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ABSTRACT

EFFECTIVE GAUGE THEORIES FROM FUZZY EXTRA
DIMENSIONS

Ünal, Gönül

Ph.D., Department of Physics

Supervisor : Assoc. Prof. Dr. Seçkin Kürkçüoğlu

October 2016, 224 pages

In this thesis, we investigate the formulation and various aspects of gauge theo-

ries with fuzzy extra dimensions. In SU(N ) gauge theories coupled to a suitable

number of adjoint scalar fields, we determine a family of fuzzy vacuum con-

figurations dynamically emerging after the spontaneously symmetry breaking

of the gauge symmetry. The emergent models are conjectured to be effective

U(n) (n < N ) gauge theories with fuzzy extra dimensions. Making use of the

equivariant parametrization technique and focusing on the simplest member of

the family of fuzzy vacua, we obtain all the SU(2) × SU(2)-equivariant gauge

fields in a U(4) model which characterize its low energy degrees of freedom.

Low energy effective action of a U(3) gauge theory on R2 × S2
F is also deter-

mined and its vortex type solutions are investigated in detail. In this thesis, we

also formulate the quantum Hall effect (QHE) on the complex Grassmannians

Gr2(CN). We use the group theoretical techniques to solve the Landau prob-

lem and provide the energy spectrum and eigenstates of charged particles on
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this space under the influence of Abelian and non-Abelian background magnetic

monopoles.

Keywords: Gauge Theory in Higher Dimensions, Fuzzy Spaces, Equivariant

Parametrization, Dimensional Reduction, Quantum Hall Effect in Higher Di-

mensions
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ÖZ

FUZZY EKSTRA BOYUTLARDAN EFEKTİF AYAR TEORİLERİ

Ünal, Gönül

Doktora, Fizik Bölümü

Tez Yöneticisi : Doç. Dr. Seçkin Kürkçüoğlu

Ekim 2016 , 224 sayfa

Bu tez çalışmasında, fuzzy ekstra boyutlara sahip ayar teorilerinin formülasy-

onu ve çeşitli yönleri incelenmiştir. Uygun sayıda adjoint skaler alanla eşleşmiş

SU(N ) ayar teorilerinin spontane simetri kırılımı ile dinamik olarak oluşan bir

küme fuzzy vakum konfigürasyonları belirlenmiştir. Bu biçimde ortaya çıkan

modellerin fuzzy ekstra boyutlu efektif U(n) (n < N ) ayar teorileri olarak yo-

rumlanması üzerinde durulmuştur. Simetrik parametrizasyon tekniğiyle ve bahsi

geçen fuzzy vakum kümesinin en basit üyesine odaklanarak, U(4) modelinde

düşük enerjili serbestlik derecelerini karakterize eden tüm SU(2)×SU(2)-simetrik

ayar alanları elde edilmiştir. R2 × S2
F üstündeki U(3) ayar teorisinin düşük en-

erjili eylemleri hesaplanıp, vorteks tipi çözümleri de incelenmiştir. Ayrıca, bu

tezde kompleks Grassmann manifoldlarında, Gr2(CN), kuantum Hall etkisi for-

müle edilmiştir. Grup teori teknikleri kullanarak, Landau problemini çözülüp,

bu uzayda abelyen ve abelyen-olmayan manyetik monopollerin etkisi altındaki

yüklü parçacıkların enerji spektrumları ve özdurumları belirlenmiştir.
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Anahtar Kelimeler: Yüksek Boyutlarda Ayar Teorisi, Fuzzy Uzaylar, Simetrik
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CHAPTER 1

INTRODUCTION

In the past few decades, non-abelian gauge theories with extra dimensions have

been a continually appearing theme in theoretical physics studies attempting

to explore physics beyond the Standard Model. One of the early motivations

in this context was to explore Grand Unified Theories (GUTs) by formulat-

ing gauge theories whose extra dimension are symmetric spaces with the coset

structure K = G/H and subsequently dimensionally reducing the models to the

Minkowski space in certain a manner that captures some new ingredients coming

from extra dimensions. In the literature, this approach is known by the name

of coset space dimensional reduction (CSDR) [1,2] (See also, [3] in this context)

and we will have much more to say on it later on in this introduction, to make

its connection to the research presented in this thesis as concrete as possible.

Another motivation for their study, which is in fact not completely disconnected

from the first, is the appearance of extra dimensions in (super)string theories

and related supersymmetric Yang-Mills theories. Dimensional reduction of su-

persymmetric (SUSY) N = 1 Yang-Mills theory in 9 + 1-dimensions to N = 4

SUSY Yang-Mills (SYM) in 3 + 1-dimensional Minkowski space is an extremely

well-known example, essentially due to a several numbers of physically appeal-

ing properties of the N = 4 SYM. As a quantum field theory (QFT), the latter

has several appealing properties, among which its conformal invariance and UV

finiteness, may be indicated at first glance. It is invariant under S-duality, in-

terchanging the coupling constants gYM and 4π
gYM

and it plays a central role in

gauge/gravity duality as it is the most prominent example on the conformal

field theory (CFT) side for AdS/CFT correspondence [4, 5]. However, it is gen-
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erally considered that this theory is not realistic as it has too much symmetry.

One possible route for accessing phenomenologically more viable theories and

its connection to our work will presented in the ensuing discussions.

New directions of research have opened up after it was shown by Arkani-Hamed

et. al. [6] that extra dimensions may emerge dynamically in a four-dimensional

renormalizable and asymptotically free gauge theory. As widely known, idea of

extra dimensions goes back to the works of Kaluza and Klein [7,8] in which the

product M4×Kn of Minkowski space M4 and a compact space Kn is considered

in an attempt to unify the theories gravitation and electromagnetism. It is

important to stress that extra dimensions are input in Kaluza-Klein theory.

However, in [6], extra dimensions appear spontaneously and it brings forth a new

perspective in approaching field theories with extra dimensions. In the present

literature, this phenomenon is frequently referred to deconstruction. One such

new direction which was recognized by Aschieri et. al. [9] is the dynamical

generation of the fuzzy sphere S2
F as an extra dimension in an SU(N ) gauge

theory coupled to a triplet of scalar fields in the adjoint representation of the

gauge group. Dynamical generation of product of two fuzzy spheres, S2
F×S2

F was

examined subsequently in a model which contains six scalar fields in the adjoint

representation of the gauge group and which is essentially a deformation of the

bosonic sector of N = 4 SYM containing quadratic and cubic interaction terms

in addition to the usual quartic one. As these results have a crucial standing for

the research conducted in this thesis, we will have more to say on them soon.

However, before doing so we also would like to draw the attention of the reader

to the connection of these developments to certain facts and results in string

inspired matrix models.

A so-called BFSS matrix model due to Banks, Fischler, Shenker and Susskind

[10] proposes to give a non-perturbative description of M-theory on flat back-

grounds. This matrix model can be shown to emerge from the dimensional

reduction of N = 1 supersymmetric Yang-Mills theory in 9+1-dimensions down

to the zero volume limit, i.e. to 0 + 1 dimensions. In other words, one could

say that the M-theory on flat backgrounds is described by “matrix quantum

mechanics”. Massive deformations of the BFSS model have also been studied
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in the literature [11, 12]. One such model is the Berenstein-Maldacena-Nastase

(BMN) matrix model and it proposes to give a non-perturbative description

of the M-theory on maximally supersymmetric pp-wave backgrounds. Fuzzy

sphere, S2
F , or more generally direct sum of fuzzy spheres S2

F := ⊕S2
F at dif-

ferent levels provide nontrivial vacuum configurations in this model. Another

model providing a dual description of BFSS was developed by Ishibashi, Kawai,

Kitazawa, and Tsuchiya (IKKT) [13]. It is obtained by reducing the SYM in

10-dimensions to a pure matrix model. Fuzzy spaces emerge from this model

too [14–18]. For example, noncommutative U(1) and U(n) gauge theories on S2
F

can be constructed from the IKKT matrix model supplemented by the Chern-

Simons term [14]. One of the most interesting feature of fuzzy spaces in matrix

models is that they are not an input in the model but they arise as brane-type

solutions which are generically given as direct sums of fuzzy spheres S2
F := ⊕S2

F ,

that of products of fuzzy spheres S2
F × S2

F := ⊕S2
F × S2

F , or higher dimensional

fuzzy spaces such as fuzzy four sphere [19,20]. Thus, the analogy to the models

in [9, 21] and in general to the phenomenon of deconstruction is evident in this

respect. In the present context, it is also useful to mention that fluctuations

around such fuzzy vacua may be examined to yield gauge field excitations living

on the world volume of the brane configurations.

After these cursory remarks indicating some of the connections between string

theoretic matrix models and gauge field theories of interest in this thesis, we can

now return to elaborate on the latter. As already mentioned, for the SU(N )

YM theory on Minkowski space M4 coupled to a triplet of adjoint scalar fields,

fuzzy sphere S2
F vacuum was investigated in [9]. In this model, three matrices

describing the S2
F are the vacuum expectation values of the scalar fields and the

SU(2) symmetry of S2
F is inherited from the global SU(2) gauge symmetry of the

YMmodel. Nonzero vacuum expectation values (VEVs) of the scalar fields imply

that the SU(N ) gauge symmetry is spontaneously broken down to a U(2`+1)⊗
U(n), whereN , n and the level ` of the fuzzy sphere are related asN = (2`+1)n.

Fluctuations around this vacuum configuration are found to have the structure

of U(n) gauge fields over S2
F , which preliminarily indicates that the emerging

model after symmetry breaking may be conjectured to be an effective U(n)
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gauge theory over M4 × S2
F in which fuzzy sphere appears as extra dimensions.

The effective U(n) gauge theory interpretation over M4 × S2
F can be supported

by two different approaches. A Kaluza-Klein (KK) type mode expansion of the

gauge fields over the fuzzy extra dimensions can be considered and a detailed

analysis of its low lying modes can be performed. This is already carried out

in [9] and placed the effective gauge theory interpretation on firm grounds. A

complementary treatment is given by the equivariant parametrization approach

[22–26]. This involves imposing proper symmetry conditions on the fields of

the model so that they transform covariantly under the action of the symmetry

group of the extra dimensions up to the gauge transformations of the emergent

model 1. These conditions may be solved using the representation theory of Lie

groups and explicit equivariant parametrizations of all the fields in the model

can be obtained providing strong evidence for the interpretation of such models

as effective gauge theories, since, subsequently, an effective low energy action

(LEA) may be obtained by integrating out (i.e. tracing over) the fuzzy extra

dimensions and dimensionally reducing the theory. Models with non-Abelian

gauge symmetry groups, U(2) and U(3) for the case of M× S2
F , and a U(4)

model for M× S2
F × S2

F have been investigated in [22, 24, 27] and LEAs were

obtained. These LEAs are generalized Abelian Higgs type models with several

U(1) gauge fields and complex and real scalars with vortex solutions forM = R2.

We present the detailed results of two approaches [22, 24] in chapter 3 and our

new results on U(3) theory overM×S2
F in chapter 5 [27].

Fuzzy vacua in the form of S2
F ×S2

F is spontaneously generated from a deforma-

tion of N = 4 SYM containing cubic and quadratic terms in the scalar fields.

These deformation terms breaks supersymmetry completely and the SO(6) R-

symmetry down to a global SU(2) × SU(2). After breaking of the gauge sym-

metry, the latter serves as the isometry group of the S2
F × S2

F vacua. That the

emergent model behaves as an effective gauge theory on M4×S2
F×S2

F was shown

using equivariant parametrization techniques and computing the LEA for a U(4)

model [24]. These results are reviewed in some detail in chapter 3.

1 In this aspect it is equivalent to the CSDR approach adapted to the present case of fuzzy extra
dimensions.
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This thesis is based on three articles [26–28], two of which are on the general

framework described here while the last treats a separate problem. We conclude

this introduction by giving a brief summary of our results.

In chapter 4, we further investigate the model which is a particular deformation

of the N = 4 SYM theory with cubic SSB and mass deformation terms given

in [21, 24]. We determine a family of fuzzy vacua which are expressed in terms

of direct sums of product of two fuzzy spheres, i.e S2 Int
F × S2 Int

F := ⊕S2
F × S2

F .

Structure of these vacuum configurations is revealed by permitting splittings of

the scalar fields that involve the introduction of k1 + k2 component multiplets

transforming under the representation (k1−1
2
, 0)⊕(0, k2−1

2
) of the global symmetry

and it is found that all fuzzy monopole sectors over S2
F × S2

F are systematically

accessed thorough projections of these vacua. Focusing on the simplest member

S2 Int
F × S2 Int

F of this family, we demonstrate that the fluctuations about this

vacuum have precisely the form of gauge fields, which allow us to conjecture

that the emerging model is an effective U(n) (n < N ) gauge theory on M4 ×
S2 Int
F × S2 Int

F . To support this interpretation, we study the U(4) model and

obtain all the SU(2)× SU(2)-equivariant fields by equivariant parametrization

technique, which characterize its low energy degrees of freedom and also examine

the monopole sectors with winding numbers (±1, 0), (0,±1), (±1,±1) in some

detail. We note that spinorial modes that naturally come out of this analysis do

not comprise independent degrees of freedom in the effective theory, but they

may be used to find the "square roots" of the equivariant gauge field modes.

Moreover, stability of our vacuum solutions is addressed by showing that they

may be interpreted as mixed states with non-zero von Neumann entropy. Finally,

we show that S2 Int
F ×S2 Int

F identifies with the bosonic part of the product of two

fuzzy superspheres with OSP (2, 2)×OSP (2, 2) supersymmetry and discuss how

this comes about. Our results applies just as well to matrix models with the

same type of vacua and methods are quite versatile to investigate other fuzzy

vacuum configurations, which may be of physical interest.

In chapter 5, we explore the low energy structure of a U(3) gauge theory over

spaces with fuzzy sphere(s) as extra dimensions. In particular, we determine the

equivariant parametrization of the gauge fields, which transform either invari-
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antly or as vectors under the combined action of SU(2) rotations of the fuzzy

spheres and those U(3) gauge transformations generated by SU(2) ⊂ U(3) car-

rying the spin 1 irreducible representation of SU(2). The cases of a single fuzzy

sphere S2
F and a particular direct sum of concentric fuzzy spheres, S2 Int

F , cover-

ing the monopole bundle sectors with windings ±1 are treated in full and the

low energy degrees of freedom for the gauge fields are obtained. Employing the

parametrizations of the fields in the former case, we determine a low energy

action by tracing over the fuzzy sphere and show that the emerging model is

abelian Higgs type with U(1)×U(1) gauge symmetry and possesses vortex solu-

tions on R2, which we discuss in some detail. Generalization of our formulation

to the equivariant parametrization of gauge fields in U(n) theories is also briefly

addressed.

In chapter 6, we formulate Quantum Hall Effects (QHEs) on the complex Grass-

mann manifoldsGr2(CN) which are generalizations of complex projective spaces

CPN . We set up the Landau problem in Gr2(CN) and solve it using group theo-

retical techniques and provide the energy spectrum and the eigenstates in terms

of the SU(N) Wigner D-functions for charged particles on Gr2(CN) under the

influence of abelian and non-abelian background magnetic monopoles or a com-

bination of these thereof. In particular, for the simplest case of Gr2(C4) we

explicitly write down the U(1) background gauge field as well as the single and

many-particle eigenstates by introducing the Plücker coordinates and show by

calculating the two-point correlation function that the Lowest Landau Level

(LLL) at filling factor ν = 1 forms an incompressible fluid. Our results are

in agreement with the previous results in the literature for QHE on CPN [29]

and generalize them to all Gr2(CN) in a suitable manner. At first sight, the

discussions in this subject may look irrelevant from the rest of the thesis. How-

ever, there is an interesting connection between QHE and fuzzy spaces. The

Landau problem on two- and higher-dimensional spaces has close connections

to the physics of strings and D-branes in the matrix theory, and to fuzzy spaces

such as S2
F and CPN

F . These connections were studied in the literature [30–32]

where it was shown that construction of fuzzy spaces using geometric quantiza-

tion methods yields that Hilbert spaces HN of wave functions are holomorphic
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sections of U(1) bundles over the commutative parent manifold, and the matrix

algebras MatN of linear transformations on HN ’s form the fuzzy spaces [32].

It has been observed that the LLL in Landau problems over S2, CPN in U(1)

backgrounds define Hilbert spaces that are identical to HN as they are also holo-

morphic sections of U(1) bundles over these spaces. Similar structural relations

between S4
F and the QHE on S4 also exist [32]. Building upon this connection,

observables of the QHE problem are also contemplated as linear transformations

in MatN acting on HN . From this angle, we see that there appears almost an

immediate connection of our findings for the QHE problem on Gr2(CN) to fuzzy

Grassmann spaces, which are discussed in some detail in the literature [33–35].
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CHAPTER 2

FUZZY SPHERE

In this chapter, we introduce the basic formalism of noncommmutative spaces,

in particular the noncommmutative or fuzzy two sphere, S2
F , and S2

F × S2
F and

subsequently we give some essential features of the formulations of classical

field theories over S2
F and S2

F × S2
F . Our discussion does not attempt to give

a full review of the vast literature on the subject but focuses on a number

of selected topics which provide the necessary background required to put the

developments of ensuing chapters on a broader perspective, and make the thesis

as self-contained as possible. There are several approaches to obtain the fuzzy

spheres S2
F , the product of two fuzzy spheres S2

F × S2
F , their supersymmetric

generalization [36–44] and fuzzy complex projective space CPN [45, 46]. Here,

we will follow the practical and the transparent approach given in [38,41] which

is essentially based on quantizing the chain of manifolds such as C2 → S3 → S2

to obtain the fuzzy sphere S2
F , or CN+1 → S2N+1 → CPN to obtain CPN

F .

Another, somewhat more rigorous approach is given by the canonical (Dirac)

quantization of Lagrangians composed of appropriate Wess-Zumino terms to

achieve the desired form of the quantization of S2 and several other compact

manifolds [37], which fall into the broad class of coadjoint orbits of compact Lie

groups.

In order to make this chapter self-contained, before discussing the quantization

of S2, we give a review of some basic properties of commutative manifolds S3,

S2 and the descent chain C2 → S3 → S2 which will be necessary for the quan-

tization process. In particular, we explain how S3 form a fiber bundle of S2
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with a U(1) fiber, i.e. the first Hopf fibration. Harmonic expansion of functions

over S2 is recalled and a simple description of a scalar field theory over S2 is

also provided in this chapter. Our goal is to give the relevant aspects of field

theory on S2, once the scalar field theory on the fuzzy sphere S2
F is constructed,

this will allow us to observe its continuum limit in a transparent manner. We

also describe the topologically nontrivial configurations of scalar fields over S2

as sections of complex line bundles over S2 with non-vanishing winding numbers

following the exposition given in [38], which is amenable to obtain their fuzzy

version. A discussion on the latter is also provided in the present chapter.

For quantization, our departure point is to obtain the noncommutative complex

plane C2 by replacing its coordinates with the annihilation-creation operators.

Making use of the first Hopf fibration provides the construction of noncomm-

mutative three sphere, S3
F and the noncommmutative two sphere, S2

F . We focus

our attention on the latter and discuss its structure and properties in consider-

able detail. Subsequently, we investigate the formulation of scalar field theories

on S2
F [37] including monopole sectors with nonvanishing winding numbers [38].

Finally, we turn our attention to gauge theories on S2
F . Using the matrix model

approach of [47], we first construct the U(1) gauge theory on S2
F and provide

also a brief description of U(n) gauge theories over S2
F . Monopole sectors of

these gauge theories are also discussed in some detail.

2.1 Hopf Fibration

First Hopf fibration describes the three sphere S3 as a fiber bundle over the

base space S2 via the U(1) fibers. It is possible to say that every point on S2

corresponds to a circle on S3. In order to explain this relation, let us start with

the embedding of S3 in R4 as

ω2
1 + ω2

2 + ω2
3 + ω2

4 = 1 . (2.1)

Using the coordinate transformation,

x1 = 2(ω1ω3 + ω2ω4) , x2 = 2(ω2ω3 − ω1ω4) , x3 = ω2
1 + ω2

2 − ω2
3 − ω2

4 ,

(2.2)
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we can obtain the coordinates of S2 in R3 since

x2
1 + x2

2 + x2
3 = 1 . (2.3)

There is a simple way to describe S2 using the coordinates of a two-dimensional

complex plane C2 [41]. This description will be very useful to obtain the non-

commutative version of S3 and S2. Let us denote by z ≡ (z1 , z2) the coordinates

of C2 and remove the origin 0 ≡ (0 , 0), i.e. consider C2\{0} so that we are able

to define the coordinates of S3 in the following form

ξi :=
zi
|z|

, i = 1, 2 , |z| =
√
|z1|2 + |z2|2 , (2.4)

since z 6= 0. It can be easily seen that these coordinates are normalized to 1

ξ†ξ = 1 , ξ =

 ξ1

ξ2

 . (2.5)

Now, we are ready to give the projection map π from S3 to the base manifold

S2 as

π : S3 → S2 , ξi → xi(ξ) = ξ†τiξ , (2.6)

where τi are the Pauli matrices. This map can be written explicitly as follows

x1 = ξ∗1ξ2 + ξ∗2ξ1 ,

x2 = −iξ∗1ξ2 + iξ∗2ξ1 ,

x3 = ξ∗1ξ1 − ξ∗2ξ2 . (2.7)

We observe that the coordinates xi are left invariant under the U(1) action

ξ → eiθξ and also satisfy

~x(ξ)∗ = ~x(ξ), ~x(ξ) · ~x(ξ) = 1 . (2.8)

Hence, we have obtained the first Hopf fibration which may be denoted as

U(1)→ S3 → S2 . (2.9)

Now, we would like to focus on S2. In the next section, we will present some

basic geometrical properties of S2 and also discuss the Harmonic expansion of

functions on it.
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2.2 Two-sphere

Two-sphere S2 is a two-dimensional compact, real manifold which may be simply

described by embedding it into the three dimensional Euclidean space R3 by

imposing the constraint

x2
1 + x2

2 + x2
3 = r2 , (2.10)

where r is the radius of S2. These coordinates may be given in terms of spherical

angles θ , ϕ as follows

x1 = r cosϕ sin θ , x2 = r sinϕ sin θ , x3 = r cos θ , (2.11)

where 0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2π.

The coordinates xi fulfilling (2.10) generate an infinite dimensional commutative

algebra A of smooth functions on the two-sphere with the standard point-wise

product (fg)(xi) = f(xi)g(xi). Any continuous function f on S2 can be ex-

panded in terms of the coordinate functions xi as

f(~x) =
∑
i1,···in

ai1,···inxi1 · · ·xin . (2.12)

It is possible to express the expansion of functions in terms of the spherical

harmonics, Yjm(θ , φ) as

f(~x) =
∞∑
j=0

j∑
m=−j

ajmYjm(~x) , (2.13)

where the spherical harmonics fulfill the following orthogonality relation∫
dΩ

4π
Yjm(~x)Y ∗j′m′(~x) = δj′jδm′m , (2.14)

where dΩ = sin θ dθ dϕ is the solid angle. The derivations on S2 are given by

the “angular momentum” operator Li = −i(~x ∧∇)i = −iεijkxk∂k, which satisfy

the SU(2) commutation relations

[Li, Lj] = iεijkLk (2.15)

It is known that the eigenvectors of the square of “orbital angular momentum”,

L2, and its third component, L3, are the spherical harmonics with the following
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eigenvalue equations

L2Yjm(~x) = j(j + 1)Yjm(~x) , j = 0, 1, · · ·

L3Yjm(~x) = mYjm(~x) , m = −j, · · · , j . (2.16)

2.2.1 Scalar Fields on S2

Using the properties of functions on S2 given in the previous section, we can

examine a few basic properties of a simple scalar field theory on S2. Let us

construct the complex scalar fields on S2. For a massless complex scalar fields

on S2, it is possible to write the following action by using the Laplacian −L2 =

−(−i~x ∧ ~∇)2 on S2

S =

∫
dΩ

4π
φ∗L2φ . (2.17)

For a real scalar field, we need to impose the reality condition φ∗ = φ. As we

mentioned earlier in (2.13), we can expand the complex scalar fields on S2 in

terms of spherical harmonics as follows

φ =
∞∑
j=0

j∑
m=−j

φjmYjm(~x) . (2.18)

Using (2.14) and (2.16), the action (2.17) becomes

S =

∫
dΩ

4π

∑
jm

∑
kn

φ∗jmφknY
∗
jmL

2Ykn =
∑
jm

∑
kn

φ∗jmφknk(k + 1)

∫
dΩ

4π
Y ∗jmYkn

=
∞∑
j=0

j∑
m=−j

j(j + 1)φ∗jmφjm . (2.19)

We note that it is possible to add a potential term in the form of V (φ∗φ) in the

action (2.17). The mode expansion in (2.19) is given here for future comparison

that will be derived on S2
F later on subsection 2.5. It is certainly possible to

study quantum field theory of scalar, spinor and gauge fields on S2. For the

developments along these lines existing literature may be consulted [48].

2.2.2 Monopole Sectors

In this subsection, we would like to discuss some features of the topologically

nontrivial configurations of a complex scalar field on the two sphere. Following
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the exposition given in [38], we will demonstrate how complex line bundles char-

acterized by a winding number can be given a form amenable to a quantization

to obtain their counterparts over the fuzzy sphere S2
F .

Let us start with the stereographic coordinates in order to describe S2 in R3.

It is well-known that all points on S2, say US, except the north pole, can be

defined by two coordinates (X, Y ) where

(X, Y ) = (
x

1− z
,

y

1− z
) , (2.20)

and similarly all points on S2, say UN , except the south pole, are well-defined

by (U, V )

(U, V ) = (
x

1 + z
,− y

1 + z
) . (2.21)

Using the coordinates (θ, ϕ), they may be written as

(X, Y ) = (cot
θ

2
cosϕ , cot

θ

2
sinϕ) , (U, V ) = (tan

θ

2
cosϕ ,− tan

θ

2
sinϕ) .

(2.22)

Defining two complex number Z = X + iY and W = U + iV , we obtain the

following inhomogeneous coordinates of S2 on US and UN respectively

Z = cot
θ

2
eiϕ , W = tan

θ

2
e−iϕ . (2.23)

We may as well introduce the homogeneous coordinates on US, these may be

given as

χ1 = sin
θ

2
, χ2 = cos

θ

2
eiϕ , (2.24)

while on UN , we may take

χ′1 = sin
θ

2
e−iϕ , χ′2 = cos

θ

2
, (2.25)

Using these coordinate systems, we can expand the complex scalar fields on US
as

φ(χ, χ∗) =
∑

cm1m2n1n2χ
∗m1
1 χ∗m2

2 χn1
1 χ

n2
2 , (2.26)

whereas on UN as

φ(χ′, χ′∗) =
∑

c′m1m2n1n2
χ′∗m1

1 χ′∗m2
2 χ′n1

1 χ′n2
2 . (2.27)
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It is easily seen that on equator (θ = π
2
), the expansions (2.26) and (2.27)

include the phases ei(−m2+n2)ϕ and ei(m1−n1)ϕ, respectively and, therefore the

complex scalars are related by

φ′|θ=π
2

= ei(m1+m2−n1−n2)ϕφ|θ=π
2

(2.28)

Let us define the number k = 1
2
(m1 +m2−n1−n2), 2k ∈ Z. Let us take k fixed

and consider the expansion of φ , φ′

φ = φ(χ, χ∗) =
∑

cm1m2n1n2χ
∗m1
1 χ∗m2

2 χn1
1 χ

n2
2 , (2.29)

φ′ = φ(χ′, χ′∗) =
∑

cm1m2n1n2χ
′∗m1
1 χ′∗m2

2 χ′n1
1 χ′n2

2 , (2.30)

with the same coefficients. Then we see that the scalar fields φ and φ′ form the

local sections of a U(1) line bundle which we denote by G̃k. For k = 0, the scalar

fields φ and φ′ are smooth functions in the algebra A ≡ C∞(S2) = G̃0 while for

k 6= 0, they form the modules over the algebra A, i.e. A-modules. This means

that G̃0G̃k = G̃kG̃0 = G̃k. On UN ∩ US, we have the following transformation

between φ and φ′

φ′ = eiκϕφ , (2.31)

where κ = 2k ∈ Z is the topological winding number.

The gauge transformation in (2.31) enables us to define the covariant derivatives

on US and UN , respectively as

Dµ = i∂µ + Aµ , D′µ = i∂′µ + A′µ , (2.32)

where Aµ and A′µ are the topological gauge fields, whose explicitly form may be

defined in terms of χ and χ′

Aµ = iκχ†∂µχ , A′µ = iκχ′†∂′µχ
′ . (2.33)

We know that the transformation property of the covariant derivative should be

same with complex scalar fields in order to obtain gauge invariant Lagrangian,

i.e it must be of the form D′µφ
′ = eiκϕDµφ. Making use of this fact, we can

construct the relation between Aµ and A′µ as

A′µ = Aµ − ig−1∂µg , g = eiκϕ . (2.34)
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It is important to note that the gauge fields given in (2.33) steam from the

nontrivial topological structure of complex scalar fields on S2, can be called

the topological κ-monopole gauge field. It is the same monopole gauge field

encountered in discussion of Berry’s phase and it has noting to do with the

dynamical gauge fields.

The action for the complex scalar fields on S2 with topological κ-monopole gauge

field can be written as ∫
dΩ

4π

(
φ∗D2

µφ+ V (φ∗φ)
)
, (2.35)

for a suitably given potential V (φ∗φ) satisfying the standard field theoretical

requirements such as being bounded from below.

Now, we would like to describe this topological nontrivial field configuration

without making any specific coordinate choice. It can be easily seen that the

coordinate system (2.24) and (2.25) correspond to the coordinates of S3 in the

Hopf fibration map (2.7). To be more precise, setting ξ = χ or ξ = χ′ in the map

(2.7), we can obtain x1 = cosϕ sin θ , x2 = sinϕ sin θ and x3 = cos θ. Hence, we

can write those complex scalar fields φ in S3 with k = 1
2
(m1 + m2 − n1 − n2)

fixed as

φ(ξ, ξ∗) =
∑

cm1m2n1n2ξ
∗m1
1 ξ∗m2

2 ξn1
1 ξn2

2 . (2.36)

This corresponds to the set functions denoted by Gk, 2k ∈ Z. As we mentioned

before, under the U(1) action, the coordinates of S2 in (2.7) does not change.

Under U(1) action

ξ → e
i
2
ψξ , ξ† → e−

i
2
ψξ† (2.37)

we see that φ ∈ Gk transforms as

φ→ e−ikψφ . (2.38)

Let us introduce the operator K0 in the form

K0 =
1

2
(ξ∗α∂ξ∗α − ξα∂ξα) . (2.39)
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It can be easily seen that φ ∈ Gk are the eigenvectors of this operator with the

eigenvalue k;

K0φ =
1

2
(ξ∗α∂ξ∗α − ξα∂ξα)φ

=
1

2
(ξ∗1∂ξ∗1 + ξ∗2∂ξ∗2 − ξ1∂ξ1 − ξ2∂ξ2)

∑
cm1m2n1n2ξ

∗m1
1 ξ∗m2

2 ξn1
1 ξn2

2

=
1

2
(m1 +m2 − n1 − n2)φ = kφ . (2.40)

Here, we again stress that when k = 0, the complex scalar fields are just the

scalar fields given in section 2.2.1 with the commutative algebra A = C∞(S2),

while k 6= 0, they are the element of A-bimodules, Gk. Furthermore, we see that

K0φ
∗ = −kφ∗ for φ ∈ Gk, therefore φ∗ ∈ G∗k = G−k and also that GkGl ⊂ Gk+l.

It is also possible to define the operators mapping Gk onto itself as follows

Ji =
i

2

(
ξ∗ατ

i ∗
αβ∂ξ∗β − ξατ

i
αβ∂ξβ

)
. (2.41)

They form a differential realization of SU(2) generators (in S3 coordinates)

satisfying the commutation relation [Ji, Jj] = εijkJk.

Under the action of the generators Ji, ξ transform as spinors

Jiξβ =
1

2i
τ iαβξα , Jiξ

∗
β = − 1

2i
τ iαβξ

∗
α (2.42)

and xi transform as vectors in R3. It can be easily seen that x2
i = r2 is an

invariant function under the action of Ji as expected. We can also define the

operators which map Gk to Gk+1 and Gk to Gk−1, respectively as

K+φ = iεαβξ
∗
α(∂ξβφ) , K−φ = iεαβ(∂ξ∗αφ)ξβ , (2.43)

satisfying

[K0, K±] = ±K± , [K+, K−] = 2K0 . (2.44)

Let us explicitly show the first relation in (2.43)

K+φ = (iξ∗1∂ξ2 − iξ∗2∂ξ1)
∑

cm1m2n1n2ξ
∗m1
1 ξ∗m2

2 ξn1
1 ξn2

2

=
∑

cm1m2n1n2

(
in2ξ

∗m1+1
1 ξ∗m2

2 ξn1
1 ξn2−1

2 − in1ξ
∗m1
1 ξ∗m2+1

2 ξn1−1
1 ξn2

2

)
:= i(n2φ

′ − n1φ
′′) , (2.45)
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where φ′ and φ′′ have the topological number k+ 1. We note that although K0,

K± commute with the operators Ji, they depend on each other by the following

relation

J2
i = K2

0 +
1

2
(K+K− +K−K+) . (2.46)

Now, we are ready to write the action for the complex scalar field with the

topological monopole charge κ = 2k in terms of the operators K+ and K− as

follows∫
dΩ

4π

(
φ∗

1

2
(K+K− +K−K+)φ+ V (φ∗φ)

)
=

∫
dΩ

4π

(
φ∗(J2 − k2)φ+ V (φ∗φ)

)
,

(2.47)

where φ ∈ Gk and we have used (2.40) and (2.46) to get the second line in (2.47).

It can be easily seen that for k = 0, we obtain the action given in section (2.2.1).

The noncommmutative version of this complex line bundles will be given in

section (2.5.1).

2.3 Noncommutative Version of the Hopf Fibration

So far, we have given the necessary information which prepared us to take up

task of describing the noncommutative or the fuzzy sphere S2
F . In this section,

we construct the noncommutative version of the first Hopf fibration [41] by using

the quantization of C2. The quantized version of the first Hopf fibration enables

us to construct the noncommmutative three sphere, S3
F , and subsequently the

noncommmutative two sphere, S2
F , by exploring descent chain C2 → S3 → S2

given in section 2.1.

Let us first quantize C2. On C2, the Poisson bracket of two functions may be

defined as

{A,B} =
∑
j

∂A

∂zj

∂B

∂z̄j
− ∂A

∂z̄j

∂B

∂zj
, j = (1, 2) (2.48)

where

{zi, zj} = 0 , {z̄i, z̄j} = 0 , {zi, z̄j} = δij . (2.49)
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We want to quantize the manifold C2 by replacing the Poisson bracket with an

appropriate commutator {Â, B̂} = ÂB̂ − B̂Â of operators Â , B̂ acting on an

infinite dimensional Hilbert space which may be conceived as the two-particle

Fock space. This is equivalent to take the coordinates zi as harmonic oscilla-

tor annihilation operators Ai and z∗i as their adjoint A†i . Then, we obtain the

two-dimensional noncommmutative complex plane C2
θ with the commutation

relations

[Ai, Aj] = 0 , [A†i , A
†
j] = 0 , [Ai, A

†
j] = θδij , (2.50)

where we have introduced the noncommmutative parameter θ with dimension

length squared. Taking θ → 0, we obtain the classical manifold C2. With the

scaling Ai → Ai√
θ
, we can express non-trivial commutation relation simply as

[Ai, A
†
j] = δij. With the same method, we can achieve the quantization of the

N + 1-dimensional complex plane CN+1 for any N using suitable number of

pair of annihilation-creation operators. The noncommmutative complex space

CN+1
θ can be employed to obtain the fuzzy version of complex projective plane

CPN [41]. We will explain this relation later.

Now, using the definition (2.4) and these annihilation-creation operators, we can

obtain the noncommmutative version of S3 as

ξi =
zi
|z|
→ ξ̂i = Ai

1√
N̂

=
1√
N̂ + 1

Ai ,

ξ∗i =
z∗i
|z|
→ ξ̂∗i =

1√
N̂
A†i = A†i

1√
N̂ + 1

, (2.51)

where N̂ is the number operator: N̂ =
∑
A†jAj with the condition N̂ 6= 0. This

condition means that we omit the vacuum state from Hilbert space of states

which is like removing the origin from C2 in section (2.1). To be more precise,

S3
F is defined on the Hilbert space which is the orthogonal complement of the

vacuum in the Fock space. We note that this construction of S3
F does not yield

a truncated finite dimensional Hilbert space and it is ill-defined as acting on

any state in this Hilbert space with some suitable power of the operator Ai 1√
N̂
,

the vacuum state will eventually be created. S3
F may be viewed as an auxiliary

space in the construction of the fuzzy two sphere S2
F and this is the reason why

it is introduced here. Let us also note that this space has nothing to do with
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the fuzzy three sphere construction given in [49].

Making use of the Hopf fibration map given in (2.7), the “coordinates” of the

fuzzy sphere can be given by the operators

xi(ξ)→ x̂i =
1√
N̂
A†τiA

1√
N̂

=
1

N̂
A†τiA , N̂ 6= 0 , A =

 A1

A2

 . (2.52)

We investigate the properties of this noncommutative manifold in the next sec-

tion.

2.4 Fuzzy Sphere

In the previous subsection, we have shown that we obtain the noncommmuta-

tive two sphere S2
F by replacing the commutative coordinates xi of S2 by the

noncommmutative coordinates x̂i and expressing them in terms of annihilation

creation operators as

x̂i =
1

N̂
A†τiA , N̂ 6= 0 (2.53)

We point out that these coordinates commute with the number operator

[x̂i, N̂ ] = 0 , (2.54)

and this means that x̂i can be restricted to the subspace Hn of the Fock space

for N̂ = n 6= 0. Hn is a (n+ 1)-dimensional subspace of the Fock space which is

spanned by the following orthogonal vectors

(A†1)
n1

√
n1!

(A†2)
n2

√
n2!
|0 , 0〉 ≡ |n1 , n2〉 , n1 + n2 = n 6= 0 . (2.55)

The algebra of (n + 1)× (n + 1) matrices, Mat(n + 1) is completely generated

by the polynomials in x̂i restricted to the subspace Hn.

We know that there exist a connection between the algebra of angular momen-

tum and two independent harmonic oscillators, namely this is the Schwinger

construction [50]. Consider the operators Li defined in the form

Li =
1

2
A†τiA , A =

 A1

A2

 (2.56)
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where Aα and A†α fulfill (2.50). Then it is straightforward to verify that

[Li, Lj] = iεijkLk , (2.57)

which is the commutation relation of angular momentum operator familiar to us

from quantum mechanics. Li generate the su(2) Lie algebra and also the SU(2)

Lie group. Here, we can see that annihilation and creation operators carry the

spin 1
2
IRR of SU(2) and thus they transform as spinors under the action of

SU(2)

[Li, Aα] = −1

2
(τi)αβAβ , [Li, A

†
α] =

1

2
(τi)βαA

†
β . (2.58)

This means that by the following n-fold symmetric product of these spinors

1

2
⊗s · · · ⊗s

1

2︸ ︷︷ ︸
n−fold

=
n

2
, (2.59)

we can obtain the angular momentum ` = n
2
irreducible representation of SU(2)

with the Casimir

L2|n1 , n2〉 =
n

2
(
n

2
+ 1)|n1 , n2〉 . (2.60)

Using (2.52) and (2.56), we have the relation between the coordinates of S2
F and

the generators of SU(2) as follows

x̂i|n1 , n2〉 =
2

n
Li|n1 , n2〉 , (2.61)

Hence, we obtain

[x̂i, x̂j] =
2

n
iεijkx̂k ,

∑
i

x̂2
i = (1 +

2

n
) , (2.62)

where it is understood that these relations are given on the Hilbert space Hn.

As n→∞, we see from (2.62) that two-sphere S2 is recovered.

We note that with the scaling x̂i → x̂i√
1+ 2

n

and recalling that n = 2`, (2.61) and

(2.62) can be rewritten in the following form

x̂i =
Li√

`(`+ 1)
, [x̂i, x̂j] =

i√
`(`+ 1)

εabcx̂j ,
∑
i

x̂2
i = 1 . (2.63)

These relations summarize the description of the fuzzy sphere and they will be

frequently used throughout this thesis. If we need, we can make the scaling
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x̂′i = Rx̂i to introduce the radius R for S2
F and work with the dimensionful

quantities.

Any element m ∈ Mat(2` + 1) is an element of the fuzzy sphere S2
F and it is

finitely generated by x̂i. We may express this fact by writing

m =
∑

ci1,··· ,ik x̂i1 · · · , x̂ik . (2.64)

A scalar product S2
F can be defined as

(m1,m2) = Tr(m†1m2) =
1

n+ 1
Tr(m†1m2) , mi ∈Mat(n+ 1) , (2.65)

where Tr = 1
n+1

Tr is the normalized trace. Commutative limit of this product

may be shown to correspond to integration over S2. In particular, we see that

Tr1 = 1 corresponding to
∫

dΩ
4π

= 1.

Left acting and right acting linear operators may be defined on Mat(2` + 1).

Let us consider the two linear operator αL and αR. We can write

αLm = αm , αRm = mα , αL,R ,m ∈Mat(2`+ 1) . (2.66)

It is easy to see that αL and αR satisfy

(αβ)L = αLβL , (αβ)R = βRαR , [αL, βR] = 0 for any α , β ∈Mat(2`+ 1) .

(2.67)

Here, we have two commuting matrix algebras MatL(2`+ 1) and MatR(2`+ 1)

generated by the left acting and right acting operators. As we mentioned earlier,

the matrix algebraMat(2`+1) is generated by the coordinates x̂i which contain

the terms A†iAj with the domain Hn. Hence, the algebras MatL,R(2` + 1) are

generated by the operators (A†iAj)
L,R.

We may as well write

ALi m = Aim, A†i
L
m = A†im, ARi = mAi , ARi

†
= mA†i . (2.68)

However, the operators ALi , ARi take Hn to Hn−1 while AL†i , AR†i take Hn to

Hn+1. Such operators play a role in the description of fiber bundles over S2
F as

we will see in subsection 2.5.1.
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Now, we are ready to define the derivations on S2
F . It is known that since su(2)

act on Mat(2`+ 1) by the adjoint action, the derivations on S2
F can be defined

as

Lim := adLim = (LLi − LRi )m = [Li,m] . (2.69)

This provides a map from Mat(2` + 1) onto itself and it satisfies the Leibniz

rule:

Li(m1m2) = (Lim1)m2 +m1(Lim2) , (2.70)

which means that it is indeed a derivation over the algebraMat(2`+1). It is also

seen that the action of the operator Li on the identity matrix 1 is zero. These

facts are analogous to the chain rule in differentiation and the annihilation of

constant functions by the continuum orbital angular momentum operator. From

these facts, we can conjecture that the operator Li is the fuzzy sphere “orbital

angular momentum” which reduces to the usual derivative operator Li on S2 as

`→∞;

Li → Li = −i(~x(ξ) ∧ ~∇)i ≡ −iεijkx(ξ)j
∂

∂x(ξ)k
. (2.71)

To make this correspondence precise, we determine the spectrum of the orbital

angular momentum operator on S2
F . Equation in (2.69) indicates that the oper-

ator Li includes both the left and the right SU(2) actions on Mat(2` + 1), LLi
and LRi each carry the IRR ` of SU(2). This is readily seen from the fact that

LLi L
L
i = `(`+ 1) , LRi L

R
i = `(`+ 1) , (2.72)

on Mat(2` + 1). Consequently its representation content is given by tensor

product

`⊗ ` ≡ 0⊕ 1 · · · ⊕ 2` . (2.73)

Spectrum of L2 is then given as

j(j + 1) , j = 0, 1 · · · , 2` . (2.74)

This is exactly the spectrum of L2, but now truncated at j = 2` and corresponds

to it in the limit `→∞. Thus, it is justified to have Li as the “orbital angular
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momentum” over S2
F . What are the corresponding eigenvectors of L2 and L3 in

the fuzzy case. These are given by so called the polarization tensors Tjm(`) , j =

0, · · · , 2` ,m = −j, · · · , j which are (2` + 1) × (2` + 1) matrices [51]. These

matrices form a basis inMat(2`+1) since there are (2`+1)2 linearly independent

Tjm(`)s. This can easily be seen from the fact that since for a given j, there are

2j + 1 different values for m and therefore there are
∑2`

j=0(2j + 1) = (2` + 1)2,

independent degrees of freedom in Tjm(`). These tensors have the following

eigenvalue equations and the orthogonality relation

L2Tjm = j(j + 1)Tjm , L3Tjm = [L3, Tjm] = mTjm , (Tj′m′ , Tjm) = δj′jδm′m .

(2.75)

Tjm(`) carry the spin ` IRR of SU(2) just as their continuum counter parts Yjm.

Under SU(2) rotations, Tjm(`) transform as

T̃jm′(`) = D(g)Tjm′(`)(D(g))−1 =
∑
m

D(g)jmm′Tjm(`) , (2.76)

where D(g)jmm′ are Wigner functions for SU(2), i.e. elements of the SU(2)

rotation matrices.

We note that S2
F preserves the rotational symmetry of two-sphere S2. In other

words, it is invariant under the SU(2) action. This fact can be easily seen

by the transformation property of commutation relation of the coordinates on

S2
F . A group element g of SU(2) act on x̂i adjointly: Adx̂i = gx̂ig

−1 and the

commutation relation in (2.63) becomes

[gx̂ig
−1, gx̂jg

−1] =
i√

`(`+ 1)
εabcgx̂kg

−1 , (2.77)

which means that rotational symmetry is preserved by S2
F . As S2

F is a truncation

of S2 with finite numbers of degrees of freedom and it preserves the rotational

symmetry of S2, it appears to be well suited setting for investigating classical

and quantum field theories. This is the task we take up next.

2.5 Scalar Fields on S2
F

Our aim is to adopt the formulations of scalar fields on S2 given in section 2.2.1

to the fuzzy case. Let us first expand the complex scalar field Φ ∈Mat(2`+ 1)
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in terms of the polarization tensors as

Φ =
2∑̀
j=0

j∑
m=−j

ΦjmTjm(`) . (2.78)

Euclidean action for a massless field on S2
F may be written as

S = (LiΦ,LiΦ) = (Φ,L2Φ) =
1

(2`+ 1)
Tr(Φ†L2Φ) . (2.79)

Using the expansion (2.78), this action becomes

S = Tr(Φ†L2Φ) =
∑
jm

∑
kn

k(k + 1)Tr(T †jmTkn)Φ†jmΦkn

=
2∑̀
j=0

j∑
m=−j

j(j + 1)|Φjm|2 . (2.80)

This action has finite degrees of freedom and approaches to (2.19) in the limit

`→∞. It is possible to add the potential term consisting of polynomials P (Φ)

of Φ in this action

V (Φ) = (1, P (Φ)) =
1

(2`+ 1)
Tr(P (Φ)) . (2.81)

We note that the action (2.79) with or without the potential term V (Φ) is invari-

ant under SU(2) transformations. This can be checked both for finite SU(2)

transformation, taking Φ → g−1Φg , g ∈ SU(2) or by taking an infinitesimal

SU(2) transformation Φ→ Φ + iεi[Li,Φ], using Adg = eiεiadLi ≈ 1 + iεiadLi for

infinitesimal εi. It is instructive to check this for the infinitesimal case. Under

the infinitesimal action Φ→ Φ + iεi[Li,Φ], the action (2.79) becomes

S = Tr
(

(Φ + iεi[Li,Φ])† L2 (Φ + iεi[Li,Φ])
)
,

= Tr
(
Φ†L2Φ + iεi[Li,Φ

†]L2Φ + iεiΦ
†L2[Li,Φ]

)
+O(ε2i ) ,

= Tr
(

Φ†L2Φ + iεi
(
Φ†L2LiΦ + Φ†LiΦL

2 − 2Φ†LjLiΦLj − Φ†L2ΦLi

− Φ†ΦLiL
2 + 2Φ†LjΦLiLj + LiΦ

†(L2Φ + ΦL2 − 2LjΦLj)

− Φ†Li(L
2Φ + ΦL2 − 2LjΦLj)

))
,

= Tr
(
Φ†L2Φ

)
(2.82)

For finite SU(2) transformation, the invariance is already observed due to cyclic

property of the trace.
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2.5.1 Monopole Sectors

In subsection 2.2.2 we have constructed the topologically nontrivial complex line

bundles over S2. Here, our goal is to carry that construction to the fuzzy setting

and obtain the corresponding quantized version of line bundles over S2
F follow-

ing the treatment given in [38]. As explained in section 2.3, in the quantized

version of first Hopf fibration, the coordinates on S3
F may be defined in terms of

annihilation-creation operator as follows

ξ̂i = Ai
1√
N̂
, ξ̂∗i =

1√
N̂
A†i . (2.83)

Consider the monomial

ξ̂∗m1
1 ξ̂∗m2

2 ξ̂n1
1 ξ̂n2

2 (2.84)

where k = 1
2
(m1 + m2 − n1 − n2) is fixed. Let us denote the linear space

which is spanned by monomials of this form as Ĝk. For k = 0, it collapses to

the noncommutative algebra Ĝ0 = Â generated by the operators Li in (2.56)

satisfying (2.57). For nonzero k, Ĝk form the bimodules over Â and the operator

Li act adjointly on the elements of this space as Ji· := [Li, ·]. The quantization

of Gk to Ĝk is evident from these facts.

Now, just like the commutative case, the complex scalar fields are the elements

of Â-bimodules, Ĝk, in the form

Φ =
∑

am1m2n1n2 ξ̂
∗m1
1 ξ̂∗m2

2 ξ̂n1
1 ξ̂n2

2 (2.85)

with k = 1
2
(m1+m2−n1−n2) fixed. Let us definem = m1+m2 , n = n1+n2 and

k = 1
2
(m−n). As we mentioned earlier, (n+ 1)-dimensional subspace Hn of the

Fock space for the eigenvalue of the number operator n 6= 0 can be spanned by

the annihilation-creation operators explicitly given in (2.55). Making use of this

information, it can be seen that the complex scalars in (2.85) are the operators

which map Hn to Hm since it contains n annihilation and m creation operators.

Precisely, they are the (m+ 1)× (n+ 1) matrices.

Let us denote this linear mapping space as Ĝmn instead of Ĝk. Ĝnn = Ĝ0 is the

(n+ 1)× (n+ 1) matrix algebra with the restriction n 6= 0. Hence, for this case,
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the complex scalar fields Φ are (n + 1)× (n + 1) matrices with n = 2` given in

the previous section. On the other hand, Ĝmn forms a left module over Ĝmm and

a right module over Ĝnn. The su(2) rotation operators act on Φ as

JjΦ = Lmj Φ− ΦLnj , (2.86)

where Lmj are (m + 1) × (m + 1)-dimensional su(2) generators whereas Lnj are

the su(2) generators with (n+ 1)× (n+ 1) dimension. su(2) IRR content of Jj
can be seen from the following tensor product

m

2
⊗ n

2
≡ |k| ⊕ (|k|+ 1) · · · ⊕ J , (2.87)

where k = 1
2
(m−n) and J = 1

2
(m+n). The eigenvectors of the operator J2 and

J3 can be given by the generalized harmonics Φj
Jks with the eigenvalue equations

J2Φj
Jks = j(j + 1)Φj

Jks , J3Φj
Jks = sΦj

Jks ,

j = |k| , |k|+ 1 , · · · , s = −j , · · · j , (2.88)

where there are (m+ 1)(n+ 1) linearly independent Φj
Jks. Equation (2.88) may

be compared with (2.75). Any element of Ĝmn can be expanded in terms of the

operators Φj
Jks.

Let us introduce the operator that gives the eigenvalue k = 1
2
(m− n) under the

action on the scalar fields Φ ∈ Ĝmn as

K0Φ =
1

2
[N̂ ,Φ] , N̂ = A†iAi . (2.89)

In order to avoid any confusion, let us note that N̂ |n1 , n2〉 = n|n1 , n2〉 and
N̂ |m1 ,m2〉 = m|m1 ,m2〉. Equation (2.89) can be checked as

K0Φ =
1

2
[N̂ ,Φ] =

1

2
(N̂Φ− ΦN̂)

=
1

2

(
(A†1A1 + A†2A2)

∑
am1m2n1n2 ξ̂

∗m1
1 ξ̂∗m2

2 ξ̂n1
1 ξ̂n2

2

)
− 1

2
ΦN̂

=
∑

am1m2n1n2 ξ̂
∗m1
1 ξ̂∗m2

2 ξ̂n1
1 ξ̂n2

2

(
A†1A1 + A†2A2

+
1

2
(m1 +m2 − n1 − n2)

)
− 1

2
ΦN̂

=
1

2
(m1 +m2 − n1 − n2)Φ +

1

2
(ΦN̂ − ΦN̂)

= kΦ , (2.90)
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where κ = 2k is the winding number. We can also give the operators K+ and

K− which increase and decrease the topological number k by 1, respectively as

K+Φ = iεαβA
†
β[Φ, A†α] , K−Φ = iεαβ[Aα,Φ]Aβ . (2.91)

They can be readily compare with their commutative counterparts in (2.43).

Finally, it remains to write down the action for the complex scalar fields with

nonzero winding number κ. This is given as

S = Tr(Φ†
1

2
(K+K− +K−K+)Φ + V (Φ†Φ)) = Tr(Φ†(J2 − k2)Φ + V (Φ†Φ)) .

(2.92)

A comparison with (2.47) reveals the analogy and summarized the result that

we were set to achieve in this section.

2.6 U(n) Gauge Theory on S2
F

Scalar, spinor and gauge theories on S2
F and their various aspects have been

investigated in the recent past [36,38,52–62]. In this thesis, we will be essentially

concerned with the aspects of gauge theories over S2
F , S2

F×S2
F , we therefore focus

on the latter and refer the interested reader to the references [53, 57, 59] to find

out more on scalar and spinor fields on S2
F . Here, we investigate the gauge

theory on S2
F by using a matrix model. Following the approach in [47], we will

first give the gauge theory on S2
F which reduce to a U(1) gauge theory on S2

in the commutative limit `→∞ and then generalize this construction to U(n)

gauge theory on S2
F .

2.6.1 U(1) Gauge Theory

Let us consider the following matrix model with the action

S = Tr(V (Λ)) =
1

(2`+ 1)g2
Tr

(
(Λ2 − (`+

1

2
)212(2`+1))

2

)
, (2.93)

where Λ is a 2(2`+ 1)× 2(2`+ 1) Hermitian matrices, i.e. Λ ∈Mat(2(2`+ 1)).

It can be easily seen that this action is invariant under the adjoint action of
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U(2(2`+ 1))

Λ→ U−1ΛU , U ∈ U(2(2`+ 1)) . (2.94)

The equation of motion can be obtained as

Λ(Λ2 − (`+
1

2
)2) = 0 . (2.95)

This means that for the vacuum configuration, the eigenvalues of Λ are±(`+ 1
2
), 0

with some multiplicities, say n±, n0. With n+ + n− + n0 = 2(2` + 1), up to a

unitary transformation, the matrix Λ satisfying (2.95) can be written explicitly

as follows

Λ =

(
(`+ 1

2
)1n+ 0 0

0 −(`+ 1
2

)1n− 0

0 0 01n0

)
. (2.96)

Let us focus on the specific case by choosing n0 = 0 , n+ = 2`+ 2 and n− = 2`.

We will show that by a unitary transformation of U(2(2`+ 1)), this matrix can

be transformed in the following form

Λ =
1

2
1 + Li ⊗ τi , (2.97)

where τi are the Pauli matrices and Li are the generators of spin ` IRR of SU(2)

which were used to define the fuzzy sphere as explained earlier. In order to see

this, we note that the square of Λ and Tr(Λ) are

Λ2 =
1

4
1 + Li ⊗ τi + LiLj(δij + iεijkτk) =

1

4
1 + LiLi = (`+

1

2
)21 , (2.98)

Tr(Λ) =
1

2
2(2`+ 1) = (2`+ 1) . (2.99)

Hence, the eigenvalues of Λ are ±(` + 1
2
) and the multiplicities can be easily

found by using

Tr(Λ) = (n+ − n−)(`+
1

2
) = 2`+ 1 , n+ + n− = 2(2`+ 1) , (2.100)

from which we see that the (` + 1
2
) eigenvalue has the multiplicity n+ = 2` + 2

while the −(`+ 1
2
) eigenvalue has multiplicity n− = 2`. It is instructive to obtain

these results in a slightly different manner as well. Let us introduce the operator

Ji = Li ⊗ 12 + 12`+1 ⊗ τi
2
which has the SU(2) representation content

`⊗ 1

2
= (`− 1

2
)⊕ (`+

1

2
) . (2.101)
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Hence, the eigenvalues of J2 are (` − 1
2
)(` + 1

2
) and (` + 1

2
)(` + 3

2
). Since J2 =

LiLi + Liτi + τ 2
i /4, our matrix Λ can be written in terms of J2 , L2 and τ 2

i as

follows

Λ = J2 − L2 − τ 2
i /4 + 1/2 = J2 − `(`+ 1)− 1/4 . (2.102)

Here, we can read the eigenvalues of Λ as (`+ 1
2
) and −(`+ 1

2
).

All these results prove that there exists a unitary transformation such that

diag((`+
1

2
), · · · ,−(`+

1

2
)) = U(

1

2
1 + Li ⊗ τi)U−1 , (2.103)

and the equation of motion (2.95) is satisfied by Λ given in (2.97). In fact, we

see that the equation of motion in (2.95) takes the form LiLi = `(` + 1) which

is used to describe a fuzzy sphere at level `.

Let us consider a general 2(2`+ 1)× 2(2`+ 1) Hermitian matrix Λ;

Λ = Λµ ⊗ τµ = (
1

2
+ β)12(2`+1) +Bi ⊗ τi , (2.104)

where Bi is a (2` + 1) × (2` + 1) matrix whereas β is a 2(2` + 1) × 2(2` + 1)

matrix. If we insert this matrix into the action (2.93), we obtain

S = Tr(V (Λ)) =
2

g2(2`+ 1)
Tr

(
(`+ 1/2)4 − 2(`+ 1/2)2((

1

2
+ β)2 +BiBi))

+ (
1

2
+ β)4 +BiBi(2β

2 + 6β + 3/2) + 4βBiβBi + 2iεijkBkBiBj

+ 4iεijkβBkBiBj − εijkBiBjεlnkBlBn +BiBiBjBj

)
(2.105)

=
2

g2(2`+ 1)
Tr

(
(BiBi − LiLi)2 + (Bi + iεijkBjBk)(Bi + iεijkBjBk)

+ [Bi, β][Bi, β] + (2`+ 1)2β2 + 2β2 + β4 + 6β(β + 1)(BiBi − LiLi)

+ 4iβεijk(BiBjBk − LiLjLk)
)
, (2.106)

where we have used Tr2(2`+1) = Tr(2`+1) ⊗ Tr2.

At this point, if we impose the constraint β = 0, we get Tr(Λ) = 2` + 1 and

equation (2.106) becomes

S =
2

g2(2`+ 1)
Tr

(
(BiBi − `(`+ 1))2 + (Bi + iεijkBjBk)(Bi + iεijkBjBk)

)
.

(2.107)
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We will show that this is indeed a possible form of a U(1) gauge theory action on

S2
F . Let us first note that imposing the constraint β = 0 cause the breaking of

SU(2(2`+ 1)) symmetry of (2.93) down to a smaller group SU(2`+ 1). Indeed,

it is easy to see that the action in (2.106) is invariant under the adjoint action

of SU(2`+ 1)

Bi → U−1BiU , U ∈ SU(2`+ 1) . (2.108)

Now, we can derive the equation of motion from the action (2.107) as(
∂

∂Bi

)
lm

(∑
αβ

(BiBi − `(`+ 1))αβ(BiBi − `(`+ 1))βα

+
∑
αβ

(Bi + iεijkBjBk)αβ(Bi + iεijkBjBk)βα

)
= 0

{Bi, BjBj − `(`+ 1)}+ (Bi + iεijkBjBk) + iεijk[Bj, Bk + iεklmBlBm] = 0 .

(2.109)

It is straightforward to see that (2.109) is satisfied if we take BiBi− `(`+ 1) = 0

and Bi + iεijkBjBk = 0 and this corresponds to taking Bi = Li up to a unitary

transformation with U ∈ U(2` + 1). Since S in (2.107) is positive definite, we

also see that with Bi = Li, S is minimized, S = 0. Consider now the fluctuations

Ai around this vacuum by writing

Bi = Li + Ai , (2.110)

then, we get

BiBi − `(`+ 1) = LiAi + AiLi + AiAi , Bi + iεijkBjBk =
1

2
εijkFjk , (2.111)

where

Fij = i[Li, Aj]− i[Lj, Ai] + i[Ai, Aj]− εijkAk . (2.112)

This means that the fluctuation around vacuum solution provide the kinetic

terms in Fij automatically and (2.112) precisely has the form of the field strength

term for a U(1) gauge field Ai on S2
F . Does this interpretation indeed hold? To

see this, let us investigate the transformation property of Ai under the U ∈
SU(2`+ 1) gauge transformations. Using (2.108) and (2.110), we can write

B′i = U−1BiU = U−1(Li + Ai)U = U−1AiU + U−1LiU

= U−1AiU + U−1[Li, U ] + Li . (2.113)
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Noting also that S is covariant under (2.108), we can write B′i = Li +A′i which

yields from (2.113)

A′i = U−1AiU + U−1[Li, U ] . (2.114)

This is indeed the correct form for the gauge transformation of a connection

in a non-abelian theory. The latter is clearly due to the fuzzy structure of the

theory. In the commutative limit with U = eiΛ(x), this takes the form of a usual

abelian gauge transformation

A′i = Ai − iεijkxj∂kΛ

= Ai + LiΛ . (2.115)

We note that xiLiΛ = 0 and therefore LiΛ is a vector field on S2 for Λ(x) ∈
C∞(S2). Indeed on S2, there are only two independent components of a gauge

field. When S2 is embedded in R3, this requirement on the gauge fields Ai may

be satisfied by imposing the gauge invariant condition

xiAi = 0 , (2.116)

on Ai’s. (From (2.115), we immediately see that xiA′i = xiAi). The condition

(2.116) means that the component of Ai normal to S2 is set to zero. It can also

be read as being able to write any gauge field on S2 as Ai = εijkxjÃk with Ãi
on R3.

(2.116) can not be imposed on Ai on S2
F due to the fuzzy nature of the latter.

However, a gauge invariant condition that approaches to (2.116) as `→∞ can

be proposed as [41,59,63]

(Li + ALi )2 = L2
i = `(`+ 1)1 . (2.117)

Gauge invariance of (2.117) may be checked as follows. Consider a scalar field

Φ ∈Mat(2`+1) on S2
F which is coupled to the gauge fields Ai in the fundamental

representation of the gauge group. Thus we have [41,59,63]

Φ→ U−1Φ , U ∈ SU(2`+ 1) , (2.118)

and

Di(Φ) = DiΦ− ΦLi , Di := Li + Ai (2.119)
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We can write

D′i(U
−1Φ) = D′iU

−1Φ− U−1ΦLi

= LiU
−1Φ + A′iU

−1Φ− U−1ΦLi

= LiU
−1Φ− U−1ΦLi + (U−1AiU + U−1[Li, U ])U−1Φ

= U−1Di(Φ) , (2.120)

which verifies thatDi(Φ) transform covariantly under the left action of the gauge

group. We may write D′i(·) = U−1Di(U ·) and also that D′i· = U−1DiU ·. This

gives

D′iD
′
i· = U−1D′iUU

−1DiU

= `(`+ 1)1 , (2.121)

where we have used (2.117) in the second line. (2.121) explicitly shows that

(2.117) is a gauge invariant condition.

An alternative way to handle this problem is to interpret the normal component

of Ai on S2
F as a scalar field ϕ with a large mass, which can not be easily

excited and becomes infinitely heavy in the `→∞ limit. In the latter case, this

interpretation becomes equivalent to the initial solution offered for this problem.

The term BiBi−`(`+1) in action is used to suppress the scalar ϕ. More precisely,

using (2.63), we get

1√
`(`+ 1)

(BiBi − `(`+ 1)) =
1√

`(`+ 1)
(LiAi + AiLi + AiAi)

= {x̂i, Ai}+
1√

`(`+ 1)
AiAi , (2.122)

and as `→∞, it reduces to 2xiAi which is twice the radial component of gauge

fields on S2. Consequently as `→∞ the first term in (2.107) becomes

2

g2(2`+ 1)
Tr(BiBi − `(`+ 1))2 −−−→

`→∞

∫
dΩ

4π

8

g2
`(`+ 1)(xiAi)

2

=

∫
dΩ

4π

8

g2
`(`+ 1)ϕ2 , (2.123)

indicating that ϕ has the mass m = 2
√

2
g

√
`(`+ 1) for `→∞. Thus essentially

ϕ decouples from the rest of theory as it achieves a large mass in this limit.

In chapter 3, we will see the same phenomenon happening in the context of
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a model where the gauge theory on S2
F emerges dynamically from an SU(N )

gauge theory coupled to a triplet of adjoint scalar fields.

In the commutative limit `→∞, the action (2.107) becomes

S =
1

g2

∫
dΩ

4π
F̃ijF̃

ij , F̃ij = iLiAj − iLjAi + εijkAk (2.124)

and it is the action of a U(1) gauge theory on the unit sphere S2. In the

planar limit, two independent component of the gauge fields can be obtained

by imposing the constraint (2.116) as follows. Consider for instance the plane

obtained from the sphere at the north pole (0, 0, 1) by taking the radius of the

sphere to infinity. The constraint indicates that A3 = 0 and iL1 = x2∂3−x3∂2 =

−∂2 , iL2 = −x1∂3 + x3∂1 = ∂1. Hence, we have only F̃12 nonvanishing and it is

given as

F̃12 = −∂2A1 + ∂1A2 + A3 = ∂1A2 − ∂2A1 , (2.125)

which is the more familiar form for the field strength in U(1) theory on 2-

dimensions.

2.6.1.1 Monopole Sectors

It is possible to obtain the monopole sectors over S2
F by using the matrix model

whose essential ingredients were given in the previous section. We continue

to follow discussion in [47]. Taking Λ as a 2(2` + 1) × 2(2` + 1) matrix and

considering the action (2.93) with

Λ
˜̀

=
1

2
12(2˜̀+1) +B

˜̀

i ⊗ τi , (2.126)

where ˜̀≈ `, we observe that the equation of motion (2.109) is going to be valid

with Bi replace by B ˜̀
i . Now, if we assume that B ˜̀

i contains only spin ˜̀ IRR of

SU(2) with the eigenvalue of Casimir C2 = ˜̀(˜̀+ 1) ≈ `(` + 1), i.e. B ˜̀
i = αL

˜̀
i

with α being a constant, the relevant equation of motion gives

{αL˜̀

i , α
2L

˜̀

iL
˜̀

i}+ αL
˜̀

i + iεijkL
˜̀

jL
˜̀

k + iεijk[αL
˜̀

j, αL
˜̀

k + iα2εklmL
˜̀

lL
˜̀

m] = 0 .

(2.127)
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It is possible to simplify this equation as follows

αL
˜̀

i

(
2α2 ˜̀(˜̀+ 1)− 2`(`+ 1) + 1− α− 2α(1− α)

)
= 0

(2α− 1)(α− 1) + α22˜̀(˜̀+ 1)− 2`(2`+ 1) = 0 . (2.128)

The solution for the equation (2.128) can be found by expansion of α at the

order 1
`2

and it gives

α = 1 +
m

2`+ 1
+O(

1

`2
) , m = 2(`− ˜̀) , m� ` . (2.129)

Hence, Λ
˜̀

= 1
2

+ αL
˜̀
i ⊗ τi is a vacuum solution for the matrix model (2.93) and

we obtain in the large ` limit (`→∞)

B
˜̀

i + iεijkB
˜̀

jB
˜̀

k = −(α2 − α)L
˜̀

i = −(
m

2`+ 1
+

m2

(2`+ 1)2
)x̂i

√
˜̀(˜̀+ 1)

= − 1

2`
(1− 1

2`
+

1

4`2
)

√
`2 + `−m`− m

2
+
m2

4
x̂i = −m

2
x̂i ,

B
˜̀

iB
˜̀

i − `(`+ 1) = α2 ˜̀(˜̀+ 1)− `(`+ 1)

= (1 +
2m

2`+ 1
+

m2

(2`+ 1)2
)(`2 + `−m`− m

2
+
m2

4
)− `(`+ 1)

= O(m2) . (2.130)

This means that in the commutative limit (` → ∞), we obtain the classical

action for the magnetic field strength with the magnetic monopole number m as

S =
2

(2`+ 1)
Tr

(
(−mx̂i

2
)(−mx̂i

2
)

)
=
m2

2g2
. (2.131)

Here, it is possible to write down the magnetic field as Gi = −1
2
εijkFjk = m

2
x̂i

and using (2.124), we get the same action as follows

S =
1

g2

∫
dΩ

4π
(−εijkGk)(−εijlGl) =

m2

2g2
. (2.132)

We note that since we use the dimensionless matrices B ˜̀
i , Gi does not look like

the magnetic field strength of the magnetic monopole which should have the

inverse length square dimension expected from a monopole. However, we can

easily restore the dimensions by taking B̃ ˜̀
i =

B
˜̀
i

r
, then the magnetic field appears

in the more familiar form G̃i = mx̂i
2r2

and the action reads

S =
1

g2

∫
dΩ

4π
r22G̃iG̃i =

m2

2g2r2
. (2.133)

In (2.133), g has the dimension of inverse length while it is dimensionless in

(2.132).
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2.6.2 Nonabelian Gauge over S2
F

In order to construct a U(n) gauge theory on S2
F , we may start with a 2N × 2N

matrix Λ for the model described by the action given in (2.93) where N >

(2`+1). Assuming that N = n(2`+1) and choosing n0 = 0 , n+ = n(2`+2) and

n− = n(2`) in (2.96), the vacuum solution for this matrix model in a suitable

basis can be written as

Λ =
1

2
12N + Li ⊗ τi1n , (2.134)

where has the eigenvalue ±(`+ 1
2
) with multiplicities N +n ,N−n, respectively.

The latter follows from Tr(Λ) = (n+−n−)(`+ 1
2
) = n(2`+1) = N and n++n− =

2N . Full set of the vacuum solutions are given by a unitary transformation of

Λ in (2.134) as U−1ΛU with U ∈ U(n(2`+ 1)). We want to note that this block

matrix contains n copies of solution given in section (2.6.1). Hence, we can

define the fluctuation about this vacuum configuration by the following matrix

(with the choice β = 0 again)

Λ =
1

2
12N +Bi ⊗ τi , (2.135)

where Bi are N × N matrices. This enables us to obtain the same action as

(2.107) with N ×N matrices as

S =
2

g2(2`+ 1)
Tr

(
(BiBi − `(`+ 1))2 + (Bi + iεijkBjBk)(Bi + iεijkBjBk)

)
,

(2.136)

and the vacuum solution for this action is Bi = Li1n. We stress that the action

(2.136) is invariant under the adjoint action of U(N);

Bi → U−1BiU , U ∈ U(N) . (2.137)

We now want to show that this matrix model yields a U(n) gauge theory over

S2
F . To do so, we first use u(n(2`+1)) ∼= u(n)⊗u(2`+1) and see that the matrix

Bi should naturally carry an additional index for u(n). To be more precise, we

need to write the fluctuations of Bi as

Bi = Bi,µλ
µ = Liλ

0 + Ai,µλ
µ , Ai,µ = Ai,0λ

0 + Ai,aλ
a , (2.138)
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where λ0 = 1n and λa are the Gell-man matrices of su(n) which satisfy

λaλb =
δab
n
1n +

1

2
(dabc + ifabc)λc , (2.139)

where fabc is anti-symmetric structure constant and dabc is totally symmetric

tensor.

With the fluctuation term Ai, we obtain the field strength tensor as

Bi + iεijkBjBk =
1

2
εijkFjk , Fij = i[Li, Aj]− i[Lj, Ai] + i[Ai, Aj]− εijkAk .

(2.140)

This suggest that, then Ai = Ai,µλ
µ are the su(n) valued gauge fields over S2

F .

For `→∞, we obtain a U(n) gauge theory on S2 with the action

S =
1

g2

∫
dΩ

4π
FijF

ij =
1

g2

∫
dΩ

4π
(Fij,0F

ij,0 + Fij,aF
ij,a) , (2.141)

where

Fij,0 = iLiAj,0 − iLjAi,0 + εijkAk,0 ,

Fij,a = iLiAj,a − iLjAi,a + iAi,bAi,cf
bc
a + εijkAk,a . (2.142)

Just like we did in the previous section, let us assume that Λ is an Ñ × Ñ

matrix with Ñ = n(2˜̀+ 1) = n(2` + 1) − m for small m ∈ Z. We see that

equation of motion in (2.109) can be fulfilled by a reducible representation of

SU(2) consisting of block matrices in the form of (2.126). Therefore, after a

suitable unitary transformation Λ can be written

Λ(m1,··· ,mn) =

 Λ
˜̀
1 0 ··· 0

0 Λ
˜̀
2 ··· 0

...
... ... ...

0 0 ··· Λ
˜̀n

 , (2.143)

where Λ
˜̀
i is given by (2.126), mi = (`−˜̀

i)
2

and
∑n

i=1mi = m.

Following the similar steps of calculation given in the previous section, we obtain

the action in the large ` limit as

S =
1

2g2

n∑
i=1

m2
i , (2.144)

which is the action for the instantons with the topological numbers mi 6= 0 , i =

1 , · · · , n on the fuzzy sphere S2
F . This can be understood as the value of the
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classical action in certain instanton solutions of U(n) Yang-Mills theories [64,65].

As the details of these works are not related to the main themes of this thesis,

they will not be discussed in this thesis.

2.7 Higher Dimensional Fuzzy Spaces

So far, we have focused our attention on the fuzzy two-sphere and provided all

the necessary background on fuzzy spaces that is going to be exploited in the rest

of the thesis. However, it is also possible to construct the higher dimensional

fuzzy spaces using the annihilation-creation operator method given in section

2.3. In this section, we would like to discuss briefly the fuzzy version of higher

dimensional spaces, in particular the complex projective space CPN and the

product of two spheres S2 × S2.

2.7.1 Fuzzy CPN

Here, we construct the N -dimensional fuzzy complex projective space by gen-

eralizing the technique given in section 2.3. For this purpose, we continue to

follow the idea of [41]. CPN is the N -dimensional complex projective space. It

is possible to describe this space using the chain CN+1 → S2N+1 → CPN as we

explain below. We have that S2N+1 is a 2N + 1-dimensional sphere described as

S2N+1 =
{
ξ = (ξ1 , · · · , ξN+1) , ξ ∈ CN+1\{0} , ξiξi = 1

}
. (2.145)

S2N+1 forms a fiber bundle with U(1) fibers since S2N+1 admit the U(1) action

ξ → eiθξ which may be defined as

U(1)→ S2N+1 → CPN , or CPN =
S2N+1

U(1)
. (2.146)

The projection map of this fibration may be given as

Xa(ξ) = ξ†λa ξ , ξ ∈ S2N+1 , (2.147)

where λa , a = 1 , · · · , N2 − 1 are the Gell-Mann matrices of SU(N + 1). We

note that this map gives the embedding of CPN into RN2+2N where we have the
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following constraints for the coordinates Xa [45]

XaXa =
N

N + 1
, dabcXaXb =

√
2(N − 1)

N + 1
, (2.148)

where dabc is totally symmetric tensor given in (2.139). Let us note that another

realization of CPN may be given by the coset space

CPN ≡ SU(N + 1)

U(N)
≈ SU(N + 1)

SU(N)× U(1)
. (2.149)

Now, we are ready to construct the fuzzy complex projective space CPN
F by

quantizing the chain CN+1 → S2N+1 → CPN . To proceed, let us remove the

origin of N + 1-dimensional complex plane and so we can define the coordinates

of S2N+1 as

ξi :=
zi
|z|

, zi ∈ CN+1 , |z| =
√
|z1|2 + · · ·+ |zN+1|2 . (2.150)

Replacing the coordinates zi and z∗i by annihilation and creation operators Ai
and A†i , respectively, we obtain N + 1 dimensional noncommutative complex

plane CN+1
θ with N + 1 sets of commutation relations

[Ai, Aj] = 0 , [A†i , A
†
j] = 0 , [Ai, A

†
j] = θδij . (2.151)

Using the definition in (2.150) and the fibration map (2.147), the coordinates of

CPN
F can be constructed as follows

ξi :=
zi
|z|
→ Ai

1

N̂
, N̂ = a†iai 6= 0 ,

Xa(ξ) = ξ†λa ξ → X̂a =
1

N̂
A†λaA . (2.152)

Just as before, Xa can be restricted to the subspace Hn of the Fock space for

N̂ = n. In a similar manner, we can define the coordinate Xa of CPN
F in terms

of the SU(N + 1) angular momentum operator using the generalized Schwinger

construction as

X̂a =
2

n
, [X̂a, X̂b] =

2

n
ifabcX̂k (2.153)

where fabc is the structure constant of SU(N + 1). Since CPN
F is not used in

this thesis, we will not discuss the details of this space any further and refer the

interested reader to the reference [41].
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2.7.2 Fuzzy S2 × S2

In this section, we give a brief review of the product of two fuzzy sphere S2
F ×

S2
F by following [24]. For detailed discussion on this space and QFT on it,

the reader is referred to the references [43, 44]. The fuzzy version of S2 × S2

can be obtained by modifying the results of quantization of sphere into the

product of two spheres. As we have shown in section 2.4, the fuzzy sphere

coordinates can be described by the generators of spin ` IRR of SU(2) in (2.63)

and Mat(2` + 1) is completely generated by polynomials in these coordinates

acting on (2` + 1)-dimensional Hilbert space. In a similar manner, S2
F × S2

F is

the algebra Mat[(2`L + 1)(2`R + 1)]. This algebra is generated by the matrices

1(2`L+1)(2`R+1), LLi := L
(2`L+1)
i ⊗ 1(2`R+1) and LRi := 1(2`L+1) ⊗ L

(2`R+1)
i where

(LLi , L
R
i ) are the generators of (`L, `R) IRR of SU(2)L × SU(2)R with

[LLi , L
R
j ] = iεijkL

L
k , [LRi , L

R
j ] = iεijkL

R
k , [LLi , L

R
i ] = 0 ,

LLi L
L
i = `L(`L + 1)1(2`L+1)(2`R+1) , LRi L

R
i = `R(`R + 1)1(2`L+1)(2`R+1) (2.154)

The coordinates of S2
F × S2

F can be described in terms of these six matrices as

x̂Li =
1√

`L(`L + 1)
L

(2`L+1)
i ⊗ 1(2`R+1) ,

x̂Ri = 1(2`L+1) ⊗
1√

`R(`R + 1)
L

(2`R+1)
i , i = 1, 2, 3 (2.155)

acting on a (2`L + 1)(2`R + 1)-dimensional Hilbert space. They satisfy

[x̂Li , x̂
L
j ] =

i√
`L(`L + 1)

εijkx̂
L
j , [x̂Ri , x̂

R
j ] =

i√
`L(`L + 1)

εijkx̂
R
j ,

[x̂Li , x̂
R
j ] = 0 , x̂Li x̂

L
i = 1 , x̂Ri x̂

R
i = 1 . (2.156)

In the commutative limit (`L, `R → ∞), these coordinate become the standard

coordinates of S2 × S2 embedded in R6 and generate an infinite dimensional

algebra of smooth functions C∞(S2 × S2) which can be expanded in terms of

the product of two spherical harmonics Y`LmL(θ, φ)Y`RmR(θ′, φ′).

Following a similar line of development as in the fuzzy sphere, the derivations

on S2
F × S2

F can be obtained by the adjoint action of su(2)⊕ su(2) = so(4) as

LLi m := [L
(2`L+1)
i ⊗ 12`R+1 ,m] , LRi m := [12`L+1 ⊗ L(2`R+1)

i ,m] (2.157)
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where m ∈Mat(2`L + 1)(2`R + 1). In the commutative limit, these derivations

reduce to the usual derivations iLLi = εabcx
L
c ∂

L
b and iLRi = εabcx

R
c ∂

R
b on S2 × S2.
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CHAPTER 3

DYNAMICAL GENERATION OF FUZZY SPHERE(S)

AND EQUIVARIANT PARAMETRIZATION

So far, we have given the essential geometric structure of fuzzy sphere S2
F and

also brief summary of field theory on S2
F . Now, we focus our attention to the con-

cept of dynamical generation of fuzzy sphere from an SU(N ) Yang-Mills theory

coupled to a suitable number of scalar fields. We give the details of these results

by following the work of Aschieri et. al. [9]. We start with a renormalizable

SU(N ) gauge theory in 4-dimensional Minkowski space M4 coupled to a triplet

of scalar fields transforming adjointly under the action of SU(N ) and as vectors

under the global action of SO(3) ∼= SU(2). Working on this model with the

most general renormalizable potential term which spontaneously breaks SU(N )

symmetry down to a smaller group shows that the vacuum expectation value of

scalar fields takes the form of fuzzy sphere S2
F and fluctuations around this vac-

uum have the structure of gauge fields over S2
F . These results enables to interpret

that after the spontaneously symmetry breaking, SU(N ) gauge theory on M4

behaves as an effective U(n) gauge theory onM4×S2
F where n(2`+1) = N and

` is the level of fuzzy sphere. Here, the fuzzy sphere S2
F emerges dynamically as

extra dimensions from 4-dimensional renormalizable gauge theory. In order to

support this interpretation, we construct the Kaluza-Klein (KK) mode expan-

sion of gauge fields on fuzzy extra dimensions and we investigate the low-energy

effective action of U(n) gauge theory on M4 for the lowest lying KK modes.

Afterwards, we continue to develop the effective gauge theory interpretation by

another complementing viewpoint approach which is so-called the equivariant
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parametrization technique. This technique impose the proper symmetry con-

dition on the fields on M× X where M is any physical space and X is some

coset space so that the fields transform covariantly under the action of symmetry

group of extra dimensions X up to a gauge transformation. This method enables

us to construct the low-energy limits of the effective gauge theory on M since

with equivariant modes of gauge fields, it is possible to integrating out (tracing

over) the extra dimensions. We would like to mention that this technique is the

application of the coset space dimensional reduction techniques (CSDR) [1, 2]

(see also [3] in this context). In this chapter, we are particularly concern to

the cases where X is the form of fuzzy sphere S2
F and the product of two fuzzy

sphere S2
F ×S2

F and we will explain the detail of these concepts from the results

of [22, 24], respectively. First, we focus on the equivariant parametrization of a

U(n) gauge theory onM×S2
F and for the minimal non-abelian gauge symmetry

n = 2, we construct the SU(2)-equivariant modes of gauge fields onM×S2
F up

to U(2) gauge transformation. After tracing over S2
F , we obtain the low-energy

effective action onM which leads to Abelian Higgs type model and forM≡ R2

the vortex type solution can be found in certain limits [22].

In the last section of this chapter, we turn our attention to the models where

extra dimensions take the form of the product of two fuzzy sphere S2
F × S2

F by

following [21, 24]. First, we would like to explain how the product of two fuzzy

sphere dynamically emerges from a SU(N ) gauge theory coupled to suitable

number of scalar fields. We consider the deformed N = 4 supersymmetric Yang-

Mills theory with SU(N ) symmetry [21]. We work on the bosonic part of the

N = 4 supersymmetric Yang-Mills theory where we have six scalar fields in the

adjoint representation of SU(N ) transforming as vectors under the global action

of SO(6) ≈ SU(4). We consider the cubic and quadratic interaction terms in

the scalar fields in addition to usual quartic one. These deformation terms break

both the supersymmetry and global SO(6) symmetry of the model. Indeed, it

breaks the global SO(6) symmetry down to SU(2) × SU(2). Then, we show

that the vacuum expectation value of scalar fields appear as the product of two

fuzzy sphere and the fluctuations around this vacuum gives the gauge fields on

S2
F × S2

F . Hence, it seems possible to interpret this model as an effective gauge
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theory onM×S2
F×S2

F . Making use of the equivariant parametrization technique

given in [24], we obtain the SU(2)×SU(2)-equivariant modes of gauge fields on

M×S2
F ×S2

F and integrating out the extra dimensions, we construct low-energy

effective action of this theory onM. We show that this models leads to abelian

Higgs type model with U(1) × U(1) × U(1) symmetry and we find the vortex

type solutions in this model.

3.1 Dynamical Generation of Fuzzy Extra Dimensions from an SU(N )

Gauge Theory

Let us consider an SU(N ) gauge theory on the Minkovski space M4 and label

the coordinates on M4 by yµ , (µ = 0, 1, 2, 3). We have three anti-Hermitian

scalar fields Φa , (a = 1, 2, 3) coupled to the su(N ) valued anti-Hermitian gauge

fields Aµ. Our scalar fields Φa are N ×N matrices transforming adjointly under

the action of SU(N )

Φa → U †ΦaU , U ∈ SU(N ) . (3.1)

Let us consider the action [9]

S =

∫
d4yTr

(
− 1

4g2
F †µνF

µν − (DµΦa)
†(DµΦa)

)
− V (Φ) , (3.2)

where we have the covariant derivative in the form of Dµ = ∂µ + [Aµ, ·] and the

field strength tensor Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. We note that the kinetic

and the gradient part of the action (3.2) have also a global SO(3) symmetry

under which the scalar fields transform in the vector representation of SO(3).

The most general renormalizable potential which preserves both the SO(3) and

the SU(N ) symmetries can be written as

V (Φ) = Tr (g1ΦaΦaΦbΦb + g2ΦaΦbΦaΦb − g3εabcΦaΦbΦc + g4ΦaΦa)

+
g5

N
Tr(ΦaΦa)Tr(ΦbΦb) +

g6

N
Tr(ΦaΦb)Tr(ΦaΦb) + g7 , (3.3)

where gi , (i = 1 , · · · , 7) are coupling constants with appropriate dimensions. It

is possible to obtain a more useful expression for the potential term (3.3). If we

define the dimensionless scalar fields as Φ′a = RΦa where R has the dimension of
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length 1, we can rewrite the potential (3.3) in the following form for the suitable

choice of the constants R, g, b, c, d;

V (Φ) = Tr
(

1

g̃2
F ′ab
†
F ′ab + g2(Φ′aΦ

′
a + b̃′1)2 + c

)
+

h

N
g′abg

′
ab , (3.4)

where

F ′ab = [Φ′a,Φ
′
b]− εabcΦ′c , b̃′ = b+

d

N
Tr(Φ′aΦ

′
a) , g′ab = Tr(Φ′aΦ

′
a) . (3.5)

The constants b, c, d, h, g̃, g and R may be found in terms of gi , i = 1, · · · , 7 by

solving the following equations;

g2R4 +
2R4

g̃2
= g1 , −2R4

g̃2
= g2 ,

4R3

g̃2
= −g3 ,

2g2bR2 +
2g2bdR2

N
− 2R2

g̃2
= g4 ,

2R4g2d

N
+
d2R4g2

N 2
=
g5

N
,

R4h

N
=
g6

N
, T r(g2b2) + Tr(c) = g7 . (3.6)

Here, we can see that the suitable choice of R is

R =
2g2

g3

. (3.7)

Now, taking g′ = R2g , b′ = b
R2 , g̃

′ = g̃
R2 and h′ = R4h, we can suppress R and

after dropping the primes and omitting c, we obtain the potential V (Φ);

V (Φ) =
1

g̃2
Tr(F †abFab) + g2Tr(ΦaΦa + b̃1)2 +

h

N
gabgab .

≡ V1(Φ) + V2(Φ) + V3(Φ) , (3.8)

where

g2 = g1 + g2 ,
2

g̃2
= −g2 , h = g6 . (3.9)

It is easy to see that the potential is positive definite if

g2 > 0 ,
2

g̃2
> 0 , h ≥ 0 , (3.10)

and from now on we assume that g2, g̃2 are positive and we are going eventually

set h = 0, although V3 term is kept in some of the formulas in order to work in
1 Since Φa has dimension of mass in 4-dimension, Φ′a = RΦa are dimensionless.
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a more general setting. For the minimum of the potential, we can see that the

following conditions should be fulfilled

Fab = [Φa,Φb]− εabcΦc = 0 ,

− ΦaΦa = b̃1N . (3.11)

Here, we observe that the condition Fab = 0 indicates that the scalar fields

might be in any reducible representation of SU(2) but the second condition

−ΦaΦa = b̃1N restrict the scalar fields to be in an IRR of SU(2) according to

the value of b̃. In order to find the solutions to these equation, the value of b̃

plays a significant role.

3.1.1 Vacuum Configuration: Type 1

If we take b̃ as the eigenvalue of quadratic Casimir of the (2` + 1)-dimensional

irreducible representation of SU(2) labeled by `

b̃ = C2 = `(`+ 1) , 2` ∈ Z , (3.12)

and also assume that

N = (2`+ 1)n , (3.13)

then, up to gauge transformations (U−1ΦaU ,U ∈ SU(N )), we can write the

vacuum configuration as

Φa = X(2`+1)
a ⊗ 1n , (3.14)

where X(2`+1)
a are the anti-Hermitian generators of (2` + 1)-dimensional IRRs

of SU(2) which are used to define the fuzzy sphere S2
F as explained earlier 2.

These generators satisfy

[X(2`+1)
a , X

(2`+1)
b ] = εabcX

(2`+1)
c , X(2`+1)

a X(2`+1)
a = −`(`+ 1) . (3.15)

With the help of these representation properties, it is easy to check that the vac-

uum configuration (3.14) satisfy the conditions (3.11) minimizing the potential

V (Φ) given in (3.8) with h = 0 as noted previously.
2 In chapter 2, we have used the Hermitian generators Li of SU(2) IRR. Here, we switch our

conventions and use anti-Hermitian generators. It is readily seen that with Xi = −iLi, we can switch
between those two.

47



We observe that the vacuum configuration in (3.14) spontaneously breaks SU(N )

symmetry down to U(n). Here, the commutant of Φa is U(n), i.e. the maximal

commuting subgroup of SU(N ) with Φa is given by U(n).

Let us consider the fluctuations about the vacuum (3.26)

Φa = Xa + Aa (3.16)

where Aa ∈ u(2` + 1) ⊗ u(n) and we have introduced the short-hand notation

X
(2`+1)
a ⊗ 1n =: Xa. With the fluctuation term Aa, Fab becomes 3

Fab = [Xa , Ab]− [Xb , Aa] + [Aa , Ab]− εabcAc. (3.17)

This means that Aa (a = 1, 2, 3) can be interpreted as the three components of

a U(n) gauge field on S2
F . We can say that Φa are the “covariant coordinates”

on S2
F with the associated curvature tensor Fab .

At the beginning of this section, we have started with an SU(N ) gauge theory

onM4. Now, it can be conjectured that after spontaneously symmetry breaking,

an effective U(n) gauge theory emerges on M4 × S2
F with the gauge fields

AM ≡ (Aµ, Aa) ∈ u(n)⊗ u(2`+ 1) , (3.18)

and field strength tensors FMN

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] ,

Fµa = DµΦa = ∂µΦa + [Aµ,Φa] ,

Fab = [Xa , Ab]− [Xb , Aa] + [Aa , Ab]− εabcAc . (3.19)

Let us remark that AM transform as a vector under the product group SO(3, 1)×
SU(2). It should be clear from our notation that, here Aµ transform as a vector

under SO(3, 1) and trivially i.e. as scalar under SU(2) and Aa transform as

a vector under SU(2) and trivially under SO(3, 1). This interpretation will be

made manifest in section (3.2).

3 In this chapter, we work with anti-Hermitian fields for convenience.
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3.1.2 General Consideration for the Type 1

If we consider the solution for generic b̃, the conditions in (3.11) can not be

fulfilled by the finite-dimensional matrices Φa. However, as the potential (3.8)

is positive definite, the vacuum configuration for generic b̃ exist and it must be

given by a solution of the equation ∂V
∂Φa

= 0;

∂
(
Tr
(

1
g̃2
Fab
†Fab + g2(ΦaΦa + b̃1)2

)
+ h
N gabgab

)
∂(Φa)lm

= 0 . (3.20)

Let us calculate the derivative of each term in equation (3.20) separately; the

first term gives

∂ Tr(ΦaΦa + b̃1)2

∂(Φa)lm
=

1

N

(
2(ΦaΦbΦb)ml + 2(ΦbΦbΦa)ml + 2

d

N
(Φa)mlTr(ΦbΦb)

+2b̃(Φa)ml + 2
d

N
Tr(ΦbΦb)(Φa)ml + 2(Φa)mlb̃+ 2

bd

N
(Φa)ml

+2(Φa)ml
bd

N
+ 2

d2

N 2
(Φa)mlTr(ΦbΦb) + 2

d2

N 2
Tr(ΦbΦb)(Φa)ml

)
,

(3.21)

and the second term can be calculated as

∂ Tr(F †bcFbc)
∂(Φa)lm

= − 1

N

(
∂

∂(Φa)lm

∑
ij

(Fbc)ij(Fbc)ji

)
= − 1

N

(
∂

∂(Φa)lm

(∑
ijk

((Φb)ik(Φc)kj − (Φc)ik(Φb)kj)

−
∑
ij

εbcd(Φd)ij
)

+ i↔ j

)
= − 1

N

(
2(ΦcFac)ml − 2(FacΦc)ml + 2(FbaΦb)ml − 2(ΦbFba)ml

− 2εbca(Fbc)ml

)
=

1

N
(4[Fac,Φc] + 2εabcFbc)ml . (3.22)

For the last term, we have

∂ gbcgbc
∂(Φa)lm

=
∂ Tr(ΦbΦc)Tr(ΦbΦc)

∂(Φa)lm

=
1

N 2

(
∂

∂(Φa)lm

(∑
ij

(Φb)ij(Φc)ji

)2)
=

1

N
4gab(Φb)lm , (3.23)
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where we have used the identity gab = 1
3
δabTr(Φ·Φ). Hence, the equation ∂V

∂Φa
= 0

can be written as follows

g2{Φa,Φ · Φ + b̃+
d

N
Tr(Φ · Φ + b̃)}+

2h

N
gabΦb +

1

g̃2
(2[Fab,Φc] + εabcFbc) = 0 .

(3.24)

Although the general solution to this equations is not known for generic b̃, a

possible vacuum configuration (up to unitary transformation) can be proposed

as follows

Φa = diag
(
α1X

(2`1+1)
a ⊗ 1n1 , · · · , αkX(2`k+1)

a ⊗ 1nk
)
, (3.25)

for suitable constants αi. We aim to construct examples of vacuum configura-

tions in the form of (3.25) which satisfy the minimal potential conditions (3.11)

at least approximately.

If we assume that the vacuum configuration consist of only a single SU(2) IRR

with Casimirs C2 = `(` + 1) and b̃ has the value which is very close to C2 =

`(`+ 1), and then with the factorization N = (2`+ 1)n, a vacuum configuration

up to unitary transformation can be constructed as

Φa = αX(2`+1)
a ⊗ 1n . (3.26)

This vacuum configuration can be made to satisfy the minimum potential con-

ditions (3.11) approximately as we demonstrate below and it may be taken as

the general form of the type 1 vacuum configuration in (3.14).

In order to find α, we insert the solution (3.26) in the equation (3.24)

2g2αX(2`+1)
a

(
−α2C2 + b̃− α2C2d+

d

N
(
b− α2C2d

)
N
)
− 2h

3
α3C2X

(2`+1)
a

+
1

g̃2

(
−4X(2`+1)

a α(α2 − α) + 2X(2`+1)
a (α2 − α)

)
= 0 .

(3.27)

Multiplying both side with the inverse of X(2`+1)
a and dividing 2α, we get

g2(α2C2 − b̃)(d+ 1) +
h

3
α2C2 −

1

g̃2
(α− 1)(1− 2α) = 0 . (3.28)
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It is possible to find the exact solutions to the equation (3.28), but we are

interested in the expansion around α = 1 solution. Let us assume that d = h = 0

and g2 ≈ 1
g̃2
. Taking

b̃ = ˜̀(˜̀+ 1) , (3.29)

where ˜̀ is a real number (not necessarily integer or half integer), we obtain the

solution for α to the order 1
`2

as

α = 1− m

2`+ 1
+O(

1

`2
) , for m� ` , m = 2(`− ˜̀) . (3.30)

With the vacuum solution (3.26) and the expansion of α, the leading term of

potential V (Φ) can be found

V1(Φ) =
1

g̃2
Tr(F †abFab) = − 1

g̃2
Tr
(

m2

(2`+ 1)2
εabcX

(2`+1)
c εabdX

(2`+1)
d

)
=

2m2

(2`+ 1)2g̃2
`(`+ 1) =

m2

2g̃2
+O(

1

`2
) . (3.31)

V2(Φ) = g2Tr(ΦaΦa + b̃)2 = g2Tr(−α2C2 + b̃)2 =
g2m2

4(2`+ 1)2
= O(

1

`2
) . (3.32)

For the type 1 vacuum solution, ˜̀= ` in (3.31) and (3.32), both V1 and V2 tend

to zero at large `, which is the minimum of V (Φ). On the other hand, taking
˜̀≈ ` yields essentially another vacuum, V1 still survives for large ` and has the

value m
2g̃2

. As we mentioned in chapter 2, this is the value of classical action of

field strength with magnetic monopole number m when 2˜̀ is an integer. Hence,

it is possible to interpret that the vacuum configuration (3.26) as a fuzzy sphere

carrying the magnetic monopole strength m [9].

3.1.3 Vacuum Configuration: Type 2

Let us again consider the vacuum configuration in (3.25) with ni blocks of size

(2`i + 1) = (2˜̀+ 1) + mi which eventually will be a vacuum solution given as

the direct sum of two fuzzy spheres. If we assume that ˜̀ is large and mi
˜̀ � 1,

the result of previous case can be generalized as

V (Φ) = Tr

(
1

2g̃2

∑
i

nim
2
i1(2`i+1)

)
≈ 1

2g̃2k

∑
i

nim
2
i , (3.33)
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with the constraint
∑
nimi = N − k(2˜̀+ 1) where k is the total number of

IRRs k =
∑
ni. This result can be interpreted that the solution (3.25) is the

internal fuzzy sphere carrying the instantons with the action (3.33).

We note that with the approximation given above, the vacuum configuration

(3.25) can be written in terms of only two distinct block diagonal as follows

Φa =

 α1X
(2`1+1)
a ⊗ 1n1 0

0 α2X
(2`2+1)
a ⊗ 1n2

 , (3.34)

where N = (2`1 + 1)n1 + (2`2 + 1)n2 and `2 = `1 + 1
2
. This can be seen from

convexity of (3.33). The overall dimension of vacuum configuration (3.25) (with

the assumption 2`1 + 1 < 2`2 + 1 < · · · < 2`k + 1) does not change, if we lower

n1 and nk by one and add two blocks with size 2`1 + 2 and 2`k and the action

in (3.33) becomes smaller due to convexity. It is possible to apply this method

until we obtain two distinct blocks or one block with maximal size which means

that we can get the vacuum configuration from (3.25) in the form of either (3.26)

or (3.34).

3.2 Kaluza-Klein Modes

So far, we have shown that it is possible to interpret that, after the spontaneously

symmetry breaking, SU(N ) Yang-Mills theory on M4 coupled to a triplet of

adjoint scalar fields behaves as an effective U(n) gauge theory on M4 × S2
F ,

where the extra dimensions are dynamically generated in the form of fuzzy a

sphere. This interpretation can be supported with the construction of Kaluza-

Klein mode expansion of the fields over the fuzzy extra dimensions. In this

thesis, we will show that for the vacuum configurations (3.26) and (3.34), the

Kaluza-Klein mode expansion yields the mass spectrum of the excitations with

large mass gaps [9], corroborating with the effective gauge theory interpretation.

52



3.2.1 Kaluza-Klein Mode Expansion of Type 1 Vacuum

Let us start with the construction of Kaluza-Klein modes for the vacuum con-

figuration given in (3.14) or in (3.26) with α = 1. We will inspect α 6= 1 in the

next subsection. As we have noted in the equation (3.18), after the breaking

of SU(N ) gauge symmetry down to U(n), Aµ and Aa are interpreted as u(n)

valued gauge fields of the emerging model over M4 × S2
F . Consider first the

field Aµ ∈ u(n)⊗ u(2` + 1), we can expand into their modes over S2
F using the

polarization tensor Tjm on S2
F introduced in section 2.4 of chapter 2. Thus, we

may write

Aµ =
2∑̀
j=0

j∑
m=−j

Tjm ⊗ Aµ,jm(y) j = 0, 1, · · · , 2` , (3.35)

where Tjm are (2`+ 1)× (2`+ 1) matrices, and Aµ,lm(y) are u(n) valued gauge

fields on M4. Therefore, Aµ can be interpreted as u(n) valued functions on

M4 × S2
F with the Kaluza-Klein modes expansion on S2

F .

We can consider the mode expansion of the fluctuations modes Aa around the

vacuum configuration in a similar manner. Kaluza-Klein mode expansion of Aa
can be written as

Aa =
2∑̀
j=0

j∑
m=−j

Tjm ⊗ Aa,jm(y) , (3.36)

where Aa,jm(y) are u(n) valued functions (scalar fields) onM4. Equations (3.35)

and (3.36) make our earlier remark following (3.19) manifest, as promised.

3.2.2 Mass Spectrum of the Gauge Sector

Now, let us determine the masses of the KK modes. To do so, let us focus on

the term∫
Tr(DµΦa)

†DµΦa =

∫
Tr
(
∂µΦ†a∂

µΦa + 2(∂µΦ†a)[A
µ,Φa] + [Aµ,Φa]

†[Aµ,Φa]
)
,

(3.37)

in the action (3.2). First, we will show that the second term in (3.37) is of

no relevance for the calculation of the masses since it includes only the cubic
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interaction terms. Using the cyclic property of the trace, this term can be

written as∫
Tr(∂µΦ†a[A

µ,Φa]) =

∫
Tr(Aµ[Φa, ∂µΦ†a]) = −

∫
Tr(Aµ[Φa, ∂µΦa]) . (3.38)

Now, let us consider y-dependent α which enables us to define the scalar fields

in the most general form as follows

Φa(y) = α(y)X(2`+1)
a ⊗ 1n + Aa . (3.39)

In order to see the interaction terms, we insert (3.39) into (3.38) and we have∫
Tr(Aµ[Φa, ∂µΦ†a]) = −

∫
TrAµ (α[Xa, ∂µAa] + (∂µα)[Aa, Xa] + [Aa, ∂µAa]) ,

= −
∫

TrAµ (α∂µ ([Xa, Aa]) + (∂µα)[Aa, Xa] + [Aa, ∂µAa])

(3.40)

Imposing the gauge condition 4 [Xa, Aa] = 0 we get∫
Tr(Aµ[Φa, ∂µΦ†a]) = −

∫
TrAµ[Aa, ∂µAa] . (3.42)

Hence, no mass terms can be derived from this part of the action.

The last term in the equation (3.37) gives the mass for the gauge field Aµ and

some higher order interaction terms. To see this, we use (3.39) and find∫
Tr[Aµ,Φa]

†[Aµ,Φa] =

∫
Tr(α2A†µL†aLaAµ) + higher order terms , (3.43)

where La· = i[Xa, ·] are the derivations on fuzzy sphere in terms of anti-Hermitian

generators of SU(2) (2.69). Let us introduce the notation Sint for all higher order

interaction terms coming from (3.37).

The relevant part for the mass can be calculated as∫
Tr(α2A†µL†aLaAµ) =

∫
Tr(α2

2∑̀
j=0

j∑
m=−j

2∑̀
k=0

k∑
n=−k

k(k + 1)A†µ,jmA
µ
knT

†
jmTkn)

=

∫
Trn(

2∑̀
j=0

j∑
m=−j

α2j(j + 1)A†µ,jmA
µ
jm) . (3.44)

4 In the commutative limit ` → ∞, the adjoint action [Xa, ·] reduces to −iLa = −εabcxb∂c =

εabcxc∂b, then the gauge condition [Xa, Aa] = 0 becomes

[Xa, Aa] −−−→
`→∞

εabcxc∂bAa = εabc(∂b(xcAa)− (∂bxc)Aa) = ~∇ · (~x× ~A) = ~∇ · ~A′ = 0 (3.41)

where ~A′ = ~x× ~A is on S2 since ~x. ~A′ = 0. This is the Lorenz gauge on S2.
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Here, in order to obtain the last line in (3.44), we have used the orthogonality

properties of the polarization tensors given in (2.75). Now, it is easy to see that

u(n) gauge fields Aµ,jm(y) acquire the masses

m2
j =

α2g2

R2
j(j + 1) , (3.45)

where we have inserted back the parameter R.

From (3.45), we immediately see that there is only one massless mode in KK

spectrum and it is obviously given by the j = 0 ,m = 0 mode Aµ,00. Other KK

modes are separated from each other and Aµ,00 with ever increasing mass gaps,

with the model truncating at j = 2`.

Focusing only on the gauge sector of the effective theory and ignoring all the

KK modes with the character mass scale 1/R, we have the Low-energy effective

action (LEA) written down as

SLEA = −
∫
d4y

1

4g2
TrnF 0†

µνF
0µν , (3.46)

where F 0
µν is the fields strength associated with the massless mode Aµ,00. We

see that SLEA corresponds to an SU(n) gauge theory on M4. Inclusion of j 6= 0

modes brings in the corresponding field strength terms as well as the mass terms

as derived in (3.44).

Finally, let us note that we can predict the radius of internal fuzzy sphere as

rS2 =
αR

g
. (3.47)

3.2.3 Mass Spectrum of the Scalar Sector

In order to inspect mass spectrum of scalar fields, we may proceed as follows.

We consider the splitting of Aa into its radial and tangential components Ara , Ata
as

Aa = Ara + Ata = iϕ(y)Xa + Ata , (3.48)

where ϕ(y) = − XaAa
`(`+1)

are u(n) valued and XaA
t
a = 0. Then, we may expand

the scalar fields Φa by writing out the radial component of fluctuations ϕ(y)
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explicitly

Φa(y) = X(2`+1)
a ⊗ (α1n + ϕ(y)) +

∑
k

Aa,k(x)⊗ ϕk(y) . (3.49)

In this expression, Aa,k(x) represent the fluctuation modes of gauge fields on the

fuzzy sphere S2
F given in a suitable basis which is labeled by k. It is possible

to find out how the expansion (3.36) and relevant part of (3.49) are related

to each other but being unnecessary for our purpose, it will not be carried

out here. In the light of the analysis of the previous subsection, one would

expect that Aa,k acquire masses with large gaps of the order of KK scale and

therefore they will not contribute the LEA of the scalar sector. A detailed

analysis proving this result is given in the appendix C of [9] and will not be

discussed here. The same analysis also show that the lowest lying mode j = 0

yields the mass of the fluctuations ϕ(y) in the radial component of Aa. We

can find out the mass of this excitations as follows. If we insert the vacuum

configuration Φa(y) = X
(2`+1)
a ⊗ (α1n + ϕ(y)) into the potential term in (3.8),

assuming, g2 ≈ 1
g̃2
, we obtain

V (ϕ(y)) = g2Tr
(
(ΦaΦa + b̃)2

)
= g2Tr

((
X(2`+1)
a X(2`+1)

a

(
α2 + 2αϕ(y) + ϕ2(y)

)
+ b̃

)2

+O(ϕ3)

)

= g2Tr
(
C2

2α
4 + (4C2

2α
2 + 2C2

2α
2 − 2C2b̃)ϕ

2 + (4C2
2α

3 − 4C2αb̃)ϕ

− 2C2b̃α
2 + b̃2 +O(ϕ3)

)
= Trn

(
g2C2

2ϕ(y)2 +O(ϕ3)
)
, (3.50)

where we have taken α2 ≈ 1 and b̃ ≈ C2. This means that after the spon-

taneously symmetry breaking of SU(N ) symmetry, the field ϕ acquire a mass

(mΦ) which can be interpreted as the order parameter of the Higgs mechanism

and we will give its explicit form below. All these results indicate that the model

emerging after the breaking of SU(N ) symmetry behaves as an effective U(n)

gauge theory over M4×S2
F ; with KK modes on S2

F of the radius given in (3.47).

Putting together the gauge and scalar sectors LEA action given at the lowest
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KK modes reads

SLEA = −
∫
d4yTrn

(
1

4g2
F 0†
µνF

0µν +Dµϕ(y)Dµϕ(y)C2 + g2C2
2ϕ(y)2

)
+ Sint

(3.51)

where ϕ(y) have the mass m2
ϕ = g2

R2C2 reinserting R.

3.2.4 Kaluza-Klein Mode Expansion of Type 2 Vacuum

Now, let us consider the Kaluza-Klein mode expansion for the vacuum con-

figuration (3.34). Here, the maximal subgroup of SU(N ) commuting with Φa

is

K := SU(n1)× SU(n2)× U(1) , (3.52)

and it will turn out to be the gauge group of the emerging effective model over

M4 × S2
F . Our purpose is to determine the mass spectrum of the KK modes of

the gauge fields. The analysis outlined here is based on the extensive discussion

given in [9]. To proceed we write the gauge field as follows

Aµ =

 A
(1)
µ A+

µ

A−µ A
(2)
µ

 , (3.53)

where A(1)
µ and A

(2)
µ are square matrices of size, (2`1 + 1)n1 × (2`1 + 1)n1 and

(2`2 +1)n2×(2`2 +1)n2, respectively, while A+
µ and A−µ are rectangular matrices

of the size (2`1 + 1)n1 × (2`2 + 1)n2 and (2`2 + 1)n2 × (2`1 + 1)n1, respectively.

Since Aµ is anti-Hermitian, we have for the blocks in (3.53)

(A(1)
µ )
†

= −(A(1)
µ ) , (A(2)

µ )
†

= −(A(2)
µ ) , (A+

µ )
†

= −(A−µ ) , (A−µ )
†

= −(A+
µ ) .

(3.54)

The KK expansion of the gauge field component A(1),(2)
µ can be given by intro-

ducing the polarization basis tensors as before

A(1)
µ =

2`1∑
j=0

j∑
m=−j

T
(1)
jm ⊗ A

(1)
µ,jm(y) , A(2)

µ =

2`2∑
j=0

j∑
m=−j

T
(2)
jm ⊗ A

(2)
µ,`m(y) , (3.55)
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where T (1)
jm and T (2)

jm are (2`1 + 1)× (2`1 + 1) and (2`2 + 1)× (2`2 + 1) matrices

respectively. As we mentioned earlier, the polarization tensors are the eigenstate

of the operator Li given in (2.69). Here, we have

L2T
(1)
jm = j(j + 1)T

(1)
jm , L2T

(2)
jm = j(j + 1)T

(2)
jm . (3.56)

We note that A(1)
µ,`m(y) and A

(2)
µ,`m(y) are u(n1) and u(n2)-valued gauge fields

respectively and they transform as vectors on M4.

Since A+
µ and A−µ are the rectangular matrices, we can not expand them in terms

of these polarization tensors. However, it is possible to define the specific tensors

which form a basis for the vector space including the rectangular matrices. These

tensors are closely related to the spherical harmonics Yjm on S2 and encountered

in discussion of spin orbit coupling in non-relativistic quantum mechanics [66].

In the subsection (2.5.1), we have shown that how su(2) rotation generators act

on the complex scalar fields in the form of rectangular matrices. Here, modifying

this formalism for any gauge field A of the size (2`1 + 1)× (2`2 + 1), we see that

the su(2) rotation acting on A is defined by

LiA = L`1i A− AL
`2
i , (3.57)

where L`1i are (2`1 +1)× (2`1 +1)-dimensional while L`2i are (2`2 +1)× (2`2 +1)-

dimensional su(2) generators, respectively and the SU(2) representation content

of the operator Li in (3.57) is given by the Clebsch-Gordan decomposition

`1 ⊗ `2 = |`1 − `2| ⊕ · · · (`1 + `2) . (3.58)

Hence, the spectrum of L2 is deduced from (3.58) to be

j′(j′ + 1) , j′ = |`1 − `2| , · · · , (`1 + `2) . (3.59)

The corresponding eigenstates of the operator L2 can be expressed in terms

of the generalized harmonics given in (2.88). In this section, we prefer to use

the following notation for these generalized harmonics in order to avoid any

notational confusion

T̃j′m , j′ =
k

2
, · · · , `1 + `2 , m = −j′ , · · · , j′ , (3.60)
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where k = 2(`2 − `1) . For given (`1 , `2), there are
∑(`1+`2)

j′= k
2

(2` + 1) = (2`1 +

1)(2`2 + 1) linearly independent tensors T̃j′m. Hence, they form a basis for the

algebra of (2`1 + 1) × (2`2 + 1) matrices. We may summarize these results by

writing

L2T̃j′m = j′(j′ + 1)T̃j′m , (3.61)

[38]. For completeness let us note that L2 is determined by applying the formula

(3.57) twice. This gives

L2A = (L`1i )2A− 2L`1i AL
`2
i + A(L`2i )2 . (3.62)

Using these information, it is possible to expand the gauge field components A+
µ

and A−µ as

A+
µ =

`1+`2∑
j′= k

2

j′∑
m=−j′

T̃+
j′m ⊗ A

+
µ,j′m(y) , A−µ =

`1+`2∑
j′= k

2

j′∑
m=−j′

T̃−j′m ⊗ A
−
µ,j′m(y) , (3.63)

where T̃+
j′m and T̃−j′m are (2`1 + 1)× (2`2 + 1) and (2`2 + 1)× (2`1 + 1) matrices,

respectively and it is seen that A+
µ,`m(y) is a vector field in the bifundamental

representation (n1, n̄2) of u(n1) × u(n2) while A−µ,`m(y) is in the bifundamental

representation (n2, n̄1) of u(n1)× u(n2).

The mass of spectrum of KK modes of Aµ can be determined from by the last

term of (3.37). With both diagonal and off-diagonal contributions we have∫
Tr([Aµ,Φa]

†[Aµ,Φa]) = Trn
( 2`1∑

j=0

m2
j,1A

(1)†
µ,jm(y)A

(1)µ
jm(y)

+

2`2∑
j=0

m2
j,2A

(2)†
µ,jm(y)A

(2)µ
jm(y) +

`1+`2∑
j′= k

2

2m2
j′;±(A+

µ,j′m(y))
†
A+µ

j′m(y)

)
+ higher order terms . (3.64)

The diagonal components of the commutator [Aµ,Φa] gives the adjoint actions

−[X
(2`1+1)
a , A

(1)
µ ] and −[X

(2`2+1)
a , A

(2)
µ ] and for the off-diagonal components, we

obtain the following terms(
−α1X

(2`1+1)
a A+

µ + α2A
+
µX

(2`2+1)
a

)
,
(
−α2X

(2`2+1)
a A−µ + α1A

−
µX

(2`1+1)
a

)
.

(3.65)
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Spectrum of the diagonal fluctuations is easily determined by straightforward

calculations for each diagonal blocks, similar to the one performed in (3.43) and

(3.44). We find that A(1)
µ,jm and A(2)

µ,jm acquire the masses

m2
j,1 =

α2
1g

2

R2
j(j + 1) , j = 0 , · · · , 2`1 ,

m2
j,2 =

α2
2g

2

R2
j(j + 1) , j = 0 , · · · , 2`2 . (3.66)

For the off-diagonal contribution, it is better to use the following identity;

Tr
(
[Aµ,Φa]

†[Aµ,Φa]
)

= −Tr ([Φa, Aµ][Φa, A
µ])

= −2Tr (ΦaAµΦaA
µ − ΦaΦaAµA

µ) , (3.67)

that follows from the cyclicality of the trace. Then, we obtain the following

contribution from the off-diagonal terms

−2Tr
(
α1α2X

(1)
a A+

µX
(2)
a A−µ + α1α2X

(2)
a A−µX

(1)
a A+

µ

−α2
1(X(1)

a )2A+
µA
−
µ − α2

2(X(2)
a )2A−µA

+
µ

)
, (3.68)

where we have introduced the notations X2`1+1
a =: X

(1)
a and X2`2+1

a := X
(2)
a .

First two terms in (3.68) can be written as

−2α1α2Tr(X1
aA

+
µX

2
aA
−
µ +X2

aA
−
µX

1
aA

+
µ )

= −2α1α2Tr
(

(X1
aA

+
µ − A+

µX
2
a)(X2

aA
−
µ − A−µX1

a) + (X1
a)2A+

µA
−
µ

+ (X2
a)2A−µA

+
µ

)
= −2α1α2Tr

(
(LaA+

µ )(LaA−µ ) + (X1
a)2A+

µA
−
µ + (X2

a)2A−µA
+
µ

)
= −2α1α2Tr

(
− (L2A+

µ )A−µ + (X1
a)2A+

µA
−
µ + (X2

a)2A−µA
+
µ

)
.

(3.69)

It is instructive to give the calculation required for the first term in descending
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form. The second line to the last line of this equation, we have

Tr
(
(LaA+

µ )(LaA−µ )
)

= Tr
(

(L`1a A
+
µ − A+

µL
`2
a )(L`2a A

−
µ − A−µL`1a )

)
=Tr

(
L`1a A

+
µL

`2
a A
−
µ − L`1a A+

µA
−
µL

`1
a − A+

µ (L`2a )
2
A−µ + A+

µL
`2
a A
−
µL

`1
a

)
=− Tr

((
(L`1a )

2
A+
µ + A+

µ (L`1a )
2 − 2(L`1a A

+
µL

`2
a )
)
A−µ

)
=− Tr

(
(L2A+

µ )A−µ
)
, (3.70)

where we have used (X
(1)
a A+

µ−A+
µX

(2)
a ) = LaA+

µ and (X
(2)
a A−µ−A−µX

(1)
a ) = LaA−µ

from (3.57). Substituting for the relevant terms in (3.68) and (3.69) and using

the expansion (3.63) and noting that Tr
(
T̃+
j′m′T̃

−
j′′m′′

)
= δj′j′′δm′m′′ , we have∑

j′m

(
− 2α2

1X
2
1−2α2

2X
2
2 + 2α1α2

(
j′(j′ + 1)

+ (X1
a)2 + (X2

a)2
))

(A+
µ,j′m(y))

†
A+
µ,j′m(y) . (3.71)

The off-diagonal excitations have therefore the mass spectrum given by

m2
j′,± =

g2

R2

(
α1α2j

′(j′ + 1) + (α1 − α2)(X2
2α2 −X2

1α1)
)
. (3.72)

Using (X1
a)2 = −`1(`1 +1) , (X2

a)2 = −`2(`2 +1) and the following approximation

for α1 and α2 (as discussed in section 3.1.2)

α1 = 1− m1

2`1 + 1
+O(

1

`2
1

) , m1 = 2(`1 − ˜̀) ,

α2 = 1− m2

2`2 + 1
+O(

1

`2
2

) , m2 = 2(`2 − ˜̀) , (3.73)

the mass spectrum of mj′,± in (3.72) can be written as

m2
j′,± ≈

g2

R2

(
j′(j′ + 1) +

1

4
(m2 −m1)2 +O(

1

N
)

)
. (3.74)

≈ g2

R2

(
j′(j′ + 1) + (`2 − `1)2 +O(

1

N
)

)
.

From (3.66), we see that zero mass KK modes are those given by the lowest

lying modes A(1)
µ,00 and A(2)

µ,00 in the diagonal blocks. These are su(n1) and su(n2)

valued gauge fields. From (3.74), it can be seen that there is no massless gauge

fields from the off-diagonal bifundamental fluctuations fields, i.e. A+,−
µ,`m, since

there is an additional term in (3.74) with `2 − `1 = k
2
6= 0. This indicates
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that because of nonzero magnetic monopole number 2k, we can not obtain the

massless KK modes from the off-diagonal fluctuations fields.

Considering only the lowest lying KK modes A(1)
µ,00 and A(2)

µ,00, we obtain the LEA

in the form of (3.51) for each mode A(1)
µ,00 and A(2)

µ,00. Noting that A(1)
µ,00 and A(2)

µ,00

are su(n1) and su(n2) valued, respectively, we observe that our gauge theory

on M4 behaves like an the effective SU(n1) × SU(n2) × U(1) gauge theory on

M4 × S2
F after the symmetry breaking of SU(N ).

3.3 Equivariant Parametrization of Yang-Mills Theory on M× S2
F

Let us consider the action in (3.2) with the same field content written on d-

dimensional manifoldM

S =

∫
M
ddyTr

(
− 1

4g2
F †µνF

µν − (DµΦa)
†(DµΦa)

)
− 1

g̃2
Tr
(
F †abFab

)
−g2Tr

(
(ΦaΦa + b̃)2

)
(3.75)

where yµ = (y1 , · · · , yd) stands for a set of local coordinates on M, Φa are

dimensionless and we have suppressed a scaling constant γ−2 in the covariant

derivative term where γ has the dimensions [m]d/2−1. We see that g has di-

mensions [m]−d/2+2, while restoring the dimension of Φa, g̃ has the dimension of

[m]d/2−2. Without the constraint term V2(Φ), it is possible to express the action

(3.75) of emerging model on M× S2
F as the L2-norm of FMN by the scaling

Φ̃a =
√

2gΦa and taking gg̃ = 1. Then, we may have [26]

S =

∫
dd y

1

4g2
Trn(2`+1)F

†
MNF

MN + g2V2(Φ) . (3.76)

We are primarily interested in the vacuum configuration (3.14) for the action

(3.75). Clearly, the discussion in section 3.1 indicates that a U(n) gauge theory

on manifoldM×S2
F can be conjectured to emerge after the spontaneous breaking

of the SU(N ) gauge symmetry of (3.75) by the vacuum configuration (3.14). In

this section, we are going to focus on the U(2) gauge theory on M× S2
F and

initially treat the problem of determining the SU(2)-equivariant modes of the

gauge fields. Subsequently, this data is going to employed to obtain a low energy

effective action (LEA) onM by integrating out (tracing over) the fuzzy sphere
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S2
F . Equivariant field modes and LEA obtained in this manner provides us

with another viewpoint, complementing the KK-modes analysis of section 3.2,

supporting effective gauge theory interpretation of the model onM× S2
F . Our

discussion in this section is based on the treatment given in [22].

3.3.1 Equivariant Fields on M× S2
F

In order to proceed, we consider choosing the SU(2)-symmetry generators as

ωa = X(2`+1)
a ⊗ 12 − 12`+1 ⊗

iτa
2
, ωa ∈ u(2`+ 1)⊗ u(2) , (3.77)

where τa are the Pauli matrices. It is easy to check that these generators satisfy

the SU(2) commutation relations

[ωa, ωb] = εabcωc . (3.78)

ωa carries the tensor product representation ` ⊗ 1/2 ≡ (`+ 1/2) ⊕ (`− 1/2).

What physics do ωa’s describe? We observe that adjoint action of ωa imposes

rotational symmetry up to a SU(2) gauge transformation. This is seen, since ad-

joint action of Xa generates the infinitesimal rotations on S2
F , while the adjoint

action of the Pauli matrices generate the infinitesimal SU(2) gauge transforma-

tion.

Let us impose the SU(2)-equivariance conditions on the gauge fields as follows

[ωa , Aµ] = 0 , (3.79)

[ωa, Ab] = εabcAc . (3.80)

First of these equations means that we require Aµ to transform as a scalar under

combined action of rotations of S2
F and SU(2) gauge transformation while the

second equation indicates that Aa transform as a vector under the same action.

It is possible to derive the dimensions of set of solutions to Aµ and Aa from the

SU(2) IRR content of the adjoint action of ωa. We can expand the representation

content of the adjoint action of ωa into Clebsch-Gordan series as

(`⊗ 1

2
)⊗ (`⊗ 1

2
) = 2 0⊕ 4 1⊕ · · · , (3.81)
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where the coefficients in bold denote the multiplicities of respective IRR in front

of which they appear. From this expansion , we observe that under the adjoint

action of ωa, there are two linearly independent objects transforming as scalars

(spin 0) and four linearly independent objects transforming as vectors (spin

1). Hence, the solution space of Aµ is two-dimensional and that of Aa is four-

dimensional.

In order to parametrise Aµ and Aa, let us first find the rotational invariants under

the adjoint action of ωa. X
(2`+1)
a ⊗ τa and 1(2`+1)2 are the rotational invariants

under the adjoint action of ωa since 1(2`+1)2 trivially commutes with ωa and we

find

[ωa, X
(2`+1)
b ⊗ τb] = [X(2`+1)

a ⊗ 12 − 12`+1 ⊗
iτa
2
, X

(2`+1)
b ⊗ τb] ,

= εabcX
(2`+1)
c ⊗ τb + εabcX

(2`+1)
b ⊗ τc = 0 ,

= 0 , (3.82)

where anti-symmetry of the permutation symbol is used in the last line of the

calculations.

Let us consider a linear combination of Xa ⊗ τa and 12(2`+1) which will allow us

to express several formula in what follows in a compact manner and simplify the

several of the ensuing calculations:

Q :=
Xa ⊗ τa − i

2
1(2`+1)2

`+ 1
2

. (3.83)

Here, Q is an anti-Hermitian “idempotent” since Q† = −Q and Q2 = −12(2`+1).

Therefore, the parametrization of Aµ in terms of Q and identity matrix 1 may

be written as

Aµ =
1

2
aµ(y)Q+

1

2
ibµ(y)12(2`+1) , (3.84)

where aµ(y), bµ(y) are Hermitian U(1) gauge fields on the manifoldM. We stress

that imposing the symmetry constraint (3.79) causes the breaking of U(2) gauge

symmetry down to U(1) × U(1). Under the action of U = e
1
2
θ1(y)Qe

i
2
θ2(y)1 , U ∈

U(1)×U(1), Aµ remains covariant with a′µ = aµ + ∂µθ1 and b′µ = bµ + ∂µθ2. Let
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us explicitly show this invariance;

Aµ → UAµU
−1 + ∂µUU

−1 = Aµ +
1

2
(∂µθ1Q+ i∂µθ21)

=
1

2
(aµ + ∂µθ1)Q+

i

2
(bµ + ∂µθ2) ,

=
1

2
a′µQ+

i

2
b′µ1 = A′µ . (3.85)

For the parametrization of Aa, we can write

Aa =
1

2
ϕ1(y)[Xa, Q] +

1

2
(ϕ2(y)− 1)Q[Xa, Q] + i

1

2
ϕ3(y)

1

2(`+ 1
2
)
{Xa, Q}

+
1

2(`+ 1
2
)
ϕ4(y)ωa ,

(3.86)

where {·, ·} stands for anti-commutator and ϕi are Hermitian scalar fields over

M. It can be easily shown that the four basis [Xa, Q] , Q[Xa, Q] , {Xa, Q} , ωa
elements fulfill the vector condition in the equation (3.80); As an example, let

us show the first one

[ωa, [Xb, Q]] = [ωa, Xb]Q−Q[ωa, Xb] +Xb[ωa, Q]− [ωa, Q]Xb ,

= εabc[Xc, Q] , (3.87)

where last two terms in the first line are zero because Q is rotational invariant.

We would like to note that we have introduced the real scalar fields ϕ1 , ϕ2 , ϕ3

and ϕ4 onM as coefficients of these vectors. We will show that some of these

scalar fields naturally combine to form complex scalars after we trace over the

extra dimension S2
F .

In the commutative limit `→∞, using 2.71 Aa becomes

Aa −−−→
`→∞

−
(
i

2
ϕ1(y)Laq +

i

2
(ϕ2(y)− 1) qLaq +

1

2
ϕ3(y)xaq +

1

4
ϕ4(y)xa

)
.

(3.88)

It can be seen from (3.83) and (2.63) that q is the commutative limit of Q given

as q := −iτ · x. In this limit, the fuzzy sphere S2
F reduces to ordinary two

sphere S2 and it is seen that we have three components of Aa. As we mentioned

before in section 2.6, we can eliminate the normal component of gauge fields by

imposing the constraint xaAa = 0. This constraint is fulfilled if and only if by

taking ϕ3 = ϕ4 = 0. At this point, we can see that this theory have the same

structure as the spherical symmetric gauge field overM× S2 [67].
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3.3.2 Obtaining the Low Energy Effective Action

Now, we are ready to substitute the equivariant gauge fields Aµ in (3.84) and Aa
in (3.86) into the Yang-Mills action (3.75) and trace it over S2

F . It is convenient

to denote the reduced action in the form

S :=

∫
ddy (LF + LG + V1 + V2) , (3.89)

where each term in the integrand in (3.89) is evaluated below. In the calculations

leading to the result below, the identities

{Q, [Xa, Q]} = 0 , {Xa, [Xa, Q]} = 0 , [Q, {Xa, Q}] = 0 ,

[Xa, {Xa, Q}] = 0 , sum over repeated a is implied , (3.90)

are repeatedly made use of. We obtain

LF =
1

4g2
Tr
(
F †µνF

µν
)

=
1

16g2

(
fµνf

µν + hµνh
µν − 2

2`+ 1
fµνh

µν

)
, (3.91)

where fµν = ∂µaν − ∂νaµ is the field strength tensor of the U(1) gauge field aµ
whereas hµν = ∂µbν − ∂νbµ is that of bµ. With the equivariant gauge fields, the

covariant derivative of scalar fields becomes

DµΦa =
1

2
(Dµϕ1 +QDµϕ2) [Xa, Q] +

i

4(`+ 1
2
)
∂µϕ3{Xa, Q}+

1

2(`+ 1
2
)
∂µϕ4ωa ,

(3.92)

where Dµϕi = ∂µϕi + εjiaµϕj. Then, the gradient term can be evaluated to be

LG = Tr
(
(DµΦa)

†(DµΦa)
)

=
`(`+ 1)

2(`+ 1
2
)2

(
(Dµϕ1)2 + (Dµϕ2)2

)
+
`(`+ 1)(`2 + `− 1/4)

4(`+ 1
2
)4

(∂µϕ3)2

+
`(`+ 1)

2(`+ 1
2
)3
∂µϕ3∂

µϕ4 +
(`2 + `+ 3/4)

4(`+ 1
2
)2

(∂µϕ4)2 . (3.93)

Here, it is possible to interpret ϕ1 + iϕ2 as a complex scalar field carrying charge

+1 under aµ since Dµϕ = ∂µϕ+ iaµϕ. it can easily be seen that

(Dµϕ1)2 + (Dµϕ2)2 = (∂µϕ1)2 + (∂µϕ2)2 + 2aµϕ1∂µϕ2 − 2aµϕ2∂µϕ1

= DµϕDµϕ . (3.94)
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Proceeding to write the potential term V1, let us first indicate that the dual of

Fab can be written in the compact form

1

2
εabcFab =

1

2
εabc[Φa,Φb]− Φc

=
1

2
W1(ϕ1 + ϕ2Q)[Xa, Q] +

i

4
(|ϕ|2 −W2)

{Xa, Q}
`+ 1

2

+
W3

4

ωc
(`+ 1

2
)2
,

(3.95)

where we have introduced, for notational brevity, Wi , (i = 1, 2, 3) which are the

certain combinations involving the scalar fields ϕ3 and ϕ4 are listed in Appendix

A. Then, the potential term V1 can be calculated to give

V1 =
1

g̃2
Tr(F †abFab) =

1

g̃2

(
X1|ϕ|4 + X2|ϕ|2 + X3

)
, (3.96)

where, one again Xi , (i = 1, 2, 3) are introduced for notational brevity and their

explicit form as certain combinations involving the scalar fields ϕ3 and ϕ4 are

also given in appendix A.

For the evaluation of the last term in (3.89), an intermediate step is given as

ΦaΦa + `(`+ 1) = Y1 + iY2Q , (3.97)

where Y1 ,Y2 are given in appendix A. After another few steps of calculation,

this yields the V2 term as

V2 = g2Tr
(
(ΦaΦa + b̃)2

)
= g2Tr

(
(ΦaΦa + `(`+ 1))2

)
= g2

(
Y2

1 + Y2
2 +

1

`+ 1
2

Y1Y2

)
. (3.98)

3.3.3 Vacua of the Reduced Potential V1 + V2

Another step forward is to examine the vacua of our potential terms V1 and V2.

We recall that both V1 and V2 are positive definite. To get the field configura-

tion minimizing V1, this simply implies that we need to determine the zeros of

Fab. Since [Xa, Q] , Q[Xa, Q] , {Xa, Q} and ωa are linearly independent, it can be

easily seen that in order to obtain Fab = 0, the second and third terms in (3.95)

67



imply |ϕ|2 −W2 = 0 and W3 = 0, so we have the following conditions

|ϕ|2 = (1− ϕ3)

(
1 +

1

`+ 1
2

ϕ4 −
1

2(`+ 1
2
)2
ϕ3

)
, (3.99)

0 =
`(`+ 1)

(`+ 1
2
)2

(ϕ2
3 − 2ϕ3) + ϕ2

4 +
2(`2 + `− 1/4)

`+ 1
2

ϕ4 . (3.100)

Multiplying the first part in (3.95) with (ϕ1 − ϕ2Q), we obtain

W1(ϕ1 + ϕ2Q)(ϕ1 − ϕ2Q) =W1|ϕ|2 = 0 , (3.101)

which can be rewritten as

0 = |ϕ|
(
`2 + `− 1/4

(`+ 1
2
)2

ϕ3 +
1

`+ 1
2

ϕ4

)
. (3.102)

Solving these three conditions (3.99), (3.100) and (3.102), we can obtain the

vacua of potential V1. There are five sets of solution for these equations given

as follows

i
)
|ϕ| = 1 , ϕ3 = 0 , ϕ4 = 0 , (3.103a)

ii
)
|ϕ| = 1 , ϕ3 = 2 , ϕ4 =

−2(`2 + `− 1/4)

`+ 1
2

, (3.103b)

iii
)
|ϕ| = 0 , ϕ3 = 1 , ϕ4 =

1

2(`+ 1
2
)
, (3.103c)

iv
)
|ϕ| = 0 , ϕ3 = 1 , ϕ4 =

−2`(`+ 1)

`+ 1
2

, (3.103d)

v
)
|ϕ| = 0 , ϕ3 = 1± (`+

1

2
) , ϕ4 = −`

2 + `− 1/4

`+ 1
2

± 1

2
. (3.103e)

When we also consider the zeros of potential term V2 which are given by Y1 = 0

and Y2 = 0, we see that only (3.103a) fulfills this conditions so V1 and V2 has

the vacua given by (3.103a) in (3.103).

In commutative limit (`→∞), the potentials V1 and V2 take the form

V1(Φ) −−−→
`→∞

1

g̃2

(
1

2
(|ϕ|2 + ϕ3 − 1)2 + |ϕ|2ϕ2

3 +
1

2
ϕ2

4

)
, (3.104)

V2(Φ) −−−→
`→∞

g2`2(ϕ2
4 + ϕ2

3) . (3.105)

In (3.105), we consider in fact the limit `→∞, g→ 0 with g` finite but small.

The reason for this will be clear in the next section. It can be easily seen that

(3.103a) is the vacuum configuration for V1 and V2 in the stated limit.
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3.3.4 Vortex Type Solutions

We now examine the large ` limit of the low energy action in detail. Focusing

onM = R2, we determine the vortex type solutions for i) ` → ∞, g → 0 with

g` is finite but small and ii) where ` is large but finite and g → ∞. These two

different limits governed by ` and g enable us to handle the constraint term V2

in effectively two extreme cases.

3.3.4.1 Case i)

In the commutative limit `→∞, we obtain the reduced LEA

S =

∫
`→∞

d2y

(
1

16g2
(fµνf

µν + hµνh
µν) +

1

2
|Dµϕ|2 +

1

4

(
(∂µϕ3)2 + (∂µϕ4)2

)
+

1

g̃2

(
1

2
(|ϕ|2 + ϕ3 − 1)2 + |ϕ|2ϕ2

3 +
1

2
ϕ2

4

))
,

(3.106)

where we have not written down the V2 term with the proviso that g` is small.

Here, we can see that there are no interaction terms for both the real scalar

field ϕ4 and gauge field bµ, so they are decoupled from the rest of action. Since

they do not give any additional information in the equation of motions, from

now on we can ignore these fields. The remaining fields are the U(1) gauge

field aµ, the complex scalar field ϕ and the real scalar field ϕ3. The vacuum

configuration given in (3.103a) has the structure of S1 with first homotopy group

π(S1) = Z. This indicates that the vortex solution on R2 are characterized by

an integer winding number. To search for the vortex solutions, let us consider

the SO(2) ≈ U(1) rotationally symmetric ansatz [68] as

ϕ = ξ(r)eiNθ , ϕ3 = ρ(r) , a = aθ(r)dθ , ar = 0 , (3.107)

written in polar coordinate on R2 where grr = 1 , gθθ = r2 , grθ = 0 and N is

winding number. The form of fµνfµν and |Dµϕ|2 with this ansatz can be found
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as follows

fµνf
µν =

1

r2
frθfrθ =

1

r2
(∂raθ)

2 ,

|Dµϕ|2 = (∂rϕ+ iarϕ)(∂rϕ̄− iarϕ̄) +
1

r2
(∂θϕ+ iaθϕ)(∂θϕ̄− iaθϕ̄)

= (∂rξ)
2 +

1

r2
ξ2(N + aθ)

2 , (3.108)

then our action becomes

S = 2π

∫ ∞
0

dr

(
1

8g2r
a′θ

2
+
r

2
ξ′

2
+

1

2r
(N + aθ)

2ξ2 +
r

4
ρ′

2

+
r

g̃2

(
1

2
(ξ2 + ρ− 1)2 + ξ2ρ2

))
, (3.109)

where primes are denoting the derivatives with respect to r.

The Euler-Lagrange equations can be derived from (3.109) to be

ξ′′ +
1

r
ξ′ −

(
1

r2
(N + aθ)

2 +
2

g̃2
(ξ2 + ρ2 + ρ− 1)

)
ξ = 0 ,

a′′θ −
1

r
a′θ − 4g2(aθ +N)ξ2 = 0 ,

ρ′′ +
1

r
ρ′ − 2

g̃2
(ξ2 + 2ξ2ρ+ ρ− 1) = 0 . (3.110)

These are nonlinear coupled differential equations and we do not know their

analytic solutions. However, it is possible to find their approximate solutions in

the small r and large r regions. For r → 0, using the Frobenius method, and

power series expansion around r = 0, we obtain the solutions

ξ = ξ0r
N +O(rN+2) , aθ = a0r

2 + 0(r4) , ρ = ρ0 +O(r2) . (3.111)

For r → ∞, finiteness of the action indicates some important features of our

fields. It is easy to see that the action (3.109) is finite if ξ(r) → 1 , aθ(r) =

−N , ρ(r) → 0 as r → ∞. Using these profiles, the asymptotic behavior of our

fields can be determined by adding small fluctuations to these vacuum values

and thus writing

ξ = 1− δξ , aθ = −N + δa , ρ = δρ . (3.112)

Now, it is possible to solve δχ , δa and δλ by inserting our fields (3.112) in

the Euler-Lagrange equations (3.110). Assuming that ( δa
r

)2 is subleading corre-
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sponding to δξ and δρ, we obtain the following differential equations

δξ′′ +
1

r
δξ′ − 2

g̃2
(−δρ+ 2δξ) = 0 , (3.113)

δa′′ − 1

r
δa′ − 4g2δa = 0 , (3.114)

δρ′′ +
1

2
δρ′ − 2

g̃2
(3δρ− 2δξ) = 0 . (3.115)

Let us start with finding the solution to the differential equation (3.114). Here,

setting δa = rδã, this equation becomes the modified Bessel equations at order

1

r2δã′′ + rδã′ − δã(4g2r2 + 1) = 0 . (3.116)

Two linearly independent solutions to this modified Bessel equation are modified

Bessel function of the first kind I1(2gr) and second kind K1(2gr). Here, since we

are looking for solution for large r and I1(2gr) diverges in this limit, the solution

to this equation is K1(2gr). Hence, the solution to (3.114) is constructed as

δa = α1rK1(2gr) . (3.117)

For the solution to coupled differential equations (3.113) and (3.115), let us

define a linear operator D = ∂2

∂r2
+ 1

r
∂
∂r
, then they become

(D − 4

g̃2
)δξ +

2

g̃2
δρ = 0 , (D − 6

g̃2
)δρ+

4

g̃2
δξ = 0 . (3.118)

Multiplying first equation by (D − 6
g̃2

), we obtain (D − 8
g̃2

)(D − 2
g̃2

)δξ = 0.

This means that there are two second order differential equation for δξ in the

following form

δξ′′ +
1

r
δξ′ +

8

g̃2
δξ = 0 , δξ′′ +

1

r
δξ′ +

2

g̃2
δξ = 0 . (3.119)

These are the modified Bessel equations at order 0. Taking the regular solutions

at r →∞, we have

δξ = α2K0(
√

2r/g̃) + α3K0(2
√

2r/g̃) . (3.120)

It is easy to see that we have the same differential equation (3.119) for δρ and

after a straightforward calculation, its solution is found to be

δρ = α2K0(
√

2r/g̃)− 2α3K0(2
√

2r/g̃) . (3.121)
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Here, our assumption that ( δa
r

)2 is subleading to δξ , δρ yields the condition

4g >
√

2
g̃
.

It is known from general consideration in Vortex dynamics that if field strength

dominates the asymptotic profile than the vortices repel and they attract if

scalars are dominant [68]. We can easily determine the leading order behavior of

the field profiles in (3.117), (3.120) and (3.121). Since K0(2
√

2r/g̃) is subleading

to K0(
√

2r/g̃), we should deal with the latter which indicates that scalar fields

decay like 1√
r
e−
√
2
g̃
r as r → ∞. Whereas for the field strength, we have B =

f12 = 1
2
∂raθ and it decays like 1√

r
e−2gr. Hence, the attractive-repulsive nature

of forces depends on the value of the coupling constants such that they are

attractive for gg̃ >
√

2
2

and repulsive for
√

2
4
< gg̃ <

√
2

2
. Thus, vortices of the

LEA corresponding to the standard Yang-Mills theory in (3.76) attract since

gg̃ = 1 in this case.

3.3.4.2 Case ii)

Here, we would like find the vortex solutions by taking large but finite ` and

g → ∞ which is equivalent to imposing the constraint ΦaΦa + `(` + 1) = 0 by

hand. This constraint is fulfilled by setting Y1 = 0 ,Y2 = 0 in equation (3.97)

and the solutions for ϕ3 and ϕ4 in leading powers of 1
`
can be constructed in

terms of |ϕ| as

ϕ3 = − 1

2`2
(1− |ϕ|2) +O(

1

`3
) , ϕ4 =

1

2`
(1− |ϕ|2) +O(

1

`2
) . (3.122)

Inserting these real scalar in the reduced action at the order 1
`
, we get

S =

∫
d2y

1

16g2

(
fµνf

µν + hµνh
µν − 1

`
fµνh

µν

)
+

1

2

(
1− 1

4`2

)
|Dµϕ|2

+
1

16`2
(∂µ|ϕ|2)2 +

1

2g̃2

(
1 +

1

2`2

)
(1− |ϕ|2)2 . (3.123)

Using the equation of motion of the field bµ enables us to find hµν = −fµν
2`
. We

substitute this in the action (3.123) to eliminate hµν .

Making the same symmetric ansatz as in (3.107), we construct the Euler-Lagrange
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equations for ξ(r) and aθ(r)

(
1− 1

4`2
+

ξ2

2`2

)(
ξ′′ +

ξ′

r

)
+

1

2`2
ξ′

2 − (1− 1

4`2
)

1

r2
(N + aθ)

2ξ

− 2

g̃2
(1 +

1

2`2
)(ξ2 − 1)ξ = 0

(3.124)

a′′θ −
a′θ
r
− 4g2(aθ +N)(1− 1

`2
)ξ2 = 0 . (3.125)

The solutions to ξ and aθ around r = 0 are the same as in the previous case

(3.111). For r →∞, the differential equations in (3.125) can be solved in terms

of modified Bessel functions as

δξ = β1K0(
2

g̃

√
(1 + 1/4`2)r) , δa = β2rK1

(
2g

√
(1− 1

`2
)r

)
, (3.126)

where ξ = 1− δξ , aθ = N + δa and β1 , β2 are constants. Here, the interval for

the attractive and repulsive vortices can be determined by performing a similar

calculation just as in the previous case. It is found as

gg̃ >

√
1 +

5

4`2
, for attractive vortices , (3.127)

1

2

√
1 +

5

4`2
< gg̃ <

√
1 +

5

4`2
, for repulsive vortices . (3.128)

For the standard Yang-Mills theory (gg̃ = 1), since scalar fields decay faster

than the field strength, these vortices repel each other in this model. Finally, it

is worth to note that ` → ∞ limit in (3.123) with hµν = −fµν
2`
→ 0 yields the

standard BPS vortex action [68].

3.4 Gauge Theory on M× S2
F × S2

F

3.4.1 A Deformation of N = 4 SYM

In this section, we focus our attention to the dynamical generation of the product

of two fuzzy sphere S2
F × S2

F from an SU(N ) gauge theory coupled to suitable

number of scalar fields. Let us consider an SU(N ) gauge theory coupled to six
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anti-Hermitian scalar fields Φi with the action [21,24]

S =

∫
M
ddyTr

(
− 1

4g2
F †µνF

µν − (DµΦi)
†(DµΦi)

)
− V (Φ) , i = 1, · · · , 6 ,

(3.129)

where Φi transform adjointly under the SU(N ) group action and also transform

in the vector representation of a global SO(6) ≈ SU(4) symmetry and V (Φ) is

such that it is invariant under these actions. If we consider the 4-dimensional

Minkovski space and take the potential term V (Φ) as

VN=4(Φ) = −1

4
g2
YM

6∑
ij

[Φi,Φj]
2 , (3.130)

the action (3.129) becomes the bosonic part of the N = 4 supersymmetric Yang

Mills theory [4, 5]. The global SO(6) symmetry of (3.129) is nothing but the

R-symmetry of the super Yang-Mills theory. We will show that considering the

action (3.129) with the potential terms

V (Φ) = VN=4(Φ) + Vbreak(Φ) . (3.131)

where Vbreak(Φ) contains cubic soft symmetry breaking and quadratic mass de-

formation terms which breaks N = 4 supersymmetry completely and global

SU(4) symmetry down to a subgroup. The product of two fuzzy sphere S2
F ×S2

F

emerges as a vacuum configuration after the spontaneously symmetry breaking

of SU(N ). Let us examine the action (3.129) with the potential term (3.131)

which is written in the form of [21,24]

V (Φ) =
1

g2
L

V1(ΦL) +
1

g2
R

V1(ΦR) +
1

g2
LR

V1(ΦL,R) + g2
LV2(ΦL) + g2

RV2(ΦR) ,

(3.132)

where we have divided six scalar fields Φi into two parts ΦL
a = Φa, ΦR

a =

Φa+3, (a = 1, 2, 3) and

V1(ΦL) = TrFL†
ab F

L
ab , FL

ab = [ΦL
a ,Φ

L
b ]− εabcΦL

c

V1(ΦR) = TrFR†
ab F

R
ab , FR

ab = [ΦR
a ,Φ

R
b ]− εabcΦR

c ,

V2(ΦL) = Tr(ΦL
aΦL

a + b̃L)2 , V2(ΦR) = Tr(ΦR
a ΦR

a + b̃R)2 ,

V1(ΦL,R) = TrF (L,R)†
ab F

(L,R)
ab , F

(L,R)
ab = [ΦL

a ,Φ
R
b ] . (3.133)
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Here, the covariant derivative in the action (3.129) can be rewritten in terms of

ΦL
a and ΦR

a as follows

(DµΦi)
†(DµΦi) = (DµΦL

a )†(DµΦL
a ) + (DµΦR

a )†(DµΦR
a ) . (3.134)

We note that the model (3.129) with the potential (3.133) breaks the global

SU(4) R-symmetry down to a global SU(2) × SU(2). The scalar fields Φi ≡
(ΦL

a ,Φ
R
a ) transform under the (1, 0) ⊕ (0, 1) representation of this global sym-

metry.

3.4.2 S2
F × S2

F Vacuum

Let us focus on the construction of the vacuum configuration for this problem.

It is easy to observe that the potential terms are positive definite and the mini-

mization of these terms require

FL
ab = 0 , FR

ab = 0 , −ΦL
aΦL

a = b̃L , −ΦR
a ΦR

a = b̃R , FL,R
ab = 0 . (3.135)

The most general solution to these equations is not known. However, by fol-

lowing a procedure similar to the one used in section (3.3), it is possible to

construct a specific solution to these equations. Let us take b̃L as the eigenvalue

of quadratic Casimir of an SU(2)L IRR labeled by `L and b̃R as the eigenvalue

of quadratic Casimir of an SU(2)R IRR labeled by `R

b̃R = `L(`L + 1) , b̃R = `R(`R + 1) , 2`L , 2`R ∈ Z . (3.136)

With the assumption N = (2`L + 1)(2`R + 1)n, we can choose the vacuum

configuration

ΦL
a = X(2`L+1)

a ⊗ 1(2`R+1) ⊗ 1n ,

ΦR
a = 1(2`L+1) ⊗X(2`R+1)

a ⊗ 1n ,

[ΦL
a ,Φ

R
b ] = 0 , (3.137)

where (X
(2`L+1)
a , X

(2`R+1)
a ) are the anti-Hermitian generators of SU(2)L×SU(2)R

in the irreducible representation (IRR) (`L, `R) satisfying the relations in (2.154).

Clearly, this vacuum configuration spontaneously breaks the SU(N ) symmetry

down to a U(n). Here, the commutant of ΦL
a and ΦR

a in (3.137) is U(n). In fact,
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this vacuum can be interpreted as the product of two fuzzy spheres S2
F × S2

F

generated by x̂La and x̂La where

x̂La =
i√

`L(`L + 1)
X(2`L+1)
a ⊗ 1(2`R+1) ,

x̂Ra =
i√

`R(`R + 1)
1(2`R+1) ⊗X(2`R+1)

a , (3.138)

are given in subsection 2.7.2.

Fluctuations about the vacuum configuration in (3.137) can be written as

ΦL
a = XL

a + ALa , ΦR
a = XR

a + ARa , (3.139)

where ALa , ARa ∈ u(2`L+1)⊗u(2`R+1)⊗u(n) and the notation XL
a = X

(2`L+1)
a ⊗

1(2`R+1)⊗ 1n and XR
a = 1(2`L+1)⊗X(2`R+1)

a ⊗ 1n has been introduced. With the

fluctuation terms ALa and ARa , FL
ab, F

R
ab, F

L,R
ab become

FL
ab = [XL

a , A
L
b ]− [XL

b , A
L
a ] + [ALa , A

L
b ]− εabcALc , (3.140)

FR
ab = [XR

a , A
R
b ]− [XR

b , A
R
a ] + [ARa , A

R
b ]− εabcARc , (3.141)

FL,R
ab = [XL

a , A
R
b ]− [XR

b , A
L
a ] + [ALa , A

R
b ] . (3.142)

It can be observed that (FL
ab , F

R
ab , F

L,R
ab ) have the form of curvature tensor on

the manifold S2
F × S2

F . Hence, we can interpret ALa , ARa , (a = 1, 2, 3)) as six

components of a U(n) gauge field over S2
F × S2

F and ΦL
a and ΦR

a are “covariant

coordinates" on S2
F × S2

F . In other words, after the spontaneously symmetry

breaking the gauge theory onM can be interpreted as the gauge theoryM×
S2
F × S2

F where the gauge fields are in the form of AM := (Aµ, A
L
a , A

R
a ) and the

field strength tensor is FMN := (Fµν , F
L
µa, F

R
µa, F

L
ab, F

R
ab, F

L,R
ab ) with

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] ,

FL
µa = DµΦL

a = ∂µA
L
a − [XL

a , Aµ] + [Aµ, A
L
a ] ,

FR
µa = DµΦR

a = ∂µA
R
a − [XR

a , Aµ] + [Aµ, A
R
a ] , (3.143)

and the rest given in (3.142) above. We note that by scaling Φ̃L
a =
√

2gΦL
a , Φ̃

R
a =

√
2gΦR

a and taking gL = gR =
√

2gL,R = g̃ and gg̃ = 1, this model can be

expressed as follows

S =

∫
dd y

1

4g2
Tr
(
F †MNF

MN
)

+ g2
LV2(ΦL) + g2

RV2(ΦR) . (3.144)
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This means that, apart from the constraint terms, it is possible to express the

Lagrangian of the emerging model onM×S2
F ×S2

F as the L2-norm of FMN with

given relation between couplings .

3.4.3 Equivariant Parametrization

Let us consider a U(4) gauge theory on M× S2
F × S2

F studied in [24]. In this

case, the symmetry group of S2
F ×S2

F is SU(2)×SU(2). Our aim is to construct

the most general SU(2) × SU(2)-equivariant gauge fields. Let us define the

symmetry generators ωa which generate SU(2)× SU(2) rotations up to a U(4)

gauge transformation as follows

ωLa = X(2`L+1)
a ⊗ 1(2`R+1) ⊗ 14 − 1(2`L+1) ⊗ 1(2`R+1) ⊗ iL

L
a

2
,

ωRa = 1(2`L+1) ⊗X(2`R+1)
a ⊗ 14 − 1(2`L+1) ⊗ 1(2`R+1) ⊗ iL

R
a

2
, (3.145)

where ωLa and ωRa are required to satisfy so(4) = su(2) ⊕ su(2) commutation

relations

[ωLa , ω
L
b ] = εabcω

L
c , [ωRa , ω

R
b ] = εabcω

R
c , [ωLa , ω

R
b ] = 0 . (3.146)

A suitable choice for (LLa , L
R
a ) is to take them to carry 4-dimensional (1

2
, 1

2
) IRR

of SU(2)× SU(2) [24] and satisfy the relations

[LLa , L
L
b ] = 2iεabcL

L
c , [LRa , L

R
b ] = 2iεabcL

R
c , [LLa , L

R
b ] = 0 ,

LLaL
L
b = iεabcL

L
c + δab14 , LRa L

R
b = iεabcL

R
c + δab14 . (3.147)

For concreteness, explicit 4× 4 matrix forms of LLa and LRa may be given as

LL1 =


0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0

 , LL2 =


0 0 i 0

0 0 0 −i
−i 0 0 0

0 i 0 0

 , LL3 =


0 −i 0 0

i 0 0 0

0 0 0 −i
0 0 i 0



LR1 =


0 0 0 i

0 0 −i 0

0 i 0 0

−i 0 0 0

 , LR2 =


0 0 i 0

0 0 0 i

−i 0 0 0

0 −i 0 0

 , LR3 =


0 −i 0 0

i 0 0 0

0 0 0 i

0 0 −i 0


(3.148)

77



To make this choice for (LLa , L
R
a ) clear, let us indicate a few facts regarding the

IRRs of U(4). This group has sixteen generators and its fundamental represen-

tation is four dimensional. This representation can be spanned by the sixteen

4 × 4 matrices LLa , LRa , LLaLRb ,1. (LLa , L
R
a ) generate the SU(2) × SU(2) sub-

group of U(4) as we see from (3.147) which is why they have been introduced

in (3.145). Relation of these generators to the more familiar Gell-Mann type

λi , i = 1 , · · · , 15 will not be worked out here as it is not necessary for our pur-

pose. Since our aim is to construct the SU(2)× SU(2)-equivariant gauge fields

of U(4) gauge theory, the choice for (LLa , L
R
a ) in (3.148) are suitable in order to

define the generators (ωLa , ω
R
a ).

SU(2) × SU(2)-equivariance on the U(4) gauge theory may be imposed by re-

quiring the constraints

[ωLa , Aµ] = 0 , [ωLa , A
L
b ] = εabcA

L
c ,

[ωRa , Aµ] = 0 , [ωRa , A
R
b ] = εabcA

R
c ,

[ωLa , A
R
b ] = 0 = [ωRa , A

L
b ] . (3.149)

In order to find the explicit parametrization of Aµ, ALa and ARa , we use the

Clebsch-Gordan series expansion of the adjoint action of (ωLa , ω
R
a );

[(`L, `R)⊗ (
1

2
,
1

2
)]⊗ [(`L, `R)⊗ (

1

2
,
1

2
)] ≡ 4(0, 0)⊕ 8(1, 0)⊕ 8(0, 1)⊕ · · · .

(3.150)

This expansion implies that the solution of Aµ is 4-dimensional and each of

the solution space of ALa and ARa is 8-dimensional. Here, we may define two

“idempotents” QL and QR as

QL =
X

(2`L+1)
a ⊗ 1(2`R+1) ⊗ LLa − i

2
1

`L + 1
2

, Q†L = −QL , Q2
L = −14(2`L+2)(2`R+1),

QR =
1(2`L+1) ⊗X(2`R+1)

a ⊗ LRa − i
2
1

`R + 1
2

, Q†R = −QR , Q2
R = −14(2`L+2)(2`R+1) .

(3.151)

The invariants under the adjoint action of (ωLa , ω
R
a ) can be expressed in terms

of QL, QR, QLQR and 1. Then, Aµ may be parametrized in terms of these

invariants,

Aµ =
1

2
aLµ(y)QL +

1

2
aRµ (y)QR +

1

2
iaL,Rµ QLQR +

i

2
bµ1 , (3.152)
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where aLµ(y), aRµ (y), aL,Rµ (y), bµ(y) are all Hermitian U(1) gauge fields. Here, we

can also see that imposing the constraint (3.149) causes the breaking of U(4)

symmetry down to U(1)⊗4. In a manner similar to the one given in section

3.3.1, it is possible to show that Aµ preserve the rotational symmetry under

the gauge transformation generated by U = e
1
2
QLθ1(y)e

1
2
QRθ2(y)e

1
2
QLQRθ3(y)e

i
2
1θ4(y)

with aL′µ = aLµ + ∂µθ1 , a
R′
µ = aRµ + ∂µθ2 , a

L,R′
µ = aL,Rµ + ∂µθ3 , and b′µ = bµ + ∂µθ4.

With the parametrization (3.152), the field strength tensor takes the following

form

Fµν =
1

2
fLµνQL +

1

2
fRµνQR +

1

2
fL,Rµν QLQR +

i

2
hµν1 , (3.153)

where we have introduced

fLµν = ∂µa
L
ν − ∂νaLµ , fRµν = ∂µa

R
ν − ∂νaRµ ,

fL,Rµν = ∂µa
L,R
ν − ∂νaL,Rµ , hµν = ∂µbν − ∂νbµ . (3.154)

For the parametrization of ALa and ARa , a suitable basis may be chosen as follows

ALa =
1

2
(ϕ1 + ϕ̃1)[XL

a , QL] +
1

2
(ϕ2 + ϕ̃2 − 1)QL[XL

a , QL] + i
ϕ3

4(`L + 1
2
)
{XL

a , QL}

+
ϕ4

2(`L + 1
2
)
ωLa + iQR

(
1

2
(ϕ1 − ϕ̃1)iQR[XL

a , QL] +
1

2
(ϕ2 − ϕ̃2)QL[XL

a , QL]

+ i
ϕ̃3

4(`L + 1
2
)
{XL

a , QL}+
ϕ̃4

2(`L + 1
2
)
ωLa

)
, (3.155)

ARa =
1

2
(χ1 + χ̃1)[XR

a , QR] +
1

2
(χ2 + χ̃2 − 1)QR[XR

a , QR] + i
χ3

4(`R + 1
2
)
{XR

a , QR}

+
χ4

2(`R + 1
2
)
ωRa + iQL

(
1

2
(χ1 − χ̃1)[XR

a , QR] +
1

2
(χ2 − χ̃2)QR[XR

a , QR]

+ i
χ̃3

4(`R + 1
2
)
{XR

a , QR}+
χ̃4

2(`R + 1
2
)
ωRa

)
, (3.156)

where ϕi , ϕ̃i , χi , χ̃i , (i = 1, 2, 3, 4) are Hermitian scalar fields overM. A con-

venient notation for future use is to write AL,Ra =: ÂL,Ra + iQL,RÂ′L,Ra .

Using the basis given above, the covariant derivatives can be constructed in
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terms of scalar fields as

DµΦL
a =

1

2

(
Dµ(ϕ1 + ϕ̃1) +QLDµ(ϕ2 + ϕ̃2)

)
[XL

a , Q
L] + i

∂µϕ3

4(`L + 1
2
)
{XL

a , Q
L}

+
∂µϕ4

2(`L + 1
2
)
ωLa + iQR

(
1

2

(
Dµ(ϕ1 − ϕ̃1) +QLDµ(ϕ2 − ϕ̃2)

)
[XL

a , Q
L]

+ i
∂µϕ̃3

4(`L + 1
2
)
{XL

a , Q
L}+

∂µϕ̃4

2(`L + 1
2
)
ωLa

)
,

and

DµΦR
a =

1

2

(
Dµ(χ1 + χ̃1) +QRDµ(χ2 + χ̃2)

)
[XR

a , Q
R] + i

∂µχ3

4(`R + 1
2
)
{XR

a , Q
R}

+
∂µχ4

2(`R + 1
2
)
ωRa + iQL

(
1

2

(
Dµ(χ1 − χ̃1) +QRDµ(χ2 − χ̃2)

)
[XR

a , Q
R]

+ i
∂µχ̃3

4(`R + 1
2
)
{XR

a , Q
R}+

∂µχ̃4

2(`R + 1
2
)
ωRa

)
,

where

Dµϕi = ∂µϕi + εjia
L
µϕj + εjia

L,R
µ ϕj , Dµϕ̃i = ∂µϕ̃i + εjia

L
µ ϕ̃j + εija

L,R
µ ϕ̃j

Dµχi = ∂µχi + εjia
R
µχi + εjia

L,R
µ χi , Dµχ̃i = ∂µχ̃i + εjia

L
µ χ̃i + εija

L,R
µ χ̃j ,

(3.157)

with i = 1, 2.

We are ready to find the reduced action from these parametrizations. Using the

following notation for the reduced action

S :=

∫
LF + LLG + LRG + V L

1 + V R
1 + V L,R

1 + V L
2 + V R

2 , (3.158)

and the identities given in (3.90) for both QL and QR, it is possible to determine

each summand in the integrand of (3.158). Since we are essentially interested in

the exploring vortex type solutions to this low energy effective action in certain

limits, we relegate explicit forms of (3.158) to Appendix A and consider the
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commutative limit (`L , `R →∞) of these terms. As `L , `R →∞, they read

LF =
1

16g2

(
fLµνf

Lµν + fRµνf
Rµν + fL,Rµν fL,R

µν
+ hµνh

µν
)
,

LLG = |Dµϕ|2 + |Dµϕ̃|2 +
1

4

(
(∂µϕ3)2 + (∂µϕ̃3)2 + (∂µϕ4)2 + (∂µϕ̃4)2

)
,

LRG = |Dµχ|2 + |Dµχ̃|2 +
1

4

(
(∂µχ3)2 + (∂µχ̃3)2 + (∂µχ4)2 + (∂µχ̃4)2

)
V L

1 =
4

gL2

(
(|ϕ|2 +

1

4
(ϕ3 + ϕ̃3 − 1))2 + (|ϕ̃|2 +

1

4
(ϕ3 − ϕ̃3 − 1))2

+
1

2
(ϕ3 + ϕ̃3)2|ϕ|2 +

1

2
(ϕ3 − ϕ̃3)2|ϕ̃|2 +

1

8
(ϕ2

4 + ϕ̃2
4)

)
,

V R
1 =

4

gR2

(
(|χ|2 +

1

4
(χ3 + χ̃3 − 1))2 + (|χ̃|2 +

1

4
(χ3 − χ̃3 − 1))2

+
1

2
(χ3 + χ̃3)2|χ|2 +

1

2
(χ3 − χ̃3)2|χ̃|2 +

1

8
(χ2

4 + χ̃4)

)
,

V L,R
1 =

2

g2
L,R

(
|ϕχ̃− ϕ̃χ|2 + |χ̄ϕ− ϕ̃ ¯̃χ|2 +

1

4

(
(|ϕ|2 + |ϕ̃|2)(χ̃2

3 + χ̃2
4)

+ (|χ|2 + |χ̃|2)(ϕ̃2
3 + ϕ̃2

4)
))

V L
2 = g2

L`
2
L

(
ϕ2

3 + ϕ2
4 + ϕ̃2

3 + ϕ̃2
4

)
,

V R
2 = g2

R`
2
R

(
χ2

3 + χ2
4 + χ̃2

3 + χ̃2
4

)
, (3.159)

where in V L
2 and V R

2 , we shall consider either gL → 0 , gR → 0 such that gL`L
and gR`R small but finite corresponding to the first limit case we explore in

section 3.3.4 or gL , gR → ∞ corresponding to the second case we explore in

section 3.3.4. It can be easily seen that the vacuum configuration for the scalar

fields is given by

|ϕ| = |ϕ̃| = |χ| = |χ̃| = 1

2
, (3.160a)

ϕ3 = ϕ̃3 = ϕ4 = ϕ̃4 = 0 , (3.160b)

χ3 = χ̃3 = χ4 = χ̃4 = 0 , (3.160c)

ϕχ̃ = ϕ̃χ , χ̄ϕ = ϕ̃ ¯̃χ . (3.160d)

In fact, the two conditions given in the last line (3.160d) are not independent

from each other. Using (3.160a), we can derive one from the other. This means

that we have one constraint over our complex scalar fields ϕ , ϕ̃ , χ , χ̃. In other

words, we can write one of them in terms of other three. This implies that the

vacuum configuration has the structure of a three torus, T 3 = S1 × S1 × S1,
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with first homotopy group π1(T 3) = Z⊕ Z⊕ Z. This result indicate that LEA

has classical solution on R2 with nontrivial topology which are characterized by

three integer winding numbers. Indeed, in the next section, we will give the

vortex type solutions for this problem with the winding numbers (n1, n2, n3).

3.4.4 Vortex Type Solutions

In subsection 3.3.4, we have constructed the vortex type solutions for the reduced

action (3.89) on manifoldM = R2 after the integrating out the extra dimensions

S2
F . Here, we would like to examine the vortex type solutions for the reduced

action (3.158) obtained by tracing over the extra dimensions S2
F × S2

F . In order

to proceed, we define our limits as follows. First, we consider the reduced action

in the commutative limit `L , `R →∞ and gL , gR → 0 such that gL`L and gR`R

are small but finite which is effectively equivalent to consider the commutative

limit of the action (3.158) without the constraint terms V L
2 and V R

2 . In the

second case, we take `L and `R large but finite and gL , gR →∞, which actually

amounts to imposing the constraints by hand, i.e. taking ΦL
aΦL

a + `L(`L+ 1) = 0

and ΦR
a ΦR

a + `R(`R + 1) = 0.

3.4.4.1 Case i)

It can be easily seen from (3.159) that in the limit `L , `R →∞ and gL , gR → 0,

bµ , ϕ4 and χ4 are decoupled from the rest of the action. This means that their

equations of motion do not affect the rest of the fields. Consequently, in this case

we have U(1)3 gauge theory. In order to proceed, let us make the rotationally

symmetric ansatz

aLr = 0 , aRr = 0 , aL,Rr = 0 ,

aL = aLθ (r)dθ , aR = aRθ (r)dθ , aL,R = aL,Rθ (r)dθ , (3.161)
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and

ϕ = ϕ(r)ein1θ , ϕ̃ = ϕ̃(r)ein2θ , χ = χ(r)eim1θ , χ̃ = χ̃(r)eim2θ ,

ϕ3 = ϕ3(r) , ϕ̃3 = ϕ̃3(r) , ϕ̃4 = ϕ̃4(r) , χ3 = χ3(r) , χ̃3 = χ̃3(r)

χ̃4 = χ̃4(r) (3.162)

It is important to note that n1 , n2 , n3 and n4 are not linearly independent. This

can be easily seen from (3.162) and (3.160d), they satisfy

(n1 − n2)− (n3 − n4) = 0 . (3.163)

Using this relation, we can eliminate n4 as n4 = n3 − (n1 − n2). As mentioned

before, the nontrivial structure of complex scalar fields can be defined by three

winding numbers (n1, n2, n3) in this case. Now, the reduced action becomes

S = 2π

∫ ∞
0

dr

[
1

8g2

(1

r
aLθ
′
aLθ
′
+

1

r
aRθ
′
aRθ
′
+

1

r
aL,Rθ

′
aL,Rθ

′)
+ rϕ′2

+
1

r
(n1 + aLθ + aL,Rθ )2ϕ2 + rϕ̃′2 +

1

r
(n2 + aLθ − a

L,R
θ )2ϕ̃2 + rχ′2

+
1

r
(n3 + aRθ + aL,Rθ )2χ2 + rχ̃′2 +

1

r

(
n3 − (n1 − n2) + aRθ − a

L,R
θ

)2
χ̃2

+
r

4

(
ϕ′23 + ϕ̃′23 + ϕ̃′24 + χ′23 + χ̃′23 + χ̃′24

)
+

r

g2
L

(
4
(
ϕ2 +

1

4
(ϕ3 + ϕ̃3)− 1

4

)2

+ 4
(
ϕ̃2 +

1

4
(ϕ3 − ϕ̃3)− 1

4

)2
+ 2(ϕ3 + ϕ̃3)2ϕ2 + 2(ϕ3 − ϕ̃3)2ϕ̃2 +

1

2
ϕ̃2

4

)

+
r

g2
R

(
4
(
χ2 +

1

4
(χ3 + χ̃3)− 1

4

)2
+ 4
(
χ̃2 +

1

4
(χ3 − χ̃3)− 1

4

)2

+ 2(χ3 + χ̃3)2χ2 + 2(χ3 − χ̃3)2χ̃2 +
1

2
χ̃2

4

)
+

r

g2
L,R

(
2(ϕχ̃− ϕ̃χ)2

+ 2(χϕ− χ̃ϕ̃)2 +
1

2

(
ϕ2 + ϕ̃2

)
(χ̃2

3 + χ̃2
4) +

1

2

(
χ2 + χ̃2

)
(ϕ̃2

3 + ϕ̃2
4)

)]
, (3.164)

With a straightforward calculation, we can construct Euler-Lagrange equations

for our fields which are given in appendix A. These are nonlinear coupled dif-

ferential equations and the analytic solutions to these equations are not known.

However, like the previous section, it seems possible to obtain the approximate

solutions by focusing on two regions; small r and large r. With the expansion
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around r = 0, the profiles of our fields can be found as

ϕ(r) = ϕ0r
n1 +O(rn1+2) , χ(r) = χ0r

n3 +O(rn3+2) ,

ϕ̃(r) = ϕ̃0r
n2 +O(rn2+2) , χ̃(r) = χ̃0r

n3−(n1−n2) +O(rn3−(n1−n2)+2) ,

aLθ (r) = aL0 r
2 +O(r4) , aRθ (r) = aR0 r

2 +O(r4) , aL,Rθ (r) = aL,R0 r2 +O(r4) ,

ϕ3 = ϕ3
0 +O(r2) , χ3 = χ3

0 +O(r2) , ϕ̃3 = ϕ̃3
0 +O(r2) , χ̃3 = χ̃3

0 +O(r2) ,

ϕ̃4 = ϕ̃4
0 +O(r2) , χ̃4 = χ̃4

0 +O(r2) . (3.165)

For large r, let us first notice the asymptotic behavior of our fields is defined by

the finiteness of action (3.164). This implies that

aLθ (r) = −n1 + n2

2
, aRθ (r) = −2n3 − (n1 − n2)

2
, aL,Rθ (r) = −n1 − n2

2
,

ϕ(r)→ 1

2
, ϕ̃(r)→ 1

2
, χ(r)→ 1

2
, χ̃(r)→ 1

2
, ϕ3(r)→ 0 , χ3 → 0 ,

ϕ̃3 → 0 , χ̃3 → 0 , ϕ̃4 → , χ̃4 → 0 , as r →∞ . (3.166)

Now, considering the small fluctuations around these vacuums, we can obtain

the asymptotic profile of our fields for large r. These fluctuations can be written

as follows

ϕ =
1

2
− δϕ , ϕ̃ =

1

2
− δϕ̃ , χ =

1

2
− δχ , χ̃ =

1

2
− δχ̃ ,

aLθ = −n1 + n2

2
+ δaL , aRθ = −2n3 − (n1 − n2)

2
+ δaR ,

aL,Rθ = −n1 − n2

2
+ δaL,R , (3.167)

and

ϕ3 = δϕ3 , χ3 = δχ3 , ϕ̃3 = δϕ̃3 , χ̃3 = δχ̃3 , ϕ̃4 = δϕ̃4 , χ̃4 = δχ̃4 .

(3.168)
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Then, the equations of motion (A.20) for δaL , δaL,R , δϕ , δϕ̃ , δϕ3 , δϕ̃3 , δϕ̃4 re-

duce to

δaL
′′ − 1

r
δaL

′ − 4g2δaL = 0 , (3.169)

δaL,R
′′ − 1

r
δaL,R

′ − 8g2δaL,R = 0 , (3.170)

δϕ′′ +
1

r
δϕ′ +

4

g2
L

(
−δϕ+

1

4
(δϕ3 + δϕ̃3)

)
− 1

g2
L,R

(δϕ− δϕ̃) = 0 , (3.171)

δϕ̃′′ +
1

r
δϕ̃′ +

4

g2
L

(
−δϕ̃+

1

4
(δϕ3 − δϕ̃3)

)
− 1

g2
L,R

(δϕ̃− δϕ) = 0 , (3.172)

δϕ3
′′ +

1

r
δϕ3

′ +
4

g2
L

(
δϕ+ δϕ̃− 3

2
δϕ3

)
= 0 , (3.173)

δϕ̃′′3 +
1

r
δϕ̃′3 +

4

g2
L

(
δϕ− δϕ̃− 3

2
δϕ̃3

)
+

1

g2
L,R

δϕ̃3 = 0 , (3.174)

δϕ̃′′4 +
1

r
δϕ̃′4 −

2

g2
L

δϕ̃4 +
1

g2
L,R

δϕ̃4 = 0 , (3.175)

and the equations of motion for δaR , δχ , δχ̃ , δχ3 , δχ̃3 , δχ̃4 can be obtain by re-

placing gL → gR , δa
L → δaR , δϕ → δχ , δϕ̃ → δχ̃ in the equations above. We

note that we have assumed that ( δa
L

r
)2 , ( δa

R

r
)2 and ( δa

L,R

r
)2 are subleading com-

pared to the complex and real scalar fields in order to get the above equations.

Since the equations (3.114-3.175) are linear differential equations, we can find

the exact solutions for each equations. For simplicity, let us consider the case

gL = gR =
√

2gL,R = g̃, for the solutions with general gL , gR , gL,R, the reader is

referred to the reference [24]. Equations (3.169) and (3.170) is in the same form

of (3.114) and hence the gauge fields have the following asymptotic profile

δaL = ALrK1(2gr)

δaR = ARrK1(2gr)

δaL,R = AL,RrK1(2
√

2gr) . (3.176)

Following the linear operator method given in the previous section, we can con-
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struct the solutions for our scalar fields as follows

δϕ = B1K0(

√
2r

g̃
) +B2K0(

2
√

2r

g̃
) +B3K0(

√
α1r

g̃
) +B4K0(

√
α2r

g̃
) ,

δϕ̃ = B1K0(

√
2r

g̃
) +B2K0(

2
√

2r

g̃
)−B3K0(

√
α1r

g̃
)−B4K0(

√
α2r

g̃
) ,

δϕ3 = B1K0(

√
2r

g̃
)− 2B2K0(

2
√

2r

g̃
) ,

δϕ̃3 = B′3K0(

√
α1r

g̃
) +B′4K0(

√
α2r

g̃
) ,

δχ = C1K0(

√
2r

g̃
) + C2K0(

2
√

2r

g̃
) + C3K0(

√
α1r

g̃
) + C4K0(

√
α2r

g̃
) ,

δχ̃ = C1K0(

√
2r

g̃
) + C2K0(

2
√

2r

g̃
)− C3K0(

√
α1r

g̃
)− C4K0(

√
α2r

g̃
) ,

δχ3 = C1K0(

√
2r

g̃
)− 2C2K0(

2
√

2r

g̃
) ,

δχ̃3 = C ′3K0(

√
α1r

g̃
) + C ′4K0(

√
α2r

g̃
) ,

where α1 = 6 + 2
√

3 and α2 = 6− 2
√

3 and for the fields ϕ̃4 and χ̃4, we have no

fluctuations. Taking ( δa
L

r
)2 , ( δa

R

r
)2 and ( δa

L,R

r
)2 are subleading to the complex

and real scalars implies a condition between the coupling constant g and g̃ such

that 4g >
√

2
g̃
. Since, the leading terms for the solutions both scalar fields and

gauge fields are the same as in the case explained in the subsection (3.3.4.1), we

have the same condition for the attractive and repulsive forces between vortices

such that

attractive for gg̃ >

√
2

2
,

repulsive for
√

2

4
< gg̃ <

√
2

2
. (3.177)

For the standard Yang-Mills theory gg̃ = 1 in (3.144), we have attractive forces

between vortices.

3.4.4.2 Case ii)

Now, let us examine the vortex type solutions for the reduced action with large

but finite `L , `R and gL , gR → ∞. This corresponds to impose two constraints

ΦL
aΦL

a + `L(`L + 1) = 0 and ΦR
a ΦR

a + `R(`R + 1) = 0. It can be easily seen from
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(A.13) that these two equations is satisfied if we have

YL1 = 0 , YL2 = 0 , ỸL1 = 0 , ỸL2 = 0 ,

YR1 = 0 , YR2 = 0 , ỸR1 = 0 , ỸR2 = 0 . (3.178)

These equations enable us to solve the real scalar fields in terms of the complex

scalars in powers of 1
`L

and 1
`R

as

ϕ3 =
1

`2
L

(|ϕ|2 + |ϕ̃|2 − 1

2
) , ϕ4 = − 1

`L
(|ϕ|2 + |ϕ̃|2 − 1

2
) ,

ϕ̃3 =
1

`2
L

(|ϕ|2 − |ϕ̃|2) , ϕ̃4 = − 1

`L
(|ϕ|2 − |ϕ̃|2) , (3.179)

where χ3 , χ4 , χ̃3 , χ̃4 can be obtained by ϕ → χ and ϕ̃ → χ̃. Let us expand

the `L and `R dependent coefficients in the reduced action (3.158) to the order
1
`2L
, 1
`2R

and substitute the approximate solutions (3.179) in it. Then, we obtain

LF =
1

16g2

(
fLµνf

Lµν + fRµνf
Rµν + fL,Rµν fL,R

µν
+ hµνh

µν

+

(
fLµνf

Rµν − hµνfL,R
µν)

2`L`R
+
(
fRµνf

L,Rµν − fLµνhµν
)
(

1

2`L
− 1

4`2
L

)

+
(
fLµνf

L,Rµν − fRµνhµν
)
(

1

2`R
− 1

4`2
R

)

)
,

LLG = (1 +
1

2`R
− 1

4`2
R

− 1

4`2
L

)|Dµϕ|2 + (1− 1

2`R
+

1

4`2
R

− 1

4`2
L

)|Dµϕ̃|2

+
1

2`2
L

(
(∂µ|ϕ|2)2 + (∂µ|ϕ̃|2)2

)
,

LRG = (1 +
1

2`L
− 1

4`2
L

− 1

4`2
R

)|Dµχ|2 + (1− 1

2`L
+

1

4`2
L

− 1

4`2
R

)|Dµχ̃|2

+
1

2`2
R

(
(∂µ|χ|2)2 + (∂µ|χ̃|2)2

)
,

V L
1 =

4

g2
L

(1 +
5

4`2
L

)

(
(|ϕ|2 − 1

4
)2 + (|ϕ̃|2 − 1

4
)2

)
,

V R
1 =

4

g2
R

(1 +
5

4`2
R

)

(
(|χ|2 − 1

4
)2 + (|χ̃|2 − 1

4
)2

)
,

V L,R
1 =

1

g2
L,R

(
2|ϕχ̃− ϕ̃χ|2 + 2|χ̄ϕ− ϕ̃ ¯̃χ|2 +

1

2`2
R

(|ϕ|2 + |ϕ̃|2)(|χ|2 − |χ̃|2)2

+
1

2`2
L

(|χ|2 + |χ̃|2)(|ϕ|2 − |ϕ̃|2)2

)
. (3.180)

The equation of motion for bµ can be solved as follows

hµν =

(
1

2`L
− 1

4`2
L

)
fLµν +

(
1

2`R
− 1

4`2
R

)
fRµν +

1

4`L`R
fL,Rµν . (3.181)
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Inserting this solution for hµν into LF and making the rotationally symmetric

ansatz (3.166) and (3.167), our reduced action becomes

S =2π

∫ ∞
0

dr

[
1

8g2

(
1

r

(
1− 1

4`2
L

)
aLθ
′
aLθ
′
+

1

r

(
1− 1

4`2
R

)
aRθ
′
aRθ
′
+

1

r
aL,Rθ

′
aL,Rθ

′)
+

1

2r

(
1

`R
− 1

2`2
R

)
aLθ
′
aL,Rθ

′
+

1

2r

(
1

`L
− 1

2`2
L

)
aRθ
′
aL,Rθ

′
)

+ (1 +
1

2`R
− 1

4`2
R

− 1

4`2
L

)

(
rϕ′2 +

1

r
(n1 + aLθ + aL,Rθ )2ϕ2

)
+ (1− 1

2`R
+

1

4`2
R

− 1

4`2
L

)

(
rϕ̃′2 +

1

r
(n2 + aLθ − a

L,R
θ )2ϕ̃2

)
+ (1 +

1

2`L
− 1

4`2
L

− 1

4`2
R

)

(
rχ′2 +

1

r
(n3 + aRθ + aL,Rθ )2χ2

)
+ (1− 1

2`L
+

1

4`2
L

− 1

4`2
R

))

(
rχ̃′2 +

1

r
(n3 − (n1 − n2) + aRθ − a

L,R
θ )2χ̃2

)
+

2r

`2
L

(
ϕ2ϕ′2 + ϕ̃2ϕ̃′2

)
+

2r

`2
R

(
χ2χ′2 + χ̃2χ̃′2

)
+

4r

g2
L

(1 +
5

4`2
L

)

(
(ϕ2 − 1

4
)2 + (ϕ̃2 − 1

4
)2

)
+

4r

g2
R

(1 +
5

4`2
R

)

(
(χ2 − 1

4
)2 + (χ̃2 − 1

4
)2

)
+

r

g2
L,R

(
2(ϕχ̃− ϕ̃χ)2 + 2(χϕ− χ̃ϕ̃)2

+
1

2`2
R

(
ϕ2 + ϕ̃2

)
(χ2 − χ̃2)2 +

1

2`LR

(
χ2 + χ̃2

)
(ϕ2 − ϕ̃2)2

]
. (3.182)

Euler-Lagrange equations for this action can be found by straightforward cal-

culations but these are nonlinear coupled differential equations. In a manner

similar to the one given in section 3.3.4, we can obtain their approximate solu-

tions by focusing on two regions. The profile of our fields around r = 0 are the

same as (3.165). For large r, the solution for our fields can be found as follows

δaL = AL1 rK1(2gr) + AL2 rK1

(
2g

(
1 +

1

4

(
1

`2
L

+
1

`2
R

))
r

)
,

δaR = AR1 rK1(2gr) + AR2 rK1

(
2g

(
1 +

1

4

(
1

`2
L

+
1

`2
R

))
r

)
,

δaL,R = AL,RrK1

(
2
√

2g

(
1− 3

8

(
1

`2
L

+
1

`2
R

))
r

)
, (3.183)
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δϕ = E1K0

(√
β1

g̃
r

)
+ E2K0

(√
β2

g̃
r

)
,

δϕ̃ = E3K0

(√
β1

g̃
r

)
+ E4K0

(√
β2

g̃
r

)
,

δχ = F1K0

(√
γ1

g̃
r

)
+ F2K0

(√
γ2

g̃
r

)
,

δχ̃ = F3K0

(√
γ1

g̃
r

)
+ F4K0

(√
γ2

g̃
r

)
, (3.184)

where √
β1 = 2

√
2

(
1 +

1

4`2
L

)
,
√
β2 = 2

(
1 +

3

8
(

1

`2
L

− 1

`2
R

)

)
,

√
γ1 = 2

√
2

(
1 +

1

4`2
R

)
,
√
γ2 = 2

(
1 +

3

8
(

1

`2
R

− 1

`2
L

)

)
,

(3.185)

and gL = gR =
√

2gL,R := g̃. The vortices are repulsive for the standard Yang-

Mills theory in (3.144) with gg̃ = 1.
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CHAPTER 4

GAUGE THEORY OVER M× S2 INT
F × S2 INT

F

In this chapter, we explore another interesting aspect of the particular deformed

N = 4 supersymmetric Yang-Mills theory given in previous chapter. We have

already given the detail on the dynamical generalization of the product of two

fuzzy sphere S2
F × S2

F from SU(N ) gauge theory coupled to six scalar fields in

the adjoint representation of SU(N ). Here, we examine the new form of vacuum

solutions of this deformed N = 4 SYM model which can be expressed in terms of

a particular direct sum of product of fuzzy sphere, denoted by S2 Int
F ×S2 Int

F [26]1.

To proceed, we suitably split the scalar fields in this model as ΦL
a = φLa + ΓLa ,

ΦR
a = φRa + ΓRa where (ΓLa ,Γ

R
a ) are defined by determining the four scalar fields

ΨL
α, ΨR

α (α = 1, 2) and their Hermitian conjugates, which are still in the adjoint

of the SU(N ), but transforming under the (1
2
, 0) ⊕ (0, 1

2
) representation of the

global symmetry group SO(6). We show that (ΨL
α,Ψ

R
α ) transform under the

(1
2
, 0)⊕(0, 1

2
) of SO(6) and (ΓLa ,Γ

R
a ) transform in the (1, 0)⊕(0, 1) representation

of SU(2) × SU(2) by the suitable definition, so do (ΦL
a ,Φ

R
a ). We would like to

stress that the degrees of freedom is preserved for both sides of this redefinition

of scalar fields and the equations of motion for φL,Ra and ΨL †
α and ΨR †

α simply

reproduce from the variations of ΦL,R
a . Hence, there is no new degrees of freedom

in this model. However, this redefinition provides to obtain the vacuum solution

of the scalar fields which takes the form of direct sum of S2
F × S2

F .

To make this chapter self-contained, we would like to review of the original idea

1 This chapter is based on the work that has been published: S. Kurkcuoglu and G. Unal “Equiv-
ariant fields in an SU(N ) gauge theory with new spontaneously generated fuzzy extra dimensions”
Phys.Rev. D93 (2016) 105019.
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of the redefinition of scalar fields in terms of bilinears which was first introduced

in [25]. This technique was applied to the SU(N ) gauge theory coupled to

a triplet of scalar fields discussed in detail in chapter 3 and shown that it is

possible to obtain the vacuum solution of scalar fields in terms of the direct

sum of concentric fuzzy spheres. After a brief introduction of this technique, we

are ready to apply this technique to our problem. First, with the redefinition

given above, we show the vacuum configuration of scalar fields may be defined in

terms of direct sum of S2
F ×S2

F . Considering the fluctuations about this vacuum,

we obtain the structure of gauge fields over S2 Int
F × S2 Int

F and enables us to

conjecture that the spontaneous broken model is an effective gauge theory on the

product manifoldM×S2 Int
F ×S2 Int

F . In order to support this interpretation, we

construct all of the SU(2)×SU(2)-equivariant field modes by using equivariant

parametrization technique. The redefinition of scalar fields in terms of bilinears

(ΓLa ,Γ
R
a ) gives the interesting feature such that we find the equivariant spinor

field modes which do not constitute independent dynamical degrees of freedom

in the U(4) effective gauge theory, but it is readily conceived that their suitable

bilinears shall yield the equivariant gauge field modes on S2 Int
F × S2 Int

F .

In addition, with this redefinition, the monopole sectors with non-vanishing

winding number are accessed after certain projections ofM×S2 Int
F ×S2 Int

F . We

obtain the monopole sectors with winding numbers (±1, 0), (0,±1), (±1,±1)

from S2 Int
F ×S2 Int

F and the equivariant fields in these sectors as a subset of those

of the parent model. The latter characterizes the low energy modes of the theory

and making contact with the results of [24] studied in detail in the section 3.4,

we show that tracing over the fuzzy monopole sectors is bound to yield two

decoupled Abelian Higgs-type models, each with a U(1)3 gauge symmetry and

static multivortex solutions characterized by three winding numbers. It seems

possible to examine the splitting of the fields (ΦL
a ,Φ

R
a ) with the composite part

involving a k1 + k2 component multiplets transforming under the representation

(k1−1
2
, 0) ⊕ (0, k2−1

2
) of the global symmetry and determine a family of fuzzy

vacuum solutions. It is manifestly seen from our results that suitable projections

of these vacuum solutions yield all higher winding number monopole sectors.

An unexpected feature of the vacuum configuration S2 Int
F ×S2 Int

F that it identifies

92



with the bosonic part of the product of two fuzzy superspheres with OSP (2, 2)×
OSP (2, 2) supersymmetry. We present it by examining the decomposition of

typical superspin IRRs of OSP (2, 2) × OSP (2, 2) under SU(2) × SU(2) IRR

and how a particular typical IRR of this group matches with the SU(2)×SU(2)

IRR content of S2 Int
F ×S2 Int

F . In addition, we also give a construction of the gen-

erators of OSP (2, 2) × OSP (2, 2) in its nine-dimensional fundamental atypical

representation, by projecting a relevant set of 16 × 16 matrices, which appear

in our model as building blocks in the construction of the matrix algebra of the

composite fields.

In the last section of this chapter, we discuss another vacuum solution to this

model. Although, the structure we encounter looks superficially similar to the

one obtained in section 4.2, we find that there is in fact a crucial difference;

namely that the objects whose bilinears are ΓLa and ΓRa , do not transform as

(1
2
, 0)⊕(0, 1

2
) representation of SU(2)×SU(2). Nevertheless, treating this model

as one in its own right we examine it in some detail.

4.1 Review of Gauge Theory over M × S2 Int
F

In this section, let us briefly give the idea of obtaining the vacuum configuration

as the direct sum of fuzzy sphere by splitting of scalar fields as

S2 Int
F := S2

F (`)⊕ S2
F (`)⊕ S2

F

(
`+

1

2

)
⊕ S2

F

(
`− 1

2

)
, (4.1)

studied in [25]. Consider the SU(N ) gauge theory given in the section 3.1. Let

us take the action (3.2) as

S =

∫
M
ddyTr

(
− 1

4g2
F †µνF

µν − (DµΦa)
†(DµΦa)

)
− 1

g̃2
Tr
(
F †abFab

)
. (4.2)

We note that in this case V2 term is omitted from the action and the reason

of its absence will be clear after the determining solution for the minimum

potential. The structure of the vacuum (4.1) was revealed by performing the

field redefinition

Φa = φa + Γa , Γa = − i
2

Ψ†τ̃aΨ , (4.3)
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where

Ψ =

 Ψ1

Ψ2

 , Ψα ∈ Mat(N ) , α = 1, 2 , (4.4)

is a doublet of the global SU(2) symmetry of the action (4.2). Here, φa, Ψα and

Γa are all transforming adjointly under SU(N ) and τ̃a = τa ⊗ 1N .

We note that (4.3) is indeed a reparametrization of the fields Φa. Let us make

this fact clear by determining degrees of freedom in (4.3). Noting that φa and

Ψα are N × N matrices and they are anti-Hermitian, we can see that φa have

6N 2 real degrees of freedom and 3N + 3(N 2 − N ) constraints, so they have

3N 2 real degrees of freedom while Ψ have 4N 2 real degrees of freedom in total.

However, what enters into the definition of Γa are the equivalence classes Ψ ∼
UΨ, U ∈ SU(N ), as it can readily be observed that Γa are invariant under the

left action UΨ of SU(N ) on Ψ. Since the unitary matrices U ∈ SU(N ) have N 2

real degrees of freedom, it is thus clear that Γa have in total 4N 2 −N 2 = 3N 2

degrees of freedom [26].

As we mentioned earlier, since the potential term V1 is positive definite, we have

the minimum potential condition as Fab = 0. This condition indicates that the

vacuum configuration satisfying the minimum potential condition might carry

any reducible representation of SU(2). Hence, it is possible to obtain the vac-

uum configuration (4.1) by the suitable choice of φa and Γa. However, the

presence of the potential term V2(Φ) in (3.8) restrict the vacuum configuration

in an irreducible representation of SU(2) by the minimum potential condition

−ΦaΦa = b̃. Therefore, we omit the potential term V2 in order to obtain the

vacuum configuration consists of the direct sum of fuzzy sphere (4.1). Neverthe-

less, it is possible to impose it as a constraint as explained in the section 2.6.1

and given explicitly in (2.117).

With the assumption N = (2`+ 1)4n, we see that up to gauge transformations

the vacuum configuration satisfying the minimum potential condition may be

chosen as

Φa = (X(2`+1)
a ⊗ 14 ⊗ 1n) + (12`+1 ⊗ Γ0

a ⊗ 1n) , (4.5)
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where

Γ0
a = − i

2
ψ†τaψ , (4.6)

are 4× 4 matrices satisfying

[Γ0
a,Γ

0
b ] = εabcΓ

0
c . (4.7)

In order to determine Γ0
a explicitly, let us define two sets of fermionic annihilation-

creation operators aα , a†α

{aα, aβ} = 0 , {a†α, a
†
β} = 0 , {aα, a†β} = δαβ . (4.8)

These operators span the 4-dimensional Hilbert space with the basis vectors

|n1 , n2〉 ≡ (a†1)n1(a†2)n2|0 , 0〉 , n1 , n2 = 0 , 1 . (4.9)

It can be seen that if the two-component spinor ψ is taken as

ψ =

 ψ1

ψ2

 :=

 a1

a2

 , (4.10)

then the forms of Γ0
a’s become

Γ0
1 = − i

2
(a†1a2 + a†2a1) , Γ0

2 = −1

2
(a†1a2 − a†2a1) , Γ0

3 = − i
2

(a†1a1 + a†2a2)

(4.11)

and they satisfy SU(2) commutation relations (4.7). Therefore, the vacuum

configuration (4.5) fulfill the minimum potential condition Fab = 0. It is possible

to find SU(2) IRR content of Γ0
a by defining the ladder operators as

Γ0
+ = Γ0

1 + iΓ0
2 = −ia†1a2 , Γ0

− = Γ0
1 − iΓ0

2 = −ia†2a1 , (4.12)

then we have

Γ0
±|0 , 0〉 = 0 , Γ0

±|1 , 1〉 = 0 , Γ0
−|0 , 1〉 = 0 ,

Γ0
+|0 , 1〉 = −i|1 , 0〉 , Γ0

−|1 , 0〉 = −i|0 , 1〉 , Γ0
+|0 , 1〉 = 0 . (4.13)

From these equations, it can be easily seen that SU(2) IRR content of Γ0
a includes

two singlets |0 , 0〉, |1 , 1〉 which can be distinguished in terms of the eigenvalues

of number operator N = a†αaα and a doublet. Therefore, IRR content of Γ0
a is

00 ⊕ 02 ⊕
1

2
, (4.14)
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where 00 , 02 stand for the eigenvalues of the number operator which take the

values 0 and 2, respectively. It is easy to see that the projections to the singlet

and doublet subspaces respectively may be found on these representations as

P0 = 1−N + 2N1N2 ,

P00 = −1

2
(N − 2)P0 = 1−N +N1N2 ,

P02 =
1

2
NP0 = N1N2 = −1

2
N +

1

2
P 1

2
,

P 1
2

= N − 2N1N2 , (4.15)

where N = N1 +N2 , N1 = a†1a1 , N2 = a†2a2.

SU(2) IRR content of vacuum configuration (4.5) can be derived from the

Clebsch-Gordan decomposition as

`⊗
(

00 ⊕ 02 ⊕
1

2

)
≡ `⊕ `⊕

(
`+

1

2

)
⊕
(
`− 1

2

)
, ` 6= 0 . (4.16)

This indicated that the vacuum configuration (4.1) can be interpreted as a direct

sum of four concentric fuzzy spheres as it has been already discussed and shown

that it is also possible to conjecture that after the spontaneously symmetry

breaking, the emergent model is an effective gauge theory onM×S2
F in [25]. In

order to find the most general SU(2)-equivariant gauge field modes, the SU(2)

symmetry generators ωa may be chosen as

ωa =(X(2`+1)
a ⊗ 14 ⊗ 12) + (12`+1 ⊗ Γ0

a ⊗ 12)− (12`+1 ⊗ 14 ⊗
i

2
τa)

=:Xa + Γ0
a −

i

2
τa

=:Da −
i

2
τa , ωa ∈ u(2`+ 1)⊗ u(4)⊗ u(2) , (4.17)

and satisfying (3.78). ωa carries a direct sum of IRRs of SU(2), which is given

as (
`⊕ `⊕

(
`+

1

2

)
⊕
(
`− 1

2

))
⊗ 1

2
≡ (`− 1)⊕ 2

((
`+

1

2

)
⊕
(
`− 1

2

))
+ 2`+ (`+ 1) . (4.18)

Projections to the representations appearing in the r.h.s of (4.18) is given in the

table 4.1, where
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Projector Representation

Π00 = 12`+1 ⊗ P00 ⊗ 12 (`− 1
2
)⊕ (`+ 1

2
)

Π02 = 12`+1 ⊗ P02 ⊗ 12 (`− 1
2
)⊕ (`+ 1

2
)

Π+ = 1
2
(iQI + Π 1

2
) `⊕ (`+ 1)

Π− = 1
2
(−iQI + Π 1

2
) `⊕ (`− 1)

Π0 = Π00 + Π02 = 12`+1 ⊗ P0 ⊗ 12 2

(
(`− 1

2
)⊕ (`+ 1

2
)

)
Π 1

2
= Π+ + Π− = 12`+1 ⊗ P 1

2
⊗ 12 (`− 1)⊕ 2`⊕ (`+ 1)

Table4.1: Projections to the representations appearing in the r.h.s of (4.18).

QI =
i

1
2
(`+ 1

2
)
(XaΓa −

1

4
Π 1

2
) , Q2

I = −Π 1
2
. (4.19)

SU(2)-equivariant gauge fields can be obtained by imposing the symmetry con-

straints in (3.79), (3.80) and the additional constraint

[ωa ,Ψα] =
i

2
(τ̃a)αβΨβ . (4.20)

The dimensions of solution spaces for Aµ , Aa and Ψα can be derived by the

Clebsch-Gordan decomposition of the adjoint action of ωa. The relevant part of

this decomposition is[
(`− 1)⊕ 2

((
`+

1

2

)
⊕
(
`− 1

2

))
+ 2`+ (`+ 1)

]⊗2

≡ 14 0⊕ 24
1

2
⊕ 30 1⊕ · · · . (4.21)

This means that under the adjoint action of ωa, there are 14 objects which trans-

form as scalars. All these equivariant scalars can be constructed by using the

projectors given in the table 4.1 and the suitable projection of the “idempotent”

QB =
Xa ⊗ 14 ⊗ τa − i

2
1(2`+1)8

`+ 1
2

, (4.22)

and using the rotational invariants, it is possible to construct the equivariant

vectors and spinors as well. We omit the explicit form of these equivariant gauge

fields here and refer the interested reader to the original literature [25]. However,

we would like to stress that in that article, it was shown that after suitable

projections, the monopole sectors with winding number ±1 can be accessed and
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the reduced model yields two decoupled Abelian Higgs-type models as found

in subsection 3.3.1 and the vortex solutions determined in the subsection 3.3.4

are valid within each sector. Now, we are ready to apply this technique on the

deformed N = 4 SYM theory given in the section 3.4.

4.2 New Fuzzy Extra Dimensions from SU(N ) Gauge Theory

Let us consider the deformed N = 4 SYM theory with SU(N ) gauge symmetry

given in the section 3.4 and take the potential terms as follows

V (ΦL) = TrNF
L†
ab F

L
ab , FL

ab = [ΦL
a ,Φ

L
b ]− εabcΦL

c ,

V (ΦR) = TrNF
R†
ab F

R
ab , FR

ab = [ΦR
a ,Φ

R
b ]− εabcΦR

c ,

V (ΦL,R) = TrNF
(L,R)†
ab F

(L,R)
ab , F

(L,R)
ab = [ΦL

a ,Φ
R
b ] ,

ΦL
a = Φa , ΦR

a = Φa+3 , (a = 1, 2, 3) ,

(4.23)

where the potential terms V L
2 and V R

2 in (3.133) are again absent because of

the same reason given in the previous section but we will impose these terms as

constraints.

Following and generalizing the developments in [25], we are going to consider

that ΦL
a and ΦR

a are split in the form

ΦL
a = φLa + ΓLa , ΦR

a = φRa + ΓRa , (4.24)

with the definitions

ΓLa = − i
2

ΨL†τ̃aΨ
L , ΓRa = − i

2
ΨR†τ̃aΨ

R , (4.25)

where the scalar fields ΨL and ΨR are doublets of the global SU(2)L× SU(2)R,

transforming under its IRRs (1
2
, 0) and (0, 1

2
), respectively. Thus, we may form

the 4-component multiplet

Ψ =

 ΨL

ΨR

 =


ΨL

1

ΨL
2

ΨR
1

ΨR
2

 , (4.26)
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transforming under the representation (1
2
, 0) ⊕ (0, 1

2
) of the global symmetry

group. We have that all the components (ΨL
α ,Ψ

R
α ) (α = 1, 2) of Ψ are scalar

fields; they are N × N matrices, transforming adjointly (ΨL,R
α → U †ΨL,R

α U)

under SU(N ). Clearly, then (ΓLa ,Γ
R
a ) are bilinears of Ψ’s transforming under

the (1, 0) ⊕ (0, 1) of SU(2)L × SU(2)R. Under the SU(N ) gauge symmetry

(ΓLa ,Γ
R
a ) transform adjointly (ΓL,Ra → U †ΓL,Ra U) as expected.

Note that there are 6N 2 real degrees of freedom in (ΦL
a ,Φ

R
a ) and the doublets

ΨL and ΨR have 4N 2 real degrees of freedom each. Just like the previous case,

here we also have equivalence classes for ΨL and ΨR. It is readily observed that,

under the left action ΨL → UΨL, ΨR → VΨR, with U, V ∈ SU(N ), we have

(ΓLa ,Γ
R
a ) remaining invariant. Thus, what essentially enters into the definition

of (ΓLa ,Γ
R
a ) are the equivalence classes (ΨL ,ΨR) ∼ (UΨL , VΨR). Since each

of the unitary matrices U , V ∈ SU(N ) have N 2 real degrees of freedom, this

means that each of ΓLa and ΓRa has 4N 2 − N 2 = 3N 2 real degrees of freedom,

which yields exactly the same 6N 2 real degrees of freedom in (ΓLa ,Γ
R
a ) as in

(ΦL
a ,Φ

R
a ).

In fact, it can also be shown in a straightforward manner that the variations

with respect to φL,Ra , ΨL †
α and ΨR †

α simply reproduce the same equations of

motion as those that emerge from the variations2 of ΦL,R
a indicating that no new

degrees of freedom are introduced into the model by (4.24). This splitting is

rather premature as it lacks any physical motivation at the present stage, but

our reasons will become clear as we move forward and show that the model

spontaneously develops fuzzy extra dimensions, which may be written as direct

sums of the products S2
F × S2

F as we shall now demonstrate.

4.2.1 The Vacuum Configuration

With the absence of V L
2 and V R

2 , the conditions for minimum of the potential

terms (3.135) reduces to

FL
ab = 0 , FR

ab = 0 , FL,R
ab = 0 . (4.27)

2 See Appendix B for details.
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These equations indicate that the solution for minimum of potential are given

by N × N matrices carrying reducible representations of SU(2) × SU(2) that

decompose into direct sums of its IRRs. We want to consider such a solution to

the equations (4.27) in which we can take advantage of the splitting of the fields

indicated in (4.24) and (4.25) in its construction. Let us emphasize that, the

particular vacuum solution we want to construct this way exists regardless of our

use of relations given in (4.24) and (4.25) as it is clear from our initial remark.

Keeping these in mind, we can proceed to observe that the requirements in

(4.24) and (4.25) naturally restrict the possible SU(2)L×SU(2)R representation

that (ΓLa , ΓRa ) may carry to the one for which (ΨL
α,Ψ

R
α ) exists. In other words,

(ΓLa , ΓRa ) may not be in some arbitrary representation of SU(2)× SU(2), since

then the corresponding (ΨL
α,Ψ

R
α ) will not exist in general. Here we consider

the only possible solution for which both (φLa , φ
R
a ) and (ΓLa , ΓRa ) are nonzero

matrices.

We are going to show that the solution fulfilling the equations in (4.27) with the

structure given in (4.24) and (4.25) may be written, assuming that N factors in

the form N = (2`L + 1)× (2`R + 1)× 16× n, as

ΦL
a = (X(2`L+1)

a ⊗ 1(2`R+1) ⊗ 116 ⊗ 1n) + (1(2`L+1) ⊗ 1(2`R+1) ⊗ Γ0
a
L ⊗ 1n) ,

ΦR
a = (1(2`L+1) ⊗X(2`R+1)

a ⊗ 116 ⊗ 1n) + (1(2`L+1) ⊗ 1(2`R+1) ⊗ Γ0
a
R ⊗ 1n) ,

(4.28)

up to gauge transformations Φi → U †ΦiU .

(Γ0
a
L
,Γ0

a
R

) are conceived, for reasons that will become clear shortly, as 16 ×
16 anti-Hermitian matrices which satisfy the SU(2)L × SU(2)R commutation

relations

[Γ0
a
L
,Γ0

b
L
] = εabcΓ

0
c
L
, [Γ0

a
R
,Γ0

b
R

] = εabcΓ
0
c
R
, [Γ0

a
L
,Γ0

b
R

] = 0 , (4.29)

and form a reducible representation of SU(2)L × SU(2)R.

We will now see that Γ0
a
L and Γ0

a
R can be written as bilinears of spinors carrying

the IRR’s (1
2
, 0) and (0, 1

2
), respectively. For this purpose, let us introduce

four sets of fermionic annihilation-creation operators (bα , b
†
α , cα , c

†
α) with the
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anticommutation relations

{bα, b†β} = δαβ , {cα, c†β} = δαβ , (4.30)

and all other anticommutators vanishing. They span the sixteen-dimensional

Hilbert space H with the basis vectors

|n1, n2, n3, n4〉 ≡ (b†1)n1(b†2)n2(c†1)n3(c†2)n4|0, 0, 0, 0〉, (4.31)

with n1, n2, n3, n4 = 0, 1.

We can now take

Γ0
a
L

= − i
2
ψL†τaψ

L , Γ0
a
R

= − i
2
ψR†τaψ

R , (4.32)

where

ψL :=

 b1

b2

 , ψR :=

 c1

c2

 . (4.33)

It is easy to see that (Γ0
a
L
,Γ0

a
R

) fulfill the SU(2)L × SU(2)R commutation rela-

tions in (4.29). We furthermore have that

[ψLα ,Γ
0
a
L
] = − i

2
(τa)αβψ

L
β , [ψ†α

L
,Γ0

a
L
] =

i

2
(τa)βαψ

†
β

L
, [ψLα ,Γ

0
a
R

] = 0 ,

[ψRα ,Γ
0
a
R

] = − i
2

(τa)αβψ
R
β , [ψ†α

R
,Γ0

a
R

] =
i

2
(τa)βαψ

†
β

R
, [ψRα ,Γ

0
a
L
] = 0 ,

(4.34)

therefore ψL and ψR carry the (1
2
, 0) and (0, 1

2
) IRRs of SU(2)L × SU(2)R,

respectively.

The quadratic Casimir of the representation spanned by (Γ0
a
L
,Γ0

a
R

) may be

straightforwardly calculated to give

C2 = (Γ0
a
L
)2 + (Γ0

a
R

)2 =


04 0 0

0 −3
4
18 0

0 0 −3
2
14

 , (4.35)

where we have used

(Γ0
a
L
)2 = −3

4
NL +

3

2
NL

1 N
L
2 , (Γ0

a
R

)2 = −3

4
NR +

3

2
NR

1 N
R
2 , (4.36)
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with the number operators on the Hilbert space H given as

NL
1 = b†1b1 , NL

2 = b†2b2 , NL = NL
1 +NL

2 ,

NR
1 = c†1c1 , NR

2 = c†2c2 , NR = NR
1 +NR

2 ,
(4.37)

and we have taken the basis vectors of H oriented in the order |0000〉 , |0011〉
|0001〉 , |0010〉, |1100〉 , |1111〉 , |1101〉 , |1110〉 , |0100〉 , |0111〉 , |0101〉 , |0110〉,
|1000〉 , |1011〉 , |1001〉 , |1010〉.

We can construct the SU(2)L×SU(2)R representation content of (Γ0
a
L
,Γ0

a
R

) by

the following ladder operators

Γ0
+
L

= Γ0
1
L

+ iΓ0
2
L

= −ib†1b2 , Γ0
+
R

= Γ0
1
R

+ iΓ0
a
R

= −ic†1c2 , (4.38)

Γ0
−
L

= Γ0
1
L − iΓ0

2
L

= −ib†2b1 , Γ0
−
R

= Γ0
1
R − iΓ0

2
R

= −ic†2c1 . (4.39)

Using these ladder operators and the eigenvalues of these ladder operators on

the basis vectors in Hilbert space H, we obtain

|0000〉 , |0011〉 , |1100〉 , |1111〉 −→ (0, 0) ,

|0010〉 , |0001〉 −→ (0,
1

2
) ,

|1110〉 , |1101〉 −→ (0,
1

2
) ,

|1000〉 , |0100〉 −→ (
1

2
, 0) ,

|1011〉 , |0111〉 −→ (
1

2
, 0) ,

|1010〉 , |1001〉 , |0110〉 , |0101〉 −→ (
1

2
,
1

2
) . (4.40)

Hence, (Γ0
a
L
,Γ0

a
R

) has the representation content expressed as the following di-

rect sum of IRR’s of SU(2)L × SU(2)R:

4(0, 0)⊕ 2
(1

2
, 0
)
⊕ 2
(
0,

1

2

)
⊕
(1

2
,
1

2

)
. (4.41)

It is also possible to express (Γ0
a
L
,Γ0

a
R

) as

Γ0
a
L

= Γ0
a ⊗ 14 , Γ0

a
R

= 14 ⊗ Γ0
a , (4.42)

where Γ0
a given in (4.6) with the two-component spinor (4.10). Since Γ0

a fulfill

the SU(2) commutation relations, it is clear that (Γ0
a
L
,Γ0

a
R

) as defined in (4.42)
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fulfill the commutation relations in (4.29). It is easily observed that (4.32)

and (4.42) describe unitarily equivalent representations and (4.42) indeed yields

identically the same set of (Γ0
a
L
,Γ0

a
R

) as in Eq. (4.32) if the basis vectors of Hd

are taken in the order |0 , 0〉 , |1 , 1〉 , |0 , 1〉 , |1 , 0〉.

Let us consider the SU(2)L × SU(2)R IRR representation content of (4.28).

Clebsch-Gordan decomposition gives

(`L, `R)⊗
(
4(0, 0)⊕ 2

(1

2
, 0
)
⊕ 2
(
0,

1

2

)
⊕
(1

2
,
1

2

))
≡ 4(`L, `R)⊕ 2

(
`L −

1

2
, `R
)
⊕ 2
(
`L +

1

2
, `R
)
⊕ 2
(
`L, `R −

1

2

)
⊕ 2
(
`L, `R +

1

2

)
⊕
(
`L −

1

2
, `R −

1

2

)
⊕
(
`L +

1

2
, `R −

1

2

)
⊕
(
`L −

1

2
, `R +

1

2

)
⊕
(
`L +

1

2
, `R +

1

2

)
.

(4.43)

For convenience, we introduce the short-hand notation DL
a := XL

a + Γ0
a
L
, DR

a :=

XR
a + Γ0

a
R for the vacuum solutions (4.28)

In accordance with the decomposition in (4.43), a unitary transformation puts

(DL
a , D

R
a ) into the block diagonal form (DLa ,DRa ) ≡ (U †DL

aU ,U
†DR

a U) whose

entries can be inferred from the casimir of IRR’s appearing in (4.43) and their

multiplicities (see Appendix B). Therefore, we may interpret the vacuum con-

figuration of the gauge theory (3.129) with the redefinition of scalar fields (4.24)

in terms of direct sums of S2
F × S2

F given as

S2 Int
F × S2 Int

F :≡ 4
(
S2
F (`L)× S2

F (`R)
)
⊕ 2

(
S2
F (`L −

1

2
)× S2

F (`R)

)
⊕ 2

(
S2
F (`L +

1

2
)× S2

F (`R)

)
⊕ 2

(
S2
F (`L)× S2

F (`R −
1

2
)

)
⊕ 2

(
S2
F (`L)× S2

F (`R +
1

2
)

)
⊕
(
S2
F (`L −

1

2
)× S2

F (`R −
1

2
)

)
⊕
(
S2
F (`L +

1

2
)× S2

F (`R −
1

2
)

)
⊕
(
S2
F (`L −

1

2
)× S2

F (`R +
1

2
)

)
⊕
(
S2
F (`L +

1

2
)× S2

F (`R +
1

2
)

)
. (4.44)

In order to obtain each summand occurring in (4.44), we have the corresponding

103



projections given in the form

Παβ =
∏

γ 6=α, δ 6=β

−(XL
a + Γ0

a
L
)2 − (XR

a + Γ0
a
R

)2 − λLγ (λLγ + 1)− λRδ (λRδ + 1)

λLα(λLα + 1) + λRβ (λRβ + 1)− λLγ (λLγ + 1)− λRδ (λRδ + 1)
,

(4.45)

where α, β, γ, δ = 0,+,− and λLα , λ
R
α take on the values `L , `L ± 1

2
, `R , `R ±

1
2
respectively. This gives nine projectors. Note that Παβ does not resolve

the repeated summands in (4.44). For instance, Π00 projects to the sector

4 (S2
F (`L)× S2

F (`R)). We will see, how the projection to each repeated sum-

mand is accomplished as we proceed.

It is important to note that these projectors may be expressed, after a unitary

transformation, in terms of the products of the projectors ΠL
α and ΠR

β , which

are given as

ΠL
α =

∏
γ 6=α

−(XL
a + Γ0

a
L
)2 − λLγ (λLγ + 1)

λLα(λLα + 1)− λLγ (λLγ + 1)
,

ΠR
β =

∏
δ 6=β

−(XR
a + Γ0

a
R

)2 − λRδ (λRδ + 1)

λRβ (λRβ + 1)− λRδ (λRδ + 1)
.

(4.46)

From (4.46), we may find that ΠL
0 , ΠR

0 , ΠL
±, ΠR

± take the form

ΠL
0 = 1(2`L+1) ⊗ 1(2`R+1) ⊗ P0 ⊗ 14 ⊗ 1n ,

ΠR
0 = 1(2`L+1) ⊗ 1(2`R+1) ⊗ 14 ⊗ P0 ⊗ 1n,

ΠL
± =

1

2
(±iQL

I + ΠL
1
2
) , ΠR

± =
1

2
(±iQR

I + ΠR
1
2
) ,

(4.47)

where

QL
I = i

XL
a Γ0

a
L − 1

4
ΠL

1
2

1
2
(`L + 1

2
)

, QR
I = i

XR
a Γ0

a
R − 1

4
ΠR

1
2

1
2
(`R + 1

2
)

, (4.48)

and ΠL
1
2

= ΠL
+ + ΠL

−, ΠR
1
2

= ΠR
+ + ΠR

−.

As Παβ and ΠL
αΠR

β project to the same subspaces, they are unitarily equivalent,

Παβ = U †ΠL
αΠR

βU , for some unitary matrix U . Using the notation Παβ ≡ ΠL
αΠR

β

to denote this equivalence, we can list these nine projections onto the distinct

IRRs in (4.43) as given in the table 4.2.
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Projector To the Representation

Π00 ≡ ΠL
0 ΠR

0 4(`L, `R)

Π0± ≡ ΠL
0 ΠR
± 2(`L, `R ± 1

2
)

Π±0 ≡ ΠL
±ΠR

0 2(`L ± 1
2
, `R)

Π±± ≡ ΠL
±ΠR
± (`L ± 1

2
, `R ± 1

2
)

Π±∓ ≡ ΠL
±ΠR
∓ (`L ± 1

2
, `R ∓ 1

2
)

Table4.2: Projections Παβ

Projector To the Representation

ΠL
00

ΠR
00

(`L, `R)

ΠL
00

ΠR
02

(`L, `R)

ΠL
02

ΠR
00

(`L, `R)

ΠL
02

ΠR
02

(`L, `R)

ΠL
00

ΠR
± (`L, `R ± 1

2
)

ΠL
02

ΠR
± (`L, `R ± 1

2
)

ΠL
±ΠR

00
(`L ± 1

2
, `R)

ΠL
±ΠR

02
(`L ± 1

2
, `R)

ΠL
±ΠR
± (`L ± 1

2
, `R ± 1

2
)

ΠL
±ΠR
∓ (`L ± 1

2
, `R ∓ 1

2
)

Table4.3: Projections to all fuzzy subspaces in r.h.s. of (4.44).

It is possible to split ΠL
0 to the projectors ΠL

00
,ΠL

02
and ΠR

0 to ΠR
00
,ΠR

02
, as

ΠL
00

= 1(2`L+1) ⊗ 1(2`R+1) ⊗ P00 ⊗ 14 ⊗ 1n ,

ΠL
02

= 1(2`L+1) ⊗ 1(2`R+1) ⊗ P02 ⊗ 14 ⊗ 1n ,

ΠR
00

= 1(2`L+1) ⊗ 1(2`R+1) ⊗ 14 ⊗ P00 ⊗ 1n ,

ΠR
02

= 1(2`L+1) ⊗ 1(2`R+1) ⊗ 14 ⊗ P02 ⊗ 1n ,

(4.49)

where P00 , P02 are given in (4.15). Taking the above splitting of ΠL
0 and ΠR

0 into

account, we can resolve Π00 ,Π0± ,Π±0 into the projections, which project onto

subspaces carrying a single IRR as given in table 4.3. These constitute the 16

projectors onto the fuzzy subspaces appearing in the right hand side of equation

(4.44).
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4.2.2 Gauge Theory over M4 × S2 Int
F × S2 Int

F

We may now turn our attention back to the vacuum configuration (4.28). The

latter breaks the SU(N ) gauge symmetry to a U(n). Clearly, this is the com-

mutant of (ΦL
a ,Φ

R
a ) given in (4.28). In addition, the global symmetry is totally

broken by the vacuum. However, we note that, it is still possible to combine a

global rotation with a gauge transformation which leaves the vacuum invariant.

We may introduce the fluctuations (ALa , A
R
a ) about the vacuum as

ΦL
a = XL

a + Γ0
a
L

+ ALa = DL
a + ALa ,

ΦR
a = XR

a + Γ0
a
R

+ ARa = DR
a + ARa ,

(4.50)

where ALa , ARa ∈ u(2`L + 1)⊗ u(2`R + 1)⊗ u(4)⊗ u(4)⊗ u(n).

Evaluating FL
ab, F

R
ab, F

L,R
ab , we find

FL
ab = [DL

a , A
L
b ]− [DL

b , A
L
a ] + [ALa , A

L
b ]− εabcALc ,

FR
ab = [DR

a , A
R
b ]− [DR

b , A
R
a ] + [ARa , A

R
b ]− εabcARc ,

FL,R
ab = [DL

a , A
R
b ]− [DR

b , A
L
a ] + [ALa , A

R
b ] .

(4.51)

This suggests that we can think of ALa and ARa as the six components of a U(n)

gauge field living on S2 Int
F × S2 Int

F including the two normal components. As

we mentioned earlier, we can eliminate these two normal components of gauge

fields by imposing gauge invariant conditions on the fields in the commutative

limit, `L, `R → ∞. Following the approaches in [41, 59, 63], we introduce the

conditions

(XL
a + Γ0

a
L

+ ALa )2 = (XL
a + Γ0

a
L
)2

= −(`L + γ)(`L + γ + 1)1(2(`L+γ)+1)(4(2`R+1)n) ,

(XR
a + Γ0

a
R

+ ARa )2 = (XR
a + Γ0

a
R

)2

= −(`R + γ)(`R + γ + 1)1(2(`R+γ)+1)(4(2`L+1)n) ,

(4.52)

where γ = 0,±1
2
. In the commutative limit, `L, `R → ∞, (4.52) yields the

transversality condition on Γ0
a
L

+ ALa and Γ0
a
R

+ ARa to be

x̂La (Γ0
a
L

+ ALa )→ −γ , x̂Ra (Γ0
a
R

+ ARa )→ −γ , (4.53)
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as long as AL,Ra are smooth and bounded for `L, `R → ∞ and converge to

ALa (x) , ARa (x) in this limit. Here we have iX
L,R
a

`
→ x̂L,Ra as `L, `R → ∞, with

(x̂La , x̂
R
a ) being the coordinates of S2 × S2.

To summarize, we have a U(n) gauge theory on M× S2 Int
F × S2 Int

F . Writing

AM := (Aµ, Aa), the field strength tensor takes the form FMN = (Fµν , FL
µa , F

R
µa,

FL
ab , F

R
ab , F

L,R
ab ) with

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] ,

FL
µa := DµΦL

a = ∂µA
L
a − [XL

a + Γ0
a
L
, Aµ] + [Aµ, A

L
a ] ,

FR
µa := DµΦR

a = ∂µA
R
a − [XR

a + Γ0
a
R
, Aµ] + [Aµ, A

R
a ] .

FL
ab = [XL

a + Γ0
a
L
, ALb ]− [XL

b + Γ0
b
L
, ALa ] + [ALa , A

L
b ]− εabcALc ,

FR
ab = [XR

a + Γ0
a
R
, ARb ]− [XR

b + Γ0
b
R
, ARa ] + [ARa , A

R
b ]− εabcARc ,

FL,R
ab = [XL

a + Γ0
a
L
, ARb ]− [XR

b + Γ0
b
R
, ALa ] + [ALa , A

R
b ] .

4.3 The SU(2)× SU(2)-equivariant U(4) gauge theory

In this section, we investigate the U(4) gauge theory on M4 × S2 Int
F × S2 Int

F .

Following a similar line of development as in the subsection 3.4.3, we introduce

SU(2)×SU(2) ≈ SO(4) symmetry generators in order to construct the SU(2)×
SU(2)-equivariant gauge fields. Our anti-Hermitian symmetry generators are

ωLa = (X(2`L+1)
a ⊗ 1(2`R+1) ⊗ 116 ⊗ 14) + (1(2`L+1) ⊗ 1(2`R+1) ⊗ Γ0

a
L ⊗ 14)

−(1(2`L+1) ⊗ 1(2`R+1) ⊗ 116 ⊗ i
LLa
2

) ,

ωRa = (1(2`L+1) ⊗X(2`R+1)
a ⊗ 116 ⊗ 14) + (1(2`L+1) ⊗ 1(2`R+1) ⊗ Γ0

a
R ⊗ 14)

−(1(2`L+1) ⊗ 1(2`R+1) ⊗ 116 ⊗ i
LRa
2

) ,

(4.54)

and ωLa = XL
a + Γ0

a
L

+ i
2
LLa , ω

R
a = XL

a + Γ0
a
R

+ i
2
LRa for short. LLa and LRa are

chosen as in (3.148) so that ωLa and ωRa satisfy (3.146).

Since (LLa , L
R
a ) carry the (1

2
, 1

2
) IRR of SU(2)×SU(2), it is readily seen that the
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Projector To the Representation

ΠL
00

ΠR
00

(`L + 1
2
, `R + 1

2
)⊕ (`L + 1

2
, `R − 1

2
)⊕ (`L − 1

2
, `R + 1

2
)⊕ (`L − 1

2
, `R − 1

2
)

ΠL
00

ΠR
02

(`L + 1
2
, `R + 1

2
)⊕ (`L + 1

2
, `R − 1

2
)⊕ (`L − 1

2
, `R + 1

2
)⊕ (`L − 1

2
, `R − 1

2
)

ΠL
02

ΠR
00

(`L + 1
2
, `R + 1

2
)⊕ (`L + 1

2
, `R − 1

2
)⊕ (`L − 1

2
, `R + 1

2
)⊕ (`L − 1

2
, `R − 1

2
)

ΠL
02

ΠR
02

(`L + 1
2
, `R + 1

2
)⊕ (`L + 1

2
, `R − 1

2
)⊕ (`L − 1

2
, `R + 1

2
)⊕ (`L − 1

2
, `R − 1

2
)

ΠL
00

ΠR
± (`L + 1

2
, `R ± 1)⊕ (`L − 1

2
, `R ± 1)⊕ (`L + 1

2
, `R)⊕ (`L − 1

2
, `R)

ΠL
02

ΠR
± (`L + 1

2
, `R ± 1)⊕ (`L − 1

2
, `R ± 1)⊕ (`L + 1

2
, `R)⊕ (`L − 1

2
, `R)

ΠL
±ΠR

00
(`L ± 1, `R + 1

2
)⊕ (`L ± 1, `R − 1

2
)⊕ (`L, `R + 1

2
)⊕ (`L, `R − 1

2
)

ΠL
±ΠR

02
(`L ± 1, `R + 1

2
)⊕ (`L ± 1, `R − 1

2
)⊕ (`L, `R + 1

2
)⊕ (`L, `R − 1

2
)

ΠL
±ΠR
± (`L ± 1, `R ± 1)⊕ (`L ± 1, `R)⊕ (`L, `R ± 1)⊕ (`L, `R)

ΠL
±ΠR
∓ (`L ± 1, `R)⊕ (`L ± 1, `R ∓ 1)⊕ (`L, `R)⊕ (`L, `R ∓ 1)

Table4.4: Projections to the representations appearing in the r.h.s of (4.55).

symmetry generators (ωLa , ω
R
a ) have the SU(2)× SU(2) representation content

(`L, `R)⊗
(
4(0, 0)⊕ 2(

1

2
, 0)⊕ 2(0,

1

2
)⊕ (

1

2
,
1

2
)

)
⊗ (

1

2
,
1

2
)

≡ 4[(`L +
1

2
, `R +

1

2
)⊕ (`L +

1

2
, `R −

1

2
)⊕ (`L −

1

2
, `R +

1

2
)⊕ (`L −

1

2
, `R −

1

2
)]

⊕ 2[(`L − 1, `R −
1

2
)⊕ (`L − 1, `R +

1

2
)]⊕ 4[(`L, `R +

1

2
)⊕ (`L, `R −

1

2
)]

⊕ 2[(`L + 1, `R −
1

2
)⊕ (`L + 1, `R +

1

2
)]⊕ 2[(`L −

1

2
, `R − 1)⊕ (`L +

1

2
, `R − 1)]

⊕ 4[(`L −
1

2
, `R)⊕ (`L +

1

2
, `R)]⊕ 2[(`L −

1

2
, `R + 1)⊕ (`L +

1

2
, `R + 1)]

⊕ (`L − 1, `R − 1)⊕ 2(`L − 1, `R)⊕ 2(`L, `R − 1)⊕ 4(`L, `R)⊕ (`L + 1, `R − 1)

⊕ 2(`L + 1, `R)⊕ (`L − 1, `R + 1)⊕ 2(`L, `R + 1)⊕ (`L + 1, `R + 1) ≡ I .

(4.55)

Adjoint action of (ωLa , ω
R
a ) implies the SU(2) × SU(2)-equivariance conditions

in (3.149) and

[ωLa ,Ψ
L
α] =

i

2
(τa)αβΨL

β , [ωRa ,Ψ
R
α ] =

i

2
(τa)αβΨR

β ,

[ωLa ,Ψ
R
α ] = 0 = [ωRa ,Ψ

L
α] .

(4.56)

For the U(4) theory under investigation, we list the projectors and the subspaces

to which they project in the equation (4.55) in the table (4.4). In order to

avoid the possibility of any notational confusion, we note that the representation

content of (ωLa , ω
R
a ) includes the tensor product with the IRR (1

2
, 1

2
) as seen in
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the l.h.s. of (4.55) and ΠL
αΠR

β project to the subspaces as listed in the table 4.4,

while in the absence of the gauge symmetry generators (LLa , L
R
a ), ΠL

αΠR
β project

to the subspaces as listed in table 4.3.

We can find the dimension of solution space for Aµ, ALa , ARa and ΨL
α, ΨR

α using

the Clebsch-Gordan decomposition of the adjoint action of (ωLa , ω
R
a ) whose repre-

sentation content can be found by I⊗I. The relevant part of this decomposition

gives

196(0, 0)⊕ 336(
1

2
, 0)⊕ 336(0,

1

2
)⊕ 420(1, 0)⊕ 420(0, 1) · · · . (4.57)

This means that there are 196 equivariant scalars (i.e rotational invariants under

(ωLa , ω
R
a )), 336 equivariant spinors in each of the IRRs (1

2
, 0) and (0 , 1

2
) and 420

vectors in each of the IRRs (1 , 0) and (0 , 1). Employing the matrices

SLi = 12`L+1 ⊗ 12`R+1 ⊗ si ⊗ 14 ⊗ 14 , SRi = 12`L+1 ⊗ 12`R+1 ⊗ 14 ⊗ si ⊗ 14 ,

si =

 σi 02

02 02

 , i = 1 , 2 , (4.58)

QL
B =

XL
a L

L
a − i

2
1

`L + 1
2

, QL
00

= ΠL
00
QL
B , QL

02
= ΠL

02
QL
B ,

QL
+ =

1

4`L(`L + 1)
ΠL

+

(
(2`L + 1)2QL

B + i
)

ΠL
+ ,

QL
− =

1

4`L(`L + 1)
ΠL
−
(
(2`L + 1)2QL

B − i
)

ΠL
− ,

QL
F = Γ0

a
L
LLa − i

1

2
ΠL

1
2
, QL

H = −iεabcX
L
a Γ0

b
L
LLc√

`L(`L + 1)
− 1

2
QL
BI + i

1

2
ΠL

1
2
,

QL
BI = i

(`L + 1
2
)2{QL

B, Q
L
I }+ 1

2
ΠL

1
2

2`L(`L + 1)
, QL

Si
=
XL
a S

L
i L

L
a − i

2
SLi

`L + 1
2

,

(4.59)

and L → R in (4.59) for the right constituents, a judicious choice of a basis

for the equivariant scalars can be made so that they are “idempotents” in the

subspace they live in, and they can be listed as

ΠL
i ΠR

i , ΠL
i S

R
k , ΠL

i Q
R
j , ΠL

i Q
R
Sk
, QL

j ΠR
i , QL

j S
R
k , QL

j Q
R
j , QL

j Q
R
Sk
,

QL
Sk

ΠR
i , QL

Sk
SRk , QL

Sk
QR
j , QL

Sk
QR
Sk
, SLk ΠR

i , SLk S
R
k , SLkQ

R
j , SLkQ

R
Sk
,

(4.60)

where i runs over 00, 02,+,−, j runs over 00, 02,+,−, H, F and k takes on

the values 1, 2 and no sum over repeated indices is implied. Full lists of the
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equivariant spinors and vectors are not our immediate corcern in what follows

and therefore they are relegated to Appendix B.

We note that that the index α (α = 1, 2) of ΨL
α and ΨR

α implying the transfor-

mation properties of these fields under the global symmetry SU(2)L × SU(2)R,

becomes, after symmetry breaking, the spinor index on S2 Int
F × S2 Int

F , just like

the index a (a = 1, 2, 3) of (ΦL
a ,Φ

R
a ) becomes the vector index. We stress that

the pure group theoretical result in equation (4.57) predicts the presence of

equivariant spinor fields in the IRRs (1
2
, 0) and (0, 1

2
) of the symmetry group

SU(2)L × SU(2)R of the fuzzy extra dimensions S2 Int
F × S2 Int

F . Their explicit

construction, as listed in (B.6), is only facilitated by the splittings of ΦL an

ΦR in (4.24) and (4.25). As it should be already clear from our discussions in

subsections 4.1 and 4.2, these spinorial modes do not constitute independent

dynamical degrees of freedom in the U(4) effective gauge theory. Taking suit-

able bilinears of these spinors, we may construct all the equivariant gauge field

modes on S2 Int
F ×S2 Int

F . In other words, it is in principle possible to express the

"square roots" of the equivariant gauge field modes through these equivariant

spinorial modes.

4.3.1 Projection to the Monopole Sectors

In this section, we derive the monopole sectors with the winding numbers (±1, 0),

(0,±1), (±1,±1) from the suitable projections of S2 Int
F ×S2 Int

F and we gain much

insight on the structure of the model by examining projections to its subsectors.

We will see how to systematically access all higher winding number monopole

sectors in the next subsection.

We observe that SF 2 Int×SF 2 Int may be projected down to the monopole sectors

S2±
F × S

2
F =

(
S2
F (`L)× S2

F (`R)

)
⊕
(
S2
F (`L ±

1

2
)× S2

F (`R)

)
, (4.61)

S2
F × S2±

F =

(
S2
F (`L)× S2

F (`R)

)
⊕
(
S2
F (`L)× S2

F (`R ±
1

2
)

)
, (4.62)

S2±
F × SF

2± =

(
S2
F (`L)× S2

F (`R)

)
⊕
(
S2
F (`L ±

1

2
)× S2

F (`R ±
1

2
)

)
, (4.63)

with the winding numbers (±1, 0), (0,±1), (±1,±1), respectively. We can now
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probe the low energy structure of the U(4) model in these monopole sectors by

writing down their equivariant gauge field modes.

Let us inspect each of the sectors briefly.

i. S2±
F × S2

F :

We may consider, for instance, the projection

ΠL
00

ΠR
00

+ ΠL
±ΠR

00
. (4.64)

We note that the projection (4.64) to this sector is not unique, in the sense that

there is in fact a set of projections which give the same monopole sector. We

infer from (4.61) to which IRRs the projection (4.64) restricts the direct sum

given in the r.h.s. of (4.43). After this projection, the number of equivariant

fields are greatly reduced and they can be most easily found by working out the

adjoint action of (ωLa , ω
R
a ), which in this subspace takes the simple form

[(
(`L, `R)⊕ (`L ±

1

2
, `R)

)
⊗ (

1

2
,
1

2
)

]⊗2

≡ 8(0, 0)⊕ 12(
1

2
, 0)⊕ 16(1, 0)

⊕ 16(0, 1) · · · .

Thus, there are 8 invariants which we read from (4.60) as

ΠL
00

ΠR
00
, ΠL

±ΠR
00
, ΠL

00
QR

00
, ΠL

±Q
R
00
,

QL
00

ΠR
00
, QL

±ΠR
00
, QL

00
QR

00
, QL

±Q
R
00
, (4.65)

16 vectors carrying the (1, 0) IRR

ΠR
00

[DL
a , Q

L
00

] , ΠR
00
QL

00
[DL

a , Q
L
00

] , ΠR
00
{DL

a , Q
L
00
} ,

QR
00

[DL
a , Q

L
00

] , QR
00
QL

00
[DL

a , Q
L
00

] , QR
00
{DL

a , Q
L
00
} ,

ΠR
00

[DL
a , Q

L
±] , ΠR

00
QL
±[DL

a , Q
L
±] , ΠR

00
{DL

a , Q
L
±} ,

QR
00

[DL
a , Q

L
±] , QR

00
QL
±[DL

a , Q
L
±] , QR

00
{DL

a , Q
L
±} ,

ΠR
00

ΠL
00
ωLa , ΠR

00
ΠL
±ω

L
a , QR

00
ΠL

00
ωLa , QR

00
ΠL
±ω

L
a ,

(4.66)
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and 16 vectors in the (0, 1) IRR are

ΠL
00

[DR
a , Q

R
00

], ΠL
00
QR

00
[DR

a , Q
R
00

], ΠL
00
{DR

a , Q
R
00
},

QL
00

[DR
a , Q

R
00

], QL
00
QR

00
[DR

a , Q
R
00

], QL
00
{DR

a , Q
R
00
},

ΠL
∓[DR

a , Q
R
00

], ΠL
∓Q

R
00

[DR
a , Q

R
00

], ΠL
∓{DR

a , Q
R
00
},

QL
∓[DR

a , Q
R
00

], QL
∓Q

R
00

[DR
a , Q

R
00

], QL
∓{DR

a , Q
R
00
},

ΠL
00

ΠR
00
ωRa , ΠL

∓ΠR
00
ωRa , Q

L
00

ΠR
00
ωRa , Q

L
∓ΠR

00
ωRa .

(4.67)

We see that there are 12 equivariant spinor in the IRR (1
2
, 0)

ΠR
00

ΠL
00
βLαQ

L
± , ΠR

00
QL

00
βLαΠL

± , ΠR
00
QL

00
βLαQ

L
± , Q

R
00

ΠL
00
βLαQ

L
± , Q

R
00
QL

00
βLαΠL

± ,

QR
00
QL

00
βLαQ

L
± , ΠR

00
ΠL
±β

L
αS

L
2 , ΠR

00
ΠL
±β

L
αQ

L
s2 , ΠR

00
QL
±β

L
αQ

L
s2 , Q

R
00

ΠL
±β

L
αS

L
2 ,

QR
00

ΠL
±β

L
αQ

L
s2 , Q

R
00
QL
±β

L
αQ

L
s2 ,

(4.68)

where βLα = 12`L+1 ⊗ 12`R+1 ⊗ bα ⊗ 14 and due to the form of this monopole

sector, we find no equivariant spinors in the IRR (0, 1
2
).

One, rather trivial alternative to (4.64) is to change ΠR
00

with ΠR
02

in (4.64), this

simply amounts to taking ΠR
00
→ ΠR

02
, QR

00
→ QR

02
in (4.65),(4.66),(4.67) and

(4.68). Another choice is the projector

ΠL
00

ΠR
00

+ ΠL
±ΠR

02
. (4.69)

Equivariant fields in this case can be obtained in a similar fashion.

i. S2
F × S2±

F :

We observe that the only change in (4.65) is the replacement of (1
2
, 0) with (0, 1

2
).

Bearing this fact in mind, results in (4.65) to (4.69) apply with the exchange

L↔ R.

i. S2±
F × S

2±
F :

To obtain this monopole sector we can use any one of the projections

ΠL
i ΠR

j + ΠL
±ΠR
± , i , j = 00, 02 . (4.70)
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In this case, the adjoint action of (ωLa , ω
R
a ) yields the representation content[(

(`L, `R)⊕ (`L ∓
1

2
, `R ∓

1

2
)
)
⊗ (

1

2
,
1

2
)
]⊗2 ≡ 8(0, 0)⊕ 16(1, 0)⊕ 16(0, 1)⊕ · · · .

(4.71)

We immediately observe that equivariant spinors are completely absent in this

sector. Taking, for instance, i , j = 00 we find that 8 scalars can be written as

ΠL
00

ΠR
00
, ΠL

±ΠR
± , ΠL

00
QR

00
, ΠL

±Q
R
± ,

QL
00

ΠR
00
, QL

±ΠR
± , QL

00
QR

00
, QL

±Q
R
± , (4.72)

and 16 vectors carrying the (1, 0) IRR are

ΠR
00

[DL
a , Q

L
00

] , ΠR
00
QL

00
[DL

a , Q
L
00

] , ΠR
00
{DL

a , Q
L
00
} ,

QR
00

[DL
a , Q

L
00

] , QR
00
QL

00
[DL

a , Q
L
00

] , QR
00
{DL

a , Q
L
00
} ,

ΠR
±[DL

a , Q
L
±] , ΠR

±Q
L
±[DL

a , Q
L
±] , ΠR

±{DL
a , Q

L
±} ,

QR
±[DL

a , Q
L
±] , QR

±Q
L
±[DL

a , Q
L
±] , QR

±{DL
a , Q

L
±} ,

ΠR
00

ΠL
00
ωLa , ΠR

±ΠL
±ω

L
a , QR

00
ΠL

00
ωLa , QR

±ΠL
±ω

L
a , (4.73)

while the vectors carrying the (0, 1) representation follow from (4.73) by the

exchange L↔ R.

In all cases that we have discussed in this subsection, each summand of the

projectors (given in (4.64), (4.69), (4.70), etc.) splits the equivariant fields into

mutually orthogonal subsectors under matrix product. For concreteness, let us

briefly discuss the consequences of this fact for the sector given by the projec-

tion in (4.64). We have found the rotational invariants under the symmetry

generators (ωLa , ω
R
a ) given in (4.65), so the parametrization of the fields Aµ can

be defined in terms of two mutually orthogonal sets (ΠR
00
QL

00
,ΠL

00
QR

00
, QL

00
QR

00
,

ΠL
00

ΠR
00

) and (ΠR
00
QL
± ,Π

L
±Q

R
00
, QL
±Q

R
00
,ΠL
±ΠR

00
). Comparing these two sets to the

paramet- rization of gauge field constructed in the section 3.4, we observe that

each set in the subspace it lives is equivalent to the basis for parametrization of

gauge field (3.152). Hence, the low energy effective action of this model consists

of two decoupled set of Abelian Higgs-type models with U(1)3 gauge symme-

try and each set possesses static multivortex solutions characterized by three

winding numbers as given in the subsection 3.4.4 [24].
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4.4 Generalization of the Model with k-component Multiplets

It is possible to search for other vacuum solutions for the deformed N = 4

SYM theory given in the section 4.2. We may generalize the construction of

this section by replacing the doublets ΨL and ΨR in equation (4.25) with k1-,

k2-component multiplets of the global SU(2)× SU(2) as

ΨL =


ΨL

1

ΨL
2

...

ΨL
k1

 , ΨR =


ΨR

1

ΨR
2

...

ΨR
k2

 , Ψ =

 ΨL

ΨR

 , (4.74)

transforming in its (k1−1
2
, 0) and (0, k2−1

2
) IRR, respectively. Then, Ψ is the

k1 + k2-component multiplet in the representation (k1−1
2
, 0)⊕ (0, k2−1

2
). Compo-

nents ΨL
α ,Ψ

R
β ∈ Mat(N ) , (α = 1, · · · , k1) , (β = 1 · · · , k2) of Ψ are scalar fields

transforming in the adjoint representation of SU(N ) as ΨL,R
α → U †ΨL,R

α U . Bi-

linears ΓLa and ΓRa in ΨL and ΨR are defined similarly as before in the form

ΓLa = − i
2

ΨL†λ̃LaΨL , ΓRa = − i
2

ΨR†λ̃Ra ΨR , λ̃L,Ra = λL,Ra ⊗ 1N , (4.75)

where now λL,Ra are the generators of spin (
kL,R−1

2
) representation of SU(2).

In subsection 4.2.1, we have seen that the vacuum configuration of our model

can be written as the direct sum of products of fuzzy spheres whose structure is

determined by the representation content of (Γ0
a
L
,Γ0

a
R

) with the corresponding

doublet scalar fields taking the form given in (4.33). In order to generalize the

latter, we need k = k1 + k2 sets of annihilation-creation operators which satisfy

{bα, b†β} = δαβ , α, β = 1, · · · , k1 , {cρ, c†σ} = δρσ , ρ, σ = 1, · · · , k2 , (4.76)

with all other anticommutators vanishing. Thus, these operators span the 2k1+k2-

dimensional Hilbert space with the basis vectors

|n1, · · · , nk1 ,m1, · · · ,mk2〉 = (b†1)
n1 · · · (b†k1)

nk1 (c†1)
m1 · · · (c†k2)

mk2 |0, 0 · · · , 0〉 ,
(4.77)

where ni,mj = 0, 1, (i = 1, · · · , k1, j = 1, · · · , k2). For ΨL = ψL and ΨR = ψR
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with

ψL :=


b1

...

bk1

 , ψR :=


c1

...

ck2

 . (4.78)

It is straightforward to show that Γ0
a
L

= − i
2
ψL†λaψ

L and Γ0
a
R

= − i
2
ψR†λaψ

R

satisfy the SU(2)× SU(2) commutation relations and in addition fulfill

[ψLα ,Γ
0
a
L
] = − i

2
(λa)αβψ

L
β , [ψLα ,Γ

0
a
R

] = 0 ,

[ψRα ,Γ
0
a
R

] = − i
2

(λa)αβψ
R
β , [ψRα ,Γ

0
a
L
] = 0 ,

(4.79)

implying that ψLα and ψRα indeed carry the (k1−1
2
, 0) and (0, k2−1

2
) IRRs, respec-

tively.

In order to obtain the vacuum configuration in the present case, first we have to

find out the SU(2)×SU(2) IRR content of (Γ0
a
L
,Γ0

a
R

). Number operators NL =

b†αbα and NR = c†αcα commute with Γ0
a
L and Γ0

a
R. This means that, the number

of states in a given sector with eigenvalues (nL, nR) (nL = (0, · · · , k1) , nR =

(0, · · · , k2)) of NL and NR is equal to the dimension of one of the SU(2)×SU(2)

IRR sectors occurring in the decomposition of the representation of (Γ0
a
L
,Γ0

a
R

)

into the irreducibles of SU(2)× SU(2). Therefore, the IRRs of SU(2)× SU(2)

that appear in (Γ0
a
L
,Γ0

a
R

) may be labeled as

(`k1n , `
k2
m ) =

((k1
n

)
− 1

2
,

(
k2
m

)
− 1

2

)
, (4.80)

and the reducible representation carried by (Γ0
a
L
,Γ0

a
R

) decomposes into the direct

sum

Lk1 k2 :=

k1∑
n=0

k2∑
m=0

⊕(`k1n , `
k2
m ) . (4.81)

Since
(
ki
n

)
=
(
ki
k−n

)
, we see that `kin = `kiki−n. As a consequence, not all the

summands in (4.81) are distinct IRRs. Noting also that `kiki
2

occurs only once for

ki even, we may rewrite (4.81) as the direct sum of distinct IRRs together with
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its multiplicities as

Lk1even k2even =(`k1k1
2

, `k2k2
2

)⊕ 2

k1
2
−1∑

n=0

k2
2∑

m=0

(`k1n , `
k2
m )⊕ 2

k1
2∑

n=0

k2
2
−1∑

m=0

(`k1n , `
k2
m ) ,

=(`k1k1
2

, `k2k2
2

)⊕ 4

k1
2
−1∑

n=0

k2
2
−1∑

m=0

(`k1n , `
k2
m )⊕ 2

k1
2
−1∑

n=0

(`k1n , `
k2
k2
2

)

⊕ 2

k2
2
−1∑

m=0

(`k1k1
2

, `k2m ) , (4.82)

Lk1odd k2odd =4

k1−1
2∑

n=0

k2−1
2∑

m=0

(`k1n , `
k2
m ) , (4.83)

Lk1even k2odd =4

k1
2
−1∑

n=0

k2−1
2∑

m=0

(`k1n , `
k2
m )⊕ 2

k2−1
2∑

m=0

(`k1k1
2

, `k2m ) . (4.84)

Lk1odd k2even can be obtained by taking k1 ↔ k2 in equation (4.84).

With the assumption N = 2k1+k2(2`L + 1)(2`R + 1)n, the vacuum configuration

of our SU(N ) gauge theory can be written as

ΦL
a = (X(2`L+1)

a ⊗ 1(2`R+1) ⊗ 12k1+k2 ⊗ 1n) + (1(2`L+1) ⊗ 1(2`R+1) ⊗ Γ0
a
L ⊗ 1n)

ΦR
a = (1(2`L+1) ⊗X(2`R+1)

a ⊗ 12k1+k2 ⊗ 1n) + (1(2`L+1) ⊗ 1(2`R+1) ⊗ Γ0
a
R ⊗ 1n) ,

(4.85)

up to SU(N ) gauge transformations.

Clebsch-Gordan decomposition of the tensor products (`L, `R)⊗Lk1evenk2odd and
(`L, `R)⊗Lk1evenk2even and (`L, `R)⊗Lk1oddk2odd reveal the vacuum configurations

in terms of direct sums of S2
F × S2

F . For instance, we have

S2 Int
F k1 odd × S2 Int

F k2 odd
:=

4

k1−1
2∑

n=0

k2−1
2∑

m=0

[
S2
F (`L + `k1n )× S2

F (`R + `k2m )⊕ · · · ⊕ S2
F (`L + `k1n )× S2

F (|`R − `k2m |)

⊕S2
F (`L + `k1n − 1)× S2

F (`R + `k2m )⊕ · · · ⊕ S2
F (`L + `k1n − 1)× S2

F (|`R − `k2m |)

⊕...

⊕S2
F (|`L − `k1n |)× S2

F (`R + `k2m )⊕ · · · ⊕ S2
F (|`L − `k1n |)× S2

F (|`R − `k2m |)
]
.

(4.86)
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Remaining two cases are worked out explicitly in Appendix B.

We easily see from (4.86) and (B.7), (B.8) that, all higher winding number

monopole sectors may be obtained from suitable projections of S2 Int
F k1

×S2 Int
F k2

in a systematic manner. As a quick example, let us consider the case with

k1 = k2 = 3. Then, (Γ0
a
L
,Γ0

a
R

) has the representation content

4[(0, 0)⊕ (0, 1)⊕ (1, 0)⊕ (1, 1)] , (4.87)

and the vacuum configuration takes the form

S2 Int
F k1=3 × S

2 Int
F k2=3 = 4

[
4S2

F (`L)× S2
F (`R)⊕ 2S2

F (`L)× S2
F (`R − 1)

⊕2S2
F (`L)× S2

F (`R + 1)⊕ 2S2
F (`L − 1)× S2

F (`R)

⊕2S2
F (`L + 1)× S2

F (`R)⊕ 2S2
F (`L − 1)× S2

F (`R − 1)

⊕2S2
F (`L − 1)× S2

F (`R + 1)⊕ 2S2
F (`L + 1)× S2

F (`R − 1)

⊕2S2
F (`L + 1)× S2

F (`R + 1)

]
. (4.88)

Monopole sectors with winding numbers (0,±2), (±2, 0), (±2 ,±2), (±2 ,∓2) are

all available through projections of S2 Int
F k1=3 × S2 Int

F k2=3. Sectors with winding

numbers, such as (n, n− 1), appear through projections of S2 Int
F k1

× S2 Int
F k2

for

k1 6= k2.

Before closing this section, let us also remark that for the U(4) gauge theory over

S2 Int
F k1=3 × S2 Int

F k2=3 there are no equivariant spinors. This is quiet expected,

since, for k1 = k2 = 3, ΨL and ΨR transform under the IRRs (1, 0) and (0, 1)

respectively and under the adjoint action of the symmetry generators we have

[ωLa ,Ψ
L
b ] =

i

2
(λ̃a)bcΨ

L
c = εabcΨ

L
c , [ωRa ,Ψ

R
b ] =

i

2
(λ̃a)bcΨ

R
c = εabcΨ

R
c , (4.89)

since (λ̃a)bc = −2iεabc in the adjoint representation of SU(2). Thus these equiv-

ariant field modes are one and the same as those obtained from the equivariance

conditions on ΦL
a and ΦR

a . From our results, we infer that the equivariant spinor

fields over left and right fuzzy extra dimensions do exist only for both k1 and k2

even integers, while only left(right) spinor modes exist for k1(k2) even only, and

these modes do not exist at all for k1 and k2 both odd.
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4.5 Relation to Fuzzy Superspace S(2 ,2)
F × S(2 ,2)

F

It is possible to identify the vacuum configuration given in equation (4.44) as the

bosonic (even) part of the fuzzy space S(2 ,2)
F ×S(2 ,2)

F with OSP (2, 2)×OSP (2, 2)

symmetry. This observation makes the vacuum configuration S
(2 ,2)
F × S

(2 ,2)
F

especially interesting since, it simply comes out naturally and we have in no

way intended for it to emerge.

In order to reveal this relation, we have to write down the decomposition of

IRRs of OSP (2, 2) × OSP (2, 2) under the SU(2) × SU(2) IRRs. Irreducible

representations of OSP (2, 1) × OSP (2, 1) are characterized by two integer or

half-integer numbers

(J1,J2)OSP (2,1)×OSP (2,1) and it has the decomposition under the SU(2)× SU(2)

IRRs as

(J1,J2) =

[
(J1,J2)⊕ (J1 −

1

2
,J2)⊕ (J1,J2 −

1

2
)

⊕ (J1 −
1

2
,J2 −

1

2
)

]
SU(2)×SU(2)

. (4.90)

Irreducible representations of OSP (2, 2) × OSP (2, 2) can be divided into two

parts. These are the typical (J1,J2)T , and the atypical (J1,J2)A representa-

tions. Typical representations (J1,J2)T are reducible under the OSP (2, 1) ×
OSP (2, 1) IRRs as

(J1,J2)T =(J1,J2)⊕ (J1 −
1

2
,J2)⊕ (J1,J2 −

1

2
)⊕ (J1 −

1

2
,J2 −

1

2
) , (4.91)

whereas the atypical ones are irreducible with respect to the group OSP (2, 1)×
OSP (2, 1) and in fact (J1,J2)A is equivalent to the IRR (J1,J2) of OSP (2, 1)×
OSP (2, 1). All these facts follow from the generalization of the representation

theory of OSP (2, 2) and OSP (2, 1), which is extensively discussed in [41, 42,

69]. With the help of equations (4.90) and (4.91), we see that (J1,J2)T of

OSP (2, 2)×OSP (2, 2) has the decomposition in terms of the IRRs of SU(2)×
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SU(2) as

(J1,J2)T =

[
(J1,J2)⊕ 2(J1,J2 −

1

2
)⊕ 2(J1 −

1

2
,J2)⊕ 4(J1 −

1

2
,J2 −

1

2
)

⊕ (J1 − 1,J2)⊕ 2(J1 − 1,J2 −
1

2
)⊕ 2(J1 −

1

2
,J2 − 1)

⊕ (J1,J2 − 1)⊕ (J1 − 1,J2 − 1)

]
SU(2)×SU(2)

, J1 ,J2 ≥ 1 ,

(4.92)

while the representation (1
2
, 1

2
)T decomposes as

(
1

2
,
1

2
)T ≡ (

1

2
,
1

2
)⊕ (0,

1

2
)⊕ (

1

2
, 0)⊕ (0, 0)

≡
[
(
1

2
,
1

2
) + 2(0,

1

2
)⊕ 2(

1

2
, 0)⊕ 4(0, 0)

]
SU(2)×SU(2)

. (4.93)

It is now easy to see that, for (J1,J2)T ≡ (`L + 1
2
, `R + 1

2
)T , we obtain precisely

the same IRR content from (4.92) as the one that appears for the vacuum con-

figuration given in (4.43). This means that S2 Int
F × S2 Int

F can be identified with

the bosonic part of the OSP (2, 2)×OSP (2, 2) fuzzy space S(2 ,2)
F × S(2 ,2)

F at the

level (`L + 1
2
, `R + 1

2
)T .

We further observe that (J1,J2) ≡ (`L+ 1
2
, `R+ 1

2
) IRR of OSP (2, 1)×OSP (2, 1)

matches with a particular sector of the representation given in (4.43) and allows

us to identify(
S2
F (`L +

1

2
)× S2

F (`R +
1

2
)

)
⊕
(
S2
F (`L)× S2

F (`R +
1

2
)

)
⊕
(
S2
F (`L +

1

2
× S2

F (`R)

)
⊕
(
S2
F (`L)× S2

F (`R)
)
, (4.94)

with the bosonic part of OSP (2, 1)×OSP (2, 1) fuzzy space S(2 ,1)
F ×S(2 ,1)

F . The

subsector given in (4.94) may be seen as the direct sum of two winding number

(1, 0) monopole sectors as in (4.61) where one monopole sector differs from the

other by the level of the right fuzzy spheres.

The superalgebra osp(2, 2)× osp(2, 2) has 16 generators Λi
M := (Λi

a,Λ
i
µ,Λ

i
8) , i =

L ,R which satisfy the graded commutation relations

[Λi
a ,Λ

i
b] = iεabcΛ

i
c , [Λi

a ,Λ
i
µ] =

1

2
(Σa)νµΛi

ν , [Λi
a ,Λ

i
8] = 0 ,

[Λi
8 ,Λ

i
µ] = ΞµνΛ

i
ν , {Λi

µ ,Λ
i
ν} =

1

2
(CΣa)µνΛ

i
a +

1

4
(ΞC)µνΛi

8 ,
(4.95)
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where

Σa =

 σa 0

0 σa

 , C =

 C 0

0 −C

 , Ξ =

 0 I2

I2 0

 , (4.96)

and C is the two-dimensional Levi-Civita symbol and all the other graded com-

mutation are zero. Reality condition implemented by the graded dagger opera-

tion on the generators reads

Λ‡a = Λ†a = Λa , Λ‡µ = −CµνΛν , Λ‡8 = Λ†8 = Λ8 , (4.97)

for both the left and the right generators.

Using the representation theory of osp(2, 1) and osp(2, 2), it is rather straight-

forward to construct the nine-dimensional fundamental representation (1
2
, 1

2
)A

of osp(2, 2) × osp(2, 2) which is at the same time the (1
2
, 1

2
) IRR of osp(2, 1) ×

osp(2, 1). Generators of the three-dimensional representation of osp(2, 2) may

be written as

λa :=

 0 0

0 1
2
σa

 , λ4 :=
1

2


0 0 −1

−1 0 0

0 0 0

 , λ5 :=
1

2


0 1 0

0 0 0

−1 0 0

 ,

(4.98)

λ6 :=
1

2


0 0 −1

1 0 0

0 0 0

 , λ7 :=
1

2


0 1 0

0 0 0

1 0 0

 , λ8 :=


2 0 0

0 1 0

0 0 1

 .

Construction of these generators and a detailed exposition of the properties of

the osp(2, 2) and osp(2, 1) superalgebras can be found in [25,41]. 16 generators

(ΛL
M ,ΛR

M) in the IRR (1
2
, 1

2
)A can be given as

ΛL
M ≡ λM ⊗ 13 , ΛR

a = 13 ⊗ λa , ΛR
4 ,5 = α⊗ λ4 ,5 , ΛR

6 ,7 = −α⊗ λ6 ,7 ,

ΛR
8 = −13 ⊗ λ8 , (4.99)

where α = 313 − 2λ8.

The matrices Γ0
a
L
,Γ0

a
R
, bα , cα , b

†
α , c

†
α , N

L , NR constitute a basis for the 16×16

matrices acting on the sixteen-dimensional module corresponding to the repre-

sentation space in (4.41), and coincides with that of (4.93). We can make use
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of these matrices to construct generators of the representation (1
2
, 1

2
)A given in

(4.99). To do so, we should restrict to one of the nine-dimensional submodules

with the representation content (1
2
, 1

2
) ⊕ (0, 1

2
) ⊕ (1

2
, 0) ⊕ (0, 0). Clearly, there

exists a set of projectors which yield the same representation, and a particular

projector from this set is

P := PL02P
R
02

+ PL02P
R
1
2

+ PR02P
L
1
2

+ PL1
2
PR1

2
, (4.100)

where we have PL02 = 14 ⊗ P02 , PL1
2

= 14 ⊗ P 1
2
, PR02 = P02 ⊗ 14, PR1

2

= P 1
2
⊗ 14.

Using P , we can restrict to the nine-dimensional submodule and subsequently

get

ΛL
1 : = −iPΓ0

1
L
, ΛL

2 := iPΓ0
2
L
, ΛL

3 := −iPΓ0
3
L
, ΛL

4 := −1

2
(b̃1 + b̃†2) ,

ΛL
5 : =

1

2
(b̃†1 − b̃2) , ΛL

6 :=
1

2
(b̃1 − b̃†2) , ΛL

7 :=
1

2
(b̃†1 + b̃2) , ΛL

8 := PN ,

(4.101)

and

ΛR
1 : = −iPΓ0

1
R
, ΛR

2 := iPΓ0
2
R
, ΛR

3 := iPΓ0
3
R
, ΛR

4 :=
1

2
(c̃1 + c̃†2) ,

ΛR
5 : = −1

2
(c̃†1 − c̃2) , ΛR

6 :=
1

2
(c̃1 − c̃†2) , ΛR

7 :=
1

2
(c̃†1 + c̃2) , ΛR

8 := −PM ,

(4.102)

where

b̃α = PbαP , b̃†α = Pb†αP , c̃α = PcαP , c̃†α = Pc†αP . (4.103)

We note in passing that the graded dagger operation on the matrices given in

(4.103) reads

b̃‡α = b̃†α , (b̃†α)‡ = −b̃α c̃‡α = c̃†α , (c̃†α)‡ = −c̃α . (4.104)

Finally, in (4.101) and (4.102), it is understood that the columns and rows of zero

are deleted after the projection and therefore, we have 9× 9 matrices (ΛL
M ,Λ

R
M)

as intended.

4.6 Stability of the Vacuum Solutions

The recent new approach introduced in [70] has already been successfully em-

ployed in [25] to argue the stability of vacuum solutions in the form of direct
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sums of fuzzy spheres for an SU(N ) gauge theory coupled to scalar fields in the

vector and spinor representation of a global SU(2) symmetry. In this section, we

follow the ideas of [70] which were adapted to the present context in [25] to inves-

tigate and demonstrate the stability of our vacuum configuration S2 Int
F × S2 Int

F .

As we have emphasized earlier we are working on a gauge theory matrix model,

which is a massive deformation of the N = 4 supersymmetric Yang-Mills theory.

For matrix models stemming from low energy limit of string theories, vacuum

configurations for the potentials are usually described either by a single fuzzy

sphere or its direct sums, or, as in the present model, in terms of the product

S2
F × S2

F or its direct sums. The critical observation that was made in [70] is

that, such direct sum of fuzzy spheres form mixed states if one or several of the

fuzzy sphere(s) at a given level occur more than once in the direct sum, whereas

the solutions given by a single fuzzy sphere are pure states. The stability of the

former type vacuum configurations are guaranteed due to the fact that mixed

states cannot unitarily evolve to pure states.

In order to understand the structure of the vacuum solutions in this work, we

now apply the ideas in [70] following [25]. Let us think of a state ω on the matrix

algebra A = Mat(N ). All the matrices spanning the vacuum configuration are

in this matrix algebra. ω is a linear map ω : A → C which satisfies

ω(Φ∗Φ) ≥ 0 , ∀Φ ∈ A , ω(1) = 1 . (4.105)

To describe a single fuzzy sphere S2
F at the level L in this setting, we demand

the following condition

ω(XaXa) = L(L+ 1)ω(1) = −L(L+ 1) , (4.106)

is satisfied. In a similar manner S2
F (`L) × S2

F (`R) is described by imposing the

condition

ω(XL
aX

L
a +XR

a X
R
a ) = −L(L+ 1)−R(R + 1) . (4.107)
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We have the vacuum configuration given in (4.44) as :

S2 Int
F × S2 Int

F = 4
(
S2
F (`L)× S2

F (`R)
)
⊕ 2

(
S2
F (`L −

1

2
)× S2

F (`R)

)
⊕ 2

(
S2
F (`L +

1

2
)× S2

F (`R)

)
⊕ 2

(
S2
F (`L)× S2

F (`R −
1

2
)

)
⊕ 2

(
S2
F (`L)× S2

F (`R +
1

2
)

)
⊕
(
S2
F (`L −

1

2
)× S2

F (`R −
1

2
)

)
⊕
(
S2
F (`L +

1

2
)× S2

F (`R −
1

2
)

)
⊕
(
S2
F (`L −

1

2
)× S2

F (`R +
1

2
)

)
⊕
(
S2
F (`L +

1

2
)× S2

F (`R +
1

2
)

)
. (4.108)

We list the projections to each summand in this expression and their rank in

the table below.

Projector Rank

ΠL
00

ΠR
00
, ΠL

00
ΠR

02
, ΠL

02
ΠR

00
, ΠL

02
ΠR

02
(2`L + 1)(2`R + 1)n

ΠL
−ΠR

00
, ΠL
−ΠR

02
(2`L)(2`R + 1)n

ΠL
+ΠR

00
, ΠL

+ΠR
02

(2`L + 2)(2`R + 1)n

ΠL
00

ΠR
−, ΠL

02
ΠR
− (2`L + 1)(2`R)n

ΠL
00

ΠR
+, ΠL

02
ΠR

+ (2`L + 1)(2`R + 2)n

ΠL
−ΠR
− (2`L)(2`R)n

ΠL
−ΠR

+ (2`L)(2`R + 2)n

ΠL
+ΠR
− (2`L + 2)(2`R)n

ΠL
+ΠR

+ (2`L + 2)(2`R + 2)n

Let us define the states ωαβ by the requirement

ωαβ
(
ΠL
αΠR

β (DLaDLa +DRaDRa )ΠL
αΠR

β

)
= −Lα(Lα + 1)−Rβ(Rβ + 1) , (4.109)

where the indices α, β take on the values (00, 02, +, −), Lα, Rβ take on the

values (`L, `L, `L + 1
2
, `L − 1

2
) and (`R, `R, `R + 1

2
, `R − 1

2
), respectively, and no

sum over α, β is implied. In (4.109) we have used DLa and DRa introduced earlier

in (B.3). With the condition given in (4.109), the matrix algebra A is divided
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into the direct sum of the matrix algebras

AΠ := 4Mat((2`L + 1)(2`R + 1)n)⊕ 2Mat((2`L)(2`R + 1)n)

⊕ 2Mat((2`L + 2)(2`R + 1)n)⊕ 2Mat((2`L + 1)(2`R)n)

⊕ 2Mat((2`L + 1)(2`R + 2)n)⊕Mat((2`L)(2`R)n)

⊕Mat((2`L + 1)(2`R + 2)n)⊕Mat((2`L + 2)(2`R)n)

⊕Mat((2`L + 2)(2`R + 2)n). (4.110)

We can conventionally label the basis kets of the module on which AΠ acts as

|Lα , L3; Rβ , R3〉. For brevity and clarity of notation, we suppress the labels

L and R, write the α, β subscripts separately and hence write these kets as

|L3, R3; [α, β]〉. Projections ΠL
αΠR

β can be expressed as

ΠL
αΠR

β =
R∑

R3=−R

L∑
L3=−L

|L3, R3; [α, β]〉〈L3, R3; [α, β]| , ΠL
αΠR

β ∈ AΠ . (4.111)

Although the projections to subsectors that appear only once in (4.108) are

unique up to unitary transformations, this is not the case for the sectors of

(4.108) that occur with multiplicities. In fact we observe that under the unitary

transformation u belonging to the group U(4)⊗4U(2)⊗4U(1) ≡ U , basis kets
become

|L3, R3; [α, β]〉 =
∑
σρ

u[αβ] [σρ]|L3, R3; [σ, ρ]〉 . (4.112)

From (4.112), we find that the projectors (4.111) transform as follows ΠL
αΠR

β →
U †ΠL

αΠR
βU , which gives

ΠL
αΠR

β [u] =
L∑

L3=−L

R∑
R3=−R

∑
[σρ], [rs]

u†[rs][αβ]u[αβ][σρ]|L3, R3; [σ, ρ]〉〈L3, R3; [r, s]| .

(4.113)

Thus, after this unitary transformation, ΠL
αΠR

α [u] are still projectors, since they

satisfy

(ΠL
αΠR

β [u])2 = ΠL
αΠR

β [u] , (ΠL
αΠR

β [u])† = ΠL
αΠR

β [u] . (4.114)

Here, it is important to note that we have u[αβ][σρ] = δ[αβ][σρ] for α, β = +,−,
which gives ΠL

±ΠR
±[u] = ΠL

±ΠR
±; this however does not hold for the remaining 12
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projectors. For instance, the projections to the four subsectors carrying the IRR

(`L, `R) get mixed by the U(4) subgroup of U . Likewise, there are four distinct

subsectors, in each of which two projectors get mixed by separate U(2) subgroups

of U . All this means is that, in general not all the transformed ΠL
±ΠR
±[u] belong

to the algebra of observables AΠ.

Let us consider the expectation value of an element O of AΠ in the state ω

ω(O) =
∑
[αβ]

λ[αβ]ω[αβ](O) , (4.115)

where

ω[αβ](O) =
1

2Lα + 1

1

2Rβ + 1

∑
L3,R3

∑
L′3,R

′
3

〈
L3, R3; [αβ]

∣∣O∣∣L′3, R′3; [αβ]
〉
, (4.116)

and λ[αβ] is a probability vector satisfying

0 ≤ λ[αβ] ≤ 1,
∑
αβ

λ[αβ] = 1 . (4.117)

It is obvious that the state ω[αβ](O) is invariant under the unitary transform

(4.112) and therefore it has the unitary symmetry U(4)⊗4U(2)⊗4U(1). This

fact indicates that under U , λ[αβ] transforms to

λ[σρ](u) =
∑
[αβ]

λ[αβ]u
†
[σρ][αβ]u[αβ][σρ] =

∑
[αβ]

λ[αβ]|u[αβ][ρσ]|2 ,

no sum over [σρ] in the r.h.s. . (4.118)

Alluding to our remark after (4.114), we note that we have λ±±(u) = λ±±,

λ±∓(u) = λ±∓ while in general λ[αβ](u) 6= λ[αβ] for α, β 6= +, −. Thus, the

decomposition of ω(O) into ω[αβ](O) is not unique, Consequences of this fact

may be most easily recognized in the density matrix language.

We first express ω[αβ](O) by introducing a density matrix ρ[αβ].This is the density

matrix of the pure state

ρ[αβ] = |ψ[αβ]〉〈ψ[αβ]| =
∑

L3, R3 ,L′3, R
′
3

C∗L′3R′3CL3R3|L3, R3; [αβ]〉〈L′3, R′3; [αβ]| ,

(4.119)
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where

|ψ[αβ]〉 =
∑
L3,R3

CL3R3|L3, R3; [αβ]〉 ,
∑
L3,R3

|CL3R3|2 = 1 , 0 ≤ |C∗L′3R′3CL3R3| ≤ 1 .

(4.120)

To construct the same state as in (4.115) in this language, we introduce the

density matrix ρ

ρ =
∑
[αβ]

λ[αβ](u)ρ[αβ] , 0 < λ[αβ] < 1 ,
∑
[αβ]

λ[αβ] = 1 . (4.121)

Expectation values of O in the state ω[αβ] and ω are expressed as

ω[αβ](O) = Tr(ρ[αβ]O) , ω(O) = Tr(ρO) . (4.122)

Noting that ρ[αβ]Π
L
αΠR

β = ρ[αβ], we can easily check that ω[αβ](O) in (4.122) is

consistent with the condition give in (4.109) and matches with the form given in

(4.116) and therefore ω(O) agrees with the expression given in equation (4.115).

Due to the unitary symmetry U transforming λ[σρ](u)’s as given in (4.118), the

decomposition of ρ into ρ[αβ] is not unique. This means that ρ characterizes a

mixed state. The latter is also evident from the fact that

Tr(ρ2) =
∑
[αβ]

|λ[αβ](u)|2 < 1 . (4.123)

Since S2 Int
F × S2 Int

F is characterized by the density matrix ρ, we arrive at the

conclusion that our vacuum solution forms a mixed state. As mixed states

cannot unitarily evolve into pure states in time, S2 Int
F × S2 Int

F cannot decay to

S2
F × S2

F , a pure state, and hence the S2 Int
F × S2 Int

F vacuum is stable. From

the same reasoning, it follows that the generalized vacuum solution obtained in

section 4 are also stable as they form mixed states too.

We can compute the von Neumann entropy of S2 Int
F × S2 Int

F . This is given as

S(ρ) = −Tr(ρ log ρ)

= −
∑
[αβ]

λ[αβ](u) log λ[αβ](u) +
∑
[αβ]

λ[αβ](u)S(ρ[αβ]) (4.124)

= −
∑
[αβ]

λ[αβ](u) log λ[αβ](u) ,
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where we have used the entropy theorem [71] in writing the second line and the

fact that S(ρ[αβ]) = 0 in writing the last line. Dependence of λ[αβ](u) on u as

given in (4.118) indicates a Markovian process which is doubly stochastic since∑
αβ

|u[αβ][ρσ]|2 =
∑
ρσ

|u[αβ][ρσ]|2 = 1 . (4.125)

This process will increase the entropy of S2 Int
F × S2 Int

F , since it is irreversible.

We see that S(ρ) has its maximal value Smax(ρ) = 4 log 2 which is attained if

λ[αβ] = 1
16

for all [αβ]. We see that this maximal value may only be reached

if and only if the system starts with the probabilities λ±± = λ±∓ = 1
16

since

λ±±(u) = λ±± , λ±∓(u) = λ±∓. If the latter is not the case, the quantum

entropy still increases but cannot reach the value 4 log 2.

4.7 Another Vacuum Solution

It is worthwhile to ask whether it is possible to find solutions to equations given

in (4.27) in the form

ΦL
a = (X(2`L+1)

a ⊗ 1(2`R+1) ⊗ 14 ⊗ 1n) + (1(2`L+1) ⊗ 1(2`R+1) ⊗ Γ̃0
a

L
⊗ 1n) ,

ΦR
a = (1(2`L+1) ⊗X(2`R+1)

a ⊗ 14 ⊗ 1n) + (1(2`L+1) ⊗ 1(2`R+1) ⊗ Γ̃0
a

R
⊗ 1n) ,

(4.126)

with the factorization N = (2`L + 1) × (2`R + 1) × 4 × n and where Γ̃0
a

L
and

Γ̃0
a

R
are 4 × 4 matrices instead of the 16 × 16 matrices determined in section

4.2.1, satisfying the relations in (4.29). The answer to this question is only

superficially affirmative as such Γ̃0
a

L
and Γ̃0

a

R
exist, but against the very premise

of our initial requirement that Γ̃0
a

L
and Γ̃0

a

R
are bilinears of the doublets ΨL

and ΨR of SU(2)× SU(2) transforming under its (1
2
, 0) and (0, 1

2
) IRR’s. To be

more concrete, it turns out that it is possible to express Γ̃0
a

L
and Γ̃0

a

R
in terms

of bilinears of some matrices χL and χR, which, however, do not transform as

(1
2
, 0) and (0, 1

2
) under SU(2)×SU(2). This fact suggests that, we should expect

to find no equivariant spinor field modes at all for the emerging effective U(4)

gauge theory. It appears instructive to examine this case in some detail.

If we start with two sets of fermionic annihilation-creation operators aα, a†α given

127



in (4.8) and we choose

χL =

 χL1

χL2

 :=

 a1

a2

 , χR =

 χR1

χR2

 :=

 a†1

a2

 , (4.127)

then, Γ̃0
a

L
= − i

2
χL
†
τaχ

L ,Γ0
a
R

= − i
2
χR
†
τaχ

R satisfy

[Γ̃0
a

L
, Γ̃0

b

L
] = εabcΓ̃0

c

L
, [Γ̃0

a

R
, Γ̃0

b

R
] = εabcΓ̃0

c

R
, [Γ̃0

a

L
, Γ̃0

b

R
] = 0 . (4.128)

However, we find that

[χLα, Γ̃
0
a

L
] = − i

2
(τa)αβχ

L
β , [χLα, Γ̃

0
a

R
] 6= 0 ,

[χRα , Γ̃
0
a

R
] = − i

2
(τa)αβχ

R
β , [χRα , Γ̃

0
a

L
] 6= 0 . (4.129)

Thus, due to the two nonvanishing commutators in (4.129), χL and χR are

not transforming in the IRRs (1
2
, 0) and (0, 1

2
) of SU(2) × SU(2), respectively.

Bearing this fact in mind, we can nevertheless continue to work with the matrices

Γ̃0
a

L
and Γ̃0

a

R
satisfying (4.128), and investigate the structure of the emerging

model in its own right.

Using the identities

(Γ̃0
a

L
)2 = −3

4
N +

3

2
N1N2 , (Γ̃0

a

R
)2 =

3

4
N − 3

2
N1N2 −

3

4
, (4.130)

where N = N1 + N2, N1 = a†1a1, N2 = a†2a2, the quadratic Casimir operator

can be evaluated and we simply find

C2 = (Γ̃0
a

L
)2 + (Γ̃0

a

R
)2 = −3

4
14 . (4.131)

This means that (Γ̃0
a

L
, Γ̃0

a

R
) carry the direct sum representation (1

2
, 0)⊕ (0, 1

2
).

As we mentioned earlier in (4.9), these annihilation-creation operators span the

4-dimensional Hilbert space which has four states: |0, 0〉, |0, 1〉, |1, 0〉, |1, 1〉.
With the choice (4.127), Γ̃0

a

L
is reducible with respect to SU(2)L and has two

inequivalent singlets, |0, 0〉, |1, 1〉 and a doublet, spanned by |0, 1〉, |1, 0〉. Sim-

ilarly, Γ̃0
a

R
is reducible with respect to SU(2)R and has two inequivalent singlets,

|0, 1〉, |1, 0〉, and a doublet, spanned by |0, 0〉, |1, 1〉:

Γ̃0
a

L
→ (00, 0)⊕ (02, 0)⊕ (

1

2
, 0) ,

Γ̃0
a

R
→ (0, 00)⊕ (0, 02)⊕ (0,

1

2
) .

(4.132)
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Two inequivalent singlets of Γ̃0
a

L
can be distinguished by the eigenvalues 0, 2 ofN ,

since [Γ̃0
a

L
, N ] = 0. Likewise, the eigenvalues 0, 2 of the operator (14−(N1−N2))

distinguishes the two inequivalent singlets of Γ̃0
a

R
since [Γ̃0

a

R
,14−(N1−N2)] = 0.

Let us define the two projectors

P0 =
(Γ̃0

a

L
)2 + 3

4
3
4

= −(Γ̃0
a

R
)2

3
4

= 1−N + 2N1N2 ,

P 1
2

= −(Γ̃0
a

L
)2

3
4

=
(Γ̃0

a

R
)2 + 3

4
3
4

= N − 2N1N2 ,

(4.133)

where P0 projects to the singlets of Γ̃0
a

L
and to the doublet of Γ̃0

a

R
, and P 1

2

projects to the doublet of Γ̃0
a

L
and to the singlet of Γ̃0

a

R
. Projections to the

inequivalent singlets and spin up and down components of doublets read

PL
00

= −1

2
(N − 2)P0 = 1−N +N1N2 , PL

02
=

1

2
NP0 = N1N2 ,

PL
1
2

+
= P 1

2
N1 = N1 −N1N2 , PL

1
2
− = P 1

2
N2 = N2 −N1N2 ,

PR
00

= PL
1
2

+
, PR

02
= PL

1
2
− , PR

1
2

+
= PL

00
PR

1
2
− = PL

02
.

(4.134)

The Clebsch-Gordan decomposition of the vacuum configuration proposed in

equation (4.126) is determined as

(`L, `R)⊗
(

(
1

2
, 0)⊕ (

1

2
, 0)

)
≡(`L +

1

2
, `R)⊕ (`L −

1

2
, `R)⊕ (`L, `R +

1

2
)

⊕ (`L, `R −
1

2
) . (4.135)

This means that the vacuum configuration can be written as the direct sum

S2 Int
F × S2 Int

F ≡
(
S2
F (`L +

1

2
)× S2

F (`R)

)
⊕
(
S2
F (`L −

1

2
)× S2

F (`R)

)
⊕
(
S2
F (`L)× S2

F (`R +
1

2
)

)
⊕
(
S2
F (`L)× S2

F (`R −
1

2
)

)
. (4.136)

Projections to each summand in (4.136) can be obtained by adapting the for-

mula in (4.45) to the present case. This yields the projectors Παβ ≡ {Π+0,

Π−0 ,Π0+ ,Π0−} (see, equation (4.139) below) which, upon using the suitably

adapted version of (4.46), are unitarily equivalent to the product ΠL
αΠR

β , which

we write as Παβ ≡ ΠL
αΠR

β .
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For the projectors ΠL
0 ,Π

R
0 ,Π

L
± ,Π

R
±, we have the explicit forms

ΠL
0 = 1(2`L+1) ⊗ 1(2`R+1) ⊗ P0 ⊗ 1n , ΠR

0 = 1(2`L+1) ⊗ 1(2`R+1) ⊗ P 1
2
⊗ 1n ,

ΠL
± =

1

2
(±iQL

I + ΠL
1
2
) , ΠR

± =
1

2
(±iQR

I + ΠR
1
2
) , (4.137)

where

QL
I = i

XL
a Γ̃0

a

L
− 1

4
ΠL

1
2

1
2
(`L + 1

2
)

, QR
I = i

XR
a Γ̃0

a

R
− 1

4
ΠR

1
2

1
2
(`R + 1

2
)

. (4.138)

In observation of the relations given in (4.134), we see that

Π±0 ≡ ΠL
±ΠR

0 = ΠL
± , Π0± ≡ ΠL

0 ΠR
± = ΠL

± , (4.139)

while all other products vanish. Therefore, ΠR
± ,Π

L
± are simply the required four

projectors. For convenience, we list them in the table below.

Projector To the Representation

ΠL
± = 1

2
(±iQL

I + ΠL
1
2

) (`L ± 1
2
, `R)

ΠR
± = 1

2
(±iQR

I + ΠR
1
2

) (`L, `R ± 1
2
)

At this stage we can consider the fluctuations about the vacuum configuration

(4.126)

ΦL
a = XL

a + Γ̃0
a + ALa := DL

a + ALa ,

ΦR
a = XR

a + Γ̃0
a + ARa := DR

a + ARa ,
(4.140)

where ALa , ARa ∈ u(2`L + 1)⊗ u(2`R + 1)⊗ u(4)⊗ u(n).

We can view ALa and ARa (a = 1, 2, 3) as the six components of a U(n) gauge

field on S2 Int
F × S2 Int

F since FL
ab, F

R
ab, F

L,R
ab take the form of the curvature tensor

FL
ab = [DL

a , A
L
b ]− [DL

b , A
L
a ] + [ALa , A

L
b ]− εabcALc ,

FR
ab = [DR

a , A
R
b ]− [DR

b , A
R
a ] + [ARa , A

R
b ]− εabcARc ,

FL,R
ab = [DL

a , A
R
b ]− [DR

b , A
L
a ] + [ALa , A

R
b ] .

(4.141)

Adapting the discussion, starting with equation (4.52), it can be seen that only

four of these six gauge fields constitute independent degrees of freedom in the

commutative limit, `L, `R →∞.
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The emerging model has the structure of a U(n) gauge theory onM× S2 Int
F ×

S2 Int
F with the gauge fields AM = (Aµ , Aa) and corresponding field strength

tensor FMN = (Fµν , F
L
µa , F

R
µa, FL

ab , F
R
ab , F

L,R
ab ). We can quickly glance over some

of the essential features of the U(4) gauge theory onM× S2 Int
F × S2 Int

F .

For the U(4) theory, taking the symmetry generators ωLa and ωRa

ωLa = (X(2`L+1)
a ⊗ 1(2`R+1) ⊗ 14 ⊗ 14) + (1(2`L+1) ⊗ 1(2`R+1) ⊗ Γ̃0

a

L
⊗ 14)

− (1(2`L+1) ⊗ 1(2`R+1) ⊗ 14 ⊗ i
LLa
2

) , (4.142)

ωRa = (1(2`L+1) ⊗X(2`R+1)
a ⊗ 14 ⊗ 14) + (1(2`L+1) ⊗ 1(2`R+1) ⊗ Γ̃0

a

R
⊗ 14)

− (1(2`L+1) ⊗ 1(2`R+1) ⊗ 14 ⊗ i
LRa
2

) , (4.143)

with (LLa , L
R
a ) same as before, we can construct the SU(2)× SU(2)-equivariant

fields. SU(2) × SU(2) representation content of (ωLa , ω
R
a ) follows from the

Clebsch-Gordan expansion

(`L, `R)⊗
(

(
1

2
, 0)⊕ (

1

2
, 0)

)
⊗ (

1

2
,
1

2
) ≡ 2(`L, `R +

1

2
)⊕ 2(`L, `R −

1

2
)

⊕ 2(`L +
1

2
, `R)⊕ 2(`L −

1

2
, `R)⊕ (`+ 1, `R −

1

2
)⊕ (`+ 1, `R +

1

2
)

⊕ (`− 1, `R −
1

2
)⊕ (`− 1, `R +

1

2
)⊕ (`L −

1

2
, `R − 1)

⊕ (`L +
1

2
, `R − 1)⊕ (`L +

1

2
, `R + 1)

⊕ (`L −
1

2
, `R + 1)

:= I . (4.144)

ΠL
± ,Π

R
± ∈ Mat((2`L + 1)× (2`R + 1)× 4× 4) project to the representations in

the decomposition (4.144) as given in the table below.

Projector To the Representation

ΠL
± = 1

2
(±iQL

I + ΠL
1
2

) (`L, `R + 1
2
)⊕ (`L, `R − 1

2
)⊕ (`L ± 1, `R + 1

2
)

⊕(`L ± 1, `R − 1
2
)

ΠR
± = 1

2
(±iQR

I + ΠR
1
2

) (`L + 1
2
, `R)⊕ (`L + 1

2
, `R ± 1)⊕ (`L − 1

2
, `R)

⊕(`L − 1
2
, `R ± 1)
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The SU(2) × SU(2)-equivariance conditions indicate that Aµ , ALa , ARb satisfy

the relevant adapted version of (3.149) and (4.56). As before, we can determine

the dimensions of solution spaces for Aµ, ALa and ARa using the Clebsch-Gordan

decomposition of the adjoint action of (ωLa , ω
R
a ). We find

I ⊗ I ≡ 24(0, 0)⊕ 52(1, 0)⊕ 52(0, 1)⊕ · · · . (4.145)

This means that there are 24-invariants. The solution space for each of ALa , ARa
is 52-dimensional. We further see that there are no spinor representations (1

2
, 0)

or (0, 1
2
) occurring in (4.145). This corroborates perfectly with our initial ex-

pectations, in view of the fact that (Γ0
a
L
,Γ0

a
R

) cannot be expressed through a

bilinear of fields with the desired symmetry properties. If the latter was possible,

it would have contradicted the absence of the equivariant spinor field modes and

vice versa.

A suitable set of 24 invariants is given by the following matrices

ΠL
+ , Q

L
+ , ΠL

− , Q
L
− , ΠR

+ , Q
R
+ , ΠR

− , Q
R
− , Q

L
F , Q

L
H , Q

R
F , Q

R
H ,

ΠL
+Q

R
B , ΠL

−Q
R
B , ΠR

+Q
L
B , ΠR

−Q
L
B , Q

L
+Q

R
B , Q

L
−Q

R
B , Q

L
FQ

R
B , Q

L
HQ

R
B ,

QR
+Q

L
B , Q

R
−Q

L
B , Q

R
FQ

L
B , Q

R
HQ

L
B , (4.146)

where QL
±, QL

F , QL
H , QL

BI are in same formal form as (4.59) and likewise for the

set of matrices QR.

A set of 52 linearly matrices transforming under the (1, 0) representation may

be provided as

[DL
a , Q

L
+] , QL

+[DL
a , Q

L
+] , {DL

a , Q
L
+} , QR

B[DL
a , Q

L
+] , QR

BQ
L
+[DL

a , Q
L
+] , QR

B{DL
a , Q

L
+} ,

[DL
a , Q

L
−] , QL

−[DL
a , Q

L
−] , {DL

a , Q
L
−} , QR

B[DL
a , Q

L
−] , QR

BQ
L
−[DL

a , Q
L
−] , QR

B{DL
a , Q

L
−} ,

[DL
a , Q

L
F ] , QL

F [DL
a , Q

L
F ] , {DL

a , Q
L
F} , QR

B[DL
a , Q

L
F ] , QR

BQ
L
F [DL

a , Q
L
F ] , QR

B{DL
a , Q

L
F} ,

[DL
a , Q

L
H ] , QL

H [DL
a , Q

L
H ] , {DL

a , Q
L
H} , QR

B[DL
a , Q

L
H ] , QR

BQ
L
H [DL

a , Q
L
H ] , QR

B{DL
a , Q

L
H} ,

ΠR
+[DL

a , Q
L
B] , ΠR

+Q
L
B[DL

a , Q
L
B] , ΠR

+{DL
a , Q

L
B} , QR

+[DL
a , Q

L
B] , QR

+Q
L
B[DL

a , Q
L
B] ,

QR
+{DL

a , Q
L
B} , ΠR

−[DL
a , Q

L
B] , ΠR

−Q
L
B[DL

a , Q
L
B] , ΠR

−{DL
a , Q

L
B} , QR

−[DL
a , Q

L
B] ,

QR
−Q

L
B[DL

a , Q
L
B] , QR

−{DL
a , Q

L
B} , QR

F [DL
a , Q

L
B] , QR

FQ
L
B[DL

a , Q
L
B] , QR

F{DL
a , Q

L
B} ,

QR
H [DL

a , Q
L
B] , QR

HQ
L
B[DL

a , Q
L
B] , QR

H{DL
a , Q

L
B} , ΠL

+ω
L
a , ΠL

−ω
L
a , Q

R
BΠL

+ω
L
a ,

QR
BΠL
−ω

L
a , ΠR

+ω
L
a , ΠR

−ω
L
a , Q

R
+ω

L
a , Q

R
−ω

L
a , QR

Fω
L
a , QR

Hω
L
a (4.147)
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while a linearly independent set transforming as (0, 1) is obtained from (4.147)

by taking L↔ R.

Monopole sectors exist in this case too and they can be accessed by projecting

from S2 Int
F × S2 Int

F . We have, for instance

SF
2L± × SF 2R± =

(
S2
F (`L)× S2

F (`R ±
1

2
)

)
⊕
(
S2
F (`L ±

1

2
)× S2

F (`R)

)
,

(4.148)

SF
2L, 2 × SF 2R, 0 =

(
S2
F (`L +

1

2
)× S2

F (`R)

)
⊕
(
S2
F (`L −

1

2
)× S2

F (`R)

)
,

(4.149)

SF
2L, 0 × SF 2R, 2

=

(
S2
F (`L)× S2

F (`R +
1

2
)

)
⊕
(
S2
F (`L)× S2

F (`R −
1

2
)

)
,

(4.150)

with the winding numbers (±1,±1), (2, 0), (0, 2), respectively.

We can project to the (±1,±1) sector using

(1− ΠL
∓)(1− ΠR

∓). (4.151)

This projection leaves us with 8 equivariant scalars

ΠL
± , ΠR

± , QL
± , QR

± , QR
BΠL
± , QR

BQ
L
± , QL

BΠR
± , QL

BQ
R
± , (4.152)

and 16 vectors carrying the (1, 0) representation,

[DL
a , Q

L
±] , QL

±[DL
a , Q

L
±] , {DL

a , Q
L
±} , QR

B[DL
a , Q

L
±] , QR

BQ
L
±[DL

a , Q
L
±] ,

QR
B{DL

a , Q
L
±} , ΠR

±[DL
a , Q

L
B] , ΠR

±Q
L
B[DL

a , Q
L
B] , ΠR

±{DL
a , Q

L
B} , QR

±[DL
a , Q

L
B] ,

QR
±Q

L
B[DL

a , Q
L
B] , QR

±{DL
a , Q

L
B} , ΠL

±ω
L
a , Q

R
BΠL
±ω

L
a , ΠR

±ω
L
a , Q

R
±ω

L
a , (4.153)

and another 16 carrying the (0, 1) IRR which are obtained from (4.153) by

L↔ R.

For the winding number sector (2, 0) in the equation (4.149), we can use the

projection operator

(1− ΠR
+)(1− ΠR

−) . (4.154)
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In this case, the relevant part of the Clebsch-Gordan expansion gives the result

12(0, 0)⊕ 28(1, 0)⊕ 24(0, 1). Equivariant scalars may be given as the following

subset of those in (4.146)

ΠL
+ , ΠL

− , QL
+ , QL

− , QL
F , QL

H , QR
BΠL

+ , QR
BΠL
− , QR

BQ
L
+ , QR

BQ
L
− ,

QR
BQ

L
F QR

BQ
L
H . (4.155)

28 vectors which carry the (1, 0) IRR can be given as

[DL
a , Q

L
+] , QL

+[DL
a , Q

L
+] , {DL

a , Q
L
+} , QR

B[DL
a , Q

L
+] , QR

BQ
L
+[DL

a , Q
L
+] , QR

B{DL
a , Q

L
+} ,

[DL
a , Q

L
−] , QL

−[DL
a , Q

L
−] , {DL

a , Q
L
−} , QR

B[DL
a , Q

L
−] , QR

BQ
L
−[DL

a , Q
L
−] , QR

B{DL
a , Q

L
−} ,

[DL
a , Q

L
F ] , QL

F [DL
a , Q

L
F ] , {DL

a , Q
L
F} , QR

B[DL
a , Q

L
F ] , QR

BQ
L
F [DL

a , Q
L
F ] , QR

B{DL
a , Q

L
F} ,

[DL
a , Q

L
H ] , QL

H [DL
a , Q

L
H ] , {DL

a , Q
L
H} , QR

B[DL
a , Q

L
H ] , QR

BQ
L
H [DL

a , Q
L
H ],

QR
B{DL

a , Q
L
H} , ΠL

+ω
L
a , ΠL

−ω
L
a , Q

R
BΠL

+ω
L
a , Q

R
BΠL
−ω

L
a . (4.156)

while there are 24 matrices which carry the (0, 1) IRR and they may be listed

as

ΠL
+[DR

a , Q
R
B] , ΠL

+Q
R
B[DR

a , Q
R
B] , ΠL

+{DR
a , Q

R
B} , QL

+[DR
a , Q

R
B] , QL

+Q
R
B[DR

a , Q
R
B] ,

QL
+{DR

a , Q
R
B} , ΠL

−[DR
a , Q

R
B] , ΠL

−Q
R
B[DR

a , Q
R
B] , ΠL

−{DR
a , Q

R
B} , QL

−[DR
a , Q

R
B] ,

QL
−Q

R
B[DR

a , Q
R
B] , QL

−{DR
a , Q

R
B} , QL

F [DR
a , Q

R
B] , QL

FQ
R
B[DR

a , Q
R
B] , QL

F{DR
a , Q

R
B} ,

QL
H [DR

a , Q
R
B] , QL

HQ
R
B[DR

a , Q
R
B] , QL

H{DR
a , Q

R
B} , ΠL

+ω
R
a , ΠL

−ω
R
a , Q

L
+ω

R
a ,

QL
−ω

R
a , Q

L
Fω

R
a , Q

L
Hω

R
a . (4.157)

To describe the monopole sectors with the winding number (0, 2), it is sufficient

to make the exchange L↔ R.
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CHAPTER 5

U(3) GAUGE THEORY OVER M× S2
F

In chapter 3, we have explained that a U(n) gauge theory over M× S2
F can

be interpreted as an effective gauge theory obtained from an SU(N ) gauge the-

ory on M coupled to a triplet of scalar fields in the adjoint representation of

SU(N ) with N = n(2`+ 1) after the spontaneous symmetry breaking. This in-

terpretation has been supported by the construction of the Kaluza-Klein mode

expansion of gauge fields over the fuzzy extra dimensions. We have examined

the equivariant parametrization of this model as a complementing aspects of

developing the effective gauge theory interpretation. For concreteness, we have

focused on the specific emergent model; U(2) gauge theory on M × S2
F and

making use of the equivariant parametrization technique, we have shown that

the commutative limit of equivariant modes reduces to the gauge fields of spher-

ical symmetric gauge theory on M× S2 [67] and the low energy limit of this

model yields abelian Higgs-type model [22]. In this chapter, we would like to

concentrate on this model. Taking a step forward, we investigate the low energy

structure of this model with larger gauge groups [27]1.

Our initial attention is to determine in full detail the equivariant field modes of

a U(3) gauge theory overM×S2
F and obtain the corresponding LEA by tracing

over S2
F . In order to obtain the equivariant modes of gauge fields, we impose the

proper symmetry conditions on the fields of the model so that they transform

either invariantly or as vectors under the combined action of SU(2) rotations of

the fuzzy spheres and those U(3) gauge transformations. We find that equivari-

1 This chapter is based on the work that has been published: S. Kurkcuoglu and G. Unal “U(3)

gauge theory on fuzzy extra dimensions” Phys.Rev. D94 (2016) 036003.
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ant scalars may be constructed by taking advantage of the dipole and quadrupole

terms, which appear in the branching of the adjoint representation of SU(3) as

8 → 5 ⊕ 3 when the SU(2) subgroup is maximally embedded in SU(3). Using

these considerations and other group theoretical input coming from the equivari-

ance conditions, we find the invariants as “idempotents" involving intertwiners

combining spin ` irreducible representation of SU(2) generating the rotations

of S2
F and those U(3) gauge transformations generated by SU(2) ⊂ U(3) car-

rying the spin 1 IRR of SU(2). There is also another invariant proportional

to the N -dimensional identity matrix, which essentially appears due to a U(1)

subgroup of U(3) ≈ SU(3) × U(1). Equivariant vectors are built using these

invariants and the generators of S2
F . We show that how the commutative limit

of our equivariant field modes relate to the cylindrically symmetric gauge fields

of SU(3) Yang-Mills theory of Bais and Weldon [72].

Integrating out the extra dimension S2
F , we obtain the LEA in which there are

three abelian gauge fields and two complex scalars each coupling to only one of

the gauge fields and three real scalars interacting with the complex fields and

with each other through a quartic potential. From this LEA, we derive the

vortex solutions onM ≡ R2 in two different limits governed together by ` and

the coupling constant of the constraint term in the potential and for both two

limits, we need two winding numbers in order to express vortex solutions. In

particular, we point out the connection between the BPS vortices that we obtain

in a certain commutative limit in section 5.3 and the instanton solution in [72]

Next, we briefly outline the generalization of equivariant parametrization (EP) of

gauge fields to U(n) theories overM×S2
F , and show that equivariant scalar are

obtained by employing the n−1 multipole terms, that appear in the branching of

the adjoint representation of SU(n) under SU(2), when the latter is maximally

embedded in SU(n).

Adapting the approach given in the previous chapter, we study the U(3)-equivari-

ant fields overM×S2 Int
F , where S2 Int

F := S2
F (`)⊕S2

F (`)⊕S2
F

(
`+ 1

2

)
⊕S2

F

(
`− 1

2

)
was revealed in [25] via a certain field redefinition of the triplet of scalars for

the SU(N ) Yang-Mills theory. The reason of interest on this vacuum is two
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fold. Firstly, through its certain projections it gives us access to fuzzy monopole

bundles with winding numbers ±1 and secondly it naturally identifies with the

bosonic part of the N = 2 fuzzy supersphere with OSP (2, 2) supersymmetry

as discussed in [25]. We express all the equivariant field modes characterizing

the low energy behaviour of the effective U(3) theory onM× S2 Int
F in terms of

suitable “idempotents" and projection operators.

5.1 SU(2)-equivariant Gauge Fields

In this section, we focus our attention on the equivariant parametrization of U(3)

gauge theoryM×S2
F . All necessary and sufficient information on the dynamical

generation of an effective U(n) gauge theory onM× S2
F from an SU(N ) gauge

theory onM coupled to suitably number of scalar fields has been given in the

section 3.1 and the gauge field configuration of this model defined in (3.18).

Focusing on the effective U(2) gauge theory, the equivariant parametrization

technique has been applied on this model and its the low energy limit has been

constructed in the section 3.3. Here, adapting the formulas and the approach in

the section 3.3, we construct the explicit form of SU(2)-equivariant gauge fields

in U(3) gauge theory M× S2
F . To be more precise, we impose the symmetry

condition on the gauge fields in (3.18) so that they transform as scalars and

vectors under rotations of S2
F up to U(3) gauge transformation. For this purpose,

we introduce the infinitesimal symmetry generators ωa as

ωa = X(2`+1)
a ⊗ 13 − 1(2`+1) ⊗ iΣa , (5.1)

where Σa are the spin 1 irreducible representation of SU(2) ⊂ SU(3): (Σa)ij =

iεiaj and ωa satisfy the condition (3.78). Clearly, the adjoint action adωa· =

[ωa, ·], is composed of infinitesimal rotations over S2
F combined with those in-

finitesimal SU(3) transformations, which are generated by Σa. The adjoint

representation of SU(3) decomposes to SU(2) IRR’s as

8→ 5⊕ 3 . (5.2)
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In this branching, Σa generate the 3 (spin 1) IRR of SU(2), while the remaining

five generators of SU(3) may be given in the form of the quadrupole tensor

Qab =
1

2
{Σa,Σb} −

2

3
δab , (5.3)

(Qab)ij = δaiδbj + δajδbi −
2

3
δabδij , (5.4)

carrying the spin 2 (i.e 5) IRR of SU(2). For each IRR of SU(2) in the branching

(5.2), we may expect to construct one rotational invariant under adωa in addition

to the identity matrix 1(2`+1)3 and we will at once proceed to see that this

is indeed so2. These invariants may be simply taken as XaΣa and XaXbQab,

however we again prefer to express them as “idempotent" matrices for simplify

our future formulas and the explicit form of them will be given later in this

section.

In order to find the SU(2)-equivariant gauge fields, we impose the symmetry

constraints (3.79) and (3.80) which simply imply that, under the adjoint action

of ωa, Aµ are rotational invariants and Aa transform as vectors.

SU(2) IRR content of ωa may be found by the following tensor product

`⊗ 1 = (`− 1)⊕ `⊕ (`+ 1) , (5.5)

and therefore IRR decomposition of the adjoint action of ωa is

[(`− 1)⊕ `⊕ (`+ 1)]⊗ [(`− 1)⊕ `⊕ (`+ 1)] = 30⊕ 71⊕ · · · . (5.6)

From this Clebsch-Gordan expansion, it can be seen that the set of solutions

for Aµ is 3-dimensional. We span this space by the invariants Q1, Q2, as defined

below and 1(2`+1)3 and introduce the following explicit parametrization of Aµ:

Aµ = −1

2
a(1)
µ (y)Q1 +

1

2
a(2)
µ (y)Q2 +

i

2

(
a

(1)
µ (y)− a(2)

µ (y)

3
+ bµ(y)

)
1 , (5.7)

where a(1)
µ , a

(2)
µ , bµ are Hermitian U(1) gauge fields3 onM and Q1, Q2 are anti-

2 Generalization of this construction to all U(n) gauge theories onM×S2
F is discussed in section

5.4.
3 The reason for this particular form of the coefficients of Q1 , Q2 and 1 in (5.7) will become clear

as we proceed to perform the dimensional reduction over S2
F in the next section.
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Hermitian idempotents given as [73]4

Q1 =
2(iXaΣa + `+ 1)(iXbΣb + 1)− (`+ 1)(2`+ 1)1

i(`+ 1)(2`+ 1)
,

Q2 =
2(iXaΣa − `)(iXbΣb + 1)− `(2`+ 1)1

i`(2`+ 1)
, (5.8)

where

Q†1 = −Q1 , Q2
1 = −13(2`+1) , Q†2 = −Q2 , Q2

2 = −13(2`+1) . (5.9)

Here, we see that imposing the symmetry conditions (3.79) and (3.80) cause the

breaking of U(3) gauge symmetry down to U(1) × U(1) × U(1). Just like we

explained in the chapter 3, it is possible to show that under the gauge trans-

formation generated by U = e−
1
2
θ1(y)Q1e

1
2
θ2(y)Q2ei(

1
6
θ1(y)− 1

6
θ2(y)+ 1

2
θ3(y))1, Aµ → A′µ

with a(i)′
µ = a

(i)
µ + ∂µθi and b′µ = bµ + ∂µθ3, hence the rotationally symmetry of

Aµ is preserved.

Equation (5.6) shows that the dimension of the set of solutions for Aa is seven

and its parametrization may be chosen as follows

Aa =
1

2
ϕ1(y)[Xa, Q1] +

1

2
χ1(y)[Xa, Q2]− 1

2
(ϕ2(y) + 1)Q1[Xa, Q1]

+
1

2
(χ2(y)− 1)Q2[Xa, Q2] +

i

2

ϕ3(y)

2(`+ 1/2)

(
{Xa, Q1} − iQ2[Xa, Q2]

)
+
i

2

χ3(y)

2(`+ 1/2)

(
{Xa, Q2} − iQ1[Xa, Q1]

)
+

1

2
ψ(y)

ωa
`+ 1/2

, (5.10)

where we have introduced the real scalar fields ϕ1 , ϕ2 , ϕ3 , χ1 , χ2 , χ3 and ψ on

M and some of these naturally combine to form complex scalars when the model

is dimensionally reduced over S2
F .

In the commutative limit, `→∞, we have

iQ1 = q1 = (Σax̂a)
2 + (Σax̂a)− 1 ,

iQ2 = q2 = (Σax̂a)
2 − (Σax̂a)− 1 , (5.11)

where q2
1 = q2

2 = 13. Another idempotent may be given as a linear combination

of q1 and q2 and 13 as q3 = −(q1 + q2)− 13 [73]. Using (5.11), we find that the
4 In [73], these idempotents were introduced for the purpose of constructing the spin 1 Dirac

operator on the fuzzy sphere.
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commutative limit of Aa in (5.10) takes the form

Aa −−−→
`→∞

− ϕ1(y)

2
Laq1 −

χ1(y)

2
Laq2 − i

(ϕ2(y) + 1)

2
q1Laq1

+ i
(χ2(y)− 1)

2
q2Laq2 +

ϕ3(y)

2
x̂aq1 +

χ3(y)

2
x̂aq2 +

ψ(y)

2
x̂a . (5.12)

Imposing the constraint xaAa = 0 eliminates the radial component of the gauge

field. We see from (5.12) that this condition is satisfied if and only if we set

ϕ3 = χ3 = ψ = 0. The remaining terms of Aa in (5.12) and the commutative

limit of Aµ (apart from a bµ-field due to the U(1) subgroup of U(3), which

decouples from the rest in the commutative limit, or eliminated by solving its

equation of motion in powers of 1
`
, as we shall see later on in section 5.3) are

in agreement with the cylindrical symmetric ansatz for the SU(3) Yang-Mills

theory of Bais and Weldon [72].

5.2 Dimensional Reduction of the Yang-Mills Action

In this section, we pursue the dimensional reduction of U(3) gauge theory on

M×S2
F over S2

F . We can substitute our equivariant gauge fields Aµ in (5.7) and

Aa in (5.10) into the action (3.75), and then by tracing over the fuzzy sphere

S2
F , we obtain the reduced action on M. In the present case, the identities in

(3.90) take the form of

[Xa, {Xa, Qi}] = 0 , [Qi, {Xa, Qi}] = 0 , {Xa, [Xa, Qi]} = 0 , {Qi, [Xa, Qi]} = 0 ,

(5.13)

where i = 1, 2 and sum over only the repeated index "a" is implied.

Now, we start to calculate each term in (3.89) separately. For the field strength

term, the curvature Fµν can be expressed in terms of the rotational invariants

Q1 , Q2 and 1 as

Fµν = −1

2
f (1)
µν Q1 +

1

2
f (2)
µν Q2 + i

1

2

(
f

(1)
µν − f (2)

µν

3
+ hµν

)
1 (5.14)

where we have introduced

f (1)
µν := ∂µa

(1)
ν − ∂νa(1)

µ , f (2)
µν := ∂µa

(2)
ν − ∂νa(2)

µ , hµν := ∂µbν − ∂νbµ . (5.15)
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Then, LF takes the form

LF :=
1

4g2
Tr(F †µνF

µν)

=
1

g2

(
`+ 1

9(2`+ 1)
f (1)
µν f

(1)µν +
`

9(2`+ 1)
f (2)
µν f

(2)µν +
1

18
f (1)
µν f

(2)µν +
1

16
hµνh

µν

+
1

6(2`+ 1)
f (1)
µν h

µν +
1

6(2`+ 1)
f (2)
µν h

µν

)
. (5.16)

The covariant derivative term DµΦa is calculated to be

DµΦa =
1

2
(Dµϕ1) [Xa, Q1] +

1

2
(Dµχ1) [Xa, Q2]− 1

2
(Dµϕ2)Q1[Xa, Q1]

+
1

2
(Dµχ2)Q2[Xa, Q2] +

i

4

∂µϕ3

(`+ 1/2)
({Xa, Q1} − iQ2[Xa, Q2])

+
i

4

∂µχ3

(`+ 1/2)
({Xa, Q2} − iQ1[Xa, Q1]) +

1

2(`+ 1/2)
(∂µψ)ωa , (5.17)

where Dµϕi = ∂µϕi + εjia
(1)
µ ϕj and Dµχi = ∂µχi + εjia

(2)
µ χj. After tracing, the

gradient term LG reads

LG = Tr((DµΦa)
†DµΦa) (5.18)

=
2`(2`+ 3)

3(`+ 1)(2`+ 1)
((Dµϕ1)2 + (Dµϕ2)2) +

2(2`− 1)(`+ 1)

3`(2`+ 1)
((Dµχ1)2 + (Dµχ2)2)

+
6`5 + 15`4 + 4`3 − 9`2 + 2

3`(`+ 1)(2`+ 1)3
((∂µϕ3)2 + (∂µχ3)2) +

`2 + `+ 2

(2`+ 1)2
(∂µψ)2

− 2`(`+ 1)

3(2`+ 1)2
∂µϕ3∂µχ3 −

2`(2`2 − 5`− 9)

3(2`+ 1)3
∂µψ∂µϕ3

− 2(2`3 + 11`2 + 7`− 2)

3(2`+ 1)3
∂µχ3∂µψ . (5.19)

We note that ϕ1 , ϕ2 and χ1 , χ2 naturally combine to two complex scalar fields

ϕ := ϕ1 + iϕ2 , χ := χ1 + iχ2, with Dµϕ = (∂µ+ ia
(1)
µ )ϕ and Dµχ = (∂µ+ ia

(2)
µ )χ,

which we will make use of in the next section.

In order to calculate the potential term V1, it is useful to work with the dual of

the curvature Fab. We find

1

2
εabcFab = Λ1 + Λ2|ϕ|2 + Λ3|χ|2 + Λ4(ϕ2

3 + χ2
3) + Λ5ϕ3 + Λ6χ3 + Λ7ϕ3χ3

+ Λ8ϕ3ψ + Λ9χ3ψ + Λ10(ϕ1 + ϕ2Q1)[Xa, Q1]

+ Λ11(χ1 + χ2Q2)[Xa, Q2] + Λ12ψ + Λ13ψ
2 , (5.20)
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where Λi , i = 1, · · · , 11 are the 3(2` + 1) × 3(2` + 1) dimensional matrices

which are listed in the appendix C. Using (5.20), the potential term V1 may be

determined as

V1 =
1

g̃2
Tr(F †abFab) =

1

g̃2

(
α1 − α2|ϕ|2 − α3|χ|2 − α4ϕ

2
3 − α5χ

2
3 − α6ϕ3 + α7χ3

− α8ϕ3χ3 − α9ϕ3ψ − α10χ3ψ + α11ψ
2 + β1|ϕ|4 − β2|ϕ|2|χ|2

+ β3|ϕ|2ϕ2
3 + β4|ϕ|2χ2

3 − β5|ϕ|2ϕ3 + β6|ϕ|2χ3 − β7|ϕ|2ϕ3χ3

+ β8|ϕ|2ϕ3ψ − β9|ϕ|2χ3ψ + β10|ϕ|2ψ2 + γ1|χ|4 − γ2|χ|2ϕ2
3

+ γ3|χ|2χ2
3 + γ4|χ|2ϕ3 − γ5|χ|2χ3 + γ6|χ|2ϕ3χ3 − γ7|χ|2ϕ3ψ

− γ8|χ|2χ3ψ + γ9|χ|2ψ2 − δ1(ϕ4
3 + χ4

3 + 6ϕ2
3χ

2
3)

− δ2(ϕ3
3 + 3ϕ3χ

2
3)− δ3(χ3

3 + 3χ3ϕ
2
3)− δ4(ϕ3

3χ3 + χ3
3ϕ3)

− δ5(ϕ3
3ψ + 3ϕ3χ

2
3ψ)− δ6(χ3

3ψ + 3χ3ϕ
2
3ψ) + δ7(ϕ2

3ψ + χ2
3ψ)

+ δ8(ϕ2
3ψ

2 + χ2
3ψ

2)− δ9ϕ3χ3ψ − δ10ϕ3ψ
2 − δ11χ3ψ

2

− δ12ϕ3χ3ψ
2 − δ13ϕ3ψ

2 − δ14χ3ψ
3 − δ15ψ

3 − δ16ψ
4

)
,

(5.21)

where all the `-dependent constants: α , β , γ , δ are given in the appendix C.

In the `→∞ limit we find

V1(Φ)
∣∣∣
`→∞

=
1

g̃2

(
2

3
(|ϕ|2+ϕ3−1)2+

2

3
(|χ|2−χ3−1)2+

2

3
(|ϕ|2−|χ|2)2+

4

3
|ϕ|2ϕ2

3

+
4

3
|χ|2χ2

3 −
1

6
ϕ2

3 −
1

6
χ2

3 +
1

2
ψ2 − 1

3
(ϕ3χ3 + ϕ3ψ + χ3ψ)

)
. (5.22)

The potential V1(Φ) = 1
g̃2
Tr(F †abFab) is positive definite, although the r.h.s of

(5.21) and (5.22) are not manifestly so. For the limiting case (5.22) we have

determined that minima occurs at the following configurations

i) |ϕ|2 = 1 , |χ|2 = 1 , ϕ3 = χ3 = ψ = 0 , (5.23)

ii) |ϕ|2 = 0 , |χ|2 = 0 , ϕ3 = 1 , χ3 = −1 , ψ = 0 , (5.24)

iii) |ϕ|2 =
1√
2
, |χ|2 = 0 , ϕ3 = 0 , χ3 = −3

2
, ψ = −1

2
, (5.25)

iv) |ϕ|2 = 0 , |χ|2 =
1√
2
, ϕ3 =

3

2
, χ3 = 0 , ψ =

1

2
. (5.26)
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For the computation of the last term in (3.89), we first obtain the expression

ΦaΦa + `(`+ 1) = R1 +R2iQ1 +R3iQ2 , (5.27)

where R1 , R2 and R3 are listed in the appendix C. Then, the potential term V2

is determined to be

V2(Φ) = g2

(
R2

1 +R2
2 +R2

3 −
2(2`− 3)

3(2`+ 1)
R1R2 −

2(2`+ 5)

3(2`+ 1)
R1R3 −

2

3
R2R3

)
.

(5.28)

In the large ` limit, we find

V2(Φ)
∣∣∣
`→∞

=
1

3
g2

(
(R1 −R2 −R3)2 + (−R1 +R2 −R3)2

+ (−R1 −R2 +R3)2

)∣∣∣
`→∞

,

=
1

3
g2`2

(
(−ψ + ϕ3 + χ3)2 + (ψ − ϕ3 + χ3)2 + (ψ + ϕ3 − χ3)2

)
.

(5.29)

In the next section we will first consider the scaling limit g → 0, ` → ∞, with

g` kept finite but small. Then, among the minima of the potential V1(Φ) listed

above, only (5.23) minimizes (5.29) as can easily be observed.

5.3 Vortices

In this section, we would like to investigate the vortex type solutions for the

reduced action onM≡ R2 which is obtained from the dimensional reduction of

U(3) gauge theory onM×S2
F . As we mentioned earlier in the subsection 3.3.4,

we focus on the exploring these vortex type solution in two different limits, i)

`→∞ , g→ 0 with g` remaining finite but small and ii) g→∞ and ` is large

but finite.
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5.3.1 Case i)

In this case the reduced action becomes

S =

∫
d2y

(
1

18g2
(f (1)
µν f

(1)µν + f (2)
µν f

(2)µν + f (1)
µν f

(2)µν) +
1

16g2
hµνh

µν

+
2

3
(|Dµϕ|2 + |Dµχ|2) +

1

4
((∂µϕ3)2 + (∂µχ3)2 + (∂µψ)2)

− 1

6
(∂µϕ3∂µχ3 + ∂µϕ3∂µψ + ∂µχ3∂µψ) +

1

g̃2
V1(Φ)

∣∣∣
`→∞

)
. (5.30)

We observe that, the gauge field bµ decouples from the rest of the action, and

does not play any role in the rest of this subsection. Thus we essentially have

a abelian Higgs type model with U(1) × U(1) gauge symmetry. The vacuum

configuration is given by (5.23) and has the structure of T 2 = S1 × S1, with

π1(T 2) = Z ⊕ Z, indicating that the vortex solutions constructed below are

characterized by two winding numbers, say (N,M).

To search for vortex solutions, we again work with the usual rotationally sym-

metric ansatz [68], which in this case may be written out as

a(1)
r = a(2)

r = 0 , a1
θ := a

(1)
θ (r) , a2

θ := a
(2)
θ (r) ,

ϕ = ζ(r)eiNθ , χ = η(r)eiMθ , ϕ3 = ρ(r) , χ3 = σ(r) , ψ = τ(r) , (5.31)

where the cartesian coordinates (y1, y2) are replaced by the polar variables (r , θ).

With this ansatz the action reads

S = 2π

∫
dr

(
1

9g2r
(a1
θ
′
a1
θ
′
+ a2

θ
′
a2
θ
′
+ a1

θ
′
a2
θ
′
) +

2r

3
(ζ ′

2
+ η′

2
) +

2

3r
(N + a1

θ)
2ζ2

+
2

3r
(M + a2

θ)
2η2 +

r

4
(ρ′

2
+ σ′

2
+ τ ′

2
)− r

6
(ρ′σ′ + ρ′τ ′ + σ′τ ′)

+
4r

3g̃2

(
(1− ζ2 − η2) +

3

8
(ρ2 + σ2 + τ 2)− ρ+ σ − 1

4
(ρσ + ρτ + στ)

+ζ4 + η4 − ζ2η2 + ζ2(ρ2 + ρ) + η2(σ2 − σ)

))
.

(5.32)
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Euler-Lagrange equations for the fields are

ζ ′′ +
ζ ′

r
−
(

1

r2
(N + a1

θ)
2 +

2

g̃2
(−1 + 2ζ2 − η2 + ρ2 + ρ)

)
ζ = 0 ,

η′′ +
η′

r
−
(

1

r2
(M + a2

θ)
2 +

2

g̃2
(−1 + 2η2 − ζ2 + σ2 − σ)

)
η = 0 ,

a1
θ
′′ − a1

θ
′

r
+

1

2
a2
θ
′′ − a2

θ
′

2r
− 6g2(N + a1

θ)ζ
2 = 0 ,

a2
θ
′′ − a2

θ
′

r
+

1

2
a1
θ
′′ − a1

θ
′

2r
− 6g2(M + a2

θ)η
2 = 0 , (5.33)

ρ′′ +
ρ′

r
− σ′ + τ ′

3r
− σ′′ + τ ′′

3
− 2ρ

g̃2
+

8

3g̃2
+

2

3g̃2
(σ + τ)− 8

3g̃2
ζ2(2ρ+ 1) = 0 ,

σ′′ +
σ′

r
− ρ′ + τ ′

3r
− ρ′′ + τ ′′

3
− 2σ

g̃2
− 8

3g̃2
+

2

3g̃2
(ρ+ τ)− 8

3g̃2
η2(2σ − 1) = 0 ,

τ ′′ +
τ ′

r
− ρ′ + σ′

3r
− ρ′′ + σ′′

3
− 2τ

g̃2
+

2

3g̃2
(ρ+ σ) = 0 .

We do not know any analytic solutions to these coupled non-linear differen-

tial equations. However, as pointed out earlier, we can construct the solutions

profiles for small and large r. For r → 0, the series solutions give

ζ = ζ0r
N + O(rN+2) , η = η0r

M + O(rM+2) , a1
θ = a

(1)
0 r2 + O(r4) ,

a2
θ = a

(2)
0 r2 + O(r4) , ρ = ρ0 + O(r2) , σ = σ0 + O(r2) , τ = τ0 + O(r2) ,

(5.34)

where ζ0 , η0 , a
(1)
0 , a

(2)
0 , ρ0 , σ0 , τ0 are constants.

For large r, as we mentioned earlier, the asymptotic behavior of fields are en-

forced by the requirement of the finiteness of the action for the vortex type

solutions. We have ζ(r) → 1 , η(r) → 1 , a1
θ(r) → N , a2

θ(r) → M ,ρ(r) →
0 , σ(r)→ 0 , τ(r)→ 0 as r →∞, where the integers N and M are the winding

numbers of the vortex configuration. In order to obtain the profiles for large

`, we can consider the small fluctuations about these limiting values and write

ζ = 1−δζ , η = 1−δη , a1
θ = −N+δa1 , a2

θ = −M+δa2. Assuming that (
δa1θ
r

)2 and

(
δa2θ
r

)2 are subleading compared to δζ , δη , ρ , σ , τ , the Euler-Lagrange equations
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(5.33) become

δζ ′′ +
δζ ′

r
− 2

g̃2
(4δζ − ρ− 2δη) = 0 , δη′′ +

δη′

r
− 2

g̃2
(4δη + σ − 2δζ) = 0

δa1′′ − δa1′

r
+ 4g2δa2 − 8g2δa1 = 0 , δa2′′ − δa2′

r
+ 4g2δa1 − 8g2δa2 = 0 ,

ρ′′ +
ρ′

r
− 10

g̃2
ρ− 4

g̃2
σ +

8

g̃2
δζ − 4

g̃2
δη = 0 , (5.35)

σ′′ +
σ′

r
− 10

g̃2
σ − 4

g̃2
ρ− 8

g̃2
δη +

4

g̃2
δζ = 0 ,

τ ′′ +
τ ′

r
− 2

g̃2
τ − 4

g̃2
ρ− 4

g̃2
σ − 4

g̃2
δη +

4

g̃2
δζ = 0 .

We can solve these coupled linear differential equations in terms of the modified

Bessel functions Kα and find

δζ = A1K0(
2
√

2r

g̃
) + A2K0(

√
2r

g̃
)− A3K0(

3
√

2r

g̃
) ,

δη = A2K0(

√
2r

g̃
) + A3K0(

3
√

2r

g̃
) + A4K0(

2
√

2r

g̃
) ,

ρ = A2K0(

√
2r

g̃
) + 3A3K0(

3
√

2r

g̃
)− 2A4K0(

2
√

2r

g̃
) ,

σ = 2A1K0(
2
√

2r

g̃
)− A2K0(

√
2r

g̃
) + 3A3K0(

3
√

2r

g̃
) , (5.36)

τ =
2

3
(A1 − A4)K0(

2
√

2r

g̃
) + 2A3K0(

3
√

2r

g̃
) + A5K0(

√
2r

g̃
) ,

δa1 = C1rK1(2gr) + C2rK1(2
√

3gr) ,

δa2 = C1rK1(2gr)− C2rK1(2
√

3gr) ,

where Ai , i = 1 · · · , 5 and Cj , j = 1, 2 are constants, which can only be de-

termined numerically. It is easy to see that our assumption that (
δa1θ
r

)2 and

(
δa2θ
r

)2 are subleading to δζ , δη , ρ , σ , τ gives the same condition as in the sub-

section 3.3.4.1, namely 4g >
√

2/g̃. We find from (5.36) that, the field strengths

B1 := f 1
12 = 1

r
f 1
rθ = 1

r
∂ra

1
θ and B2 := f 2

12 = 1
r
f 2
rθ = 1

r
∂ra

2
θ are proportional to

∝ 1√
r
e−2gr while the scalar fields δζ , δη , ρ , σ and τ decay like 1√

r
e−
√
2
g̃
r asymp-

totically. Thus, we obtain the same interval as in the subsection 3.3.4.1 for the

repulsive and attractive forces on this model such that these vortices attract for

gg̃ >
√

2
2

and they repel in the parameter interval
√

2
4
< gg̃ <

√
2

2
. Particularly,

for the case gg̃ = 1 needed for the standard Yang-Mills (3.76), we have attractive

vortices.

146



5.3.2 Case ii)

Taking the limit g→∞ is equivalent to enforcing the constraint ΦaΦa+`(`+1) =

0. It can be easily seen from (5.27) that this constraint can only be fulfilled by

setting R1 = 0 , R2 = 0 and R3 = 0. Using these three conditions, we can solve

ϕ3 , χ3 and ψ in terms of |ϕ| and |χ| in powers of 1
`
. Substituting back into the

action should then give us an action with only two complex scalars ϕ and χ. To

leading non-vanishing order in powers of 1
`
, we find that

ψ =
1

2`
(1− |ϕ|2) +

1

2`
(1− |χ|2) + O(

1

`2
) ,

ϕ3 = − 3

4`2
(1− |ϕ|2)− 2`+ 1

4`2
(1− |χ|2) + O(

1

`3
) , (5.37)

χ3 =
1

4`2
(1− |χ|2)− 2`+ 1

4`2
(1− |ϕ|2) + O(

1

`3
) .

Substituting from (5.37) for ϕ3 , χ3 , ψ, expanding ` dependent coefficients to

order 1
`2
, we obtain the reduced action as follows

S =

∫
d2y

(
1

18g2
(1 +

1

2`
− 3

4`2
)f (1)
µν f

(1)µν +
1

18g2
(1− 1

2`
− 1

4`2
)f (2)
µν f

(2)µν

+
1

18g2
(1− 1

`2
)f (1)
µν f

(2)µν +
2

3
(1− 1

2`2
)(|Dµϕ|2 + |Dµχ|2)

+
1

6`2

(
(∂µ|ϕ|2)2 + (∂µ|χ|2)2 + ∂µ|ϕ|2∂µ|χ|2

)
+

1

g̃2

(
4

3
(1 +

1

4`2
)

− 4

3
(1− 1

`
+

1

`2
)|ϕ|2 − 4

3
(1 +

1

`
− 1

`2
)|χ|2 − 4

3
(1 +

3

4`2
)|ϕ|2|χ|2

+
4

3
(1− 1

2`
+

1

2`2
)|ϕ|4 +

4

3
(1 +

1

2`
− 1

2`2
)|χ|4

+
1

3`2
(|ϕ|4|χ|2 + |χ|4|ϕ|2)

))
, (5.38)

where we wrote

hµν = −2

3
(
1

`
− 1

2`2
)(f (1)

µν + f (2)
µν ) , (5.39)

which follows from the equation of motion of bµ at the 1
`2

order.

For this case too, we make the rotationally symmetric vortex solution ansatz
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(5.31) and find the action to take the form

S = 2π

∫
dr

(
1

9g2r
(1 +

1

2`
− 3

4`2
)a1
θ
′
a1
θ
′
+

1

9g2r
(1− 1

2`
− 1

4`2
)a2
θ
′
a2
θ
′

+
1

9g2r
(1− 1

`2
)a1
θ
′
a2
θ
′
+

2

3
(1− 1

2`2
)(rζ ′

2
+

(N + a1
θ)

2

r
ζ2 + rη′

2
+

(M + a2
θ)

2

r
η2)

+
r

6`2

(
4ζ ′

2
ζ2 + 4η′

2
η2 + 4ζ ′ζη′η

)
+

1

g̃2

(
4r

3
(1 +

1

4`2
)

− 4r

3
(1− 1

`
+

1

`2
)ζ2 − 4r

3
(1 +

1

`
− 1

`2
)η2 − 4r

3
(1 +

3

4`2
)ζ2η2

+
4r

3
(1− 1

2`
+

1

2`2
)ζ4 +

4r

3
(1 +

1

2`
− 1

2`2
)η4 +

r

3`2
(ζ4η2 + η4ζ2)

))
. (5.40)

Equations of motion for the fields ζ , η , a1
θ , a

2
θ after a straightforward calculation

are given in the appendix C. Profiles of these fields around r = 0 are the same

as in the previous case (5.34).

For large r, it is easy to find the linearized equations for the fluctuations about

the vacuum values. We write as before ζ = 1 − δζ , η = 1 − δη , a1
θ = −N +

δa1 , a2
θ = −M + δa2 and we obtain the equations

δζ ′′ +
δζ ′

r
− 2

g̃2
(4− 2

`
+

2

`2
)ζ +

2

g̃2
(2 +

1

2`2
)η = 0 ,

δη′′ +
δη′

r
− 2

g̃2
(4 +

2

`
− 2

`2
)η +

2

g̃2
(2 +

1

2`2
)ζ = 0 ,

δa1′′ − δa1′

r
− 2g2(4− 2

`
+

1

`2
)δa1 + 2g2(2− 1

`2
)δa2 = 0 ,

δa2′′ − δa2′

r
− 2g2(4 +

2

`
− 1

`2
)δa2 + 2g2(2− 1

`2
)δa1 = 0 . (5.41)

Solutions for these equations are given in terms of modified Bessel functions Kn:

δζ = E1(−1 +
1

`
+

3

2`2
)K0

(√12 + 3/`2r

g̃

)
+ E2(1 +

1

`
− 1

2`2
)K0

(√4− 3/`2r

g̃

)
,

δη = E1K0

(√12 + 3/`2r

g̃

)
+ E2K0

(√4− 3/`2r

g̃

)
,

δa1 = F1(−1 +
1

`
− 1

`2
)rK1(2

√
3gr) + F2(1 +

1

`
)rK1(2gr) ,

δa2 = F1rK1(2
√

3gr) + F2rK1(2gr) , (5.42)

where E1 , E2 , F1 , F2 are constants. Here, we can also define the parameter

intervals for the attractive and repulsive behaviour of forces between the vortices.

It is easy to see that for gg̃ >
√

4−3/`2

2
, the field strengths decay faster than the
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scalar fields, so we have attractive vortices. On the other hand, for
√

4−3/`2

4
<

gg̃ <

√
4−3/`2

2
we have repulsive forces between the vortices.

As `→∞ the action (5.38) at the critical point gg̃ = 1 becomes

S =

∫
d2y

1

18g2

(
f (1)
µν f

(1)µν + f (2)
µν f

(2)µν + f (1)
µν f

(2)µν
)

+
2

3
(|Dµϕ|2 + |Dµχ|2)

+
2

3
g2

(
(|ϕ|2 − 1)2 + (|χ|2 − 1)2 + (|ϕ|2 − |χ|2)2

)
,

(5.43)

In this case, we may express the action in the form

S =

∫
d2y

1

18g2

(
B1 + 2g2(2|ϕ|2 − |χ|2 − 1)

)2

+
1

18g2

(
B2 + 2g2(2|χ|2 − |ϕ|2 − 1)

)2
+

1

18g2

(
B1 +B2 + 2g2(|ϕ|2 + |χ|2 − 2)

)2

+
2

3

(
D1ϕ− iD2ϕ

)(
D1ϕ+ iD2ϕ

)
+

2

3

(
D1χ− iD2χ

)(
D1χ+ iD2χ

)
+

2

3
(B1 +B2)− 2i

3

(
∂1(ϕD2ϕ)− ∂2(ϕD1ϕ)

)
− 2i

3

(
∂1(χD2χ)− ∂2(χD1χ)

)
,

(5.44)

where B1 = f 1
12 , B

2 = f 2
12 as we have noted previously. The last two terms

in (5.44) vanish as they can be expressed as line integrals around a circle at

infinity. Noting that the fluxes of B1 and B2 are 2πN and 2πM respectively,

N,M being the winding numbers of the vortex configuration, we see that the

action is bounded from below with S ≥ 4
3
π(N + M). This bound is saturated,

when the fields satisfy the BPS equations:

D1ϕ+ iD2ϕ = 0 , B1 + 2g2(2|ϕ|2 − |χ|2 − 1) = 0 ,

D1χ+ iD2χ = 0 , B2 + 2g2(2|χ|2 − |ϕ|2 − 1) = 0 . (5.45)

These equations give a particular generalization of the BPS equations for the

abelian Higgs model [68]. In fact, these equations appear to be formally the

same as the self dual instanton equations for the SU(3) Yang-Mills theory with

cylindrical symmetry studied by Bais and Weldon [72]. There is a clear dis-

tinction between the two however; the latter are in the context of Yang-Mills

theories over R4 and the cylindrically symmetric ansatz essentially dimension-

ally reduces that theory to an abelian Higgs type model over H2, with the SU(3)
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instanton solutions being characterized by a Pontryagin index, which is given as

the sum of the two winding numbers of the abelian Higgs type model over H2

with U(1) × U(1) gauge symmetry, while our BPS equations are obtained for

U(1)× U(1) abelian Higgs type model over R2.

5.4 SU(2)-equivariant Gauge Fields for U(n) Gauge Theory

Now, we briefly indicate how the results of section 5.1 generalizes to U(n) gauge

theories overM× S2
F . For this purpose we write the symmetry generators ωa

ωa = X(2`+1)
a ⊗ 1n − 1(2`+1) ⊗ iΣ̃k

a , (5.46)

where Σ̃k
a are spin k irreducible representation of SU(2) with n = 2k+ 1. Thus,

the SU(2) IRR content of ωa is

`⊗ k = (`+ k)⊕ (`+ k − 1)⊕ · · · ⊕ |`− k| , (5.47)

and the IRR content of the adjoint action of ωa can be found to be

[`⊗ k]⊗2 = (2k+ 1)0⊕ (6k+ 1)1⊕ · · · . (5.48)

This decomposition means that under the adjoint action of ωa, there are (2k+1)

scalars and (6k + 1) vectors. It indicates that with our symmetry constraints

(3.79) and (3.80), the set of solutions to Aµ should be (2k+1)-dimensional while

the set of the solutions to Aa should be (6k + 1)-dimensional. It is possible to

find the parametrization of Aµ by using the following rotational invariants

1(2`+1)(2k+1) , Σ̃k
aXa , (Σ̃k

aXa)
2 , (Σ̃k

aXa)
3 , · · · , (Σ̃k

aXa)
2k . (5.49)

We may recall that the adjoint representation of SU(n) is n2 − 1 dimensional

and decomposes under the SU(2) IRRs as

n2 − 1 = ⊕
n−1∑
j=1

(2j + 1) . (5.50)

This is a multipole expansion starting with the dipole term and going up to the

(n − 1)th-pole term. Thus, considering that we may construct one rotational

invariant per multipole term, together with the identity we have n = 2k + 1
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rotational invariants as we have already inferred from (5.48). The invariants

listed in (5.49) may be expressed in terms of the appropriate multipole tensors

and can further be combined into idempotents as we given in (5.8) for the case

of k = 1 and the vectors can be obtained subsequently.

5.5 Other Vacuum Configurations

In this section, we turn our attention to the treatment of the structure of equiv-

ariant fields over other fuzzy vacuum configurations. In the section 4.1 of chap-

ter 4, we have investigated the vacuum configuration of scalar fields in the U(n)

gauge theory onM× S2 Int
F and shown that it can be expressed in terms of the

direct sum of fuzzy sphere as

S2 Int
F := S2

F (`)⊕ S2
F (`)⊕ S2

F

(
`+

1

2

)
⊕ S2

F

(
`− 1

2

)
, (5.51)

by performing the field redefinition (4.3). As we mentioned before, the structure

of equivariant gauge fields and the low energy of U(2) gauge theory overM×
S2 Int
F was investigated in detail [25]. Here, our aim is to consider the U(3)

gauge theory overM× S2 Int
F and construct the SU(2) equivariant gauge fields

characterizing its low energy behavior 5. In order to determine the latter, we

choose the SU(2) symmetry generators ωa as

ωa =(X(2`+1)
a ⊗ 14 ⊗ 13) + (12`+1 ⊗ Γ0

a ⊗ 13)− (12`+1 ⊗ 14 ⊗ iΣa)

=:Xa + Γ0
a − iΣa

=:Da − iΣa , ωa ∈ u(2`+ 1)⊗ u(4)⊗ u(3) , (5.52)

and they satisfy (3.78). ωa carries a direct sum of IRRs of SU(2), which is given

as(
`⊕ `⊕

(
`+

1

2

)
⊕
(
`− 1

2

))
⊗ 1 ≡ 2

(
(`− 1)⊕ `⊕ (`+ 1)

)
⊕2
((
`+

1

2

)
⊕
(
`− 1

2

))
⊕ (`− 3

2
)⊕ (`+

3

2
) . (5.53)

Using the definitions in (4.15), the projections to the representations appearing

in the r.h.s of (5.53) can be constructed and listed in the table 5.1 where
5 Note that we omit V2(Φ) term from the action (3.75) and we will impose it as a constraint as

discussed in [25].
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Projector Representation

Π00 = 12`+1 ⊗ P00 ⊗ 13 (`− 1)⊕ `⊕ (`+ 1)

Π02 = 12`+1 ⊗ P02 ⊗ 13 (`− 1)⊕ `⊕ (`+ 1)

Π+ = 1
2
(iQI + Π 1

2
) (`− 1

2
)⊕ (`+ 1

2
)⊕ (`+ 3

2
)

Π− = 1
2
(−iQI + Π 1

2
) (`− 3

2
)⊕ (`− 1

2
)⊕ (`+ 1

2
)

Π0 = Π00 + Π02 = 12`+1 ⊗ P0 ⊗ 13 2

(
(`− 1)⊕ `⊕ (`+ 1)

)
Π 1

2
= Π+ + Π− = 12`+1 ⊗ P 1

2
⊗ 13 2

((
`+ 1

2

)
⊕
(
`− 1

2

))
⊕ (`− 3

2
)⊕ (`+ 3

2
)

Table5.1: Projections to the representations appearing in the r.h.s of (5.53).

QI =
i

1
2
(`+ 1

2
)
(XaΓa −

1

4
Π 1

2
) , Q2

I = −Π 1
2
. (5.54)

SU(2)-equivariant gauge fields can be obtained by imposing the symmetry con-

straints in (3.79), (3.80) and (4.20). The dimensions of solution spaces for Aµ , Aa
and Ψα can be derived by the Clebsch-Gordan decomposition of the adjoint ac-

tion of ωa. The relevant part of this decomposition is

[
2

(
(`− 1)⊕ `⊕ (`+ 1)

)
⊕ 2

((
`+

1

2

)
⊕
(
`− 1

2

))
⊕ (`− 3

2
)⊕ (`+

3

2
)

]⊗2

≡ 22 0⊕ 40
1

2
⊕ 54 1⊕ · · · .

(5.55)

This simply means that there are 22 rotationally invariants and Aµ may be

parametrized by these invariants. A suitable set may be listed as the following

projectors and “idempotents" (in the subspace they belong to)

Π00 , Π02 Π+ , Π− iS1 , iS2 , Q1
00

= Π00Q1 , Q2
00

= Π00Q2 ,

Q1
02

= Π02Q1 , Q2
02

= Π02Q2 , Q1
− , Q2

− , Q1
+ , Q2

+ , Q1
+− , Q2

−+ ,

QS11 = S1Q1 , QS12 = S1Q2 , QS21 = S2Q1 , QS22 = S2Q2 , QF , QH ,

(5.56)
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where

Q1
− =

1

`(2`+ 3)

(
(2`+ 1)(`+ 1)Π−Q1Π− − iΠ−

)
,

Q2
− =

`(2`+ 1)

(`+ 1)(2`− 1)
Π−Q2Π− +

(2`+ 1)

`(2`− 1)(2`+ 3)
Π−Q1Π−

− i

`(`+ 1)(2`− 1)(2`+ 3)
Π− ,

Q1
+ =

(2`+ 1)(`+ 1)

`(2`+ 3)
Π+Q1Π+ +

(2`+ 1)2

(2`− 1)(2`+ 3)
Π+Q2Π+

− i(4`
3 + 4`2 − `+ 1)

`(2`− 1)(2`+ 3)
Π+ ,

Q2
+ =

1

(`+ 1)(2`− 1)

(
`(2`+ 1)Π+Q2Π+ − iΠ+

)
,

Q1
+− = Π+Q1Π− − iΠ 1

2
+ 2iΠ+ , Q2

−+ = Π−Q2Π+ − iΠ 1
2

+ 2iΠ− ,

Si = 12`+1 ⊗ si ⊗ 12 , si =

 σi 02

02 02

 , i = 1 , 2 , (5.57)

and

QF =
1

3
ΓaΣa − 2i(ΓaΣa)

2 − i4
3

Π 1
2
,

QH =
4(2`+ 1)

6`2 + 11`+ 1
Q′ − 4(2`2 + 3`)

6`2 + 11`+ 1
Q′′ − i(2`− 1)(`+ 1)

6`2 + 11`+ 1
Π+

− i3(2`− 1)(`+ 1)

6`2 + 11`+ 1
Π− + i

4
√

4`2 + 10`+ 2

6`2 + 11`+ 1
εabcXaΓbΣc

+ i
16

6`2 + 11`+ 1
(εabcXaΓbΣc)

2 ,

Q′ =
`(2`+ 1)

(`+ 1)(2`− 1)
Π−Q2Π− +

(2`+ 1)2

(2`− 1)(2`+ 3)
Π−Q1Π−

− i 4`3 + 8`2 + 3`− 2

(`+ 1)(2`− 1)(2`+ 3)
Π− ,

Q′′ =
(2`+ 1)

(`+ 1)(2`− 1)(2`+ 3)
Π+Q2Π+ +

(2`+ 1)(`+ 1)

`(2`+ 3)
Π+Q1Π+

− i 1

`(`+ 1)(2`− 1)(2`+ 3)
Π+ . (5.58)

Using Mathematica it is easy to verify that

(iSi)
2 = −Π0 , (Qi

00
)2 = −Πi

00
, (Qi

02
)2 = −Πi

02
, (Qi

±)2 = −Π± ,

(Q1
+−)2 = −Π 1

2
, (Q2

−+)2 = −Π 1
2
, (QSij)

2 = −Π0 , Q2
F = −Π 1

2
,

Q2
H = −Π 1

2
, Q′2 = −Π− , Q′2 = −Π+ . (5.59)
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In the equation (5.55), it is seen that under the adjoint action of ωa, there are

54 objects which transform as vectors. Using the rotational invariant in (5.56),

we can construct these as follows

[Da , Q
i
00

] , Qi
00

[Da , Q
i
00

] , {Da , Q
i
00
} ,

[Da , Q
i
02

] , Qi
02

[Da , Q
i
02

] , {Da , Q
i
02
} ,

[Da , Q
i
−] , Qi

−[Da , Q
i
−] , {Da , Q

i
−} ,

[Da , Q
i
+] , Qi

+[Da , Q
i
+] , {Da , Q

i
+} ,

[Da , QH ] , QH [Da , QH ] , {Da , QH} ,

[Da , QF ] , QF [Da , QF ] , {Da , QF} ,

[Da , QS11] , Q1
0[Da , QS11] , {Da , QS11} , (5.60)

[Da , QS12] , Q2
0[Da , QS12] , {Da , QS12} ,

[Da , QS21] , Q1
0[Da , QS21] , {Da , QS21} ,

[Da , QS22] , Q2
0[Da , QS22] , {Da , QS22} ,

[Da , Q
1
+−] , Q1

1
2
[Da , Q

1
+−] , {Da , Q

1
+−} ,

[Da , Q
2
−+] , Q2

1
2
[Da , Q

2
−+] , {Da , Q

2
−+} ,

Π00ωa , Π02ωa , Π−ωa , Π+ωa , S1ωa , S2ωa .

Here Q1
0 = Π0Q1 , Q

2
0 = Π0Q2 , Q

1
1
2

= Π 1
2
Q1 , Q

2
1
2

= Π 1
2
Q2 , and no sum over

repeated indices is implied. It is possible to parametrize Aa in terms of these

54-objects. For the 40 objects which transform as spinors under the adjoint

action of ωa, we can, for instance, take

Π00βαQ−+ , Q1
00
βαΠ− , Q2

00
βαΠ− , Π00βαQ+− , Q1

00
βαΠ+ , Q2

00
βαΠ+ ,

Q1
00
βαQ+− , Q2

00
βαQ−+ , Π−βαQ

1
02
, Π−βαQ

2
02
, Π+βαQ

1
02
, Π+βαQ

2
02
,

Q1
+−βαΠ02 , Q2

−+βαΠ02 , Q1
+−βαQ

1
02
, Q2

−+βαQ
2
02
, S1βαΠ+ , S1βαΠ− ,

(5.61)
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Π−βαS2 , Π+βαS2 , QS11βαΠ+ , QS11βαΠ− , QS12βαΠ+ , QS12βαΠ− ,

Π−βαQS21 , Π−βαQS22 , Π+βαQS12 , Π+βαQS22 , QS11βαQ
1
+− ,

QS12βαQ
2
−+ , Q1

+−βαQS21 , Q2
−+βαQS22 , Π00βαQ

1
+ , Π00βαQ

2
− ,

QS11βαQ
1
+ , QS12βαQ

2
− , Q1

+βαQS21 , Q2
−βαQS22 , Q1

+βαΠ02 , Q2
−βαΠ02 .

(5.62)

Thus, we have determined all the equivariant low energy degrees of freedom

for the U(3) gauge theory over M× S2 Int
F . A few remarks are now in order.

Firstly, we wish to emphasize once again that, from a geometrical point of view

the vacuum S2 Int
F may be interpreted as stacks of concentric D2-branes with

magnetic monopole fluxes and due to this fact it is possible to think of the

equivariant gauge field modes that we have found as the modes of the gauge

fields living on the world-volume of these D-branes. Let us also stress that

the equivariant spinors given above, do not constitute independent degrees of

freedom in the U(3) effective gauge theory over M× S2 Int
F . Their bilinears,

however, may be constructed to yield the equivariant scalars and vectors. In

other words, it is possible to use these equivariant spinor modes to express the

“square roots” of the equivariant gauge field modes.

It is possible to explore the dimensional reduction of the U(3) gauge theory

over S2 Int
F or over its projections, such as the monopole bundles S2±

F = S2
F (`)⊕

S2
F (` ± 1

2
) with winding numbers ±1. In this latter case, it easy to observe

that the reduced model will yield two decoupled abelian Higgs type model, each

carrying U(1)⊗3 as found in section 5.2 and the vortex solutions determined in

section 5.3 will be valid within each sector. Dimensional reduction over S2 Int
F is

quite tedious calculation-wise and will not be considered in this thesis.
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CHAPTER 6

QUANTUM HALL EFFECT ON GR2(CN)

This chapter is oriented to formulate the quantum Hall effect (QHE) problem

on the complex Grassmann manifolds Gr2(CN) 1. Although the subject of this

chapter does not seem related to the previous parts of the thesis at first sight,

there is an intimate connection between QHE problem and fuzzy spaces. We

may briefly explain this connection as follows: A well known fact about Landau

problems over compact manifolds such as S2 ,CPN is that the degenerate states

at the lowest Landau level (LLL) and for that matter at any Landau level is

finite. The finite dimensional Hilbert space of states HN at the LLL correspond

to holomorphic sections of complex line bundles for the QHE problem with

abelian background gauge fields. Construction of fuzzy spaces via geometric

quantization methods also yield Hilbert spaces which are holomorphic sections

of complex line bundles over the commutative parent manifold. Thus there

is a one to one correspondence between the Hilbert spaces for LLL states on

S2 ,CPN , Gr2(CN) and the Hilbert spaces for the fuzzy manifolds S2
F ,CPN

F ,

Gr2(CN)F . Similar structural relationship between fuzzy even spheres S2k
F and

QHE on S2k also exists [74]. The matrix algebras describing fuzzy spaces such

as S2
F ,CPN

F act on this Hilbert space as linear transformations. Observables on

fuzzy spaces belong to these matrix algebras. Therefore it is possible to conceive

the observables of QHE on such spaces at LLL as linear transformations in the

corresponding matrix algebras.

In early 80s, with strong motivation emerging from condensed matter physics,

1 This chapter is based on the work that has been published: F. Ballı, A. Behtash, S. Kürkçüoğlu,
and G. Ünal, “Quantum Hall effect on the Grassmannians Grk(CN )” Phys.Rev. D89 (2014) 105031.
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Haldane has solved the problem of spherical cloud of electrons under the influ-

ence of Dirac monopole background fields [75]. With motivations from high

energy physics and string theory, Hu and Zhang [76] have introduced a 4-

dimensional version of QHE on 4-sphere, S4 by generalizing the ideas of Hal-

dane. They have formulated and solved the Landau problem on S4 for fermions

carrying an additional SU(2) degree of freedom and under the influence of an

SU(2) background gauge field. For the multi-particle problem in the lowest

Landau level (LLL) with filling factor ν = 1, it turns out that in the thermo-

dynamic limit, a finite spatial density is achieved only if the particles are in an

infinitely large irreducible representations of SU(2) (i.e. they carry infinitely

large number of SU(2) internal degrees of freedom). In this limit, two-point

density correlation function immediately indicates incompressibility property of

this 4-dimensional quantum Hall liquid. Appearance of massless chiral bosons

at the edge of a 2-dimensional quantum Hall droplet [77–80] also generalizes to

this setting. Nevertheless, it is found that among the edge excitations of this

4-dimensional quantum Hall droplet not only photons and gravitons but also

other massless higher spin states occur. The latter is essentially due to the pres-

ence of a large number of SU(2) degrees of freedom attached to each particle

and, as such, it is not a desirable feature of the model.

Other developments ensued the work of Hu and Zhang. Several authors have

addressed other higher-dimensional generalizations of QHE to a variety of man-

ifolds including complex projective spaces CPN , S8, S3, the Flag manifold
SU(3)

U(1)×U(1)
, as well as quantum Hall systems based on higher dimensional fuzzy

spheres [29, 81–84]. Of particular interest to us is the work of Nair and Kara-

bali on the formulation of QHE problem on CPN [29]. These authors solve the

Landau problem on CPN by appealing to the coset realization of CPN over

SU(N + 1) and performing a suitable restriction of the Wigner D-functions on
the latter. In this manner, wave functions for charged particles under the in-

fluence of both U(1) abelian and/or non abelian SU(N) gauge backgrounds are

obtained as sections of U(1) and/or SU(N) bundles over CPN . This formu-

lation simultaneously permits the authors to give the energy spectrum of the

LL, where the degeneracy in each LL is identified with the dimension of IRR
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to which the aforementioned restricted Wigner D-functions belong. An impor-

tant feature of these results is that the spatial density of particles remains finite

without the need for infinitely large internal SU(N) degrees of freedom, con-

trary to the situation encountered for the Hall effect on S4. It also turns out

that there is a close connection between the Hall effects on CP 3 and CP 7 with

abelian backgrounds and those on the spheres S4 and S8 with SU(2) and SO(8)

backgrounds, respectively [29, 81,84].

In this chapter, we focus on the formulation of the QHE on the complex Grass-

mannians Grk(CN) [28], which are generalizations of complex projective spaces

CPN and share many of their nice features, such as being a Kähler manifold.

Several of these features are effectively captured by their so-called the Plücker

embedding into CP
(
N
k

)
−1. For the case k = 2, to which we will be restricting

ourselves in this chapter, the Plücker embedding describes Grk(CN) as a projec-

tive algebraic hypersurface in CPN . For Grk(CN) this is the well-known Klein

Quadric in CP 5 [85]. The developments summarized above and the intriguing

geometry of Grassmannian manifolds motivates us to take up the formulation

of the QHE problem on the Grassmannians Gr2(CN). Using group theoretical

techniques, we solve the Landau problem on Gr2(CN) and provide the energy

spectrum and the eigenfunctions in terms of SU(N) Wigner D-functions for

charged particles on Gr2(CN) under the influence of abelian and/or non-abelian

background magnetic monopoles, where the latter are obtained as sections of

bundles over Gr2(CN).

The organization of this chapter is as follows: we first provide a short account

of the formulation of quantum Hall problem on CP 1 and CP 2 in section 6.1

for the purposes of orienting the developments in the subsequent sections and

making the exposition self-contained. In section 6.2, we focus our attention to

QHE on Gr2(C4) which is the simplest and perhaps the more interesting case

and the solution for the most general case of non-zero U(1) and SU(2)×SU(2)

backgrounds are given. In particular, we show that at the LLL with ν = 1,

finite spatial densities are obtained at finite SU(2) × SU(2) internal degrees

of freedom in agreement with the results of [29]. In section 6.3, we generalize

these results to all Gr2(CN). The local structure of the solutions on Gr2(C4) in
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the presence of U(1) background gauge field is presented in section 6.4. There

we give the single and multi-particle wave functions by introducing the Plücker

coordinates and show by calculating the two-point correlation function that the

LLL at filling factor ν = 1 forms an incompressible fluid. The U(1) gauge

field, its associated field strength and their properties are illustrated using the

differential geometry onGr2(C4). We also briefly comment on the generalization

of this local formulation to all Gr2(CN).

6.1 Review of QHE on CP 1 and CP 2

The formulation of the QHE on CP 1 ≡ S2 is originally due to Haldane [75].

Karabali and Nair [29] have provided a reformulation of QHE on CP 1 in a

manner that is adaptable to formulate QHE on CPN . Here, we closely follow

the discussion of [29] and while at it we provide the Young diagram techniques

for handling the QHE problem on CP 2. In section 6.2 and 6.3 we employ the

latter to transparently handle the branching of the IRR of SU(N) under the

relevant subgroups appearing in the coset realizations of Gr2(CN).

Landau problem on CP 1 can be viewed as electrons on a two-sphere under the

influence of a Dirac monopole sitting at the center. Our task is to construct the

Hamiltonian for a single electron under the influence of a monopole field. To

this end, let us first point out that by the Peter-Weyl theorem the functions on

the group manifold of SU(2) ≡ S3 may be expanded in terms of the Wigner-D
functions D(j)

L3R3
(g) where g is an SU(2) group element and j is an integral or a

half-odd integral number labeling the IRR of SU(2). The subscripts L3 and R3

are the eigenvalues of the third component of the left- and right-invariant vector

fields on SU(2)2. The left- and right-invariant vector fields on SU(2) satisfy

[Li , Lj] = −εijkLk , [Ri , Rj] = εijkRk , [Li , Rj] = 0 . (6.1)

The harmonics as well as sections of bundles over CP 1 may be obtained from

the Wigner-D functions on SU(2) by a suitable restriction of the latter. The

2 Throughout this chapter we sometimes denote the left and right invariant vector fields of SU(N)

and their eigenvalues by Li and Ri, respectively, which one is meant will be clear from the context.
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coset realization of CP 1 is

CP 1 ≡ S2 =
SU(2)

U(1)
. (6.2)

This implies that the sections of U(1) bundle over CP 1 should fulfill

D(geiR3θ) = ei
n
2
θD(g) , (6.3)

where n is an integer. This condition is solved by the functions of the form

D(j)
L3

n
2
(g). In fact, the eigenvalue n

2
of R3 corresponds to the strength of the Dirac

monopole at the center of the sphere and D(j)
L3

n
2
(g) are the desired wavefunctions

as will be made clear shortly. In particular, D(j)
L30(g) correspond to the spherical

harmonics on S2, which are the wavefunctions for electrons on a sphere with

zero magnetic monopole background.

In the presence of a magnetic monopole field B, the Hamiltonian must involve

covariant derivatives whose commutator is proportional to the magnetic field.

Let us take this commutator as [D+ , D−] = B. It is now observed that the

covariant derivatives D± may be identified by the right invariant vector fields

R± = R1 ± iR2, as

D± =
1√
2`
R± , (6.4)

where ` denotes the radius of the sphere. Noting that [R+ , R−] = 2R3, for the

eigenvalue n
2
of R3 we have

B =
n

2`2
, (6.5)

for the magnetic monopole with the strength n
2
in accordance with the Dirac

quantization condition. The associated magnetic flux through the sphere is 2πn.

The Hamiltonian may be expressed as

H =
1

2M
(D+D− +D−D+)

=
1

2M`2
(

3∑
i=1

R2
i −R2

3) , (6.6)

whereM is the mass of the particle. We have that
∑3

i=1R
2
i =

∑3
i=1 L

2
i = j(j+1).

In order to guarantee that n
2
occurs as one of the possible eigenvalues of R3, we
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need to have j = 1
2
n+ q where q is an integer. The spectrum of the Hamiltonian

reads

Eq,n =
1

2M`2

(
(
n

2
+ q)(

n

2
+ q + 1)− n2

4

)
=

B

2M
(2q + 1) +

q(q + 1)

2M`2
. (6.7)

The associated eigenfunctions are D(j)
L3

n
2
(g) as noted earlier. In (6.7), q is readily

interpreted as the Landau level (LL) index. The ground state, that is the Lowest

Landau Level (LLL), is at q = 0 and has the energy B
2M

. The LLL is separated

from the higher LL by finite energy gaps.

The degeneracy of the LL are controlled by the left invariant vector fields Li
since they commute with the covariant derivatives [Li , Dj] = 0. Each LL is

(2j + 1 = n + 1 + 2q)-fold degenerate. In other words, there are this many

wavefunctions D(j)
L3

n
2
(g) at a given LL with L3 eigenvalues ranging from −j to j.

Local form of the wavefunctions may be written down by picking a suitable

coordinate system. We omit this here and refer the reader to the original lit-

erature [29] where this is done in detail. In particular, it is shown in [29] that

the LLL form an incompressible liquid by computing the two-point correlation

function for the wave-function density. We will address this crucial property of

the LLL for our case in section 6.4.

Let us now briefly turn our attention to the formulation of Landau problem on

CP 2. This and its generalization to CPN is given in [29]. The coset realization

of CP 2 may be written as

CP 2 ≡ SU(3)

U(2)
∼ SU(3)

SU(2)× U(1)
. (6.8)

Following a similar line of development as in the previous case, we can obtain

the harmonics and local sections of bundles over CP 2 from a suitable restriction

of the Wigner-D functions on SU(3). Let g ∈ SU(3) and let us denote the left-

and the right-invariant vector fields on SU(3) by Lα and Rα (α : 1 , · · · , 8); they
fulfill the Lie algebra commutation relations for SU(3). We can introduce the

Wigner-D functions on SU(3) as

D(p,q)
L,L3,L8;R,R3,R8

(g) , (6.9)
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where (p, q) label the irreducible representations of SU(3), and the subscripts

denote the relevant quantum numbers for the left- and right- rotations. In

particular, the left and right generators of the SU(2) subgroup are labeled by

Li and Ri (i : 1 , 2 , 3) and LiLi = L(L+ 1), RiRi = R(R + 1).

We note that the tangents along CP 2 may be parametrized by the right invariant

fields, Rα, (α : 4, 5, 6, 7). Consequently, the Hamiltonian on CP 2 may be written

down as

H =
1

2M`2

7∑
α=4

R2
α

=
1

2M`2

(
C2(p, q)−R(R + 1)−R2

8

)
, (6.10)

where C2(p, q) is the quadratic Casimir of SU(3).

The coset realization of CP 2 implies that there can be both abelian and non-

abelian background gauge fields corresponding to the gauging of the U(1) and

SU(2) subgroups, respectively.

Let us first obtain the wave functions with the U(1) background gauge field.

This means that our desired D(p,q) should transform trivially under the SU(2),

and carry a U(1) charge under the right actions of these groups. In other words,

these wave functions must be singlets under SU(2) with R = 0 , R3 = 0 and a

non-zero R8 eigenvalue. We can utilize the Young tableaux to see the branching

of the SU(3) IRR satisfying this requirement. The SU(3) IRR labeled by (p, q)

may be assigned to a Young tableau with p columns with one box each and q

columns with two boxes on each. The branching SU(3) ⊃ SU(2)×U(1), which

keeps the SU(2) in the singlet representation, is therefore

q︷ ︸︸ ︷
· · ·

p︷ ︸︸ ︷
· · · −→

q︷ ︸︸ ︷
· · · ⊗

p︷ ︸︸ ︷
· · ·

,

where the diagram on l.h.s. of the arrow represents the generic (p, q) IRR of

SU(3) and the first diagram on the r.h.s. of the arrow represent the SU(2) IRR,

which is singlet in this case. A general formula exits [86] for expressing the U(1)

charge of the branching SU(3) ⊃ SU(2) × U(1) (see equation 6.32 for a more
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general case):

n =
1

2
(J1 − 2J2) , n ∈ Z ,

where J1 is the number of boxes in the tableau of SU(2) and J2 is the number

of boxes in the rightmost tableau in the branching. Thus for the tableaux given

above, we conclude that n = q − p. In order to fix the relation between R8

eigenvalues and the integer n, we use the fundamental representation (1, 0) with

the generators λa fulfilling the normalization condition Tr(λaλb) = 1
2
δab, and

λ8 = 1
2
√

3
diag(1, 1,−2), so that

R8 = − n√
3

= −p− q√
3
. (6.11)

It is useful to note that the flux of the U(1) field strength corresponding to the

background gauge field is proportional to the number n. We omit the details of

this here and refer the reader to [29].

The spectrum of the Hamiltonian (6.10) may be given as

Eq,n =
1

2M`2
(q(q + n+ 2) + n) , (6.12)

where we have used the eigenvalue of the quadratic Casimir C2(p, q) of the IRR

(p, q), which is

C2(p, q) =
1

3
(p(p+ 3) + q(q + 3) + pq) . (6.13)

and expressed the energy levels in terms of q and n only. In (6.12), q appears

as the Landau level index; the ground state energy may be obtained by setting

q = 0 and that gives LLL energy ELLL = n
2M`2

.

The wave functions corresponding to this energy spectrum can be written in

terms of the Wigner-D functions as

D(p,q)
L,L3,L8;0,0,− n√

3

(g) . (6.14)

The degeneracy of each Landau level q is given by the dimension of the IRR

(p, q), which is

dim(p, q) =
(p+ 1)(q + 1)(p+ q + 2)

2
. (6.15)

This means that the set of quantum numbers L,L3 and L8 can take dim(p, q)

different values.
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It is also useful to note that the case n = 0 simply reduces the Wigner-D
functions to the harmonics on CP 2, corresponding to the wave functions of a

particle on CP 2 with vanishing monopole background.

Consider the case of filling factor ν = 1, i.e. each of the LL states is occupied by

one fermion. We therefore have that p = n, q = 0 and the number of fermions

N is equal to dim(n, 0) = (n + 1)(n + 2)/2. The density of particles ρ is given

by

ρ =
N

vol(CP 2)
, (6.16)

where vol(CP 2) = 8π2`4. In the thermodynamic limit `→∞ and N →∞, this

yields the finite result

ρ =
N

8π2`4
−→

`→∞ ,N→∞

n2

16π2`4
=

(
B

2π

)2

, (6.17)

as first discussed in [29].

The wave functions can be expressed in suitable local coordinates and taking ad-

vantage of these functions, the multi-particle wave-function for the filling factor

ν = 1 state can immediately be constructed. A straightforward calculation for

the two-point correlation function for the wave-function density may be given

which signals the incompressibility of the LLL. We refer the reader to [29] for

details.

The case of SU(2) and U(1) background gauge fields may be handled as follows.

In this case we allow for all possible right SU(2) IRR labeled by spin R. It is

possible to label SU(3) representations in the form (p+k, q+k′). The branching
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SU(3) ⊃ SU(2)× U(1) may be represented by the Young tableaux

q+k′︷ ︸︸ ︷
· · ·

p+k︷ ︸︸ ︷
· · · −→

q︷ ︸︸ ︷
· · ·

k+k′︷ ︸︸ ︷
· · · ⊗

p︷ ︸︸ ︷
· · ·

k′︷ ︸︸ ︷
· · ·

−→

q+k′−x︷ ︸︸ ︷
· · ·

k−k′+2x︷ ︸︸ ︷
· · · ⊗

p︷ ︸︸ ︷
· · ·

k′︷ ︸︸ ︷
· · ·

−→

q+k′︷ ︸︸ ︷
· · ·

k′−k︷ ︸︸ ︷
· · · ⊗

p︷ ︸︸ ︷
· · ·

k′︷ ︸︸ ︷
· · ·

.

These tableaux represent the maximum, generic and minimum spin R-value

configurations that can result from the branching, and we have assumed without

loss of generality that k′ > k and k ≥ x ≥ 0. Here x is an integer introduced

to conveniently represent the generic case. From the tableaux, the range of the

spin R and R8 eigenvalues may be easily obtained as follows:

R =
|k − k′|

2
, · · · , k + k′

2
(6.18)

R8 =
1

2
√

3
(−2(p− q) + (k − k′)) = − n√

3
. (6.19)

Noting that n is an integer restricts the spin R to integer values. Spectrum of

the Hamiltonian (6.10) is now

E =
1

2M`2
(C2(p+ k, q + k′)−R(R + 1)−R2

8)

=
1

2M`2

(
q2 + q(2k −m+ n+ 2) + n(k + 1) + k2 + 2k +m2

−m(k + 1)−R(R + 1)

)
, (6.20)

where k′ = k − 2m and m is an integer. As indicated in (6.18), there is an

interval for the values of R. The LLL is obtained when we choose the maximum

value for R,

Rmax =
k + k′

2
= k −m, (6.21)

where m should take only integer values within the interval m = 0, · · · , k
2
if

k is even, and m = 0, · · · , k−1
2

if k is odd. Using (6.21) in (6.20), the energy
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spectrum is expressed as

E =
1

2M`2

(
q2 + q(2R + n+m+ 2) + n(R +m+ 1) + (R +m)(m+ 1)

)
.

(6.22)

For fixed n,R we observe from this expression that the LL are controlled by the

two integers q and m. The LLL is obtained for q = 0 and m = 0.

As discussed in [29], for pure SU(2) background, to ensure the finiteness of

energy eigenvalues R should scale like R ∼ `2 in the thermodynamic limit. For

ν = 1 we have N = dim(R,R) = 1
2
(R + 1)(R + 1)(2R + 2) and this results in a

finite density of particles

ρ ∼ N
(2R + 1)`4

−→
`→∞ ,N→∞

R3

2R`4
. (6.23)

As for the case of both U(1) and SU(2) backgrounds, it is possible to pick either

n or R to scale like `2. Taking n ∼ `2 and R to be finite as `→∞, gives again

a finite spatial density

ρ ∼ dim (R + n,R)

(2R + 1)`4
−→

`→∞ ,N→∞

n2

4`4
, (6.24)

for ν = 1 with dim(R + n,R) = 1
2
(n+R + 1)(R + 1)(n+ 2R + 1).

6.2 Landau Problem on the Grassmannian Gr2(C4)

Starting in this section we will consider the quantum Hall problem on the

complex Grassmannians Gr2(CN). In order to set up the Landau problem on

Gr2(CN), it is necessary to list a few facts about the Grassmannians and their

geometry.

The complex Grassmannians Grk(CN) are the set of all k-dimensional linear

subspaces of the vector space CN with the complex dimension k(N − k). They

are smooth and compact complex manifolds and admit Kähler structures. Grass-

mannians are homogeneous spaces and can therefore be realized as the cosets of

SU(N) as

Grk(CN) =
SU(N)

S[U(N − k)× U(k)]
∼ SU(N)

SU(N − k)× SU(k)× U(1)
. (6.25)
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It is clear from this realization that Gr1(CN) ≡ CPN . Gr2(C4) is therefore

the simplest Grassmannian that is not a projective space. The coset space real-

ization of the Grassmannians is the most suitable setting for group theoretical

techniques that we will employ to formulate and solve the Landau problem on

Gr2(C4) first and subsequently on all Gr2(CN).

In order to set up and solve the Landau problem on Gr2(C4), we contemplate,

following the ideas reviewed in the previous section, that SU(4) Wigner D-
functions may be suitably restricted to obtain the harmonics and local sections

of bundles overGr2(C4). Let g ∈ SU(4) and let us denote the left- and the right-

invariant vector fields on SU(4) by Lα and Rα (α : 1 , · · · , 15); they fulfill the

Lie algebra commutation relations for SU(4). We can introduce the Wigner-D
functions on SU(4) as

g → D(p,q,r)

L(1)L
(1)
3 L(2)L

(2)
3 L15;R(1)R

(1)
3 R(2)R

(2)
3 R15

(g) , (6.26)

where (p, q, r) are three integers labeling the irreducible representations of SU(4),

and the subscripts denote the relevant quantum numbers for the left- and right-

rotations. In particular, the left and right generators of SU(2)×SU(2) subgroup

are labeled by Lα ≡ (L
(1)
i , L

(2)
i ) and Rα ≡ (R

(1)
i , R

(2)
i ) (i : 1 , 2 , 3, α : 1 , · · · , 6)

with corresponding SU(2) × SU(2) quadratic Casimirs CL2 = L(1)(L(1) + 1) +

L(2)(L(2) + 1), CR2 = R(1)(R(1) + 1) +R(2)(R(2) + 1).

The real dimension ofGr2(C4) is 8 and tangents alongGr2(C4) may be parametrized

by the 8 right invariant fields Rα (α : 7 , · · · , 14). Consequently, the Hamiltonian

on Gr2(C4) may be written down as

H =
1

2M`2

14∑
α=7

R2
α

=
1

2M`2

(
C2(p, q, r)− CR2 −R2

15

)
, (6.27)

where C2(p, q, r) is the quadratic Casimir of SU(4) in the IRR (p, q, r) with the

eigenvalue

C2(p, q, r) =
3

8
(r2 + p2) +

1

2
q2 +

1

8
(2pr + 4pq + 4qr + 12p+ 16q + 12r). (6.28)

The dimension of the IRR (p , q , r) is

dim(p , q , r) =
1

12
(p+ q+2)(p+ q+ r+3)(q+ r+2)(p+1)(q+1)(r+1). (6.29)
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The coset realization of Gr2(C4) implies that, there can be both abelian and

non-abelian background gauge fields corresponding to the gauging of the U(1)

and one or both of the SU(2) subgroups. We list these as three distinct cases:

i. U(1) background gauge fields only

ii. U(1) background gauge field and a single SU(2) background gauge field,

iii. U(1) background gauge field and SU(2)× SU(2) background gauge field.

It is useful to remark that the second case may be viewed as a certain restriction

of the third. We will discuss these matters in detail in what follows.

Following [33,87], it is useful to list a few facts regarding the branching

SU(N1 +N2) ⊃ SU(N1)× SU(N2)× U(1) . (6.30)

We can embed SU(N1)× SU(N2)× U(1) into SU(N1 +N2) as eiN2φU1 0

0 e−iN1φU2

 , (6.31)

where U1 ∈ SU(N1) and U2 ∈ SU(N2). Let us denote the IRR of SU(N1) and

SU(N2) with J1 and J2. We also let Ja be the total number of boxes in the

Young tableaux of SU(Na) (a : 1, 2). The U(1) charge may thus be expressed

as

n =
1

N1N2

(N2J1 −N1J2) . (6.32)

Clearly, the IRR of U(1) is fixed by those of the SU(Na) factors and the IRR

content of the subgroup SU(N1)×SU(N2)×U(1) may be denoted as (J1,J2)n.

The decomposition of a given IRR J of SU(N1 + N2) under this subgroup is

expressed as

J =
⊕
J1,J2

mJJ1,J2(J1,J2)n , (6.33)

where mJJ1,J2 are the multiplicities of the IRR (J1,J2)n occurring in the direct

sum. Further details may be found in the references [33, 87] and in the original

article of Hagen and Macfarlane [88].
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6.2.1 U(1) Gauge Field Background

For the QHE problem on Gr2(C4) we are concerned with the branching

SU(4) ⊃ SU(2)× SU(2)× U(1) . (6.34)

Obtaining the wave functions with the U(1) background gauge field, requires us

to restrict D(p,q,r) in such a way that they transform trivially under the right

action of SU(2) × SU(2), and carry a right U(1) charge, that is, they should

be singlets under SU(2) × SU(2) with CR2 = 0 eigenvalue and a non-zero R15

eigenvalue.

We can utilize the Young tableaux to see the branching of the SU(4) IRR ful-

filling this requirement. The SU(4) IRR labeled by (p, q, r) may be denoted as a

Young tableau with p columns with one box on each, q columns with two boxes

on each, and r columns with three boxes on each. The branching (6.34), which

keeps the SU(2)× SU(2) in the singlet representation, is therefore

r︷ ︸︸ ︷
· · ·

q︷ ︸︸ ︷
· · ·

p︷ ︸︸ ︷
· · · −→

r+q1︷ ︸︸ ︷
· · · ⊗

q2︷ ︸︸ ︷
· · ·

r︷ ︸︸ ︷
· · ·

︸ ︷︷ ︸
p

(6.35)

where we have introduced the splitting q = q1 + q2 in the representation in

order to handle the partition of columns labeled by q in the branching. It is

important to realize that in the last row of the SU(4) representation there are

r (fully symmetrized) boxes, which are moved as a whole under this branching

to the second slot in the r.h.s. and the trivial representation of SU(2)× SU(2)

is obtained if and only if p is equal to r. Otherwise, we have a nontrivial

representation for the second SU(2) in the branching (6.34).

Using the formula (6.32) we compute the U(1) charge as

n =
1

2
((2r + 2q1)− (p+ r + 2q2)) = q1 − q2 , (6.36)

where we have used p = r.

In order to fix the relation between the eigenvalues of R15 and the U(1) charge

n, we need to use the 6-dimensional fundamental representation (0, 1, 0) (Young
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tableaux: ) of SU(4). As opposed to CP 3 ≈ SU(4)/SU(3) × U(1) where

the branching of the 4-dimensional representations (i.e. (1, 0, 0) and (0, 0, 1))

of SU(4) contain singlets of SU(3), in the present case however, the smallest

SU(4) IRR containing the singlet of SU(2) × SU(2) is (0, 1, 0) and it has the

branching

−→
(
· ⊗

)
−1

⊕
(

⊗ ·
)

1

⊕
(

⊗
)

0

, (6.37)

where subscripts show the charge (6.36). Taking the generators λa of SU(4) ful-

filling the normalization condition Tr(λaλb) = 1
2
δab, in one of the 4-dimensional

IRR ((1, 0, 0) or (0, 0, 1)), it is possible to show that in the 6-dimensional IRR3

(0, 1, 0)

R15 =
1√
2
diag(0, 0, 0, 0,−1, 1), (6.38)

and therefore we in general have

R15 =
n√
2

=
q1 − q2√

2
. (6.39)

It is now easy to give the energy spectrum corresponding to the Hamiltonian

(6.27), using (6.28), p = r, R15 taking the value in (6.39) and CR2 = 0:

E =
1

2M`2

(
p2 + 3p+ np+ 2q2

2 + 4q2 + 2pq2 + 2n(1 + q2)
)
. (6.40)

The LLL energy at a fixed monopole background n is obtained for q2 = p = 0

and it is

ELLL =
n

M`2
=

2B

M
, (6.41)

with the degeneracy dim(0 , n , 0) = 1
12

(n+ 1)(n+ 2)2(n+ 3). In (6.41), B = n
2`2

is the field strength of the U(1) magnetic monopole. The gauge field associated

to B and related matters will be discussed in section 6.4.

The wave functions corresponding to this energy spectrum can be written in

terms of the Wigner-D functions as

D(p ,q1+q2 ,p)

L(1)L
(1)
3 L(2)L

(2)
3 L15 ; 0 ,0 ,0 ,0 , n√

2

(g) ≡ D(p ,[ q+n
2

]+[ q−n
2

] ,p)

L(1)L
(1)
3 L(2)L

(2)
3 L15 ; 0 ,0 ,0 ,0 , n√

2

(g) . (6.42)

3 Generalizing this result to the N(N−1)
2

-dimensional representations of SU(N) is used in the
subsequent sections. A proof is provided in appendix D.
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The degeneracy of each Landau level is given by the dimension of the IRR

(p , q , p) in equation (6.29). This means that the set of left quantum numbers

{L(1) , L
(1)
3 , L(2) , L

(2)
3 , L15} can take on dim(p , q1 + q2 , p) different values as a

set.

For the many-body fermion problem in which all the states of LLL are filled

with the filling factor ν = 1, in the thermodynamic limit ` → ∞,N → ∞ we

obtain a finite spatial density of particles

ρ =
N
π4`8

12

−→
`→∞ ,N→∞

n4

π4`8
=

(
2B

π

)4

, (6.43)

where we have used N = dim(0 , n , 0) = 1
12

(n+ 1)(n+ 2)2(n+ 3) for the number

of fermions in the LLL with ν = 1, and4 vol(Gr2(C4)) = π4`8

12
.

We note that the case n = 0 simply reduces the Wigner-D functions to the

harmonics on Gr2(C4) corresponding to the wave functions of a particle on

Gr2(C4) with vanishing monopole background.

It is possible to interchange the Young tableaux of the two SU(2)’s in (6.35).

This flips the sign of the U(1) charge, n → −n; in the formulas for the energy

and degeneracy, etc, this fact can be compensated by substituting |n| for n.

In section 6.4 we give the single and many-particle wave functions (for the filling

factor ν = 1 state) in terms of the Plücker coordinates for Gr2(C4) and use the

latter to obtain the two-point correlation function for the wave-function density

signaling the incompressibility of the LLL. An account of the U(1) gauge field
4 It may be useful to state that this volume is computed with the help of the repeated iteration

of (special) unitary group manifolds in terms of the odd dimensional spheres,

SU(N) ≈ SU(N)

SU(N − 1)
× SU(N − 1)

SU(N − 2)
× · · · × SU(3)

SU(2)
× SU(2)

∼= S2N−1 × S2N−3 × · · · × S5 × S3, (6.44)

(for N ≥ 3) where ≈ means “locally equal to” and ∼= indicates isomorphism. Considering this local
expression we can expand all the special unitary groups in (6.25) and employ the volume formula for
spheres to obtain an approximation for the volume of the Grassmannians [89], namely,

vol(Grk(CN )) =
1!2! · · · (k − 1)!

(N − 1)!(N − 2)! . . . (N − k)!
(π`2)k(N−k), (6.45)

which produces the factor 1
12

for k = 2 and N = 4. This factor is in general subject to change upon
using other methods. Since this is immaterial for our purposes, we will stick to the approximation
(6.45) throughout this chapter.
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is also provided for illustrative purposes.

6.2.2 Single SU(2) Gauge Field and U(1) Gauge Field Background

In this case, we need to restrict to D(p,q,r), which transform as a singlet under

one or the other SU(2) in the right action of SU(2)× SU(2), and carry a U(1)

charge. Therefore, we have a range of possibilities within the branching (6.34)

as given in the following Young tableaux decomposition:

r︷ ︸︸ ︷
· · ·

q︷ ︸︸ ︷
· · ·

p︷ ︸︸ ︷
· · · −→

r+q1︷ ︸︸ ︷
· · · ⊗

q2︷ ︸︸ ︷
· · ·

p+r︷ ︸︸ ︷
· · ·

(6.46)

−→

r+q1︷ ︸︸ ︷
· · · ⊗

q2︷ ︸︸ ︷
· · ·

x︷ ︸︸ ︷
· · ·

p+r−2x︷ ︸︸ ︷
· · ·

(6.47)

−→

r+q1︷ ︸︸ ︷
· · · ⊗

q2︷ ︸︸ ︷
· · · · · ·

︸ ︷︷ ︸
r

p−r︷ ︸︸ ︷
· · ·

,

(6.48)

We have assumed that p > r and split q1 + q2 = q. We have introduced the

integer x (0 ≤ x ≤ r) to conveniently represent the generic case. From the

tableaux, R15 eigenvalues may be easily obtained as:

n =
1

2
(2(q1 − q2)− (p− r)) , (6.49)

and we observe that the first SU(2) in the branching remains a singlet while the

second may take on values over a range;

R(1) = 0 , R(2) =
p− r

2
, · · · , r + p

2
. (6.50)

Since n is an integer, we must have that p− r is an even integer. This condition

restricts the spin R(2) to integer values.
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Using CR2 = R(2)(R(2) + 1), energy spectrum corresponding to the Hamiltonian

(6.27) is given as

E =
1

2M`2

(
C2(p, q, r)−R(2)(R(2) + 1)− n2

2

)
. (6.51)

This can be rewritten in terms of q2 , n , p using (6.28), (6.49), assuming p > r

and introducingm via r = p−2m (m = 0 , · · · , p
2
if p is even andm = 0 , · · · , p−1

2

if p is odd) as

E =
1

2M`2

(
2q2

2 + 2q2(n+ p+ 2) + n(p+ 2) + p2 + 3p+m2 −m(p+ 1)

−R(2)(R(2) + 1)

)
. (6.52)

In order to obtain the lowest energy we have to take the maximum value of the

spin R(2)
max = r+p

2
= p−m. Then, the energy spectrum becomes

E =
1

2M`2

(
2q2

2 + 2q2(n+R(2) +m+ 2) + n(R(2) +m+ 2)

+ (R(2) +m)(2 +m)

)
. (6.53)

The LLL energy at fixed background fields R(2) and n, is obtained for q2 = m = 0

as follows:

ELLL =
1

2M`2

(
n(R(2) + 2) + 2R(2)

)
. (6.54)

The wave functions in the present case can be written in the form

D(p ,q1+q2 ,r)

L(1)L
(1)
3 L(2)L

(2)
3 L15 ; 0 ,0 ,R(2) ,R

(2)
3 , n√

2

(g) , (6.55)

where R(2) is given in (6.50).

In order to have finite energy eigenvalues in the thermodynamic limit ` →
∞ ,N → ∞, the scales of n and R(2) in terms of the powers of ` have to

be determined. For a pure SU(2) background (n = 0 , R(1) = 0 , R(2) 6= 0), R(2)

should scale in the thermodynamic limit as R(2) ∼ `2. The number of fermions

in the LLL with ν = 1 is

N = dim(R(2) , 0 , R(2)) =
1

12
(R(2) + 2)2(2R(2) + 3)(R(2) + 1)2 −→

R(2)→∞

(
R(2)

)5

6
,

(6.56)
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and the corresponding spatial density is

ρ ∼ N
π4`8

12
(2R(2) + 1)

−→
`→∞ ,N→∞

(
R(2)

)4

π4`8
, (6.57)

which is finite.

When both U(1) and SU(2) backgrounds are present (i.e. n 6= 0, R(1) =

0 , R(2) 6= 0), just like the case of CP 2 reviewed in the previous section, we

may choose either one of n or R(2) to scale like `2. Taking n ∼ `2 and R(2) to be

finite in thermodynamic limit, we again get a finite spatial density

ρ ∼ N
π4`8

12
(2R(2) + 1)

−→
`→∞ ,N→∞

n4

2π4`8R(2)
, (6.58)

where we have the number of fermions N in the LLL with ν = 1 given in this

case as

dim(R(2) , n , R(2)) =
1

12
(R(2) + n+ 2)2(2R(2) + n+ 3)(R(2) + 1)2(n+ 1)

−→
n→∞ ,R(2)→finite

n4

12
. (6.59)

Before closing this subsection, we note that interchanging the Young tableaux of

two SU(2)’s amounts to interchanging R(1) and R(2) in (6.50), and also a flip in

the sign of the U(1) charge. In the relevant formulas above, one can compensate

for these changes by replacing R(2) with R(1) and substituting |n| for n.

6.2.3 SU(2)× SU(2) Gauge Field Background

Now we need to restrict D(p,q,r) to those wave functions that transform as an

IRR (R(1) , R(2)) of SU(2) × SU(2), and carry a U(1) charge. It is useful to

partition IRR of SU(4) as (p1 + p2 , q1 + q2 + x , r). There are now two classes

of branchings which differ in their U(1) charge as given in terms of p1, p2, q1, q2

and r below.
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If q2 = 0, the branching with maximal R(2) value is
r︷ ︸︸ ︷
· · ·

q︷ ︸︸ ︷
· · ·

p︷ ︸︸ ︷
· · · −→

r︷ ︸︸ ︷
· · ·

q1︷ ︸︸ ︷
· · ·

x︷ ︸︸ ︷
· · ·

p1︷ ︸︸ ︷
· · ·

⊗

r︷ ︸︸ ︷
· · ·

p2︷ ︸︸ ︷
· · ·

x︷ ︸︸ ︷
· · ·

. (6.60)

As R(2) decreases down from its maximal value R(2) = r+p2+x
2

in increments

of 1, the total number of boxes in each SU(2) does not vary so we have, with

q = q1 + x,

n =
1

2
(2q1 − (p2 − p1 − r)) . (6.61)

Suppose now that q2 6= 0. This may happen only if all p-boxes are already in the

tableaux of the second SU(2) in the branching; thus we must have that p1 = 0.

Once again, we have the branching with the maximal R(2) value as
r︷ ︸︸ ︷
· · ·

q︷ ︸︸ ︷
· · ·

p︷ ︸︸ ︷
· · · −→

r︷ ︸︸ ︷
· · ·

q1︷ ︸︸ ︷
· · ·

x︷ ︸︸ ︷
· · ·

⊗

q2︷ ︸︸ ︷
· · ·

p︷ ︸︸ ︷
· · ·

r︷ ︸︸ ︷
· · ·

x︷ ︸︸ ︷
· · ·

(6.62)

and the U(1) charge is now (with p = p2)

n =
1

2
(2(q1 − q2)− (p2 − r)) . (6.63)

Using both of the tableaux we observe that the first SU(2) in the branching

takes the value

R(1) =
p1 + x

2
, 0 ≤ x ≤ q , 0 ≤ p1 ≤ p. (6.64)

For this value of R(1) the second SU(2) takes on values between R(2)
max = S

2
and

R
(2)
min = |2M−S|

2

|2M− S|
2

≤ R(2) ≤ S

2
, S = p2 + x+ r , (6.65)

176



whereM is defined as the largest among the integers p2 , x and r.

We consider the cases q2 = 0 and q2 6= 0 with the U(1) charges given in (6.61)

and (6.63) separately to determine the energy spectrum corresponding to the

Hamiltonian (6.81). We have that

E =
1

2M`2

(
C2(p, q, r)−R(1)(R(1) + 1)−R(2)(R(2) + 1)− n2

2

)
. (6.66)

For the case q2 = 0, we have the condition that

m :=
p2 − p1 − r

2
(6.67)

is an integer to ensure that n is so. Let us assume that p2 > p1 + r so that m is

positive.

In order to obtain the lowest energy eigenvalues we use (6.64) together with the

maximum value of R(2) as given in (6.65). Next, we eliminate p2 , q1 , x and r in

favor of n ,R(1) , R(2) , p1, and m (explicitly we have p2 = R(2) − R(1) + p1 + m,

q1 = n+m, x = 2R(1) − p1 and r = R(2) −R(1) − 2m) to get

E =
1

2M`2

(
C2

(
R(2) −R(1) + 2p1 +m,n+m+ 2R(1) − p1 , R

(2) −R(1) −m
)

−R(1)(R(1) + 1)−R(2)(R(2) + 1)− n2

2

)
=

1

2M`2

(
p2

1 + p1(m+R(2) −R(1) + 1) +m2 +m(R(1) +R(2) + n+ 2)

+ n(R(1) +R(2) + 2) + 2R(2)
)
, (6.68)

where R(2) > R(1) due to the assumption p2 > p1 + r. For fixed R(1), R(2), and n

Landau levels are controlled by the two integers p1 and m. Taking p1 = m = 0

results in the LLL energy

ELLL =
1

2M`2

(
n(R(1) +R(2) + 2) + 2R(2)

)
. (6.69)

We note that assuming p2 < p1 + r flips the sign of m and in (6.68) m→ −m.5

It is also important to remark that for R(1) = R(2) = R, we have p1 = p2 + r

and thus

m̃ :=
p1 + r − p2

2
= r , (6.70)

5 The energy levels are still, of course, positive as can easily be checked.

177



and the energy levels are given by

E =
1

2M`2

(
C2 (2p1 − r , n− r + 2R− p1 , r)− 2R(R + 1)− n2

2

)
=

1

2M`2
(2R + p1(1 + p1 − m̃) + (n− m̃)(2 + 2R− m̃)) . (6.71)

The energy values here are positive since p1 ≥ m̃, n ≥ m̃, and 2R − m̃ ≥ 0 by

construction. The LLL energy is given by p1 = m̃ = 0, which is indeed the same

as the one obtained from (6.69) when R := R(1) = R(2).

The case p1 = 0 may be treated along similar lines. We have that

m :=
p− r

2
(6.72)

is an integer for the same reason that n is so. Let us assume p > r so that m

is positive. In this case we can write p , q1 , x and r in terms of n ,R(1) , R(2) , q2

and m. Hence we find for the lowest energy eigenvalues

E =
1

2M`2

(
C2

(
R(2) −R(1) +m, 2q2 + 2R(1) + n+m,R(2) −R(1) −m

)
−R(1)(R(1) + 1)−R(2)(R(2) + 1)− n2

2

)
=

1

2M`2

(
2q2

2 + 2q2(n+R(1) +R(2) +m+ 2) + n(R(1) +R(2) + 2) +m2

+m(R(1) +R(2) + n+ 2) + 2R(2)
)
. (6.73)

We note that here we do have the condition R(2) > R(1) as well. In this case q2

and m specify the Landau levels. We take q2 = m = 0 in (6.73) to obtain the

LLL energy and this yields the same result given in (6.69) as expected.

LLL energy for R(2) < R(1) can be found by interchanging R(1) and R(2) in (6.69)

and taking n to −n where now n < 0. This gives

ELLL =
1

2M`2

(
−n(R(2) +R(1) + 2) + 2R(1)

)
. (6.74)

We do have two distinct cases to consider in the thermodynamic limit. For a

pure SU(2)× SU(2) background: n = 0, R(1) 6= 0, R(2) 6= 0, both R(1) and R(2)

should scale in the thermodynamic limit as `2. The number of fermions in the

LLL with ν = 1 is

dim(R(2) −R(1) , 2R(1) , R(2) −R(1)) ∼ 4R(1)5
R(2) , (6.75)
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and the corresponding spatial density in this limit is

ρ ∼ 4R(1)5R(2)

π4`8(2R(1) + 1)(2R(2) + 1)
−→

`→∞ ,N→∞
finite . (6.76)

For the nonzero background n 6= 0, R(1) 6= 0, R(2) 6= 0 we have three parameters

n, R(1) and R(2). We can choose, say n to scale like `2 and the others to remain

finite in thermodynamic limit. For ν = 1 we get

dim(R(2) −R(1) , 2R(1) + n ,R(2) −R(1))−→ n4 (6.77)

and the spatial density is

ρ ∼ n4

π4`8(2R(1) + 1)(2R(2) + 1)
−→ finite. (6.78)

6.3 Landau Problem on Gr2(CN)

We are now ready to generalize the results of the previous section to all Grass-

mannians Gr2(CN). It is useful to write down the coset realization

Gr2(CN) =
SU(N)

S[U(N − 2)× U(2)]
∼ SU(N)

SU(N − 2)× SU(2)× U(1)
. (6.79)

The SU(N) Wigner D-functions for g ∈ SU(N),

D(P1,P2,P3,...,PN−2,PN−1)

LSU(N−2) ,L ,L3 ,LN2−1 ,R
SU(N−2) ,R ,R3 ,RN2−1

(g) , (6.80)

carrying the IRR (P1 , P2 , P3 , · · · , PN−2 , PN−1) labeled by N − 1 non-negative

integers, may be appropriately restricted to obtain the harmonics and local

sections of bundles over Gr2(CN). Let us denote the left- and the right-invariant

vector fields on SU(N) by Lα and Rα (α : 1 , · · · , N2 − 1); they satisfy the Lie

algebra commutation relations for SU(N). In (6.80), LSU(N−2) and RSU(N−2)

stand for the suitable sets of left and right quantum numbers, which we will not

need in what follows.

The real dimension of Gr2(CN) is 4N − 8 and tangents along Gr2(CN) may be

parametrized by the 4N−8 right-invariant fields, Rα, (α : N2−4N+7, · · · , N2−
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2). Consequently, the Hamiltonian may be written as

H =
1

2m`2

N2−2∑
α=N2−4N+7

R2
α

=
1

2m`2

(
CSU(N)

2 − CSU(N−2)
2 − CSU(2)

2 −R2
N2−1

)
. (6.81)

Here for future use we give the eigenvalue of CSU(N)
2 in the IRR (P1 , P2 , 0 , · · · , 0 ,

PN−2 , PN−1), which reads

C2(P1, P2, 0, . . . , 0, PN−2, PN−1) = (
N − 1

2N
)P 2

1 + (
N − 2

N
)P 2

2 + (
N − 2

N
)P 2

N−2

+ (
N − 1

2N
)P 2

N−1 + (
N − 2

N
)P1P2 +

2

N
P1PN−2

+
1

N
P1PN−1 +

4

N
P2PN−2 +

2

N
P2PN−1

+ (
N − 2

N
)PN−2PN−1 + (

N − 1

2
)P1 + (N − 2)P2

+ (N − 2)PN−2 + (
N − 1

2
)PN−1, (6.82)

and the dimension of this representation is given in the appendix D.

In order to obtain the wave functions with only a U(1) background gauge field,

we consider those D-functions that transform trivially under the right action

of SU(N − 2) and SU(2), and carry a right U(1) charge. This means these

wave functions remain singlets under SU(N − 2) and SU(2) with non-zero

CSU(N−2)
2 , CSU(2)

2 eigenvalues and a non-zero RN2−1 eigenvalue.

The branching SU(N) ⊃ SU(N − 2) × SU(2) × U(1) may be utilized for this

purpose. In order to have both SU(N−2) and SU(2) as singlets in the branching

we must require all Pi except P1 , P2 , PN−2 , PN−1 to vanish, and also PN−1 = P1.
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In terms of Young tableaux, this branching can be shown by

PN−1︷ ︸︸ ︷
· · ·

PN−2︷ ︸︸ ︷
· · ·

P2︷ ︸︸ ︷
· · ·

P1︷ ︸︸ ︷
· · ·

−→

PN−1︷ ︸︸ ︷
· · ·

PN−2︷ ︸︸ ︷
· · ·

⊗

p2︷ ︸︸ ︷
· · ·

P1︷ ︸︸ ︷
· · ·

︸ ︷︷ ︸
PN−1

where the tableaux on the l.h.s represent the IRR (P1 , P2 , 0 , · · · , 0 , PN−2 , P1)

of SU(N). The tableaux on the r.h.s are those of SU(N − 2) and SU(2),

respectively, and both are singlets in this case.

From (6.32) we compute the U(1) charge as

n =
1

2(N − 2)
(2J1 − (N − 2)J2)

= PN−2 − P2 . (6.83)

The relation between eigenvalues of RN2−1 and n is found to be (see Appendix

D)

RN2−1 = −
√

1− 2

N
n . (6.84)

The energy spectrum of the Hamiltonian is

E =
1

2M`2

(
CSU(N)

2 − (1− 2

N
)n2

)
=

1

2M`2

(
P 2

1 + (2− 4

N
)P 2

2 + (N − 1 + 2n)P1 + 2(n+N − 2 +
2

N
)P2

+ 4P1P2 + n(N − 2)

)
,

where we have used (6.82) with PN−1 = P1 and PN−2 = P2 +n. The integers P1

and P2 are in fact considered to be the Landau level indices. The LLL energy
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can be obtained by setting P1 = P2 = 0, which is

ELLL =
Nn− 2n

2M`2
. (6.85)

The corresponding wave functions may be expressed by

D(P1 ,P2 ,0 ,··· ,0 ,Pn−2=P2+n ,Pn−1=P1)

LSU(N−2) ,L ,L3 ,LN2−1 ,0 ,0 ,0 ,−
√

1− 2
N
n
(g) . (6.86)

Spatial density of particles in the thermodynamic limit is computed in a man-

ner analogous to those for the case of Gr2(C4). We have vol(Gr2(CN)) =

π2(N−2)

(N−2)!(N−1)!
`4N−8 from (6.45) and in the LLL, PN−2 = n, P1 = P2 = PN−1 = 0,

with ν = 1. Correspondingly, the dimension formula (D.1) for the LLL with

ν = 1 reduces to

N = dim(0 , 0 , · · · , n , 0) =
(n+N − 3)!(n+N − 4)!(n+N − 2)2

(N + 1)!(N − 2)!

× (n+N − 1)(n+N − 3)

n!(n+ 1)!
(6.87)

In the thermodynamic limit (` → ∞ and N → ∞), the density of the states

takes the form

ρ =
N

π2(N−2)

(N−2)!(N−1)!
`4N−8

−→ n2N−4

`4N−8
=

(
B

2π

)2N−4

. (6.88)

For the case of both SU(2) and U(1) background gauge fields, the spectrum of

the Hamiltonian and the wave functions are obtained in a similar manner. We

still have to demand all Pi except P1 , P2 , PN−2 , PN−1 to vanish, but no longer

impose the condition PN−1 = P1. The relevant branching of SU(N) is now given
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by the Young tableaux below:
PN−1︷ ︸︸ ︷
· · ·

PN−2︷ ︸︸ ︷
· · ·

P2︷ ︸︸ ︷
· · ·

P1︷ ︸︸ ︷
· · ·

−→

PN−1︷ ︸︸ ︷
· · ·

PN−2︷ ︸︸ ︷
· · ·

⊗

P2︷ ︸︸ ︷
· · ·

P1︷ ︸︸ ︷
· · ·

PN−1︷ ︸︸ ︷
· · ·

PN−1︷ ︸︸ ︷
· · ·

PN−2︷ ︸︸ ︷
· · ·

P2︷ ︸︸ ︷
· · ·

P1︷ ︸︸ ︷
· · ·

−→

PN−1︷ ︸︸ ︷
· · ·

PN−2︷ ︸︸ ︷
· · ·

⊗

P2+x︷ ︸︸ ︷
· · ·

P1+PN−1−2x︷ ︸︸ ︷
· · ·

PN−1︷ ︸︸ ︷
· · ·

PN−2︷ ︸︸ ︷
· · ·

P2︷ ︸︸ ︷
· · ·

P1︷ ︸︸ ︷
· · ·

−→

PN−1︷ ︸︸ ︷
· · ·

PN−2︷ ︸︸ ︷
· · ·

⊗

P2+PN−1︷ ︸︸ ︷
· · ·

P1−PN−1︷ ︸︸ ︷
· · ·
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where the branching rule for maximum, generic and minimum SU(2) spin are

given, respectively and 0 ≤ x ≤ PN−1. We have assumed that P1 ≥ PN−1. The

SU(2) spin interval is then

R =
P1 − PN−1

2
, · · · , PN−1 + P1

2
, (6.89)

and the U(1) charge is given by

n =
1

2
(PN−1 + 2(PN−2 − P2)− P1) . (6.90)

By the Dirac quantization condition n should be an integer so we must have

that

m :=
P1 − PN−1

2
, (6.91)

is an integer taking values within the intervalm = 0, · · · , P1

2
if P1 is even andm =

0, · · · , P1−1
2

if P1 is odd. The energy spectrum corresponding to the Hamiltonian

(6.81) reads

E =
1

2M`2

(
CSU(N)

2 −R(R + 1)− (1− 2

N
)n2

)
. (6.92)

This equation can be re-written in terms of P2, P1,m and n by using (6.92),

(6.90) and (6.91):

E =
1

2M`2

(
(
N − 1

2N
)P 2

1 + (
N − 2

N
)P 2

2 + (
N − 2

N
)(n2 +m2 + 2nm+ P 2

2

+ 2nP2 + 2mP2) + (
N − 1

2N
)(4m2 + P 2

1 − 4mP1) + (
N − 2

N
)P1P2

+
2

N
P1(n+m+ P2)− 1

N
(2mP1 − P 2

1 ) +
4

N
P2(n+m+ P2)

− 2

N
P2(2m− P1)− (

N − 2

N
)(2m− P1)(n+m+ P2) + (

N − 1

2
)P1

+ (N − 2)P2 + (N − 2)PN−2 + (
N − 1

2
)(−2m+ P1)− (

N − 2

N
)n2

−R(R + 1)

)
. (6.93)

Taking the maximum value of the spin R,

R =
PN−1 + P1

2
= P1 −m, (6.94)
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the lowest energy becomes

E =
1

2M`2

(
(
N − 1

2N
)(2R2 + 2m2)

+
N − 2

N
(2P 2

2 +mn+ 2nP2 + 2RP2 + 2mP2 +Rn+Rm)

+
1

N
(2Rn+ 4RP2 + 2mn+R2 +m2 + 2Rm+ 4P2n+ 4P2m+ 4P 2

2 )

+ (
N − 1

2
)(2R) + (N − 2)(2P2 + n+m)−R(R + 1)

)
. (6.95)

Once again, the LLL at fixed background charges n and R are controlled by two

integers, m and P2. The LLL is found by putting P2 = m = 0. This gives the

energy eigenvalue

ELLL =
1

2M`2
(nR + (N − 2)(n+R)) , (6.96)

which collapses to (6.54) for N = 4 as expected. More generally, to match the

formulas of this section to those for N = 4, we note that the correspondence for

the IRR labels is determined to be

(p , q = q1 + q2 , r) −→ (P1 , P2 = q2 , 0 , · · · , PN−2 = q1 , PN−1) , (6.97)

For a pure SU(2) background n = 0, R 6= 0, R should scale in the thermody-

namic limit as R(2) ∼ `2. The number of fermions in the LLL with ν = 1 is

N = dim(R, 0, · · · , 0, R) where

dim(R, 0, · · · , 0, R) =
1

(N − 1)!(N − 2)!(N − 3)!(R + 1)!R!
((R +N − 3)!

× (N − 4)!(R +N − 3)!(R +N − 2)(R + 1)(2R +N − 1)

× (N − 3)(R +N − 2)), (6.98)

and the corresponding spatial density is

ρ ∼ N
`4N−8(2R + 1)

−→ R2N−3

k`4N−8(2R + 1)
−→ finite . (6.99)

For both U(1) and SU(2) backgrounds n 6= 0, R 6= 0, we can choose the scaling

n ∼ `2 and keep R finite in thermodynamic limit. The N in the LLL with ν = 1

is

N = dim(R , 0 , · · · , n , R) −→ n2N−4 , (6.100)
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and the spatial density reads

ρ ∼ N
`4N−8(2R + 1)

−→ n2N−4

k`4N−8(2R + 1)
−→ finite . (6.101)

Before ending this section, let us briefly list a few of the results of our analysis for

the Landau problem on Gr2(C5). Labeling the IRR of SU(5) with (p , q , r , s),

we find that the energy spectrum due to only an abelian monopole background

is

E =
1

2M`2

(
CSU(5)

2 − 3

5
n2

)
=

1

2M`2

(
p2 + 2q2 + 2nq + 2qp+ pn+ 4p+ 6q + 3n

)
, (6.102)

where we have used p = s and r = n+q in CSU(5)
2 . The numbers p and q play the

role of Landau level indices. So the ground state energy is obtained by letting

p = q = 0, which yields

ELLL =
3n

2M`2
, (6.103)

and wave functions take the form

D(p ,q ,n+q ,p)

LSU(3) ,L ,L3 ,L24 ,0 ,0 ,0 ,−
√

3
5
n
(g) . (6.104)

With reference to (D.1) the dimension of the (0 , 0 , n , 0) representation gives

the degeneracy of the LLL as follows:

dim(0 , 0 , n , 0) =
(n+ 2)!(n+ 1)!(n+ 3)2(n+ 4)(n+ 2)

4!3!n!(n+ 1)!
. (6.105)

Finally, the spatial density of fermions is readily computed to be

ρ −→ n6

`12
=

(
B

2π

)6

. (6.106)

For SU(2) and U(1) backgrounds together, the energy spectrum reads

E =
1

2M`2

(
CSU(5)

2 −R(R + 1)− 3

5
n2

)
, (6.107)

where SU(2) has the spin range

R =
p− s

2
, · · · , s+ p

2
, (6.108)
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assuming that p > s. The U(1) charge now reads n = 1
2

(s+ 2(r − q)− p).
Setting s = p − 2m, the maximal SU(2) charge R = p − m gives the energy

eigenvalues

E =
1

2M`2
(m2 +2q2 +mn+2qn+2Rq+2mq+Rn+Rm+3R+6q+3n+3m) .

(6.109)

Here applying the LLL condition gives the lowest energy as

ELLL =
1

2M`2
(n(R + 3) + 3R) . (6.110)

6.4 Local Form of the Wave Functions and the Gauge Fields

In this section, we first provide the local form of the wave functions for solutions

of the Landau problem on Gr2(C4). For this purpose, we will utilize the well-

known Plücker coordinates for Gr2(C4).

The Plücker coordinates for Grk(CN) are constructed out of a projective embed-

ding, the so-called Plücker embedding Grk(Cn) ↪→ P
(∧k Cn

)
, which provides

a one-to-one map between the set of k-dimensional subspaces of Cn (i.e. the

Grassmannian Grk(CN)) and a subset of the projective space of the kth exterior

power of the vector space Cn, where the latter is denoted as P
(∧k Cn

)
. This

subset of P
(∧k Cn

)
is a projective variety characterized by the intersection of

quadrics induced by all possible relations between generalized Plücker coordi-

nates. In what follows, we focus on the Plücker embedding of Gr2(C4); more

details and general discussions could be found in [85,90].

For Gr2(C4) this construction entails the projective space P (C4 ∧ C4) ≡ CP 5.

Introducing two sets of complex coordinates vα , wα (α = 1 , · · · , 4), that is one

set for each C4, a fully antisymmetric basis for the exterior product space C4∧C4

would be given in the form of

Pαβ =
1√
2

(vαwβ − vβwα) . (6.111)

Pαβ may be contemplated as the homogenous coordinates on CP 5 with the

identification Pαβ ∼ λPαβ where λ ∈ U(1) and
∑4

α ,β |Pαβ|2 = 1.
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The Plücker embedding of Gr2(C4) in CP 5 is given by the homogeneous condi-

tion

εαβγδPαβPγδ = P12P34 − P13P24 + P14P23 = 0 , (6.112)

defining the Klein quadric Q4 in CP 5, which is complex analytically equivalent

to Gr2(C4). The homogeneous equation εαβγδPαβPγδ = 0 is nothing but the

restriction to a projective hypersurface of degree two, which is the quadric Q4.

It is possible to employ Pαβ to parametrize the columns of g ∈ SU(4) in the

IRR (0, 1, 0); we choose a parametrization of the form

g :=




...

...
...

...

P ∗34 P12

−P ∗24 P13

P ∗23 P14

P ∗14 P23

−P ∗13 P24

P ∗12 P34

, (6.113)

where the orthogonality of the columns follow from the Plücker relation in

(6.112). For a short-hand notation, we will employ gN6 = PN := Pαβ, gN5 =

εNMP
∗
M = εαβγδP

∗
γδ withN ≡ [αβ], N = 1 , · · · , 6 and αβ = (12, 13, 14, 23, 24, 34).

D(0 ,q1+q2 ,0)

L(1)L
(1)
3 L(2)L

(2)
3 L15 ; 0 ,0 ,0 ,0 , n√

2

(g) are the wave functions in the U(1) background

gauge field. They are the sections of U(1) bundle over Gr2(C4), which fulfill the

gauge transformation property

D(0 ,q1+q2 ,0)(gh) = D(0 ,q1+q2 ,0)(geiλ15θ) = D(0 ,q1+q2 ,0)(g)e
i n√

2
θ
. (6.114)

Using (6.38) for λ15 and (6.113), this yields immediately

D(0 ,1 ,0)(g) ∼ Pαβ . (6.115)

We point out that the (0, q, 0) IRR is the q-fold symmetric tensor product of

the (0, 1, 0) representation; to wit, (0, q, 0) ≡
∏
⊗q(0, 1, 0). This can be shown

by the symmetric tensor product (⊗S) of tableaux as

⊗S ⊗S · · · ⊗S −→

q︷ ︸︸ ︷
· · · .
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We infer that

D(0 ,q1+q2 ,0)(g) ∼ Pα1β1Pα2β2 · · ·Pαq1βq1P
∗
γ1δ1

P ∗γ2δ2 · · ·P
∗
γq2δq2

. (6.116)

So the LLL wave functions are those with q2 = 0:

D(0 ,q1 ,0)

L(1)L
(1)
3 L(2)L

(2)
3 L15 ; 0 ,0 ,0 ,0 , n√

2

(g) ∼ Pα1β1Pα2β2 · · ·Pαq1βq1 , (6.117)

which are holomorphic in the Plücker coordinates.

Another useful point to mention here is that, although the right-invariant vector

fields on SU(4) cannot be easily written down, the left-invariant vector fields

can be easily given as [35]

Lk = −vj(λk)ij
∂

∂vi
− wj(λk)ij

∂

∂wi
+ v∗i (λk)ij

∂

∂v∗j
+ w∗i (λk)ij

∂

∂w∗j
, (6.118)

where λk (k = 1 , . . . , 15) are the Gell-Mann matrices for SU(4). Choosing

complex vectors v and w to satisfy the orthonormality conditions

viw
∗
i = 0 , |v|2 = |w|2 = 1 , (6.119)

and using the identity

N2−1∑
k=1

λkijλ
k
mn =

1

2
δinδjm −

1

2N
δijδmn , (6.120)

for N = 4, the Casimir CSU(4)
2 may be realized as the differential operator:

CSU(4)
2 =

15

8

(
vi
∂

∂vi
+ wi

∂

∂wi
+ v∗i

∂

∂v∗i
+ w∗i

∂

∂w∗i

)
+

3

8

(
vivj

∂

∂vi

∂

∂vj

+ wiwj
∂

∂wi

∂

∂wj
+ c.c.

)
− 2

8

(
viwj

∂

∂vi

∂

∂wj
− viw∗j

∂

∂vi

∂

∂w∗j
+ c.c.

)
+

1

8

(
viv
∗
j

∂

∂vi

∂

∂v∗j
+ wiw

∗
j

∂

∂wi

∂

∂w∗j
+ c.c.

)
+ viwj

∂

∂vj

∂

∂wi
+ v∗iw

∗
j

∂

∂v∗j

∂

∂w∗i
− ∂

∂vj

∂

∂v∗j
− ∂

∂wj

∂

∂w∗j
, (6.121)

which clearly generates the eigenvalues q2

2
+2q when applied to the wave functions

(6.116).

The LLL with filling factor ν = 1 has N = dim(0, 1, 0) = 1
12

(n+1)(n+2)2(n+3)

number of particles. Its multi-particle wave-function is given in terms of the
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Slater determinant as

ΨMP =
1√
N !

det


ΨΛ1(P

1) · · · ΨΛN (P 1)

ΨΛ1(P
2) · · · ΨΛN (P 2)

... . . . ...

ΨΛ1(P
N ) · · · ΨΛN (PN )


=

1√
N !

εΛ1Λ2 ···ΛnΨΛ1(P
(1))ΨΛ2(P

(2)) · · ·ΨΛN (P (N)) . (6.122)

Here P i denotes the ith position fixed in the Hall fluid and correspondingly

ΨΛj(P
i) refers to the wave function of the jth particle located at the position

P i. Now let us calculate the two-point correlation function in this fluid in the

presence of only a U(1) background. For a one-particle wave function in (6.115)

(with n = 1) our notation transcribes as

ΨΛi(P
i) ≡ Ψi

αβ ∼ P i
αβ . (6.123)

The LLL wave function given in (6.117) may now be denoted by

ΨΛi(P
i) ≡ Ψi

Λi
∼ (P i

αβ)n . (6.124)

The general form of the correlation function between a pair of particles, say 1

and 2, on a manifoldM is given by

Ω(1, 2) =

∫
M
|ΨMP |2dµ(3)dµ(4) · · · dµ(N ) , (6.125)

with dµ(i) being the measure of integration onM in the coordinates of the ith

particle and ΨMP represents the multi-particle wave function of the Hall fluid on

the manifold M. Expanding the determinant formula (6.122) and using some

algebra one can show that Ω(1, 2) can be simplified as

Ω(1, 2) =

∫
M
|ΨMP |2dµ(3)dµ(4) · · · dµ(N ) = |Ψ1|2|Ψ2|2 − |Ψ∗1Λ Ψ2

Λ|2. (6.126)

In order to compute (6.126) for our case, we take the normalized coordinate

chart γi :=
Pαβ
P12

where P12 6= 0

P =
1√

1 + |γa|2
(1, γ1, . . . , γ5)T :=

1√
1 + |γa|2

(1 , ~γ) , (6.127)
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on the Grassmannian Gr2(C4). In this coordinate patch (6.124) becomes Ψi
α ∼

(P i
α)n. Inserting this into (6.126) yields

Ω(1, 2) = 1− |P∗1Λ P2
Λ|n

= 1−
[

γ∗1a γ
2
aγ

1
b γ
∗2
b

1 + |γ1a |
2 + |γ2a |

2 + |γ1a |
2 |γ2a |

2

]n
= 1−

[
1− |~γ1 − ~γ2|2

1 + |γ1a |
2 + |γ2a |

2 + |γ1a |
2 |γ2a |

2

]n
. (6.128)

Let us set ~X = ~γ`. In the thermodynamic limit N → ∞ and n → ∞, (6.128)

takes the form

Ω(1, 2) = 1−

[
1−

∣∣∣ ~X1 − ~X2
∣∣∣2 [`2 +

∣∣∣ ~X1
∣∣∣2 +

∣∣∣ ~X2
∣∣∣2 + `−2

∣∣∣ ~X1
∣∣∣2 ∣∣∣ ~X2

∣∣∣2]−1
]n

→ 1−
[
1− 2B

n

∣∣∣ ~X1 − ~X2
∣∣∣2]n

→ 1− e−2B| ~X1− ~X2|2

= 1− e−2B(~x1−~x2)
2

e−2B`2(det Γ1−det Γ2)
2

, (6.129)

where we have used n = 2B`2 and that Γi :=
(

γi2 γi1

γi4 γi3

)
. Note that the last

equality shows the two-point function of the particles located at the positions

~x1, ~x2 onGr2(C4), is extracted from that of the particles on CP 5 at the positions
~X1, ~X2 by a restriction of these particles to the algebraic variety determined by

X i
5 ≡ ` det Γi, as expected. It is apparent from this function that the probability

of finding two particles at the same point goes to zero. This result indicates the

incompressibility of the Hall fluid.

Turning our attention to the U(1) gauge field we may write

A = − in√
2

Tr
(
λ15

(6)g
−1dg

)
. (6.130)

With the help of (6.113) and (6.39), one can express A in terms of the Plücker
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coordinates as

A = − in√
2

(
λ15

(6)

)
LM

(
g−1
)
MN

(dg)NL

= −in
2

(
−
(
g−1
)

5N
(dg)N5 +

(
g−1
)

6N
(dg)N6

)
= −in

2
(−g∗N5 (dg)N5 + g∗N6 (dg)N6)

= −in
2

(−PNdP ∗N + P ∗NdPN)

= −inP ∗NdPN , (6.131)

where use has been made of the notational conventions stated below equation

(6.113), and the fact that d(P ∗NPN) = 0 due to (6.112). Under U(1) gauge

transformations A transforms to A+d
(
nθ√

2

)
, which is consistent with the trans-

formation of the wave functions given in (6.114).

Let us introduce the notation P̃ ≡ (P1, . . . P6)T where T stands for transpose

and define a non-homogeneous coordinate chart Q ≡ P̃
P1

with P1 6= 0 on Gr2(C4)

as

Q ≡ (1 , γ1 , · · · , γ5)T , (6.132)

subject to the Plücker relation (6.112) which in terms of the (affine coordinates)

γi takes the form

γ5 = γ2γ3 − γ1γ4 . (6.133)

Without (6.133), Q is a non-homogenous coordinate chart in CP 5. We can

express our gauge potential as

A = −inP†dP

= −in|P1|2Q†dQ− inP ∗1 |Q|2dP1

= −in|Q|−2Q†dQ− inP ∗1 |P1|−2dP1

= −in|Q|−2Q†dQ− inP−1
1 dP1

= −in∂ ln(|Q|2)− ind ln(P1)

= −in∂K − ind ln(P1). (6.134)

where K is the CP 5 Kähler potential given by

K = ln |Q|2 ≡ ln(1 + |γi|2) , (6.135)
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and subject to the condition (6.133).

The field strength is calculated via

F = dA = − in√
2

Tr
(
λ15

(6)g
−1dg ∧ g−1dg

)
= −indP ∗N ∧ dPN . (6.136)

We note that F is an antisymmetic, gauge invariant, and closed two-form on

Gr2(C4) and as such it is proportional to the Kähler two-form Ω over Gr2(C4).

This fact can be readily verified using (6.134) and writing

F = dA = in∂∂∗K = nΩ , (6.137)

where ∂, ∂∗ are the Dolbeault operators in the coordinates γi and γ∗i , respectively,

and d = ∂ + ∂∗. The relation (6.137) with (6.135) leads to the following form of

the field strength [90]:

F = −in
(
dγ∗i ∧ dγi
1 + |γ|2

−
γidγ

∗
i ∧ γ∗j dγj

(1 + |γ|2)2

)
, (6.138)

being subject to the Plücker relation (6.133). Let us associate with each index

i a dual index î in the sense that i is dual to î if γiγî appears in the Plücker

relation. Hence 1, 4 and 2, 3 are dual to one another. Expanding γ5 in (6.133)

results in the Hermitian components for the Kähler form Ω as

Ωii∗ = iNγ

1 +
4∏

α=1,α 6=i,̂i

|γα|2 + (1 + |γî|
2)

4∑
α=1,α 6=i

|γα|2
 ,

Ωij∗ = −iNγ

(
1 + |γî|

2 + |γĵ|
2
) (
γ∗i γj + γîγ

∗
ĵ

)
, i < j , j 6= î ,(6.139)

Ωîi∗ = −iNγ

γ∗i γî
(

4∑
α=1

|γα|2 − |γi|2 − |γî|
2

)
− 1

2
(γ∗i )

2
∏
j 6=i ,̂i

γjγĵ

− 1

2
(γî)

2
∏
j 6=i ,̂i

γ∗j γ
∗
ĵ

 , i < î ,

where Nγ =
(
1 +

∑5
a=1 |γa|2

)−2
. In these formulas Einstein summation conven-

tion is not in use.

It is known from very general considerations [91] that the integral of F over a

non-contractable two surface Σ in Gr2(C4) is an integral multiple of 2π:
1

2π

∫
Σ

F = n . (6.140)
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In the present context, this result signals an analogue of the Dirac quantization

condition with n
2
identified as the magnetic monopole charge. Therefore, we do

have that the magnetic field is B = n
2`2

.

A number of remarks are in order. The generalization of our results to all

higher dimensional Grassmannians is fairly straightforward. Taking Gr2(CN),

the only difference is that now both the vector potential A and field strength F

are subject to the Plücker relations

γikγjl = γijγkl − γilγkj, 1 ≤ i < k < j < l ≤ 2(N − 2) , (6.141)

in terms of the non-homogeneous coordinates γij := Pij/P12 in the patch where

P12 6= 0. The parametrization in (6.113) can be generalized to N(N − 1)/2-

dimensional fundamental representations of the SU(N) group by means of these

Plücker relations. Let us also note that the Grassmannians have a non-trivial

algebraic topological structure that, for the best of our purposes here, is re-

flected in their second cohomology group which is non-zero, or more precisely

H2(Grk(CN)) = Z [92]. This is the reason why the integral of the first Chern

character in (6.140) is an integer. Similarly, one may consider the integral of the

dth (d = 2(N − 2)) order Chern character for the Grassmannians Gr2(CN) [93]:

1

d!(2π)dvol(Gr2(CN))

∫
Gr2(CN )

F ∧ Ω · · · ∧ Ω = n , (6.142)

for F = nΩ.
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CHAPTER 7

CONCLUSIONS

In this thesis, we have focused on the investigation of various aspects of fuzzy

vacuum configurations arising in the context of SU(N ) gauge theories coupled

to a multiplet of adjoint scalar fields. In chapter 3, we discussed the results

of [9, 21, 22, 24] which demonstrated how SU(N ) gauge theories coupled to a

suitable number of scalar fields develop fuzzy vacuum configurations in the form

of fuzzy sphere, S2
F , or the product of two fuzzy sphere, S2

F ×S2
F , after the spon-

taneously breaking of the SU(N ) symmetry. We showed that the fluctuations

around these fuzzy vacua have the gauge field structure on fuzzy sphere(s) which

made it possible to conjecture the emergent theories as effective gauge theories

with fuzzy extra dimensions. KK-type mode expansion of the gauge fields and

their equivariant parametrization provided two complementary approaches in

understanding and interpreting these models and allowed us to compute their

low energy limits. As concrete examples, we have examined the low energy limit

of effective U(n) gauge theoryM×S2
F by Kaluza-Klein mode expansion of gauge

fields and the low energy effective actions of U(2) gauge theory onM×S2
F and

that of U(4) gauge theory onM×S2
F ×S2

F were constructed by using the equiv-

ariant parametrization of gauge fields. These two review chapters are followed

by three chapters covering the original results of research conducted for this

thesis.

In chapter 4, we considered a model [21,24] in which an SU(N ) gauge theory cou-

pled to six adjoint scalar fields which is in fact a particular deformation of N = 4

supersymmetric Yang-Mills theory with cubic soft supersymmetry breaking and
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mass deformation terms in scalar fields. We found new spontaneously generated

fuzzy extra dimensions emerging from this model which are expressed in terms

of a direct sum of product of two fuzzy spheres, S2 Int
F × S2 Int

F . The direct sum

structure of the vacuum was clearly revealed by a suitable splitting of the scalar

fields in the model in a manner that generalizes the approach of [25]. Fluctua-

tions around this vacuum have the structure of gauge fields over S2 Int
F × S2 Int

F ,

and this enabled us to conjecture the spontaneous broken model as an effective

U(n) gauge theory on the product manifold M4 × S2 Int
F × S2 Int

F . We supported

this interpretation by the equivariant parametrization technique. We examined

the U(4) theory and determined all of the SU(2)×SU(2) equivariant fields in the

model, characterizing its low energy degrees of freedom. Monopole sectors with

winding numbers (±1, 0), (0,±1), (±1,±1) were accessed from S2 Int
F × S2 Int

F

after suitable projections and subsequently equivariant fields in these sectors

were obtained. We indicated how Abelian Higgs type models with vortex so-

lutions emerge after dimensionally reducing over the fuzzy monopole sectors as

well. A family of fuzzy vacua was determined by giving a systematic treat-

ment for the splitting of the scalar fields and it was made manifest that suitable

projections of these vacuum solutions yield all higher winding number fuzzy

monopole sectors. We observed that the vacuum configuration S2 Int
F × S2 Int

F

identifies with the bosonic part of the product of two fuzzy superspheres with

OSP (2, 2) × OSP (2, 2) supersymmetry and elaborate on this unexpected and

intriguing feature. Finally, stability of our vacuum solutions was addressed by

showing that they may be interpreted as mixed state with non-zero von Neu-

mann entropy.

As mentioned before, the low energy limit of effective U(2) gauge theory on

M× S2
F was studied in [22] and reviewed in chapter 3 of this thesis. In chapter

5, we took a step forward and investigated the low energy structure of models

with larger gauge group and obtained a new family of fuzzy vacua S2 Int
F by suit-

able splitting of scalar fields as well. We analyzed the low energy structure of the

U(3) gauge theory onM× S2
F by using equivariant parametrization technique

and subsequently determined the equivariant fields transforming invariantly and

as vectors under the combined adjoint action of SU(2) rotations over the fuzzy
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sphere and those U(3) gauge transformations generated by SU(2) ⊂ U(3) carry-

ing the spin 1 IRR of SU(2), when the SU(2) subgroup is maximally embedded

in SU(3). Our results revealed that the dipole and quadrupole terms, which ap-

pear in the branching of the adjoint representation of SU(3) as 8→ 5⊕ 3 under

SU(2) are the useful objects in constructing the equivariant scalars and we have

shown how this generalizes to U(n) theories overM×S2
F via employing the n−1

multipole terms which appear in the branching of the adjoint representation of

SU(n) under SU(2). The equivariance conditions that we have imposed on the

fields broke the U(3) gauge symmetry down U(1)×U(1)×U(1). Subsequently,

we determined the LEA emanating from the equivariant parametrization of the

fields and found that it consists of two complex scalars, each coupling to one

of the gauge fields aiµ, (i = 1, 2) only, and three real scalars coupling to the

complex fields and to each other through a quartic potential. We have seen

that in the ` → ∞ limit gauge field bµ either decouples completely from the

rest of the LEA or it is eliminated by solving its equation of motion in pow-

ers of 1
`
. Determining the vacuum structure of the effective potential for the

scalars, we were able to give two different vortex solutions for the LEA on R2,

both of which are characterized by two winding numbers in each case. We also

made clear, how the commutative limit of our results relate to the instanton

solutions in self-dual SU(3) Yang-Mills theory for cylindrically symmetric gauge

fields of Bais and Weldon [72] and indicated the apparent connection between

the BPS vortices that we obtained in a certain commutative limit in section

5.3 and the instanton solution in [72]. Adapting the ideas in section 4.1 to this

model, we have provided a complete analysis of the U(3)-equivariant fields over

M× S2 Int
F and determined the equivariant field modes characterizing the low

energy behaviour of the effective U(3) theory on M× S2 Int
F in terms of suit-

able “idempotents" and projection operators. We noted that S2 Int
F may be seen

as stacks of concentric fuzzy D-branes carrying magnetic monopole fluxes from

a stringy viewpoint, and consequently equivariant gauge field modes found in

section 5.5 may be interpreted as those living on the world-volume of these D-

branes, and may potentially be useful in bridging the effective gauge theory and

the string theoretic perspectives.
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In chapter 6, we gave a formulation of the quantum hall effects on the com-

plex Grassmann manifolds Gr2(CN). We first focused on the simplest case

Gr2(C4) in order to solve the Landau problem. We constructed the solution for

the most general case of non-zero U(1) and SU(2) × SU(2) backgrounds and

showed that at the LLL with ν = 1, finite spatial densities are obtained at finite

SU(2)×SU(2) internal degrees of freedom in agreement with the results of [29].

Subsequently, we generalized these results to all Gr2(CN). Moreover, the local

structure of the solutions on Gr2(C4) in the presence of U(1) background gauge

field was presented in this chapter, where we have computed the single and

multi-particle wave functions in terms of the Plücker coordinates and showed

that the LLL at filling factor ν = 1 forms an incompressible fluid by calculating

the two-point correlation function. The U(1) gauge field, its associated field

strength and their properties were illustrated using the differential geometry on

Gr2(C4). We have also briefly commented on the generalization of this local

formulation to all Gr2(CN).
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APPENDIX A

SOME DETAILS FOR CHAPTER 3

W1 =
(`2 + `− 1/4)

(`+ 1
2
)2

ϕ3 +
1

`+ 1
2

ϕ4 , (A.1)

W2 = (1− ϕ3)

(
1 +

1

`+ 1
2

ϕ4 −
1

2(`+ 1
2
)2
ϕ3

)
, (A.2)

W3 =
`(`+ 1)

(`+ 1
2
)2
ϕ3(ϕ3 − 2) + 2

(`2 + `− 1/4)

(`+ 1
2
)

ϕ4 + ϕ2
4 . (A.3)

X1 =
`(`+ 1)(`2 + `− 1/4)

2(`+ 1
2
)4

,
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`(`+ 1)

(`+ 1
2
)2

(
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)
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)
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2(`+ 1
2
)4

(
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2 −W2W3

)
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4

8(`+ 1
2
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3 . (A.4)

Y1 =
1

2
(1− |ϕ|2)− ϕ3

4(`+ 1
2
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−

(`2 + `− 1
4
)

(`+ 1
2
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4
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4 (A.5)

− ϕ3ϕ4

4(`+ 1
2
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(A.6)
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1

4g2
Tr(F †µνF

µν) =
1

16g2

(
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+
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(`R + 1
2
)
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(
fL,R

µν

(`R + 1
2
)
− hµν

(`L + 1
2
)

)
(A.7)
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LLG = Tr(DµΦL
a )†(DµΦL

a ) =
`L(`L + 1)

2(`R + 1)(`L + 1
2
)2

(
(2`R + 3)|Dµϕ|2

+ (2`R − 1)|Dµϕ̃|2
)
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(∂µϕ3∂µϕ4 + ∂µϕ̃3∂µϕ̃4) ,

(A.8)

where we have defined the complex scalar as ϕ = ϕ1 + iϕ2 and ϕ̃ = ϕ̃1 + iϕ̃2. For

LRG = Tr(DµΦR
a )†(DµΦR

a ), it is enough to replace `L → `R and ϕi → χi , ϕ̃ →
χ̃i , i = 1, · · · , 4 where χ = χ1 + iχ2 , χ̃ = χ̃1 + iχ̃2 in (A.8). For the potential

terms V L
1 , V R

1 , we have

V L
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g2
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2 +|ϕ|2 + X L

2−|ϕ̃|2 + X L
3 ,

V R
1 =

1

g2
R

TrFR†
ab F

R
ab = XR

1 (|χ|4 + |χ′|4) + XR
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(
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where XR
1 ,XR

2± ,XR
3 can be obtained by replacing L → R and `L → `R. Here,

we have introduced the variable W for simplicity as

WL
1 ,± =

`2
L + `L − 1/4

(`L + 1/2)2
(ϕ3 ± ϕ̃3) +

1

`L + 1/2
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and for WR
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2 , W̃R
2 ,WR

3 , W̃R
3 replace `L → `R and the scalars (ϕ̃3 , ϕ̃4) by
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and αR2 , α
R
3 , α

R
4 can be obtained by exchanging `R ↔ `R in (A.12). For the

potential term V L
2 and V R

2 , we find that

ΦL
aΦL

a + `L(`L + 1) = YL1 + iQLYL2 + iQR(ỸL1 + iQLỸL2 ) ,
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where
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ỸL2 =
1

4(`L + 1
2
)
(2|ϕ|2 + 2|ϕ̃|2)−

(`2
L + `L − 1

2
)

(`L + 1
2
)

ϕ̃3 −
1

2
ϕ̃4 −

ϕ3ϕ̃3

8(`L + 1
2
)3

−
(`2
L + `L − 1

4
)

2(`L + 1
2
)2

(ϕ3ϕ̃4 + ϕ̃3ϕ4)− ϕ4ϕ̃4

2(`L + 1
2
)
, (A.17)

and for YRi and ỸRi , (i = 1, 2), it is enough to change `L → `R and ϕ → χ in

the equations above. Then, we obtain
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YR1 ỸR1 + YR2 ỸR2
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Euler-Lagrange equations
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APPENDIX B

SOME DETAILS FOR CHAPTER 4

Variation of the action (3.75) with respect to Φi L
a gives

DµD
µΦi L

a +
1

g2
L

(2fijkΦ
j L
b F k L

ab − εabcF i L
bc ) = 0 , (B.1)

while the variation with respect to Ψl L †
α yields(

DµD
µΦi L

a +
1

g2
L

(2fijkΦ
j L
b F k L

ab − εabcF i L
bc )

)
γlmi(τ̃aΨ

mL)α = 0 , (B.2)

where ΦL
a = Φi L

a λi, ΨL
α = Ψi L

α λi with the anti-hermitian SU(N ) generators λi
(i = 1 · · · ,N 2−1) fulfilling λiλj = − 2

N δij +(dijk +fijk)λk and γijk := dijk +fijk

for short. Clearly, these equations imply each other. Variation with respect to

Φi R
a and Ψl R †

α yield analogous expressions with L→ R.

The block diagonal form (DLa ,DRa ) indicated in the subsection 4.2.1 is given as
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The matrices in (4.58) and (4.59) square as

(QL
B)2 = −1(2`L+1)(2`R+1)64 , (QR

B)2 = −1(2`L+1)(2`R+1)64 , (QL
±)2 = −ΠL

± ,
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2
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, (QR
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2
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2
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, ,

(QR
02

)
2

= −ΠR
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2
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1
2

(QR
I )2 = −ΠR

1
2
,

(B.4)

justifying that they are “idempotent”s in the subspace they belong to.

Using the equivariant invariants in (4.60), vectors in the (1, 0) IRR may be listed

as

ΠR
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L
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i Q
L
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a , Q
L
j ], SRk Q
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SRk {DL
a , Q

L
j } QR

j [DL
a , Q
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0 [DL

a , Q
L
Sk

], ΠR
i {DL

a , Q
L
Sk
},

SRk [DL
a , Q

L
Sk

], SRk Q
L
0 [DL

a , Q
L
Sk

], SRk {DL
a , Q

L
Sk
}, QR

j [DL
a , Q

L
Sk

], QR
j Q

L
0 [DL

a , Q
L
Sk

],

QR
j {DL

a , Q
L
Sk
}, QR

Sk
[DL

a , Q
L
Sk

], QR
Sk
QL

0 [DL
a , Q

L
Sk

], QR
Sk
{DL

a , Q
L
Sk
}, ΠR

i ΠL
i ω

L
a ,

SRk ΠL
i ω

L
a QR

j ΠL
i ω

L
a QR

Sk
ΠL
i ω

L
a , ΠR

i S
L
k ω

L
a , SRk S

L
k ω

L
a QR

j S
L
k ω

L
a QR

Sk
SLk ω

L
a ,

(B.5)

where QL
0 = QL

00
+ QL

02
. Equivariant vectors in the (0, 1) IRR is obtained from

(B.5) simply by the exchange L↔ R.

336 equivariant spinors in the IRR (1
2
, 0) parametrized as

ΠR
i ΠL

µβ
L
αQ

L
ν , ΠR

i ΠL
ν β

L
αQ

L
µ , ΠR

i Q
L
µβ

L
αΠL

ν , ΠR
i Q

L
ν β

L
αΠL

µ , ΠR
i Q

L
µβ

L
αQ

L
ν , ΠR

i Q
L
ν β

L
αQ

L
µ

ΠR
i S

L
ρ β

L
αΠL

ν , ΠR
i ΠL

ν β
L
αS

L
ρ , ΠR

i Q
L
Sρβ

L
αΠL

ν , ΠR
i ΠL

ν β
L
αQ

L
Sρ , ΠR

i Q
L
Sρβ

L
αQ

L
ν , ΠR

i Q
L
ν β

L
αQ

L
Sρ

SRk ΠL
µβ

L
αQ

L
ν , S

R
k ΠL

ν β
L
αQ

L
µ , S

R
k Q

L
µβ

L
αΠL

ν , S
R
k Q

L
ν β

L
αΠL

µ , S
R
k Q

L
µβ

L
αQ

L
ν , S

R
k Q

L
ν β

L
αQ

L
µ
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SRk S
L
ρ β

L
αΠL

ν , S
R
k ΠL

ν β
L
αS

L
ρ , S

R
k Q

L
Sρβ

L
αΠL

ν , S
R
k ΠL

ν β
L
αQ

L
Sρ , S

R
k Q

L
Sρβ

L
αQ

L
ν ,

SRk Q
L
ν β

L
αQ

L
Sρ , Q

R
j ΠL

µβ
L
αQ

L
ν , Q

R
j ΠL

ν β
L
αQ

L
µ , Q

R
j Q

L
µβ

L
αΠL

ν , Q
R
j Q

L
ν β

L
αΠL

µ ,

QR
j Q

L
µβ

L
αQ

L
ν , Q

R
j Q

L
ν β

L
αQ

L
µ , Q

R
j S

L
ρ β

L
αΠL

ν , Q
R
j ΠL

ν β
L
αS

L
ρ , Q

R
j Q

L
Sρβ

L
αΠL

ν ,

QR
j ΠL

ν β
L
αQ

L
Sρ , Q

R
j Q

L
Sρβ

L
αQ

L
ν , Q

R
j Q

L
ν β

L
αQ

L
Sρ , Q

R
Sk

ΠL
µβ

L
αQ

L
ν , Q

R
Sk

ΠL
ν β

L
αQ

L
µ ,

QR
Sk
QL
µβ

L
αΠL

ν , Q
R
Sk
QL
ν β

L
αΠL

µ , Q
R
Sk
QL
µβ

L
αQ

L
ν , Q

R
Sk
QL
ν β

L
αQ

L
µ , Q

R
Sk
SLρ β

L
αΠL

ν

QR
Sk

ΠL
ν β

L
αS

L
ρ , Q

R
Sk
QL
Sρβ

L
αΠL

ν , Q
R
Sk

ΠL
ν β

L
αQ

L
Sρ , Q

R
Sk
QL
Sρβ

L
αQ

L
ν , Q

R
j Q

L
ν β

L
αQ

L
Sρ ,

(B.6)

where βLα = 12`L+1 ⊗ 12`R+1 ⊗ bα ⊗ 14, β
R
α = 12`L+1 ⊗ 12`R+1 ⊗ cα ⊗ 14, µ =

00, 02, ν = +,−, ρ = 1, 2 and where ΠL
00
, QL

00
, SL1 , Q

L
S1

on the left most and

ΠL
02
, QL

02
, SL2 , Q

L
S2

on the right most side in any of these expressions are excluded.

For the equivariant spinors carrying (0, 1
2
) representation, it is enough to take

L↔ R in (B.6).

The vacuum configuration with (k1 , k2) component multiplets can be calculated

for the cases k1 = even , k2 = even and k1 = even , k2 = odd as follows

S2 Int
F k1 even × S2 Int

F k2 even
:=

S2
F (`L + `k1k1

2

)× S2
F (`R + `k2k2

2

)⊕ · · · ⊕ S2
F (`L + `k1k1

2

)× S2
F (|`R − `k2k2

2

|)

⊕...

⊕S2
F (|`L − `k1k1

2

|)× S2
F (`R + `k2k2

2

)⊕ · · · ⊕ S2
F (|`L − `k1k1

2

|)× S2
F (|`R − `k2k2

2

|)

⊕4

k1
2
−1∑

n=0

k2
2
−1∑

m=0

[
S2
F (`L + `k1n )× S2

F (`R + `k2m )⊕ · · · ⊕ S2
F (`L + `k1n )× S2

F (|`R − `k2m |)

⊕...

⊕S2
F (|`L − `k1n |)× S2

F (`R + `k2m )⊕ · · · ⊕ S2
F (|`L − `k1n |)× S2

F (|`R − `k2m |)
]

⊕2

k1
2
−1∑

n=0

[
S2
F (`L + `k1n )× S2

F (`R + `k2k2
2

)⊕ · · · ⊕ S2
F (`L + `k1n )× S2

F (|`R − `k2k2
2

|)

⊕...

⊕S2
F (|`L − `k1n |)× S2

F (`R + `k2k2
2

)⊕ · · · ⊕ S2
F (|`L − `k1n |)× S2

F (|`R − `k2k2
2

|)
]
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⊕2

k2
2
−1∑

m=0

[
S2
F (`L + `k1k1

2

)× S2
F (`R + `k2m )⊕ · · · ⊕ S2

F (`L + `k1k1
2

)× S2
F (|`R − `k2m |)

⊕...

⊕S2
F (|`L − `k1k1

2

|)× S2
F (`R + `k2m )⊕ · · · ⊕ S2

F (|`L − `k1k1
2

|)× S2
F (|`R − `k2m |)

]
.

(B.7)

S2 Int
F k1 even × S2 Int

F k2 odd
:=

4

k1
2
−1∑

n=0

k2−1
2∑

m=0

[
S2
F (`L + `k1n )× S2

F (`R + `k2m )⊕ · · · ⊕ S2
F (`L + `k1n )× S2

F (|`R − `k2m |)

⊕S2
F (`L + `k1n − 1)× S2

F (`R + `k2m )⊕ · · · ⊕ S2
F (`L + `k1n − 1)× S2

F (|`R − `k2m |)

⊕...

⊕S2
F (|`L − `k1n |)× S2

F (`R + `k2m )⊕ · · · ⊕ S2
F (|`L − `k1n |)× S2

F (|`R − `k2m |)
]

⊕2

k2−1
2∑

m=0

[
S2
F (`L + `k1k1

2

)× S2
F (`R + `k2m )⊕ · · · ⊕ S2

F (`L + `k1k1
2

)× S2
F (|`R − `k2m |)

⊕...

⊕S2
F (|`L − `k1k1

2

|)× S2
F (`R + `k2m )⊕ · · · ⊕ S2

F (|`L − `k1k1
2

|)× S2
F (|`R − `k2m |)

]
.

(B.8)
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APPENDIX C

SOME DETAILS FOR CHAPTER 5

Λ1 : = − 2`4 + 6`3 + 4`2 − `− 2

4`(2`4 + 4`3 + `2 − `− 1)
P1

+
2`4 + 2`3 − 2`2 − `− 1

4(`+ 1)(2`4 + 4`3 + `2 − `− 1)
P2 +

ωc
2`2 + 2`+ 1

,

Λ2 : = − 4`4 + 8`3 + 5`2

4(2`+ 1)(2`4 + 4`3 + `2 − `− 1)
P1

− 8`5 + 18`4 + 11`3 + 3`2

4(`+ 1)(2`+ 1)(2`4 + 4`3 + `2 − `− 1)
P2 +

`ωc
2`2 + 2`+ 1

,

Λ3 : =
(`+ 1)(8`4 + 14`3 + 5`2 − 3`− 2)

4`(2`+ 1)(2`4 + 4`3 + `2 − `− 1)
P1

+
(`+ 1)(4`3 + 4`2 + `+ 1)

4(2`+ 1)(2`4 + 4`3 + `2 − `− 1)
P2 −

(`+ 1)ωc
2`2 + 2`+ 1

,

Λ4 : = − 4`4 + 10`3 + 4`2 − `− 2

4`(2`+ 1)2(2`4 + 4`3 + `2 − `− 1)
P1

+
4`4 + 6`3 − 2`2 − 5`− 3

4(2`+ 1)2(`+ 1)(2`4 + 4`3 + `2 − `− 1)
P2 +

ωc
(2`+ 1)2

,

Λ5 : =
2`5 + 10`4 + 14`3 + 3`2 − 3`− 2

2`(`+ 1)(2`+ 1)(2`4 + 4`3 + `2 − `− 1)
P1

− 2`4 + 2`3 − `2 − `− 2

2(2`+ 1)(2`4 + 4`3 + `2 − `− 1)
P2 −

2ωc
2`2 + 2`+ 1

,

Λ6 : = − 2`4 + 6`3 + 5`2 + `− 2

2(2`+ 1)(2`4 + 4`3 + `2 − `− 1)
P1

− 2`5 − 6`3 − `2 + 3`+ 2

2`(`+ 1)(2`+ 1)(2`4 + 4`3 + `2 − `− 1)
P2 +

2ωc
2`2 + 2`+ 1

,

Λ7 : =
2`3 + 6`2 + 3`− 3

2(`+ 1)(2`+ 1)2(`2 + `− 1)
P1

+
2`3 − 3`+ 2

2`(2`+ 1)2(`2 + `− 1)
P2 −

2ωc
(2`+ 1)2

,
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Λ8 : = Λ9 := −Λ13 := − 1

(2`+ 1)2
,

Λ10 : =
2`2 + 3`− 1

2(`+ 1)(2`+ 1)
ϕ3 −

1

2(2`+ 1)
χ3 +

1

2`+ 1
ψ ,

Λ11 : = −2`2 + `− 2

2`(2`+ 1)
χ3 −

1

2(2`+ 1)
ϕ3 +

1

2`+ 1
ψ ,

Λ12 : =
1

2`+ 1
(−Q1[Xc, Q1]−Q2[Xc, Q2]− ωc + 2Xc) (C.1)

where P1 := −Q1[Xc, Q1]− i{Xc, Q2} and P2 := −Q2[Xc, Q2]− i{Xc, Q1}.

α1 =
4(`2 + `− 1)2(`2 + `+ 1)

3`3(`+ 1)3
, α2 =

4(2`4 + 5`3 + `2 − `+ 3)

3(`+ 1)3(2`+ 1)
,

α3 =
4(2`4 + 3`3 − 2`2 − 4`+ 2)

3`3(2`+ 1)
, α4 = α5

α5 =
2(−3`8 − 12`7 − 14`6 + 13`4 + 12`3 + 16`2 + 12`− 12)

3`3(`+ 1)3(2`+ 1)2
,

α6 =
4(4`7 + 10`6 + 2`5 − 2`4 − 3`3 − 15`2 + 4)

3`3(`+ 1)2(2`+ 1)2
,

α7 =
4(4`7 + 18`6 + 26`5 + 2`4 − 35`3 − 28`2 + 7`+ 6)

3`2(`+ 1)3(2`+ 1)2
,

α8 =
4(`6 + 3`5 + 15`4 + 25`3 − 30`2 − 42`+ 24)

3`2(`+ 1)2(2`+ 1)2
,

α9 =
4(2`6 + 23`5 + 43`4 − 11`3 − 45`2 + 6`+ 6)

3`(`+ 1)2(2`+ 1)3
,

α10 =
4(2`6 − 11`5 − 42`4 − 7`3 + 46`2 + 6`− 12)

3`2(`+ 1)(2`+ 1)3
,

α11 =
2(`4 + 2`3 − 5`2 − 6`+ 4)

`(`+ 1)(2`+ 1)2
(C.2)

β1 =
4`2(4`3 + 14`2 + 14`+ 3)

3(`+ 1)3(2`+ 1)2
, β2 =

4(4`2 + 4`− 3)

3(2`+ 1)2
,

β3 =
4(8`6 + 36`5 + 46`4 + 5`3 − 9`2 + 7`− 3)

3(`+ 1)3(2`+ 1)3
,

β4 =
4(2`4 + 9`3 + 15`2 + 7`− 3)

3(`+ 1)3(2`+ 1)3
, β5 =

4(−4`4 − 8`3 + 7`2 + 11`− 6)

3(`+ 1)2(2`+ 1)2
,

β6 =
4(`− 1)2(2`2 + 7`+ 6)

3(`+ 1)3(2`+ 1)2
, β7 =

8(8`4 + 22`3 + 7`2 − 10`+ 3)

3(`+ 1)2(2`+ 1)3

β8 =
8`(4`3 + 12`2 + 7`− 3)

(`+ 1)2(2`+ 1)3
, β9 = β10 =

8`(2`+ 3)

(`+ 1)(2`+ 1)3
, (C.3)
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γ1 =
4(`+ 1)2(4`3 − 2`2 − 2`+ 1)

3`3(2`+ 1)2
, γ2 =

2(−4`4 + 2`3 − 8`+ 4)

3`3(2`+ 1)3
,

γ3 =
4(8`6 + 12`5 − 14`4 − 21`3 + 12`2 + 12`− 6)

3`3(2`+ 1)3
,

γ4 =
4(`+ 2)2(2`2 − 3`+ 1)

3`3(2`+ 1)2
, γ5 =

4(4`4 + 8`3 − 7`2 − 11`+ 6)

3`2(2`+ 1)2
,

γ6 =
8(8`4 + 10`3 − 11`2 − 10`+ 6)

3`2(2`+ 1)3
, γ7 = γ9 =

8(`+ 1)(2`− 1)

`(2`+ 1)3
,

γ8 =
8(4`4 + 4`3 − 5`2 − 3`+ 2)

`2(2`+ 1)3
, (C.4)

δ1 =
2(−3`8 − 12`7 − 12`6 + 6`5 + 13`4 + 2`3 + 2`− 2)

3`3(`+ 1)3(2`+ 1)4
,

δ2 =
4(2`8 + 15`7 + 23`6 − 11`5 − 23`4 + `3 − 11`2 + 4)

3`3(`+ 1)2(2`+ 1)4
,

δ3 =
4(2`8 + `7 − 26`6 − 54`5 − 8`4 + 64`3 + 44`2 − 13`− 10)

3`2(`+ 1)3(2`+ 1)4
,

δ4 =
8(`6 + 3`5 + 5`4 + 5`3 − 8`2 − 10`+ 6)

3`2(`+ 1)2(2`+ 1)4
,

δ5 =
8(2`6 + 7`5 + 3`4 − 15`3 − 15`2 + 3`+ 3)

3`(`+ 1)2(2`+ 1)5

δ6 =
8(2`6 + 5`5 − 2`4 − 3`3 + 8`2 + `− 2)

3`2(`+ 1)(2`+ 1)5
,

δ7 =
4(3`4 + 6`3 − 5`2 − 8`+ 4)

`(`+ 1)(2`+ 1)3
, δ8 =

4(3`4 + 6`3 − `2 − 4`+ 2)

`(`+ 1)(2`+ 1)4
,

δ9 =
8(`6 + 3`5 + 3`4 + `3 − 6`2 − 6`+ 4)

`2(`+ 1)2(2`+ 1)3
,

δ10 =
4(2`4 + 3`3 − 5`2 − 4`+ 4)

`(2`+ 1)4
, δ11 =

4(2`4 + 5`3 − 2`2 − 7`+ 2)

(`+ 1)(2`+ 1)4
,

δ12 =
8`(`+ 1)

(2`+ 1)4
, δ13 =

8`(2`2 − 5`− 9)

3(2`+ 1)5
, δ14 =

8(2`3 + 11`2 + 7`− 2)

3(2`+ 1)5
,

δ15 =
4(−`2 − `+ 2)

(2`+ 1)3
, δ16 =

2(−`2 − `− 2)

(2`+ 1)4
(C.5)
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R1 = − `

2(`+ 1)
(|ϕ|2 − 1)− `+ 1

2`
(|χ|2 − 1) +

1

`2 + `
(χ3 − ϕ3)

− 2`4 + 4`3 − 2`− 1

2(2`+ 1)2(`2 + `)
(χ3 − ϕ3)2 − 2`2 + 2`− 1

2`+ 1
ψ +

1

2`+ 1
(χ3 − ϕ3)ψ

− `2 + `+ 1

(2`+ 1)2
ψ2 , (C.6)

R2 =
`

2`2 + 3`+ 1
(|ϕ|2 − 1) +

2`2 + `− 1

2(2`2 + 1)
(|χ|2 − 1)

+
`2 + 2`− 1

(2`+ 1)(`2 + `)
(χ3 −

χ2
3 + ϕ2

3

2(2`+ 1)
)− 2`3 + 2`2 − 3`+ 1

`(2`+ 1)
(ϕ3 −

ϕ3χ3

2`+ 1
)

− `+ 1

2`+ 1
(ψ +

ψ2

2`+ 1
)− 2`2 + 3`− 1

(2`+ 1)2
ϕ3ψ +

`+ 1

(2`+ 1)2
χ3ψ , (C.7)

R3 =
2`2 + 3`

2(2`2 + 3`+ 1)
(|ϕ|2 − 1)− `+ 1

2`2 + `
(|χ|2 − 1)

+
`2 − 2

(2`+ 1)(`2 + `)
(ϕ3 −

ϕ2
3 + χ2

3

2(2`+ 1)
)− 2`3 + 4`2 − `− 4

(2`+ 1)(`+ 1)
(χ3 −

χ3ϕ3

2`+ 1
)

− `

2`+ 1
(ψ +

ψ2

2`+ 1
)− `

(2`+ 1)2
ϕ3ψ −

2`2 + `− 2

(2`+ 1)2
χ3ψ , (C.8)

Equations of motion that follow from the variations of the action (5.40) are

(
1− 1

`2
+

1

`2
(ζ2 + η2)

)
(ζ ′′ +

ζ ′

r
)−

(
− η2

(
1 +

3

4`2
+

(M + a2
θ)

2

2`2r2

− (N + a1
θ)

2

`2r2

)
+

3

`2
ζ2η2 − 7

4`2
η4 + (1− 1

`2
)
(N + a1

θ)
2

r2
− 1

`2
ζ ′

2 − 1

2`2
η′

2

− (1− 1

`
+

1

2`2
) + (2− 1

`
)ζ2

)
ζ = 0 ,

(
1− 1

`2
+

1

`2
(ζ2 + η2)

)
(η′′ +

η′

r
)−

(
− ζ2

(
1 +

3

4`2
+

(N + a1
θ)

2

2`2r2

− (M + a2
θ)

2

`2r2

)
+

3

`2
ζ2η2 − 7

4`2
ζ4 + (1− 1

`2
)
(M + a2

θ)
2

r2
− 1

`2
η′

2 − 1

2`2
ζ ′

2

− (1 +
1

`
− 3

2`2
) + (2− 1

`
− 2

`2
)η2

)
η = 0 ,

a1
θ
′′ − a1

θ
′

r
+ (2− 1

`2
)(M + a2

θ)η
2 − (4− 2

`
+

1

`2
)(N + a1

θ)ζ
2 = 0 ,

a2
θ
′′ − a2

θ
′

r
+ (2− 1

`2
)(N + a1

θ)ζ
2 − (4 +

2

`
− 1

`2
)(M + a2

θ)η
2 = 0 , (C.9)
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APPENDIX D

SOME DETAILS FOR CHAPTER 6

In this short appendix, we provide a derivation of the normalization coefficient

of RN2−1 in the N(N−1)
2

-dimensional IRR of SU(N) for N ≥ 3. Let T (D)
a label

the N2 − 1 generators of SU(N) in the defining N -dimensional representation.

Let us choose their trace normalization to be

Tr(T (D)
a T

(D)
b ) =

1

2
δab . (D.1)

It is a well-known fact in the representation theory of Lie groups that such a

choice fixes the trace normalization of the generators in all the IRR [94]. We

can proceed to write the trace normalization in an IRR R of SU(N) as

Tr(T (R)
a T

(R)
b ) = κab , (D.2)

where κab is a rank-2 tensor invariant under SU(N) transformations. Since the

only rank-2 invariant SU(N) tensor is Kronecker delta, δab, we have

κab = X(R)δab , (D.3)

where X(R), commonly known as the Dynkin index of the representation R of

the group SU(N), is given by [94]

X(R) =
dim(R)

dim(SU(N))
C2(R) . (D.4)

We have that dim(SU(N)) is equal to N2 − 1 and CR2 is the quadratic Casimir

of the IRR R. For either of the N(N−1)
2

-dimensional IRR, (0 , 1 , 0 , · · · , 0 , 0) or

(0 , 0 , · · · , 1 , 0) of SU(N), this gives, using (6.82),

X(R) =
N − 2

N
, (D.5)

213



and the trace formula (D.2) then reads

Tr(TaTb) =
N − 2

N
δab, (D.6)

in either of the N(N−1)
2

-dimensional IRR. Our aim is to find the coefficient of

RN2−1 in these representations. In terms of the Young diagrams, the branching

of, say, (0 , 1 , 0 , · · · , 0 , 0) representation under SU(N −2)×SU(2)×U(1) gives

=

(
· ⊗

)
−1

⊕
(

⊗ ·
)

2
N−2

⊕
(

⊗
)

4−N
2(N−2)

, (D.7)

where the subscripts give the U(1) charge (6.32). Considering the dimension of

each representation in this branching, we find

RN2−1 = ζ diag
(

N − 4

2(N − 2)
, . . . ,

N − 4

2(N − 2)︸ ︷︷ ︸
2(N−2)

,
−2

N − 2
, . . . ,

−2

N − 2︸ ︷︷ ︸
(N−2)(N−3)

2

, 1

)
, (D.8)

where ζ represents the coefficient of RN2−1 and the dimensions of the IRR in

the branching (D.7) are given in the underbraces. Finally, using (D.8) in (D.6)

gives

ζ =

√
N − 2

N
. (D.9)

The dimension of the (P1 , P2 , P3 , · · · , PN−2 , PN−1) representation may be writ-

ten as

dim(P1, P2, 0, . . . , 0, PN−2, PN−1) =
1

j
((PN−2 + PN−1 +N − 3)!(PN−2 +N − 4)!

× (P2 +N − 4)!(P1 + P2 +N − 3)!

× (PN−2 + PN−1 + P2 +N − 2)(PN−1 + 1)

× (P1 + P2 + PN−2 + PN−1 +N − 1)(P1 + 1)

× (PN−2 + P2 +N − 3)(P1 + P2

× +PN−2 +N − 2)), (D.1)

where j is

j = (N − 1)!(N − 2)!(N − 3)!(N − 4)!P2!PN−2!(PN−2 +PN−1 + 1)!(P1 +P2 + 1)!.

(D.2)
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