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Abstract

A major goal of modern physics is the detection of physics beyond the Standard Model.
Promising areas to search for such signals are processes that are either forbidden or
highly suppressed within the Standard Model, including Lepton Flavour Violation
(LFV) and rare K decays. While LFV is forbidden in the renormalisable Standard
Model, the rare K decays KT — nTvw and K; — 707 are not, and so precision
theoretical predictions are required to distinguish any signal of new physics from the
Standard Model background.

We discuss the contribution of the dimension-five lepton number violating Weinberg
operator to the running of dimension-six LE'V operators in the Standard Model Effective
Field Theory. We also consider contributions from a hypothetical second Higgs doublet,
which gives rise to Wilson coefficients that cannot all be constrained by small neutrino
masses. We then consider bounds on the magnitudes of these Wilson coefficients, by

using phenomenological bounds on the low-energy effective theory.

Finally, we discuss the calculation of the rare decays K+ — ntvw and K; — 70w
to Next-to-Next-to-Leading Order in QCD. These decays are theoretically very clean,
providing a promising arena for the detection of new physics. We discuss in detail the
matching of box diagrams in the full Standard Model to diagrams of the effective theory
below the weak scale, to O(a?). This involves the evaluation of three-loop integrals,

and we provide the Wilson coefficients obtained from the matching.
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Chapter 1

Introduction

The Standard Model (SM) of particle interactions describes nearly all phenomena of
fundamental particles to an extremely high level of precision, at the highest energies
we can currently probe. However, it is known to be an incomplete theory. The SM
only describes visible matter, which comprises only a few percent of the contents of the
universe [1], and has nothing to say about dark matter or dark energy, which make up
the remainder. In addition, the SM is unable to describe gravity, the only one of the
fundamental forces not yet to be quantised [2]. The renormalisable SM also does not
allow neutrino masses, in contradiction to experimental observations [3]. Even when
considering the fundamental properties of known particles, the SM is not infallible.
While the agreement between the SM prediction of the electron’s magnetic moment
and its experimentally measured value is a major success for the SM [4, 5], it fares less
well when considering the magnetic moment of the muon. Here there is a significant
disagreement between the SM and experiment, which although is not currently at the
level of a discovery, only becomes more significant with the passage of time [6,7]. This
discrepancy is all the more interesting since the heavy mass of the muon compared to
the electron highly increases the sensitivity of the muon to the effects of new physics

from heavy new particles.

The SM is a Quantum Field Theory (QFT), which is defined by its invariance under
the symmetry group SU(3)c x SU(2)1, x U(1)y, and by its particle content. Due to its
shortcomings, the SM can be considered to be a low energy effective theory for a more
complete theory valid at high energies [8,9]. From this perspective, the SM can be
divided into two sectors, the first containing marginal and relevant operators, and the
second containing only irrelevant operators. Marginal and relevant operators may be
renormalised to all orders in perturbation theory using a finite number of counterterms.
The second sector, comprising of an infinite number of higher-dimension irrelevant
operators, can be renormalised order-by-order by a finite number of counterterms.

Therefore this theory is fully predictive once an expansion order is specified in the



irrelevant operators. Higher-dimension operators are generated in the SM by heavy
particles that have masses well above the electroweak scale, and the effect of these

operators may be observed by experiments.

Higher-dimension operators generated from heavy particles are suppressed by the mass
of the heavy particle. This natural suppression typically makes the signal of effec-
tive operators very small when compared to the signal from dimension-four operators.
However, experimental searches for processes that are forbidden or highly suppressed
when only considering dimension-four operators in the SM are sensitive to the effects
of effective operators, and as such are an active field in the search for new physics.
Current experiments that aim to probe these processes include LHCb and NA62 at
CERN, KOTO at JPARC, Belle II at SuperKEKB, and Mu3e at the Paul Scherrer
Institute. The first four of these experiments are probing processes that are highly sup-
pressed within the dimension-four SM, specifically the properties of K and B mesons,
while Mu3e is searching for signals of the decay p — eee, which is forbidden in the
dimension-four SM. These experiments promise to deliver unprecedented sensitivity to
new physics, and as such it is necessary to improve theoretical predictions in paral-
lel.

In the leptonic sector of the SM, the lowest-order effective operator is the Weinberg
operator [10], which generates Majorana masses for left-handed neutrinos. The Wein-
berg operator is Lepton Number Violating, and also generates Lepton Flavour Violation
through loop processes involving double-insertions of the Weinberg operator [11]. Since
neutrinos are known to have non-zero masses, this process is the leading order contri-
bution to Lepton Flavour Violating processes such as i — eee, and we calculate this
contribution in this thesis. We also consider an extension to this model, by consid-
ering the effects arising from the presence of a second Higgs doublet. The mixing of
double-insertions of dimension-five operators into dimension-six operators of SMEFT
generates contributions to the renormalisation group equations of the dimension-six
processes, which we calculate and use to place bounds on the Wilson coefficients of the

two Higgs doublet model.

We also calculate the contribution to the rare decays K — wvv from the dimension-
four operators of the SM to O(a?). We only calculate the contribution from box
diagrams, but note that the additional penguin diagrams have already been evaluated
in a previous work [12]. This precision calculation is necessary to be able to differentiate
any contribution to the decay from higher-dimension operators generated by heavy new

physics.
This work is organised as follows:

e In Chapter 2, we describe the relevant formalism of QFTs, discussing equations



of motion, gauge theories, and quantisation. We also discuss the unbroken SM,
which is used heavily in Chapter 5, followed by the Higgs mechanism, and the
associated generation of particle masses, and charged- and neutral-currents in the
weak sector. This is followed by a discussion of the CKM matrix, which is relevant
for Chapter 6. Finally, we discuss Majorana masses and the PMNS matrix, which

is relevant for left-handed neutrino masses, discussed in Chapter 5.

In Chapter 3, we discuss the evaluation of Feynman integrals that arise in loop
diagrams. We discuss techniques to reduce integrals to vacuum integrals, the
symmetry properties of vacuum integrals, and their evaluation through the work
of [13]. We also describe the reduction of integrals to a basis of master integrals
using the technique of integration by parts. We then discuss dimensional regu-
larisation and renormalisation in the MS scheme, as well as the extraction of UV
divergences using infrared rearrangement. The relation between renormalisation
constants and renormalisation group equations is also considered, which is used
in Chapters 5 and 6. We finish the chapter by discussing a calculation concerning
the decomposition of tensor integrals, providing an exact combinatorial relation

for the decomposition of a class of tensor integrals into scalar integrals.

In Chapter 4, we introduce effective field theories, starting with the decoupling of
heavy particles from low-energy processes. This is followed by a categorisation of
the types of effective operators that arise in this work, including evanescent and
Equation-of-Motion-vanishing operators. We go on to discuss the renormalisation
of effective field theories, with a focus on the renormalisation of loop diagrams
that mix dimension-five operators into dimension-six operators. We then describe
the process of matching in order to determine Wilson coefficients, as well as the
importance of threshold corrections. Finally, we give a description of the two
effective theories that arise in this work, namely the Standard Model Effective
Field Theory (SMEFT), and the formalism of the weak Hamiltonian.

In Chapter 5, we discuss the mixing of dimension-five operators into the dimension-
six SMEFT operators of the Warsaw basis. These diagrams are the leading contri-
bution in the SM to Lepton Flavour Violating processes, and have not previously
been evaluated in the Warsaw basis. We also consider the addition of a second
Higgs doublet, and how that affects the renormalisation group equations of the
dimension-six operators of the Warsaw basis. Once the anomalous dimensions are
determined, a phenomenological discussion is given, in which the Warsaw basis
Wilson coefficients are matched onto the Wilson coefficients of the low energy
effective theory. Experimental bounds on these low-energy coefficients are then
converted to bounds on the SMEFT Wilson coefficients, which allow bounds to be

placed on the Wilson coefficients of the dimension-five operators. We also discuss



a previous calculation [11] that considered the mixing of the Weinberg operator
into dimension-six operators of the Buchmuller-Wyler [14] basis, and show that
we obtain results in disagreement with this earlier calculation, which we find to

be due to a mistake in the projection of their results.

Chapter 6 gives the contribution of the box diagrams of the dimension-four SM to
the process K — mvv to O(a?). We start with a discussion of the experimental
status of searches for these rare decays, and a discussion of theoretical branching
ratios for these decays. Since we match the full theory onto the effective theory, we
discuss the renormalisation of the effective theory, including the role of a required
evanescent operator, before moving on to the matching calculation. After giving
details of the matching equation, we give the Wilson coefficients up to O(a?), and

discuss the p-independence of these coefficients as a check on the calculation.



Chapter 2

Background

Modern particle physics is formulated in terms of Quantum Field Theory (QFT), which
is the product of the union of quantum mechanics and special relativity. In writing
down Poincaré-invariant theories for quantum mechanical fields, non-linear terms arise
which lead to interactions between different particle species. It is these interactions
that make QFTs of such interest, and natural candidates for a theory of fundamental

particles.

The richness of QFT's is enhanced further when considering their symmetry properties.
Many QFTs have a Lagrangian density £ (henceforth referred to as a Lagrangian),
which displays a symmetry under some global transformation of the fields. By in-
stead requiring that these global symmetries be respected locally, new gauge fields
arise, which interact with the matter content of the theory. Quantum Electrodynamics
(QED) was the first quantum gauge theory to be formulated [15, 16], describing the
coupling of fermions with photons, and the theory yields theoretical predictions that
have been experimentally verified to an astonishing level of precision [4,5]. Quantum
Chromodynamics (QCD), which describes the strong force, is also a gauge theory, but
unlike QED has a non-Abelian group structure. Consequently, QCD exhibits interest-
ing new phenomena including gluon self-coupling, which have profound implications

for hadronisation.

The Standard Model (SM) [17-19] of particle physics is also a gauge theory, which at
energies below the electroweak scale breaks into a simpler group structure containing
both QCD and QED. The breaking from a large group structure to a smaller group
structure is due to the Higgs mechanism [20—22], where a scalar particle obtains a non-
zero vacuum expectation value (VEV). A candidate for the Higgs boson was discovered
at the LHC in 2012 [23,24], and there are large experimental and theoretical efforts to

gain a greater understanding of the Higgs sector.

We shall here provide a brief outline of QFTs, their generalisation to gauge theories,



and a discussion of the breaking of the SM gauge group via the Higgs mechanism.

2.1 Quantum Field Theory

To describe high energy processes at a fundamental level, it is necessary to unify special
relativity and quantum mechanics, which yields a QFT. One way to do this is by taking
a classical field theory that is Lorentz invariant, promoting the fields of the Lagrangian
to operator-valued fields, and imposing commutation relations upon those fields. The

requirements made of the Lagrangian are that it:
e is invariant under Poincaré transformations,

e contains only fields and their derivatives up to first order (as well as coupling

constants),
e is renormalisable (has a mass dimension equal to four).

The requirement that a Lagrangian contains derivatives only up to first order ensures
that the theory doesn’t suffer from problems such as non-locality and spectra that
are unbounded from below [25], and the requirement that the mass dimension of the
Lagrangian must be equal to four follows from dimensional analysis. The fundamental
object of interest is the action S, which contains all of the information of the theory.
The action is a dimensionless quantity defined as the integral of the Lagrangian over

spacetime,
S = /d4:1: L(ips, 0p;). (2.1)

Since the integral measure has mass dimension of minus four, the vanishing dimension
of the action requires the Lagrangian to have mass dimension of four. We have here
denoted the fields present in the Lagrangian by ¢, which can be bosonic or fermionic.
For the SM, matter is described in terms of fermions, while interactions are mediated
by bosons (gauge vectors and a Higgs scalar). We shall see that these requirements on

mass dimension can be relaxed when talking about effective field theories [25].

The equations of motion (EoM) of the classical theory can be found using the variational
principle on the action, and are given by the Euler-Lagrange equations,
< oL > oL
ol m— ) — =
(Ouspi) dp;

0. (2.2)

2.2 Abelian Gauge Theories

Gauge theories are theories in which the Lagrangian (and therefore action) is invariant

under local continuous symmetries. Gauge theories can be constructed by starting



with some Lagrangian that displays a global (non-local) continuous symmetry, and then

demanding that the theory should be locally invariant under the same symmetry.

Consider the Dirac Lagrangian,
LDirac = 1; (13 - m) 1% (23)

where ¢ = 1(z) are fermionic fields with mass m. Under the global continuous U(1)

transformations
P(z) = (), P(z) = e P(x), (2.4)

where « is some arbitrary constant, Lpiac remains invariant. In order to make this a

gauge theory, we demand that the Lagrangian remains invariant under the local U(1)

symmetry
() = (), b(x) = e (). (2.5)
Transforming the fields in this way causes the Lagrangian to transform as
Lbirac = & (i) = m) v + ithe ™y (9,60 ) s (2.6)
= ‘CDirac - J},yl‘ (8uoz(:v)) 1/}’ (27)

and so the Dirac Lagrangian is not invariant under the local U(1) transformation. While
the mass term is invariant under the gauge transformation, the derivative term is not,
and so the insistence of gauge symmetry corresponds to a redefinition of derivatives.

The gauge-covariant derivative for QED is

Dyp(x) = Opp(x) +ieAy(z)(x), (2.8)

where A,,(z) is a gauge field that corresponds to the photon, and e is the QED coupling

constant. This gauge field transforms under U(1) transformations as

1
Aule) = Au(@) ~ ~0u0(a). 2.9
Since A, (z) is a new field that appears in the Lagrangian, it requires a kinetic term
of its own that is built out of A, () and its derivatives, and is invariant under U(1)
transformations. This is given in terms of the field strength tensor F),, = 9,4, —0,A,,

and the kinetic term is
1

0L = 1

F F'

It is seen that promoting a global symmetry of the Dirac Lagrangian to a local symmetry
necessarily introduces a gauge field that can be identified as the photon. A Lagrangian
for fermions that is Lorentz invariant, gauge invariant under the group U(1), charge-

and parity-conserving, and only contains terms of mass-dimension four is
_ 1 - 1 _
Lqep = ¢ (le - m) (U ZF;WF'LW =9 (2579 - m) (e ZF,uVF!W - e¢7”¢AM‘ (2.10)

7



This is the Lagrangian of QED. Imposing a gauge symmetry on a free theory causes to

the field of the free theory to interact with a gauge particle.

QED is an Abelian gauge theory, which means that gauge transformations commute,

which is clearly the case for U(1) transformations,

piol@) yif(x) _ ,iB(x) gia(z) (2.11)

2.3 Non-Abelian Gauge Theories

Lagrangians can also have global symmetries under continuous transformations whose
group members do not commute. These are non-Abelian theories. Consider the exam-
ple of QCD, where there are three copies of every quark, each with a different colour

index, r,b or g, and we can construct triplets as

V()
() = [ vla) | - (2.12)
Yg(2)

Apart from colour, all ¢; (i € {r,b,g}) have the same quantum numbers. The free

Lagrangian is again the Dirac Lagrangian, but with one copy for each colour,
Lo = Py (id — m) oy + Uy (id — m) Yy + g (i@ —m) 1y (2.13)
=W [(if — m) L3x3] V. (2.14)
The Lagrangian Ly is invariant under the global SU(3) transformation
U(z) —» V¥(z) where V =exp (iaATA), (2.15)

where T4 = 1A% are the generators of SU(3) (4 = 1,...,8), and A" are the Gell-Mann
matrices [26]. To make this a gauge symmetry, the global symmetry is promoted to a

local symmetry,
U(z) — V(x)¥(x) where V(x)=exp (iozA(a:)TA), (2.16)

and a covariant derivative D, ¥(z) must be constructed that transforms in the same

way as the triplet ¥(x). The covariant derivative for QCD is
Dy = 0y +igsGy ()T, (2.17)

where g; is the strong coupling of QCD. Since there are eight generators of SU(3), there
are eight gauge fields G;‘(J:), called gluons. The gluon field transforms under SU(3)
as .

Gil(z) = Gy (x) — ;auo/‘(z) — fABCGE (2)a (2), (2.18)

8



where f4BC are the structure constants of QCD.

The kinetic term of the gluon is written in terms of the QCD field strength tensor,

G, = 0,G;) — 0,G]} — g fAPCGRGY (2.19)
where the kinetic term is )
6L = _ZG;‘}VGA“”. (2.20)

The QCD field strength tensor Gﬁy contains an extra term compared to the QED tensor
F,,,,, which arises from the commutator of QCD generators. This term does not appear
in the QED field strength tensor since the QED generators commute. The generators

satisfy the commutation relations
(74, 78] =i fAB9TC, (2.21)
where fABC are the totally antisymmetric structure constants of SU(3).

Invariants of SU(n) Lie groups are called Casimirs. Two which will appear frequently
in Chapter 6 are the quadratic Casimirs C'r and Cjy, of the fundamental and adjoint

representations respectively. These are given by

2
-1
Cr(n) = n 5y and Ca(n)=n, (2.22)

which for SU(3) take the values Cp = 4/3 and Cy = n. = 3.
A gauge-invariant Lagrangian for a locally SU(3) symmetric theory containing dynam-
ical fermions and gluons can be written as

_ 1
Laoop =V (i) —m) ¥ — ZG;j‘yGf“W. (2.23)

This is the classical Lagrangian of QCD. Due to the non-Abelian structure of the field
strength tensor, this Lagrangian contains gluon cubic and quartic self-interactions,
which are not present in Abelian theories such as QED. These self-couplings change

the phenomenology of the theories drastically, and lead to confinement and asymptotic
freedom in QCD [27,28].

Since mass terms for gauge fields, such as %m AAF A, are not gauge invariant, such mass

terms are forbidden, and gauge particles are massless.!

"However, if the gauge symmetry is spontaneously broken, then the gauge fields acquire a vacuum
expectation value (VEV), and the gauge particles become massive. This happens in the electroweak
sector via the Higgs mechanism, discussed in Section 2.5.



2.4 Quantisation of Gauge Theories

The fundamental quantities in QFTs are Green’s functions,
G (a1, ) = (0] T () .. p(n)) [0). (2.24)

which can be computed in the path-integral formalism by

[ Dpp(ar). .. o(y,)eSle(@)0up()]
B [ D eiSle(@).0u()] )

G (xy,. .., 2,) (2.25)

where Dy indicates that the integral is over all configurations of the field ¢(z), and
S [¢(x),0,(x)] is the classical action for the field ¢(x).

Introducing the generating functional for a source j(x),
2] = N / Dy iSe@) Qup @i [ d'a j(a)o(a) (2.96)
where N is a normalisation factor, Green’s functions can be obtained by

! " zul (2.27)

G (xy,. .. xp) = (—i)nZ[O] §j(x1)...65(xy) =0

The full Green’s function contains both connected and disconnected parts. Since only
the connected pieces are of interest in scattering amplitudes, they can be isolated by
defining

Z[j] = e, (2.28)

where Wj] is the generating functional for connected Green’s functions,

6”

G (21, ) = (=) Wil (2.29)

A subclass of connected Green’s functions are one-particle-irreducible (1PI) Green’s
functions. When represented as Feynman diagrams, these correspond to diagrams that
cannot be cut into two disconnected pieces by cutting a single propagator, and contain
the entire quantum structure of the theory, since one-particle-reducible diagrams may
be systematically built from 1PI diagrams. 1PI Green’s functions may be directly
obtained by considering the quantum effective action I'[p], defined as the Legendre

transform of W{j],

H@:—Wm—/hwﬂwww, (2.30)
where 5

A further class of important Green’s functions for low-energy physics are the one-light-

particle-irreducible Green’s functions. These Green’s functions correspond to Feynman

10



diagrams that cannot be cut into two disconnected pieces by cutting a single propagator
of a light particle. These Green’s functions contain the dynamics of light particles, and
contain the physics of effective theories obtained after integrating out heavy particles.

This is relevant for Chapter 4.

2.4.1 Faddeev-Popov Quantisation and Ghosts

Naively using the construction of the previous section to calculate Green’s functions
in gauge theories involves taking the path integral over an infinite number of gauge-
equivalent field configurations, leading to unphysical divergences. It is possible to avoid
this issue by only integrating over field configurations that are gauge-inequivalent, using
the Faddeev-Popov prescription [29]. In this prescription, the generating functional for

an arbitrary gauge field in the presence of no sources is given by [30]

H/DAZH& (Gy(A%)) det

where a,(7) are the gauge parameters of Equation (2.16), and Gy(Aj,) are gauge-fixing

0Gy,

Sag

etSIALL (2.32)

terms that are vanishing for certain values of Af(z). This fixes the gauge, making sure

that the path integral is only taken over gauge-inequivalent field configurations.

The general equation for a gauge-fixed generating functional given in Equation (2.32)
contains a determinant of the form det |[0Gp/dcy|. This determinant can be removed
by using the identity

det M = / DeDeeMe, (2.33)

where ¢ and ¢ are anti-commuting Grassmann fields. For a non-Abelian theory such as
QCD, the generating functional is [30]

i [ dia | L[AG] 45 AL +Ed Mpect — 2 ST F2(A%)
Z0jp) HDA“Dche ““] g g

a,b,d

a (2.34)

Note that the gauge-fixing condition for non-Abelian theories has been denoted by

Fy(a,). The quantities

S Fy (A7)
ot

are in general functions of the gauge fields A¢

= (2.35)

1, and consequently the generating func-
tional couples the gauge fields with the scalar Grassmann fields ¢ and é. Since the
Grassmann fields have no source terms, they cannot exist as external particles and
only couple to gauge fields within closed loops. Due to this behaviour, they are known
as Faddeev-Popov ghosts, and they gauge transform under the fundamental represen-

tation of the gauge group.
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Considering the case of QCD, the gauge-fixing condition can be taken to be F} = OMGZ ,

which transforms as (using Equation (2.18))

dFy(GY) 1
— = 9%, — [0, GH. 2.36
5@6 gs b f H~a ( )
Therefore, the ghost-Lagrangian is

L= My = —20, (5b68“ ¥ gs f@beGg) e, (2.37)

where the ghost fields have been rescaled as ‘i—f — cbec.

2.5 The Standard Model and the Higgs Mechanism

The Standard Model is a unified description of the electromagnetic, weak, and strong
forces. It has a gauge symmetry of SU(3)c x SU(2)r, x U(1)y, where the SU(2) sym-
metry acts on doublets of left-handed fermions, and the charge of the U(1) group is
hypercharge, Y. The SM Lagrangian is [§]

1 1 1 1 2
Lo = =G, GYY = JWL, W — 2B, B + (Dyg) (D) +mPelo — oA (90*90)

+i (L0 + eDe + qldq + ulu + dpd) — (Teep + qLyu@ + qladp + Hee.),
(2.38)

where the Yukawa couplings I';, i € {e,u,d} are matrices in generation space. The

matter content (with group representations and charges listed in Table 2.1) is
e left-handed lepton doublets ¢,

e right-handed lepton singlets e (no sterile right-handed neutrinos are included in

the SM, since they are unobservable),
e left-handed quark doublets ¢,
e right-handed up-type quark singlets u,
e right-handed down-type quarks d,

and ¢ denotes the Higgs doublet with hypercharge Y, = % The quadratic Higgs term
is a mass term, but with the “wrong” sign, which leads to spontaneous symmetry

breaking, discussed below. ¢ is defined by
&' = eii(p*), (2.39)

where ¢ and j are SU(2) indices of the fundamental representation, and ¢;; is the anti-
symmetric Levi-Civita symbol, with £12 = +1. With this definition, ¢ transforms under

the fundamental representation of SU(2), and has hypercharge Y; = —%. G/‘:‘V, W}f,, and
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| Field [ SUB). [ SU@2)L | Y |
[ - 2 —1/2
1 -1
2
1
1

1/6
2/3
~1/3
- 2 1/2

W W w1

€t a2 o

Table 2.1: Fermions and Higgs doublet of the SM, with their hypercharges Y, and
their representation under the constituent gauge groups of the SM.

B, are the field strength tensors of the gauge groups SU(3)c,SU(2)1,, and U(1)y re-
spectively, given by
G, = 0,Gy — 9,G} — g fPCGRGY
Wi, =0,W,) — ,W, — gae /"W IWE, (2.40)
B, = 0,8, — 0,B,,
where fAB¢ and /7K are structure constants, and go is the SU(2) coupling constant.

The sign conventions for covariant derivatives are illustrated by the covariant derivative

of ¢, which is charged under the entire SM gauge group:

Dyq = (au + igSTAGﬁ + ingIWlf + ig1Yun) q, (2.41)
where T4 and ST are respectively the generators of SU(3)¢ and SU(2),, and g; is the
U(1)y coupling.

It is important to note that Lgy contains no mass terms, and so all fields (before

electroweak symmetry breaking) are massless.

The SU(2)1, x U(1)y gauge group of the SM is broken by the Higgs doublet ¢ acquiring
a VEV. The relevant part of the Lagrangian is

2

1 2 1 2
LMl vy = 1 Wiw) = 3 B+ (Dup)T (DFo) +mPplp — A (¢T90> :
(2.42)
which is invariant under gauge transformations
= eio‘l(x)sleiﬁ(x)y‘ﬂgo. (2.43)

The Higgs doublet is a weak isospin doublet of complex scalar fields

- (2). i

which has a potential V(¢) = —m2pfo+A (@Tw)2. The potential is minimised for

m2

2
= — 24
ol = 2, (2.45)
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which means ¢ acquires a VEV. Since Equation (2.45) only specifies the magnitude of
the Higgs doublet that minimises the potential, the VEV of the Higgs doublet can be

freely chosen to be
1 /0
() = —= ( > : (2.46)

where v = /m?2/\ is real. Fluctuations around this minimum (which can be treated
perturbatively) can then be parameterised by a scalar field h(z), called the Higgs field,
allowing the Higgs doublet to be written as

p(z) = \}5 <U +%(x)> : (2.47)

This choice is called the unitary gauge.

When the Higgs doublet acquires a non-zero VEV, it gives masses to otherwise massless
gauge bosons and fermions of the unbroken SM Lagrangian, given in Equation (2.38).
For the gauge bosons, the relevant part of the Lagrangian is in the covariant derivative of

the Higgs doublet, and upon inserting the VEV of the Higgs doublet this becomes

5L = (0 ) [g2W,S" + q1Y,B,] [g2WHS7 + 91, B <2) : (2.48)

1
2

1

Explicitly entering the SU(2) generators as ST = 77/2 | where 7! are the Pauli matri-

L (01 s (0 —i . (10
T —<1 O)’ T _<i 0>, ™=y _1) (2.49)

this part of the Lagrangian becomes

ces,

6L =" |3 (W) + (WD) + (~2W + 91B)°|. (2.50)

Consequently the fields Wl} and Wi acquire a mass of My = gov/2. The final term

involving W;’ and B, can be rewritten as

2 W3
(—92W3 +91Bu)2 _ (Wi, B,) < 92 91292> <BM>
)

—9192 91
WS
= (W} B,)M (BZ> : (2.51)

where M is a mass matrix. To extract the mass eigenstates and their masses, it is
necessary to diagonalise the system, by finding the eigenvalues and eigenvectors of M.
The eigenvalues are

A =0, Ao = g7 + g3, (2.52)

with eigenvectors

= 1 <gl> — 1 <_92>
T = —F— and 9= —— (2.53)
Vi + g5 \92 Va+g \a
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respectively. The eigenvectors are normalised to respect the canonical normalisation of

the Wi and B, kinetic terms. Therefore in the propagating mass basis there are two
D-dmal D e
Zu g% + g% g2 g1 Bu ’
v
My =0, My =51/ 9t + 3. (2.55)

The leptonic gauge sector of the SM Lagrangian contains the terms

bosons

with masses

il Pl D gy > Lyt (S'W, + SPW2) Pl

92 _ _ 0 1 1 0 —2 ) Vi
= —EZ (VLr BLT) |:<1 0) W# + <Z 0 > WH ryt“PL L

T

- —%2 S [T (W= iW2) v Prep, +epr (W) +iW?2) v#Prug,|
-
= —% Z L Wi Prep, +eprW, " Prvr,| (2.56)
T

where the fields Wf(m) are defined as

1
- 12
Wik = ﬂ(wumwu). (2.57)

These are the charged mediators of the weak force, which have mass My« = My,

since they are a linear combination of the fields W,} and Wg

To summarise the SU(2)r, x U(1)y sector of the SM, the fields Wl} and W3 mediate
charged-current interactions due to the non-diagonal structure of the SU(2) generators
S and S2, mixing to form fields of electric charge lec The Wg’ and B, mediate
neutral-current electroweak interactions due to the diagonal structure of .S 3and Yoyo,
and mix to give the Z-boson and the photon. After electroweak symmetry breaking
(EWSB), the Higgs mechanism gives mass to the Wﬁt and Z, fields, while leaving the

photon A, massless.

Fermions also gain mass from the Higgs mechanism. Dirac mass terms are given
by
mpp =m (Yrbr + YrYL), (2.58)
where
Yrr = Pr/rY, and YR =YPr)L - (2.59)
P, and Pg are chirality projectors defined by

1- 1
-2, Pr= z% . (2.60)

Py,
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Dirac mass terms cannot be written in the SM Lagrangian since the left- and right-
handed fields transform under different representations of SU(2), and as such Dirac
mass terms are not gauge invariant. However, it is instead possible to write Yukawa
terms,

LM yuk = — (ZFeegp + qlyup 4 qlqdp + H.c.) (2.61)

which are gauge invariant and couple left- and right-handed fermions. Here, I'c, T,
and I'y are respectively the Yukawa matrices for charged leptons, up-type quarks, and
down-type quarks. Upon EWSB, the Higgs doublet can be replaced by its VEV to
yield

v v

v
L =— | —=elcer + —url'yur +
SM, Yuk <\/§L6R \/ELUR /2

resulting in the generation of Dirac mass terms for the fermions, proportional to the
VEV of the Higgs doublet.

@m@+ﬂn> (2.62)

The SM is described by a QFT with quarks and leptons as the matter content, with
an SU(3)c x SU(2);, x U(1)y gauge symmetry that is spontaneously broken by the
Higgs doublet acquiring a VEV. This spontaneous symmetry breaking produces a new
physical massive Higgs boson, gives mass to the SU(2) gauge bosons, and gives rise to

weak charged-current processes.

2.6 The CKM Matrix

The quark Yukawa sector of the unbroken SM is
Lyukg = — @l ur — Gl pdy + Hee., (2.63)

which after EWSB becomes

v

['mass,q = \6

where p,r are generation indices and the subscripts L/R denote a left-/right-handed

(& rs di + @) + He, (2.64)

Dirac fermion . The Yukawa matrices [' are non-diagonal, implying that the flavour
states u?, dP ... appearing in the SM Lagrangian are not propagating particles. To find
the propagating states, it is necessary to diagonalise the mass terms into the canonical

form. This requires the diagonalisation of the Yukawa matrices.

Yukawa matrices are non-Hermitian complex 3 x 3 matrices in flavour space. The
products FUFL and FLFU are Hermitian, with equivalent Hermitian products for the
down-type Yukawa matrix. These combinations can be diagonalised by unitary matrices
as

I, =U,M2U}

uu?

T, = K,M>K], (2.65)
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where Mg is a diagonal matrix with real eigenvalues. An equivalent set of expressions
holds for d-type Yukawa matrices. Both of the above relations are satisfied by the
decompositions

r,=UM,K} and Tgq=UsMK}. (2.66)

Inserting these decompositions into the quark mass Lagrangian gives

v

£mass,q = \/§

Rotating the right- and left-handed quarks independently in generation space as

[Jﬁ <UdeKjl>pr 4 (UuMuKDm u’“R] + He. (2.67)

dy, — Ki.dp, uby = Kphulp (2.68)

and
& = Uldr P Uy 2.69
L_> pr%L» U’L_> pruL7 ( )

defines the quarks in the mass basis, in which the mass Lagrangian is diagonalised,

v

Emass,q = \/5

Applying this flavour rotation to the entire quark Lagrangian leaves the Lagrangian

b MY dy, + a’gM;;ug] + He. (2.70)

mostly unchanged, since terms that do not mix up- and down-type quarks are diagonal

in flavour space. However, mixing does occur in the ig$q term,
. _ I
i? Dg” O —q° (leqB]lzxz + g2 W SI) q*
3
(i 0" Ny B+ 2w Zwt (uL)p
= urL ar — 3
sw avB-gwt) \d

92 _ + 92 7p -
) Eugw(/ d + EdW/ ul . (2.71)

Rotating to the mass basis using Equation (2.69), these terms transform to
2 (- - 2 (- 5 -
s (- ) > T (Ui WUy UL WU )

_ % (@ Vinnd, + dEW Vi), (2.72)

where the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix V' is defined as

Vud Vus Vub
V=UlUj= Vg Vs Va|. (2.73)
Via Vis Vw

A general 3 x 3 complex matrix has 18 real parameters. Unitarity provides nine con-
straints, which can be parameterised by three angles and six phases. However, since
the mass terms of the Lagrangian are invariant under the rephasing of the quark fields

(@ — @b Dty d — D2 d7 | where D* and D are diagonal matrices of phases), the
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quark fields can also be rephased in the charged-current sector of the Lagrangian. This

transforms the charged-current term to

% (agwwmndz + H.c.) =

where

92

N (aﬁW* D Vi DL, + H.c.> , (2.74)

{iDVin DY{D$,Viz DijDisVis
DYV DY = | DY D, Vay DY D%Vay DysDgVas | (2.75)
Dy;DyVa1  D§iD3,Vso  DY5D43Vas
Therefore, there are six quark phases that may be chosen in order to eliminate the six
phases of the CKM matrix. However, if all of the rotations are the same, then the phase
shifts will cancel and the CKM matrix will not be changed. Therefore, it is only possible
to eliminate five phases from the CKM matrix by quark field redefinitions [31].

Since the free parameters of the CKM matrix may be expressed as three angles and a
phase, the standard parameterisation of the CKM matrix is given by the product of

three rotation matrices in orthogonal planes, with a phase. It is given by [32]

0

C12C13 S12€13 S13€
_ i i
V = | —s12c23 — c12523513€"  ci2c23 — S12523513€"  Sa3c13 | (2.76)
i i
512823 — C12€23513€"°  —C12523 — $12C23513€"  C23C13

where s;; = sinf;; and ¢;; = cosb;;, and ¢ is a phase which is responsible for all CP

violation in the SM.

2.7 Majorana Masses and the PMNS Matrix

In the SM it is not possible to write down a mass term for neutrinos at dimension-
four. However, Majorana masses for left-handed neutrinos can be generated from the
dimension-five Weinberg operator [10]. In this section we discuss Dirac and Majorana

masses in general, which will be useful for Chapter 5.

A 4-component Dirac spinor can be represented in the Weyl basis as

U= (Zﬁ;) : (2.77)

where v, and ¢¥p are 2-component Weyl spinors that transform under Lorentz trans-

formations as

P, — exp B (z'@jTj — ﬁjTj):| P,
) (2.78)
¢R — exp |:2 (i@jTj + ﬁjTj):|1/JR,
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where 77 are the Pauli matrices. A Lorentz invariant mass term can therefore be written

as (working in the Weyl basis of the gamma matrices)

w0 = (fofy) 2 (1) = m (whom + v (279

Lorentz invariance is confirmed infinitesimally since
6 (whwr) =0 (v}) vr+ Lo (br)
= UJTL (; (—if;77 — ﬁﬂj)> YR+ @ZJE <; (10,77 + BjTj)> Yr=0. (2.80)
The Dirac mass term is also often written in terms of chiral Dirac spinors as
mUV =m (U Vp+ Vp¥y), (2.81)

where Uy, r = Pr/pV. Yukawa interactions in the SM produce Dirac masses after
EWSB.

Another Lorentz invariant mass term can be written as

iMp] o, (2.82)

with another similar term in terms of right-handed Weyl spinors. This is a Majorana
mass term. This mass term can be seen to be Lorentz invariant in the same way as the
T

above Dirac mass, additionally using the relation 7; 75 = —7y7;.

It is possible to write a Majorana mass term in terms of Dirac fermions. First it is
necessary to define the charge conjugate W€ of a fermion field ¥, where ¥ and W€ have

opposite quantum numbers, but equal mass. W€ is defined as [33],
v=c (W) =cur, (2.83)

where C' is the charge conjugation matrix, C' = —ivy, in the Weyl basis. C' satisfies the
relations [33]
ct=c, ot =—¢, crfo=t =p1y, (2.84)

where there is no summation over i, and

1 for'; =1,i
7”’7: _ or 7 9 2'757 7#75 (285)
—1 for I'; = v, 00
These relations imply that
(Wr)° = (0,)T" = (—°C¥;)"° = —wfc . (2.86)

It is useful to write ¥¢ explicitly in terms of Weyl fermions:

V) = (V)" = —ip¥] = —i <_072 73) (woL> = (Z.Tzowz> . (2.87)
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Similarly, using Equation (2.86),
TG = [(02))'" = (—ivfm 0). (288)
The Lagrangian term (written in terms of Dirac spinors)
—MUS Y, (2.89)
can be seen to be a Majorana mass term since
MU, = —M (—ipTr ) (%L) — MY, (2.90)

which is exactly the Lorentz invariant Majorana mass term of Equation (2.82).

The SM does not include right-handed neutrinos, since they are completely uncharged
and therefore impossible to observe directly. Additionally, although the renormalisable
SM does not contain mass terms for left-handed neutrinos, experimental observation
of neutrino oscillations imply that the left-handed neutrinos must be massive, with
the mass eigenvalues being non-degenerate [3]. Therefore, a Lagrangian that describes

massive left-handed neutrinos without right-handed neutrinos after EWSB is

_ 1 J—
L= iéple eLpr ERr — ngrVEpVL,r, (2.91)

V2

where I, is the lepton Yukawa matrix that gives masses to the charged leptons, and M,
is the complex symmetric Majorana mass matrix for left-handed neutrinos [34]. Note
that we have conventionally normalised the Majorana mass term by a factor of 1/2.
As for the CKM matrix, the lepton Yukawa matrix can be diagonalised by a bi-unitary
transformation,

I, =UM.K], (2.92)

where M, is a diagonal matrix of masses, and the Lagrangian can be transformed into

the charged-lepton mass basis by rotating in generation space as

rm

ERy — Ke €R,m
pn

€Lp — Ue €L.n

— 0, > UM, (2.93)
VLp — UgnVL,n} 8 ©

where the individual rotations of the left-handed charged leptons and left-handed neu-
trinos imply that the left-handed doublet ¢ transforms as a single entity. Then, the

Lagrangian becomes (including only the charged-current part of the covariant deriva-

tive, since this is where effects of generation rotations are manifest)

2 . _ vMP 1
L= —% (uLp'y“eL,ij + eLp'y“VL,pW# ) — T;eLpeRm VLpCprVLm, (2.94)

where

C, =UrM,U.. (2.95)
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Since the Majorana mass matrix M, is complex symmetric and the matrix U, is unitary,
the matrix C), is also complex symmetric (equal to its transpose). C,, can therefore be

diagonalised using a congruence transformation [35],
Dy, = UpyinsCoUpnins, (2.96)

where D, is a diagonal matrix of neutrino masses and Upyns is a unitary matrix.

Rotating the neutrinos in generation space as
Vpp = Ug;dNSVLvr (297)

brings the lepton Lagrangian fully into the mass basis,
P

L= —% (ﬁrUg\ﬁNg’Y“eL,pWJ + qpfyuUlI;’,l;/[NSVL/"W/j> — v\]y;eLpeR,p— %ﬁpDﬁyL,p.

(2.98)
The Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix Upynsg is the neutrino equiv-
alent of the CKM matrix, and relates flavour eigenstates to mass eigenstates. Since
it is a unitary 3 x 3 matrix, it has in general nine degrees of freedom, like the CKM
matrix. However, since Majorana mass terms are not invariant under the rephasing of
fermion fields, there are only three degrees of freedom that may be removed from the
PMNS matrix by field rephasings. Therefore the six degrees of freedom of the PMNS

matrix may be parameterised by three angles and three phases analogously to the CKM

matrix [32],
"y
c12€13 512€13 s13€
_ i i
Upmns = | —S12¢23 — c12523513€"°  C12C23 — 512523513€" 593C13
i i
512823 — C12€23513€"°  —C12523 — S12C23513€"  C23C13
1 0 0
x |0 eie21/2 0

0 0 eon/?

where a9 and «g; are called Majorana phases. If ignoring the Majorana phases,
then the PMNS appears identical to the CKM matrix. However, the experimentally
determined angles of the CKM matrix and PMNS matrix are very different [32], leading
to different mixing behaviour in the quark and lepton sectors. Whereas the CKM
matrix is nearly diagonal, the PMNS matrix has large non-diagonal terms, allowing
considerable inter-generational mixing. It is not possible to measure the Majorana
phases in neutrino oscillation experiments, since the phases cancel in the transition
amplitude between neutrinos of different flavour [36], and consequently the Majorana

phases are currently unknown.
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Chapter 3

Renormalisation

Calculations in quantum field theories contain unphysical ultraviolet (UV) divergences,
which suggest that all physical quantities should be infinite, which is physically non-
sensical. This feature plagued the early years of QED, and was only resolved by the
efforts of Tomonaga, Schwinger, and Feynman, for which they were awarded the Nobel
Prize for physics in 1965 [37]. In perturbation theory, UV divergences appear when
evaluating loop diagrams, which encode the quantum effects of the theory. Loop di-
agrams are typically divergent since they include virtual particles with indeterminate
momenta, and so the diagrams generate momentum integrals that formally extend to
infinite momenta. To extract physically meaningful finite quantities from divergent
integrals, it is first necessary to parameterise the divergences, a process known as regu-
larisation. Once the integrals have been regularised, the large-momentum divergences

are systematically subtracted in a procedure known as renormalisation.

3.1 Feynman Integrals

Perturbation theory relies on the evaluation of Feynman diagrams, which can contain
loops. These loops involve the exchange of virtual particles with unspecified ‘loop’ mo-
menta, and consequently it is necessary to integrate the expressions from loop diagrams
over all such loop momenta. Since loop momenta enter expressions in the propagators
of the virtual particles, the result of a loop diagram contains a Feynman integral, whose

integrand is a function of those propagators.
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For example, in ¢* theory, there exists the diagram

N ’

q
. p1 p3 ,
N T B

- -~ 0o
AN N B A2 dq 1 1
A Moo 2 (274) g2 — m2 + i€ (p3 + pa — q)% — m? + i€’
DN
'/ p2 e p4 N
p3+ps—q

(3.1)
which contains an integral over all possible values of the loop momentum ¢q. This
integral can be formally evaluated by performing a Wick rotation to Euclidean momenta
(i.e. by taking ¢" — iq%), and then transforming to spherical coordinates such that

the loop momentum can take values between zero and infinity. The expression thus

becomes -
A2 / 7
= dg L , 3.2
2 G | T (s + s — a5+ o
which is infrared (IR) safe, but in the UV limit ¢p — oo
A2 i T ¢ oo A2 i [dgg
= 2/qu2 5 E______ R 2/ , (33)
2 2m)2 ) g +m2)(ps.p + pag — qu)* +m?) 2 (2m)* ) qm

which is logarithmically divergent.

Feynman integrals can have a rich structure, and analysis of such integrals is a major
area of research. With each loop that a diagram contains, an additional integral is
required, and the presence of fermions as virtual particles gives Feynman integrals
a tensor structure. However, all Feynman integrals are functions of the masses and

momenta of the virtual particles of the diagram.

A general 1-loop Feynman integral may be written as (where from now on ie terms

that specify the contour prescription for propagators are omitted)

d'q f(a)
2m)* ] D(q, ki, m;)’

Z(g; ki, oo kpyma, . my) = / ( (3.4)

where ¢ is the loop momentum, k; are external momenta, and m,; are the propagator

masses. Z and f can be Lorentz tensors, and propagators are denoted by
2
D(q, ki, m;) = (q -3 kz) —m;. (3.5)
i

Feynman integrals can be simplified in a number of ways. The integrand may be Taylor
expanded in external momenta [38], which are typically small relative to the masses

of the internal particles in weak processes. This removes external momenta from the
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integrand, resulting in integrals that only depend on propagator masses and the loop
momentum. Such integrals are called vacuum integrals. A 1-loop vacuum integral may

then be written as
d*q fa", ¢ ¢*q",...)
2m)4 (¢ —mP)"1 (¢? —ma)¥2 ... (q> — m3 )"’

(3.6)

where v; denote the powers that each propagator is raised to. Integrals of this form

IvaC(q;mla"'amn;yla"'vyn):/ (

—0o0

may be simplified further simply by using partial fraction decomposition. For exam-

ple,
1 B 1 1 N 1 1 (3.7)
(@ =D —md)  mE ==k mE—md =} |

and similarly, any integral of the form of Equation (3.6) may be reduced to a sum of

1-loop vacuum (tensor) integrals, each containing only a single mass. Once this has
been done, the tensor integrals may be decomposed into a sum of scalar integrals, using

relations such as

d*q "
| iy = (38)
and - -
/ d4q ququ _ ﬁ d4q q2 (3 9)
@em*(¢> —m2)r 4 (2m)4 (g2 —m2)"’ '

The first of these identities follows from integrating an odd function over an even
domain, and holds for any odd power of ¢* in the numerator. The second follows from
the fact that a Feynman integral must be Lorentz invariant, and therefore a rank-2
tensor integral must be proportional to ¢g"”, which is the only rank-2 Lorentz invariant
tensor. The constant of proportionality is found by contracting both sides with g, .

Similar relations hold for higher-rank tensor integrals.

Once tensor integrals have been decomposed into scalar integrals, the numerators can be

set to one, simply by adding and subtracting the propagator mass. For example,

7 d¢ ¢ 7 d'q (¢* —m?) +m?

@m)t (¢ —m2) ) @2m)t (¢® —m?)”

diq 1 , [ dYq 1
= / 2r)2 (@ — m2)r1 +m / )2 (@ —m2)y (3.10)

Therefore, general Feynman integrals may be expanded and simplified to vacuum inte-
grals that only depend on a single mass m and a single propagator power v. These are

the types of integral that have been used throughout this work. They can be written
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as

7 d%q 1
70) (m?; ) = / o = (3.11)

—00

2 2 2 2 _
I\(/azt(mhm%m?n V1,V2,13) =

o0 [e.o]

dq) d*q, 1
/ (2m)4 / 2m)* (2 — m2)1 (g2 — m2)» ((q1 — q2)? — m2)»s’ (3.12)

3 2 2 2 2 2 2. _
I\(Iag(mh Mo, Mg, My, Mg, Mg; V1, V2, V3, V4, Vs, VG) -

/ d*q / d*qy / d*qs 1
o (277)4700 (27T)4700 (2m)* (g7 —m7) (g5 —m3)"2(g3 — m3)»
1

a1 — @) —md)((ar — a)? —m2) (a2 — @3)2 — m2)s’ (3.13)

which are respectively the 1-loop, 2-loop, and 3-loop scalar vacuum integrals. Higher
loop orders are not encountered in this thesis. The topologies of the above diagrams

are shown below (where masses and propagator powers are suppressed in the dia-

grams).
q
/—\
() (m?;v) = : (3.14)
q1
/\
a1 — g2
I3 (m3, m3, m3; v, v, v3) = (3.15)

<<}

25



m/ \(D
IE(mF, ... mE ... V) = . (3.16)

\_//
q3

These are the most general topologies for these loop levels. Different topologies may
be generated for 3-loop vacuum integrals by having some propagator powers equal to
zero. An extreme example is a 3-loop integral with vy = v5 = v = 0, which is simply

the product of three 1-loop vacuum integrals.

3.2 Symmetries of Vacuum Integrals

Vacuum integrals have a high degree of symmetry, and in a calculation, many integrals
may be generated which are equal under some symmetry transformation. Making
use of these symmetries reduces the number of independent integrals that need to be

solved.

A vacuum integral is symmetric if it is invariant under a simultaneous reordering of
propagator masses m; and propagator powers ;. The 1-loop vacuum integral has a
trivial topology, and therefore no symmetries. However, the 2-loop vacuum integral
has a non-trivial topology, and is in fact totally symmetric. By this, it is meant that
any of the propagator masses and powers may be interchanged with any other, with
the integral remaining unchanged. To demonstrate the total symmetry of the 2-loop

vacuum diagram, it is sufficient to show that

2/ 9 2 9 H2)/ 2 2 9.
I\(,a%(ml,mQ,m?), Vi, V9, V3) = I‘(,ag(mz,ml,m?), Vo, V1, V3) , (3.17)
and
2/ 92 2 9 H2)/ 2 2 2.
Iéag(ml,mQ,m?), Vi, V9, V3) = I‘(,a‘):(m3,m1,m2, V3, V1, 12) , (3.18)

since these permutations are a complete set of generators for the possible structures of

2-loop vacuum integrals. Starting with Equation (3.17),
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7(2)

2 2 2.
Vac(m27 my,ms; V2, Vi, VB)

:/ d*q, / d*qo 1
e T C T v T (T T

a o / dtqo / d*q 1
(277)4_00 (2m)* (g3 — m3)2(qf — m)" ((q1 — q2)* — m3)™»

_ / d*q / d*qo 1
@2m)* ) (2m)* (67 —mD)" (g3 — m3)"2((q1 — g2)? — m3)¥s

_I\(Iazl(mlﬂmgam37yl7y27y3) (319)

Equation (3.18) can be shown to hold in a similar manner. However, rather than the
simple integral transform ¢; <> g2 that was used for Equation (3.17), it is necessary to

use the integral transform

o —d=aq— g, @ — g =q. (3.20)

Formally, it is necessary to compute the Jacobian to understand how the integral mea-

sures transform, since

9q1  9q1

4. 14 4794 o 9
d*qd*qe = Jd*qid*q¢h, where J = . (3.21)

Oq2  Ogz

dq; gy

Since ¢1 = ¢4 and ¢2 = ¢5—¢], the Jacobian simply evaluates to J = 1. Therefore,

2 2 2
I\(/ag(m?)? my, Mos V3, V1, V2)

_ / d*q / d*qy 1
@mt ) @2m)t(¢f —m3)7s (g5 —mP (g1 — g2)? — m3)»

:/ d*q / d*qy 1
@m)t ) @r) (1 — g2)? — m3)»3(qf — mP)"1 ((—g2)? — m3)"

— 00 —0o0

_ / dtq: / d*qo 1
@2m)t ) @2m) (¢ —m3)1 (g3 — md)” (o1 — q2) — mB)"s

=23 (m}, m3, m3; v1,v2, v3) (3.22)

It is thus demonstrated that the 2-loop vacuum integral is totally symmetric.

The 3-loop vacuum integral is not totally symmetric, but displays the symmetries of the
tetrahedral group S4, which has two generators [39], which are shown diagrammatically

in Figure 3.1. These two generators generate 24 group elements.
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Fig. 3.1: Generators of the tetrahedral group ;.

In integral form, the generators imply

7(3)

vac

2 2 9 9 9 9
(m7, m3, m3, my, ms, mg; v, Vo, V3, Vs, Vs, Vg)

2 2 2
- Z\(/az:(m47m2’m67mlﬂ m5a m37 V4,12, V6, V1, V5, V3)
2 2

2 2
= I\(/azz(m% Mg, My, Mg, My, m57 Vo, V3,V1,Ve6, V4, VS)-

(3.23)

In general, 3-loop vacuum integrals related via tetrahedral symmetries are only equal if

all propagators have the same mass. Otherwise, the tetrahedral symmetries may only

be used to bring the integrals into some standard form. In this work, 3-loop integrals

arise that contain two different masses (as well as massless propagators), but only have

a maximum of four massive propagators. Therefore, symmetry relations were used to

bring all integrals into the following basis:

73)

vac

73)

vac

73)

vac

z3)

73)

(
0,
(
(
(
73 (m?
(
(
(
(
(
(

m 0 0 0 0 0; I/1,V2,V3,V4,V5,V6)
0,0,0,0,0,m% v1, v, U3, V4, U5, ),
m?,m?,0,0,0,0; v, v, 13, 14, Us, Ug),
m?,0,0,0,0,m? U1, V2, U3, Vg, Vs, UG),
m?,m?,m?,0,0,0;v1, v, U3, V4, U5, ),

m?,m?,0,0,m?,0; v1, vo, 3, V4, U5, ),
73)

T3 (m? m?2,0,0,m? m?; vy, va, v3, V4, Us, V),
1532 m?, M?,0,0,0,0; vy, v, 13, 4, Us, Ug),
1532 m? ,0,0,0,0, M?: s U1, Vo, U3, Vg, Vs, Vg),
1523 m?,m?, M?,0,0,0; vy, v2, 3, Vg, Vs, Ug),
Z3) (m2,m2,0,0, M?,0; v1, v, 13, U4, U3, 5),
73)

vacm m?,0,0,m?, M?; U1, Vo, U3, Uy, Vs, Ug).

This is a sufficiently large basis for the integrals generated in this work.

noted that M is not necessarily larger than m.
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3.3 Dimensional Regularisation

The aim of renormalisation is to remove UV divergences from amplitudes. To do this,
a necessary step is to extract the divergences from Feynman integrals in a systematic
manner, in a process called regularisation. In this work dimensional regularisation
is used exclusively [40,41].! Dimensional regularisation relies on the principle that
Feynman integrals would converge if the number of spacetime dimensions was less than

four. For example, the integral

d* 1
| ey (3.25)

—o0
is logarithmically UV divergent by naive power counting. If the power of momentum
in the numerator was less than four, then the integral would be finite. Therefore
dimensional regularisation evaluates integrals in d complex dimensions, where d = 4—2¢
with ¢ > 0. The d = 4 case is then restored in the limit ¢ — 0. For example,
the logarithmically divergent integral of Equation (3.25) can dimensionally regularised
via [42]

/ ddq 1 B ]O d%g i
(2m)d (¢ —m?)2 ] (2m)d (g +m?)?

_ ! gr (2-3) <1>2g. (3.26)

In the above, d€); is the surface area element of a d-sphere, and I'(z) is the Gamma
function, which has poles at z = U{0,Z~ }. Therefore, Equation (3.26) is divergent for
d = 4, as expected. Similar results for different integrals can be found in [42]. Setting

d =4 — 2¢ gives

0o ddq 1 B i F(e) i €
/ (2m)d (@2 —m2)2 ~ (47)2—<D(2) <m2) : (3.27)

1Other common regularisation schemes include cutoff regularisation and the discretisation of space-
time. Cutoff regularisation simply excludes high-momentum modes in Feynman integrals, and while
it is mathematically simple, it breaks many symmetries of the theory, including Lorentz invariance.
Spacetime discretisation is the regulator used in lattice QCD, where spacetime is divided into finite
elements, with the physical limit being recovered as these elements shrink to zero size.
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Taking € to be small and positive, I'(¢) may be expanded in powers of € using the

Weierstrass definition of the Gamma function [43],

e TB? = A
I(z) = (1 7) I, 3.28
A= () (3.28)

where vg is the Euler-Mascheroni constant. Then,
1
[(e) = - E + O(e), (3.29)

showing that in the limit d — 4 (¢ — 0), the UV divergence has been isolated as a

simple pole in e. Finally, using
€ =eMT =1 4 elnz + O(?), (3.30)

the entire integral can be written as

d 1
/ ((Qiﬂ(id (¢? _1m2)2 B (47)? (1 —h (mQ) ~ e+l (47T)> + 00, 31

€
—00

where terms of order € and higher are neglected, since we are interested in the e — 0
limit. Therefore dimensional regularisation extracts UV divergences from Feynman
integrals, and encodes them as poles in €, with the regularisation being lifted in the

limit € — 0.

In general, 1-loop, 2-loop, and 3-loop UV divergent integrals can be dimensionally

regularised to give expressions of the form [44]

a

1-loop result = — + by, (3.32)
€
b
2-loop result = a—; + 2 e, (3.33)
€ €
b
3-loop result = a—; + —; + 384 ds, (3.34)
e e €

where a;, b;, ¢; and d; are all finite.

An important result of dimensionally regularised integrals is that integrals that do
not contain some physical scale (masses or external momenta) are identically zero

[45]:
/ddq(q2)_°‘ =0 Va. (3.35)
Although such scaleless integrals are identically zero, they may contain UV and IR

poles, which cancel. It is possible to isolate desired UV poles using IR rearrangement
(see Section 3.7).

A key feature of dimensional regularisation is that it affects the mass dimensions of the

fields in a Lagrangian. The action S of a theory must have zero mass dimension, and
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consequently in a renormalisable theory the Lagrangian has a mass dimension of four.
From this observation, and the fact that for all d, masses and spacetime derivatives
have mass dimension equal to one, the mass dimension of parameters and fields in a

Lagrangian can be calculated. For example, for QCD

4= [mU¥] =14 [V¥] =1+ 2[¥] :[@]:g,
4=[GpG"] =2[Gu] =2[0,G,] =2(1+ [G,]) = [Gu] =1,
4= [gs UV OG,] =4+ [g5] = [gs] = 0. (3.36)

Dimensional regularisation makes a Lagrangian d-dimensional, which modifies the mass

dimensions of fields and parameters. Repeating the above calculation gives

d=[mP¥] =1+ [PV] =1+ 2[V] :[W]z%,
1= GG =2(Gu] =20uG] =20+ Gu]) = G =7
d=[g;VV"VG,] =2 <d;1> + (d;2> + (9] = [gs] = 4;261. (3.37)

Note that these equations reproduce the previous set in the limit d — 4. Of particular
importance is the fact that in d-dimensions the gauge coupling becomes dimensionful.
It is preferable to work with a dimensionless coupling, and so an arbitrary parameter

1 with mass dimension equal to one is extracted from the coupling:

g5 = gs(Wn =" = ga(u). (3.38)
Note that since the original dimensionful g, is p-independent, the new dimensionless
gs(p) must be u-dependent. The parameter p is arbitrary, and therefore cannot af-
fect physical quantities. This p-independence of Green’s functions gives rise to the

renormalisation group equations, as discussed in Section 3.8.

3.4 Integral Reduction and Integration By Parts

Finding analytic solutions for Feynman integrals is highly non-trivial, and becomes very
difficult when working with multiple physical scales and higher loop orders. However,
it can be shown that complicated Feynman integrals can be decomposed into a linear
combination of a basis of simpler Feynman integrals, called master integrals. Since
all integrals arising in a calculation may be decomposed into a sum of simpler master
integrals, it only then remains to calculate the master integrals (which in a typical
calculation form a much smaller set than all integrals generated in a calculation), as

well as the coefficients of the master integrals in such a decomposition.
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The process of linearly expanding a Feynman integral in terms of master integrals is

called reduction, and relies on integration by parts (IBP) identities [46]:

o0

dlq o

— (¢"f(¢*,p*,m?,...)) =0 3.39
—00

where f(q?,p%,m?,...) denotes the integrand of some Feynman integral with loop mo-

mentum ¢, external momentum p and mass m. This identity holds by performing the

integral by parts, and then discarding a surface term which must vanish at infinity.

Explicitly,

/ (27r()]d1 " ogh (¢"f(g* p*.m?,...))

= [1-(q“f(qz,p27m27---))}iooo—/£u(1)-(q“f(q2,p2,m27---))
= 0. (3.40)

This relation can be used to build recursion relations between integrals with different
propagator powers. Consider the 1-loop vacuum integral example, containing a single
mass and no external momenta [46],

a4 1
F(a) = / (%C—)Id Tt (3.41)

Applying the IBP identity

d¢ 9 ¢"
| g O )

it can be shown that
(d —2a)F(a) — 2am*F(a + 1) = 0. (3.43)

Rearranging this expression, and shifting a — a — 1, one obtains the recurrence rela-

tion 49 )
—2a+
Fla)= —=F(a—1). 3.44
(@) = 30— e Fla =) (3.44)
This recurrence relation may be repeatedly used to relate any integral F'(a) to a single
master integral F'(1). Therefore, it is only necessary to solve a single integral, and to

calculate the prefactor that relates the master integral to the required integral.

The method of integral reduction has been implemented in many computer packages,
for example [47-51]. We have exclusively used FIRE5 [47] to perform integral reduction.
This was used successfully for 1-loop, 2-loop, and 3-loop integrals containing up to two

different masses, with up to four massive propagators.
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3.5 Solutions to Vacuum Integrals

So far in this chapter, integrals have been reduced to scalar vacuum integrals, dimen-
sionally regularised, and then reduced to master integrals. At this point it is necessary
to solve the resulting master integrals. There are a number of different methods for
solving Feynman integrals, including the use of Feynman parameters, Schwinger pa-
rameters, and evaluation by Mellin-Barnes representation. A simple 1-loop vacuum
bubble was solved in Section 3.3. There are many cases of Feynman integrals that
currently have no analytic solution, and such integrals can be estimated numerically,
or by using appropriate expansions of the integrands to simplify integrals [52]. It has
not been the aim of this work to solve loop integrals, rather applying solutions found
in the literature to physical processes. Therefore, we list here those integrals that are

relevant to our purposes.

Vacuum integrals at 1-loop can only be functions of a single mass. The general 1-loop

vacuum integral has the solution [53]

[ 1 (m) T (-
ZGH(m*v) = / 2m)d (2 —m2) i (47)d/2 I'(v)

bt 4

[NJIsH

). (3.45)

—0o0
This can be found by performing a Wick rotation to Euclidean spacetime, and then

moving to spherical coordinates, as was done in Section 3.3.

The general 2-loop vacuum integral is

2 2 2 2. o
I\(za():(mla my,ms; Vi, V2, VS) —

[e. o] e o]

dd(]l ddQQ 1
/ (2m)4 / (2m) (2 — m2)"1 (g3 — m3)2((q1 — q2)% — m%)y:g : (3.46)

If one of the indices is equal to zero, this is simply the product of two 1-loop integrals,

and so

2 2 2 2.
I\(faZ(mtha ms; Vi, V2, O)

= Z0)(m3; 1) 80U (m3; 1) (3.47)
e o AT )
(4m)d [(v1)T (1)

We are also interested in cases where there are two different mass scales, and as such

) (002

need the solution of integrals of the form I\(,zc(m ,m? M?:;v1,v9,v3). It is sufficient

to consider this integral without loss of generality due to the total symmetry of 2-
loop vacuum integrals. This integral can be solved by first using IBP relations to

) (02

reduce a general integral Z\(,gc(m ,m2, M?;v1,v9,v3) in terms of the master integral
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Ix(ng(mQ,mQ,M 2:1,1,1). This master integral can then be solved using the Mellin-
Barnes representation of a massive propagator, as done in [38]. The result is (expanding
ine=(4—d)/2)

2e—4

ZQUm?,m? M 1,1,1) = T (m?) 7 A0

« { - ;2(1 +22) + %(4zln (2))

—221n? (42) 4+ 2(1 — z)cp(z)}, (3.49)

where this result has been divided by (27)2(*=2¢) compared to [38] to agree with our

conventions. Here,

M2
z = W,
I2(1+e)
Ale) = ————— 3.50
=G =oa-29 (3:50)
2
=1+¢3—2vp) + € <7—67E+2~y]23+7;,> +0(e),

and

B(2) = 42 [(2 “ln(42)) oF) <?1)/;

z) 9y oF) (?1)/; z) — 0. oF (;/; z)] . (3.51)

The definition of ®(z) is in terms of hypergeometric functions and their derivatives,

rfQ (Cl,...,cQ Z) - JZ(:) 3 (). (cq);’ (3.52)
(a); = F(ﬁ(:)j)7 (3.53)
0o 2F1 <a,cb Z) = Gaa oy <a7cb z>
SEACTCI
2430 (o) (Y(a+j) —v(a)), (3.54)
and
Oc 2k (a,cb z) = gc 2 Fy (a,cb z)

== j]; (azg@j (Y(c+j) —1(a)), (3.55)

=0 i

where ¢(a) = (d/da)In (I'(a)). Further details can be found in [38].
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Finally, it is necessary to consider 3-loop vacuum integrals with two different masses.
When initially considering this case, solutions for this class of integrals were not known,
whereas solutions were known for 3-loop vacuum integrals with only a single mass
scale [39]. Therefore, an initial strategy was to employ expansions to reduce all inte-
grands to a series of integrals, each containing only a single mass scale, which could
therefore be solved. Naively these expansions would take the form of Taylor expan-
sions, with the expansion parameter being the ratio of the two masses present in the
integrand. However, since masses serve the role of IR regulators for vacuum integrals,
performing Taylor expansions in masses removes these regulators and hence introduces
artificial IR divergences. Smirnov has outlined a method by which Taylor expansions
can still be used to perform expansions without introducing artificial IR divergences,
by the method of expansion by regions [52]. The essence of this program is to divide
the integration regions of all integrals into “hard” and “soft” regions, where the loop
momentum is respectively large and small, and then sum over all these regions. For
each of the integrals thereby produced, there is a set of naturally small parameters
that the integrand may be expanded in. Breaking up the integrals in this way and
then expanding avoids the introduction of IR divergences. The method becomes more
powerful since the integrals over a restricted domain of loop momenta may then be
extended to integrals over all momenta without generating any new contributions, al-
lowing the use of usual integral identities. However, it would be necessary to perform a
large number of expansions for each integral to minimise the error associated with an
expansion, and since for a 3-loop process there are many integrals to be expanded, such
a strategy would be very computationally demanding. A significant amount of work
was put into implementing expansion by regions as a Mathematica [54] routine, and it
was found that the method created high-rank tensor integrals as an intermediate step,
which needed to be decomposed into scalar integrals. While this was acceptable for low-
rank tensor integrals, it very quickly became a serious computational problem which
needed to be addressed. A discussion of the resolution to this problem is presented in
Section 3.9.

Progress was made on computing 3-loop integrals with arbitrary masses without resort-
ing to expansions [13,55,56]. In [55], a basis of three master integrals is selected that
cannot be decomposed into a product of lower-loop integrals. These master integrals
are then decomposed into sums of integrals, which are either divergent or finite. The
divergent pieces can be computed analytically, whilst the finite pieces can be written
as dispersion integrals and computed numerically. The routine for performing these

calculations is presented in [56].

For the evaluation of 3-loop integrals, we used the results of Martin and Robertson

[13]. They discuss vacuum diagrams for 1-, 2-, and 3-loops, and we shall outline their
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conventions and results here. We use these results extensively in Chapter 6. After Wick

rotation, working in d = 4 — 2¢ Euclidean dimensions, and defining integrals as

o]

such that integrals have a mass dimension of four, the 1-loop master integral may be

written as

A(z) = 167 /p pzlﬂ =T(~1+¢) <47;“2>6x. (3.57)

Note that ;1 here is the MS parameter (see Section 3.6 for a discussion of renormalisation

schemes). Similarly, a general 2-loop integral is written in the form

— (16722 1
I(z,y,2) = (167°) /p/q a0’ a (3.58)

Following the approach of [57], and in a similar manner to [55], A and I can be elimi-

nated in favour of their respective renormalised integrals (i.e. finite integrals). However,
expressions for integrals are also given in terms of coefficients of UV poles in [13], which
we use. We list here the results for 1- and 2-loop integrals in the conventions of Martin

and Robertson, before discussing 3-loop integrals. The 1-loop integral may be written

A(z) = —f +A(2) + eAe(z) + Az () + ... (3.59)
where
A(z) = z[ln(z) — 1], (3.60)
71,2
A(z) =2 [—;mz(x) +n(z)—1— 12] , (3.61)
7'['2 — 7T2
Ao(z) = o Eln?’(x) - %BQ(:C) + <1 + 12) () ~1- 7=+ %” . (3.62)
The function In(z) is defined as
In(z) =In <2x> , (3.63)
s

where pgg is the renormalisation scale in the MS scheme (which is related to u via
Equation (3.100)).

The 2-loop basis integral can be expanded as

I 1
1ry,2) = 2OPD DEOBD gy eyt B

where the pole pieces are
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L(z,y,2) = A(z) + A(y) + A(2) — (2 +y +2)/2. (3.66)

The finite piece is given by (for z > z,y)

IQ(.%‘, Y, 2) =S ng(kl) + LIQ(kQ) — ln(kl) ln(kg) + % ln(x/z) ln(y/z) — 7['2/6

+ 1 [(z =z — y)In(z)In(y) + (y — 2 — z)In(2)In(z) + (z — y — 2)In(y)In(2)]

2
+ 228n(z) + 2yTn(y) + 2:Tn(z) — g(x byt z)
+ Ac(z) + Ae(y) + Ae(2) (3.67)
where
s=12+1y2 + 22— 2zy — 2xz — 2yz, (3.68)
X Zz — — S
oy = 12*” (3.69)
Z—— S8
ky = yT (3.70)

Due to the total symmetry of the 2-loop vacuum integral, the cases where y > z, z and
x > y,z can be obtained by appropriate permutations of the argument of Iy(z,y, 2).
The function Lig(x) is the dilogarithm, defined as

Lig(z) = — /OI ln(lu_u)du, (3.71)

where x is a complex variable. The dilogarithm obeys a number of identities, includ-

ing

(x_1> +7;2, (3.72)
, (3.73)

which are useful in simplifying expressions.

The general 3-loop scalar integral with the Benz topology (see Figure 3.2) is denoted
by

T2 8 mnsn0) () 3o, 3, 2, W5, T6) = (167T2)3/ / /
p1 Y p2 v p3
1

[P} + 2] [p3 + @2]"2[p3 + @3] [(p1 — p2)? + wa]™[(p2 — p3)* + 25]"5[(ps — p1)? + 6]

where it should be noted that the authors of [13] have a different propagator ordering

compared to our conventions.

By the application of IBP relations, any general integral T may be reduced to a sum

of a basis of master integrals, given as
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3

Fig. 3.2: General 3-loop topology in the conventions of [13].

SRR

H(u,v,w,z,y,z G(w,u, z,v,y) F(u,v,y,z E(u,v,y, 2

Fig. 3.3: Topologies of the 3-loop master integrals. The dotted propagator in
F(u,v,y, z) indicates that the propagator is raised by a power.

1,1,1,1,1,1)
T( <u7vvw7xayaz

T(1,1,1,0,1,1)

H(u,v,w, z,vy,

)

G(w,u, z,v,y Uy Uy W, T, Y, 2

)

z) = )
) = ( )
F(u,v,y,2) = T(2’1’0’0’1’1)(u,v,w,x,y,z),
)= ) )
)= ( )

A( ) (v w y T(1’1’170’17 ) u? v7w7x7 y? Z )
A(u)A(v)A(w T(1,1,1,0,0,0) Uy U, W, T, Y, 2 (3.74)
An additional integral that is useful (but not a master integral) is given by
E(“’ ,U7 y’ z) = T(171,0707171) (u7 ’U’ w? x? y7 2)7 (3'75)

which can be expressed as a linear combination of F-type integrals. F-integrals may also

simply be expressed through derivatives with respect to masses of E-integrals:

F(u,v,y,2) = —%E(u,v,y,z). (3.76)

The topologies of H, G, F, and E are shown in Figure 3.3.
The 3-loop integrals may be expanded in € as
E(u,v,y,2) = éEg(u,v,y, z) + éEQ(u, v, Y, 2) + %El(u,v, Y, 2)
+ Eo(u,v,y,2) + ..., (3.77)
F(u,v,y,2) = ;3F3(u, v, Y, 2) + 6%Fg(u,v,y, z) + %Fl(u,v, Y, 2)
+ Fo(u,v,9,2) + ..., (3.78)
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1 1 1
G(w,u,z,v,y) = 6—3G3(w,u,z,v,y) + ?Gg(w,u,z,v,y) + EGl(w,u,z,v,y)

+ Go(w,u, z,0,9) + ..., (3.79)

1
H(u,v,w,z,y,z) = —Hy(u,v,w,x,y,2) + Ho(u,v,w,2,y,2) + ... . (3.80)
€

The e-coefficient functions are:

E3<U,, v, Y, Z) -

Es(u,v,y,2) =

Er(u,v,y,2) =

EO(ua v, Y, Z)

F3(U7U7Z/7 Z) =

F2(“7U7y7 )

Fl(u7 v, Y,z

FO(uav7y7 Z)

(v +uy + uz + vy + vz +yz)/3, (3.81)
—[(v+y+2)Au) + (u+y+2)A(v)
+(u+v+2)Ay) + (u+v+y)A(2)]/2
+ (uv +uy +uz oy + vz +yz)/3 — (o Fyt +2%) /12, (3.82)

A(u)A(v) + A(u)A(y) + A(u)A(z) + A(v)Ay) + A(v)A(2) + A(y) A(2)
— (v y+2)[Ac(u) + AW)]/2 = (u+y + 2)[Ac(v) + A(v)] /2
— (v +2)[Ay) + AW)]/2 — (u+ v +y)[Ac(2) + A(2)] /2
+ [uA(u) + vA(v) + yA(y) + 2A(2)] /4
+ (uv +uy + uz + vy + vz +yz)/3 — 3w +0v* + 9%+ 22)/8, (3.83)

= E(u,v,y, z)

+ A(w)[Ac(v) + Ac(y) + Ac(2)] + A(v)[Ac(u) + Ac(y) + Ae(2)]

+ AW)[Ac(u) + Ac(v) + Ac(2)] + A(2)[Ac(u) + Ac(v) + Ac(y)]

— (W y+2)[Ac(u) + Az (u)]/2 = (u+y + 2)[Ac(v) + A2 (v)] /2

—(ut+v+2)[Ac(y) + A2 (y)]/2 = (u+ v+ y)[Ae(2) + A (2)]/2

+ [uAc(u) + vAc(v) + yAc(y) + 2zA(2)] /4, (3.84)

—(v+y+2)/3, (3.85)
= (v+y+2)A(u)/2u+ [A(v) + Aly) + A(2)]/2

+(u+v+y+2)/6, (3.86)

—[A(v) + A(y) + A2)]A(uw) /u+ (v +y + 2) Ac(u) /2u
[Ac(v) + Ac(y) + Ae(z) — Au) — A(v) — A(y) — A(2)]/2

+
+u/24+ (v+y+2)/6, (3.87)

= F(u,v,9,2) + (v +y + 2) A (u)/2u = [A(v) + Aly) + A(2)]Ae(u) /u

+ [A(U) + A(y) + A('z) - Ae(v) - Ae(y) - Ae(z)

+u/d—v/2—y/2—2z/2]A(u)/u

+[Ae(v) + Ae(y) + Ac(2) — Ac(u) — Ac(v) — Ac(y) — Ac(2)]/2,
(3.88)
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Gs(w,u,z,v,y) = —2w+u+v+y+2)/6, (3.89)
Ga(w,u, z,v,y) = [A(u) + A(v) + A(y) + A(2)

—u—v—y—2z]/2+ Aw) —2w/3, (3.90)
Gi(w,u,v,y,2) = I(u,w, 2) + 1(v,w,y) + Ac(w) + [Ac(u) + Ac(v) + Ac(y) + Ac(2)

+ A(u) + A(v) + A(y) + A(2)] /2

F(w—2u— 20— 2y — 22)/3, (3.91)
Go(w,u, z,v,y) = G(w,u, z,v,y) + I (u, w, z) + I (v,w,y) — A= (w)

[ Acw) + Ac(0) + Adly) + Ad(2)

—A2(u) — A2 (v) — Az (y) — A2 (z)] /2, (3.92)
Hy(u,v,w,z,y,z) = 2((3), (3.93)
Hy(u,v,w,z,y,z) = H(u,v,w,x,y,2) . (3.94)

The finite integral I(z,y, z) is known analytically, but the finite integrals F(u,v,y, z),
F(u,v,y,z2), G(w,u, z,v,y) and H(u,v,w,x,y,z) are not in general. These integrals
must be calculated numerically.? This numerical evaluation is implemented in the
program 3VIL, developed by the authors of [13]. In addition, in the limit u — 0, the
finite integral F'(u,v,y,z) develops a logarithmic IR divergence. For these particular

integrals, we use the results of [58].

To summarise, massive vacuum integrals can be solved analytically at 1- and 2-loop.
At 3-loop, vacuum integrals may be written in terms of divergent pieces whose ana-
lytical form is known, and remainder finite pieces, which in general must be evaluated

numerically.

3.6 Renormalisation and Schemes

Renormalisation is implemented by modifying a Lagrangian that produces divergent
quantities by adding counterterms, whose inclusion subtracts the divergences from a
Lagrangian, leading to finite predictions. Consider the case of QCD in Feynman gauge,

with ghosts fields omitted:

Locp = (i@ — mo) Py — 90,8E87}?7“¢8G6‘,u

1
Lo, - a68,) (e - ora) - L orad,)

1
2

2Some special cases are known analytically, and are listed in [13].
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2
90, B 90, c
+ 25 fABC (8/LGéy o aVGE)Ll“u) GO MG(?V - 48 fABEfCDEGéHGgVGO MGODU.

The “0” subscripts denote that the quantities in this Lagrangian are “bare”, and do
not take into account quantum corrections. This bare Lagrangian gives rise to loop
diagrams that are UV divergent, and so needs to be modified to subtract these diver-

gences. This is done by rescaling the bare parameters by UV divergent renormalisation

constants,
1/2 1/2
o = Zw/ (G Géu = ZG/ Gﬁ
mo = Zmm 90,s = Zg9s = Zggs(p) 11, (3.95)

where the parameters on the right hand side of the equalities are called renormalised.
Note that the renormalised coupling gs is related to a dimensionless coupling gs(u) as
in Equation (3.38).

Writing the QCD Lagrangian in terms of renormalised parameters (and using Z =
Z+1—1) gives
Lacp = [T (i = m) o' = 00 TG
1 A A Av _ ov A 1 A)2
- (0,61 - 0,G) (G — 0 GM) — _ (0"G)
2
9s ABC A A\ ~Bu~Cv _ Ys tABE (CDE ~A~B~CuDy
+ 2 FAC (0,6 = 0,G1Y) GPrGEr — T fABE FOPEGAGEGOr G |
+(Zy = V)i — (ZyZm = 1) w0 — (42,20 2" = 1) 90 Ty G
Za—1 Zo—1
4
e 3/2 9s ABC A A Cv
+ (12,28 = 1) L A5 (0,6 - 0,G1) GPrG

(0,G1 - 0,G2) (9"G™ — 97 GM) — (oG

2
€ gs 14
— (W*Z}Z¢ —1) T fABEfePEGAGDGerGPY. (3.96)

The terms between the square brackets form the original QCD Lagrangian, but now in
terms of renormalised quantities. The additional terms that appear are counterterms,
which can be treated as interactions and included in the calculation of amplitudes. The
undetermined renormalisation constants can be determined by demanding that ampli-

tudes are finite order-by-order in perturbation theory. For example, at 1-loop,

N VR BN . S S S

_ idap(p+m) . o 1 .
= m + (ZCF(Sa,BM (],75 — 4m) - + ﬁmte>
+ (i (Zy — 1) poap — i (ZypZm — 1) mbag) , (3.97)
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where o, = g2/(47).

Insistence that the dressed v propagator (the LHS of Equation (3.97)) is finite leads
to two equations to solve for Zy and Z,, (respectively by considering coefficients of p/ €
and m/e€). These can be solved to find

as 1 9
Zy=1-"20p"
Y 1, CF 2 T 0(a),
1
Zm =1— 22300~ + 0(a?). (3.98)
4 €

In general, renormalisation constants calculated perturbatively may be expanded in

powers of coupling constants and powers of e:

70 =3 =709, (3.99)

The only requirement of renormalisation constants is that they subtract divergences
from unrenormalised Lagrangians, leaving finite results. However, there is freedom
to define renormalisation constants such that they additionally remove extra finite
pieces, with each choice being a renormalisation scheme. Removal of only the pole
terms in dimensional regularisation is called the Minimal Subtraction (MS) scheme [40,
59]. Closely related is the Modified Minimal Subtraction (MS) scheme [60], in which
renormalisation constants are chosen that also subtract finite pieces In(47r) and —vg,
which appear in loop calculations (see Equation (3.31)) and are relics of dimensional
regularisation. Note that these terms also appear in the finite part of Equation (3.97).
The MS scheme may be implemented practically by dropping In(47) — vg from loop
calculations. Alternatively, it may be implemented by dimensionally regularising with

the massive parameter (g7, which is related to p via [60]
i IS

Throughout this work we will use the MS scheme unless otherwise stated, and so we

(3.100)

simply denote ugmg by p.

3.7 Infrared Rearrangement

In mass-independent renormalisation schemes such as the MS scheme, the calcula-
tion of renormalisation constants only requires the UV poles of a divergent integral.
Additionally, in the MS scheme all UV counterterms are polynomial in masses and

momenta [61], which implies that it is possible to extract the UV poles from integrals
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in the MS scheme by first expanding the integrand in terms of masses and momenta,
and then performing the simplified integrals. In general, expanding an integrand be-
fore integration can lead to spurious IR divergences, since the expansion removes IR
regulators from the denominators of propagators. However, these spurious divergences

can be avoided by using the method of IR rearrangement [62].

The method of IR rearrangement rests upon the exact decomposition of a scalar prop-

agator as

1 1 m2—p2—2q-p—m?4 1

- , (3.101)
(g+p)°—m2 ¢ —m5 y (¢ +p)* —m?

_ 2 _
m q my

where ¢ is a linear combination of loop momenta, p is a linear combination of external
momenta, m is the propagator mass, and m 4 is an auxiliary mass. Denoting the degree
of divergence of a Feynman integral by D, the physical propagator on the left hand
side of Equation (3.101) has a contribution to the degree of divergence of AD = —2.
The first term of the right hand side of Equation (3.101) also has AD = —2, while
the second term has AD = —3 (due to the numerator term linear in ¢). Importantly,
the second term contains the original propagator, which means this decomposition can
be repeated arbitrarily many times. Repeatedly applying the decomposition leads to
a series of terms, of which all except one have simple denominators involving only the
loop momentum g and the auxiliary mass m4. The final term has a more complicated

denominator but a degree of divergence that is arbitrarily negative. For example,

1 B 1 mQ—pQ—Qq-QD—m?4 1
2 T 2 2 2
(q+p)° —m? 1 ¢ —mj ¢ —m} (¢ +p)° —m?
————
AD=-2 AD=-2 AD=-3
B 1 m2—p2—2q-p—m124
2 q2 — mi 2 _ m2 2
. , (g 9,
AD=-2 AD=-3
m2—p2—2q-p—m% 2 1
+ 2 2 2 2
q —my (g+p)°—m
AD=—4
2
B 1 m2—pz—2q-p—m124 (mz—p2—2q-p—m?4)
ng—n@?4 2_m22 2_m23
(q A) (q A)
AD=-2 AD=-3 AD=—4
(mz—p2—2q-p—m?4>3 1
q* —m% (q+p)* —m?
AD=-5
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(m* —p* —2q-p —m)""

n
n

i=1 (QQ_m,%l)z
m? —p* =2 p—mi\" ! 3.102
+ 2 _ 2 2 2 ° ( . )
q= —my (@+p)*—m
AD=—-2—n

This explicitly shows that the expansion results in a sum of terms with denominators
typical of massive vacuum diagrams, with a final term with an arbitrarily large negative
degree of divergence. Note that the numbers under the equality denote the number of

times the propagator decomposition has been performed.

IR rearrangement works by expanding every propagator of a Feynman integral using
the exact propagator decomposition until the final (non-vacuum) integral is UV conver-
gent. Since the final integral contains no UV pole, it can be ignored when extracting
UV divergences. The expansion cannot introduce spurious IR divergences since the
expansion is exact, and IR safety is guaranteed by the presence of the auxiliary mass
m4 in denominators. Once the final term is dropped, the remaining integrals can be
evaluated using standard methods to find the UV pole structure of the original integral,

from which counterterms can be calculated.

Note that terms arise in the decomposition whose numerators are proportional to m124,
which result in UV divergences multiplied by mi‘. These terms are local after sub-
traction of subdivergences, and must cancel other UV-divergent terms that are also
proportional to mi‘. This is evident since m4 is a non-physical mass that arises from
an exact decomposition, and so there can be no dependence on m 4 at the end of the
calculation. This leads to the calculational trick whereby such integrals with m? in
the numerator are not evaluated, but replaced by local counterterms proportional to
m2A that cancel any UV divergences proportional to mi that arise from integrals not
containing mi in the numerator. The number of such counterterms is typically small,
since they must have mass dimension two less than the dimension of the effective La-
grangian (since it is multiplied by m?%). In QCD, the only counterterm has the form of
a gluon mass term [63],

1
§m?4ZmG““GZ , (3.103)

where at 1-loop in the Feynman-'t Hooft gauge [62]

2
g
Zy = 162 (ne+2ny) . (3.104)
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3.8 Renormalisation Group Equations

In dimensional regularisation, renormalised couplings and masses become functions of
the arbitrary dimensionful parameter . The dependence of couplings and masses with
respect to p is given by the renormalisation group equations (RGEs) [64-66]. RGEs for
each coupling and mass may be found by using the fact that there is no p dependence
in bare parameters, and therefore the derivative of any bare parameter with respect to
p must be zero. Considering the bare QCD coupling, it follows that (using Equation
(3.95))

d d .
0= N@QO,S = Na (M Zg(gs)gs(u)) (3105)

= 12y (9:)95 (1) + 1 (u(i%(%)) 0:(1) + 1°2,(g2) <u(itgs(u)> o (3.106)

where it is noted that the renormalisation constant Z,(gs) may be expanded in terms

of gs(u), and is therefore implicitly a function of p. Hence,

d 1 d

u@gs(u) = B(gs,€) = —€gs(p) — gs(u)Z—gsu@Zg(gs). (3.107)

The beta function describes the running of the coupling gs(p) with respect to . Com-
pletely analogously, considering the p-independence of the bare mass m it can be shown

that
g ™) = = g5 () mip) = = 75—

where 7,,(gs) is the anomalous mass dimension. The renormalisation group functions

m(p), (3.108)

B(gs, €) and vy, (gs) only depend on the coupling gs when calculating in the MS scheme,
and are mass-independent. They must also be finite everywhere since they are physical
quantities. This observation allows the renormalisation group functions to be written
in terms of the 1/e coefficient of their respective renormalisation constants [67]. For
example, if 5(gs, €) is finite, the quantity

zgs)uizg(gs) = f(9s)

Zg
must also be finite. This can be rewritten as
dgs dZy(gs) dZy(gs)
) Zq(gs) = A LA < J . 1
F(0)2y(05) = n 2 L0 = Bl S (3.109)

Expanding the renormalisation constants in powers of ¢ as
[ee]
Z '(gs)
A =1 Z9IEL 3.110
9(9s) + ; " ( )

and using this expansion in Equation (3.109) gives

Zg1  Zgo 1dZ,1  1dZ,
f(gs) (1+Z+€92+...>:B(gs,e) <6 d;s +5 dgf’s +> (3.111)
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Since both ((gs,€) and f(gs) are finite, the above equality must hold separately for
every power of €. Using 3(gs,€) = —egs + O(e?), it follows that

dZg1
R 2y 3.112
Flgs) = =9s(n)~ 0 (3.112)
and therefore that 4z
1
B(gs, €) = —egs(p) + gi(u)ﬁ- (3.113)
Similarly it may be shown that
B(gs,€) dZm(9gs dZm,l
Ym(9s) = (92,€) 4Zm{ga) _ —gs(p) . (3.114)

Zm dgs dgs

Therefore, renormalisation group functions may be found by computing renormalisation
constants to whatever order is required, extracting the coefficient of the 1/e pole, and

differentiating it with respect to gs(u).

Once RGEs are obtained to some order in a perturbative coupling, they may be solved.

This is particularly simple at 1-loop, where the strong coupling is [42]

as(p) _ 1
4 Bo ln(,uQ/AéCD) ’

(3.115)

where 1 )
Nne — 2n
fo = —L
n. is the number of colours, ns is the number of active flavours, and Aqcp is the QCD

scale, where perturbation theory fails. The running mass is given by [53]

9(p) /
m(p) = m(po) exp [— / % ”g((g?))] , (3.116)
which to leading order is given by [44, 53]
ﬁ
(1) = m(po) [jj&jj)} a (3.117)

When we discuss the running of Wilson coefficients, we will see that they have analogous

expressions.

3.9 Tensor Integral Decomposition

As discussed in Sections 3.1 and 3.5, during loop calculations, tensor integrals arise that
can be decomposed into scalar integrals. In using the method of expansion by regions,

integrals would be generated that need to be decomposed. For example, expanding
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the integral I‘(gg(m%, m3,m3, m3, mZ,m2;1,1,1,1,1,1) in the hard-soft-soft (hss) region

(where g1 > g2, q3) would generate integrals of the form

Z(iyj,k,l,m) =
/// a4 1dd Qdd(B (g1 ¢2)"(q1 - g3) (aD)"(63)"(a3)™
(q

i —mi) (a3 —m3) (a3 —m3)((q2 — g3)* —mi)
(3.118)

To bring this into a standard form it is necessary to remove all numerator factors, which
involves the removal of ‘crossed’ scalar products of the form ¢, - qo. This is done by

decomposing the crossed products using ¢, - ¢ = g4 gy, such that
+

ddq1 @) (I o)

(2 (‘h 2)

ddcmddqa (a5)(d5) (a3) ! (g3)™
// ) - (@ — ) —md) Y

where f(g) is a product of (i+7) metrics. Note that this decomposition splits the 3-loop

Z(i,j, k,1,m) = f(g)/

scalar integral into the product of a 1-loop tensor integral and a 2-loop tensor integral,
which can be individually decomposed. If there are an odd number of ¢} momenta
in the ¢ integral, then the integral will be odd and hence equal to zero. Therefore a
non-zero integral requires

i+j=2n, nez. (3.120)

Consider the simple example Z(2,2,0,0,0). For notational simplicity, we suppress

integral measures and factors of 27 using the notation

[= [

Then,
(a1 92)*(q1 - g3)*
7(2,2,0,0,0) = ///
(g7 —m3) (g3 —m3)(q3 —m3)((q2 — q3)> — m3)
q1,492,493
s / Q1Q1Q1Q1 // nggqg’,’qg
- 1% oT .
e —m2)((g2 — g3)2 — m3)

QQled

The 1-loop integral can be decomposed using the relation [42]

/ PP’ g"g* 4+ g9 + 979" / (3.121)
» (p? — m?2)n d(d+2) b (
which leads to
1 q @+ 2(q2 - g3)°
7(2,2,0,0,0) = / // = .
( )= qa+ o) — ) (@2 — a5 =)

QnyIS
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The combination of metrics that arises from the tensor decomposition is the unique
totally symmetric Lorentz structure, given the Lorentz indices of the tensor integral.

The double integral may be brought into the required form using

@ a=x(B+d - (¢2—a)?),

N[

and then using partial fraction decomposition. This yields

1 mim3
I(2,2,0, 0,0) = M{ <2m411m% + 12 3 m%mi)

/ql g2 —m? // q21— q3)? —mj3)

q2,q93
4,2
mim 1 1
+ <m‘11m§ — m‘fm% + L 4> / //
2 o @ —mi )] (q2—m3)(g3 —m3)
92,93
n mil/ 1 // (g2 — g3)°
2 Jyp @t —miJJ (a5 —m3)(a3 —m3)
42,93
4,2
mim 1
+<1 2 4 omtm )/ // —
2 @ q1 m1 g2 — q3)* —mj)

42,93

4 2 9 4 2 9
+ 2mimim3 — m1m2m4m1m3m4>

/q1 qi —m? // - m;%l)((cn —q3)? —mj)

<m1m2 + m1m3 + mim}

92,93
S el
2
2 Ju q} —m? )((q2 — g3)* —m3)
42,93
2
+ml/ // 2, (3.122)
2 Jo @ —mi ((g2 — g3)* — mj)
42,93

in which all integrals are now in a standard form (some with negative powers). Note that
scaleless integrals are discarded since they are vanishing in dimensional regularisation.
This process has taken a scalar integral that was not in standard form, and performed
a tensor decomposition on a single integral in order to rewrite the original integral as

a series of scalar integrals in standard form.

The crux of this procedure is the tensor decomposition of the 1-loop integral in terms
of metrics, which determine how the remaining g» and ¢3 are contracted. This tensor
integral decomposition is simple for low-rank tensor integrals, but as the rank increases,
the number of metric combinations increases, as shown in Table 3.2. Tensor integral
decomposition was performed automatically in a brute force approach, by forming all
possible metric combinations from the available Lorentz indices, and then contracting

all remaining indices. Since it was intended to perform expansions up to the twentieth
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Rank of 1-loop tensor integral | No. of metric combinations
2 1
4 3
6 15
8 105
10 945
12 10,395
14 135,135
16 2,027,025
18 34,459,425
20 654,729,075

Table 3.2: Table enumerating the number of unique ways of building a rank-2n tensor
from metrics.

power, the highest-rank integrals encountered required the generation of O(10%) terms,
and their contraction. This is highly computationally intensive, and consequently it is

not possible to perform expansions to the desired order in this way.

To find the numbers listed in Table 3.2, consider the symmetries of tensor integrals. A
rank-2n tensor integral can be decomposed into sums of the products of n metrics. A
group of 2n Lorentz indices may be ordered in (2n)! ways. However, since each metric
is symmetric, 2" of the (2n)! orderings are redundant. Furthermore, since metrics
commute, there is an additional redundancy of n!, reflecting all the ways the metrics
may be ordered. Therefore, there are
(2n)!
2nn!

unique ways of constructing a rank-2n tensor from metrics. Equation (3.123) may be

= (2n—1)! (3.123)

proved inductively, and introduces the double factorial operator, defined as

k/2
I1(25) even k,
j=1

kil = (3.124)
%
[1(2j—1) odd k.
j=1

For example, a rank-8 tensor integral has n = 4, and so there are 7-5-3-1 = 105 ways

of forming a rank-8 tensor purely from metrics.

As well as forming (2n—1)!! products of metrics, it is also necessary to know the constant
of proportionality generated in tensor integral decomposition. This can be calculated for
an individual case by contracting the metrics generated by tensor decomposition. For
example, for a rank-2 tensor integral in d dimensions, Lorentz invariance requires
[ee] [e.e]
dd e dd 2
/ 4 T4 _ g / a9 (3.125)

@m) @ — m? @m)i g —m?

—0o0 —00
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and by contracting both sides by g, it follows that k2 = 1/d. This strategy can be
performed for arbitrary-rank tensors, and the pattern emerges that for a rank-2n tensor

integral,
n—1

1
E | eyt (3.126)
=0

Using the results so far, a scalar integral involving scalar products of different loop

momenta may be written as

Z(i,7,k,l,m)

/// )(q1 g3)’ (a7)* (43)"(a3)™

JI) m3) (g3 —m3)((q2 — g3)*> — m3)
B (7 ) [TaZ 1q1 i(qg’f)j(qg)l(qg)m
= f(9) /q1 @ qz/q[ a3 —m3)((g2 — g3)* — m3)

i+i_q )

- 2 1 ’(qp Hg3) (g3)™
=150 | 11 1, / / | Gt

‘I2 43

(3.127)

where Y(g) represents the totally symmetric rank-(i+ j) Lorentz-invariant tensor. Note
that the first equality follows from simply splitting up scalar products of loop momenta
and removing the corresponding metrics into the product f(g), and the second follows
from performing a tensor decomposition of the 1-loop ¢; integral. The tensor »(g) is
totally symmetric on the (i+4 j) Lorentz indices of the ¢; integral, and the tensor f(g) is
a product of (i + j) metrics, each metric containing one index from the 1-loop integral
and one index from the 2-loop integral. Since g, = &l, the product f(g)X(g)
contracts the indices of the 1-loop integral, and replaces them with indices of the two

loop integral. Consequently

h(g) = f(9)X(g) (3.128)

is a totally symmetric rank-(i 4+ j) tensor whose indices are those of the 2-loop tensor

integral. It then remains to find how Lorentz indices contract in the product
// g5)"(a5) (43)" (a3)™
§ m3)((¢2 — ¢3)? — m3)

~ h(g) / / (@) (@), (3.129)

q2,93

Consider

which contains all relevant tensor quantities. Since h(g) is totally symmetric over all of

the Lorentz indices of the integral, all possible scalar products between ¢ and g3 will
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be generated, and so

s=a [[@" @7 +a ([ w@ 7 @7

42,93 492,93

+gﬁ@mﬂ@7@T+m
q2,93
min (4,5) ' ’
ZEIQU@WW@?@T, (3.130)
x=0

92,93

where the ¢, are integer coefficients to be determined. As stated previously, it is
necessary for i + j to be even, as otherwise the ¢ integral will be odd, and therefore

zero.

The coefficients ¢, enumerate how many ways there are to form = “crossed pairs” of
the form (g2 -g3). Denoting by X the number of ways of pairing up 4 lots of g2 momenta
and j lots of g3 momenta into = pairs (where x < %), then
o WlE=DG =D =2)(G =2)].. [z + DG -z + D] _ ilj!
! (i —2)(j — )V
(3.131)

where the factor of z! arises since it does not matter in which order the momenta are

paired up. Note that X is symmetric under i <+ j as expected. It is also necessary to
enumerate the number of ways of pairing up the remaining momenta amongst them-
selves (to form products ¢3 and ¢3) after forming x “crossed” pairs. Consider the go
momenta, of which there remain (i — ) momenta to be paired amongst themselves.
Denote the number of ways of forming the product ¢3 by Y;. There are (i — x)! ways of
pairing the momenta, but since it doesn’t matter in which order the pairs are formed,
there is a suppression of %' Additionally, the ordering of the momenta within each

pair does not matter, leading to a further suppression of 25", Therefore,

PR Gk )L PR PR T (3.132)

77 ()

where the second equality comes from Equation (3.123). This expression trivially gen-

eralises for self-pairing (j — ) momenta of type g3 to give Y; = (j —z — 1)!l.

Combining the expressions for X,Y;, and Y}, an expression is obtained for the total
number of ways of pairing up ¢ momenta of type ¢ and 7 momenta of type g3 with x

crossed pairs:

Wil — = ) — 2 — D) ilj!
Co = ](:c!(i—xi!(gj—x)! ) :x!(i_x)!]!(j_x)u' (3.133)
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Therefore the integral

Z(i,j,k,l,m) =
/// d 1dd 2ddQ3 (q1-42)" (a1 - 3)7 (a1)"(43) (g3)™
(af —mi)(@3 —m3) (a5 — m3)((q2 — q3)* —m3)
may be rewritten in a standard form using tensor decomposition as
® i.j even
(i ikl pa 1 () 5!
(@, kL) = 13 d+ 2a xz:% 21— 2)I(j — o)l
z+ j—x
g™t ' (q%)m“z (g2 - q3)"
X 2 5 5 5 (3.134)
—m3)((q2 — ¢3)* — mj)
Q27113
e 7,7 odd
z+]

min (7,5) o
o 5!
T =
(i, ;K. L,m) I:I ( Zl (i — 2)!1(j — a)!

z odd

q% E+id 2 l+12“f (qs)m-i- 5 (q2_q3)x
Jh-= // m§><<q2—q3>2—mi>>‘ (3:135)

QQ »q3

There is a consistency check for the expression for é,. Since there are (i+j —1)!! metric
combinations in h(g), there must be a total of (i + j — 1)!! possible contractions, which

implies the sum of the ¢, coefficients must be (i 4+ j — 1)!!,

min (¢,5)

5! o
Z x!(i — x)‘]'(] — )l =(i+j— 1

xT

This was verified for all possible combinations of 7 and j for all values of x up to and

including = 20, which was the desired maximum value of x.

This tensor decomposition result was simple to implement in Mathematica, allowing

the decomposition of arbitrarily high-rank tensor integrals in millisecond time.
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Chapter 4

Effective Field Theories

Effective Field Theories (EFTs) provide a framework in which calculations can be
organised in a systematic manner to include relevant physics while ignoring higher-
energy physics that is irrelevant at the scale of interest. This simplifies the calculation
of low-energy physics, but exactly reproduces the results of the underlying full theory
in the IR limit [68-70]. As well as simplifying calculations, EFTs can also be used
as probes of new physics. In this approach, the SM is an EFT describing a more
fundamental UV theory that is currently unknown, which can be used to calculate
processes at low energies. Effects of heavy particles that exist beyond the SM are
treated in Standard Model Effective Field Theory (SMEFT) [8,9]. These calculations

can then constrain what types of new physics may exist.

4.1 EFTs and Particle Decoupling

Effective Field Theories in particle physics are built on the principle that low-energy
processes should be explicable in terms of physics of a similar scale - contributions from
heavy particles should be negligible when there is not enough energy to produce such
particles. At low energies, heavy particles cannot be produced on-shell, and therefore
cannot exist as external states. Additionally, heavy particles arising as virtual particles
have masses much larger than typical momentum transfer for low-energy processes.
Consequently, propagators of heavy particles may be Taylor expanded in powers of
momenta over mass, with fast convergence. Expanding propagators of heavy particles
removes the heavy particles as degrees of freedom, and transforms renormalisable non-

local interactions into non-renormalisable local interactions.

For example, the four-Fermi theory of weak interactions is an effective field theory. In
the full theory (the Glashow-Salam-Weinberg (GSW) theory), there exists a massive

W-boson that mediates flavour-changing processes. The W couples two fermion lines
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=X

Fig. 4.1: Integrating out the W-boson from GSW theory yields the four-Fermi theory,
which is very successful at describing low-energy weak interactions.

together, with each coupling being dimension-four, and therefore renormalisable. Low-
energy weak interactions are described by four-Fermi theory, in which there is no W-
boson, and fermions interact at a point. The W-boson propagator (in Feynman gauge)

is expanded as

. . . 2 4
—t9uv —t9uv 1 t9uv p p
= = 1 - 4.1
R TS T s M3V<+M3V+Mgv+ > (4.1)

which leads to the creation of local non-renormalisable interactions, shown in Figure
4.1.

The local interactions of four-Fermi theory have mass dimension-six (in d = 4 dimen-
sions), and are non-renormalisable. The coupling constant of four-Fermi theory, the
Fermi constant G'g, contains factors of the full theory coupling, g», and a suppression
by the W-mass, G o g3 /M%, This expression for the Fermi constant is obtained via

the process of matching, to be discussed below.

In general, an EFT is constructed in the following way [63,68,71]. Starting at a high
scale with a renormalisable Lagrangian of light and heavy fields, £({¢}, H), the scale p
is reduced until it is less than the heavy mass my. Terms containing only the light fields
{¢} are isolated, while the remaining part (involving both {¢} and H) is treated as a
perturbation to the ‘light’ Lagrangian, with the heavy fields being integrated out:

LY, H) L2285 £00,) + 5L(6). (4.2)

Integrating out the heavy fields H creates a series of non-renormalisable operators, al-

lowing dL£({¢}) to be written as an operator product expansion (in d dimensions),
— 1 d+i) o (d+i
L) =3 5 2O, (4.3)
i=1 j

The parameter A is some massive parameter (often myr), which ensures the Lagrangian
remains d-dimensional. It acts as a cut-off for the validity of the expansion, with the
effective theory expected to break down at scales of order A. The coefficients C; are

Wilson coefficients, and are effectively coupling constants for higher mass-dimension
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operators ;. The operators @Q; are exclusively built from the light fields ¢; of the effec-
tive theory. All possible @); that observe the symmetries of the theory (which typically
include Lorentz and gauge symmetries) are included in the expansion of Equation (4.3).
The expansion is organised by the mass-dimension of the operators, with a number of

different operators possible at each order.

Equation (4.3) is written in terms of bare parameters, which need to be renormalised.
In order to fully specify the theory, it is necessary to choose a renormalisation scheme.
In a mass-dependent renormalisation scheme, the decoupling of heavy particles arises
naturally, as at scales p < my the contribution of large-mass particles to quantities
such as the S-function is suppressed by powers of my. The effects of heavy particles
to low energy processes then results in a rescaling of renormalisation and coupling
constants, and the heavy particles do not arise as dynamical degrees of freedom that
need to be included in calculations. This is the content of the Appelquist-Carazonne
theorem [72]. Mass-independent schemes like MS do not include suppressions of heavy
particles at low energies, and so do not automatically yield particle decoupling. In
addition, the lack of decoupling leads to an ‘incorrect’ S-function, with an associated

problem of large logarithms for low-momentum-transfers [68-70].

Both of these problems of the MS scheme are overcome by manually integrating out
particles. Calculating in MS, at the threshold x4 = myy, the heavy particle H is removed
as a dynamical degree of freedom, leading to a new low-energy theory with fewer
degrees of freedom. The new theory is formed in accordance with Equations (4.2) and
(4.3), with the requirement that amplitudes calculated in both theories at the scale
@ = mp must agree. These are called the matching conditions, and incorporate the
residual effect of high-mass particles on low-energy parameters. Whenever a particle
is integrated out, the new effective theory is strictly a new theory, and fields and
parameters of the high- and low-energy theories may not be naively interchanged. For
example, the QCD S-function in MS contains a term that is proportional to the number
of quark flavours. If a quark is integrated out in passing between the full and effective
theories, then there are fewer flavours in the effective theory than the full theory, leading
to a different S-function [69,70].

The advantage of using MS over mass-dependent schemes is two-fold. Firstly, cal-
culations are simplified. More importantly, when evaluating loop diagrams involving
higher-dimension operators in a mass-dependent scheme, the high-momentum region
of the loop integrals are proportional to m% (at 1-loop), the mass of the heavy particle
that is integrated out. This loop contribution cancels the suppression factor 1/ m%l
of the effective operator, and the effective operator is no longer suppressed. There-
fore it is not possible in a mass-dependent scheme to truncate the operator product

expansion, and predictivity is only achieved by considering the full infinite tower of ef-
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fective operators. However, in a mass-independent scheme, all scale dependence resides
in logarithms such as In (u), which do not remove the suppression provided by mp.
This allows the operator product expansion of Equation (4.3) to be truncated to some

appropriate power, allowing calculations to be predictive [68,69].

4.2 Types of Effective Operators

The general prescription for building an effective theory is to include in the Lagrangian
every possible operator allowed by the symmetries of the theory up to some chosen
mass dimension. However, by following the approach of writing down all possible
allowed operators, this basis will typically be linearly dependent, since operators (or
combinations of operators) that superficially look different may be shown to be identical
through equations of motion. Therefore, in order to build a linearly independent basis,
it is important to study the equations of motion. For example, the equation of motion
for the left-handed lepton doublet in the SM is

0Lsm OLsm > .
M _ g (OESMY B0 =Toep, 44
or o (a(aue) iPt=Teee (4.4)

while the EoM for the Higgs doublet is [§]

OLsm 0Lsm
ot N0t

— (D“Ducp)j = mzapj—/\(ngcp)gpj—EFlﬁj—i—sjquFuu—Eleqj.

Note that in the above, only the dimension-four Lagrangian has been used to derive
the EoM. In general, it is necessary to derive EoMs using the entire Lagrangian of the
effective theory, and in the case of SMEFT this would mean for example the EoM for

the lepton field is
pr

. C

iPly = [Celprere + S5 (0T 0)erg + . (4.5)
where p and 7 are lepton generation indices, and the ellipsis denotes further contribu-
tions from dimension-six operators. To eliminate a ‘redundant’ dimension-six operator

involving the derivative of a lepton doublet, we may find, for example

1 — 1 — Ct; —

E(@T‘P) (ﬁslmgp) = F(SOTQD) (Us[Lelprere) + ﬁ(@TSO)Q(gser@) .o (4.6)
where it can be seen that the higher-dimension contributions to the leptonic EoM
are higher order, and can be neglected when only working up to dimension-six opera-

tors.

While a physical basis should not contain operators that are related through equations
of motion, it is possible to build non-physical operators that vanish on-shell through
the equations of motion. While these operators are classically zero, they need to be

included in effective calculations performed off-shell. This is done for the case of the
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SMEFT in Chapter 5, where the equations of motion are used to construct EoM-
vanishing operators that contribute to the renormalisation of diagrams with double-
insertions of the Weinberg operator. For example, using the EoM for left-handed leptons

(Equation (4.4)), the lepton-flavour violating off-shell operator

Q) = (') i) — (10) (B [Tel e + e[, ") (4.7)

may be constructed, with a similar triplet operator also arising. These operators have
derivatives acting on leptons, and consequently give Feynman rules dependent on lepton
momenta. The inclusion of EoM-vanishing operators is also important in general when
performing matching calculations off-shell, although they do not arise in the calculation
of Chapter 6, since the gluons do not couple to leptons, and therefore the gluonic EoM

cannot generate dimension-six operators that mediate the process in question.

An additional type of operator are evanescent operators, which are proportional to the
€ of d = 4 — 2¢, and are therefore vanishing in four dimensions. Further, since they
are non-physical operators, their matrix elements give no contribution to physical am-
plitudes. However, these operators must be renormalised, and thus mix into physical
operators through renormalisation matrices. Since evanescent operators are propor-
tional to €, and the momentum integral corresponding to a loop induces a 1/€ pole,
then at 1-loop evanescent operators are renormalised by finite counterterms. Conse-
quently, at 1-loop evanescent operators do not contribute to the anomalous dimensions
of physical operators. However, at 2-loop and above, evanescent operators affect the
anomalous dimensions of physical operators, and so their inclusion is important [73].
It is possible to perform calculations without including evanescent operators, but to do
so correctly it is not possible to use massless quarks within dimensional regularisation.
The use of massless quarks introduces spurious infrared divergences that can only be

properly handled with the addition of evanescent operators [12].

4.3 Renormalisation of EFTs

In usual QFT parlance, a Lagrangian in d = 4 dimensions is said to be renormalisable
if it only contains operators with mass-dimension less than or equal to four. Such a
Lagrangian may be renormalised to give finite Green’s functions with the addition of a
finite number of counterterms. Effective Lagrangians contain multiple higher-dimension
operators, and so would normally be considered to be non-renormalisable. However,
provided that calculations in EFTs are truncated at some order in A, only a finite
number of counterterms are required to renormalise the effective theory, and so the

theory is renormalisable in practice.
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Effective operators are built out of light fields, and so effective operators will un-
dergo wavefunction renormalisation. For example, a four-fermion operator of a generic

fermion v will undergo wavefunction renormalisation as

(¥olv0) (Yolvho) = Z (YI') (YI'9) . (4.8)

However, this wavefunction renormalisation is insufficient to remove all divergences in
effective theories, and a further renormalisation must be performed, called operator
renormalisation [69, 74]. This is simply because the full and effective theories are dif-
ferent theories, with different UV structures. Therefore, it cannot be expected that the
same procedure will renormalise the two different theories. The additional operator
renormalisation leads to mixing between operators with the same quantum numbers
and displaying the same symmetries. Instead of a single multiplicative renormalisation
constant for each higher-dimension operator, a renormalisation matrix is required, with
contributions from multiple operator renormalisation constants needed to renormalise
a single operator. In this framework, and using dimensional regularisation, renormali-

sation of a higher-dimension operator is performed via

i

Q=i 2 ) (2@ (), (19)
where there is summation over the repeated indices i, j, the renormalisation constant
Z, represents the relevant wavefunction renormalisations for the operator @7, and the
subscript ‘0’ denotes a bare parameter. Since dimensional regularisation is used, the
scale i = g appears, and the factor %€ is introduced to ensure dimensionless Wilson
coefficients. For example, considering the mass-dimension of a four-fermion operator
with a = 2,

d=4—2¢= |p* A2 ©(@ry) (YT | = 4%—2+2e+[0w4] = 4—2¢+ [Cys] (4.10)

which implies that [Cd}4] = 0, and the Wilson coefficient is dimensionless as desired.
Note that in the literature, relations of the form of Equation (4.9) are often written in

a suppressed notation, typically as

CoQ0 = C' (W) Zij(m)Q’ (1) (4.11)

Note that since Z;; renormalises both the Wilson coefficient and the operator, it is stan-
dard to associate the renormalisation matrix with either the coefficient or the operator.

We renormalise the Wilson coefficient as
Cy = C' (1) Zij (), (4.12)

such that renormalisation of the Wilson coefficients additionally removes all divergences

of its associated bare operator.
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Qs ~-_--" Qs Qe

Fig. 4.2: Double-insertions of a dimension-five operator leads to mixing with
dimension-six operators with the same external states.

Renormalisation matrices may be expanded in powers of both coupling constants and e,
and then evaluated in perturbation theory. For example, in calculating QCD corrections

to weak processes, renormalisation constants may be expanded as

) k k
z-sr Y (E) A A= AT

m=0
4.3.1 Operator Mixing through Double-Insertions

The mixing of operators of the same dimension is described with renormalisation ma-
trices Z;j, but it is also possible for operators of different dimensionality to mix under

renormalisation. For example, consider the simple Lagrangian
£L=r"+ l05Q5 + iC6Q6 (4.14)
A A2 ’

where there is a single operator of dimension-five and a single operator of dimension-
six. If calculating a process to some order 1/A?, there can, in general, be contributions
from diagrams with a single insertion of a dimension-six operator and two insertions
of the dimension-five operator, since such amplitudes are both proportional to 1/A2.
This is illustrated in Figure 4.2.

The loop that appears in Figure 4.2 generates a divergence that must be removed to
obtain finite quantities. Since in general an effective theory contains all operators al-
lowed by symmetries, no additional operators can be introduced to the Lagrangian to
remove such divergences, and so divergences appearing from double insertions must be
renormalised by operators already in the Lagrangian, in this case Q. The renormal-
isation is encoded in a renormalisation tensor Zss5 6, which specifies the UV structure

required of QQg to remove the divergence generated by a double-insertion of Q5.

In general, when discussing the mixing of operators of dimension-m into operators of
dimension-n through double-insertions, there may be multiple operators at dimension-
m and -n. For example, in the case of SMEFT, there is a single dimension-five operator
that mixes into four LF'V operators at dimension-six. However, if an additional Higgs

doublet is added to the theory, there are a total of four dimension-five operators that
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mix into the four LFV dimension-six operators. Both of these cases are studied in
Chapter 5 of this work. The general structure of renormalisation for such situations
is discussed in [75]. Denoting quantities of dimension-n with a tilde and those of
dimension-m without a tilde, the renormalisation equation of a dimension-n quantity

may then be written as
CoQh = C'ZQ" + C*C' 21y Q7 (4.15)

where there is summation over 4, j, k and [. Note that there are (here suppressed) factors
of 1€ on the right-hand-side of the equality to ensure all Wilson coefficients are dimen-
sionless. Note also that there is a key difference in cases of intra- and inter-dimensional
operator mixing. In the former case, where operators of the same dimension mix, mix-
ing occurs when there is a vertex renormalisation induced by two external legs being
connected by a gauge boson. This means that the renormalisation matrix Z;; may be
expanded in a gauge coupling g, with the leading order contribution oc g2. However,
when renormalising diagrams containing a double-insertion of effective operators, at
leading order there are no gauge couplings, and so the leading order contribution to
the renormalisation tensor Z,, ; is g-independent (and therefore p-independent). To
address this situation, it is common to make a redefinition of terms in the effective
Lagrangian by multiplying Wilson coefficients by ¢ and dividing effective operators
by ¢* [75-77]. Such an action leaves the Lagrangian invariant, while introducing a
g-dependence into the Wilson coefficients and effective operators that allows expansion
in gauge couplings at leading order. However, this approach assumes that calculations
are being performed in a theory where we calculate perturbatively in a specific small
coupling. Since we consider only 1-loop processes with no gauge coupling necessarily
present, this approach is not naturally suited to our case, and so we work with renor-
malisation tensors that are p-independent at leading order. This is a novel approach,

and is not present in the previous literature.

4.3.2 Renormalisation Group Equations for Wilson Coefficients

Wilson coeflicients are couplings for effective operators, and are p-dependent, and are
therefore analogous to coupling constants of dimension-four operators. The running
of Wilson coefficients is similarly given by anomalous dimensions, and due to opera-
tor mixing, the anomalous dimensions are encoded in anomalous dimension matrices

(ADMs) and anomalous dimension tensors (ADTs).

In the following, we will consider the renormalisation of dimension-six Wilson coeffi-
cients, both among themselves, and from double-insertions of dimension-five operators.
Dimension-six quantities are denoted by a tilde, while dimension-five quantities do not

have a tilde. Consider a bare dimension-six Wilson coefficient C~'8 Considering only
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the mixing of dimension-six operators among themselves, and ignoring wavefunction
renormalisation, the renormalisation equation for 6’6 is given by Equation (4.12). Since

bare quantities are p-independent, this implies
d /~. d .
0=p (Cb) = n (W*C7Z5). 4.16

where the factor of ;2 from dimensional regularisation is included to make the Wilson

coefficients C* dimensionless. Using the product rule, it is then simple to find

d ~. . - d ~ \ ~
—C'(p) = —2eC () — C* —Zij | Z:t 4.17
a8 0) = =2680) = ¥ (- 2 ) 2 (a.17
This may be written as

d ~.  ~.

—C" = (75, 4.1

Hd,uc C77; (4.18)

where the dimension-six ADM is given by

- d ~ 1
’Vji = _265]'1' - <,UJd'uZ] ) Zkz . (419)
Similarly, an ADM for mixing among dimension-five operators is given by

d _
Vi = —2€dj; — <Md,quk> Zi (4.20)

Extending the treatment to also include double-insertions of dimension-five operators,

dimension-six Wilson coefficients may be renormalised as
66 = uQeéiji + MZeCkal’iCl' (4.21)

Taking the derivative with respect to p leads to the renormalisation group equa-
tion

d ~ ~._
N@C’ = CI3j; + CFyp LY, (4.22)

where 7;; is the dimension-six ADM of Equation (4.19). The quantity i ; is the ADT
for mixing of dimension-five operators into dimension-six via double-insertions, and is

given by

_ d _ _
Vil = — |:2€Zkl,iji1 + (MdMZkl,j> ij-l + (Vier O + Y Ogerer) Zk’l’,ijil , (4.23)

where 7y is the dimension-five ADM. This can be compared to the result in [75], where
there is not a term proportional to e. This is because the additional factor of u?¢ that

arises in the Lagrangian from dimensional regularisation has not been considered.

It is useful to consider the perturbative expansion of Equation (4.22) to understand
where the leading contributions come from. The dimension-six ADM has a leading

dflik starts at O(g?). Then,

order contribution of —2ed;; (see Equation (4.19)), since

61



considering the ADT of Equation (4.23), the first term is leading order since both
Zy,; and Zji start at O(g”). The second term is not leading order, since %’ﬁ‘j starts
at O(g?). There is a contribution from the third term, since Zy; and Zj; start at
O(g"), and the dimension-five ADMs (given in Equation (4.20)) have a part that is
leading order. Bringing these contributions together, the leading order running of the

dimension-six Wilson coefficient ' is then given by

d ~10 . .
{Md,ucz] = —2eC" — 2eCF [Zkl,j]( ) 5jiCl

— Ck ((_265kk’5ll’ — 26(51[’5kk’> [Zk’l’,j] © (Sj> Cl
= —2eC" 4 2¢C* [ Z14] CL (4.24)

The expression [Zk/l@j] © (where the (0) superscript denotes that this is the contribu-
tion at O(g%)) will contain a 1/e pole which will cancel the € coefficient. Then returning
to d = 4 dimensions, the term from the dimension-six ADM will no longer contribute,

and the final expression for the leading order running is
d =1 K (0)
,U/@C = 2¢C [Zkl,i] c". (4.25)

Therefore, the leading contribution to the running of the dimension-six Wilson coeffi-
cient C? is given by the leading order term of the ADT Z,; ;. This is a new result, and
is given for the first time in [78]. We have also checked that we would obtain the same
final results for the running of dimension-six Wilson coefficients if we used the method

of [75], although the intermediate steps are different.

4.4 Solutions of RGEs and RG-Improved Perturbation
Theory

Given the renormalisation group equation for a column of Wilson coefficients,
i 4.2
HapC = G (4.26)
the Wilson coefficient at a scale p may be solved as [44]

A A g(1) (!
C*(p) = C7(Mw) exp [/(M )dg’ gz((gg,))] , (4.27)

where ((g) is the QCD beta function. At leading order this gives
ﬁ
OéS(Mw):| 260

as(p) (4.28)

€' = Ci0w) |
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These solutions are crucial in determining the behaviour of Wilson coefficients. In a

typical matching calculation at the weak scale we may obtain the result

Clp) ~1+Fm (MW> , (4.29)
47 n

where F is some numerical factor, typically of O(1). This is is well behaved for pu ~ My,
but breaks down for u ~ 1 GeV, where the leading correction becomes comparable to
unity, and cannot be considered small in any way. Consequently, for this expression
for C to be valid around p = 1 GeV, the matching would need to be computed to all
orders in perturbation theory. An easy way to circumvent this problem is to calculate
the matching to some finite order in perturbation theory, and then to use the renor-
malisation group equations to compute how the Wilson coefficient runs to different
values of 1. This works because the RGEs automatically resum the logarithms from all
orders, such that convergence is not a problem. This calculational approach is called

renormalisation group-improved perturbation theory [44,79].

4.5 Matching

As already discussed, calculations in effective field theory are usually performed in the
mass-independent MS scheme, in which heavy particles do not manifestly decouple.
This problem is dealt with by decoupling heavy particles by hand, in the process of
matching. When integrating out a heavy particle H, a transition is made between a
high-energy theory (valid at scales p > myp) containing H and a low-energy theory
(valid at scales © < my) not containing H. It is physically required that matrix
elements calculated for light particles in the low-energy effective theory must be equal
to the corresponding matrix elements for the light particles in the high-energy theory
at the scale p = my, which gives a set of matching conditions. In this way, each theory
can be used for calculations in its own domain of validity, with each theory smoothly
transitioning with the preceding theory. A simple example is the matching the GSW
theory to four-Fermi theory for the process ud — su. At small momentum transfer

(< My ), and in the Feynman gauge at tree level,

2

g . .
AN = — S 1\422 Vi Vigs (s (1 = v5)uu) (W, (1 — ¥5)ua) , (4.30)
W

where the overall sign is due to our choice of covariant derivative. In the four-Fermi

theory with Lgerm;i D —%VudVJS (uy"(1 —5)s)(uy, (1 —75)d), the tree-level amplitude

1 G
F F
Auc( ir'm% Sl U \/’*

is
Vaua Vs (Wsy™ (1 — v5) ) (W v (1 — ¥5) ua) - (4.31)
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Requirement that the full SM and effective amplitudes agree leads to the matching

condition )
Gr _ 9

V2 o 8ME
This matching between Fermi theory and GSW theory at tree-level serves to define the

(4.32)

Fermi constant in terms of GSW parameters. In a more general effective treatment of
weak interactions (see Section 4.7), the four-fermi operator would be multiplied by a
Wilson coefficient C’f/“fg in the Lagrangian. The tree-level matching calculation would
be the same as detailed above, except that Equation (4.32) would be used as an identity,

and the matching condition would yield
Cyt =1 (4.33)

at tree-level. Loop corrections would modify the Wilson coefficient, while leaving the

Fermi constant unaffected.

Matching calculations can be made more precise by including QCD corrections in the
calculation. This involves performing loop calculations in, and renormalising, the “full”
theory, and in principle calculating loops in and renormalising the effective theory. In
matching calculations, light quarks are usually treated as massless (since the heaviest
“light” quark remaining in the theory has mass m; = 4.18 GeV, which is much less than
My = 80.4 GeV [32]), and so loops with massless quarks and gluons are identically
zero in dimensional regularisation when external momenta are set to zero [12]. The
matching calculation then proceeds by calculating the amplitude for some process in
both the effective theory and full theory to some order in a perturbative coupling
(for this work, the strong coupling, «;). Each theory must be renormalised, which in
the effective theory requires the calculation of the renormalisation matrix that mixes
operators. This is done by calculating loop diagrams in the effective theory with some
finite external momentum (such that the integrals are not scaleless), removing some
subclass of divergences through a wavefunction renormalisation for the fields in the
effective operators, and removing the remaining divergences with effective operator
counterterms. Infrared divergences that arise from massless quarks also arise in the full
theory calculation, and so their effect will cancel overall. The effective and full theories
can then be matched order-by-order in the perturbative coupling, allowing the Wilson

coefficients to be extracted.

A subtlety in the matching is that both the full theory and the effective theory must be
expanded in the same coupling. In a mass-independent scheme such as MS, couplings
are dependent on the number of active flavours through their running, and so theories
containing a different number of active quark flavours are naturally described by differ-
ent couplings. In the case of matching the SM to a five-flavour theory below the weak

scale, the SM has a QCD coupling ozgﬁ) while the effective theory has the coupling agS).
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(5)

This situation is resolved by using ag™’ in the effective and full theories, and apply-
ing threshold corrections in the full theory to compensate for this choice of coupling.
These threshold corrections encode contributions of high-energy particles, and relate
ag5) and agﬁ) (as well as other quantities such as quark masses and fields that are depen-
dent on the number of flavours), allowing matching calculations to proceed. Threshold
corrections may be calculated by appealing to the Appelquist-Carazzone theorem. Cal-
culating the same Green’s function using a mass-dependent and a mass-independent
scheme, and requiring equality between them, allows one to identify the finite renor-
malisations required to make the Green’s functions agree. These finite renormalisations

are called threshold corrections, and are discussed in detail in [80, 81].

We quote here relevant threshold corrections in QCD from [81]. Denoting quantities
in the effective theory by primes, and quantities in the full theory without primes,
then

= \/QZGZ gluon field,
§/G = ngfG gauge parameter,
ay = Cpa QCD coupling ,
by = \/Cuata quark field . (4.34)

The threshold corrections are given by
“ ()
m
1
e 47 3 " <m>
e { () +5 (e ()]
m? my;
_ ( ) b 7
e i (5)

where mp is the mass of the heavy particle that is integrated out in going from the full

to the effective theory, and Cp = %. It can be seen that (g = (¢, which is required

l\')ml\’)

w\m

from the gauge-fixing term in general R¢ gauge, %(8*‘(}‘;)2.

4.6 SMEFT

The standard model is currently the best theory of particle physics that we have.
However, it is well known that it is not a fundamental theory, and that it must be
the low-energy theory of some more general UV-complete theory. In this sense, the
SM can be seen as the IR limit of a higher-energy theory, whose heavy excitations

have been integrated out (since they are too massive to be observed at the LHC). This
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allows one to build an effective theory where higher-dimension operators are built out
of the fields of the SM, and where such operators respect the SU(3)c x SU(2), x U(1)y
symmetry of the unbroken SM. The unbroken SM is used since new physics must exist
at energies above the weak scale. The operators of SMEFT at dimensions-five and
-six were compiled by Buchmuller and Wyler [14], but as has been pointed out in the
literature [82-84| this list contains redundant operators that are related by equations
of motion. Consequently, a new basis was formed, known as the ‘Warsaw’ basis [8],

which carefully considered equations of motion, and is used in this work.

The Lagrangian of SMEFT is given by
9 1 GINOE 6) (6 1
ESM:E(SM+XZCk) k "‘EZCIE QIE:)+O<A3>7 (4.36)
k k

where Lgy is the Lagrangian of Equation (2.38), and A is the scale of new physics.
In SMEFT there is only a single dimension-five operator: the lepton number violating
(LNV) Weinberg operator,

P = ejpemn’ @ (T O} = (Cep) (Gregp) . (4.37)

In the latter notation (which is used in Chapter 5), SU(2) indices j, k,m,n are con-
tracted within brackets. The equality holds since (in the Dirac basis) C~! = —C. The
indices p and r are generation indices, and as such the Weinberg operator can medi-
ate lepton flavour violating (LFV) processes, as well as LNV processes. An important

property of the Weinberg operator is that it is symmetric in generation space:
(@ap) (brep) = — (K%TC_IZT) Sjk@kemngpn
== (giTC_lf?l)Tejksokemn@”
=+ (E;”TC_lTK%) ik Emn”
=— (ETTC’V@ ik Emne™
— (Eep) (o) - (4.38)

In the third line, a sign arises from fermion interchange, while an additional sign comes
in the fourth line since CT = —C. Therefore, QY is a symmetric 3 x 3 matrix, with

six independent degrees of freedom.

The Weinberg operator is physically very important. This is because at energies below
the electroweak symmetry-breaking scale it gives rise to a Majorana mass term for the
left-handed neutrinos of the SM. This can be seen by replacing the Higgs doublets in
the Weinberg operator by their VEVs,



which leads to

L) = CF (Lgep) (Lreyp)

505 A (5 o) () e e (X o) (1)

C 2
= 5TUVEpVL7" . (4.39)

Comparing this with the form of a Majorana mass term (Equation (2.89)),
EMajorana = _MT%\I/L7

shows that the Weinberg operator generates in the broken phase a Majorana mass for
the left-handed neutrinos, with mass

C’gry?

5 (4.40)

my, =
At dimension-six, there are many more possible operators that respect the gauge sym-
metries of the SM. In the Warsaw basis they are divided into different categories,
depending on the field content of the operators. The categories are X3, (¢% and
©iD?), Y203, X202 2 X o, and ¥?@?D, where X, ¢, D and 1) are generic labels for
field strength tensors, scalars, derivatives, and fermions respectively. Note that the
above categories exclude four-fermion operators. These additional operators are clas-

sified by their chirality structure, with the categories
(LL)(LL), (RR)(RR), (LL)(RR), (LR)(RL) and (LR)(LR).

In total, there are 59 operators at dimension-six (ignoring Hermitian conjugates and
flavour structures), but if one includes operators that allow B-number violation, an
additional five operators appear. A list of the dimension-six operators of SMEFT is

given in Appendix A.

The relevant dimension-six operators for this work are

b= (w*w) (Cperep) e P2p®,

o — ( ti T~y 2,2

(1) = QOlDu‘P)(p'V r) EY P D,

<>

22(3) = ‘PTiDllt‘P) (ngI’YWT) € v’ D,
Q" = (Cyyule) (s ty) e (LL)(LL),
Qo = (cp*so) O (w*w) € ¢'D?,
Qep = wTD“so) (wTDuso) € 'D?,

= (¢10) @) S
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= (o) @ded) € PPy’

All of these operators can be generated by double-insertions of the Weinberg operator,
and the dependence of the running of their respective Wilson coefficients due to such

double-insertions is calculated in Chapter 5.1

4.6.1 Matching to Low-Energy Wilson Coefficients

While SMEFT is the correct framework above the electroweak symmetry breaking
scale, it is useful to be able to relate this to effective theories below this scale. This
allows constraints obtained from low-energy experiments (below the weak scale) to
be converted into constraints on SMEFT Wilson coefficients. This is done through
matching the two theories at the scale Myy. We will consider here the matching of one
low-energy Wilson coefficient in terms of SMEFT Wilson coefficients to illustrate the
procedure. A complete list of these matchings is given in Chapter 5, where we correct

some results found in [85].

In EFTs below the weak scale, operators observe the gauge symmetry SU(3)c X U(1)em,
and a basis of such operators is given in [86]. Consider in particular the Lagrangian
term

G
£ 5 Shem o O = @ P @R, (41)

n—3e \/5

where Q77 is a vector-vector operator of left-handed fields. Note that low-energy
operators are denoted by O, while SMEFT operators are denoted by ). Similarly, low-
energy Wilson coefficients and SMEFT coefficients are denoted by C and C respectively.
There are two types of operator in SMEFT that match onto this operator. First, there

is the four-lepton operator (plus its Hermitian conjugate)
prst ~prst epee ~epee eeeft eeeu epeex eeue eeepx ~jeee
> (CrrQpt + He) o Qi + Cf + CSPERQeHe 4 e Qs

p7r7s7t

(C@Mee Ceeellz Ceeﬂe* Meee*) Qe}l/ee
o 4Ce,ueeQeuee
=2C,)"“(ez’ ) (€rper) (4.42)

where the equality holds since CZTSt = C)7, s Q TSt — = Qy ts, cy, rstt = = (), S and
Qp rstt strp . Note that the factor of 1/2 is introduced as a normalisation for the
operator QQg, to be consistent with Chapter 5. This normalisation is used since we
define all operators to enter a Lagrangian with their Hermitian conjugate (even if the

operator is self-adjoint when ignoring flavour indices). Since @}, rstt = Qtsrp this implies

'Note that although the final two operators of this list cannot be directly generated by double-
insertions, they are related to operators that can through equations of motion.
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that Cg’[“ = Cgf ts* and therefore the four-lepton operator in SMEFT contributing to
Qeuee .
v,LL 18

epee ~epee
CM 124

The second contribution to Qf/“zeL from SMEFT operators is via Z-penguins that couple

to a lepton current. These Z-penguins arise from the operators () ,¢(1) and @3y when

the Higgs receives a VEV. For example,
- R _
nga) = (90” Dy, W) (EP’YM&’)
D — (sOJ' [2W 3% + g1 B,] <p> (€py"ey)
W2 — 1B, (6"2:) (4.43)

Using the relations

e e UQ(Q% + Q%)

3 : 2
L= Cos Ow’ 92 = sin Oy’ Z, = cosOw W, —sinOwB,,, and Mz = I ,
the above relation can be written as
EWSB
vy o vMzZu(enyerr), (4.44)

where it is understood that this Z-penguin operator is only one of two operators gen-
erated by Q1) under EWSB (the other being a flavour-changing W-penguin), and

there is additionally a neutrino part that we neglect here. Similarly, the triplet operator

Qp(3) also gives
EWSB

1;2(3) > vMzZ, (e ery) - (4.45)

These two Z-penguin operators may couple to a lepton line as in Figure 4.3, and
at low energies (where the Z is integrated out) contributes to the low-energy four-
fermi operator. The matching is determined by evaluating the Feynman diagram of
Figure 4.3.

The diagram Dz may be evaluated using standard Feynman rules, as well as the Feyn-

man rule for the Z-penguin read off from Equation (4.45), to find

— (i (7 pver —igpo \ (— (192 N -
Mlp, = (1) (uewM27 C@é(l)PLuM) (—M%) <ue (COS @W> [ 5 +sin @W] gl PL%)

VG297 - -
- mczz(l) (ue’}/pPLuM) (Ue’YpPLue)

= 91Cr) (@ Pruy) (wepPrue) (4.46)

where the relations

Vg2

€ — _14+925in20 My, = — 92
L +2sin”Ow, d 2cos Oy’

(4.47)
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Fig. 4.3: Below the weak scale the operator Q1) (and Qyr(3)) generates a Z-penguin
operator that can couple to a leptonic current. Matching this to the low-energy theory,
the Z is integrated out, resulting in the Z-penguin operators contributing to the four-
lepton operators of the SU(3)c x U(1)em-invariant basis.

have been used. Note that the sign for the Feynman rule of the eeZ coupling is con-
sistent with our sign convention for the covariant derivative. In the low-energy theory,

the matrix element for the process pue — ee is trivially
M|10W—energy = C\c}/fLeeL (EVPPLUM) (FeVpPLue) ) (4'48)

and so the Wilson coefficients of the low-energy theory may be matched to the Wilson
coefficients of SMEFT at My, as

O (M) = 205 (Mw) + g5, (CZhy (M) + Chi (M) - (4.49)

All other Wilson coefficients C of the low-energy theory may be matched onto SMEFT
coefficients at Myy in this manner. The matching for Wilson coefficients relevant to

lepton flavour violation is given in Chapter 5.

4.7 The Weak Hamiltonian

The second effective theory considered here is the effective weak theory, used to describe
weak interactions at scales below My. The starting point of such calculations is the

eﬂ‘ec[ive Weak Hamlh Onian
Heff = — E V Z‘KMC'Q' (4 50)
\/Q 7 © e '

where G is the Fermi constant, and Vi, are the relevant CKM matrix elements for
the quarks contained in the effective operator );. Amplitudes for transitions from a

state |I) to a state |F") governed by effective operators are calculated as

Gr

Al = F) = (F|Heg [I) = NG

Z VismCi(p) (F| Qi 1) (1) 4 (4.51)
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where dimensional regularisation induces a p-dependence in the Wilson coefficients and
matrix elements. Since amplitudes are p-independent, the p-dependence of the Wilson
coefficients C;(u) must cancel the p-dependence of the matrix elements (F|Q; |I) (1)
when the sum over operators in the effective Hamiltonian is taken to extend to infi-
nite mass dimension. Since the u-cancellation typically involves several terms in the
expansion, truncation may lead to some residual non-physical p-dependence in ampli-
tudes [44]. The Wilson coefficients are calculated by matching the low- and high-energy
theories, and so encode the effects of heavy particles into the EFT, while the matrix

elements contain the dynamics of the low-energy content of the effective theory.

Since calculations in the effective theory are performed at the arbitrary scale u, the
value of p may be chosen for calculational convenience. It is often set at the scale of
the decaying hadron, which simplifies the use of matching calculations. Usually these
energy scales are high enough that the strong coupling constant ag(p) is small, and
perturbative techniques may be used to perform the matching calculations to find values
for the coefficients C;(11). However, when considering the decays of K mesons, which
are comprised of light quarks, it is common to take p ~ 1—2 GeV, which is greater than
the mass mp, since the strong coupling becomes non-perturbative below this region,
making calculations considerably more difficult [44]. While the calculation of Wilson
coeflicients may be successfully performed within the framework of perturbation theory,
their corresponding matrix elements typically cannot, and other methods such as lattice
QCD and chiral perturbation theory must be used to evaluate them (see [87] for a review

of lattice QCD, and [88] for an introduction to chiral perturbation theory).

The weak effective theory is useful for studying flavour-changing neutral current (FCNC)
processes. These processes are forbidden at tree-level in the SM, and therefore experi-
ence loop suppression. Even at loop level, the unitarity of the CKM matrix can cause
a further suppression through the Glashow-Iliopoulos-Maiani (GIM) mechanism [89].
Consequently, FCNC processes in the SM are highly suppressed, and so they are useful

processes to search for signals of new physics.

In this work we use the weak effective Hamiltonian to discuss the decays K+ — 77w

and K, — 7%vw, which are mediated by the operator Q, = > (5pv*dr) (Wi vuvL)-
l=e,u,T
We calculate the contribution to the corresponding Wilson coefficient at O(a?) arising

from box diagrams, requiring a matching calulcation at three loops in the full theory
(the SM). This calculation is presented in Chapter 6.
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Chapter 5

Majorana Neutrino Masses in
Renormalisation Group
Equations for Lepton Flavour
Violation

In the minimal SM, where neutrinos are massless and there are no sterile right-handed
neutrinos, the number of e, y, and 7-type leptons is individually conserved in all in-
teractions. Any process in which these quantum numbers are not individually con-
served indicates LF'V and Beyond the Standard Model (BSM) physics. The observa-
tion of neutrino oscillations implies LF'V must occur, where we define LF'V as flavour-
changing contact interactions of charged leptons (for a review, see e.g. [86]). Since
observation of LF'V is a signal of BSM physics, it is the subject of many experimental
searches [32,90-99]. While it is known that neutrinos are not massless, it is not known
whether their masses are Dirac or Majorana (or some mixture of the two). A Majorana
mass term for neutrinos is Lepton Number Violating (LNV), and if neutrino masses
are indeed described by a Majorana mass, then they could mediate neutrinoless double
beta decay [100]. Below the weak scale, such masses appear as renormalisable terms in
the Lagrangian, but in the full SU(2) gauge-invariant Standard Model, they arise as a

non-renormalisable, dimension-five operator.

We assume that neutrino masses are Majorana, and that the scale A of New Physics
in the lepton sector is large. We focus on the theory at scales above My, but below
A, where it can be described in the framework of SMEFT (see Section 4.6). The
neutrino masses can be parameterised by operators of dimension five, and LFV is
parameterised by operators of dimension six. Our aim is to obtain the log-enhanced
loop contributions of two LNV operators to LF'V processes. These can be calculated
via renormalisation group equations (RGEs), and in particular, we aim to calculate

the anomalous dimensions that mix two dimension-five operators into a dimension-six

72



operator. The renormalisation group running of the dimension-five operators has been
extensively studied in the literature [101-103], and the mixing of the dimension-six
operators among themselves have been evaluated at one-loop [104] in the Warsaw basis
of SMEFT operators [8]. The mixing of two dimension-five operators into dimension-six
operators was calculated in [11], using the Buchmuller-Wyler basis [14] at dimension-
six. We perform this calculation in the Warsaw basis, and correct previous results
in the literature [11] by considering in detail the relation between the Warsaw and

Buchmuller-Wyler bases.

The mixing of neutrino masses into LF'V amplitudes is O(m,, /M) In(A/Myy ), so neg-
ligibly small, but completes the anomalous dimensions required to perform a one-loop
renormalisation-group analysis of the SMEFT at dimension-six. In addition, we explore
an extension of SMEFT with two Higgs doublets [105], where the second Higgs doublet
lives at a scale mgy between My, and significantly below the lepton number /flavour-
changing scale A, and impose that LFV at the weak scale is still described by the
dimension-six operators of SMEFT. In this scenario, there are four LNV dimension-five
operators above mog, but only one combination of coefficients contributes to neutrino
masses. We calculate the mixing of these LNV operators into the LF'V operators of
the SMEFT, and estimate the sensitivity of current LFV experiments to their coeffi-

cients.

5.1 Notation and Review

The SM Lagrangian for leptons can be written as
Liep = i@v“Du lo +ieaY'Dyeq — (E[Fe]aﬁeﬁ(p + H.c.) (5.1)

where Greek letters attached to leptons represent generation indices in the charged-
lepton mass eigenstate basis, [['¢] is the diagonal charged-lepton Yukawa matrix, ¢ is
a doublet of left-handed leptons, and e is a right-handed charged-lepton singlet. The
explicit form of the lepton and Higgs doublets is

() (%)

which have hypercharge Y, = —1/2 and Y,, = 1/2 respectively. The covariant derivative

for a lepton doublet is
(Dub)s = (8530, + S TEWiE 4 0,591V, ) b, (5.3)

where 7% are the Pauli matrices. This sign convention for the covariant derivative agrees
with [104].
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Heavy new physics can be parameterised by adding non-renormalisable operators to
the SM Lagrangian that respect the SM gauge symmetries [14]. There is only a single
operator at dimension-five in the SM, which is the Lepton Number Violating “Wein-
berg” operator [10], responsible for Majorana masses of left-handed neutrinos. The

resulting effective Lagrangian at dimension-five is

L5 = — = (laep”) (C3e¢") + = (L5ep) (Lacy) (5.4)

where ¢ is the totally antisymmetric rank-2 Levi-Civita symbol with €12 = +1, all
implicit SU(2) indices inside brackets are contracted, and the charge conjugation acts
on the SU(2) component ¢ of the lepton doublet as (ﬁi)c e (see Chapter 2 for a
discussion of charge conjugation of fermions). The charge conjugation matrix C' satisfies
the properties of the charge-conjugation matrix used in [33].} The coefficient C’g‘ f s
symmetric under the interchange of the generation indices «, 8, the New Physics scale

A is assumed > My, and the second term is the Hermitian conjugate of the first.

In the broken theory, with ¢y = %(v + h), v = 246 GeV, the Weinberg operator gives

a Majorana neutrino mass matrix

02
S 2A
In the charged lepton mass eigenstate basis, this mass matrix is diagonalised by the
PMNS matrix [my]ag = UaimuwiUpg;.

oL = —%[my]ag%ug +He., [mulas = —55C57 (5.5)

At dimension-six, we are interested in SM-gauge invariant operators that violate lepton
flavour, and a complete list is given in Section 5.1.1. Following the conventions of [8,
104], they are added to the Lagrangian as

SL¢ = i%og( +H.ec., (5.6)

X,C

where X is an operator label and ( represents all required generation indices which
are summed over all generations. Of particular interest are the operators that can be
generated at one-loop with two insertions of dimension-five operators, as illustrated in
Figure 5.1. With SM particle content, these operators involve two Higgs doublets and
two lepton doublets, four lepton doublets, or three Higgs doublets and leptons of both

chiralities. In the Warsaw basis, the possibilities at dimension-six are

Oaﬁ :1( JfB )(F Hy ) Oaﬂ :3( TECL )(7 =y )
pl(1) ~ 9 e Uup) Loy £p ol(3) T 9 Y Lp) LY T L
a = a 1 - _
028 =(o'p)lares O =5 (L) (B"ts) . (5.7)

where we normalise the “Hermitian” operators with a factor of 1/2 (see Section 5.1.1

for a discussion) in order to agree with [8,104], and

Note that this definition of the dimension-five operator is the Hermitian conjugate of the one used
in [8], where C' = i7?4" in the Dirac representation. In the Dirac representation, C~* = —C.
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i(¢' Dy ) = i(0"Dyugp) — i(Dypp) e
01 (10,0) — 1(0up) 0 — g2 T Wi — 2Y,010' By |

<
i(e" D) = (o' T Dyip) — i(Dyp) ' . (5.8)

The choice of operator basis implies a choice of operators that vanish by the Equations
of Motion (EoMs). For example, ill, — [[c]*pe, = 0 implies that the following

operators

p— <—> p—
0y = (9T0)laills) — (¢'0) lapes T ]op + [ilactor'ls)
<
0y = (@Im°0) (il lg) = (07¢) (Capes[Te los + Tilactops) . (5.9)

are EoM-vanishing operators. The role of these operators becomes clear by noting that
in intermediate steps of our off-shell calculations, additional structures appear that can
conveniently be matched onto combinations of EoM-vanishing operators and operators
of the Warsaw basis. For example the structures involving two Higgs fields and a

covariant derivative of a lepton doublet are expressed in terms of the above operators

as
of 5 aB T
Sopuy = (#10)lai P Lg) = Oy + O [Tlop + [Telaw O
v Ha [67 ao * o
Sohus = PIT0)laild ls) = O3 + O[T 05 + Tian 0L . (5.10)

In practice, if the coefficients ngz(l)

and Cg %5(3) of these structures are present, they
[Ce]o + ngﬁ(f%) [Cc]* (and the Hermitian conjugate

are equivalent to C’gg = C’g %4(1)
relation).

5.1.1 LFV Operators of SMEFT

At dimension-six, we are interested in SM-gauge invariant operators that violate lepton

flavour. The four-fermion operators involving 3 <> « lepton-flavour change and two

quarks are
O = %(?a'y“ﬁﬁ)(%wqm), (5.11)
o = %(Zav“T%)@an“Qm), (5.12)
gl = %(Eav“eﬁ)(ﬁanm), (5.13)
opm = %(?av"ﬁﬁ)(ﬂnwum), (5.14)
O™ = 5y ts) o) (5.15)
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apnm ]' — —
Oeuﬁ = §(€a’v“65)(unwum), (5.16)

oy = %(Eav”eﬁ)(anwdm), (5.17)
opinm = (Thes)ean(@Cum) . (5.18)
Opim = (Tyes)(dnaih) (5.19)
Ogm = (lyo™es)ean(@E o) (5.20)

where ¢ and q are left-handed doublets, e and u are right-handed singlets, n and m are
quark family indices, and A and B are SU(2) indices. Note that some of these operators

differ from [8] by factors of 1/2, due to Hermiticity reasons discussed below.

In the case of four-lepton operators, the flavour change can be by one or two units:

(0% ag 1 ) -
OMﬂp - i(ga’)ﬂugﬁ)(gp%tea)a (5.21)
o 1~ _
O = 5 (ay"s) (@ es) (5.22)
1
O = S (Ear"ep)(Epmueo) (5.23)

Notice that in the case of O and Oy, which are symmetric under interchange of the
two bilinears (for example, (ey*u)(Ty,7) = (TY*7)(€yup)), there will be two equal

coefficients that contribute to the Feynman rule.

There are also the operators allowing interactions with gauge bosons and Higgses. This
includes dipole operators, which are normalised with the muon Yukawa coupling so as

to match onto the normalisation of Kuno-Okada [86]:

0 = (ple)(lapes), (5.24)
O = Tp(lampo’eg)Wy,, (5.25)
Ocg = Ts(lgpotes) By, (5.26)
af l + AR -
Ocey = 5% Du@)(lar"l), (5.27)
op ¢ T Ha Y a
Qo = 3" Dy @)(lar7s), (5.28)
af i t g _
Oge = (@' Dy p)(Ear’es), (5.29)

where I'g denotes the Yukawa coupling of a charged lepton eg in the mass basis, the
double derivatives are defined in Equation (5.8), and we include factors of 1/2 for

Hermitian operators as discussed now.

We use the convention that all physical operators (i.e. included in the Warsaw basis)

and their Hermitian conjugates are explicitly added to the Lagrangian

¢

§Le = C—XOC H 5.30

6 A2 X+ .C., ( . )
X
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where the flavour indices are represented by (, and are all summed over all genera-
tions. In the conventions of [8] and [104], the Hermitian conjugate is not added for
“self-adjoint” operators, for which 3 C’g((’)g( =D C’gc(’)g{]T. (For instance, (’)?f L7 of
Equation (5.21) is “Hermitian”, although [(ey*u)(7v,7)]" = (my*e)(7v,7)). We there-
fore define such operators with a factor 1/2 to avoid this double-counting. However, it
should be noted that the unphysical EoM-vanishing operators of Equation (5.9) do not
enter the Lagrangian at tree-level, and therefore are not subject to this normalisation

condition.

5.1.2 The Two Higgs Doublet Model

In this section, the addition of a second Higgs doublet @5 to the SM (of the same hy-
percharge as the SM Higgs, which is relabelled ¢1) is considered. The LFV induced by
double-insertions of dimension-five operators could be more significant in this model,
because there are several dimension-five operators, and so neutrino masses cannot con-
strain them all. However, a complete analysis of LE'V in the Two Higgs Doublet Model
(2HDM) would require extending the operator basis at dimension-six and calculating
the additional terms in the RGEs, which is beyond the scope of this work. For simplic-

ity, three restrictions are made:

1. Only the dimension-six LF'V operators of SMEFT are considered. This is the
appropriate set of dimension-six operators just above Myy, provided that ¢o has
a vanishing VEV, and that the mass mos of the additional Higgses is sufficiently
high: MI%V < m3, < A?. In our phenomenological analysis we extend this range
to the scenario M7, < m3, < A?, by considering a Higgs potential where the
additional Higgses are not directly observable at the LHC, and where the Yukawa
couplings of o are vanishing. Such a scenario would for example be realised in
the inert two Higgs doublet model [106-109] and setting the scale mas close to the
electroweak scale does not require the consideration of additional renormalisation
group effects in SMEFT.

2. It is supposed that at the high scale A, no dimension-six LFV operators are
generated. This is unrealistic, but allows us to focus on the LF'V generated by

double-insertions of the dimension-five operators.

3. It is supposed there is no LFV in the renormalisable couplings of the 2HDM
(in particular, in the lepton Yukawas), so that when matching the 2HDM -+
dimension-five operators onto SMEFT at the intermediate scale mo2, no addi-

tional LFV operators are generated.

Consider first the renormalisable Lagrangian. The Yukawa couplings can be written
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as [110]
o T 2 oy 2 T
oCanon = ~@elr] (%) ) e —elrdiele - menir®] (% ) e-erliele.
1 2
where the flavour indices are implicit, and the basis in (g1, p2) space is taken to be

the “Higgs basis” where (p2) = 0. We suppose that [I'c] and [ng)] are simultaneously

diagonalisable on their lepton flavour indices.

The second Yukawa coupling changes the equations of motion for the leptons, so the
2HDM version of the equation-of-motion vanishing operators (given in Equation (5.9)
for the single Higgs model) should be modified. As a result, the operators S,pg(1)
and S, p(3) should not be replaced only by the SMEFT operator Oy, as given in
Equation (5.10), but also by an operator with an external ¢o leg. However, since we
neglect dimension-six operators with external ¢y, we use the relations (5.9) and (5.10)
also in the 2HDM case.

In this “Higgs” basis, the most general Higgs potential is

Vo= mipler +myphes — [miyples + Hel

1 1
+5A1(e]01)” + 3 ha(ehea)? + Aa(elen) (Phen) + Malelea) (hen)

1
+ {2/\5@902)2 + [X6 (@le1) + M(phpa) @l or + H.c.} . (5.31)

In order to decouple the additional Higgses, we can set m3, = 0 and assume m3, > MI%V,

or leave m3, free, and impose m3, = \g = A7 = [F((f)] =0.

At dimension-five in the 2HDM, there are four operators [101]:

C?B v * c * Cgﬁ* e
0L =+ (lacp)) (Goept) + — 5 (Grepr) (Lacpr)
CQB o * C * R * C *
+ 2 ((Tazis) (the0d) + Trepd) (beeh) )
Caﬁ* o o
+ =2 ((Tepa) (tasior) + (Bror) (Coe2)
0326 PR c * 032/8* )c
top Lacwd) (Loepd) + —7—(Grep2) (Lacpz)
CXB 7 ~pC 7o % CXB* I
—H(gadﬁ)(%&“%) T oA (558%)(9028%1), (5.32)

where {C5, Ca2,C21} are symmetric in their flavour indices (and so can contribute to
neutrino masses, since Majorana mass matrices are also symmetric in flavour space).
In the Oy operator, (Eecpg)(%ago’{) = (Lgep})(tseps), but both terms are retained

here since they are convenient in our Feynman rule conventions.?

2The operator D21 can also be written as 2(£gep])(Laeps) +(Lsels)(pieps) using the identity
(5.52), as done in the first reference of [101].
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Fig. 5.1: Diagrams involving two insertions of dimension-five operators, which can
contribute to dimension-six lepton-flavour-violating operators. SU(2) indices run from
.,O and 1, ..., 0, lepton flavour indices are «, 3, p, o
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Fig. 5.2: Two insertions of dimension-five operators can also contribute to dimension-
six operators involving four Higgses via this diagram.

Tree-level LFV is often avoided in the 2HDM by imposing a Zs symmetry on the
renormalisable Lagrangian: if under the Zs transformation, @1 — 1 and w2 — —pa,
then [Fg)], A6 and A7 are forbidden. This case is discussed later, but we do not impose
the Zy symmetry initially, as it also forbids the C2; and Cy coefficients at dimension-

five.

5.2 The EFT Calculation

5.2.1 Diagrams, Divergences and the RGEs

Diagrams with two insertions of dimension-five operators are illustrated in Figures 5.1
and 5.2. We focus on the lepton flavour violating diagrams of Figure 5.1, but the four-
Higgs diagram of Figure 5.2 is also briefly discussed in Section 5.6. The four-Higgs case
is less interesting to us since it is lepton flavour conserving, and such interactions arise

in the renormalisable SM.

The Feynman rules arising from the (tree-level) Lagrangian of Equation (5.4) are given
in Figure 5.3. We use them to evaluate, using dimensional regularisation in 4 — 2¢
dimensions in MS, the coefficient of the 1/e¢ divergence of each diagram of Figure 5.1.
These coefficients can be expressed as a sum of numerical factors multiplying the Feyn-
man rules for the dimension-six operators of Equations (5.7) and (5.10) (the Feynman
rules for dimension-six physical operators and EoM-vanishing operators are given in
Figures 5.4 and 5.5 respectively). Then the EoMs are used to transform the operators

of Equation (5.10) to O, and Ol@. The required counterterm ACp for each of the
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Fig. 5.3: Feynman rules for the Weinberg operator, the only dimension-five operator
of SMEFT, where ¢; denotes the SM Higgs.

dimension-six operators given in Equation (5.7) can be identified as (—1)x the numeri-
cal factor that multiplies its Feynman rule. This counterterm is added in the Lagrangian
to the operator coefficient Cp, resulting in a “bare” coefficient Cop pare = 12 (Co+ACH)
that should be independent of the MS renormalisation scale . The factor x¢ is chosen

such that the bare Lagrangian remains d-dimensional.

We now discuss the renormalisation and RGEs of dimension-five and -six operators.
This discussion is based on Section 4.3.2, but is extended to also consider flavour
structures and conjugate Wilson coefficients, which is necessary for the consideration
of LFV operators. The bare Wilson coefficients of dimension-five operators can be
written as (noting that in preparation for a discussion of the 2HDM, multiple operators

are allowed for at dimension-five)

= = o
C% pare = 1 CY(1) Zyx (), (5.33)

where X,Y and 7,0 are operator and flavour labels respectively, C_g@(u) is the renor-
malised Wilson coefficient, Zg;nX(,u) is the dimension-five renormalisation matrix, and
v is the renormalisation scale. The ;¢ introduces an additional term proportional to

€ into the d-dimensional renormalisation group equation,

d =0 (4 ec —176n ~
M@C}Q =—Cy <”d,,LZYZ> [Z71], — 2¢CY. (5.34)

This reduces to the renormalisation group equation in d = 4 dimensions
oy A Ay d=4 59 _on
(167 )N@CX = Cyvyx (5.35)
where the 4-dimensional anomalous dimension matrix
on 2 d o —1767
Yy = —(1677) M@ZYZ Z7, % (5.36)

is independent of the choice of the overall factor p?¢. Therefore, the ;> term can be
neglected when only considering mixing amongst operators of equal dimensions. In

the case of mixing between operators of different dimensions, a more careful treatment
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Fig. 5.4: Feynman rules for dimension-six operators of the SMEFT using the Warsaw
basis. 7 is the SM Higgs. Note that the Feynman rules for the operators O,y and
Opy(3) come with a factor of 1/2, due to their normalisation condition arising from
including in the Lagrangian every operator plus its Hermitian conjugate.

is required. Note that we (unconventionally) factor the 1672 out of the anomalous

dimension matrices.?

At loop level, operators of different dimensions can mix via multiple operator inser-
tions [75]. Consider the specific case of loop diagrams involving two dimension-five
operators mixing into diagrams with a single dimension-six operator insertion. We de-
note dimension-six Wilson coefficients by C, dimension-five Wilson coefficients by C
the dimension-six ADM by Z, and the ADT for mixing dimension-five into dimension-

six by Z. The bare dimension-six Wilson coefficient is

pare = HCL() 29 (1) + 12CG (1 Z 5 () [C5] (), (5.37)

where Chare 18 u-independent. Therefore, the renormalisation group equation is

Ck

d =~
(167 )5 Ck = CVAV + CiEx O] (5.38)

3The usual definition is M%C’ = C'y [44], then v is expanded in loops: v = §270 + .... However,
here we only work at one loop, and the one loop mixing of dimension-five-squared into dimension-six
is not induced by a renormalisable coupling, so we factor out the 1672.
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Fig. 5.5: Feynman rules for dimension-six operators that are vanishing by the equa-
tions of motion in the single Higgs Model (SMEFT). ¢; is the SM Higgs.

where ’7?,77)( is defined analogously to Equation (5.34), and

g 07 _— 2 ~ 07 d ~ 07 A—l U77
75437)( =(1677) (2€Z§431,)Y - ﬂngBl,}Y> [Z ]yx

0w 1T 0 SXWU [ o=
= (167%) ([2Bp] 055 + 5008 ) Z855 (27 Yy, (5:39)
where the explicit form in terms of generation indices is [y55"°]1 = [¥3%77]* and

63%75 = 04BOar0gs. The terms in the second line of the above equation only con-
tribute beyond 1-loop. Furthermore, the contribution to the renormalisation tensor
Z%gjy is pu-independent at one-loop and only the term proportional to 2¢ contributes
in our calculation. The factor in ¢ in Equation (5.37) generates a term proportional
to —2¢, while the derivative of the dimension-five Wilson coefficients generates a con-
tribution proportional to 2 x 2e from Equation (5.34). Hence, the one-loop anomalous
dimension matrix reads

~(n,0 =(n,0
e =202 (5.40)

in terms of the 1-loop renormalisation constants defined in Equation (5.42). Corre-

spondingly, we find [§] = 2(1672)e[Z]. Consequently, to find the leading order contri-
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bution to the ADT 7, it is sufficient to calculate the renormalisation tensor [Z], which
may be done through renormalising the diagrams in Figure 5.1 using dimension-six

operators.

5.3 Conventions of the Loop Calculations
5.3.1 Flavour Dependence

A key feature of the Warsaw basis is that the flavour dependence of operators is encoded
in flavour indices, which need to be treated carefully. We therefore present the general
structure of how the loop calculations are performed in order to deal with the flavour
structures in a systematic way. We allow for multiple operators at both dimension-
five and -six, and denote a particular Wilson coefficient by C’gf, where X and ( are
the operator and flavour labels respectively. Then the bare Wilson coefficients of the

dimension-six SMEFT Lagrangian can be written as

D Cxnare@pare = D | DO 2%y + 2 CS[CN Z5 | QYpnees (541
X 0,y \¢X ¢m
where ¢, n and 6 represent generation indices of an operator, and the renormalisation
constants Z)C(gy encode the mixing of dimension-six Wilson coefficients amongst them-
selves, which can be extracted from the anomalous dimensions of [104]. In the SM,
the mixing of two dimension-five Wilson coefficients into a dimension-six coefficient is
7(no

given by Z2' .

as shown in Figure 5.1. In the case of a 2HDM effective field theory, we extend the sum-

They are induced by the double-insertion of dimension-five operators,

mation of the dimension-five flavour indices to a sum over all dimension-five operators

and their respective flavour components.

The renormalisation constants can be expanded in the number of loops and powers of
e. At 1-loop in the MS scheme, the counterterms of the physical and EOM-vanishing
operators are pure 1/e poles, and the renormalisation of evanescent operators does not

play a role. Hence, we can expand

Zono _ L 1oz
ZSB,j = 16-2¢ Z557j (5.42)
and write the generation summation in the case of an operator involving four fermions
explicitly as
Comts>Cnd ~0 _ ~af 6y s Zaf s,
c:CY 525%7,)(@)( =Cr ey 5Z§57;{ PITEQRTY. (5.43)
The sum over generation indices reduces trivially for operators that involve fewer
fermions. The corresponding renormalisation equation ensures that the pole of the 1-

loop off-shell matrix element of an insertion of two dimension-five operators is cancelled
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by its counterterm. Factoring out the common overall factor C' of Cy oy , we write

RSP @I, + (11 (52883 QF™ + He.) li) =0, (5.44)

where \51/)6 denotes the 1/e pole of a 1-loop diagram and (f| and |i) are arbitrary off-shell

final and initial states.

In calculations of the loop diagrams, the following generation structures arise:

AJomE = i (830500 + 0~ 305x0na + 0530-m0ner + 0530yk0na) »

Amiﬁa - 2(5755%577@ — 0yr0680na + 0yndss0ka — 5v555n5m) )

Afjg’ﬁa = 3(57555@17& — 041058000 — Oyn0580ka + 04805n0ka) ,

A;Y&g:’ﬁa = i(‘svﬁ‘sﬁdna + 6yk0680na — 0yn0530ka — 03061 0ka) ;

AP = i (6,605n[Telra + 0v505xTelna + 35503[Telra + 05305k Telya) »
AGI = i(%ﬁ%n[ﬂz)]na + 68059 [T Inae + 830056 [C e + 639086 [TE na)
A;Zm,ﬁa = 2(575555[11&2)]7704 + 5765571 [PEZ)]W — 0yk053 [Fg)}na — 0yndsp [Fg)]m) )

Ag&m’paﬁg = i((san(san + bardon) (0py0ps + 5575,05) )
1

Agizﬁ,paﬂo —= ((570[(550 — 570550)(5Hﬂ577p — (5@5775) ,

AZMH = 5(5“/77555 + 5%5577)-
(5.45)

These are matched onto the generation structures of the dimension-six operators (the
matching is more subtle for the four-lepton operator (’)?f 75, where the matching is done
via a Fierz-evanescent dimension-six operator (’)eva ), and the generation structure is
therefore extracted from the renormalisation constants, which can then be written as

a generation structure multiplied by a numerical factor.

5.3.2 SU(2) Identities and Dimension-Four Feynman Rules

In computing the loop diagrams to be discussed below, it was necessary to know the
Feynman rules for dimension-four couplings that appear. The appearance of charge-
conjugate fermions due to dimension-five operators means that their Feynman rules
must be treated with some care, and so we use the Feynman rules of [33]. The Feynman
rule for the Weinberg operator of Equation (5.4) can be obtained reliably by using
Lehmann-Symanzik-Zimmermann (LSZ) reduction [111] or Wick’s theorem, which gives
the signs for fermion interchange. The fermion fields are expanded as [42]

Pe1 : . ,
Z/ kus(k)e_lk'x+kaUs(k3)e+Zk'$),

2m)3
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so the amplitude My; is
Y4 ~Cgp . N\ [ pe,m M\ | pCt, Jx*
(e i (Genne™ ) (6 emmre™ )l ™)
af

= (—Z)lﬁ (H{XPRU&- + H%PRué) (€i[€jJ + €iJ5j[)

ooy
= (—Z)l%%PRUlB(&I@J +€igg51)
coh

= (—i)i%ﬂép}{u%(fiﬂf]‘j +€ig€51) (5.46)

where the SU(2) lepton indices are lower case, Higgs indices are upper case, and EZY and
07 represent a final state lepton and an initial state anti-lepton respectively. The factor
i is the usual factor for Feynman rules and the factor (—i) is due to the calculation of

M ;. This expression agrees with the Feynman rule of [11].

A Feynman rule to attach a W-boson to the ¢¢ line also will be needed. With the
following identities [33]
C=Cl, C=inn ,C'=Cl, OO =y
e = [Cg )Ty = (17 CTyg = 11 CTCHClyg = =0T Clygyo = —¢FC™1 (5.47)
one obtains (where the (-1) is for interchanging fermions)
7 r 7c T T -1
Grg WP | = ()| - ECT PIwreTo |
= [T WHCy L CT PRte
= (e W PRrec . (5.48)

Recall that 7 = 71, so 7 = 77

The relevant Feynman rules for dimension-four interactions are given in Figure 5.6.
Note that the Feynman rules used in this calculation eliminate any dependence on the

momentum of the incoming lepton, since not all momenta are independent.

Due to the presence of € in the Feynman rules for dimension-five operators, the following

SU(2) identities were useful:

€ij€kl = Oik0j1 — 0710,k (5.49)

2ei1657 = 035017 — TijaJJ, (5.50)

€iJ€kJ = Oik s (5.51)

Eab€ed T Ebc€ad + EacEbd = 0, (5.52)
EijTikEKL = Tii » (5.53)

TZ-‘;-TI?I = 20i16k; — 0ij0kt » (5.54)

0ijThy — 0jiTh; + OmTj; — OirTjy = 0, (5.55)
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Fig. 5.6: Feynman rules for dimension-four interactions.
where

1] (L S )

and the SU(2) generators used in the Warsaw basis are S® = 7%/2. Note that while
some of these SU(2) relations are commonly known, some are non-trivial and were

found and manually checked for every combination of SU(2) indices.

5.4 Details of Loop Calculations in SMEFT

First, we discuss the calculation of the ADT within SMEFT, where there is only the
Weinberg operator at dimension five, and later discuss the extension of this calculation
to the 2HDM. All contributions to the ADT can be determined from the diagrams
listed in Figures 5.1 and 5.2. The first operator in Figure 5.1 is renormalised by the
»De(3), which all involve
a derivative, and hence have momentum dependence. Since these operators (and struc-

dimension-six operators and structures Oy 1), Oy (3); Sppe(1), S

tures) involve covariant derivatives, there are also additional diagrams that can be used
for the computation of those elements of the ADT, which involve the emission of an
external B, or W boson. These additional diagrams were also computed as a check of
the renormalisation constants computed for the case of no boson emission. Calculation
of the diagram in Figure 5.1 is performed first, and then followed by the additional

consistency calculations.
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Loop calculations were performed by hand, but also checked by automating the calcu-
lation using FeynArts [112] within Mathematica. This was done by writing a model
file containing the interactions of SMEFT at dimensions four and five. This model file
was then used to generate the diagrams and amplitudes of Figure 5.1, which were then

simplified using in-house code.

54.1 ol — @l

Consider the process M ¢

— EfB, which can be mediated through a double-insertion
of the Weinberg operator (the first diagram of Figure 5.1), and by a single insertion of

dimension-six operators. The renormalisation equation in MS is given by

0= CAWS CZW* () O (O | }(1)+Z§§Z’Z()‘§Ci€w ("] 075 102o™)
ZQS’LZ&?CWAC;W (te”| 0% 102 + ZQ?ZZ’{T‘Cgif (65071 0%, ™)
n Nggfp?g;*ww 07| 0% W |£n M>(0)+Zg§2?,;gc”i\c""*<€, J|Op0 0 >(0)
+ 70 BCT t oe nM)©, 556

where |(11) denotes the simple pole of a 1-loop expression, and the superscript (0) denotes
the amr;litude evaluated at tree level. Note that the Warsaw operators O 1) and O y(3)
appear with their Hermitian conjugates and consequent normalisation factors of 1/2,
while the EoM-vanishing operators only appear once, in accordance with Section 5.1.1.

Also note that we have used OZ Z(Tl) = (9;2’(1), and a similar relation for Oy(3).

This expression is simplified by using the Hermiticity conditions of the renormalisa-
tion constants. If operators were not included with their Hermitian conjugate in the

Lagrangian (as done in [11]), then the counterterms would arise as

YO RNk
om0 O C

i JyApe My (0)
Stz (a9 Ogyay Ilae™) (5.57)

where 0”7
vention we use (illustrated in Equation (5.56)), we have the Hermiticity requirement
that

or(1) = IOM(l) To achieve consistency between this convention and the con-

Z'y&nf-e paC'yJCmn* Or°  — Z’yénn,pa* C'yé* Cﬁnoap

55,¢6(1) @l(1) — “55,06(1) 5 ol(1) " (5.58)

Relabelling the indices in the second term to extract a common factor of C5C5Q (1),

the Hermiticity condition becomes

Zy0nk,po _ 77K107Y,0 pk
Z55,<p€(1) Z55,Lpé(1)' (5.59)
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Using this Hermiticity condition (plus the corresponding relation for O,sy) in Equa-
tion (5.56), inserting the tree level Feynman rules for the dimension-six operators (see

Figures 5.4 and 5.5), and dropping the common factor of C5CZ /A?, this becomes

nk n 1
0= (the”| 03 (01 ™) |1

ZYonK,Ba—
Z55 Lpf 1) f(/B? ¢

Z7yonk,Bo—
Z55’¢g (3) ((ﬁa v

Yok, S a
+ Z55 (1) e

e
g ( Prug(o, n)7i, 50 - (5.60)
Only a single diagram needs to be evaluated to find the 1-loop contribution to the pro-

cess ol — @l from a double-insertion of the Weinberg operator. It is found from

4
7 K n 1 Yo S
( /380J| 0g5(02 )T \EQQDM>( - M ’ o

n c\l i
o (), i

of which only the 1/e pole is needed to renormalise the diagram. Using the Feynman

rules of Figure 5.3 and simplifying factors of ¢ and (—1), the amplitude is

i / ddq (B, i)gPrue(c, n)
1672 ) (2m)* (¢*)((q — ar — py)?)
X (emenk + enmeik ) (Engir + i€l ) (5.62)

(t507| O (01 |m M) =

1
X 1 (5%355775504 + 575(55,.@57” + 555577,5,“! + (55/357,.@5,70[) .

Note that the flavour structure is fully symmetric under separate interchange of v <

0 and 1 < k. Infrared rearrangement (see Section 3.7) is used to extract the UV

divergence from the integral, and since this diagram is matched onto operators involving

a derivative, the expansion is performed to first order in external momenta. Doing this,

simplifying the SU(2) algebra using the relations in Section 5.3.2, and extracting the

1/e term gives

(50 701 0in — 40i010.0m)

32m2e

X i (04805n0ra + 07805k0na + 05804n0ka + 05580yk0na) -

(5.63)

(e’ | 0P (O3 Ea™) |1 = [@(8,)(d; + ;) Poue(, n)]

Inserting this expression into Equation (5.60), and replacing the Pauli matrices from

the tree-level amplitudes using
7’ Tkl 26il5kj — 5ij6kl s

88



the coefficients of the momenta and SU(2) structures d;,075 and d;p707, can be used

to construct a set of simultaneous equations. These are

ok, Ba Zyonk,Ba ZvonK,Ba ZyonK,Ba )
Zes oty ~ Loz ~ Ly T ZssweE) =0 from ¢ .0indynr, (5.64)
7Yonk.Ba _ Zyénk,Ba _ )
Z55,<p€(3) — Z557U(3) =0 from  ¢.dindn (5.65)
5 7/8
ZadnmBo _ prdum o prdnsfo _ pdnwBa _5A¥ e from 5§ (5.66)
55,0(1) 55,00(3) 55,0(1) 55,0(3) 3972¢ ﬂf in@JM 5 \9-
6 718
Zyomm.Ba grdns,fa LY - from 0in 0 (5.67)
55.00(3) T T850(3) T 1672 d70in0sm, (-
Y6k, Ba
7yonk,Ba _ Zydnk,Ba _ 544 )
25571](1) — Z557U(3) iy from pf5m(5JM, (5.68)
YomK, Box
Z7yonK,Ba _ A )
55’1}(3) - W from pf(SZMd]n y (569)

where we use the shorthand
1
N 7 (03808y0n + 0350500 + 05603n0xa + F5a030pa) -

These simultaneous equations can be uniquely solved to yield the solutions

B =i AT o
2R =y A o
Zn = _z 1617r2 %A?Wﬂa (5:72)
s = J% 1617r2 %AY&W& ’ 1)

which, using the conventions set out in Equation (5.42), implies

SZ0mie = 2 oo (5.74)
SZ0m = 4 A (5.75)
SZ0mse = 5 aqime (5.76)
SZRI = +%A¥5””’ﬂ" : (5.77)

These renormalisation constants may be verified by considering similar processes with
the associated emission of a B, or W, boson. We now consider both of these processes

to show that they yield results that are consistent with those just presented.

5.4.2 ol — olB

We first consider the case of B, emission, since its trivial group structure makes it

considerably simpler than the case of W emission. Analogously to the ol — f case,
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we have the renormalisation equation

0= GLGT 7, 030 ) |

2 S 5 0 i

gy 510 (tho” Bul Ol leap™)

7t L 07 )
+~g§$’g§*micm<ﬂ B O 1 nse My (©)

v e B g, o o) ©
+Z§§ZT3§JW<€’ I B, 07, ™) (5.78)

Upon using the Hermiticity conditions of the renormalisation constants and using the

Feynman rules to find the tree-level dimension-six amplitudes, this implies
0= (the” B, 03 (01 €M) |1
—I—Zﬂyénnﬁai B,i ¢*PLUZ( n 6Zn6JM

55,00(1)
+ 220 B (B, 4) ¢* Pru

(8,19) )
55.00(3) 10 (B 1) o(e,n)7i,

+ 220 (B4 ¢* Prug( o, n)0ind yar
«(B,1) ()

55,0(1)
+ 2205 B0 (8, 4) ¢* Prug(a, n) T Ty - (5.79)

55,0(3)

In this equation, €, is the polarisation vector for the external final state By, boson. To
evaluate the amplitude from a double-insertion of the Weinberg operator, there are two

diagrams that need to be considered:

BP'
o oK K K f‘if @’
< %(PJB“’Og(S(OgH)T ’6290M>(1)— 4 A Y. v n 4 A V. v
oo @ Oy g () £
,D’ly(snn,ﬂa By ,D'Qy&m,ﬂa

The divergences of these diagrams are extracted using infrared rearrangement, but since
the external fields are of dimension-six, the expansion is performed to zeroth order in
external momenta. Consequently, all external momenta can be set to zero from the

outset. Extracting the divergences from each of these diagrams then yields

DR, = (5073161 — 40inr8.0) [WE(B, I)¢" Prug(a, mAT™ - (5.80)

64 2
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Dg&mﬂa =+

1= +5 4 2 (58 7010im — 40ia16.10 ) [We (B, 1) ¢* Prug(or, )] AT™P - (5.81)

where the relative minus sign arises from the opposite hypercharge of the lepton doublet

and the Higgs doublet. These two diagrams trivially sum to give
(Lp” Bl 03 (01 |en™) & = 0. (5.82)

Inserting this result into Equation (5.79) and reducing all SU(2) structures to products
of Kronecker deltas, extraction of the coefficients of d;,0 717 and d;376 5, yields the two

simultaneous equations

7ok, Ba | Zydnk,Ba | Zydnk,Ba  Zydnk,fa )
—Z55 wl(1) + 255 l(3) + Z55 o) T Z55 o3 = 0 from 0050 , (5.83)
w&mﬁa Z7Yonk,Bo _ ,
_Z55’<pe(3) Z w3 = 0 from  ;pr0gp - (5.84)

These are only two equations to solve for four unknowns, and so by themselves are
insufficient to yield a unique set of solutions. It is possible to substitute in the values
of two renormalisation constants from the previous section to reduce the number of
unknowns, and then solve for the remaining two “unknown” renormalisation constants.
This has been done and verifies the solutions found above. However, it is sufficient
to note that Equation (5.83) and Equation (5.84) are identical to Equation (5.64) and
Equation (5.65) respectively. Consequently, the process with associated B, emission
is automatically renormalised by the renormalisation constants in Equations (5.74 -
5.77).

5.4.3 ol — olW

A further check can be performed in which there is the emission of a W7 boson. The

renormalisation equation is

CMS sz* 7 a K 1
0= <=2 (£ Wit 03 (O3 £ |
O ~EM*
onk O'C’y C K i J a o n M (0)
Z;B?OE(pl) A2 <€ WM‘OZZ(I) ’eago >
O KM%
sr,p0 O3 C5 " 0i gviral ey g My O
Z%Z;Z(%) A2 <£ Wu‘ogg(g) G )
. U*Cvé*cnn . 0
+ g GG g e o )
e O3 CE a n 0
+ 2 i e (e Wil OFg g 1)@
O KN
onk, JO’Y C " i a o n (0)
+ 2y i (e Wi 050 lae™)
Wénnpcrcwcm* i Jrira) po g, My (0)
+ Zgs W) T A2 (o W Ov(g) [6ae™) (5.85)
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which upon using the Hermiticity conditions of the renormalisation constants and using
the Feynman rules to find the tree-level dimension-six amplitudes implies
— (95 STal (0 eyt g My (1)
0= (Lae’ Wi O (0F) [tae™) [
+ 25 (—g2) [E(8,0)¢* Prug(a, n) 75a0im
g2

55,00(1) [
> we(B,1)¢" Prug(a, n)] (TgLTgM +T§LT£M) Tin

78k, o
+ 255 His (
+ Zggznlz)aa( 2) [We(B,4)¢" Prue(a,n)] domh,
+ 7 (=5) w6, Prwa(oum)] (i + 7l Thar (5:86)

Again, there are two diagrams involving a double-insertion, and so

Wy
oM oK ol oM o efjjw K
. A ATV g A ATV g
< JWa|O’Y(5(O77R)T wn M>() + M
c\l c\J . .
o S (), %
,Dgénn,ﬂa W‘u ,Dzénn,ﬂa

Setting external momenta to zero and extracting the UV divergences using infrared

rearrangement, we find

KR,D& 1 — . ES KR,DQ
D0y = = 222 [(B, i)¢" Prug(a, m)] AT™ 05, (5.87)
KR,D& 1 K,DQ¢
D0y = =222 [i(B, )¢ Prue(a, m)] A0S, (5.88)
where
Ut
Sy = (EanMl + EMnEZK) (€ZK€J] + EJﬁ]K) 5 (5.89)
TLk

Sy = (enremi + enmer) (Eixes + €iseki) (5.90)

2
Applying the SU(2) relations given in Section 5.3.2 to Sy and S, yields

1
Sg = — ((5,‘(]7’31\/[ + (5MJ7';;Z- — 2(5MZ'T7CLLJ — 2(5iJ7_](\l4n — 25nJT]C\L/[i + 4(57“'7'](\14J 25nM ryian 671M7—Jz)

2
1
=5 (2070175, — OgnTing — 0ind Ty, — OinTIas) s (5.91)
1
SSO = 5 ((SZ‘JTgM + 6MJT7L"ZZ' — 25Mi7_gj — 25Z'JT](\1/[n — 2(5nJTJ(\l/[i + 4(5niT]‘\l/[J — 2(571]\/[7'2-?] + (571]\/[7'%)
1
=3 ((Sz'MT:;n + 5JnTZ'aM — 35JMTZ%) , (5.92)

where the second equality in each of the above relations has been checked explicitly.

The total amplitude of a double-insertion of dimension-five operators is then
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—
~—

(" Wi O3 (O3 3™ |, = = 25 [(B, )¢ Prug(as )

x AT (5 it = GinTr) - (5.93)

o=

Using the given SU(2) relations allows the tree-level amplitudes to be written as

Z3S (—g2) [ (B, )¢ Prae(er, n)] 750161
T ZQ?Z’Z?? ( P2) [wi(8,1)¢* Prue(a, n)] (2 (5. m7hy — Sinas + 0ina75])
+ 2115 (—ga) (w8, 1) ¢ Prug(a, n)) 8 a7,

+ 20 (<2 (B, 0)¢ Pruele ) (2 [Bgmihs — Gaarhy + 6uetsa]) . (5:94)
Comparing the SU(2) structures arising in the loop with the tree amplitudes, the tree
amplitudes seemingly contain extra SU(2) structures. However, these can be eliminated
using the relation

0ijTem — OjmThi + OkmTji — OikTjm = 0, (5.95)
and the tree-level amplitudes become
Zggm(ﬁ? (—g2) [we(B,1)¢* Prue(a, n)] 75 p10in
+ Z (—g2) [@e(B.1)¢" Pruela, n)) 6,
20" (—g2) [e(B.0)¢ P, m)] 67007,
+ 2350 (—g2) [e(B, )¢ Prue(a,n)] 7 6. (5.96)
In this form, it is simple to set up simultaneous equations for the renormalisation

condition by comparing the loop and tree amplitudes,

Zvone,Ba | Zydnk,fa 1 1 Yok, Ba ,
Zgsort) T Zos03) = ; 647r2A1 from 7y, (5.97)
5 5 11 5

D+ e =~ g AT from 8 ypr7. (5.98)
This set of equations may be constrained by substituting in solutions for 2755 "'Z’ga and

ZWS""Z l;a from the momentum-dependent calculation, to verify the solutions

70k, Bor _ _§ 1 1 yonk,Ba 7Yone,Bo 1 L 1 Yok, Ba

Bpl1) 41672 € ! ’ Zes.0t3) = T3 16m7 ¢ ’ (5.99)

Therefore, both the processes involving the emission of a B, boson or a W7 boson

verify the solutions found when considering the momentum-dependent diagram.

5.4.4 epp — lp

. This receives contributions

. . . 70
Next, we consider the renormalisation constant Z227%%¢

from O, and the EoM-vanishing operators O, (1) and O,3), since they contain Yukawa

interactions.

93



The renormalisation equation is

0= Cf CA (3" | O3 (OF)N (B[Pl cecy) lea” ") |
ZQ?ZZWW (0367 025 lea” ™)
78 BT 108, e
+ ZQSZ*&”;’?X’;W (50" 0%, lear” ™) (5.100)

which implies (after inserting tree-level amplitudes of dimension-six operators)

)

=

0 = (€37 | OF (O (T[Tl ycecy) leaw” o) ||

1
Zgng;ﬁaw(ﬁy n) Prue(a)(0r.70kn + 01k 0.n)

— T T Lo (8, 1) Prise () (5170kn + 016 1n)

- Z??Z’ng” [Lelgatie(B, n) Prue () (8170 kn + 01K 6.m) - (5.101)

Since 276"'2”330 and Z;g ngfa have been calculated previously, we find

sk, 31 1 s,
Zg52§1f°[Fe]ga T 4162 e AT o

3 1 11
= T Tsi 9 (6’7ﬁ657]6/€0 + 5’\/,85655770 + 65,86’}/775/60' + 55[36'w$5770) [Fe]aa

= — 72~ 7 (0y80sy[Lela + yp05n[Lelya
+ 65:35777[F6]Ka + (Séﬂ&yn[re]na) 5 (5102)

and similarly,

e, 111
Zg5’j]’g£“[re]m 21672 € AT el o
1 1 11
= 5T62 <1 (64805y[Telra + 0505k [Celna

+ 6556777 [Fe]ﬁa + (55557,{ [Fe]na) . (5.103)

Note that, as expected, these flavour structures are symmetric under v <+ § and 1 <> K

individually.

Now it is necessary to calculate the loop diagram, where

SDM 4)0[
///7—_—5\\‘ //
K\(D) _ ’/‘EO h v
5 , .
(s 1’07 (Onﬁ) (x[Telxcece) [N €a —»—‘—g—/®—<l—®—>—€g .
Lo (£°)
-4 P
/, /
o’ ok

Using the relevant Feynman rules, the pole part of the amplitude is given by
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(0307 | O (O (B [Telycec) lea” o >|(%1) N

1 1
~ 16:2 Ug(B,m)Pruc(a) (0170 kn + 6ndrK)
1
X 1 (5755571 [Lelwa + 048055 [Lelna + 650y [Lelna + 650ys[Lelna) -

(5.104)

This is the same flavour structure that appears in the tree-level diagrams involving

Oy(1) and Oy3), and we therefore define

onk,Ba 1
AJ" o _ 1 (04805n T elka + 04805k Lelna + 0580y Telra + 0580yk[Lelna) - (5.105)
With this definition, and inserting the result of Equation (5.104) along with the above

expressions for ng Z’Zﬁ 7IC¢]oa and Zgg Z’&g 7|C¢]oa into Equation (5.101), we obtain

- 617T Lgpee A Z# L agomepa _ %161% Lagimsa _ o (5.106)
which is solved to give
A = A 5107
or equivalently,
AR +3 Né"” pa (5.108)

5.4.5 U — U

The final lepton-flavour violating process to consider is ¢nf; — £g€,. The renormalisa-
tion equation for this process is

C’yé C,‘i’l’]*
A A

1)

0= <£k€l‘c)75(cjﬂn) ’@7£z>‘

m\»—” N

Y FRMk
+ 2Z7577n TUPX 05 C5
55,00 A2

(st oo ey (5.109)
and hence there is only a single dimension-six operator that is necessary to renormalise
the loop diagram. Note that ¢ here is used as a flavour index, as opposed to referring to
a Higgs doublet, and the factor of 2 in front of Zs5 4 is due to including the Hermitian
conjugate of Og. For this process, it is helpful to evaluate the loop diagram before

considering the tree-level dimension-six amplitudes, as will be explained.

The loop amplitude is given by considering the diagram

(bl | O (O e ) = (5.110)

o ¢ A



We find that this diagram is equal to

_ Ve NN p
< El ’ 0’75(077%)T |€j ez > ‘ 1) _ <U@(O', 7’) LU@(Q,]))(U@(ﬂ,]{?) RUE(P, l))
64m2e
X (50n5an + 501145077) (5,076,35 + 55’7505) (5il6jk‘ + 5ik?5ﬂ) ’
(5.111)

m\»—‘

which is completely symmetric under v <> ¢ and 1 <> x (due to the symmetry of the
Weinberg operator), and also under « <> ¢ and § <> p (from the symmetry of the

ingoing and outgoing states, respectively). We define this flavour structure as
S, 1
AYormpbo 1 Oowday + Oandon) (G055 + 340p5) (5.112)

and therefore,

k gl 4 K i i (1) ['lT[(O',Z.)PLU[(Oé,j)H’(T((B,k')PRug(,O, l)] onk,pafo
(5L 0P O 6t |1 = /17 A
X (5il5jk -+ 5ik5jl) . (5.113)

It can be seen from Equation (5.113) that the loop diagram generates the spinors
ug,ve, 0y and wuy, and has a left-right chirality structure. However, the amplitude
(ehet) oo i)
Feynman rules listed in [33], and only generates a left-left chirality structure. Conse-

7SN, TUPX
Zss N7,

only generates the spinors uy and uy, as can be seen from the

quently, it is easier to find the renormalisation constant by considering a

different, but related, operator.

We introduce the operator

O = 810 (LM (651 6) — O X, (5.114)

eva

where the first (scalar) term has a left-right chirality structure and 4, j, k, [ are SU(2)
indices. This is an evanescent operator, since it vanishes in the limit d — 4 due to

Fierz relations and the properties of charge conjugation. Explicitly, using the symmetry

OTVPX _ @wm

v and properties of charge conjugation,

Ozgﬂpx O<,0X7'v =4 (&ﬂugx)(gwgv)
—([E5)TCTINCE ) (Fryute)
e (ARCORABIENE

(ﬁc VL) (L) s (5.115)

I—ll\D\l—‘l\D\H

where the final minus sign comes from the anti-commutation of fermions when per-
forming the transpose. We now use the Fierz relation in d = 4 dimensions (where the

minus sign is for anticommuting fermions, see [113]),
(A9 Py B)(Cry PD) = ~2(APpD)(CPLB), (5.116)
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to write

1 i i TT ek gk pi
= S () () = (ELG) (), (5.117)

where spin indices are contracted within brackets, and SU(2) indices have been explic-

itly stated. Putting everything together, we have
OFLPX = (CLesk) (676 . (5.118)
Therefore, the operator

eva

0L = duyou () (614) - O™ (5.119)

is vanishing in four dimensions, and is thus an evanescent operator. This operator is
useful since when it mediates the process ¢¢ — (¢, it generates a tree-level amplitude
that has a left-right chirality structure, and so can be directly mapped onto the loop
amplitude generated by the double-insertion of the Weinberg operator. This means
the scalar part of Oy, can be used to renormalise the loop diagram, from which the

renormalisation constant Zss o can be extracted.

Following this strategy, we calculate

TU i i\ (0 S . NN
(ke oreex 1600 = (@g(o,6) Progan §)) (@8, k) Prue(p, 1))
X [6i£61(0av0ox0pr8p + Ogv0axdpr0p,)
-+ 5il5jk(5005ax5p756<p -+ 50“)(5@(557-(5“;)] . (5.120)

Note that since Oeya is not a physical operator of the Warsaw basis, it is not required
to also consider its Hermitian conjugate, and so there is no factor of 1/2 in the normal-

isation. Consider the modified renormalisation equation:

C’y& Cmy*
A A

<€k€l ‘ O’Y(S(Onn)‘f Mj £z> ‘( )

YO RNk
+ 70k, TUEX G5 Cs
55,eva A2

YO Rk
+ Zvémﬁ TUPX C C
55,eva A2

Y 1Mk
70Nk, TUPX C Cs
+22 55,00 A2

0= 5

m\»—\

TU i\ (0)
<£’g£;yo X0y

eva,scalar
k gl TUPX (0)
<£ ¢ ’Oeva (V-A)®(V-A) w >

(st oo ey (5.121)

Considering only the first two terms of this expression (the terms which generate a

left-right chiral structure), and inserting the results from above yields
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1 1
— = EAg(SnmpaﬁU (5ﬂ(5jk + 5ik5jl)

+ Z2" T 638051 (GO Opr05 + OO OarOpp) +
5il5jk<5avéax6p7(sﬁtp + 50&715@(657'5080)]
1 1
— = EAgénn,paﬁa (5il5jk + 5ik5jl)
+ 22’7§nn7pa505ik5ﬂ + 2276””’p05a6i15jk ) (5.122)

55,eva 55,eva

0

Zyonk.pafo _ Zydnk,Bopa
Z55,eva - Z55,eva

vector part, and since the operator is evanescent, must also be true for the scalar-scalar

Here, we have used that . This is manifestly true for the vector-

part. Considering the coefficient of d;,6;;, we immediately obtain

78k pafo _

1 1 1, .5
Yok, pafo
55.0va 5162 EA3 . (5.123)

Since the loop-amplitude (¢52| O (O |#3,61) has only a left-right structure, and no
(V—A)®(V —A) structure, then the (V—A)®(V —A) contributions in Equation (5.121)

must cancel. Moreover, since

O;i)a(f(x\/—A)®(V—A) = _OZZW’
then it follows that
R VA (5.121)
Therefore, we immediately obtain
Zysirvex — _i 16;2 %Agmmw, (5.125)
or equivalently,
SZRETI = AT (5.126)

5.5 Loop Calculations in the 2HDM

We here briefly discuss the results obtained when considering the mixing between
dimension-five operators of the 2HDM into the dimension-six operators of SMEFT,
as discussed in Section 5.1.2. We do not present the calculations in detail as was done
for SMEFT, since the procedure is the same, and there are a larger number of calcula-
tions to perform. Instead, we present the results and highlight any special cases that
arise. Again, we consider each process in turn. Recall that the SM Higgs doublet is
denoted by ¢1, and the additional (non-SM) Higgs doublet is denoted by ¢s. Since we
only consider dimension-six SMEFT operators, we do not consider processes where @9
is present as an asymptotic state. The Feynman rules of the additional dimension-5

operators that arise in the 2HDM are given in Figure 5.7.
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Fig. 5.7: Feynman rules we derived for additional dimension-5 operators arising in the
2HDM. ¢ denotes the SM Higgs doublet, and @2 denotes the additional Higgs doublet,
which we assume does not appear as an asymptotic state at the energy scales we are
interested in.

5.5.1 gOlg — QOlf

For the process p1f — 1/, there are an additional four loop processes that arise in
the 2HDM, from the amplitudes (¢}, o] | 0L (O M)y, ( @] | O (O M)y,
(¢ 5901 7] (’)76((9727'f)Jr |n M) and (¢ 5901 /| OW‘S(O”'{”)T |n M) shown in Flgure 5.8. As before,
these loop diagrams will mix into the physical operators Oy and Oy 3), but since the
calculation is performed off-shell, the EoM-vanishing operators O,y and O,3) must

also be included.

Calculating the loops and extracting the divergences gives

(50,70 0in — 40inrd.m)

(el | 03 (05 1) |1 = [@(8,1) (g + ) Poue(or,n)

32m2e

x AJobe (5.127)
(et | OO 1ty [ = 28 5.4+ ) Prowe(o, )]

X Aﬂzﬁa, (5.128)
(| O (O gty (0 = 2000 =00 a5 434t p ) Py, )]

x Afgg P (5.129)
(ied| OO gty (0 = + 20200 =0l a5 435 4 ) Py, )]

X Afgj P (5.130)
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Fig. 5.8: Additional loop diagrams arising in the 2HDM that mix into the SMEFT

operators Ogp(1) and O y(3)-

vk, Ba Yk, Ba Yok, Ba yonk,Ba
A A1,AZ AI,A§ ALSZ
v 0 + — — +
N4 K + - + -

Table 5.1: The symmetries of the flavour structures that arise in the process p1¢ —

o1l

where we introduce the new flavour structures

srBa 1
AR — 2 (6050

yonk,Ba __
1,AS

yénk,Ba __
1,54

— (57,;(555577@ + (577,(555(5504 —

57555775'"»&) )
1
1(576555677& - (57/@56,8577(1 - 57775(%5/404 + 57,855775504) 5

1
1 (07896k0na + 030550na — 0yn550ka — 01505n0na) -

Each of the new flavour structures has specific symmetry properties, shown in Table 5.1

(where we include A; for illustrative purposes).

Since we consider only the dimension-six operators of SMEFT, the tree-level amplitudes

are the same as given in the previous section. Considering the coefficients of specific

SU(2) structures and momenta, systems of simultaneous equations can be formed, and

solved to give

7ok, 3 yénK,Ba
5Z2121’d( = 4A , (5.131)
Rl L e,

770Nk, Ba Yok, 501
Oyt = T3 % (5.133)
ST = AT (5.134)
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Fig. 5.9: Additional loop diagrams arising in the 2HDM that mix into the SMEFT
operator Oe,,.

52767]& Ba Afy&nn Ba

s = e (5.135)

with all other possible counterterms being vanishing. Note that as for the SMEFT
calculation, these counterterms were checked by also considering the processes ¢1¢ —

p1dB and p1f — o1 4W.

We also list for completeness the renormalisation constants for EoM-vanishing opera-

tors, as they are needed when considering the mixing into Og:

Zvonrfa _ 3 \yonk.pa
Oz = =5 : (5.136)
1
523“272’(51‘;— ;Aifﬁzﬂ“v (5.137)

7>yonk,Ba yonk,Ba
e =3 A7 : (5.138)
ST e = + A, (5.139)
6 ok
02y =+ A} Tprabe (5.140)

5.5.2 epi1p; — by

For the process ep1¢1 — ¢p1, two additional loop diagrams arise from the presence of
internal o Higgses. Since the external Higgses must all be ¢1, there must always be
an insertion of the Weinberg operator (’)g. Consequently, new diagrams in which the
internal Higgs is a @92 doublet can only have a single insertion of either Q21 or O 4,

hence only two new diagrams arise. These are shown in Figure 5.9.

Calculating the diagrams of Figure 5.9 and extracting their divergences gives

1) 1 1

(030" O3 (OF) (TP ceco) lea” ™) 3 = — g~ (WE(5,7) Prue (@)

X (51J5Kn + 51K5Jn)A'2Yf5§7”"Ba, (5.141)

—

o=
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n PP p— 1 1 1, _
(5" | OF(OFN B Pscecy) lear” ™) [ = + 1o - (@B, n) Prue(@)
X (6170Kn + 6IK5Jn)A’2inK”8a, (5.142)

where ng) denotes the leptonic Yukawa matrix for ¢s. The new flavour structures

introduced are

K,DQ 1
A;ig = 1(575555[119],7& + 0+306n [F(e2)]f$a

+ 0ydsp [Fg)]na + 0yndsp [Fg)]m) ) (5.143)
R,pDQ 1
AJ = 7 0380680 Ine + 85505y TP
— 0ywdsp [Fg)]na — 0yy05p [Fg)]m) : (5.144)

To renormalise these diagrams, we use dimension-six operators. In the equivalent
SMEFT calculation of Section 5.4.4, the operators required were O,,, and the EoM-
vanishing operators O, ;) and O,(3). However, the corresponding renormalisation con-
stants 22157“1), 22157“3), ZAS,U(l) and 2A57v(3) are all zero. This is because loop di-
agrams involving a single Os operator and a single Oy1 or O 4 operator cannot give
rise to a dimension-6 operator with only external ¢; Higgses, as is the case for O,
and O,3). Therefore, only the physical operator O, is required to renormalise these

additional diagrams. Doing this gives the results

SZIII = AP (5.145)
SZI = — AL (5.146)

There are additional contributions to O, in the 2HDM, arising from EoM-vanishing
operators. For example, consider the process ep; — fp1¢p1 mediated by the double-
insertion of the operators Oy;. This has the renormalisation equation
C’Y(S CHT]* s e 1
0= 2220 (030! | O (OF) (By[Telcecw) lear” ™) [
ey o

+ Z%nfi,pa 21

I J. K\ (0)
2121 ,ep A2 <€g(p ‘Ogg ’604@ ¥ >

& ~RM*
Né‘ﬁ,ocglcm n, I o 7 K\ (0)
+ 2 gay ae (L TON leaw o)
& ~RN*
~6K,JC;1021 n I o 7 K\ (0)
+ 25wy (50" | O lea” @) (5.147)

where Z;f%f ;}pg) and Z;f%f ;}p((;) are known from Section 5.5.1. The loop amplitude is
manifestly zero, since a double-insertion of Oy cannot result in exclusively external ¢
Higgses, and so we obtain the equation (after using the Feynman rules of the dimension-

6 operators),
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Fig. 5.10: Additional loop diagrams arising in the 2HDM that mix into the SMEFT
operator Oyy.

0— Zonk.fa _ yénk,Bo Celoa — 770k, o [

e]oa

2121,ep 2121,v(1) 2121,v(3)
3 1
= o+ AT Deoa = 5 A7 Do (5.148)
This is solved to give
~ 1
yonk,Ba _ vonk,Bo y0nk,for
Ny = —ZAl Celoa = 4A (5.149)
A similar procedure can be used to find (SZWST"C pa 527577”#? “, and 5ZV§W”8 ¢, yield-
AAe A2L,ep 21 A,ep
ing
1
Zyonk,Ba _ yénk,Ba
SZ I — —J AP (5.150)
Zyonk,Ba _ 1 yénk,Ba
6Z 0% = 42 A] , (5.151)
7Yone,Bor _1 Yok, Ba
SZI I = AP (5.152)
7yonk,Ba YonK, ,Ba
SZg = 4 A (5.153)
(5.154)
5.5.3 W — U

For the process ¢ — (¢, there are three new diagrams that need to be considered for
the 2HDM. These are listed in Figure 5.10.

In principle there could be an additional two diagrams included in Figure 5.10, involv-
ing the operator insertions OglOL and (’)AOgl. However, both of these diagrams are
vanishing from their SU(2) structures, and so are not considered in any further detail
here. Calculating the diagrams of Figure 5.10 and extracting their divergences one

obtains

(0508 OR OB 1643 | =+ (el i) Prvalen ) @ (5, &) Pralp, 1)

(6 + 6ikaﬂ) AJompabo (5.155)
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where the new flavour structure is

R,ppOo 1
Agiz pafo _ 1(57a55g — 570550)(555577p — 5,@5775) . (5.158)

These diagrams may all be renormalised using the Fierz-evanescent operator of Equa-
tion (5.114), as in the SMEFT case. Note that although the amplitude involving
O (O contains a relative minus sign in the SU(2) structure compared to the other
four-lepton amplitudes, the same evanescent operator is still able to renormalise the dia-
gram, since the antisymmetric flavour structure provides an additional sign that cancels

this. Therefore, these diagrams may be renormalised by the counterterms

1
523{52771"{22@50’ _ _7A’Y(5"7’§7[70¢BO' , (5159)
s Zlﬁ];gpaﬂa +5 AWW pafio (5.160)
Loty = ‘zAg‘;””’””“ﬁ . (5.161)

5.5.4 Summary of Counterterms

In the preceding sections, the renormalisation constants of the renormalisation tensor
for mixing between dimensions five and six have been calculated in terms of the full
flavour structures. We present here the renormalisation constants in a slightly dif-
ferent form, where they are contracted with the relevant Wilson coefficients to form

counterterms. In this form, we have:

3 1

ACIZ1CY) ) = = g G CE) (5.162)

ACIAC ) =~ o [OnCa1™ (5.163)

ACIZICNES ) =+ e [CaCi, (5.164)

ACIZIEN ) = +5 1o [C5C31 (5.165)
® 216w

A(CIZICY 5y = +5 1 [CnCi), (5.166)

A(CIZICN ) =+ 755 [CACH - CnC51, (5.167)



3

S 1 A o

A(C[Z}CT)eH +4 1672¢ [0505 ] ) (5168)
N1 10T\ B 11 * o

A(CI21CNT = Zm(‘l[(@l — C)CiT )P

+[(CaCh + CaC3y — CnCy — CnC31)T)?) . (5.169)

1 AT\ paBo 1 1 *oo
A(C[Z)CTyoeP _—leeogﬁcg , (5.170)
- o~ 5 oBa 1 1 *o ]- Fe %02 ]' *Qo
A(C[Z)ChyeeP :—chggcm - 216 T53.0% s 216 > ——CP e, (5171)

where each A(C[Z]CT) denotes a contribution to a counterterm. Note that in this
notation, C denotes a vector of dimension-five Wilson coefficients (of which there is
one in SMEFT and four in the 2HDM), and [Z] denotes the renormalisation tensor
(which is a vector in dimension-six space and a matrix in dimension-five space). This

is the complete list of counterterms for lepton-flavour violating dimension-six operators
of SMEFT.

5.6 Lepton Flavour Conserving Processes

For completeness, we also briefly consider processes which mix dimension-five and six
operators without violating lepton flavour. These involve external states solely com-
prised of the SM Higgs doublet ¢, and a lepton loop. Since all Higgses are external in
these processes, the additional operators of the 2HDM do not play a role. There may

be mixing into the dimension-six operators O 0, O,p, and O, where

O, = (¢'p)? (5.172)
0,0 = ('0)0(eT), (5.173)
Oup = (' D" 0)* (' Dyugp) - (5.174)

There are nine 1-loop diagrams that can be drawn with six external Higgses, but when
they are calculated and summed over, they cancel, and so do not require renormalisa-

tion.

There is a single diagram that needs to be renormalised, which involves four external

SM Higgses, as shown in Figure 5.11.

Calculating the diagram of Figure 5.11, extracting the UV divergence using infrared
rearrangement, and expanding in external momenta to quadratic order (since the

dimension-six operators are double-derivative operators), we obtain the result

11 3
62 Pt pa)? (010875 + 01 0yr)A°™, (5.175)

("o 0 (0 1 7y |1 =
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Fig. 5.11: Lepton-flavour-conserving mixing between dimensions-five and -six is via a
diagram involving external Higgses.

where

w1
A = 5 (Byndsn + Oynds). (5.176)

Note that when this structure is contracted with the Wilson coefficients C’g‘ng it
results in the trace of the Wilson coefficients, Tr[C5C%]. The operators that may
mediate this process at tree level are O g and Oy,p. In addition, from the EoM of

the Higgs field, there arises the FoM-vanishing operator

Ovp = (970) (" D%p) — m? (91 )? + A1 )?
+ (o) (plerte) — (plo)(pleqluu) + (plo)(pldllg),  (5.177)

which can also contribute. Note that this operator contains Oey,, Oup, Og, and

0,

Performing the tree level calculations to renormalise the loop diagram results in the

counterterms
(CI21CNE = — 155 TrC5C5] Tl (5.178)
(21 = —ﬁmwﬁ[ru]ﬂa, (5.179)
(CIZ10N;2 = — 15 TOSCE Tl (5.180)
(12161, = —2ﬁmc5cg]x, (5.181)
(120N ,p = 4%%[050;;], (5.182)
(G120 = — 35 THCRCE). (5.183)

5.7 Comparison with the Literature

The standard model calculation has been performed in [11] in a different operator basis.
We disagree with their final results even after transforming our results to their basis.

We specify our basis

T
) = T
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and the one used in [11]

- B T
Q= Q%)@ Qe QL 041), 0] 1), 005 O ) ) (5.185)

where the additional operators are defined as

Q' = %[(‘PTDM)@V“@ - (@TDZsO)(ZT“fM)] : (5.186)
QL) %[(w*Dﬂcp)(EW) + (dD;j@(ZTawﬁ)] , (5.187)
Qeap = Oetp . (5188)

Here we drop the generation indices and note that the operators pr;) and QSZ) are
not Hermitian. For this reason, we treat the operator O., and the EoM-vanishing
operators as independent from their Hermitian conjugate in our basis transformation.

Writing the resulting linear transformation as
O=RQ, (5.189)

only the first two rows of R have entries that are not proportional to an identity transfor-

mation. These two rows are determined by the following linear transformation:*

O i) 2 2T, Il 1 -10 0)4
_ : 5.190
<0¢e(3) 22T, -t 0 0 1 —1 @ ( )

The Wilson coefficients and renormalisation constants will consequently fulfil our Her-
miticity conditions in our basis, but not necessarily in the basis of [11]. The countert-
erms of the Wilson coefficients transform in the same way as the respective Wilson

coeflicients under our change of basis, i.e. as
oc¢ = RTsC, (5.191)

where 6C = (1672)eCZCT represent the counterterms multiplied with (1672)e, while

d¢ correspond to the analogous expression in the Q basis.

Using the counterterms presented in Equations (5.162), (5.165) and (5.168), we ob-
tain

~ 5 * ]- * 1 * * g
oc = (—2[0505},—2[0505],2[C5C5Fe], [FZC%CS]) : (5.192)

which fulfil the Hermiticity condition of the overall Lagrangian, even though this is not
immediately apparent due to the choice of basis. These results are in disagreement with
the final results quoted in [11]. Yet using the results quoted in the individual diagrams

in Appendix B of [11] we find agreement with the expression of Equation (5.192), which

4To perform the change of basis we have to move covariant derivatives from one term to another.
This can be done by noting that the total derivatives D, [(cpTga) ({y*0)] and D, [(LpTT“gp) (ero~"0)]
are vanishing.
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suggests that a different projection was performed. Following the explanations of the
calculation, it appears that part (the 00 part) of the diagram evaluated in Appendix
B.1 of [11] is projected onto an operator basis where the operators prjlf) are replaced
by QSE)/ = QSE) + (QE;))T, while another part (the ee part) is projected onto the basis

presented in Equation (5.185).

Transforming now to the primed basis, where the Hermitian conjugate is added to
the first two operators of Equation (5.185) we find that the non-trivial transformation

matrix involves only the first two elements of our basis and the primed basis. Explicitly

writing
(G- (4 ) (@iﬂ’) (5193)
Oi(3) -1 Y\ey))
we find
5 1 3 3 g
6¢ = (—4 [C5C5],—71C5C5), £ [CsC5Te], [rlcgcg]) . (5.194)

Again, this result does not agree with [11]. Finally, note that projecting the results
quoted for the individual diagrams in Appendix B of [11], except the e part, would

give

- 1 a1 a3 vei1 3 . T
66;10t ce = <_4[C505]7 _1[0505]> Z[CSC5F6], 4[F;[C5C5]> s (5195)
while projecting only the ee part on the non-Hermitian basis yields
§é.. = (—2[C5C2],0,0,0)" . (5.196)

Summing these two terms would reproduce the results of [11].

5.8 The Renormalisation Group Equations

As discussed in Section 5.2.1, the leading order renormalisation constants and anoma-

lous dimension tensor are related in a simple way:
~(n,0 5(n,0
’YE&;,C = 2525—1%70 ; (5.197)

where A, B,C are operator labels and (, 7,0 represent collections of flavour indices.
Recall that the normalisation of ¥ is such that a factor of (1672) is extracted. This
means that we can immediately write down the anomalous dimensions from our previ-

ous calculations as
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35pa

(CHICH Jy = —C5 =557
- Cyf 35” 2Oy + O 5’2’” cye, (5.198)
(C_:[’ﬂc_; )¢?(3) - C P(Spoc*aa
+ CHP3 O3 + cff(’ Opo Cire — OB 5;"’ e, (5.199)
Nr~1 7 «@ Fe oz(S T kO
(CIChs = cge Melmdom com
+2[(Ca1 — Ca)C3T )P
1
+5[(CaCl + CaCiy = CnC - C1 C)T )P, (5.200)
. 1
(CHICTE™ = —Cr5Csm
— gL e~ Cpesre + o (5.201)

where the operator label and flavour indices on the left-hand-side refer to the dimension-
six operator (the dimension-five indices are summed over). The single Higgs model can

be easily retrieved by setting Co; = C4 = C = 0 in the equations above.

In the next section, we will need the RGEs for dimension-five operators. Recall that in
the single Higgs model, [v] is in principle a 9x9 matrix (or 6 x6, if one uses the symmetry
of Cf p ), mixing the elements of C5 amongst themselves. However, in the basis where
the charged leptons are diagonal, [y] is diagonal, and the anomalous dimension for the

coefficient C¢' P of the Weinberg operator is [101]
3
7 = =S (Dl + [Tel3s) + (A = 3g2 + 2TxB3[L] [T + 3] [Ta] + [T (L)), (5:202)
where the Higgs self-interaction in the SM Lagrangian is %(@Tgo)Q, and [I'y] are the

fermion Yukawa matrices.

5.9 Phenomenology

To solve the RGEs, it is convenient to define t = In M , in which case the 1-loop

16 1672
RGEs for dimension-five and -six operator coefficients can be written as
Lo _ @540 [5] - C*
dt - 'Y ’)/ )
d = -
= <[] 2
dtc C - (5.203)

These differential equations have solutions of the form

A

Clty) = CO)explats) ~ )1 +7F1ﬂln <MW> o] a0y
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Clty) = [ /0 ! drC(0)e™ [3][e”7]" CT(0)e +(Z*(0)]e%f, (5.205)

where 1672t r=1In (MLW> In these solutions, the anomalous dimension matrices are
approximated as constant. This is not a good approximation, because the anomalous
dimensions depend on running coupling constants. In particular, the Yukawa couplings

can evolve significantly above My .

A simple solution to Equation (5.205) can be obtained by expanding the exponentials
under the integral, as in Equation (5.204):

~ 1 A

C M) = C8) = O 15 In 7 Lo 2

—CN)[FICTA)—In— +... (5.206)

1672 1672 " My

5.9.1 The Single Higgs Model

In the SM case, where there is only one Higgs doublet, there is only the Weinberg
operator at dimension-five: a symmetric 3 X 3 matrix, whose entries are determined
by neutrino masses and mixing angles (in the mass basis of charged leptons). We now
want to estimate the contribution of double-insertions of this dimension-five operator

to lepton-flavour violating processes.

We neglect the “Majorana phases” (which cannot be experimentally determined from
neutrino oscillations), suppose that the lightest neutrino mass is negligible, and neglect
the lepton Yukawas in the RGEs. Then, the RG running of Cg' # between My and A
can be approximated as a rescaling, with v ~ A — 3go + 6y? ~ 3.5:

1 A

CEP(A) = C&P (M) |1+ 35— In —— + .. 5.207
27(8) = OO [L 4 855 g+ (5.207)

where y; is the Yukawa eigenvalue of the top quark. For A < 10 GeV, IDMLW <
33.

We can now estimate the contribution of the neutrino mass operator to lepton flavour

violating processes from Equation (5.206). We neglect C'(A) and find that the contri-
1

bution is 15— In MLW x (C[7]C1), where the coefficients are given in Equations (5.198)
to (5.201). Therefore, the contribution is of order
~ C? A
My) ~ —2-In—. 2
C(Mw) ok Vo (5.208)

As expected, this is negligibly small, since C2/A? ~ m2/v*.

5.9.2 The Two Higgs Doublet Model

Experimental neutrino data constrain the dimension-five operator in the one Higgs

doublet model, so the lepton flavour violating effects estimated in Equation (5.208)
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are suppressed by the smallness of the neutrino masses. The situation changes in an
extended Higgs sector, where more than one dimension-five operator is present. The
operator Q4 cannot contribute to neutrino masses as it is anti-symmetric in flavour
space and is hence unconstrained. In addition, the neutrino mass contribution of op-
erators 091 and Oy is suppressed if the VEV of the second Higgs doublet is small.
Renormalisation group effects [101-103] will in general mix all operators, which could
lift these suppression mechanisms at loop level. However, the mixing factorises in the
limit where A\g, A\7 and F((f) (as defined in Equation (5.31)) tend to zero: then the op-
erators Oy; and Oy will not mix into Oy and Oy and are hence not constrained by
the observed neutrino masses. Furthermore, the mixing of Qg9 into 05 vanishes in the

limit where A5 also tends to zero (see [114] for a symmetry argument).

In the following we will study the sensitivity of lepton flavour violating decays to these
additional operators. We assume that the Wilson coefficients of the dimension-five
operators are generated at A = 10 TeV, while all other dimension-six Wilson coefficients
are zero at this scale. To avoid constraints from the observed neutrino masses, we
consider the scenario where the second Higgs doublet has a negligible VEV and a mass
at the weak scale. The Higgs sector could be assumed to be close to that of an inert
two-Higgs doublet model [106-109] and the dangerous couplings Ag, A7 and 1“22) are
not generated radiatively. Renormalisation group running will then generate non-zero
Wilson coefficients of several dimension-six operators at p ~ v. Only those dimension-
six operators that involve standard model particles are of interest to us, since the
vanishing VEV of the second Higgs doublet will suppress the contribution of the other
operators after spontaneous symmetry breaking. Applying the constraints of Table 5.3,
and neglecting the small log In(maa/Myy), we find that the p — 3e decays provide the
greatest sensitivity to the additional dimension-five Wilson coefficients. In particular,

the left-handed contribution implies

1 A
ee € * . ee €* 1 eo eo T * O [*
‘021021 +0.5C5;C45 " +0 ;(CA C57) (CH™ + C3f )‘< 5210 (A /mgs) <1OTeV> ;
(5.209)

where we neglected the mixing of the dimension-five operators amongst themselves, as
this would contribute at 2-loop order to the lepton flavour violating processes. For the

right-handed contribution, we find

1.6 A Y
eoc _ reo ok O

a

which exhibits a weaker sensitivity. The contribution of the u <+ e flavour changing 7
vertex to p — e is relatively suppressed by a loop factor, so is beyond current experi-
mental sensitivity. However, this Z vertex contributes at tree-level to 1 — e conversion,

in interference with vector and scalar 2-quark 2-lepton operators. Indeed, the current
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sensitivity of ;1 — e conversion in gold is | 8(1) +C% (3 )} ~ 1.4 x 1077 (A/my)?. The

resulting constraints on the Wilson coefficients reads:

1 AN
eo _ eo o VES o‘u*
2_(CF — GO + O3 < 6.51n(A/m22)<10TeV>' (5:211)

(el

Taking the two most stringent bounds from above, and using the values A = 10 TeV,

mao = My = 80.4 GeV, we obtain the constraints

ee eu* eu* O L% O *
CLOH" +0.5055 +01Z 7) (CYF™ + Ot )‘ R

O Lk O L1k 1
‘Z(CEU — OO + et < R (5.212)

5.10 Experimental Bounds on Coefficients

The aim of this section is to obtain experimental constraints on the coefficients of the
LFV operators of Equation (5.7), evaluated at the weak scale My,. We are interested
in this subset of operators because they are generated at 1-loop by double-insertions
of dimension-five LNV operators. Such constraints will allow an estimation of the
sensitivity of LE'V processes to the coefficients of LNV operators. We neglect the
constraints on 2-lepton-2-quark operators, which are beyond the scope of this work,
and focus on 7 <> e and 7 > p flavour changes, since p <> e is discussed in [85,115].

Nonetheless, some 1 <> ¢ bounds are listed for completeness.

Three ways to relate low-energy experimental bounds to the coefficients of operators

at a higher scale are:

1. To calculate the sensitivity of an experimental process to a particular operator

coeflicient.

2. To express an experimental rate as a function of high-scale coefficients. Each coef-
ficient that contributes at the experimental scale will become a linear combination

of high scale coefficients due the renormalisation group mixing.

3. To obtain constraints on coefficients at the high scale. A sufficient number of
experimental constraints must be combined in order to obtain a finite allowed
region in coefficient space (no “flat directions”). Then the allowed region must

be projected onto the various axes, in order to obtain constraints.

The third option is the most useful, but beyond the scope of this work. Instead, we
partially follow the second option, as a contribution to the third. We consider experi-
mental bounds on the dimension-six operators which are generated in RGE evolution

by double-insertions of dimension-five operators that change lepton number. We aim
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Process Br< Process Br<
Z—etuT | 75x1077[91] | Z = 7tuT | 1.2 x 1070 [92]
Z —etrT | 98x10791093] | h—eTuT | 3.5 x 1074 [94]
h—75uT | 1.5x10721[95] | h—efrT | 6.9 x 1073 [94]

T — ece 2.7 x 1078 [96] T —euf | 2.7 x 1078 [96]

T — uee 1.8 x 1078 [96] T — ppi | 2.1 x 1078 [96]

T — eefl 1.5 x 1078 [96] T — ppe | 1.7 x 1078 [96]

©— 3e 1 x 10712 [97] T—ey | 3.3x107% (98

Ty [ 44x10787098,99] | p—ey | 4.2x10713[90]

Table 5.2: Experimentally measured bounds on branching ratios of lepton flavour
violating processes. These may be used to determine bounds on Wilson coefficients of
lepton flavour violating dimension-six operators (see Table 5.3).

to quote these bounds at My,. The processes in question are LFV Higgs and Z de-
cays (which occur at the weak scale), and flavour-changing lepton decays at low energy
(these bounds must be translated to the weak scale via the RGEs of QED and QCD).
Therefore we will not succeed in our aim of setting constraints on coefficients at My,
because the low-energy experimental bounds depend on many coefficients at the weak

scale, and we do not include enough experimental bounds.

5.10.1 Rates and Calculations

In Table 5.2 we present bounds on branching ratios of LF'V processes that have been
experimentally studied. We then use these to determine the implied bounds on the
magnitudes of Wilson coefficients of LEV SMEFT operators, shown in Table 5.3. After
presenting these results, we discuss how they are obtained, including a discussion of

matching between SMEFT operators and low-energy effective operators.

Z — lal_g Decay

When the Higgs obtains a VEV, the “penguin” operators Oyy1) and O y3) generate
a vertex involving the Z and two charged leptons. If the flavour-changing Z-fermion

vertex is written in a SM-like form, —EZ“ROgiQ@W'yH(gV — ga7s)lg, then

2

v
gv =94 = ~(Cor(r) + Cor(3) 553 (5.213)
The branching ratio can be written as
_ M 2
Br(Z — lulg) = z 92 (lgv|* + gal?) (5.214)

2.5 GeV 487 cos? Oy
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Process %\ Y. Cl<

Z — etpF Coiay + Copgay| < 1.2x 1072
Z — ¥ Oy + Cliy| < 4.6 x 1072
Z — etrT G5y + Copa| <41 x 1072
h — etpT |CLS], |Cel| < 2.5 x 107%
h— tHuT |CEZ|,|Cel| < 1.6 x 1073
h — etrT |CeT),1CZg < 1.1 x 1073
T — e€e 2C57°° + 97 [C ) + Coisy)] = 0Csinguinl < 2.8 x 1074

G + 92[C%0) + Coiay)] — 0CsEnguinl < 4.0 x 1074
T eufi | 205+ 200" + 95 [Chy + O] — 0CsEnguin| < 4.0 x 1074
G ™ + 921Chy + Coisy) = 0Cminguinl < 4.0 x 1074

T pee | 2057 + 20T + g5 [CLY ) + Clpia] = 00,0 uin| < 3.2 x 107

@l(1)
|G+ 9RICL0) + Chin) — 0Cnguinl < 3:2 % 10~4
T — W 2C™" + 97 [CLy0y + Ol = 00 guin| < 2.5 x 107
|CLTH 4 gRlChy ) + Cliig)] = 0CH il < 3.5 x 107
T — eell 2C;; " < 3.2x 1074
T = jipe 12C}"¢| < 3.2 x 1074
p— 3e 12635 + 95 [Cny + Copy) = 0Cptpguinl < 7.1 %1077
CR + 95lC 0 + Cosy)] = 0Ctnguinl < 1.0 x107°
T — ey CIe + £51Cre* + (3 Cr| < 7.3 x 107°
(CE + $2 0L + 123 [CS ) + Cpal < 7.3 x 107°
T =y |CE* + 4 CT" + 720 CLT| < 8.1 x 107°
[CL + S5Ol + 725 [Cly ) + Cligg) ]| < 8.1 x 1076
p— ey (CE* + S5 CHE + (20, Cgk| < 1.05 x 1078
(CE + S8 CEl + 725 (Clyy + O]l < 1.05 x 1078

Table 5.3: Bounds on operator coefficients of the SMEFT, evaluated at My, from the
bounds listed in Table 5.2 on the processes listed in the first column. The bounds on
coefficients of Hermitian operators (O (1), Oye(3); Ow, Ore) also apply to the conjugate
coefficient. All the bounds apply to running coefficients evaluated at My, and are for
A~my~v/ /2. The combination of coefficients Chenguin 1s defined in Equation (5.225)
and before Equation (5.236), § is defined after Equation (5.236), and g% = 2s%,, g5 =
—1 + 2sin® Oy .
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where 2.5 GeV is the Z width in the SM. Since Oy(1) and O3y are Hermitian, the
conjugate process Z — l@E necessarily occurs at the same rate, so the branching ratio

to the experimental final state is

Br(Z = I41%) = Br(Z = lolg) + Br(Z = lgla)

Mz 93
2 oy (5.215)

4
_ af v
~ 2.5GeV 127 cos? Oy m* ¢

v
wl(3)! 4A4

and the bounds we obtain on the operator coefficients, evaluated at ~ My, are given
in Table 5.3.

h — El‘eg, e;l"lg Decays

The flavour-changing Higgs decays occur via the non-Hermitian operator O.,. When
the Higgs has a VEV, it induces the Feynman rules for a flavour-changing Higgs vertex
with two fermions:

308002 1

1
2O 0 — i

,3055*112
j e U
2v/2A2

chorofor —

Py . 21
o TCR R e .

We calculate the flavour-changing branching ratio by comparing to Br(h — bb) =
0.575 4+ 0.32 (from the Appendix of the Higgs Working Group Report [116], for m;, =
125.1 GeV), assuming the Feynman rule for hbb is —%yb(mh)PL,R. We use a one-loop

approximation [44] for the running b mass

(0) (0)
Tm' /26
Y [O‘(mh)} ~ 3.0 GeV (5.217)

yb(mh)ﬁ = my(my,)

where a(mp) ~ 0.12, a(my) ~ 0.23, 7Y = 8, 3O = 23/3 and my(my) = 4.2 GeV.

The operator O, is not Hermitian, but is always included in the Lagrangian +H.c..
So CebOc + H.c. will induce both h — epig and h — pger at the same rate:
Br(h —eppg) _ 9|Ceh[*v*

iR) _ , 5.218
Br(h — bb) 24y2 A4 ( )

where in the denominator there is a factor of 3 for quark colour sums, and a factor of 2
from the chiral projectors in the lepton decay. The experimental search sums the e; g
and pper final states, so we obtain
3ot |CeF)P st |CleP _ , Bk = IS
- y T Yo\Mh)—F 73
4 At 4 A~ Br(h — bb)

(5.219)

and the resulting constraints are given in Table 5.3.
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Low Energy Decays

The flavour-changing 7 and p decays listed in Table 5.3 occur at energies ~ m,,, m, so
the decay rates are usually written in terms of the coefficients of dimension-six operators
from the QCDxQED invariant basis appropriate at low energies. These “low energy”
coefficients, which we denote by C, can be expressed in terms of SMEFT coefficients
at Myy by running them up to My, then matching the QCD x QED-invariant operator
basis onto the SMEFT. This was performed in [85] for ;1 — e, so we use the results of
[85] for the radiative decays studied below. Reference [115] studied the renormalisation
group evolution, below the weak scale, of the coefficients which mediate u — eee (as
well those for as u — ey and p— e conversion). We use these results, combined with
the weak-scale matching conditions of [85], for the discussion of three body leptonic
decays of the 7 and u. The minor differences between i and 7 decays are also discussed

below.

In the EFT below My, we use the basis of lepton flavour changing four-fermion oper-
ators introduced in [85,86] for p <+ e flavour change.> The operators and coefficients
have as subscripts their Lorentz structure (V,S,T') and the chiral projection operators
of the two fermion bilinears, and the flavour indices of the four fermions as super-
scripts. We restrict to the dipole and vector operators and neglect the scalars and
tensors, which will turn out to be irrelevant for our study of LFV operators generated
by double-insertions of LNV operators. The four-fermion operator basis below My,
is

0Lag = D ) [ v @ Pueg) (FroPLf) + Cxo/éﬁLJ{(eoﬂwPLeﬁ)(waPRf)] +H.c.

aB f

+ Z [C‘O‘/[SLL’) (€ PLeB)(afwaLep)] +H.c., (5.220)
afop

where af € {eu,ur,et}, f € {e,u,7,u,d,s,c,b}, and afop € {ereu, prpe}. In addi-

tion, below My, we consider the photon dipole operators
m
OLaipole = 15 (€2 eRa €] Fo + C e ey ) + He. (5.221)

because the SMEFT operators O (1), Oyy3) and Og, match onto the dipole at Myy.
The current bounds on y — ey, 7 — ey and 7 — py will give the best sensitivity to

the coefficients C 1), C,,

0(3) and Ce(p .
7 — 3l and pu — 3e

The first step is to translate the experimental bounds into constraints on operator

coefficients at the experimental scale. For the three-body leptonic decays of the 7, it is

®In this basis, the flavour indices are written explicitly, so the normalisation of 1/2 is absent.
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convenient to define
—~ Br(t — 3l)

Br(r — 3l) = Brlr 5 g0 (5.222)

(where Br(rt — pvv) = 0.174 [32]). Then, E;“(T — 3l) can be directly compared to the
branching ratio for y — 3e [86]:

4t |G + I Rl

Br(pu — eee) e 3 +2CVRR + 4663;]2 +2IC 77 + 4eC gl
m
+ (641n mﬂ - 136)("5616:)%1%‘2 + ‘eCEDM,L’Q) + ‘C\C;NEEL + 4661%%‘2
e
+ ‘C‘e/éf% + 4eceD,U;R|2’ (5223)

where v/2Gr = 1/v%, and the generalisation to 7 decays is straightforward after ac-

counting for factors of two.

We use the same branching ratio as in Equation (5.223) for the decays 7 — eee, 7 —
pei, T — epft, and 7 — pee, but make allowances for factors of two due to whether
final states contain identical particles. Note that we calculate the decay rates in the
approximation that all final state fermions are massless. If there are two identically-
flavoured fermions in the final state (as in Equation (5.223)), and those fermions have
the same chirality, there is an enhancement in the branching ratio by a factor of two
compared to if they have opposite chiralities [78]. This can be seen in Equation (5.223),

where the coefficient Cy,1;, comes with a factor of 2 compared to Cy,r.

We set the dipole coefficients to zero, because they are better constrained by the ra-
diative decays discussed in the next subsection (see Table 5.3). Consequently, each
upper bound on a three-body leptonic decay of the 7 or u implies six independent
constraints on operator coefficients (evaluated at the experimental scale). This can be
seen from Equation (5.223), by setting Cp)’; = C)'p = 0, and then considering each of

the remaining coefficients in turn. Those of interest to us are given in Table 5.4.

The operator coefficients Cx (m,) given in Table 5.4 can be expressed in terms of coef-
ficients at My using the one-loop RGEs [85,115]:

d
Cr= gCJ[%]JI = Cr(m;) =Cy(Mw) |01 — =

n AW
— n
'udu 41

41 msr

elur 4|, (5.224)

where [7,] is the one-loop anomalous dimension matrix of QED, In %—VT" = 3.85,In %—‘LV =
6.64 and the approximate solution neglects the running of a. The one-loop QED
corrections involve photon exchange between two legs of the operator, which does not
change the flavour or chiral indices, and also “penguin” diagrams, where two legs of
the operator are closed in a loop, and a photon is attached, which turns into two
external leg fermions. The “penguins” can change the chirality and flavour, and allow
2-lepton-2-quark operators to mix with the four-lepton operators. We therefore need a

prescription for dealing with the quark-sector thresholds my, m. and Aqcp. We make
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Process Br < %\C\ <

T—eee | 1.6x 1077 | CTfg < 2.8 x 1074, CTes, < 4 x 107
T —eup | 1.6 x 1077 Cyi, Cyit < 4% 1074

T — pee | 1.0 x 1077 Clfn CUTEE < 3.2 x 107

T ppf | 1.2 x 1077 | CTHY < 2.5 x 1074, 1 < 3.5 x 107
T eefi | 8.6x 1078 Cyph < 3.2x 1074,

T — ppe | 1.0 x 1077 CilT <3.2x 1074

p—eee | LOx 10712 | CPFFT <71 x 1077, Cilf, < 1076

Table 5.4: Bounds on some operator coefficients from three-body lepton decays,
evaluated at the experimental scale.

the simplest approximation, which is to have a single low-energy threshold at m., and
run from My — m, with five quark flavours, and use this low-energy scale also for the
decays of the p. In this approximation, it is convenient to define the combination of

operator coefficients

cos AN

penguin

3 3 4
(CVLE +CyrR) + 3

> (1 + Gar + 0mlC + Co%) L (5.225)
l
where [ € {e,u, 7}, g € {u,d,s,c,b}, and Q) is the electric charge of the quark. Then

the coefficients constrained in table 5.4 can be written

epee Mw epee
CVMLR(TI’L-,-) = |1+ 1271 m, CV?LR(MW) . ln Cpenguzn(MW) ’ (5226)
CEMee (my) = |1 — 12-—1In My cepee (Mw) — —ln —ce" (Mw),  (5.227)
V,LL A1 my V,LL penguin )

penguin

M .
Tt (my) = 1+12431n W

cerll (M) — -1 —c” M 5.228
. mr | V,LR( W) . nm (Mw), ( )

T a MW- T T
C‘C}EL(mT) =1[1-— 1QE In m CXC},%L(MW) - Z In miczengum(MW) ) (5.229)
T .
ol _ 112 @ MW | ety & MW opr 5.230
VLR(mT) - + I m VLR( W) E nmi pengum( W)? ( . )
7— -
U [ My | Luru a . My ..
Cy/pr(ms) = 1—1251 | O (Mw) — Elnmicﬁfengum(Mw), (5.231)
T |
Mo
Cyip(ms) = |1 - 125111 mW Cyvrr(Mw) (5.232)
CeTen —1—12%m MW—C”W M 2
VLL(mT)— By v (Mw). (5.233)
T -

Finally, the combinations of coefficients that are constrained by data can be matched
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at My, onto coefficients of SMEFT operators [85]:6

Cy (M) =20 (Mw)

CULL (Mw) = 2C3" (M) ,

CypL(Mw) = 203 (Mw) + 203" (Mw) + g1[CLy 0y (Mw) + Cjgy (Mw)]
CylL (Mw) =203, (Mw) + g7 [CLy oy (Mw) + CFj ) (Mw)]

CYLR(Mw) = Ci (M) + gR[Cl ) (M) + Clyiy (M)

Cy rr(Mw) = 2C;/" (Mw) + 20" (Mw) + 91 [Copry(Mw) + Coyay (Mw)]
CV L (Mw) = 207 (Mw) + g [Cyq) (Mw) + Cliys) (Mw)]
CLr(Mw) = CiZ (Mw) + 95[Cgy) (Mw) + Coysy (Mw)]

e (My) = 205 (Myy) + g5 [C% ) (Muw) + 2%y (M )],

CVLr(Mw) = Cp (Mw) + grlClyy (Mw) + Clyay (Mw)] (5.234)

where [ € {e,u} in the above equations, and g%, = 2sin® O, ¢ = —1 + 2sin? Oy .

In order to match the “penguin” coefficient of Equation (5.225) onto coefficients of

the SMEFT, matching conditions for operators with a quark bilinear are also re-

quired:
o (M) = Clit (M) — Cotas (M) + g1 [Cogtyy (M) + Cpy (M),
o (M) = Colit (M) + Cotdsl (M) + g [CS0 1 (M) + Copsy (Miw)]
Co (M) = CoP™ (M) + g [Cop ()<Mw>+cd(3)<Mw>L
CYTR(Mw) = Col ™ (M) + g&ICop ) (M) + Coyfg) (Miw)] (5.235)

where aff € {ur,er,en}, gf =1 — sm Ow, g% = —5 sin® O, g = —1 + 3sm 20w

and, gR = gsm 2 0y. Comblnlng the definition (5.225) with the matching condi-

tions of Equation (5.235) allows the definition of a combination of SMEFT coeffi-
eTyip

cients C’pﬁlgum(MW). Then, the experimental constraint on, for instance Cy ;7 (m-),

gives
) [1 - 125} [20;; Wi 2O 1 g5 (O + Clis )]] 8O im| <A X 1074, (5.236)

where all the coefficients are evaluated at My, and 6 = - log ~ 1/400. This, and
other constraints from 3-body 7 decays, are given in Table 5.3, Where for compactness,

[1 £ 124] is approximated as 1.

®These equations differ from [85] due to different conventions for operator normalisation and signs,
and also due to some errors in [85]. The SMEFT basis used here is normalised according to [8], where
there are “redundant” flavour changing four-fermion operators, which are absent from the basis used
below My in [85]. Then, the sign convention used here for the gi’ r and the Z-vertex Feynman rule
agrees with the PDG [32] but is opposite to that of [85]. Finally, in [85], there is an incorrect factor of
2 multiplying the penguin coefficients.
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llg — la‘)’

The radiative decays lg — [,y provide some of the most restrictive bounds on lepton

flavour violation. The branching ratio at mg can be written

Br(lg — la7)

Br o —F Fal/
rlls 2 1a7) = 5 S o)

42x1071% p—ey
(ICE P+ IR < {4 20x1077 7 ey , (5.237)
25x 1077 T = py

v

_ 2

where the low energy dipole operators are added to the Lagrangian as in Equation (5.221).

The dipole coefficients evaluated at the experimental scale can be expressed in terms
of SMEFT coefficients at the weak scale as [85]

« ok ceay v ege N
CD?L(mT) = ng (MW) + 87_‘_3;# Cgp (MW) -+ 16752 C«peﬁ(MW) + ..., (5238)
af T eoYt ~ap
Chr(mys) = C2 (M) + = CS8 (M)
69% af3 ap
+ 1672 [wa(l)(MW) + Cgoé(3) (Mw)] + ..., (5.239)

where the contributions of scalar and tensor four-fermion operators were neglected, g%
and ¢§ are defined after Equation (5.234), and

C’g‘f = cos @chg — sin @WC’:V@ . (5.240)
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Chapter 6

Three-Loop QCD Corrections to
K — v

6.1 Introduction

Flavour-changing neutral currents (FCNC) are a sensitive probe of new physics. Such
processes are forbidden in the SM at tree-level, and therefore receive loop suppression.
In addition, when considering AS = 1 processes with an internal top quark, there is a
further suppression arising from CKM contributions: since the CKM matrix is nearly
diagonal, FCNC processes of hadrons receive a large suppression [89]. Consequently,
any SM contribution to such processes is very small, making it a promising channel
for the detection of new physics, since even a small new physics contribution stands a
chance of being distinguished from the SM background [117].

Tvv and the CP-violating

Two such processes are the semi-leptonic decay KT —
decay K; — mlum. At the quark level, the processes are described by s — dvw, with
the additional quarks being spectators to the weak decay. These are shown at leading
order (which is an electroweak loop process) in Figure 6.1. These channels have been
measured experimentally to a high precision [118,119], whilst the theoretical calcula-
tion is also very clean, due to the minimal contribution from long-range physics [44].
This suppression of long-range contributions stems from the dominant contribution of

internal top-quarks, which also introduce the CKM factors V,:V;4, where [32]
[Via| = (8.240.6) x 1073, [Vis| = (40.0 +2.7) x 1073, (6.1)

providing an overall suppression of O(107%).

Measured branching ratios for rare Kaon decays are collected by the Particle Data

Group [87], with current experimental branching ratios being
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e?l’L?T

Fig. 6.1: Example box and penguin diagrams that contribute to the decays K+ —
7tvw and Kj, — 797 at leading order. Only box diagrams and Z-penguins contribute
to the decays, and we only consider the box diagrams in this work.

Br(Kt = nTup) = (1.7+£1.1) x 1071 [118],
Br(Kp — 7%v7) < 2.6 x 1078 [119].

The KOTO experiment at JPARC is now online, and will be able to provide an update
to Br(K; — 7°vm). It has already seen a signal above the expected background,
which gives a branching ratio of Br(K; — 7%vv) < 5.1 x 1078 [120], which is less
stringent than the bound measured by the E391a collaboration and used by the PDG.
We therefore use the limit from [87], and note that KOTO should be able to provide

updated experimental values in the future.

In the SM the amplitude for s — drvv may be split into three parts depending on the
internal quark, u, ¢, t. At 1-loop level, this yields the structure [121]

O i) +i0(N 475 (q=1)
A (s — dvr) = Z ViadAg ~ (’)()\MQc In MW) —|—ZO()\5 mC 1n MVCV) (=)
q=u,c,t O()\ QCD) (q:u)

where A is the Cabbibo angle (A = 0.22). Despite the CKM suppression, it can be seen
that the top contributions are dominant due to the large top mass. For the K+ — 7w vi
decay, whose branching ratio contains both Re(\;) and A, the charm sector provides a
subleading contribution which cannot be neglected. However, the CP violating decay

0

K — 7w v is sensitive to the imaginary parts only, and the imaginary part of the

charm sector receives the same CKM suppression as the top sector. Therefore, for

0

K — 7m°vw, the top sector is completely dominant and up- and charm-contributions

may be safely neglected.

K decays are described in EFT via the formalism of the weak Hamiltonian. Specifically,

the 3-flavour weak Hamiltonian for these decays is given by [122,123]

4GF (0%

oo —
ff V2 2msin? Oy l

Z ()\CXZ + )\tXt) (5ey"dr) Wipyuvin) + Heeey  (6.2)

267/"”77
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where \; = V;iVi4, o is the QED fine-structure constant, and ©y is the Weinberg
angle. The functions X! and X, are the contributions from the charm- and top-sectors
respectively, where X! < X,. It is interesting to note that the top contribution does
not run after the top-quark is integrated out, whereas X runs above the charm scale, as
semileptonic operators involving the charm-quark mix into X’. Note that the effective
Hamiltonian has no contribution proportional to \,, since it is eliminated using the GIM
mechanism, in which the up-quark contribution is encoded in X* and X;. The disparity
between X! and X; (which are separated by three orders of magnitude [44]) suggests
that the charm contribution can be safely neglected in favour of the top sector. As
discussed above, this is true for the decay K, — 707, but for the case K+ — 7t v the
top contribution receives a CKM suppression relative to the charm sector, which makes
the inclusion of the charm sector necessary. Consequently, the effective Hamiltonian of

Equation (6.2) is used for K decay, while for K, decay we use the Hamiltonian

4GF «
V2 2msin? Oy l

Hefr = > NXy (5pyMdr) Wi yunc) + He. (6.3)

:e7/”’77-

From the Hamiltonians above, it is possible to derive branching ratios for K decays
in the effective theory. Branching ratios require the evaluation of hadronic matrix
elements, typically performed on the lattice. However, it is possible to circumvent this
difficulty in rare K decays through the use of isospin relations, which allow Br(K* —
ntvw) and Br(Kp — 7'v) to be related to Br(K+ — 7e*v), which is experimentally
well known [87].

First, consider the KT decay. The effective Hamiltonian for K+ — 7%t v is

A4Gp ., _
Heg (KT — Ot ) = —FVUS(SL'y“uL)(VeLfy#eL) (6.4)

V2

and from isospin symmetry (assuming m,, = mg = 0), there is the relation
(mF] (5patdr) |K) = V2 (7] (517t ur) |[KF) . (6.5)

This leads to the ratio

BT(KJF — 7T+I/]7) C¥2 * l *
BT(K+ — 7064_’/) N ’Vus’22ﬂ'2 sin4 @W l Z ’V;SVCdX + V;SthXt

?, (6.6)
=6Nu,T
from which Br(K*™ — 7tvp) can be obtained. Including isospin breaking effects, it is
given by [122-125]

Br(KT — ntup(y))

= r4(1+ Agpm)

Im)\, 2 Re). ReAs 2
<)\5Xt> + <)\(Pc +0Peu) + )\5Xt> ., (6.7)
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Oty including isospin breaking

where 1. encodes the branching ratio of KT — =
effects, calculated in [126]. The parameters P.(X) and 0P., (which are functions of
the charm function X!) describe the charm contributions, where P(X) includes the
short distance contributions, and 0P, encodes long range contributions as well as

contributions from dimension-eight operators. These are given by

1 /2 1
P(X)=—=|=X°4+=-X"), 6.8
(0 = 5 (3x°+337) (6.5)
which is given in [127], and
8Py = 0.04 £0.02, (6.9)

given in [124,125,128].

Similarly, the process K — 7'v7 has the branching ratio [44,124]

) Tm),  \°
Br(Kp — D) = Ky, </\5 tXt> , (6.10)
where the simple form is because only the top sector contributes. The parameter kp,
contains the hadronic matrix element (as x4 did for the Kt decay), and is given in [129].
To include non-negligible contributions from channels that violate CP indirectly, we

multiply the branching ratio by the factor [130]

1+ Po(X)/(A%Xy) —
n
where € describes indirect CP violation in the neutral Kaon system. A, A\, p and 7 are
CKM parameters from the Wolfenstein parameterisation of the CKM matrix, defined

as (see Section 2.6)

A=V =022, A=Vy/N, p=—2coss, np=—0

512593 512523

sind.  (6.12)

The theoretical branching ratios given above both depend on the function X;.

The loop functions X! and X; have been calculated previously, considering both QCD
and electroweak corrections. The function X! has been calculated to NNLO in QCD
[131-133] and NLO in the electroweak theory [127], the result of which is a 2.5% the-
oretical uncertainty. Since the charm contribution to the K™ — 7 Tv¥ branching ratio
is only ~ 30%, this represents only a small (sub-percent) uncertainty. The dominant
function X; has been calculated to NLO in both QCD [123,134,135] and the electroweak
theory [124]. With these results the numerical value (to NLO in QCD and electroweak)
is [124]

X, =1.469+ 0.017 +0.002, (6.13)

where the first error is from QCD uncertainties and the second error is from electroweak

uncertainties. Note that X; is scale-invariant, since it is the Wilson coefficient of an
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operator involving a conserved quark current. Therefore, it has a vanishing anomalous
dimension, and is p-independent. As can be seen, whereas the electroweak uncertainty
is at the per mille level, the QCD uncertainty still stands at the percent level. We
here calculate the contribution of box diagrams to NNLO QCD corrections to X;. The
penguin contribution is also currently being calculated and the results will be presented
in a future paper. Once these are brought together, an update to the value of X; in

Equation (6.13) will be possible, reducing the QCD uncertainties.

6.2 The Matching Calculation

The NNLO QCD correction of X; is performed via a matching equation between the
full SM and the 5-flavour effective theory to O(a?). The tree-level Hamiltonian for this
theory is conventionally defined as

4Gp «

V2 27 sin? Oy
where C,, can be identified with X;, and @, is

Qu=Y (c7"dr) @i yemr) - (6.15)

12671177'

7'[eff =

ViViaCoQ, + Hee. (6.14)

For the purposes of our calculation, we use the equivalent Hamiltonian

N BT AZ ViViaClQ, + Hec. (6.16)

1=u,c,t

/Heﬂ =

which reproduces Equation (6.14) upon utilising the unitarity of the CKM matrix.

Explicitly,
MCy = A O% 4+ XNCC 4 MO = (Mg + Xe)C¥ 4+ NCE) = N (CL — O%)
— C,=C' - o (6.17)
The Wilson coefficients may be expanded in the strong coupling as
i _ i) Y oi) (2 0@ B
Cy=Ci0 + 200+ () P +0(ed), iefut),  (618)

where the NLO QCD coefficients ™ have been calculated in [123,134,135]. Note

that the strong coupling as = a§5)(u), which we also use in the full theory calculation.

Unless stated otherwise, ay is always evaluated at the scale pu. Since we use oc£5) in

the full theory, we have to include threshold corrections that relate a§5) and a§6), as
outlined in [80]. This is also true for MS renormalisation constants, and is a result of
manually integrating out the top quark. Since the effective theory matches onto W-
boxes and Z-penguins from the full theory (as in Figure 6.1), the Wilson coefficients

may be written in terms of contributions from each of these sources,

Cl(/n) _ CZV,(H) + CVZ’(n) . (6.19)
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We calculate here C} (n) by matching box diagrams of the full theory onto the effective
theory up to n = 2. However, since we do not consider penguin diagrams, we use the

notation C,Sn) = C’lI,/V’(n) .

The box diagrams that arise in the full theory have either an up, charm, or top quark
running inside the loop. Each of these sectors separately matches onto the Wilson coef-
ficients C¥, C¢, and C! respectively. However, as already discussed, it is only necessary

to calculate the up and top sectors, due to the unitarity of the CKM matrix.

The matching requirement is that both theories give the same amplitude for the process

K* — ntvr at the matching scale p (where we recall that = pyg),
Apai(s = dvv) = Aeg(s — dvp). (6.20)

Therefore, there are two calculations that must be performed, in the full theory and

the effective theory.

6.2.1 The Effective Theory Calculation

In addition to the physical operator )., we also need to consider the evanescent operator

Qr,
Qp = Z Gy v L) @iy nvin) — (16 + ae)Q, - (6.21)

l=e,u,T
The evanescent operator Qg is a relic of dimensional regularisation, and while it identi-
cally vanishes in d = 4 dimensions, its inclusion is necessary when matching at loop-level
in d-dimensions. This is because using massless quarks generates spurious IR diver-
gences in both the effective and full theories, which require the presence of evanescent
operators in intermediate steps [12]. The constant a is arbitrary, and amounts to a
scheme definition [75]. We include it in the calculation, keeping it fully general, and
see that it cancels in the final result. To renormalise the effective theory, it is necessary
to replace the combination Y \(CLQ, + CLQg) by the expression [12,135]

i=u,t

ST N(CIQu+ ClQE) = Zy > Ni(ChZnQy + CiZ,pQr

1=u,t i=u,t

+CZp,Quv + CyZrpQE) , (6.22)

which is the full operator renormalisation mixing in a two-operator system, where Z
is the MS quark wavefunction renormalisation. The renormalisation matrix elements

Z;; may be expanded in the strong coupling,

Ziy =05+ (1) 2 + (%)2 72+ 0(a?), (6.23)
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where we can write the matrix as

Zyw  Zyp
Z = . 6.24
<ZEI/ ZEE> (6:24)
As a result of Equations (6.23) and (6.24), we can write the renormalisation constants
as
— s\ z () Ps (2) 3
ZVV 1+ (471') ZVl/ + (477') Zl/l/ +O(as)7
s\ L) (952 H(2) 3
Zon = (5z) 2+ (5) 2 ’
L 4r) “VE + 47 g +0()
g 1 as\2 (2
Zg, = (—W) Z9) + (E) Z3) + 0(a?),
Qg 1 as\2 (2
Zpp =1+ (E) z0 (E) 72+ 0@?), (6.25)

where it remains to calculate the loop contributions. However, there are immediately
simplifications that can be made. Since the physical operator @), contains a quark cur-
rent that is conserved in the massless limit, the corresponding conserved charge must
be renormalisation independent. Therefore, this operator cannot receive renormalisa-
tion corrections, since if these are non-zero, the value of the conserved charge would
depend on the calculation order, which cannot be the case. Therefore, Z,, and Z, g,
which both renormalise the @), operator, must have the values 1 and 0 respectively at

all loop orders. We checked this explicitly up to O(a?), and write

Zuuzla
ZVE:07

Ze = () 2+ (52) 28)+ 0ad)

Qg g\ 2
Zop =1+ (T2) Zgp+ (32) ZEn+0Lad). (6.26)

Other quantities in Equation (6.22) may also be expanded in powers of as:

z,=1+(32) 20 + (Z—;)Q Z3 + 0(a?), (6.27)

7 i A5 i, a2 i, .
Cp =y + (E) cpt + (E) Ci? +0(ad), i € {u,t}, (6.28)

and recall that C? may be expanded as in Equation (6.18). When performing the
matching we consider the matrix elements (Q,) and (@ g), which can also be expanded
in loops. However, since the effective theory contains only massless particles, and
we work with vanishing external momenta, all such loop diagrams are vanishing in
dimensional regularisation. Consequently, only the tree-level amplitudes <Qy>(0) and
(QE>(0) appear in the matching, and we do not need to consider higher-order matrix
elements such as <Q,,>(1) explicitly. Therefore, the quantities needed for the matching

that arise in the effective theory are

1 2 1 2 1 2 i i i i,(0) iy (1) i (2
20,22, 210, 78 78, 28, €10, G0, 030, G0, 0,

127



QV/E QV/E
v v v v

Fig. 6.2: Loop diagrams that must be evaluated to renormalise the operators (), and

QE.

The renormalisation matrix elements are obtained by renormalising diagrams involving
QCD loops and the operators @, and Qg (see Figure 6.2), where external momenta
must be included as a scale to ensure non-vanishing integrals. The Wilson coefficients
are obtained order-by-order in the matching calculation that we perform here, with
the ultimate aim being the calculation of Cﬁz), which has not been calculated previ-

ously.

We briefly discuss the calculation of the renormalisation matrix of effective operators.
We generate loop diagrams and amplitudes using FeynArts, which does not naturally
handle four-fermion operators. Therefore, we use a trick in which we do not actually
calculate the diagrams in Figure 6.2, but instead the corresponding diagrams in Fig-
ure 6.3. This is because the amplitudes are closely related, and the loop amplitudes of
the effective operator can be reconstructed from the amplitudes found from these (SM)
processes. This can be seen from the following. In the effective theory, the leptonic
line is a spectator in QCD, and so gluons do not couple to it. Therefore, there is a
two-to-one mapping between QQCD loop diagrams in the effective theory and QCD dia-
grams involved in s — uWW. (The mapping is two-to-one since there is one physical and
one evanescent insertion for each SM diagram drawn). Additionally, both approaches
contain only massless quarks, and the W coupling forces the amplitudes of s — uW to
have the same chirality structure as ), and Q. The diagrams generated from sv — dv
have the same Dirac structure as the quark current of (),, and so to reconstruct the
evanescent amplitude we insert additional Dirac matrices as required. The amplitudes
from s — uW will have a different normalisation compared to the effective amplitudes.
However, since these will be common to all amplitudes in each case, they do not affect

the renormalisation constants computed.

It should be noted that this technique brings one more subtlety. The amplitudes ob-
tained correspond to an insertion @, and the “operator” Y, (S.Y*"~v*dr) (Vi Yu Vv YpViL),
which is part of the evanescent operator, but not equal to it. In fact, it is equal to
Qp + (16 + ae)@, (see Equation (6.21)), and as such this needs to be accounted for

when projecting the loop amplitudes onto the operators @, and Qg.
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w w

Fig. 6.3: Loop diagrams that were actually evaluated to renormalise the effective
theory. The amplitudes from such processes can be simply related to those of Figure 6.2.

In performing this calculation, it was also necessary to include the renormalisation of

SM parameters, which are presented below to O(a?) in the Feynman gauge [63]:

Z{0) = _%nc + gnf,

Z(Gl’l) = gnc — inf,

Zi(bl’l) =—-CFp,

Zf’l) = ZCF — 7C'Fnc + C’an,

Z3? = foF + Cpne, (6.29)

where n, = 3 denotes the number of colours, ny = 5 is the number of active quark

flavours, and the Casimir Cp = %.

Renormalisation of the effective theory up to O(a2) gives the renormalisation con-
stants

Z,, =1+0(a3),

ZVE =0+ O( 3)

ZEV_O‘S<_12n )+< ) L e — L9902 — dngny)

—1
+ n3n2 (=27 + (11a — 14)n? — 2(5 + a)neny) | + O(ad),
- as\2 [1(n? —1)(11n. — 2ny) 5
Zpp=1— (E) L T +0(a?), (6.30)

which completes the renormalisation of the effective theory up to the required or-
der.

6.2.2 The SM Calculation

Having completed the effective theory calculation, it remains to perform the full theory
calculation up to O(a?), which corresponds to three loops in total. Example 3-loop
diagrams that are evaluated are shown in Figure 6.4. We work in Feynman gauge, in

which diagrams with Goldstone exchanges should, in principle, be included. However,
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Fig. 6.4: Example 3-loop diagrams that arise from the O(a?) calculation in the SM.
In total there are 248 diagrams that contribute to the process: 2 at O(a?), 14 at O(al),
and 232 at O(a?). The relatively small number of diagrams is partly due the presence
of only a single quark line for gluons to couple to, restricting the number of topologies
available.

since the coupling of Goldstones to fermions is proportional to the mass of the fermion,
then Goldstones do not couple to the massless neutrinos, and so do not arise in the

calculation.

As discussed previously, when working with massless up and charm quarks, diagrams
that only differ by having an internal up or charm quark are equal up to CKM factors.
Therefore, it is only necessary to compute with either the up or charm quark, in addition
to the top quark. We choose to calculate the up and top sectors. Each of these sectors
were computed and renormalised separately. We generated diagrams and amplitudes
in FeynArts, using in-house code to perform manipulations to these inputs. We took
all particles to be massless except the top quark and the W boson, and so generate
3-loop integrals with two different mass scales. By expanding in external momenta,
these integrals were written in terms of vacuum integrals, with at most four massive

propagators. See Chapter 3 for details of Feynman integral manipulation.

It was necessary to perform a reduction of the integrals to a basis set of master integrals.
The first step in this was to identify all the different families of integrals that arose.
Families were identified according to the mass content of their propagators, with, for
example, an integral with two propagators with mass m and two propagators with mass
M being distinct from an integral with four propagators of mass m. Note that m and
M do not directly correspond to m; and Myy, since in a single scale integral m can be
used to indicate either my or My,. In addition, integrals with the same mass content
may belong to different families depending on which propagators the masses entered.
Two different families with the same mass content can exist, where vacuum integral
symmetries cannot be used to move between one family and the other. See Section 3.2

for a relevant discussion. We reproduce here the integral families that arose:

3 2 .
I\(zac):(m ,0,0,0,0,0;v1,v9,v3, 14, U5, Vﬁ)a

I(3)(0’07070707m2;1/17V27V37U4;V571/6)7

vac
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73)

vac

73)

vac
73)
73)

vac

73)

vac

73)

vac

73)

vac

m?,m?,0,0,0,0; vy, v2, 13, V4, Vs, Vg),
m?,0,0,0,0,m%; vy, 9, 13, 14, U5, 15),
m? m m ,0,0,0; 11, 10,13, V4, Vs, Vg),
m? m ,0,0, m? , 05 v1, 19, U3, 1y, U5, g),
m? m ,0,0, m? m2 U1, Vo, U3, Vg, Vs, UG,
m?,M?,0,0,0,0; v1, 2, 13, V4, Vs, Vg),
m?,0,0,0,0, M?; vy, vs, 13, 14, U5, Vg),
égg m2 m2 ]\42 0,0,0; 1, v9, V3, vy, Vs, Vg),

3 2
I\(/ag m m 0 0 M 0 Vl,VQ,l/g,V4,Z/5,I/6)

(
(
(
(
(
(
(
(
(
(

I\(/Zg m2 m 0 0 m M V17V27V37V47V57V6) (631)

where

2 2 2 2 2 2. _
(m1, m3, m3, my, ms, mg; V1, V2, V3, V4, Vs, Vg) =

70 d*q1 7 d*qo 7 d*qs 1
et ) @t ) G @ e

X ! . (6.32)

(@1 = q2)? =m)" (@1 — g3)> = m2)» (g2 — g3)? — mg)"e

73)

vac

Once all 3-loop integrals had been sorted into families, and vacuum integral symme-
tries had been used to bring them into the chosen form (one of the integrals of Equa-
tion (6.31)), it remained to reduce the integrals to a set of master integrals. We did
this using the program FIRES [47] in Mathematica, since it provided a simple pre-built
module that performed the reduction in a good time, even without using the available
C++ back-end machinery. However, the master integrals of FIRE5 do not correspond to
the master integrals of Martin and Robertson [13], whose results we wished to use on
the final master integrals obtained. Therefore, we obtained linear relations connecting
the master integrals of FIRES and of [13], and used them to write our master integrals
in the form of [13].

To find the above linear relations, we took basis master integrals used in [13], and
reduced them in FIRE5S in terms of FIRE5 master integrals. From these reductions a
matrix could be formed to relate masters belonging to the two different bases, which
could be inverted to rewrite FIRE5 master integrals in terms of master integrals used
n [13]. For example, consider the case where we have two integrals (denoted by F;) in
the basis of FIRE5S that do not coincide with the basis (denoted by G;) of [13]. Then,
reducing the integrals GG; in FIRE5 gives

(@)= o) (e) o
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This approach can be easily generalised to n integrals. Given n master integrals of the
Martin and Robertson basis, arranged in a vector C_j, then upon reduction in FIRE5,
these will be rewritten as a linear combination of master integral of the FIRE5S basis,

which can be arranged in a vector F. Algebraically,
G =MF, (6.34)

where M specifies the linear relation. Since we wish to obtain F , we can simply invert
the above relation to find

F=M"G. (6.35)
This was done for each integral family, so that all integral results were in the correct

basis to use the results of [13].

These integrals were evaluated using the results of [13], discussed in Section 3.5. These
had analytic solutions for a large number of cases, but also provided a facility for
numerical evaluation of integrals for which there are no known analytic solutions. Recall
that the reduction of integrals writes an initial integral in terms of a linear combination
of master integrals, with coefficients that are functions of the spacetime dimension
d. Since we worked in d = 4 — 2e¢ dimensions, the prefactors were expanded in the
small parameter ¢ up to O(e®). This ensured that when the product of the prefactors
and the 3-loop vacuum integrals was performed, only residual terms proportional to
€,€2, ... were vanishing when the physical limit d — 4 was taken, with no divergences
remaining.
As mentioned before, the full theory calculation was performed using the strong cou-
pling ag5), despite there being six active flavours in the full theory. To compensate for
this choice, it is necessary to include threshold corrections as outlined in Section 4.5.
Following [12], we incorporate these threshold corrections in a simple way, by modifying
renormalisation constants. We introduce the quantity
9\ €
N, = (”2) ED(1+€), (6.36)
my

which makes the renormalised « in the full SM equal to the MS-renormalised o in the
five-flavour effective theory, to all orders in €. To implement the threshold corrections,
in the full theory we use the renormalisation constants

a1 (11 1
Zy=14+ "= —=n.+ = N, 2 .
p +47T6< & +3(nf—|— ))4—(’)(045), (6.37)

g Qg 1

Zy =1+ 2(-C )+(—)2 (i 4 cpm
¥ A F 47 2 \2 F Fle

1/3 17 1 n2—1 5 (n2—1
~|=C:-—C ~C ¢ NZ) -2 [ —<— ) N2
+e<4F g ety an+<4nc> ) 6(47%) ‘

+0(ad,e), (6.38)
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Am 2n,
a\2[1[70 n2—-1 n?-1
5 7 - C _ C Ng
+ (477) <€2 [3 * 2n, e }
1[ 253 5(n2-1) 3
=4 O ) 6.39

These definitions of the renormalisation constants in the full theory are sufficient to

consistently use a( ) in the full theory.

6.2.3 The Matching Calculation

The matching is performed order-by-order in the strong coupling ag, with a separate
matching performed in the up and top sectors. We first consider the up sector. The full
theory calculation produces very lengthy expressions, and so we schematically represent
the matching equations here. Loop calculations in the full theory produce amplitudes

containing the structures
87 = (wan" Prus) ® (W, Prw,), 8 = (@ay"y"y* Ppus) @ (W, vy, Pruy) , (6.40)

with coefficients denoted by .A?uu and -’4?1?11 respectively. These coefficients may be

expanded as

u(0) s \2yu(2) 3
A = Azull( Afull (E) Al +0(e),

3vu a3y, ~,u(1 Qs 3y,u(
Ar ‘Aﬁ;yll + Afull()+<4ﬂ.> Aﬁjﬂ +O( 3. (6.41)

The leading order matching equation is

AP O 87 4 a0 s3r = cw® Q)0 4 o Q) (6.42)

u(0)

where it is necessary to project .A?JH onto the physical and evanescent parts as in

Equation (6.21). The leading order matching gives

24+a 2
uv(o):_l_ AN
cy 6( 16 + In (M{%V))

2 2 2
<168 +87% + 9a + (144 + 6a) In <J\F4Lv2v> +481n? <J\F4Lv2v>> + O3,

96

u,(0) _i - 3 i Mz
O = 16 <32 * 161 (M&V

© (o1 2 r1smn (22) —ome (L +0O(e3) (6.43)
T 192 ™ M2, M2, < '

We here keep terms up to O(e?), since they are needed for the matching equation at

O(a?).
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The O(as) matching equation is

(AT Vs + AT s) = (e (@) + 2@ Q)
+ Q) + Oz Q) + 03 25) (Qp)©
+ CE’(O) EE;Z (Qp)"” ) (6.44)

In principle, there could be more terms on the effective side, but due to the conservation
of the quark current in the massless limit, the additional renormalisation constants are
zero. All terms in this equation have been calculated in the preceding sections, apart
from C,, (1) and C’;’(l). These are determined to be

2
sn2—1) (2 —1) (2804 140+ 1441n (- ))
w (1) _ 3(ne Mg, 2
Cy 4, +€ 6. +O(€), (6.45)
2_ 1) <39+281n( ” ))
v _ Tn2-1) (e i )
Cg'/ = 3o, +e G, +O(e%). (6.46)

Here only terms up to O(e) are necessary to be kept for the O(a?) matching equa-

tion.

Finally, there is the O(a?) matching equation,

Afun ) S +A?3uu )§3v — c@ (@) 4 gl Z(l QN 4 cw (O)Z( )<Q >(0)
+ Q) + ot >zf;> @+ 02 )"
£ OO 22 10,0 1 2O 78 (00 1 0k 7@ (,)©
i C;(O)ZS)ZSV) Q) (6.47)

The only unknown quantities in the above are 037(2) and C}é’m, and so we can solve
for these quantities. In the 3-loop case, things are considerably more complicated
than lower order matching calculations. Firstly, integrals arise for which there are not
analytic expressions for the finite pieces, and so these integrals can only be evaluated
numerically. Secondly, those integrals that can be represented analytically are functions
of dilogarithms. Additionally, the Wilson coefficients at O(a?) become functions of
the top mass my, even in the up sector. This is because at 3-loop level, diagrams
with a top loop can arise (see the middle diagram of Figure 6.4), which generates a
mass dependence on the mass of the quark in the loop. Since m, = m. = 0, only a
dependence on the top mass is generated in this way, which we parameterise through
the variable z as

= —. (6.48)

We present here the NNLO QCD Wilson coefficient C,, @ for the up sector. We have
+(2)

also calculated C}; , but since it is extremely lengthy, and only contributes to physical

134



quantities at O(a?), we do not present it here. 037(2) involves integrals for which

analytic solutions are not available, and we leave them explicitly unevaluated:

(n2 — 1) (1222 + 10z 4+ 1) E (0, m7, m7, M)

u,(3) _
C 15M{,1Vncx

B (n? —1) (62 — 7z + 1) G (0,0,m7, m7, M3,)
15ME n.

_ (n2 1) (242 + 1)G (0,m¢, m, 0, M)

15M32 n.
(-1 ($5) 1302 1)

CA o, T 1on,
n2 —1) (6x —1)(z — 1)21n( w )

+L12<1_1><_(C ) M7

x 15n,

15n, 157,

2

(n2 — 1) (120% + 362% + 212 + 2) n* (- )

301,
(nz - 1) (36:63 + 4872 + 137 — 1
+In?(z)| —
30N,
(n? —1) (722® + 1142* — 30z — 1)
; 30n,
2

W

(n2 —1) (182® + 3922 + 13z + 1) In?
+ In(z) (
15n,

(n2 = 1) (720 + 18022 + 552 + 4) In (>

(n? —1) (6z — 1)(z — 1) N (n?—1) (62 — 1)(z — 1)*In(z)

+
15n,
(n2 —1) (2n2 (62® — 2% + 24z + 1) + 3 (3002® + 97022 + 707z — 10))
* 180n.
(n2 —1) (1223 + 62 + 82 — 1) In*(x)
+ 30N,
(n2 = 1) (1442* + 4920 + 2800% + 182 — 1) In? (i)
- 60n.x
(n2 —1) (990ncx — 24 (75 + %) a* — (7764 — 287?) ?)
* 360n.x
(n2 = 1) (=2 (2121 +5072) a? — (66 + 47%) 2+ 39) In ({12 )
* 360n.x
(n2 — 1) (21842 + 42°(960((3) + 3683) — 483822)
B 720n.x
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(n2 —1) (72 (482" — 562> + 827 — 4) + 394z — 133)
* 720n.x

1 36
+ 57 (113n3 ek 77) + O(e). (6.49)

The above result is presented at the generic scale p. It is useful to check the pu-
independence of the Wilson coefficients, which is guaranteed by the conserved quark
current in the effective operator. For this purpose, it is useful to present C’,qf’(?’) in an
alternative form, where the integrals are evaluated at the scale p = My (which is
the natural scale for the up sector matching), thereby moving the p-dependence of the

integrals into logarithms. This is done by using the differential equations [13]

T 6i2E<ua vy, 2) = A(u)A(v) + A(u) A(y) + A(u)A(2)
+ A(v)A(y) + A(v)A(z) + A(y) A(2)
+(u/2—v—y—2)Au) + (v/2 —u—y — 2)A(v)
+(y/2—u—v—2)Ay) + (/2 —u—v —y)A(2)
+uv +uy +uz + vy +vz+yz
—9(u? +v* + 47 + 2%)/8,

, 0

1 a—IuQG(w, u, z,0,y) = Hw,u, z) + Iw,v,y) + A(u) + A(v) + A(y) + A(2)

—2u—2v—2y—2z+4w, (6.50)

where

A(z) =z [In(z) — 1] ,

In(z) =In (%) ,

I(z) = Io(x,y,2) — Ac(z) — Ac(u) — Ae(2), (6.51)

and Iy(x,y, z) is given in Equation (3.67). Since the integrals A(z) and I(x,y, z) have
pu-depedence through their logarithms, the above differentials may simply be integrated

to relate the integrals evaluated at different values of the scale u. Therefore, we can

write
I (n? —1)48 (62 — 7z + 1) Gz(o, 0,mf, mi, M) |y
p=Mw T20M2 .
(ng — 1) 48(24z + 1)G (0,mf, m7, 0, M) |y,

* 720M3 .

N (n? — 1) (21843 + 422(960((3) + 3683) — 4838z)
720N,

N (n2 —1) (=2 (482" — 562> + 82 — 4) + 394z — 133)
720n.x
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(n2 1) (48 (122 + 102 + 1) B (0,m3,m?, M3) [, )

- 720Mner
2
(=D () 13m2-1)
CA 2N T 1o,
_ ( 1) ( (ng—l) (6 —1)(z —1)%In (AZ—E)
+ L12 1—— — W
x 157,

(n2—1) (6z —1)(z —1)2 (02 —1) (62 — 1)(x —1)? ln(x))

— +
15n,. 15n,

(n? —1) (z — 1)?(6z — 1)Liz(1 — z)In (M2 )

- 15n,
2 3 2 -

%) ( C(n2-1) (122 ;O 71:433 30z — 1)

(n? —1) (62 —1)(z — 1)*In (Mz )
a 300,

(n2 —1) (1223 + 62 + 82 — 1) In*(x)
+ 30N,

(n?2 —1) (2n? (62° — 22 + 24z + 1)) In(x)
+ 180n.

(nZ —1) (3(3002® + 9702% 4+ 707z — 10) ) In(x)
+ 180n,

Uy (22 4 L (g2 = 3
—|—4(nc 1)ln<Mv2v> 24(113 =TT +0(e).  (6.52)

c

We now consider the p-dependence of C¥ at leading order in e, up to O(a?). Consider

the derivative

d d « g\ 2
S ou 2 u,(0) 4 =S (1) Zs u,(2)
gt =g (G20 + e () A uat) . ©5)
where we note from our above results that Cy (0) and C, (1) are p-independent. Then,
we have q _
«
— Ot =2 o5 C“ =) p=—cw® 6.54
papCr =20 000 (2) g G 2(). (6.54)

where [y is the leading order QCD beta function,

1Ine —2ny 23

Bo = 3 =3 for ne=3,ny=5. (6.55)

Note that since the mass anomalous dimension 7,,, has a leading order at O(«y), such
a term does not contribute at O(a?), since it is also multiplied by an a? from the
expansion of C%. Then, it is just necessary to calculate M%Cﬁ (2) _ 81?1 o Cy (@ Doing

this gives
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0 (n? —1) (3960n2z — 720n.n sz — 96n.(x — 1)%(62 — 1)zLis(1 — z))

ow(2) —
Olnp " 720n2x
(n2 — 1) (=96n.(z — 1)?(6z — 1)aLis (=2) — 288n.2? In*(z))
+
720n2x
(n2 — 1) (624n.2® In*(z) — 384n.2? In?(z) + 48n.2 In*(z))
_l’_
720n2x
(n? —1) (11n. — 2ny)
= ¢ ) 6.56
o, (6.56)

Combining this result with Equations (6.54), (6.45) and (6.55), we obtain

d g\ 2 11ne —2ns\ (3(n2 —1)
v = [ = -9 c
Mduq’ (47r) [ ( 3 > ( 4n,
(n? — 1) (11n. — 2ny)
2N,

=0+ 0(a3¢), (6.57)

showing that the Wilson coefficient C}} is p-independent, as required.

So far we have only discussed the matching in the up sector. There is a similar matching
equation in the top sector, where the effective theory calculation is exactly the same
(but with A instead of A, ), and the full theory calculation has the same structure, but
is more involved due to the presence of the heavy top mass at all orders. The matching

equation in the top and the up sectors are exactly the same, with the replacement
AT = AR, Gy Cl, Cp = O, (6.58)

and so we do not reproduce the matching equations for the top sector explicitly. It
should be noted that the renormalisation of the top sector requires the renormalisation
constant Z,,,, which receives threshold corrections, as given in Equation (6.39). The
leading order matching calculation gives
1 rlnzx
CcHO) = o

t}(o)__i 1 rzlnz
U = 16[1x+(1x)2

} + 0, (6.59)

and the next-to-leading order gives
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(n2 = 1) (~12(z = DaLiz (1) + 1202 n(w) In () - 242°In (£))

ot —
v dn.(x —1)3
n? —1 w22 — 3522 22 In(x :Un;rn“—22 az:r1"—22
+(C )(2 3522 + 722 In(z) + 12z In(z) ] (mt>+241 (m))
dn.(z —1)3
n2 — 2z r—12(x — 1)z ln n xIn(x
+( 2—1) (-2 + 38 12(47%(;)_11)( ) o (%24) + 252 In(x) — 3)+0(e),
) _ (n%—l)( 6(z — 1)zLis (1) + 622 In(x) (%) 12m21n( )—}—772:1:2)
B 32nc(aj—1)
n? —1) (—232% 4+ 922 In(x 6x In(x “—22 122 In “—22 — w2z + 30z
+(c )< i ()+ <mt)+ (mt) + )
32nc(:v—1)
(n2—1) (=6(z — )zln () In (=2L) + 7zln(z) — 7)
+ (e 1) + O(e). (6.60)

We only give the parts of the Wilson coefficients proportional to €?, since the higher
t,(2)

order terms in € are too lengthy to present here. The Wilson coefficient C;)*™, evaluated

at the matching scale my, is given by

cLo) _ 1 | 368640Liy (5) 2” | 4320(z — 1)(11z + 61)
v lp=me T 1620 (z —1)3 (z— 1)
2160((z — 96)x — 49) In(z) In? <7’7‘1—22) x
+ L/ 4 19440Ls2x + 20088v/3Lsyx
(x —1)*
720(z(2(81x — 461) 4 837) — 361)Liz(1 — z)x
_l’_
(x—1)3
720(z + 1)(z(27z — 122) + 143)Li3 (1) =
(z 1)
720(z(z(x(16z — 175) + 603) — 515) — 25)Liz (1)
(x—1)3
5760(z(27x — 122) + 143)Lis (ﬁ) z
_|_
(x—1)
5760(x(27x — 122) 4 143)Liz (—v/Z) =
_l’_
(z—1)?
1440(z + 1)((x — 4)x — 1)zH (m7,m?,0,0, M, m?) | .
—+ u=my
(z—1)3
1440(9(x — 2)x 4 16)xH (mf, mi, M§,,0,0,0) | _
- P
(x—1)?
L 240 (z (= (482% — 885z + 2629) — 3467) + 1003) {(3)z
(x—1)°
3601n (£7) (1 - o) (v (1932 + 272(x + 47) — 2566) + 69))
' (- 1)
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360 In (%g) (z (z(191z — 834) — 24(x — 1)(z + 47) coth (1 — 22) — 1661) In(z))
(z —1)*
3601n (£5) (12(z — V(e +47)Liz (1))
(z — 1)
144(z (2 (z(3z(62 (152 — 52) + 895) — 1004) — 4) + 12) + 1)F (mi, mi, mi, M%) |
M, (z —1)>(5z — 1)
144(x (z(x(x(5x — 238) — 191) + 327) — 26) — 5)G (0, m7, m7, mi, M3,) |
a M2, (x — 1)4(5z — 1)
N 47422 (52 — 1) (2(195(x — 3)x + 133) — 447)(z — 1)?
(x —1)5(bz — 1)z
2472 (52 — 1) (z (« (42 (10z(2z — 19) + 1601n*(2) — 271) + 3677) +8) — 1) (z — 1)?
(x —1)°(bz — 1)z
N —1672652° + 14808427 + 32° (25600 In*(2) — 1533505) + 32° (3519146 — 56320 In*(2))
(x —1)°(bx — 1)z
N 3z (358401n*(2) — 5169499) + 32° (2987114 — 5120In*(2)) — 141015322 + 28602z + 798
(x —1)5(bx — 1)z
N z® (—81000 In*(z) + 360(405 In(z — 1) — 608) In?(z) + 360 (608 In(z — 1) + 31572) In(x))
(x —1)°(bz — 1)z
N 27 (642000 In®(z) — 4896(235 In(z — 1) — 156) In*(x))
(x —1)°(bx — 1)z
27 (144 (5304 In(z — 1)) + 599572 — 1580) In(z)
(x —1)°(bz — 1)z
N 28 (1979160 In’(z) + 360(9823 In(z — 1) — 7048) In*(x))
(x —1)°(5x — 1)z
N 20 (6 (422880 In(z — 1) + 4269207% — 35883) In(z))
(x —1)°(bz — 1)z
N z® (2872800 In* () + (6904656 — 5155200 In(z — 1)) In*(z))
(x —1)°(bz — 1)z
N 2 (—12 (575388 In(z — 1) + 3076407% — 164655) In(z))
(x —1)°(bx — 1)z
N z* (2040600 In® () 4 360(10291 In(z — 1) — 24270) In*(z))
(x —1)°(bx — 1)z
N z* (+72 (121350 In(z — 1) 4 3727572 — 99499) In(z))
(x —1)°(bz — 1)z
N 2? (655440 In®(z) — 1440(841 In(z — 1) — 3057) In*(z))
(x —1)°(bx — 1)z
N 2® (48 (917101n(z — 1) + 1880572 — 136287) In(z))
(x —1)°(bz — 1)z
N 2? (—69480 In® () + 72(1805 In(z — 1) — 7988) In*(x))
(x —1)°(bz — 1)z

_|_

+

H=mm¢

+

M=t
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2% (6 (95856 In(z — 1) + 1648072 — 189207) In(x))
(x —1)°(bz — 1)z
z (36(60In(x — 1) + 491) In(x) — 2160In*(x)) + 1441n*(z) + 6(78 — 24In(z — 1)) In(z)
i (x —1)5(x — 1)z
144 (5(z — 1)(34z — 109) In(x)x? + ( (4061 — 4z (7622 — 98z + 559)) + 8) x — 1) Liz (1)

_l’_

(x —1)3x
144(x (z(x(x(2(35x — 334) + 64) — 252) — 29) + 2) + 2)E (m7, mi, m7, M3,) |
M} (z —1)°(5z — 1)z

p=my

+
(6.61)

This expression has also been checked to be p-independent. Note that since the top
mass appears at leading order in C?, the anomalous mass dimension 7,,, also enters the
Callan-Symanzik equation for the top sector. In the expression for Cﬁ’(Q), the following

functions arise [13]:

oo Zk
Li = —
ln(Z) Z kn ’
k=1
Liy(1/2) ~ 0.517479

2m/3
Lsy = Lsy(27/3) = —/ dz In?[2sin(z/2)] ~ —2.144767 . (6.62)
0

The Wilson coefficient of Equation (6.14) can be found from our results by the relation
C, = C! — O, which yields C, to O(a?).

6.3 Conclusions and Future Work

We have calculated for the first time the matching of box diagrams in the SM to the
effective theory below the weak scale for the process K — muvw, up to O(a?). In
calculating theoretical predictions of branching ratios, we are interested in the function
X, which receives contributions from both the box and penguin diagrams. At leading
order [44],

X§(x) = Co(x) — 4Bo(x), (6.63)

where Cy and By are Inami-Lim functions [136], which are respectively found from

matching penguin and box diagrams. Explicitly,

1 T zlnx
By(x) = 1 [1 . + = 1)2] , (6.64)
r|x—06 3z +2
Co(x) = 3 L — + @1 lnx] , (6.65)
where
C\) = —4By(z). (6.66)
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Similarly, at 1-loop
Xi(z) =C(z) —4B(x), (6.67)

where C(z) and B(z) are given to O(ay) in [135]. To construct Xy(z) to O(a?), it is
therefore necessary to obtain the function C(z) to O(a?), which we have yet to do. A
similar calculation of the decay Bs — ptp~ [12] has had to consider a similar set of
penguin diagrams, and in principle one can extract C(z) to O(a?) from their result.
This will be a useful check for our calculation. Once this has been done, an updated
value of X; can be given, as well as updated theoretical predictions for the branching

ratios of K+ — ntvw and K; — nuw.
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Chapter 7

Conclusions

In this work we have considered the dimension-five Weinberg operator of SMEFT, cal-
culating for the first time its mixing into the dimension-six lepton flavour violating
operators of the Warsaw basis. This process is responsible for the leading order contri-
butions to lepton flavour violating decays such as p — eee in SMEFT. This calculation
involved a new derivation of the renormalisation group equations for dimension-six op-
erators, including double-insertions of dimension-five operators, which does not involve
the redefinition of operators through the QCD coupling. We then compared this re-
sult to a previous calculation [11], where the mixing of the Weinberg operator into the
dimension-six operators of the Buchmuller-Wyler basis was calculated. We found that
translating our results into this basis did not replicate the findings of [11], and discov-
ered that the authors of that paper made a mistake in the projection of their results.
We then extended the calculation in a novel way, by including a second Higgs doublet,
which admitted additional dimension-five operators that mixed into the dimension-six
SMEFT operators. Following this, we determined bounds on the Wilson coefficients of
these new operators by translating experimental bounds on low-energy Wilson coeffi-
cients into bounds on SMEFT coefficients. This matching had been done previously
n [85], but we have corrected some mistakes from that work. We found that current
experimental data is already sufficient to place significant bounds on the additional

dimension-five Wilson coefficients arising from a second Higgs doublet.

We then moved on to discuss the O(a?) matching calculation for the rare decays K —
mvr. We calculated the corresponding box diagrams in the SM for the first time, and
also calculated the full renormalisation matrix of the effective theory up to O(a?) for
the first time, completing the results of [12]. Finally, we checked the p-independence of
our results, which is required by the conservation of the massless quark current. This
result, when combined with the matching of O(a?) penguin diagrams of the full theory
onto the effective theory, may be used to provide theoretical updates on the branching

ratios for the decays K+ — ntvw and Kj, — 7'uw.
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We also outlined work done on the decomposition of tensor integrals arising when using
the strategy of expansion by regions on 3-loop vacuum integrals. The decomposition
was reduced to a combinatorics problem, and an analytic expression for the decom-
position of the relevant class of tensor integrals was given. This new relation allowed
tensor integrals to be decomposed extremely quickly, which were too complex to be

decomposed in a brute force manner.

We intend to use the framework used in the matching calculation for K — wvv to
perform a matching calculation for the neutral meson mixing K° — K0 and B° — B,
to O(a?). This is a more involved calculation, since it involves two quark lines that
may interact with gluons. This results in more diagrams to be evaluated, as well as
a greater number of operators in the effective theory. However, only a further two
integral families arise in the reduction, and so the additional complexity involved in

this calculation is tractable.
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Appendix A

Dimension-6 Operators of the
Warsaw Basis

We present here a list of the dimension-6 operators of SMEFT, in the Warsaw basis [8].
These may be categorised according to the field and derivative content of the operators,
into the categories
X3 o8 and @ D? W23
X2p? X Ve’ D

where X, ¢, D and 1 are generic labels for field strength tensors, scalars, derivatives,
and fermions respectively. These operators (which have at most two fermions) are given
in Table A.1. There are additionally the four-fermion operators, which are categorised
according to their chirality structure. These are given in Table A.2. We only include
the operators that conserve baryon number, of which there are 59 in total (neglecting

flavour structures).

The matter content of SMEFT is given in Section 2.5, while the left-right derivatives
in the operator class 1/2p?D are given in Section 4.6. In addition, the dual tensors are
defined by

1
Xuw = 5Empe X7, Xe{a"w!' B}. (A1)

The operators of the Warsaw basis are a minimal set, with redundant operators from
equations of motion eliminated. Here, flavour indices on the operators are suppressed,
and in this form (with no normalisation constants), any “non-Hermitian” operator must
be added to the Lagrangian + H.c., whereas Hermitian operators are added on their
own. Here, Hermitian is defined to mean the operator is unchanged under Hermitian

conjugation when neglecting flavour indices.
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X3 S06 and cp4D2 77[}2%03
Qc | APCGIGIPG" || Qg (tp)3 Qey (o) (Gpere)
Qg | APCGIGTPG" || Qe | (pTe)D(pty) Qug (of0) (@urd)
Qw | EWIWPWI | Qup | (T Do) (9T Dug) || Quy (¥T0) ([@drp)
QW 5IJKWI£VWI;7PWPKM

X2(,02 ¢2X80 1/J2QD2D
Qe | @1eGAG™ | Qav | (Gote oW}, || Q5| (i Dy 0)@GrPty)
Qe | #eGAG™ || Qs | (Gote)pBu || QS | (41i DLe) Gyt
Qeow | oloWLW™ | Qua | @o" T u)3Gh, | Qe | (#1i Dy 9)@nter)
Qv | PleWLW™ | Quw | @omuw)dW), || QW | (¢l Dy o)@te)
QeB ¢loB, B Qus | (@™ ur)PBuy & | (oti DLe) @ v ar)
Qs | PeBwB” | Qi | @o"TA4)FCL, | Qeu | (oli Dy @)@ ur)
Quws | TeWLBY | Quw | (@™ d)T oW}, | Qua | (¢ Dy o) (@dy)
Quivp | PTWLBY | Qs | (@0 d)¢Bu | Quua | (& Dup)@mtdy)

Table A.1: Dimension-6 operators of SMEFT which involve bosons, scalars and deriva-

tives.
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(LL)(LL) (RR)(RR)
Que (vl ) (€ ) Qee (epyuer) (€7t er)
& (qp’mq )@ ) || Quu | @) (@ w)
Q| @ )@V a) || Qua | (dpyude)(deytdy)
fz? (Lol ) (@ 1) Qeu (epvuer) (Wsy us)
QY | G )@ T q) || Qea (& uer) (dsydr)
QW | @) (daytdy)
Q) | @y Auy) (@™ TAd,
(LL)(RR) (LR)(RL) and (LR)(LR)
Qe | Gub)@Ente) | Qe (Gher)(du))
Qe | Gl @y ) || Qg | (Gur)esn(ahdy)
Qu | Goul)(dovrd) | Q%) | (@TAun)ejn(dfTdy)
Qqe (T Yuar) (@57 er) Qzequ (%er)%‘k(@ut)
QW (T Ypar) (s ug) Qz(zi);u (ga,wer)ajk(ﬁg M ug)
QW) | (@ T4 @A TAuy)
QW | @) (doydy)
QY | @I (dA T Ady)

Table A.2: Four-fermion dimension-6 operators of SMEFT.
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