

## TRS calculations for $\nu h_{11/2}$ band in $^{127}\text{Xe}$

S. Chakraborty<sup>1</sup>, H. P. Sharma<sup>1,\*</sup>, S. S. Tiwary<sup>1</sup>,  
C. Majumder<sup>1</sup>, R. P. Singh<sup>2</sup>, and S. Muralithar<sup>2</sup>

<sup>1</sup>Department of Physics, I.Sc., Banaras Hindu University, Varanasi, India. and

<sup>2</sup>NPG, Inter-University Accelerator Centre, New Delhi, India.

One of the experimental signature of the axially symmetric and triaxial shape of nuclei is the ratio of  $E_{4+}$  and  $E_{2+}$ . It gives a value around 3.33 or 2.5 for axially symmetric or triaxial rotor, respectively. For Xe nuclei the

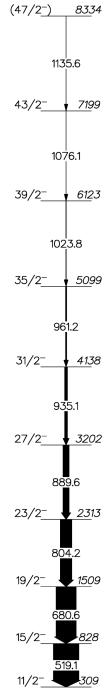



FIG. 1: Partial level scheme of  $^{127}\text{Xe}$ , taken from Ref. [2].

value of this ratio is around 2.5, which indicates triaxial nature of these nuclei. A number of structural phenomenon associated with triaxiality were reported in these nuclei. Earlier,

yrast negative band, based on  $\nu h_{11/2}$  orbital, was studied up to  $\sim 51/2^-$  state in  $^{119-125}\text{Xe}$  and theoretical Triaxial Rotor plus Particle model (TRPM) calculations suggest triaxial nature of this band [1]. But, for neutron rich  $^{127}\text{Xe}$ , experimental information on high spin states was not adequate. Therefore, an experimental investigation has been carried out and states up to  $47/2^-$  have been confirmed [2]. Further, total Routhian surface (TRS) calculations, based on macroscopic-microscopic model [3] have been carried out to get a prefatory idea on quadrupole and triaxial deformation of  $^{127}\text{Xe}$  nucleus.

Total Routhian surface calculations have been carried out for negative parity states of  $^{127}\text{Xe}$  with standard parameters. At low fre-

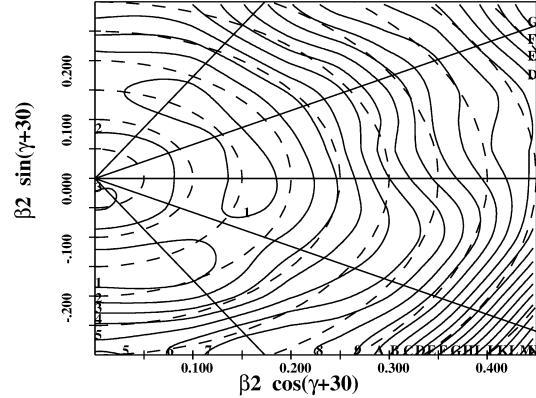



FIG. 2: Total Routhian Surface for yrast negative parity states of  $^{127}\text{Xe}$  at low frequency ( $\hbar\omega \sim 0.105$  MeV).

quency, TRS predicts a large  $\gamma$ -softness with  $\beta_2 \sim 0.17$  (fig. 2). Around  $\hbar\omega \sim 0.355$  MeV (fig. 3), a crossing has been observed due to the negative parity neutron orbitals with

\*Electronic address: [hpsharma\\_07@yahoo.com](mailto:hpsharma_07@yahoo.com)

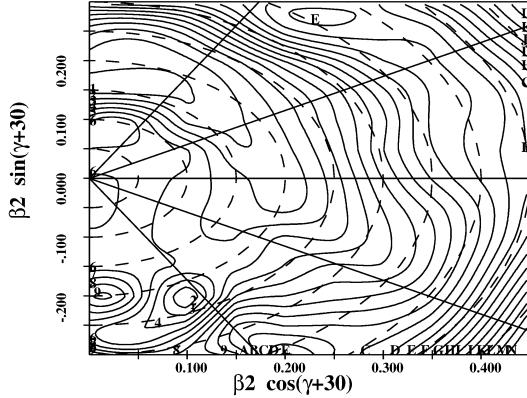



FIG. 3: Total Routhian Surface for yrast negative parity states of  $^{127}\text{Xe}$  at moderate frequency ( $\hbar\omega \sim 0.355$  MeV).

$\beta_2 \sim 0.2$  and  $\gamma \sim 45^\circ$ . The next crossing,

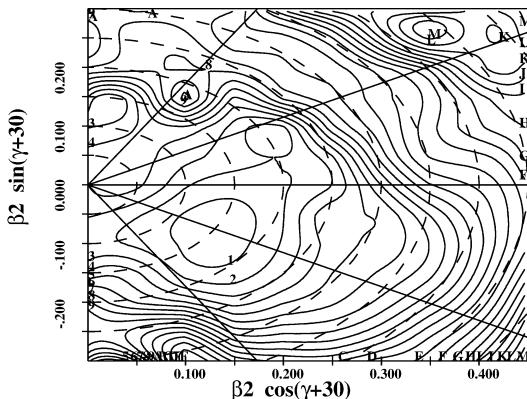



FIG. 4: Total Routhian Surface for yrast negative parity states of  $^{127}\text{Xe}$  at higher frequency ( $\hbar\omega \sim 0.455$  MeV).

most probably due to a positive parity proton orbital, has been predicted near  $\hbar\omega \sim 0.455$  MeV (fig. 4), which drive the nucleus towards  $\gamma \sim -60^\circ$ .

The angular momentum ( $I$ ) versus angular frequency ( $\hbar\omega$ ) plot, deduced on the basis of TRS calculation, shows a sharp up-bending near  $\hbar\omega \sim 0.355$  MeV. However, the experimentally deduced plot of the same shows a slow and continuous increment in  $I$  with increasing  $\hbar\omega$  and a little higher slope after  $\hbar\omega \sim 0.4$  MeV. This crossing has been explained due to the alignment of second pair of  $h_{11/2}$  neutron [2] as also predicted from the present calculations.

In summary, theoretical TRS calculations have been carried out for negative parity states of  $^{127}\text{Xe}$ . The first crossing due to a negative parity neutron orbital has been predicted at  $\hbar\omega \sim 0.355$  MeV, as also observed in a recent experimental study on  $^{127}\text{Xe}$  near  $\hbar\omega \sim 0.4$  MeV.

## Acknowledgments

The first author is thankful to CSIR, India, for financial support under SRF scheme.

## References

- [1] A. Gelberge *et. al.*, Nucl. Phys. A **557** (1993) 439c.
- [2] S. Chakraborty *et. al.*, Braz. J. Phys. **47** (2017) 406.
- [3] T. Bengtsson, Nucl. Phys. A **512** (1990) 124.