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ABSTRACT

We study the magneto-rotational instability (MRI) dynamo in a geometrically thin disc (H/R < 1) using stratified zero net
(vertical) flux shearing box simulations. We find that mean fields and electromotive forces (EMFs) oscillate with a primary
frequency fayn = 0.017 Q (approximately nine orbital period), but also have higher harmonics at 3fs,,. Correspondingly, the
current helicity has two frequencies 2fyy, and 4fgy,, Which appear to be the beat frequencies of mean fields and EMFs, respectively,
as expected from the magnetic helicity density evolution equation. Further, we adopt a novel inversion algorithm called the
‘Iterative Removal Of Sources’, to extract the turbulent dynamo coefficients in the mean-field closure using the mean magnetic
fields and EMFs obtained from the shearing box simulation. We show that an «-effect (o) is predominantly responsible for the
creation of the poloidal field from the toroidal field, while shear generates back a toroidal field from the poloidal field, indicating
that an a—S2-type dynamo is operative in MRI-driven accretion discs. We also find that both strong outflow (¥,;) and turbulent
pumping (y ;) transport mean fields away from the mid-plane. Instead of turbulent diffusivity, they are the principal sink terms
in the mean magnetic energy evolution equation. We find encouraging evidence that a generative helicity flux is responsible for
the effective a-effect. Finally, we point out potential limitations of horizontal (x — y) averaging in defining the ‘mean’ on the

extraction of dynamo coefficients and their physical interpretations.
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1 INTRODUCTION

The problem of angular momentum transport is a key concept in
a rotationally supported accretion disc (for a review, see Balbus &
Hawley 1998). The current consensus is that a weak magnetic field
instability, namely magneto-rotational instability (MRI; Velikhov
1959; Chandrasekhar 1960; Balbus & Hawley 1991, 1992), is
responsible for outward angular momentum transport and drives
mass accretion in a sufficiently ionized accretion disc (e.g. as in
X-ray binaries, inner part of active galactic nucleus discs). Although
linear MRI ensures outward angular momentum transport, it must be
studied in the non-linear phase to account for different observable
phenomena in accretion discs.

MRI in an accretion disc is either studied in a local set-up
(shearing box; Balbus & Hawley 1992; Brandenburg et al. 1995;
Hawley, Gammie & Balbus 1995; Davis, Stone & Pessah 2010; Shi,
Krolik & Hirose 2010; Bodo et al. 2014; Bhat, Ebrahimi & Blackman
2016) or in a global simulation (Stone, Pringle & Begelman 1999;
Hawley 2001; Beckwith, Armitage & Simon 2011; Hawley et al.
2013; Parkin & Bicknell 2013; Hogg & Reynolds 2016; Dhang &
Sharma 2019; Dhang, Bai & White 2023). While a global approach
is more desirable, it is computationally expensive. On the other
hand, the shearing box approach offers an alternate path which is
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computationally less costly and can provide deep insights into the
local processes in MRI-driven turbulence.

In the shearing-box approach (Goldreich & Lynden-Bell 1965),
we expand fluid equations to the lowest order of H/R, where H is the
density scale height and R is the local radius. Therefore, this approach
is valid only for geometrically thin discs with H/R < 1. Depending on
whether the vertical component of gravity (g, = —Q?%z) (producing
a vertically stratified gas density) is considered in the momentum
equation or not, shearing box simulations are of two types: stratified
(g; # 0) and unstratified (g, = 0). Further, depending on whether
the computational domain can contain net vertical magnetic flux,
shearing box models can be classified into zero net flux (ZNF) and
net flux (NF) models. Therefore, four possible combinations of the
shearing-box model are (i) unstratified ZNF, (ii) unstratified NF, (iii)
stratified ZNF, and (iv) stratified NF. This work considers a stratified
ZNF shearing box model to explore the MRI dynamo in saturation.

Shearing box simulations provide a wide range of behaviour
(e.g. convergence, turbulence characteristics, etc.) depending on
the shearing box model used (for details, we refer to readers to
see table 1 in Ryan et al. 2017). However, it is to be noted that
we will restrict our discussion to the isothermal (i.e. sound speed
is constant) models where there is no explicit dissipation and the
numerical algorithms provide the dissipation through truncation error
at the grid scale. In the presence of an NF, unstratified shearing
box simulations show a convergence (in terms of accretion stresses)
and sustained turbulence (Hawley et al. 1995; Guan et al. 2009;
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Simon, Hawley & Beckwith 2009). On the other hand, stratified NF
simulations present different accretion stresses depending on the NF
strength and sustained turbulence (Guan & Gammie 2011; Bai &
Stone 2013). Unstratified ZNF models showed intriguing behaviour.
Earlier isothermal unstratified ZNF studies (Fromang & Papaloizou
2007; Pessah, Chan & Psaltis 2007) found decreased accretion stress
and turbulence with increased resolution, implying non-convergence.
However, later Shi, Stone & Huang (2016) recovered convergence
using a box with a larger vertical extent than the radial extent. In
contrast, earlier stratified ZNF models (Davis et al. 2010) suggested
that the models are converged till the resolution 128/H; however,
recent studies (Bodo et al. 2011; Ryan et al. 2017) found the model
loses convergent properties at higher resolution.

The convergence problem is closely related to the magnetic energy
generation process in the MRI-driven flow. For the ZNF (absence
of NF) models, an MRI-driven dynamo must act to overcome the
diffusion and sustain the zero NF in the accretion flow. Earlier ZNF
simulations in unstratified (Shi et al. 2016) and stratified (Davis
et al. 2010; Bodo et al. 2014; Ryan et al. 2017) shearing boxes
found MRI turbulence can self-generate large-scale magnetic fields
attaining quasi-stationarity and sustaining turbulence. Riols et al.
(2013) suggested that the non-linear MRI does not behave like a linear
instability; rather, it provides a pathway for saturation via a subcritical
dynamo process. This leads to the question of what kind of dynamo
can be sustained in the MRI-driven accretion flow, small-scale or
large-scale? The lack of convergence in ZNF models was attributed
to the low numerical Prandtl number (Fromang & Papaloizou 2007;
however, see Simon et al. 2009) and hence the inefficiency of small-
scale dynamo to operate at small Prandtl number (Schekochihin et al.
2005; Bodo et al. 2011). However, it is unclear what happens when
convergence is recovered in unstratified ZNF simulations with tall
boxes (Shi et al. 2016).

Studying MRI dynamo is also important for understanding the
generation of coherent large-scale magnetic fields determining the
level of transport (Johansen, Youdin & Klahr 2009; Bai & Stone
2013) and outflows from the accretion disc (von Rekowski et al. 2003;
Stepanovs, Fendt & Sheikhnezami 2014; Mattia & Fendt2022). MRI,
in principle, can generate magnetic fields coherent over several scale
heights (Dhang et al. 2023) and acts locally as a mean field in the
absence of any external flux influencing convergence and the disc
dynamics.

Generally, stratified models generate a more coherent large-
scale field over the unstratified models (for a comparison, see Shi
et al. 2016). Cyclic behaviour of azimuthally averaged magnetic
fields (mean fields), popularly known as the butterfly diagram, is a
typical feature observed in the stratified shearing box simulations
(Brandenburg et al. 1995; Gressel 2010; Bodo et al. 2014; Ryan
etal. 2017; Gressel & Pessah 2022). However, note that the presence
of a strong magnetic NF (Bai & Stone 2013; Salvesen et al. 2016),
convection (Hirose et al. 2014; Coleman et al. 2017), etc. can alter the
periodicity in the butterfly diagram. Although the cyclic behaviour
of mean fields can be explained by invoking the interplay between
shear and helicity (Brandenburg & Donner 1997; Gressel & Pessah
2015), some features, such as upward migration of the mean fields,
still demand an explanation.

Several studies attempted to understand the underlying mecha-
nisms of MRI dynamo using different approaches. While some of
the studies (Lesur & Ogilvie 2008; Bai & Stone 2013; Shi et al.
2016; Begelman & Armitage 2023) invoked toy models to complete
the generation cycles of radial and azimuthal fields, others (local:
Brandenburg et al. 2008; Gressel 2010; Shi et al. 2016; Gressel &
Pessah 2022; Mondal & Bhat 2023, global: Dhang et al. 2020)
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used mean-field theory to investigate the large-scale field generation
in the MRI-driven turbulent accretion flow. Most of the studies
characterizing the turbulent dynamo coefficients in the regime of
mean-field dynamo theory used state-of-the-art ‘Test Field” (TF)
method (Gressel 2010; Gressel & Pessah 2015), while a few used
direct methods such as linear regression (Shi et al. 2016) and singular
value decomposition (SVD; Dhang et al. 2020) to calculate dynamo
coefficients in post-process or statistical simulations to carry out
combined study of the large-scale dynamo and angular-momentum
transport in accretion discs (Mondal & Bhat 2023). In this work, we
use a direct method, a variant of the cleaning algorithm (Hogbom
CLEAN method; Hogbom 1974), called ‘Iterative Removal Of
Sources’ (IROS; Hammersley, Ponman & Skinner 1992), mainly
used in astronomical image construction to analyse MRI-dynamo in
the mean-field dynamo paradigm. We modified the IROS method
according to our convenience (for details, see Section 2.3, also see
Bendre et al. 2023) and used it to determine the dynamo coefficients
by post-processing the data obtained from the stratified ZNF shearing
box simulation.

The paper is organized as follows. In Section 2, we describe details
of shearing box simulations, basics of mean field closure used, and
techniques of the IROS method. Section 3 describes the evolution
of MRI to a non-linear saturated state, spatio-temporal variations of
mean magnetic fields, electromotive forces (EMFs), and periodicities
present in different observables. The spatial profiles of calculated
turbulent dynamo coefficients, the reliability of the calculation
method (using both EMF reconstruction and a 1D dynamo model),
and contributions of each coefficient to the mean magnetic energy
equation are described in Section 2.3. In Section 5, we discuss the
plausible reasons behind different periodicities present (in mean
magnetic fields, EMFs, and helicities), comparison of our work with
the previous works, the possible importance of a generative helicity
flux, and limitations of the averaging scheme and mean-field closure
used in decoupling contributions from different dynamo coefficients.
Finally we summarized our key results in Section 6.

2 METHOD

This work involves performing shearing box simulations of MRI-
driven accretion flow, along with extracting dynamo coefficients
using the mean-field dynamo model. In this section, we discuss
details of the shearing-box simulation set-up, an introduction to the
mean-field dynamo model, and the IROS method used to determine
turbulent dynamo coefficients using the simulated data.

2.1 Shearing-box simulation

We perform stratified ZNF shearing box simulations to study the
MRI-driven dynamo in a geometrically thin disc (H/R < 1). To do
that, we solve ideal MHD equations in a Keplerian shearing box
given by

0p

V. =0, 1
5 TV (V) @
dpv R
W—FV-(pvv—BB)—I—VP:pgS—ZQz><,0V, 2)
oB
m =V x(vxB) 3)

using the pLuTo code (Mignone et al. 2007) with x,y, and z as the
radial, azimuthal, and vertical directions, respectively. Here, p, P, v,
and B denote density, thermal pressure, velocity, and magnetic
fields, respectively. The terms g, = Q2 (2gx% — z2) and 2Q% x pv
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represent the tidal expansion of the effective gravity and the Coriolis
force, respectively, with 2 denoting orbital frequency. We use an
isothermal equation of state

P = pcl. 4)

Therefore, we do not need to solve the energy equation. Additionally,
we use constrained transport (Gardiner & Stone 2005) to maintain
divergence free condition

V-B=0 &)

for magnetic fields. We use the HLLD solver (Miyoshi & Kusano
2005) with second-order slope-limited reconstruction. Second-order
Runge—Kutta (RK2) is used for time integration with the CFL number
0.33. Also note that despite our shearing-box model lacking explicit
dissipation, we refer to it as the direct numerical simulation (DNS).

We initialize an unmagnetized equilibrium solution with density
and velocity given by

2
p© = Po €Xp (—ﬁ) , (6)
vV=—qQx3y, (N
where ¢ = 1.5 and py is the mid-plane (z = 0) density and
Cs
H=— 8
2 ®

is the thermal scale height. We set pg = ¢; = Q = 1, so that H = 1.
Unless stated otherwise, all the length and time-scales are expressed
in units of H and Q~!, respectively. We initialize a ZNF magnetic
field given by

qu/% sin(zlix) : ©)

with By = 10* defining the strength of the field and L, L,, L, denoting
the size of the shearing-box.

Our computational domain extends from —L,/2 < x < L,/2, —L,/2
<y<Ly2,and —L./2 < z < L./2. It has been found in earlier studies
that shearing box results depend on the domain size; larger boxes tend
to capture dynamo better than their smaller counterparts as well as
smaller boxes demonstrate a transition to anomalous behaviour (see
e.g. Simon, Beckwith & Armitage 2012; Shi et al. 2016). To avoid
these discrepancies, we choose a shearing box of size L, x L, x
L, = 3H x 12H x 8H with a grid resolution N, x N, x N, =
96 x 192 x 256 giving rise to a resolution of 32/H in the vertical
direction. However, we must admit that there exists an issue with the
convergence in stratified ZNF models as discussed in the Section 1.
We reserve the dependence of MRI dynamo on numerical resolution
as a topic of future research investigation.

We use periodic and shearing-periodic (Hawley et al. 1995)
boundary conditions in the y and x boundaries, respectively. Outflow
boundary conditions are implemented in the vertical (z) boundaries.
A gradient-free condition is maintained for scalars and tangential
components of vector fields at the boundaries. At the same time, v,
>0 for z > 0 and v, <0 for z < 0 are set to restrict mass inflow into
the domain at vertical boundaries. The z-component of the magnetic
field is set by the divergence-free condition of the magnetic field.

Turbulent dynamo coefficient estimation involves analysis of time
series of mean magnetic fields and EMFs obtained in shearing box
simulation. Therefore, we dump the data quite frequently with data
dumping interval At = 0.2 Q7! and run it till = 300 Q! to have
enough number data points in the time series of mean magnetic fields
and EMFs.
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2.2 Mean field closure

Before describing the details of mean field dynamo theory and the
closure used, we define what is meant by ‘mean’ and ‘fluctuation’ in
our work. We define mean magnetic fields (B) as the x — y-averaged
values as follows:

. 1 Lej2 Ly
B(z,1) = / B(x, y, z, 1) dx dy. (10)
LiLyJ r.pJ-1,p

Fluctuating magnetic fields are defined as
B'(x, y,z,1) = B(x, y,z,1) = B(z,1). (1)

Mean and fluctuations of the x- and z-components of the velocity are
defined in the same way as those for magnetic fields, while the mean
and fluctuation of y-component of velocity are defined as

Uy, = —qQx, v: = vy — Uy. (12)

If we decompose the magnetic and velocity fields into mean and
fluctuation and insert them into the magnetic field induction equation,
we obtain the mean-field equation

0B _ -

E:VX(VXB)—{-VX& (13)
where we assume that microscopic diffusivity is vanishingly small
(ideal MHD limit). Here, mean EMF

E=vxPF (14)

appears as a source term in equation (13). The crux of the mean-field
dynamo theory is how to express mean EMF in terms of the mean
magnetic fields. In general, the usual mean-field closure (Raedler
1980; Brandenburg & Subramanian 2005; Shukurov & Subramanian
2021) is given by

gi(Z) = Olij(Z) Bj(Z) - T]ij(Z) J_', (15)

where we neglect higher than the first-order spatial derivatives
and time derivatives of mean magnetic fields and «;;, n; are the
turbulent dynamo coefficients which characterize the dynamo, and
J =€ ,z,azé,(z) is the current. Further, while calculating turbulent
dynamo coefficients using direct methods [e.g. SVD (Bendre et al.
2020; Dhang et al. 2020), linear regression (Shi et al. 2016; Squire &
Bhattacharjee 2016)], it is also assumed that «;;, n; are constant
in time. However, we find that in our simulation of MRI-driven
accretion flow, the current helicity, which is potentially a primary
component determining the a;;, shows a reasonably periodic change
over time with a period half the dynamo-period (for details, we refer
the reader to Section 3.3). This time-dependent feature of current
helicity leads to considering a heuristic mean field closure defined
as

&) = (af) + a; cosQQuynt + ¢)) B;(z) — ni; J; (16)

to capture the time dependence in «;;. Here, ozf.)j and oel-'j are the time-
independent (i.e. DC component) and time-dependent parts of o,
respectively, and Qqyn = 27 fgyn = 27/T 4y, With fgy, and Tyy, being
the dynamo frequency and period, respectively. Further, one expects
1;; to be dominated by a DC component, because 7;;-s are generally
determined by the turbulent intensity of the flow, not by helicities.
Thus for simplicity, we adopt a time-independent 7;;.

2.3 Dynamo coefficient extraction method — IROS

We solve equation (16) in a least-square sense to extract the turbulent

dynamo coefficients (a?j, oz,-lj, and 7;) using mean magnetic fields
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Bi(z, t) and EMFs &(z, t) (with i € {x, y}) obtained from shearing-
box simulations described in Section 2.1. Further, we assume that
these dynamo coefficients stay statistically unchanged during the
quasi-stationary phase of evolution, i.e. the coefficients are indepen-
dent of time. Hence, all the dynamo coefficients are only dependent
on the vertical coordinate z.

As afirst step of coefficient determination in this underdetermined
system, we construct the time series of length N, of mean EMFs
&(z, 1y ...ty), mean magnetic fields B;(z,t,...ty), and currents
Ji(z,t1 .. .ty) from the DNS (i € {x, y}). With these time series,
we rewrite equation (16) at any particular z = 7" as

Y&, 1) = A, )X, (17)
where the matrices y, A, and x are defined as

(& 1) & 1)
E(@ ) (2t

Y1) = (Z. 2) }(Z. 1)

_gx(2,7 tN) gy(z/v tl)

i Bx(z/7 [l) Bx(z/7 [2)
By(Z/, ll) By(Z/, 12)
CX(Z,7 tl) CX(Z,7 t2) . Cx(z/’ tN)
Cy(zlv tl) Cy(zlv t2) e Cy(Z/, tN)
—J_x(Z/, tl) —J_X(Z/, t2) e T J_x(z,7 tN)

LTy (2 1) —=Ty(Z 1) ... — J(@, ty).

[a? (') o), ()]

.. B,\-(Z/, tN) T
.. B)-(Z/, tN)

AT(Z 1) =

), (@) ) (&)
al (Z) @), (2)
ol @) al @)
Nex (@) My (2)
Ly (@) nyy(2')]

X(@) = (18)

Here, the terms Ci(z', ;) = B;(2, #;) cos (2Qqynt; + ¢) (Vi € {x, y})
which take into account the time-dependent part of «;;. For simplicity,
we assume ¢ to be zero.

Our task is to determine the dynamo coefficients (x) by pseudo-
inverting equation (17). This task is complicated first by the fact that
both components of mean field and current have additive correlated
noise and secondly by the fact that the y-component of the mean
field is typically much stronger compared to the x-component, due
to the rotational shear (and by consequence the x-component of
current is much stronger than its y-component). Typical schemes of
the least square minimization in such cases tend to underestimate
the dynamo coefficients that are associated with the x-component of
mean field (i.e. the coefficients &) and /), and those with the y-
component of mean current (i.e. the coefficients 7;,). To circumvent
these issues, we rely upon the IROS method (Hammersley et al. 1992)
that we have recently adapted for such inversions in the dynamo
context (Bendre et al. 2023). This method is based on Hogbom
clean algorithm (Hogbom 1974) used in radio astronomy to construct
an image by convolving multiple beams, iteratively locating and
subtracting out the strongest source to model the rest of the dirty
image. It is particularly useful when the relative contribution of
some of the beams to the final image happens to be negligible. Such
a situation is analogous to have only a few of the columns of A
(the beams) largely contribute to y (an image). A brief outline of the
method is as follows.
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First, at any particular z = 7’ we set all the dynamo coefficients
(@), al;(2)), and n;(2) to zero, (i.e we set X(z') = 0). Then to
compute these coefficients, we iteratively estimate their magnitudes
as follows. To derive the zeroth-order estimates of these coefficients
we fit every ith column of Y(z', 1) denoted as Y;(z, t)), against
the individual columns of A(z’) (denoted as A.(z')) separately as
lines. Slopes and chi-square errors ( X,%((Z/ )) associated with each
fit are recorded. The individual chi-square errors are defined as
x53(@) = >;(Y; — Ax Xix)?). Then the best-fitting dynamo coeffi-
cient (the one which has the least chi-square error) is updated by
adding to it its zeroth-order estimate multiplied by a small factor (e
< 1), called the loop-gain, while other coefficients are kept constant.
For example, if the chi-squared error associated with the line fit
EZ t.. . ty) versus By(z', 1y .. .ty) (i.e. x,(2)) is the least and if
the slope is m then X, 1(z') (i.e. afv) is updated by adding to it a
factor of me. Subsequently, the contribution to the EMF associated
with the best-fitting coefficient, also multiplied by the €, is subtracted
from the corresponding EMF component. For instance, using the
same example, a factor of € o, (z') By(z’, ty ...ty)is subtracted from
E.(Z, t1...ty). This residual EMF is then used as an actual EMF
component to further compute higher order estimates of dynamo
coefficients, and this process is repeated a suitable number of times
until either all the dynamo coefficients converge to their respective
constant values or all four chi-squared errors get smaller than a
certain pre-defined threshold. All the aforementioned steps are then
repeated at every z = 7.

We apply this method with € = 0.1 for 500 refinement loops to
the time series of EMFs, mean fields, and currents obtained from the
DNS data. While constructing these time series (from ¢ = 100 to 300
Q") with data dumping interval Atgump = 0.2 Q! we make sure
that they correspond to the quasi-stationary phase of the magnetic
field evolution.

The IROS method does not provide an estimate of errors on the
calculated coefficients directly. We therefore calculate a statistical
error of the dynamo coefficient by considering the five different
realizations of time series. We construct five different time series
of mean fields, currents, and EMFs by skipping four data points
in the time series. Specifically, the time series (71, f2, ... tx) (of all
components of mean field, current, and EMF) are splitinto (¢, #s . . .),
(tr,t7...), (3,13 ...), (t4, 19 ...), and (s, t1o . ..). We use these time
series to calculate five sets of dynamo coefficients and calculate
their standard deviations to represent the errors on the calculated
coefficients.

3 RESULTS: SATURATION OF MRI, MEAN
FIELDS, AND EMF-S

We now turn to the results of our shearing box simulation of MRI
in a geometrically thin disc, and investigate its dynamo action in
addition to discussing several important properties which illuminate
the nature of the MRI dynamo. Most of our analysis of magnetic
field generation will focus on the saturated state of MRI, when the
disc is in the quasi-stationary phase.

3.1 Saturation of MRI

First, consider the time evolution of accretion stresses and magnetic
energies. This will also allow us to determine the quasi-stationary
phase of the MRI-driven turbulence. The top panel of Fig. 1 shows
the time history of accretion stresses (Reynolds and Maxwell).
Normalized Reynolds and Maxwell stresses are defined as
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Figure 1. Top panel: time history of Reynolds (Wgey) and Maxwell (Wnax)
stresses. Bottom panel: time history of the volume-averaged mean (B%) and
fluctuating (B'%) magnetic energies.

(pviv))y
Wrey = #’ 19
T D) )
B.B,). + (B'B’),
Wiy, = o2 BB (20)
(pg)z

where the averages are done over the whole volume. Here, ~ and
(.); indicate the average over x — y and z, respectively. Reynolds
stress is due to the correlation of fluctuating velocity fields, while
Maxwell stress is composed of a correlation between the fluctuating
components as well as that between the mean components of the
magnetic fields. Both the stresses grow exponentially during the
linear regime of MRI, and eventually saturate around an average
value when MRI enters into the non-linear regime. In our simulation,
we find the volume- and time-averaged [within the interval = (100-
300) 2~ ")] values of Reynolds and Maxwell stresses to be Wrey, av =
0.0048 and Wypax ov = 0.0167, respectively. The ratio of Maxwell
to Reynolds stress is Wnax, ay/Wrey, av = 3.5, close to 4, as predicted
by Pessah, Chan & Psaltis (2006) for ¢ = 1.5 and similar to what
is found in earlier numerical simulations (Gressel & Pessah 2015;
Nauman & Blackman 2015).

The bottom panel of Fig. 1 shows how the volume-averaged mean
({(B?),) and fluctuating ({B’2),) magnetic energies evolve over time.
Like accretion stresses, magnetic energies oscillate about an average
value in the quasi-stationary phase after the initial exponentially
growing phase. It is also worth noting that the mean part of the
magnetic field shows a larger time variation than the fluctuating part
of the magnetic field. We point out an important point that the fluc-
tuating magnetic field is stronger than the mean magnetic field, and
the implication of this will be discussed in the latter part of the paper.

We see in Fig. 1 that the accretion stresses and magnetic energies
start saturating around ¢ = 40 Q~'. However, to remain safer, we
consider the simulation in the time range t = (100-300) Q~' for
dynamo coefficient calculation in the quasi-stationary state.

3.2 Evolution of mean fields and EMFs

The most preliminary diagnostic of the dynamo is to look at the
spatio-temporal variation of the mean magnetic fields, popularly
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known as the butterfly diagram (see e.g. the review by Brandenburg &
Subramanian 2005). Fig. 2 shows the butterfly diagrams for mean
magnetic fields B, and B, along with the mean EMFs &, and &,.
Here, we note that the mean EMF acts as a source term in the
mean magnetic field energy evolution equation. In particular, &, is
responsible for the generation of poloidal field (here B,) from a
toroidal one due to an a-effect, which itself naturally emerges by
a combined action of stratification and rotation (Krause & Raedler
1980) in our stratified shearing box simulation. At an early stage of
evolution (around ¢ ~ 2 orbital period), both mean fields and EMFs
show lateral stretches with changing the sign in the vertical direction,
which is clearly due to channel modes of MRI (Balbus & Hawley
1992; Balbus & Hawley 1998). During saturation, both mean fields
and EMFs show a coherent vertical structure which changes signs in
time with a definite period. We find that magnetic field components
By and EMF &, show a very coherent spatio-temporal variation with
a time period of approximately nine orbital period (27/€2), similar
to the earlier studies of MRI dynamo (Brandenburg et al. 1995;
Davis et al. 2010; Gressel 2010; Gressel & Pessah 2015; Ryan et al.
2017). This periodicity is semitransparent in the butterfly diagram
of By, while this is hardly apparent for £,. However, we note that
periodicities exist in all components of mean fields and EMFs as will
become clear below (see section 3.5).

3.3 Evolution of kinetic and current helicities

The generation of large-scale magnetic fields by a dynamo action is
often associated with helicity in the fluid velocity field. Assuming
isotropic homogeneous turbulence, Krause & Raedler (1980) sug-
gested a kinetic a-effect defined by

i = — LKy = —~ TV XV @1
kin 3 hel 3 .

responsible for magnetic field generation, where 7. is the correlation
time and K} = v'.V x v’ is the kinetic helicity. It is suggested that
ayin accounting for the effects of the helical velocity field takes the
role of driver, while o mag (Pouquet, Frisch & Leorat 1976), defined by
aln(z, 1) = %Chel = %ug.v X v}, 22)
is the non-linear response arising due to the Lorentz force feedback,
gradually increasing and ultimately quenching the Kkinetic-o
(Blackman & Brandenburg 2002; Subramanian 2002). Here,
v, = +/B?/p is the Alfv'en velocity and Che = v).V x V), is
the current helicity. Ideally, the effective a-effect, responsible for
poloidal field generation, is supposed to be otayn = kin + Umag-

Fig. 3 shows the spatio-temporal variation of oy, and apae. We
assume correlation time 7, to be same for both «-s and 7, = Q7.
The an,e changes sign with a time-period approximately five orbital
period (27/S2), roughly half of the dynamo period, with which the
mean fields and EMFs change sign, while oy, does not show any
explicit periodicity. We will postpone a detailed discussion on the
periodicity of helicities to Section 3.5 where we discuss periodicities
associated with all important variables.

3.4 Co-existence of small- and large-scale dynamos

Both kinetic and magnetic-«-s are small close to the mid-plane as
shown in Fig. 3, while this is not true of the random kinetic and
magnetic energies (see e.g. section 4.1, where we discuss vertical
profiles of rms value of random fluid velocity and Alfven velocity).
At the same time, the amplitudes of the helicities increase away from
the mid-plane. These features suggest that both small-scale dynamo

$20Z AN 0Z Uo Jasn AST( Uos104youAg usuoape|g seyosinaq Aq 160919//8//Z/S/0ES/a101e/seluw/Wwoo dno olwapeose//:sdiy Woll papeojumo(]



L1 S
? & 8
&%

S M

t (21/9)

2783

MRI-driven dynamo

Figure 2. Spatio-temporal variation of mean magnetic fields B, (top left panel) and By (bottom left panel) and mean EMFs &, (top right panel) and £ y (bottom
right panel). Mean magnetic field component By and y-component of EMF &, show a coherent change in space and time [with a time period approximately
nine orbital period (277/Q2)], while the spatio-temporal patterns in By and £y are less coherent.

Figure 3. Spatio-temporal variation of aﬁi);n(z, t) and a%"g(z, t) assuming
T, = Q1. Both the helicities are small close to the mid-plane, and become
larger at larger heights. The oy flips sign with a time period approximately
five orbital period (277/€2), roughly half the dynamo period, while okin does
not show any periodicity.

(when magnetic field grows because of the random stretching and
twisting of the magnetic fields due to turbulent fluid motion) and
large-scale dynamo (when magnetic field grows under the action
of helicities) co-exist in MRI-driven dynamo (Blackman & Tan

2004; Gressel 2010). The MRI-driven small-scale dynamo dominates
magnetic field generation close to the disc mid-plane where stratifi-
cation is unimportant and helicities are small. In contrast, at larger
heights where stratification becomes important, and helicities are
large, a helicity-driven large-scale dynamo governs the magnetic field
generation (Dhang & Sharma 2019; Dhang et al. 2020). However, it
is to be noted that o, is larger than a4, by one order of magnitude,
and hence it is very likely that the effective-o will be predominantly
due t0 U mgg-

3.5 Power spectra of mean fields, EMFs, and helicities

The butterfly diagrams shown in the previous sections depict the
apparent periodicities of mean fields, EMFs, and helicities. We look
at the power spectrum defined by

1 22 )
/ dz /q(z, el dr
22 =21 Jg

where g(z, t) is any generic quantity to investigate the periodicities in
greater detail. Here, the spatial average is done over different heights,
namely z =0 — H, z = H — 2H, and z = 2H — 3.5H to study the
variation of periodicities at different scale heights.

Fig. 4 shows the power spectra of mean fields B, B, (top panels),
mean EMFs &,, £, (middle panels), and helicities Kpel, Cher (bottom
panels). It is noticeable that power spectra for mean fields and
spectra peaks at the primary frequency foyn = 0.017 © (equivalent
to approximately nine orbital period), which was also visible in
the butterfly diagrams. In addition to the primary frequency, the
power spectra also show the presence of higher harmonics (at 3fqy,),
which went unnoticed in the earlier works of MRI dynamo. Similarly,
power spectra of current helicity Cy also show the presence of higher
harmonics (at 4 fg,,) in addition to the primary frequency at 2fg,,. We
also note that dynamo frequency remains almost constant at different

2

pq(f) =

(23)
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Figure 4. Power spectra of mean fields B,, By (top panels), mean EMFs &,, é_‘y (middle panels), and helicities K], Chel (bottom panels). Spatial averages are
done over different heights: z = 0 — H (black lines), z = H — 2H (green lines), and z = 2H — 3.5H (red lines). The zeroth frequency values are denoted by
‘asterisks’. The vertical dashed lines denote the dynamo frequency fayn = 0.017 and its multiples.

heights. However, kinetic helicity does not show any periodicity.
Presence of a strong time variation in oy, and its dominance over
ayin necessarily leads to the expectation that turbulent dynamo coef-
ficients (¢ — coefficients) should harbour a time-dependent part (ailj)
along with the traditional time-independent part (a?j) as discussed in
Section 2.3.

4 RESULTS: DYNAMO COEFFICIENTS FROM
IROS

We obtained mean fields (B, B,) and EMFs (£,, &,) from the
shearing-box simulation and use a modified version of the IROS
method (see Section 2.3) to calculate time-independent and time-
dependent turbulent dynamo coefficients characterizing the MRI
dynamo. However, we find the x — y-averaging cannot remove all
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the signatures of the small-scale dynamo. The small-scale dynamo
is expected to have a shorter correlation time of the order of few Q!
and contribute noise at the higher frequency end compared to the
large-scale dynamo. Therefore, we further smooth the mean fields
and EMFs using a low-pass Fourier filter and remove contributions
from the frequencies f > f.. We consider three cases: (i) f. = 0.05
(A3fayn), (1) fo = 0.12 Q2 (R6fyyn), and (iii) fo — oo (unfiltered)
to assess the effects of the small-scale dynamo on the dynamo
coefficient extraction.

4.1 Time-independent dynamo coefficients

Fig. 5 shows the vertical profiles of time-independent dynamo
coefficients oz?j and n; for different values of f.. Four pan-

els at the top illustrate the vertical profiles of coefficients
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Figure 5. Vertical profiles of time-independent turbulent dynamo coefficients (; 1L n?j) in MRI simulation calculated using the IROS method. A low-pass
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represent £ 1o statistical error on calculated coefficient as described in Section 2.3.

0

(o, otgy, Nyx, Nxy) associated with the x-component of EMF

&, while four panels at the bottom show profiles of those

(af,x, Ot?,y, Nyx> 1Nyy) associated with the y-component of
EMF 5_\,.

The ‘coefficient of most interest’ out of the calculated ones is
og),y, which plays a vital role ir_l producing the poloidal field (here
By) out of the toroidal field (By) (also see Section 4.4) via an «-
effect, associated with the helicities (see Section 3.3). The coefficient
oz?,y shows an antisymmetric behaviour about the z = 0 plane, with
a negative (positive) sign in the upper (lower)-half plane (for |z|
< 2). For |z| > 2, the sign of oegy tends to be positive (negative)
in the upper (lower)-half plane. Earlier studies of MRI dynamo in
local (Brandenburg 2008; Gressel 2010; Gressel & Pessah 2015) and
global (Dhang et al. 2020) frameworks also found a similar trend
in a(;.y‘ However, it is to be noted that our study suggests a stronger

0 . -
, in the upper half plane compared to that in the earlier

negative o
studies. The negative sign in the upper half plane is attributed to
the buoyant rise of magnetic flux tubes under the combined action
of magnetic buoyancy and shear (Brandenburg & Schmitt 1998;

Brandenburg & Subramanian 2005; see also Tharakkal et al. 2023).

Brandenburg & Schmitt (1998) also suggested that negative o, is
responsible for the upward propagation direction of dynamo waves
seen in the butterfly diagrams of MRI-driven dynamo simulations
(see e.g. Fig. 2). Another different way of looking at the origin of the
effective « is to link it to the helicity flux as envisaged by Vishniac
(2015) and Gopalakrishnan & Subramanian (2023). We discuss this
possibility in Section 5.3.

The off-diagonal terms of the a-coefficients are related to turbulent
pumping. This effect is responsible for transporting large-scale
magnetic fields from the turbulent region to the laminar region.
We found a)?y and ozgx to be antisymmetric and Ol)?y > OISX unlike
the previous studies (Brandenburg 2008; Gressel & Pessah 2015)
which found a;).x ~ a)?y. This resulted in a strong turbulent pumping
y. = (@), —a?))/2, transporting large-scale magnetic fields from
the disc to the corona as shown in the top panel of Fig. 6. We also
compare the relative importance of turbulent pumping (y ,) and wind
(9,) in advecting the magnetic field upwards (in the upper half-plane)
at different heights. The vertical profiles of y, and v, in the top panel
of Fig. 6 shows that at low heights (|z| < 2.5), turbulent pumping is
the dominant effect over the wind, while the effects of wind become
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Figure 6. Top panel: profiles of turbulent pumping (y ;) and mean vertical
outflow (v;). They actin the same direction, transporting mean fields vertically
outwards. Bottom panel: vertical profiles of average fluctuating velocity (v'?)

and fluctuating Alfven speed v;% = B'2/p. Minimal t approximation and
profiles of V72, va suggest similar sign of y . as calculated using IROS.
comparable or larger than the pumping term at large scale heights
(see also section 4.4).

The theory of isotropic kinematically forced turbulence predicts
that y, is supposed to be in the direction of negative gradient of
turbulent intensity (v'?) (Krause & Raedler 1980), that is, in the
negative z-direction (in the upper half plane) in our simulation. This
is opposite to what has been found in Fig. 6. However, it is to be
noted that MRI turbulence in a stratified medium is neither isotropic
nor homogeneous. Minimal t-approximation (MTA) suggests that in
a stratification and rotation-induced anisotropic turbulent medium,
which includes the quasi-linear back reaction due to Lorentz forces,
yMA = —érvz(ﬁ — B?) — érzﬂi x V,(v2 +B?), (24)
where t is the correlation time and it is assumed that p = 1 (see
equation 10.59 in Brandenburg & Subramanian 2005). The last term
in equation (24) vanishes because all the variables are functions of
z alone. Therefore, equation (24) together with the bottom panel of
Fig. 6 illustrating the vertical profiles of v’ and v’} imply that sign of
turbulent pumping obtained from MTA supports that obtained from
extracted dynamo coefficients.

We found turbulent diffusion tensor »;; to be anisotropic with 7,
> 1y, and having a significant contribution from the off-diagonal
components 7, and 7,,. Different values of diagonal components
of n; imply that mean field components B, and B, are affected
differently by the vertical diffusion (also see Section 4.4). It is worth
mentioning that n,, ~ 0 for the f. = 0.05 case, while it is slightly
negative for the other two cases. This is somewhat different from
the earlier studies (Gressel 2010; Gressel & Pessah 2015), which
calculated dynamo coefficients using the TF method and found 7,
A 11y, > 0. Out of the two off-diagonal terms of the diffusion tensor,
7. is of particular interest. It is suggested that a negative value of
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1. can generate poloidal fields by the shear-current effect (Squire &
Bhattacharjee 2016). However, we find ,, to be always positive,
nullifying the presence of a shear-current effect in our stratified MRI
simulation.

Finally, we discuss the effects of filtering the time series of mean
magnetic fields and EMFs on the extracted dynamo coefficients.
Fig. 5 illustrates how the dynamo coefficients vary if we filter out the
contribution above a cut-off frequency f. with (i) f. = 0.05 Q (*3fuyn),
(i) fo = 0.12RQ (X6fyyn), and (iii) f, — oo (unfiltered). Broadly
speaking, while the coefficients (., &, 1.y, 1) associated with
B, and its derivative in the mean-field closure (equation 16) show
larger variations at higher heights with f,, those (ozgy, agy, Nixs Nyx)
associated with B, and its derivative are less affected by the filtering
process. Especially, n,, tends to be more positive with f. = 0.05,
which is more desirable. To summarize, filtering out the time series
of mean magnetic fields and EMFs helps to remove the signature of
the small-scale dynamo and to obtain noise free coefficients.

4.2 Time-dependent dynamo coefficients

We discussed the time-dependent nature of o, in the previous
sections. Effective a-effect is expected to be determined by &y,
especially at the larger scale heights where it is of larger amplitude.
While « tensor is expected to have the time-dependent part, n-tensor
is supposed to have only the time-independent part, as it only depends
on the turbulent intensity (see Section 2.3). Fig. 7 shows the vertical
profiles of time-dependent a-tensor components for the fiducial f, =
0.05 2 case. For comparison, we also plot vertical profiles of the
time-independent o —s in Fig. 7. We find that the coefficients «,,
and a,, associated with B, in the mean-field closure (equation 16)
have stronger time-dependence compared to those coefficients (c,
and a,,) associated with By. Overall, the amplitudes of ozl-lj are
much smaller than the a?/. implying that the time-independent o
—s are predominantly governing the dynamo action. Additionally,
we observed that (not shown in Fig. 7) ozl.lj -s in the fiducial case (f, =
0.05) are relatively smaller than the other two cases (f. = 0.12 and
unfiltered).

4.3 Verification of method

To verify the reliability of the determined dynamo coefficients we
reconstruct the EMFs using the calculated coefficients and run a 1D
dynamo model.

4.3.1 Reconstruction of EMFs

Fig. 8 shows butterfly diagrams of the EMFs (&, ;, &, ;) used
to determine the turbulent dynamo coefficients and the EMFs
Errs gy,,) reconstructed using calculated coefficients and mean
fields for f. = 0.05. Here, it is to be noted that &, s, &, ; are the
smoothed EMFs obtained by filtering (using a low-pass filter) EMFs
&, &, from DNS, respectively. We can see a close match between
the broad features, such as the dynamo cycle period, in the smoothed
and reconstructed EMFs, implying the goodness of fit.

Further, we investigate the residual of the filtered and reconstructed
EMFs, defined by

Sgi = (C:‘,',f — g,',,, i €x, y. (25)

Fig. 9 shows the histograms of the normalized residuals 8&,/|&,|
and 8,/|€,| calculated within the region of different heights,
namely between 0 — H, H — 2H, and 2H — 3H, for the f, =
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Figure 8. Left panels: comparison between x-component of EMF &,/ used to determine the turbulent dynamo coefficients, and EMF &, , reconstructed using
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Figure 10. Butterfly diagrams of the mean magnetic fields B, and B_v
obtained by running 1D dynamo model. Both B, and B, flip sign regularly
with a cycle of approximately nine orbital period, similar to that found in
shearing box simulations (see Fig. 2).

0.05 2 case. All the histograms peak about the region close to zero.
However, a Gaussian fit of the histograms shows that the mean of
the distribution always deviates from zero. Additionally, a careful
comparison of histograms of 8&,/|€,| and §&,/|€,| tells that fit is
better for &, than that for £,, especially at larger scale heights. Better
quality fit for &, over &, is expected as &, obtained from DNS
shows a more regular, coherent space-time variation when compared

to &,.

4.3.2 1D dynamo model

We additionally run a 1D dynamo model using the calculated
dynamo coefficients and mean velocity field v,. In particular we
solve equation (13), or in component form

0B, 0 { 0B, az‘;y]

—(@: + a(y)x)BX B a(y)yBy + 'I.VYTZ —Myx

ot 0z 0z
B, [ _  o.s o 3B, 3B,
- = | - B, — B, xx T~ T Nxy
at az |: (UZ ax)’) y axx + n az n ) az
+qQ B, 26)
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for B, and B, with a?j and n;; obtained using the IROS method. We
note that B. = 0 as a consequence of the ZNF assumption in our
model. The initial profiles of B, and B, are taken directly from the
DNS, at time t = 100 ™' roughly consistent with the beginning of
the quasi-stationary phase in the DNS. The vertical profile of ¥, is
taken as a constant throughout the evolution and is also extracted from
the direct simulations by averaging it over time throughout the quasi-
stationary phase, over which it roughly stays constant. Additionally,
for the profiles of dynamo coefficients a?j(z) and n;(z), we first
smooth them with a box filter and also cut them off above and below
three scale heights, and use them in the 1D dynamo model. We do this
mainly to avoid the numerical instability at boundaries noting that
these profiles are sharply flayed outside of that range. Note that only
the time-independent parts of the dynamo coefficients are used in
the mean field equations, since the contributions of al-'j are negligible
compared to the time-independent part.

Furthermore, it must be noted that there is a contribution to the
diffusion from the mesh grids. We do a rough estimation of numerical
diffusion as follows: 1y = v;,Ax, where we consider the smallest
one among the relevant velocities (v, ¢s, v4) in the problem.
Therefore, we add a correction term 1y ~ 1073 (with Ax = 1/32
and v}, = 0.1) to the diagonal components of diffusivity tensor 7;
to consider the contribution from the mesh to the magnetic field
diffusion. This also helps us to stabilize the 1D dynamo solution.

With this set-up, we solve the system of equations (equation 26)
with a finite difference method over a staggered grid of resolution
Az = 1/32, same as the z resolution of DNS. The outcome of this
analysis is presented in Fig. 10, where the top and bottom panels
show the butterfly diagrams of B, and B, obtained using the 1D
dynamo model, respectively. We find both x and y-components
of mean fields flip sign regularly with a cycle of approximately
nine orbital period, similar to what is found in DNS (see Fig. 2).
Thus, applying calculated coefficients to the 1D dynamo model
successfully reproduces broad features of spatio-temporal variations
mean magnetic fields.

4.4 Mean magnetic energy equations

It is challenging to calculate dynamo coefficients uniquely in the
presence of both shear and rotation (Brandenburg et al. 2008) as there
are many unknowns (see also discussion in Section 5.4). Therefore,
it is worth seeing how different terms involving turbulent dynamo
coefficients contribute to the mean magnetic energy equation to make
physical sense. The mean magnetic energy evolution equation is ob-
tained by taking the dot product of the mean-field equation (equation
13) with the mean magnetic field B and given by

+ T + T 27

vy yy?

0 [1_
— | =B = v, ay, o
o (2 > T, + Tayy + Ta
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Fig. 11 shows the space-time plots of different terms involving
mean flow (9;) and turbulent dynamo coefficients (o, ;) in the
mean magnetic energy evolution equations. The top six panels in
Fig. 11 describe the terms in the x-component of the magnetic energy
equation (equation 27), while the bottom seven panels illustrate terms
in the y-component of the magnetic energy equation (28) at different
heights and times.

Fig. 11 provides a fairly complicated picture to account for the
generation-diffusion scenario of the mean magnetic fields. Broadly
speaking, the poloidal field (B,) is predominantly generated by an
a-effect (the term 7, in Fig. 11). However, there is a significant
contribution from a,, (the term 7, in Fig. 11) in generating B, in
larger scale heights. Toroidal field generation is mainly due to the
presence of shear, here differential rotation (75 in Fig. 11), which
converts poloidal fields into the toroidal fields. However, it is worth
noting that there is a minute contribution from the «,,, generating a
toroidal field out of the poloidal field by an a-effect (as in an «>-Q
dynamo). The dominance of «-effect in generating a poloidal field
and that of Q-effect (shear) in generating a toroidal field imply the
presence of an a—2-type dynamo in MRI-driven geometrically thin
accretion disc. This is similar to what has been found in the study
of the dynamo in an MRI-driven geometrically thick accretion disc
(Dhang et al. 2020), implying universal action of ¢—2-dynamo in
MRI-driven accretion flows.

Generally, it is expected that diagonal components of the diffusion
tensor, 7, and 7,,, are primarily responsible for the diffusion of B,
and B y, respectively. However, our simulation finds that winds carry
mean fields out of the computational box and act as a sink in the
mean magnetic energy evolution equation, not the n-s.
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5 DISCUSSION

5.1 Periodicities in the dynamo cycle

Investigations of spatio-temporal variation of different variables in
our stratified shearing box simulations show a diverse range of
periodicities. We observed that mean magnetic fields and EMFs
oscillate with a primary frequency fy,, = 0.017 (equivalent to
nine orbital periods), similar to what was found in earlier studies
(Brandenburg et al. 1995; Gammie 1996; Davis et al. 2010; Gressel
2010; Ryan et al. 2017). The primary frequency is determined
by the effective dispersion relation of the «—2 dynamo (see e.g.
equation 6.40 in Brandenburg & Subramanian 2005 and section
3.2 in Gressel & Pessah 2015) with the « dominated by the time-
independent (DC) value of «,,. The plausible origin of this DC value
of a,, is discussed below in Section 5.3.

Additionally, we observed the presence of higher harmonics at
3fayn, which went unnoticed in earlier MRI simulations (see Section
3.5). Unlike the mean fields and EMFs, current helicity shows
periodicities at different frequencies 2fy,, and 4fyy,, respectively.
The presence of the frequencies in the mean EMFs, mean fields, and
current helicities can be understood better if we follow the magnetic
helicity density evolution equation (see e.g. Blackman & Field 2000;
Subramanian & Brandenburg 2006; Kleeorin & Rogachevskii 2022;
Gopalakrishnan & Subramanian 2023),

b
%%Z—S'B—%Chel—%v']‘-ﬂ, (30)
where h;, = (A’.B’) is magnetic helicity density, A’ is the fluctuating
vector potential, and F3; is the helicity flux. Roughly speaking,
magnetic helicity is related to current helicity (and ot pyg, see equation
22) by some length-scale and therefore we can investigate equation
(30) to shed light on the time variation of current helicity.

The component of the EMF along the mean magnetic field
generates mean magnetic and associated current helicities. Now to
consider the effect of the DC term in «,,, we assume that this is
the dominant term in generating the poloidal field, which is a valid
approximation, as we noted in Section 4.4 (also see Fig. 11). Then,
EB~ agy Bg, which is a source term in equation (30). Now, e.g.
for simplicity, if we assume By ~ sin (27 faynt), then magnetic and
current helicities, which are oc B, will have primary frequency of
2fayn- This explains the generation of magnetic and current helicities
at a primary frequency, twice that of By, i.e. 2 fyy,. This current
helicity can now add to the a-effect, which combined with the mean
field in the dynamo equation (13) can lead to secondary EMF and
mean fields components oscillating at 3fy,, which in turn sources
helicity components at 4fgy, and so on. These primary and secondary
frequency components, limited by noise, are indeed seen from the
analysis of our simulations.

5.2 Dynamo coefficients, comparison with earlier studies

Earlier studies calculating turbulent dynamo coefficients using the
simulation data and the mean field closure (equation 16) in the
local (Brandenburg et al. 1995; Brandenburg 2008; Gressel 2010;
Gressel & Pessah 2015; Shi et al. 2016) and global (Flock et al.
2012; Hogg & Reynolds 2018; Dhang & Sharma 2019; Dhang
et al. 2020) simulations of MRI-driven accretion discs used different
methods. Earlier local (Brandenburg et al. 1995; Davis et al. 2010)
and most of the global (Flock et al. 2012; Hogg & Reynolds 2018)
studies calculated only the ‘coefficient of interest’ a4y (¢ — effect)
by neglecting the contributions of other terms in the mean-field
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Figure 11. Contributions of different terms involving mean flow (v;) and turbulent dynamo coefficients (e;;, ;) to the x-(top six panels) and y-(bottom seven
panels) components of mean magnetic energy evolution equation (equations 27 and 28). Each term in the poloidal and toroidal magnetic energy equations are
multiplied by the factors 10° and 10%, respectively. Poloidal field (B, ) generation is primarily attributed to an -effect (the term 7’0,),V ), while shear (the term 7g)
dominates the toroidal field generation, thus implying an «—2-type of dynamo. Winds carry mean fields out of the computational box and contribute largely as

the sink term in the mean magnetic energy evolution equation.

closure. Many of the local studies (Brandenburg 2008; Gressel 2010;
Gressel & Pessah 2015) use the linear TF method during the run-
time to calculate all the coefficients. A few local (e.g. Shi et al. 2016;
Wissing et al. 2022; Zier & Springel 2022, this work) and global
(Dhang et al. 2020) studies used direct methods to quantify dynamo
coefficients. However, it is important to note that while several
authors used a linear regression method assuming few constraints
on the diffusion coefficients (namely, 1., = 7,,), we use the IROS
method without any constraints on the coefficients.

Like most of the earlier local and global studies, we find a negative
a,, close to the mid-plane in the upper half-plane. However, direct
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methods seem to capture negative signs better than TF, which can
be realized by comparing o, profiles in our work (also in Shi et al.
2016 and in Gressel 2010). Additionally, we find stronger turbulent
pumping (compared to that in the TF method), transporting large-
scale magnetic fields from the disc to the corona, similar to that found
in global MRI-dynamo studies (Dhang et al. 2020).

Additionally, for the first time, we ventured to calculate the time-
dependent part of «; inspired by the periodic behaviour of op,.
However, we found that the amplitudes of the time-dependent part
of @ —s (aill.) are much smaller than that of the time-independent o
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—s (a?j). Therefore, we suspect that the time-independent o —s are
predominantly governing the dynamo action.

Diffusivity coefficients n; in our work are found to be quite
different from that in the earlier local studies (Brandenburg 2008;
Gressel 2010; Gressel & Pessah 2015; Shi et al. 2016), with n,, #
nyy and 7y, ~ 0. Several earlier studies (Shi et al. 2016; Zier &
Springel 2022) found n,, < O in their unstratified and stratified
MRI simulations after imposing a few constraints on the coefficients
(e.g. Ny = Nu, Ny = 0, etc.) and they proposed shear-current
effect (Raedler 1980; Rogachevskii & Kleeorin 2004; Squire &
Bhattacharjee 2016) generating poloidal fields in addition to a-effect.
Recently, Mondal & Bhat (2023) carried out statistical simulations
of MRI in an unstratified ZNF shearing box and found 75,, < 0
proposing ‘rotation- shear-current effect’ and the ‘rotation-shear-
vorticity effect” responsible for generating the radial and vertical
magnetic fields, respectively. However, like some other studies
(TF: Brandenburg 2008; Gressel 2010; Gressel & Pessah 2015,
SPH:Wissing et al. 2022), we find n,, > 0, unless we impose a
constraint on 7,, being a positive fraction of 7,.. If we assume n,, =
Jfo e While calculating the coefficients, we find negativity of n,, is
an increasing function of the factor f; (see Fig. Al and Appendix).
However, we find that the quality of fit is compromised slightly and
histograms of the residual of filtered (input) and reconstructed EMFs
get broader (with higher standard deviation) with the assumption
Nyy = fy Nxx. We refer the reader to see Appendix for details.

5.3 Helicity flux and the DC «-effect

The coefficient ozg.y represents the a-effect responsible for poloidal
magnetic field generation out of the toroidal field. We found an
antisymmetric profile of (x;)y about the disc-mid-plane similar to the
earlier studies (see e.g. Brandenburg 2008; Gressel 2010). However,
it is to be noted that understanding of the physical mechanism deter-
mining the vertical profile of ot;?y is incomplete. E.g. Brandenburg &
Schmitt (1998) proposed a buoyancy-driven dynamo to explain the
negative sign of «,, in the upper half plane. Here, we propose a
different way of looking at the origin of a-effect by connecting it to
a generative helicity flux.

In order to understand the DC value (time-independent) of the
a-effect, we take the time average of equation (30). The term 04, /0t
averages to zero, and one gets the well-known constraint (Blackman
2016; Shukurov & Subramanian 2021)

oo 1
(€-B) = —no(Char) — SV P €1y

where () indicates a time average. This shows that in the absence
of helicity fluxes, the average EMF parallel to the mean field,
responsible for the generation of poloidal from the toroidal mean
field, is resistively (or catastrophically) quenched. Of the several
helicity fluxes discussed in the literature, the generative helicity
fluxes as envisaged in Vishniac (2015) and in Gopalakrishnan &
Subramanian (2023) can source the DC component of £ - B without
the pre-existence of any mean field or initial helicities. Using
equation (17) of Gopalakrishnan & Subramanian (2023), with mean
vorticity €22 — ¢)2 and noting that «,,B? dominates £ -B, we
estimate »
A2\ 0b*? 1 0V

Qtz 2 ”
— 15 |GG G | S+ Cob2 |

(CRRTNES =
» 4(33) 0z 0z

(32)

where (Cy, Ca, C3, Cy) = (7/45, —203/5400, 403/8100, —1/6) and
we have taken ¢ = 3/2. Adopting estimates for the correlation time
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Figure 12. Vertical profiles of ag), (for f. = 0.05 case) obtained from IROS
inversion and (ozgy)hc, expected from helicity flux.

T ~ Q7! correlation length A ~ H/2, and using the vertical profiles
of various physical variables from the simulation, we calculate the
vertical profile of (agy) N due to the generative helicity flux. This
is shown as a solid line in Fig. 12 and for comparison, we also
show IOaS}, (for f, = 0.05 case) from the IROS inversion. It is
encouraging that the (Ot?,y )n, predicted by the generative helicity flux
is negative in the upper half plane of the disc and has a qualitatively
similar vertical profile as that determined from IROS inversion. The
amplitude, however, is larger, which perhaps indicates the importance
also of the neglected diffusive and advective helicity fluxes which
act as sink terms in equation (31).

5.4 Vanishing 7,,, missing information?

In Section 4.4 we pointed out that wind carries away the mean
magnetic field and acts as the effective sink of its energy. However,
the poloidal field is also expected to be diffused by 7,,, and a positive
1,y is required for diffusion. Instead, we find a vanishingly small (in
some regions even negative) 7,,, which leads us to two possible
thoughts: either it is impossible to recover 7,, in the direct methods,
or there is incompleteness in the closure we used to retrieve the
coefficients. Here, we discuss both possibilities.

It is clear from equation (16) that the turbulent diffusion coeffi-
cients are associated with the currents, which are calculated by taking
the z-derivative of mean magnetic field components. Calculating
derivative makes the currents noisy, especially Jy, as it involves a
derivative of B, which is fairly incoherent over space and time, as
can be seen from the butterfly diagram of B, (Fig. 2). Additionally,
also note that the y-component of EMF is also noisy. Thus, the
coefficients associated with J; and £, turned out to be error-prone
and difficult to calculate. This pattern has been noticed by earlier
works (Squire & Bhattacharjee 2016), which used direct methods
other than IROS, used in this work.

In general, mean EMF can be expressed in terms of symmetric,
antisymmetric tensors and mean fields as follows:

_ I 5 _ - o 0 B:

&=“U&+«VXB%_”MU_@XJ%_“MEis (33)
where we neglect the higher than first-order spatial derivatives and
time derivatives of mean fields (Raedler 1980; Brandenburg &
Subramanian 2005; Schrinner et al. 2007; Simard, Charbonneau &
Dubé 2016). The coefficients & and y represent the symmetric and
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antisymmetric parts of c;; tensor in equation (13). The coefficients &
is related to o, and oy, while ¥ represents turbulent pumping. The
term 7 is a rank-two tensor representing diffusivity. The coefficient
§ is interpreted as a magnetic field generating term (Raedler 1980).
The #-term is a third-rank tensor having a complicated influence on
mean fields.

If we define mean fields and EMFs as the x — y-averaged quantities,
then mean field closure reduces to equation (15). The symmetrized
coefficients in equation (33) and non-symmetrized coefficients in
equation (15) are related as

&xx = Oxx,
Uyy = Oyy,
1
Ve = E( y.\'_axy),

fax + ’zxyz = Nxxs

=

yy — Kyxz = Tlyy»
1

1
z = 5 (nxy - ny.r) + 5 (~xxz + ’zyyz) . (34)

Therefore, it is evident from equation (34) that it is impossible to
decouple a few coefficients (coefficients in the last three identities)
as there are more unknown coefficients than independent variables
(B, &) and the actual diffusion coefficients (#;;) might be different
from the calculated ones (;).

Sn

6 SUMMARY

We carried out stratified ZNF shearing-box simulations of MRI
using ideal MHD approximation. We characterized the MRI-driven
dynamo using the language of mean field dynamo theory. The
turbulent dynamo coefficients in the mean-field closure are calculated
using the mean magnetic fields and EMFs obtained from the shearing
box simulation. For this purpose, we used a cleaning (or inversion)
algorithm, namely IROS, adapted to extract the dynamo coefficients.
We verified the reliability of extracted coefficients by reconstructing
the EMFs and reproducing the cyclic pattern in mean magnetic fields
by running a 1D dynamo model. Here, we list the key findings of our
work:

(1) We find that mean fields and EMFs oscillate with a primary
frequency fyyn = 0.017 Q (approximately nine orbital period).
Additionally, they have higher harmonics at 3fyy,. Current helicity
Qmag has two frequencies: 2fqyn and 4fqy,. These frequencies can
be understood from mean-field dynamo effective dispersion relation
and helicity density evolution equation, respectively (for details, see
Section 5.1).

(i1) Our unbiased inversion and subsequent analysis show that an
a-effect (a,y) is predominantly responsible for the generation of
poloidal field (here B,) from the toroidal field (By). The differential
rotation creates a toroidal field from the poloidal field completing
the cycle, indicating that an o—2-type dynamo is operative in MRI-
driven accretion disc.

(iii) We find encouraging evidence that the effective DC «-effect
can be due to a generative helicity flux (Section 5.3).

(iv) We find that strong wind (9,) and turbulent pumping (y.)
carry out mean fields away from the mid-plane. Interestingly, they
act as the principal sink terms in the mean magnetic energy evolution
equation instead of the turbulent diffusivity terms.

(v) The unbiased inversion finds an almost vanishing 7,,, while
1. and n,, are positive. Although 7, and 7,, are strongly correlated,
if one imposes an arbitrary prior that 1, = f; 7., then one finds, for
increasing f,, an increasingly negative n,, which has been interpreted
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as evidence of shear-current effect for generating poloidal fields (see
Appendix A).

(vi) We point out that defining mean fields by planar averaging can
necessarily introduce degeneracy in determining all the turbulent dy-
namo coefficients uniquely. This may have important consequences
for the physical interpretation of the dynamo coefficients (see Section
5.4).
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APPENDIX A: DYNAMO COEFFICIENTS WITH
CONSTRAINTS ON 7,

Diffusivities are challenging to calculate in any direct methods (SVD,
linear regression, IROS), as they involve the spatial derivatives of the
mean fields. Primarily, we find that 7,, and 7,, are noisy as they
are related to spatial derivatives of By, which is itself quite noisy
(see e.g. butterfly diagram in Fig. 2). Some earlier studies (Shi et al.
2016; Squire & Bhattacharjee 2016) put constraints on calculating
n-s, trying to alleviate this issue. E.g. Shi et al. (2016) imposed the
constraint that #,, = 7., in the shearing box simulation of MRI and
found a negative 7,,, implying the presence of a shear-current effect.

We have, on the other hand, done an unbiased inversion, as it
is not clear if such constraints are actually obeyed by MRI-driven
turbulence. Nevertheless, for completeness, we explore here a more
generalized constraint on 7,y, given by 7y, = f; Nx, and calculate
only those coefficients that appear in the mean-field closure for é_'y,
as those related to &, remain unaffected. Fig. A1 shows the vertical
profiles of ), &) , 1., and ,, for different values of f, and for
Jfe = 0.05. The coefficients cr;; remain almost unaffected, while n;
change significantly with change in f;. There is a clear trend that
the more positive the n,, (or larger the imposed f;) is, the more
negative the 7, is. This implies a clear correlation between 7y,
and n,,.

Further, we investigate the histograms of the residual EMFs 8&;
as shown in Fig. A2 to check the goodness of the fits. The x-
components of the residual EMFs remain unaffected as expected,
while histograms for €, get slightly broader with the increase in f;,.
This implies that the imposition of constraints on 7,, compromises
the quality of fits, but not greatly because «;; are the significant
contributors in the fitting of EMFs, not the n;;.
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Figure Al. Vertical profiles of the time-independent «;; and n;; related to the :‘fy calculated imposing the constraint 7y, = 1 for f. = 0.05 case. As expected,
a;; are not affected with the change in £, but n;;s are. A clear trend has been found; more positive the 7y, is, more negative the 7, is.
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Figure A2. Histograms of the residual EMFs 8&, (top panels) and Bé’_y (bottom panels) for fera = 0 and f;; = 1. We consider the f. = 0.05 case. Imposition of
constraints on 7y, compromises the quality of fits, but not significantly because e;; are the main contributors in the fitting of EMFs, not the n;;.
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