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专题: 高能重离子碰撞过程的自旋与手征效应

嘉当韦尔基下的非阿贝尔手征动理学方程*

罗晓丽    高建华†

(山东大学空间科学与物理学院, 山东省光学天文与日地空间环境重点实验室, 威海　264209)

(2022 年 12 月 31日收到; 2023 年 4 月 10日收到修改稿)

非阿贝尔规范场是构成标准模型的基本单元, 非阿贝尔手征动理学理论是描述标准模型在非平衡体系

下手征费米子输运的重要理论工具. 在前期工作中, 我们将非阿贝尔手征动理学方程分解为色空间中的色单

态和色多重态等不可约表示形式, 这种分解方式可以让手征动理学方程在色空间的规范变换下具有更简单

的变换性质. 然而, 这种分解方式在微观描述色自由度的输运方面可能并不直观和方便. 为了描述色自由度

具体输运和演化过程, 本文把前期得到的非阿贝尔手征动理学方程在嘉当韦尔基下进行展开. 本文中通过协

变梯度展开的方法将非阿贝尔手征动理学方程展开到 1阶, 在嘉当韦尔基下将规范场进行展开, 分布函数分

解为对角元素部分和非对角元素部分. 结果显示 0阶非对角元素分布函数可以诱导出 1阶对角元素分布函数

贡献, 0阶对角元素分布函数也可以诱导出 1阶非对角元素分布函数的贡献. 非对角元素分布函数之间以及

非对角元素与对角元素之间一般都是耦合在一起 , 但当规范场只存在对角元素时 , 非对角元素与对角元素

解耦.

关键词：非阿贝尔场, 维格纳函数, 手征动理学方程

PACS：25.75.Nq, 12.38.Mh 　DOI: 10.7498/aps.72.20222471

 1   前　言

近年来, 在相对论重离子碰撞领域, 各种量子

手征效应引起了学术界的广泛关注, 比如手征磁效

应 [1−3]、手征涡旋效应 [4−7]、手征分离效应等 [8−10].

这些效应本身和量子色动力学 (QCD)的真空结构

以及自然界中的 CP破坏有着直接的联系, 所以对

于它们的深入研究有极其重要的物理意义.

相对论重离子碰撞是一个快速演化的动态体

系, 为了定量地描述相对论重离子碰撞中的手征效

应, 必须考虑手征效应的动态演化规律, 为此人们

建立并发展了手征动理学形式理论 [11−25] 以及数值

模拟程序 [26−33]. 这一理论可以非常自洽地描述各

种手征量子效应.

但是这些手征动理学方程大都是局限在阿贝

尔规范场情形下的动理学方程, 只有很少部分讨论

了非阿贝尔情形下的动理学方程 [34−39]. 在我们最

近的工作 [38] 中, 从维格纳函数出发推导出了非阿

贝尔规范场情形下的手征动理学方程. 我们把非阿

贝尔的维格纳函数和动理学方程都在色空间进行

了色单态和色多重态的分解, 这种分解方法对于计

算最后的色单态算符或色多重态算符的期待值是

最自然的分解方式. 但是这种分解方式可能对动理

学理论的微观描述缺乏一定的直观性, 因为在动理

学理论中, 可能习惯于问各种颜色夸克的转化过

程, 在这种情形下, 选择嘉当韦尔基将是更加方便

的分解方式. 本文的目标是把文献 [38]中得到的手

征动理学方程重新在嘉当韦尔基下进行展开. 为了

避免发生混肴, 在下面的求和约定中, 对于时空指
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标的希腊字母, 重复的上下指标表示求和, 而对色

指标的罗马字母, 恢复了求和符号. 为了表述方便,

色指标有时是上指标, 有时是下指标, 它们之间是

没有差别的.

 2   维格纳函数与维格纳方程简介

SU(N)

20世纪八十年代 , 相对论重离子对撞机

（RHIC）实验还没有开始运行, 人们为了以后能够

描述相对论重离子碰撞中的非平衡演化过程, 建立

和发展了基于量子场论的维格纳函数和维格纳方

程 [40−43]. 这些工作是我们当前工作的研究基础, 所

以有必要简单回顾和介绍基于维格纳函数和维格

纳方程的量子输运理论. 本文将局限于背景为非阿

贝尔   规范场情形下的夸克体系. 洛伦兹协

变、规范协变的维格纳函数定义为密度矩阵算符傅

里叶变换的系综平均值: 

W (x, p) =

⟨∫
d4y
(2π)4

e−ip·yρ
(
x+

y

2
, x− y

2

)⟩
. (1)

密度矩阵算符的分量形式为 

ρijαβ

(
x+

y

2
, x− y

2

)
=
∑
j′,i′

ψ̄j′

β

(
x+

y

2

)
U j′j

(
x+

y

2
, x
)

× U ii′
(
x, x− y

2

)
ψi′

α

(
x− y

2

)
, (2)

α, β i, i′, j, j′ SU(N)其中  表示旋量指标;    代表  群基

础表示的色指标; U 是保持算符规范协变性的规

范链: 

U(x, y) = P exp
(
ig
ℏ

∫ x

y

dzµAµ(z)

)
. (3)

Aµ =
∑

aA
a
µt

a ta

SU(N)

规范链的路径沿连接时空点 x 和 y 的直线段, P 代

表算符沿路径排序 , 规范势   ,    是

 群基础表示的产生子. 维格纳函数是旋量空

间和色空间的普通矩阵. 从非阿贝尔规范场情形下

的狄拉克方程出发, 可以得到维格纳函数满足的动

理学方程——维格纳方程: 

4mW (x, p) =

{γµ, {Πµ,W (x, p)}}+ i [γµ, [Gµ,W (x, p)]] , (4)
 

0 = [γµ, {Πµ,W (x, p)}] + i {γµ, [Gµ,W (x, p)]} , (5)

[, ] {, }
Πµ

其中   代表对易关系,    代表反对易关系, m 是

夸克的质量, 非定域的广义动量算符  和导数算

Gµ符  定义为 

Πµ = pµ +
g

2

∫ 1

0

ds
(
e−

1
2 is∆Fµν(x)

)
is∂νp ,

Gµ = Dµ +
g

2

∫ 1

0

ds
(
e−

1
2 is∆Fµν(x)

)
∂νp , (6)

Dµ(x)其中,   就是基础表示中的协变导数: 

Dµ(x) = ∂µ − ig
ℏ
Aµ(x), (7)

Fµν(x)  是非阿贝尔的张量场强: 

Fµν(x) ≡
∑
a

F a
µνt

a = − ℏ
ig

[Dµ, Dν ]

= ∂µAν(x)− ∂νAµ(x)−
ig
ℏ
[Aµ(x), Aν(x)] . (8)

∆ ≡ ∂p · D(x) D(x)三角算符定义为   , 其中   是作用

在规范群伴随表示上的协变导数: 

Dµ(x)Fνλ ≡ [Dµ(x), Fνλ]

= ∂xµFνλ − ig
ℏ
[Aµ(x), Fνλ] , (9)

Fµν

在我们的维格纳方程中, 这个算符只作用在后面的

场强张量  上, 不作用在维格纳函数 W 上. 除此

之外, 对于含有动量导数的算符位于维格纳函数的

右边时, 隐含了分部积分的负号关系: 

W (x, p)∂ν1
p · · · ∂νk

p ≡ (−1)k∂νk
p · · · ∂ν1

p W (x, p). (10)

在旋量空间内, 可以把维格纳函数在 Clifford代数

下进行分解: 

W =
1

4

[
F + iγ5P + γµVµ + γµγ5Aµ +

1

2
σµνSµν

]
,

(11)

F P Vµ Aµ Sµν展开系数  ,   ,   ,   , 和  现在只是色空间

的矩阵了.

m = 0在手征极限  情形下, 可以引入一组更加

方便的手征基矢: 

J µ
s =

1

2
(V µ + sA µ) , (12)

s = +1/− 1

F

P Sµν

其中  表示右手/左手分量. 这组手征维

格纳函数在手征极限下将和其他维格纳函数   ,

 和  解耦, 左右手之间也相互解耦: 

0 = {Πµ,J
µ} , (13)

 

0 = [Gµ,J
µ] , (14)

 

0 = {Πµ,J ν} − {Πν ,J µ}+ sℏεµναβ [Gα,Jβ ] ,
(15)
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ℏ为了分析半经典展开, 这里恢复了  系数. 因为左

右手之间相互解耦, 也省去了手征指标 s.

 3   非阿贝尔场情形下的手征动理学
方程

J µ

J µ

ℏ ℏ
Πµ Gµ

上一节得到了手征极限下的维格纳函数  

以及它所满足的维格纳方程 (13)—(15). 对于左手

或右手的维格纳函数   包含 4个分量, 它们满

足 8个方程, 所以维格纳方程是一组高度约束的方

程组, 为了得到最终的动理学方程, 需要进一步对

维格纳函数和维格纳方程约化. 文献 [38]中利用半

经典   展开, 精确到   的一阶近似下, 非局域算符

 和  的零阶和一阶形式分别为 

Π(0)
µ = pµ, Π(1)

µ =
ig
4
Fµν∂

ν
p , (16)

 

G(0)
µ = Dµ +

g

2
Fµν∂

ν
p , G

(1)
µ = − ig

8
[(∂p · D)Fµν ] ∂

ν
p .

(17)

J µ维格纳函数  也展开到一阶近似下: 

Jµ = J
(0)
µ + ℏJ (1)

µ + · · · . (18)

nµ n2 = 1 Xµ

nµ

在此基础上, 进一步把所有的时空指标在类时和类

空的方向上进行分解, 为此引入一个类时常矢量

 满足归一化  . 这样任意一个  总是可以

分解为平行于和垂直于  的部分之和: 

Xµ = Xnn
µ + X̄µ, Xn = X · n,

X̄µ = ∆µνXν , ∆µν = gµν − nµnν . (19)

ε̄µαβ ≡

εµναβnν

nµ Jn

Jn

ℏ

为了方便起见 , 也引入类空反对称张量  

 . 在借助半经典展开和时空指标展开的操

作下, 文献 [38]发现, 先前的 4个维格纳函数的分

量只有沿  方向的分量  是独立的, 以前的 8个

维格纳方程最后也约化为一个   满足的输运方

程. 详细细节参见文献 [38], 这里直接给出精确到

 线性项的结果.

J
(0)
n在零阶近似下, 独立维格纳函数   的一般

形式为
 

J (0)
n = pnf

(0)δ(p2), (20)

f (0)这里引入了另一个分布函数  , 它是把在壳狄拉

克 d 函数分离以后的部分, 其他分量可以从它直接

得到:
 

J̄ (0)µ = p̄µ
J

(0)
n

pn
= p̄µf (0)δ(p2). (21)

f (0)  满足的动理学方程为
 

0 =
[
G

(0)
µ , pµf (0)δ(p2)

]
. (22)

J
(1)
n在一阶近似下, 独立维格纳函数   的一般

形式为
 

J (1)
n = pnf

(1)δ(p2) +
s

2
ε̄µαβpµ

{g
2
Fαβ , f

(0)
}
δ′(p2)

+ pn

{
Π(1)

µ , pµf (0)
}
δ′(p2). (23)

f (0) f (1)类似于零阶的  , (23)式中又引入了一阶的  ,

空间分量的维格纳函数可以表示为 

 

J̄ (1)µ = p̄µ
J

(1)
n

pn
+

s

2pn
ε̄µαβ

[
G(0)

α , p̄β
J

(0)
n

pn

]
+

1

2pn

({
Π̄(1)µ, pn

J
(0)
n

pn

}
−

{
Π(1)

n , p̄µ
J

(0)
n

pn

})
. (24)

J
(1)
n f (1)一阶维格纳函数  或  满足维格纳方程:

  [
G(0)

µ , pµ
J

(1)
n

pn

]
= − s

2
ε̄µαβ

[
Ḡ(0)

µ ,
1

pn

[
G(0)

α , p̄β
J

(0)
n

pn

]]
−

[
G(1)

µ , pµ
J

(0)
n

pn

]

− 1

2

[
Ḡ(0)

µ ,
1

pn

({
Π̄(1)µ, pn

J
(0)
n

pn

}
−

{
Π(1)

n , p̄µ
J

(0)
n

pn

})]
. (25)

与阿贝尔情形下的手征动理学理论不同, 非阿贝尔情形下的手征维格纳函数还需要满足限制方程: 

εαβµν
[
Fµν ,J

(0)
α

]
= 0, (26)

 

εαβµν
[
Fµν ,J

(1)
α

]
= − 3

32

[[(
ελαµν∂βp − ελβµν∂αp

)
Fµν , F

λκ∂pκ
]
,J (0)α

]
. (27)
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文献 [38]中进一步把约化后的分布函数及其满足

的动理学方程在色空间进行分解: 

Jµ = J I
µ 1+

∑
a

J a
µ t

a, J I
µ =

1

N
trJµ,

J a
µ = 2tr taJµ. (28)

SU(N)这种分解方式保留了  群的最大对称形式, 对

于最后求解色单态或色多重态的物理学量非常方便,

但是从微观动理学角度而言, 有时需要描述每种颜

色夸克的转换输运过程, 这个时候这种通常的分解

方式缺少一些物理直观性, 在下一节里, 为了研究各

种具体颜色夸克间的相互转化的输运过程, 将把分

布函数和动理学方程在嘉当韦尔基下进行展开.

 4   嘉当韦尔基下的手征动理学方程

SU(N) N − 1

hi N(N − 1)

eij , i, j = 1, · · · , N ; i ̸= j hi

规范群  的嘉当韦尔基 [44−46] 包括 

个无迹对角矩阵   ,    个非对角矩阵

 . 其中   就是对角的 Gell-

Mann矩阵: 

hi = [2i(i+ 1)]
− 1

2 diag(1, · · · , 1,−i, 0, · · · , 0), (29)

−i (i+ 1) hi   出现在第  列. 也可以把  的矩阵元素统

一表示成如下形式: 

(hi)mn =
1√

2i (i+ 1)

(
i∑

k=1

δmkδnk − iδm,i+1δn,i+1

)
,

i = 1, 2, · · · , N − 1. (30)

eij非对角矩阵  与非对角的 Gell-Mann矩阵是不同

的, 矩阵元素可以表示成: 

(eij)mn = δimδjn, i ̸= j. (31)

如果定义对角矩阵矢量 

εi = (h)ii = ((h1)ii, · · · , (hN−1)ii) , ηij = εi − εj ,
(32)

hi eij则  和  的对易关系可以表示如下 [44−46]: 

[hi,hj ] = 0, (33)
 

[hi, ejk] = (ηjk)iejk, (34)
 

[eij , ejk] =
1√
2
eik, i ̸= j ̸= k. (35)

N = 3比如对于 QCD的  , 嘉当韦尔基矩阵为
 

h1=
1

2

 1 0 0

0 −1 0

0 0 0

 , e12=
1√
2

 0 1 0

0 0 0

0 0 0

 ,

e13=
1√
2

 0 0 1

0 0 0

0 0 0

 , e21=
1√
2

 0 0 0

1 0 0

0 0 0

 ,

 

h2=
1

2
√
3

 1 0 0

0 1 0

0 0 −2

 , e23=
1√
2

 0 0 0

0 0 1

0 0 0

 ,

e31=
1√
2

 0 0 0

0 0 0

1 0 0

 , e32=
1√
2

 0 0 0

0 0 0

0 1 0

 .

在嘉当韦尔基下, 可以把规范势和规范场强分解为
 

Aµ =
∑
m

Am
µ hm +

∑
m,n

Amn
µ emn, (36)

 

Fµν =
∑
m

Fm
µνhm +

∑
m,n

Fmn
µν emn. (37)

矩阵分量形式为
 

(Aµ)ij =
∑
m

Am
µ (hm)ij +

∑
m,n

Amn
µ (emn)ij

≡ Ai
µδij + Aij

µ , (38)
 

(Fµν)ij =
∑
m

Fm
µν(hm)ij +

∑
m,n

Fmn
µν (emn)ij

≡ Fi
µνδij + Fij

µν , (39)

Ai Fi

Aij Fij Aij

Fij i ̸= j Aii = 0 Fii = 0

上式中, 利用单指标  和  表征对角元素, 双指标

 和   表征非对角元素, 所以对于双指标   和

 自动隐含  , 或者  和  .

为了描述具体颜色夸克的输运过程, 对于维格

纳函数直接利用色空间的矩阵分量. 在零阶近似

(20)式和 (21)式下, 维格纳函数的分量形式为
 

J
(0)
n,ij

pn
= f

(0)
ij δ(p

2), (40)
 

J̄
(0)µ
ij = p̄µf

(0)
ij δ(p

2). (41)

零阶手征动理学方程 (22)的分量形式为:
 

 

0=pµ∂µf
(0)
ij δ(p

2)− ig
ℏ
pµ

[∑
m

Am
µ hm+

∑
m,n

Amn
µ emn, f

(0)

]
ij

δ(p2)+
g

2
pµ∂νp

{∑
m

Fm
µνhm+

∑
m,n

Fmn
µν emn, f

(0)

}
ij

δ(p2)，

(42)
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Ai Fi利用  和  的定义, 上面动理学方程可以表示成
 

0 = pµ∂µf
(0)
ij δ(p

2)− ig
ℏ
pµ

[
Ai
µf

(0)
ij − Aj

µf
(0)
ij +

∑
k

(
Aik
µ f

(0)
kj − Akj

µ f
(0)
ik

)]
δ(p2)

+
g

2
pµ∂νp

[
Fi
µνf

(0)
ij + Fj

µνf
(0)
ij +

∑
k

(
Fik
µνf

(0)
kj + Fkj

µνf
(0)
ik

)]
δ(p2). (43)

f
(0)
ij现在把分布函数  也分解为对角部分和非对角部分:

 

f(0)i ≡ f
(0)
ij , i = j; f(0)ij ≡ f

(0)
ij , i ̸= j, (44)

这样就可以把维格纳函数和动理学方程的对角部分和非对角部分分别表示出来.

i = j对于对角部分  的情形下:
 

J
(0)
n,ii = pnf(0)i δ(p2), (45)

 

J̄
(0)µ
ii = p̄µ f(0)i δ(p2). (46)

f(0)i对角分布函数  满足的动理学方程为
 

0 = pµ∂µf(0)i δ(p2) + gpµFi
µν∂

ν
p f(0)i δ(p2)− ig

ℏ
pµ
∑
k

(
Aik
µ f(0)ki − Aki

µ f(0)ik

)
δ(p2) +

g

2
pµ∂νp

∑
k

(
Fik
µν f(0)ki + Fki

µν f(0)ik

)
δ(p2).

(47)

i ̸= j对于非对角部分   情形下:
 

J
(0)
n,ij = pnf(0)ij δ(p

2), (48)
 

J̄
(0)µ
ij = p̄µ f(0)ij δ(p

2). (49)

f(0)ij非对角分布函数  满足的动理学方程为
 

0 = pµ∂µf(0)ij δ(p
2)− ig

ℏ
pµ
[
Ai
µ − Aj

µ

]
f(0)ij δ(p

2) +
g

2
pµ
[
Fi
µν + Fj

µν

]
∂νp f(0)ij δ(p

2)

− ig
ℏ
pµ

[
Aij
µ

(
f(0)j − f(0)i

)
+
∑
k

(
Aik
µ f(0)kj − Akj

µ f(0)ik

)]
δ(p2)

+
g

2
pµ∂νp

[
Fij
µν

(
f(0)j + f(0)i

)
+
∑
k

(
Fik
µν f(0)kj + Fkj

µν f(0)ik

)]
δ(p2). (50)

f(0)i f(0)ij

f(0)i

以上是零阶分布函数和动理学方程在嘉当韦尔基下的表示形式, 我们发现当规范势或规范场强存在非对角

分量时, 某种颜色夸克的分布函数  的演化肯定是和非对角元素  耦合在一起的, 如果规范势或规范场

强只存在对角元素, 某种颜色的分布函数与非对角元素解耦, 这种情形下, 对角元素  的动理学方程退化

为阿贝尔场情形下的形式.

现在继续处理一阶情形下的结果. 对于一阶的分布函数 (23)式和 (24)式, 色空间的分量形式为:
 

J
(1)
n,ij = pnf

(1)
ij δ(p

2)− s

2
ε̄µαβpµ

{g
2
Fαβ , f

(0)
}
ij
δ′(p2) + pn

{
Π(1)

µ , pµf (0)
}
ij
δ′(p2)

= pnf
(1)
ij δ(p

2)− sg

4
ε̄µαβpµ

(
Fi
αβf

(0)
ij + Fj

αβf
(0)
ij +

∑
k

Fik
αβf

(0)
kj +

∑
k

Fkj
αβf

(0)
ik

)
δ′(p2)

+
ig
4
pnp

µ∂νp

(
Fi
µνf

(0)
ij − Fj

µνf
(0)
ij +

∑
k

Fik
µνf

(0)
kj −

∑
k

Fkj
µνf

(0)
ik

)
δ′(p2), (51)
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J̄
(1)µ
ij = p̄µ

J
(1)
n,ij

pn
− s

2pn
ε̄µαβ

[
G(0)

α , p̄β
J

(0)
n

pn

]
ij

+
1

2pn

{Π̄(1)µ, pn
J

(0)
n

pn

}
ij

−

{
Π(1)

n , p̄µ
J

(0)
n

pn

}
ij


= p̄µ

J
(1)
n,ij

pn
− s

2pn
ε̄µαβ p̄β∂α

(
J

(0)
n,ij

pn

)
+

isg
2pnℏ

ε̄µαβ p̄β

(
Ai
α

J
(0)
n,ij

pn
+
∑
k

Aik
α

J
(0)
n,kj

pn
− Aj

α

J
(0)
n,ij

pn
−
∑
k

Akj
α

J
(0)
n,ik

pn

)

− sg

4pn
ε̄µαβ∂λp

[
p̄β

(
Fi
αλ

J
(0)
n,ij

pn
+
∑
k

Fik
αλ

J
(0)
n,kj

pn
+ Fj

αλ

J
(0)
n,ij

pn
+
∑
k

Fkj
αλ

J
(0)
n,ik

pn

)]

+
ig
8pn

∂pν

[
pn

(
Fµ̄ν
i

J
(0)
n,ij

pn
+
∑
k

Fµ̄ν
ik

J
(0)
n,kj

pn
− Fµ̄ν

j

J
(0)
n,ij

pn
−
∑
k

Fµ̄ν
kj

J
(0)
n,ik

pn

)]

− ig

8pn
∂pν

[
p̄µ

(
Fnν
i

J
(0)
n,ij

pn
+
∑
k

Fnν
ik

J
(0)
n,kj

pn
− Fnν

j

J
(0)
n,ij

pn
−
∑
k

Fnν
kj

J
(0)
n,ik

pn

)]
.

(52)

G
(1)
µ

与零阶的约定一样, 重复指标 i 或 j 并不表示求和. 为了写出一阶动理学方程的分量形式, 需要先得到算符

 的分量形式:
 

G
(1)
µ,ij = − ig

8
[(∂p · D)Fµν ]ij ∂

ν
p = − ig

8

(
∂xλFµν − ig

ℏ
[Aλ, Fµν ]

)
ij

∂νp∂
λ
p

= − ig
8

{
∂xλ
(
Fi
µνδ

ij + Fij
µν

)
− ig

ℏ

[(
Ai
λ − Aj

λ

)
F ij
µν +Aij

λ

(
Fj
µν − Fi

µν

)
+
∑
k

(
Aik

λ F
kj
µν −Akj

λ F
ik
µν

)]}
∂νp∂

λ
p

= G(1)
µνλ,iδij∂

ν
p∂

λ
p + G(1)

µνλ,ij∂
ν
p∂

λ
p , (53)

i = j其中定义了单色指标对角元素因子 (  ): 

G(1)
µνλ,i = − ig

8

[
∂xλFi

µν − ig
ℏ
∑
k

(
Aik

λ F
ki
µν −Aki

λ F
ik
µν

)]
, (54)

i ̸= j和双色指标非对角元素因子 (  ): 

G(1)
µνλ,ij = − ig

8

{
∂xλFij

µν − ig
ℏ

[(
Ai
λ − Aj

λ

)
F ij
µν +Aij

λ

(
Fj
µν − Fi

µν

)
+
∑
k

(
Aik

λ F
kj
µν −Akj

λ F
ik
µν

)]}
. (55)

利用这些定义, 一阶手征动理学方程的分量形式可以表示为 

0 = ∂µJ
(1)µ
ij − ig

ℏ

[(
Ai
µ − Aj

µ

)
J

(1)µ
ij +

∑
k

(
Aik
µ J

(1)µ
kj − Akj

µ J
(1)µ
ik

)]

+
g

2
∂νp

[(
Fi
µν + Fj

µν

)
J

(1)µ
ij +

∑
k

(
Fik
µνJ

(1)µ
kj + Fkj

µνJ
(1)µ
ik

)]

+
(

G(1)
µνλ,i − G(1)

µνλ,j

)
∂νp∂

λ
pJ

(0)µ
ij +

∑
k

(
G(1)
µνλ,ik∂

ν
p∂

λ
pJ

(0)µ
kj − G(1)

µνλ,kj∂
ν
p∂

λ
pJ

(0)µ
ik

)
. (56)

i = j下面将从以上这些一阶结果里面分别提取出对角元素和非对角元素. 对于对角元素 (  ): 

J
(1)
n,ii = pn f(1)i δ(p2) + pn∆f(1)i δ′(p2), (57)

 

J̄
(1)µ
ii = p̄µ

[
f(1)i δ(p2) + ∆f(1)i δ′(p2)

]
+∆J

(1)µ
i . (58)

f(1)i这里除了定义了一阶的分布函数  , 还定义了
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∆f(1)i = − sg

2pn
ε̄µαβpµFi

αβf(0)i − sg

4pn
ε̄µαβpµ

∑
k

(
Fik
αβf(0)ki + Fki

αβf(0)ik

)
+

ig
4
pµ∂νp

∑
k

(
Fik
µν f(0)ki − Fki

µν f(0)ik

)
,

∆J
(1)µ
i = − s

2pn
ε̄µαβ p̄β∂αf(0)i δ(p2)− sg

2pn
ε̄µαβ∂λp

(
p̄β Fi

αλf(0)i

)
+

isg
2pnℏ

ε̄µαβ p̄β
∑
k

(
Aik
α f(0)ki − Aki

α f(0)ik

)
δ(p2)− sg

4pn
ε̄µαβ∂λp

[
p̄β
∑
k

(
Fik
αλf(0)ki + Fki

αλf(0)ik

)
δ(p2)

]

+
ig
8pn

∂pν

[
pn
∑
k

(
Fµ̄ν
ik f(0)ki − Fµ̄ν

ki f(0)ik

)
δ(p2)

]
− ig

8pn
∂pν

[
p̄µ
∑
k

(
Fnν
ik f(0)ki − Fnν

kj f(0)ik

)
δ(p2)

]
.

(59)

Aij
α Fij

αβ显而易见, 如果规范场的非对角元素  和  都是零, 上面的结果就回到阿贝尔情形的结果, 当这些非对

角元素不为零, 零阶的非对角分布函数会诱导出一阶的对角维格纳函数的贡献, 这是非阿贝尔情形区别于

阿贝尔情形的特别之处. 一阶动理学方程的对角元素为
 

0 = ∂µJ
(1)µ
ii − ig

ℏ
∑
k

(
Aik
µ J

(1)µ
ki − Aki

µ J
(1)µ
ik

)
+
g

2
∂νp

[
2Fi

µνJ
(1)µ
ii +

∑
k

(
Fik
µνJ

(1)µ
ki + Fki

µνJ
(1)µ
ik

)]

+
∑
k

(
G(1)
µνλ,ik∂

ν
p∂

λ
pJ

(0)µ
ki − G(1)

µνλ,ki∂
ν
p∂

λ
pJ

(0)µ
ik

)
. (60)

f(1)i

为了让表达式看起来简洁, 这里没有把 (54)式, (55)式, (57)式以及 (58)式的结果直接代入 (60)式. 展开

后的这一方程比零阶的动理学方程 (47)要复杂得多, 对角元素和非对角元素以更加复杂的形式耦合在一

起. 但是与零阶动理学方程相似之处是: 当规范场只存在对角元素时, 某种颜色的分布函数与非对角元素解

耦, 这种情形下, 对角元素  的动理学方程仍旧退化为阿贝尔场情形下的形式.

i ̸= j对于非对角元素 (  ), 有
 

J
(1)
n,ij = pnf(1)ij δ(p

2) + pn∆f(1)ij δ
′(p2), (61)

 

J̄
(1)µ
ij = p̄µ

[
f(1)ij δ(p

2) + ∆f(1)ij δ
′(p2)

]
+∆J

(1)µ
ij , (62)

其中
 

∆f(1)ij = − sg

4pn
ε̄µαβpµ

(
Fi
αβ + Fj

αβ

)
f(0)ij +

ig
4
pµ∂νp

(
Fi
αβ − Fj

αβ

)
f(0)ij

− sg

4pn
ε̄µαβpµ

[
Fij
αβ

(
f(0)j + f(0)i

)
+
∑
k

(
Fik
αβf(0)kj + Fkj

αβf(0)ik

)]

+
ig
4
pµ∂νp

[
Fij
µν

(
f(0)j − f(0)i

)
+
∑
k

(
Fik
µν f(0)kj − Fkj

µν f(0)ik

)]
, (63)

 

∆J
(1)µ
ij = − s

2pn
ε̄µαβ p̄β∂αf(0)ij δ(p

2)+
isg
2pnℏ

ε̄µαβ p̄β

[(
Ai
α − Aj

α

)
f(0)ij +Aij

α

(
f(0)j −f(0)i

)
+
∑
k

(
Aik
α f(0)kj −Akj

α f(0)ik

)]
δ(p2)

− sg

4pn
ε̄µαβ∂λp

{
p̄β

[(
Fi
αλ + Fj

αλ

)
f(0)ij + Fij

αλ

(
f(0)j + f(0)i

)
+
∑
k

(
Fik
αλf(0)kj + Fkj

αλf(0)ik

)]
δ(p2)

}

+
ig
8pn

∂pν

{
pn

[(
Fµ̄ν
i − Fµ̄ν

j

)
f(0)ij + Fµ̄ν

ij

(
f(0)j − f(0)i

)
+
∑
k

(
Fµ̄ν
ik f(0)kj − Fµ̄ν

kj f(0)ik

)]
δ(p2)

}

− ig
8pn

∂pν

{
p̄µ

[(
Fnν
i − Fnν

j

)
f(0)ij + Fnν

ij

(
f(0)j − f(0)i

)
+
∑
k

(
Fnν
ik f(0)kj − Fnν

kj f(0)ik

)]
δ(p2)

}
.

(64)
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i ̸= j一阶动理学方程的非对角元素 (  )为 

0 = ∂µJ
(1)µ
ij − ig

ℏ

[(
Ai
µ − Aj

µ

)
J

(1)µ
ij + Aij

µ

(
J

(1)µ
jj − J

(1)µ
ii

)
+
∑
k

(
Aik
µ J

(1)µ
kj − Akj

µ J
(1)µ
ik

)]

+
g

2
∂νp

[(
Fi
µν + Fj

µν

)
J

(1)µ
ij + Fij

µν

(
J

(1)µ
jj + J

(1)µ
ii

)
+
∑
k

(
Fik
µνJ

(1)µ
kj + Fkj

µνJ
(1)µ
ik

)]

+
(

G(1)
µνλ,i − G(1)

µνλ,j

)
∂νp∂

λ
pJ

(0)µ
ij + G(1)

µνλ,ij∂
ν
p∂

λ
p

(
J

(0)µ
jj − J

(0)µ
ii

)
+
∑
k

(
G(1)
µνλ,ik∂

ν
p∂

λ
pJ

(0)µ
kj − G(1)

µνλ,kj∂
ν
p∂

λ
pJ

(0)µ
ik

)
. (65)

这些表达式和方程具体给出了一阶非对角元素分

布函数之间以及非对角元素与对角元素之间的依

赖关系, 一般情形下都是耦合在一起的, 但是在规

范场只存在对角元素时, 非对角元素与对角元素解耦.

 5   总结与展望

本文首先回顾了维格纳函数的基本知识以及

前期工作中非阿贝尔动理学方程的推导过程, 在此

基础上, 非阿贝尔规范场下的手征动理学理论在嘉

当韦尔基下被重新表述. 我们期望本工作能够在描

述色自由度的动理学演化方面提供另一个直观形

象的理论形式, 为讨论夸克在色相互作用下的非平

衡输运问题提供帮助. 当然, 因为色禁闭的原因,

实验上很难甚至不可能去追踪某一个特定色自由

度, 但是色的输运和转化可能影响强子化阶段的组

合机制, 尤其在最近高能重离子碰撞领域刚刚兴起

的对一些奇特强子态的研究, 不同的色链接可能导

致不同的奇特强子态结构, 不同色结构的演化可能

影响不同奇特强子态的产额. 在当前工作中, 只讨

论了夸克的输运过程, 为了描述高能重离子碰撞中

产生的夸克胶子等离子体的演化, 非阿贝尔场的胶

子输运问题同样重要, 对于非阿贝尔规范场的输

运, 可以推广文献 [47−49]中处理阿贝尔规范场光

子场的输运, 为了和夸克输运中嘉当韦尔基保持一

致, 非规范场的维格纳函数也要在嘉当韦尔基下展

开, 系统地考虑非阿贝尔规范场本身的输运问题是

我们工作未来的重点之一.
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Abstract

Non-Abelian  gauge  field  is  the  fundamental  element  of  the  standard  model.  Non-Abelian  chiral  kinetic

theory  can  be  used  to  describe  how  the  chiral  fermions  in  standard  model  transport  in  a  non-equilibrium

system.

SU(N)

In  our  previous  work,  we  decomposed  the  non-Abelian  chiral  kinetic  equations  into  color  singlet  and

multiplet in the    color space. In this formalism, the chiral kinetic equations preserve the gauge symmetry

in a very apparent way. However, sometimes we need to describe the microscopic process of the specific color

degree, e.g. the color connection in the hadronization stage. In order to describe such a process, it will be more

convenient to decompose the non-Abelian chiral kinetic equations in the Cartan-Weyl basis.

0

1 0

1

In this work, we choose the matrix elements of the Wigner function in fundamental representation of color

space as the direct variables and decompose the gauge field or strength tensor field in the Cartan-Weyl basis.

By  using  the  covariant  gradient  expansion,  we  decompose  the  non-Abelian  chiral  kinetic  equations  into  the

coupled  kinetic  equations  for  diagonal  distribution  function  and  non-diagonal  distribution  function  up  to  the

first  order.  When  only  diagonal  elements  exist  in  the  gauge  field  with  non-diagonal  elements  and  diagonal

elements  decoupled,  the  non-Ableian  chiral  kinetic  equation  will  be  reduced  to  the  form in  the  Abelian  case.

When the non-diagonal elements of the gauge field are present, the kinetic equations are totally tangled between

diagonal  distribution  function  and  non-diagonal  distribution  function.  Especially,  the    th-order  non-diagonal

distribution  function  could  induce  the    st-order  diagonal  Wigner  function,  and  the    th-order  diagonal

distribution function could also induce the   st-order non-diagonal Wigner function.

Keywords: non-Abelian field, Wigner function, chiral kinetic equation
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