
MadFLUKA BEAM LINE 3D BUILDER. SIMULATION OF BEAM LOSS

PROPAGATION IN ACCELERATORS∗

M. Santana-Leitner†, Y. Nosochkov, T. Raubenheimer, SLAC, Stanford, USA

Abstract

Beam tracking programs provide information of orbits

along the nominal trajectory for the design of beam-line

optics. On the other hand, aspects like machine or radiation

protection, which also inspect the transverse dimensions

and volumes of components, are typically simulated with

radiation transport Monte Carlo codes. Some other studies,

like multistep collimator optimization or beam mis-steering

phase space determination for failure shielding design, re-

quire combining features of both types of codes. A way

around recurrently coupling such codes is to use radiation

transport codes that include magnetic tracking capabilities,

e.g. FLUKA, with full accelerator implementations. How-

ever, coding the entire 3D geometry of an accelerator along

with the corresponding media and magnetic fields is often a

daunting task, and so is its maintenance.

This paper presents MadFLUKA, a program that auto-

matically produces FLUKA compatible geometries from

MAD files. Objects selected from a user user-configurable

database are auto-replicated with the rules of mad-deck files,

and, exploiting the latest available FLUKA pattern repetition

tools, a relatively light geometry is created. A FLUKA mag-

netic subroutine has been written to automatically read the

lattice and reproduce the magnetic transport without further

user coding. MadFLUKA is being used in the design of the

Linac Coherent Light Source-II (LCLS-II), at SLAC.

MADFLUKA OVERVIEW

MadFLUKA not only converts MAD8 [1] lattice into

3D beam-line(s) compatible with FLUKA [2,3], but also it

automatically encodes the optics lattice.

The code will read and pre-process the *.survey.tape

file(s), merging multi-line instructions into single objects,

discarding unwanted components, transforming units and

frames, identifying unique and first occurring objects as well

as copies of those, adjusting dipole properties, allocating ad-

ditional properties to objects, and storing into memory the re-

sult of all these transformations. Then files beamline.geo,

*.rot, *.mat) will be generated (all these and the material

database material.dat are linked to by the main FLUKA

input file beamline.inp), as well as beamline.opt with

additional information for the magfld.f magnetic subroutine.

The user can perform a wide range of customizations, like

implementing multiple beam-lines, setting discrimination

rules, customizing the geometry or properties of objects or

adding an additional layer of geometry, e.g. with information

about the accelerator enclosure and shielding elements.

∗ Work supported by Department of Energy contract DE-AC02-76SF00515
† msantana@slac.stanford.edu

POST-PROCESSING MAD8 FILES

During initialization the MAD8 *survey.tape file is

read and the following information is stored for each sub-

component: keyword, name, Length, alpha (α), k1, k2, ra-

dius, engname, EGeV, TILT, E1, E2, H1, H2, X, Y, Z, SUML,

THETA (θ), PHI (φ), PSI (ψ). Additional beam parameters

may be retrieved from the corresponding *.twiss.tape

file, although in the current version of MadFLUKA, those

are not used. Also, several files may be scanned, e.g. in

LCLS-II the Hard-X-ray and Soft-X-ray beam-lines are both

imported. Then, the following post-processing takes place:

Transforming Angles and Coordinates

MAD objects are oriented with three consecutive rota-

tions centered on each component, i.e. first the azimuth

θM (y) around absolute axis ŷ, then a pitch , φM (x′) around

the resulting transverse axis x̂′, and finally a roll ψM (z′′)

around the orbit longitudinal axis ẑ′′. FLUKA rotations are

defined around the fixed reference frame, and are left-handed

and inverted (from the rotated object to the straight proto-

type). Thus, after several matrix products and sign reversals

and transformations, it is found that θM (y) = − θF (y), φM

(x′) = − φF (x) and ψM (z′′) = − ψF (z). These simple

rules, along with a conversion from radian to degrees will

be used to obtain FLUKA rot-defi transformations. As for

dimensions, they are converted from [m] (MAD8) to [cm]

(FLUKA).

Filtering Components and Identifying Unique

Components, Prototypes and Replica

The user can specify which components from the total

MAD8 list will be considered for the generation of the

FLUKA geometry/optics input. Discrimination can be per-

formed as a function of the component type, its engineering

name, position in the beam-line, etc. MadFLUKA will tag

those components and, based on their names and/or phys-

ical properties (e.g. SUML), it will determine the repetition

patterns for the remaining ones (i.e. which objects appear

more than once and which are unique), it and will latch each

component j with a flag (latref ), defined as follows:

latref(j)=0 : j is discarded or is unique.

latref(j)=j : j has downstream replicas (= prototype).

latref(j)=i (i < j) : j is a replica of upstream component i.

A table is printed in file lattice.dat with the name of

each component, its latref index and other properties like

its position and orientation.

Proceedings of IPAC2014, Dresden, Germany MOPME040

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

ISBN 978-3-95450-132-8

463 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Re-orientating and Translating the Beam-line

MAD8 converted files may lead to beam-lines with un-

practical orientation/position for FLUKA simulations. This

can be the case if the main beam-line is not aligned with the

absolute ẑ-axis and/or its origin that does not match that of

other objects (e.g. accelerator enclosures) in auxiliary geom-

etry files. To do so, the user can use the coordinates ({x,y,z})

and angles (θu , φu , ψu) of a given component, printed in

’latref.dat’ after a first run of MadFLUKA, and anti-rotate

the entire beam-line with those mobile angles, specifying

the {x,y,z}as the pivot point (
−−→
PIV). A final translation (

−−→
DIS)

can be applied to shift the beam-line to a suitable location.

The Cartesian coordinates (
−→
r ) are transformed (to

−→
r′) as

follows:

−→
r′ =

{

R−1
u ·

(

−→
r −
−−→
PIV

)

}

+
−−→
PIV −

−−→
DIS (1)

Ru is the rotation matrix for the user angles θu , φu , ψu .

As for the orientation angles, after the user-rotation, the

angles read from the MAD file (θ j , φ j ,ψ j ) do no longer rep-

resent the mobile angles of orientation of each component

(θm , φm ,ψm). To compute the angles j in the base u, the

rotation matrix Rju = Rj
−1 · Ru is evaluated numerically

and compared to the analytical expression of a 3D-mobile

rotation matrix Rm. Then, an algorithm solves the resulting

nine equations recurrently, discards unfeasible solutions and

verifies which of the candidate results evaluates to the rota-

tion matrix. The re-calculated positions and angles will be

printed (again) to ’latref.dat’ file and will be used thereafter

as if they were the original 6-dimension coordinates.

Determining the Physical Length and Central

Coordinates of Dipoles

In MAD8 the positions, angles, lengths, etc. actually refer

to the central trajectory at a component rather than to the

component itself. In most cases the two descriptions match,

and components may be build in FLUKA geometry as if

MAD8 values described the properties of those. However,

for rectangular bends this does not entirely hold, e.g. the arc

differs from the length., so corrections are necessary.

Figure 1: Typical rectangular dipole orientations, centered in the

trajectory arch or alined with the incoming or outgoing beam.

The dipole semi-length (Lm) is computed from the MAD8

arches of the two halves (L1, L2) and the bend angle (α) as:

Lm =
L1 + L2

2
· sinc (α) (2)

MadFLUKA, compares the incoming and outgoing angles

for the two halves and determines if the magnet is centered

in the trajectory or if it is aligned to either the incoming or

outgoing beam (Fig. 1). Based on that, the position of the

magnet center −→rc is computed as:

−→rc =








−→rA +

(

ˆ
2

−−→
AB

)

uA ·
1 ûA +

(

v̂A ·
1
2

−−→
AB

)

v̂A : E0 = EB

−→r0 + Lm · ŵA : E0 = 0
−→rB − Lm · ŵA : EB = 0

Where −

ˆ

→r 0/A/B are the orbit coordinates at the magnet

front/mid/end planes, and û/v̂/wA are the unitary transverse

vertical/horizontal or longitudinal vectors at the magnet cen-

tral plane. The later vectors are calculated as a function of

the mobile axis angles, e.g.:

v̂A =








−cos θ · sin ψ − sin θ · sin φ · cos ψ

cos φ · cos ψ

sin θ · sin ψ − cos θ · sin φ · cos ψ








(3)

BUILDING THE FLUKA BEAM-LINE

Next, MadFLUKA generates the bodies and regions of the

geometry and assigns material properties to each. FLUKA

uses CSG logic where bodies (cylinders, planes, boxes, etc.)

define regions of space. Beam-line components will gen-

erally be made of several regions and each of those will be

defined by several bodies. A material/compound and several

properties can be assigned to each region.

Generating Bodies and Regions

In MadFLUKA, all regions of a component reside within

its cylindrical or rectangular container body. Replica actu-

ally just consist of a container, as the inner information is

imported from the corresponding (lattice card) prototype

through a rot-defi transformation. Body definitions are

printed automatically for a set of pre-defined components,

where dimensions are autoscaled from individual *.tape

values (radius, length,. . . ). The user may tune the appear-

ance of components by adjusting several free parameters

as a function of the engineering name, position, etc. The

resulting equations of the bodies are oriented relative to ẑ .

Bodies of unique objects are all written around the origin,

while prototypes are placed in the first available slot of a side

gallery offset by 100 m. As for replica, the container body

equation coincides with that of the corresponding prototype.

The real position and alignment of components is achieved

through transformation cards that affect their entire set of

bodies.

Bodies are named with 8-character strings, including a

6-character prefix that inherits the *.tape component name.

MOPME040 Proceedings of IPAC2014, Dresden, Germany

ISBN 978-3-95450-132-8

464C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques



Regions for predefined objects are automatically generated

and identified with eight-character strings, the first six of

which are the capitalized component name. For replica a

single region is printed (equivalent to “= inside container”).

Lattice and Transformation Files

Lattice directives to replicate components are printed at

the bottom of the beamline.geo file. As for the rot-defi

transformations that govern those replications and also the

relocation of objects from their default position to the beam-

line values, those are printed into beamline.geo. There,

for any given component, if no rotation is involved, a sin-

gle rot-defi card will be printed with the pure translation

from the MAD8 expected location to the position where bod-

ies are centered around in beamline.geo. Otherwise, the

transformation will chain up to five rot-defi cards, i.e. the

object is first brought from the beam-line to the origin, then

three successive rotations are applied around the fixed axis,

and finally the object is brought to the prototype coordinates

in the virtual gallery.

rot-defi transformations for auxiliary elements like build-

ings and walls should be included in auxrot.rot file.

When writing those it is useful to remember that any ro-

tation Φ is referred to the origin, and therefore the position

~r is shifted by ~dr = {RΦ − I} ·~r

Defining Beam-line Materials

MadFLUKA prints in beamline.mat the FLUKA

assignmat cards that associate regions with media and other

properties (e.g. magnetic field ON/OFF)1. In doing so, the

program can alter the default assigned material as a func-

tion of component-dependent variables, such as its keyword,

engname, etc. Objects are broken up in cells so that, with dif-

ferent material assignments, several shapes can be achieved

from a same prototype.

Beam Optics Implementation

The user does not need to write a single line of code to

define the optics, and even re-compilation could be spared

in most systems. This has been achieved by designing Mad-

FLUKA logics to seemingly integrate with the FLUKA mag-

netic transport subroutine magfld.f, which was customized

to interface with MadFLUKA output files. Indeed, all ob-

jects are aligned with ẑ (and then re-positioned through

rot-defi transformations), thus the magnetic field can be

easily and generically coded as a function of the strength

of the magnet and the magnet type. At initialization (i.e.

the first time a particle enters a media where magnetic field

is requested in assignmat) magfld.f reads into an array

beamline.opt file created by MadFLUKA, which links

each component with its magnetic properties (ρ for dipoles,

k1 for quadrupoles, k2 for sextuples) and with the rot-refi

transformation that brings that component to the prototype

position. An overview of the process that follows is:

1 The actual definitions and properties of the materials are contained in the

database material.dat, which is also linked by the main input file.

1. For new particles or new magnetic zones (i.e.

if FLUKA variables Numpar (1), or M REG or

ML ATTC change) the rotation index (ind) is updated.

2. FLUKA function DOTRSF transforms the local coordi-

nates to those of the corresponding prototype through

the indth
rot-defi transformation in beamline.rot.

3. The magnetic inductances are then computed in terms

of MAD8 (k1[m−2], ρ =
L
α

[cm]) and FLUKA

(Pbeam[GeV], Cl ight [cm/s]) variables:

−→
B · cl ight

109 · Pbeam

=

{

{ 1
ρ(ind)·104 ,0,0} : dipoles

k1{y, x,0} : quadrupoles

4.
−→
B is rotated (without translation) back to the refer-

ence frame of the current replica through instruction

UNRTO(1, BTX, BTY, BTZ, ind).

With few additional instructions in which failure rules of

magnets are implemented (e.g. randomizing the strength

and/or polarity of a bend within its power limits) it is possible

to draw the phase-space of mis-steered beams and design the

safety components (e.g. protection collimators) accordingly.

When doing so, the randomization must be performed just

once per magnet passage, e.g. when FLUKA Numpar(1)

variable has been updated.

CONCLUSION

MadFLUKA is a new beam line and optics builder for

FLUKA Monte Carlo code. An overview of its processes

and options has been presented. MadFLUKA is being used

to determine the phase-space of beam trajectories resulting

from magnet failure in LCLS-II, so that design of protection

collimators and local shielding can be optimized.

REFERENCES

[1] H. Grote, F. Ch. Iselin, “The MAD Program (Methodological

Accelerator Design) Version 8.19, User’s Reference Manual”,

European Organization for Nuclear Research, CERN/SL/90-

13(AP), Geneva, Switzerland, April 29, 1996.

[2] A. Fassò, A. Ferrari and P.R. Sala, “Electron-Photon Transport

in FLUKA: Status”, MonteCarlo 2000 Conference, Lisbon,

Portugal, October 23–26 2000, A. Kling, F. Barao, M. Naka-

gawa, L. Tavora and P. Vaz eds., Springer-Verlag Berlin, p. 159–

164 (2001).

[3] A. Fassò, A. Ferrari, J. Ranft and P.R. Sala, “FLUKA: Status

and Prospective for Hadronic Applications”, MonteCarlo 2000

Conference, Lisbon, Portugal, October 23–26 2000, A. Kling,

F. Barao, M. Nakagawa, L. Tavora and P. Vaz eds., Springer-

Verlag Berlin, p. 955–960 (2001).

Proceedings of IPAC2014, Dresden, Germany MOPME040

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

ISBN 978-3-95450-132-8

465 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


