represents the coefficient of Ry2_; and the dimensions of the IRR in

the branching (D.7)) are given in the underbraces. Finally, using in

gives
N -2
=4/ —. D.9
=2 (D.9)
The dimension of the (P, Py, Ps, -+, Py_o, Py_1) representation may be writ-
ten as
1
dim(P, P,0,...,0, Pv_g, Py_1) = 3((PN—2 + Py + N —=3)(Py_a+ N —4)!
X (P2+N—4)'(P1+P2+N—3)'
X (PN,Q—i-PN,l+P2+N—2)(PN,1+1)
X (P1+P2+PN,2—|—PN71+N—1)(P1—|—1>
X (PN72+P2+N—3>(P1+P2
X +PN_2 + N — 2)), (Dl)
where j is

j= (N = 1DIN = 2)U(N = 3){(N — )P Py_o!(Py_s+ Py_1 + DI(Py + Py + 1)1,
(D.2)
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