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Abstract
With the advent of gravitational wave astronomy, it has become possible to study mergers
of compact objects such as neutron stars in a new window of gravitational radiation.
Gravitational waves carry imprints of the nuclear makeup of these compact objects
which can be revealed in a merger. Such mergers can be studied in simulations and
their observations (gravitational or electromagnetic) can help constrain the available
models of nuclear physics. In this dissertation, we employ general relativistic neutrino-
radiation hydrodynamic simulations of mergers of neutron stars, with a particular
focus on understanding QCD phase transitions to deconfined quarks. To this aim, we
compute gravitational wave signatures of such phase transitions and find that they
manifest as an increase in a postmerger spectral frequency of the neutron star merger
remnant. This increase, however, is modest at best for the equation of state employed.
Additionally, the frequencies are degenerate with merger simulations of neutron stars
with exclusively nucleonic (confined quarks) degrees of freedom. We also propose a
multi-modal gravitational wave signature, in that, a non-detection or a detection of a
feeble one-armed spiral instability in a merger remnant could point to the presence of
phase transitions.

Further, we explore mergers of strange stars which are self-bound compact objects but
find that the gravitational wave signatures of their mergers are difficult to distinguish from
mergers of other neutron stars. We then examine thermal effects in a merger simulation
of neutron stars and study their influence on the postmerger gravitational wave emission.
In a Bayesian inference study, we find that at postmerger signal-to-noise ratios of 15,
the next generation of gravitational wave detectors could potentially constrain such
thermal effects. Next, we examine gravitational wave emission from multiple models
of QCD phase transitions in a fully consistent Bayesian inference study and find that
the next generation of gravitational wave detectors can reliably identify and distinguish
particularly strong QCD phase transitions at postmerger signal-to-noise ratios as low as
10. Finally, we provide some important insights into how specific choices of constructions
of phase transition models can manifest themselves in ways which could only be revealed
in such simulations making numerical relativity an indispensable tool for the science
cases of the next generation of gravitational wave detectors.

i



Table of Contents

List of Figures vi

List of Tables xx

Acknowledgements xxiii

Chapter 1
Introduction 1
1.1 Relativistic Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Preliminaries from General Relativity . . . . . . . . . . . . . . . . 3
1.1.1.1 Gravitational Waves . . . . . . . . . . . . . . . . . . . . 5

1.1.2 The 3+1 Decomposition of spacetime . . . . . . . . . . . . . . . . 8
1.1.2.1 The ADM Formulation . . . . . . . . . . . . . . . . . . . 10
1.1.2.2 The 3+1 Valencia Formulation . . . . . . . . . . . . . . 13

1.2 The Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.1 Thermodynamic Potentials: A quick review . . . . . . . . . . . . 16
1.2.2 Phase Transitions: A quick review . . . . . . . . . . . . . . . . . . 19
1.2.3 Boltzmann Equation and distribution functions . . . . . . . . . . 22
1.2.4 Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2.4.1 The Ideal Gas equation of state . . . . . . . . . . . . . . 27
1.2.4.2 The Polytropic equation of state . . . . . . . . . . . . . 28
1.2.4.3 The Equation of State for a degenerate relativistic fluid . 31

1.2.5 QCD Phase Transitions . . . . . . . . . . . . . . . . . . . . . . . 36
1.2.5.1 The quark matter EoS: MIT Bag Model . . . . . . . . . 37
1.2.5.2 Stitching the hadronic and quark phases: Maxwell and

Gibbs constructions . . . . . . . . . . . . . . . . . . . . 39
1.2.6 The Tolman Oppenheimer Volkoff (TOV) Equations . . . . . . . 43

1.3 Neutrino Radiation Transport . . . . . . . . . . . . . . . . . . . . . . . . 48

ii



I Numerical Relativity Simulations 51

Chapter 2
QCD Phase Transitions: Gravitational Wave and Electromagnetic

Signatures 52
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2 Equations of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.2.1 Hadronic matter . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.2.2 Deconfined quark matter . . . . . . . . . . . . . . . . . . . . . . . 57

2.3 Numerical Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.4 Merger Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.4.1 Qualitative Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.2 Dynamics of the phase transition . . . . . . . . . . . . . . . . . . 66

2.5 Gravitational Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.6 Dynamical Ejecta and Disks . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.6.1 Ejecta and Nucleosynthesis . . . . . . . . . . . . . . . . . . . . . . 76
2.6.2 Remnant Disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.7 EM Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.7.1 Kilonova Light Curves . . . . . . . . . . . . . . . . . . . . . . . . 82
2.7.2 Kilonova Afterglow . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.9 Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Chapter 3
QCD Phase Transitions: Multi-modal Gravitational Wave Signatures 95
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.2 Equation of state models . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.4.1 Development of the one-armed spiral instability in BNS mergers . 100
3.4.2 The effect of deconfinement phase transitions on the one-armed

spiral instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.6 Appendix 1: On the effects of grid resolution . . . . . . . . . . . . . . . . 109
3.7 Appendix 2: Azimuthal mode decomposition and suppression of ` =

2,m = 1 GW mode for BLQ EOS . . . . . . . . . . . . . . . . . . . . . . 111
3.8 Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Chapter 4
GRHD simulations of binary strange stars 114
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.2 The equation of state for strange quark matter . . . . . . . . . . . . . . . 117
4.3 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

iii



4.4.1 Dynamics of the merger . . . . . . . . . . . . . . . . . . . . . . . 123
4.4.2 Gravitational waves . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.4.3 Ejecta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.4.3.1 Dynamical ejecta . . . . . . . . . . . . . . . . . . . . . . 131
4.4.3.2 Accretion Disks . . . . . . . . . . . . . . . . . . . . . . . 132

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.6 Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Chapter 5
Thermal effects in neutron star mergers 136
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.5 Appendix 1: Neutrino Effects . . . . . . . . . . . . . . . . . . . . . . . . 144
5.6 Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

II Gravitational Wave Detectability 149

Chapter 6
Detectability of QCD Phase Transitions in neutron star mergers 150
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.2.1 NR Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.2.2 Injection Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.2.3 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . 158
6.2.4 Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.2.4.1 Inspiral Informed Priors . . . . . . . . . . . . . . . . . . 161
6.2.4.2 Inspiral Agnostic Priors . . . . . . . . . . . . . . . . . . 164

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.3.1 Inspiral-Informed Postmerger PE with Einstein Telescope . . . . . 165

6.3.1.1 Biases due to multiple amplitude modulations . . . . . . 166
6.3.2 Inspiral Informed Postmereger PE with Cosmic Explorer . . . . . 167
6.3.3 Probing QCD Phase Transitions . . . . . . . . . . . . . . . . . . . 168

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.5 Appendix 1: Inspiral Agnostic PE: results for all simulations . . . . . . . 173
6.6 Appendix 2: Inspiral Informed PE: results for all simulations . . . . . . . 174
6.7 Appendix 3 : Inference with unconstrained f2 and f0 parameters . . . . . 175
6.8 Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Chapter 7
Conclusions and Outlook 202

iv



Bibliography 209

v



List of Figures

1.1 The 3+1 decomposition of spacetime. . . . . . . . . . . . . . . . . . . . . 8

1.2 A schematic diagram showing the phase structure of water projected onto
the pressure-temperature plane at a constant volume. . . . . . . . . . . . 20

1.3 Left panel: The projection of the phase diagram of water on the pressure-
volume space at a constant temperature shows a discontinuity in volume
across the phase boundary. Typically, phase transitions with a single
conserved charge (here N) proceed at a constant pressure. Right panel:
The discontinuity in entropy at the transition temperature T0 at a constant
pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 A schematic diagram of the phases of strongly interacting matter. Shown
is a phase boundary between a deconfined quark phase and a confined
hadronic phase which terminates at a critical point. The precise position
of the critical point is, as of now, not well understood at finite baryon
chemical potential. We also show the approximate positions occupied by
a merger of neutron stars assuming a first order phase transition were to
take place. The figures are not to scale in length. . . . . . . . . . . . . . 36

1.5 A schematic diagram comparing the cold pressure-density profiles for a
hadron-quark hybrid EoS constructed fromMaxwell and Gibbs constructions. 42

vi



1.6 Left Panel: Shown in solid colored lines are the cold equations of state in
the pressure-number density space taken from the reference [40]. These
EoSs are representative of the entire EoS dataset, whose 95 % credible
intervals have been shown with black dotted lines. Also shown are bounds
from the Chiral effective field theory (CEFT) and QCD. Right Panel:
The mass-radius sequences of isolated and non-spinning neutron star
configurations corresponding to the EoSs shown in the left panel. The
grey contour in both panels represents the 95% credible interval of a
joint probability distribution of pressure-density (left panel) and mass-
radius (right panel). Colored circles correspond to the maximum mass
configurations in both panels. The image has been reproduced from the
reference [41] under the terms of the Creative Commons CC BY 4.0 license. 45

2.1 The pressure-density variation at T = 0 and the mass-radius relationship
for isolated, cold (T = 0), β-equilibrated, and spherically symmetric
neutron stars constructed with the two equations of state used in this
work. The circle and square markers represent the individual masses of
the neutron stars simulated for BL and BLQ EOS respectively. The BLQ
mass-radius sequence departs from the BL sequence for neutron stars
having a mass M & 1.7 M�. These stars possess in fact a core made of
hadron-quark mixed matter. . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.2 Evolution of the remnant’s density, temperature, electron fraction and
quark fraction across the xy plane for a merger of the 1.3325 M� − 1.3325
M� binary. Deconfined quarks appear as matter is compressed and heated
up during the merger. The quark distribution strongly correlates with
the temperature distribution in the middle panel, indicating that quarks
are formed due to heating during the merger. At later times, the quark
distribution is centrally condensed and most strongly correlated with the
density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.3 Evolution of a BNS merger of masses 1.4 M� and 1.2 M� evolved with
the BLQ EOS. The mass configuration corresponds to the pulsar PSR
J1829+2456 [102]. The blue and grey colour-scales represent iso-density
surfaces corresponding to densities 1014 g cm−3 and 1013 g cm−3 respec-
tively. The deconfined quark phase that appears near the core of the
remnant after merger is represented in red. . . . . . . . . . . . . . . . . . 65

vii

https://creativecommons.org/licenses/by/4.0/


2.4 Thermodynamic trajectory of a representative tracer particle from the
binary system 1.3325 M� − 1.3325 M�. The trajectory is superposed
on a Ye weighted equilibrium slice of the BLQ EOS. The trajectories
themselves are color-coded according to the relative time from the merger.
Matter in the NS cores crosses the phase boundary several times starting
from the moment of merger and until the time of collapse and BH formation. 67

2.5 Same figure as fig. 2.4 but now the trajectory of the tracer is color-coded
with the radial distance of the tracer from the center of the remnant. . . 68

2.6 Time evolution of quark fraction and density of fluid elements traced by
Lagrangian tracers for 2 binary neutron star systems 1.482 M�-1.259
M� and 1.3325-1.3325 M�. Noticeable is the fact that the period of
oscillations of density matches the period of oscillations of quark fraction. 68

2.7 A two-dimensional histogram of the thermodynamic variables ρ and T
and weighted by bins of tracer mass. Also shown are the contours of
quark fraction. Both the bulk of the remnant’s core and the periphery of
the core can exhibit deconfined quark matter depending upon ρ and T. . 69

2.8 Evolution of the instantaneous GW frequency fGW, the“+” polarization
strain amplitude for the (l = 2,m = 2) mode of the GW signal, the central
density ρ, and the binding energy Eb of the 1.3325 M� − 1.3325 M�
binary. The inspiral (t ≤ tmerg) evolution predicted by both the BLh and
BLQ EOSs is identical. The appearance of quarks is imprinted on the
postmerger dynamics and GW signal. . . . . . . . . . . . . . . . . . . . . 71

2.9 Amplitude of the (l = 2,m = 2) mode of the GW strain h+ and binding
energies for the 1.4 M� - 1.2 M�, 1.482 M� - 1.259 M�, and 1.856 M�
- 1.020 M� binaries. As the binaries become more massive or more
asymmetric, the length of the postmerger signal decreases. The postmerger
is further shortened by an onset of deconfinement phase transition. . . . 72

2.10 Power spectrum of the (l = 2,m = 2) mode of the GW strain for the
1.4 M� − 1.2 M�, 1.3325 M� − 1.3325 M�, 1.482 M� − 1.259 M�, and
1.856 M� − 1.020 M� binaries. An exponential filter was applied to the
data to remove the inspiral signal. The difference in the peak frequency
between the BLQ and the BLh binaries in the top panels is sufficiently
large to be measured. On the other hand, because of the short length of
the BLQ postmerger signals, the differences in the peak frequency for the
binaries in the bottom panels is smaller than the nominal uncertainty of
the Fourier transform, so they cannot be measured. . . . . . . . . . . . . 73

viii



2.11 Correlations between the total mass-scaled postmerger peak frequency
Mf2 and the tidal parameter ξ. Also shown is the fit from the quasi
universal relation presented in [64] along with its 90% confidence interval.
The grey points correspond to simulations catalogued in the CoRe database
[123]. It can be seen that deviations in f2 (red circles) by virtue of phase
transitions are not large enough to violate the quasi-universal relation. . 75

2.12 Histograms of the asymptotic velocity v∞, specific entropy s, angle with
the orbital plane θ, and electron fraction Ye of the ejecta for three rep-
resentative binary configurations evolved with the BLh and BLQ EOSs.
The most significant differences are seen in the 1.4 M� - 1.4 M� binary,
for which the BLQ EOS predicts rapid BH formation, while the BLh EOS
predicts a long-lived remnant. We note that M here represents the mass
of the ejecta in the corresponding bins normalized to Mej i.e. the total
ejecta mass as reported in tables 2.4 and 2.5. . . . . . . . . . . . . . . . 78

2.13 Nucleosynthesis yields of the dynamical ejecta from selected binaries. The
final relative abundances in the ejecta are insensitive to the appearance of
quarks, but are instead sensitive to the binary mass-ratio. Comparable-
mass binaries produce r-process elements with relative abundances close
to Solar r-process residual, while high-mass ratio binaries show ratios
of heavy to light r-process abundances that are significantly larger than
the Solar r-process residual. We normalize the yields at a given A with
respect to the yields in the 3rd r-process peak i.e. A ∈ [180, 200] to report
the relative abundance Y. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.14 Evolution of disk mass for a subset of our simulations. Binaries with the
BLh EOS (solid lines) form stable, long-lived remnants with disks evolving
on long timescales. The binaries with deconfined quarks (dotted lines)
result in the formation of BHs. The gravitational collapse is accompanied
by the accretion of a significant fraction of the disk over a timescale of few
milliseconds. Binaries where remnants from both EOSs undergo prompt
collapse do not show significant differences in their disk mass evolution. . 81

2.15 Kilonova light curves for a subset of our simulations with q = 1. The
colour code represents the total mass of the binary with the dashed (solid)
curves indicating models with (without) a QCD phase transition. In
general, BLh binaries are more luminous and the brightness decreases
with increasing mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

ix



2.16 Kilonova afterglow light curves at 1 keV for a set of equal mass models.
The models’ total mass is color-coded. Dashed (solid) curves indicate
models with (without) phase transition. The plot shows that the afterglow
of models with phase transition in general is brighter and more extended
in time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.17 The ejecta kinetic energy (left two panels) and kilonova properties (right
two panels) for the simulations with and without phase transition (BLQ
and BLh, respectively). The kinetic energy is shown separately for the
entire ejecta (lower subpanel) and for the fast component only (upper
panel). The kilonova properties are the lightcurves’ peak time (upper
panel) and flux (lower panel). Circle (squre) markers indicate models with
(without) phse transition, i.e., models with BLQ (BLh) EOS. The plot
shows a correlation between the peak flux and the total kinetic energy.
The effect of the phase transition is very prominent at high mass binaries,
where the softening of EOS leads to prompt collapse, reducing the ejecta
kinetic energy and peak flux. . . . . . . . . . . . . . . . . . . . . . . . . 86

3.1 Left panel: Density mode decomposition following Eq. (3.2) for a sim-
ulation which employs a purely hadronic EOS (DD2F). We depict the
dominant density modes (C2 and C1) scaled by the C0 mode to show
the relative strength of each fluid pattern. Right panel: Same as the left
panel but for a simulation which employs an EOS with a hadron-quark
PT (DD2F-SF5, which is identical to the hadronic DD2F model below
the threshold densities for the phase transition). Such a suppression is
even more evident in the case of BLQ EOS which has a larger ∆ε. See
appendix 3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.2 Left panel: Energy carried by GWs in the ` = 2,m = 1 mode as a
function of time. The development of the one-armed spiral instability
can be observed in the purely hadronic simulation, as the energy in the
` = 2,m = 1 GW mode continues to grow, but is suppressed in the
hadron-quark simulation. Right panel: Time-averaged energy emitted
by GWs in the ` = 2,m = 1 mode, normalized by the same quantity
for the corresponding hadronic EOS, as a function of the energy density
gap separating the hadronic and quark phases. We depict results for
quasi-circular and eccentric mergers with pink triangles and green circles,
respectively. We find that the energy emitted by the ` = 2,m = 1 GW
mode decreases by up to approximately an order of magnitude for larger
energy density gaps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

x



3.3 Multimodal GW amplitude spectral density computed for symmetric
binaries of total mass M = 2.6 M� in an edge-on configuration. Also shown
are the noise sensitivity curves for advanced LIGO (aLIGO), Einstein
Telescope (ET), the 20 km postmerger-optimized configuration for the
Cosmic Explorer (CE20) and the 40 km configuration for Cosmic Explorer
(CE40). A suppression in the amplitude spectral density as a result of the
deconfinement PT may be detectable with the third generation detectors
and most cleanly with CE40. . . . . . . . . . . . . . . . . . . . . . . . . 102

3.4 Left panel: Energy in the ` = 2,m = 1 GW mode as a function of time for
simulations employing a hadronic (DD2F) and hadron-quark (BBKF1.5)
EOS; the simulations use identical initial conditions and are run with a
grid resolution of ∆x = 369.2 m in the finest grid. These results showcase
that the one-armed spiral instability may be seeded at different levels in
the postmerger environment for different simulations. Right panel: Same
quantity as the left panel, but normalized to the value at a time shortly
after merger, tnorm = tmerger + 0.5 ms. Normalizing at this time accounts
for the one-armed spiral instability being seeded at disparate levels across
simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.5 Left panel: Time-averaged energy emitted by GWs in the ` = 2,m = 1
mode, normalized by the same quantity for the complementary hadronic
EOS, as a function of the energy density gap separating the hadronic and
quark phases. We show results for the LR simulations in our work. Right
panel: Same as the left panel, but normalizing all data at a time shortly
after merger, tnorm = tmerger + 0.5 ms as consistent with Fig. 3.4 . . . . . 110

3.6 The decomposition of fluid density into azimuthal modes on the equatorial
plane for a remnant neutron star (for the symmetric 1.30 M� - 1.30 M�
binary) evolved with a hadronic EOS BLh (left panel) and a hybrid hadron-
quark EOS BLQ (right panel). The quark EOS noticeably suppresses
the m = 1 fluid density mode that manifests as a loss of SNR in the
` = 2,m = 1 GW mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.7 The time evolution of GW energy (equivalently SNR) carried by the
` = 2,m = 1 mode in a merger of the symmetric 1.30 M� - 1.30 M�
binary. Also shown is the relative suppression caused by an onset of QCD
phase transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xi



4.1 The pressure vs. rest mass density relation for the strange quark matter
EOS at zero temperature, i.e., a completely degenerate Fermi gas of u, d,
and s quarks along with electrons for electrical neutrality. The pressure
of strange quark matter begins dropping rapidly at densities near and less
than nuclear saturation as is also seen in [66]. . . . . . . . . . . . . . . . 118

4.2 The mass-radius relationship for isolated and non-rotating strange stars
computed from iterative solutions of the TOV equations for the cold
strange quark matter EOS presented in this work. Contrary to the TOV
sequences of neutron stars which have a negative slope, the TOV sequences
for strange stars have ∂MG/∂R > 0 for the stable branch. Strange stars
are self-bound as a result of QCD interactions meaning that they will
be bound even in the absence of gravity. In other words, their surfaces
possess a surface tension and they can be very small in size R ∼ 4km. We
also denote the TOV configuration of the strange star, whose symmetric
binary merger we simulate in this work with a black circle. . . . . . . . . 120

4.3 The evolution of rest mass density ρ on the equatorial plane for a merger of
BSS evolved with the finite-T EOS. The evolution time for each snapshot
has been listed relative to the merger which we take to be at 0 ms. . . . . 124

4.4 Time evolution of the minimum of lapse function αmin. We compare
the evolution for the hybrid simulation and the finite-T simulation and
observe that the lapse for the hybrid EOS’s remnant saturates during the
simulation time scale whereas for the finite-T EOS’s remnant, it drops
below 0.3 indicating the formation of an apparent horizon. . . . . . . . . 125

4.5 The time evolution of the central (maximum) rest mass density (normal-
ized to nuclear saturation density) in a merger of strange stars for the two
EOS treatments considered in this work. We observe that the finite-T rem-
nant undergoes more violent oscillations in density owing to its softening
at high densities relative to the hybrid EOS. These violent oscillations do
not dampen away during the simulation time scale, eventually causing the
finite-T remnant to collapse. On the other hand, oscillations in the hybrid
remnant’s central density saturate over a time scale of 20 ms, following
which the hypermassive hybrid remnant remains stable. . . . . . . . . . . 126

4.6 Top panel: The evolution of the + polarization of the gravitational wave
strain computed from a hybrid simulation and a finite-T simulation. For
both the EOS treatments, h+ has been so oriented that the merger takes
place at 0 ms. Bottom Panel: The time evolution of instantaneous
frequency for both the EOS treatments. . . . . . . . . . . . . . . . . . . 127

xii



4.7 The amplitude spectral density of the postmerger gravitational wave strain
from both the hybrid EOS treatment and the finite-T EOS treatment.
Noticeable are the characteristic postmerger peak frequencies fpeak

2 be-
tween 2-4 kHz. The finite-T EOS being softer at higher densities naturally
predicts a more compact remnant thereby increasing its fpeak

2 . Also shown
are the sensitivities of the next generation of GW detectors with the best
detection prospects offered by the 20 km postmerger optimized CE-20
detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.8 We show our BSS merger models (in red and blue circles) simulated at
SR with both hybrid EOS and a finite-T EOS in conjunction with the
pre-established quasi-universal relations for BNS mergers provided in
refs. [284, 285]. The universal relations have been calibrated over 600
numerical relativity simulations of neutron star mergers from the CoRe
database. Up to 90% credible intervals, BSS mergers are degenerate
with BNS mergers implying that they are not mutually distinguishable.
The error bars provide differences in fpeak

2 from the corresponding lower
resolution LR models. Owing to small ∆fpeak

2 ∼ O(10) Hz with a change
in spatial resolution for the finite-T EOS model, its error bars are relatively
obscured. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.9 Evolution of the unbound (according to the geodesic criterion) strange
quark matter as a function of time. Strong density pulsations with the
softer finite-T EOS at high densities could result in more SQM being
gravitationally unbound from the remnant. . . . . . . . . . . . . . . . . . 131

4.10 The evolution of disk mass as a function of time for the two treatments
of the SQM EOS. We note that owing to violent oscillations in the
remnant, the remnant for the finite-T model supports a more massive
disk as compared to the hybrid model. This disk eventually starts getting
accreted back as the remnant collapses into a black hole. . . . . . . . . . 132

5.1 Temperature and rest-mass density slices in the x-y plane of the m∗ =
0.55 and m∗ = 0.95 SR simulations at approximately 5 ms post-merger.
Contour lines correspond to rest-mass densities ρ = {1012, 1013, 1014, 5×
1014} g cm−3. For visual clarity, the m∗ = 0.75 model is not shown. . . . 139

5.2 Average temperature as a function of density. . . . . . . . . . . . . . . . 140

5.3 The maximum rest-mass density of the SR simulations (top) and the the
gravitational-wave strain of the ` = 2, m = 2 mode (bottom). . . . . . . . 141

xiii

http://www.computational-relativity.org/gwdb/


5.4 The reconstructed GW spectrum of the ` = 2, m = 2 mode using the
NRPMw model. The colored solid lines represent the median waveform
and the colored shaded regions represent the 90% credible intervals on
the posterior distribution of the spectra computed from the recovered
parameter space of NRPMw. The colored dashed limes represent the injected
spectra at an SNR of 15. Additionally, shown are the postmerger peak
frequencies f2 (in vertical dashed lines) and the 90% credible intervals (in
grey) on the posterior distribution of f2 from the reconstructed waveforms. 142

5.5 The GW strain of the ` = 2, m = 2 mode at DL = 40 Mpc for both the
M1 (solid lines) and M0 (dashed lines) SR simulations. . . . . . . . . . . 145

5.6 The average temperature as a function of density at t ≈ 5 ms post-
merger for the M0 (left) and M1 (right) SR simulations. Each average was
calculated by constructing two-dimensional histograms in temperature and
density, then averaging over the temperature with a weight corresponding
to the mass of each density-temperature bin. To reduce noise in the data,
five equally-spaced timesteps (with ∆t ≈ 0.05 ms) centered on t ≈ 5 ms
were averaged together. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.7 The deviation from weak equilibrium ∆µνe/T between M0 (left) and M1
(right) for m∗ = 0.55 (top), m∗ = 0.75 (middle), and m∗ = 0.95 (bottom)
at t ≈ 5 ms. The contour lines correspond to the rest-mass densities
ρ = {1012, 1013, 1014, 5× 1014} g cm−3. . . . . . . . . . . . . . . . . . . . 148

6.1 Pressure - density curves for the T = 0 (zero temperature) slice of the
equations of state (EOSs) used in this work. BLh and DD2F EOSs
contain only nucleonic degrees of freedom whereas BLQ and DD2F-SF1
also include a prescription for a 1st order phase transition to deconfined
quarks. Such a phase transition leads to a loss of pressure at high densities
ρ ∼ 1015g cm−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.2 Extraction of the postmerger waveform from an NR waveform by applying
a Tukey window. This windowed waveform upon spline interpolation and
zero-padding is then injected in a noise-less configuration of the ET/CE
detectors for parameter estimation using NRPMw. . . . . . . . . . . . . . . 157

xiv



6.3 Corner plot depicting the posteriors on chirp massMc, tidal deformability
Λ̃, mass ratio q, individual tidal parameters Λis and the total mass M for
the binary 1.398M� - 1.198M� with the BLh EOS. These posterior PDFs
are computed from a self-consistent injection recovery of the TaylorF2
waveform model corresponding to the binary parameters presented in
Table 6.1 for the ET detector configuration. We show the 90% credible
intervals in the 1-D posteriors in grey shaded regions and the 50% and
90% credible contours for the 2D joint posteriors. . . . . . . . . . . . . . 178

6.4 A corner plot showing a comparison between measurements of tidal
parameters Λ1 and Λ2 when computed directly from inspiral and when
refined using quasi-universal relations from [392] . . . . . . . . . . . . . . 179

6.5 A corner plot showing a comparison between the two types of priors
employed in our work, i.e., a broad prior onM , q, Λ1 and Λ2 and Gaussian
distributions informed of these quantities from an independent parameter
estimation of the inspiral signal. . . . . . . . . . . . . . . . . . . . . . . . 180

6.6 Left Panel: The posterior distribution on the postmerger peak frequency
fpeak

2 and the tidal polarizability κT2 for the binary 1.398M� − 1.198M�
with the BLh EOS at a postmerger SNR of 10. We also show the 90%
and 50 % contour levels for the joint PDF. Additionally, we compare
the posteriors obtained from the two choices of priors namely an inspiral
agnostic choice (in blue) and an inspiral informed choice (in red). We
observe that using inspiral informed priors has marginal influence on fpeak

2
but substantially improves the measurement of κT2 as expected. Right
panel: The same calculation for the corresponding quark model. Shown
in grey shaded regions are the 90% CIs for the respective posteriors with
inspiral informed priors. We note that for the quark EOS, NRPMw is able
to recover the injected fpeak

2 to within 90% CIs however, for the BLh
(hadronic) case, the injected value lies at the boundary of the 5th percentile.
Nevertheless, for both the cases the injection lies within the 90% contour
of the joint PDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.7 Reconstructed spectra for the binary 1.398M� − 1.198M� with the BLh
and BLQ EOSs at a postmerger SNR of 10. The dotted curves represnt the
injected spectra and the solid curves represent the median reconstructed
signal by NRPMw. We also show 90% CIs on the reconstructed signal in
the shaded regions. Vertical dotted lines correspond to the injected fpeak

2
and the grey shaded regions represent the 90% CIs on the fpeak

2 posteriors. 183

xv



6.8 Upper Left panel: The time domain postmerger waveform for the BLh -
1.398M�− 1.198M� binary with and without an exponential filter. NRPMw
works best for the early postmerger where it can capture the 1st two
amplitude modulations that peak at t1 and t3 respectively. The model,
as of now, cannot capture subsequent amplitude modulations. Upper
Right Panel: The frequency spectra of the corresponding unfiltered and
filtered waveforms that show a shift in fpeak

2 upon exclusion of amplitude
modulations at t−tmerg & 5 ms. Bottom Panel: The reconstructed spectra
for the unfiltered waveform (left) and the filtered waveform (right) that
show the bias in fpeak

2 ’s measurement because of the 3rd and subsequent
amplitude modulations. We see that upon filtering these modulations,
the model is able to capture the fpeak

2 to within 90% CIs. . . . . . . . . . 184

6.9 The reconstructed spectra corresponding to an inspiral informed post-
merger PE for the binary 1.289M�− 1.289M� with the DD2F and DD2F-
SF1 EOSs, computed with the postmerger optimized CE-20 detector. Like
in the case of recovery from Einstein Telescope (Fig. 6.20), here also we
see that multiple amplitude modulations can bias the recovery of fpeak

2
for DD2F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.10 Same calculation as in fig. 6.8 to show the impact of multiple amplitude
modulations on the recovery of fpeak

2 for the hadronic DD2F simulation
computed with the CE-20 detector. Here also we observe that filtering
out the 3rd and subsequent modulation in the postmerger amplitude can
result in an accurate recovery of fpeak

2 to within 90% CIs. . . . . . . . . . 185

6.11 Quasi Universal relation from Breschi et al. [284] shown along with this
work’s Bayesian inference error estimates. Shown in grey scatter points,
are the hadronic simulations from the CoRe database along with the fitting
functions from [284] and [285] for non-spinning and symmetric binaries.
The light green shaded region represents a 90% confidence interval corre-
sponding to the fit function from [284] which is also implemented in the
NRPMw model. Even though [285] updates upon the fit coefficients in [284],
the two are within 90% confidence of each other. Black stars denote the
injected values in a 2D parameter space of Mf2 and κT2 . The colored
shaded regions represent the 90% contours of the 2D joint posteriors
on Mf2 and κT2 obtained in this study. In parenthesis we depict the
simulation index of the binaries as defined in Table 6.4. Top Panels: We
show binaries which are non-degenerate with respect to each other upto
90% CIs and with the universal relation. Bottom Panels: We show models
which are not mutually distinguishable to 90 %. . . . . . . . . . . . . . . 186

xvi



6.12 A comparison of the joint inference of fpeak
2 and κT2 between two configura-

tions of NRPMw, i.e., excluding the fpeak
2 −κT2 universal relation (NRPMw) and

including the fpeak
2 universal relation (NRPMw_v1). Left Panel: Results for

the 1.298M�−1.298M� binary with the BLQ EOS whose injection follows
the universal relation. Both the model configurations can recover the
injection with the data (injection) slightly preferring the QUR informed
model NRPMw_v1. Right panel: Results for the 1.289M�−1.289M� binary
with the DD2F-SF1 EOS whose injection strongly violates the universal
relation. The data (injection) slightly prefers the more flexible QUR
uninformed model (NRPMw) as it has larger flexibility than NRPMw_v1 in
reference to recovering injections that violate the universal relation. . . . 187

6.13 Same calculations as in Fig. 6.6, i.e., a measurement of fpeak
2 and κT2 for

the 1.298M� − 1.298M� and 1.481M� − 1.257M� binaries with the BLh
and BLQ EOSs. In contrast to Fig. 6.6, here we use a different choice of
priors that are uninformed of the inspiral signal and set to wide ranges as
described in Table 6.2. We note that the NRPMw model captures to within
90% CIs the fpeak

2 frequency for the quark and hadronic models however,
the tidal polarizability κT2 is poorly determined owing to the fact that no
tidal information is present in the postmerger signal. . . . . . . . . . . . 189

6.14 Same calculations as in Figure 6.13 for the binary 1.398M� − 1.198M�
simulated with the BLh and BLQ EOSs. . . . . . . . . . . . . . . . . . . 190

6.15 Same calculations as in Figure 6.13 for the binary 1.363M� − 1.363M�
simulated with the BLh and BLQ EOSs and the binary 1.289M�−1.289M�
simulated with the DD2F and DD2F-SF1 EOS. . . . . . . . . . . . . . . 191

6.16 Same calculation as in Fig. 6.7, i.e. reconstructed spectra for all the
binaries in our work but computed with priors that are uninformed of the
inspiral signal. We observe an accurate recovery of fpeak

2 and distinguisha-
bility between hadronic and quark models to 90% at a postmerger SNR
of 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.17 Corner plot depicting the posteriors on chirp massMc, tidal deformability
Λ̃, mass ratio q, individual tidal parameters Λis and the total mass M for
the binary 1.298 M� - 1.298 M� with the BLh EOS. The fact that the
posteriors on mass ratio are one-sided influences the measurements of Λ1,
Λ2 and M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

xvii



6.18 Same calculations as in Fig. 6.6 for the binaries 1.298M� − 1.298M�
and 1.481M� − 1.257M� with the BLh and BLQ EOSs. We note that
the NRPMw model captures to within 90% CIs the fpeak

2 frequency for
the quark EOSs however the measurement of the same for hadronic
model 1.298M�− 1.298M� suffers from a systematic bias that of multiple
amplitude modulations. The double-peaked feature in the 1.481 M�
- 1.257 M� binary is because this system is the shortest-lived of all
our simulations due to which the uncertainties in the measurement of
postmerger frequency are the highest. . . . . . . . . . . . . . . . . . . . . 194

6.19 Same calculations as in Fig. 6.6 for the binary 1.363M� − 1.363M� with
the BLh and BLQ EOS and the binary 1.289M� − 1.289M� with the
DD2F and DD2F-SF1 EOS. . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.20 Same calculation as in Fig. 6.7, i.e., reconstructed spectra for the binaries
1.298M� − 1.298M�, 1.481M� − 1.257M� and 1.363M� − 1.363M� with
the BLh and BLQ EOS as well as for the binary 1.289M� − 1.289M�
with the DD2F and DD2F-SF1 EOS. . . . . . . . . . . . . . . . . . . . . 196

6.21 Same calculations as in Figure 6.8 for the binary 1.298M�−1.298M� with
the BLh EOS and the binary 1.289M� − 1.289M� with the DD2F EOS.
Here, we show that the exclusion of more than 2 amplitude modulations
in the strain can lead to recovery of the fpeak

2 to within 90% CIs at a
postmerger SNR of 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.22 Left Panel: The posterior distributions of the total mass and mass ratio
from a postmerger PE of the binary 1.398M� − 1.198M� with the BLh
EOS compared between the two choice of priors used in this work. Right
Panel: the posterior PDFs for the component tidal deformabilities. In
both cases we notice a clear improvement in accuracy for the measurement
of M, q,Λ1 and Λ2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6.23 The reconstructed NRPMw waveforms for a postmerger PE of the binary
1.398M�− 1.198M� with the BLh EOS corresponding to both the choices
of priors. Both the reconstructions lie within the 90% CIs of each injection
and the fpeak

2 frequency shows only a miniscule deviation of ≈0.3%. . . . 199

xviii



6.24 Left Panel: The posterior distributions of the postmerger peak frequency
fpeak

2 and the tidal polarizability κT2 corresponding to the 1.298M� −
1.298M� binary with the BLh EOS. Also shown is the lack of covariance
of fpeak

2 with κT2 owing to the corresponding QUR being not used. The
contours correspond to the 50 % and 90% CIs of the joint PDF. Right
Panel: The median reconstructed waveform from NRPMw_v2 shown along
with the NR waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.25 A comparison of the joint fpeak
2 −κT2 posterior for the 1.298M�−1.298M�

binary between the NRPMw and NRPMw_v2 model configurations. We
see that the 90% contours of the joint posteriors for both the model
configuratios contain the injection. . . . . . . . . . . . . . . . . . . . . . 201

7.1 A comparison of the evolution of central density in the remnant (scaled
to nuclear saturation) with time for a merger of 1.3 M� - 1.3 M� binary
corresponding to the EOSs BLQ and DD2F-SF1. These EOSs construct
the phase transitions via a Gibbs and a Maxwell construction respectively.
The remnant with the DD2F-SF1 EOS is more compact which is evidenced
by the stronger density oscillations it undergoes. . . . . . . . . . . . . . . 205

7.2 Azimuthally averaged radial profiles of specific entropy (per baryon) for
the two BNS models shown in figure 7.1. For the BLQ remnant, the flow
near the core of the remnant is adiabatic as is seen by a largely constant
entropy distribution. On the other hand, the fluid near the core of of the
remnant with the DD2F-SF1 EOS experiences a shock which is evidenced
by local entropy production near the core. The green contours represent
constant density profiles in units of nuclear saturation. . . . . . . . . . . 206

xix



List of Tables

2.1 A summary of the properties of non-spinning isolated NSs used for con-
structing the initial data with the BL EOS. M1 represents the primary
(heavier) mass in the binary and M2 is the secondary mass. M represents
the total mass whereas q and ν represent the mass ratio and the symmetric
mass ratio of the binary. Λis (i ∈ {1, 2}) are the respective quadrupolar
tidal polarizability coefficients of the individual stars and Λ̃ is a parameter
defined in Eq(5) of [99]. ξ is a tidal parameter constructed in [64] from Λis. 62

2.2 A summary of the postmerger GW properties from all our simulations
at 2 spatial resolutions. tmerg is the time of merger, tBH is the time after
merger when the system collapses to a black hole, tcoll is the time when
the gravitational radiation from the 2,2 mode shuts down and tend is
the final time of the simulation. f2 represents the dominant postmerger
peak frequency of the 2,2 mode, ∆f2 represents the difference between
the postmerger peak frequencies from the 2 EOSs and ∆FT represents
the numerical uncertainty in the Fourier transform. The binary labelled
with BLh* is with GRLES (general-relativistic large-eddy simulation) and
simulated using the calibrated turbulence model in [100]. . . . . . . . . 91

2.3 Same as Table 2.2 except that now we report the results for low-resolution
(LR) simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2.4 A summary of the analysis of ejecta properties and disk masses for all our
binaries at 2 spatial resolutions. Mend

disk is the disk mass at the end of the
simulation, Mej is the total mass of the ejecta, 〈v∞〉ej is the ejecta’s mass
averaged asymptotic velocity, 〈Ye〉ej its mass averaged electron fraction,
〈s〉ej the mass averaged specific entropy and 〈θ〉ej is the rms angle with
the orbital plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

2.5 Same as table 2.4 except that now we report the results for low-resolution
(LR) simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xx



3.1 Summary of key properties for the EOS models considered in this work.
We list the EOS model name, degrees of freedom considered (DOF), energy
density gap ∆ε in units of 1015gcm−3, type of EOS considered (where
‘PP’ stands for piecewise polytropic and ‘FT’ stands for a tabulated EOS
model; all PP and FT type EOS models consider a Γ-law EOS with
Γ = 1.8 and microphysical finite temperature thermal EOS treatment,
respectively), and literature reference with further details on the model
(Ref.). For EOS models that include a deconfinement PT to quark matter,
we also list the counterpart hadronic EOS which is identical to the the
model below the threshold densities for quark deconfinement (Count.). . 97

3.2 Summary of the modeling assumption and initial conditions for the sim-
ulations considered in this work. We list the EOS, degrees of freedom
(DOF) modeled in the EOS, orbital condition imposed, neutrino model
assumed, grid resolutions considered, total system mass, and mass ratio
q = M1/M2 (where M1 (M2) is the mass of the less (more) massive star
in the configuration). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.1 A summary of our simulation dataset for two spatial resolutions. m1 and
m2 are the gravitational masses of the two strange stars in the binary and
M is the total gravitational mass of the binary. Λ represents the tidal
deformability of the individual star in the binary and is the same for both
stars in a symmetric binary. fpeak

2 represents the dominant postmerger
peak frequency of the ` = 2, m = 2 mode. tBH − tmerg is the time of
collapse to a black hole relative to merger. . . . . . . . . . . . . . . . . . 135

5.1 Peak post-merger frequencies (f2) of the gravitational wave spectrum for
the LR (M1), M0, and SR (M1) simulations and the NRPMw model.
For reference, the recovered matched-filter SNR values and corresponding
luminosity distance DL are also provided. For consistency, all peaks are
measured after suppressing the inspiral. We also provide the mismatch,
M (see [335, 336]), between the fSR

2 runs, with one row measured against
m∗ = 0.75 and the other against m∗ = 0.95. . . . . . . . . . . . . . . . . 143

xxi



6.1 A summary of NR simulations employed in this work. The corresponding
postmerger waveforms are used in the construction of injections for the
next generation GW detectors and for the subsequent Bayesian inference.
EOS represents the equation of state, m1 and m2 the gravitational masses
of the binary (m1 > m2), q the mass ratio, Λis the tidal deformabilities
and tBH the time of black hole formation expressed relative to the time
of merger tmerg. The acronym HMNS represents a hypermassive neutron
star remnant that doesn’t collapse within the simulation timescale. . . . 159

6.2 Prior ranges for the parameters of the NRPMw model as well as the extrinsic
and intrinsic parameters in an inspiral agnostic setting. In particular,
the priors on M and q have been set in accordance to ref. [379] so as to
maintain a uniform distribution in m1 and m2. . . . . . . . . . . . . . . 162

6.3 Prior ranges for the parameters of the NRPMw model, the extrinsic and
intrinsic parameters in an inspiral informed setting. We constrain priors
on M , q, Λ1 and Λ2 from the inspiral signal. In this table, we show details
for the prior distribution employed for the 1.398M� − 1.198M� binary
with the BLh EOS. The type of priors remains the same for all models in
our work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.4 A summary of the properties of postmerger injections corresponding to
the NR simulations reported in table 6.1. In this table we present these
properties for the choice of priors that is informed by the inspiral signal
as described in subsection 6.3.1. In particular, GW model represents
the specific configuration of the NRPMw model utilized for the recovery.
We us the NRPMw model in three configurations namely, NRPMw, where
the f2 parameter is unconstrained by the f2 − κT2 relation, NRPMw_v1
where the f2 parameter is constrained by the quasi universal relation,
and the most flexible NRPMw_v2 configuration where both f2 and f0 are
unconstrained from their respective quasi universal relations. Detector is
the GW datector used for the recovery of postmerger injections, fpeak

2;Injected
and fpeak

2;Recovered are respectively the injected and recovered postmerger
peak frequencies and D` is the luminosity distance of the binary from the
detector. In the last two columns, we report the postmerger signal to
noise ratios of the injected and recovered signals. . . . . . . . . . . . . . 181

6.5 Same properties as presented in table 6.4 but now for the choice of inspiral
agnostic priors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

xxii



Acknowledgements

At the very outset, I would like to express my deepest gratitude to my Ph.D. supervisor
and mentor Prof. David Radice. I am deeply indebted to him for his resourcefulness,
infinite patience (which I have tested many a time), excellent unbiased guidance and
most importantly showing me how to inspire by action. Thank you David for instilling
in me respect, not only for one’s work but also for one’s time. Apart from research, I
have also learned valuable lessons in time management - most notably the Pomodoro
(Italian for tomato) technique. I will however say that I am still working on my definition
of ‘management’. I remember, David once remarked that good coders are often very lazy
as they write shell scripts to automate a lot of their workflow. I believe I have taken
very seriously to the first piece of his advice.

I would also like to thank Prof. B.S. Sathyaparakash, Prof. Steinn Sigurðsson, and
Prof. Zoltan Fodor for serving on my dissertation committee. Their valuable comments
on my dissertation and their assistance, while I navigated through my graduate program,
were instrumental in completing the requirements of my Ph.D. I also take this opportunity
to thank the faculty members of the Institute for Gravitation and the Cosmos (IGC)
which was my professional home for the last 5 years. In particular, Prof. Abhay Ashtekar
whose many comments during my presentations have served to enhance my understanding
of physics, Prof. Eugenio Bianchi for the excellent course on advanced general relativity
and last but not least, Prof. Sarah Shandera under whose leadership, IGC offers a very
stimulating atmosphere to grow both scientifically and professionally. A special vote
of thanks to Prof. B.S. Sathyaparakash, ‘Sathya’ for countless scientific discussions,
abundant help with data analysis, and showing me how to do back-of-the-envelope
calculations which I have seen carried out everywhere right from his blackboard to a
piece of tissue at Federal Taphouse. I thank him for being so warmly welcoming be it in
his research group or dinners at his house and finally for being the go-to person to talk
about life.

A special mention to all my professors from the first year of grad school: Prof. Dezhe
Jin, Prof. Jorge Sofo, Prof. Irina Mocioiu, Prof. Chaoxing Liu, Prof. Cui-Zu Chang, and
Prof. David Weiss who strengthened my foundation in the graduate physics curriculum
through their many homework sets. A vote of thanks also to Prof. Richard Robinett and
Prof. Irina Mocioiu for streamlining any administrative hurdles I faced. I express my
deep gratitude to Prof. Miguel Mostafa for being my ‘non-academic’ mentor and showing
me how to achieve a fantastic work-life balance. Just as before, I am still working on

xxiii



my definitions of ‘work’, ‘life’, and most importantly ‘balance’. The acknowledgments to
professors are incomplete without mentioning Prof. Daniel Costantino and Prof. Michael
Smitka, both of whom helped me grow as a teacher through my assignments with them
as a teaching assistant.

I would then like to thank profusely the staff at the Physics department, in particular,
Juli Mortimore who was, in ways more than one, a life-saver for all things administrative,
Randi Neshteruk, Nicholas Mateer and Natasha Urabik for providing me all assistance
when managing finances for travel and conferences, and finally, Melissa Diamanti for her
help in getting my office space.

I express my gratitude to my collaborators Prof. Ignazio Bombaci, Prof. Domenico
Logoteta, Prof. Sebastiano Bernuzzi, Prof. Albino Perego, and Dr. Matteo Breschi
for their many inputs on my work and the years of fruitful collaboration. A shout-out
to the members of the Numerical Relativity and CMA groups at Penn State: Estuti,
Yi, Francesco, Rahul, Pedro, Jacob, Alireza, Maitraya, Mainak, Mukul, José, Abhishek,
Kohta, Tetyana, Rossella, Andrew, Harshraj, Matt, Eduardo, and Peter.

I thank professors from my time as an undergraduate at IIT Madras, JNCASR and
BIT Mesra, most importantly Prof. Chandra Kant Mishra ‘Chandra’, Prof. Sunethra
Ramanan and Prof. Subir K. Das. If it were not for their constant encouragement and
references, I would not have pursued my graduate studies at the time that I did. To Prof.
Suresh Govindarajan, Prof. G. Aravind, Prof. S. Lakshmi Bala, Prof. V. Balakrishnan,
Prof. S. Kasiviswanathan, Prof. Pattabiraman Murari ‘Pattu’, Prof. Jim Libby, Prof.
Umesh Waghmare, Prof. Meher K. Prakash, Prof. Dawood Kothawala, Prof. Rahul
Sharma, Prof. Arun A. Somasundaram and Prof. Swapan Konar, I express my deep
gratitude for teaching me everything I know about science.

My flatmates Anirban, Rishabh and Ish deserve a special token of gratitude for
bearing with me all these years and cooking super-delicious and at times super-pungent
food. I would also like to acknowledge my cohort which formed an excellent support
group. In particular, Divya, Becca, Rachael, Ruobing, Da, Mark, Dan, Ziggy, Kokkimidis,
Kevin, Autumn, Bohan, Peng, Eli, Gavin, and Max, all of them have my deep affection.
My friends from IGC: Ish, Sanika, Daniel, Monika, Arnab, Neev, Ssohrab, and Mauricio,
all will always be remembered fondly. It is with great fondness that I also acknowledge
my friends from BIT Mesra and IIT Madras, in particular, Pappa, Siddhu, Suraj, Shirsh,
Penguin, Himanshu, Pandit, Mallesh, Lodoe, Anirban, Anof and Anand for keeping my
sanity when life became stressful. This is the group that refuses to grow up, if growing
up is ever an alternative, except for Penguin who has grown up too much.

I shall also be forever grateful to the Adventures Club at Penn State and in particular
Danny Williams for instilling in me a deep sense of thrill towards white water rafting
and exposing me to the natural beauty that is Pennsylvania. I shall forever remember
the life-saving lesson, ‘when in rapids, nose and toes’. A vote of thanks to the Shotokan
Karate club at Penn State: Willard, Jake, Shabnam and Aditya as well as members of
the RUF Fellowship who very graciously welcomed me to their dinners. A shout out to
Matthew Wheaton for being a cherished friend in this regard. I would be remiss in my
acknowledgements if I did not thank the excellent staff and doctors at the University

xxiv



Health Services who have always been so kind and helpful to me.
My parents: Mr. Sajal Prakash and Mrs. Anvita Srivastava, whom I have missed

dearly throughout my graduate studies and who were always there for me no matter
what, to them, I express my love. I also thank my wonderful partner Vaishnavi for her
love and affection, her help in maneuvering the copyright issues with this dissertation
and especially for suffering me when I am predominantly insufferable.

Finally, to almighty for always keeping an eye out for me and blessing me with all
the wonderful people I have mentioned above.

Numerical Relativity simulations presented in this dissertation were performed on
PSC Bridges-2 (NSF XSEDE allocation TG-PHY160025), Comet, TACC’s Stampede2
(NSF XSEDE allocation TG-PHY160025), SDSC Expanse (NSF XSEDE allocation
TG-PHY160025) and NSF/NCSA Blue Waters (NSF AWD-1811236) supercomputers.
Simulations for this research were also performed on the Pennsylvania State University’s
Institute for Computational and Data Sciences’ Roar supercomputer. The simulations
presented in this dissertation used resources from the National Energy Research Scientific
Computing Center, a DOE Office of Science User Facility supported by the Office of
Science of the U.S. Department of Energy under Contract No. DEAC02-05CH11231.

This material is based upon work supported by the U.S. National Science Foundation
(NSF) under Award No. 2011725. Any opinions, findings, and conclusions or recom-
mendations expressed in this publication are those of the author and do not necessarily
reflect the views of the U.S. National Science Foundation (NSF).

In addition, I would also like to acknowledge support from Pennsylvania State
University’s Department of Physics in the form of several fellowships. These fellowships
include the David C. Duncan Graduate Fellow Scholarship in Physics (2024), the Dr.
John Randall Shuman Troxell Memorial Scholarship in Physics (2023), and the Edward
A. and Rosemary A. Mebus Graduate Fellowship in Physics (2022).

xxv



Chapter 1 |
Introduction

1.1 Relativistic Hydrodynamics
A merger of binary neutron stars (BNS) is one of the most energetic events in the
cosmos, emitting copious amounts of energy in gravitational waves [1], short gamma-ray
bursts (GRB), and kilonovae [2] that may outshine entire galaxies. It should come as no
surprise that modeling such violent phenomena is one of the most challenging problems
in computational astrophysics. One of the reasons why such mergers are so interesting is
that they offer a scenario wherein all 4 fundamental forces of physics play a decisive role.
To say that integrating the physics of all 4 forces and their manifestations in a simulation
is extremely non-trivial, is no exaggeration.

Modeling such mergers is also a problem that holistically encompasses unparalleled
time and length scales across which these phenomena occur. For instance, one may go from
the sub-femto meter (< 10−15m) length scales in studying the dynamics of sub-atomic
particles like protons, neutrons, electrons, and quarks that make up the composition of
neutron star matter to studying gravitational wave radiation on astronomical length scales
hundreds of Mpc (∼ 1024m). On one hand, one may encounter neutrino interactions
taking place on the sub-microsecond timescale and on the other hand, an afterglow
evolution from a neutron star merger on the time scale of up to years.

The strong nuclear force, governing the interactions between quarks that make up
neutrons and protons manifests itself in the nuclear equation of state (EoS). Its influence
can be particularly pronounced when neutron star interiors or the remnants of their
mergers probe extreme temperatures (∼ 1011 − 1012 K) and densities (several times the
nuclear saturation density of 2.7× 1014g cm−3). Under such conditions, it is conceivable
that quarks and gluons that were confined within hadrons such as protons and neutrons
can undergo a transition into a phase of deconfined quarks where the boundaries between
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individual hadrons diminish, much like the situation of conducting electrons in a lattice.
This dissertation is a small step toward exploring the dynamics of such a phase transition
and the possible consequences it may have.

Other forces such as the weak nuclear force influences the radiation transport of
neutrinos and manifests in out-of-equilibrium effects encountered in the bulk of a merger
remnant. At large length scales, the weak nuclear force affects the properties of neutron
star matter ejected in such a merger such as their composition or entropy. It may also
impact electromagnetic signatures resulting from a radioactive decay of such ejecta.
Neutron stars are also one of the strongest magnetized objects in the universe with
typical magnetic field strengths & 1012G. The electromagnetic force thus plays a decisive
role in the magnetohydrodynamics of the neutron star plasma as well as in the aftermath
of a merger e.g. properties of relativistic jets, short GRBs, etc.

Finally, all of the above takes place within the purview of extremely strong gravity,
necessitating a description in the language of general relativity. As a result, the primary
equations to solve for a consistent description of BNS mergers are those of general-
relativistic neutrino-radiation magnetohydrodynamics, a problem that is as daunting
as its name. Throughout this dissertation, however, we are going to make several
simplifying assumptions. Most notably, our simulations of neutron star mergers are
devoid of magnetic fields which is a reasonable assumption if we are not interested in the
large-length scale phenomena such as the launching of jets or short GRBs. On a short
(∼ 5km) length scale corresponding to the size of a neutron star’s core, magnetic fields are
not expected to produce extreme effects [3]. Our simulations solve for general relativistic
hydrodynamics with approximate neutrino transport wherein, instead of solving for the
full Boltzmann equation, we only solve for the 0th and 1st moments of the distribution
function.

This chapter begins with a quick summary of the preliminary concepts from general
relativity and then the 3+1 decomposition of spacetime is described. Following this,
the general relativistic framework of hydrodynamics is presented which, together with
the equations for the evolution of spacetime, forms the backbone of our simulation
infrastructure. Then, a detailed overview of the neutron star EoS models is provided that
culminates in a description of QCD Phase transitions. We finally conclude this chapter
with a brief introduction to the methods of neutrino radiation transport.
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1.1.1 Preliminaries from General Relativity

We will commence with a scant description of the fundamental concepts from general
relativity while pointing the reader to excellent references for their perusal that include
but are not limited to [4–6]. Within the theory of general relativity (GR), space and time
are placed on an equal footing and treated as dimensional facets of the same object called
‘spacetime’, the properties of which are described by tensorial quantities e.g. metric,
curvature, etc. An important attribute of tensors and tensorial equations derived within
the framework of GR is their covariance which means that upon changing a coordinate
system, the tensors and the forms of tensor equations remain unchanged even though
the tensor’s components themselves may be modified. This is an important fact because
only those quantities may qualify as measurables by observation or experiment that do
not change with the choice of a particular coordinate system or gauge.

As is customary in numerical relativity literature, the alphabets a − h and o − z
are used for the indices of a 4-dimensional spacetime and range from 0-3 whereas the
alphabets between i− n are reserved for spatial indices ranging between 1-3.

We begin with the most fundamental tensor of all encountered in general relativity
which is the metric tensor ~~g. The metric provides a quantitative measure of the distance
between two points (called events) in a curved spacetime along a curve C. In other words,

∫
C
ds =

∫
C
(gabdxadxb)1/2 (1.1)

wherein we have also assumed Einstein’s summation convention over repeated indices.
Another useful quantity that is related to the first derivative of the metric is called the
Christoffel Connection Γ whose components are given by

Γcab = 1
2g

cd (∂agdb + ∂bgad − ∂dgab) (1.2)

With this definition in mind, we can proceed to define the covariant derivative in curved
spacetime for a contravariant vector and its dual one-form as

∇aA
b = ∂aA

b + ΓbacAc

∇aAb = ∂aAb − ΓcabAc (1.3)
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Analogously, we can define the same operation on a mixed rank-2 tensor ~~T like

∇aT
b
c = ∂aT

b
c + ΓbadT dc − ΓdacT bd (1.4)

We remark here that the covariant derivative operator ∇ is metric compatible meaning
∇agbc = 0. Next, we define the Reimann curvature tensor which measures the local
curvature of the spacetime as

Ra
bcd = ∂cΓabd − ∂dΓacb + ΓaecΓebd − ΓafdΓ

f
bc (1.5)

Contractions of the Riemann tensor are also very useful and are given by the Ricci tensor
and the Ricci scalar which are respectively defined as

Rab = Rc
acb = ∂cΓcab − ∂bΓcac + ΓcabΓdcd − ΓcadΓdbc (1.6)

and
R = Ra

a = Rabg
ab. (1.7)

Finally, the Einstein tensor is given as

Gab = Rab −
1
2Rgab (1.8)

The equations central to general relativity, called the Einstein’s equations, relate the
curvature of spacetime to its source: the matter fields. The equations are written as

Gab = 8πTab (1.9)

The matter fields sourcing the spacetime are encapsulated within the energy-momentum
tensor, also called the stress-energy tensor. The essence of general relativistic dynamics
was very eloquently put by John Archibald Wheeler in a famous quote, "matter tells
spacetime how to curve and spacetime tells matter how to move". Another interesting
attribute of these equations is that they are an analog of Poisson’s equation in Newtonian
gravity which describes the Newtonian gravitational potential ϕN as a result of a given
density configuration specified by ρ.

∇2ϕN = 4πρ (1.10)

‘Gravity’ and ‘matter’ appear on either side of both of these equations, i.e., the Poisson
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equation and Einstein’s equations. Another thing to note is that the metric may be
considered a relativistic analog of the gravitational potential as its second derivatives
(and quadratic terms of first derivatives) appear in Einstein’s equations just like the
second derivative of ϕN in Newtonian gravity.

There can be multiple prescriptions for the energy-momentum tensor depending upon
the specific problem at hand. We are interested in the relativistic dynamics of fluids and
hence adopt a simple prescription, that of the perfect fluid which is given as

T ab = (e+ p)uaub + pgab (1.11)

where e represents the total energy density of the fluid which is further expressed as
a contribution from the rest mass energy density and the internal energy. Specifically,
e = ρ(1 + ε) where ρ represents the rest-mass density and ε is the specific internal energy.
In the above equation, p is an isotropic pressure and ua is the fluid 4-velocity. The rest
mass densityρ can be further expressed in terms of baryon number density n as ρ = nmB,
with mB being a fiducial baryonic mass. We define a perfect fluid as a fluid that is devoid
of shear stresses (isotropic pressure), heat conduction, and viscosity. We remark that the
energy-momentum tensor considered is that of a perfect fluid however, both liquids and
gases can be classified as fluids. It should be emphasized that we are only interested in
fluids that change their volume under pressure, i.e., the fluids should be compressible.
Since liquids are incompressible to a large extent, the perfect fluid in our simulations is
gaseous. It comes, therefore, as no surprise that the very first equation of state that a
relativistic hydrodynamics code is tested on is indeed an ideal gas equation of state. This
distinction between liquids and gases is not made explicit in contemporary literature,
however, we will use the term fluid to refer to compressible fluids.

In this subsection, we have assumed geometrized units, i.e., G = c = 1. However, for
better clarity, we will temporarily restore the speed of light c in our equations for section
1.2.

1.1.1.1 Gravitational Waves

We conclude this section with a brief description of radiative solutions to Einstein’s
equations 1.9, also called gravitational waves. A wave-like solution to these equations is
only possible in the linearized regime that is for an asymptotically flat vacuum spacetime.
Not to say that the gravitational waves do not exist in the strong-field regime (in the
vicinity of the source of gravitational waves), they do, however, the strong field regime
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necessitates the solution of the full non-linear equations which has to be done numerically.
In other words for an asymptotically flat spacetime, we have

gab = ηab + hab +O(h2
ab) (1.12)

where linearized gravity is enforced by requiring |hab| � 1. h here represents perturbations
to the flat metric η. This would essentially imply that we neglect the terms that are
quadratic or higher in the computation of the Christoffel connections or the curvature
tensor. Specifically, the Christoffel connection in linearized gravity reads

Γcab = 1
2 (∂ahcb + ∂bh

c
a − ∂chab) (1.13)

and likewise, the Ricci tensor is

Rab = 1
2
(
∂d∂bh

d
a + ∂c∂ah

c
b − ∂c∂chab − ∂a∂bh

)
(1.14)

where h = ηcdhcd is the trace of the metric perturbations. The Ricci scalar is given by

R = Rabg
ab ≈ Rabη

ab. (1.15)

Employing the expressions computed above and introducing the tensor h̄ab defined as
h̄ab = hab − 1

2ηabh, Einstein’s equations 1.9 can be cast into the following form

− ∂c∂ch̄ab − ηab∂c∂dh̄cd + ∂c∂ah̄bc + ∂c∂bh̄ac = 16πTab. (1.16)

At this point, we can use the gauge freedom inherent in GR by choosing a gauge where
the divergence of the metric perturbations h̄ vanish. This means ∂ah̄ab = 0 and the
gauge is referred to as the Lorenz gauge. Within the Lorenz gauge, the linearized field
equations take the form

�h̄ab = −16πTab (1.17)

where � = ∂c∂
c is the D’Alembertian operator. For a vacuum spacetime, this equation

reduces to
�h̄ab = 0 (1.18)

and the plane wave solutions can be expressed as

h̄ab = Aab exp(iκcxc) (1.19)
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where κ is a null 4-vector, i.e., κaκa = 0 and A is the amplitude tensor for the gravitational
wave. The solution tells us that perturbations to the flat metric propagate as a plane
wave in a direction along (κx, κy, κz) and a frequency ω = κ0 = (κjκj)1/2. Owing to
the fact that h is a symmetric tensor, the amplitude tensor A too is a symmetric and
rank-2 tensor in 4 dimensions. This means that it has 10 degrees of freedom. For planar
wave propagation, we require that A and κ should be orthogonal, i.e., Aabκb = 0 which
constrains 4 degrees of freedom. An additional 4 degrees of freedom are constrained by
infinitesimal coordinate transformations within the Lorenz gauge and requiring that the
new coordinates too satisfy the vanishing divergence criterion of the Lorenz gauge (See
ref. [7]). In the end, we are left with only two degrees of freedom for Aab and therefore h.
These are the + and × polarizations of the gravitational wave strain.

We have remarked that owing to the strong non-linearity of Einstein’s equations in the
strong field regime, the linearized description cannot be used to compute gravitational
waves. To compute gravitational waves in this regime, we solve the full non-linear
Einstein’s equations in a 3+1 formalism to get the evolution of gab. Following this, we
utilize the Newman Penrose formulation [8] wherein the GW strain can be computed
from

ḧ+ − iḧ× = Ψ4 = −Cabcdnam̄bncm̄d (1.20)

where Ψ4 is the Weyl scalar constructed from the Weyl tensor projected onto a given
null frame {~l, ~n, ~m, ~̄m} . The Weyl tensor is given by

Cabcd = geaC
e
bcd = gea

(
Re
bcd −

(
δe[cRd]b + gb[dR

e
c]

)
+ R

3 δ
e
[cgd]b

)
(1.21)

The null frame {~l, ~n, ~m, ~̄m} is derived from a spherical polar orthonormal basis in 3-space,
i.e., {êr, êθ, êϕ} along with a timelike vector êt which is normal to the spatial hypersurface.
The basis vectors are given by

~l = 1√
2

(êt − êr), ~n = 1√
2

(êt + êr), ~m = 1√
2

(êθ − iêϕ), ~̄m = 1√
2

(êθ + iêϕ) (1.22)

Typically a radius of 400M� is used for the extraction Ψ4, from which the gravitational
wave strain can be computed.
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Figure 1.1. The 3+1 decomposition of spacetime.

1.1.2 The 3+1 Decomposition of spacetime

In this subsection, we shall introduce the 3+1 decomposition of spacetime which is
the fundamental vocabulary of numerical relativity literature. We have remarked that
in general relativity, spatial and temporal coordinates are equivalent which renders a
covariance to the theory. Numerical relativity is, however, the art of solving these covariant
equations for astrophysical scenarios. Owing to the high non-linearity of the Einstein’s
equations, analytical solutions are scarce and one needs to compute solutions numerically.
A majority of equations encountered in numerical relativity including Einstein’s equations
are hyperbolic partial differential equations (PDEs), and there exist comprehensive works
including but not limited to [9,10] regarding the mathematical structure of such equations
as well as their numerical solutions. To harness these numerical methods, one needs to
cast Einstein’s equations as an initial value problem which can only be done when we
make a conscious distinction between the time and space coordinates thereby lending
the name 3(spatial) + 1(temporal) decomposition of spacetime. Before commencing
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with the details of the 3+1 decomposition, we would like to provide the reader with
references to several standard works on numerical relativity for additional details. These
are ref. [7, 11–13].

In figure 1.1, we show a schematic for the 3+1 decomposition of spacetime. The
spacetime is characterized by a manifoldM and a metric g in 4-dimensions. The essence
of a 3+1 decomposition is to segment the spacetime into spatial foliations Σt which
are parameterized by a constant value of the time coordinate t. In figure 1.1, we show
a spatial slice Σt which after a time interval dt, evolves into Σt+dt. We define a unit,
time-like 4-vector na which is normal to each point in Σt and is defined such that its
dual one-form na is proportional to the gradient of the time coordinate t, i.e., na ∝ ∂at.
Being a unit time-like vector, na satisfies nana = −1.

At this stage, we shall introduce the two building blocks of the 3+1 decomposition
namely the lapse function α and the shift vector βa. The lapse function gives us the
rate of change of coordinate time along the direction of na. Technically put, the vector
na when amplified by the lapse α takes us from Σt to Σt+dt along the worldline of an
Eülerian observer (whom we shall define momentarily). The shift vector on the other
hand is a purely spatial vector meaning βt = 0 that tracks the spatial coordinates xi as
they change from Σt to Σt+dt. In terms of the lapse α and the shift vector βi, vector na

can be given as

na = 1
α

 1
−βi


4×1

(1.23)

and the corresponding one-form na is defined as

na = (−α, 0, 0, 0)1×4 (1.24)

Using these quantities, we define the time coordinate basis vector which gives the direction
of evolution as

ta = αna + βa. (1.25)

Armed with these definitions, we also define the spatial 3-metric γab corresponding to
the constant-time hypersurface Σt as

γab = gab + nanb (1.26)

where gab are the components of the full 4-dimensional metric. From the above definition,
one can also write the spatial projection operator γab which is used to project vectors and
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tensors onto the spatial hypersurface Σ as

γab = δab + nanb. (1.27)

We note that γ0a = 0, γij = gij and γabna = 0. Finally, we have all the pieces to write
the line element of a metric in the language of 3+1 decomposition. Such a line element
is given by

ds2 = gabdx
adxb = (−α2 + βiβ

i)dt2 + 2βidxidt+ γijdx
idxj (1.28)

where the metric gab and its inverse gab are given as

gab =
−α2 + βiβi βi

βi γij


4×4

, gab =
−1/α2 βi/α2

βi/α2 γij − βiβj/α2

 . (1.29)

We shall now describe an Eülerian observer, whose dynamics help compute the explicit
form of the 4-velocity of a fluid. Let us consider an inertial observer that is observing
a relativistic fluid moving with a 4-velocity ua. An observer is said to be Eülerian if
they move in such a way that they see the fluid’s velocity va to be purely spatial, i.e.,
vt = 0 in the Eülerian frame. To do that, the Eülerian observers themselves have a
time-like velocity (say na) with respect to the inertial observer. It can be shown [14] that
ua = W (na + va) where W is the relativistic Lorentz factor 1/

√
1− vivi. We report now

(without derivation) the expression for the fluid 4-velocity from an inertial frame as

ua = W

α

 1
αvi − βi

 . (1.30)

1.1.2.1 The ADM Formulation

Having discussed the 3+1 decomposition of spacetime, we shall conclude this subsection
by providing a summary of the main equations while casting Einstein’s equations in the
3+1 formalism, i.e., as an initial value problem. To begin with, we define the covariant
derivative Da on the spatial foliation Σ by its action on a mixed tensor T bc as

DaT
b
c = γdaγ

b
eγ

f
c∇dT

e
f (1.31)

This covariant derivative is also compatible with the 3-metric γab, i.e., Daγ
bc = 0. We

can now define the 3-dimensional analogs of the Christoffel connections and the Riemann
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tensor as

(3)Γcab = 1
2γ

cd (∂aγdb + ∂bγad − ∂dγab)
(3)Ra

bcd = ∂(3)
c Γabd − ∂

(3)
d Γacb +(3) Γaec (3)Γebd −(3) Γafd (3)Γfbc. (1.32)

Likewise, the 3-dimensional Ricci tensor and Ricci scalar are defined by (3)Rab =(3) Rc
acb

and (3)R =(3) Ra
a. We shall now define the extrinsic curvature tensor Kab which gives us

the curvature of the spatial hypersurface itself that is embedded in the 4-dimensional
spacetime. Kab can be defined as

Kab = −γca∇cnb (1.33)

For brevity, we shall skip here the explicit derivation of the equations of the 3+1 ADM
formalism which can be readily found in references [7, 11–13,15]. We report below the
main equations.

The 6 evolution equations are those of the spatial metric γij and the extrinsic curvature
Kij and are given by

∂tγij = −2αKij +Diβj +Djβi

∂tKij = −DiDjα + βk∂kKij +Kik∂jβ
k +Kkj∂iβ

k + α
(

(3)Rij +KKij − 2KijK
k
j

)
+ 4πα (γij(S − E)− 2Sij) (1.34)

wherein the quantities Sij , S and E are the different components of the energy-momentum
tensor and are given by

Sab = γcaγ
d
bTcd

Sa = −γbancTbc
S = Saa

E = nanbTab (1.35)

Apart from the evolution equations, we also have the following 4 constraint equations
that, once specified for an initial time-step, should in principle hold for each time step,
i.e., they hold for all spatial foliations Σt. They are given by the Hamiltonian and
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momentum constraint which can be expressed as

(3)R +K2 −KijK
ij = 16πE

Dj

(
Kij − γijK

)
= 8πSi (1.36)

The fundamental building blocks of the 3+1 decomposition of the metric, the lapse
function α, and the shift vector βi are also called gauge-dependent quantities because they
depend upon a particular choice of the coordinate system and hence are not measurable
by experiment or observation. They are not constrained by Einstein’s equations and
represent the 4-fold gauge freedom inherent in GR. Specifying α and βi is equivalent
to choosing a particular gauge (or coordinate system). The constraint equations are
independent of these gauge-dependent quantities because they should be satisfied on
each hypersurface whereas the α and βi link together two adjacent hypersurfaces. As has
already been mentioned, given that the constraint equations are satisfied at the initial
time step, they should in principle hold at all time steps. In numerical computations,
however, solving both hyperbolic (the evolution equations) and elliptic (the constraint
equations) PDEs is prohibitively expensive, and therefore instead of requiring a solution
of constraint equations at each time step (constrained evolution), contemporary numerical
codes only monitor violations in the Hamiltonian and momentum constraints from the
initial time step. If the violation is within a specified tolerance, the metric and extrinsic
curvature are evolved freely.

We should conclude with brief analogies for the evolution and constraint equations
in the 3+1 ADM formulation. The extrinsic curvature Kij can be expressed as a lie
derivative of the spatial metric [7,11–13]. For the initial value problem, we require γij and
Kij at an initial time t = 0, following which they are evolved using equations 1.34. This
is a general relativistic analog of the Newtonian scenario that states that given initial
positions and velocities, the time evolution of the system can be prescribed by Newton’s
second law. Additionally, the decomposition of Einstein’s equations into evolution and
constraint equations is also an attribute that is observed in classical electromagnetism for
Maxwell’s equations where we have 2 evolution equations for the electric and magnetic
fields (Faraday-Lenz law and Ampere-Maxwell’s law) and 2 constraint equations (Gauss’
law) for the divergence of electric and magnetic fields.
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1.1.2.2 The 3+1 Valencia Formulation

In this subsection, we shall describe the basic equations for general relativistic hydrody-
namics. Coupled with the evolution equations for the metric and extrinsic curvature, the
3+1 Valencia formulation [16] forms the backbone of calculations in a numerical relativity
infrastructure. It can be instructive from a comparison point of view to write down
the equations for Newtonian hydrodynamics for a self-gravitating system, i.e., a system
where the dynamics of the fluid influences the gravitational potential. The equations
are the conservation of rest mass, energy, and momentum and Poisson’s equation for the
gravitational potential given a density configuration. These conservation laws, also called
as the Eüler equations of gas dynamics are given in terms of the densities of conserved
variables as

∂tρ+ ∂i(ρvi) = 0

∂t(ρvi) + ∂j(ρvivj + pij) = −ρ∂iϕ

∂tE + ∂i
(
(E + p)vi

)
= −ρvk∂kϕ

∂i∂
iϕ = 4πρ (1.37)

where we have assumed isotropic pressure, i.e., pij = pδij. Additionally, ρ is the rest
mass density and E is the total energy density given by E = ρε+ (1/2)ρv2 with ε being
the specific internal energy. Finally, ϕ represents the Newtonian gravitational potential
sourced from ρ. In the above system, there are 7 unknowns namely ρ, 3 components of vi,
p, ε and ϕ but only 6 equations. Therefore, in order to close the system, an equation of
state needs to be supplied which has the form of p = p(ρ, ε). The concept of an equation
of state is so central to this dissertation, that we have devoted an entire section (section
1.2) to discuss in detail, the properties of equations of state.

The equations of general relativistic hydrodynamics have a one-to-one correspondence
with the system of equations 1.37. The Poisson’s equation is analogous to the 10 Einstein’s
equations whose 3+1 decomposition into evolution and constraint equations, we saw
in the previous section. The conservation of rest mass, energy, and momentum are
encapsulated as

∇aJ
a = 0

∇aT
ab = 0. (1.38)

Here, Ja = nmBu
a is the rest-mass 4-current and T ab as we have seen before, is the
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energy-momentum tensor of a perfect fluid. The 3+1 Valencia formulation casts the set
of equations 1.38 in a 3+1 formalism. The equation for the conservation of rest mass is
easy to derive as

∇a (nmBu
a) = 0

=⇒ 1√
−g

∂a
(√
−gnmBu

a
)

= 0

=⇒ ∂t
(
α
√
γnmBu

t
)

+ ∂i
(
α
√
γnmBu

i
)

= 0

=⇒ ∂t (√γD) + ∂i
(√

γD(αvi − βi)
)

= 0 (1.39)

where we have utilized the property of the 4-divergence and used the definition D =
nmBαu

t = ρW for the conservative variable D. We have also used the 3+1 definition
of the fluid 4-velocity from equation 1.30. The 3+1 equations for the conservation of
energy and momentum are a bit more involved and we refer the reader to Chapter 7 of
reference [7] for the details of the derivation. In a nutshell, following a similar derivation
as for the rest mass, the equations for energy and momentum conservation respectively
read

∂t(
√
γE) + ∂i

(√
γ(αSi − βiE)

)
= −
√
−gT ab∇anb

∂t(
√
γSj) + ∂i

(√
γ(αSij − βiSj)

)
= 1

2
√
−gT ab∂jgab (1.40)

In these equations, we have made use of the 3+1 form of the components of T ab. They
are given as follows

Sab = ρhW 2vavb + pγab

Sa = ρhW 2va

E = ρhW 2 − p (1.41)

with h = 1 + ε+ p/ρ being the relativistic specific enthalpy of the fluid.
In summary, the equations for the conservation of rest mass, energy, and momentum,

can be cast into a compact form of

∂t(
√
γ~U) + ∂i(

√
γ ~F i) = ~S (1.42)

where ~U is a vector of the conservative variables, whose volume integrals represent the
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conserved quantities, ~F i is a vector of fluxes corresponding to conservative variables
along the ith direction, and ~S represents the source terms. They are given by

~U =


ρW

ρhW 2vj

ρhW 2 − p

 , ~F i =


αviD − βiD
αSij − βiSj
αSi − βiE

 (1.43)

and

~S =


0

(1/2)√γαSik∂jγik + Si
√
γ∂jβ

i − E√γ∂jα
α
√
γSijKij −

√
γSj∂jα

 (1.44)

Following the same arithmetic as before, an equation of state of the form p = p(ρ, ε) is
required to close the system.

We shall conclude this section with an important comment. Hyperbolic PDEs with a
vanishing source term are exact conservation laws e.g. the conservation of rest mass. On
the other hand, the conservation of energy and momentum have a finite source term on
their RHS which makes them a balance law. This means that up to round off error, such
a 3+1 formulation will conserve the rest mass but not conserve energy and momentum.
We re-iterate, that the energy and momentum are still conserved in nature as well as in
the covariant sense where the equations are written in 4-dimensional coordinates. It is
only when they are converted to a 3+1 format, do they lose their conservative nature
up to a round-off error. This is a numerical limitation rather than a limitation of the
equations themselves. Indeed, conservative formulations e.g. to the system of Eüler
equations in Newtonian gravity have shown good promise in conserving the energy to a
round of error [17]. A conservative formulation for general relativistic hydrodynamics
also exists [18] which aims to cast the non-zero source terms as the divergence of an
effective flux. However, an implementation of such a formulation in contemporary codes
is yet to be made.

1.2 The Equation of State
Put succinctly, an equation of state (EoS) describes the equilibrium behavior of a system.
If the system is composed of multiple species in equilibria, there exists an EoS for each
species which in turn contributes to the overall EoS. This is usually the case with neutron
star matter where we have a host of species like protons, neutrons, electrons, photons,
hyperons, and possibly even deconfined quarks contributing to the overall dynamics
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of the fluid. The precise definition of this equilibrium behavior will be elaborated in
subsection 1.2.3 when we discuss equilibrium distribution functions and how EoSs are
derived from them. Before we can proceed with the properties of an EoS, it is beneficial
to briefly recapitulate the fundamentals of thermodynamic potentials as well as the
classical textbook example of phase transitions in water. The definitions provided in the
following two subsections will come in very handy when we compute the properties of
equations of state in subsection 1.2.4.

1.2.1 Thermodynamic Potentials: A quick review

The thermodynamic potentials or the thermodynamic state functions, coupled with a
given equation of state help us in computing the equilibrium properties of a system. We
will start with the first law of thermodynamics which is essentially a re-statement of the
energy conservation principle. For a system with a single species of particles, it can be
mathematically expressed as

dU + pdV − TdS = µdN (1.45)

where dU represents the change in the internal energy of the system, dV is the change in
volume under the application of a pressure p, dS is the change in the system’s entropy
and dN represents the change in the number of particles as a result of some reaction
process. T represents the system’s temperature and µ is the chemical potential which
is a measure of change in the system’s energy as a result of a change in the number of
particles of a particular species. If the system instead were to be composed of multiple
species, the first law of thermodynamics would be modified as

dU + pdV − TdS =
∑
i

µidNi (1.46)

where µi and Ni are the chemical potential and number of particles for the ith species
respectively. Considering the simpler case of a single particle species, we define U = Nmε

and S = Nms where N is the total number of particles and m is the mass of each particle.
In numerical relativity literature, ε represents the specific internal energy of a fluid and s
is the specific entropy. Using these definitions and the fact that V = Nm/ρ where ρ is
the fluid’s rest mass density, we can express equation 1.45 as

dε = Tds− pd(1/ρ) = Tds+ (p/ρ2)dρ. (1.47)
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Here we have made the simplifying assumption that the number of particles remains a
constant, i.e., dN = 0. Equation 1.47 will come in very handy when we compute the
sound speed of different EoS formulations. We have seen in subsection 1.1.1, that the
total energy density is given by e = ρ(c2 +ε) where we have maintained the dimensionality
of the equation. At this point, we recall the relativistic specific enthalpy h which is
defined as

h = c2 + ε+ p/ρ (1.48)

Using the above definition of specific enthalpy and equation 1.47 it is possible to re-cast
the first law of thermodynamics into other useful forms

dp = ρdh− ρTds (1.49)

de = hdρ+ ρTds. (1.50)

Finally, we define the internal energy U of the fluid as a thermodynamic state function
dependent on S, V , and N , i.e., U = U(S, V,N) (equation 1.45) which further implies
the following definitions

T =
(
∂U

∂S

)
V,N

, p = −
(
∂U

∂V

)
S,N

, µ =
(
∂U

∂N

)
S,V

. (1.51)

There are a few more thermodynamic potentials that are important for our purposes and
we enumerate them as follows:

• The total enthalpy H of a system is expressed as H = U + pV where the symbols
have their usual meaning. In a total differential form, we can write

dH = dU + pdV + V dp = TdS + V dp+ µdN (1.52)

where for the second equality, we have utilized equation 1.45. This relationship
also helps express H as a state function of S, p, and N , i.e., H = H(S, p,N) which
further allows for the following definitions

T =
(
∂H

∂S

)
p,N

, V =
(
∂H

∂p

)
S,N

, µ =
(
∂H

∂N

)
S,p

. (1.53)
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• The Gibbs free energy G helps compute a measure of the thermodynamic feasibility
of a process. For isolated systems, a thermodynamic process is feasible when
dG ≤ 0. As a potential, it is defined as G = H − TS, and in a differential form we
have

dG = dH − TdS − SdT = µdN + V dp− SdT (1.54)

where again we have utilized the first law of thermodynamics. GivenG = G(N, p, T ),
we can have the following definitions

µ =
(
∂G

∂N

)
T,p

, V =
(
∂G

∂p

)
N,T

, S = −
(
∂G

∂T

)
N,p

. (1.55)

• The Helmholtz’s Free energy F is defined as F = U − TS which in a differential
form is written as

dF = dU − TdS − SdT = −SdT − pdV + µdN. (1.56)

As a state function, F = F (T, V,N) which allows for the following defintions

S = −
(
∂F

∂T

)
V,N

, p = −
(
∂F

∂V

)
T,N

, µ =
(
∂F

∂N

)
T,V

(1.57)

• Finally, we define the grand canonical potential Ω defined as Ω = F − µN . As
we shall see in chapter 2, the grand canonical potential is employed to define the
equilibrium properties of a deconfined quark phase - the dynamics of which in
neutron star mergers is the main crux of this dissertation. As a total differential,

dΩ = dF − µdN −Ndµ = −SdT − pdV −Ndµ (1.58)

Just like we did for all the previous thermodynamic potentials, Ω as a state function
is given by Ω = Ω(T, V, µ) which paves the way for the following definitions

S = −
(
∂Ω
∂T

)
V,µ

, p = −
(
∂Ω
∂V

)
T,µ

, N = −
(
∂Ω
∂µ

)
T,V

(1.59)
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We conclude this section by commenting on the equilibrium conditions for an isolated
system. An isolated system in equilibrium is under thermal, chemical, and mechanical
equilibrium. In other words, the temperature, chemical potential, and pressure of the
system are the same throughout. This is a direct consequence of the fact that the system’s
entropy increases and is maximal (dS = 0) for equilibrium. An equivalent criterion is the
decrease of the system’s Gibbs free energy to a minimum, i.e., dG = 0 for equilibrium.

1.2.2 Phase Transitions: A quick review

In this subsection, we shall briefly review the fundamental properties of phase transitions.
A phase is any state of matter like solid, liquid, or gas that is characterized by a distinct
set of thermodynamic state functions. Other examples of phases include diamagnetic or
paramagnetic phases in materials or for that matter, confined (within hadrons) phases
and deconfined phases of quarks in strongly interacting matter. A transition between
two phases occurs due to a change in one or more thermodynamic state functions that
characterize a phase. Such a change may be sudden or discontinuous as happens in a
first-order phase transition or take place gradually for higher-order phase transitions. A
phase boundary or a coexistence curve in the phase structure separates the two phases
and along such a coexistence curve, the two phases coexist in equilibrium.

The Ehrenfest classification of phase transitions provides a quantitative definition
for the order of a phase transition. It states that the order of a phase transition is
the lowest order of the derivative of Gibbs free energy which is discontinuous across
the phase boundary. The Gibbs free energy G itself varies continuously across a phase
boundary. For two phases A and B, a phase transition from A to B is of the nth order if
the following two conditions are satisfied

(
∂mGA

∂pm

)
N,T

=
(
∂mGB

∂pm

)
N,T

,

(
∂mGA

∂Tm

)
N,p

=
(
∂mGB

∂Tm

)
N,p

,

(
∂mGA

∂Nm

)
T,p

=
(
∂mGB

∂Nm

)
T,p

(1.60)
where m = 1, 2, ..., n− 1 and

(
∂nGA

∂pn

)
N,T

6=
(
∂nGB

∂pn

)
N,T

,

(
∂nGA

∂T n

)
N,p

6=
(
∂nGB

∂T n

)
N,p

,

(
∂nGA

∂Nn

)
T,p

6=
(
∂nGB

∂Nn

)
T,p

(1.61)
Another important property of a first-order phase transition is the existence of latent heat.
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Figure 1.2. A schematic diagram showing the phase structure of water projected onto the
pressure-temperature plane at a constant volume.

“Latent” heat meaning hidden heat is the heat given to a system to bring about a change
of phase at a constant temperature. Mathematically, the latent heat ∆QL measures
the change in a system’s entropy at a constant temperature, i.e., ∆QL = T0∆S. For
higher-order phase transitions, entropy is continuous across a phase boundary resulting
in no latent heat.

We will now consider the simple example of a first-order phase transition in water.
This is a system with a single conserved charge which is the number of water molecules
N such that dN = 0. Many a time in contemporary phase transition literature, the term
“charge” is used in a general sense to denote a conserved quantity for instance the number
of particles (like baryon number), electric charge, or even strangeness. In figure 1.2, we
show the phase structure of water projected onto the pressure-temperature plane at a
constant volume. The full phase structure depends on pressure p, temperature T , and
volume V . The figure shows the three phases in which water exists, i.e., solid, liquid, and
gas. They are separated by coexistence curves along which the two phases on either side
are in equilibrium. The solid-liquid phase transition (melting), the liquid-vapor phase
transition (vaporization), as well as the solid-vapor phase transition (sublimation), all
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Figure 1.3. Left panel: The projection of the phase diagram of water on the pressure-volume
space at a constant temperature shows a discontinuity in volume across the phase boundary.
Typically, phase transitions with a single conserved charge (here N) proceed at a constant
pressure. Right panel: The discontinuity in entropy at the transition temperature T0 at a
constant pressure.

three are of the first order. The coexistence curves intersect at the triple point at which
all three phases of water are in equilibrium. The liquid-vapor phase transition terminates
at a critical point at which the phase transition becomes second-order.

For the first-order liquid(1)-vapor(2) phase transition in water (see figure 1.3) (N
being a constant) at the point (T0, p0) in the phase diagram, we have the following
conditions:

• The Gibbs free energy G(T, p) changes continuously across the phase transition
boundary, i.e., G1(T0, p0) = G2(T0, p0)

• The entropy S = − (∂G/∂T )p is discontinuous across the phase boundary, i.e.,
S1 6= S2

• The volume (or equivalently density) V = (∂G/∂p)T is discontinous across the
phase boundary. i.e., V1 6= V2 (or ρ1 6= ρ2)

• There exists a latent heat given by ∆QL = T0(S2 − S1).

We conclude this subsection with a remark about the criterion for the coexistence
of phases at the phase boundary. We know that pressure p and temperature T will be
continuous across the phase boundary owing to mechanical and thermal equilibrium
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respectively. The total Gibbs free energy at a specific point (T0, p0) on the coexistence
curve is given by

G(T0, p0, N) = G1(T0, p0, N1) +G2(T0, p0, N2) = µ1N1 + µ2N2 (1.62)

where N1 and N2 are the numbers of particles in the liquid and vapor phases respectively
and N1 +N2 = N is a constant. We recall that a condition for equilibrium is that Gibbs
free energy attains a steady state, i.e., dG = 0. At a constant (T0, p0), this implies

dG = µ1dN1 + µ2dN2 = 0 (1.63)

Since dN = dN1 + dN2 = 0, we have another condition for the coexistence of phases as
µ1 = µ2 which is the condition for chemical equilibrium. This condition will be central
to the construction of mixed phases of confined and deconfined quarks when we discuss
the Maxwell and Gibbs constructions in subsection 1.2.5.2.

1.2.3 Boltzmann Equation and distribution functions

Mergers of neutron stars are an unambiguously complex problem involving several
physics models in synchronization. EoS models in competent merger simulations typically
include the effects of multiple particles also called degrees of freedom. These include
protons, neutrons, electrons, positrons, photons, and neutrinos. There have been several
works that have investigated the appearance of more exotic degrees of freedom such as
hyperons [19, 20], muons [21], and deconfined quarks (see references in chapters 2 and 6).
Each of these particles has a dynamics of its own, which at the most fundamental level,
is governed by the distribution function.

A distribution function, put simply, is a time-dependent measure of the number of
particles of a given species in a 6-dimensional volume of coordinate and velocity (or
momentum) space. More clearly, a distribution function f = f(t, xi, uj) is such that
f(t, xi, pj)d3xd3u is the number of particles within the 6-dimensional volume of d3xd3u.
Therefore, the total number of particles in the phase space is given by

N =
∫ ∫

f(t, xi, uj)d3xd3u. (1.64)

The evolutionary dynamics of f in 7 dimensions (one of time and the 6-dimensional phase
space) is governed by the Boltzmann equation, which for classical mechanics (where the
relativistic effects are not important) takes the following form
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∂tf + ui∂if + (F j/m)∂ujf = Π(f). (1.65)

Here F j is a velocity-independent force that acts on each particle and the term Π(f) on
the right-hand side is called a collisional term which takes into account the interactions
(called collisions generically) of particles. A collisionless Boltzmann equation is one with
a vanishing Π which corresponds to a homogeneous advection equation for f in the
6-dimensional phase-space.

In cases where relativistic effects need to be taken into consideration, the Boltzmann
equation (assuming a flat spacetime) takes the following form

pa∂af +m∂pb(F bf) = Π(f). (1.66)

Here pa represents the 4-momentum of the particle of rest mass m and F b is the four-force
which may or may not depend on pa. The explicit form of the collisional integral is not
important here but may be found in references such as [7, 22]. The above equation has
been written for a flat spacetime and can be extended to curved spacetimes in general
relativity, however for brevity we shall omit it here.

For systems that are out of equilibrium, the distribution function is time-dependent
and the full Boltzmann equation needs to be solved. Complete numerical solutions
of the Boltzmann equation are computationally expensive and in conjunction with
merger simulations of neutron stars, even more so. Therefore, extensive work has been
done to solve equation 1.66 in general relativity, either by using truncated moment
formalisms [23–25] or by employing Monte-Carlo methods [26–28]. However, recent
approaches such as finite element methods [29] show significant promise in solving the
full transport equation.

In a neutron star merger, out-of-equilibrium effects [30–32] such as the bulk viscous
damping of the remnant’s oscillations are introduced by neutrino interactions. Trapped
neutrinos before equilibrating with the neutron star matter as well as free-streaming
neutrinos need to be accounted for by solving equation 1.66 in full general relativity. How-
ever, other species such as nucleons, protons, electrons, etc. are largely in thermodynamic
equilibrium. In the language of kinetic theory, equilibrium means that the distribution
function for the corresponding species is stationary and can be computed by requiring
Π(f0) = 0. This equilibrium distribution function, which from now on we shall denote by
f0(p), forms the basis of an equation of state. This means that equilibrium properties for
a particle species such as their number density n, pressure p or energy density e can be
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derived once an equilibrium distribution function is known. The involvement of neutrinos
in out-of-equilibrium phenomenon is the reason, why one usually does not encounter
phrases such as a ‘neutrino EoS’ as an EoS is intimately related to equilibrium behavior
of a species. However, trapped neutrinos, once in weak and thermal equilibrium with
matter and radiation can be effectively treated with an EoS of a massless ideal Fermi
gas [21], something which we shall explore in detail in subsection 1.2.4.3.

The equilibrium distribution functions computed for the relativistic Boltzmann
equation 1.66 depend upon whether for a particle species, quantum mechanical effects
need to be considered or not. To provide a measure for the same, we introduce two
quantities by the name of fugacity (αf ) and coldness (ζc) as follows

αf =
(

µ

kBT

)
, ζc =

(
mc2

kBT

)
(1.67)

where kB is the Boltzmann’s constant and the other symbols have their usual meaning.
Qualitatively, αf is proportional to the significance of quantum mechanical effects for
the dynamics of the fluid and ζc is inversely proportional to the importance of special
relativistic effects. To this aim, we can classify the typical fluids of interest in the case of
neutron star mergers as follows:

• If αf � 1 and ζc � 1, we have a degenerate and relativistic fluid where both
quantum mechanical effects and relativity need to be considered.

• If αf � 1 and ζc � 1, we have a non-degenerate and relativistic fluid where
quantum mechanical effects may be neglected however relativistic effects need to
be taken into account.

• If αf � 1 and ζc � 1, we have a non-degenerate and non-relativistic fluid wherein
we can safely ignore both quantum mechanical and relativistic effects and treat the
fluid within a classical framework.

One should emphasize that the above classification is only qualitative and serves to
provide a sound logic to the study of the different types of equilibrium distributions
in numerical relativity. Excluding the explicit details of computing the equilibrium
solutions to the full Boltzmann equation, we report the equilibrium distributions most
often encountered, in the order of the classification mentioned above.

• For αf � 1 and ζc � 1, equilibrium solutions to equation 1.66 are the well-known
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Fermi-Dirac and Bose-Einstein distribution functions expressed as

f0(p) = gs
h3
p

(
1

exp(−αf − cpaua/kBT )± 1

)
. (1.68)

Here +1 corresponds to fermions like baryons and leptons which obey the Fermi-
Dirac statistics and Pauli’s exclusion principle, and -1 in the denominator is for
bosons like mesons, photons, etc. which obey the Bose-Einstein statistics.

• For αf � 1 and ζc � 1, the equilibrium distribution is the Maxwell-Jüttner
distribution given by

f0(p) = gs
h3
p

(
1

exp(−αf − cpaua/kBT )

)
. (1.69)

• For αf � 1 and ζc � 1, we have the classical Maxwell-Boltzmann distribution
function, often employed for computing the properties of classical systems such as
a classical monoatomic fluid. It is expressed as

f0(p) = 4π
(

m

2πkBT

)3/2
n exp

(
−p2/2mkBT

)
(1.70)

In the above distributions, gs stands for the degeneracy factor of the particle species
given by

gs =

2s+ 1,m 6= 0

2s,m = 0
(1.71)

and hp is the Plancks’ constant. We should emphasize here that while pa represents the
4-momentum of the particle, ua represents the 4-velocity of the ‘fluid’ as a whole, which in
the local fluid frame can be written as ua = (−1, 0, 0, 0). This makes −cpaua = wmc2 = E

with w being the relativistic Lorentz factor and E the total relativistic energy. Armed
with these definitions, we can condense the relativistic equilibrium distributions (both
degenerate and non-degenerate) in a single expression as

f0(p) = gs
h3
p

(
1

exp((E − µ)/kBT ) + ε

)
. (1.72)

where ε differentiates between the different kinds of distributions, i.e.,
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ε =


+1, for Fermi−Dirac distribution

−1, for Bose− Ensitein distribution

0, for Maxwell− Jüttner distribution

(1.73)

1.2.4 Equation of State

Before we start to elucidate the properties of several EoS models, we introduce here two
definitions that are going to come in handy.

The very first definition is that of specific heat. Put simply, it measures the capacity
of a system to absorb heat from its surroundings. Mathematically, it is expressed as the
change in heat per unit mass per unit temperature, i.e., Cheat = dQ/(NmdT ). From
equation 1.47, we can write

dQ

Nm
= Tds = dε+ pd(1/ρ) = CheatdT (1.74)

from where we can write Cheat assuming ε = ε(ρ, T ) as

Cheat = 1
dT

( ∂ε
∂T

)
ρ

dT +
((

∂ε

∂ρ

)
T

− p

ρ2

)
dρ

 (1.75)

The specific heat can be computed at a constant volume or a constant pressure. At a
constant volume (or equivalently a constant density), the heat capacity Cv is given by

Cv =
(
∂ε

∂T

)
V

= T

(
∂s

∂T

)
V

(1.76)

Likewise, at constant pressure, the heat capacity Cp is given as

Cp = 1
dT

( ∂ε
∂T

)
ρ

dT +
((

∂ε

∂ρ

)
T

− p

ρ2

)
dρ


= Cv +

[(
∂ε

∂ρ

)
T

− p

ρ2

](
∂ρ

∂T

)
p

=
(
∂h

∂T

)
p

= T

(
∂s

∂T

)
p

(1.77)

wherein we have employed the first law of thermodynamics as stated in equations 1.49
and 1.50. An important quantity of interest is the ratio of the two specific heats described
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which is called the adiabatic index Γ. In other words

Γ = Cp/Cv (1.78)

The second important property of an equation of state is its sound speed whose relativistic
definition is given as

C2
s =

(
∂p

∂e

)
s

(1.79)

which reduces to (C2
s )N = (∂p/∂ρ)s in the Newtonian theory. Finally using equations

1.49 and 1.50, it is trivial to show that

C2
s =

(
(C2

s )N
h

)

= 1
h

(∂p
∂ρ

)
ε

+ p

ρ2

(
∂p

∂ε

)
ρ

 (1.80)

We will now begin to discuss several model equations of state that one encounters in
contemporary numerical relativity research.

1.2.4.1 The Ideal Gas equation of state

We begin with the simplest model of the equation of state namely that of an ideal gas
where the fluid pressure is directly proportional to temperature at a constant volume. In
more concrete terms, the pressure p is given as

p = nkBT (1.81)

where n stands for the number density of the fluid. The number of particles N in an
ideal gas EoS is a constant. Such an equation of state is an apt model to describe
non-degenerate systems irrespective of whether they are non-relativistic, relativistic,
or ultrarelativistic. From the analysis of a classical mono-atomic gas (for which we
refer the reader to section 2.4 in [7]), it is possible to express the adiabatic index Γ as
Γ = 1 + kB/(mCv). Using this and equation 1.76, we can also express the pressure of a
classical monoatomic fluid as

p = ρε(Γ− 1) (1.82)
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with the corresponding specific enthalpy given by h = c2 + εΓ (equation 1.48). For a
classical (non-degenerate) monoatomic gas, adiabatic index Γ takes the values of 5/3
for a non-relativistic fluid, a value between 4/3 and 5/3 for a relativistic fluid, and 4/3
for an ultrarelativistic fluid. The two expressions for pressure also allow us to define a
one-to-one correspondence between the specific internal energy ε and temperature T as
follows

T = m

kB
(Γ− 1)ε (1.83)

Typically, numerical relativity simulations evolve the specific internal energy ε within
the 3+1 Valencia formulation and the temperature is computed from it.

We can also estimate the specific entropy of a fluid obeying the ideal gas EoS from the
first law of thermodynamics (equation 1.47) and plugging in the definitions of pressure
from equation 1.82

m

kB
ds =

(
dε

ε(Γ− 1) −
dρ

ρ

)
= d

(
ln
[
ε1/(Γ−1)

ρ

])
(1.84)

which can be integrated to obtain

s = kB
m

ln
(
ε1/(Γ−1)

ρ

)
+ C (1.85)

upto a constant of integration C. Finally, we will conclude this subsection with a
computation of the sound speed for an ideal gas EoS. Using equation 1.80, it is trivial to
show that

C2
s = εΓ(Γ− 1)

c2 + Γε (1.86)

1.2.4.2 The Polytropic equation of state

The polytropic equation of state is one of the most widely used ansatz for representing
the equilibrium behavior of fluids in relativistic simulations. One of the reasons for
their popularity is the phenomenological flexibility they provide to emulate several
nuclear phenomena (for instance QCD phase transitions, the appearance of hyperons,
etc.) when rigorous methods to model these from first principles are not available. A
phenomenological approach gives a good idea of the qualitative behavior to be expected
of these nuclear processes and how they manifest in the context of neutron star mergers.
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The pressure p in a polytropic EoS is given by

p = KρΓ (1.87)

where K is called the polytropic constant and Γ is the adiabatic index.
To further emphasize the utility of a polytropic EoS, we report the leading order

contribution to the pressure of a fully degenerate and non-relativistic electron fluid [7]
which behaves like a non-relativistic polytrope (Γ = 5/3) and is given by

p(ρ) = 1
5

(
3h3

p

4πgsm4

)2/3

ρ5/3 (1.88)

Likewise, the leading order contribution to the pressure of a fully degenerate ultrarel-
ativistic fluid of electrons is also a polytrope with Γ = 4/3. A rigorous treatment of
such fluids would typically involve computing the properties (p, n, or e) of an ideal
(non-interacting) relativistic Fermi gas under the assumption of complete degeneracy.
However, as far as the leading order contribution is concerned, a polytropic ansatz would
suffice.

As we can see from equation 1.87 there is no temperature dependence in pressure.
This implies that there is an inherent freedom in choosing temperature which can be
assumed to be 0 perfectly well. This is the reason why polytropic EoSs are reasonable
models for cold and β− equilibrated neutron stars. However, if one assumes the condition
of an isentropic flow, i.e., the specific entropy is the same across the whole fluid, then
the ideal gas EoS and the polytropic EoS are the same formulations and indeed one
can be derived from the other provided ds = 0. The condition of an isentropic flow and
coincidence with an ideal gas EoS, helps us to attribute a specific internal energy (or
equivalently temperature) to a polytropic fluid. In particular, we can show from 1.47
that for a polytropic fluid which is also isentropic, the specific internal energy is given by

ε = KρΓ−1

Γ− 1 (1.89)

Likewise, the sound speed can be computed as

C2
s = (C2

s )N
h

= pΓ(Γ− 1)
ρ(Γ− 1) + Γp (1.90)

Needless to say, when the polytropic EoS coincides with the ideal gas EoS for isentropic
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flows, their entropies are the same and are given by equation 1.85. To provide greater
flexibility to the polytropic equations of state so as to emulate nuclear processes, we can
construct sequences of polytropic equations of state. Such an ansatz is called a piecewise
polytropic equation of state expressed as

p(ρ) =
J⋃
i

Kiρ
Γi (1.91)

where J is the total number of polytropic segments and each polytrope is valid within a
given range of densities. The operator ⋃ is the union operator on the collection of all
polytropic segments. For self-consistency, we require that in such an EoS, the pressure
and energy density (or equivalently the specific internal energy) be continuous at the
point of transition between two polytropes. The sound speed (first derivative of pressure),
however, will be discontinuous across the transition in general. The condition for the
continuity of pressure at the transition density ρ̄i is trivial and is expressed as

pi+1(ρ̄i) = pi(ρ̄i)

Ki+1 = Kiρ̄i
Γi−Γi+1

(1.92)

Likewise, from the first law of thermodynamics 1.47 for an isentropic flow, we can derive
the continuity condition for the energy density as

ei+1(ρ̄i) = ei(ρ̄i)

(1.93)

where ei(ρ) = Kiρ
Γi/(Γi − 1) + Ciρ and Ci is a constant of integration given by

Ci = ei−1(ρ̄i−1)
ρ̄i−1

− Kiρ̄
Γi−1
i−1

Γi − 1 (1.94)

Temperatures in a neutron star merger typically reach several tens of MeV and the
equilibrium behavior of matter cannot be sufficiently described by a cold EoS. To this
aim, we conclude this subsection with a note on adding thermal effects to a cold EoS.
This is done in a sort of hybrid formalism wherein a thermal component is added to a
cold piecewise polytropic EoS. This thermal component (denoted by a subscript ‘th’) has
a simple form given by the pressure-temperature relationship of an ideal gas. In concrete
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terms, the total pressure and specific internal energy of a hybrid EoS (assuming a single
polytrope) is expressed as

p = pc + pth = Kcρ
Γc + ρεth(Γth − 1)

ε = εc + εth (1.95)

where Kc and Γc are the polytropic constant and adiabatic index for the cold polytropic
EoS and εth, Γth are the specific internal energy and adiabatic index for the thermal ideal
gas correction. Typically a numerical relativity infrastructure evolves ε within the 3+1
Valencia formulation and εth is computed from the difference ε− εc which is then utilized
to compute the thermal correction to the pressure pth.

1.2.4.3 The Equation of State for a degenerate relativistic fluid

In this subsection, we report on the EoS for a degenerate relativistic fluid, i.e., a fluid for
which both quantum mechanics and relativistic effects are vital to describe its dynamics.
We shall not make a distinction between the specific kind of species (like Fermions or
Bosons) the particles belong to or what distribution function one should choose rather,
we will present results for a generic class of relativistic fluids. We will also describe certain
limits to the results obtained in full generality which can be suitable for a particular
species for instance the massless approximation to describe an EoS for particles like
photons or light quarks.

Speaking more concretely, we are interested in the class of fluids with large fugacity
(αf � 1) and small relativistic coldness (ζc � 1). Before embarking on the details of the
procedure that constructs the EoS, it is useful to describe a class of integrals that we
will encounter time and again in this subsection. The integral reads as follows

Jnm(αf , ζc) =
∫ ∞

0
dx

sinhn x coshm x
exp(−αf + ζc cosh x) + ε

(1.96)

In general, these integrals need to be evaluated numerically (see references [7,22]) and we
will leave our results in terms of Jnm however, there do exist some limiting cases in which
closed-form analytic expressions for these integrals are possible e.g. the zero temperature
limit or the massless limit (see references [22,33]).

Any model for the EoS should provide us with three equilibrium properies: the
pressure p, the energy density e, and the number density of particles n (or equivalently
the rest mass density ρ). Using thermodynamic relations which we have described in
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subsection 1.2.1, it is possible to compute all other quantities of interest such as entropy
density or sound speed. Since we are not differentiating between the different kinds of
distribution functions, it is optimal to consider a generalized form of the distribution
function f0(p) given by equation 1.72.

Integrals involving relativistic distribution functions are evaluated over the Lorentz
invariant quantity d3p/p0 which corresponds to the relativistic 4-momentum pa =
(wmc,wmvi) of a particle and where p = pipi. The number density current 4-vector for
a given distribution function f0(p) is defined as

Na =
∫
cpaf0(p)d

3p

p0 (1.97)

Likewise, we can re-define the energy-momentum tensor for the fluid in terms of a
relativistic distribution function as follows

T ab =
∫
cpapbf0(p)d

3p

p0 (1.98)

The number density is given by n = N0/c. Plugging the form of the generalized relativistic
distribution function, we have

n =
∫
p0f0(p)d

3p

p0
(1.99)

At this stage, we will introduce a change of variables of the type p0 = mc cosh x for
x ≥ 0. From special relativity, we know p0 = E/c and therefore from the equation of
relativistic energy E2 = p2c2 +m2c4 , it follows that p = (pipi)1/2 = mc sinh x. We also
employ spherical coordinates in momentum space to write d3p = 4πp2dp so we have

n = gs
h3
p

4π
∫ ∞

0

m3c3 cosh x sinh2 x

exp(−αf + ζc cosh x) + ε
dx

= 4π gs
h3
p

(mc)3J21(αf , ζc) (1.100)

Next, we present a calculation for the energy density of a degenerate relativistic fluid by
recalling the form of the energy-momentum tensor T ab = (e+ p)uaub + pgab. Considering
a flat spacetime (ηab) and recalling the property for normalization of 4-velocity, the
energy density can be computed as follows

e = T abuaub
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= c
gs
h3
p

∫ ∞
0

(paua)(pbub)4πp2

exp(−αf − cpdud/kBT ) + ε

d3p

p0

= 4πc gs
h3
p

(mc)4
∫ ∞

0

sinh2 x cosh2 x

exp(−αf + ζc cosh x) + ε
dx

= 4πc gs
h3
p

(mc)4J22(αf , ζc) (1.101)

wherein we have utilized the relation paua = −p0 = −mc cosh x which is valid in the
local fluid frame. Finally, the pressure for the fluid can be computed from the above two
definitions of n and e by using

p = 1
3
(
T abηab + e

)
(1.102)

The first term will be simplified to

T abηab = −4πc gs
h3
p

(mc)4
∫ ∞

0

sinh2 x

exp(−αf + ζc cosh x) + ε
dx

= −4πc gs
h3
p

(mc)4J20(αf , ζc) (1.103)

which gives the pressure as

p = 1
34πc gs

h3
p

(mc)4 (J22(αf , ζc)− J20(αf , ζc))

= 1
34πc gs

h3
p

(mc)4J40(αf , ζc). (1.104)

Here we have made use of a property (see reference [22]) of the integrals of the form
1.96 that J22 − J20 = J40. This is something that can be cross-verified from the finite
temperature expressions for the same system found in reference [34].

The framework we have introduced in this subsection and the expressions we have
derived for n, e, and p for a degenerate relativistic fluid can be used to model an ideal (i.e.
interaction-free) behavior of several nuclear species at finite temperature e.g., neutrons,
protons, electrons, photons, deconfined quarks, trapped neutrinos in weak and thermal
equilibrium, etc. Contemporary nuclear EoS models derived from formalisms such as
relativistic mean field theory or chiral effective field theory, take the above ideal behavior
as a starting point and add interaction terms in an attempt to emulate a degree of realism.
A description of these models is well beyond the scope of our work and for our purposes,
they will only be correction terms to the ideal behavior.
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The massless limit
We will now turn to discuss an important limit to the properties of a degenerate

relativistic fluid which is the masless limit or the ultrarelativistic limit. This limit is very
useful to model the properties of particles with extremely small masses such as trapped
neutrinos in β−equilibrium, light quarks, ideal Bose gas models of a gas of gluons, a gas
of photons etc. Any dependence on the rest mass vanishes in this limit as we shall see.
Another interesting attribute of the ultrarelativistic limit is the fact that pressure and
energy density are directly proportional according to p = e/3. This is also a result that
holds for a radiation fluid such as a gas of photons.

In terms of the relativistic coldness, the ultrarelativistic limit is ζc � 1. Here, we
make yet another change of variables which is z = ζc cosh x and assert that (z/ζc)2 ≈
cosh2 x− 1 = sinh2 x. We can then recast the integral 1.96 as follows

Jnm(αf , ζc) =
∫ ∞

0
dx

sinhn x coshm x
exp(−αf + ζc cosh x) + ε

= 1
ζqc

∫ ∞
0

zq−1

exp(−αf + z) + ε
dz

= Kq(αf ) (1.105)

where q = m+ n. Here we will express our results in terms of the integral Kq(αf ) which
for ε = 1 becomes the Fermi integral. Using the standard procedure for the computation
of n, e and p outlined above, we will now present the results for these quantities in the
ultrarelativistic limit.

• n = 4π(gs/h3
p) (kBT/c)3K3(αf )

• e = 4cπ(gs/h3
p) (kBT/c)4K4(αf )

• p = (4c/3)π(gs/h3
p) (kBT/c)4K4(αf ) = e/3

The zero temperature limit
We will conclude this subsection with another important limit that of the zero

temperature. Many a time it is not very desirable to include the entirety of finite
temperature treatment (by the evaluation of integrals of the type 1.96) to get a qualitative
idea of the dynamics in a merger. For instance, reasonable estimates in a merger simulation
may be obtained by adding an ideal gas thermal component to a cold EoS model. To do
so, one needs to have a reasonable model for the equilibrium behavior at zero temperature.
This may be achieved either by a sequence of polytropes (1.2.4.2) or by taking the zero
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temperature limit of the expressions for n, e and p obtained in this subsection. A zero
temperature limit is only taken for Fermionic species and in the most precise terms, it is
the assumption of complete degeneracy. This means that all states below the Fermi energy
have been occupied. We caution the reader that when we mention zero temperature, we
are not referring to an absolute zero. Isolated neutron stars in equilibrium may be cold
enough so that their temperatures are in the keV regime which is effectively 3-5 orders
of magnitude smaller on the high-energy temperature scale of 10s-100s of MeV (set by
mergers of neutron stars and heavy ion collisions) and is effectively negligible.

In the following, we describe the zero temperature limit of the expressions for n, e,
and p for an ideal Fermi Gas (that is ε = +1). A vanishing temperature is equivalent to
imposing the condition exp(−αf + ζc)→ 0 and consequently, the Fermi-Dirac distribution
function 1.72 becomes a step function, i.e., unity for values of energy less than Fermi
energy i.e. E/µ ≤ 1 and 0 for E/µ > 1. Another convenient facet of these integrals in
the limit of zero temperature is that closed-form analytic expressions are readily available
in references such as [35].

In the zero temperature limit, the number density now reads

n = 4π gs
h3
p

∫ pF

0
p2dp = 4π

3
gs
h3
p

p3
F = 1

3
gs

2π2k
3
F (1.106)

where in the last step, we have expressed our results in the units of G = c = ~ = 1. We
will begin to drop these constants as the expressions begin to get too cumbersome to
keep track of them. The upper limit of the integral pF = ~kF is the Fermi momentum
provided by the relation pF = (µ2

F −m2)1/2 and µF is the same as Fermi energy EF .
The expression for energy density in the zero temperature limit is now given by

e = gs
2π2

∫ kF

0

(
k2 +m2

)1/2
k2dk

= gs
2π2

[
kF
(
k2
F +m2

)3/2
− 1

2m
2kF

(
k2
F +m2

)1/2
− 1

2m
4 ln

(
(k2
F +m2)1/2 + kF

m

)]
(1.107)

Finally, the pressure p in the zero-temperature limit is given by

p = 1
3
gs

2π2

∫ kF

0

k4

(k2 +m2)1/2dk
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Figure 1.4. A schematic diagram of the phases of strongly interacting matter. Shown is
a phase boundary between a deconfined quark phase and a confined hadronic phase which
terminates at a critical point. The precise position of the critical point is, as of now, not
well understood at finite baryon chemical potential. We also show the approximate positions
occupied by a merger of neutron stars assuming a first order phase transition were to take place.
The figures are not to scale in length.

= 1
3
gs

2π2
1
4

[
k3
F

(
k2
F +m2

)1/2
− 3

2m
2kF

(
k2
F +m2

)1/2
+ 3

2m
4 ln

(
(k2
F +m2)1/2 + kF

m

)]
(1.108)

1.2.5 QCD Phase Transitions

One of the long-standing problems in quantum chromodynamics (QCD) is a precise
determination of the phases of strongly interacting matter. The vast majority of matter in
our day-to-day lives is hadronic which is to say that the elementary quarks (the up quark
u and the down quark d) that make up protons and neutrons exist in confined states
with the strong nuclear force between them being mediated by gluons. These confined
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states are characteristic of the hadronic phase: the low-temperature and the low-density
region in the phase structure of QCD as reported in figure 1.4. The adjective ‘low’ here
is relative to the MeV energy scales in high-energy physics wherein temperatures of the
order of keV (about 107 K) are considered low. The theory of QCD is asymptotically free
which means that at large enough energies including temperatures reaching tens of MeVs
and/or densities reaching several times that of nuclear saturation (2.7 × 1014gcm−3),
the strong interactions holding the quarks together begin to weaken. Therefore at such
energy scales, it is conceivable that confined states of quarks may undergo a transition to
a phase of deconfined quarks. The precise nature of this transition, i.e., whether it is of
the first order as in a liquid-vapor phase transition or whether it proceeds continuously is
an area of active research. Lattice QCD calculations and heavy ion collision experiments
have provided valuable insight into the nature of such a phase transition at vanishing
densities and high temperatures. As such, it is fairly well established that the transition
to a phase of deconfined quarks at vanishing densities proceeds through a crossover with
a critical temperature near 155 MeV. However, the inapplicability of QCD methods at
finite densities, makes it currently challenging to determine the precise nature of this
phase transition.

Fortunately, with the advent of gravitational wave astronomy, it has now become
possible to observe mergers of neutron stars using gravitational waves. Neutron stars and
their mergers occupy the cold and dense part of the phase structure of QCD, thereby
providing us with density scales that are impregnable by any terrestrial laboratory. In
this and the following subsections, we shall be discussing a model of an EoS for a phase
of deconfined quark matter as well as the two important constructions for a first order
phase transition that are used to stitch together a hadronic EoS at low densities with a
quark EoS at high densities. As we will notice, the choice of a particular construction
has a profound impact on the stellar structure of a neutron star. Further, an exploration
of how this choice manifests in a merger of two neutron stars is what forms the crux of
this dissertation.

1.2.5.1 The quark matter EoS: MIT Bag Model

The MIT Bag model [36] provides us with a simple phenomenological method to model the
equilibrium behavior of strongly interacting matter at high densities where the dominant
degrees of freedom are deconfined quarks consisting of the three lightest flavors, i.e., the
up quark (u), the down quark (d) and the strange quark (s). Despite its simplicity as
compared to involved models of nuclear theory formalisms that are used to describe the

37



hadronic phase (corrections to the ideal Fermi gas that we referred to in the previous
subsection), the MIT Bag model can provide robust insights into the nature of the
deconfined quark phase. The model states that the energy associated when quarks are
present in a volume V consists of two contributions. The mere presence of quarks in a
volume V has an energy budget of BV where the energy density B is called the Bag
constant. The second contribution comes from the kinetic motion of quarks. When
quarks are confined within hadrons, it is assumed that they are free to move but no
current crosses the hadronic boundary. When the quarks are deconfined, the kinetic
contribution to their energies is modeled by an ideal Fermi gas which we have discussed
at length in the previous subsection.

It turns out that the precise value for B is important. There are admissible values
for B which may result in the energy per nucleon being less than that of the most bound
Fe-56 nucleus thereby implying that ordinary matter is in a metastable state of decay
to the so-called strange quark matter. This is called the Bodmer-Witten hypothesis
and forms the subject matter of investigation in chapter 4. According to the MIT Bag
model, the n, e, and p of an ideal Fermi gas of deconfined quarks is given by the following
expressions (in G = c = ~ = 1) units [34]:

n =
∑
i

1
3
gs

2π2

∫ ∞
0

k2Ei(k) (f0(k, µi) + f0(k,−µi))
dk

miEi
(1.109)

e =
∑
i

gs
2π2

∫ ∞
0

k2Ei(k)2 (f0(k, µi) + f0(k,−µi))
dk

Ei
+B (1.110)

p =
∑
i

1
3
gs

2π2

∫ ∞
0

k
∂Ei(k)
∂k

k2 (f0(k, µi) + f0(k,−µi)) dk −B (1.111)

s̃ = S/V =
(
∂p

∂T

)
V,µi

(1.112)

In these expressions, a factor of 1/3 accounts for the fact that there are 3 quarks per
baryon, and the degeneracy factor for quarks gs is 6 for each quark flavor. The summation
index i runs over u, d, and s quarks. The expression Ei(k) = (k2 +m2

i )
1/2 is the total

relativistic energy of the ith quark flavor and f0(k,−µi) is the distribution function for
the antiparticle. It is easy to establish an analogy with the equations of a degenerate
relativistic fluid in subsection 1.2.4.3. Finally, s̃ in these equations represents an entropy
density not to be confused with the specific entropy s.

A very interesting facet of this model can be noted from the expression for pressure
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where the Bag constant B appears with a negative sign. In the case where the Bag
model describes a strange star which is a compact object made up entirely of u, d and
s quark matter (and will be explored in detail in chapter 4), this implies that the Bag
‘pressure’ assists the inward gravitational pressure to balance the outward Fermi pressure
of the quarks. This also means that strange stars are self-bound in that such stars can
maintain their shape even in the absence of gravity. This is contrary to the standard
compact objects with which we are familiar like white dwarfs or neutron stars that are
instead gravitationally bound.

We conclude this subsection with a brief comment. We have considered a model for
the three lightest quark flavors. Many a time (e.g. in chapter 2 and 4), the up quark
and the down quark are considered massless as they are much lighter relative to the
strange quark. This is a direct application of the zero-mass limit for an ideal Fermi gas
that we mentioned in section 1.2.4.3, the exact expressions for which can be found in the
reference [34]. In addition to this, in chapter 4, we have contrasted the finite temperature
EoS of strange quark matter described by the MIT Bag model with the hybrid EoS of
strange quark matter. For the latter case, we have made use of the zero temperature limit
of the same EoS and corrected it with an ideal gas thermal correction, another direct
application of the complete degeneracy approximation we saw in subsection 1.2.4.3.

1.2.5.2 Stitching the hadronic and quark phases: Maxwell and Gibbs con-
structions

Having discussed robust formulations for the low-density hadronic EoS and the high-
density quark EoS, we now turn our attention to the methods that are used to match
these equations of state in a coexistence region (mixed quark phase). We shall discuss two
such constructions that are commonly used in the modeling of 1st order phase transitions
from a hadronic phase to a deconfined phase of quarks. These constructions are called
the Maxwell construction and the Gibbs construction. Drawing from the analogy of
the classic example of 1st order phase transitions in water, we recall that such a phase
transition proceeds by maintaining a constant pressure through the transition densities.
This is in effect a re-statement of the fact that volume (or equivalently density), a
derivative (inverse derivative) of Gibbs Free energy at a constant temperature undergoes
a discontinuity. Indeed, when the possibility of phase transitions inside the cores of
neutron stars was first considered, a model of the constant-pressure phase transition
was proposed to explain such behavior. However, there exists a caveat with this picture
which is that the general relativistic stellar structure equations (the TOV equations)
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for a compact object such as a neutron star mandate that the pressure in the interior
of a neutron star be monotonically increasing as one descends from the surface to the
core. A region of constant pressure for a range of densities would essentially imply that
an annular volume of neutron star material is mapped onto the same radial surface
which is contradictory to the structure of a neutron star. Thus the constant pressure
configurations are not stable configurations for a neutron star.

Another important aspect of the problem is that the phase transitions for water
exist in a simple system with one conserved charge meaning that the number of water
molecules is constant. A neutron star is a more complex system in that there can be
multiple conserved charges like baryon number and electric charge. Corresponding to
each conserved charge, there exists a chemical potential and in the case of neutron stars
these are the baryon chemical potential µB and the electric chemical potential µq. The
total chemical potential µi for a particle of species i can be expressed as

µi = BiµB + qiµq (1.113)

where Bi is the baryon number of i and qi is its electric charge in units of e - the electronic
charge. From the above equation, it is straightforward to see that µB = µn, the chemical
potential of a neutron, and µq = −µe is the negative of the chemical potential of an
electron. Armed with these definitions, we can express the chemical potentials of the
u, d and s quarks in terms of µn and µe as follows

µu = 1
3µn −

2
3µe (1.114)

µd = 1
3µn + 1

3µe (1.115)

µs = 1
3µn + 1

3µe = µd (1.116)

The chemical potential too is one of the derivatives of Gibbs free energy at a constant
temperature and pressure and if it is discontinuous across a phase boundary, it can
be used in the construction of a first-order phase transition. This is precisely the
difference between Maxwell and Gibbs constructions for the mixed phase. Maxwell
construction enforces charge neutrality in the two phases separately but not in the
transition region. In other words, there is local charge neutrality but not global charge
neutrality. Mathematically, the conditions for a mixed phase constructed using the
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Maxwell construction are as follows [37]

pH = pQ

TH = TQ

µB,H = µB,Q

µq,H 6= µq,Q (1.117)

where the subscripts H and Q mean that the corresponding quantities are to be computed
for the hadronic and quark phases respectively. Thus we see that owing to a discontinuity
in the electric chemical potential across the phase boundary, a motion of electrons from
a region of higher electric chemical potential to lower electric chemical potential takes
place, thereby developing a strong electrostatic field.

Gibbs construction on the other hand enforces global charge neutrality thereby
requiring that both µB and µq be continuous across the phase transition boundary. The
conditions for the same are as follows

pH = pQ

TH = TQ

µB,H = µB,Q

µq,H = µq,Q (1.118)

Enforcing global charge neutrality typically has the effect of producing a large mixed
phase where deconfined quarks exist in conjunction with hadrons.

It is essential to compare the attributes of the two constructions for phase transitions
in neutron stars. The Maxwell construction results in a gravitational separation of the
confined quark phase and the pure deconfined quark phase as a result of the constant
pressure configurations being excluded from stable configurations. This also means that
the pure quark phase is easier to access by the fluid’s thermodynamic state - either in a
dense neutron star or in a merger remnant. In this regard, the Maxwell construction is
closer to the first-order phase transition in water. On the other hand, even though Gibbs
construction preserves the global charge neutrality of a star as well as the monotonicity
of pressure, it may result in such a highly energetic pure quark phase that is inaccessible
to the neutron star fluid. This is precisely the case with the EoS model employed in
chapter 2.

In figure 1.5, we show the differences between the Maxwell and Gibbs construction for
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Figure 1.5. A schematic diagram comparing the cold pressure-density profiles for a hadron-
quark hybrid EoS constructed from Maxwell and Gibbs constructions.

a mixed phase in the pressure-density phase space. While Maxwell construction resembles
the familiar constant pressure phase transition found in water, Gibbs construction ensures
the monotonicity of pressure as required by TOV equations. We refer the reader to
references [37,38] for an elaborate discussion comparing the two constructions of first-
order phase transitions. Reference [37] uses the MIT Bag model for the high-density pure
quark phase and shows that upon increasing the Bag’s constant, the mixed phase with
Gibbs construction widens and the EoS becomes softer. This is to be expected because
now the inward gravitational pressure is assisted by a stronger degeneracy pressure to
compactify the star. The authors also report the TOV sequences for the two constructions
of deconfinement phase transitions. Owing to the constancy of pressure in the Maxwell
construction, the mixed phase in an isolated non-spinning neutron star is ruled out and
this results in an unstable branch with the Maxwell construction with a positive M-R
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slope (figure 4 in reference [37]).
To conclude, the stellar structure is indeed very sensitive to the choice of construction

employed for the phase transition. One of the main objectives of this dissertation is to
investigate the sensitivity of these choices in the context of neutron star mergers. As
we shall see in this dissertation, there will be profound impacts of the type of phase
transition, i.e., a GIbbs construction or a Maxwell construction and the exact models
used for the hadronic and pure quark phases on the outcomes of neutron star mergers.
We shall postpone more on this discussion to the conclusions in chapter 7.

1.2.6 The Tolman Oppenheimer Volkoff (TOV) Equations

We shall now begin with a discussion of the equations for stellar structure. Different
classes of stars need slightly different modeling to describe their structure, which in all
cases, is premised upon the requirement of hydrostatic equilibrium. The precise physics
that governs such an equilibrium is based on the nature of the star in question. For
instance, main sequence stars need a balance between the radially outward gaseous and
radiation pressure sourced from nuclear fusion and the inward pressure of gravity. To
describe their structure, classical physics for the gas pressure and Newtonian gravity
for the inward pressure may suffice. Moving to the stellar graveyard, we encounter
compact objects such as White dwarfs. Here too, one can comfortably get along with
just Newtonian gravity for the inward gravitational pressure, but the radially outward
electron degeneracy pressure is a quantum mechanical effect that comes from Pauli’s
exclusion principle. A classical treatment (Maxwell-Boltzmann distribution) will need to
be abandoned. An even more compact category is that of the neutron stars where the
electrons and protons combine to form neutrons and the electron degeneracy pressure
is now replaced by a much stronger neutron degeneracy pressure. Here, owing to the
substantial curvature of spacetime, one needs to resort to a general relativistic description
of the gravitational force in tandem with quantum mechanics for the structure of the
star. Yet another interesting category of compact objects is that of the still-theorized
strange stars that are made up entirely of deconfined quark matter. A description of
their stellar structure will require, like neutron stars, quantum mechanics to account for
the outward ‘quark’ degeneracy pressure and a general relativistic description of gravity.

We do however caution the reader that such a classification of the importance of
quantum mechanics and general relativity models is qualitative at best and indeed very
sensitive to the type of problem at hand. For instance, general relativity may not be very
useful to describe the structure of the sun any better than Newtonian gravity however, if
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we were to consider planetary orbits, the precession of Mercury is a general relativistic
effect.

We begin with a brief comment on the stellar structure equations of white dwaefs.
Isolated and non-spinning white dwarfs have a rather simple description of the underlying
equation of state. Having an average temperature of 104 K, white dwarf matter can be
modeled as completely degenerate electrons and is an ideal candidate to be described by
a zero-temperature equation of state as we discussed in subsection 1.2.4.3. As we have
seen, to first order, the equation of state can be given as a polytrope with Γ = 4/3 or
5/3 depending upon whether the electrons are ultra-relativistic or non-relativistic. S.
Chandrashekar described the stellar structure of a white dwarf [39] using an interpolation
between these two polytropes and employing the Lane-Emden equations which are given
by

1
r2

d

dr

(
r2

ρ

dp

dr

)
= −4πρ (1.119)

Given a central density ρc and a cold EoS, p = p(ρ), the lane-Emden equations solve
for ρ = ρ(r) which then provides p = p(r). The radius of the star R is computed by
requiring a vanishing pressure at the surface, i.e., p(r = R) = 0. Finally, the mass of the
white dwarf is given by

M =
∫ R

0
ρ(r)4πr2dr. (1.120)

A fixed value of ρc corresponds to a given configuration of a white dwarf. We can construct
a sequence of white dwarf configurations by solving the Lane-Emden equations iteratively
corresponding to a sequence of ρcs. It turns out that for a completely degenerate Fermi
(electron) gas, the sequences from Lane-Emden equations predict a vanishing radius at a
mass called the Chandrashekhar mass which is around 1.4M�. This mass sets a limit to
the maximum mass of an isolated and non-rotating white dwarf in equilibrium and is
also called the Chandrashekhar limit. It is straightforward to show a derivation of the
equation 1.119 from Eüler equations of gas dynamics in Newtonian gravity and assuming
spherical symmetry. For brevity, we shall skip the derivation here and point the reader
to Chapter 12 in the reference [7] for the same.

We now turn our attention to the relativistic generalization of equation 1.119 called
the Tolman Oppenheimer and Volkoff equation, whose contemporary form was first
derived by J. Robert Oppenheimer and George Volkoff in [42]. The TOV equation
describes the structure of a spherically symmetric object in general relativity. They have
found applications in describing the structures of cold and β− equilibrated neutron stars
and more recently, strange stars. Here too we shall be using as input, the cold EoS which
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Figure 1.6. Left Panel: Shown in solid colored lines are the cold equations of state in the
pressure-number density space taken from the reference [40]. These EoSs are representative
of the entire EoS dataset, whose 95 % credible intervals have been shown with black dotted
lines. Also shown are bounds from the Chiral effective field theory (CEFT) and QCD. Right
Panel: The mass-radius sequences of isolated and non-spinning neutron star configurations
corresponding to the EoSs shown in the left panel. The grey contour in both panels represents
the 95% credible interval of a joint probability distribution of pressure-density (left panel) and
mass-radius (right panel). Colored circles correspond to the maximum mass configurations in
both panels. The image has been reproduced from the reference [41] under the terms of the
Creative Commons CC BY 4.0 license.

is to say, the neutron star matter is composed of a completely degenerate Fermi fluid of
neutrons providing an outward neutron degeneracy pressure.

We begin with the metric of spacetime in the exterior of a static (non-rotating) and
spherically symmetric star. Birkhoff’s theorem states that the only vacuum solution
for Einstein’s equation which is static and spherically symmetric is the Schwarzschild
solution. Therefore the spacetime in the exterior of the star, i.e., ∀r ≥ R in spherical
polar coordinates can be given by

ds2 = gabdx
adxb = −

(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2dθ2 + r2 sin2 θdϕ2 (1.121)
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where the metric gab is the Schwarzschild metric given by

gab =


−
(
1− 2M

r

)
0 0 0

0
(
1− 2M

r

)−1
0 0

0 0 r2 0
0 0 0 r2 sin2 θ

 . (1.122)

and the constant M > 0 has the interpretation of the total gravitational mass of the
star. Such a metric is straightforward to derive from the Einstein’s equations under the
assumptions of a static and spherically symmetric spacetime. The metric g will set the
necessary boundary conditions required for a numerical solution of the TOV equations.

Now within the star, the metric is still spherically symmetric and static however,
we no longer have a vacuum but matter described by the energy-momentum tensor Tab
sourcing the curvature of spacetime. Nevertheless, the metric in the interior of the star,
i.e, ∀r < R can be expressed as follows

gab =


−e2φ(r) 0 0 0

0 e2λ(r) 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 . (1.123)

where φ and λ are exclusively functions of the radial coordinate and are called the
metric potentials. Given this metric, one can now compute the Einstein tensor and write
Einstein’s equations (in the fluid frame) 1.9 (see [43] for a reference) as

Gt
t = 1

r2

(
e−2λ − 1

)
− 2
r

dλ

dr
e−2λ = 8πT tt = −8πe

Gr
r = 1

r2

(
e−2λ − 1

)
+ 2
r

dφ

dr
e−2λ = 8πT rr = 8πp

Gθ
θ = Gϕ

ϕ =
(
d2φ

dr2 +
(
dφ

dr
+ 1
r

)(
dφ

dr
− dλ

dr

))
e−2λ = 8πp (1.124)

Integrating the equation for the time-time component (assuming λ(r) to be analytic at
0) and introducing the mass function m(r) as the mass contained within a radius r as

m(r) =
∫ r

0
e(s)4πs2ds, (1.125)
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we get
e−2λ(r) =

(
1− 2

r
m(r)

)
∀r ≤ R. (1.126)

Substituting this in the equation for the radial-radial component, it is straightforward to
show that

dφ

dr
= 4πr3p(r) +m(r)

r(r − 2m(r)) . (1.127)

At this stage, we invoke the conservation of energy and momentum, i.e, ∇aT
ab = 0. We

can compute the spatial projection of this equation as

hcb∇aT
ab = 0 (1.128)

where hab = gab + uaub. From this equation, it follows that

(e+ p)ac = −hac∂ap (1.129)

where ab is the four acceleration of the fluid defined as ab = uc∇cu
b. This equation tells

us that the relativistic acceleration is proportional to the gradient of pressure, a result
that resonates with the Newtonian picture of hydrostatic equilibrium. One may also
show that the only non-trivial equation from the above relation corresponds to the index
c being the radial coordinate. In other words,

− (e+ p)dφ
dr

= dp

dr
. (1.130)

Substituting this equation in equation 1.127, one gets the standard form of the TOV
equation as

dp

dr
= −(e(r) + p(r))(m(r) + 4πr3p(r))

r(r − 2m(r)) (1.131)

Given a specification of a cold EoS and a central energy density ec, the TOV equation, just
like the Lane-Emden equations can also be used to solve for pressure and density profiles
of an isolated non-rotating neutron star. Likewise, for a sequence of ec, one may construct
sequences of mass and radii of multiple non-rotating neutron star configurations that obey
the same EoS. In figure 1.6, we show the mass-radius sequences computed by iterative
solutions of the TOV equations for a set of cold β− equilibrated equations of state. These
equations of state have been taken from ref. [40] and have been constructed to cover a
large parameter space of contemporary nuclear models consistent with constraints from
nuclear theory.
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We conclude this subsection with a comment on the computation of total mass and
radii. Like the Newtonian case, the radius of a compact object from TOV equations can
be computed by requiring a vanishing pressure, i.e., p(r = R) = 0. There are, however,
two notions of mass: a gravitational mass which appears in the metric, and the Baryonic
mass which is the total mass of all species comprising the star. In a Newtonian framework,
these are the same thing, however in a relativistic framework, the gravitational mass
is always smaller than the baryonic mass because the deficit is released as the binding
energy to form a stable system. The gravitational and Baryonic masses are respectively
given by

MG =
∫ R

0
4πr2e(r)dr

MB =
∫ R

0

4πr2e(r)(
1− 2m(r)

r

)1/2dr > MG (1.132)

1.3 Neutrino Radiation Transport
We shall now provide a quick overview of the details of neutrino transport in our merger
simulations. As we have remarked earlier, neutrinos are involved in weak reactions that
produce out-of-equilibrium effects [30–32]. Consequently, to describe their transport
consistently, the full Boltzmann equation needs to be solved. This is, unfortunately, easier
said than done. The Boltzmann equation is an equation in 7 variables and solving it in
tandem with the equations of general relativistic hydrodynamics is computationally very
prohibitive. All the simulations presented in this dissertation have been performed using
a neutrino leakage + M0 scheme see ref. [23,24] and the references therein except for the
simulations in chapter 5 which have been performed with the more advanced M1 [25]
scheme. We also direct the reader to an excellent review [28] on the state-of-the-art
neutrino transport algorithms in neutron star mergers.

In the absence of weak reactions, in addition to the baryon number being conserved,
the proton number given as np = ne = nYe is also conserved. Here n is the baryon
number density and Ye is the electron fraction of the fluid. In other words,

∇a(nua) = 0

∇aT
ab = 0 (1.133)
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However, in the presence of weak reactions, the proton number is not conserved and is
instead evolved along with Ye as

∇a(nua) = 0

∇a(nYeua) = R

∇aT
ab = Ψa = Qua (1.134)

where R is the net lepton number emission or absorption rate per unit volume in the
rest-frame of the fluid, i.e., ua = (−1, 0, 0, 0) and Q is the net neutrino cooling or heating
rate per unit volume in the rest frame of the fluid. In our code, WhiskyTHC, neutrinos are
classified into trapped neutrinos (trapped within the remnant) which are treated with
a leakage scheme, and free-streaming neutrinos, the 0th moment of whose distribution
functions is evolved by the M0 scheme. Neutrinos are considered massless and therefore
the free-streaming neutrinos follow null-geodesics along radial rays that are spherically
symmetric. Flavorwise, we divide the neutrinos into three categories: the electron
neutrinos νe, the anti-electron neutrinos ν̄e and all other heavy neutrinos are grouped as
νx. The quantities R and Q are given as

R = (κνenνe − κν̄enν̄e)−
(
Reff
νe

+Reff
ν̄e

)
Q = (κνenνeEνe + κν̄enν̄eEν̄e)−

(
Qeff
νe

+Qeff
ν̄e

+Qeff
νx

)
(1.135)

where the effective emissivities Reff and Qeff and the neutrino absorption opacity κ are
provided by the leakage scheme. n is the number density of free streaming neutrinos of a
given species, and E is their average energy in the rest frame of the fluid. To solve for n
and E, we evolve the 0th moment of the free-streaming neutrino distribution function.
The M0 scheme effectively provides us with hyperbolic PDEs for the evolution of n and
E for the free-streaming neutrinos.

Since the neutrinos are massless, their 4-momenta pa is given by

pa = Eνk
a (1.136)

where Eν = −pcuc is the neutrino energy in the rest-frame of the fluid and ka is a null
vector that can be decomposed into a timelike velocity ua and a unit spacelike vector ra

as ka = ua + ra. Since the free-streaming neutrinos are only evolved over radial rays, r
is the spatial degree of freedom. Like subsection 1.2.4.3, we can again define a number
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current for a neutrino with flavor X as

Na
X = −

∫
fXp

ad
3p

p0 (1.137)

from which the neutrino number density (in the rest frame of the fluid) can be computed
as nX = −uaNa

X = N t
X . It can be shown [44], that Na

X satisfies

∇aN
a
X = Reff

X − κXnX . (1.138)

Using the 3+1 decomposition, the equation for the number density of neutrinos can
be expressed as

∂t
(
α
√
γnXk

t
)

+ ∂r (α√γnXkr) = α
√
γ
(
Reff
X − κXnX

)
(1.139)

where the symbols have their usual meaning and Na
X = nXk

a is a restatement of the fact
that the free-streaming neutrinos travel at the speed of light. Likewise, the equation for
the energy transport can be written assuming a stationary spacetime, i.e., a spacetime
that is time-translation invariant. This further implies that ∂at being the Killing Vector
field, the energy of free-streaming neutrinos along their worldlines should be a constant,
i.e., −pata is a constant along a free-streaming neutrino worldline. Finally, the energy
transport equation can be given as

nXk
t∂t(−EXkata) + nXk

r∂r(−EXkata) =
(
−kctcQeff

X + EXkat
aReff

X

)
(1.140)

In this chapter, we have provided a review of all the moving parts in a cogwheel that
is a relativistic hydrodynamic simulation. Starting from the evolution of spacetime to
hydrodynamics to the equilibrium of matter and finally neutrino transport. In multiple
places, we have skipped detailed derivation in the interest of brevity and pointed the
reader to exhaustive resources. However, the themes that are central to this dissertation
like the equations of state and QCD phase transitions have been discussed in sufficient
detail.
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Part I

Numerical Relativity Simulations
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Chapter 2 |
QCD Phase Transitions: Gravita-
tional Wave and Electromagnetic
Signatures

2.1 Introduction
Strong interacting matter, described by quantum chromodynamics (QCD), possesses a
rich phase structure [45–47]. At low enough temperatures and densities, the QCD phase
diagram is populated by hadronic matter, i.e., a phase where quarks and gluons are
confined within baryons and mesons. High precision QCD calculations on a space-time
lattice at zero baryon chemical potential (i.e. zero baryon density) have clearly shown
that at high temperature and for physical values of the quark masses, quarks and gluons
become the most relevant degrees of freedom. The transition to this quark-gluon plasma
phase is a crossover [48, 49] rather than a real phase transition with a pseudo-critical
temperature of about 155 MeV. The phase with deconfined quarks and gluons has been
observed in heavy-ion collision experiments at very high beam energies probing the high
temperature and low-density region of the QCD phase diagram (see e.g. [50] and the
references therein).

A transition to a phase with deconfined quarks and gluons is also expected in the
region with low or moderate temperatures (T = 0 – 100MeV) and large densities (several
times the nuclear saturation density ρnuc ∼ 2.7× 1014g cm−3). This is the region of the
QCD phase diagram that is mapped by neutron star (NS) interiors, the hot and dense
matter formed during core-collapse supernovae, and binary neutron star (BNS) mergers.
In fact, since a long time it has been proposed that quark matter composed of the three
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lightest quark flavors, namely up (u), down (d) and strange (s) quarks, can exist inside
the cores of heavy NSs (the so-called hybrid stars) or form a new type of self-bound
compact object called a strange star, which is completely made up of strange quark
matter (see e.g., [34]). Whether in this region of the QCD phase diagram, the quark
deconfinement phase transition is of the first order with a critical endpoint, or whether it
proceeds smoothly through a crossover is still an open question. The latter cannot be
answered by lattice QCD calculations due to the so-called “sign problem”, which makes
all known lattice QCD methods at finite baryon chemical potential inapplicable. New
dedicated experiments under construction at future facilities such as the Compressed
Baryonic Matter (CBM) experiment [51] at the Facility for Antiproton and Ion Research
(FAIR) will clarify this and other fundamental questions on dense QCD matter in the
upcoming years.

The discovery of gravitational waves (GWs) from the BNS merger GW170817 by
Advanced LIGO and Advanced VIRGO [1], complemented by the subsequent observations
of electromagnetic (EM) counterparts by a host of earth and space-based telescopes [2],
has ushered in the new field of multi-messenger astrophysics with GWs. It is now possible
to indirectly probe the nature of the dense and hot matter created in BNS mergers through
multi-messenger observations. Numerical simulations with state-of-the-art physics models
are required to model the highly dynamic post-merger evolution of BNSs and bridge the
gap between the fundamental physics of mergers and observational data.

The works by Most et al. [52,53], Bauswein et al. [54,55], Weigh et al. [56], Liebling et
al. [3], and Blacker et al. [57] extensively studied QCD phase transitions in BNS mergers
by contrasting simulation results obtained with equation of state (EOS) models in which
the QCD phase transition was included or excluded. Most et al. [52, 53] employed a
chiral mean field model with a first-order phase transition from hadrons to quarks, which
also included hyperons. They found that, for their particular choice of EOS, a first-order
QCD phase transition induced similar qualitative differences in the postmerger dynamics
and the associated GW signal as the appearance of hyperons [19,20]. In particular, the
appearance of quarks was rapidly followed by black hole (BH) formation in their studies.
They also identified a small dephasing in the postmerger GW signal, which was claimed
to be a unique signature of the formation of quarks. However, it is not clear that such a
dephasing is significant given the numerical uncertainties in their simulations.

The studies of Bauswein et al. [54, 55] differed from the previous ones in several
aspects. They employed an EOS that contained an extended mixed phase of quarks and
hadrons [58], while the EOS adopted by Most et al. [52, 53] had a rapid transition to
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pure quark matter. Bauswein et al. [54,55] also used a smoothed particle hydrodanamics
(SPH) code instead of a grid based code and employed the conformally flat approximation
to general relativity (GR). The simulations of Bauswein et al. [54, 55] resulted in the
formation of quadrupolarly deformed hybrid remnants with hadronic envelopes and
deconfined quarks in their cores that did not immediately collapse to BHs. These
remnants were found to emit GWs at a substantially higher frequency than their hadronic
counterparts. In particular, the GW signal from hybrid remnants violated empirical
relations between certain properties of the binaries that can be measured from the inspiral
signal and their postmerger peak frequencies [59–63]. Since these relations are known
to hold for all hadronic EOSs [64], the detection of a signal violating them would be a
smoking gun evidence for the presence of a first order phase transition.

The apparent discrepancies between the results of Most et al. [52, 53] and Bauswein
et al. [54, 55] have been addressed by Weih et al. [56]. This study considered a purely
phenomenological description of the EOS using a piecewise polytropic ansatz. Weih et
al. [56] found that, depending on the characteristic of the EOS and of the phase transition,
there can be different possibilities. A shift in the postmerger peak GW frequency was
found to occur only for models in which the phase transition is not immediately followed
by BH formation. Moreover, in the cases in which the phase transition was delayed from
the onset of the merger it was possible for the postmerger GW spectrum to display two
peaks: one associated with the hadronic remnant prior to the phase transition, and one
associated with the hybrid remnant after the phase transition. More recently, Liebling et
al. [3] used the same phenomenological ansatz as Weih et al. [56]. They confirmed the
previous findings and also studied the impact of phase transitions on the topology of the
magnetic field of the stars.

A recent work by Blacker et al. [57] attempted to derive a methodology to constrain
the onset density of a deconfinement phase transition in BNS mergers. They investigated
the effects of quark deconfinement over a substantial range of NS masses. They used
EOS framework as Refs. [54,55], but varied some of the model parameters. They claimed
that with several measurements of the postmerger peak frequency for different binary
masses it would be possible to constrain the density threshold for quark deconfinement
at zero temperature.

The related scenario of a merger of self-bound compact stars or strange stars was
considered by Bauswein et al. [65, 66] and Zhu et al. [67], while the merger between
hadronic NSs and strange quark stars was considered in De Pietri et al. [68]. These
studies highlighted some potential GW and EM signatures for strange quark stars. Such
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scenarios could be independently constrained from upper bounds on the flux of strangelets
generated in such mergers [65,69].

A concordant picture has started to emerge on the possible role of QCD phase
transitions in BNS mergers. However, there are still many open questions. What are
the prospects for constraining a phase transition given a realistic BNS population? How
generic are the signatures identified by Bauswein et al. [65,66] and Blacker et al. [57]?
Can EM counterparts and nucleosynthesis yield provide an independent constraint? In
this chapter we begin to address some of these questions using BNS merger simulations
in full general relativity. We use a state-of-the-art microphysical nuclear EOS for the
hadronic phase and a phenomenological bag model for the quark phase. These are
coupled to an approximate formalism for neutrino transport. We focus on a wider range
of total binary mass and mass ratios than what has been considered in the past and
study, for the first time, the possible signature of phase transitions in kilonovae, r-process
nucleosynthesis yield, and afterglows of BNS mergers. We confirm that QCD phase
transitions could leave a detectable imprint on the postmerger GW signal. However, such
signatures might not be easily identifiable. Indeed, the differences between our hadronic
and mixed quark binaries are of the same order as differences between different hadronic
models already presented in the literature. Bauswein et al. [70] also investigated the mass
ejection rates from BNS mergers in the context of EOSs with deconfined quarks and
reported on the absence of characteristic signatures resulting from quark deconfinement.
Likewise, we do not find any smoking gun evidence of a phase transition in the kilonova
or nucleosynthesis yields, but we find that the onset of a QCD phase transition can lead
to more energetic bounces of the remnant. These, in turn, result in the ejection of a
small amount of material to very high velocities which could power particularly bright
non-thermal afterglows. However, this effect cannot be presently used to constrain phase
transition in mergers owing to the large uncertainties in the physics of the shock launched
by the ejecta in the interstellar medium (ISM).

This chapter is organized as follows. In the subsequent sections 2.2 and 2.3, we
describe, respectively, the details of the EOSs and the numerical infrastructure for the
calculations presented in this chapter. In section 2.4, we describe the dynamics of the
merger. In particular, in sub-section 2.4.1 we comment upon the qualitative features of
the evolution of a BNS merger with a QCD phase transition, and in sub-section 2.4.2, we
probe the thermodynamic properties of the matter produced in mergers using Lagrangian
tracer particles. Section 2.5 is devoted to the study of the GW signatures of such a
phase transition. A discussion about the properties of the outflow from such mergers and
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accretion disks surrounding the remnant follows in section 2.6. Section 2.7 is dedicated
to the discussion of possible EM signatures coming from mergers exhibiting a QCD phase
transition. In particular, we compute the kilonova lightcurves at early times after the
merger and the late-time afterglow in sub-sections 2.7.1 and 2.7.2 respectively. We finally
culminate the chapter with conclusions in section 2.8.

2.2 Equations of State

2.2.1 Hadronic matter

In the first case (hadronic matter) we assume that the dense and hot matter formed during
BNS mergers can be modeled, up to the relevant temperatures and densities, as a uniform
electric-charge-neutral fluid of neutrons, protons, electrons, positrons, and photons.
Recently a new microscopic EOS for this system has been obtained in Bombaci et al. [71]
(hereafter the BL EOS) for the zero temperature case, using the Brueckner-Hartree-Fock
(BHF) quantum many-body approach (see [71] and references therein) starting from
modern two-body and three-body nuclear interactions derived within chiral effective field
theory (ChEFT) (e.g. [72, 73]). These chiral nuclear interactions reproduce with high
accuracy the nucleon-nucleon (NN) scattering data and the experimental binding energies
of light (A = 3, 4) atomic nuclei. The BL EOS reproduces the empirical properties
(energy per nucleon, symmetry energy and its slope parameter L, incompressibility) of
nuclear matter at saturation density (n0 = 0.16 fm−3; see Logoteta et al. [74]), it does not
violate causality (i.e. vs < c, with vs being the speed of sound in the nuclear medium),
and it is consistent (see figure 2 in [71]) with the measured elliptic flow of matter in
heavy-ion collisions experiments [75].

When computing static neutron star configurations, the BL EOS (for the β-stable
case) gives: (i) a maximum mass Mmax = 2.08 M� and a corresponding radius R(Mmax) =
10.22 km; (ii) a quadrupolar tidal polarizability coefficient Λ1.4 = 385 (for the 1.4 M�
neutron star [76]) compatible with the constraints derived from GW170817 [1]; and (iii)
a threshold mass for the prompt collapse of a q = 1 BNS system to BH as Mthreshold =
2.925 M� (Section 2.4.1) indicating that GW170817 is compatible with being a NS-NS
system if NSs are described by this EOS. With the addition of a thermal contribution,
using the so-called Γ-law, the BL EOS has been used in BNS merger simulations by
Endrizzi et al. [77].

Very recently, the BL EOS has been extended to finite temperature and to arbitrary
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Figure 2.1. The pressure-density variation at T = 0 and the mass-radius relationship for
isolated, cold (T = 0), β-equilibrated, and spherically symmetric neutron stars constructed
with the two equations of state used in this work. The circle and square markers represent
the individual masses of the neutron stars simulated for BL and BLQ EOS respectively. The
BLQ mass-radius sequence departs from the BL sequence for neutron stars having a mass
M & 1.7 M�. These stars possess in fact a core made of hadron-quark mixed matter.

proton fractions [78]. In the following we will refer to this finite-temperature EOS model
as the BLh EOS. The BLh EOS has been applied in Bernuzzi et al. [79,80] to asymmetric
neutron star mergers (q 6= 1) with chirp mass 1.188 M� corresponding to the measured
one in the case of GW170817.

2.2.2 Deconfined quark matter

The second EOS model (hereafter the BLQ EOS) used in our work describes the
thermodynamic properties of hadronic-quark hybrid matter. We assume that at high
enough temperatures and densities reached during a BNS merger, stellar matter undergoes
a transition to a phase with deconfined quarks (quark matter) and in addition, we assume
this phase transition to be of the first order. Quark matter could also be present in the
NS cores prior to the merger in the case of sufficiently massive NSs (see figure 2.1) and
for particular choices of the quark matter EOS parameters. To describe the hadronic
phase (i.e. quarks confined in neutrons and protons in our case) of hybrid matter we
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make use of the BLh EOS described above.
To model the quark phase we use an extended version of the phenomenological bag

model EOS which includes the effects of gluon-mediated QCD interactions between
quarks up to the second order in the QCD coupling αs [81–83]. The grand canonical
potential per unit volume can be written as (we use units where ~ = c = 1):

Ω =
∑

i=u,d,s,e
Ω0
i + 3

4π2 (1− a4)µ4 +Beff , (2.1)

where Ω0
i is the grand canonical potential density for u, d, s quarks and electrons (and their

antiparticles), described as ideal relativistic Fermi gases. The second term on the right
hand side of Eq.(2.1) accounts for the perturbative QCD corrections to O(α2

s) [81–83]
and its value represents the degree of deviations from an ideal relativstic Fermi gas EOS,
with a4 = 1 corresponding to the ideal case. The chemical potential µ in Eq. (2.1) can
be written in terms of the u, d and s quark chemical potentials as µ = (µu + µd + µs)/3.
The term Beff is an effective bag constant that takes into account, in a phenomenological
way, the nonperturbative aspects of QCD.

At finite temperature, the ideal gas contributions to Ω provided by fermions and
antifermions can be calculated by computing the corresponding Fermi integrals for a
given temperature T and chemical potential µi (see e.g. [84]):

Ω0
i (T, µi) = −1

3
gi

2π2

∫ ∞
0

k2dk k v

× [f(k, µi) + f(k,−µi)] (2.2)

where v = k/Ei is the particle velocity (with Ei(k) = (k2 +m2
i )1/2), and f(k,±µi) are the

Fermi distribution functions with chemical potentials for particles (+µi) and antiparticles
(−µi):

f(k,±µi) = 1
e(Ei(k)∓µi)/T + 1 , (2.3)

the degeneracy factor is gi = 2 for electrons and gi = 6 for each quark flavor. We neglect
the temperature dependence of the last two terms in Eq.(2.1).

The total entropy density
s =

∑
i=u,d,s,e

si (2.4)

can be calculated using the ideal Fermi gas approximation for each fermionic particle

58



species [85]:

si(T, µi) = − gi
2π2

∫ ∞
0

k2dk [f(k, µi)lnf(k, µi)

+ (1− f(k, µi))ln(1− f(k, µi))

+ f(k,−µi)lnf(k,−µi)

+ (1− f(k,−µi))ln(1− f(k,−µi))] (2.5)

Using standard thermodynamical relations, the energy density can be written as:

e = Ω +
∑

i=u,d,s,e
µini + Ts, (2.6)

where ni is the number density for each particle species which can be calculated as:

ni = −
(
∂Ω
∂µi

)
T,V

(2.7)

and the total baryon number density is:

nB = 1
3(nu + nd + ns) . (2.8)

We next assume a first order hadron-quark phase transition and, following Glendenning
[38], we require global electric charge neutrality of bulk stellar matter. An important
consequence of imposing global charge neutrality is that the hadronic and the quark
phases can coexist for a finite range of pressures. This treatment of the phase transition
is known in the literature as the Gibbs construction for the hadron-quark mixed phase.
In this case the Gibbs conditions for phase equilibrium can be written as [38]:

µb,H = µb,Q ≡ µb , (2.9)

µq,H = µq,Q ≡ µq , (2.10)

TH = TQ ≡ T , (2.11)

PH(µb, µq, T ) = PQ(µb, µq, T ) , (2.12)

where the subscript H and Q refer to physical quantities in the hadronic and in the quark
phase respectively, while the baryon chemical potential, µb, and the electric chemical
potential, µq, are two independent chemical potentials corresponding respectively to the
global conservation of the baryon number and the electric charge. In the pure hadronic

59



phase µb = µn, the neutron chemical potential, and µq = µe, the electron chemical
potential. In the quark phase the quark chemical potentials can be written as:

µu = 1
3(µb − 2µq) = 2

3µp −
1
3µn , (2.13)

µd = 1
3(µb + µq) = 2

3µn −
1
3µp . (2.14)

Weak reactions of the type:

d+ u↔ u+ s (2.15)

u+ e− ↔ s+ νe (2.16)

will change the strangeness content of the just deconfined quark matter [86] to minimize
the energy per baryon of the system. Since the typical time-scale for weak interaction
processes tw . (10−8–10−10) s is significantly shorter than the hydrodynamics timescales
inside the remnant, we neglect detailed reaction rates involving quarks and neutrinos,
and we consider β-stable strange quark matter with the strange quark chemical potential
µs = µd.

In the present work we take mu = md = 0, ms = 100 MeV, B1/4
eff = 180 MeV and

a4 = 0.4. With these values of the EOS parameters for the quark phase, and with
the BL EOS for the hadronic phase, we obtain the NS mass-radius curves shown in
figure 2.1. In particular, we find identical radii and NS structure for BL and BLQ when
considering stars with masses up to M ' 1.7 M�. That is, up to the onset of the phase
transition. After the onset of the phase transition, the BLQ EOS becomes less stiff than
BL and predicts more compact NSs and a lower maximum mass of Mmax = 1.99 M�. The
corresponding radius is R(Mmax) = 10.46 km. The threshold for prompt BH formation
for a q = 1 BNS merger with BLQ EOS is found to be 2.825 M� (see Section 2.4.1).

2.3 Numerical Setup
We evolve our systems in full general relativity along with high-order convergence
schemes for general relativistic hydrodynamics using the WhiskyTHC code [23, 24, 87–
89]. The spacetime metric is evolved using the Z4c formulation [90, 91] of Einstein’s
equations implemented in the CTGamma thorn [92, 93] of the EinsteinToolkit [94].
Our simulations make use of the Carpet adaptive mesh refinement (AMR) framework
[95, 96], which implements the Berger-Oliger scheme with refluxing [97, 98]. For the
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relativistic hydrodynamics, WhiskyTHC evolves proton number and neutron number
densities separately to ensure detailed conservation given by:

∇µ(np,n uµ) = Rp,n (2.17)

where np,n are the number densities of (free or bound) protons and neutrons respectively,
uµ is the fluid four-velocity and Rp,n are the net lepton number deposition rates due
to the emission and absorption of electron neutrinos and anti-neutrinos. Due to charge
neutrality, the relative amount of neutrons and protons is expressed in terms of Ye, i.e.
the electron fraction given by np/(np + nn). The evolution of the energy-momentum
tensor takes the following form:

∇µT
µν = Quν , (2.18)

where Q is the net energy deposition rate due to the emission and absorption of neutrinos
and anti-neutrinos of all flavors. We consider the relativistic fluid of the neutron star to
be a perfect fluid with no shears, viscosity, or heat conduction, that is:

T µν = (e+ p)uµuν + pgµν . (2.19)

Here e is the total energy density, p the isotropic pressure and gµν the spacetime metric.
For additional details on the numerical schemes used to discretize the above equations
and the specifics of the neutrino leakage scheme, we refer to Radice et al. [24] and the
references therein.

In order to record the thermodynamic history of the relativistic flow in and around
the remnant’s core, we inject Lagrange tracer particles in the fluid frame. These are
fiducial particles that are advected with the flow according to:

dxi
dt = αvi − βi. (2.20)

Here α is the lapse function, vi is the three-velocity of the fluid, and βi is the shift vector.
The initial data for all our simulations is constructed from irrotational binaries in

quasi-circular orbits at an initial separation of 45 km. These are constructed using the
LORENE code by Gourgoulhon et al. [101] which provides classes to solve for a wide variety
of partial differential equations using multi-domain spectral methods. We use the BL
EOS to construct the initial data for all our systems, including those simulated with the
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Table 2.1. A summary of the properties of non-spinning isolated NSs used for constructing
the initial data with the BL EOS. M1 represents the primary (heavier) mass in the binary
and M2 is the secondary mass. M represents the total mass whereas q and ν represent the
mass ratio and the symmetric mass ratio of the binary. Λis (i ∈ {1, 2}) are the respective
quadrupolar tidal polarizability coefficients of the individual stars and Λ̃ is a parameter defined
in Eq(5) of [99]. ξ is a tidal parameter constructed in [64] from Λis.

M1 M2 M q ν Λ1 Λ2 Λ̃ ξ
[M�] [M�] [M�]
1.3 1.3 2.6 1.0 0.25 696 696 696 130

1.3325 1.3325 2.67 1.0 0.25 595 595 595 111
1.365 1.365 2.73 1.0 0.25 510 510 510 95
1.4 1.4 2.8 1.0 0.25 432 432 432 81
1.45 1.45 2.9 1.0 0.25 341 341 341 63
1.475 1.475 2.95 1.0 0.25 303 303 303 56
1.5 1.5 3.0 1.0 0.25 269 269 269 50
1.6 1.6 3.2 1.0 0.25 168 168 168 31
1.4 1.2 2.6 1.17 0.25 432 1137 711 133
1.482 1.259 2.74 1.18 0.25 293 849 510 95
1.856 1.02 2.88 1.82 0.23 46 2896 505 92

BLQ EOS. We simulate 11 BNS configurations varying both in their total mass and mass
ratios (table 2.1). These include binaries with total gravitational masses ranging from
2.6 M� to 3.2 M� and covering a mass ratio range of 1 to 1.82. Among our simulations
there are three systems that are targeted to GW170817, namely 1.365 M� − 1.365 M�,
1.482 M� − 1.259 M� and 1.856 M� − 1.020 M�. Each of these binaries have a chirp
mass of 1.18 M� that is compatible with the observations for GW170817 [1]. Additionally,
we also simulate a binary 1.4 M� − 1.2 M� that is consistent with the observations of
the relativistic binary pulsar PSR J1829+2456 [102].

We employ an AMR structure composed of 7 refinement levels. Of these, the three
outer levels are fixed, while the inner four levels are comoving with the stars during their
inspiral. The finest refinement levels covers entirely the stars during the inspiral and
the centrally condensed part of the remnant after the merger. We simulate the binaries
at two spatial resolutions (see tables 2.2 and 2.3): with grid resolutions of 184.6 m
(standard resolution; SR) and 246.1 m (low resolution; LR) in the finest refinement level.
The binary 1.4 M� − 1.2 M� is only simulated at SR. The time step is determined by
the Courant-Friedrichs-Lewy (CFL) coefficient which is taken to be 0.125. This small
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CFL, in combination with the positivity preserving limiter of WhiskyTHC, guarantees the
positivity of the density [89].

2.4 Merger Dynamics

2.4.1 Qualitative Dynamics

We start with a discussion of the qualitative dynamics of a BNS merger with a phase
transition. To this aim, we show in figure 2.2 the postmerger evolution for the 1.3325 M�−
1.3325 M� binary, which is representative of our set of simulations. The figure shows
the thermodynamic properties of matter in the equatorial plane. All of the binaries we
have considered, with the exception of 1.856 M� − 1.020 M�, have no deconfined quark
matter during the inspiral up until merger. This is expected since, as discussed in Section
2.2, phase transition at zero temperature occurs only for stars more massive than about
1.7 M�.

The inspiral evolutions of the BLQ and BLh binaries are identical, with the exception
of 1.856 M�− 1.020 M�, which is discussed later. As the orbit of the binary shrinks the
stars become increasingly deformed. In high mass ratio systems the deformations lead to
mass transfer and the disruption of the secondary star [79]. In the case of comparable
mass binaries there is no mass transfer between the stars up to contact.

As the stars merge, their collisional interface is heated to temperatures of up to 40
MeV [52,103–106]. This hot interface is the first site of quark matter production. Over
the next few milliseconds, a massive remnant begins to form with increasing densities and
temperatures in and around the core. At this stage, the spatial distribution of the quark
phase is largely determined by regions of high temperature and this feature is found to
be a robust characteristic of all our simulations. These temperature hot-spots evolve
further into a ring-like structure over the next several milliseconds which is also a feature
observed in [52, 104, 105]. The hot-spots continue to dictate the spatial distribution
of the quark phase, but now the extreme density in the core of the remnant, reaching
up to five times the nuclear saturation density, also starts to play a role in producing
quark matter and determining their distribution in space. Noteworthy is the fact that
both temperature and density can trigger a production of deconfined quark phase. For
example, according to our EOS, for typical electron fractions Ye ' 0.01 and density of
3 ρnuc, quark deconfinement can occur at temperatures as low as ∼20 MeV. On the other
hand, at densities of the order of the nuclear saturation density, quark deconfinement
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Figure 2.2. Evolution of the remnant’s density, temperature, electron fraction and quark
fraction across the xy plane for a merger of the 1.3325 M� − 1.3325 M� binary. Deconfined
quarks appear as matter is compressed and heated up during the merger. The quark distribution
strongly correlates with the temperature distribution in the middle panel, indicating that quarks
are formed due to heating during the merger. At later times, the quark distribution is centrally
condensed and most strongly correlated with the density.

64



Figure 2.3. Evolution of a BNS merger of masses 1.4 M� and 1.2 M� evolved with the BLQ
EOS. The mass configuration corresponds to the pulsar PSR J1829+2456 [102]. The blue
and grey colour-scales represent iso-density surfaces corresponding to densities 1014 g cm−3

and 1013 g cm−3 respectively. The deconfined quark phase that appears near the core of the
remnant after merger is represented in red.

requires temperatures above ∼70 MeV. We explore this interplay between density and
temperature for the production of quarks in more detail in subsection 2.4.2.

As another representative example of the dynamics of the BLQ binaries, we show
the evolution of the 1.4 M� − 1.2 M� binary in figure 2.3. This merger proceeeds in a
similar way as that of the previously discussed 1.3325 M�− 1.3325 M� binary. However,
a qualitative difference between the dynamics of an equal and an unequal mass merger
is that the quark distribution is asymmetric in the latter case. This follows from the
fact that the hot-spots in unequal mass mergers are no longer spatially symmetric with
respect to the remnant’s centre, as also pointed out in [52].

A generic feature of all of our simulations is that the remnants of the BLQ binaries
are more compact and collapse earlier to a BH than the BLh binaries, for which the
QCD phase transition is absent. This is because the appearance of quarks tends to soften
the EOS making the NSs more compact and hence more susceptible to BH formation.
Measuring the lifetimes of NS merger remnants could provide important constraints on
the NS EOS. Indeed hierarchical inference studies done on collapsing neutron star models
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using the X-ray afterglow studies of short gamma ray bursts show evidence of a quark
EOS [107].

Binaries with mass above a critical threshold undergo prompt collapse to a BH, which
we define as the absence of any bounce of the merger remnant prior to BH formation.
When prompt BH formation occurs it is difficult to differentiate between systems with or
without a QCD phase transition solely on the basis of postmerger GW signal, since it is
effectively absent. However, the differences between the BLh and BLQ EOS manifest
as a lowering of the mass threshold for the prompt BH collapse from M = 2.925 M� for
BLh EOS to M = 2.825 M� in the case of BLQ EOS (see tables 2.2, 2.3 and Kashyap
et al. [108]). This is in agreement with the claim that phase transitions can lower the
threshold towards prompt BH collapse by Bauswein et al. [55].

2.4.2 Dynamics of the phase transition

We follow a methodology along the lines of [52, 53, 106, 109] to study thermodynamic
conditions reached in BNS mergers and to identify whether or not these conditions
are conducive towards the production of deconfined quark matter. In particular, as
discussed in section 2.3, we track the thermodynamic properties of the NS material
in and around the core using Lagrange tracer particles. This allows us to record the
thermodynamic evolution of individual “fluid elements”. We primarily discuss the case of
the 1.3325 M� − 1.3325 M� binary, which is representative of most of our simulations.

The BLQ EOS provides the quark fraction Yq as a function of density (ρ), matter
temperature T, and electron fraction Ye, i.e. Yq = Yq(ρ,T,Ye). As the dynamics of
the phase transition takes place in and around the core of the remnant, where Ye does
not exceed 0.15 (see figure 2.2), it is reasonable to approximate the full phase diagram
of the EOS with a two-dimensional analog obtained by averaging Ye over the range
Ye ∈ [0.0, 0.15]. We remark that this is done for illustrative purposes only and that
no such approximation is made in the simulations. There are no qualitative differences
between the Ye-averaged 〈Yq〉 and Yq in the range of Ye’s considered here.

The result of this procedure comprises the background color map used in figures 2.4
and 2.5. The figures show the thermodynamic trajectory of a Lagrange tracer which is
representative of the evolution of tracer particles located near (within a radial distance of
7.3 km) the core of the remnant. Before the merger, corresponding to negative t− tmerg

and coordinate distances R & 7 km, the particle is in the hadronic phase. As the stars
merge, matter undergoes repeated cycles of compression and expansion, during which it
crosses the phase boundary repeatedly. After a few oscillations, the remnant becomes
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Figure 2.4. Thermodynamic trajectory of a representative tracer particle from the binary
system 1.3325 M� − 1.3325 M�. The trajectory is superposed on a Ye weighted equilibrium
slice of the BLQ EOS. The trajectories themselves are color-coded according to the relative
time from the merger. Matter in the NS cores crosses the phase boundary several times starting
from the moment of merger and until the time of collapse and BH formation.

unstable and starts to collapse. Matter is compressed to large densities and BH formation
takes place. As the tracer evolves, the radial distance oscillates between 4 km and 6 km
from the remnant’s centre, signifying that as the tracer is moving in and out of the quark
phase, it is also moving in and around the remnant’s core. Finally, just before the final
collapse, the tracer particle is found in the hadron-quark mixed phase of the EOS. The
occurrence of mixed quark phases is a consequence of modelling the phase transition by
imposing global charge neutrality or the Gibbs construction. Gibbs construction was
also utilized in the work by Blacker et al. [57] which resulted in mixed quark phases
with different onset densities (at T = 0) in their quark EOSs. This is an important
difference with respect to the models used in some of the earlier works [52,53], in which
the transition to pure quark matter occurred within a narrow range of densities and
temperatures.

This trend of matter repeatedly crossing the phase boundary is generic across our set
of simulations. Such behavior was expected to take place on the basis of the analysis of
thermodynamic trajectories from simulations that employed purely hadronic EOSs [109].
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Figure 2.5. Same figure as fig. 2.4 but now the trajectory of the tracer is color-coded with
the radial distance of the tracer from the center of the remnant.
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Figure 2.6. Time evolution of quark fraction and density of fluid elements traced by
Lagrangian tracers for 2 binary neutron star systems 1.482 M�-1.259 M� and 1.3325-1.3325
M�. Noticeable is the fact that the period of oscillations of density matches the period of
oscillations of quark fraction.
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Figure 2.7. A two-dimensional histogram of the thermodynamic variables ρ and T and
weighted by bins of tracer mass. Also shown are the contours of quark fraction. Both the
bulk of the remnant’s core and the periphery of the core can exhibit deconfined quark matter
depending upon ρ and T.

It is now confirmed for the first time in our work. This process is also illustrated in
figure 2.6, where we show the evolution in time for the quark fraction and density for
two tracer particles: one from the 1.3325 M� − 1.3325 M� binary and one from the
1.482 M� − 1.259 M� binary. We find that the oscillations in Yq are in phase with the
density oscillations. This suggests that the repeated crossing of the phase boundary is
triggered by the oscillations of the remnant after its formation. Indeed, we find that the
density oscillations of the tracer particles closely track those of the maximum density.
These density oscillations either result in a BH formation or are damped over a timescale
of ∼10−20 ms [103].

Figure 2.7 also shows a complementary analysis of the phase diagram for the
1.3325 M� − 1.3325 M� binary. Instead of showing the thermodynamic trajectories of a
specific fluid element, we provide a snapshot of the entire star at a fixed time, 2.3 ms
after the merger. In particular, we show a histogram of the 2-dimensional distribution
of density and temperature from all the tracers in the simulation. The color represents
the sum of all the masses of tracer particles in a particular temperature and density
range. We also plot the contours of the quark fraction on and above the threshold for
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the deconfinement phase transition. The red streak at low temperature ∼10 MeV in
the range of densities between 2ρnuc−3ρnuc represents the thermodynamic state of the
bulk of the remnant’s core. This extends to sufficiently high densities to cross the phase
boundary according to our adopted EOS. However, quarks are also formed at lower
densities in the high-temperature regions (T ∼ 50 MeV) that have been heated during
the merger phase. These hot layers are located at the periphery of the quark core [103].
Our data shows that, if indeed the phase transition to deconfined quarks is of the first
order, then, depending upon the particular location of the critical point in the QCD
phase diagram (to be constrained from future experiments like FAIR), matter could
simultaneously undergo both a first order and a crossover phase transition in different
parts of the remnant. We remark here that these hot and cold regions of deconfined
quark matter in and around the remnant’s core were also observed by Blacker et al. [57]
in their rest mass distributions over a density-temperature plane of DD2F-SF EOSs.

We define certain characteristic times in our simulations as follows. tmerg is the time
of merger, taken to be the time when the amplitude of the l = 2,m = 2 mode of the
GW strain attains a maximum. This point approximately coincides with a minima in
the maximum density of the stars, as the NSs are plunging towards each other [110].
This expansion phase is followed by a very rapid and strong compression as the stars
collide (see figure 2.8). tBH is the time of formation of a black hole in the simulation
marked by the formation of an apparent horizon, which we approximately take to be
the time when the lapse function drops below 0.2. We denote by tcoll the time when the
l = 2,m = 2 mode of the radiation effectively shuts off which we take to be the time
when the amplitude drops below 0.5 % of its maximum value. tend is the terminal point
of our simulations where we cease to evolve the system. These times scales are reported
in milliseconds from merger in tables 2.2 and 2.3.

2.5 Gravitational Waves
In this section, we discuss the potential imprints that a QCD phase transition may have on
the gravitational wave emission from a merger of binary neutron stars. Figure 2.8 shows
the instantaneous frequency and the amplitude of the dominant (l = 2,m = 2) mode of
the GW strain for the 1.3325 M� − 1.3325 M� binary, as well as the maximum density,
and the binary binding energy. The latter is computed by subtracting the energy radiated
in GWs from the initial binding energy of the binary, i.e., Eb = MADM− (M1 +M2)−EGW

following [103,111]. We find that the inspiral dynamics for the BLQ binary is identical
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Figure 2.8. Evolution of the instantaneous GW frequency fGW, the“+” polarization strain
amplitude for the (l = 2,m = 2) mode of the GW signal, the central density ρ, and the binding
energy Eb of the 1.3325 M� − 1.3325 M� binary. The inspiral (t ≤ tmerg) evolution predicted
by both the BLh and BLQ EOSs is identical. The appearance of quarks is imprinted on the
postmerger dynamics and GW signal.

to that of the BLh binary. This is expected, because for this binary, as well as for most
of the binaries considered in this study, the two EOSs are identical over the range of
densities and temperatures reached in the inspiral. Nevertheless, this is an important
consistency check, given that we simulate both the BLh and BLQ binaries starting from
the same initial data. That is, we do not start the BLQ simulations from pre-merger
snapshots of the BLh simulations.

The only exception is the 1.856 M� − 1.020 M� binary (figure 2.9), in which quarks
are already present during the inspiral according to the BLQ EOS. For this binary we
find the pre-merger maximum quark fraction to be Yq ' 0.06. The maximum density in
the BLQ binary is ∼ 7% larger than that of the BLh binary. Despite these differences,
the orbital evolution for the 1.856 M�− 1.020 M� BLh and BLQ binaries are essentially
indistinguishable. In particular, the dephasing between the two associated waveforms is
smaller than our numerical precision. This is also not surprising given that the phase
transition only impacts the primary component of this binary, whose tidal parameter Λ1
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Figure 2.9. Amplitude of the (l = 2,m = 2) mode of the GW strain h+ and binding energies
for the 1.4 M� - 1.2 M�, 1.482 M� - 1.259 M�, and 1.856 M� - 1.020 M� binaries. As
the binaries become more massive or more asymmetric, the length of the postmerger signal
decreases. The postmerger is further shortened by an onset of deconfinement phase transition.

is in any case very small ' 45.
The postmerger evolution of the BLh and BLQ binaries are instead very different. This

is shown in figure 2.8 for the 1.3325 M� − 1.3325 M� binaries. The phase transition to
deconfined quarks in the BLQ binaries is accompanied by a loss of pressure support. This
in turn causes the BLQ remnants to undergo violent cycles of gravitational contraction
and centrifugal bounces, while at the same time becoming progressively more compact.
This ultimately leads to the collapse to BH. The progressive contraction of the remnant
is accompanied by a drift in the instantaneous peak frequency of the (l = 2,m = 2) mode
of the GW signal and by an increase in the overall GW luminosity, as evidenced by the
evolution of Eb in figure 2.8.

Figure 2.9 shows the general trends of the (l = 2,m = 2) component of the GW
strain and of the binary binding energies across our set of simulations. We do not find
any significant difference in the inspiral GW signal between the BLh and BLQ binaries.
This also includes the 1.856 M� - 1.020 M� binary for which quarks are also present in
the inspiral, as discussed above. Significant differences are present in the postmerger for
all the binaries, with the exception of the 1.856 M� - 1.020 M� binary, which results
in prompt BH formation. For the latter, the postmerger signal is consistent with the
ring down of the formed BH. The phase transition is imprinted in the duration of the
postmerger signal and as a change in the peak frequency and overall amplitude of the
signal. All BLQ binaries form BHs during our simulation time (see also tables 2.2 and
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Figure 2.10. Power spectrum of the (l = 2,m = 2) mode of the GW strain for the 1.4 M� −
1.2 M�, 1.3325 M� − 1.3325 M�, 1.482 M� − 1.259 M�, and 1.856 M� − 1.020 M� binaries.
An exponential filter was applied to the data to remove the inspiral signal. The difference in
the peak frequency between the BLQ and the BLh binaries in the top panels is sufficiently
large to be measured. On the other hand, because of the short length of the BLQ postmerger
signals, the differences in the peak frequency for the binaries in the bottom panels is smaller
than the nominal uncertainty of the Fourier transform, so they cannot be measured.

2.3). The change in the amplitude of the GW signal is similar to that reported by Radice
et al. [20], who studied the impact of the appearance of hyperons in mergers. However,
in the case of a first order transition, the change in the amplitude is accompanied by a
change in the peak frequency of the postmerger signal [54].

More specifically, the works by Sekuguchi et al. [19] and Radice et al. [20] found that
the appearance of hyperons lead to a softening of the EOS which is qualitativaly similar
to that induced by a first order quark deconfinement phase transition and documented
here. Indeed, like the quark deconfinement phase transition, the creation of hyperons
lead to more compact remnants that are more prone to collapse. However, because the
thermodynamic potentials of matter remain smooth, the appearance of hyperons does
not impact the peak frequency of the postmerger signal of the remnants, if not for the
fact that binaries simulated with hyperons typically results in earlier BH formation.

The GW power spectra for a representative set of binaries are shown in figure 2.10.
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A characteristic feature in the postmerger spectra of NS mergers is the existence of a
postmerger peak frequency f2 [59, 60, 112–120] in the range of 2-4 kHz that is related
to the rotational frequency of the remnant. As is evident from figure 2.10, there is a
characteristic shift in this postmerger peak frequency due to the appearance of quarks in
binaries evolved with the BLQ EOS. This is in qualitative agreement with the findings
of Bauswein et al. [54], who found that such shift is a distinctive signature of a phase
transition. However, the maximum shift in f2 among our simulations is only 0.21 kHz
(tables 2.2 and 2.3). This is to be contrasted with the range of shifts (0.2-0.6 kHz) in f2

observed by Bauswein et al. [54]. These differences could arise due to the differences in
the EOS models used in this study and in Bauswein et al. [54], or they could be due to
differences in the methodologies of our simulations. We cannot verify this since the EOS
models used by Bauswein et al. [54] are not available to us.

We remark that these shifts in the postmerger peak frequencies can only be observed
for binaries with a sufficiently long postmerger, where the Fourier uncertainty principle
would imply a finite localization of power spectral density (PSD) peaks in the frequency
domain. For a short-lived remnant, the uncertainty principle dictates that there would be
a spread of PSD over a wide range of frequencies and hence the peaks would be too broad
to observe any shifts (See figure 2.10). The uncertainty in the Fourier transform is the
reciprocal of the length of the postmerger signal, i.e., ∆FT = 1/(tcoll − tmerg). For long
lived remnants, i.e., 1.30 M�−1.30 M�, 1.3325 M�−1.3325 M� and 1.4 M�−1.2 M�,
the shift in peak frequency between BLh and BLQ EOS satisfies ∆f2 > ∆FT and hence
f2 shift can be a robust signature of a phase transition. For shorter lived remnants, like
1.482 M�−1.259 M� and 1.365 M�−1.365 M�, ∆f2 ≤ ∆FT and so the frequency shifts
are not good indicators of phase transitions here. Finally, for systems with very little to
no postmerger, like the equal mass binaries from 1.4 M�− 1.4 M� to 1.6 M�− 1.6 M�,
and 1.856 M� − 1.020 M�, tcoll → tmerg, so the frequency distribution of the postmerger
signal is too broad to compute any robust signature. We find that this criterion for
comparing the shifts in f2 with uncertainties in the Fourier transform of the time domain
signal holds across the two spatial resolutions we have investigated (see tables 2.2 and
2.3).

To eliminate additional sources of these f2 shifts, we perform a simulation of the
1.365 M� − 1.365 M� binary (tables 2.2 and 2.3) using the subgrid-scale turbulence
model of Radice [100], which was calibrated using the GRMHD simulations of Kiuchi
et al. [121]. We find that the introduction of viscosity can result in the appearance of
secondary peaks in the postmerger spectrum that are formed in the first few milliseconds
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Figure 2.11. Correlations between the total mass-scaled postmerger peak frequency Mf2 and
the tidal parameter ξ. Also shown is the fit from the quasi universal relation presented in [64]
along with its 90% confidence interval. The grey points correspond to simulations catalogued
in the CoRe database [123]. It can be seen that deviations in f2 (red circles) by virtue of phase
transitions are not large enough to violate the quasi-universal relation.

after the postmerger. However, the f2 peak frequency is not affected, in agreement with
our previous findings [122]. In this chapter, we denote the results from this run with an
asterisk to the EOS name as BLh* (see tables 2.2, 2.3, 2.4, 2.5, and figures 2.11, 2.14).

The f2 peak frequency has been shown to be tightly correlated with the NS radius
and tidal properties of a binary [59–63,113,124,125]. These empirical, quasi-universal
relations are interesting because they correlate the tidal properties of a binary, which are
characteristic of the inspiral, to the postmerger peak frequency f2 of the remnant. A
significant departure from these relations caused by shifts in f2 can provide conclusive
evidence for deconfinement phase transitions [54–57]. We test the quasi-universal relation
proposed in Breschi et al. [64] against our f2 frequencies and present the results in
figure 2.11. In line with the terminology presented in [64], we plot our postmerger peak
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frequencies from BLh and BLQ binaries against the tidal parameter ξ defined by:

ξ = κT2 + c(1− 4ν) , (2.21)

where c is a fitting parameter, ν = M1M2/(M)2 is the symmetric mass ratio, and κT2 is
the tidal polarizability parameter defined by

κT2 = 3
(
Λ1X

4
1X2 + Λ2X

4
2X1

)
. (2.22)

Here Xi = Mi/M . The functional form of the quasi-universal relation is given as:

Mf2 = F0
1 + n1ξ + n2ξ

2

1 + d1ξ + d2ξ2 (2.23)

where F0, n1, n2, d1, d2 and c are fitting parameters specified in [64]. As mentioned
previously, the shifts in f2 (when observed i.e. when ∆f2 > ∆FT) have been very modest
as compared to Bauswein et al. [54, 55] and Blacker et al. [57] and are found to be
described very well by Eq. (2.23). We do not find any evidence of strong deviations from
the fit as a consequence of deconfinement phase transitions. Our results show that the
absence of deviations in the f2 from the expected universal relations cannot be used
to rule out the presence of phase transitions or to constrain their density threshold, as
instead claimed by Blacker et al. [57]. Additionally, we would like to remark that the
quasi-universal relation presented in figure 2.11 describes a larger dataset of BNS mergers
than any of the previous studies by including simulations from 14 EOSs (including
hyperonic and quark EOSs) and a large sampling of mass ratios ranging from 1 to 2.06 to
describe asymmetric binaries which are consistently taken into account by the parameter
ξ. Finally, we caution the reader that, even though shifts in f2 have not been reported
in the literature for purely hadronic EOSs, we cannot exclude the possibility that such
shifts might occur for hadronic EOSs exhibiting a sudden change in their stiffness at
several times the saturation density.

2.6 Dynamical Ejecta and Disks

2.6.1 Ejecta and Nucleosynthesis

We now describe the properties of the outflow from a merger with a deconfinement phase
transition which will eventually help calculate possible EM counterparts of such mergers.
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To this aim, we calculate the asymptotic velocity, the specific entropy, the angle with the
orbital plane, and the electron fraction of the matter ejected on a dynamical timescale
in our simulations. In particular, we record the properties of matter that crosses a
coordinate sphere of radius 200 GM�/c2 (' 295.34 km) and that is unbound according
to the geodesic criterion, i.e., with ut < −1. We refer to [126–128] for a discussion of
other possible choices.

We summarize the results of this analysis in tables 2.4 and 2.5. We report the
mean ejecta properties from our simulations. When comparing the BLh and the BLQ
binaries, we do not find systematic differences in the total ejecta mass, or in the average
entropy, composition, or angular distribution. The only robust trend appears in the
velocity distribution of the ejecta. For this purpose, we define the fast moving ejecta
as the baryonic matter which follows the condition Wβ > 1 where W is the Lorentz
factor and β = v/c. The bulk ejecta from both the BLh and the BLQ binaries are
subrelativistic, with asymptotic velocities in the range 0.1−0.3 c, in agreement with
previous findings [23,24,79,80,129,130]. However, we also observe that a small fraction of
the ejecta (up to 10−4 M�) achieves asymptotic velocities as large as 0.8 c [24,131–134]. It
is in this latter component of the ejecta that we find a systematic difference between the
BLh and the BLQ binaries. In particular, the BLQ binaries that do not undergo prompt
collapse produce larger amounts of ejecta with velocity Wβ > 1 than the corresponding
BLh binaries. The total kinetic energy of this component of the ejecta is also larger for
the BLQ EOS. This fast-moving tail of the ejecta is launched when the remnant bounces
back after the merger [24, 134], so we speculate that the differences between the BLh
and BLQ binaries in this component of the outflow is due to the stronger oscillations
experienced by the BLQ remnants after merger. We remark that a similar effect was
reported by [24]. In that case, it was the appearance of hyperons that caused the merger
remnant to bounce more strongly, while here the stronger bounce of the BLQ binaries is
caused by the QCD phase transition.

Figure 2.12 shows histograms of the properties of the outflows for three representative
binaries. The 1.3 M� − 1.3 M� binary is representative of a low-mass merger for which
the appearance of deconfined quarks does not lead to qualitative changes in the dynamics
during the first milliseconds from the merger. This is due to the relatively low densities
achieved by this binary (ρmax . 4 ρnuc) in the first ∼5 ms of the merger. As the stars
merge, the quark fraction Yq, in phase with central density, attains a maximum of
0.3. Further oscillations in density are constrained between 2.8ρnuc − 4ρnuc and are
not conducive for the formation of a large amount of deconfined quarks whose fraction
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Figure 2.12. Histograms of the asymptotic velocity v∞, specific entropy s, angle with the orbital
plane θ, and electron fraction Ye of the ejecta for three representative binary configurations
evolved with the BLh and BLQ EOSs. The most significant differences are seen in the 1.4 M�
- 1.4 M� binary, for which the BLQ EOS predicts rapid BH formation, while the BLh EOS
predicts a long-lived remnant. We note that M here represents the mass of the ejecta in the
corresponding bins normalized to Mej i.e. the total ejecta mass as reported in tables 2.4 and
2.5.
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oscillates between 0− 0.15 for t− tmerg < 5 ms. It is important to emphasize that the
presence of a phase transition still leads to a qualitative change in the outcome of the
1.3 M� − 1.3 M� merger. Indeed, the BLQ binary collapses to BH after ∼15 ms of
the merger, while the BLh binary forms a long-lived remnant (see tables 2.2 and 2.3).
However, these differences manifest themselves on somewhat longer timescales than those
relevant for the production of the dynamical ejecta, which is launched within ∼1−5 ms
of the merger [24].

The 1.4 M� − 1.4 M� binary is representative of a binary for which the impact
of quark deconfinement leads to dramatic qualitative differences in the dynamics of
the merger. The BLh binary forms a long-lived remnant that does not collapse within
our simulation time, while the BLQ binary experiences a catastrophic loss of pressure
support as hadrons are converted to quarks and forms a BH within ∼2 ms of the merger.
Neither is a case of prompt BH formation: the 1.4 M� − 1.4 M� BLQ binary still
experiences one violent bounce before collapsing. The more violent merger of the BLQ
binary is reflected in a significantly larger amount of fast moving ejecta (figure 2.12 and
tables 2.4, 2.5). This interpretation is confirmed by the presence of a significant excess
of high-entropy, shock-heated, material in the BLQ ejecta. The ejecta distribution is
also more concentrated close to the orbital plane, as expected for the fast-tail of the
shock driven ejecta [24, 134]. Interestingly, the electron fraction in the ejecta of the
1.4 M� − 1.4 M� BLQ binary is smaller than that of the corresponding BLh binary.
This is because the BLh ejecta are irradiated by neutrinos from the massive NS remnant,
which is absent in the BLQ binary (due to the early BH formation).

The 1.856 M� − 1.020 M� binary is an example of a merger resulting in prompt BH
formation with both the BLh and BLQ EOSs. The dynamical ejecta is entirely driven
by tidal torques on the secondary NS, so we do not expect any effect due to the phase
transition. Indeed, the differences between the 1.856 M� - 1.020 M� BLh and BLQ
binaries shown in figure 2.12 are not robust with resolution. However, our simulation
reveal another interesting effect. The ejecta has two components. A low electron fraction,
low entropy component with most of the ejecta mass and a high electron fraction Ye > 0.3
and high entropy s & 25 kB component. The presence of a second component in the
ejecta in highly asymmetric binaries was already reported in Refs. [79, 120, 135], where it
has been attributed to the presence of a residual shock driven component of the outflows.
However, a careful analysis of the evolution of the ejecta in the orbital plane as a function
of time suggests that, at least for the binaries considered here, this second component is
due to the presence of internal shocks in the tidal debris.
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Figure 2.13. Nucleosynthesis yields of the dynamical ejecta from selected binaries. The final
relative abundances in the ejecta are insensitive to the appearance of quarks, but are instead
sensitive to the binary mass-ratio. Comparable-mass binaries produce r-process elements with
relative abundances close to Solar r-process residual, while high-mass ratio binaries show ratios
of heavy to light r-process abundances that are significantly larger than the Solar r-process
residual. We normalize the yields at a given A with respect to the yields in the 3rd r-process
peak i.e. A ∈ [180, 200] to report the relative abundance Y.

The outflow from BNS mergers realizes the conditions for the production of heavy
elements via the rapid neutron capture process [136]. We use the methodology described
in detail in Refs. [23] and [24] to compute the relative abundances of heavy nuclei produced
in the dynamical ejecta from our simulations. Our results are shown in figure 2.13. We
find that the presence of deconfined quarks in the BLQ binaries does not leave a significant
imprint on their nucleosynthesis yields. Even in the case of the 1.4 M�−1.4 M� binaries,
for which the phase transition has a strong impact on the merger dynamics, we find that
the differences in the yields are only modest. The variation in the relative elemental
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abundances in the ejecta as the mass ratio of the binary is varied, is significantly larger.
Indeed, we find that while the dynamical ejecta from binaries with mass ratio q ' 1
robustly produce elements with relative abundances close to Solar r-process residual, the
higher mass ratio mergers tend to overproduce second and third r-process peak elements.
This is because asymmetric binaries produce a larger amount of neutron rich, cold, tidal
ejecta [24,134].

2.6.2 Remnant Disks
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Figure 2.14. Evolution of disk mass for a subset of our simulations. Binaries with the BLh
EOS (solid lines) form stable, long-lived remnants with disks evolving on long timescales. The
binaries with deconfined quarks (dotted lines) result in the formation of BHs. The gravitational
collapse is accompanied by the accretion of a significant fraction of the disk over a timescale of
few milliseconds. Binaries where remnants from both EOSs undergo prompt collapse do not
show significant differences in their disk mass evolution.

Following the conventions in [137], we define the accretion disk as all baryonic
matter with rest mass density ρ < 1013g cm−3. We remark that this density threshold
corresponds to the approximate location where the angular velocity of the remnant
becomes Keplerian [104]. In the case of BH remnants, all of the matter outside of the BH
has ρ < 1013g cm−3. Furthermore, we exclude all matter enclosed by the BH apparent
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horizon i.e. we only include regions where α ≥ 0.3. In other words,

Mdisk =
∫ √

γ W ρ dx dy dz (2.24)

where γ represents the determinant of the spatial metric and W is the Lorentz factor.
The integration is carried out over all matter in the region defined above.

As discussed in detail in Radice et al. [24], the remnant accretion disk is formed
of material that is squeezed out of the collisional interface between the NSs during
and shortly after the merger. So the disk mass initially increases with time, as shown
in figure 2.14. For those binaries that do not form BHs, the disk mass peaks within
10−20 ms of the merger. Over longer timescales the angular momentum transport due
to spiral density waves drives accretion and a secular outflow from the disk [80, 128].
Angular momentum transport due to MHD turbulence is also expected to contribute
to this process, however our simulations did not include magnetic fields, so they cannot
describe this phenomenon. At the same time, we remark that in our previous study we
found that in the first ∼100 ms of the merger the spiral waves are expected to be the
dominant mechanism for angular momentum transport [128].

The dynamics is very different for binaries that form BHs. When the central part
of the remnant collapses a significant fraction of the disk is accreted within a few
milliseconds (figure 2.14), as also reported in Ref. [80]. Since the BLQ EOS predicts early
BH formation for all binaries considered in this study, while most of the BLh binaries
form long-lived remnant, this process leads to significant differences between the remnant
disks for the BLh and BLQ binaries. Exceptions to these are the massive equal-mass
binaries that collapse promptly for both the BLh and BLQ EOS resulting in a rapid
disk accretion post merger and the 1.856 M� − 1.020 M� system, for which the disk is
formed from the tidal disruption of the secondary NS in the late inspiral, prior to the
production of a significant amount of deconfined quarks.

2.7 EM Signatures

2.7.1 Kilonova Light Curves

For the purpose of computing kilonova light curves, we compute the ejecta properties
using the Bernoulli criterion, which allows us to include both the dynamical ejecta
discussed above and the wind ejecta emerging at later times in our simulations [126–128].
We also assume that 20% of the disk mass at the end of the simulation is unbound
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Figure 2.15. Kilonova light curves for a subset of our simulations with q = 1. The colour
code represents the total mass of the binary with the dashed (solid) curves indicating models
with (without) a QCD phase transition. In general, BLh binaries are more luminous and the
brightness decreases with increasing mass.

by winds [138–140]. For the wind component of the ejecta, we assume mass-averaged
electron fraction and velocity to be 0.2 and 0.1c respectively [141]. We calculate bolometric
luminosities using a single component kilonova light curve model, whose basic equations
are given in Refs. [142–144]. In addition to the total ejecta mass, we also extract from the
simulations, the mass-averaged velocity and electron fraction of the outflow. The latter
is used to calculate the matter opacities using an analytic fit to the results of Ref. [145].
The input heating rate and thermal efficiency of the ejecta used here are taken from
Refs. [146] and [147], respectively.

We show bolometric lightcurves for models with q = 1 in figure 2.15. Generically, we
find that the BLh binaries lead to more luminous and slowly evolving kilonovae than their
counterparts with the BLQ EOS. However, these differences are entirely attributable
to the differences in life time between the BLh and BLQ remnants. Indeed, we also
observe that the kilonova becomes dimmer for more massive binaries. Equal mass binaries
undergoing prompt BH formation have very small ejecta and disk masses, owing to which
their kilonovae are very dim. Kilonova observations are powerful probes to determine
the life time of BNS merger remnants [148]. However, the time to collapse for a merger
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remnant might depend on factors other than a phase transition such as particular features
in the hadronic EOS or magnetic and neutrino effects [149].

We observe that the kilonova corresponding to the binary merger of 1.45 M�−1.45 M�
with the BLh EOS is the brightest among all our models as shown in figure 2.15. This
may be attributed to the fact that the ejecta from this model is the most energetic (see
table 2.4) of all our systems. It is important to note that the binary is very close to the
prompt collapse threshold for the BLh EOS and hence is subjected to large uncertainties
arising from spatial resolution which also levies large uncertainties in the calculation of
disk masses. Indeed, we observe that at standard resolution (SR) the binary is long-lived
with a lifetime of & 14 ms (table 2.2). However, with the low resolution (LR) grid setup,
it collapses to a BH on a much shorter time scale of ∼ 3 ms. Another aspect to note
here is that this is the only binary where the BLQ remnant collapses promptly to a BH
but the BLh remnant does not.

2.7.2 Kilonova Afterglow

The fast-moving tail of the ejecta is expected to drive shocks in the ISM which might
produce synchrotron radiation over a wide range of the EM spectrum over a timescale
of months to years from the merger. This is the so-called kilonova afterglow [132,134,
150–152]. This scenario has been invoked to explain the recent deviation of the X-ray
afterglow in GW170817 from the theoretical expectations for a relativistic jet [134,153],
although other interpretations of this data are not excluded [153,154]. The properties of
the kilonova depend sensibly on the ejecta mass and velocity distributions. It is therefore
conceivable that late time observations of BNS mergers could probe the presence of phase
transitions in the EOS of dense matter.

We calculate the lightcurves of the synchrotron radiation arising from the interaction
between the dynamical ejecta and the ISM with the semi-analytic code PyBlastAfterglow
[134, 153]. The code computes the synchrotron radiation that arises from electrons
accelerated in the amplified magnetic field in the forward shock, i.e., in the shock between
the expanding blast wave and ISM. The total flux density is computed by integrating
the flux from each element of the solid angle over equal-time arrival surfaces. The ISM
is assumed to be cold and uniform with density nISM. The equipartition microphysical
parameters, describing the energy conversion efficiency between the shock and the
magnetic fields and electrons, εe and εB respectively, are assumed to be constant. The
initial conditions for the code are given by the kinetic energy and angular distribution
of the ejecta from the merger simulations. Its evolution is computed assuming only
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Figure 2.16. Kilonova afterglow light curves at 1 keV for a set of equal mass models. The
models’ total mass is color-coded. Dashed (solid) curves indicate models with (without) phase
transition. The plot shows that the afterglow of models with phase transition in general is
brighter and more extended in time.

adiabatic energy losses and no lateral spreading.
We set the free parameters as follows. The observational angle, namely the angle

between the line of sight and the polar axis of the BNS system, is θobs = 30 deg, which is
consistent with the observational geometry for GW170817 [1]. We consider a source at
40Mpc with the redshift z = 0.0099. The ISM density and microphysical parameters
are set as nISM ∈ (10−3, 10−2) cm−3, p = 2.15, εe = 0.2, and εB = 5× 10−3. These values
are chosen from the respective credibility intervals inferred for GRB170817A [155]. Note
however, that the kilonova afterglow might have different microphysical parameters as
compared to the gamma ray burst (GRB) afterglow. Indeed, recent observations suggest
the onset of the spectral evolution of the synchrotron emission from GW170817 [153].

Figure 2.16 shows the kilonova lightcurves from a set of representative equal mass
models with total mass ranging from 2.6 M� to 3.0 M�. Notably, the kilonova properties
of low mass models with BLh EOS are rather independent of M, peaking at .103 days
and reaching flux density '10µJy. The inclusion of a phase transition in these models,
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panels) for the simulations with and without phase transition (BLQ and BLh, respectively).
The kinetic energy is shown separately for the entire ejecta (lower subpanel) and for the fast
component only (upper panel). The kilonova properties are the lightcurves’ peak time (upper
panel) and flux (lower panel). Circle (squre) markers indicate models with (without) phse
transition, i.e., models with BLQ (BLh) EOS. The plot shows a correlation between the peak
flux and the total kinetic energy. The effect of the phase transition is very prominent at high
mass binaries, where the softening of EOS leads to prompt collapse, reducing the ejecta kinetic
energy and peak flux.

generally, leads to broader and slightly brighter kilonova lightcurves, as the fast tail
of the ejecta of these models becomes more energetic (as discussed previously and as
shown in the left panel of figure 2.17). This is especially apparent for the model with
M = 2.67 M�, where the inclusion of the phase transition leads to a considerably more
energetic fast ejecta tail (see table 2.4 and upper left panel of figure 2.17), which in turn
leads to a significantly broader lightcurves.

The general properties of the kilonova lightcurves, i.e., the peak flux Fpeak and the
peak time time tpeak are shown in figure 2.17 (right panel) for all models. Notably, Fpeak

is well correlated with Eej;kin, a trend that is much less clear in simulations with large
mass ratio [134]. The plot shows that indeed, among the low mass models, the inclusion
of the phase transition raises Fpeak. However, a difference of ≤10µJy is smaller than the
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systematic uncertainties introduced by ill-constrained microphysical parameters. When
more massive models, M ∈ (2.9, 3.1) M�, are considered, the difference in Fpeak becomes
larger than the systematic uncertainties, as models with BLQ EOS undergo prompt
collapse, producing less energetic ejecta.

The effect of the phase transition on the peak time is, however, unclear. The largest
difference is observed for the model with 1.4 M� − 1.4 M�, where the tpeak of the model
without phase transition is ∼ 9 times larger. For the other models the difference is within
the systematic uncertainties due to ill-constrained nISM. As was the case for early-time
kilonova, here too we observe the 1.45 M� − 1.45 M� binary with the BLh EOS to have
the brightest overall afterglow. For this binary, the large kinetic energy of the ejecta is
responsible for the early rise and subsequently large values of the synchrotron flux.

2.8 Conclusions
In this chapter we presented fully general relativistic neutrino-radiation hydrodynamics
simulations of BNS mergers with a first order phase transition to deconfined quark
matter. We considered and systematically analysed a wide range of BNS configurations.
We studied their evolution using two EOSs with identical hadronic physics but that,
respectively, included or excluded a QCD phase transition to deconfined quarks: the BLQ
EOS and BLh EOS. The BLQ EOS is presented here for the first time. By comparing
the results obtained with both the EOSs, we computed the observable signatures: GW,
EM counterparts, and nucleosynthesis yields resulting from the phase transition.

The BLh EOS, which describes the hadronic phase of dense stellar matter, has been
calculated making use of a finite temperature BHF approach [156–158] starting from
modern two-body and three-body nuclear interactions derived within ChEFT. To model
the quark phase we used a phenomenological bag model EOS which includes the effects
of gluon mediated QCD interactions between quarks up to the second order in the QCD
coupling αs. We assumed a first order transitions between the two phases and using
the Gibbs construction [38] we derived the EOS for hadronic-quark mixed phase. When
considering non-spinning isolated NSs, the differences in properties of matter modelled
by the zero temperature version of the two EOSs, BLh and BLQ, begin to manifest for
stars heavier than ∼ 1.7 M�.

We find that the hot interface region created when the two NSs of a binary system
start to merge is the first site where deconfined quark matter can be produced. In
this region matter crosses the phase boundary at intermediate densities (ρ ∼ 2 ρnuc)
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and temperatures (T ∼ 30 MeV). As the merger proceeds and the cores of the two
stars fuse, the inner core of the remnant is nearly-adiabatically compressed to high
densities (ρ & 3 ρnuc) and crosses the phase boundary at low temperatures (T ∼ 5 MeV).
The phase transition results in a loss of pressure support in the merger remnants. In
particular, the BLQ remnants become more compact and collapse to BH significantly
earlier than the corresponding BLh remnants, which do not model the QCD phase
transition. These results are in good qualitative agreement with the findings of Most
et al. [52, 53]. Additionally, we find that the threshold mass above which prompt BH
formation takes place is lowered by the inclusion of the phase transition in the BLQ EOS.

We employ Lagrangian tracer particles to record the thermodynamic evolution of
the binaries by tracking the properties of individual fluid elements. We find that fluid
elements repeatedly cross the phase boundary between the hadronic phase and the mixed
quark phase as the remnants oscillate. Such dynamics was anticipated by Hanauske et
al. [109], but it is shown here for the first time in the context of self-consistent simulation
with a first order phase transition. Our analysis shows that BNS mergers probe a large
region of the QCD phase diagram, with matter potentially crossing the phase boundary
over a large range of temperatures and densities.

The QCD phase transition is most strongly imprinted in the postmerger GW signal.
Owing to the rapid softening of the EOS caused by the phase transition, remnants
evolved with the BLQ EOS are more compact than the corresponding BLh remnants.
This influences the GW signal in two ways. First, because BLQ remnants have a larger
gravitational binding energy in absolute value, they radiate a comparably larger amount
of GW energy compared to the BLh binaries up to BH formation, at which point the GW
emission terminates. Second, the change in the moment of inertia of the remnants due
to the phase transition manifests itself as a shift in the postmerger frequency as observed
in the GW spectra. While the presence of these shifts appears to be a robust feature
of the phase transition [54,55,57], we find that for the EOS models we are considering
their potential for GW astronomy is limited. On one hand, the magnitude of these shifts
is found to be small. On the other hand, because of the early BH formation present in
all binaries with phase transitions, the nominal uncertainty with which frequencies can
be determined using Fourier analysis can be larger than the magnitude of the frequency
shifts themselves. This means that a clean detection of the frequency shift for several of
the binaries considered here would be impossible even in the limit of infinite SNRs. This
issue is particularly severe for high mass binaries, for which BH formation occurs early.
Lower mass binaries show measurable frequency shifts with ∆f2 . 200 Hz. However,
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these deviations are not large compared to those normally present between different
hadronic models. Indeed, we find that the postmerger peak frequencies of the binaries
with first order phase transition are consistent with the quasi-universal relations that
hold for hadronic EOSs [64].

We find the bulk properties of the dynamical ejecta, total mass, average composition
and entropy, and geometry, are insensitive to the presence of a phase transition. Indeed,
significant differences between the dynamical ejecta of the BLh and BLQ binaries are
only present for those binaries that undergo prompt collapse according to the BLQ EOS,
but not according to the BLh EOS. However, such differences are also expected when
comparing purely hadronic EOSs with different prompt collapse mass thresholds [24], so
this is not a genuine signature of phase transition. On the other hand, we find that the
BLQ binaries generically produce a larger amount of ejecta with asymptotic velocities
exceeding 0.6c. This is due to the stronger bounce experienced by such binaries as a
result of the phase transition.

We estimated the final abundances of different nuclear species in the dynamical
ejecta arising from r-process nucleosynthesis. We find no significant difference between
the BLh and the BLQ ejecta. This is not surprising given that the properties of the
dynamical ejecta between the two set of simulations are very similar. Instead, we find
that the nuclear abundances are sensitive to the mass ratio of the binaries. The elemental
abundances from comparable mass ratio binaries are instead close to the Solar r-process
residual. Higher mass ratio binary generate more tidally driven, neutron rich outflows,
which preferentially produce heavy r-process elements (A & 130) [24,79,80].

The remnant accretion disks for the BLQ and BLh binaries have significantly different
masses at the end of our simulations. This is due to the fact that all the BLQ remnants
form BHs within a short time of the merger (.20 ms). On the one hand, this terminates
the process that leads to the formation of the disk in comparable mass ratio binaries:
the shedding of hot material from the newly formed massive NS. On the other hand, BH
formation is immediately followed by the rapid accretion of a significant portion of the
disk. In contrast, many of the BLh binaries we have considered result in the formation of
long-lived remnants. Thus, the variations in the remnant disk mass are entirely explained
by the different life times of the BLh and the BLQ BNS merger remnants. Indeed,
different hadronic models can also show large variations in the collapse times and the
disk masses for BNS merger remnants [137].

Similarly, although substantial differences are found between the BLh and BLQ
bolometric kilonova light curves, it will be challenging to use UVOIR observations of
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kilonova events to constrain phase transitions. This is because the variations in kilonova
properties observed in our simulations can be produced by effects others than phase
transitions. For example, the appearance of hyperons, or the presence of strong magnetic
fields [24]. More work is needed to understand whether these effects can be disentangled.

The fast-moving tail of the dynamical ejecta is expected to interact with the ISM and
produce synchrotron radiation, the so-called kilonova afterglow. We find that, owing to
the larger amount of fast ejecta, the BLQ binaries typically produce brighter synchrotron
remnants than the BLh binaries. However, if prompt BH formation occurs, then the
fast-moving tail of the ejecta is significantly reduced in mass and the synchrotron emission
is suppressed. For this reason, the trend is reversed for binaries that undergo prompt
BH formation according to the BLQ EOS, but not according to the BLh EOS. Overall,
we conclude that kilonova afterglows are a promising avenue to probe a phase transition.
Unfortunately, given the large uncertainties in the microphysics of the interaction between
the ejecta and the ISM and the accuracy limitations of current simulations, our results
cannot be used to quantitatively constrain the presence of phase transition with past or
future observations. More work is needed to address these shortcomings.

Our study considered only one hadronic EOS and a specific model for the treatment
of the quark phase and of the phase transition. Follow up studies should extend this
work to include more hadronic models and different approaches to construct QCD phase
transitions. For example, to compare the Gibbs and the Maxwell constructions. This
will be the object of our future work.

2.9 Declaration
The author of this dissertation and Prof. David Radice were responsible for computing
the majority of numerical simulations of BNS mergers and the consequent post-processing
analysis. The credit for the development of the hadronic and quark EOS models goes to
Prof. Ignazio Bombaci, Prof. Domenico Logoteta and Prof. Albino Perego. Dr. Vsevolod
Nedroa and Dr. Rahul Kashyap assisted in the computation of electromagnetic signatures
of such phase transitions. The contents of this chapter have been published in the journal
Physical Review D of the American Physical Society (APS) with reference [159].

Copyright © 2011 by American Physical Society. All rights reserved.

90



Ta
bl

e
2.

2.
A

su
m
m
ar
y
of

th
e
po

st
m
er
ge
r
G
W

pr
op

er
tie

s
fro

m
al
lo

ur
sim

ul
at
io
ns

at
2
sp
at
ia
lr
es
ol
ut
io
ns
.
t m

er
g
is
th
e
tim

e
of

m
er
ge
r,

t B
H
is

th
e
tim

e
af
te
r
m
er
ge
r
w
he

n
th
e
sy
st
em

co
lla

ps
es

to
a
bl
ac
k
ho

le
,t

co
ll
is

th
e
tim

e
w
he

n
th
e
gr
av
ita

tio
na

lr
ad

ia
tio

n
fr
om

th
e
2,
2

m
od

e
sh
ut
s
do

w
n
an

d
t e

nd
is

th
e
fin

al
tim

e
of

th
e
sim

ul
at
io
n.
f 2

re
pr
es
en
ts

th
e
do

m
in
an

t
po

st
m
er
ge
r
pe

ak
fr
eq
ue
nc
y
of

th
e
2,
2
m
od

e,
∆
f 2

re
pr
es
en
ts

th
e
di
ffe

re
nc
e
be

tw
ee
n
th
e
po

st
m
er
ge
r
pe

ak
fre

qu
en
ci
es

fro
m

th
e
2
EO

Ss
an

d
∆

FT
re
pr
es
en
ts

th
e
nu

m
er
ic
al

un
ce
rt
ai
nt
y

in
th
e
Fo

ur
ie
r
tr
an

sf
or
m
.
T
he

bi
na

ry
la
be

lle
d
w
ith

B
Lh

*
is

w
ith

G
R
LE

S
(g
en
er
al
-r
el
at
iv
ist

ic
la
rg
e-
ed
dy

sim
ul
at
io
n)

an
d
sim

ul
at
ed

us
in
g
th
e
ca
lib

ra
te
d
tu
rb
ul
en

ce
m
od

el
in

[1
00

].

EO
S

M
1

M
2

M
q

R
es
ol
ut
io
n

t B
H
−
t m

er
g

t c
ol

l
−
t m

er
g

t e
nd
−
t m

er
g

f 2
∆
f 2

∆
FT

Pr
om

pt
[M
�
]

[M
�
]

[M
�
]

[m
s]

[m
s]

[m
s]

[k
H
z]

[k
H
z]

[k
H
z]

C
ol

la
ps

e
BL

h
1.
3

1.
3

2.
6

1.
0

SR
>
18
.6
9

>
18
.6
9

18
.6
9

2.
8

7

BL
Q

1.
3

1.
3

2.
6

1.
0

SR
15
.9
5

16
.6

19
.2
1

2.
92

0.
12

0.
06

7

BL
h

1.
33
25

1.
33
25

2.
67

1.
0

SR
>
36
.2
3

>
36
.2
3

36
.2
3

2.
91

7

BL
Q

1.
33
25

1.
33
25

2.
67

1.
0

SR
7.
44

8.
17

10
.5
5

3.
11

0.
19

0.
12

7

BL
h

1.
36
5

1.
36
5

2.
73

1.
0

SR
>
10
1.
2

>
10
1.
2

10
1.
2

3.
06

7

BL
h*

1.
36
5

1.
36
5

2.
73

1.
0

SR
>
12
.3
4

>
12
.3
4

12
.3
4

3.
05

7

BL
Q

1.
36
5

1.
36
5

2.
73

1.
0

SR
4.
1

4.
82

12
.1
5

3.
18

0.
12

0.
21

7

BL
h

1.
4

1.
4

2.
8

1.
0

SR
>
38
.5
7

>
38
.5
7

38
.5
7

3.
2

7

BL
Q

1.
4

1.
4

2.
8

1.
0

SR
1.
92

2.
85

11
.6

7
7

7
7

BL
h

1.
45

1.
45

2.
9

1.
0

SR
>
14
.4

>
14
.4

14
.4

7
7

BL
Q

1.
45

1.
45

2.
9

1.
0

SR
0.
67

1.
68

4.
39

7
7

7
3

BL
h

1.
47
5

1.
47
5

2.
95

1.
0

SR
0.
69

1.
93

11
.7
6

7
3

BL
Q

1.
47
5

1.
47
5

2.
95

1.
0

SR
0.
57

1.
61

5.
66

7
7

7
3

BL
h

1.
5

1.
5

3.
0

1.
0

SR
0.
56

1.
69

4.
76

7
3

BL
Q

1.
5

1.
5

3.
0

1.
0

SR
0.
51

1.
54

3.
63

7
7

7
3

BL
h

1.
6

1.
6

3.
2

1.
0

SR
0.
39

1.
32

3.
66

7
3

BL
Q

1.
6

1.
6

3.
2

1.
0

SR
0.
39

1.
29

3.
64

7
7

7
3

BL
h

1.
4

1.
2

2.
6

1.
17

SR
>
10
5.
0

>
10
5.
0

10
5.
0

2.
75

7

BL
Q

1.
4

1.
2

2.
6

1.
17

SR
17
.2

17
.6
3

23
.9
5

2.
96

0.
21

0.
06

7

BL
h

1.
48
2

1.
25
9

2.
74

1.
18

SR
>
21
.5
9

>
21
.5
9

21
.5
9

2.
97

7

BL
Q

1.
48
2

1.
25
9

2.
74

1.
18

SR
3.
54

4.
42

9.
03

3.
2

0.
23

0.
23

7

BL
h

1.
85
6

1.
02

2.
88

1.
82

SR
1.
02

1.
61

8.
31

7
3

BL
Q

1.
85
6

1.
02

2.
88

1.
82

SR
0.
65

1.
74

8.
74

7
7

7
3

91



T
ab

le
2.

3.
Sa

m
e
as

Ta
bl
e
2.
2
ex
ce
pt

th
at

no
w

w
e
re
po

rt
th
e
re
su
lts

fo
r
lo
w
-r
es
ol
ut
io
n
(L

R
)
sim

ul
at
io
ns
.

EO
S

M
1

M
2

M
q

R
es
ol
ut
io
n

t B
H
−
t m

er
g

t c
ol

l
−
t m

er
g

t e
nd
−
t m

er
g

f 2
∆
f 2

∆
FT

Pr
om

pt
[M
�
]

[M
�
]

[M
�
]

[m
s]

[m
s]

[m
s]

[k
H
z]

[k
H
z]

[k
H
z]

C
ol

la
ps

e
BL

h
1.
3

1.
3

2.
6

1.
0

LR
>
31
.9

>
31
.9

31
.9

2.
82

7

BL
Q

1.
3

1.
3

2.
6

1.
0

LR
12
.2
8

12
.8
1

19
.6
6

2.
94

0.
13

0.
08

7

BL
h

1.
33
25

1.
33
25

2.
67

1.
0

LR
>
26
.3
5

>
26
.3
5

26
.3
5

2.
88

7

BL
Q

1.
33
25

1.
33
25

2.
67

1.
0

LR
13
.1
9

13
.8
2

18
.6
5

3.
06

0.
19

0.
07

7

BL
h

1.
36
5

1.
36
5

2.
73

1.
0

LR
>
21
.3
9

>
21
.3
9

21
.3
9

3.
03

7

BL
Q

1.
36
5

1.
36
5

2.
73

1.
0

LR
4.
84

5.
44

8.
59

3.
06

0.
04

0.
18

7

BL
h

1.
4

1.
4

2.
8

1.
0

LR
>
23
.6
3

>
23
.6
3

23
.6
3

3.
15

7

BL
Q

1.
4

1.
4

2.
8

1.
0

LR
1.
91

2.
74

8.
02

7
7

7
7

BL
h

1.
45

1.
45

2.
9

1.
0

LR
1.
85

2.
93

13
.3

7
7

BL
Q

1.
45

1.
45

2.
9

1.
0

LR
0.
67

1.
53

9.
44

7
7

7
3

BL
h

1.
47
5

1.
47
5

2.
95

1.
0

LR
0.
66

1.
73

4.
98

7
3

BL
Q

1.
47
5

1.
47
5

2.
95

1.
0

LR
0.
55

1.
47

4.
46

7
7

7
3

BL
h

1.
5

1.
5

3.
0

1.
0

LR
0.
56

1.
54

5.
06

7
3

BL
Q

1.
5

1.
5

3.
0

1.
0

LR
0.
52

1.
43

4.
65

7
7

7
3

BL
h

1.
6

1.
6

3.
2

1.
0

LR
0.
4

1.
28

5.
11

7
3

BL
Q

1.
6

1.
6

3.
2

1.
0

LR
0.
4

1.
26

4.
76

7
7

7
3

BL
h

1.
48
2

1.
25
9

2.
74

1.
18

LR
>
20
.7
1

>
20
.7
1

20
.7
1

2.
98

7

BL
Q

1.
48
2

1.
25
9

2.
74

1.
18

LR
3.
63

4.
35

11
.6
6

3.
14

0.
16

0.
23

7

BL
h

1.
85
6

1.
02

2.
88

1.
82

LR
0.
99

1.
59

9.
88

7
3

BL
Q

1.
85
6

1.
02

2.
88

1.
82

LR
0.
62

1.
7

9.
96

7
7

7
3

92



T
ab

le
2.

4.
A

su
m
m
ar
y
of

th
e
an

al
ys
is

of
ej
ec
ta

pr
op

er
tie

s
an

d
di
sk

m
as
se
s
fo
r
al
lo

ur
bi
na

rie
s
at

2
sp
at
ia
lr

es
ol
ut
io
ns
.

M
en

d
di

sk
is

th
e

di
sk

m
as
s
at

th
e
en

d
of

th
e
sim

ul
at
io
n,

M
ej
is

th
e
to
ta
lm

as
s
of

th
e
ej
ec
ta
,〈
v ∞
〉 e
j
is

th
e
ej
ec
ta
’s

m
as
s
av
er
ag

ed
as
ym

pt
ot
ic

ve
lo
ci
ty
,

〈Y
e〉

ej
its

m
as
s
av
er
ag

ed
el
ec
tr
on

fr
ac
tio

n,
〈s
〉 e
j
th
e
m
as
s
av
er
ag

ed
sp
ec
ifi
c
en
tr
op

y
an

d
〈θ
〉 e
j
is

th
e
rm

s
an

gl
e
w
ith

th
e
or
bi
ta
lp

la
ne

.

EO
S

M
1

M
2

q
R
es
ol
ut
io
n

M
en

d
di

sk
M

ej
〈v
∞
〉 e
j

E
ki

n
E

ki
n(
W
β
>

1)
〈Y

e〉
ej
〈s
〉 e
j
〈θ
〉 e
j

[M
�
]

[M
�
]

[1
0−

3
M
�

]
[1

0−
3

M
�

]
[c
]

[1
048

er
g]

[1
048

er
g]

[k
B
]

[ra
d]

BL
h

1.
3

1.
3

1.
0

SR
11
0.
29

1.
22

0.
14

34
.4
8

0.
22

0.
25

21
.5
1

0.
65

BL
Q

1.
3

1.
3

1.
0

SR
58
.8
9

1.
73

0.
15

50
.5
5

0.
23

0.
25

21
.6
7

0.
61

BL
h

1.
33
25

1.
33
25

1.
0

SR
83
.4
4

0.
88

0.
18

37
.9
8

1.
31

0.
22

20
.1
3

0.
61

BL
Q

1.
33
25

1.
33
25

1.
0

SR
16
.7
9

1.
18

0.
21

69
.4

4.
62

0.
21

18
.6
1

0.
57

BL
h

1.
36
5

1.
36
5

1.
0

SR
49
.4
4

1.
4

0.
16

45
.3

0.
16

0.
26

21
.1
4

0.
65

BL
h*

1.
36
5

1.
36
5

1.
0

SR
53
.3
5

1.
51

0.
2

75
.4
7

3.
33

0.
25

22
.1
6

0.
64

BL
Q

1.
36
5

1.
36
5

1.
0

SR
6.
95

2.
05

0.
2

97
.5
3

0.
76

0.
24

18
.5
6

0.
6

BL
h

1.
4

1.
4

1.
0

SR
80
.6
7

1.
85

0.
17

65
.8
2

0.
92

0.
25

21
.1

0.
62

BL
Q

1.
4

1.
4

1.
0

SR
2.
99

0.
49

0.
23

31
.3

1.
79

0.
21

20
.5
2

0.
47

BL
h

1.
45

1.
45

1.
0

SR
76
.0
5

6.
84

0.
19

30
9.
73

7.
7

0.
25

17
.0
3

0.
57

BL
Q

1.
45

1.
45

1.
0

SR
0.
13

0.
12

0.
26

8.
36

0.
0

0.
25

28
.6
5

0.
4

BL
h

1.
47
5

1.
47
5

1.
0

SR
0.
04

0.
33

0.
29

31
.5
6

0.
87

0.
22

22
.6
8

0.
41

BL
Q

1.
47
5

1.
47
5

1.
0

SR
0.
13

0.
04

0.
25

2.
69

0.
0

0.
26

43
.5
1

0.
36

BL
h

1.
5

1.
5

1.
0

SR
0.
1

0.
2

0.
29

19
.2
1

0.
3

0.
24

23
.5
8

0.
32

BL
Q

1.
5

1.
5

1.
0

SR
0.
04

0.
01

0.
15

0.
19

0.
0

0.
19

65
.3
8

0.
34

BL
h

1.
6

1.
6

1.
0

SR
0.
01

0.
0

0.
16

0.
1

0.
0

0.
22

91
.2
6

0.
35

BL
Q

1.
6

1.
6

1.
0

SR
0.
01

0.
0

0.
17

0.
13

0.
0

0.
22

87
.7
2

0.
36

BL
h

1.
4

1.
2

1.
17

SR
10
7.
27

1.
98

0.
19

92
.5
7

2.
39

0.
18

14
.0
6

0.
55

BL
Q

1.
4

1.
2

1.
17

SR
67
.0
1

1.
82

0.
2

96
.5
3

4.
09

0.
17

14
.0
9

0.
5

BL
h

1.
48
2

1.
25
9

1.
18

SR
92
.7
6

4.
96

0.
17

17
8.
19

1.
5

0.
17

12
.3
3

0.
5

BL
Q

1.
48
2

1.
25
9

1.
18

SR
13
.4
4

2.
53

0.
22

15
4.
29

2.
73

0.
14

11
.5
3

0.
45

BL
h

1.
85
6

1.
02

1.
82

SR
60
.9
9

7.
51

0.
11

10
2.
35

0.
15

0.
04

3.
8

0.
11

BL
Q

1.
85
6

1.
02

1.
82

SR
59
.4
6

7.
42

0.
11

10
1.
71

0.
08

0.
04

4.
04

0.
12

93



T
ab

le
2.

5.
Sa

m
e
as

ta
bl
e
2.
4
ex
ce
pt

th
at

no
w

w
e
re
po

rt
th
e
re
su
lts

fo
r
lo
w
-r
es
ol
ut
io
n
(L

R
)
sim

ul
at
io
ns
.

EO
S

M
1

M
2

q
R
es
ol
ut
io
n

M
en

d
di

sk
M

ej
〈v
∞
〉 e
j

E
ki

n
E

ki
n(
W
β
>

1)
〈Y

e〉
ej
〈s
〉 e
j
〈θ
〉 e
j

[M
�
]

[M
�
]

[1
0−

3
M
�

]
[1

0−
3

M
�

]
[c
]

[1
048

er
g]

[1
048

er
g]

[k
B
]

[ra
d]

BL
h

1.
3

1.
3

1.
0

LR
87
.6
1

0.
95

0.
15

27
.8
9

0.
0

0.
24

22
.4

0.
62

BL
Q

1.
3

1.
3

1.
0

LR
28
.7
1

0.
93

0.
19

42
.0
1

0.
28

0.
23

21
.4
1

0.
63

BL
h

1.
33
25

1.
33
25

1.
0

LR
95
.5
6

1.
28

0.
18

50
.3

0.
07

0.
26

22
.9
1

0.
64

BL
Q

1.
33
25

1.
33
25

1.
0

LR
43
.0
2

1.
16

0.
17

40
.1

0.
0

0.
27

23
.5
3

0.
64

BL
h

1.
36
5

1.
36
5

1.
0

LR
65
.2
1

1.
11

0.
16

36
.0
1

0.
29

0.
27

25
.3
6

0.
67

BL
Q

1.
36
5

1.
36
5

1.
0

LR
6.
35

2.
29

0.
17

84
.0
7

0.
01

0.
26

20
.4
8

0.
59

BL
h

1.
4

1.
4

1.
0

LR
72
.5
9

1.
68

0.
19

77
.0
6

0.
41

0.
26

20
.1
1

0.
67

BL
Q

1.
4

1.
4

1.
0

LR
9.
07

0.
51

0.
25

37
.2
2

0.
43

0.
23

22
.6
6

0.
53

BL
h

1.
45

1.
45

1.
0

LR
2.
42

1.
5

0.
23

95
.6
2

0.
91

0.
26

20
.4
6

0.
52

BL
Q

1.
45

1.
45

1.
0

LR
0.
06

0.
09

0.
26

6.
96

0.
0

0.
26

33
.3
5

0.
39

BL
h

1.
47
5

1.
47
5

1.
0

LR
0.
14

0.
58

0.
33

69
.2
6

4.
32

0.
22

20
.4
7

0.
44

BL
Q

1.
47
5

1.
47
5

1.
0

LR
0.
13

0.
04

0.
27

2.
98

0.
0

0.
29

52
.8
7

0.
41

BL
h

1.
5

1.
5

1.
0

LR
0.
14

0.
13

0.
31

13
.0
5

0.
08

0.
26

28
.1

0.
31

BL
Q

1.
5

1.
5

1.
0

LR
0.
12

0.
01

0.
15

0.
14

0.
0

0.
2

78
.1
6

0.
38

BL
h

1.
6

1.
6

1.
0

LR
0.
01

0.
01

0.
18

0.
21

0.
0

0.
21

60
.8
1

0.
29

BL
Q

1.
6

1.
6

1.
0

LR
0.
0

0.
0

0.
17

0.
14

0.
0

0.
22

82
.6
5

0.
34

BL
h

1.
48
2

1.
25
9

1.
18

LR
81
.5
2

2.
86

0.
19

12
8.
08

0.
21

0.
17

13
.8
5

0.
58

BL
Q

1.
48
2

1.
25
9

1.
18

LR
17
.7
9

3.
25

0.
22

18
4.
61

1.
07

0.
13

11
.1
4

0.
43

BL
h

1.
85
6

1.
02

1.
82

LR
60
.7
8

7.
46

0.
11

10
9.
1

0.
0

0.
05

4.
37

0.
13

BL
Q

1.
85
6

1.
02

1.
82

LR
60
.7
8

7.
46

0.
11

10
2.
74

0.
05

0.
05

4.
27

0.
13

94



Chapter 3 |
QCD Phase Transitions: Multi-
modal Gravitational Wave Signa-
tures

3.1 Introduction
Binary neutron star (BNS) mergers produce some of the most extreme conditions in nature,
compressing matter to several times the nuclear saturation density and to temperatures
of tens of MeV [106]. Multimessenger observations of binary neutron star (BNS) mergers
can be used to probe the properties of matter in these conditions, providing a unique
avenue to study the non-perturbative regime of QCD [19,20,52–54,108,137,159–177].

Presently, there are large uncertainties in the fundamental physics of strongly-
interacting matter at densities of a few times nuclear saturation [178–180]. It is not
even clear what the relevant degrees of freedom are for the densities and temperatures
reached in the core of remnant massive neutron stars (RMNS) of BNS mergers. It is
possible that matter remains composed of nucleons, together with leptons (electrons,
positrons, and muons) and photons [21, 106]. The appearance of more exotic baryons,
such as hyperons, is not excluded [19,20,181]. It is also possible for a transition to the
deconfined quark-gluon plasma phase to take place in BNS mergers [52–54, 159]. The
determination of the state of matter formed in BNS mergers is one of the most pressing
scientific objectives of multimessenger astronomy [182,183].

Previous work has shown that the presence of phase transitions (PTs) to deconfined
quarks can be revealed by a shift of the postmerger gravitational wave (GW) peak
frequency f2 from the value expected for hadronic equations of state (EOSs) [54,56,57,184].
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However, such frequency shifts can be degenerate with deviations from universal relations
due to hadronic physics or other effects [3,52,56,159,177,185]. It has also been suggested
that the presence of a PT could be inferred from a measurement of the threshold mass
for prompt collapse of BNS systems [108,176,186,187]. In this work, we consider state-
of-the-art numerical relativity simulations to show, for the first time, that the energy gap
between a hadronic phase and a pure quark phase could be unambiguously determined
through multimodal GW spectroscopy of RMNS thereby constraining an EOS that
models a QCD PT of the first order. Such measurements will be possible with the
next-generation of GW experiments like Cosmic Explorer [188], Einstein Telescope [189],
and NEMO [190]. We vary many system properties including the mass ratio, eccentricity,
and EOS model. Crucially, our simulations employ EOS models which cover a wide
range of features for the PT, including different constructions and energy density gaps
separating the two phases. The remainder of the chapter is organized as follows. In
Sec. 3.2 we discuss the features of the EOS models we consider, with particular focus on
a quantity that measures the energy density gap between a hadronic phase and a pure
quark phase. In Sec. 3.3 we discuss our numerical methods and discuss the construction of
the initial data for our simulations. In Sec. 3.4 we detail our main results and discuss the
use of multimodal GW spectroscopy as a tool for understanding the nuclear structure of
the NS EOS. Finally, we conclude in Sec. 3.5 and discuss future directions of investigation.
Throughout the work we assume geometrized units, with G = c = 1, unless otherwise
stated.

3.2 Equation of state models
For a clear understanding of the role that high-density deconfinement PTs could play in
the development of the one-arm spiral instability, we consider a total of 5 quark EOS
models with varying PT features. In particular, the size of the energy density gap which
separates the hadronic and the pure quark phases is a useful way to classify hybrid
hadron-quark EOS models [191]. This gap ∆ε is given by

∆ε ≡ εquark − εtrans, (3.1)

where εquark is the energy density above which the EOS describes pure quark matter and
εtrans is the energy density at the start of the phase transition below which the EOS
describes hadronic matter. In principle, the parameters εtrans, ptrans, and ∆ε are functions
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Table 3.1. Summary of key properties for the EOS models considered in this work. We list
the EOS model name, degrees of freedom considered (DOF), energy density gap ∆ε in units
of 1015gcm−3, type of EOS considered (where ‘PP’ stands for piecewise polytropic and ‘FT’
stands for a tabulated EOS model; all PP and FT type EOS models consider a Γ-law EOS
with Γ = 1.8 and microphysical finite temperature thermal EOS treatment, respectively), and
literature reference with further details on the model (Ref.). For EOS models that include a
deconfinement PT to quark matter, we also list the counterpart hadronic EOS which is identical
to the the model below the threshold densities for quark deconfinement (Count.).

EOS DOF ∆ε Type Ref. Count.
BLh h 0.0 FT [71,78,159] –
DD2F h 0.0 FT [159,192] –
DD2F-SF1 h-q 0.1967 FT [159,192] DD2F
DD2F-SF5 h-q 0.1967 FT [159,192] DD2F
BBKF1.5 h-q 0.2048 PP – DD2F
BLQ h-q 0.319 FT [71,78,159] BLh
T9 h-q 0.5922 PP [193–197] DD2FPP

of the electron fraction Ye and temperature T , but for simplicity we assume that the
values of these quantities are those for cold (T . 1 MeV), β-equilibrated matter when
discussing them. We identify the end and beginning of each phase by considering the
change in the approximate adiabatic index Γ = d log p/d log(ρ), where p and ρ are the
fluid pressure and rest mass density, respectively, of the cold, β-equilibrium, barotropic
EOS for each EOS model considered. The region corresponding to the PT is always
unambiguously marked by discontinuities in, or sudden changes in the slope of, the
adiabatic index for the EOS models we consider.

The energy density gap ∆ε tells us how much a system (e.g. a remnant neutron star)
is prohibited from accessing the pure quark phase. Naturally, ∆ε will depend upon the
precise mechanism employed to construct the pure quark phase. For EOSs like DD2F-SF
or CMF [52,53,58], the pure quark phase is accessible even at low temperatures and thus
∆ε for such EOSs is small (see table 3.1). On the other hand, for EOSs like BLQ where
the quark phase is modeled by the MIT Bag model, the pure quark phase is found to be
energetically prohibited (based on our simulations of BNS remnants) to the remnant’s
thermodynamics (see section 2.4.2) and consequently ∆ε is large (table 3.1). In a nutshell,
∆ε is inversely related to the strength of a phase transition. By the strength of phase
transition we mean the amount of softening the remnant undergoes upon the onset of the
phase transition. More is the softening, more compact is the remnant and consequently,
faster is its rotation. We also refer the reader to chapter 7 for a comparitive discussion
on phase transitions.
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In Tab. 3.1 we list the relevant details of the EOS models considered in our work,
along with references to literature where the models are described in further detail or used
in GRHD simulations. We consider EOS models that cover several sizes of the energy
density gap, ranging from non-existent (i.e., a purely hadronic EOS) to significantly large,
while maintaining consistency with current astrophysical constraints on the dense matter
EOS. We consider both phenomenological EOS models [193–197] (in the form of piecewise
polytropic approximations [198], abbreviated in Tab. 3.1 as ‘PP’) and microphysical,
finite temperature EOS models [71, 78, 159, 192] (abbreviated in Tab. 3.1 as ‘FT’). In
simulations that employ piecewise polytropic approximations to the EOS, we consider a
thermal treatment via the standard Γ-law EOS with thermal adiabatic index Γth = 1.8.
While a finer sampling of the ∆ε parameter space would provide a more extensive study,
the design of new EOS models consistent with astrophysical observations of NS properties
was outside the scope of this work. As such, we considered as wide a range in ∆ε as
possible considering existing and available EOS models. We leave the exploration of a
wider and more finely sampled (in ∆ε) EOS model space to future work.

3.3 Methods
We consider binaries in both quasi-circular orbits and highly eccentric encounters on
nearly parabolic orbits. Initial data for the quasi-circular binaries is created using the
conformal thin sandwich formalism [199] and assuming a helical Killing vector and
irrotational flows. The resulting elliptic equations are solved using the pseudo-spectral
code LORENE [101, 200,201]. Initial data for the eccentric encounters is constructed by
superimposing two isolated, boosted NS, following [23]. The initial separation of the
stellar barycenters for parabolic encounters is set to 100 km, which is sufficiently large
so that the level of constraint violation in the initial data is comparable to that of the
quasi-circular binaries.

We perform NS merger simulations using the WhiskyTHC code [87–89]. WhiskyTHC
makes use of the CTGamma spacetime solver [92], which is a part of the Einstein Toolkit
[202]. The adaptive mesh refinement driver Carpet [95] is used to generate the dynamical
grid structure employed in the simulations. All simulations considered here, with the
exception of two, have been performed using at least two grid resolutions. Although there
are small quantitative differences in the GW waveforms computed at different resolutions,
the effects of PTs on the GW spectrum discussed here are robust across all simulations.
Unless otherwise specified, we discuss results from simulations using the standard grid
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Table 3.2. Summary of the modeling assumption and initial conditions for the simulations
considered in this work. We list the EOS, degrees of freedom (DOF) modeled in the EOS,
orbital condition imposed, neutrino model assumed, grid resolutions considered, total system
mass, and mass ratio q = M1/M2 (where M1 (M2) is the mass of the less (more) massive star
in the configuration).

EOS DOF Orbit ν Res. M(M�) q
BLh h Quasi-circular M0 LR/SR 2.6 1
BLh h Quasi-circular M0 SR 2.6 0.85
DD2F h Quasi-circular M0 LR/SR 2.6 1
DD2F h Quasi-circular M0 LR/SR 2.7 1
DD2F h Eccentric – LR/SR 2.7 1
DD2F-SF1 h-q Quasi-circular M0 LR/SR 2.6 1
DD2F-SF1 h-q Quasi-circular M0 LR/SR 2.7 1
DD2F-SF5 h-q Eccentric – LR/SR 2.7 1
BBKF1.5 h-q Eccentric – LR/SR 2.7 1
BLQ h-q Quasi-circular M0 LR/SR 2.6 1
BLQ h-q Quasi-circular M0 SR 2.6 0.85
T9 h-q Eccentric – LR/SR 2.7 1

resolution (SR) (with grid spacing ∆x ' 184.6 m in the finest refinement level). The grid
for lower resolution (LR) simulations is approximately 30% coarser than that of our SR
grids. The grid structure for the simulations is the same adapted in [24] and [23]) for the
quasi-circular and eccentric simulations, respectively. Neutrino emission and reabsorption
are not included for binaries in eccentric orbits. All quasi-circular binaries include a
neutrino treatment via the moment based M0 scheme [24]. Additionally, magnetic fields
are not accounted for in any of our simulations, although all simulations (except with
BLh and BLQ) account for angular momentum transport in the post-merger RMNS with
the use of a subgrid viscosity large eddy simulation (LES) model which remains fixed
across models.

The complete set of simulations considered in this work cover a wide variety of initial
conditions and modeling assumptions. To further clarify the conditions considered we
summarize in Tab. 3.2 the initial conditions and modeling assumptions that vary across
the simulations. We note that several of the variable modeling assumptions are not
expected to influence the development of the dynamics of the RMNS on the timescales
we consider, including the use of an M0 neutrino scheme [25, 148] and the eccentricity of
the orbit. The most relevant model assumptions are the subgrid viscosity LES model
and the mass ratio. Specifically, the use of a subgrid viscosity model accounts for angular
momentum transport in the RMNS, which largely dictates the differential rotation profile
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crucial for the development of the one-armed spiral instability [122]. Moreover, the use of
non-unity mass-ratio ensures an inherent perturbation in the system which reliably seeds
the one-armed spiral instability. We emphasize that the important modeling assumptions,
including the subgrid viscosity model and mass ratio (with the exception of a single pair
of simulations to understand the effects of mass ratio), remain fixed across all of our
simulations. We also emphasize that our main focus is the relative growth of the one-
armed spiral instability in each pair of simulations and that we only compare simulations
with identical initial conditions and modeling assumptions. The only difference between
the pairs of simulations which we compare is whether the EOS includes a deconfinement
phase transition or not. From this perspective, all potential modeling differences across
our simulations should in principle not play a role in the effects we report.

3.4 Results

3.4.1 Development of the one-armed spiral instability in BNS mergers

The one-armed spiral instability is a non-axisymmetric mode in a rapidly rotating fluid
which, when saturated, leads to the dominance of a single high-density mode in the
fluid density that is displaced from the fluid barycenter [203–206]. The one-armed
spiral instability has been observed to develop commonly in BNS merger simulations that
produce long-lived, massive post-merger remnants on timescales of O(10ms) [119,207–210]
and in simulations of many other astrophysical systems including supernovae [211,212],
white dwarfs [213,214] and accretion disks [214,215].

A unique feature of the one-arm spiral mode is that it can be sustained on significantly
longer timescales than other non-axisymmetric modes. In the context of BNS mergers,
the growth and saturation of the one-arm spiral mode may be numerically observed
by considering azimuthal decompositions of the rest mass density on the orbital plane.
Specifically, we consider the amplitudes of these rest mass density decompositions as

Cm =
∣∣∣∣∫ W

√
γρe−imφdxdy

∣∣∣∣, (3.2)

where W is the Lorentz factor, γ is the determinant of the 3-metric, ρ is the rest mass
density, and φ = tan−1(y/x) is the azimuthal angle in the centre of mass frame. An
indicative dynamical probe of the growth of the one-arm spiral instability is the dominance
of the C1 mode over the typically initially dominant C2 mode. On dynamical timescales
the one-arm instability leads to the growth of the C1 density mode, while the C2 mode
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Figure 3.1. Left panel: Density mode decomposition following Eq. (3.2) for a simulation which
employs a purely hadronic EOS (DD2F). We depict the dominant density modes (C2 and C1)
scaled by the C0 mode to show the relative strength of each fluid pattern. Right panel: Same as
the left panel but for a simulation which employs an EOS with a hadron-quark PT (DD2F-SF5,
which is identical to the hadronic DD2F model below the threshold densities for the phase
transition). Such a suppression is even more evident in the case of BLQ EOS which has a larger
∆ε. See appendix 3.7

simultaneously decays.
Each fluid density mode that arises during the evolution of a massive NS remnant is

associated with GW emission at a characteristic frequency stemming from its respective
pattern speed. For example, the growth of the C1 mode, which has half the pattern
frequency as the C2 mode, is associated with GW emission at half the characteristic
frequency of the initially dominant C2 mode. As such, the development of the one-armed
spiral instability in astrophysical systems may be observed by considering multimodal GW
spectroscopy [119]. For the simulations considered in this work we extract multimodal
GW information within the Newman-Penrose formalism. We compute the coefficients
of s = −2 spin-weighted spherical harmonic decompositions of the Newman-Penrose
scalar Ψ4 which we label as Ψ`,m

4 . The one-armed spiral instability can therefore be
observed in the GW spectrum extracted from our simulations as a growth in the power
and amplitude of the ` = 2,m = 1 GW mode (i.e., Ψ2,1

4 ) and simultaneous decay of the
dominant ` = 2,m = 2 GW mode (i.e., Ψ2,2

4 ).
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Figure 3.2. Left panel: Energy carried by GWs in the ` = 2,m = 1 mode as a function of time.
The development of the one-armed spiral instability can be observed in the purely hadronic
simulation, as the energy in the ` = 2,m = 1 GW mode continues to grow, but is suppressed
in the hadron-quark simulation. Right panel: Time-averaged energy emitted by GWs in the
` = 2,m = 1 mode, normalized by the same quantity for the corresponding hadronic EOS, as a
function of the energy density gap separating the hadronic and quark phases. We depict results
for quasi-circular and eccentric mergers with pink triangles and green circles, respectively. We
find that the energy emitted by the ` = 2,m = 1 GW mode decreases by up to approximately
an order of magnitude for larger energy density gaps.
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Figure 3.3. Multimodal GW amplitude spectral density computed for symmetric binaries
of total mass M = 2.6 M� in an edge-on configuration. Also shown are the noise sensitivity
curves for advanced LIGO (aLIGO), Einstein Telescope (ET), the 20 km postmerger-optimized
configuration for the Cosmic Explorer (CE20) and the 40 km configuration for Cosmic Explorer
(CE40). A suppression in the amplitude spectral density as a result of the deconfinement PT
may be detectable with the third generation detectors and most cleanly with CE40.
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3.4.2 The effect of deconfinement phase transitions on the one-
armed spiral instability

Our simulations show that high-density deconfinement PTs may act to suppress the one-
armed spiral instability. Specifically, hadron-quark PTs lead to a relative suppression of
the instability when compared to analogous cases with purely hadronic degrees of freedom.
We refer to this effect simply as a ‘relative suppression’ throughout the manuscript for
the sake of brevity. There are several potential mechanisms via which the instability
may be relatively suppressed. For example, it has been shown that the physical extent
of the remnant plays an important role in the development of the instability, with
larger remnants being more conducive to the development of the instability on shorter
timescales [119,210,216,217]. The significant softening at high densities introduced by
the PT results in more compact post-merger remnants (relative to scenarios that consider
only hadronic degrees of freedom). As such, the more compact hybrid star remnants may
see a weaker development of the one-armed spiral instability when compared to neutron
star remnants.

In Fig. 3.1 we depict the density mode decomposition for two representative simulations
which begin from the same initial conditions. The left and right panel of Fig. 3.1 depict
the dominant density modes for a simulation employing a hadronic (DD2F) and hadron-
quark (DD2F-SF5) EOS, respectively. In the left panel of Fig. 3.1 we see the clear growth
and eventual dominance of the C1 mode on dynamical timescales, which is indicative of
the development of the one-armed spiral instability. On the other hand, the right panel of
Fig. 3.1 clearly shows that the C1 mode never dominates the fluid evolution, suggesting
suppression of that density mode relative to the analogous hadronic case depicted in the
left panel. Such suppression is even more pronounced for a quark EOS with larger ∆ε
(see appendix 3.7).

In the left panel of Fig. 3.2 we show the energy carried by the ` = 2,m = 1 GW mode
as a function of time for simulations employing the DD2F (hadronic) and DD2F-SF5
(hybrid hadron-quark) EOSs. We find that the energy carried in the ` = 2,m = 1 mode
of the GWs is significantly smaller in the simulation employing a hybrid hadron-quark
EOS, indicating that the one-armed spiral instability is relatively suppressed in scenarios
with deconfinement PTs at densities relevant for BNS mergers. We emphasize that in
Fig. 3.1 and in the left panel of Fig. 3.2 we showcase results for a set of EOS models which
are identical below the threshold for a PT, and as such the simulations have identical
initial conditions. We find that this relative suppression exists for all of our simulations,
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regardless of initial condition, modeling assumptions as listed in Tab. 3.2, or pair of EOS
models considered.

In the right panel of Fig. 3.2, we show the time-averaged energy emitted by the
` = 2,m = 1 GW mode 〈E2,1

GW〉 as a function of the energy density gap ∆ε for all of
our simulations. For the results depicted in the right panel of Fig. 3.2, we time-average
over a window of ∆t ≈ 40 ms after the merger except for cases that lead to a remnant
collapse on shorter timescales (in such cases, we time-average until the collapse of the
NS remnant). To account for differences and uncertainties in the hadronic sector of the
NS EOS, we normalize all data by that corresponding to a complementary simulation
that uses identical initial data and modeling assumptions but employs a purely hadronic
EOS having the same low-density behavior below the PT threshold as the hybrid hadron-
quark EOS. As such, we depict the point corresponding to all hadronic EOS simulations
with a black square at ∆ε = 0. Each simulation is time-averaged to the same extent
as its complementary hadronic simulation. The scatter of data suggest a potential
anti-correlation between the energy carried in the ` = 2,m = 1 GW mode and the size
of the energy density gap, although we note significant variability in the trend. Our
findings suggest that as the size of the energy density gap increases, GW emission in
the ` = 2,m = 1 mode decreases; the simulation employing the quark EOS with the
largest energy gap leads to a relative suppression in 〈E2,1

GW〉 by approximately an order of
magnitude.

Note that in Fig. 3.2 we also show the relative suppression of the GW energy in the
` = 2,m = 1 mode, but for the case of a system with mass ratio q = 0.85, marked with a
black star marker. The datum for the pair of unequal mass ratio simulations shown in
Fig. 3.2 demonstrates that there is significant agreement in the relative suppression of the
one-armed spiral instability between the unequal mass ratio and equal mass ratio cases
at the same value of ∆ε. Specifically, we find that there is only a 3% difference in the
relative growth of E2,1

GW between the unequal and equal mass ratio cases of the same ∆ε.
In principle, the one-armed spiral instability is expected to be seeded at a stronger level
for systems with q 6= 1. However, in this work we consider the effect of deconfinement on
the development of the one-armed spiral instability PTs, relative to cases with identical
initial conditions and modeling assumptions that employ purely hadronic EOSs. As such,
system properties such as the mass ratio and other modeling assumptions are expected to
cancel out between comparison cases; the only difference between the simulations which
we compare is whether or not the EOS contains a deconfinement PT to quark matter.

As the present work is the first ever to report the potential relative suppression of
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the one-armed spiral instability due to deconfinement PTs, a significant amount of work
remains to be done to understand whether the potential anti-correlation suggested by
the right panel of Fig. 3.2 is robust, including the consideration of EOS models that
more finely sample the parameter space of ∆ε and a further investigation of the effects
of system properties such as the mass ratio. We leave such investigations to future work.

3.5 Discussion and Conclusion
The characteristic frequency associated with peak emission in the ` = 2,m = 1 GW mode
has half the value of that associated with the ` = 2,m = 2 mode (i.e., f 2,1

peak = f 2,2
peak/2).

Observationally, a GW signal would contain information at all contributing frequencies.
However, the dominant GW emission associated with binary coalescence is always
expected to be from the ` = 2,m = 2 contribution, such that fpeak = f 2,2

peak. Therefore,
a potential observational signature of the one-armed spiral instability is the growth in
power of an incoming GW signal at a frequency that is half of the dominant frequency;
if it develops in the post-merger environment, the one-armed spiral instability will
continuously power the emission of GWs at fpeak/2, while emission in the dominant fpeak

decays in time [113].
In Fig. 3.3 we show the post-merger GW amplitude spectrum density (ASD) for a

symmetric, edge-on binary situated at a distance of 40 Mpc, which is consistent with
the luminosity distance observed for GW170817 [218]. The edge-on configuration is
the most optimal for the detection of an m = 1 mode. As expected, we see a relative
suppression of power in the m = 1 mode (with respect to the complementary hadronic
simulation) with the onset of a deconfinement PT. In this configuration, the appearance
of quarks in the post-merger remnant results in a relative suppression of the postmerger
signal-to-noise ratio (SNR) of the (` = 2,m = 1) mode by a factor of 2, from 2.14
in the hadronic case to 1.08 in the hadron-quark case in the 40 km Cosmic Explorer
detector [188]. The GW ASD peak of the ` = 2, m = 1 mode (between 1-2 kHz) and
the postmerger ASD peak of the ` = 2, m = 2 mode (between 2-4 kHz), lie respectively
in the most sensitive regions of the 40 km and the 20 km postmerger optimized Cosmic
Explorer configurations. Our analysis recommends an increase in detector sensitivities in
the high-frequency regimes (see also [219]) for best possible constraints on deconfinement
PTs in BNS mergers, within the context of multimodal GW spectroscopy. In cases where
the one-armed spiral instability develops, all binary inclinations except directly face on
will produce GWs with a l = 2,m = 1 component. The one-armed spiral instability leads
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to a unique bi-modal GW spectrum where the two most dominant peaks correspond
exactly to fpeak and fpeak/2. As such, a superposition of all signal modes may still in
principle be used to extract the relative strength of the one-armed spiral instability. For
instance, the SNR of a post-merger GW signal can be measured in a range of frequencies
up to the inferred fpeak; in cases where the one-armed spiral instability develops the
dominant contribution to the signal in this range of frequencies is expected to be from
the l = 2,m = 1 mode for all inclinations except directly face on. We note that the
only way to completely remove the l = 2,m = 1 mode from the signal is in the highly
specific scenario of an equal mass, directly face-on binary. Given reasonable expectations
for distributions in the inclination and mass ratio of BNS systems, we may typically
expect a contribution from the l = 2,m = 1 mode. However, deconfinement PTs may act
to suppress the instability. In other words, except for the highly specific scenario of a
face-on q = 1 binary, the lack of significant SNR over fpeak/2 may be used to constrain
the high- density EOS as highlighted by our work. For further detail on the detectability
of the one-armed spiral instability via GW spectroscopy, we refer the reader to [119].

In [54] it was established that quasi-universal relations in the value of fpeak may be
established for hadronic EOS models, and that EOS models which include a deconfinement
PT unambiguously deviate from such universal relations (although recent work suggests
that EOS features other than phase transitions may be responsible for deviations away
from these quasi-universal relations [220]). As it is not presently understood whether
similar relations exist in a quantity that measures the strength of the one-armed spiral
instability (such as 〈E2,1

GW〉), we cannot establish whether the hadron-quark EOS models
considered in this work deviate from such hypothetical quasi-universal relations. We
may instead consider the effect showcased in this work as an additional tool to infer the
presence and nature of PTs in BNS mergers. For example, when considered in combination
with other known effects of PTs on BNS merger observables such as fpeak [54] and the
associated KN brightness [159], the measurement of SNR(fpeak/2) (which is directly
proportional to 〈E2,1

GW〉 as considered in our work) may allow for significant constraints on
properties of the deconfinement PT. In principle the effects we discuss in this manuscript
may be conflated with the effects of relatively soft EOS models [119] or potentially other
effects such as non-convexity in the EOS [220]. In order to state definitively whether
deconfinement PTs have a comparable effect on the one-armed spiral instability as
relatively soft EOSs, we would need to consider hadronic EOS models over a significantly
wider range of stiffness. Such a study would help establish whether quasi-universal
relations exist in 〈E2,1

GW〉 or comparable metrics for the strength of the one-armed spiral

106



instability in the case of hadronic EOSs which we could then use as a standard against
which to compare the effects presented in our work. We leave the investigation of
quasi-universal relations for the strength of the one-armed spiral instability to future
work.

In this work we have highlighted, for the first time, that high-density deconfinement
PTs may act to relatively suppress the one-armed spiral instability. We find an anti-
correlation between the energy carried in the ` = 2,m = 1 GW mode and the size of
the energy density gap which separates the hadronic and quark phases. Our findings
reveal a potential deep connection between observable multimodal GW emission and
the microphysical description of matter in the post-merger environment. We expect
the one-armed spiral instability to be detectable at distances of 40 Mpc using future
generation detectors [119]. If evidence of a strong one-armed spiral mode can be inferred
from GW observations of the post-BNS merger environment, our findings suggest that
a high-density deconfinement PT at the densities relevant to BNS mergers would be
disfavored in favor of nucleonic EOS models. On the other hand, if evidence for the
one-armed spiral instability is not found for close-by BNS mergers, this could also point
to the possibility of a deconfinement PT taking place at densities relevant to BNS mergers
with large values of ∆ε.

Similar studies considering the effect of PTs on BNS GW observables have not
observed the relative suppression reflected in our simulations. For example, the Appendix
of [56] considers a single comparison between a simulation with hadronic degrees of
freedom and a hadron-quark PT. There, they show a potential relative amplification of
the GW amplitude in the ` = 2,m = 1 mode when allowing for a hadron-quark PT.
However, that single comparison scenario is markedly different from those considered in
this work. Specifically, in [56] the PT only occurs t = 3− 4 ms after the merger, whereas
the PT occurs within t ≈ 0.5 ms for the simulations in this work. As such, the early
development of the instability may not be impacted by the PT in the scenario considered
in [56]. Moreover, we note that in our study we consider the time-averaged GW energy
carried in the l = 2,m = 1 mode. Without comparing the same quantities used in our
study to understand the development of the one-armed spiral, it is impossible to say
whether the single comparison considered in [56] is contrary to the trend depicted in
Fig. 3.2. Finally, we emphasize that [56] considers coarser numerical grids than our study
for the single relevant comparison (a roughly 30% coarser numerical grid when compared
to the standard resolution simulations in our work, which is consistent with our LR
simulations), and does not consider an exploration of relevant effects as was done in our
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study (e.g., the size of ∆ε and different phase constructions). Importantly, [56] do not
establish that their simulations, in the context of the one armed spiral instability, are
in the convergent regime, as the amplification of the ` = 2,m = 1 after a hadron-quark
PT occurs in the remnant reported in that work is not observed using higher resolution
simulations. As such, it remains unclear whether the potential deviation of that result
from the trend established in Fig. 3.2 is not due to relatively higher numerical error
in [56]. In App. 3.6 we discuss the complexity of understanding fluid instabilities in BNS
mergers using LR grids.

Binary neutron star mergers with non-unity mass ratios are in principle more generic
and common than the equal mass ratio systems considered in this work. Moreover, the
inherent asymmetry in unequal mass ratio mergers may provide a reliable mechanism for
efficiently seeding the one-armed spiral instability after the merger and has been shown
to result in a stronger, faster development of the instability [210]. Although we present
only a single case study for cases with unequal mass ratios in the present work, we find
support for our main claim (that high-density deconfinement PTs may suppress the
development of the one-armed spiral instability when compared to analogous cases with
purely hadronic degrees of freedom) there as well. Due to the scope of the present work
and the increased parameter space when considering unequal mass ratio cases, we find
that a more systematic consideration of unequal mass ratio cases than can be presented
in here is warranted. As such, we leave a full investigation of the effects of unequal
mass ratio to future studies. We point out that other effects relevant in the post-merger
environment - such as the presence of strong magnetic fields [221] and additional degrees
of freedom that can cause a sudden softening of the EOS - may affect the development
of the one-armed spiral instability. However, the relevant timescales and extent to
which the aforementioned phenomena can affect the development of non-axisymmetric
instabilities or the GW spectrum remains uncertain [119,222], and may not impact our
conclusions [223, 224]. The effects discussed in the present work arise on dynamical
timescales ∼ O(10 ms), and may be the dominant mechanism for the relative suppression
of the one-armed spiral instability. Additionally, although we find a trend in the decrease
of energy carried by the ` = 2,m = 1 GW mode for larger values of ∆ε, additional studies
will help establish a more robust trend and provide an understanding of the potential
spread in the trend. In particular, future lines of investigation will include: (1) considering
the combined effects of the mass ratio and high-density PTs on the development of the
one-armed spiral instability to a greater extent than could be done in this work; (2)
considering the effects of accurate neutrino transport on high-density deconfinement PTs,
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Figure 3.4. Left panel: Energy in the ` = 2,m = 1 GW mode as a function of time for
simulations employing a hadronic (DD2F) and hadron-quark (BBKF1.5) EOS; the simulations
use identical initial conditions and are run with a grid resolution of ∆x = 369.2 m in the finest
grid. These results showcase that the one-armed spiral instability may be seeded at different
levels in the postmerger environment for different simulations. Right panel: Same quantity as
the left panel, but normalized to the value at a time shortly after merger, tnorm = tmerger +0.5 ms.
Normalizing at this time accounts for the one-armed spiral instability being seeded at disparate
levels across simulations.

as neutrinos may modify the composition of matter and thereby potentially affect the
onset of the PT; (3) employing EOS models at systematically increasing values of ∆ε
while holding the hadronic region of the EOS fixed, as a limitation of the present work
is the assumption that the ` = 2,m = 1 GW mode is perfectly known in the case of
hadronic EOSs; and (4) investigating the effects discussed in this work in scenarios with
a crossover to quark matter, as our present work only considers EOS models with phase
transitions. We leave such studies to future work.

3.6 Appendix 1: On the effects of grid resolution
Our main diagnostic for monitoring the development of the one-armed spiral instability
is the energy carried in the ` = 2,m = 1 mode of the GWs, which we further discuss in
Sec. 3.4.2. We find that for most cases in our study, the relative suppression of the one
armed spiral instability is observed at lower grid resolutions. However, there are notable
exceptions for 2 pairs of simulations at lower resolutions. Specifically, we find that the low
resolution (LR) versions for 2 of our simulations that employ high-density deconfinement
phase transitions do not show a relative suppression of 〈E2,1

GW〉, but instead a relative
growth with respect to the analogous simulations employing a purely hadronic EOS.
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Figure 3.5. Left panel: Time-averaged energy emitted by GWs in the ` = 2,m = 1 mode,
normalized by the same quantity for the complementary hadronic EOS, as a function of the
energy density gap separating the hadronic and quark phases. We show results for the LR
simulations in our work. Right panel: Same as the left panel, but normalizing all data at a
time shortly after merger, tnorm = tmerger + 0.5 ms as consistent with Fig. 3.4

These cases seemingly contradict the discussion in the main text and are more consistent
with the single case study showcased in [56]. However, we note that grid effects are crucial
in determining the growth and saturation of the one-armed spiral instability. Specifically,
the one-armed spiral instability may be seeded in a variable nature in the context of
numerical studies. Unless it is explicitly excited as a non-axisymmetric perturbation of a
known amplitude (e.g., as a fixed-amplitude perturbation in the rest mass density), the
one-armed spiral instability arises numerically from error at the level of floating-point
precision [225]. As such, small differences in the early post-merger evolution of the fluid
can result in the instability being seeded at different strengths; this is potentially affected
most strongly by the grid resolution. We do not explicitly seed the one-armed spiral
instability using fluid perturbations in this work and, as a result, simulations that either
run on different machines or use different grid resolutions libraries may result in different
strengths for the initial instability seed.

To discuss the relative strength of the one-armed spiral instabilities across simulations
which employ different grid structures, we consider E2,1

GW normalized to its value at a
time shortly after the merger; we depict normalized quantities because of the variable
nature in which the one-armed spiral instability is seeded in the immediate post-merger
environment in the context of numerical studies. In Fig. 3.4 we show the energy in the
` = 2,m = 1 GW mode E2,1

GW as a function of time for a set of low resolution simulations.
The left panel of Fig. 3.4 shows E2,1

GW as extracted from our simulations and appears
to show that the simulation employing a hadron-quark EOS produces a larger energy
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in the ` = 2,m = 1 GW mode. However, it is clear that the energy at a time shortly
after the merger E2,1

GW(tmerger + τε) (where τε is a small additive time) is larger for the
hadron-quark simulation, suggesting that the one-armed spiral instability was seeded
at a larger amplitude in that case. In order to account for the different levels at which
the one-armed spiral instability is seeded in the immediate post-merger environment,
we normalize the quantities used to diagnose the relative strength of the instability at
a time shortly after the merger tnorm = tmer + τε. We find that setting τε = 0.5 ms
results in all simulations in our work having roughly equal values of E2,1

GW in the few ms
immediately following merger. We find that setting τε between 0.1 ms and 1 ms ensures
that all simulations have approximate equality in the level at which the one-armed spiral
instability is seeded, regardless of grid resolution or computational hardware used. We
emphasize that our results at higher resolution are observed without the aforementioned
normalization, but considering the normalization allows us to more suitably compare
the development of the one-armed spiral instability across different grid resolutions. In
Fig. 3.5 we show the time-averaged GW energy carried in the l = 2,m = 1 mode as
a function of ∆ε for all LR simulations in our work. We find that without accounting
for disparate levels of the instability seed (left panel of Fig. 3.5), our data does not
closely follow the potential trend established by the SR simulations in Fig. 3.2. However,
normalizing all LR simulation data at a time consistent with Fig. 3.4 results in a much
closer scatter of data between the LR and SR sets (right panel of Fig. 3.5). We leave
the investigation of grid resolution effects, as well as the consideration of even higher
resolution grids than could be included in this study, to future work.

3.7 Appendix 2: Azimuthal mode decomposition and
suppression of ` = 2,m = 1 GW mode for BLQ EOS
In this appendix, we provide additional evidence that large values of energy density
gaps between a pure quark phase and a hadronic phase ∆ε do indeed suppress the
one-armed spiral instability developed in the postmerger remnant. To this aim, we show
in figure 3.6, the time evolution of the azimuthal mode decomposition of rest mass density
corresponding to the symmetric 1.30 M� - 1.30 M� binary. In the hadronic remnant
simulated with the BLh EOS, the m = 1 density mode is seeded at the merger and grows
to dominate the m = 2 mode eventually saturating over a time scale of 20 ms. On the
other hand, the same binary when simulated with the BLQ EOS (∆ε = 3.2× 1014gcm−3)
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Figure 3.6. The decomposition of fluid density into azimuthal modes on the equatorial plane
for a remnant neutron star (for the symmetric 1.30 M� - 1.30 M� binary) evolved with a
hadronic EOS BLh (left panel) and a hybrid hadron-quark EOS BLQ (right panel). The quark
EOS noticeably suppresses the m = 1 fluid density mode that manifests as a loss of SNR in the
` = 2,m = 1 GW mode.

has a noticeable suppression of the m = 1 fluid density mode in the postmerger. This
suppression is stronger as compared to the suppression of the m = 1 mode for the binary
simulated with the DD2F-SF5 EOS (figure 3.1) with a smaller phase separation.

Finally, in figure 3.7, just like figure 3.2, we show the time evolution of GW energy
carried by the ` = 2,m = 1 mode and the fact that an onset of QCD phase transitions
results in a suppression of this energy (equivalently the SNR in the ` = 2,m = 1 mode).

3.8 Declaration
For this work, the numerical simulations of BNS mergers were shared between Pedro
Espino and myself. Pedro was responsible for the post-processing analysis that established
a suppression in the one-armed spiral instability with energy density gap and I contributed
to the gravitational wave detectability prospects of the aforementioned suppression. The
contents of this chapter have been published in the journal Physical Review D of the
American Physical Society with refernce [226].

Copyright © 2011 by American Physical Society. All rights reserved.
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Chapter 4 |
GRHD simulations of binary strange
stars

4.1 Introduction
The detection of gravitational waves (GWs) from the coalescence of the binary neutron
star (BNS) merger GW170817 [1] complemented by the subsequent observations of
electromagnetic (EM) counterparts by a number of earth and space-based telescopes [2],
has opened a new avenue for exploring the properties of matter under extreme densities
(up to several times the nuclear saturation density ρnuc ∼ 2.7 × 1014 g cm−3) and
temperatures (up to 10s of MeVs) that can not be presently realized in any terrestrial
laboratory. These extreme physical conditions are in fact expected to occur in the post-
merger remnants generated in BNS mergers and in core-collapse supernovae [106,227,228].
The equation of state (EOS) describing the thermodynamic properties of this extreme
matter primarily determines the evolution, the fate of the merger remnant, the GW
signal, and to some extent the properties of the ejecta and associated electromagnetic
counterparts. Other effects such as neutrino transport, [21,23–25,28,224,229–241], and
magnetohydrodynamic turbulence [122, 242–244] may also influence the post-merger
evolution.

In the aforementioned region of the phase diagram of strongly interacting matter,
quantum chromodynamics (QCD) predicts a transition from a regime where quarks and
gluons are confined within baryons and mesons (the hadronic matter phase) to a regime
with deconfined quarks and gluons: the so-called quark matter phase. In this dense
region of the phase diagram, it is still an open question as to whether such a transition is
of the first order or proceeds continuously as in a crossover [245]. Experimental facilities
under construction at future facilities, such as the Compressed Baryonic Matter (CBM)
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experiment [51] at the Facility for Antiproton and Ion Research (FAIR) are expected to
provide insight pertaining to the nature of strongly interacting matter.

For a long time, it has been proposed that a phase of matter composed of the three
lightest flavors, namely the up (u), down (d), and strange (s) quarks together with an
appropriate number of electrons to guarantee electrical charge neutrality, could exist
in the core of sufficiently high-mass neutron stars (NS). This form of quark matter is
referred to as strange quark matter (SQM) and NS possessing a SQM core are known
as hybrid stars (see e.g., [34]). Even more intriguing than the existence of a SQM core
in a NS is the possible existence of a new family of compact stars, called strange stars
(SS), which are entirely (i.e., up to the surface) made up of SQM (bare SS). They could
possibly be covered by a thin crust of ’normal’ matter similar to the one found in the
outer crust of a NS (crusted SS). The possible existence of SS is a consequence of the
so-called Bodmer–Witten hypothesis [246,247]. According to this hypothesis, SQM is
absolutely stable, i.e., its energy per baryon (E/A)uds (at the baryon density where the
pressure is equal to zero) is less than the energy per baryon of the most bound atomic
nuclei (56Fe,58 Fe,62 Ni) which is ∼ 930.4 MeV. The absolute stability of SQM does not
preclude the existence of “ordinary" matter [246, 247]. In fact, under this hypothesis,
atomic nuclei can be considered as metastable states (with respect to the decay to SQM
droplets) having a mean-life time many orders of magnitude larger than the age of the
Universe.

Over several years a number of compact stars associated with different astrophysical
phenomena have been proposed as possible strange star candidates [248–252]. Most
recently, it has been argued that the low-mass companion (with a mass in the range
(2.50−2.67) M�) of the 23 M� black hole, whose merger generated the gravitational wave
signal GW190814 [253], could be a strange star [254]. Massive strange stars could thus
populate the so-called mass-gap between neutron stars (NSs) and black holes (BHs). It
has been also recently suggested that the Central Compact Object within the supernova
remnant HESS J1731-347 [255] could be interpreted as a low-mass (M = 0.77+0.20

−0.17M�)
strange star [255–257].

Strange stars could be formed in supernova explosions [258, 259], during the early
evolution of a protoneutron star [260–263], or by an external seeding of strangelets (chunks
of SQM) [264] in ordinary neutron stars [265,266]. Alternatively, the conversion of an
ordinary neutron star into a strange star is a very likely formation mechanism. In fact, as
it has been proposed and discussed in several works [267–269], if the hadronic-to-quark
matter phase transition is of the first order, ordinary NSs above a threshold value of their
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gravitational mass (corresponding to a threshold central density nthr) become metastable
with respect to the conversion to strange stars. These metastable NSs have a mean-life
time related to the nucleation time τ to form the first critical-size SQM droplet in their
center 1. As shown in [267–269], τ decreases very steeply as a function of the stellar
central density nc (or as a function of the corresponding gravitational mass MG(nc)),
from τ =∞ when nc = nthr, to values much smaller than typical pulsar ages (see e.g. Fig.
1 in [267]). At this point (e.g. when τ ∼ 1 yr [267,268]) the conversion to a SS is very
likely. This conversion process releases a huge amount of energy (O ∼ 1053 erg) [270],
mainly in a powerful neutrino burst that can possibly result in a short gamma-ray burst.
Thus a way to produce SSs is through mass accretion onto neutron stars in binary
systems [267,271] or during the spin-down of a rapidly rotating neutron star [272]. By
this mechanism, ordinary metastable neutron stars could be converted into strange stars
and these two families of compact stars could coexist in the universe. It is important
to emphasize that all the present observational data and our present experimental and
theoretical knowledge of the properties of dense matter do not allow us to accept or
exclude the validity of the Bodmer–Witten hypothesis and hence the existence of strange
stars and the possibility of having two coexisting families of compact stars.

From the above discussion, it is clear that the existence of strange stars would have
very far-reaching consequences not only for the physics of strong interactions in extreme
matter but also for the many different astrophysical phenomena associated with compact
stars.

In this work, we perform full general-relativistic hydrodynamic (GRHD) simulations
of binary strange star (BSS) mergers. We note that although the merging of ordinary
neutron stars has been widely discussed in literature [79, 148, 273], the case of BSS
mergers has been relatively less explored. Only a few works have addressed the general
features of the dynamics of this process by mainly employing zero temperature EOSs
supplemented with a thermal correction [67, 274] or by using the conformal flatness
approximation for the space-time evolution [66]. The main purpose of the present work
is to use state-of-the-art numerical techniques to solve the equations of GRHD given a
compact binary initial data. We compare numerical simulations of BSS mergers performed
using a finite-temperature EOS (where thermal effects are calculated in a way consistent
with the zero-temperature case) with those obtained using the zero-temperature EOS
supplemented by a phenomenological thermal contribution (the so-called Γ-law) as done

1The actual mean-life time of the metastable NS depends on the mass accretion or on the spin-down
rate which modifies the nucleation time via an explicit time dependence of the stellar central density nc.
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in previous works [67, 274]. We also make use of a modified version of the MIT bag
model [275, 276] that allows for larger maximum masses of SS when compared to the
classical MIT bag model [67, 264,274]. To the best of our knowledge simulations of BSS
mergers using the settings described above have never been performed.

The chapter is organized as follow. In Sec. 4.2 we describe the modified MIT Bag
Model we employ to obtain the SQM EOS. Sec. 4.3 discusses the numerical setup we
adopt and the initial data employed for simulations. An analysis of our results follows in
Sec. 4.4. In particular in Sec. 4.4.1, we focus on the merger dynamics, and in Sec. 4.4.2,
we study GW signatures. Sec. 4.4.3 is dedicated to a discussion of dynamical ejecta
(4.4.3.1)from the BSS merger and accretion disks (4.4.3.2) for the remnant SS. We finally
conclude in Sec. 4.5.

Throughout this chapter, we adopt a space-like signature (−,+,+,+) with the
Einstein’s convention for summation over repeated indices. Unless otherwise stated, all
quantities are expressed in geometrized units, i.e., G = c = 1.

4.2 The equation of state for strange quark matter
The EOS for strange quark matter that includes the effects of gluon-mediated QCD
interactions between quarks up to O(α2

s ) particularly the one gluon exchange between
quarks, can be written [81,82,275] in a straightforward and easy-to-use form similar to
the popular version of the MIT bag model EOS [264]. The grand canonical potential per
unit volume is given by (we use units where ~ = 1, and c = 1)

Ω =
∑

i=u,d,s,e
Ω0
i + 3

4π2 (1− a4)
(
µb

3

)4
+Beff , (4.1)

where Ω0
i is the grand canonical potential density for u, d, s quarks and electrons which

are modeled as ideal relativistic Fermi gases. The second term on the right-hand side
of Eq.(4.1) accounts for the perturbative QCD corrections up to O(α2

s) [81–83] and
represents the degree of deviation from an ideal (non-interacting) relativistic Fermi
gas, with a4 = 1 corresponding to the ideal Fermi gas case. The baryon chemical
potential µb can be written in terms of the u, d and s quark chemical potentials as
µb = µu + µd + µs. Beff is an effective bag constant that phenomenologically takes into
account the non-perturbative aspects of QCD.

At a finite temperature, the ideal Fermi gas contributions to Ω provided by fermions
and antifermions for a given temperature T and chemical potential µi can be computed
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Figure 4.1. The pressure vs. rest mass density relation for the strange quark matter EOS
at zero temperature, i.e., a completely degenerate Fermi gas of u, d, and s quarks along with
electrons for electrical neutrality. The pressure of strange quark matter begins dropping rapidly
at densities near and less than nuclear saturation as is also seen in [66].

as (see e.g. [84]):

Ω0
i (T, µi) = −1

3
gi

2π2

∫ ∞
0

k2dk k v

× [f(k, µi) + f(k,−µi)] (4.2)

where v = k/Ei is the particle velocity (with total energy Ei(k) = (k2 + m2
i )1/2), and

f(k,±µi) are the Fermi-Dirac distribution functions with chemical potentials +µi for
particles and −µi for antiparticles. The distribution functions are given as:

f(k,±µi) = 1
e(Ei(k)∓µi)/T + 1 , (4.3)

Here, the degeneracy factor is gi = 2 for electrons and gi = 6 for each quark flavor. The
temperature dependence of the non-ideal Fermi gas term and that of the Bag constant
in Eq.(4.1) has been neglected.
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The total entropy density
s =

∑
i=u,d,s,e

si (4.4)

can be computed using the ideal Fermi gas approximation for each fermionic particle
species [85]:

si(T, µi) = − gi
2π2

∫ ∞
0

k2dk [f(k, µi)lnf(k, µi)

+ (1− f(k, µi))ln(1− f(k, µi))

+ f(k,−µi)lnf(k,−µi)

+ (1− f(k,−µi))ln(1− f(k,−µi))] (4.5)

Using the standard relations for thermodynamic potentials, the energy density can
be written as:

e = Ω +
∑

i=u,d,s,e
µini + Ts, (4.6)

where ni is the number density for each particle species which can be given as:

ni = −
(
∂Ω
∂µi

)
T,V

(4.7)

The total baryon number density is:

nB = 1
3(nu + nd + ns) . (4.8)

Weak reactions involving quarks of the type:

d+ u↔ u+ s (4.9)

u+ e− ↔ s+ νe (4.10)

occurring in the hot-dense merger remnant change the quark concentrations of matter
to minimize the energy per baryon of the system. Since the typical time-scale for weak
interaction processes τw . (10−8–10−10) s is significantly shorter than the hydrodynamic
timescales (τh ∼ 10−3s) inside the remnant, we neglect detailed reaction rates involv-
ing quarks and neutrinos. Thus we consider β-stable strange quark matter satisfying
equilibrium with respect to the weak interactions, i.e.,

µs = µd = µu + µe , (4.11)
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Figure 4.2. The mass-radius relationship for isolated and non-rotating strange stars computed
from iterative solutions of the TOV equations for the cold strange quark matter EOS presented
in this work. Contrary to the TOV sequences of neutron stars which have a negative slope,
the TOV sequences for strange stars have ∂MG/∂R > 0 for the stable branch. Strange stars
are self-bound as a result of QCD interactions meaning that they will be bound even in the
absence of gravity. In other words, their surfaces possess a surface tension and they can be
very small in size R ∼ 4km. We also denote the TOV configuration of the strange star, whose
symmetric binary merger we simulate in this work with a black circle.

and electric charge neutrality.
In the present work we take me = 0, mu = md = 0, ms = 100 MeV, B1/4

eff = 138 MeV
and a4 = 0.8. Using these values for the EOS parameters, SQM satisfies the Bodmer-
Witten hypothesis and in addition, atomic nuclei are stable with respect to their possible
decay to droplets of non-strange (i.e. u, d) quark matter [264,272].

We show the cold and β−equilibrated EOS for SQM in figure 4.1. A steep drop in
pressure for densities close to nuclear saturation is a characteristic of the strange quark
matter EOS (see also [66]). In figure 4.2 we show the mass-radius curve for cold, isolated,
and non-rotating strange stars described by our EOS model. Strange quark stars are
self-bound instead of being gravitationally bound like other compact stars. This is due
to the surface tension provided by the non-perturbative aspects of QCD and modeled by
a negative Bag constant in the expression for pressure (see equation 1.112). This further
implies that strange quark stars can support very small radii ∼ 4km. We obtain the
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following values for the structure parameters characterizing the stellar maximum mass
configuration: gravitational mass M = 2.10M�, baryonic mass MB = 2.71M�, stellar
radius R = 11.57 km, central baryon number density nBc = 0.924 fm−3, central density
ρc = 1.7625× 1015g/cm3 and tidal deformability Λ = 22.46. For the SQM EOS model
employed in this work, general relativistic equilibrium sequences of rapidly spinning bare
strange stars have been constructed in [272]. In particular, it was shown (see Table 3,
first line and figures 3 and 4 of Ref. [272]) that for the case of maximally spinning bare
strange stars (i.e. at the mass shedding limit), the maximum gravitational and baryonic
masses correspond to M = 3.032M� and MB = 3.924M� respectively.

4.3 Numerical setup
All the simulations performed in this work are targeted to model a GW170817-like
event in the sense that we consider BSS configurations with the same chirp mass as
GW170817 [1], i.e., Mchirp = 1.18 M�. To this aim, we simulate non-rotating, symmetric
binaries of total mass M = 2.72 M�. This choice is aimed at simulating the cleanest
scenario before possibly considering the effects of unequal mass ratios.

The initial data are generated using the pseudo-spectral code LORENE [101]. We
consider irrotational binaries in quasi-circular orbits at an initial separation of 45 km. For
bare strange stars, we have a large gradient in density as we transition from a tenuous
atmosphere to the surface. To control spurious oscillations in the computation of density
at the surface, in the computation of initial data, we reduce the relaxation factor for the
gravitational potential to 0.05.

The evolution of BSS mergers in this work is carried out in full general relativity
using our GRHD infrastructure WhiskyTHC [87,88]. The spacetime is evolved using the
Z4c formulation [90, 91] as implemented in the CTGamma [92, 93] thorn of Einstein
Toolkit [277]. We employ the Carpet [95,96] infrastructure for adaptive mesh refinement.

We assume the strange star matter to be a relativistic perfect fluid, i.e., a fluid without
viscosity, heat conduction or shear. The stress-energy tensor for such a fluid is given by

T µν = (e+ p)uµuν + pgµν , (4.12)

where e is the total energy density, p the isotropic pressure, uµ the relativistic 4-velocity
of the fluid and gµν the spacetime metric. The energy density may be further expressed
in terms of the rest mass density ρ as e = ρ(1 + ε) where ε is the specific internal energy.

121



We also note that ρ = nmB where n is the baryon number density and mB is a fiducial
Baryonic mass.

As described in section 4.2, we neglect weak reactions in our simulations, i.e. we
assume the net lepton number ne to be conserved. The equations of GRHD are therefore
given by the conservation of rest mass (or baryon number) and the conservation of energy
and momentum:

∇µ(ρuµ) = 0, (4.13)

∇µT
µν = 0. (4.14)

The system of equations (4.13)–(4.14) is closed by the EOS for strange quark matter
as discussed in section 4.2. The flux terms in equations (4.13)–(4.14) are reconstructed
using a positivity preserving limiter first introduced in [278] and later on implemented in
WhiskyTHC [89].

All binaries are simulated at two spatial resolutions which we conventionally name
as low resolution (LR) and standard resolution (SR). In the finest refinement level, the
spatial grid’s cell is ∼ 180 m long for SR and ∼ 250 m for LR. We shall primarily report
results for the more accurate SR simulations. LR simulations will serve to provide an
estimate of errors arising due to the finite spatial resolution. Our simulation dataset is
summarized in table 4.1.

An interesting aspect of our work concerns the incorporation of thermal effects
into the equation of state for SQM. We compare models of BSS mergers with a finite
temperature EOS to models where we add an ideal-fluid thermal component to the cold
β-equilibrated EOS. Finite temperature effects are modeled consistently through the
numerical calculation of Fermi integrals for the various thermodynamic variables (eq.s
(4.1)–(4.7)). This approach in which thermal contributions are consistently included with
the zero-temperature EOS, has only been used in a few simulations of BSS mergers [66].
In this work, we will refer to numerical simulations that make use of this consistent
treatment of thermal effects as the finite-T simulations. An approximate and still widely
used treatment of thermal effects consists of adding a thermal contribution of an ideal
fluid to the pressure and specific internal energy of the zero temperature EOS:

p = pc + pth

ε = εc + εth (4.15)

where pc is the pressure variation in the zero-temperature slice of the EOS and pth is the
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thermal contribution given by the so-called Γ− law as

pth = (Γth − 1)ρ εth. (4.16)

εc is the specific internal energy of the cold EOS and εth is the thermal contribution to
the same. We take the adiabatic index Γth = 1.7. Typically, numerical simulations evolve
ε and εth is computed from ε− εc, which is then used to compute pth. We will refer to
numerical simulations based on the Γ-law treatment of the thermal contributions, as
hybrid simulations.

4.4 Results
In this section, we present our results for a merger of BSS focusing on the overall dynamics
of the merger, potential signatures on the gravitational wave emission, and the dynamical
ejection of strange quark matter as a result of the merger.

4.4.1 Dynamics of the merger

In this sub-section, we present a qualitative overview of the merger dynamics. In figure
4.3, we report the evolution of the rest mass density of the strange star merger across
the equatorial plane for the finite-T simulations. The snapshots are reported at instants
relative to the merger so that the different stages of inspiral, merger, and post-merger can
be distinguished. Starting from the initial data, the strange stars orbit for ∼ 7 cycles in
the inspiral, radiating away their energy and angular momentum via gravitational wave
emission. As the orbit decays and the stars get closer, they become tidally deformed by
their mutual gravitational attraction. We define the time of merger tmerg as the instant
when the ` = 2,m = 2 mode of the GW radiation attains a maximum. The merger
results in a remnant that is highly deformed and undergoes violent radial pulsations and
differential rotation that source gravitational wave emission in the kilohertz regime.

The remnant thus formed is stabilized by differential rotation over time scales of 10s
of ms, thereby forming a rapidly rotating strange star. We refer the reader to table 4.1
for the eventual fates of the different models we simulate. We find that the only model
that does not collapse over the simulation time scales is evolved using the hybrid EOS
at SR. In the cases where the remnant is unable to support its shape and the outward
quark degeneracy pressure gives in to the gravitational pressure, we characterize the
lifetime of the remnant by the quantity tBH − tmerg which represents the approximate
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Figure 4.3. The evolution of rest mass density ρ on the equatorial plane for a merger of BSS
evolved with the finite-T EOS. The evolution time for each snapshot has been listed relative to
the merger which we take to be at 0 ms.
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Figure 4.4. Time evolution of the minimum of lapse function αmin. We compare the evolution
for the hybrid simulation and the finite-T simulation and observe that the lapse for the hybrid
EOS’s remnant saturates during the simulation time scale whereas for the finite-T EOS’s
remnant, it drops below 0.3 indicating the formation of an apparent horizon.

time from merger when an apparent horizon forms. We identify tBH as the time when
the minimum of the lapse function αmin ≤ 0.3, which for non-spinning binaries (in the
inspiral) is a good approximation. A similar definition for the remnant’s lifetime was
introduced in ref. [79] and has been utilized in refs. [108,159,279].

The finite-T EOS softens at high densities when compared to the hybrid EOS. This
softening manifests as a difference in the lifetimes of the postmerger remnant. Indeed
we note that the remnant evolved with the finite-T EOS collapses after 65.40 ms (for
the SR) from the time of merger (see table 4.1). This is made explicit in Fig. 4.4 where
we plot the time evolution of the minimum of the lapse function αmin, which for the
remnant evolved with the finite-T EOS (SR) drops to below 0.3. On the other hand, the
strange star remnant evolved with the hybrid EOS (SR) remains stable and does not
undergo gravitational collapse over the full simulation time of 86.1 ms post-merger. This
is evidenced by the near-constant evolution of the minimum lapse for postmerger. As
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Figure 4.5. The time evolution of the central (maximum) rest mass density (normalized to
nuclear saturation density) in a merger of strange stars for the two EOS treatments considered
in this work. We observe that the finite-T remnant undergoes more violent oscillations in density
owing to its softening at high densities relative to the hybrid EOS. These violent oscillations do
not dampen away during the simulation time scale, eventually causing the finite-T remnant to
collapse. On the other hand, oscillations in the hybrid remnant’s central density saturate over
a time scale of 20 ms, following which the hypermassive hybrid remnant remains stable.

is expected for remnant lifetimes, we find them to be strongly sensitive to a change in
spatial resolution both for the finite-T simulations as well as the hybrid simulations (see
table 4.1).

In figure 4.5, we show the evolution of the rest mass density in a merger of strange
stars evolved with a hybrid EOS as well as a finite-T EOS at SR. During the inspiral,
owing to the fact that both EOS treatments have the same cold β− equilibrated behavior
at low densities, the evolution of central density is very similar and undergoes mild
oscillations. As the two stars merge, the central density undergoes strong oscillations
sourced from the radial pulsations of the postmerger remnant. These oscillations are
much more violent for the finite-T case than for the hybrid remnant reflecting a difference
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Figure 4.6. Top panel: The evolution of the + polarization of the gravitational wave strain
computed from a hybrid simulation and a finite-T simulation. For both the EOS treatments, h+
has been so oriented that the merger takes place at 0 ms. Bottom Panel: The time evolution of
instantaneous frequency for both the EOS treatments.

in their thermal treatments. In particular, these strong pulsations of the finite-T EOS’s
remnant make it unstable towards a gravitational collapse to a black hole whereas the
hybrid remnant can sustain its shape via differential rotation over the time scales of the
simulation.

The differences in the postmerger dynamics as a result of differences in thermal
treatments were also reported for BSS mergers in ref. [66] where it was found that
including non-zero thermal effects in the EOS indeed influences the outer structure of
the remnant strange star as well as its lifetime.

4.4.2 Gravitational waves

In this subsection, we will present an analysis of the gravitational wave emission from a
merger of BSS and compare the evolution from a hybrid EOS model with a finite-T EOS
model. To start with, we employ the Newman-Penrose formalism [8] (also see section
1.1.1.1 for a brief description) to compute the Weyl scalar Ψ4 from a BSS merger. Ψ4

thus obtained is integrated twice in time using fast frequency integration [280] to obtain
the GW strain h+ − ih×.
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Figure 4.7. The amplitude spectral density of the postmerger gravitational wave strain
from both the hybrid EOS treatment and the finite-T EOS treatment. Noticeable are the
characteristic postmerger peak frequencies fpeak

2 between 2-4 kHz. The finite-T EOS being
softer at higher densities naturally predicts a more compact remnant thereby increasing its
fpeak

2 . Also shown are the sensitivities of the next generation of GW detectors with the best
detection prospects offered by the 20 km postmerger optimized CE-20 detector.

In figure 4.6, we show the + polarization of the GW strain as well as the instantaneous
frequency from an inspiral, merger, and postmerger of a BSS evolved with a hybrid EOS
and a finite-T EOS at SR. Notable attributes of these simulations are the pronounced
modulations in the postmerger amplitude in both the EOS treatments (See [281] for a
detailed discussion). These amplitude modulations are a beating pattern caused by the
interaction of radial pulsations of the remnant (at a characteristic fundamental mode
f0 ∼ 1 kHz) with the rotation of the remnant (at the characteristic postmerger peak
frequency fpeak

2 ∼ 2 − 4 kHz). Such features in the postmerger waveform morphology
have also been encountered in [159,282].

We report the postmerger amplitude spectral densities of our SR models for both
the EOS treatments in figure 4.7. The inspiral contribution has been suppressed using a
Tukey window to better compare the spectral contributions from the postmerger. We

128



notice that the peak fpeak
2 frequencies are different between the two EOS models. This

is to be expected because, as remarked before, the finite-T EOS is softer compared
to the hybrid EOS at large densities that are typically probed during the postmerger.
Such features in the postmerger spectra provide optimal detection avenues with the next
generation of GW detectors. Quantitatively, for a BSS merger at a luminosity distance
of 40 Mpc (same as that of GW170817), the CE-20 detector shall have a postmerger
signal-to-noise ratio (SNR) of 38.4 for the hybrid EOS and 30.89 for the finite-T EOS.
This relative decrease in the SNR could perhaps be attributed to the weaker amplitude
modulations of the GW strain for the more compact finite-T remnant.

So far we have established that such signals could be potentialy detected with the
next generation of GW experiments, however, it is also crucial to investigate whether
we can differentiate between mergers of neutron stars (BNS) and mergers of binary
strange stars (BSS). There have been a few works in this regard, most notably ref. [66],
which claimed differentiability of BSS mergers from BNS mergers by citing smaller tidal
parameters for strange stars as well as the fact that characteristic inspiral and postmerger
frequencies are in general higher for binaries of strange stars. More recently, ref. [283]
claimed distinguishability between BSS and BNS mergers from their respective inspiral
signals. The authors made use of the empirical relations between the f-mode frequencies
(frequency of density perturbations during the inspiral) and tidal deformations and
cited a non-degeneracy between such relations for BSS and BNS inspirals as a claim of
distinguishability. However, such a non-degeneracy could only be established with a weak
statistical significance. On the other hand, Zhu et al. [67] showed that mergers of strange
stars actually followed the same quasi-universal relations between merger/postmerger
frequencies and tidal deformabilities as other hadronic binaries, thereby claiming that it
will be difficult to distinguish the two classes of stars.

Our results appear to in agreement with the latter claim by Zhu et al. [67], in that,
we too find that our strange star merger models follow the pre-established universal
relations between the postmerger peak frequency fpeak

2 and tidal deformabilities. In
particular, in figure 4.8, we show a quasi-universal relation for neutron star binaries
provided in refs. [284, 285] between the postmerger peak frequency fpeak

2 and a tidal
parameter κT2 (see [284] for an expression of κT2 ). These relations have been calibrated
over 600 numerical relativity simulations of BNS mergers available publicly via the CoRe
database. We also show (in red and blue circles), our SR models of BSS mergers and the
fact that they are degenerate with the trends observed for neutron star binaries up to a
credible interval of 90%. Thus in conclusion, up to 90% credible intervals, it is difficult
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Figure 4.8. We show our BSS merger models (in red and blue circles) simulated at SR with
both hybrid EOS and a finite-T EOS in conjunction with the pre-established quasi-universal
relations for BNS mergers provided in refs. [284, 285]. The universal relations have been
calibrated over 600 numerical relativity simulations of neutron star mergers from the CoRe
database. Up to 90% credible intervals, BSS mergers are degenerate with BNS mergers implying
that they are not mutually distinguishable. The error bars provide differences in fpeak

2 from the
corresponding lower resolution LR models. Owing to small ∆fpeak

2 ∼ O(10) Hz with a change
in spatial resolution for the finite-T EOS model, its error bars are relatively obscured.

to distinguish between mergers of strange stars and mergers of neutron stars from their
postmerger GW emission, at least for our EOS model.

4.4.3 Ejecta

In this subsection, we shall investigate the properties of nuggets of strange quark matter,
also called strangelets, ejected in a BSS merger. It is noteworthy to mention that there
exists a lack of modeling for the evaporation processes of these strangelets into ordinary
nucleonic matter. Owing to this difficulty, we cannot comment upon the radioactive
decay of ejecta, r-process nucleosynthesis, and the consequent kilonova signatures. We
also refer the reader to ref. [65] for the production rates of strangelets from outflows of
BSS mergers and the observational implications. This reference assumes that mergers of
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Figure 4.9. Evolution of the unbound (according to the geodesic criterion) strange quark
matter as a function of time. Strong density pulsations with the softer finite-T EOS at high
densities could result in more SQM being gravitationally unbound from the remnant.

binary strange stars are the only efficient mechanism for the production of strangelets
and constrains an average SQM ejecta mass per event to be ∼ 10−4M�. Furthermore,
they find evidence of a strong correlation between the Bag constant for their EOS model
and the ejected mass of SQM implying that a measurement of the cosmic ray flux of
strangelets could in principle put observational constraints on the value of the Bag
constant.

4.4.3.1 Dynamical ejecta

We study the strange quark matter ejected from a merger of BSS on dynamical time
scales. In particular, we make use of the geodesic criterion to flag the region of the flow
that becomes gravitationally unbound with respect to the remnant. In other words,
unbounded strange quark matter follows the condition ut < −1 where ut is the time
component of the 4-velocity of the flow. In figure 4.9, we show as a function of time,
the mass of strange quark matter that has crossed a fiducial coordinate sphere of 200
GM�/c2 (' 295.34 km). We refer the reader to [126–128] for more discussions on the
different criteria for the unbounded matter.

We note that the ejected SQM mass during the postmerger with the finite-T treatment
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Figure 4.10. The evolution of disk mass as a function of time for the two treatments of the
SQM EOS. We note that owing to violent oscillations in the remnant, the remnant for the
finite-T model supports a more massive disk as compared to the hybrid model. This disk
eventually starts getting accreted back as the remnant collapses into a black hole.

is a factor of >∼ 4 more massive than that simulated from the hybrid EOS. A possible
explanation could be that violent postmerger pulsations of the remnant with the finite-T
EOS could drive shocks that gravitationally unbound more strange quark matter than
the case with the hybrid EOS.

4.4.3.2 Accretion Disks

In this subsection, we shall investigate the properties of strangelets that are squeezed
out of the collisional interface in a BSS merger but are still gravitationally bound so that
their angular velocity is Keplerian [104]. Following the convention in [137], we compute
the mass of the accretion disk as a function of time by computing the integral

Mdisk =
∫
V

√
γρWd3x (4.17)

over the 3D volume V where the rest mass density of strange quark matter ρ < 1013 g cm−3

and where the strange quark matter lies outside the apparent horizon (if one has already
been formed), i.e., α ≥ 0.3.
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In figure 4.10, we present the time evolution (for SR) of disk mass as described above
for the two SQM EOS treatments. We notice that the disk mass starts to increase after
the merger and tends to saturate at about 20 ms for the hybrid model. On the other
hand for the finite-T model, we have a slightly larger disk mass which could be attributed
to more strange quark matter being ejected and becoming gravitationally bound as a
result of violent density oscillations in the remnant. Interestingly, we also note a decay
in the disk mass for the finite-T model near the time of the formation of an apparent
horizon, i.e., tBH − tmerg ' 65.4ms which can be attributed to the accretion of the disk
back onto the collapsed black hole.

4.5 Conclusions
In this chapter, we have performed for the very first time, simulations of binary strange
star mergers in full general relativity by employing a finite-T EOS model that is consistent
with constraints from QCD. To describe the equilibrium behavior of the degrees of freedom
(u, d, s quarks and electrons) inside a strange star, we have employed an extended version
of the MIT Bag model [275,276] which describes the degeneracy pressure of the Fermionic
species as a non-interacting Fermi gas supplemented by phenomenological descriptions of
gluon mediated interactions and non-perturbative aspects of QCD. Our model satisfies
the Bodmer-Witten hypothesis [246, 247] in that the energy per nucleon is less than that
of the most bound 56Fe nuclei. Non-rotating TOV sequences of strange stars constructed
from this model are self-bound and can have a very small size R ∼ 4 km.

The qualitative dynamics of a merger of strange stars, in a broad-brush sense, are
similar to that found in mergers of neutron stars. We consider four models of BSS
mergers that differ in spatial resolution and the incorporation of thermal effects either by
a thermal ideal gas correction or by the inclusion of non-zero thermal effects consistently
within a finite-T EOS. We find that the remnants formed with the finite-T EOS are
relatively more compact and more prone to gravitational collapse to a black hole as
compared to remnants evolved with a hybrid EOS. This is attributed to a loss of pressure
at high densities in the finite-T EOS when compared to a hybrid EOS.

The postmerger GW signals depict pronounced amplitude modulations as a result of
the coupling between the fundamental pulsation mode and the characteristic rotational
frequency of the remnant. The relative softness of the finite-T EOS manifests as a higher
postmerger peak frequency fpeak

2 when compared to the hybrid remnants. We also find
that it is difficult to distinguish mergers of strange stars from those of neutron stars
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owing to degeneracies in the quasi-universal relations which appear to be satisfied by
both classes of stars.

Finally, we also investigate the properties of unbound strangelets that are ejected in a
BSS merger. In particular, violent oscillations in the central density of the remnant with
the finite-T EOS are responsible for a larger mass of the remnant becoming gravitationally
unbound. This is also the reason why finite-T models support a more massive accretion
disk around them at least up to the collapse of the remnant.

4.6 Declaration
The GRHD simulations and the post-processing analysis presented in this chapter were
carried out by myself and a graduate student from the University of Pisa, Francesco
Grippa. This chapter also forms a part of his Master’s thesis. The draft of the publication
is in the final stages of preparation for a potential submission to Physical Review D.
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Chapter 5 |
Thermal effects in neutron star
mergers

5.1 Introduction
The extreme conditions found in neutron stars make them an ideal means for probing
the nuclear equation of state (EOS). Electromagnetic (EM) observations of pulsars have
provided valuable information about the mass distribution of neutron stars [286, 287],
and recent results from NICER offer constraints on their radii [288–290]. Binary neutron
star (BNS) mergers give additional astronomical constraints; the gravitational waves
(GW) and EM counterpart of GW170817 contained details about the EOS via tidal
deformability measurements and ejecta characteristics [291–297].

Due to the high Fermi temperature of matter in a neutron star, constraints obtained
from pulsars and BNS inspirals are informative of the zero-temperature equation of
state (EOS). On the other hand, temperatures as high as 100 MeV might be reached
in the post-merger phase [106], making it a possible probe of the finite-temperature
EOS. Current GW detectors have not yet observed a BNS post-merger [291, 298, 299].
Nevertheless, future detectors, like the proposed Einstein Telescope (ET) [300] and
Cosmic Explorer (CE) [301] detectors, will feature improved sensitivity at the higher
frequencies necessary to detect BNS post-merger signals. Inference on the EOS using
post-merger data is possible at (post-merger) signal-to-noise ratios (SNR) as low as
8 [284]. Additionally, sensitivity upgrades to current instruments promise higher BNS
detection counts with better sky localization [302].

State-of-the-art BNS merger simulations typically incorporate thermal effects via full
finite-temperature EOSs, often in the form of a table [303,304], and realistic neutrino
transport, such as via elaborate moment approximations [305, 306] or Monte Carlo
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methods [26]. Many studies perform simulations with multiple finite-temperature EOSs
to demonstrate sensitivity (or lack thereof, as the case may be) of BNS merger observables
under different scenarios, but the different cold-temperature behavior of each EOS makes
it difficult to attribute specific outcomes to finite-temperature behavior [106,293,307–310].
Some studies have explored systematic changes in thermal effects through a so-called
“hybrid EOS”, which extends a cold nuclear EOS to finite temperatures using an ideal
gas component with a fixed adiabatic constant Γth [303, 311]. However, this is only a
very rough approximation, as the effective Γth of a full finite-temperature EOS varies
considerably with density, temperature, and composition [312]. [313] more recently
considered finite-temperature effects through a more sophisticated hybrid EOS based on
an approximation to the effective mass, but they do not fully explore how their model
affects post-merger GW signals, nor is this approach an entirely self-consistent model.
Furthermore, none of these studies incorporate all the relevant physics for modeling
thermal effects, particularly consistent neutrino transport.

In this chapter, we present a first GR neutrino-radiation hydrodynamics study of
finite-temperature effects of a realistic nuclear EOS on BNS mergers through modifications
to the specific heat capacity. Our simulations show that an increased heat capacity
results in denser, cooler remnants. This leaves clear imprints on the GW signal in the
post-merger phase, which we show can be recovered in a parameter estimation pipeline
tuned to a next-generation GW observatory.

5.2 Methods
We select three non-relativistic Skyrme-type nucleonic EOSs built with the framework
of [314] and parameterized to produce the same cold nuclear matter bulk properties
but different specific heat content. In Skyrme EOSs, the specific heat is controlled
by the temperature-independent effective masses of neutrons and protons, m∗n and m∗p,
respectively. These have a simple phenomenological description [314–316] that depends
only on two parameters and on the nucleonic number densities, nn and np (or, alternatively,
the number density n = nn + np and the proton fraction Yp = np/n of matter), and
converge toward the vacuum nucleon masses at zero density. The parameters were
chosen to reproduce two nuclear matter observables at saturation density: the effective
mass for symmetric nuclear matter, m∗ = m∗n ' m∗p, and the neutron-proton effective
mass splitting for pure neutron matter, ∆m∗. Guided by theoretical and experimental
efforts [316–319], the selected EOSs probe the average and extreme, but still plausible,
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expected values form∗, m∗ = {0.55, 0.75, 0.95}mn, while fixing the yet poorly constrained
∆m∗ to 0.10mn. The same EOSs were used to study GW signals from core-collapse
supernovae [320].

To first order, the baryonic contribution to the specific heat of degenerate matter
found in the core of a neutron star, which dominates over the lepton contribution, is
cv =

(
π
3

)2/3
T
n

(
n1/3
p m∗p + n1/3

n m∗n
)
, see Eq. (151) of [315]. Thus, all else being equal,

increasing m∗ leads to a larger specific heat capacity for matter in the merger remnant,
to which we attribute the differences seen across our simulations.

Using the pseudospectral code LORENE [321], we construct initial data for equal-
mass binary neutron star systems in quasicircular orbit with a gravitational mass of
M = 1.35 M� per star. We evolve each binary using THC_M1 [306,322], an extension of
the WhiskyTHC numerical relativity code [323,324] incorporating neutrino transport via a
moment formalism [325,326]. The implementation in THC_M1 makes use of the Minerbo
closure for the radiation pressure tensor, which is exact in the optically thick limit. Thus
while our neutrino treatment is approximate overall, we can capture effects such as neu-
trino trapping and dissipative effects from out-of-equilibrium weak reactions in the BNS
remnant exactly. Our runs, while not modeling the magnetic field explicitly, also account
for the effects of heating and angular momentum transport from magnetohydrodynamic
(MHD) turbulence via a general relativistic large eddy simulation (GRLES) formalism
calibrated with high-resolution GRMHD BNS simulations [327–329].

We perform each simulation at two resolutions, designated as LR and SR, respectively
corresponding to a grid spacing of ∆x ≈ 250 m and ∆x ≈ 180 m in the finest refinement
level, which covers both stars during the inspiral and merger phases. We also run identical
SR simulations with our older M0 solver [330] to validate our results; though the solver
is less accurate and does not properly capture effects such as neutrino trapping, these
runs support the major results of the M1 runs.

5.3 Results
Figures 5.1 and 5.2 show slices of the x-y plane for the m∗ = 0.55 and m∗ = 0.95 SR
simulations at approximately 5 ms post-merger and average temperatures for all three
values of m∗1 respectively. Even at this relatively early post-merger time, the density of
the remnant’s inner core is noticeably larger in the m∗ = 0.95 model. Conversely, the
temperature is lower for the m∗ = 0.95 compared to the m∗ = 0.55. The m∗ = 0.75

1Unless otherwise noted, m∗ has units of mn, the neutron mass.
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Figure 5.1. Temperature and rest-mass density slices in the x-y plane of the m∗ = 0.55 and
m∗ = 0.95 SR simulations at approximately 5 ms post-merger. Contour lines correspond to
rest-mass densities ρ = {1012, 1013, 1014, 5 × 1014} g cm−3. For visual clarity, the m∗ = 0.75
model is not shown.

model has an intermediate behaviour compared to the other two. Interestingly, we find
that the temperature trend reverses at lower densities (Figure 5.2), possibly because of
the larger compactness of the merger remnant in the larger m∗ models. In other words,
for higher m∗, surface material (where the differences between EOS models are much
smaller) falls deeper into the gravitational potential, becoming hotter in the process.
A similar trend was reported for CCSN simulations [314]. The top panel of Figure 5.3
shows that the maximum rest-mass density is highest in the m∗ = 0.95 model and lowest
for m∗ = 0.55 at most post-merger times. As suggested in this plot, all of the models,
independent of resolution or neutrino treatment, produce long-lived remnants.

The GW strain in Figure 5.3 (bottom panel) demonstrates identical behavior in the
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Figure 5.2. Average temperature as a function of density.

inspiral for all three models, but the waveforms begin to deviate in the post-merger due
to finite-temperature effects in the EOS. The differences in morphology include frequency
evolution, amplitude, damping times, and modulations. This is more quantitatively
seen in the GW spectrum (see Figure 5.4), where there is a clear rightward shift in the
peak postmerger frequency, f2, as m∗ increases. Table 5.1 contains f2 for both the LR
and SR simulations. Although the precision of the NR waveform is limited by finite
resolution and step size, the shift of ∆f & 10 Hz is robust across resolutions, which
suggests it is an effect of the EOS and not an artifact of the simulations. The M0 SR
simulation demonstrates a similar trend, although the m∗ = 0.75 run is much closer to
the m∗ = 0.95 model than either of the M1 cases. This provides an important sanity
check of our results, but we stress that it is only qualitative; the M1 results should be
used for quantitative analysis of post-merger effects, as a self-consistent approach which
accounts for neutrino trapping noticeably changing the remnant’s evolution (see [322];
the appendix also contains a more detailed comparison).

To detect these thermal effects in the postmerger via next-generation GW detectors
and possibly constrain the m∗ nuclear parameter, we perform full Bayesian inference on
the postmerger GW signals. To compute injections, we extract the postmerger waveforms
from the SR simulations by applying a Tukey window to suppress the inspiral and spline
interpolate the GW waveforms to a sampling rate of 16384 Hz. We further zero pad
the signals to a segment of 1 s. For brevity, we consider here only noise-less injections.
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Figure 5.3. The maximum rest-mass density of the SR simulations (top) and the the
gravitational-wave strain of the ` = 2, m = 2 mode (bottom).

For parameter estimation, we employ the publicly available code bajes [331] and use
the UltraNest [332] sampler available as part of the bajes pipeline. We recover the
injections by using the postmerger model NRPMw from [284] and compute posteriors on its
parameters. We inject all signals at a luminosity distance corresponding to a post-merger
SNR of 15 (which corresponds to an inspiral SNR of O(100), see [300]), assuming the
power spectral density of ET-D [333] to simulate the detector response. The priors are set
in accordance to [334], section-IIB. In Figure 5.4, we show the reconstructed waveforms
from NRPMw evaluated on the parameter space of the recovered posterior samples. We list
the recovered SNRs and f2 values in Table 5.1. At SNR = 15, the injected spectrum’s f2

frequencies sit well within the 90% credible intervals of the distribution of reconstructed
waveform’s f2 frequencies. Furthermore, these intervals do not overlap, indicating that
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Figure 5.4. The reconstructed GW spectrum of the ` = 2, m = 2 mode using the NRPMw
model. The colored solid lines represent the median waveform and the colored shaded regions
represent the 90% credible intervals on the posterior distribution of the spectra computed
from the recovered parameter space of NRPMw. The colored dashed limes represent the injected
spectra at an SNR of 15. Additionally, shown are the postmerger peak frequencies f2 (in vertical
dashed lines) and the 90% credible intervals (in grey) on the posterior distribution of f2 from
the reconstructed waveforms.

all three waveforms are clearly distinguishable at a post-merger SNR = 15 with 90%
credibility.

5.4 Discussion
We have shown that m∗ significantly influences the GW signals in BNS mergers, and we
have analyzed this effect in detail for f2. The relationship between m∗ and f2 is easily
explained in terms of the specific heat. Increasing the specific heat appears to soften
the equation of state; because it requires more energy to increase the temperature, there
is less thermal pressure available to support the star, thus producing a more rapidly
rotating and compact remnant with lower temperatures, in agreement with core-collapse
supernovae studies [314,320,337].

The EOSs we use have a simple relationship between m∗ and the specific heat capacity
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which may not be representative of the true nuclear EOS, which is expected to be both
density and temperature dependent [312]. Nevertheless, this study serves as a proof of
concept demonstrating that future detectors like ET and CE can use f2 to constrain
the finite-temperature EOS. We also reiterate that this effect only affects the finite-
temperature evolution, which will not be observable until next-generation detectors
sensitive to the post-merger phase come online. Furthermore, we also note that this
study does not provide a method for measuring m∗ from f2; we only assert that m∗ leaves
an imprint on f2.

We do acknowledge some limitations in our work; most notably, the length of the
m∗ = 0.95 M1 simulation is much shorter than both the m∗ = 0.55 and m∗ = 0.75 runs
due to a limitation in the M1 neutrino solver which introduced unphysical effects past
5 ms post-merger. This short length may explain why fm∗=0.95

2 increases between the LR
and SR runs while both fm∗=0.55

2 and fm∗=0.75
2 instead decrease, as a shorter signal will

introduce a extra spread of frequencies to the power spectrum and possibly shift the peak.
Another possible limitation concerns the omission of magnetic fields. Our simulations
include a GRLES model which can account for some, but not all MHD effects. On the
other hand, other simulations suggest that MHD effects on the post-merger gravitational
wave frequency are negligible for realistic initial magnetic field strengths [338].

We may consider several avenues for future work. Longer simulations would allow
us to investigate the ejecta and consider possible effects on EM counterparts, as well
as possible thermal effects on the lifetime of the remnants. Additionally, [322] indicate
that resolution has a prominent influence on post-merger evolution, including collapse
time and disk formation. Although we validate our results here with two resolutions,
accurately determining the precise value of f2 for each model would require higher
resolution calculations. To investigate our hypothesis that this study’s results are general,
future simulations could also explore other EOS models with tunable finite-temperature
behavior.

5.5 Appendix 1: Neutrino Effects
The presence of a trapped neutrino gas in optically-thick regions can affect the temperature
and composition of the remnant [106,322]. Many BNS simulations today employ leakage
schemes, which do not explicitly model neutrino radiation, but instead estimate a cooling
rate based on the local optical depth [304, 307, 330, 339, 340]. Because they do not
perform consistent radiation transport, leakage schemes cannot capture the trapped
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Figure 5.5. The GW strain of the ` = 2, m = 2 mode at DL = 40 Mpc for both the M1
(solid lines) and M0 (dashed lines) SR simulations.

neutrino gas in the remnant or potential out-of-equilibrium effects. The more accurate
M1 scheme, however, directly models neutrino transport and can therefore capture both
these effects [306,322]. Because our study represents the first investigation of thermal
effects in BNS mergers with self-consistent neutrino transport, we will demonstrate here
the influence of neutrinos on our results by comparing our M0 (a leakage-style scheme)
simulations to our M1 runs.

In Fig. 5.5, we show the GW strain for both the M0 and M1 simulations. All three
values of m∗ show identical behavior in the inspiral, which is to be expected; neutrinos
emissions are highly sensitive to the temperature, which is quite low prior to merger.
In the post-merger signal, the m∗ = 0.55 and m∗ = 0.75 differ only very slightly in
amplitude and frequency. The m∗ = 0.95 runs show somewhat stronger deviations but
are still quite similar in overall morphology. Nevertheless, the shifts in f2 (see Table I
in the main text) for changes in the neutrino solver are within a factor of two or three
of the shifts due to changing m∗; were these results used to calibrate some model for
determining m∗ from f2, it may result in a fairly significant error.

In Fig. 5.6, we show the average temperature as a function of density at 5 ms post-
merger for both the M0 and M1 SR simulations. We calculate this temperature by
constructing two-dimensional histograms in temperature and density, then performing
a weighted average over the temperature for each density bin. This data is smoothed
by averaging five time steps centered around 5 ms. The M1 data demonstrates a clear
trend at higher densities (ρ & ρsat) where higher values of m∗ lead to lower temperatures,
and there is limited evidence suggesting an inverted trend in the outer layers of the star
(ρ . ρsat), a result which is consistent with core-collapse supernovae simulations [314].
One possible explanation is due to the increased compactness for higher m∗; material
near the surface (where the density is low enough that m∗ has a much weaker effect on
the EOS) falls deeper into the gravitational potential and heats up more as m∗ increases.
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Figure 5.6. The average temperature as a function of density at t ≈ 5 ms post-merger for
the M0 (left) and M1 (right) SR simulations. Each average was calculated by constructing
two-dimensional histograms in temperature and density, then averaging over the temperature
with a weight corresponding to the mass of each density-temperature bin. To reduce noise in
the data, five equally-spaced timesteps (with ∆t ≈ 0.05 ms) centered on t ≈ 5 ms were averaged
together.

However, the high-density trend is obscured in the M0 data, and there is no evidence of
the low-density trend, as the m∗ = 0.55 temperature is often higher than the m∗ = 0.75
temperature at lower densities (where the M0 scheme suppresses neutrino absorption).

In weak equilibrium
µνe = µp + µe − µn, (5.1)

where µi is the chemical potential for particle species i, with p, e, n, and νe respectively
representing the proton, electron, neutron, and electron neutrino.

On the other hand, for a trapped neutrino gas in thermal equilibrium with the
nucleonic matter of density ρ, temperature T , and electron fraction Ye, we have

Yνi
= 4πmb

ρ

(
kBT

hc

)3

F2

(
µνi

kBT

)
, (5.2)

wheremb is the average baryon mass and Fi(x) is the ith Fermi function. This is essentially
a restatement of the fact that trapped neutrinos in thermal equilibrium can be treated
as a massless (i.e. in the ultrarelativistic limit) ideal Fermi gas (see section 1.2.4.3). This
suggests that one can monitor the deviation from equilibrium by calculating the quantity

∆µνe = µp + µe − µn − µTνe
, (5.3)

where µTνe
is µνe calculated under the assumption of thermal equilibrium (Eq. 5.2) using

the evolved neutrino fractions from M1. For M0 this quantity should be set to zero,
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as the trapped neutrino gas is not explicitly modeled. We plot this deviation for νe in
Fig. 5.7. M0 shows noticeable deviations from weak equilibrium throughout the bulk
of the remnant. This shows that the M0 simulations are not correctly capturing the
thermal equilibrium of matter. On the other hand, the M1 simulations show that matter
and neutrinos are in equilibrium in most regions in the remnant. We therefore conclude
that a proper investigation of thermal effects must include full neutrino transport.

5.6 Declaration
While this manuscript was under review, [341] announced new results on the impact
of thermal effects on f2. Their work uses a semi-analytic prescription for the EOS and
neglects neutrinos, but it is in good agreement with our findings.

The GRHD neutrino-radiation transport simulations were computed by Jacob Fields
and the postmerger GW detectability analysis was computed by myself. This chapter
will also form a part of Jacob Field’s dissertation. In accordance with the terms of the
Creative Commons CC BY 4.0 license, the contents of this chapter are based on the
publication ‘Thermal Effects in Binary Neutron Star Mergers’, published in Astrophysical
Journal Letters, Volume 952, number 2, pages L36 [342] with the modification that every
occurence of the term ‘letter’ has been replaced with ‘chapter’.
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Part II

Gravitational Wave Detectability
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Chapter 6 |
Detectability of QCD Phase Tran-
sitions in neutron star mergers

6.1 Introduction
The discoveries of the gravitational wave (GW) event GW170817 [218] from a merger of
two neutron stars, the associated short gamma ray burst GRB170817A and the optical
transient AT2017gfo [343], revitalized the field of multimessenger astronomy. It is now
possible to probe high-energy astrophysical phenomena through their GW signatures in
addition to electromagnetic radiation. The emitted GW spectra from a merger of two
neutron stars spans a broad range of frequencies. GWs from an inspiral (at frequencies
. 103 Hz) signal provide a wealth of information about the intrinsic properties of a binary
such as its component masses and tidal deformabilities. On the other hand, postmerger
GW emission (at frequencies & 103 Hz) can inform us about the dynamically evolving
merger remnant. No postmerger signal from GW170817 was detected thereby leaving to
speculation the fate of the remnant. We encourage the reader to refer to refs. [148,344]
for recent reviews.

With the upcoming generation of GW detectors like the Einstein Telescope (ET)
[189, 333] or the Cosmic Explorer (CE) [182, 188, 345, 346], it is expected that the
postmerger phase of evolution will be within reach of detector sensitivities [347,348]. This
would imply observational constraints on the physical processes in neutron star mergers,
particularly the ones arising in the postmerger. The postmerger emission is characterized
by GWs emitted in the kilohertz regime from the dynamically (O ∼ 10−3 s) changing
quadrupolar moment of the merger remnant. Changes in the quadrupolar moment depend
strongly on the underlying equation of state (EOS) which describes the thermodynamic
equilibrium state of matter in the neutron star bulk. EOSs may involve a multitude of

150



physical processes like temperature dependent effects [32, 106, 342, 349, 350], neutrino
interactions and microphysics [21,23–25,28,224,229–241], appearance of hyperons [19,20],
and high-density phase transitions [3,19,20,52–57,159,177,184,185,226,349,351–355]
which can leave imprints on the postmerger emission. Additionally, magnetic fields
and magnetohydrodynamic turbulence [122,242–244,356] may influence the postmerger
emission by redistributing the angular momentum in the remnant.

In recent years, there has been a significant impetus in understanding the behavior of
supranuclear (> 2.7 × 1014 g cm−3) matter expected to be realized in and around the
core of heavy neutron stars, neutron star merger remnants or core collapse supernovae.
Processes like a possible phase transition to deconfined quark matter or the appearance
of hyperons have garnered particular interest in reference to binary neutron star (BNS)
mergers as they are expected to influence the postmerger GW emission from a merger
remnant which in turn can provide excellent test beds for probing strongly-interacting
matter. Modelling efforts in this direction typically involve comparing GW emission from
a nucleonic EOS to that computed from an EOS that has additional degrees of freedom.
In this regard, the works by Sekiguchi et al. [19] and Radice et al. [20] explored the
appearance of hyperons in a BNS merger and reported on their effects on the postmerger
GW signal, i.e., a compactification of the merger remnant leading to shorter postmerger
signals as compared to models without hyperons.

Most et al. [52, 53] considered a first order phase transition to deconfined quarks
and obtained similar results for the postmerger GW emission along with a small de-
phasing. The works by Bauswein et al. [54, 55] identified large shifts (30-121 Hz) in
the postmerger peak frequency (which we call fpeak

2 in this work) of their quark models
as compared to their hadronic models. They claimed that sufficiently large shifts in
fpeak

2 , breaking the degeneracy of EOS-insensitive relations, could be a tell-tale sign
of first order phase transitions. Extending this work, Blacker et al. [57] attempted
to constrain the onset density of such phase transitions. In another work Blacker et
al. [349] disentangled and explored the thermodynamics of deconfined quark matter with
respect to BNS mergers. Weih et al. [56] reported on double-peaked frequency spectra
as a signature of a delayed phase transition that resulted in a metastable hypermassive
neutron star (HMNS). Studies by Prakash et al. [159] however, found no smoking-gun
evidences of GW signatures and observed shifts in postmerger peak frequency that were
degenerate with other hadronic EOSs. They also computed potential electromagnetic
signatures of these phase transitions. Liebling et al. [3] computed similar postmerger
GW signatures and observed changes in the magnetic field topology in the bulk of the
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star. In contrast to modelling 1st order phase transitions, refs. [184,351,352] explored
such deconfinement processes via a quark-hadron crossover (QHC) by constraining the
fpeak

2 and chirp frequencies. In this regard, Fujimoto et al. [177] have compared GW
signatures arising from a 1st order phase transition with those from a QHC and show
the results from the QHC scenario to be consistent with electromagnetic counterparts
observed from GW170817.

More recently, there have been efforts [185, 353] to employ the novel holographic
V-QCD framework to construct EOSs with a deconfinement phase transition and compute
their GW signals. Consistent with previous works, an early collapse for softer EOSs is
observed. Espino et al. [226], for the first time, investigated multi-modal signatures of
deconfinement phase transitions and reported on a weakening of the one-armed spiral
instability that increased with the strength of the phase transition. Guo et al. [354]
contrasted the GW signatures between EOSs that modelled such phase transitions via a
Maxwell construction, a Gibbs construction and a QHC and showed that lower phase
transition densities lead to more compact remnants that collapse into a black hole. In a
parallel study, Haque et al. [355] varied the onset density of the phase transition and
examined its impact on the postmerger GW frequency.

Both pre-merger (late inspiral) and postmerger phases of a BNS evolution can
provide useful information with reference to phase transitions to deconfined quarks.
Extensive efforts by several groups have gone into modelling the postmerger GW emission
[60,64,284,357–361]. Chatziioannou et al. [362] and Wijngaarden et al. [363] employ model
independent inference via Bayeswave to resconstruct the postmerger signals while using
NR calibrated compact binary coalescence templates for the inspiral. While this kind of
a hybrid model-agnostic approach does indeed offer more flexibility towards modelling
particular waveform morphologies as compared to analytical models, an absence of a
model implies no way for a likelihood computation and hence a comparison using Bayes’
factors or odd’s ratios to other approaches cannot be made. On the other hand, Tsang
et al. [361] and Easter et al. [359] employed damped sinusoidal models to describe the
postmerger emission. Breschi et al. [64, 284] constructed analytic models of postmerger
emission which were calibrated by numerical relativity simulations. Subsequently, these
models were employed in refs. [64, 334,364] to potentially detect EOS softening via the
production of Λ hyperons. In particular, Breschi et al. [334] recovered differences in the
postmerger peak frequency and remnant lifetimes to constrain the said effects in a BNS
merger. In yet another recent work, Harada et al. [365] employ Bayesian model selection
to distinguish between models that respectively include and exclude a smooth crossover
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to a deconfined quark phase during the postmerger evolution.
To complement the above mentioned postmerger studies, there have also been several

efforts to constrain nuclear properties of high-density matter using the late inspiral
phase of a binary merger [362,366–369]. In particular, Mondal et al. [370] employed a
phenomenological meta-modelling approach to the EOSs and constrained QCD phase
transitions via measurements of tidal parameters. Essick et al. [369] constructed non-
parametric representations of EOSs and attempted to infer an onset of QCD phase
transitions from the EOS itself. Raithel et al. [368] have examined the impact of phase
transition on an inference of tidal deformability using inspiral GW signals and have found
degeneracies between the EOS with phase transition and that with hadrons while keeping
the tidal deformability constant. Raithel et al. [371] also present an interesting case of
“tidal deformability doppelgängers” where they employ quark EOSs with differences in
pressure at nuclear saturation but which predict tidal parameters consistent with that
of exclusively hadronic EOSs. Pang et al. [372] have computed Bayes factors of binary
mergers with and without a phase transition while also considering the strength of phase
transitions as a paremeter for Bayesian inference.

While most of the works discussed above remark that such deconfinement phase
transitions (and EOS softening effects in general) are potentially detectable, the refs. [64,
334,352,357,359,363,364,369,370,372] pave a concrete path in defining an observational
strategy to observe their effects with kilohertz gravitational waves.

It has been shown from NR simulations of neutron star binaries [3,59–63,113,124,125]
that there exists a correlation between the fpeak

2 frequency of the postmerger and an
inspiral property of the binary, e.g. a suitable combination of tidal parameters from the
inspiral, the radius of a neutron star of a fixed mass or the compactness of a neutron
star. Such relations are insensitive to the EOS and are also referred to as quasi universal
relations (QURs). Indeed, such relations have been employed to construct analytical
waveform models [64, 284]. Several works [54, 55] claim that a violation of a universal
relation between fpeak

2 and the tidal deformability of a 1.35M� neutron star (Λ1.35) can be
taken to be a smoking-gun evidence of QCD phase transitions. Wijngaarden et al. [363]
even demonstrate that Bayesian error estimates for a joint detection of fpeak

2 and Λ̃ at
sufficiently high signal to noise ratios (SNRs) can be distinguished from the established
QURs. At the same time, Breschi et al. in ref. [364] perform a pre-postmerger consistency
test and show that a breaking of an EOS insensitive relation between fpeak

2 and tidal
polarizability κT2 to a given confidence level cannot be taken to be a confident signature
of the softening of the EOS. In this work, we place our calculations in the context of
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previous findings by applying error estimates from Bayesian inference to NR simulations.
We utilize Bayesian inference on the inspiral and postmerger signals to recover

estimates on tidal properties and postmerger spectra respectively. We then use these
estimates in reference to the universal relation by Breschi et al. [284] to show a potential
detectability of QCD phase transitions at postmerger SNRs as low as 10. To this aim,
we employ composition-dependent, finite-temperature EOSs describing the high-density
behavior of strongly interacting matter and compute the postmerger GW emission
of a BNS merger remnant. We employ the frequency domain waveform model NRPMw
developed by Breschi et al. [284] to recover the spectra of the said NR waveforms assuming
sensitivities of the next generation GW detectors. This chapter is organized as follows:
in subsection 6.2.1, we describe the NR simulations used in this work. In subsection
6.2.2, we comment upon the procedure employed to create postmerger injections from our
NR dataset. Following this in subsection 6.2.3, we briefly recapitulate the methodology
for Bayesian inference of parameters given an analytic BNS waveform model. Finally
in subsection 6.2.4, we describe two choices of priors employed in our work which are
respectively informed and agnostic of the inspiral signal. We present our results in
section 6.3 where we classify our (postmerger) parameter estimation (PE) analysis in
two categories with different choices of priors. Primarily in subsection 6.3.1, we take
inspiral-informed Gaussian priors on masses and tidal parameters for the postmerger.
Secondarily, we present a test case in Appendix 6.5 wherein we assume broad priors for the
postmerger model NRPMw’s parameters and perform an inspiral-agnostic PE. In subsection
6.3.2, we repeat the postmerger analysis with the CE detectors: the broadband CE-40
and the narrowband postmerger optimized CE-20. In subsection 6.3.3, we use an NR
informed EOS insensitive relation to probe phase transitions at a given postmerger SNR.
Finally, we conclude the chapter in section 6.4. In the appendices, we provide results
for all our simulations as well as a miscellany of supplemental results. In appendices 6.5
and 6.6, we provide results for the entire simulation dataset. Finally, in appendix 6.7,
we provide results from a flexible configuration of the NRPMw model aimed at addressing
some of the biases encountered in recovering hadronic models.
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Figure 6.1. Pressure - density curves for the T = 0 (zero temperature) slice of the equations
of state (EOSs) used in this work. BLh and DD2F EOSs contain only nucleonic degrees of
freedom whereas BLQ and DD2F-SF1 also include a prescription for a 1st order phase transition
to deconfined quarks. Such a phase transition leads to a loss of pressure at high densities
ρ ∼ 1015g cm−3.

6.2 Methods

6.2.1 NR Simulations

We summarize the NR simulations used in this work in Table 6.1. Our dataset primarily
consists of BNS merger simulations with hadronic and quark EOSs presented in ref. [159].
We also perform merger simulations with two additional EOSs DD2F [373, 374] and
DD2F-SF1 [54,58,375] to include effects from different treatments of strongly-interacting
matter. The mergers we consider produce remnants that do not collapse promptly
and result in a finite postmerger GW signal (see Table 6.1). We employ the numerical
infrastructure in ref. [159] and references therein for all our NR simulations. In particular,
we solve the equations of General Relativistic Hydrodynamics (GRHD) in the 3+1
Valencia Formulation [16] using the publicly available code WhiskyTHC [87–89]. We
employ the CTGamma [92,93] code available as part of the EinsteinToolkit [277] to solve
for the spacetime in the Z4c formulation [90, 91] of the Einstein’s equations. We use
the WeylScal4 and Multipole thorns to compute the spin s = −2 weighted spherical
harmonics of the Newman-Penrose scalar Ψ4, from which we extract the GW strain of
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the ` = 2,m = 2 mode. Additionally, we employ a zeroth moment M0 scheme [23] to
solve for the neutrino energies and neutrino number densities. We construct initial data
assuming irrotational binaries in quasi-circular orbits using the pseudo spectral code
Lorene [101]. The binaries are situated at an initial separation of 45 km (30.47 M�).
Finally, we employ the Carpet [95, 96] code for providing the adaptive mesh refinement
(AMR) infrastructure.

To probe multiple possibilities in the high-density regime of QCD, we take a selection
of 4 finite-temperature EOSs namely BLh [71,78], DD2F [373,374], BLQ [108,159,176,334]
and DD2F-SF1 [54,58]. For these EOSs, the pressure-density curves at 0 temperature
are shown in Fig. 6.1. Of these, the BLh and DD2F EOSs contain only nucleonic
degrees of freedom whereas the BLQ and DD2F-SF1 EOSs implement a first order phase
transition to deconfined quark matter while having the same low-density behavior as
the BLh and DD2F EOSs, respectively. The BLQ EOS employs a Gibbs construction
to combine the hadronic and quark phases resulting in a mixed phase of deconfined
quarks and hadrons. There is a gradual increase in the percentage of deconfined quarks
with non-zero temperatures and densities & 3ρnuc where ρnuc = 2.7× 1014g cm−3 is the
nuclear saturation density. The DD2F-SF1 EOS on the other hand employs a Maxwell
construction that allows for a less gradual transition to the deconfined quark phase as
compared to the BLQ EOS.

As previously found in Bauswein et al. [54], the BNS models evolved with the DD2F-
SF family of EOSs display large deviations from the EOS insensitive relation between the
postmerger peak frequency fpeak

2 and tidal deformability Λ. On the other hand, models
with the BLQ EOS [159] predict postmerger peak frequencies that are within range of
those spanned by hadronic EOSs and obey the fpeak

2 − κT2 relation obtained in ref. [64]
where κT2 is the tidal polarizability defined in the same reference. It is important to
emphasize that the EOS insensitive relation obtained and the simulation setup employed
in ref. [54] is not the same as the one used in ref. [64]. Therefore, for consistent comparison,
we performed simulations with the DD2F-SF1 EOS with our GRHD infrastructure and
find that models with this EOS also display large deviations with the fpeak

2 − κT2 relation.
We also note that the simulations presented in our work are computed in full general
relativity (GR) whereas the ones from Bauswein et al. [54] consider a conformal flatness
condition to solve for the Einstein’s equations.

Additionally, we consider unequal mass mergers for the BLh and BLQ EOSs to
account for the impact of mass ratios. With this diversity in the choice of EOSs and the
masses of BNS mergers, our study provides reasonable estimates of the GW detectability
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Figure 6.2. Extraction of the postmerger waveform from an NR waveform by applying a
Tukey window. This windowed waveform upon spline interpolation and zero-padding is then
injected in a noise-less configuration of the ET/CE detectors for parameter estimation using
NRPMw.

of QCD phase transitions in BNS mergers. In addition to that, we would like to remark
here that even though the waveform model NRPMw is trained on a large number of NR
simulations spanning 21 EOSs, simulations with DD2F and DD2F-SF1 EOSs have not
been utilized for training the model and therefore validate the model’s performance.

6.2.2 Injection Settings

In this section, we describe the procedure for constructing postmerger injections from
our NR simulations for a Bayesian inference study. In particular, we scale the GW strain
obtained from NR simulations and introduce it in a data stream which serves to simulate
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the incoming GW in a detector. To compute the ` = 2,m = 2 GW strain output from the
NR simulations, we first evaluate the Newman-Penrose scalar Ψ4 on coordinate spheres
in a multi-polar spherical harmonic basis. This scalar (for the ` = 2,m = 2 mode) is then
integrated twice in time using fixed frequency integration [280] to obtain the quadrupolar
strain h+ and h×. Fixed frequency integration also helps remove secular drifts in the
strain amplitude that may arise because of direct integration of Ψ4.

We define the time of merger tmerg as the time when the GW amplitude of the
` = 2, m = 2 mode, i.e., (h2

+ + h2
×)1/2 is maximum. We construct the injections by

considering only the postmerger portion of the NR waveform starting from tmerg up until
the termination of the waveform. For the remnants that collapse into a black hole (BH),
we define a time of BH formation tBH (Table 6.1) as the time when the minimum value
of the lapse function in the computational grid drops below 0.2 which approximately
corresponds to the formation of an apparent horizon for remnants resulting from a merger
of non-spinning binaries. This definition of the collapse of a remnant has been motivated
from reference [79] and employed in works like [108,159,279]. We extract the postmerger
signal (t > tmerg) by employing a Tukey window [376] available as part of the scipy
library. In particular, we use a windowing ansatz w of the form

w(t, t0, t1, δ) =


0 if t < t0

τ(t, δ) if t ∈ [t0, t1]

0 if t > t1

(6.1)

where τ denotes the standard Tukey window of width |t1 − t0| and a shape parameter
δ that controls the fraction of the window inside the tapered region. Furthermore, we
spline interpolate the waveforms to a sampling rate of 16,384 Hz and zero pad them to a
signal segment of 1 s, as shown in Fig. 6.2. To systematically disentangle the effects of
QCD phase transitions on the GW strain from the effects of detector noise, we construct
noise-less injections. The posteriors on model parameters recovered in such a noise-less
configuration approximate the average over those recovered from multiple Gaussian
noise realizations. Finally, we scale the waveforms by a factor of the inverse luminosity
distance D−1

L and the spin s = −2 weighted spherical harmonics −2Y2,2(ι = 0, ψ = 0)
for a face-on configuration to consistently maintain a postmerger SNR of 10 in the ET
detector network or in the CE-20 detector. This corresponds to placing each BNS system
at different luminosity distances with respect to the detector as described in tables 6.4
and 6.5.
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Table 6.1. A summary of NR simulations employed in this work. The corresponding
postmerger waveforms are used in the construction of injections for the next generation GW
detectors and for the subsequent Bayesian inference. EOS represents the equation of state,
m1 and m2 the gravitational masses of the binary (m1 > m2), q the mass ratio, Λis the tidal
deformabilities and tBH the time of black hole formation expressed relative to the time of
merger tmerg. The acronym HMNS represents a hypermassive neutron star remnant that doesn’t
collapse within the simulation timescale.

EOS m1 [M�] m2 [M�] q Λ1 Λ2 tBH − tmerg [ms]
BLh 1.298 1.298 1.0 701.901 701.901 HMNS
BLQ 1.298 1.298 1.0 701.901 701.901 15.95
BLh 1.481 1.257 1.178 295.467 856.064 HMNS
BLQ 1.481 1.257 1.178 295.467 856.064 3.54
BLh 1.398 1.198 1.167 435.735 1145.850 HMNS
BLQ 1.398 1.198 1.167 435.735 1145.850 17.2
BLh 1.363 1.363 1.0 515.379 515.379 HMNS
BLQ 1.363 1.363 1.0 515.379 515.379 4.1

DD2F 1.289 1.289 1.0 707.511 707.511 HMNS
DD2F− SF1 1.289 1.289 1.0 707.511 707.511 42.36

6.2.3 Parameter Estimation

For our postmerger PE analysis, we employ the nested sampler UltraNest [332] included
as part of the bajes code [377]. Our configuration employs 5 × 103 live points and a
maximum of 5× 104 iterations for the Monte Carlo sampler. We choose a Gaussian-noise
likelihood [378] defined as

log (L(d|θ)) = −1
2
∑
j

log (2πSj)

−1
2
∑
j

〈dj − µ(θ)|dj − µ(θ)〉
(6.2)

where the summation index j runs over the three arms in the case of the ET detector,
Sj denotes the power spectral density (PSD) of the corresponding detector, µ(θ) is the
NRPMw model evaluated for the parameter set θ and d represents the data stream of the
injection. In the case of the CE detector, we fix j to correspond to the narrow-band
20km postmerger optimized configuration. The inner product 〈.|.〉 between two signals
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say a(f) and b(f) in the frequency domain is given by

〈a(f)|b(f)〉 = 4 Re
∫ fmax

fmin

a∗(f)b(f)
Sj(f) df (6.3)

The PSDs for the ET and the CE detectors employed by us are the same as those used
in ref. [346–348]. We take fmin and fmax to be 1024 and 8192 Hz, respectively to include
the postmerger domain of the signal.

We take dj to denote the data stream in each arm of the detector i.e. dj = sj + nj,
where sj and nj respectively denote the signal and noise in the detector. For noise-less
injections, dj is given exclusively by the signal projected onto the individual detectors i.e.

dj(f) = Fj;+(RA.,DEC., ψ)h+(f)+

Fj;×(RA.,DEC., ψ)h×(f) (6.4)

where Fj;+ and Fj;× denote the antenna pattern functions of the jth arm of the ET detector
(or a CE-20 detector) and RA., DEC. and ψ denote the right ascension, declination and
the polarization angle of the binary respectively. The injected signal corresponds to the
strain from NR simulations.

The joint posterior distribution function(PDF) of the posterior samples corresponding
to the parameters of the NRPMw model is given by the Bayes’ theorem as

p(θ|d) = L(d|θ)π(θ)
Z

(6.5)

where Z denotes the marginalized likelihood or the evidence for the data stream and
π(θ) denotes the prior PDFs for the model parameters. Finally, to compute the indi-
vidual posteriors (θi) of the model parameters, we marginalize the joint PDF over the
corresponding parameters to obtain

p(θi|d) =
∫ ∏

k 6=i
dθk

 p(θ|d). (6.6)

In the NRPMw model presented in Breschi et al. [284], the postmerger frequency
parameter f2 is decided by a fit to an EOS insensitive relation (see Table I of ref. [284])
with κT2 and accounted for deviations by using the re-calibration parameter δf2. In this
work, we will assume f2 to be an unconstrained parameter over which we can sample in a
Bayesian framework. In other words, this means migrating f2 from the set of θfit to θfree,
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where θfit and θfree are respectively the sets of fitted parameters and free parameters for
NRPMw, as defined in ref. [284]. The motivation behind making f2 unconstrained lies in
the fact that we do not want our results to be informed in any way by the f2−κT2 relation.
Throughout this work, we will refer to the global maxima in the reconstructed postmerger
spectra as fpeak

2 to avoid confusion with the f2 parameter of the NRPMw model which is a
carrier frequency evolving linearly with time. We would like to stress that even though
fpeak

2 and f2 are close numerically, they are not the same quantity. fpeak
2 is a property

of the reconstructed spectra whereas f2 is a parameter of the NRPMw model. Posteriors
on fpeak

2 are computed from the global postmerger maxima of the reconstructed signal
which in turn depends on f2 and other parameters. In a nutshell, fpeak

2 is influenced by
the choice of f2 but not the other way around. Throughout this work, we will refer to
this updated model with the unconstrained f2 parameter as NRPMw. For comparison, we
have also presented calculations in subsection 6.3.3 with the original model of Breschi et
al. [284] where f2 is constrained by κT2 and we call this model as NRPMw_v1. Finally, to
explore a more flexible configuration of the model, we unconstrain not only f2 but also
f0 which is the parameter for radial oscillation modes. We refer to this version of the
model as NRPMw_v2 and describe it in appendix 6.7.

6.2.4 Priors

With the advent of the next generation of GW detectors, it is expected for binaries that
are loud enough that their postmergers can be detected, masses and tidal deformabilities
will be measured accurately from the inspiral [347,348]. Therefore, the most accurate PE
would result from an analysis of the full signal, i.e., inspiral and postmerger. However,
performing Bayesian inference on the full signal is computationally expensive. In this
work, we therefore adopt a two-fold approach in the sense that we analyze the inspiral and
postmerger signals using separate inference codes. From the inspiral inference, we compute
posteriors on total gravitational mass M , mass ratio q and the tidal deformabilities Λis,
all of which for loud signals are Gaussians to a good approximation. Following this in a
separate inference for the postmerger, we constrain the prior bounds of the postmerger
model by supplying the Gaussian priors thus obtained. We refer the reader to 6.2.4.1 for
the detailed procedure to compute these priors.

On the other hand, in 6.2.4.2, we describe a choice of priors that are broad and
independent of the inspiral signal. We have summarized the two choices of priors in
tables 6.2 and 6.3.
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Table 6.2. Prior ranges for the parameters of the NRPMw model as well as the extrinsic and
intrinsic parameters in an inspiral agnostic setting. In particular, the priors on M and q have
been set in accordance to ref. [379] so as to maintain a uniform distribution in m1 and m2.

parameter min max Type
M [M�] 1 6 ref. [379]

q 1 2 ref. [379]
χ1 -0.2 0.2 aligned spin
χ2 -0.2 0.2 aligned spin
Λ1 0 4000 Uniform
Λ2 0 4000 Uniform

R.A. 0 2π Uniform
DEC. −π/2 π/2 Cosinusoidal
cos ι -1 1 Uniform
ψ 0 π Uniform

DL [Mpc] 5 500 Volumetric
tcoll/M 1 3000 Uniform
M2αpeak -10−4 10−4 Uniform
φPM 0 2π Uniform

f2 [kHz] 1.5 5 Uniform
δ(Mf0) -1 2 Gaussianµ=0

σ=0.449
δ(Mfmrg/ν) -0.2 0.2 Gaussianµ=0

σ=0.026
δ(Amrg/M) -0.2 0.2 Gaussianµ=0

σ=0.018
δ(M/t0) -0.5 0.5 Gaussianµ=0

σ=0.092
δ(A0/M) -1 4 Gaussianµ=0

σ=0.663
δ(A1/M) -1 2 Gaussianµ=0

σ=0.152
δ(A2/M) -1 2 Gaussianµ=0

σ=0.385
δ(A3/M) -1 2 Gaussianµ=0

σ=0.269
δ(M2Im(αfus)/ν) -4 4 Gaussianµ=0

σ=0.751
δ(MRe(βpeak)) -1 2 Gaussianµ=0

σ=0.27
δ(M∆fm) -1 4 Gaussianµ=0

σ=0.744
δ(MΓfm) -1 4 Gaussianµ=0

σ=0.977

6.2.4.1 Inspiral Informed Priors

Since the NR waveforms simulate only the last few orbits before merger and for a reliable
estimate of masses and tidal parameters we require a longer inspiral data stream, we
employ the TaylorF2 waveform model [380–386] to simulate the inspiral signal targeted
at the parameters of the binaries listed in table 6.4. The inspiraling binaries are assumed
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to be non-spinning and situated at the most optimal sky location corresponding to the
detectors (either ET or CE).

We perform a self-consistent injection recovery with the TaylorF2 waveform model
in the ET (or CE-40) noise configuration and compute posteriors on the chirp massMc,
tidal deformability Λ̃ as defined in ref. [99], mass ratio q, individual tidal parameters
Λis and the total mass M for all the hadronic models listed in Table 6.4. For this
purpose, we employ the publicly available Bilby framework [387–389] that utilizes
relative binning [390,391] for the computation of posteriors.

In Fig. 6.3, we show the posterior PDFs from the self-consistent injection recovery
of the TaylorF2 model targeted to simulate a long inspiral of the 1.398M� − 1.198M�
binary with the BLh EOS. We see that the chirp massMc is extremely well measured
with a standard deviation of 6.77×10−7M�. The posterior PDFs for the tidal parameters
Λis are refined by recomputing them via the universal relations presented in [392] by
taking the M , q, Λ1 and Λ2 inspiral posteriors as inputs. This could be a potential
source of systematic errors which we have underestimated given the uncertainties in
these relations as pointed out in ref. [393]. For comparison, we have presented the
posteriors on Λis which have been obtained directly from the inspiral PE (not refined
by the universal relations) and those which have been refined by the universal relations
from [392] in figure 6.4. We note that this being an asymmetric merger (q 6=1), we
have an accurate determination of q and consequently Λ1 and Λ2 . For an equal-mass
merger, the injected value of q = 1, lies on the edge of the priors for the sampler, and
the resulting posterior is one-sided as shown in Fig. 6.17. This one-sidedness of the mass
ratio posterior also influences the measurement of Λ1 and Λ2 when refined by universal
relations. Nevertheless, even for q = 1 mergers, symmetric tidal combinations such as κT2
which is used as a probe for phase transitions are estimated to be well within the 90%
credible intervals.

We approximate the inspiral posteriors onM , q, Λ1 and Λ2 with Gaussian distributions
that have the same average as that of the inspiral posterior and a standard deviation
equal to a quarter of the full 2 σ width of the posterior. This choice allows us to be
sufficiently conservative and establish a lower bound for measurement accuracy, which
will only be improved if one chooses more restrictive priors and/or consider correlations
between the priors. We remark that, at the moment, the bajes infrastructure does not
support a specification of correlated priors. We extract these Gaussian profiles from
the simulations run with hadronic EOSs and use them as priors for a postmerger PE
for both hadronic and quark simulations. This is because, as discussed in 6.2.1, the
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hadronic and quark EOSs have the same low-density EOS and therefore the same tidal
deformabilities. We would like to emphasize that while this approach is not a replacement
for a full inspiral-postmerger inference, it provides reliable estimates for masses and tidal
polarizabilities from the inspiral signal. The signal in the inspiral corresponding to a
postmerger SNR of 10, has an SNR of ∼ 600. This corresponds to a detection rate of
0.5− 1.5 yr−1 [348] with the ET detector and a detection rate of 1− 1.5 yr−1 with the
Cosmic Explorer CE-20 detector. The standard deviation in the inspiral estimates of the
total mass ranges between 10−4M� − 10−3M�. In addition to that, the percentage error
in κT2 , i.e., deviation between the injected κT2 and the 50th percentile of the recovered
posterior ranges from 0.1%-0.5%. The main advantage of employing a separate pipeline
for the inspiral signal is the usage of relative binning which significantly reduces the
computational cost. In addition, we have also shown an investigation of NRPMw’s
performance in tandem with the inspiral constraints.

6.2.4.2 Inspiral Agnostic Priors

We now describe the priors for the parameters of the NRPMw model in an inspiral-agnostic
setting. These broad ranges on the priors have been taken from the reference [334] to
include a wide range of possibilities. Most importantly, the priors on M and q have been
set according to [379] to maintain uniform priors on m1 and m2, the masses of the binary
component stars. We also set uniform priors on Λis ranging from 0 to 4000 to cover a
wide range in stellar compactness.

Providing a comparison between results obtained from an inspiral-informed and
inspiral-agnostic choice of priors is essential. We present such a comparison of priors in
Fig. 6.5. As we will make explicit in this work, the choice of priors has minimal influence
on the recovery of fpeak

2 which is solely estimated from the postmerger. However,
estimating fpeak

2 is not the only pre-requisite for detecting phase transitions. Phase
transitions are detected by quantifying violations of EOS insensitive relations between
the postmerger f2 and the inspiral κT2 . With the inspiral-agnostic priors, fpeak

2 is well
measured but there are large uncertainties in the measurement of κT2 (see appendix 6.5).
This can be mitigated by supplying priors that are informed about the tidal properties
and masses from the inspiral signal. This is precisely what we observe with the choice of
inspiral-informed priors where our sampler essentially recovers the Gaussian priors set
from the inspiral on masses and tidal deformabilities. Another motivation behind such a
comparative study with different choices of priors is to demonstrate the NRPMw model’s
performance when subjected to different degrees of independence in the sampling of the
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prior parameter space.
When a parameter of the NRPMw model is constrained by fits to EOS insensitive rela-

tions, we employ corresponding recalibration parameters to account for the uncertainties
in these relations. The priors on all the recalibration parameters δθfit are distributed
normally around a mean value of zero with a variance decided by the relative stan-
dard deviation between the scatter of NR simulations and the EOS insensitive relation.
When we make a parameter independent of these fits as in the case of f2, we ignore the
corresponding recalibration parameter.

6.3 Results

6.3.1 Inspiral-Informed Postmerger PE with Einstein Telescope

In this subsection, we present results for the postmerger PE analysis using the ET
detector and by taking the priors on M , q, Λ1, and Λ2 as Gaussian (normal) distributions
that are informed from the inspiral signal.

In Fig. 6.6, we show our results for an inspiral informed PE for the representative
case of the 1.398M� − 1.198M� merger with the BLh and BLQ EOSs. We note that
for the model with the BLQ EOS, the 90% credible interval (CI) estimated by NRPMw
for the posterior of fpeak

2 contains the injected value whereas for the model with the
BLh EOS, the 95% CI of the fpeak

2 posterior contains the injection. Additionally, in
Fig. 6.7, we present the reconstructed frequency spectra for the same pair of simulations
using NRPMw. We emphasize that the 90% CIs for fpeak

2 corresponding to the hadronic
and quark cases do not overlap, implying that at a postmerger SNR of 10, the two
models can be distinguished. In addition, we observe that the measurement of fpeak

2 is
insensitive (to within 90% CIs) to the choice of priors as it is an exclusively postmerger-
determined quantity. The measurement of κT2 on the other hand improves substantially
upon employing the inspiral informed priors as it is decided exclusively from the inspiral
signal.

We summarize our results for the detectability of fpeak
2 for all other simulations in our

work in Figs. 6.18, 6.19 and 6.20. We report that for the binaries 1.481M�−1.257M� and
1.363M� − 1.363M� with the BLh EOS, the 90% CIs estimated for the fpeak

2 posterior
contain the injection. For the rest of the hadronic models, i.e., 1.398M� − 1.198M� with
BLh, 1.289M� − 1.289M� with DD2F and 1.298M� − 1.298M� with BLh, 95 %, 98 %
and 99.5 % CIs of fpeak

2 contain the injection respectively. For the hadronic models, we
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identify a systematic bias that leads to an overestimation of fpeak
2 by NRPMw. This bias

primarily arises because of the presence of multiple (>2) amplitude modulations in the
postmerger signal. As mentioned in Fig. 2 of ref. [284], NRPMw is designed to capture the
peaks of only the first two amplitude modulations, following which it models a damped
sinusoidal decay of the postmerger amplitude. In the subsection 6.3.1.1, we discuss this
bias in detail. On the other hand, for the quark EOSs, we observe that the 90% CIs for
fpeak

2 contain the injected fpeak
2 except for the 1.363M� − 1.363M� merger where the

95% CIs contain the injection.

6.3.1.1 Biases due to multiple amplitude modulations

A characteristic feature of our hadronic simulations, in particular the binaries 1.398M�−
1.198M� (BLh), 1.289M� − 1.289M� (DD2F) and 1.298M� − 1.298M� (BLh), is the
existence of multiple amplitude modulations in the ` = 2,m = 2 mode of the GW strain.
From our NR simulations of hadronic EOSs, we note that these modulations are typically
observed in the early postmerger signal, i.e., when the remnant has just formed and
undergoes large dynamical deformations resulting in amplitude-modulated GW emissions.
NRPMw, as of now, is unable to capture multiple modulations in the postmerger amplitude
and attempts to reconstruct amplitude modulations beyond 2 via damped sinusoids.
This leads to a biased overestimation of fpeak

2 as is evidenced in Figs. 6.6, 6.18 and 6.19.
In this section, we explore in detail the major source of this systematic bias, i.e., the

multiple amplitude modulations. In Fig. 6.8, we show the time domain waveform for
the 1.398M� − 1.198M� binary with the BLh EOS that exhibits multiple amplitude
modulations. In line with the convention for nodal points presented in ref. [284], we
denote positions of the merger as tmerg, the first two postmerger maxima as t1 and t3 and
their corresponding intermediate minima as t0 and t2. NRPMw only includes amplitude
modulations until t3 beyond which the amplitude is described by a damped sinusoid. We
introduce an exponential filtering function

F (t) = 1/(1 + exp(t− tcutoff)) (6.7)

where tcutoff denotes the point where the filter cuts off the strain. We take tcutoff to be
near the position of the third amplitude modulation and filter off the subsequent signal to
disentangle the effects of subsequent modulations. In the right panel of Fig. 6.8, we show
the frequency spectra of this filtered waveform against that of the unfiltered waveform.
We note that the subsequent amplitude modulations for t− tmerg & 5 ms lead to multiple
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oscillations near fpeak
2 . Such closely-spaced oscillations in the frequency domain are not a

morphology that can be captured by NRPMw and the model tends to construct an average
over these peaks leading to a bias. On the other hand, when such modulations have been
filtered out, the model captures the peak of the filtered spectra much better.

We also refer the reader to appendix 6.7 for a brief discussion on how one can start to
mitigate this bias by modifying the NRPMw model and making it more flexible to capture
multiple modulations.

We would like to emphasize that even though we have shown for our hadronic
systems that removing multiple (>2) amplitude oscillations can help remove biases in the
measurement of fpeak

2 , we only report results from the unfiltered, i.e., complete waveforms
for the purposes of detecting phase transitions. This is because, in a realistic detection
scenario, it is rather artificial to engineer the waveforms to support a recovery of fpeak

2

to within some confidence level. Additionally, we would like to emphasize that there is
still scope for improvement in the contemporary BNS waveform models to capture the
above-mentioned morphologies and that additional avenues apart from shifts in fpeak2

need to be explored for a holistic examination of QCD phase transition effects.

6.3.2 Inspiral Informed Postmereger PE with Cosmic Explorer

In this subsection, we repeat the inspiral informed PE analysis described in 6.3.1 on the
1.289M� − 1.289M� binaries with the DD2F and DD2F-SF1 EOSs but with a difference
that now we employ the Cosmic Explorer sensitivities for recovering our models. The
configurations we employ are a broad-band 40 km detector and a narrow-band 20 km
detector which has been optimized for postmerger and has increased sensitivity in the
2-4 kHz regime. The advantage of the enhanced sensitivities of the CE-20 detector is
that for the same postmerger SNR of 10, we will observe more distant and therefore
more frequent mergers. We inject the TaylorF2 predicted inspiral for the hadronic model
1.289M� − 1.289M� with the DD2F EOS in the broad-band CE-40 configuration. This
binary is now placed at a distance of 118.467 Mpc so as to produce a postmerger SNR
of 10 in CE-20 configuration. This is because we would like to harness the sensitivities
of the CE detectors most optimally. CE-40 has higher sensitivity at low frequencies
corresponding to the inspiral signal and therefore it is utilized for estimating the mass
and tidal parameters from an inspiral signal (as described in 6.3.1). On the other hand,
CE-20 has increased sensitivities in the kilohertz regime corresponding to the emission
frequencies of the BNS remnant and hence is utilized for the postmerger PE. For this
analysis, we have assumed that both the CE-20 and CE-40 observatories are operating
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simultaneously and are located at the same position on Earth.
In Fig. 6.9, we present a reconstruction of the postmerger amplitude spectrum

recovered using the CE-20 detector by the NRPMw model. We see yet again that the
measurement of fpeak

2 for the hadronic model is overestimated due to the multiple
amplitude modulations in the time-domain GWs from the hadronic model which we show
explicitly in Fig. 6.10. The quality of the reconstruction of spectra and the accuracy of
recovery of fpeak

2 is similar in both the ET and CE-20 detectors with the only advantage
being the increased rates of observation of BNS mergers with CE-20.

So far we have demonstrated that the NRPMw model along with the sensitivities of the
ET detector and the CE detector can reliably detect and reconstruct the postmerger
signal which is evidenced by the fact that we recover most (≈8) of the injected SNR
(Table 6.4). In addition, we have shown that our model is capable of recovering (albeit
with some bias) the fpeak

2 frequency and distinguishing the same between the hadronic
and quark models at a postmerger SNR of 10. We would like to emphasize that detecting
and distinguishing the fpeak

2 frequency is not sufficient for inferring the occurrence of
a phase transition in a realistic observational setting. The latter requires quantifying
violations from EOS insensitive relations (see subsection 6.3.3). Since such relations
involve inspiral tidal parameters in addition to the postmerger fpeak

2 , it is imperative
that we have reliable estimates of the tidal parameters. In this regard, the utility of
inspiral informed priors becomes clear. We can see that for all our models be it hadronic
or quark, the 90% CIs for κT2 posterior by the NRPMw model contain the injected value.
There exists no information about masses or the tidal properties from the postmerger
signal alone (at least at a postmerger SNR of 10) and our postmerger model essentially
recovers these priors. In contrast, with the priors that are agnostic of the inspiral signal,
as in appendix 6.5, the estimates of the tidal κT2 are dominated by large errors which in
turn will make an inference of QCD phase transitions difficult from the EOS insensitive
quasi universal relations.

6.3.3 Probing QCD Phase Transitions

As we have previously remarked, detection of a postmerger signal and a reliable recovery
and distinguishability of fpeak

2 is necessary but not sufficient for probing QCD phase
transitions. Previous works [54,55,364] suggest the utility of EOS insensitive relations,
in particular between fpeak

2 and a tidal parameter be it Λ̃ or κT2 , in probing such phase
transitions. Specifically, if EOS softening effects by such phase transitions produce
deviations from the aforementioned relations that are non-degenerate with other hadronic

168



models, one can ascertain the occurrence of a phase transition with some confidence.
This requires that we have reliable estimates of not just fpeak

2 but also of tidal properties.
Comparing NR simulations of the postmerger signal at different resolutions can only
provide the former as a one-dimensional error estimate because tidal properties are
fixed upon assuming a specific equation of state. The only way we can compute a joint
uncertainty of fpeak

2 and κT2 is by Bayesian inference of the postemrger signal which is
informed of the tidal properties from the inspiral (and of course a Bayesian inference on
the full signal).

We employ the fitting function obtained in ref. [284] with reference to the CoRe
database. This fitting function improves upon the QUR obtained in refs. [64] by explicitly
including the effects of inspiral spins and taking into account additional GRHD simulations
performed with WhiskyTHC and BAM infrastructures. In Fig. 6.11, we plot the QUR
fitting function for symmetric binaries that are non-spinning, along with an ensemble of
simulations that form a part of the CoRe database. We also show the 90% confidence
levels for the fit describing symmetric binaries. To this collection, we add the injections
presented in this work with their error estimates that are essentially the 90% contour
levels of the 2-dimensional joint posteriors for mass-rescaled Mfpeak

2 and κT2 obtained
with the choice of inspiral informed priors.

In subsection 6.3.1 and appendix 6.6, we have provided evidence for mutual distin-
guishability between hadronic and quark models based on the non-degeneracy of the
90% CIs of the fpeak

2 posteriors. In this section, we present a discussion on detecting
phase transitions based on non-degeneracies between the joint fpeak

2 − κT2 posteriors
and comparing them with the EOS insensitive relation of Breschi et al. [284]. In the
first (upper-left) panel of Fig.6.11, we present hadronic and quark models that, at a
postmerger SNR of 10, are mutually distinguishable as is seen by the absence of any
overlap between the corresponding joint Mfpeak

2 − κT2 posteriors. These models are the
1.363M� − 1.363M� binary for the BLh and BLQ EOSs and the 1.289M� − 1.289M�
binary for the DD2F and DD2F-SF1 EOSs. For the 1.363M� − 1.363M� binary, we
notice that even though the hadronic and quark models are distinguishable (up to 90%
confidence), the quark model’s joint posterior is degenerate with other hadronic EOSs,
implying that a postmerger SNR of 10, we cannot conclusively confirm a phase transition
for this binary. On the other hand, for the 1.289M�−1.289M� binary with the DD2F-SF1
EOSs, we notice that the injection and the corresponding joint posteriors do not overlap
with the universal relation, implying that at a postmerger SNR of 10, we can confirm the
presence of a phase transition. We do however caution the reader about a possible caveat.
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The conclusion that whether we can confirm a phase transition to some confidence is
sensitive to the particular universal relation used. The 90% contours of the joint posterior
with DD2F-SF1 EOS, even though not overlapping with the universal relation’s error
margin, are very close to them and systematics in the universal relation may change our
conclusions. Such systematics may result from updating the coefficients of the fit upon
adding more simulations. At higher postmerger SNRs, detectability avenues will improve.
This is made concrete by an additional model recovered at a higher postmerger SNR of
15, where we find that the DD2F-SF1 model’s joint posteriors shrink and are even more
removed from the universal relation than the same model at postmerger SNR 10.

Similarly, in the second panel (top right) of the figure 6.11, we repeat the calcula-
tions for the case of 1.289M� − 1.289M� binary with the DD2F and DD2F-SF1 EOS,
assuming the Cosmic Explorer (CE-20) detector sensitivity. We notice here that the
joint posteriors corresponding to the quark EOS are "more" non-degenerate with the
universal relation as compared to the same model recovered from the Einstein Telescope
sensitivity. Consequently, at a postmerger SNR of 10, we can confirm the presence of
a phase transition. The better performance of the CE-20 detector as compared to the
Einstein Telescope’s recovery, is not entirely unexpected. Indeed we note that for the
injected fpeak

2 frequencies close to 3 kHz, the CE-20 detector is more sensitive than the
ET detector.

On the other hand, in the third (bottom left) and fourth (bottom right) panels of
figure 6.11, we show binaries for which the 90% contours of the joint posterior overlap
between the hadronic and quark models. These models include the 1.298M� − 1.298M�,
1.481M� − 1.257M� and 1.398M� − 1.198M� binaries with the BLh and BLQ EOSs.
For the quark models of these binaries, at a postmerger SNR of 10, the presence of a
QCD phase transition cannot be ascertained given the degeneracy with other hadronic
EOSs.

Therefore, in a nutshell, even though postmerger waveforms from the hadronic models
may be distinguishable from the corresponding quark models by virtue of non-degeneracy
of fpeak

2 posteriors, they may still be degenerate with each other in a two-dimensional
space of fpeak

2 − κT2 uncertainties. Furthermore, when there is no degeneracy in a joint
measurement of fpeak

2 and κT2 , a postmerger SNR of 10 can confirm the presence of a phase
transition only if the model violates the universal relation strongly, i.e., ∆fpeak

2 ≈ 455
Hz (& 1.6 σ). At a postmerger SNR of 10, systematics in the universal relation may
also play a role in influencing conclusions about the detectability of phase transitions.
However, for louder binaries with SNR ∼ 15, phase transitions of the type predicted by
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the DD2F-SF1 model can be confirmed with a higher confidence.
At this stage we also present a test of the EOS insensitive relations with reference to

detecting QCD phase transitions in Fig. 6.12. To this aim, we test two configurations
of our model. Firstly, we use the NRPMw configuration employed throughout this work
where the f2 parameter is independent of the f2 − κT2 universal relation from Breschi et
al. [284], i.e., the universal relation is ignored. Secondly, we employ the original model
configuration of Breschi et al. (called NRPMw_v1 in this work) where f2 is decided by
the universal relation. In particular, we are posing the question that given a signal,
whether the inclusion of the f2 − κT2 universal relation in the model can play a role in
detecting a "strong" phase transition. In the left panel of Fig.6.12, we present results for
the 1.298M�− 1.298M� binary with the BLQ EOS whose injection is consistent with the
universal relation. We note that for both model configurations, the 90% contour of the
joint PDF contains the injection at a postmerger SNR of 10. To quantify this comparison
we compute the Bayes’ factor for the two hypotheses, i.e., inference with and without
the universal relation respectively. We find that log Bwith QUR

without QUR = 2.53+0.27
−0.27 indicating a

weak preference towards the QUR informed NRPMw_v1 model. On the other hand, in
the right panel of Fig. 6.12, we present the same calculation for the 1.289M� − 1.289M�
binary with the DD2F-SF1 EOS. Since in this case, the injection is inconsistent with
the universal relation, including the same in the model tends to drive the joint posterior
toward the universal relation and away from the injection. This is evidenced by the fact
that the 90% contour of the NRPMw_v1 model does not contain the injection whereas the
injection is well captured within the joint posterior of the more flexible NRPMw model. To
quantify the same statement, the log Bwithout QUR

with QUR = 2.24+0.27
−0.27 at a postmerger SNR of

10 indicating a weak preference towards the more flexible NRPMw model with respect to
detecting phase transitions that strongly violate the universal relations.

6.4 Conclusions
In this work, we have shown that the next generation of GW experiments has the
potential to identify QCD phase transitions in the postmerger phase of neutron star
mergers, provided such phase transitions are sufficiently strong.

To model the influence of deconfined quarks on the dynamics of BNS merger remnants,
we employ the BLQ and DD2F-SF1 EOSs which model the deconfined quark phase by
Gibbs construction and Maxwell construction respectively. In the case of a merger, these
treatments lead to remnants with very different properties, most notably differences in
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the postmerger peak frequencies. We construct the postmerger signals by windowing out
the inspiral signal from our NR waveforms and injecting the signal thus obtained in a
noise-less configuration of ET or CE detectors.

We perform independent Bayesian inference calculations on the inspiral and the
postmerger signals using the Bilby (via the TaylorF2 model) and bajes (via the NRPMw
model) codes, respectively. We compute the posteriors of total mass, mass ratio and tidal
deformabilities which are expectedly Gaussian to a good approximation (except for the
one-sided q = 1 posteriors). These posteriors help inform the priors for the postmerger
PE analysis which provides the posteriors on fpeak

2 . We find that NRPMw model can
reliably recover the postmerger signal as is evidenced by the recovered SNRs (Table 6.4
and Table 6.5). Additionally, at a postmerger SNR of 10, the model can also recover the
fpeak

2 frequency and distinguish the same between a hadronic and quark model to upto
90% confidence.

Our work also serves to present new test cases to which our waveform model has been
applied as a means to evaluate its validity. We have presented for the first time, the
behavior of the model in an inspiral-informed PE setting and tested its performance on
morphologically complex NR waveforms. It is noteworthy that simulations from DD2F,
DD2F-SF1 EOSs are also the ones that the model has not been trained on. For these
cases too we get reliable signal reconstruction and recover most of the SNR.

We have provided a complimentary analysis by employing the CE-40 and CE-20
detectors. The advantage of utilizing the CE detectors for this purpose is two fold.
First, with enhanced postmerger sensitivities, BNS mergers can be probed at larger
luminosity distances and hence more frequently. Second, a combination of broad-band
CE-40 detector and a narrow band postmerger optimized CE-20 detector is optimal
for a holistic detection because of increased sensitivities in the inspiral (by CE-40) and
the postmerger (by CE-20). For sources with postmerger SNR of 10 in CE-20, we have
used the CE-40 detector to compute posteriors on masses and tidal parameters which
serve as priors on the postmerger PE analysis via the CE-20 detector. We find no major
differences in the inference of fpeak

2 or the quality of signal reconstruction as compared
to inference with the ET detcetor.

We emphasize that even though NRPMw coupled with the enhanced sensitivities of
the upcoming generation of GW detectors, can reliably detect and distinguish the fpeak

2

frequencies at a postmerger SNR of 10, it is not sufficient to probe QCD phase transitions.
We compare the joint posterior estimates on fpeak

2 and κT2 in reference to the f2 − κT2
universal relation from Breschi et al. [284] and find that starting at postmerger SNRs
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of 10, we can claim a detection of a first order phase transition but only for models
that violate the universal relations by more than 1.6 σ. We also demonstrate a slight
preference towards the model configuration which is independent of the universal relation
in detecting "strong" phase transitions by a log Bwithout QUR

with QUR = 2.24+0.27
−0.27.

For final remarks, Bayesian inference is done on waveforms that have a rich morpho-
logical structure and therefore we speculate that indicators of QCD phase transitions
may not be exclusively encoded in fpeak

2 . This warrants exploration of alternative signa-
tures of phase transitions, e.g., imprints in the postmerger amplitude or the lifetimes of
remnants. Our work calls for efforts in several directions. First, as we have shown, the
current waveform models need to be improved to take into account additional waveform
morphologies like multiple amplitude modulations which can be a significant source of
bias at high enough SNRs. Additionally, a prescription for modeling the high-frequency
black hole ringdown-spectrum can be accommodated in NRPMw however, we have omitted
the same in favor of ease of computation. The ringdown spectrum and the ensuing
quasi-normal modes can be important for constraining QCD phase transitions from short-
lived remnants or promptly collapsing binaries where such phase transitions can play
a role [108,176,186]. Second, the universal relations can themselves involve systematic
biases which can be sourced from uncertainties in the physics modeled in the simulations.
Such biases may shift the universal relations in the fpeak

2 − κT2 plane affecting conclusions
about the occurrence of phase transitions. On a related note, it is also anticipated that
modified-gravity theories [394] can distort the interpretation of tidal parameters [395]
and produce effects [396] that may mimic QCD phase transitions 1. Lastly, improvements
are required in improving the postmerger convergence of contemporary NR codes [398]
as will be required by large SNR detections from the next generation detectors. Overall,
the prospects of detecting a QCD phase transition with the enhanced sensitivities of the
upcoming detectors, seem not too pessimistic. A single GW170817-like event, provided a
postmerger is also observed, can in theory constrain QCD phase transitions.

6.5 Appendix 1: Inspiral Agnostic PE: results for all sim-
ulations
In this appendix, we present results for a postmerger PE of the NRPMw model’s parameters
wherein we set a wide range of values to the priors as described in Table 6.2. The choice

1See also [397]
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of priors follows that in [334] and is targeted at a wide range of possibilities for the
GW event. To this aim, we present results for the postmerger PE of all the simulations
listed in Table 6.5 performed with this choice of priors. In Figs. 6.13, 6.14 and 6.15
we present the posterior PDFs for fpeak

2 and κT2 . We note that the fpeak
2 frequencies are

recovered accurately and the injection is contained in the 90% CIs. There appear to
be no significant differences as compared to the estimation of fpeak

2 from the inspiral
informed choice of priors. At the same time, κT2 is very poorly determined, serving to
verify the fact that once the f2 − κT2 universal relation has been omitted from the model,
there exists no tidal information solely from the postmerger signal.

Finally, in Fig. 6.16, we present the waveform reconstruction for the case of inspiral
agnostic priors. Like in the case of the inspiral informed priors, the postmerger estimation
of fpeak

2 is accurate and distinguishable between hadronic and quark models. Additionally,
the signal is reliably reconstructed as shown by the fact that most of the postmerger
SNR is recovered (see Table 6.5).

6.6 Appendix 2: Inspiral Informed PE: results for all
simulations
In this appendix, we present results analogous to Figs. 6.6 and 6.7 for all the systems
as listed in Table 6.4 with the ET detector and the NRPMw model at a postmerger SNR
of 10. In particular, in Figs. 6.18 and 6.19 we show the posterior PDFs for fpeak

2

and κT2 . As mentioned previously in subsection 6.3.1, the NRPMw model performs very
well with the quark EOSs, in that the 90% CI of fpeak

2 posteriors contain the injection.
However, for the hadronic simulations 1.398M� − 1.198M� (BLh), 1.289M� − 1.289M�
(DD2F) and 1.298M� − 1.298M� (BLh), the estimation of fpeak

2 is biased due to the
presence of multiple amplitude modulations as explained in Fig. 6.21. We also show
postmerger spectra for the waveform reconstructions in Fig. 6.20 that serve to re-affirm
the detectability and distinguishability of the fpeak

2 frequencies between the hadronic and
quark models.

In Figs. 6.22 and 6.23, we show a comparison between posterior PDFs of the total
mass M , mass ratio q and tidal parameters Λi’s between the cases of inspiral informed
and inspiral agnostic priors. We note the significant improvement in the estimation of
masses and tidal parameters upon including inspiral information which is essentially a
recovery of the priors that are informed of the inspiral signal. As we have stressed in the
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main text, we require reliable estimates of the inspiral signal to consistently probe QCD
phase transitions from the EOS insensitive relations.

6.7 Appendix 3 : Inference with unconstrained f2 and f0

parameters
In this appendix, we attempt to mitigate the source of bias in our hadronic models
namely multiple amplitude modulations. We have seen in 6.3.1.1 that NRPMw can only
capture the first two peaks of the postmerger amplitude modulations which leads to an
overestimation of the fpeak

2 frequency. We test a new model configuration, in which we
attempt to increase the flexibility of the model by freeing from universal relations not
just the postmerger peak frequency parameter f2, but also the parameter that models
the radial pulsation modes of the remnant, i.e., f0. We call this model configuration
as NRPMw_v2 to distinguish from the other configurations employed in this work. This
means that we do not use the recalibration parameter δf0 which provided flexibility
to the inference of f0 when constrained from the universal relations instead, we set
uniform priors on f0 ranging between 0.1 to 2.5 kHz. The expectation is that making f0

unconstrained can perhaps push the W̃pul wavelet that models amplitude modulations
as defined in [284], to include more of the amplitude modulations.

We report however that this approach leads to only marginal improvements. We take
the case of the 1.298M� − 1.298M� binary where the bias in measurement of fpeak

2 is
the largest. In figure 6.24, we report the same injection now being recovered from the
modified NRPMw_v2 model configuration. We report that with the NRPMw model, 99.5%
CIs of the fpeak

2 posterior contained the injection, which is now marginally improved to
97% CIs containing the injection with NRPMw_v2. Nevertheless, the model configuration
still reliably reconstructs the postmerger signal with a recovered SNR of 8.6 corresponding
to an injected SNR of 10.

Finally, in figure 6.25, we show a comparison of the joint fpeak
2 −κT2 posterior between

the NRPMw and the NRPMw_v2 model configurations, with reference to the f2−κT2 universal
relation. For both the configurations, the 90% contours of the joint posterior capture
the injection. We compute the Bayes’ factor between the two models and find that
log B.F .NRPMw

NRPMw_v2 = 0.06+0.28
−0.28 indicating that there is no preference to either models at a

postmerger SNR of 10.
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6.8 Declaration
The postmerger PE calculations and the consequent post-processing were performed
by myself. Ish Gupta assisted in the computation of inspiral PE prior estimates. This
chapter will also form a part of his dissertation. The contents of this chapter have been
published in the journal Physical Review D of the American Physical Society (APS) with
refernece [282].

Copyright © 2011 by American Physical Society. All rights reserved.
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Table 6.3. Prior ranges for the parameters of the NRPMw model, the extrinsic and intrinsic
parameters in an inspiral informed setting. We constrain priors on M , q, Λ1 and Λ2 from
the inspiral signal. In this table, we show details for the prior distribution employed for the
1.398M� − 1.198M� binary with the BLh EOS. The type of priors remains the same for all
models in our work.

parameter min max Type
M [M�] 2.641 2.652 Gaussianµ=2.646

σ=0.001
q 1.11 1.22 Gaussianµ=1.17

σ=0.01
χ1 -0.2 0.2 aligned spin
χ2 -0.2 0.2 aligned spin
Λ1 363.94 559.70 Gaussianµ=448.24

σ=18.79
Λ2 1030.17 1203.71 Gaussianµ=1123.61

σ=21.28
R.A. 0 2π Uniform
DEC. −π/2 π/2 Cosinusoidal
cos ι -1 1 Uniform
ψ 0 π Uniform

DL [Mpc] 5 500 Volumetric
tcoll/M 1 3000 Uniform
M2αpeak -10−4 10−4 Uniform
φPM 0 2π Uniform

f2 [kHz] 1.5 5 Uniform
δ(Mf0) -1 2 Gaussianµ=0

σ=0.449
δ(Mfmrg/ν) -0.2 0.2 Gaussianµ=0

σ=0.026
δ(Amrg/M) -0.2 0.2 Gaussianµ=0

σ=0.018
δ(M/t0) -0.5 0.5 Gaussianµ=0

σ=0.092
δ(A0/M) -1 4 Gaussianµ=0

σ=0.663
δ(A1/M) -1 2 Gaussianµ=0

σ=0.152
δ(A2/M) -1 2 Gaussianµ=0

σ=0.385
δ(A3/M) -1 2 Gaussianµ=0

σ=0.269
δ(M2Im(αfus)/ν) -4 4 Gaussianµ=0

σ=0.751
δ(MRe(βpeak)) -1 2 Gaussianµ=0

σ=0.27
δ(M∆fm) -1 4 Gaussianµ=0

σ=0.744
δ(MΓfm) -1 4 Gaussianµ=0

σ=0.977
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Figure 6.3. Corner plot depicting the posteriors on chirp mass Mc, tidal deformability Λ̃,
mass ratio q, individual tidal parameters Λis and the total mass M for the binary 1.398 M�
- 1.198 M� with the BLh EOS. These posterior PDFs are computed from a self-consistent
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presented in Table 6.1 for the ET detector configuration. We show the 90% credible intervals
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Figure 6.6. Left Panel: The posterior distribution on the postmerger peak frequency fpeak
2

and the tidal polarizability κT2 for the binary 1.398M� − 1.198M� with the BLh EOS at a
postmerger SNR of 10. We also show the 90% and 50 % contour levels for the joint PDF.
Additionally, we compare the posteriors obtained from the two choices of priors namely an
inspiral agnostic choice (in blue) and an inspiral informed choice (in red). We observe that
using inspiral informed priors has marginal influence on fpeak

2 but substantially improves the
measurement of κT2 as expected. Right panel: The same calculation for the corresponding quark
model. Shown in grey shaded regions are the 90% CIs for the respective posteriors with inspiral
informed priors. We note that for the quark EOS, NRPMw is able to recover the injected fpeak

2 to
within 90% CIs however, for the BLh (hadronic) case, the injected value lies at the boundary
of the 5th percentile. Nevertheless, for both the cases the injection lies within the 90% contour
of the joint PDF.
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Figure 6.7. Reconstructed spectra for the binary 1.398M�− 1.198M� with the BLh and BLQ
EOSs at a postmerger SNR of 10. The dotted curves represnt the injected spectra and the
solid curves represent the median reconstructed signal by NRPMw. We also show 90% CIs on
the reconstructed signal in the shaded regions. Vertical dotted lines correspond to the injected
fpeak

2 and the grey shaded regions represent the 90% CIs on the fpeak
2 posteriors.
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Figure 6.8. Upper Left panel: The time domain postmerger waveform for the BLh - 1.398M�−
1.198M� binary with and without an exponential filter. NRPMw works best for the early
postmerger where it can capture the 1st two amplitude modulations that peak at t1 and t3
respectively. The model, as of now, cannot capture subsequent amplitude modulations. Upper
Right Panel: The frequency spectra of the corresponding unfiltered and filtered waveforms that
show a shift in fpeak

2 upon exclusion of amplitude modulations at t − tmerg & 5 ms. Bottom
Panel: The reconstructed spectra for the unfiltered waveform (left) and the filtered waveform
(right) that show the bias in fpeak

2 ’s measurement because of the 3rd and subsequent amplitude
modulations. We see that upon filtering these modulations, the model is able to capture the
fpeak

2 to within 90% CIs.
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Figure 6.9. The reconstructed spectra corresponding to an inspiral informed postmerger PE
for the binary 1.289M� − 1.289M� with the DD2F and DD2F-SF1 EOSs, computed with the
postmerger optimized CE-20 detector. Like in the case of recovery from Einstein Telescope
(Fig. 6.20), here also we see that multiple amplitude modulations can bias the recovery of fpeak

2
for DD2F.
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Figure 6.10. Same calculation as in fig. 6.8 to show the impact of multiple amplitude
modulations on the recovery of fpeak

2 for the hadronic DD2F simulation computed with the
CE-20 detector. Here also we observe that filtering out the 3rd and subsequent modulation in
the postmerger amplitude can result in an accurate recovery of fpeak

2 to within 90% CIs.
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Figure 6.11. Quasi Universal relation from Breschi et al. [284] shown along with this work’s
Bayesian inference error estimates. Shown in grey scatter points, are the hadronic simulations
from the CoRe database along with the fitting functions from [284] and [285] for non-spinning
and symmetric binaries. The light green shaded region represents a 90% confidence interval
corresponding to the fit function from [284] which is also implemented in the NRPMw model.
Even though [285] updates upon the fit coefficients in [284], the two are within 90% confidence
of each other. Black stars denote the injected values in a 2D parameter space of Mf2 and κT2 .
The colored shaded regions represent the 90% contours of the 2D joint posteriors on Mf2 and
κT2 obtained in this study. In parenthesis we depict the simulation index of the binaries as
defined in Table 6.4. Top Panels: We show binaries which are non-degenerate with respect to
each other upto 90% CIs and with the universal relation. Bottom Panels: We show models
which are not mutually distinguishable to 90 %.
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Figure 6.12. A comparison of the joint inference of fpeak
2 and κT2 between two configurations

of NRPMw, i.e., excluding the fpeak
2 − κT2 universal relation (NRPMw) and including the fpeak

2
universal relation (NRPMw_v1). Left Panel: Results for the 1.298M� − 1.298M� binary with
the BLQ EOS whose injection follows the universal relation. Both the model configurations
can recover the injection with the data (injection) slightly preferring the QUR informed model
NRPMw_v1. Right panel: Results for the 1.289M� − 1.289M� binary with the DD2F-SF1 EOS
whose injection strongly violates the universal relation. The data (injection) slightly prefers
the more flexible QUR uninformed model (NRPMw) as it has larger flexibility than NRPMw_v1 in
reference to recovering injections that violate the universal relation.
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Figure 6.13. Same calculations as in Fig. 6.6, i.e., a measurement of fpeak
2 and κT2 for the

1.298M� − 1.298M� and 1.481M� − 1.257M� binaries with the BLh and BLQ EOSs. In
contrast to Fig. 6.6, here we use a different choice of priors that are uninformed of the inspiral
signal and set to wide ranges as described in Table 6.2. We note that the NRPMw model captures
to within 90% CIs the fpeak

2 frequency for the quark and hadronic models however, the tidal
polarizability κT2 is poorly determined owing to the fact that no tidal information is present in
the postmerger signal.
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Figure 6.14. Same calculations as in Figure 6.13 for the binary 1.398M�−1.198M� simulated
with the BLh and BLQ EOSs.
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Figure 6.15. Same calculations as in Figure 6.13 for the binary 1.363M�−1.363M� simulated
with the BLh and BLQ EOSs and the binary 1.289M� − 1.289M� simulated with the DD2F
and DD2F-SF1 EOS.
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Figure 6.16. Same calculation as in Fig. 6.7, i.e. reconstructed spectra for all the binaries in
our work but computed with priors that are uninformed of the inspiral signal. We observe an
accurate recovery of fpeak

2 and distinguishability between hadronic and quark models to 90% at
a postmerger SNR of 10.
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Figure 6.17. Corner plot depicting the posteriors on chirp massMc, tidal deformability Λ̃,
mass ratio q, individual tidal parameters Λis and the total mass M for the binary 1.298 M� -
1.298M� with the BLh EOS. The fact that the posteriors on mass ratio are one-sided influences
the measurements of Λ1, Λ2 and M .
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Figure 6.18. Same calculations as in Fig. 6.6 for the binaries 1.298M� − 1.298M� and
1.481M� − 1.257M� with the BLh and BLQ EOSs. We note that the NRPMw model captures
to within 90% CIs the fpeak

2 frequency for the quark EOSs however the measurement of the
same for hadronic model 1.298M� − 1.298M� suffers from a systematic bias that of multiple
amplitude modulations. The double-peaked feature in the 1.481 M� - 1.257 M� binary is
because this system is the shortest-lived of all our simulations due to which the uncertainties in
the measurement of postmerger frequency are the highest.
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Figure 6.19. Same calculations as in Fig. 6.6 for the binary 1.363M� − 1.363M� with the
BLh and BLQ EOS and the binary 1.289M� − 1.289M� with the DD2F and DD2F-SF1 EOS.
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Figure 6.20. Same calculation as in Fig. 6.7, i.e., reconstructed spectra for the binaries
1.298M� − 1.298M�, 1.481M� − 1.257M� and 1.363M� − 1.363M� with the BLh and BLQ
EOS as well as for the binary 1.289M� − 1.289M� with the DD2F and DD2F-SF1 EOS.
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Figure 6.21. Same calculations as in Figure 6.8 for the binary 1.298M� − 1.298M� with the
BLh EOS and the binary 1.289M� − 1.289M� with the DD2F EOS. Here, we show that the
exclusion of more than 2 amplitude modulations in the strain can lead to recovery of the fpeak

2
to within 90% CIs at a postmerger SNR of 10.
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Figure 6.22. Left Panel: The posterior distributions of the total mass and mass ratio from a
postmerger PE of the binary 1.398M� − 1.198M� with the BLh EOS compared between the
two choice of priors used in this work. Right Panel: the posterior PDFs for the component tidal
deformabilities. In both cases we notice a clear improvement in accuracy for the measurement
of M, q,Λ1 and Λ2.

198



2× 103 3× 103 4× 103 6× 103

f [Hz]

10−28

10−27

10−26

10−25

|h
+

(f
)|

R
ec

o
n

st
ru

ct
ed

W
av

ef
or

m
[H

z−
1
] Inspiral Informd

Inspiral Agnostic

90%Credible Interval

Figure 6.23. The reconstructed NRPMw waveforms for a postmerger PE of the binary 1.398M�−
1.198M� with the BLh EOS corresponding to both the choices of priors. Both the reconstructions
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Figure 6.24. Left Panel: The posterior distributions of the postmerger peak frequency fpeak
2

and the tidal polarizability κT2 corresponding to the 1.298M� − 1.298M� binary with the
BLh EOS. Also shown is the lack of covariance of fpeak

2 with κT2 owing to the corresponding
QUR being not used. The contours correspond to the 50 % and 90% CIs of the joint PDF.
Right Panel: The median reconstructed waveform from NRPMw_v2 shown along with the NR
waveform.
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Figure 6.25. A comparison of the joint fpeak
2 − κT2 posterior for the 1.298M� − 1.298M�

binary between the NRPMw and NRPMw_v2 model configurations. We see that the 90% contours
of the joint posteriors for both the model configuratios contain the injection.
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Chapter 7 |
Conclusions and Outlook

This dissertation is a small step towards understanding the nature of strongly interacting
matter in the purview of neutron star mergers. We employ state-of-the-art general
relativistic neutrino-radiation hydrodynamic simulations to model compact binary objects,
in particular, mergers of neutron stars and mergers of strange stars. Throughout this
dissertation we attempt to study models of QCD phase transitions from a phase of
matter where quarks are confined within nucleons to a deconfined phase of quarks
and gluons. Neutron stars and their mergers prove to be excellent test beds in this
regard as they can probe extreme densities (several times the nuclear saturation density)
and high temperatures (up to 10s of MeV or even higher) thereby providing access to
thermodynamic regimes that are impregnable via any terrestrial laboratory.

In chapter 1, we provide the reader with a detailed introduction to the physics behind
the several moving parts in a numerical relativity simulation and how the problem of
QCD phase transitions interfaces with these simulations. Beginning in chapter 2, we
compute several gravitational wave and electromagnetic signatures assuming a first-order
phase transition were to take place within the remnant of a neutron star merger. In
particular, we find that an onset of a deconfinement phase transition in the hot and
dense parts of the remnant can compactify it thus making the remnant spin faster. This
manifests as a relative increase in the postmerger peak frequency fpeak

2 when compared
to remnants that are evolved without a prescription of such a phase transition. However,
the increments in fpeak

2 are found to be degenerate with BNS mergers simulated from
other hadronic equations of state. Therefore a gravitational wave distinguishability of
quark models of the type described in the chapter against hadronic models, based solely
on the values of fpeak

2 , is not feasible. We also note that owing to violent bounces in the
quark remnant, the dynamical ejecta corresponding to a quark model can attain large
relativistic velocities resulting in a brighter synchrotron afterglow as compared to the
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afterglow from hadronic models.
In chapter 3, we discuss a novel signature of such phase transitions coming from

multi-modal gravitational wave spectroscopy. We find that the growth of a one-armed
spiral instability, which is a characteristic of differentially rotating remnants over time
scales of O(10) ms, is suppressed by an onset of a deconfinement phase transition.
Additionally, the greater the energy gap between the hadronic phase and the pure quark
phase in the equation of state for quark matter, the more suppressed the growth of
this instability. The one-armed spiral instability links directly to the emission of the
sub-dominant ` = 2,m = 1 GW mode which is also suppressed by a deconfinement phase
transition. Such a suppression could be potentially measurable with the next generation
of GW detectors.

We explore the general relativistic hydrodynamics of a merger of strange stars in
chapter 4. To this aim, we provide a comparative discussion of the merger dynamics from
treatments of thermal effects in the equation of state for a strange star. In particular,
we compare the dynamics of a binary strange star merger from a cold β−equilibrated
equation of state supplemented with a thermal ideal gas correction to the dynamics from
an equation of state that consistently includes finite temperature effects. We find that
for either treatment, the gravitational wave signatures are degenerate with mergers of
binary neutron stars with a hadronic EOS, and therefore distinguishing between the two
classes of compact binary mergers is difficult based on the values of fpeak

2 .
Chapter 5 deals with the manifestation of thermal effects in neutron star matter in

the postmerger gravitational wave signature of a merger of neutron stars. In particular,
we control the effective nucleon mass m∗, a parameter for the equation of state that
influences the specific heat capacity of the merger remnant. We find that large values
of m∗ lead to higher specific heats and therefore colder and more compact remnants.
Additionally, the impact of changing m∗ is imprinted as increments in the postmerger
peak frequency fpeak

2 , much like a QCD phase transition. We show that a postmerger
SNR of 15 in the Einstein Telescope detector will be sufficient to constrain the effective
nucleon mass parameter from the postmerger GW emission. However, at the moment it
is unclear whether the source of such shifts in fpeak

2 could be attributed to QCD phase
transitions or to specific thermal effects.

In tandem with numerical simulations, we investigate the potential GW detectability
of QCD phase transitions by measuring shifts in fpeak

2 in chapter 6. To this aim, we
use the simulation dataset computed in chapter 2 involving the BLQ quark EOS. To
this dataset, we add additional numerical simulations of BNS mergers involving another

203



quark EOS DD2F-SF1. We find that the remnants of binaries evolved with the latter
quark model exhibit a stronger phase transition in that they lead to large shifts in fpeak

2 ,
i.e., ∆fpeak

2 ≈ 455Hz. We show that at postmerger SNRs as low as 10, strong QCD phase
transitions can be gravitationally detected and distinguished from other hadronic models
by the next generation of gravitational wave detectors. On the other hand, EOSs like
BLQ that model a more continuous (weaker) phase transition lead to effects degenerate
with mergers from other hadronic EOSs not containing quarks.

We shall now conclude this dissertation by asking the million-dollar question that will
encapsulate the crux of these works. The question is, what is it precisely in the quark
EOSs BLQ and DD2F-SF1 that causes such drastic changes in the dynamics of the merger
remnant to the point that phase transitions in one model (DD2F-SF1) are detectable
with gravitational waves but not in the other model (BLQ) ? As it turns out, the answer
to this question is multifaceted. The two EOS models BLQ and DD2F-SF1 differ not
only in the description of the low density nucleonic phase or the high density deconfined
quark phase, but also in the way these two phases are connected with each other. On
one hand, the BLQ EOS utilizes the phenomenological MIT Bag model to describe the
deconfined quark phase and uses the Gibbs construction (see section 1.2.5.2) to stitch it
to its hadronic phase. On the other hand, the DD2F-SF1 EOS models the deconfined
quark phase in a density functional approach [375] and uses the Maxwell construction
(see section 1.2.5.2) to connect the hadronic and quark phases together. These differences
in modeling the nature of strongly interacting matter lend their contributions to the
differences in the dynamics of the merger remnant. In these works, it is not possible
to disentangle the remnant dynamics arising as a result of differences in hadron/quark
treatments or Maxwell/Gibbs constructions. We postpone such explorations to a future
work wherein we propose to explore the effects of using different phase constructions
(Maxwell and Gibbs) on the phase transition dynamics in the remnant, while keeping the
hadronic and quark treatments identical. However, we can still draw important insights
by observing a few important diagnostics.

In figure 7.1, we show the oscillations in central density of the merger remnant as it
evolves with time. We compare this quantity for two representative scenarios: those of
symmetric binaries with total mass M = 2.6M� evolved with the BLQ and DD2F-SF1
EOSs. This pair of binaries is chosen because they are the closest in gravitational
mass and therefore the detectability of the DD2F-SF1 model (see chapter 6) and the
non-detectability of the BLQ model can be attributed to differences in the underlying
EOS. We can see that the remnant evolved with the DD2F-SF1 EOS undergoes stronger
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Figure 7.1. A comparison of the evolution of central density in the remnant (scaled to nuclear
saturation) with time for a merger of 1.3 M� - 1.3 M� binary corresponding to the EOSs
BLQ and DD2F-SF1. These EOSs construct the phase transitions via a Gibbs and a Maxwell
construction respectively. The remnant with the DD2F-SF1 EOS is more compact which is
evidenced by the stronger density oscillations it undergoes.

density oscillations when compared to the BLQ remnant and as a result is relatively
more compactified. For a perect fluid (that with stress-energy tensor of a perfect fluid),
it is straightforward to show (see chapter 3 in [7]) that angular momentum is conserved
provided one assumes azimuthal symmetry (i.e., ~∂ϕ is assumed to be a Killing vector
field). For a remnant of symmetric binary mergers, to an approximation, it is reasonable
to assume azimuthal symmetry and therefore conservation of angular momentum. Larger
compactification of the DD2F-SF1 remnant implies a reduction in the moment of inertia
and consequently an increase in the angular velocity of the remnant. It is this increase in
angular velocity which manifests as increased values of fpeak

2 . There is also an increase
in fpeak

2 for the BLQ model however it is modest and degenerate with other hadronic
EOSs, whereas for the DD2F-SF1 model the increase exceeds 1.6 σ.

Another interesting aspect of an onset of deconfinement phase transitions is revealed
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Figure 7.2. Azimuthally averaged radial profiles of specific entropy (per baryon) for the two
BNS models shown in figure 7.1. For the BLQ remnant, the flow near the core of the remnant
is adiabatic as is seen by a largely constant entropy distribution. On the other hand, the
fluid near the core of of the remnant with the DD2F-SF1 EOS experiences a shock which is
evidenced by local entropy production near the core. The green contours represent constant
density profiles in units of nuclear saturation.

by our simulations in figure 7.2. Following the analysis in [58,230,399], we compute az-
imuthaly averaged profiles of specific entropy (i.e., entropy per baryon) for the postmerger
evolution of the merger remnant as a function of cylindrical radii and time from merger.
Considering an equatorial slice of the remnant, we obtain specific entropy s = s(x, y) in
Cartesian coordinates from the hydrodynamic evolution. Following this, we interpolate
the specific entropy s onto a cylindrical grid and compute the azimuthally averaged
entropy profile as

〈s〉xy = 1
∆

∮
C(%)

√
γ%dϕ s(%, ϕ) where (7.1)

∆ =
∮
C(%)

√
γ%dϕ. (7.2)

Here % represents the cylindrical coordinate, ϕ the azimuthal coordinate and √γ is
the volume form (also interpolated to the 2D cylindrical grid). The integral is evaluated
over the contour C(%) where C is a concentric circle of radius % centred at the origin. The
entropy profile is a useful diagnostic to monitor the local production of entropy during
the postmerger evolution. We show these profiles for both the BLQ and DD2F-SF1
models in figure 7.2.

For a perfect fluid like the ones assumed by our GRHD infrastructure, one can show
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that smooth fluid flow is adiabatic (see chapter 3 in [7]). In other words, specific entropy
s is conserved along the fluid lines provided the flow is smooth, i.e., in the absence of
shocks the following condition holds true

ua∇as = 0. (7.3)

In the presence of shocks however, entropy is no longer conserved and there is local
production of entropy, i.e., ua∇as ≥ 0. In the figure 7.2, we see that for both BLQ and
DD2F-SF1 models, at large % corresponding to the edges of the merger remnant, entropy
is produced locally indicating the presence of shocks. These shocks are hydrodynamic
in origin arising due to the violent collision dynamics taking place along the interface
of the merging stars. On the other hand at small values of % corresponding to the fluid
flow near the core of the remnant, the BLQ model predicts an almost adiabatic flow
evidenced by the constant entropy profile. On the other hand, the remnant with the
DD2F-SF1 EOS exhibits shocked fluid flow near the remnant’s core. This shock, unlike
the ones discussed before, is not hydrodynamic rather nuclear in origin. It arises due
to the fact that in the DD2F-SF1 model, the phase transition proceeds at a constant
pressure (the so-called Maxwell construction, see figure 1 in [58] and figure 4 in [375]).
In the transition region or the mixed phase, a consequence of constant pressure is that
local sound speed vanishes and consequently all fluid flow in the mixed phase becomes
supersonic. In order to increase entropy, this supersonic fluid flows in a way that makes it
subsonic. In other words, a shock front is produced that tends to engulf regions of mixed
phase making the fluid flow subsonic. This shock arises due to the Maxwell construction
and is responsible for the local entropy production near the core of the remnant. We
postpone the consequences and further treatments of this shocked flow in models with
Maxwell construction to future work.

In conclusion, this dissertation reflects a synergy between two mutually dependent
fields of study: numerical relativistic simulations and gravitational wave data analysis in
addressing the problem of QCD phase transitions. To put this interplay into perspective,
with the advent of the next generation of GW detectors, the SNR for an inspiral signal
from a GW event a 100 Mpc away could be as high as several 100s. This means that we
require GW waveforms of high accuracy because at high SNRs, waveform systematics
play an increasingly dominant role. Improvements in several avenues like conservative
fomulations of GRHD [18] or novel numerical methods [400,401] for existing formulations
could play a key role in the generation of more accurate waveforms. On the other hand,
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rigorous treatments of relevant physics modules like GRMHD, accurate neutrino radiation
transport or non-perfect fluids should be considered for adding realism to the simulations.
Advances in computational infrastructure with the development of Graphic Processing
Units (GPUs) are being exploited by adapting contemporary codes to these architectures.
This dissertation is a small step in simulating science that will be within reach with the
next generation of GW detectors.
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