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I consider an Abelian gauge theory, with a complex scalar field and massless, chiral fermions, in the limit 
where the couplings and the interactions induce radiative symmetry breaking, and I derive and verify the 
Nielsen identities that ensure the gauge independence of the physical fermion mass that emerges in the 
broken phase of the effective action.
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1. Introduction

The phenomenon of symmetry breaking is fundamental in the 
physics of the Standard Model, which is consistently formulated as 
an interacting theory of massless fermions and gauge bosons, that 
acquire mass in the broken phase of the Higgs sector.

The gauge freedom present in the original action of the Stan-
dard Model, as well as any other gauge theory of particle physics, 
makes the calculations of additional radiative corrections more in-
volved, by the process of gauge fixing and the resulting gauge 
dependence that is present in the calculation of individual Feyn-
man diagrams; the final result, however, for any physical quantity, 
calculated at a given order of the coupling constants, is expected 
to be gauge independent once all the relevant terms are accounted 
for.

The gauge dependence of individual terms is described by the 
Nielsen identities [1], that are expected to hold for the generat-
ing functionals of the Green functions of such theories, and have 
been used in order to demonstrate the gauge independence of 
physical quantities such as masses, tunnelling rates, and other con-
sequences of the phenomenon of symmetry breaking in particle 
physics and cosmology [2,3].

In this work, I will consider the specific problem of the gauge 
independence of the fermion masses that are generated for origi-
nally massless, chiral fermions, in the process of symmetry break-
ing, in the limiting case where the latter is induced radiatively 
instead of being present in the tree-level action [4]. Although some 
comprehensive diagrammatic treatments of similar problems, in 
the Standard Model and other cases, exist in the literature, using 
the Nielsen identities or other methods [5], here, I will consider 
the calculation and definition of particle mass through the effec-
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tive action, and derive and prove the relevant Nielsen identities at 
this level. This is important for the consistency of the theory, the 
power-counting and collection of the relevant terms of a physical 
calculation, as well as for the use of the effective action formalism 
as a tool for the study of the process and consequences of symme-
try breaking.

In Sec. 2, I describe the general formalism of the Nielsen iden-
tities for the effective action and the model and parameters con-
sidered.

In Sec. 3, I derive the Nielsen identities that ensure the gauge 
independence of the physical fermion mass in the effective action 
and give an explicit verification in terms of an expansion in the 
coupling constant in the case of radiative symmetry breaking. In 
Sec. 4, I conclude with some comments.

2. The general formalism

For an Abelian gauge theory with fields denoted collectively by 
φi and transforming as

δφi = �φi θ, (1)

under an infinitesimal gauge tranformation with a gauge parame-
ter θ , the classical, tree-level action, S0, has to be gauge-fixed by 
choosing a gauge condition, F (φi), and adding the terms

− F (φi)
2

2ξ
− η̄

δF

δφi
�φi η, (2)

with Fadeev-Popov ghosts η and η̄, rendering the various Green 
functions dependent on the gauge parameter ξ .

The Nielsen identities [1,2] describe the dependence of the ef-
fective action, S (the generating functional of the one-particle irre-
ducible Green functions), as
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ξ
∂ S

∂ξ
=

∫
δS

δφi
Hi[φ j], (3)

where the functional

Hi[φ j] = i

2
< �φi ηη̄ F >, (4)

is a sum of the respective one-particle irreducible graphs with the 
described operator insertions, and can also be expanded in the 
fields φ j and their derivatives.

Here, I will consider the theory of an Abelian gauge field, in-
teracting with a complex scalar field, as well as massless chiral 
fernions with Yukawa interactions, and general hypercharges for 
the gauge transformations of the scalar and fermion fields.

The Lagrangian

L = −1

4
F 2
μν + (Dμ
)∗(Dμ
) − U0(
) + (5)

+ ψ̄L i/DψL + ψ̄R i/DψR +
− √

2g(
ψ̄LψR + 
∗ψ̄RψL)

is written, with the metric tensor ημν = diag(+ − −−), in terms 
of the gauge field Aμ , with the gauge field strength Fμν = ∂μ Aν −
∂ν Aμ , the complex scalar field 
 = 1√

2
(
1 + i
2) and the left- and 

right-handed chiral fermion fields, ψL and ψR .
The matter fields are charged under the gauge interaction, with 

the respective hypercharges, Y , Y L and Y R appearing in the covari-
ant derivatives

Dμ
 = (∂μ + ieY Aμ)
, (6)

DμψL = (∂μ + ieY L Aμ)ψL, (7)

DμψR = (∂μ + ieY R Aμ)ψL, (8)

with the coupling constant, e, and the hypercharges that satisfy

Y = Y L − Y R , (9)

by the requirement of gauge invariance.
I note in passing, that the theory, as written, has a chiral 

anomaly which, however, can be cancelled, similarly to the case of 
the Standard Model, in the presence of more chiral fermion “gen-
erations”, when the relation 

∑
L Y 3

L − ∑
R Y 3

R = 0 is satisfied. This 
can be trivially done here, and will not affect the results, so it will 
not be explicitly shown.

The fermion algebra can be described by the Dirac matrices, 
γ μ , that satisfy the anticommutation relations

{γ μ,γ ν} = 2ημν, (10)

as well as γ 5, with {γ μ, γ 5} = 0, (γ 5)2 = 1, (γ 5)† = γ 5, and the 
projectors P R,L = 1±γ 5

2 , with P 2
R,L = P R,L , P L + P R = 1, P L P R = 0. 

Also, the usual notation for spinors is ψ̄ = ψ†γ 0, and the Dirac 
slash is /a = γ μ aμ , for any vector quantity aμ . Where implied, the 
unit matrix is simply denoted by 1.

Then, the chiral spinors can be combined in a Dirac spinor, ψ =
ψL + ψR , with ψL = P L ψ and ψR = P R ψ , and the Lagrangian can 
be written as

L = −1

4
F 2
μν + (Dμ
)∗(Dμ
) − U0(
) + (11)

+ ψ̄ i[/∂ + ie/A(V − Aγ 5)]ψ − gψ̄(
1 + iγ 5
2)ψ,

with

V = Y L + Y R
, A = Y L − Y R

, (12)

2 2

2

in order to derive the Feynman rules for the fermion propagators 
and interactions.

The gauge invariance of the theory is expressed in the infinites-
imal gauge transformations

δAμ = ∂μθ (13)

δ
 = −ieY θ 
 (14)

δψL = −ieY L θ ψL (15)

δψR = −ieY R θ ψR , (16)

that also imply

δ
1 = eY θ 
2 (17)

δ
2 = −eY θ 
1 (18)

δψ = −ie(V − Aγ 5) θ ψ, (19)

and can be used to extract the �i ’s for the various fields.
The tree-level potential for the scalar field is given by

U0(
) = m2
0 
∗
 + λ

6
(
∗
)2, (20)

and, if the mass parameter m2
0 is positive, it has a symmetric min-

imum at 
 = 0. However, one-loop effects in the effective action, 
give a non-zero, symmetry breaking vacuum at < 
 >= μ, when 
the coupling parameter λ is of order e4, and m2

0 is also sufficiently 
small, of order e2μ2 (or zero) [4].

In order to study this interesting phenomenon, it is useful to 
study the effective action, which can be obtained by the one-
particle irreducible graphs after making the shift 
1 → 
1 + φ

and dropping the terms linear in the fields, in order to derive the 
φ-dependent Feynman rules. Then the effective action can be de-
rived in a coupling constant and derivative expansion in φ, and the 
emergence of a symmetry-breaking minimum can be explored.

Finally, in order to derive the full set of Feynman rules for the 
theory, with the gauge-fixing and ghost terms, as described in the 
beginning of this Section, the class of generalised Rξ gauges will 
be used, with the condition

F = ∂μ Aμ + eY v 
2, (21)

which includes an additional gauge parameter, v . Usually, the 
choice v = −ξ < 
 > is made, in order to eliminate mixing terms 
in the propagators, since, however, the ξ -dependence of < 
 >
will also be involved, it will be convenient to use this general 
gauge-fixing condition, with an arbitrary value for v , although 
other choices are also possible [2,3,5]. An obvious drawback is that 
an additional gauge parameter is used, and the final result has to 
be v-independent as well as ξ -independent; the relevant proce-
dure, however, is identical to the one done for the ξ -dependence, 
and can be easily performed [2].

3. Verification of the Nielsen identities

The general formalism described in the previous Section gives, 
for the specific model used, an effective action with the general 
form

S =
∫

Z(φ)
1

2
(∂φ)2 − U (φ) + (22)

+ Z L(φ) ψ̄L i/∂ ψL + Z R(φ) ψ̄R i/∂ ψR −
− Z̃(φ) (ψ̄L ψR + ψ̄R ψL),

where all the Z ’s are ξ -dependent beyond their tree-level value, 
which, for Z , Z L and Z R is equal to one, and for Z̃ it is equal to 
g φ (usually, I will drop the explicit φ-dependence where obvious).
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In order to apply the Nielsen identity (3), the functionals in (4)
need to be also expanded in powers of derivatives and coupling 
constants in the scalar and fermion fields. The lower order terms 
in the expansion can be written out as follows

ξ
∂ S

∂ξ
=

∫
δS

δφ
C(φ) + δS

δψL
CL(φ)ψL + δS

δψR
C R(φ)ψR + c.c., (23)

where the various C-factors are the first-order terms in the expan-
sion of the functionals Hi in (4) (with i = φ, ψL, ψR ) and can be 
calculated with the appropriate Feynman diagrams and insertions, 
as will be further described in the text and in Figs. 1, 2.

Now the respective powers and derivative terms can be matched 
in the resulting expression of (23), a procedure which, after some 
straightforward algebra, gives the identities

ξ
∂U

∂ξ
= C

∂U

∂φ
(24)

1

2
ξ
∂ Z

∂ξ
= 1

2
C

∂ Z

∂φ
+ Z

∂C

∂φ
(25)

ξ
∂ Z L

∂ξ
= C

∂ Z L

∂φ
+ 2 CL Z L (26)

ξ
∂ Z R

∂ξ
= C

∂ Z R

∂φ
+ 2 C R Z R (27)

ξ
∂ Z̃

∂ξ
= C

∂ Z̃

∂φ
+ (CL + C R) Z̃ . (28)

The first identity (24) is the original Nielsen identity [1], that 
was derived and used in order to show the gauge independence of 
the phenomenon of symmetry breaking through the effective ac-
tion, by compensating the ξ -dependence of the effective potential 
with a respective field dependence

ξ
∂φ

∂ξ
= −C(φ). (29)

The second identity (25) was derived in [2] in order to demon-
strate the gauge independence of the vacuum decay rate in theo-
ries with radiative symmetry breaking. It can also be used to show 
the gauge independence of the physical scalar mass in the symme-
try breaking minimum of the effective potential (a fact that was 
already derived before diagrammatically) defined by

m2
φ = U ′′

Z
at U ′ = 0 (30)

(primes will generally denote derivatives with respect to φ). Specif-
ically, the relation

ξ
∂

∂ξ
m2

φ = C
∂

∂φ
m2

φ (31)

can also be easily derived from (24) and (25) and their derivatives, 
evaluated at U ′ = 0.

In this work, the gauge independence of the physical fermion 
mass, defined as

mψ = Z̃√
Z L Z R

, (32)

will be demonstrated, after verifying the identities (26), (27) and 
(28), which also easily lead to

ξ
∂

∂ξ
mψ = C

∂

∂φ
mψ. (33)

Interestingly, (33) holds generally and not just at the minimum 
of the effective potential, although its interpretation as a physical 
particle mass is naturally made at the broken phase.
3

In order to explicitly verify the new identities, the Feynman di-
agrams contributing to the various factors will be calculated for 
the theory described in the previous Section, in the first non-trivial 
order of expansion in the coupling constant, e (our assumption of 
radiative symmetry breaking implies that the other coupling con-
stant, λ, is of order e4). Since we are interested specifically in the 
ξ -dependence, the propagators that will contribute include the 
2

and longitudinal Aμ propagators,

G2(k) = i(k2 − ξe2Y 2φ2)

D(k)
, (34)

G L
μν(k) = −i

ξ(k2 − m2
2) − e2Y 2 v2

D(k)

kμkν

k2
, (35)

the ghost propagator,

i

k2 + e2Y 2 vφ
, (36)

and the mixed 
2 − Aμ propagator,

G2μ = eY (ξφ + v)kμ

D(k)
(37)

(where the momentum is directed from 
2 to Aμ).
The fermion propagator is also “dressed” with the scalar field,

Gψψ̄ = i
/k + gφ

k2 − g2φ2
, (38)

and the denominators include the function

D(k) = k4 − k2(m2
2 − 2e2Y 2 vφ) + e2Y 2φ2(e2Y 2 v2 + ξm2

2), (39)

where m2
2 = m2

2(φ) is the mass of the Goldstone boson. Normally, 
the relation φ m2

2(φ) = U ′
0(φ) would hold. However, here we con-

sider the limit of radiative symmetry breaking, which includes the 
resummation of the transverse photon loops, that are of the same 
order of magnitude as the tree level potential when λ ∼ e4. Ac-
cordingly, we also have the relation φ m2

2(φ) = U ′(φ), where U (φ)

is the effective potential, for the Goldstone boson mass. This is 
used in the verification of the first Nielsen identity (24). However, 
since U and m2

2 are of order e4, the ξ -dependent terms arising 
from the denominators will be subleading for most terms con-
tributing to the Z -factors, for which the expansion starts at e2 for 
the first non-trivial terms that will be calculated here.

The C factors in the Nielsen identities are obtained from the 
diagrams in Fig. 1 and Fig. 2. The former contains the diagrams 
for the calculation of C , the first term in the expansion of − i

2 <

�
1ηη̄F >, and the latter the diagrams for the calculation of

Cψ = − i

2
< �ψηη̄F >= CLψL + C RψR = C1ψ + C2γ

5ψ, (40)

with CL = C1 − C2, C R = C1 + C2, from which the relevant factors 
can be extracted.

The Z ’s can be calculated from the diagrams of Fig. 3. Since 
we use “dressed” propagators, the wave-function renormalization 
factors, Z L and Z R can be extracted from the terms dependent on 
the external fermion momentum, after writing

Z Lψ̄L i/∂ψL + Z Rψ̄R i/∂ψR = Z1 ψ̄ i/∂ψ + Z2 ψ̄ i/∂γ 5ψ, (41)

with Z L = Z1 − Z2, Z R = Z1 + Z2, and the vertex factor, Z̃ , can also 
be calculated from the momentum independent terms of the same 
diagrams.

In the Figures, the wavy lines denote the gauge field, Aμ , the 
dashed lines denote the 
2 field, double solid lines denote the 
fermion field, ψ , and the dotted lines the ghosts. The blobs in 
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Fig. 1. The diagrams involved in the calculation of C(φ). The various lines and sym-
bols are defined in the text following (41).

Fig. 2. The diagrams involved in the calculation of Cψ . The various lines and symbols 
are defined in the text following (41).

Fig. 1 denote the insertions of F and �
1 and in Fig. 2 the in-
sertions of F and �ψ .

The C and CL,R factors turn out to be of order e2 in the leading 
terms, while Z L,R have an expansion of the form 1 +e2..., with the 
ξ -dependence in the e2 terms. The corresponding expansion for Z̃
is of the form Z̃ = g φ (1 + Z̃ξ ), with Z̃ξ also of order e2 in the 
leading, ξ -dependent, term.

Thus, the required Nielsen identities, that describe the gauge 
independence of the physical fermion mass (26), (27), (28) become

ξ
∂ Z L

∂ξ
= 2CL, (42)

ξ
∂ Z R = 2C R , (43)

∂ξ

4

Fig. 3. The diagrams involved in the calculation of ZL,R and Z̃ . The various lines and 
symbols are defined in the text following (41).

ξ
∂ Z̃ξ

∂ξ
= C

φ
+ (CL + C R), (44)

and can be verified in an explicit calculation of the Feynman dia-
grams in the Figures. The C factor [1,2] is calculated from the sum 
of the diagrams in Fig. 1 as

C(φ) = − i

2
eY

∫

k

eY (ξφ + v)k2 − eY v(k2 − ξe2Y 2φ2)

(k2 + e2Y 2 vφ)D(k)
=

= − i

2
ξ e2 Y 2 φ I, (45)

where 
∫

k denotes the integration 
∫

d4k/(2π)4 over the loop mo-
mentum, k, and

I = I(φ, ξ) =
∫

k

1

D(k)
(46)

is a suitably regularised and renormalised logarithmic function of 
the parameters of the theory, as described before.

The CL,R factors can be obtained from the sum of the diagrams 
in Fig. 2 that gives

Cψ = − ie2

2

∫

k

(ξk2 − e2Y 2 v2) + e2Y 2(ξφv + v2)

D(k)(k2 + e2Y 2 vφ)
(V − Aγ 5)2 =

= − ie2ξ

2
I (V 2 + A2 − 2V Aγ 5), (47)

and consequently the factors C1,2, as explained before.
The Z -factors are obtained from the diagrams of Fig. 3, with 

external momentum p in the fermion lines. The first one gives

ξe2 I(V + Aγ 5)(/p − g φ)(V − Aγ 5), (48)

while the sum of the other two becomes

−g φ ξ e2 2AY I, (49)

which gives the results

Z1 = −ie2ξ I(V 2 + A2) , Z2 = ie2ξ I 2V A, (50)

and

Z̃ξ = −iξe2 I (V 2 − A2 + 2AY ) (51)

Collecting the various factors from the previous relations, and 
using (9) and (12), the relations (42), (43) and (44) for the Nielsen 
identities are verified.
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4. Comments

In this work, the extension of the Nielsen identities for the ef-
fective action has been described, in theories that involve chiral 
fermions, that acquire mass through the mechanism of radiative 
symmetry breaking. This has been done with a general “hyper-
charge” assignment, and is expected to be similar for theories like 
the Standard Model, validating the use of the effective action for-
malism in order to extract gauge independent physical quantities, 
like the fermion masses considered here. Similar work can be done 
in models involved in cosmology and particle physics phenomenol-
ogy, in zero and finite temperature, as well as curved spacetime 
backgrounds.
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