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1. HISTORICAL INTRODUCTION

Perhaps the most significant development in weak-interaction theory in
the last two years, both from the viewpoints of theory and of possible
impact on future experiments, has been in the construction of remormalizable
models of weak interactions based on the notion of spontanecusly broken gauge
symmetry. The basic strategy of this construction appears first in Weinberg'sl
paper published in 1967 and also in Salam's,2 published in 1968. In these
papers, weak interactions and electromagnetic, interactions are unified in a
Yang-Mills gauge theory with the intermediate vector bosons Wi and the photon
as gauge bosons. This idea by itself was not new, having previously been dis-
cussed by Schwinger,3 Glashow,4 Salam and Ward,5 and others. What was new in
the Weinberg-Salam strategy was to attribute the observed dissimilarities
between weak and electromagnetic interactions to a spontaneous breakdown of
gauge summetry (which is known as the Higgs mechanism).

This mechanism was studied by Higgs,6 Kibble,7 Guralnik, Hagen, and
other58 since 1964. The Higgs mechanism takes place in a gauge theory in
which the stable vacuum is not invariant under gauge transformations. In
the absence of gauge bosons, noninvariance of the vacuum under a continuous
symmetry of the Lagrangian implies the existence of massless scalar bosons,
by the Goldstone t:heo'r:em.g-13 In a gauge theory, these would-be Goldstone
bosons combine with would-be massless gauge bosons (with two transverse polar-
izations) to produce a set of massive vector bosons (with three polarizations).
Suppose that the gauge group in question has n generators. A gauge theory

based on this symmetry group contains n gauge bosons. Suppose further that
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spontaneous breakdown of symmetry leaves the physical vacuum invariant under
a subgroup of dimension m < n. Then the m gauge bosons of this subgroup re-
main massless. The other n-m gauge bosons become massive. This theorem was
first stated and proved by Kibble.7

Let me explain very briefly how this mechanism works to generate the ob-
served differences between weak and electromagnetic interactions in models of
the sort we are considering. We set up a gauge-invariant Lagrangian which
unifies weak and electromagnetic interactions. This requires at least two
charged gauge vector bosons Wi that mediate weak interactions, and the photon
as gauge bosons, so the gauge group must be nonabelian with at least three
generators. We arrange the dynamics of scalar fields (Higgs scalar) in the
Lagrangian in such a way that the vacuum is invariant only under the U(1)
gauge transformation associated with electric charge comservation., In this
way we endow all gauge bosons but the photon with finite masses. 1In the
original model of Weinberg and Salam, the gauge group used to unify electro-
magnetic and weak interactions was SU(2) X U(1). In such a theory, one has
the photon, two massive charged vector boson Wi, and a massive neutral vector
boson Z.

The main points of Weinberg's and Salam's papers are twofold: The first
is the unification of electromagnetic and weak interactions. In the particular
model they discussed, there is a relation among GF’ e and mw, the mass of the

W meson:

- = or o, = (37.2 GeV)/sin 0 (1)
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where Gw is a parameter of the theory. The number 37.2 GeV was also derived

by T. D. Lee14 from a similar, but less specific consideration. The second
point is the suggestion, stressed by these authors,that the theory of this kind
may well be renormalizable because the equations of motion are identical to
those of an unbroken gauge theory. Nothing much had been done on the second
point, and the whole subject rested dormant until 1971.

In the meantime there were two developments which were necessary for the
resurgence of interest in these ideas in 1971. The first is the quantization
of Yang-Mills theory. The first serious effort at construction of quantum
theory of Yang-Mills fields goes back to Feynmanl5 who reported on his work at
a meeting in Poland in 1962. Since then, the subject had attracted a number

17,18,19 20

of eminent physicists including deWitt,16 Popov and Faddeev, Mandelstam,

Fradkin and Tyutin,2l and Veltman.22 By 1968, thanks especially to the work
of Faddeev and Popov, Feynman rules for Yang~Mills fields were well understood.
The second development was the study of renormalization of the o model of
Schwinger,3 and Gell-Mann and Levy.23 The o-model is the simplest, semi-
realistic field theory model which exhibits spontaneous breakdown of symmetry.
We learned from this study that the model is renormalizable even when the sym-
metry of the Lagrangian is spontaneously broken, and in fact the same renor-
malization counterterms remove the divergences of the theory whether the
vacuum is invariant under the summetry of the Lagrangian or not.zz"25
At the Amsterdam conference last year, a young Dutch physicist, G. 't Hooft,
not yet out of graduate school, presented a paper which would change our way of

26,27

thinking in gauge field theory in a most profound way. In addition to re~

discovering the Higgs mechanism and the Weinberg-Salam theory by himself, he
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presented a formulation of spontaneously broken gauge theories which is mani-
festly renormalizable, i.e., all Feynman graphs are finite except for a small
number of primitively divergent vertices. The formulation takes advantage of
the gauge freedom afforded in such a theory. In this formulation Green's
functions are defined in a big Hilbert space which contains, in addition to
physical states, unphysical ones which possess indefinite metric. 't Hooft
gave a convincing argument that the S-matrix is nevertheless unitary in such
a theory, unphysical states decoupling from physical ones on the mass shell.
The rest of this review deals with the developments since the Summer of 1971.
In concluding this section, let me emphasize a few points in order to
place this enterprise in perspective. The unification of weak interactions
and electromagnetism is esthetically pleasing. 1In this sense the present
attempt is superior to other attempts at making weak interactions finite. The
second point is that renormalizability is a desirable (but not an essential)
feature of a theory. If a theory is nor renormalizable, one requires addi-
tional prescriptions to specify a complete theory. What is necessary in a
logically consistent theory of weak interactions is that higher order correc-
tions are finite and unambiguously predictable, and that they are small enough
up to some moderate energies to protect the experimentally well-established
phenomenology based on lowest order theory. Ensuring renormalizability is
one possible way, and theonly way I know, of arranging this in the framework of

local field theory.
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2. PHENOMENOLOGICAL IMPLICATIONS

Before discussing various theoretical ramifications, I think it worth-
while to discuss certain physical conditions that a renormalizable theory
of weak and electromagnetic interactions must satisfy, and explore their pheno-
menological implications. For this purpose, let us accept the validity of
quantum electrodynamics and the premise that the B- and u- decays are medi-
ated by charged vector bosons Wi.

Let us consider the process v + v > W+ + W . In lowest order, this pro-
cess receives a contribution from electron exchange in the t-channel (see

Fig. 1) and in fact this ie the only diagram for this process in the conven-
+
Y —— w
ye

Fig. 1

N

tional phenomenology of weak interactions., One finds that this amplitude

grows like s for large s:

¢

FOO+9+W +W) vs e® sing + 0(s™Y), ’ @)

where 8 and ¢ are the polar and azimuthal angles of the W+ in the center-of-
mass system. The most violent growth at high energy occurs in the J = 1 state
with W+ and W polarized longitudinally.28 This linear growth with (energy)2
of the amplitude for v + v 4-w+ + W is responsible for the quadratic diver-
gence in "conventional" theory of the amplitude for the elastic process

VHEY >+ G, whose imaginary part is proportional to the absolute square

of the former.
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Therefore, in a renormalizable theory where no divergence can be tolerated

in a four-fermion coupling, the linear growth of Eq. (1) must be suppressed.

In renormalizable theories, amplitudes for (fermion) + (antifermion) » two

bosons typically behave as 1/s as s > ». There are essentially two possibilities
of suppressing this behavior by using renormalizable interactions. They cor-
respond to adding single-pariicle poles in the s- and u- channels to cancel

the leading term Eq. (2). Let us discuss them in turn.

The first possibility is to add a pole term in the s-channel. We need a
boson of spin 1 which couples to the neutrino-antineutrino pair (it cannot be
the photon). See Fig. 2. 1In order that the cancellation of the leading term

v w?

y4
v W™
Fig. 2
takes place for all helicities of W+ and W , the coupling of the neutral heavy
vector boson Z to w* and W must be precisely as in the Yang-Mills gauge theory.
Weinberg's original model embodies these features.
The second possibility is to add a pole term in the u~channel. This calls

for the existence of a lepton of the opposite electric charge and the same

lepton number as the electron. See Fig. 3. The model advanced by Georgi
V- o~~~ W
YE +
v. —w7
Fig. 3
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and Glashow29 achieves the asymptotic vanishing of the amplitude v + v » W+ W
by the cancellation of the e and E+ (heavy electron) exchange diagrams.
A renormalizable model of weak interactions must, therefore, contain one
or both of the following features: neutral current, and/or heavy leptons.
Let us consider the experimental situation with regards these two possibilities:
1. Neutral Current: For purely leptonic processes, e.g., Ge + e > Ge + e,
vu + e > v, + e, the upper bounds presently available are only moderately re-~
strictive30’3l’32 (see Table I). The situation as regards neutral current
effects 1s somewhat more restrictive in the case of strangeness—conserving
semileptonic processes, e.g., v + nucleon + v + hadrons;33 in fact, the upper
bounds have recently diminished sufficiently to make serious trouble for cer-
tain models which feature neutral currents.34_37 See Table II. Most
decisive are A5 # 0, AQ = 0 semileptonic processes mediated by neutral current
such as KL > U+ ﬁ, K+ > W+ 4+ % + % and the Kl ~ K2 mass difference. The up-
per bounds are so restrictive (see Tables III and IV) that one takes it as a
principle of model building to banish AS # 0 neutral currents al&ogether, us-
ing, for example, the device of Glashow, Iliopoulos and Maiani.38 More on this

later. In this review, we shall not reject any model on the grounds that it

disagrees with present data on AS = 0 neutral currents.

2. Heavy leptons: One must assume that they are sufficiently massive
to have so far escaped detection. The heavy leptons that interest us here
carry either the electron or muon number, s0 they can be produced in reactions
initiated by the usual neutrinos, electrons, and muons and, of cours, they can
be produced in pairs in other reactions. Various experimental consequences of
the existence of heavy leptons have been discussed recently by Perl,39 Bjorken,
and Llewellyn—Smith.40 Production processes and decay modes of E+, E° (heavy

electrons) and M+, M° (heavy muons) are listed in Table IV.
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3. RENORMALIZABILITY

Let us turn to the question of the renormalizability of spontaneously
broken gquge theories. After all, you recall, it was the renormalizability
which was directly responsible for the revival of interest in these theories.

For simplicity let us consider a system of an 0(3) triplet of gauge
bosons and a triplet of scalars. For the moment, let us ignore fermions.
The Lagrangian of the system is

=_1 - 2
L=- a(auév 04+ Eh 1 A)

+u0 8+ eh, * D -V )

where the "potential" V is an 0(3)-invariant quartic polynomial of the

scalar fields & The vacuum expectation values of 4, are determined to lowest
order by minimizing the potential energy. In order to induce a spontaneous
breakdown of the 0(3) symmetry, the potential V must be so chosen that the
absolute minimum occurs at some nonzero value of 3; One can always choose
the third axis to coincide with the direction of this vector,ﬁ£>o =y = vé3.
When we translate the scalar fields $ by their vacuum expectation values

5= 2113, and express the Lagrangian in terms of_é.u and §, the bilinear terms

of the Lagrangian can be written as
2

2
_ E _ i, 42 (gv) 1.2] _ 3 _ 3.2
Ly [ %(%A\, 3 A +75 (Au )] %(%Av A )

i=1
2
i 2 2,u.1 _ 1.u,2
+% Z;(BUS) +gv(Au34> Au8¢)
+ [(aus3)2 _— (s3)2] . )

2
where yu~ is a positive number determined from V.
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The "free" Lagrangian (4) is singular, in the sense that the matrix which

18,19

defines this bilinear form is not invertible. This is a typical situation

one encounters in a gauge-invariant theory. A way of quantizing a system of

17,18

this type, discussed by Popov and Faddeev and perfected by't‘Hooft,z6 is

to add a gauge-variant term to the Lagrangian. A suitable choice for the

gauge-variant term, which "defines the gauge" is 41, 42

v [am 1, ey 4202 we2 gy 2] L1 w302
Ly =3 [(3 AR e+ (BTA T ] +on G, (5)

where & and n are real paramers. This device is known as Fermi's trick in
quantum electrodynamics. When the above gauge-defining term is added to Eq. (4),
the resulting "free" Lagrangian is no longer singular and can be quantized in

the usual way. The propagators for various fields are

k k
1,2, _ S i 1
Au o1 &y 2 1 2 a- 3 ) 2 2
k- . k™ -m
k k
3 . uv 1
A T2 -1rg - a-nt—=
u uv k2 k2
1,2, 1
¢ (
1 6)
3: i .
¢ k2u?

where m = gv. The vector propagator here is the same as that of the &~ limiting
43,44,45
process.
In nonabelian gauge theories, the S-matrix becomes unitary only when a
suitable "'gauge compensating term" is added to L + La. This was the important
discovery of Feynman, and the gauge compensating term can be viewed as internal

loops in Feynman graphs generated by a complex scalar triplet which obey Fermi
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statistics and interact With,éu and 2. We shall not write down this expression
explicitly, but suffice it to say that its structure is such that the vertices
implied by Eq. (3) and this term, together with the propagators of Eq. (6)

make the theory renormalizable, by the usual power-counting argument.

Formal arguments and explicit calculations show that, while the Green's
functions of the theory depend on the parameters £ and n, the S-matrix does
not. The particle spectrum of the theory is most easily deduced by letting
£€,n > 0. In this limit the propagator for A 1,2 becomes the canonical one
for a massive vector boson, and the would-be Goldstone bosons¢1’2 simply dis-
appear from the physical spectrum. The limit £+0 is referred to in the liter-
ature as the U-gauge formulation, since in this formulation the unitarity of
the theory is manifest. The choice £ = n = 1 corresponds to the Feynman gauge
in electrodynamics. This gauge is the one used by 't Hooft27 in his discussion,
and turns out to be a very convenient one for practical computations.

The formal arguments referred to above are based on the gauge invariance
of the Lagrangian [Eq. (3)]. These arguments would be rigorous but for the
divergences in Feymman integrals. Thus it is crucial to demonstrate that it is
possible to remove the divergences from the theory in such a way that the formal
argument for the gauge independence of the S-matrix is still correct after
renormalization. A demonstration that the S-matrix is both renormalizable and

46,47

unitary was given by Zinn-Justin and Lee in the "R-gauge" (£ + =,n + 0)

where the renormalizability of the theory is manifest, but the Green's functions
are not unitary in general because of the k2 = 0 poles in the propagators.

't Hooft's original argument was expounded by him and Veltman and constitutes

48,49

an alternative proof. There are also very informative discussions of the

renormalizability by Salam and Strathdee,50 and by J. C. TaylorSOb.
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The demonstration proceeds first by showing that the symmetric theory
(i.e., without spontaneous breakdown) can be renormalized in such a way that
renormalized Green's functions satisfy Ward-Takahashi identities which are the
precise mathematical statement of gauge invariance of the theory. This was
done first, and independently, by Slavnov51. Secondly, it is shown that the
same renormalization counter terms as in the symmetric theory render finite the
spontaneously broken gauge theory (which is obtained from the former by varying
the coefficients of subdominant terms of the potential V), and the resulting
finite Green's functions satisfy Ward identities appropriate to spontaneously

broken gauge invariance. Thirdly, it is shown that the Ward identities imply

1,2
u

cancel in the S-matrix, thereby insuring the unitarity of the S-matrix.

that the spurious singularities at k2 =0 in the A - and ¢1’2 - propagators

In the proof of renormalizability and in practical computations, it is
essential to regulate Feynman integrals inagauge-invariant way. A most in-
genious and convenient regularization which preserves Ward identities was devised
by 't Hooft and Veltman.48 Their method consists in continuing Feynman integrals
in the number of space-time dimensions?2’53’54 The divergemceof the Feynman
integral now appears as singularities of the dimensionally continued amplitude
at n = 4, and the method is in some sense reminiscent of the analytic renormal~
ization of Speer.55 The essential advantage of this method is the economy in
not requiring auxiliary fields and the deeper understanding it affords on anom~
alies in Ward identities.

The above discussions fail in the presence of fermion fields if there are Adler-~

56,57

Bell-Jackiw anomalies, as pointed by Veltman, Bouchilat, Ilioupoulos and Meyer?8

and Gross and Jackiw.59 These anomalies are present, in general, when there are
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fermions in the model,and destroy gauge invariance of the second kind which

is needed to make the theory remormalizable and unitary. One way of understand-
ing their origin is to observe that any theory must be regulated when perturba-~
tion calculations are performed. The anomalies of the axial vector current are
a consequance of the absence of a chirally invariant regulation procedure for
fermion loops. More specifically in the dimensional regulation of 't Hooft and
Veltman,48 they are a consequence of the fact that the Dirac matrix Y5 and the

tenser ¢ are unique to four-dimensional space-time and do not allow unique

aBpa
extensions to arbitrary dimensions.54 Since renormalizability is desirable,
the absence of anomalies may place an important constraint on model building.
In order to eliminate the Adler anomaly from a model, the fermion fields must
be so arranged that the anomalous contributions of various fermion loops cancel, between
leptons and hadrons, for example. On the other hand it may be well to bear in
mind that physically observable effects of anomalies in weak interactions occur
at a fantastically high order such as GFaz, and that the anomaly can be elimin-
ated from the theory by postulating heavy fermions with appropriate couplings to
gauge bosons, which are massive enough not to influence low energy phenomenology
substantially. The anomalies that might arise among the strongly interacting
vector gluon and weak-gauge bosons are much more serious in their observable
effects, and should not be tolerated in realistic models.
Georgi and Glashow60 have discussed a necessary and sufficient condition

for anomaly-free gauge theories. In its most general form, the condition is

that the quantity

cijk = Tr [Ys(ri,Fj)Fk] (7)

vanishes identically for all i,j, and k, where Fi is the matrix which specifies the

couplings of gauge bosons to spinor fermion fields through the interaction
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Lagrangian AuimFiYu¢- The above condition guarantees that all the triangle-
graph anomalies are absent. It follows from the work of Bardeen61 and Wess

and Zumino62 that if the triangular anomalies are absent, then all other
anomalies are absent. In the foregoing discussion it is tacitly assumed that
the numerical values of anomalies are not modified by higher order corrections
so that their absence in lowest order suffices to make a theory anomaly-free.
While experience in electrodynamics renders support to this assumption, an
explicit demonstration in the context of nonabelian gauge theotreis is desirable,
I am happy to learn that Bardeen has completed such a proof (see W. A. Bardeen's

contribution to the parallel session).
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4, MODEL BUILDING

A. Leptons

Theoretical possibilities on model building are enormously varied, if one
is allowed to freely invent intermediate vector bosons, Higgs scalar particles,
new heavy leptons, charmed quarks, etc., all sufficiently massive to have eluded
detection so far.

The unification of electromagnetism and weak interactions requires that we
treat the charged vector bosons Wi and the photon on an equal footing as gauge bosons
so that any scheme of this sort must contain either 0(3) or SU(2) x U(1l) as a
subgroup. We shall discuss "economical" models based on the minimum groups as
they apply to leptoms.

The principles of model building have spelled out by Weinberg, and more
recently by Bjorken and Llewellyn-Smith. It is worth reproducing the recipe
here [see Table V]:

1. Choose a gauge group.

2. Choose the representation of the Higgs fields and their charge

assignments.

3. Choose the representations of the spin % chiral fermions.

4. Couple the gauge fields invariantly to Higgs fields and fermions.

5. Couple the Higgs fields invariantly and renormalizably to themselves.

6. Choose these couplings so that the potential of the Higgs fields is a

minimume when neutral Higgs fields have nonvanishing vacuum expectation
' values.
7. Couple the Higgs fields invariantly to fermions.
8. Rewrite the Lagrangian in terms of the translated fields S =¢ - <¢>0,

and quantize:
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(a) Some intermediate bosons acquire masses:
2 2 2
(5 ¢ + gW >3 ZW <p> .
(66 +¢g uct») g W <p>
(b) Some fermions acquire masses:
V¥ > hece > <o>Py.
(c) At least one vector boson is massless because electric charge
congervation is unbroken.
(d) Some of the scalar fields become redundant; they turn into longi-
tudinal components of massive vector bosons.

The original model of Weinberg and Salaml’2 is based on the SU(2) x U(1)

scheme; the symmetries act on a left-handed SU(2) doublet

v
L=k Q-vp) ( ) ®
-

with the leptonic hypercharge Y = 1 and a right-handed singlet
R =3 vyt €))

with the leptonic hypercharge Y = -2. The electric charge is given by

Q =T, +1/2 (10)

We need four gauge bosons, two charged and two neutral. In addition, we need

a complex scalar doublet to break the symmetry spontaneously down to the U(1l) of
electric charge. This is achieved by letting the neutral component of the Higgs
doublet develop a vacuum expectation value. The nonvanishing lepton masses are

also due to this mechanism. The physical photon, for example, is a linear combin-

ation of the hypercharge gauge boson (Yp) and the neutral isospin gauge boson (Wﬁ):
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1 3
A= (8'W, “+e¥) an

’ ’gz+g'2

where g and g' are the isospin and hypercharge gauge coupling constants. The
Weinberg mixing angle Sw of Eq. (1) is defined as tan ew =g'/g.

The model of Georgi and Glashow29 is based on 0(3); the charged intermediate
vector bosons Wt and the photon form a triplet of gauge bosons. Leptons are

placed in triplets and singlets:

e e

v sin B + E0 cos B s E0 s (12)
+ +

E L E /R

(—Eo sin 8 + v cos B)L,

and similarly for the muon and its relatives (vu, Mo, M+). A triplet of Higgs
scalar mesons provides spontaneous breakdown of symmetry. 1In this scheme, the
universality of the electron and muon (and hadrons) in their couplings to the W1
is extremely artifical since the mixing angles B have to be the same for electron
and muon by accident. Nevertheless the model is a very interesting one in not
having any neutral current other than the electromagnetic current. In this scheme

the mass of the Wt is
o = (52.8 Gev/c?) sin 8.

The main features of the Weinberg-Salam and Salam and George-Glashow models are
summarized in Table VI.
A number of variations is possible on the Weinberg-Salam scheme so that the

neutral current does not contain the neutrino term Gyu(l-ys)v.
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In one model discussed by Lee,64 and Prentki and Zumino,65 the left-handed leptor
(electron or muon) and its neutrino are placed in a triplet instead of a doublet.

In this model the heavy neutral vector boson couples only to charged fermions.

In the second model discussed by Prentki and Zumino,65 the neutral component of the left-
handed electron doublet is not v, but (v+E°)L//5, (v-Eo)Lfff and ET forming

another doublet. In this scheme the neutral current contains the term Eoyu(l—ys)v

+ h.c., but not the diagonal neutrino term.

The above examples serve to illustrate the general strategy in constructing
models of leptons of this type. The left-handed lepton (eL or uL) and its neu-
trino are placed in a multiplet of SU(2), the right-handed component to another
multiplet, by inventing heavy leptons as they are needed. If the multiplets
chosen are such that Q = T3, a neutral vector boson is not needed and the unifi-
cation can be achieved in an 0(3) framework. Otherwise we need an SU(2) x U(1)
scheme. There are many variations to this basic theme. For example, (e,ve) and
(u,vu) need not belong to multiplets of the same dimension provided that one
can arrange the e universality in weak interactions. The physical leptons
need not be eigenstates of T3 or Y - the possibilities are myriad.

There may be certain advantages in considering not so economical schemes.
The main impetus for such an enterprise comes from the esthetic desire for uni-
fying the electron and muon in a single multiplet, and from the possibility of
understanding thereby the muon electron mass ratio. The works of Weinberg
and also Freund,67 are typical of this class of theories, and I shall outline
Weinberg's SU(3) x SU(3) scheme in the briefest terms. The four component leptons
e ,v, u+)L and (e_,v,u+)R form the fundamental representations (3,1) and (1,3} of

SU(3) x SU(3). The spontaneous breakdown scheme is so concocted, in terms of a very
large number of Higgs scalar fields, that only the SU(2)x U(l) gauge bosons play im-

portant roles in generating the observed phenomenology of electromagnetic interactionms,
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the other gauge bosons being much more massive. A consequance of embedding the
SU(2) * U(l) symmetry in a much bigger one is that the two coupling constants g
and g' are no longer independent, but their ratio must be fixed. Another con-
sequence of the model is that the electron muon mass ratio is in principle cal-
culable but in practice it will depend on a number of inaccessible parameters.
More on mass differences later.

A remark on the Weinberg model in parting: One might suppose that one can
suppress the effects of neutral current by increasing the mass of the neutral

vector boson Z. Let us recall that in the Weinberg model,

2 2 2
m, = (g7+g' )V2

ey

So one can push n, to infinity by letting g' > <. However such a limit does not
attenuate the neutral current effects since the coupling of Z to the neutral cur-
rent is proportional to ng + g'z. What one must do to suppress the neutral
current effects is to postulate a large number of Higgs scalar multiplets, whose
netural members develop vacuum expectation values. Let ¢i be a multiplet with the
SU(2) quantum number Ii’ and the leptonic hypercharge Yi' The neutral member,

which acquires the vacuum expectation value vy has I, = —Y{Z. The masses of Z

3

and W are now given by

2_ 2,2 2, 2
m, = (g4 E vi 191774
1

2 _ 2 2,2 2
m. =g %Zvi (11-11/4+11)
i
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Thus one can arrange m,>>u, either by having a few multiplets with I, = |Yi|/2
and Ii very large, or by having a very large number of multiplets (or both). In
any case, the prospect of having such a large number of scalars (=~ 100, if you
wand m, = 10 mw) is unappetizing and the model so constructed is unattractive,
even if the masses of these scalars are large enough, so as to be compatible with
presently available experimental data.
Recently Achiman67b proposed a scheme in which the SU(3) group is taken to
be the symmetry of electromagnetic and weak interactions and the leptons ﬁu, u, Vo and
e are placed in an octet with 3 additional heavy leptons and quarks p, n, and Ac in a

triplet. The scheme is interesting, but suffers from AS = 1, neutral current

effects, to he discussed below.

B. Hadrons

We shall discuss how hadrons may fit into these schemes. In building models
of hadrons, it is important to bear in mind that explicit breaking of the gauge
symmetry would destroy the renormalizability. Thus all interactions - strong,
weak and electromagnetic - must respect the gauge symmetry which unifies weak
and electromagnetic interactions.63 Any observable departure from this symmetry
must arise from the Higgs mechanism.68

In this scheme then, exact and approximate symmetries of hadrons must be
understood as follows: they are the symmetries of the Lagrangian when all leptons
and the weak and electromagnetic gauge bosons are neglected, and when the Higgs
scalar fields are replaced by their vacuum expectation values.68

There are several constraints one can impose on hadronic models.
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They are, for example:

1. the B- and u- decay universality,

2. nonvanishing Cabibbo angle,

3. absence of AS = 1 neutral currents.
Additional constraints which derive from considerations of higher-order corrections
will be discussed separately. In most models, the Cabibbo angle 18 incorporated

in the scheme by arranging nLc =1, cos 6 + AL sin 6 and 1 to belong to the same

nultiplet, and arranging n and A to be eigenstates of the mass matrix. In a spon-

taneously broken gauge scheme, the mass matrix M is given by

M=M + <¢i>0r (13)

0 i?

where $M0¢ is the gauge-invariant mass term and $F1W¢i is the gauge-invariant
coupling of the Higgs scalars ¢1to fundamental fermionms.

As for the absence of AS = 1 neutral currents, models without massive neutral
vector bosons present no problem in lowest order. For other models it is necessary

to arrange the matters so that
<n)T°|)\> = <a|[T,, T_1|2>=<n]¥|r> =0, (14)

where T+, T , T, and Y are representations of generators of the leptonic (d.e.,

0
weak interaction) SU(2) X U(l). A way of achieving this is to borrow the construc-

tion of Glashow, Iliopoulos and Maiani38 (GIM), who arrange

<a|T,T_|3> = <a]T_T |A>= <af¥[r> = 0 15)
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by including a fourth quaqrk p' which couples to ALc = (AL cos 8 - o, sin 8),

such that there is a permutation symmetry of the interaction under the exchange
v,
P""psncekc’

nc= ncos § + A sin 9, Ac =) cos 6 - n sin ¢

except for the mass terms. Then in the absence of fermion masses all neutral
current effects (both intrinsic and induced - we shall discuss the latter later)

occur in the combination
+ + + +
+ =
nc o, xc Ac nn+ ) A.

For a pictorial representation of the suppression mechanism, see the figure in
Table VII,
In order to include quarks in either the Weinberg-Salam SU(2) x U(1) or

Georgi-Glashow 0(3) model, they must be integrally charged. For this reason,

Lipkin69’7o advocates the marriage of these models with the Han-Nambu quatks.71

A possible scheme based on SU(2) x U(l) is to form two left-handed quark

doublets
+ o+
P P
N,. = N,. =
1L ° 2L °
e Ac
L L

and place the four right-handed quarks jn singlets. The mass terms for quarks can
be constructed from the couplings of right-handed and left-handed quarks to the

doublet Higgs mesons, Thus the masses of n and A, for instance, are generated by
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the invariant coupling

n

m
(;—) x_lR(zb-NlL cos § - ¢-N2L sin 9)

=]

A= .
+(;— Ag($+N;; sin 6 + ¢+N, cos §) + h.c

> m_nn+m AA
n A

Similarly the mimimum scheme based on 0(3) requires 5 quarks. Alternatively an
eight-quark version of the Georgi-Glashow model can be constructed which incorpor-
ates the GIM construction.

Models of hadrons constructed along this strategy may be classified in two
catagories, depending on whether hadronic symmetries such as SU(2) and SU(3) are
incorporated 'naturally" or "artificially”. To explain this concept, let me first
recall a simple theorem: (This theorem is a corollary of the fact that spontan-
eously broken gauge theory requires the same renormalization counterterms as the

unbroken counterpart47). A (spontaneously broken) gauge theory is renmormalizable

are gauge invariant. If this condition is satisfied, the Lagrangian contains all
the necessary counter-terms for renormalization (this is the meaning or renormali-

zability in the strict sense72’73

). An artificial model of hadronic symmetry is
a model which exhibits the hadronic symmetry in question in lowest order only if
we take a subset of these terms or constrain the coefficients of gauge-invariant

terms in a specified way. In such a model, the symmetry is lost in general in
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higher orders because the terms excluded in lowest order have to be supplied as
renormalization counter terms in higher orders. A natural model is a model in
which the hadronic symmetry in question holds in the presence of all possible
gauge-invariant terms. In all the models discussed above the hadronic SU(2) and
SU(3) symmetries are artificial in the sense discussed here. In the model we

shall discuss presently the approximate SU(3) symmetry of hadrons appears naturally.

Recently Bars, Halpern and Yoshimurau’75

proposed a new model which combines
leptons and hadrons in a grand scheme based on U(3) x U(3) x SU(2)x U(1). The
first two factors refer to the usual hadronic UL(3) X UR(3); the last two to the
Weinberg-Salam SU(2) x U(l). The scheme contains altogether 22 gauge bosons. I
shall describe the model in its barest form which may not do justice to the original
paper. A salient feature of this scheme is to assign all quarks tc singlets of
SuU(2) x U(1l), and to postulate 2 sets of mesons which transform like (3,1) under
UL(3) x UR(3) and like (%) with Y=- 1/3under SU(2) x U(l). The couplings of
quarks to the photon and weak bosons are through the intermediary of the UL(3)
gauge bosons (i.e., p + Al) in a manner reminiscent of (but not identical to) the
field algebra scheme, The couplings of weak bosons to hadronic vector bosons are
induced by the vacuum expectation values of the mesons which have both hadronic
and leptonic indices. Two sets of these mesons are necessary to suppress the

AS = 1 neutral current. The authors have promised to discuss the dynamics of the
complicated Higgs scalar system ina future publication. In any case, I think the
model is extremely interesting in its originality and in that the approximate
SU(3) symmetry arises in this scheme naturally in the sense discussed earlier.

It is well worth one's while to study various ramifications of this general

scheme and physical constraints on these kinds of models imposed by experiment.
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5. PHYSICAL CONSTRAINTS ON MODELS AND HIGHER ORDER EFFECTS

Models based on spontaneously broken gauge symmetry contain additional
interactions arising from exchange of the Higgs scalar particles and/or neutral
vector bosons, Further, higher-order corrections are finite and therefore
should be taken seriously. We shall investigate what constraints are imposed
on models by exchange of Higgs scalars and higher order effects. J. Primack
summarized various existing calculations on higher-order effects at one of
the parallel sessions. His summary is included in these Proceedings.

Let me summarize very briefly various higher order calculations performed
so far, leaving a more complete and detailed discussion to Primack's contri-
bution. There were initially several papers which demonstrated that the physi-
cal S-matrix elements were finite in the U-gauge formulatiom. Weinberg63 showed
that quartic and quadratic divergences in many processes were absent when graphs
of the same order in perturbation expansion were taken together. Pursuing
further, Appelquist and Quinn76 demonstrated cancellation of logarithmic di-
vergences in a simplified model. The papers of S. Y. Lee77 and Rajasekaran78
show much the same thing for processes of physical interest such as
> e+ vu + vy Then there are a large number of papers dealing with weak
correction to the anomalous magnetic moment of the muon:

1. Jackiw and Weinberg79: Weinberg model, in the U-formalism,

2. Bars and Yoshimurasoz Weinberg model, in the U-formalism .

3. Altarelli, Cabibbo and Maian181: Weinberg model, using the Drell~Hearn

sum rule,

4. Bardeen, Gastmans and Lautrup82: Weinberg model, in the U-formalism,

using the 't Hooft-Veltman dimensional regulation.

5. Primack and Quinn83: Georgi-Glashow model, in the U-formalism.
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6. Fujikawa, Lee and Sanda84: Weinberg, Georgi-Glashow, and Lee-Prentki-
Zumino models, in renormalizable gauges.

In the last paper, the gauge independence of the results is explicitly demon-
strated. Fukuda and Sasakiss, and Kummer and Lane86 have also contributed to
this subject. Appelquist, Primack and Quinn87 have computed the radiative cor-
rection to the u-decay in the Weinberg model using the dispersion technique.
Bollini, Giambiagi and Sirlin88 have also computed the radiative corrections
to the u-decay in the U-formalism. High order calculations for processes not
included in this summary will be discussed below.

To begin with, it is worthwhile to discuss the general order of magnitude
of higher-order effects on dimensional and other general grounds. In higher-
order processes, where large momentum contributions are more important than
the low momentum contributions, there is no difference between the contributions
from the intermediate vector boson propagators and the photon propagator, so the

T-matrix for weak processes will have the expansion

G - % £ !
F | /al /o

T ~» — ta +a [-—i+a, o= + ...
AR SRR RV g

or

Gy T 2 2.2 ]
L% 75 b0 + b1 (GFM ) + b2 (GFM Y7+ ...,

L]

where M is the largest mass scale in the theory (usually m, or m, the mass of

z?
the neutral boson), depending on whether o is bigger than GFM2 or not. It is
generally true that higher-order effects are bigger in models with large Mz; if

M is much larger than, say 50 - 100 GeV, then at least some higher-order effects
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become intolerably large. On the other hand higher-order effects, as a rule,
are not suppressed by making M small; unless a specific cancellation mechanism
is operative, second-order effects are of order GFa, and so forth, if GFMZ 5 a.
A related question in this connection is whether there are parity or strange-
ness violations of order o in these theories. The question does make sense,
since, for example, radiative correction to strong processes due to the Z meson
can in principle be of this order if high momentum components contribute sig-
nificantly, and is parity violating. Weinberg's preliminary result (private
communication) indicates that there are no such violations of order a, at least
in a certain class of models.

The second remark we wish to make is that in making estimates of higher-
order effects for semileptonic and hadronic processes, we shall ignore strong-
interaction effects completely, despite the warning of Ken Wilsonsarguing
that relevant hadronic matrix elements are governed by the operator product ex-
pansion for short distances which does not seem to be affected by strong inter-
actions. Thus the results obtained ignoring strong interactions may be re-
garded as asymptotically valid in the parameter (m/mw)z, where 1/m is the
characteristic expansion parameter in the operator product expansion ( m = quark
mass?).

In models in which the Higgs scalar couples to (An), processes such as
K+ > w+ +e+e, or KL + U + U can occur already in lowest order (see Table VIII,1l).
The 5-quark version of the Georgi-Glashow model has this feature: thus a very
stringent lower bound (m¢ > 10 GeV) can be placed on the mass of the scalar
particles in this model. On the other hand, in an 8-quark version, the in¢

coupling is altogether forbidden and the comstraint on m¢ is eliminated.89
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The anomalous magnetic moments of the electron and muon are known exper-
imentally to good accuracy and provide several useful constraints on models.
The weak contributions should fall within the bounds

- g2 -
—3x107f\“—2/ <9 x 107’
\, weak

allowing for a discrepancy of two standard deviations. In the Weinberg-Salam
model, the weak correction to the muon g-2 is of order Gquz N 10_8 and does
not provide any useful constraints. In the Georgi-Glashow model, both the Mo
and ¢-exchange diagrams are important (see Table VIII 4): the former is of
order Gqum(M?), the latter GF[mum(Mo)]zlmi. Unfortunately the two contribu-
tions are opposite in sign, so no firm conclusion can be drawn about m(M+) or
m¢ from experiment. However, if we disregard the possibility of cancellation
and note that m(ﬂ?) i m(K), we obtain the bound oy, 218 GeV/c2 in this model.
(For the electron g-2, the contirubition of the ¢-exchange is regligible, so
one obtains the bound mw : 10 GeV/c2 with more certainty.go)

More useful constraints are available from neutral K~decays (see Table VIII 2,3).
Even in those models where there is no neutral current in lowest order, there are
in general higher order induced effects such as KL + uu and K® Eo. Unless the
GIM construction (Table VII) 1is used to cancel the p exchange by the p' exchange
in the fundamental process ni - W+W-, the effective intereaction for KL >y is

typically of the form 76

1~y \
- - a5
L= %.Z—:— sing_ coso_ [Av, | 5/n1 Gy u]
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independently of L D This gives the branching ratio

rg > ﬁu)/r(l& >all) = 3x 10°% s

which is clearly inconsistent with experiment. For those models which incor-
porate the GIM mechanism, the corresponding expression for the effective in-
teraction is typically of order GFa(AmZ/sz), where Am2 is the difference be-
tween the squared masses of '"charmed" and "uncharmed" quarks, and it is pos-
sible to imagine that the suppression factor AmZ/Mw2 is small enough to be

within experimental upper bounds.77
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6. OTHER MATTERS

91,92

1. Induced AS = 0 Neutral Current Effects. In models where the neutral

current is absent, or is present but does not contain the neutrino term
Qyu(l—ys)v, processes such as vu + e > vu +eand v+ p >V + p occurs in

higher order. In conventional theory such processes occur via the intervention
of weak and electromagnetic interaction, and as second-order weak processes.

In a gauge theory there is no intrinsic difference between these two mechanisms
and gauge-invariant results are obtained only if the two effects, which are
formally of the same order, are taken into account. The magnitude of these
amplitudes is precisely of the order of GFa: for example, in the Georgi-Glashow

model, the sum of Feynman diagrams shown in Fig. 4 gives

3G_o +
F -y - n(M )
T(Vv. +e>Vv +e) = 1 [vy (1-y )v] ey, llog +v. e
H u 2/ 5 Y o 5
93-96
2. Very High Energy Weak Processes. In renormalizable gauge theories,

the unitarity limits of partial wave amplitudes are reached typically at
energy /s n L exp(l/a). Thus lower-order amplitudes are presumably trust-
worthy up to, say,/g v 103 GeV.

In theories without intrinsic neutral currents, the Pomeranchuk limit

lim (o (ve) -0 (\_)e)]=0
-~ total " 'u total® 'y

is reached very early, at s % (a few mw)z, so that the dispersion relation

T(v_+e>v_+e) 1 ds _
1im — P —H -2 — |0, (v e) -o_ (v e)|+ the t-channel pole,
50 S w 0 s tot " u tot "

is superconvergent., In these models, weak interactions always remain weak, never

exceeding the strength of electromagnetism even at ultra high energies.
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3. Electromagnetic and Weak Masses. This topic has been pursued very

actively by Weinberg,97 and Georgi and Glashowg8 in recent months. The idea
that electromagnetism is responsible for intramultiplet mass differences of had-
rons,or that the mass of the electron is due entirely to its interaction with

the electromagnetic field is an old one. The recent study is to examine under
what circumstances these quantities are finite and computable in spontaneously
broken gauge theories. We shall borrow heavily the terminoclogy and concepts

of these authors In this discussion.

A mass difference or a mass is computable if it does not receive contri-
butions from renormalization counterterms. Thus an intramultiplet mass dif~-
ference is computable if and only if the symmetry is a natural one in the
sense defined earlier. The electron mass is computable only if it is zero in
the zeroth order (i.e., in the zero-loop approximation) when all gauge invariant
terms of dimension 4 or lower are included in the Lagrangian, and the little

group that leaves the vacuum invariant does not imply a vanishing electron mass.

A zeroth order mass relation is a relation valid in the zero-loop approxi-
mation in the presence of all possible renormalizable (i.e., dim I 4) gauge-

invariant terms. From the simple theorem quoted in Section IV B it follows

that departures from zeroth order mass relations are computable. Recalling

that [Eq. (13)] the zeroth order mass matrix M is of the form M = MO + <$i)bri’
we see that there are three classes of zeroth order mass relations:

(a). Relations that follow from the invariance under the little group of
the vacuum (i.e., the subgroup that leaves the vacuum invariant). These re-

lations are of no interest, being exact in all orders,
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(b). Relations that follow from the representation contents of scalar
fields. An example is m(e) + m(E+) = Zm(Eo) cosB in the Georgi-Glashow model,
which follows from the fact that the mass matrix M is a combination of
AL = 0, 1 matrices.

(¢). Relations that follow from thé renormalizable dynamics of the
potential of scalar fields and do not follow from group theoretic con-
siderations.

The class (b) relation is especially emphasized by Weinberg as a reason-
able basis forunderstanding electromagnetic and weak masses. We have yet to
invent a model in which one can derive relations such as m(e) = am(p). The
foregoing discussion lays a foundation, hopefully, for such an invention.

I must emphasize here, though, that there is another class of relations
which are not of the type discussed above but are interesting nevertheless.
These are the relations among masses and coupling constants which hold in
lowest order in the presence of all renormalization counter terms. Examples

of this type are

m -m = f"(g

-g ) + finite correction
P n o [¢]

ppT nnw

99,100

which is true in a model which combines the o-model and the Weinberg-

Salam lepton model, and the relation

Uy 2

— = 0S8 Gw + finite correction of O(a)

which hold in the Weinberg-Salam model. In fact, any relationship which is true in

lowest order in the presence of all gauge invariant counter terms is also true in

higher orders, with a finite, computable correction.
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4. Radiative Correction as Source of Spontaneous Breakdown. This is an

idea due to S. Coleman and E. Weinberg and has not yet been published. For a
more detailed discussion, I refer you to the discussion of J. D. Bjorken in
the parallel session. In the usual discussion of the Higgs phenomenon, the
instability of the normal vacuum is caused by the displaced minimum of the
potential of scalar fields in lowest order. 1In the approach of Coleman, the
instability is caused not by the lowest order potential, but by the higher
order correction to it. This idea 1s full of promises: for example, in an

abelian realization of this idea, they show that
2, 2 2
m¢/mw = 30/21 + 0(a").
More extensive exploration of this idea is clearly called for.

5. CP Violation. There are at least two ways of incorporating CP violation
without doing violence to gauge invariance. The first is to make the Yukiwa
couplings of Higgs mesons to fermions CP violating;lo1 in order to do this,

one needs in general more than one multiplet of the Higgs scalars. The second
way, which has not been discussed in this context, is to have the Higgs mechan-

ism violate CP simultaneously.
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7. COSCLUDING REMARKS

The pioneering work of Weinberg, Salam, and 't Hooft led to various
unified, renormalizable schemes for weak and electromagnetic interactioms.

I consider this class of theories to have passed an initial battery of tests
on renormalizability. As emphasized before, what is really necessary for a
logically consistent theory is that lowest order corrections to the phenomeno-
logical theory are finite, unambiguous and small enough not to disturb agree-
ment with experiment. 1In this, the scheme succeeds admirably.

On the other hand, we have not succeeded in constructing a "natural" model
of hadrons and leptons. This is a task that lies ahead of us. There are many
models that have been discussed in the literature (and many more in notebooks).
None eof them may turn out to correspond exactly to the real world, but it may
be that general features shared by some of these models, or specific features
of one or another of them may survive.

The development of the last year brought a mild disappointment to some of
us. I hoped, at the beginning, that the constraint of gauge invariance and re-
normalizability might shed some light on the origin of the Cabibbo angle, the
size of CP violation, the structure of the hadronic SU(3) x -SU(3) breaking terms,
etc. Now this possibility seems unlikely. In the models discussed so far, these
things can be put in, and you get out only what you put in. Perhaps in a more
satisfactory model, these things will come out from a more reasonable, as-yet
undiscovered dynamical principle.

Aside from the esthetic attractiveness, the merit of this theory is that
its general phenomenological implications are testable in the near future, Dis-

coveries of heavy leptons, or neutral current effects which fit in any one of
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possible models will be a great relief, and triumph, for the enthusiast.
Our difficulty in producing an attractive model makes me wonder if we do
know what we think we know about weak interactions. This is meant to be a
plea to our experimental colleagues to reexamine the so-called "well-established"
facts on all aspects of weak interactions.lo2
Finally, this review cannot be complete without my acknowledgement to
those who have given me freely the benefit of their time and wisdom. Bill
Bardeen, J. D, Bjorken, Joel Primack, Valya Zakharov and Bruno Zumino have
given excellent survey talks in the parallel session. B. J. Bjorken, Bram Pais,

Joel Primack, Sam Treiman and especially Steve Weinberg have been available to

me for encouragement, enlightemment, and criticism.
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APPENDIX TO SECTION 2

The Higgs scalar meson plays a role in making a spontaneously broken
gauge theory finite. An example is given in Primack’'s discussion in which he
shows that the Higgs scalar contribution is necessary to remove logarithmic
divergences from one loop diagrams of fermion-fermion s;attering. H. Quinn103
has given a very interesting discussion as to the role of the Higgs meson in
making two-loop contributions to fermion-antifermion scattering finite. The

following is a brief summary of her result.

In order for the amplitude for ve > ve to be finite, the amplitude for

-1

ve > w+w'w+ must grow at most like s as s >, In a massive Yang-
Mills theory, vainshtein and Khriplovichlo4 have shown that this condition is
not met for the production of three longitudinally polarized vector bosons.
When the extra term arising from the Higgs meson exchange (see Figure 5 ) is
added to the above it cancels the leading term that grows like const S_% as
s > ©, leaving an amplitude of order mw/s, which is sufficiently convergent.

This is an explicit demonstration of the role of the Higgsian scalar in
making the S-matrix finite from the viewpoint of the S-matrix theory, and
repudiates the view that the Higgsian scalar is an artifact peculiar to operator
field theory.

I am indebted to J. D. Bjorken, J. Primack and H. Quinn for teaching me

about this argument.
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Fig. 5. Diagrams for the process v& —~ W+W W . The bottom contribution, involving the ex-
change of a Higgs boson, is essential to obtain a sufficiently convergent amplitude as s - ®,
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APPENDIX TO SECTION 3

I wish to expand my remarks on the Bars, Halpern, Yoshimura model. We
shall ignore the anomaly problem altogether and use the notation appropriate

to [UL(3) x UR(S)] X [SU(2) % U(l)]leptonic' The mesons which trans-

hadronic

form like (3.1) with respect to the hadronic symmetry end ( %, - %-) with respect

to the leptonic may be written as

:° It

o - 0
w® = | a] K , a=1,2,3, a-=1,2.

- 0

7 L

We need two such multiplets; we denote the second set by primed symbols.
Suppose we arrange the dynamics of the scalar complex so that M and M’

develop vacuum expectation values.

r1 0

<M = 0 cos8 |v

LO sin 8 J

[0 © |
<M'> = 0 -sin 6 v
0 cos 0)

+
w
Let Vu and W be, respectively, the 3 x 3 gauge bosons corresponding to [SUL(a)]hadronic

and the 2 x 2 bosons for [U(z)lleptonic'
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+(Al K*+ (KA,
Our( )u u ( Ip

s ’
2 A
+
V“ = T - s -
-—, —— , _—
_—, W
Wu =
L —

The coupling between Vu and Wu is generated by
gf Tr (V:MW“M* + Vi
> gg' Tr (V:<M>0Wu<M-'L>0 + V:<M'>0WU<M'+>0)

which will include the term

2 4 p, HAD) K&+ (KA)
gfv. W (coso—E—H+ sing E—F
e A 3

but not the coupling of Kp + KO to the neutral members of W, i.,e., the photon
u

and Z. In the above f and g are the gauge coupling constants for LSUL(3) Ladronic

and [SU(Z)]leptonic

The authors argue that, in the approximation in which the meson complex M
is replaced by its vacuum expectation value, the scheme is essentially identical

to the field algebra of T. D. Lee, Weinberg and Zumino.

In this scheme the induced neutral current effects such as Kﬁ* 2u and

KO > RO are expected to be of order of
2

m
2y P . -4
GF(GFmp) M Gp o x10

and safe.

I am indebted to Dr. I. Bars for very stimulating discussions on his model.
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Table I

Status of Leptonic Neutral Current Effects

Process Weinberg Theory
GF - -
1.V 4e +e % exp’ Oy-a < 1-9 =Y (A-yg)vey (ey=c, v )e
e e 2

(Gurr, Reines, and Sobela) 2o

Excluded
Ca

Feynman & Gel-Mow

(V—A) Theory

8 05 l.g
& =
Theory

-0‘5 [} 05 10 15 20 25

Cv
2. v te+v +4e g 27 x 10'“(E /GeVyem®  sin® 6 = x < 0.6
u u exp v W

(CERN Group, this conferenceb)

3. v e+ +e a 1.1 x 10_41(E /GeV)cm2
" N exp v

(CERN Group, this conferenceb)

a. H. Gurr, F. Reines and H. W. Sobel, Phys. Rev. Letters 28, 1406 (lﬂ’72)

b. CERN Group, as reported at this Conference.
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Table II

Status of AS = 0 Neutral Current Effects (Hadronic)

Process Experiment Weinberg Theory
+ 0(212+v+n+n+) 1 b
1. VT R1 = 7 R1 =‘§ (Weinberg )
o (vtputptn )
= 0.08 * 0.04 R 2 % x 0.4 (Albright et al.S)
(Cundy et al.a)
) vhpvipt® R, = a(vprvpr®) + o(vnrvar®) R, 2 0.4 (B. Lee®: A dom-
. >vtp 5 - , = 0. . Lee : o
o 2(vn>upm ) inance, static model)
vinvintr
20.14 > 0.4 (Paschos and Wolfen-
d stein®: A dominance)
(W. Lee )
2 0.19 (Albright et al.:
incoherence of the
I=1/2 and 3/2 final
states)
= S{viprvip) <R <
3. viprvip Ry = iy 0.15 S R S 0.25
4
= 0.12 + 0.06 (Pais and Treiman®)
a
(Cundy et al.”)
a. D. C. Cundy et al., Phys. Letters 31B, 478 (1970).
b. S. Weinberg, Phys. Rev. D5, 1874 (1972).
¢. C. Albright, B. W. Lee and E. Paschos, "Bounds on Neutral Current Inter-
actions in Weak Pion Production'". to be published.
d. W. Lee, Phys. Letters 40B, 423 (1972).
e. B. Lee, Phys. Letters 40B, 420 (1972).
f. E. Paschos and L. Wolfenstein, "Tests for Neutral Currents in Neutrino Re-
actions'", to be published.
g. A. Pais and S. B. Treiman, "Neutral Current Effects in a Class of Gauge Field

Theories", to be published.
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Table IIla

Status of AS # 0 Neutral Current Effects

Ypper-Bounds (B.R.)

Processes (90% C.L.) Sources®
K> nlete” <4 %1077 Cline et al. (1968)
& st < 2.4 x 1078 Bisi et al. (1967)
K" > rtrfete” <8x10° Cline (1965)

K° et < 1.9 x 1077 Clark et al. (1971)
KO >ee < 1.9 x 1077 Clark et al. (1971)
K° -t < 1.9 x 107° Clark et al. (1971)
Kso - u+u_ < 7.3 x 10_6 Hyams et al. (1969)
K > ot < 1.4 x 108 Klems et al. (1971)
<7.5 %1077 Cable et al. (this
Conference)
K" > uvoy <7x 1078 Cable et al. (this
Conference)

a. Pre-conference data are taken from J. H. Klems, R. H., Hildebrand, and

R. Stiening, Phys. Rev. B4, 66 (1971).
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Table IIIb

A4S = 1 Neutral and Double Charged Current Effects

Type Decay Mode Ref. Limit

b
[ (K > Tl+e+e -3
T

Neutral (a) < 3.0 x 10

’k ->7rev)

« it 1
[ ._"_"‘i)__ (b) < 5.0 x 1073
F(K > 1% v )

r( "y 1 &
> U u
l' KL J () < 2.6 x 107°

I‘K-*
( uvu)

5
+ -+ +
Doubly- [M © < 9.6 x 1074

charged I‘(K R u+)

- +
o{u +Cu~+re + Coﬂ (d) < 1.6 % 10_4
ol + Cu » v+ Ni)_l

a. D. B, Clarke, et al., Bull. Am. Phys. Soc. 17, 493 (1972).
b. Review of Particle Properties, Phys. Letters 398, 1 (1972)

¢. E. W, Beier, D. A. Pouchholtz, A. K. Mann, and S. H. Parker, "Search for
Doubly Charged Weak Currents Through Kt -+ n~e¢ty, to be published.

d. D. A. Buryman, et al., Phys. Rev. Letters 28, 1469 (1972).

This compilation is taken from c.
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Table IV

+ o
Heavy Leptons (E ,E°; M',M®)

+ °
Decay Modes (assume m(E ) > m(E )):

g+ ety
e

+v
Eou u

E + hadrons

- vp+v
e

+
vev
e e

u

Ve + hadrons
E > e“u"-\)u (good signature)
+
eev
e

e + hadrons

E° > vy

Production Mechanisms:
efve > B4y
-+ hadrons + ¥y
Logve

e + e > E +v
e

+ .

v + N + M <+ hadrons

w+N > ¥+ hadrons

Yy+N = M++M-+hadrons
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Table V. Recipe.

Choose a gauge group G SU(2).
Choose Higgs scalar fields ¢
Construct an invariant, renormalizable V(¢).

W/9],_, = 0.

The little group of the vacuum = UQ(l).
Choose chiral spinor fields wL,wR.

Form Yukawa couplings EL¢wR + H.c. .
Couple gauge bosons to Higgs ¢, wL’ and wR.
Quantize.

A %0 6+ g7 07+ 5@’ 2,

B. Yl gyp + hic. > Y.

C. Some of Higgs scalars » Longitudinal components of massive vectors.
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Table VI

Models of Leptons

Weinberg-Salam Georgi-Glashow
Group U(2) 0(3)
Gauge Bosons W+,W_,Z,y W+,W-,y
e e
Leptons v s} v sing + EocosB
E+ L

(v cosg - Eo sinB)L.

0 +
¢ v $
Higgs Scalar N - ¢2 N v
¢ 0 ¢ 0

Electric Charge Q =T, + Y/2 Q=T

3

W Mass > 32,7 GeV/c2 < 52.8 GeV/c2
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Table VII

GIM Construction

cos § -sin &
n Pp—jarPran W PPt W
P + p’' =0 (if m(p) = n(p"))
A P W+ X-‘——LWMW-*
sin 6 cos 8
P p'
n cost+isind -nsiné+icosd

Weinberg Model
P P

n cosO+Asind -n sin6+icos6
L L

m

v—“ n, [cos 8(¢-L)) - sind(4-L,)] + h.c. > mnt-m
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Table VIII

Physical Constraints

A n n
\“ )
. .
/ -
~~1
K i
W
o
A=
KO - l-(O
n A
7 WAV 7

A -(—MM-_(-“

Anomalous Magnetic Moment

m,+m

G, +.

v E gipef 20| @ Im(K)
Ji‘ m)‘—m 2
¢

n m

(if present)

~ GFa without GIM,

v Go —5 with GIM,

n Gqum(M°) .

(cf. G,quz for other diagrams)
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DISCUSSION

K. A. Ter-Martirosyan (ITEP, Moscow): You have described many different models of weak

interactions, but nature can clearly choose only one. Are there any tests to distinguish between
these different models ?
B. W. Lee: Of course no single experiment can prove any particular theory. But the search for

(a) neutral currents and (b) heavy leptons should be crucial in proving or disproving these theories.
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