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1. Introduction

The phenomenon of symmetry breaking is fundamental in the
physics of the Standard Model, which is consistently formulated as
an interacting theory of massless fermions and gauge bosons, that
acquire mass in the broken phase of the Higgs sector.

The gauge freedom present in the original action of the Stan-
dard Model, as well as any other gauge theory of particle physics,
makes the calculations of additional radiative corrections more in-
volved, by the process of gauge fixing and the resulting gauge
dependence that is present in the calculation of individual Feyn-
man diagrams; the final result, however, for any physical quantity,
calculated at a given order of the coupling constants, is expected
to be gauge independent once all the relevant terms are accounted
for.

The gauge dependence of individual terms is described by the
Nielsen identities [1], that are expected to hold for the generat-
ing functionals of the Green functions of such theories, and have
been used in order to demonstrate the gauge independence of
physical quantities such as masses, tunnelling rates, and other con-
sequences of the phenomenon of symmetry breaking in particle
physics and cosmology [2,3].

In this work, I will consider the specific problem of the gauge
independence of the fermion masses that are generated for origi-
nally massless, chiral fermions, in the process of symmetry break-
ing, in the limiting case where the latter is induced radiatively
instead of being present in the tree-level action [4]. Although some
comprehensive diagrammatic treatments of similar problems, in
the Standard Model and other cases, exist in the literature, using
the Nielsen identities or other methods [5], here, I will consider
the calculation and definition of particle mass through the effec-
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tive action, and derive and prove the relevant Nielsen identities at
this level. This is important for the consistency of the theory, the
power-counting and collection of the relevant terms of a physical
calculation, as well as for the use of the effective action formalism
as a tool for the study of the process and consequences of symme-
try breaking.

In Sec. 2, I describe the general formalism of the Nielsen iden-
tities for the effective action and the model and parameters con-
sidered.

In Sec. 3, I derive the Nielsen identities that ensure the gauge
independence of the physical fermion mass in the effective action
and give an explicit verification in terms of an expansion in the
coupling constant in the case of radiative symmetry breaking. In
Sec. 4, I conclude with some comments.

2. The general formalism

For an Abelian gauge theory with fields denoted collectively by
¢; and transforming as

8¢ = A 0, (1)

under an infinitesimal gauge tranformation with a gauge parame-
ter 6, the classical, tree-level action, Sg, has to be gauge-fixed by
choosing a gauge condition, F(¢;), and adding the terms
32
JHO0T 52 s, (2)
2§ 5¢i

with Fadeev-Popov ghosts 7 and 7, rendering the various Green
functions dependent on the gauge parameter &.

The Nielsen identities [1,2] describe the dependence of the ef-
fective action, S (the generating functional of the one-particle irre-
ducible Green functions), as
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$£= @Hz‘[dﬁ], (3)

where the functional

Hi[¢j]=§<A¢mﬁF>, (4)

is a sum of the respective one-particle irreducible graphs with the
described operator insertions, and can also be expanded in the
fields ¢; and their derivatives.

Here, I will consider the theory of an Abelian gauge field, in-
teracting with a complex scalar field, as well as massless chiral
fernions with Yukawa interactions, and general hypercharges for
the gauge transformations of the scalar and fermion fields.

The Lagrangian

L‘:—%F/Zw—i—(DM(D)*(DMd))—Uo(d))—i— (5)
+ YLDy + YRIDYR +
— V2g(® YLyR + P YrYL)

is written, with the metric tensor n*V = diag(+ — ——), in terms

of the gauge field A, with the gauge field strength F,, =9, A, —
oy Ay, the complex scalar field ® = %z(cbl +i®d;) and the left- and
right-handed chiral fermion fields, v; and vg.

The matter fields are charged under the gauge interaction, with
the respective hypercharges, Y, Y; and Yg appearing in the covari-
ant derivatives

D, ® = (3, +ieYA,)D, (6)
DuyL =0y +ieY Ay, (7)
Dyyr = (0y +ieYRAYIL, (8)

with the coupling constant, e, and the hypercharges that satisfy

Y=Y —Yg, 9)

by the requirement of gauge invariance.

I note in passing, that the theory, as written, has a chiral
anomaly which, however, can be cancelled, similarly to the case of
the Standard Model, in the presence of more chiral fermion “gen-
erations”, when the relation }°; Y7 — > Y3 =0 is satisfied. This
can be trivially done here, and will not affect the results, so it will
not be explicitly shown.

The fermion algebra can be described by the Dirac matrices,
y#, that satisfy the anticommutation relations

y* y"y=2n"", (10)
as well as y°, with {y#,y>} =0, (y°)?>=1, (¥*>)T =y7, and the
projectors Py = 2, with P, = Py, P, +Pg=1, P, Pg =0.
Also, the usual notation for spinors is ¥ = ¥Ty9, and the Dirac
slash is ¢ = y*a,, for any vector quantity a,. Where implied, the
unit matrix is simply denoted by 1.

Then, the chiral spinors can be combined in a Dirac spinor, ¥ =
v + Yr, with ¥y = P and g = Pg ¥, and the Lagrangian can
be written as

1

£=—ZFiv—i—(DMCD)*(DMCD)—UO(dD)—i— (11)
+ il + ieA(V — Ay )]y — g (P1 +iy D),

with

YL +Y Y.-Y
=L+RA=LR

% ) )
2 2

(12)
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in order to derive the Feynman rules for the fermion propagators
and interactions.

The gauge invariance of the theory is expressed in the infinites-
imal gauge transformations

8A, = 8,0 (13)
P =—ieYO ® (14)
Sy = —ieY Oy (15)
SR = —ieYR 0 Y, (16)

that also imply

5P =eYO Oy (17)
8Py = —eYO by (18)
Sy =—ie(V — Ay*)0 v, (19)

and can be used to extract the A;’s for the various fields.
The tree-level potential for the scalar field is given by

A
Up(d) =mi & + g(el>*<1>)2, (20)

and, if the mass parameter m% is positive, it has a symmetric min-
imum at ® = 0. However, one-loop effects in the effective action,
give a non-zero, symmetry breaking vacuum at < ® >= u, when
the coupling parameter A is of order e?, and m(z) is also sufficiently
small, of order e?u? (or zero) [4].

In order to study this interesting phenomenon, it is useful to
study the effective action, which can be obtained by the one-
particle irreducible graphs after making the shift &1 — &1 + ¢
and dropping the terms linear in the fields, in order to derive the
¢-dependent Feynman rules. Then the effective action can be de-
rived in a coupling constant and derivative expansion in ¢, and the
emergence of a symmetry-breaking minimum can be explored.

Finally, in order to derive the full set of Feynman rules for the
theory, with the gauge-fixing and ghost terms, as described in the
beginning of this Section, the class of generalised R: gauges will
be used, with the condition

F=0,A" +eYvdy, (1)

which includes an additional gauge parameter, v. Usually, the
choice v =—£& < ® > is made, in order to eliminate mixing terms
in the propagators, since, however, the &-dependence of < & >
will also be involved, it will be convenient to use this general
gauge-fixing condition, with an arbitrary value for v, although
other choices are also possible [2,3,5]. An obvious drawback is that
an additional gauge parameter is used, and the final result has to
be v-independent as well as &-independent; the relevant proce-
dure, however, is identical to the one done for the &-dependence,
and can be easily performed [2].

3. Verification of the Nielsen identities

The general formalism described in the previous Section gives,
for the specific model used, an effective action with the general
form

1
S =/Z<¢>) 5 (39)> — U(¢) + (22)

+ Z1(P) VLid Y1+ ZR(P) YR iP YR —
—Z($) (YL YR + VR VL),

where all the Z's are &£-dependent beyond their tree-level value,
which, for Z, Z; and Zy is equal to one, and for Z it is equal to
g ¢ (usually, I will drop the explicit ¢-dependence where obvious).
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In order to apply the Nielsen identity (3), the functionals in (4)
need to be also expanded in powers of derivatives and coupling
constants in the scalar and fermion fields. The lower order terms
in the expansion can be written out as follows

B[ Dewr+ 2@+ 2 cr@rin+ec. (23)
=1 G L+ -—CRr R .C.,
0& 3¢ Sy Syr
where the various C-factors are the first-order terms in the expan-
sion of the functionals H; in (4) (with i = ¢, ¥, ¥r) and can be
calculated with the appropriate Feynman diagrams and insertions,
as will be further described in the text and in Figs. 1, 2.

Now the respective powers and derivative terms can be matched
in the resulting expression of (23), a procedure which, after some
straightforward algebra, gives the identities

3

W _cu (24)
Eag:_ o

1,02 _1.02  C (25)
%9 " 2599 " ae

0Zy 37y

IZg _ _dZg

gg—cw'i'chzR (27)
g—ci—k(C +Cr)Z (28)
583,-‘_ o0 L +CRr)Z.

The first identity (24) is the original Nielsen identity [1], that
was derived and used in order to show the gauge independence of
the phenomenon of symmetry breaking through the effective ac-
tion, by compensating the &-dependence of the effective potential
with a respective field dependence

¢
sag =—C(9). (29)

The second identity (25) was derived in [2] in order to demon-
strate the gauge independence of the vacuum decay rate in theo-
ries with radiative symmetry breaking. It can also be used to show
the gauge independence of the physical scalar mass in the symme-
try breaking minimum of the effective potential (a fact that was
already derived before diagrammatically) defined by

1

U
m§,=7 at U'=0 (30)

(primes will generally denote derivatives with respect to ¢). Specif-
ically, the relation
G L)

—m5; =C—m 31
€55 =Ca5ms (31)
can also be easily derived from (24) and (25) and their derivatives,
evaluated at U’ =0.

In this work, the gauge independence of the physical fermion
mass, defined as

Z
VZiZx'

will be demonstrated, after verifying the identities (26), (27) and
(28), which also easily lead to

my = (32)

& 0 my =C 9 m (33)
aE VT e

Interestingly, (33) holds generally and not just at the minimum

of the effective potential, although its interpretation as a physical

particle mass is naturally made at the broken phase.
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In order to explicitly verify the new identities, the Feynman di-
agrams contributing to the various factors will be calculated for
the theory described in the previous Section, in the first non-trivial
order of expansion in the coupling constant, e (our assumption of
radiative symmetry breaking implies that the other coupling con-
stant, A, is of order e*). Since we are interested specifically in the
&-dependence, the propagators that will contribute include the &,
and longitudinal A, propagators,

i(k% — ge2Y2¢?)
Gylky=——>—=, 34
2(k) D& (34)
CL o ig(kz—mﬁ)—ezszz kyuky (35)
poET D(k) k2’

the ghost propagator,

i

_—, 36
k2 +e2Y2v¢ (36)
and the mixed ®; — A,, propagator,
eY (&g + vk,
Gy=—-"°-++—" 37
2 D(k) ( )

(where the momentum is directed from ®; to A,).
The fermion propagator is also “dressed” with the scalar field,

. k+ge

=i, 38
vy lkz_g2¢2 (38)

and the denominators include the function

D(k) =k* —k*(m3 — 2e*Y?ve) +e’Y2p? (e?Y2v? +£m3), (39)

where m% = m%(¢) is the mass of the Goldstone boson. Normally,

the relation qu%(qb) = Up(¢) would hold. However, here we con-
sider the limit of radiative symmetry breaking, which includes the
resummation of the transverse photon loops, that are of the same
order of magnitude as the tree level potential when A ~ e4. Ac-
cordingly, we also have the relation qu%(qb) = U’'(¢), where U(¢)
is the effective potential, for the Goldstone boson mass. This is
used in the verification of the first Nielsen identity (24). However,
since U and m% are of order e, the &-dependent terms arising
from the denominators will be subleading for most terms con-
tributing to the Z-factors, for which the expansion starts at e? for
the first non-trivial terms that will be calculated here.

The C factors in the Nielsen identities are obtained from the
diagrams in Fig. 1 and Fig. 2. The former contains the diagrams
for the calculation of C, the first term in the expansion of f% <
A®1nnF >, and the latter the diagrams for the calculation of

i _
Cy == < AYniF >=Cuy + Cryr = Cr9 + G2y, (40)

with C; = Cq — Cy, Cg = C1 + C>, from which the relevant factors
can be extracted.

The Z’s can be calculated from the diagrams of Fig. 3. Since
we use “dressed” propagators, the wave-function renormalization
factors, Z; and Zy can be extracted from the terms dependent on
the external fermion momentum, after writing

ZigLigyn + ZRURiPYR = Z1 U 9V + Zo U idy Sy, (41)

with Z; = Z1 — Z3, Zg = Z1 + Z3, and the vertex factor, Z, can also
be calculated from the momentum independent terms of the same
diagrams.

In the Figures, the wavy lines denote the gauge field, A;, the
dashed lines denote the &, field, double solid lines denote the
fermion field, v, and the dotted lines the ghosts. The blobs in
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Fig. 1. The diagrams involved in the calculation of C(¢). The various lines and sym-
bols are defined in the text following (41).

Fig. 2. The diagrams involved in the calculation of Cy. The various lines and symbols
are defined in the text following (41).

Fig. 1 denote the insertions of F and A®; and in Fig. 2 the in-
sertions of F and A

The C and Cp g factors turn out to be of order e? in the leading
terms, while Z; r have an expansion of the form 1 +e2..., with the
£-dependence in the e? terms. The corresponding expansion for Z
is of the form Z = g¢ (1 + Z¢), with Z; also of order e? in the
leading, &-dependent, term.

Thus, the required Nielsen identities, that describe the gauge
independence of the physical fermion mass (26), (27), (28) become

3z
§%=2CR, (43)

&
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Fig. 3. The diagrams involved in the calculation of Z; g and Z. The various lines and
symbols are defined in the text following (41).

2% _C e ren (44)
35_(25 L R)s

and can be verified in an explicit calculation of the Feynman dia-
grams in the Figures. The C factor [1,2] is calculated from the sum
of the diagrams in Fig. 1 as

i eY(Ep + VK2 —eYv(k: — ge2Y2p?)
c@ = _ieY/ (2 + e2Y2vg)D (k) =

k

:—%SezYquI, (45)

where fk denotes the integration [ d*k/@m)* over the loop mo-
mentum, k, and

1
1=1<¢,s>=/% (46)
k

is a suitably regularised and renormalised logarithmic function of
the parameters of the theory, as described before.

The C; g factors can be obtained from the sum of the diagrams
in Fig. 2 that gives

_ie? [ (EKE—e?Y2v?) +e2Y2(Epv +v?) 502
C‘”__T/ D (k) (k2 + e2Y2vg) V=ArH =
k
2
=—g1(v2+A2—ZVAy5), (47)

and consequently the factors C1 3, as explained before.
The Z-factors are obtained from the diagrams of Fig. 3, with
external momentum p in the fermion lines. The first one gives

g 1(V +Ay°) P —g4)(V — Ay>), (48)
while the sum of the other two becomes

—gpEe?2AYI, (49)
which gives the results

71 = —ie*E1(V2 + A?) | Zp; =ie®E 12V A, (50)
and

Zs = —ige? 1 (V2 — A? 4 2AY) (51)

Collecting the various factors from the previous relations, and
using (9) and (12), the relations (42), (43) and (44) for the Nielsen
identities are verified.
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4. Comments

In this work, the extension of the Nielsen identities for the ef-
fective action has been described, in theories that involve chiral
fermions, that acquire mass through the mechanism of radiative
symmetry breaking. This has been done with a general “hyper-
charge” assignment, and is expected to be similar for theories like
the Standard Model, validating the use of the effective action for-
malism in order to extract gauge independent physical quantities,
like the fermion masses considered here. Similar work can be done
in models involved in cosmology and particle physics phenomenol-
ogy, in zero and finite temperature, as well as curved spacetime
backgrounds.
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