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Abstract

A major goal of modern physics is the detection of physics beyond the Standard Model.

Promising areas to search for such signals are processes that are either forbidden or

highly suppressed within the Standard Model, including Lepton Flavour Violation

(LFV) and rare K decays. While LFV is forbidden in the renormalisable Standard

Model, the rare K decays K+ → π+νν and KL → π0νν are not, and so precision

theoretical predictions are required to distinguish any signal of new physics from the

Standard Model background.

We discuss the contribution of the dimension-five lepton number violating Weinberg

operator to the running of dimension-six LFV operators in the Standard Model Effective

Field Theory. We also consider contributions from a hypothetical second Higgs doublet,

which gives rise to Wilson coefficients that cannot all be constrained by small neutrino

masses. We then consider bounds on the magnitudes of these Wilson coefficients, by

using phenomenological bounds on the low-energy effective theory.

Finally, we discuss the calculation of the rare decays K+ → π+νν and KL → π0νν

to Next-to-Next-to-Leading Order in QCD. These decays are theoretically very clean,

providing a promising arena for the detection of new physics. We discuss in detail the

matching of box diagrams in the full Standard Model to diagrams of the effective theory

below the weak scale, to O(α2
s). This involves the evaluation of three-loop integrals,

and we provide the Wilson coefficients obtained from the matching.
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Chapter 1

Introduction

The Standard Model (SM) of particle interactions describes nearly all phenomena of

fundamental particles to an extremely high level of precision, at the highest energies

we can currently probe. However, it is known to be an incomplete theory. The SM

only describes visible matter, which comprises only a few percent of the contents of the

universe [1], and has nothing to say about dark matter or dark energy, which make up

the remainder. In addition, the SM is unable to describe gravity, the only one of the

fundamental forces not yet to be quantised [2]. The renormalisable SM also does not

allow neutrino masses, in contradiction to experimental observations [3]. Even when

considering the fundamental properties of known particles, the SM is not infallible.

While the agreement between the SM prediction of the electron’s magnetic moment

and its experimentally measured value is a major success for the SM [4,5], it fares less

well when considering the magnetic moment of the muon. Here there is a significant

disagreement between the SM and experiment, which although is not currently at the

level of a discovery, only becomes more significant with the passage of time [6,7]. This

discrepancy is all the more interesting since the heavy mass of the muon compared to

the electron highly increases the sensitivity of the muon to the effects of new physics

from heavy new particles.

The SM is a Quantum Field Theory (QFT), which is defined by its invariance under

the symmetry group SU(3)C × SU(2)L ×U(1)Y, and by its particle content. Due to its

shortcomings, the SM can be considered to be a low energy effective theory for a more

complete theory valid at high energies [8, 9]. From this perspective, the SM can be

divided into two sectors, the first containing marginal and relevant operators, and the

second containing only irrelevant operators. Marginal and relevant operators may be

renormalised to all orders in perturbation theory using a finite number of counterterms.

The second sector, comprising of an infinite number of higher-dimension irrelevant

operators, can be renormalised order-by-order by a finite number of counterterms.

Therefore this theory is fully predictive once an expansion order is specified in the
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irrelevant operators. Higher-dimension operators are generated in the SM by heavy

particles that have masses well above the electroweak scale, and the effect of these

operators may be observed by experiments.

Higher-dimension operators generated from heavy particles are suppressed by the mass

of the heavy particle. This natural suppression typically makes the signal of effec-

tive operators very small when compared to the signal from dimension-four operators.

However, experimental searches for processes that are forbidden or highly suppressed

when only considering dimension-four operators in the SM are sensitive to the effects

of effective operators, and as such are an active field in the search for new physics.

Current experiments that aim to probe these processes include LHCb and NA62 at

CERN, KOTO at JPARC, Belle II at SuperKEKB, and Mu3e at the Paul Scherrer

Institute. The first four of these experiments are probing processes that are highly sup-

pressed within the dimension-four SM, specifically the properties of K and B mesons,

while Mu3e is searching for signals of the decay µ → eee, which is forbidden in the

dimension-four SM. These experiments promise to deliver unprecedented sensitivity to

new physics, and as such it is necessary to improve theoretical predictions in paral-

lel.

In the leptonic sector of the SM, the lowest-order effective operator is the Weinberg

operator [10], which generates Majorana masses for left-handed neutrinos. The Wein-

berg operator is Lepton Number Violating, and also generates Lepton Flavour Violation

through loop processes involving double-insertions of the Weinberg operator [11]. Since

neutrinos are known to have non-zero masses, this process is the leading order contri-

bution to Lepton Flavour Violating processes such as µ → eee, and we calculate this

contribution in this thesis. We also consider an extension to this model, by consid-

ering the effects arising from the presence of a second Higgs doublet. The mixing of

double-insertions of dimension-five operators into dimension-six operators of SMEFT

generates contributions to the renormalisation group equations of the dimension-six

processes, which we calculate and use to place bounds on the Wilson coefficients of the

two Higgs doublet model.

We also calculate the contribution to the rare decays K → πνν from the dimension-

four operators of the SM to O(α2
s). We only calculate the contribution from box

diagrams, but note that the additional penguin diagrams have already been evaluated

in a previous work [12]. This precision calculation is necessary to be able to differentiate

any contribution to the decay from higher-dimension operators generated by heavy new

physics.

This work is organised as follows:

• In Chapter 2, we describe the relevant formalism of QFTs, discussing equations
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of motion, gauge theories, and quantisation. We also discuss the unbroken SM,

which is used heavily in Chapter 5, followed by the Higgs mechanism, and the

associated generation of particle masses, and charged- and neutral-currents in the

weak sector. This is followed by a discussion of the CKM matrix, which is relevant

for Chapter 6. Finally, we discuss Majorana masses and the PMNS matrix, which

is relevant for left-handed neutrino masses, discussed in Chapter 5.

• In Chapter 3, we discuss the evaluation of Feynman integrals that arise in loop

diagrams. We discuss techniques to reduce integrals to vacuum integrals, the

symmetry properties of vacuum integrals, and their evaluation through the work

of [13]. We also describe the reduction of integrals to a basis of master integrals

using the technique of integration by parts. We then discuss dimensional regu-

larisation and renormalisation in the MS scheme, as well as the extraction of UV

divergences using infrared rearrangement. The relation between renormalisation

constants and renormalisation group equations is also considered, which is used

in Chapters 5 and 6. We finish the chapter by discussing a calculation concerning

the decomposition of tensor integrals, providing an exact combinatorial relation

for the decomposition of a class of tensor integrals into scalar integrals.

• In Chapter 4, we introduce effective field theories, starting with the decoupling of

heavy particles from low-energy processes. This is followed by a categorisation of

the types of effective operators that arise in this work, including evanescent and

Equation-of-Motion-vanishing operators. We go on to discuss the renormalisation

of effective field theories, with a focus on the renormalisation of loop diagrams

that mix dimension-five operators into dimension-six operators. We then describe

the process of matching in order to determine Wilson coefficients, as well as the

importance of threshold corrections. Finally, we give a description of the two

effective theories that arise in this work, namely the Standard Model Effective

Field Theory (SMEFT), and the formalism of the weak Hamiltonian.

• In Chapter 5, we discuss the mixing of dimension-five operators into the dimension-

six SMEFT operators of the Warsaw basis. These diagrams are the leading contri-

bution in the SM to Lepton Flavour Violating processes, and have not previously

been evaluated in the Warsaw basis. We also consider the addition of a second

Higgs doublet, and how that affects the renormalisation group equations of the

dimension-six operators of the Warsaw basis. Once the anomalous dimensions are

determined, a phenomenological discussion is given, in which the Warsaw basis

Wilson coefficients are matched onto the Wilson coefficients of the low energy

effective theory. Experimental bounds on these low-energy coefficients are then

converted to bounds on the SMEFT Wilson coefficients, which allow bounds to be

placed on the Wilson coefficients of the dimension-five operators. We also discuss
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a previous calculation [11] that considered the mixing of the Weinberg operator

into dimension-six operators of the Buchmuller-Wyler [14] basis, and show that

we obtain results in disagreement with this earlier calculation, which we find to

be due to a mistake in the projection of their results.

• Chapter 6 gives the contribution of the box diagrams of the dimension-four SM to

the process K → πνν to O(α2
s). We start with a discussion of the experimental

status of searches for these rare decays, and a discussion of theoretical branching

ratios for these decays. Since we match the full theory onto the effective theory, we

discuss the renormalisation of the effective theory, including the role of a required

evanescent operator, before moving on to the matching calculation. After giving

details of the matching equation, we give the Wilson coefficients up to O(α2
s), and

discuss the µ-independence of these coefficients as a check on the calculation.
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Chapter 2

Background

Modern particle physics is formulated in terms of Quantum Field Theory (QFT), which

is the product of the union of quantum mechanics and special relativity. In writing

down Poincaré-invariant theories for quantum mechanical fields, non-linear terms arise

which lead to interactions between different particle species. It is these interactions

that make QFTs of such interest, and natural candidates for a theory of fundamental

particles.

The richness of QFTs is enhanced further when considering their symmetry properties.

Many QFTs have a Lagrangian density L (henceforth referred to as a Lagrangian),

which displays a symmetry under some global transformation of the fields. By in-

stead requiring that these global symmetries be respected locally, new gauge fields

arise, which interact with the matter content of the theory. Quantum Electrodynamics

(QED) was the first quantum gauge theory to be formulated [15, 16], describing the

coupling of fermions with photons, and the theory yields theoretical predictions that

have been experimentally verified to an astonishing level of precision [4, 5]. Quantum

Chromodynamics (QCD), which describes the strong force, is also a gauge theory, but

unlike QED has a non-Abelian group structure. Consequently, QCD exhibits interest-

ing new phenomena including gluon self-coupling, which have profound implications

for hadronisation.

The Standard Model (SM) [17–19] of particle physics is also a gauge theory, which at

energies below the electroweak scale breaks into a simpler group structure containing

both QCD and QED. The breaking from a large group structure to a smaller group

structure is due to the Higgs mechanism [20–22], where a scalar particle obtains a non-

zero vacuum expectation value (VEV). A candidate for the Higgs boson was discovered

at the LHC in 2012 [23,24], and there are large experimental and theoretical efforts to

gain a greater understanding of the Higgs sector.

We shall here provide a brief outline of QFTs, their generalisation to gauge theories,
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and a discussion of the breaking of the SM gauge group via the Higgs mechanism.

2.1 Quantum Field Theory

To describe high energy processes at a fundamental level, it is necessary to unify special

relativity and quantum mechanics, which yields a QFT. One way to do this is by taking

a classical field theory that is Lorentz invariant, promoting the fields of the Lagrangian

to operator-valued fields, and imposing commutation relations upon those fields. The

requirements made of the Lagrangian are that it:

• is invariant under Poincaré transformations,

• contains only fields and their derivatives up to first order (as well as coupling

constants),

• is renormalisable (has a mass dimension equal to four).

The requirement that a Lagrangian contains derivatives only up to first order ensures

that the theory doesn’t suffer from problems such as non-locality and spectra that

are unbounded from below [25], and the requirement that the mass dimension of the

Lagrangian must be equal to four follows from dimensional analysis. The fundamental

object of interest is the action S, which contains all of the information of the theory.

The action is a dimensionless quantity defined as the integral of the Lagrangian over

spacetime,

S =

∫
d4x L(ϕi, ∂ϕi). (2.1)

Since the integral measure has mass dimension of minus four, the vanishing dimension

of the action requires the Lagrangian to have mass dimension of four. We have here

denoted the fields present in the Lagrangian by ϕ, which can be bosonic or fermionic.

For the SM, matter is described in terms of fermions, while interactions are mediated

by bosons (gauge vectors and a Higgs scalar). We shall see that these requirements on

mass dimension can be relaxed when talking about effective field theories [25].

The equations of motion (EoM) of the classical theory can be found using the variational

principle on the action, and are given by the Euler-Lagrange equations,

∂µ

(
∂L

∂(∂µϕi)

)
− ∂L
∂ϕi

= 0. (2.2)

2.2 Abelian Gauge Theories

Gauge theories are theories in which the Lagrangian (and therefore action) is invariant

under local continuous symmetries. Gauge theories can be constructed by starting
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with some Lagrangian that displays a global (non-local) continuous symmetry, and then

demanding that the theory should be locally invariant under the same symmetry.

Consider the Dirac Lagrangian,

LDirac = ψ̄
(
i/∂ −m

)
ψ, (2.3)

where ψ = ψ(x) are fermionic fields with mass m. Under the global continuous U(1)

transformations

ψ(x)→ eiαψ(x), ψ̄(x)→ e−iαψ̄(x), (2.4)

where α is some arbitrary constant, LDirac remains invariant. In order to make this a

gauge theory, we demand that the Lagrangian remains invariant under the local U(1)

symmetry

ψ(x)→ eiα(x)ψ(x), ψ̄(x)→ e−iα(x)ψ̄(x). (2.5)

Transforming the fields in this way causes the Lagrangian to transform as

LDirac → ψ̄
(
i/∂ −m

)
ψ + iψ̄e−iα(x)γµ

(
∂µe

iα(x)
)
ψ (2.6)

= LDirac − ψ̄γµ (∂µα(x))ψ, (2.7)

and so the Dirac Lagrangian is not invariant under the local U(1) transformation. While

the mass term is invariant under the gauge transformation, the derivative term is not,

and so the insistence of gauge symmetry corresponds to a redefinition of derivatives.

The gauge-covariant derivative for QED is

Dµψ(x) = ∂µψ(x) + ieAµ(x)ψ(x) , (2.8)

where Aµ(x) is a gauge field that corresponds to the photon, and e is the QED coupling

constant. This gauge field transforms under U(1) transformations as

Aµ(x)→ Aµ(x)− 1

e
∂µα(x). (2.9)

Since Aµ(x) is a new field that appears in the Lagrangian, it requires a kinetic term

of its own that is built out of Aµ(x) and its derivatives, and is invariant under U(1)

transformations. This is given in terms of the field strength tensor Fµν ≡ ∂µAν−∂νAµ,

and the kinetic term is

δL = −1

4
FµνF

µν .

It is seen that promoting a global symmetry of the Dirac Lagrangian to a local symmetry

necessarily introduces a gauge field that can be identified as the photon. A Lagrangian

for fermions that is Lorentz invariant, gauge invariant under the group U(1), charge-

and parity-conserving, and only contains terms of mass-dimension four is

LQED = ψ̄
(
i /D −m

)
ψ − 1

4
FµνF

µν = ψ̄
(
i/∂ −m

)
ψ − 1

4
FµνF

µν − eψ̄γµψAµ. (2.10)
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This is the Lagrangian of QED. Imposing a gauge symmetry on a free theory causes to

the field of the free theory to interact with a gauge particle.

QED is an Abelian gauge theory, which means that gauge transformations commute,

which is clearly the case for U(1) transformations,

eiα(x)eiβ(x) = eiβ(x)eiα(x). (2.11)

2.3 Non-Abelian Gauge Theories

Lagrangians can also have global symmetries under continuous transformations whose

group members do not commute. These are non-Abelian theories. Consider the exam-

ple of QCD, where there are three copies of every quark, each with a different colour

index, r, b or g, and we can construct triplets as

Ψ(x) =

ψr(x)
ψb(x)
ψg(x)

 . (2.12)

Apart from colour, all ψi (i ∈ {r, b, g}) have the same quantum numbers. The free

Lagrangian is again the Dirac Lagrangian, but with one copy for each colour,

L0 = ψ̄r
(
i/∂ −m

)
ψr + ψ̄b

(
i/∂ −m

)
ψb + ψ̄g

(
i/∂ −m

)
ψg (2.13)

= Ψ̄
[(
i/∂ −m

)
13×3

]
Ψ. (2.14)

The Lagrangian L0 is invariant under the global SU(3) transformation

Ψ(x)→ VΨ(x) where V = exp
(
iαATA

)
, (2.15)

where TA = 1
2λ

A are the generators of SU(3) (A = 1, . . . , 8), and λA are the Gell-Mann

matrices [26]. To make this a gauge symmetry, the global symmetry is promoted to a

local symmetry,

Ψ(x)→ V (x)Ψ(x) where V (x) = exp
(
iαA(x)TA

)
, (2.16)

and a covariant derivative DµΨ(x) must be constructed that transforms in the same

way as the triplet Ψ(x). The covariant derivative for QCD is

Dµ = ∂µ + igsG
A
µ (x)TA , (2.17)

where gs is the strong coupling of QCD. Since there are eight generators of SU(3), there

are eight gauge fields GAµ (x), called gluons. The gluon field transforms under SU(3)

as

GAµ (x)→ GAµ (x)− 1

gs
∂µα

A(x)− fABCGBµ (x)αC(x), (2.18)
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where fABC are the structure constants of QCD.

The kinetic term of the gluon is written in terms of the QCD field strength tensor,

GAµν = ∂µG
A
ν − ∂νGAµ − gsfABCGBµGCν , (2.19)

where the kinetic term is

δL = −1

4
GAµνG

Aµν . (2.20)

The QCD field strength tensor GAµν contains an extra term compared to the QED tensor

Fµν , which arises from the commutator of QCD generators. This term does not appear

in the QED field strength tensor since the QED generators commute. The generators

satisfy the commutation relations[
TA, TB

]
= ifABCTC , (2.21)

where fABC are the totally antisymmetric structure constants of SU(3).

Invariants of SU(n) Lie groups are called Casimirs. Two which will appear frequently

in Chapter 6 are the quadratic Casimirs CF and CA, of the fundamental and adjoint

representations respectively. These are given by

CF (n) =
n2 − 1

2n
, and CA(n) = n , (2.22)

which for SU(3) take the values CF = 4/3 and CA = nc = 3.

A gauge-invariant Lagrangian for a locally SU(3) symmetric theory containing dynam-

ical fermions and gluons can be written as

LQCD = Ψ̄
(
i /D −m

)
Ψ− 1

4
GAµνG

Aµν . (2.23)

This is the classical Lagrangian of QCD. Due to the non-Abelian structure of the field

strength tensor, this Lagrangian contains gluon cubic and quartic self-interactions,

which are not present in Abelian theories such as QED. These self-couplings change

the phenomenology of the theories drastically, and lead to confinement and asymptotic

freedom in QCD [27,28].

Since mass terms for gauge fields, such as 1
2mAA

µAµ are not gauge invariant, such mass

terms are forbidden, and gauge particles are massless.1

1However, if the gauge symmetry is spontaneously broken, then the gauge fields acquire a vacuum
expectation value (VEV), and the gauge particles become massive. This happens in the electroweak
sector via the Higgs mechanism, discussed in Section 2.5.
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2.4 Quantisation of Gauge Theories

The fundamental quantities in QFTs are Green’s functions,

G(n)(x1, . . . , xn) = 〈0|T (ϕ(x1) . . . ϕ(xn)) |0〉 , (2.24)

which can be computed in the path-integral formalism by

G(n)(x1, . . . , xn) =

∫
Dϕϕ(x1) . . . ϕ(xn)eiS[ϕ(x),∂µϕ(x)]∫

DϕeiS[ϕ(x),∂µ(x)]
, (2.25)

where Dϕ indicates that the integral is over all configurations of the field ϕ(x), and

S [ϕ(x), ∂µ(x)] is the classical action for the field ϕ(x).

Introducing the generating functional for a source j(x),

Z[j] = N

∫
DϕeiS[ϕ(x),∂µϕ(x)]+i

∫
d4x j(x)ϕ(x), (2.26)

where N is a normalisation factor, Green’s functions can be obtained by

G(n)(x1, . . . , xn) = (−i)n 1

Z[0]

δn

δj(x1) . . . δj(xn)
Z[j]

∣∣∣∣
j=0

. (2.27)

The full Green’s function contains both connected and disconnected parts. Since only

the connected pieces are of interest in scattering amplitudes, they can be isolated by

defining

Z[j] = eiW [j], (2.28)

where W [j] is the generating functional for connected Green’s functions,

G(n)
conn(x1, . . . , xn) = (−i)n−1 δn

δj(x1) . . . δj(xn)
W [j]

∣∣∣∣
j=0

. (2.29)

A subclass of connected Green’s functions are one-particle-irreducible (1PI) Green’s

functions. When represented as Feynman diagrams, these correspond to diagrams that

cannot be cut into two disconnected pieces by cutting a single propagator, and contain

the entire quantum structure of the theory, since one-particle-reducible diagrams may

be systematically built from 1PI diagrams. 1PI Green’s functions may be directly

obtained by considering the quantum effective action Γ[ϕ], defined as the Legendre

transform of W [j],

Γ[ϕ] = −W [j]−
∫

d4y j(y)ϕ(y) , (2.30)

where
δ

δϕ(x)
Γ[ϕ] = −j(x) . (2.31)

A further class of important Green’s functions for low-energy physics are the one-light-

particle-irreducible Green’s functions. These Green’s functions correspond to Feynman

10



diagrams that cannot be cut into two disconnected pieces by cutting a single propagator

of a light particle. These Green’s functions contain the dynamics of light particles, and

contain the physics of effective theories obtained after integrating out heavy particles.

This is relevant for Chapter 4.

2.4.1 Faddeev-Popov Quantisation and Ghosts

Naively using the construction of the previous section to calculate Green’s functions

in gauge theories involves taking the path integral over an infinite number of gauge-

equivalent field configurations, leading to unphysical divergences. It is possible to avoid

this issue by only integrating over field configurations that are gauge-inequivalent, using

the Faddeev-Popov prescription [29]. In this prescription, the generating functional for

an arbitrary gauge field in the presence of no sources is given by [30]

Z[0] =
∏
a

∫
DAaµ

n∏
b=1

δ(Gb(A
a
µ)) det

∣∣∣∣δGbδαa

∣∣∣∣eiS[Aaµ], (2.32)

where αa(x) are the gauge parameters of Equation (2.16), and Gb(A
a
µ) are gauge-fixing

terms that are vanishing for certain values of Aaµ(x). This fixes the gauge, making sure

that the path integral is only taken over gauge-inequivalent field configurations.

The general equation for a gauge-fixed generating functional given in Equation (2.32)

contains a determinant of the form det |δGb/δαa|. This determinant can be removed

by using the identity

detM =

∫
DcDc̄ eic̄Mc, (2.33)

where c and c̄ are anti-commuting Grassmann fields. For a non-Abelian theory such as

QCD, the generating functional is [30]

Z[jaµ] =

∫ ∏
a,b,d

DAaµDcbDc̄d e
i
∫

d4x

[
L[Aaµ]+jaµA

µ
a+c̄bMbec

e− 1
2ξ

∑
b
F 2
b (Aaµ)

]
. (2.34)

Note that the gauge-fixing condition for non-Abelian theories has been denoted by

Fb(a
a
µ). The quantities

Mbe ≡
δFb(A

a
µ)

δαe
(2.35)

are in general functions of the gauge fields Aaµ, and consequently the generating func-

tional couples the gauge fields with the scalar Grassmann fields c and c̄. Since the

Grassmann fields have no source terms, they cannot exist as external particles and

only couple to gauge fields within closed loops. Due to this behaviour, they are known

as Faddeev-Popov ghosts, and they gauge transform under the fundamental represen-

tation of the gauge group.
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Considering the case of QCD, the gauge-fixing condition can be taken to be Fb = ∂µG
µ
b ,

which transforms as (using Equation (2.18))

δFb(G
a
µ)

δαe
= − 1

gs
∂2δbe − fabe∂µGµa . (2.36)

Therefore, the ghost-Lagrangian is

L = c̄bMbec
e = −c̄b∂µ

(
δbe∂

µ + gsf
abeGµa

)
ce, (2.37)

where the ghost fields have been rescaled as c̄bce

gs
→ c̄bce.

2.5 The Standard Model and the Higgs Mechanism

The Standard Model is a unified description of the electromagnetic, weak, and strong

forces. It has a gauge symmetry of SU(3)C × SU(2)L × U(1)Y, where the SU(2) sym-

metry acts on doublets of left-handed fermions, and the charge of the U(1) group is

hypercharge, Y . The SM Lagrangian is [8]

LSM = −1

4
GAµνG

Aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν + (Dµϕ)† (Dµϕ) +m2ϕ†ϕ− 1

2
λ
(
ϕ†ϕ

)2

+ i
(
` /D`+ e /De+ q /Dq + u /Du+ d /Dd

)
−
(
`Γeeϕ+ qΓuuϕ̃+ qΓddϕ+ H.c.

)
,
(2.38)

where the Yukawa couplings Γi, i ∈ {e, u, d} are matrices in generation space. The

matter content (with group representations and charges listed in Table 2.1) is

• left-handed lepton doublets `,

• right-handed lepton singlets e (no sterile right-handed neutrinos are included in

the SM, since they are unobservable),

• left-handed quark doublets q,

• right-handed up-type quark singlets u,

• right-handed down-type quarks d,

and ϕ denotes the Higgs doublet with hypercharge Yϕ = 1
2 . The quadratic Higgs term

is a mass term, but with the “wrong” sign, which leads to spontaneous symmetry

breaking, discussed below. ϕ̃ is defined by

ϕ̃i ≡ εij(ϕ∗)j , (2.39)

where i and j are SU(2) indices of the fundamental representation, and εij is the anti-

symmetric Levi-Civita symbol, with ε12 = +1. With this definition, ϕ̃ transforms under

the fundamental representation of SU(2), and has hypercharge Yϕ̃ = −1
2 . GAµν ,W

I
µν and
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Field SU(3)c SU(2)L Y

` - 2 −1/2
e - 1 −1
q 3 2 1/6
u 3 1 2/3
d 3 1 −1/3
ϕ - 2 1/2

Table 2.1: Fermions and Higgs doublet of the SM, with their hypercharges Y , and
their representation under the constituent gauge groups of the SM.

Bµν are the field strength tensors of the gauge groups SU(3)C,SU(2)L, and U(1)Y re-

spectively, given by

GAµν = ∂µG
A
ν − ∂νGAµ − gsfABCGBµGCν ,

W I
µν = ∂µW

I
ν − ∂νW I

µ − g2ε
IJKW J

µW
K
ν ,

Bµν = ∂µBν − ∂νBµ,

(2.40)

where fABC and εIJK are structure constants, and g2 is the SU(2) coupling constant.

The sign conventions for covariant derivatives are illustrated by the covariant derivative

of q, which is charged under the entire SM gauge group:

Dµq =
(
∂µ + igsT

AGAµ + ig2S
IW I

µ + ig1YqBµ
)
q, (2.41)

where TA and SI are respectively the generators of SU(3)C and SU(2)L, and g1 is the

U(1)Y coupling.

It is important to note that LSM contains no mass terms, and so all fields (before

electroweak symmetry breaking) are massless.

The SU(2)L×U(1)Y gauge group of the SM is broken by the Higgs doublet ϕ acquiring

a VEV. The relevant part of the Lagrangian is

LSM

∣∣∣
SU(2)L×U(1)Y

= −1

4

(
W I
µν

)2 − 1

4
(Bµν)2 + (Dµϕ)† (Dµϕ) +m2ϕ†ϕ− λ

(
ϕ†ϕ

)2
,

(2.42)

which is invariant under gauge transformations

ϕ→ eiα
I(x)SIeiβ(x)Yϕϕ. (2.43)

The Higgs doublet is a weak isospin doublet of complex scalar fields

ϕ =

(
ϕ+

ϕ0

)
, (2.44)

which has a potential V (ϕ) = −m2ϕ†ϕ+λ
(
ϕ†ϕ

)2
. The potential is minimised for

|ϕ|2 =
m2

2λ
, (2.45)
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which means ϕ acquires a VEV. Since Equation (2.45) only specifies the magnitude of

the Higgs doublet that minimises the potential, the VEV of the Higgs doublet can be

freely chosen to be

〈ϕ〉 =
1√
2

(
0
v

)
, (2.46)

where v =
√
m2/λ is real. Fluctuations around this minimum (which can be treated

perturbatively) can then be parameterised by a scalar field h(x), called the Higgs field,

allowing the Higgs doublet to be written as

ϕ(x) =
1√
2

(
0

v + h(x)

)
. (2.47)

This choice is called the unitary gauge.

When the Higgs doublet acquires a non-zero VEV, it gives masses to otherwise massless

gauge bosons and fermions of the unbroken SM Lagrangian, given in Equation (2.38).

For the gauge bosons, the relevant part of the Lagrangian is in the covariant derivative of

the Higgs doublet, and upon inserting the VEV of the Higgs doublet this becomes

δL =
1

2

(
0 v

) [
g2W

I
µS

I + g1YϕBµ
] [
g2W

JµSJ + g1YϕB
µ
](0

v

)
. (2.48)

Explicitly entering the SU(2) generators as SI = τ I/2 , where τ I are the Pauli matri-

ces,

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
, (2.49)

this part of the Lagrangian becomes

δL =
v2

8

[
g2

2

((
W 1
µ

)2
+
(
W 2
µ

)2)
+
(
−g2W

3
µ + g1Bµ

)2]
. (2.50)

Consequently the fields W 1
µ and W 2

µ acquire a mass of MW = g2v/2. The final term

involving W 3
µ and Bµ can be rewritten as

(
−g2W

3
µ + g1Bµ

)2
=
(
W 3
µ Bµ

)( g2
2 −g1g2

−g1g2 g2
1

)(
W 3
µ

Bµ

)
=
(
W 3
µ Bµ

)
M

(
W 3
µ

Bµ

)
, (2.51)

where M is a mass matrix. To extract the mass eigenstates and their masses, it is

necessary to diagonalise the system, by finding the eigenvalues and eigenvectors of M.

The eigenvalues are

λ1 = 0, λ2 = g2
1 + g2

2, (2.52)

with eigenvectors

~x1 =
1√

g2
1 + g2

2

(
g1

g2

)
and ~x2 =

1√
g2

1 + g2
2

(
−g2

g1

)
(2.53)

14



respectively. The eigenvectors are normalised to respect the canonical normalisation of

the W I
µ and Bµ kinetic terms. Therefore in the propagating mass basis there are two

bosons (
Aµ
Zµ

)
=

1√
g2

1 + g2
2

(
g1 −g2

g2 g1

)(
W 3
µ

Bµ

)
, (2.54)

with masses

MA = 0, MZ =
v

2

√
g2

1 + g2
2. (2.55)

The leptonic gauge sector of the SM Lagrangian contains the terms∑
r

i`r /D`r ⊃ −g2

∑
r

`rγ
µ
(
S1W 1

µ + S2W 2
µ

)
PL`r

= −g2

2

∑
r

(
νLr eLr

) [(0 1
1 0

)
W 1
µ +

(
0 −i
i 0

)
W 2
µ

]
γµPL

(
νLr
eLr

)
= −g2

2

∑
r

[
νLr

(
W 1
µ − iW 2

µ

)
γµPLeLr + eLr

(
W 1
µ + iW 2

µ

)
γµPLνLr

]
≡ − g2√

2

∑
r

[
νLrW

+
µ γ

µPLeLr + eLrW
−
µ γ

µPLνLr
]
, (2.56)

where the fields W±µ (x) are defined as

W±µ =
1√
2

(
W 1
µ ∓ iW 2

µ

)
. (2.57)

These are the charged mediators of the weak force, which have mass MW± = MW ,

since they are a linear combination of the fields W 1
µ and W 2

µ .

To summarise the SU(2)L × U(1)Y sector of the SM, the fields W 1
µ and W 2

µ mediate

charged-current interactions due to the non-diagonal structure of the SU(2) generators

S1 and S2, mixing to form fields of electric charge W±µ . The W 3
µ and Bµ mediate

neutral-current electroweak interactions due to the diagonal structure of S3 and Y 12×2,

and mix to give the Z-boson and the photon. After electroweak symmetry breaking

(EWSB), the Higgs mechanism gives mass to the W±µ and Zµ fields, while leaving the

photon Aµ massless.

Fermions also gain mass from the Higgs mechanism. Dirac mass terms are given

by

mψ̄ψ = m
(
ψLψR + ψRψL

)
, (2.58)

where

ψL/R = PL/Rψ , and ψL/R = ψPR/L . (2.59)

PL and PR are chirality projectors defined by

PL =
1− γ5

2
, PR =

1 + γ5

2
. (2.60)
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Dirac mass terms cannot be written in the SM Lagrangian since the left- and right-

handed fields transform under different representations of SU(2), and as such Dirac

mass terms are not gauge invariant. However, it is instead possible to write Yukawa

terms,

LSM,Yuk = −
(
`Γeeϕ+ qΓuuϕ̃+ qΓddϕ+ H.c.

)
(2.61)

which are gauge invariant and couple left- and right-handed fermions. Here, Γe,Γu,

and Γd are respectively the Yukawa matrices for charged leptons, up-type quarks, and

down-type quarks. Upon EWSB, the Higgs doublet can be replaced by its VEV to

yield

LSM,Yuk = −
(
v√
2
eLΓeeR +

v√
2
uLΓuuR +

v√
2
dLΓddR + H.c.

)
, (2.62)

resulting in the generation of Dirac mass terms for the fermions, proportional to the

VEV of the Higgs doublet.

The SM is described by a QFT with quarks and leptons as the matter content, with

an SU(3)C × SU(2)L × U(1)Y gauge symmetry that is spontaneously broken by the

Higgs doublet acquiring a VEV. This spontaneous symmetry breaking produces a new

physical massive Higgs boson, gives mass to the SU(2) gauge bosons, and gives rise to

weak charged-current processes.

2.6 The CKM Matrix

The quark Yukawa sector of the unbroken SM is

LYuk,q = −q̄pΓuprϕ̃ur − q̄pΓdprϕdr + H.c., (2.63)

which after EWSB becomes

Lmass,q = − v√
2

(
d̄pLΓdprd

r
R + ūpLΓupru

r
R

)
+ H.c., (2.64)

where p, r are generation indices and the subscripts L/R denote a left-/right-handed

Dirac fermion ψ. The Yukawa matrices Γ are non-diagonal, implying that the flavour

states up, dp . . . appearing in the SM Lagrangian are not propagating particles. To find

the propagating states, it is necessary to diagonalise the mass terms into the canonical

form. This requires the diagonalisation of the Yukawa matrices.

Yukawa matrices are non-Hermitian complex 3 × 3 matrices in flavour space. The

products ΓuΓ†u and Γ†uΓu are Hermitian, with equivalent Hermitian products for the

down-type Yukawa matrix. These combinations can be diagonalised by unitary matrices

as

ΓuΓ†u = UuM
2
uU
†
u, Γ†uΓu = KuM

2
uK
†
u, (2.65)
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where M2
u is a diagonal matrix with real eigenvalues. An equivalent set of expressions

holds for d-type Yukawa matrices. Both of the above relations are satisfied by the

decompositions

Γu = UuMuK
†
u and Γd = UdMdK

†
d. (2.66)

Inserting these decompositions into the quark mass Lagrangian gives

Lmass,q = − v√
2

[
d̄pL

(
UdMdK

†
d

)
pr
drR + ūpL

(
UuMuK

†
u

)
pr
urR

]
+ H.c. (2.67)

Rotating the right- and left-handed quarks independently in generation space as

dpR → Kd
prd

r
R, upR → Ku

pru
r
R (2.68)

and

dpL → Udprd
r
L, upL → Uupru

r
L, (2.69)

defines the quarks in the mass basis, in which the mass Lagrangian is diagonalised,

Lmass,q = − v√
2

[
d̄pLM

d
prd

r
R + ūpLM

u
pru

r
R

]
+ H.c. (2.70)

Applying this flavour rotation to the entire quark Lagrangian leaves the Lagrangian

mostly unchanged, since terms that do not mix up- and down-type quarks are diagonal

in flavour space. However, mixing does occur in the iq̄ /Sq term,

iq̄p /Dqp ⊃ −q̄p
(
g1Yq /B12×2 + g2 /W

I
SI
)
qp

=
(
ūL d̄L

)p(g1Yq /B + g2
2
/W

3 g2√
2
/W

+

g2√
2
/W
−

g1Yq /B − g2
2
/W

3

)(
uL
dL

)p
⊃ g2√

2
ūpL /W

+
dpL +

g2√
2
d̄pL /W

−
upL. (2.71)

Rotating to the mass basis using Equation (2.69), these terms transform to

g2√
2

(
ūpL /W

+
dpL + d̄pL /W

−
upL

)
→ g2√

2

(
ūmLU

u†
mp /W

+
Udpnd

n
L + d̄mLU

d†
mp /W

−
Uupnu

n
L

)
=

g2√
2

(
ūmL /W

+
Vmnd

n
L + d̄mL /W

−
V †mnu

n
L

)
, (2.72)

where the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix V is defined as

V ≡ U †uUd =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (2.73)

A general 3 × 3 complex matrix has 18 real parameters. Unitarity provides nine con-

straints, which can be parameterised by three angles and six phases. However, since

the mass terms of the Lagrangian are invariant under the rephasing of the quark fields

(ūmL → ūpLD
u†
pm, dnR → Dd

nrd
r
L, where Du and Dd are diagonal matrices of phases), the
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quark fields can also be rephased in the charged-current sector of the Lagrangian. This

transforms the charged-current term to

g2√
2

(
ūmL /W

+
Vmnd

n
L + H.c.

)
→ g2√

2

(
ūpL /W

+
Du†
pmVmnD

d
nrd

r
L + H.c.

)
, (2.74)

where

Du†V Dd =

Du∗
11D

d
11V11 Du∗

11D
d
22V12 Du∗

11D
d
33V13

Du∗
22D

d
11V21 Du∗

22D
d
22V22 Du∗

22D
d
33V23

Du∗
33D

d
11V31 Du∗

33D
d
22V32 Du∗

33D
d
33V33

 . (2.75)

Therefore, there are six quark phases that may be chosen in order to eliminate the six

phases of the CKM matrix. However, if all of the rotations are the same, then the phase

shifts will cancel and the CKM matrix will not be changed. Therefore, it is only possible

to eliminate five phases from the CKM matrix by quark field redefinitions [31].

Since the free parameters of the CKM matrix may be expressed as three angles and a

phase, the standard parameterisation of the CKM matrix is given by the product of

three rotation matrices in orthogonal planes, with a phase. It is given by [32]

V =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (2.76)

where sij ≡ sin θij and cij ≡ cos θij , and δ is a phase which is responsible for all CP

violation in the SM.

2.7 Majorana Masses and the PMNS Matrix

In the SM it is not possible to write down a mass term for neutrinos at dimension-

four. However, Majorana masses for left-handed neutrinos can be generated from the

dimension-five Weinberg operator [10]. In this section we discuss Dirac and Majorana

masses in general, which will be useful for Chapter 5.

A 4-component Dirac spinor can be represented in the Weyl basis as

Ψ =

(
ψL
ψR

)
, (2.77)

where ψL and ψR are 2-component Weyl spinors that transform under Lorentz trans-

formations as

ψL → exp

[
1

2

(
iθjτ

j − βjτ j
)]
ψL

ψR → exp

[
1

2

(
iθjτ

j + βjτ
j
)]
ψR,

(2.78)
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where τ j are the Pauli matrices. A Lorentz invariant mass term can therefore be written

as (working in the Weyl basis of the gamma matrices)

mΨΨ = m
(
ψ†Lψ

†
R

)
γ0

(
ψL
ψR

)
= m

(
ψ†LψR + ψ†RψL

)
. (2.79)

Lorentz invariance is confirmed infinitesimally since

δ
(
ψ†LψR

)
= δ

(
ψ†L

)
ψR + ψ†Lδ (ψR)

= ψ†L

(
1

2

(
−iθjτ j − βjτ j

))
ψR + ψ†L

(
1

2

(
iθjτ

j + βjτ
j
))

ψR = 0. (2.80)

The Dirac mass term is also often written in terms of chiral Dirac spinors as

mΨΨ = m
(
ΨLΨR + ΨRΨL

)
, (2.81)

where ΨL/R = PL/RΨ. Yukawa interactions in the SM produce Dirac masses after

EWSB.

Another Lorentz invariant mass term can be written as

iMψTLτ2ψL, (2.82)

with another similar term in terms of right-handed Weyl spinors. This is a Majorana

mass term. This mass term can be seen to be Lorentz invariant in the same way as the

above Dirac mass, additionally using the relation τTj τ2 = −τ2τj .

It is possible to write a Majorana mass term in terms of Dirac fermions. First it is

necessary to define the charge conjugate Ψc of a fermion field Ψ, where Ψ and Ψc have

opposite quantum numbers, but equal mass. Ψc is defined as [33],

Ψc ≡ C
(
Ψ
)T

= CΨ∗, (2.83)

where C is the charge conjugation matrix, C = −iγ2 in the Weyl basis. C satisfies the

relations [33]

C† = C−1, CT = −C, CΓTi C
−1 = ηiΓi, (2.84)

where there is no summation over i, and

ηi =

{
1 for Γi = 1, iγ5, γµγ5

−1 for Γi = γµ, σµν .
(2.85)

These relations imply that

(ΨL)c = (ΨL)c†γ0 =
(
−γ0CΨ∗L

)†
γ0 = −ΨT

LC
−1. (2.86)

It is useful to write Ψc
L explicitly in terms of Weyl fermions:

Ψc
L = (ΨL)c = −iγ2Ψ∗L = −i

(
0 τ2

−τ2 0

)(
ψ∗L
0

)
=

(
0

iτ2ψ
∗
L

)
. (2.87)
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Similarly, using Equation (2.86),

Ψc
L = [(ΨL)c]† γ0 =

(
−iψTLτ2 0

)
. (2.88)

The Lagrangian term (written in terms of Dirac spinors)

−MΨc
LΨL, (2.89)

can be seen to be a Majorana mass term since

−MΨc
LΨL = −M

(
−iψTLτ2 0

)(ψL
0

)
= iMψTLτ2ψL, (2.90)

which is exactly the Lorentz invariant Majorana mass term of Equation (2.82).

The SM does not include right-handed neutrinos, since they are completely uncharged

and therefore impossible to observe directly. Additionally, although the renormalisable

SM does not contain mass terms for left-handed neutrinos, experimental observation

of neutrino oscillations imply that the left-handed neutrinos must be massive, with

the mass eigenvalues being non-degenerate [3]. Therefore, a Lagrangian that describes

massive left-handed neutrinos without right-handed neutrinos after EWSB is

L = i¯̀p /D`p −
v√
2
eLpΓ

pr
e eR,r −

1

2
Mpr
ν ν

c
LpνL,r, (2.91)

where Γe is the lepton Yukawa matrix that gives masses to the charged leptons, and Mν

is the complex symmetric Majorana mass matrix for left-handed neutrinos [34]. Note

that we have conventionally normalised the Majorana mass term by a factor of 1/2.

As for the CKM matrix, the lepton Yukawa matrix can be diagonalised by a bi-unitary

transformation,

Γe = UeMeK
†
e , (2.92)

where Me is a diagonal matrix of masses, and the Lagrangian can be transformed into

the charged-lepton mass basis by rotating in generation space as

eR,r → Krm
e eR,m

eL,p → Upne eL,n

νL,p → Upne νL,n

}
=⇒ `p → Upne `n, (2.93)

where the individual rotations of the left-handed charged leptons and left-handed neu-

trinos imply that the left-handed doublet ` transforms as a single entity. Then, the

Lagrangian becomes (including only the charged-current part of the covariant deriva-

tive, since this is where effects of generation rotations are manifest)

L = − g2√
2

(
νLpγ

µeL,pW
+
µ + eLpγ

µνL,pW
−
µ

)
− vMp

e√
2
eLpeR,p −

1

2
νcLpC

pr
ν νL,n, (2.94)

where

Cν ≡ UTe MνUe. (2.95)
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Since the Majorana mass matrix Mν is complex symmetric and the matrix Ue is unitary,

the matrix Cν is also complex symmetric (equal to its transpose). Cν can therefore be

diagonalised using a congruence transformation [35],

Dν = UTPMNSCνUPMNS, (2.96)

where Dν is a diagonal matrix of neutrino masses and UPMNS is a unitary matrix.

Rotating the neutrinos in generation space as

νL,p → UprPMNSνL,r (2.97)

brings the lepton Lagrangian fully into the mass basis,

L = − g2√
2

(
νLrU

†rp
PMNSγ

µeL,pW
+
µ + eLpγ

µUprPMNSνL,rW
−
µ

)
− vM

p
e√

2
eLpeR,p−

1

2
νcLpD

p
ννL,p.

(2.98)

The Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix UPMNS is the neutrino equiv-

alent of the CKM matrix, and relates flavour eigenstates to mass eigenstates. Since

it is a unitary 3 × 3 matrix, it has in general nine degrees of freedom, like the CKM

matrix. However, since Majorana mass terms are not invariant under the rephasing of

fermion fields, there are only three degrees of freedom that may be removed from the

PMNS matrix by field rephasings. Therefore the six degrees of freedom of the PMNS

matrix may be parameterised by three angles and three phases analogously to the CKM

matrix [32],

UPMNS =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


×

1 0 0

0 eiα21/2 0

0 0 eiα31/2

 ,

where α21 and α31 are called Majorana phases. If ignoring the Majorana phases,

then the PMNS appears identical to the CKM matrix. However, the experimentally

determined angles of the CKM matrix and PMNS matrix are very different [32], leading

to different mixing behaviour in the quark and lepton sectors. Whereas the CKM

matrix is nearly diagonal, the PMNS matrix has large non-diagonal terms, allowing

considerable inter-generational mixing. It is not possible to measure the Majorana

phases in neutrino oscillation experiments, since the phases cancel in the transition

amplitude between neutrinos of different flavour [36], and consequently the Majorana

phases are currently unknown.
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Chapter 3

Renormalisation

Calculations in quantum field theories contain unphysical ultraviolet (UV) divergences,

which suggest that all physical quantities should be infinite, which is physically non-

sensical. This feature plagued the early years of QED, and was only resolved by the

efforts of Tomonaga, Schwinger, and Feynman, for which they were awarded the Nobel

Prize for physics in 1965 [37]. In perturbation theory, UV divergences appear when

evaluating loop diagrams, which encode the quantum effects of the theory. Loop di-

agrams are typically divergent since they include virtual particles with indeterminate

momenta, and so the diagrams generate momentum integrals that formally extend to

infinite momenta. To extract physically meaningful finite quantities from divergent

integrals, it is first necessary to parameterise the divergences, a process known as regu-

larisation. Once the integrals have been regularised, the large-momentum divergences

are systematically subtracted in a procedure known as renormalisation.

3.1 Feynman Integrals

Perturbation theory relies on the evaluation of Feynman diagrams, which can contain

loops. These loops involve the exchange of virtual particles with unspecified ‘loop’ mo-

menta, and consequently it is necessary to integrate the expressions from loop diagrams

over all such loop momenta. Since loop momenta enter expressions in the propagators

of the virtual particles, the result of a loop diagram contains a Feynman integral, whose

integrand is a function of those propagators.
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For example, in ϕ4 theory, there exists the diagram

p1

p2

q

p3 + p4 − q

p3

p4

=
λ2

2

∞∫
−∞

d4q

(2π4)

1

q2 −m2 + iε

1

(p3 + p4 − q)2 −m2 + iε
,

(3.1)

which contains an integral over all possible values of the loop momentum q. This

integral can be formally evaluated by performing a Wick rotation to Euclidean momenta

(i.e. by taking q0 → iq0
E), and then transforming to spherical coordinates such that

the loop momentum can take values between zero and infinity. The expression thus

becomes

λ2

2

i

(2π)2

∞∫
0

dqE
q3
E

(q2
E +m2)((p3,E + p4,E − qE)2 +m2)

, (3.2)

which is infrared (IR) safe, but in the UV limit qE →∞

λ2

2

i

(2π)2

∞∫
0

dqE
q3
E

(q2
E +m2)((p3,E + p4,E − qE)2 +m2)

qE→∞−−−−→ λ2

2

i

(2π)2

∫
dqE
qE

, (3.3)

which is logarithmically divergent.

Feynman integrals can have a rich structure, and analysis of such integrals is a major

area of research. With each loop that a diagram contains, an additional integral is

required, and the presence of fermions as virtual particles gives Feynman integrals

a tensor structure. However, all Feynman integrals are functions of the masses and

momenta of the virtual particles of the diagram.

A general 1-loop Feynman integral may be written as (where from now on iε terms

that specify the contour prescription for propagators are omitted)

I(q; k1, . . . , kn;m1, . . . ,mn) =

∞∫
−∞

d4q

(2π)4

f(q)∏
D(q, ki,mi)

, (3.4)

where q is the loop momentum, ki are external momenta, and mi are the propagator

masses. I and f can be Lorentz tensors, and propagators are denoted by

D(q, ki,mi) =

(
q −

∑
i

ki

)2

−m2
i . (3.5)

Feynman integrals can be simplified in a number of ways. The integrand may be Taylor

expanded in external momenta [38], which are typically small relative to the masses

of the internal particles in weak processes. This removes external momenta from the
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integrand, resulting in integrals that only depend on propagator masses and the loop

momentum. Such integrals are called vacuum integrals. A 1-loop vacuum integral may

then be written as

Ivac(q;m1, . . . ,mn; ν1, . . . , νn) =

∞∫
−∞

d4q

(2π)4

f(qµ, q2, q2qµ, . . . )

(q2 −m2
1)ν1(q2 −m2)ν2 . . . (q2 −m2

n)νn
,

(3.6)

where νi denote the powers that each propagator is raised to. Integrals of this form

may be simplified further simply by using partial fraction decomposition. For exam-

ple,
1

(q2 −m2
1)(q2 −m2

2)
=

1

m2
1 −m2

2

1

q2 −m2
1

+
1

m2
2 −m2

1

1

q2 −m2
2

, (3.7)

and similarly, any integral of the form of Equation (3.6) may be reduced to a sum of

1-loop vacuum (tensor) integrals, each containing only a single mass. Once this has

been done, the tensor integrals may be decomposed into a sum of scalar integrals, using

relations such as
∞∫
−∞

d4q

(2π)4

qµ

(q2 −m2)ν
= 0 (3.8)

and
∞∫
−∞

d4q

(2π)4

qµqν

(q2 −m2)ν
=
gµν

4

∞∫
−∞

d4q

(2π)4

q2

(q2 −m2)ν
. (3.9)

The first of these identities follows from integrating an odd function over an even

domain, and holds for any odd power of qµ in the numerator. The second follows from

the fact that a Feynman integral must be Lorentz invariant, and therefore a rank-2

tensor integral must be proportional to gµν , which is the only rank-2 Lorentz invariant

tensor. The constant of proportionality is found by contracting both sides with gµν .

Similar relations hold for higher-rank tensor integrals.

Once tensor integrals have been decomposed into scalar integrals, the numerators can be

set to one, simply by adding and subtracting the propagator mass. For example,

∞∫
−∞

d4q

(2π)4

q2

(q2 −m2)ν
=

∞∫
−∞

d4q

(2π)4

(q2 −m2) +m2

(q2 −m2)ν

=

∞∫
−∞

d4q

(2π)4

1

(q2 −m2)ν−1
+m2

∞∫
−∞

d4q

(2π)4

1

(q2 −m2)ν
. (3.10)

Therefore, general Feynman integrals may be expanded and simplified to vacuum inte-

grals that only depend on a single mass m and a single propagator power ν. These are

the types of integral that have been used throughout this work. They can be written
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as

I(1)
vac(m

2; ν) =

∞∫
−∞

d4q

(2π)4

1

(q2 −m2)ν
, (3.11)

I(2)
vac(m

2
1,m

2
2,m

2
3; ν1, ν2, ν3) =

∞∫
−∞

d4q1

(2π)4

∞∫
−∞

d4q2

(2π)4

1

(q2
1 −m2

1)ν1(q2
2 −m2

2)ν2((q1 − q2)2 −m2
3)ν3

, (3.12)

I(3)
vac(m

2
1,m

2
2,m

2
3,m

2
4,m

2
5,m

2
6; ν1, ν2, ν3, ν4, ν5, ν6) =

∞∫
−∞

d4q1

(2π)4

∞∫
−∞

d4q2

(2π)4

∞∫
−∞

d4q3

(2π)4

1

(q2
1 −m2

1)ν1(q2
2 −m2

2)ν2(q2
3 −m2

3)ν3

× 1

((q1 − q2)2 −m2
4)ν4((q1 − q3)2 −m2

5)ν5((q2 − q3)2 −m2
6)ν6

, (3.13)

which are respectively the 1-loop, 2-loop, and 3-loop scalar vacuum integrals. Higher

loop orders are not encountered in this thesis. The topologies of the above diagrams

are shown below (where masses and propagator powers are suppressed in the dia-

grams).

I(1)
vac(m

2; ν) =

q

, (3.14)

I(2)
vac(m

2
1,m

2
2,m

2
3; ν1, ν2, ν3) =

q1 − q2

q2

q1

, (3.15)
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I(3)
vac(m

2
1, . . . ,m

2
6; ν1, . . . , ν6) =

q1 q2

q3

q1 − q3

q1 − q2

q2 − q3

. (3.16)

These are the most general topologies for these loop levels. Different topologies may

be generated for 3-loop vacuum integrals by having some propagator powers equal to

zero. An extreme example is a 3-loop integral with ν4 = ν5 = ν6 = 0, which is simply

the product of three 1-loop vacuum integrals.

3.2 Symmetries of Vacuum Integrals

Vacuum integrals have a high degree of symmetry, and in a calculation, many integrals

may be generated which are equal under some symmetry transformation. Making

use of these symmetries reduces the number of independent integrals that need to be

solved.

A vacuum integral is symmetric if it is invariant under a simultaneous reordering of

propagator masses mi and propagator powers νi. The 1-loop vacuum integral has a

trivial topology, and therefore no symmetries. However, the 2-loop vacuum integral

has a non-trivial topology, and is in fact totally symmetric. By this, it is meant that

any of the propagator masses and powers may be interchanged with any other, with

the integral remaining unchanged. To demonstrate the total symmetry of the 2-loop

vacuum diagram, it is sufficient to show that

I(2)
vac(m

2
1,m

2
2,m

2
3; ν1, ν2, ν3) = I(2)

vac(m
2
2,m

2
1,m

2
3; ν2, ν1, ν3) , (3.17)

and

I(2)
vac(m

2
1,m

2
2,m

2
3; ν1, ν2, ν3) = I(2)

vac(m
2
3,m

2
1,m

2
2; ν3, ν1, ν2) , (3.18)

since these permutations are a complete set of generators for the possible structures of

2-loop vacuum integrals. Starting with Equation (3.17),
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I(2)
vac(m

2
2,m

2
1,m

2
3; ν2, ν1, ν3)

=

∞∫
−∞

d4q1

(2π)4

∞∫
−∞

d4q2

(2π)4

1

(q2
1 −m2

2)ν2(q2
2 −m2

1)ν1((q1 − q2)2 −m2
3)ν3

q1↔q2
=

∞∫
−∞

d4q2

(2π)4

∞∫
−∞

d4q1

(2π)4

1

(q2
2 −m2

2)ν2(q2
1 −m2

1)ν1((q1 − q2)2 −m2
3)ν3

=

∞∫
−∞

d4q1

(2π)4

∞∫
−∞

d4q2

(2π)4

1

(q2
1 −m2

1)ν1(q2
2 −m2

2)ν2((q1 − q2)2 −m2
3)ν3

= I(2)
vac(m

2
1,m

2
2,m

2
3; ν1, ν2, ν3). (3.19)

Equation (3.18) can be shown to hold in a similar manner. However, rather than the

simple integral transform q1 ↔ q2 that was used for Equation (3.17), it is necessary to

use the integral transform

q1 → q′1 = q1 − q2, q2 → q′2 = q1. (3.20)

Formally, it is necessary to compute the Jacobian to understand how the integral mea-

sures transform, since

d4q1d4q2 = Jd4q′1d4q′2, where J =

∣∣∣∣∣∣∣
∂q1
∂q′1

∂q1
∂q′2

∂q2
∂q′1

∂q2
∂q′2

∣∣∣∣∣∣∣ . (3.21)

Since q1 = q′2 and q2 = q′2−q′1, the Jacobian simply evaluates to J = 1. Therefore,

I(2)
vac(m

2
3,m

2
1,m

2
2; ν3, ν1, ν2)

=

∞∫
−∞

d4q1

(2π)4

∞∫
−∞

d4q2

(2π)4

1

(q2
1 −m2

3)ν3(q2
2 −m2

1)ν1((q1 − q2)2 −m2
2)ν2

=

∞∫
−∞

d4q1

(2π)4

∞∫
−∞

d4q2

(2π)4

1

((q1 − q2)2 −m2
3)ν3(q2

1 −m2
1)ν1((−q2)2 −m2

2)ν2

=

∞∫
−∞

d4q1

(2π)4

∞∫
−∞

d4q2

(2π)4

1

(q2
1 −m2

1)ν1(q2
2 −m2

2)ν2((q1 − q2)2 −m2
3)ν3

= I(2)
vac(m

2
1,m

2
2,m

2
3; ν1, ν2, ν3) (3.22)

It is thus demonstrated that the 2-loop vacuum integral is totally symmetric.

The 3-loop vacuum integral is not totally symmetric, but displays the symmetries of the

tetrahedral group S4, which has two generators [39], which are shown diagrammatically

in Figure 3.1. These two generators generate 24 group elements.
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Fig. 3.1: Generators of the tetrahedral group S4.

In integral form, the generators imply

I(3)
vac(m

2
1,m

2
2,m

2
3,m

2
4,m

2
5,m

2
6; ν1, ν2, ν3, ν4, ν5, ν6)

= I(3)
vac(m

2
4,m

2
2,m

2
6,m

2
1,m

2
5,m

2
3; ν4, ν2, ν6, ν1, ν5, ν3) (3.23)

= I(3)
vac(m

2
2,m

2
3,m

2
1,m

2
6,m

2
4,m

2
5; ν2, ν3, ν1, ν6, ν4, ν5).

In general, 3-loop vacuum integrals related via tetrahedral symmetries are only equal if

all propagators have the same mass. Otherwise, the tetrahedral symmetries may only

be used to bring the integrals into some standard form. In this work, 3-loop integrals

arise that contain two different masses (as well as massless propagators), but only have

a maximum of four massive propagators. Therefore, symmetry relations were used to

bring all integrals into the following basis:

I(3)
vac(m

2, 0, 0, 0, 0, 0; ν1, ν2, ν3, ν4, ν5, ν6),

I(3)
vac(0, 0, 0, 0, 0,m

2; ν1, ν2, ν3, ν4, ν5, ν6),

I(3)
vac(m

2,m2, 0, 0, 0, 0; ν1, ν2, ν3, ν4, ν5, ν6),

I(3)
vac(m

2, 0, 0, 0, 0,m2; ν1, ν2, ν3, ν4, ν5, ν6),

I(3)
vac(m

2,m2,m2, 0, 0, 0; ν1, ν2, ν3, ν4, ν5, ν6),

I(3)
vac(m

2,m2, 0, 0,m2, 0; ν1, ν2, ν3, ν4, ν5, ν6),

I(3)
vac(m

2,m2, 0, 0,m2,m2; ν1, ν2, ν3, ν4, ν5, ν6),

I(3)
vac(m

2,M2, 0, 0, 0, 0; ν1, ν2, ν3, ν4, ν5, ν6),

I(3)
vac(m

2, 0, 0, 0, 0,M2; ν1, ν2, ν3, ν4, ν5, ν6),

I(3)
vac(m

2,m2,M2, 0, 0, 0; ν1, ν2, ν3, ν4, ν5, ν6),

I(3)
vac(m

2,m2, 0, 0,M2, 0; ν1, ν2, ν3, ν4, ν5, ν6),

I(3)
vac(m

2,m2, 0, 0,m2,M2; ν1, ν2, ν3, ν4, ν5, ν6). (3.24)

This is a sufficiently large basis for the integrals generated in this work. It should be

noted that M is not necessarily larger than m.
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3.3 Dimensional Regularisation

The aim of renormalisation is to remove UV divergences from amplitudes. To do this,

a necessary step is to extract the divergences from Feynman integrals in a systematic

manner, in a process called regularisation. In this work dimensional regularisation

is used exclusively [40, 41].1 Dimensional regularisation relies on the principle that

Feynman integrals would converge if the number of spacetime dimensions was less than

four. For example, the integral

∞∫
−∞

d4q

(2π)4

1

(q2 −m2)2
(3.25)

is logarithmically UV divergent by naive power counting. If the power of momentum

in the numerator was less than four, then the integral would be finite. Therefore

dimensional regularisation evaluates integrals in d complex dimensions, where d = 4−2ε

with ε > 0. The d = 4 case is then restored in the limit ε → 0. For example,

the logarithmically divergent integral of Equation (3.25) can dimensionally regularised

via [42]

∞∫
−∞

ddq

(2π)d
1

(q2 −m2)2
=

∞∫
−∞

ddqE
(2π)d

i

(q2
E +m2)2

=

∫
dΩd

(2π)d
i

2

∞∫
0

dq2
E

(q2
E)

d
2
−1

(q2
E +m2)2

=
2

(4π)
d
2 Γ
(
d
2

) i
2

(
1

m2

)2− d
2

1∫
0

dx x1− d
2 (1− x)

d
2
−1

=
i

(4π)dΓ
(
d
2

) ( 1

m2

)2− d
2 Γ
(
2− d

2

)
Γ
(
d
2

)
Γ(2)

=
i

(4π)
d
2

Γ
(
2− d

2

)
Γ(2)

(
1

m2

)2− d
2

. (3.26)

In the above, dΩd is the surface area element of a d-sphere, and Γ(z) is the Gamma

function, which has poles at z = ∪{0,Z−}. Therefore, Equation (3.26) is divergent for

d = 4, as expected. Similar results for different integrals can be found in [42]. Setting

d = 4− 2ε gives

∞∫
−∞

ddq

(2π)d
1

(q2 −m2)2
=

i

(4π)2−ε
Γ(ε)

Γ(2)

(
1

m2

)ε
. (3.27)

1Other common regularisation schemes include cutoff regularisation and the discretisation of space-
time. Cutoff regularisation simply excludes high-momentum modes in Feynman integrals, and while
it is mathematically simple, it breaks many symmetries of the theory, including Lorentz invariance.
Spacetime discretisation is the regulator used in lattice QCD, where spacetime is divided into finite
elements, with the physical limit being recovered as these elements shrink to zero size.
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Taking ε to be small and positive, Γ(ε) may be expanded in powers of ε using the

Weierstrass definition of the Gamma function [43],

Γ(z) =
e−γEz

z

∞∏
n=1

(
1 +

z

n

)−1
e
z
n , (3.28)

where γE is the Euler-Mascheroni constant. Then,

Γ(ε) =
1

ε
− γE +O(ε), (3.29)

showing that in the limit d → 4 (ε → 0), the UV divergence has been isolated as a

simple pole in ε. Finally, using

xε = eε lnx = 1 + ε lnx+O(ε2), (3.30)

the entire integral can be written as

∞∫
−∞

ddq

(2π)d
1

(q2 −m2)2
=

i

(4π)2

(
1

ε
− ln (m2)− γE + ln (4π)

)
+O(ε), (3.31)

where terms of order ε and higher are neglected, since we are interested in the ε → 0

limit. Therefore dimensional regularisation extracts UV divergences from Feynman

integrals, and encodes them as poles in ε, with the regularisation being lifted in the

limit ε→ 0.

In general, 1-loop, 2-loop, and 3-loop UV divergent integrals can be dimensionally

regularised to give expressions of the form [44]

1-loop result =
a1

ε
+ b1, (3.32)

2-loop result =
a2

ε2
+
b2
ε

+ c2, (3.33)

3-loop result =
a3

ε3
+
b3
ε2

+
c3

ε
+ d3, (3.34)

where ai, bi, ci and di are all finite.

An important result of dimensionally regularised integrals is that integrals that do

not contain some physical scale (masses or external momenta) are identically zero

[45]:
∞∫
−∞

ddq(q2)−α ≡ 0 ∀α. (3.35)

Although such scaleless integrals are identically zero, they may contain UV and IR

poles, which cancel. It is possible to isolate desired UV poles using IR rearrangement

(see Section 3.7).

A key feature of dimensional regularisation is that it affects the mass dimensions of the

fields in a Lagrangian. The action S of a theory must have zero mass dimension, and

30



consequently in a renormalisable theory the Lagrangian has a mass dimension of four.

From this observation, and the fact that for all d, masses and spacetime derivatives

have mass dimension equal to one, the mass dimension of parameters and fields in a

Lagrangian can be calculated. For example, for QCD

4 =
[
mΨΨ

]
= 1 +

[
ΨΨ
]

= 1 + 2 [Ψ] =⇒ [Ψ] =
3

2
,

4 = [GµνG
µν ] = 2 [Gµν ] = 2 [∂µGν ] = 2(1 + [Gµ]) =⇒ [Gµ] = 1,

4 =
[
gsΨγ

µΨGµ
]

= 4 + [gs] =⇒ [gs] = 0. (3.36)

Dimensional regularisation makes a Lagrangian d-dimensional, which modifies the mass

dimensions of fields and parameters. Repeating the above calculation gives

d =
[
mΨΨ

]
= 1 +

[
ΨΨ
]

= 1 + 2 [Ψ] =⇒ [Ψ] =
d− 1

2
,

d = [GµνG
µν ] = 2 [Gµν ] = 2 [∂µGν ] = 2(1 + [Gµ]) =⇒ [Gµ] =

d− 2

2
,

d =
[
gsΨγ

µΨGµ
]

= 2

(
d− 1

2

)
+

(
d− 2

2

)
+ [gs] =⇒ [gs] =

4− d
2

. (3.37)

Note that these equations reproduce the previous set in the limit d→ 4. Of particular

importance is the fact that in d-dimensions the gauge coupling becomes dimensionful.

It is preferable to work with a dimensionless coupling, and so an arbitrary parameter

µ with mass dimension equal to one is extracted from the coupling:

gs → gs(µ)µ
4−d
2 = gs(µ)µε. (3.38)

Note that since the original dimensionful gs is µ-independent, the new dimensionless

gs(µ) must be µ-dependent. The parameter µ is arbitrary, and therefore cannot af-

fect physical quantities. This µ-independence of Green’s functions gives rise to the

renormalisation group equations, as discussed in Section 3.8.

3.4 Integral Reduction and Integration By Parts

Finding analytic solutions for Feynman integrals is highly non-trivial, and becomes very

difficult when working with multiple physical scales and higher loop orders. However,

it can be shown that complicated Feynman integrals can be decomposed into a linear

combination of a basis of simpler Feynman integrals, called master integrals. Since

all integrals arising in a calculation may be decomposed into a sum of simpler master

integrals, it only then remains to calculate the master integrals (which in a typical

calculation form a much smaller set than all integrals generated in a calculation), as

well as the coefficients of the master integrals in such a decomposition.
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The process of linearly expanding a Feynman integral in terms of master integrals is

called reduction, and relies on integration by parts (IBP) identities [46]:

∞∫
−∞

ddq

(2π)d
∂

∂qµ
(
qµf(q2, p2,m2, . . . )

)
= 0, (3.39)

where f(q2, p2,m2, . . . ) denotes the integrand of some Feynman integral with loop mo-

mentum q, external momentum p and mass m. This identity holds by performing the

integral by parts, and then discarding a surface term which must vanish at infinity.

Explicitly,

∞∫
−∞

ddq

(2π)d
1 · ∂

∂qµ
(
qµf(q2, p2,m2, . . . )

)

=
[
1 ·
(
qµf(q2, p2,m2, . . . )

)]∞
−∞ −

∞∫
−∞

∂

∂qµ
(1) ·

(
qµf(q2, p2,m2, . . . )

)
= 0. (3.40)

This relation can be used to build recursion relations between integrals with different

propagator powers. Consider the 1-loop vacuum integral example, containing a single

mass and no external momenta [46],

F (a) =

∫
ddq

(2π)d
1

(q2 −m2)a
. (3.41)

Applying the IBP identity ∫
ddq

(2π)d
∂

∂qµ
qµ

(q2 −m2)a
= 0, (3.42)

it can be shown that

(d− 2a)F (a)− 2am2F (a+ 1) = 0. (3.43)

Rearranging this expression, and shifting a → a − 1, one obtains the recurrence rela-

tion

F (a) =
d− 2a+ 2

2(a− 1)m2
F (a− 1). (3.44)

This recurrence relation may be repeatedly used to relate any integral F (a) to a single

master integral F (1). Therefore, it is only necessary to solve a single integral, and to

calculate the prefactor that relates the master integral to the required integral.

The method of integral reduction has been implemented in many computer packages,

for example [47–51]. We have exclusively used FIRE5 [47] to perform integral reduction.

This was used successfully for 1-loop, 2-loop, and 3-loop integrals containing up to two

different masses, with up to four massive propagators.
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3.5 Solutions to Vacuum Integrals

So far in this chapter, integrals have been reduced to scalar vacuum integrals, dimen-

sionally regularised, and then reduced to master integrals. At this point it is necessary

to solve the resulting master integrals. There are a number of different methods for

solving Feynman integrals, including the use of Feynman parameters, Schwinger pa-

rameters, and evaluation by Mellin-Barnes representation. A simple 1-loop vacuum

bubble was solved in Section 3.3. There are many cases of Feynman integrals that

currently have no analytic solution, and such integrals can be estimated numerically,

or by using appropriate expansions of the integrands to simplify integrals [52]. It has

not been the aim of this work to solve loop integrals, rather applying solutions found

in the literature to physical processes. Therefore, we list here those integrals that are

relevant to our purposes.

Vacuum integrals at 1-loop can only be functions of a single mass. The general 1-loop

vacuum integral has the solution [53]

I(1)
vac(m

2; ν) =

∞∫
−∞

ddq

(2π)d
1

(q2 −m2)ν
= i1−d

(
−m2

) d
2
−ν

(4π)d/2
Γ
(
ν − d

2

)
Γ(ν)

. (3.45)

This can be found by performing a Wick rotation to Euclidean spacetime, and then

moving to spherical coordinates, as was done in Section 3.3.

The general 2-loop vacuum integral is

I(2)
vac(m

2
1,m

2
2,m

2
3; ν1, ν2, ν3) =

∞∫
−∞

ddq1

(2π)d

∞∫
−∞

ddq2

(2π)d
1

(q2
1 −m2

1)ν1(q2
2 −m2

2)ν2((q1 − q2)2 −m2
3)ν3

. (3.46)

If one of the indices is equal to zero, this is simply the product of two 1-loop integrals,

and so

I(2)
vac(m

2
1,m

2
2,m

2
3; ν1, ν2, 0)

= I(1)
vac(m

2
1; ν1) I(1)

vac(m
2
2; ν2) (3.47)

= i2−2d (−m2
1)d/2−ν1(−m2

2)d/2−ν2

(4π)d
Γ
(
ν1 − d

2

)
Γ
(
ν2 − d

2

)
Γ(ν1)Γ(ν2)

. (3.48)

We are also interested in cases where there are two different mass scales, and as such

need the solution of integrals of the form I(2)
vac(m2,m2,M2; ν1, ν2, ν3). It is sufficient

to consider this integral without loss of generality due to the total symmetry of 2-

loop vacuum integrals. This integral can be solved by first using IBP relations to

reduce a general integral I(2)
vac(m2,m2,M2; ν1, ν2, ν3) in terms of the master integral
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I(2)
vac(m2,m2,M2; 1, 1, 1). This master integral can then be solved using the Mellin-

Barnes representation of a massive propagator, as done in [38]. The result is (expanding

in ε = (4− d)/2)

I(2)
vac(m

2,m2,M2; 1, 1, 1) =
π2ε−4

162−ε
(
m2
)1−2ε

A(ε)

×
{
− 1

ε2
(1 + 2z) +

1

ε
(4z ln (z))

− 2z ln2 (4z) + 2(1− z)Φ(z)

}
, (3.49)

where this result has been divided by (2π)2(4−2ε) compared to [38] to agree with our

conventions. Here,

z ≡ M2

4m2
,

A(ε) ≡ Γ2(1 + ε)

(1− ε)(1− 2ε)
(3.50)

= 1 + ε(3− 2γE) + ε2
(

7− 6γE + 2γ2
E +

π2

6

)
+O(ε3) ,

and

Φ(z) = 4z

[
(2− ln (4z)) 2F1

(
1, 1
3/2

∣∣∣∣z)− ∂a 2F1

(
1, 1
3/2

∣∣∣∣z)− ∂c 2F1

(
1, 1
3/2

∣∣∣∣z)] . (3.51)

The definition of Φ(z) is in terms of hypergeometric functions and their derivatives,

PFQ

(
a1, . . . , aP
c1, . . . , cQ

∣∣∣∣z) ≡ ∞∑
j=0

zj

j!

(a1)j . . . (aP )j
(c1)j . . . (cQ)j

, (3.52)

(a)j ≡
Γ(a+ j)

Γ(a)
, (3.53)

∂a 2F1

(
a, b
c

∣∣∣∣z) ≡ ∂

∂a
2F1

(
a, b
c

∣∣∣∣z)
=

∞∑
j=0

zj

j!

(a)j(b)j
(c)j

(ψ(a+ j)− ψ(a)), (3.54)

and

∂c 2F1

(
a, b
c

∣∣∣∣z) ≡ ∂

∂c
2F1

(
a, b
c

∣∣∣∣z)
= −

∞∑
j=0

zj

j!

(a)j(b)j
(c)j

(ψ(c+ j)− ψ(a)), (3.55)

where ψ(a) ≡ (d/da) ln (Γ(a)). Further details can be found in [38].
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Finally, it is necessary to consider 3-loop vacuum integrals with two different masses.

When initially considering this case, solutions for this class of integrals were not known,

whereas solutions were known for 3-loop vacuum integrals with only a single mass

scale [39]. Therefore, an initial strategy was to employ expansions to reduce all inte-

grands to a series of integrals, each containing only a single mass scale, which could

therefore be solved. Naively these expansions would take the form of Taylor expan-

sions, with the expansion parameter being the ratio of the two masses present in the

integrand. However, since masses serve the role of IR regulators for vacuum integrals,

performing Taylor expansions in masses removes these regulators and hence introduces

artificial IR divergences. Smirnov has outlined a method by which Taylor expansions

can still be used to perform expansions without introducing artificial IR divergences,

by the method of expansion by regions [52]. The essence of this program is to divide

the integration regions of all integrals into “hard” and “soft” regions, where the loop

momentum is respectively large and small, and then sum over all these regions. For

each of the integrals thereby produced, there is a set of naturally small parameters

that the integrand may be expanded in. Breaking up the integrals in this way and

then expanding avoids the introduction of IR divergences. The method becomes more

powerful since the integrals over a restricted domain of loop momenta may then be

extended to integrals over all momenta without generating any new contributions, al-

lowing the use of usual integral identities. However, it would be necessary to perform a

large number of expansions for each integral to minimise the error associated with an

expansion, and since for a 3-loop process there are many integrals to be expanded, such

a strategy would be very computationally demanding. A significant amount of work

was put into implementing expansion by regions as a Mathematica [54] routine, and it

was found that the method created high-rank tensor integrals as an intermediate step,

which needed to be decomposed into scalar integrals. While this was acceptable for low-

rank tensor integrals, it very quickly became a serious computational problem which

needed to be addressed. A discussion of the resolution to this problem is presented in

Section 3.9.

Progress was made on computing 3-loop integrals with arbitrary masses without resort-

ing to expansions [13, 55, 56]. In [55], a basis of three master integrals is selected that

cannot be decomposed into a product of lower-loop integrals. These master integrals

are then decomposed into sums of integrals, which are either divergent or finite. The

divergent pieces can be computed analytically, whilst the finite pieces can be written

as dispersion integrals and computed numerically. The routine for performing these

calculations is presented in [56].

For the evaluation of 3-loop integrals, we used the results of Martin and Robertson

[13]. They discuss vacuum diagrams for 1-, 2-, and 3-loops, and we shall outline their
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conventions and results here. We use these results extensively in Chapter 6. After Wick

rotation, working in d = 4− 2ε Euclidean dimensions, and defining integrals as∫
p
≡ µ4−d

∫
ddp

(2π)d
(3.56)

such that integrals have a mass dimension of four, the 1-loop master integral may be

written as

A(x) = 16π2

∫
p

1

p2 + x
= Γ(−1 + ε)

(
4πµ2

x

)ε
x. (3.57)

Note that µ here is the MS parameter (see Section 3.6 for a discussion of renormalisation

schemes). Similarly, a general 2-loop integral is written in the form

I(x, y, z) = (16π2)2

∫
p

∫
q

1

[p2 + x] [q2 + y] [(p− q)2 + z]
. (3.58)

Following the approach of [57], and in a similar manner to [55], A and I can be elimi-

nated in favour of their respective renormalised integrals (i.e. finite integrals). However,

expressions for integrals are also given in terms of coefficients of UV poles in [13], which

we use. We list here the results for 1- and 2-loop integrals in the conventions of Martin

and Robertson, before discussing 3-loop integrals. The 1-loop integral may be written

as

A(x) = −x
ε

+A(x) + εAε(x) + ε2Aε2(x) + . . . , (3.59)

where

A(x) = x[ln(x)− 1] , (3.60)

Aε(x) = x

[
−1

2
ln

2
(x) + ln(x)− 1− π2

12

]
, (3.61)

Aε2(x) = x

[
1

6
ln

3
(x)− 1

2
ln

2
(x) +

(
1 +

π2

12

)
ln(x)− 1− π2

12
+
ζ3

3

]
. (3.62)

The function ln(x) is defined as

ln(x) ≡ ln

(
x

µ2
MS

)
, (3.63)

where µMS is the renormalisation scale in the MS scheme (which is related to µ via

Equation (3.100)).

The 2-loop basis integral can be expanded as

I(x, y, z) =
I2(x, y, z)

ε2
+
I1(x, y, z)

ε
+ I0(x, y, z) + εIε(x, y, z) + . . . , (3.64)

where the pole pieces are

I2(x, y, z) = −(x+ y + z)/2 , (3.65)
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I1(x, y, z) = A(x) +A(y) +A(z)− (x+ y + z)/2 . (3.66)

The finite piece is given by (for z ≥ x, y)

I0(x, y, z) =s

[
Li2(k1) + Li2(k2)− ln(k1) ln(k2) +

1

2
ln(x/z) ln(y/z)− π2/6

]
+

1

2

[
(z − x− y)ln(x)ln(y) + (y − x− z)ln(x)ln(z) + (x− y − z)ln(y)ln(z)

]
+ 2xln(x) + 2yln(y) + 2zln(z)− 5

2
(x+ y + z)

+Aε(x) +Aε(y) +Aε(z) , (3.67)

where

s =
√
x2 + y2 + z2 − 2xy − 2xz − 2yz , (3.68)

k1 =
x+ z − y − s

2z
, (3.69)

k2 =
y + z − x− s

2z
. (3.70)

Due to the total symmetry of the 2-loop vacuum integral, the cases where y ≥ x, z and

x ≥ y, z can be obtained by appropriate permutations of the argument of I0(x, y, z).

The function Li2(x) is the dilogarithm, defined as

Li2(x) = −
∫ x

0

ln(1− u)

u
du , (3.71)

where x is a complex variable. The dilogarithm obeys a number of identities, includ-

ing

Li2

(
x− 1

x

)
= −Li2

(
1

x

)
− ln

(
1

x

)
ln

(
x− 1

x

)
+
π2

6
, (3.72)

Li2

(
1

x

)
= −Li2(x)− 1

2
ln2(−x)− π2

6
, (3.73)

which are useful in simplifying expressions.

The general 3-loop scalar integral with the Benz topology (see Figure 3.2) is denoted

by

T(n1,n2,n3,n4,n5,n6)(x1, x2, x3, x4, x5, x6) = (16π2)3

∫
p1

∫
p2

∫
p3

1

[p2
1 + x1]n1 [p2

2 + x2]n2 [p2
3 + x3]n3 [(p1 − p2)2 + x4]n4 [(p2 − p3)2 + x5]n5 [(p3 − p1)2 + x6]n6

,

where it should be noted that the authors of [13] have a different propagator ordering

compared to our conventions.

By the application of IBP relations, any general integral T may be reduced to a sum

of a basis of master integrals, given as
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Fig. 3.2: General 3-loop topology in the conventions of [13].

u v

w

z

x

y

H(u, v, w, x, y, z)

u v

w

z y

G(w, u, z, v, y)

u vz y

F(u, v, y, z)

u vz y

E(u, v, y, z)

Fig. 3.3: Topologies of the 3-loop master integrals. The dotted propagator in
F(u, v, y, z) indicates that the propagator is raised by a power.

H(u, v, w, x, y, z) = T(1,1,1,1,1,1)(u, v, w, x, y, z),

G(w, u, z, v, y) = T(1,1,1,0,1,1)(u, v, w, x, y, z),

F(u, v, y, z) = T(2,1,0,0,1,1)(u, v, w, x, y, z),

A(u)I(v, w, y) = T(1,1,1,0,1,0)(u, v, w, x, y, z),

A(u)A(v)A(w) = T(1,1,1,0,0,0)(u, v, w, x, y, z). (3.74)

An additional integral that is useful (but not a master integral) is given by

E(u, v, y, z) = T(1,1,0,0,1,1)(u, v, w, x, y, z), (3.75)

which can be expressed as a linear combination of F-type integrals. F-integrals may also

simply be expressed through derivatives with respect to masses of E-integrals:

F(u, v, y, z) = − ∂

∂u
E(u, v, y, z). (3.76)

The topologies of H,G,F, and E are shown in Figure 3.3.

The 3-loop integrals may be expanded in ε as

E(u, v, y, z) =
1

ε3
E3(u, v, y, z) +

1

ε2
E2(u, v, y, z) +

1

ε
E1(u, v, y, z)

+ E0(u, v, y, z) + . . . , (3.77)

F(u, v, y, z) =
1

ε3
F3(u, v, y, z) +

1

ε2
F2(u, v, y, z) +

1

ε
F1(u, v, y, z)

+ F0(u, v, y, z) + . . . , (3.78)
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G(w, u, z, v, y) =
1

ε3
G3(w, u, z, v, y) +

1

ε2
G2(w, u, z, v, y) +

1

ε
G1(w, u, z, v, y)

+G0(w, u, z, v, y) + . . . , (3.79)

H(u, v, w, x, y, z) =
1

ε
H1(u, v, w, x, y, z) +H0(u, v, w, x, y, z) + . . . . (3.80)

The ε-coefficient functions are:

E3(u, v, y, z) = (uv + uy + uz + vy + vz + yz)/3 , (3.81)

E2(u, v, y, z) = −[(v + y + z)A(u) + (u+ y + z)A(v)

+ (u+ v + z)A(y) + (u+ v + y)A(z)]/2

+ (uv + uy + uz + vy + vz + yz)/3− (u2 + v2 + y2 + z2)/12 , (3.82)

E1(u, v, y, z) = A(u)A(v) +A(u)A(y) +A(u)A(z) +A(v)A(y) +A(v)A(z) +A(y)A(z)

− (v + y + z)[Aε(u) +A(u)]/2− (u+ y + z)[Aε(v) +A(v)]/2

− (v + v + z)[Aε(y) +A(y)]/2− (u+ v + y)[Aε(z) +A(z)]/2

+ [uA(u) + vA(v) + yA(y) + zA(z)]/4

+ (uv + uy + uz + vy + vz + yz)/3− 3(u2 + v2 + y2 + z2)/8 , (3.83)

E0(u, v, y, z) = E(u, v, y, z)

+A(u)[Aε(v) +Aε(y) +Aε(z)] +A(v)[Aε(u) +Aε(y) +Aε(z)]

+A(y)[Aε(u) +Aε(v) +Aε(z)] +A(z)[Aε(u) +Aε(v) +Aε(y)]

− (v + y + z)[Aε(u) +Aε2(u)]/2− (u+ y + z)[Aε(v) +Aε2(v)]/2

− (u+ v + z)[Aε(y) +Aε2(y)]/2− (u+ v + y)[Aε(z) +Aε2(z)]/2

+ [uAε(u) + vAε(v) + yAε(y) + zAε(z)]/4 , (3.84)

F3(u, v, y, z) = −(v + y + z)/3 , (3.85)

F2(u, v, y, z) = (v + y + z)A(u)/2u+ [A(v) +A(y) +A(z)]/2

+ (u+ v + y + z)/6 , (3.86)

F1(u, v, y, z) = −[A(v) +A(y) +A(z)]A(u)/u+ (v + y + z)Aε(u)/2u

+ [Aε(v) +Aε(y) +Aε(z)−A(u)−A(v)−A(y)−A(z)]/2

+ u/2 + (v + y + z)/6 , (3.87)

F0(u, v, y, z) = F (u, v, y, z) + (v + y + z)Aε2(u)/2u− [A(v) +A(y) +A(z)]Aε(u)/u

+ [A(v) +A(y) +A(z)−Aε(v)−Aε(y)−Aε(z)

+ u/4− v/2− y/2− z/2]A(u)/u

+ [Aε2(v) +Aε2(y) +Aε2(z)−Aε(u)−Aε(v)−Aε(y)−Aε(z)]/2 ,
(3.88)
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G3(w, u, z, v, y) = −(2w + u+ v + y + z)/6 , (3.89)

G2(w, u, z, v, y) = [A(u) +A(v) +A(y) +A(z)

− u− v − y − z]/2 +A(w)− 2w/3 , (3.90)

G1(w, u, v, y, z) = I(u,w, z) + I(v, w, y) +Aε(w) +
[
Aε(u) +Aε(v) +Aε(y) +Aε(z)

+A(u) +A(v) +A(y) +A(z)
]
/2

+ (w − 2u− 2v − 2y − 2z)/3 , (3.91)

G0(w, u, z, v, y) = G(w, u, z, v, y) + Iε(u,w, z) + Iε(v, w, y)−Aε2(w)

+
[
Aε(u) +Aε(v) +Aε(y) +Aε(z)

−Aε2(u)−Aε2(v)−Aε2(y)−Aε2(z)
]
/2 , (3.92)

H1(u, v, w, x, y, z) = 2ζ(3) , (3.93)

H0(u, v, w, x, y, z) = H(u, v, w, x, y, z) . (3.94)

The finite integral I(x, y, z) is known analytically, but the finite integrals E(u, v, y, z),

F (u, v, y, z), G(w, u, z, v, y) and H(u, v, w, x, y, z) are not in general. These integrals

must be calculated numerically.2 This numerical evaluation is implemented in the

program 3VIL, developed by the authors of [13]. In addition, in the limit u → 0, the

finite integral F (u, v, y, z) develops a logarithmic IR divergence. For these particular

integrals, we use the results of [58].

To summarise, massive vacuum integrals can be solved analytically at 1- and 2-loop.

At 3-loop, vacuum integrals may be written in terms of divergent pieces whose ana-

lytical form is known, and remainder finite pieces, which in general must be evaluated

numerically.

3.6 Renormalisation and Schemes

Renormalisation is implemented by modifying a Lagrangian that produces divergent

quantities by adding counterterms, whose inclusion subtracts the divergences from a

Lagrangian, leading to finite predictions. Consider the case of QCD in Feynman gauge,

with ghosts fields omitted:

LQCD =ψ
i
0

(
i/∂ −m0

)
ψi0 − g0,sψ

i
0T

A
ij γ

µψj0G
A
0,µ

− 1

4

(
∂µG

A
0,ν − ∂νGA0,µ

) (
∂µGAν0 − ∂νG

Aµ
0

)
− 1

2

(
∂µGA0,µ

)2
2Some special cases are known analytically, and are listed in [13].
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+
g0,s

2
fABC

(
∂µG

A
0,ν − ∂νGA0,µ

)
GBµ0 GCν0 −

g2
0,s

4
fABEfCDEGA0,µG

B
0,νG

Cµ
0 GDν0 .

The “0” subscripts denote that the quantities in this Lagrangian are “bare”, and do

not take into account quantum corrections. This bare Lagrangian gives rise to loop

diagrams that are UV divergent, and so needs to be modified to subtract these diver-

gences. This is done by rescaling the bare parameters by UV divergent renormalisation

constants,

ψ0 = Z
1/2
ψ ψ GA0,µ = Z

1/2
G GAµ

m0 = Zmm g0,s = Zggs = Zggs(µ)µε, (3.95)

where the parameters on the right hand side of the equalities are called renormalised.

Note that the renormalised coupling gs is related to a dimensionless coupling gs(µ) as

in Equation (3.38).

Writing the QCD Lagrangian in terms of renormalised parameters (and using Z =

Z + 1− 1) gives

LQCD =
[
ψ
i (
i/∂ −m

)
ψi − gsψ

i
TAij γ

µψjGAµ

− 1

4

(
∂µG

A
ν − ∂νGAµ

) (
∂µGAν − ∂νGAµ

)
− 1

2

(
∂µGAµ

)2
+
gs
2
fABC

(
∂µG

A
ν − ∂νGAµ

)
GBµGCν − g2

s

4
fABEfCDEGAµG

B
ν G

CµGDν
]

+ (Zψ − 1)ψ
i
i/∂ψi − (ZψZm − 1)mψ

i
ψi −

(
µεZgZψZ

1/2
G − 1

)
gsψ

i
TAij γ

µψjGAµ

− ZG − 1

4

(
∂µG

A
ν − ∂νGAµ

) (
∂µGAν − ∂νGAµ

)
− ZG − 1

2

(
∂µGAµ

)2
+
(
µεZgZ

3/2
G − 1

) gs
2
fABC

(
∂µG

A
ν − ∂νGAµ

)
GBµGCν

−
(
µ2εZ2

gZG − 1
) g2

s

4
fABEfCDEGAµG

B
ν G

CµGDν . (3.96)

The terms between the square brackets form the original QCD Lagrangian, but now in

terms of renormalised quantities. The additional terms that appear are counterterms,

which can be treated as interactions and included in the calculation of amplitudes. The

undetermined renormalisation constants can be determined by demanding that ampli-

tudes are finite order-by-order in perturbation theory. For example, at 1-loop,

α β
p p

= α β
p

+ α β
p p

+ α β
p p

=
iδαβ(/p+m)

p2 −m2 + iε
+

(
iCF δαβ

αs
4π

(
/p− 4m

) 1

ε
+ finite

)

+
(
i (Zψ − 1) /pδαβ − i (ZψZm − 1)mδαβ

)
, (3.97)
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where αs = g2
s/(4π).

Insistence that the dressed ψ propagator (the LHS of Equation (3.97)) is finite leads

to two equations to solve for Zψ and Zm (respectively by considering coefficients of /p/ε

and m/ε). These can be solved to find

Zψ = 1− αs
4π
CF

1

ε
+O(α2

s),

Zm = 1− αs
4π

3CF
1

ε
+O(α2

s). (3.98)

In general, renormalisation constants calculated perturbatively may be expanded in

powers of coupling constants and powers of ε:

Z = 1 +

∞∑
i=1

( g
4π

)2i
Z(i),

Z(i) =
i∑

j=1

1

ε j
Z(i,j). (3.99)

The only requirement of renormalisation constants is that they subtract divergences

from unrenormalised Lagrangians, leaving finite results. However, there is freedom

to define renormalisation constants such that they additionally remove extra finite

pieces, with each choice being a renormalisation scheme. Removal of only the pole

terms in dimensional regularisation is called the Minimal Subtraction (MS) scheme [40,

59]. Closely related is the Modified Minimal Subtraction (MS) scheme [60], in which

renormalisation constants are chosen that also subtract finite pieces ln(4π) and −γE ,

which appear in loop calculations (see Equation (3.31)) and are relics of dimensional

regularisation. Note that these terms also appear in the finite part of Equation (3.97).

The MS scheme may be implemented practically by dropping ln(4π) − γE from loop

calculations. Alternatively, it may be implemented by dimensionally regularising with

the massive parameter µMS, which is related to µ via [60]

µ = µMS

eγE/2√
4π

. (3.100)

Throughout this work we will use the MS scheme unless otherwise stated, and so we

simply denote µMS by µ.

3.7 Infrared Rearrangement

In mass-independent renormalisation schemes such as the MS scheme, the calcula-

tion of renormalisation constants only requires the UV poles of a divergent integral.

Additionally, in the MS scheme all UV counterterms are polynomial in masses and

momenta [61], which implies that it is possible to extract the UV poles from integrals

42



in the MS scheme by first expanding the integrand in terms of masses and momenta,

and then performing the simplified integrals. In general, expanding an integrand be-

fore integration can lead to spurious IR divergences, since the expansion removes IR

regulators from the denominators of propagators. However, these spurious divergences

can be avoided by using the method of IR rearrangement [62].

The method of IR rearrangement rests upon the exact decomposition of a scalar prop-

agator as

1

(q + p)2 −m2
=

1

q2 −m2
A

+
m2 − p2 − 2q · p−m2

A

q2 −m2
A

1

(q + p)2 −m2
, (3.101)

where q is a linear combination of loop momenta, p is a linear combination of external

momenta, m is the propagator mass, and mA is an auxiliary mass. Denoting the degree

of divergence of a Feynman integral by D, the physical propagator on the left hand

side of Equation (3.101) has a contribution to the degree of divergence of ∆D = −2.

The first term of the right hand side of Equation (3.101) also has ∆D = −2, while

the second term has ∆D = −3 (due to the numerator term linear in q). Importantly,

the second term contains the original propagator, which means this decomposition can

be repeated arbitrarily many times. Repeatedly applying the decomposition leads to

a series of terms, of which all except one have simple denominators involving only the

loop momentum q and the auxiliary mass mA. The final term has a more complicated

denominator but a degree of divergence that is arbitrarily negative. For example,

1

(q + p)2 −m2︸ ︷︷ ︸
∆D=−2

=
1

1

q2 −m2
A︸ ︷︷ ︸

∆D=−2

+
m2 − p2 − 2q · p−m2

A

q2 −m2
A

1

(q + p)2 −m2︸ ︷︷ ︸
∆D=−3

=
2

1

q2 −m2
A︸ ︷︷ ︸

∆D=−2

+
m2 − p2 − 2q · p−m2

A(
q2 −m2

A

)2︸ ︷︷ ︸
∆D=−3

+

(
m2 − p2 − 2q · p−m2

A

q2 −m2
A

)2
1

(q + p)2 −m2︸ ︷︷ ︸
∆D=−4

=
3

1

q2 −m2
A︸ ︷︷ ︸

∆D=−2

+
m2 − p2 − 2q · p−m2

A(
q2 −m2

A

)2︸ ︷︷ ︸
∆D=−3

+

(
m2 − p2 − 2q · p−m2

A

)2(
q2 −m2

A

)3︸ ︷︷ ︸
∆D=−4(

m2 − p2 − 2q · p−m2
A

q2 −m2
A

)3
1

(q + p)2 −m2︸ ︷︷ ︸
∆D=−5
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=
n

n∑
i=1

(
m2 − p2 − 2q · p−m2

A

)i−1(
q2 −m2

A

)i
+

(
m2 − p2 − 2q · p−m2

A

q2 −m2
A

)n
1

(q + p)2 −m2︸ ︷︷ ︸
∆D=−2−n

. (3.102)

This explicitly shows that the expansion results in a sum of terms with denominators

typical of massive vacuum diagrams, with a final term with an arbitrarily large negative

degree of divergence. Note that the numbers under the equality denote the number of

times the propagator decomposition has been performed.

IR rearrangement works by expanding every propagator of a Feynman integral using

the exact propagator decomposition until the final (non-vacuum) integral is UV conver-

gent. Since the final integral contains no UV pole, it can be ignored when extracting

UV divergences. The expansion cannot introduce spurious IR divergences since the

expansion is exact, and IR safety is guaranteed by the presence of the auxiliary mass

mA in denominators. Once the final term is dropped, the remaining integrals can be

evaluated using standard methods to find the UV pole structure of the original integral,

from which counterterms can be calculated.

Note that terms arise in the decomposition whose numerators are proportional to m2
A,

which result in UV divergences multiplied by m2
A. These terms are local after sub-

traction of subdivergences, and must cancel other UV-divergent terms that are also

proportional to m2
A. This is evident since mA is a non-physical mass that arises from

an exact decomposition, and so there can be no dependence on mA at the end of the

calculation. This leads to the calculational trick whereby such integrals with m2
A in

the numerator are not evaluated, but replaced by local counterterms proportional to

m2
A that cancel any UV divergences proportional to m2

A that arise from integrals not

containing m2
A in the numerator. The number of such counterterms is typically small,

since they must have mass dimension two less than the dimension of the effective La-

grangian (since it is multiplied by m2
A). In QCD, the only counterterm has the form of

a gluon mass term [63],
1

2
m2
AZxG

aµGaµ , (3.103)

where at 1-loop in the Feynman-’t Hooft gauge [62]

Zx = − g2
s

16π2
(nc + 2nf ) . (3.104)
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3.8 Renormalisation Group Equations

In dimensional regularisation, renormalised couplings and masses become functions of

the arbitrary dimensionful parameter µ. The dependence of couplings and masses with

respect to µ is given by the renormalisation group equations (RGEs) [64–66]. RGEs for

each coupling and mass may be found by using the fact that there is no µ dependence

in bare parameters, and therefore the derivative of any bare parameter with respect to

µ must be zero. Considering the bare QCD coupling, it follows that (using Equation

(3.95))

0 = µ
d

dµ
g0,s = µ

d

dµ
(µεZg(gs)gs(µ)) (3.105)

= εµεZg(gs)gs(µ) + µε
(
µ

d

dµ
Zg(gs)

)
gs(µ) + µεZg(gs)

(
µ

d

dµ
gs(µ)

)
, (3.106)

where it is noted that the renormalisation constant Zg(gs) may be expanded in terms

of gs(µ), and is therefore implicitly a function of µ. Hence,

µ
d

dµ
gs(µ) ≡ β(gs, ε) = −εgs(µ)− gs(µ)

1

Zgs
µ

d

dµ
Zg(gs). (3.107)

The beta function describes the running of the coupling gs(µ) with respect to µ. Com-

pletely analogously, considering the µ-independence of the bare mass m it can be shown

that

µ
d

dµ
m(µ) ≡ −γm (gs(µ)) m(µ) = − 1

Zm(gs)

dZm(gs)

dµ
m(µ), (3.108)

where γm(gs) is the anomalous mass dimension. The renormalisation group functions

β(gs, ε) and γm(gs) only depend on the coupling gs when calculating in the MS scheme,

and are mass-independent. They must also be finite everywhere since they are physical

quantities. This observation allows the renormalisation group functions to be written

in terms of the 1/ε coefficient of their respective renormalisation constants [67]. For

example, if β(gs, ε) is finite, the quantity

1

Zg(gs)
µ

d

dµ
Zg(gs) ≡ f(gs)

must also be finite. This can be rewritten as

f(gs)Zg(gs) = µ
dgs
dµ

dZg(gs)

dgs
= β(gs, ε)

dZg(gs)

dgs
. (3.109)

Expanding the renormalisation constants in powers of ε as

Zg(gs) = 1 +
∞∑
i=1

Zg,i(gs)

εi
, (3.110)

and using this expansion in Equation (3.109) gives

f(gs)

(
1 +

Zg,1
ε

+
Zg,2
ε2

+ . . .

)
= β(gs, ε)

(
1

ε

dZg,1
dgs

+
1

ε2
dZg,2
dgs

+ . . .

)
. (3.111)
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Since both β(gs, ε) and f(gs) are finite, the above equality must hold separately for

every power of ε. Using β(gs, ε) = −εgs +O(ε0), it follows that

f(gs) = −gs(µ)
dZg,1
dgs

, (3.112)

and therefore that

β(gs, ε) = −εgs(µ) + g2
s(µ)

dZg,1
dgs

. (3.113)

Similarly it may be shown that

γm(gs) =
β(gs, ε)

Zm

dZm(gs)

dgs
= −gs(µ)

dZm,1
dgs

. (3.114)

Therefore, renormalisation group functions may be found by computing renormalisation

constants to whatever order is required, extracting the coefficient of the 1/ε pole, and

differentiating it with respect to gs(µ).

Once RGEs are obtained to some order in a perturbative coupling, they may be solved.

This is particularly simple at 1-loop, where the strong coupling is [42]

αs(µ)

4π
=

1

β0 ln(µ2/Λ2
QCD)

, (3.115)

where

β0 =
11nc − 2nf

3
,

nc is the number of colours, nf is the number of active flavours, and ΛQCD is the QCD

scale, where perturbation theory fails. The running mass is given by [53]

m(µ) = m(µ0) exp

[
−
∫ g(µ)

g(µ0)
dg′

γm(g′)

β(g′)

]
, (3.116)

which to leading order is given by [44,53]

m(µ) = m(µ0)

[
αs(µ)

αs(µ0)

] γ(0)m
2β0

. (3.117)

When we discuss the running of Wilson coefficients, we will see that they have analogous

expressions.

3.9 Tensor Integral Decomposition

As discussed in Sections 3.1 and 3.5, during loop calculations, tensor integrals arise that

can be decomposed into scalar integrals. In using the method of expansion by regions,

integrals would be generated that need to be decomposed. For example, expanding

46



the integral I(3)
vac(m2

1,m
2
2,m

2
3,m

2
4,m

2
5,m

2
6; 1, 1, 1, 1, 1, 1) in the hard-soft-soft (hss) region

(where q1 � q2, q3) would generate integrals of the form

I(i, j, k, l,m) =∫∫∫
ddq1 ddq2 ddq3

((2π)d)3

(q1 · q2)i(q1 · q3)j(q2
1)k(q2

2)l(q2
3)m

(q2
1 −m2

1)(q2
2 −m2

2)(q2
3 −m2

3)((q2 − q3)2 −m2
4)
.

(3.118)

To bring this into a standard form it is necessary to remove all numerator factors, which

involves the removal of ‘crossed’ scalar products of the form qa · qb. This is done by

decomposing the crossed products using qa · qb = gµνq
µ
a qνb , such that

I(i, j, k, l,m) = f(g)

∫
ddq1

(2π)d

(q2
1)k
(∏i+j

a=1 q
µa
1

)
(q2

1 −m2
1)

×
∫∫

ddq2ddq3

((2π)d)2

(qν2 )i(qρ3)j(q2
2)l(q2

3)m

(q2
2 −m2

2)(q2
3 −m2

3)((q2 − q3)2 −m2
4)
, (3.119)

where f(g) is a product of (i+j) metrics. Note that this decomposition splits the 3-loop

scalar integral into the product of a 1-loop tensor integral and a 2-loop tensor integral,

which can be individually decomposed. If there are an odd number of qµ1 momenta

in the q1 integral, then the integral will be odd and hence equal to zero. Therefore a

non-zero integral requires

i+ j = 2n, n ∈ Z. (3.120)

Consider the simple example I(2, 2, 0, 0, 0). For notational simplicity, we suppress

integral measures and factors of 2π using the notation∫
p
≡
∫

ddp

(2π)d
.

Then,

I(2, 2, 0, 0, 0) =

∫∫∫
q1,q2,q3

(q1 · q2)2(q1 · q3)2

(q2
1 −m2

1)(q2
2 −m2

2)(q2
3 −m2

3)((q2 − q3)2 −m2
4)

= gαβgλµgνρgστ

∫
q1

qα1 q
λ
1 q

ν
1q
σ
1

(q2
1 −m2

1)

∫∫
q2,q3

qβ2 q
µ
2 q

ρ
3q
τ
3

(q2
2 −m2

2)(q2
3 −m2

3)((q2 − q3)2 −m2
4)
.

The 1-loop integral can be decomposed using the relation [42]∫
p

pµpνpρpσ

(p2 −m2)n
=
gµνgρσ + gµρgνσ + gµσgνρ

d(d+ 2)

∫
p

(p2)2

(p2 −m2)n
, (3.121)

which leads to

I(2, 2, 0, 0, 0) =
1

d(d+ 2)

∫
q1

(q2
1)2

(q2
1 −m2

1)

∫∫
q2,q3

q2
2 q

2
3 + 2(q2 · q3)2

(q2
2 −m2

2)(q2
3 −m2

3)((q2 − q3)2 −m2
4)
.
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The combination of metrics that arises from the tensor decomposition is the unique

totally symmetric Lorentz structure, given the Lorentz indices of the tensor integral.

The double integral may be brought into the required form using

q2 · q3 =
1

2

(
q2

2 + q2
3 − (q2 − q3)2

)
,

and then using partial fraction decomposition. This yields

I(2, 2, 0, 0, 0) =
1

d(d+ 2)

{(
2m4

1m
2
2 +

m4
1m

2
3

2
−m4

1m
2
4

)
×
∫
q1

1

q2
1 −m2

1

∫∫
q2,q3

1

(q2
2 −m2

2)((q2 − q3)2 −m2
4)

+

(
−m4

1m
2
2 −m4

1m
2
3 +

m4
1m

2
4

2

)∫
q1

1

q2
1 −m2

1

∫∫
q2,q3

1

(q2 −m2
2)(q2

3 −m2
3)

+
m4

1

2

∫
q1

1

q2
1 −m2

1

∫∫
q2,q3

(q2 − q3)2

(q2
2 −m2

2)(q2
3 −m2

3)

+

(
m4

1m
2
2

2
+ 2m4

1m
2
3

)∫
q1

1

q2
1 −m2

1

∫∫
q2,q3

1

(q2
3 −m2

3)((q2 − q3)2 −m2
4)

+

(
m4

1m
4
2 +m4

1m
4
3 +m4

1m
4
4

2
+ 2m4

1m
2
2m

2
3 −m4

1m
2
2m

2
4 −m4

1m
2
3m

2
4

)
×
∫
q1

1

q2
1 −m2

1

∫∫
q2,q3

1

(q2
2 −m2

2)(q2
3 −m2

3)((q2 − q3)2 −m2
4)

+
m4

1

2

∫
q1

1

q2
1 −m2

1

∫∫
q2,q3

q2
3

(q2
2 −m2

2)((q2 − q3)2 −m2
4)

+
m4

1

2

∫
q1

1

q2
1 −m2

1

∫∫
q2,q3

q2
2

(q2
3 −m2

3)((q2 − q3)2 −m2
4)
, (3.122)

in which all integrals are now in a standard form (some with negative powers). Note that

scaleless integrals are discarded since they are vanishing in dimensional regularisation.

This process has taken a scalar integral that was not in standard form, and performed

a tensor decomposition on a single integral in order to rewrite the original integral as

a series of scalar integrals in standard form.

The crux of this procedure is the tensor decomposition of the 1-loop integral in terms

of metrics, which determine how the remaining q2 and q3 are contracted. This tensor

integral decomposition is simple for low-rank tensor integrals, but as the rank increases,

the number of metric combinations increases, as shown in Table 3.2. Tensor integral

decomposition was performed automatically in a brute force approach, by forming all

possible metric combinations from the available Lorentz indices, and then contracting

all remaining indices. Since it was intended to perform expansions up to the twentieth

48



Rank of 1-loop tensor integral No. of metric combinations

2 1
4 3
6 15
8 105
10 945
12 10,395
14 135,135
16 2,027,025
18 34,459,425
20 654,729,075

Table 3.2: Table enumerating the number of unique ways of building a rank-2n tensor
from metrics.

power, the highest-rank integrals encountered required the generation of O(108) terms,

and their contraction. This is highly computationally intensive, and consequently it is

not possible to perform expansions to the desired order in this way.

To find the numbers listed in Table 3.2, consider the symmetries of tensor integrals. A

rank-2n tensor integral can be decomposed into sums of the products of n metrics. A

group of 2n Lorentz indices may be ordered in (2n)! ways. However, since each metric

is symmetric, 2n of the (2n)! orderings are redundant. Furthermore, since metrics

commute, there is an additional redundancy of n!, reflecting all the ways the metrics

may be ordered. Therefore, there are

(2n)!

2nn!
= (2n− 1)!! (3.123)

unique ways of constructing a rank-2n tensor from metrics. Equation (3.123) may be

proved inductively, and introduces the double factorial operator, defined as

k!! =



k/2∏
j=1

(2j) even k,

k+1
2∏
j=1

(2j − 1) odd k.

(3.124)

For example, a rank-8 tensor integral has n = 4, and so there are 7 · 5 · 3 · 1 = 105 ways

of forming a rank-8 tensor purely from metrics.

As well as forming (2n−1)!! products of metrics, it is also necessary to know the constant

of proportionality generated in tensor integral decomposition. This can be calculated for

an individual case by contracting the metrics generated by tensor decomposition. For

example, for a rank-2 tensor integral in d dimensions, Lorentz invariance requires

∞∫
−∞

ddq

(2π)d
qµqν

q2 −m2
= κ2g

µν

∞∫
−∞

ddq

(2π)d
q2

q2 −m2
, (3.125)
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and by contracting both sides by gµν it follows that κ2 = 1/d. This strategy can be

performed for arbitrary-rank tensors, and the pattern emerges that for a rank-2n tensor

integral,

κ2n =
n−1∏
i=0

1

d+ 2i
. (3.126)

Using the results so far, a scalar integral involving scalar products of different loop

momenta may be written as

I(i, j, k, l,m)

=

∫∫∫
q1,q2,q3

(q1 · q2)i(q1 · q3)j(q2
1)k(q2

2)l(q2
3)m

(q2
1 −m2

1)(q2
2 −m2

2)(q2
3 −m2

3)((q2 − q3)2 −m2
4)

= f(g)

∫
q1

(q2
1)k
(∏i+j

a=1 q
µa
1

)
(q2

1 −m2
1)

∫∫
q2,q3

(qν2 )i(qρ3)j(q2
2)l(q2

3)m

(q2
2 −m2

2)(q2
3 −m2

3)((q2 − q3)2 −m2
4)

= f(g)Σ(g)


i+j
2
−1∏

a=0

1

d+ 2a

∫
q1

(q2
1)k+ i+j

2

(q2
1 −m2

1)

∫∫
q2,q3

(qν2 )i(qρ3)j(q2
2)l(q2

3)m

(q2
2 −m2

2)(q2
3 −m2

3)((q2 − q3)2 −m2
4)
,

(3.127)

where Σ(g) represents the totally symmetric rank-(i+j) Lorentz-invariant tensor. Note

that the first equality follows from simply splitting up scalar products of loop momenta

and removing the corresponding metrics into the product f(g), and the second follows

from performing a tensor decomposition of the 1-loop q1 integral. The tensor Σ(g) is

totally symmetric on the (i+j) Lorentz indices of the q1 integral, and the tensor f(g) is

a product of (i+ j) metrics, each metric containing one index from the 1-loop integral

and one index from the 2-loop integral. Since gµνg
νρ = δρµ, the product f(g)Σ(g)

contracts the indices of the 1-loop integral, and replaces them with indices of the two

loop integral. Consequently

h(g) ≡ f(g)Σ(g) (3.128)

is a totally symmetric rank-(i + j) tensor whose indices are those of the 2-loop tensor

integral. It then remains to find how Lorentz indices contract in the product

h(g)

∫∫
q2,q3

(qν2 )i(qρ3)j(q2
2)l(q2

3)m

(q2
2 −m2

2)(q2
3 −m2

3)((q2 − q3)2 −m2
4)
.

Consider

S = h(g)

∫∫
q2,q3

(qν2 )i(qρ3)j , (3.129)

which contains all relevant tensor quantities. Since h(g) is totally symmetric over all of

the Lorentz indices of the integral, all possible scalar products between q2 and q3 will
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be generated, and so

S = c̃0

∫∫
q2,q3

(q2
2)i/2(q2

3)j/2 + c̃1

∫∫
q2,q3

(q2 · q3)(q2
2)

i−1
2 (q2

3)
j−2
2

+ c̃2

∫∫
q2,q3

(q2 · q3)2(q2
2)

i−2
2 (q2

3)
j−2
2 + . . .

=

min (i,j)∑
x=0

c̃x

∫∫
q2,q3

(q2 · q3)x(q2
2)

i−x
2 (q2

3)
j−x
2 , (3.130)

where the c̃x are integer coefficients to be determined. As stated previously, it is

necessary for i + j to be even, as otherwise the q1 integral will be odd, and therefore

zero.

The coefficients c̃x enumerate how many ways there are to form x “crossed pairs” of

the form (q2 ·q3). Denoting by X the number of ways of pairing up i lots of q2 momenta

and j lots of q3 momenta into x pairs (where x ≤ i+j
2 ), then

X =
[ij][(i− 1)(j − 1)][(i− 2)(j − 2)] . . . [(i− x+ 1)(j − x+ 1)]

x!
=

i!j!

x!(i− x)!(j − x)!
,

(3.131)

where the factor of x! arises since it does not matter in which order the momenta are

paired up. Note that X is symmetric under i ↔ j as expected. It is also necessary to

enumerate the number of ways of pairing up the remaining momenta amongst them-

selves (to form products q2
2 and q2

3) after forming x “crossed” pairs. Consider the q2

momenta, of which there remain (i − x) momenta to be paired amongst themselves.

Denote the number of ways of forming the product q2
2 by Yi. There are (i−x)! ways of

pairing the momenta, but since it doesn’t matter in which order the pairs are formed,

there is a suppression of i−x
2 !. Additionally, the ordering of the momenta within each

pair does not matter, leading to a further suppression of 2
i−x
2 . Therefore,

Yi =
(i− x)!

2
i−x
2

(
i−x

2

)
!

= Yi = (i− x− 1)!!, (3.132)

where the second equality comes from Equation (3.123). This expression trivially gen-

eralises for self-pairing (j − x) momenta of type q3 to give Yj = (j − x− 1)!!.

Combining the expressions for X,Yi, and Yj , an expression is obtained for the total

number of ways of pairing up i momenta of type q2 and j momenta of type q3 with x

crossed pairs:

c̃x =
i!j!(i− x− 1)!!(j − x− 1)!!

x!(i− x)!(j − x)!
=

i!j!

x!(i− x)!!(j − x)!!
. (3.133)
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Therefore the integral

I(i, j, k, l,m) =∫∫∫
ddq1 ddq2 ddq3

((2π)d)3

(q1 · q2)i(q1 · q3)j(q2
1)k(q2

2)l(q2
3)m

(q2
1 −m2

1)(q2
2 −m2

2)(q2
3 −m2

3)((q2 − q3)2 −m2
4)
,

may be rewritten in a standard form using tensor decomposition as

• i, j even

I(i, j, k, l,m) =


i+j
2
−1∏

a=0

1

d+ 2a

(min (i,j)∑
x=0
x even

i!j!

x!(i− x)!!(j − x)!!

×
∫
q1

(q2
1)k+ i+j

2

(q2
1 −m2

1)

∫∫
q2,q3

(q2
2)l+

i−x
2 (q2

3)m+ j−x
2 (q2 · q3)x

(q2
2 −m2

2)(q2
3 −m2

3)((q2 − q3)2 −m2
4)

)
(3.134)

• i, j odd

I(i, j, k, l,m) =


i+j
2
−1∏

a=0

1

d+ 2a

(min (i,j)∑
x=1
x odd

i!j!

x!(i− x)!!(j − x)!!

×
∫
q1

(q2
1)k+ i+j

2

(q2
1 −m2

1)

∫∫
q2,q3

(q2
2)l+

i−x
2 (q2

3)m+ j−x
2 (q2 · q3)x

(q2
2 −m2

2)(q2
3 −m2

3)((q2 − q3)2 −m2
4)

)
. (3.135)

There is a consistency check for the expression for c̃x. Since there are (i+j−1)!! metric

combinations in h(g), there must be a total of (i+ j− 1)!! possible contractions, which

implies the sum of the c̃x coefficients must be (i+ j − 1)!!,

min (i,j)∑
x

i!j!

x!(i− x)!!(j − x)!!
= (i+ j − 1)!!.

This was verified for all possible combinations of i and j for all values of x up to and

including x = 20, which was the desired maximum value of x.

This tensor decomposition result was simple to implement in Mathematica, allowing

the decomposition of arbitrarily high-rank tensor integrals in millisecond time.
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Chapter 4

Effective Field Theories

Effective Field Theories (EFTs) provide a framework in which calculations can be

organised in a systematic manner to include relevant physics while ignoring higher-

energy physics that is irrelevant at the scale of interest. This simplifies the calculation

of low-energy physics, but exactly reproduces the results of the underlying full theory

in the IR limit [68–70]. As well as simplifying calculations, EFTs can also be used

as probes of new physics. In this approach, the SM is an EFT describing a more

fundamental UV theory that is currently unknown, which can be used to calculate

processes at low energies. Effects of heavy particles that exist beyond the SM are

treated in Standard Model Effective Field Theory (SMEFT) [8, 9]. These calculations

can then constrain what types of new physics may exist.

4.1 EFTs and Particle Decoupling

Effective Field Theories in particle physics are built on the principle that low-energy

processes should be explicable in terms of physics of a similar scale - contributions from

heavy particles should be negligible when there is not enough energy to produce such

particles. At low energies, heavy particles cannot be produced on-shell, and therefore

cannot exist as external states. Additionally, heavy particles arising as virtual particles

have masses much larger than typical momentum transfer for low-energy processes.

Consequently, propagators of heavy particles may be Taylor expanded in powers of

momenta over mass, with fast convergence. Expanding propagators of heavy particles

removes the heavy particles as degrees of freedom, and transforms renormalisable non-

local interactions into non-renormalisable local interactions.

For example, the four-Fermi theory of weak interactions is an effective field theory. In

the full theory (the Glashow-Salam-Weinberg (GSW) theory), there exists a massive

W -boson that mediates flavour-changing processes. The W couples two fermion lines
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W −−−−−−−→

Fig. 4.1: Integrating out the W -boson from GSW theory yields the four-Fermi theory,
which is very successful at describing low-energy weak interactions.

together, with each coupling being dimension-four, and therefore renormalisable. Low-

energy weak interactions are described by four-Fermi theory, in which there is no W -

boson, and fermions interact at a point. The W -boson propagator (in Feynman gauge)

is expanded as

−igµν
p2 −M2

W

=
−igµν
−M2

W

 1

1− p2

M2
W

 =
igµν
M2
W

(
1 +

p2

M2
W

+
p4

M4
W

+ . . .

)
, (4.1)

which leads to the creation of local non-renormalisable interactions, shown in Figure

4.1.

The local interactions of four-Fermi theory have mass dimension-six (in d = 4 dimen-

sions), and are non-renormalisable. The coupling constant of four-Fermi theory, the

Fermi constant GF , contains factors of the full theory coupling, g2, and a suppression

by the W -mass, GF ∝ g2
2/M

2
W . This expression for the Fermi constant is obtained via

the process of matching, to be discussed below.

In general, an EFT is constructed in the following way [63, 68, 71]. Starting at a high

scale with a renormalisable Lagrangian of light and heavy fields, L({`}, H), the scale µ

is reduced until it is less than the heavy mass mH . Terms containing only the light fields

{`} are isolated, while the remaining part (involving both {`} and H) is treated as a

perturbation to the ‘light’ Lagrangian, with the heavy fields being integrated out:

L({`}, H)
µ<mH−−−−→ L(`i) + δL(`i). (4.2)

Integrating out the heavy fields H creates a series of non-renormalisable operators, al-

lowing δL({`}) to be written as an operator product expansion (in d dimensions),

δL({`}) =

∞∑
i=1

1

Λi

∑
j

C
(d+i)
j Q

(d+i)
j . (4.3)

The parameter Λ is some massive parameter (often mH), which ensures the Lagrangian

remains d-dimensional. It acts as a cut-off for the validity of the expansion, with the

effective theory expected to break down at scales of order Λ. The coefficients Ci are

Wilson coefficients, and are effectively coupling constants for higher mass-dimension
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operators Qi. The operators Qi are exclusively built from the light fields `i of the effec-

tive theory. All possible Qi that observe the symmetries of the theory (which typically

include Lorentz and gauge symmetries) are included in the expansion of Equation (4.3).

The expansion is organised by the mass-dimension of the operators, with a number of

different operators possible at each order.

Equation (4.3) is written in terms of bare parameters, which need to be renormalised.

In order to fully specify the theory, it is necessary to choose a renormalisation scheme.

In a mass-dependent renormalisation scheme, the decoupling of heavy particles arises

naturally, as at scales µ < mH the contribution of large-mass particles to quantities

such as the β-function is suppressed by powers of mH . The effects of heavy particles

to low energy processes then results in a rescaling of renormalisation and coupling

constants, and the heavy particles do not arise as dynamical degrees of freedom that

need to be included in calculations. This is the content of the Appelquist-Carazonne

theorem [72]. Mass-independent schemes like MS do not include suppressions of heavy

particles at low energies, and so do not automatically yield particle decoupling. In

addition, the lack of decoupling leads to an ‘incorrect’ β-function, with an associated

problem of large logarithms for low-momentum-transfers [68–70].

Both of these problems of the MS scheme are overcome by manually integrating out

particles. Calculating in MS, at the threshold µ = mH , the heavy particle H is removed

as a dynamical degree of freedom, leading to a new low-energy theory with fewer

degrees of freedom. The new theory is formed in accordance with Equations (4.2) and

(4.3), with the requirement that amplitudes calculated in both theories at the scale

µ = mH must agree. These are called the matching conditions, and incorporate the

residual effect of high-mass particles on low-energy parameters. Whenever a particle

is integrated out, the new effective theory is strictly a new theory, and fields and

parameters of the high- and low-energy theories may not be naively interchanged. For

example, the QCD β-function in MS contains a term that is proportional to the number

of quark flavours. If a quark is integrated out in passing between the full and effective

theories, then there are fewer flavours in the effective theory than the full theory, leading

to a different β-function [69,70].

The advantage of using MS over mass-dependent schemes is two-fold. Firstly, cal-

culations are simplified. More importantly, when evaluating loop diagrams involving

higher-dimension operators in a mass-dependent scheme, the high-momentum region

of the loop integrals are proportional to m2
H (at 1-loop), the mass of the heavy particle

that is integrated out. This loop contribution cancels the suppression factor 1/m2
H

of the effective operator, and the effective operator is no longer suppressed. There-

fore it is not possible in a mass-dependent scheme to truncate the operator product

expansion, and predictivity is only achieved by considering the full infinite tower of ef-
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fective operators. However, in a mass-independent scheme, all scale dependence resides

in logarithms such as ln (µ), which do not remove the suppression provided by mH .

This allows the operator product expansion of Equation (4.3) to be truncated to some

appropriate power, allowing calculations to be predictive [68,69].

4.2 Types of Effective Operators

The general prescription for building an effective theory is to include in the Lagrangian

every possible operator allowed by the symmetries of the theory up to some chosen

mass dimension. However, by following the approach of writing down all possible

allowed operators, this basis will typically be linearly dependent, since operators (or

combinations of operators) that superficially look different may be shown to be identical

through equations of motion. Therefore, in order to build a linearly independent basis,

it is important to study the equations of motion. For example, the equation of motion

for the left-handed lepton doublet in the SM is

∂LSM

∂ ¯̀ = ∂µ

(
∂LSM

∂(∂µ`)

)
=⇒ i /D` = Γeeϕ , (4.4)

while the EoM for the Higgs doublet is [8]

∂LSM

∂ϕ†
= ∂µ

(
∂LSM

∂(∂µϕ)†

)
=⇒ (DµDµϕ)j = m2ϕj−λ(ϕ†ϕ)ϕj−eΓ†e`j+εjkqkΓuu−dΓ†dq

j .

Note that in the above, only the dimension-four Lagrangian has been used to derive

the EoM. In general, it is necessary to derive EoMs using the entire Lagrangian of the

effective theory, and in the case of SMEFT this would mean for example the EoM for

the lepton field is

i /D`p = [Γe]prerϕ+
Cpreϕ
Λ2

(ϕ†ϕ)erϕ+ . . . , (4.5)

where p and r are lepton generation indices, and the ellipsis denotes further contribu-

tions from dimension-six operators. To eliminate a ‘redundant’ dimension-six operator

involving the derivative of a lepton doublet, we may find, for example

1

Λ2
(ϕ†ϕ)(`si /D`p) =

1

Λ2
(ϕ†ϕ)(`s[Γe]prerϕ) +

Cpreϕ
Λ4

(ϕ†ϕ)2(`serϕ) + . . . , (4.6)

where it can be seen that the higher-dimension contributions to the leptonic EoM

are higher order, and can be neglected when only working up to dimension-six opera-

tors.

While a physical basis should not contain operators that are related through equations

of motion, it is possible to build non-physical operators that vanish on-shell through

the equations of motion. While these operators are classically zero, they need to be

included in effective calculations performed off-shell. This is done for the case of the
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SMEFT in Chapter 5, where the equations of motion are used to construct EoM-

vanishing operators that contribute to the renormalisation of diagrams with double-

insertions of the Weinberg operator. For example, using the EoM for left-handed leptons

(Equation (4.4)), the lepton-flavour violating off-shell operator

Qprv(1) = (ϕ†ϕ)(`pi
↔
/D`r)− (ϕ†ϕ)(`p [Γe]rs esϕ+ es

[
Γ†e
]
sp
`rϕ
†) (4.7)

may be constructed, with a similar triplet operator also arising. These operators have

derivatives acting on leptons, and consequently give Feynman rules dependent on lepton

momenta. The inclusion of EoM-vanishing operators is also important in general when

performing matching calculations off-shell, although they do not arise in the calculation

of Chapter 6, since the gluons do not couple to leptons, and therefore the gluonic EoM

cannot generate dimension-six operators that mediate the process in question.

An additional type of operator are evanescent operators, which are proportional to the

ε of d = 4 − 2ε, and are therefore vanishing in four dimensions. Further, since they

are non-physical operators, their matrix elements give no contribution to physical am-

plitudes. However, these operators must be renormalised, and thus mix into physical

operators through renormalisation matrices. Since evanescent operators are propor-

tional to ε, and the momentum integral corresponding to a loop induces a 1/ε pole,

then at 1-loop evanescent operators are renormalised by finite counterterms. Conse-

quently, at 1-loop evanescent operators do not contribute to the anomalous dimensions

of physical operators. However, at 2-loop and above, evanescent operators affect the

anomalous dimensions of physical operators, and so their inclusion is important [73].

It is possible to perform calculations without including evanescent operators, but to do

so correctly it is not possible to use massless quarks within dimensional regularisation.

The use of massless quarks introduces spurious infrared divergences that can only be

properly handled with the addition of evanescent operators [12].

4.3 Renormalisation of EFTs

In usual QFT parlance, a Lagrangian in d = 4 dimensions is said to be renormalisable

if it only contains operators with mass-dimension less than or equal to four. Such a

Lagrangian may be renormalised to give finite Green’s functions with the addition of a

finite number of counterterms. Effective Lagrangians contain multiple higher-dimension

operators, and so would normally be considered to be non-renormalisable. However,

provided that calculations in EFTs are truncated at some order in Λ, only a finite

number of counterterms are required to renormalise the effective theory, and so the

theory is renormalisable in practice.
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Effective operators are built out of light fields, and so effective operators will un-

dergo wavefunction renormalisation. For example, a four-fermion operator of a generic

fermion ψ will undergo wavefunction renormalisation as(
ψ0Γψ0

) (
ψ0Γψ0

)
= Z2

ψ

(
ψΓψ

) (
ψΓψ

)
. (4.8)

However, this wavefunction renormalisation is insufficient to remove all divergences in

effective theories, and a further renormalisation must be performed, called operator

renormalisation [69, 74]. This is simply because the full and effective theories are dif-

ferent theories, with different UV structures. Therefore, it cannot be expected that the

same procedure will renormalise the two different theories. The additional operator

renormalisation leads to mixing between operators with the same quantum numbers

and displaying the same symmetries. Instead of a single multiplicative renormalisation

constant for each higher-dimension operator, a renormalisation matrix is required, with

contributions from multiple operator renormalisation constants needed to renormalise

a single operator. In this framework, and using dimensional regularisation, renormali-

sation of a higher-dimension operator is performed via

Ci0
Λdim[Q]−4

Qi0 = µaε
Ci(µ)

Λdim[Q]−4
Zij(µ) (Zχ(µ)Q)j (µ), (4.9)

where there is summation over the repeated indices i, j, the renormalisation constant

Zχ represents the relevant wavefunction renormalisations for the operator Qj , and the

subscript ‘0’ denotes a bare parameter. Since dimensional regularisation is used, the

scale µ ≡ µMS appears, and the factor µaε is introduced to ensure dimensionless Wilson

coefficients. For example, considering the mass-dimension of a four-fermion operator

with a = 2,

d = 4−2ε =

[
µ2εCψ4

Λ2

(
ψΓψ

) (
ψΓψ

)]
= 4

d− 1

2
−2+2ε+

[
Cψ4

]
= 4−2ε+

[
Cψ4

]
(4.10)

which implies that
[
Cψ4

]
= 0, and the Wilson coefficient is dimensionless as desired.

Note that in the literature, relations of the form of Equation (4.9) are often written in

a suppressed notation, typically as

Ci0Q
i
0 = Ci(µ)Zij(µ)Qj(µ). (4.11)

Note that since Zij renormalises both the Wilson coefficient and the operator, it is stan-

dard to associate the renormalisation matrix with either the coefficient or the operator.

We renormalise the Wilson coefficient as

Ci0 = Ci(µ)Zij(µ), (4.12)

such that renormalisation of the Wilson coefficients additionally removes all divergences

of its associated bare operator.
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Q5 Q5 Q6

Fig. 4.2: Double-insertions of a dimension-five operator leads to mixing with
dimension-six operators with the same external states.

Renormalisation matrices may be expanded in powers of both coupling constants and ε,

and then evaluated in perturbation theory. For example, in calculating QCD corrections

to weak processes, renormalisation constants may be expanded as

Zij = δij +
∞∑
k=1

(αs
4π

)k
Z

(k)
ij , Z

(k)
ij =

k∑
m=0

1

εm
Z

(k,m)
ij . (4.13)

4.3.1 Operator Mixing through Double-Insertions

The mixing of operators of the same dimension is described with renormalisation ma-

trices Zij , but it is also possible for operators of different dimensionality to mix under

renormalisation. For example, consider the simple Lagrangian

L = L(4) +
1

Λ
C5Q5 +

1

Λ2
C6Q6, (4.14)

where there is a single operator of dimension-five and a single operator of dimension-

six. If calculating a process to some order 1/Λ2, there can, in general, be contributions

from diagrams with a single insertion of a dimension-six operator and two insertions

of the dimension-five operator, since such amplitudes are both proportional to 1/Λ2.

This is illustrated in Figure 4.2.

The loop that appears in Figure 4.2 generates a divergence that must be removed to

obtain finite quantities. Since in general an effective theory contains all operators al-

lowed by symmetries, no additional operators can be introduced to the Lagrangian to

remove such divergences, and so divergences appearing from double insertions must be

renormalised by operators already in the Lagrangian, in this case Q6. The renormal-

isation is encoded in a renormalisation tensor Z55,6, which specifies the UV structure

required of Q6 to remove the divergence generated by a double-insertion of Q5.

In general, when discussing the mixing of operators of dimension-m into operators of

dimension-n through double-insertions, there may be multiple operators at dimension-

m and -n. For example, in the case of SMEFT, there is a single dimension-five operator

that mixes into four LFV operators at dimension-six. However, if an additional Higgs

doublet is added to the theory, there are a total of four dimension-five operators that
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mix into the four LFV dimension-six operators. Both of these cases are studied in

Chapter 5 of this work. The general structure of renormalisation for such situations

is discussed in [75]. Denoting quantities of dimension-n with a tilde and those of

dimension-m without a tilde, the renormalisation equation of a dimension-n quantity

may then be written as

C̃i0Q̃
i
0 = C̃iZ̃ijQ̃

j + CkC lZkl,jQ̃
j , (4.15)

where there is summation over i, j, k and l. Note that there are (here suppressed) factors

of µε on the right-hand-side of the equality to ensure all Wilson coefficients are dimen-

sionless. Note also that there is a key difference in cases of intra- and inter-dimensional

operator mixing. In the former case, where operators of the same dimension mix, mix-

ing occurs when there is a vertex renormalisation induced by two external legs being

connected by a gauge boson. This means that the renormalisation matrix Zij may be

expanded in a gauge coupling g, with the leading order contribution ∝ g2. However,

when renormalising diagrams containing a double-insertion of effective operators, at

leading order there are no gauge couplings, and so the leading order contribution to

the renormalisation tensor Zmn,j is g-independent (and therefore µ-independent). To

address this situation, it is common to make a redefinition of terms in the effective

Lagrangian by multiplying Wilson coefficients by g2 and dividing effective operators

by g2 [75–77]. Such an action leaves the Lagrangian invariant, while introducing a

g-dependence into the Wilson coefficients and effective operators that allows expansion

in gauge couplings at leading order. However, this approach assumes that calculations

are being performed in a theory where we calculate perturbatively in a specific small

coupling. Since we consider only 1-loop processes with no gauge coupling necessarily

present, this approach is not naturally suited to our case, and so we work with renor-

malisation tensors that are µ-independent at leading order. This is a novel approach,

and is not present in the previous literature.

4.3.2 Renormalisation Group Equations for Wilson Coefficients

Wilson coefficients are couplings for effective operators, and are µ-dependent, and are

therefore analogous to coupling constants of dimension-four operators. The running

of Wilson coefficients is similarly given by anomalous dimensions, and due to opera-

tor mixing, the anomalous dimensions are encoded in anomalous dimension matrices

(ADMs) and anomalous dimension tensors (ADTs).

In the following, we will consider the renormalisation of dimension-six Wilson coeffi-

cients, both among themselves, and from double-insertions of dimension-five operators.

Dimension-six quantities are denoted by a tilde, while dimension-five quantities do not

have a tilde. Consider a bare dimension-six Wilson coefficient C̃i0. Considering only
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the mixing of dimension-six operators among themselves, and ignoring wavefunction

renormalisation, the renormalisation equation for C̃i0 is given by Equation (4.12). Since

bare quantities are µ-independent, this implies

0 = µ
d

dµ

(
C̃i0

)
= µ

d

dµ

(
µ2εC̃jZ̃ji

)
, (4.16)

where the factor of µ2ε from dimensional regularisation is included to make the Wilson

coefficients C̃i dimensionless. Using the product rule, it is then simple to find

µ
d

dµ
C̃i(µ) = −2εC̃i(µ)− C̃k(µ)

(
µ

d

dµ
Z̃kj

)
Z̃−1
ji . (4.17)

This may be written as

µ
d

dµ
C̃i = C̃j γ̃ji, (4.18)

where the dimension-six ADM is given by

γ̃ji = −2εδji −
(
µ

d

dµ
Z̃jk

)
Z̃−1
ki . (4.19)

Similarly, an ADM for mixing among dimension-five operators is given by

γji = −2εδji −
(
µ

d

dµ
Zjk

)
Z−1
ki . (4.20)

Extending the treatment to also include double-insertions of dimension-five operators,

dimension-six Wilson coefficients may be renormalised as

C̃i0 = µ2εC̃jZ̃ji + µ2εCkZkl,iC
l. (4.21)

Taking the derivative with respect to µ leads to the renormalisation group equa-

tion

µ
d

dµ
C̃i = C̃j γ̃ji + Ckγkl,iC

l, (4.22)

where γ̃ji is the dimension-six ADM of Equation (4.19). The quantity γkl,i is the ADT

for mixing of dimension-five operators into dimension-six via double-insertions, and is

given by

γkl,i = −
[
2εZkl,jZ̃

−1
ji +

(
µ

d

dµ
Zkl,j

)
Z̃−1
ji + (γkk′δll′ + γll′δkk′)Zk′l′,jZ̃

−1
ji

]
, (4.23)

where γkk′ is the dimension-five ADM. This can be compared to the result in [75], where

there is not a term proportional to ε. This is because the additional factor of µ2ε that

arises in the Lagrangian from dimensional regularisation has not been considered.

It is useful to consider the perturbative expansion of Equation (4.22) to understand

where the leading contributions come from. The dimension-six ADM has a leading

order contribution of −2εδji (see Equation (4.19)), since
dZ̃jk
dµ starts at O(g2). Then,
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considering the ADT of Equation (4.23), the first term is leading order since both

Zkl,j and Z̃ji start at O(g0). The second term is not leading order, since
dZkl,j

dµ starts

at O(g2). There is a contribution from the third term, since Zkl,j and Z̃ji start at

O(g0), and the dimension-five ADMs (given in Equation (4.20)) have a part that is

leading order. Bringing these contributions together, the leading order running of the

dimension-six Wilson coefficient C̃i is then given by[
µ

d

dµ
C̃i
](0)

= −2εC̃i − 2εCk [Zkl,j ]
(0) δjiC

l

− Ck
(

(−2εδkk′δll′ − 2εδll′δkk′)
[
Zk′l′,j

](0)
δji

)
C l

= −2εC̃i + 2εCk [Zkl,i]
(0)C l. (4.24)

The expression
[
Zk′l′,j

](0)
(where the (0) superscript denotes that this is the contribu-

tion at O(g0)) will contain a 1/ε pole which will cancel the ε coefficient. Then returning

to d = 4 dimensions, the term from the dimension-six ADM will no longer contribute,

and the final expression for the leading order running is[
µ

d

dµ
C̃i
](0)

= 2εCk [Zkl,i]
(0)C l . (4.25)

Therefore, the leading contribution to the running of the dimension-six Wilson coeffi-

cient C̃i is given by the leading order term of the ADT Zkl,i. This is a new result, and

is given for the first time in [78]. We have also checked that we would obtain the same

final results for the running of dimension-six Wilson coefficients if we used the method

of [75], although the intermediate steps are different.

4.4 Solutions of RGEs and RG-Improved Perturbation
Theory

Given the renormalisation group equation for a column of Wilson coefficients,

µ
d

dµ
Ci = Cjγji , (4.26)

the Wilson coefficient at a scale µ may be solved as [44]

Ci(µ) = Cj(MW ) exp

[∫ g(µ)

g(MW )
dg′

γji(g
′)

β(g′)

]
, (4.27)

where β(g) is the QCD beta function. At leading order this gives

Ci(µ) = Cj(MW )

[
αs(MW )

αs(µ)

] γ(0)ji
2β0

. (4.28)
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These solutions are crucial in determining the behaviour of Wilson coefficients. In a

typical matching calculation at the weak scale we may obtain the result

C(µ) ≈ 1 + F αs
4π

ln

(
MW

µ

)
, (4.29)

where F is some numerical factor, typically ofO(1). This is is well behaved for µ ∼MW ,

but breaks down for µ ∼ 1 GeV, where the leading correction becomes comparable to

unity, and cannot be considered small in any way. Consequently, for this expression

for C to be valid around µ = 1 GeV, the matching would need to be computed to all

orders in perturbation theory. An easy way to circumvent this problem is to calculate

the matching to some finite order in perturbation theory, and then to use the renor-

malisation group equations to compute how the Wilson coefficient runs to different

values of µ. This works because the RGEs automatically resum the logarithms from all

orders, such that convergence is not a problem. This calculational approach is called

renormalisation group-improved perturbation theory [44,79].

4.5 Matching

As already discussed, calculations in effective field theory are usually performed in the

mass-independent MS scheme, in which heavy particles do not manifestly decouple.

This problem is dealt with by decoupling heavy particles by hand, in the process of

matching. When integrating out a heavy particle H, a transition is made between a

high-energy theory (valid at scales µ ≥ mH) containing H and a low-energy theory

(valid at scales µ ≤ mH) not containing H. It is physically required that matrix

elements calculated for light particles in the low-energy effective theory must be equal

to the corresponding matrix elements for the light particles in the high-energy theory

at the scale µ = mH , which gives a set of matching conditions. In this way, each theory

can be used for calculations in its own domain of validity, with each theory smoothly

transitioning with the preceding theory. A simple example is the matching the GSW

theory to four-Fermi theory for the process ud → su. At small momentum transfer

(�MW ), and in the Feynman gauge at tree level,

ASM
ud→su = − g2

2

8M2
W

VudV
∗
us(usγ

µ(1− γ5)uu)(uuγµ(1− γ5)ud) , (4.30)

where the overall sign is due to our choice of covariant derivative. In the four-Fermi

theory with Lfermi ⊃ −GF√
2
VudV

∗
us(uγ

µ(1− γ5)s)(uγµ(1− γ5)d), the tree-level amplitude

is

AFermi
ud→su = −GF√

2
VudV

∗
us(usγ

µ(1− γ5)uu)(uuγµ(1− γ5)ud) . (4.31)
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Requirement that the full SM and effective amplitudes agree leads to the matching

condition
GF√

2
=

g2
2

8M2
W

. (4.32)

This matching between Fermi theory and GSW theory at tree-level serves to define the

Fermi constant in terms of GSW parameters. In a more general effective treatment of

weak interactions (see Section 4.7), the four-fermi operator would be multiplied by a

Wilson coefficient CsuudV,LL in the Lagrangian. The tree-level matching calculation would

be the same as detailed above, except that Equation (4.32) would be used as an identity,

and the matching condition would yield

CsuudV,LL = 1 (4.33)

at tree-level. Loop corrections would modify the Wilson coefficient, while leaving the

Fermi constant unaffected.

Matching calculations can be made more precise by including QCD corrections in the

calculation. This involves performing loop calculations in, and renormalising, the “full”

theory, and in principle calculating loops in and renormalising the effective theory. In

matching calculations, light quarks are usually treated as massless (since the heaviest

“light” quark remaining in the theory has mass mb = 4.18 GeV, which is much less than

MW = 80.4 GeV [32]), and so loops with massless quarks and gluons are identically

zero in dimensional regularisation when external momenta are set to zero [12]. The

matching calculation then proceeds by calculating the amplitude for some process in

both the effective theory and full theory to some order in a perturbative coupling

(for this work, the strong coupling, αs). Each theory must be renormalised, which in

the effective theory requires the calculation of the renormalisation matrix that mixes

operators. This is done by calculating loop diagrams in the effective theory with some

finite external momentum (such that the integrals are not scaleless), removing some

subclass of divergences through a wavefunction renormalisation for the fields in the

effective operators, and removing the remaining divergences with effective operator

counterterms. Infrared divergences that arise from massless quarks also arise in the full

theory calculation, and so their effect will cancel overall. The effective and full theories

can then be matched order-by-order in the perturbative coupling, allowing the Wilson

coefficients to be extracted.

A subtlety in the matching is that both the full theory and the effective theory must be

expanded in the same coupling. In a mass-independent scheme such as MS, couplings

are dependent on the number of active flavours through their running, and so theories

containing a different number of active quark flavours are naturally described by differ-

ent couplings. In the case of matching the SM to a five-flavour theory below the weak

scale, the SM has a QCD coupling α
(6)
s while the effective theory has the coupling α

(5)
s .
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This situation is resolved by using α
(5)
s in the effective and full theories, and apply-

ing threshold corrections in the full theory to compensate for this choice of coupling.

These threshold corrections encode contributions of high-energy particles, and relate

α
(5)
s and α

(6)
s (as well as other quantities such as quark masses and fields that are depen-

dent on the number of flavours), allowing matching calculations to proceed. Threshold

corrections may be calculated by appealing to the Appelquist-Carazzone theorem. Cal-

culating the same Green’s function using a mass-dependent and a mass-independent

scheme, and requiring equality between them, allows one to identify the finite renor-

malisations required to make the Green’s functions agree. These finite renormalisations

are called threshold corrections, and are discussed in detail in [80,81].

We quote here relevant threshold corrections in QCD from [81]. Denoting quantities

in the effective theory by primes, and quantities in the full theory without primes,

then

G
′a
µ =

√
ζGG

a
µ gluon field ,

ξ′G = ζξGξG gauge parameter ,

α′s = ζg2αs QCD coupling ,

ψ′q =
√
ζψqψq quark field . (4.34)

The threshold corrections are given by

ζG = 1 +
αs(µ)

4π

2

3
ln

(
µ2

m2
H

)
,

ζξG = 1 +
αs(µ)

4π

2

3
ln

(
µ2

m2
H

)
,

ζg2 = 1 +
αs(µ)

4π

[
−2

3
ln

(
µ2

m2
H

)
+
ε

3

(
ζ2 + ln2

(
µ2

m2
H

))]
,

ζψq = 1 +

(
αs(µ)

4π

)2

CF

[
5

12
− ln

(
µ2

m2
H

)]
, (4.35)

where mH is the mass of the heavy particle that is integrated out in going from the full

to the effective theory, and CF = 4
3 . It can be seen that ζG = ζξG , which is required

from the gauge-fixing term in general Rξ gauge, 1
2ξ (∂µGaµ)2.

4.6 SMEFT

The standard model is currently the best theory of particle physics that we have.

However, it is well known that it is not a fundamental theory, and that it must be

the low-energy theory of some more general UV-complete theory. In this sense, the

SM can be seen as the IR limit of a higher-energy theory, whose heavy excitations

have been integrated out (since they are too massive to be observed at the LHC). This
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allows one to build an effective theory where higher-dimension operators are built out

of the fields of the SM, and where such operators respect the SU(3)C×SU(2)L×U(1)Y

symmetry of the unbroken SM. The unbroken SM is used since new physics must exist

at energies above the weak scale. The operators of SMEFT at dimensions-five and

-six were compiled by Buchmuller and Wyler [14], but as has been pointed out in the

literature [82–84] this list contains redundant operators that are related by equations

of motion. Consequently, a new basis was formed, known as the ‘Warsaw’ basis [8],

which carefully considered equations of motion, and is used in this work.

The Lagrangian of SMEFT is given by

LSM = L(4)
SM +

1

Λ

∑
k

C
(5)
k Q

(5)
k +

1

Λ2

∑
k

C
(6)
k Q

(6)
k +O

(
1

Λ3

)
, (4.36)

where LSM is the Lagrangian of Equation (2.38), and Λ is the scale of new physics.

In SMEFT there is only a single dimension-five operator: the lepton number violating

(LNV) Weinberg operator,

Qpr5 = εjkεmnϕ
jϕm(`kp)

TC`nr =
(
`cpεϕ

)
(`rεϕ) . (4.37)

In the latter notation (which is used in Chapter 5), SU(2) indices j, k,m, n are con-

tracted within brackets. The equality holds since (in the Dirac basis) C−1 = −C. The

indices p and r are generation indices, and as such the Weinberg operator can medi-

ate lepton flavour violating (LFV) processes, as well as LNV processes. An important

property of the Weinberg operator is that it is symmetric in generation space:(
`cpεϕ

)
(`rεϕ) = −

(
`jp
T
C−1`mr

)
εjkϕ

kεmnϕ
n

= −
(
`jp
T
C−1`mr

)T
εjkϕ

kεmnϕ
n

= +
(
`mr

TC−1T `jp

)
εjkϕ

kεmnϕ
n

= −
(
`mr

TC−1`jp

)
εjkϕ

kεmnϕ
n

=
(
`crεϕ

)
(`pεϕ) . (4.38)

In the third line, a sign arises from fermion interchange, while an additional sign comes

in the fourth line since CT = −C. Therefore, Qpr5 is a symmetric 3 × 3 matrix, with

six independent degrees of freedom.

The Weinberg operator is physically very important. This is because at energies below

the electroweak symmetry-breaking scale it gives rise to a Majorana mass term for the

left-handed neutrinos of the SM. This can be seen by replacing the Higgs doublets in

the Weinberg operator by their VEVs,

ϕ→ 1√
2

(
0
v

)
,
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which leads to

L(5) = Cpr5

(
`cpεϕ

)
(`rεϕ)

→ Cpr5

2
( νcLp ecLp )

(
0 1
−1 0

)(
0
v

)
(νLr eLr)

(
0 1
−1 0

)(
0
v

)
=
C5v

2

2
νcLpνLr . (4.39)

Comparing this with the form of a Majorana mass term (Equation (2.89)),

LMajorana = −MΨc
LΨL,

shows that the Weinberg operator generates in the broken phase a Majorana mass for

the left-handed neutrinos, with mass

mν = −C
pr
5 v2

2
. (4.40)

At dimension-six, there are many more possible operators that respect the gauge sym-

metries of the SM. In the Warsaw basis they are divided into different categories,

depending on the field content of the operators. The categories are X3, (ϕ6 and

ϕ4D2), ψ2ϕ3, X2ϕ2, ψ2Xϕ, and ψ2ϕ2D, where X, ϕ, D and ψ are generic labels for

field strength tensors, scalars, derivatives, and fermions respectively. Note that the

above categories exclude four-fermion operators. These additional operators are clas-

sified by their chirality structure, with the categories

(LL)(LL), (RR)(RR), (LL)(RR), (LR)(RL) and (LR)(LR) .

In total, there are 59 operators at dimension-six (ignoring Hermitian conjugates and

flavour structures), but if one includes operators that allow B-number violation, an

additional five operators appear. A list of the dimension-six operators of SMEFT is

given in Appendix A.

The relevant dimension-six operators for this work are

Qpreϕ =
(
ϕ†ϕ

) (
`perϕ

)
∈ ψ2ϕ3 ,

Qprϕ`(1) =
(
ϕ†i

↔
Dµ ϕ

) (
`pγ

µ`r
)

∈ ψ2ϕ2D ,

Qprϕ`(3) =

(
ϕ†i

↔
DI

µϕ

)(
`pτ

Iγµ`r
)

∈ ψ2ϕ2D ,

Qprst`` = (`pγµ`r)(`sγ
µ`t) ∈ (LL)(LL) ,

Qϕ� =
(
ϕ†ϕ

)
�
(
ϕ†ϕ

)
∈ ϕ4D2 ,

QϕD =
(
ϕ†Dµϕ

)∗ (
ϕ†Dµϕ

)
∈ ϕ4D2 ,

Qpruϕ =
(
ϕ†ϕ

)
(qpurϕ̃) ∈ ψ2ϕ3 ,
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Qprdϕ =
(
ϕ†ϕ

)
(qpdrϕ̃) ∈ ψ2ϕ3 .

All of these operators can be generated by double-insertions of the Weinberg operator,

and the dependence of the running of their respective Wilson coefficients due to such

double-insertions is calculated in Chapter 5.1

4.6.1 Matching to Low-Energy Wilson Coefficients

While SMEFT is the correct framework above the electroweak symmetry breaking

scale, it is useful to be able to relate this to effective theories below this scale. This

allows constraints obtained from low-energy experiments (below the weak scale) to

be converted into constraints on SMEFT Wilson coefficients. This is done through

matching the two theories at the scale MW . We will consider here the matching of one

low-energy Wilson coefficient in terms of SMEFT Wilson coefficients to illustrate the

procedure. A complete list of these matchings is given in Chapter 5, where we correct

some results found in [85].

In EFTs below the weak scale, operators observe the gauge symmetry SU(3)C×U(1)em,

and a basis of such operators is given in [86]. Consider in particular the Lagrangian

term

LQED×QCD
µ→3e ⊃ −GF√

2
CeµeeV,LLQ

eµee
V,LL , QeµeeV,LL = (eγρPLµ) (eγρPLe) , (4.41)

where QeµeeV,LL is a vector-vector operator of left-handed fields. Note that low-energy

operators are denoted by Q, while SMEFT operators are denoted by Q. Similarly, low-

energy Wilson coefficients and SMEFT coefficients are denoted by C and C respectively.

There are two types of operator in SMEFT that match onto this operator. First, there

is the four-lepton operator (plus its Hermitian conjugate)∑
p,r,s,t

(
Cprst`` Qprst`` + H.c.

)
⊃ Ceµee`` Qeµee`` + Ceeeµ`` Qeeeµ`` + Ceµee∗`` Qeeµe`` + Ceeeµ∗`` Qµeee``

=
(
Ceµee`` + Ceeeµ`` + Ceeµe∗`` + Cµeee∗``

)
Qeµee``

= 4Ceµee`` Qeµee``

= 2Ceµee`` (eLγ
ρµL)(eLγρeL) , (4.42)

where the equality holds since Cprst`` = Crpts`` , Qprst`` = Qrpts`` , Cprst†`` = Cprst∗`` and

Qprst†`` = Qtsrp`` . Note that the factor of 1/2 is introduced as a normalisation for the

operator Q``, to be consistent with Chapter 5. This normalisation is used since we

define all operators to enter a Lagrangian with their Hermitian conjugate (even if the

operator is self-adjoint when ignoring flavour indices). Since Qprst†`` = Qtsrp`` , this implies

1Note that although the final two operators of this list cannot be directly generated by double-
insertions, they are related to operators that can through equations of motion.
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that Cprst`` = Crpts∗`` , and therefore the four-lepton operator in SMEFT contributing to

QeµeeV,LL is

Ceµee`` Qeµee`` .

The second contribution to QeµeeV,LL from SMEFT operators is via Z-penguins that couple

to a lepton current. These Z-penguins arise from the operators Qϕ`(1) and Qϕ`(3) when

the Higgs receives a VEV. For example,

Qprϕ`(1) =
(
ϕ†i

↔
Dµ ϕ

) (
`pγ

µ`r
)

⊃ −
(
ϕ†
[
g2W

3
µτ

3 + g1Bµ
]
ϕ
) (
`pγ

µ`r
)

EWSB−→ v2

2

(
g2W

3
µ − g1Bµ

) (
`pγ

µ`r
)
. (4.43)

Using the relations

g1 =
e

cos ΘW
, g2 =

e

sin ΘW
, Zµ = cos ΘWW

3
µ−sin ΘWBµ , and M2

Z =
v2(g2

1 + g2
2)

4
,

the above relation can be written as

Qprϕ`(1)

EWSB
⊃ vMZZµ(eLpγ

µeLr) , (4.44)

where it is understood that this Z-penguin operator is only one of two operators gen-

erated by Qϕ`(1) under EWSB (the other being a flavour-changing W -penguin), and

there is additionally a neutrino part that we neglect here. Similarly, the triplet operator

Qϕ`(3) also gives

Qprϕ`(3)

EWSB
⊃ vMZZµ(eLpγ

µeLr) . (4.45)

These two Z-penguin operators may couple to a lepton line as in Figure 4.3, and

at low energies (where the Z is integrated out) contributes to the low-energy four-

fermi operator. The matching is determined by evaluating the Feynman diagram of

Figure 4.3.

The diagram DZ may be evaluated using standard Feynman rules, as well as the Feyn-

man rule for the Z-penguin read off from Equation (4.45), to find

M|DZ = (−i)
(
ueivMZγ

ρCeµϕ`(1)PLuµ

)(−igρσ
−M2

Z

)(
ue

(
−ig2

cos ΘW

)[
−1

2
+ sin2 ΘW

]
γσPLue

)
=

vg2g
e
L

2 cos ΘWMZ
Ceµϕ`(1) (ueγ

ρPLuµ) (ueγρPLue)

= geLC
eµ
ϕ`(1) (ueγ

ρPLuµ) (ueγρPLue) , (4.46)

where the relations

geL = −1 + 2 sin2 ΘW , MZ =
vg2

2 cos ΘW
, (4.47)
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DZ =

µ e

e e

Qeµϕ`(1)|Z

Z

Fig. 4.3: Below the weak scale the operator Qϕ`(1) (and Qϕ`(3)) generates a Z-penguin
operator that can couple to a leptonic current. Matching this to the low-energy theory,
the Z is integrated out, resulting in the Z-penguin operators contributing to the four-
lepton operators of the SU(3)C ×U(1)em-invariant basis.

have been used. Note that the sign for the Feynman rule of the eeZ coupling is con-

sistent with our sign convention for the covariant derivative. In the low-energy theory,

the matrix element for the process µe→ ee is trivially

M|low−energy = CeµeeV,LL (ueγ
ρPLuµ) (ueγρPLue) , (4.48)

and so the Wilson coefficients of the low-energy theory may be matched to the Wilson

coefficients of SMEFT at MW as

CeµeeV,LL(MW ) = 2Ceµee`` (MW ) + geL

(
Ceµϕ`(1)(MW ) + Ceµϕ`(3)(MW )

)
. (4.49)

All other Wilson coefficients C of the low-energy theory may be matched onto SMEFT

coefficients at MW in this manner. The matching for Wilson coefficients relevant to

lepton flavour violation is given in Chapter 5.

4.7 The Weak Hamiltonian

The second effective theory considered here is the effective weak theory, used to describe

weak interactions at scales below MW . The starting point of such calculations is the

effective weak Hamiltonian

Heff =
GF√

2

∑
i

V i
CKMCiQi, (4.50)

where GF is the Fermi constant, and V i
CKM are the relevant CKM matrix elements for

the quarks contained in the effective operator Qi. Amplitudes for transitions from a

state |I〉 to a state |F 〉 governed by effective operators are calculated as

A(I → F ) = 〈F |Heff |I〉 =
GF√

2

∑
i

V i
CKMCi(µ) 〈F |Qi |I〉 (µ) , (4.51)
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where dimensional regularisation induces a µ-dependence in the Wilson coefficients and

matrix elements. Since amplitudes are µ-independent, the µ-dependence of the Wilson

coefficients Ci(µ) must cancel the µ-dependence of the matrix elements 〈F |Qi |I〉 (µ)

when the sum over operators in the effective Hamiltonian is taken to extend to infi-

nite mass dimension. Since the µ-cancellation typically involves several terms in the

expansion, truncation may lead to some residual non-physical µ-dependence in ampli-

tudes [44]. The Wilson coefficients are calculated by matching the low- and high-energy

theories, and so encode the effects of heavy particles into the EFT, while the matrix

elements contain the dynamics of the low-energy content of the effective theory.

Since calculations in the effective theory are performed at the arbitrary scale µ, the

value of µ may be chosen for calculational convenience. It is often set at the scale of

the decaying hadron, which simplifies the use of matching calculations. Usually these

energy scales are high enough that the strong coupling constant αs(µ) is small, and

perturbative techniques may be used to perform the matching calculations to find values

for the coefficients Ci(µ). However, when considering the decays of K mesons, which

are comprised of light quarks, it is common to take µ ∼ 1−2 GeV, which is greater than

the mass mK , since the strong coupling becomes non-perturbative below this region,

making calculations considerably more difficult [44]. While the calculation of Wilson

coefficients may be successfully performed within the framework of perturbation theory,

their corresponding matrix elements typically cannot, and other methods such as lattice

QCD and chiral perturbation theory must be used to evaluate them (see [87] for a review

of lattice QCD, and [88] for an introduction to chiral perturbation theory).

The weak effective theory is useful for studying flavour-changing neutral current (FCNC)

processes. These processes are forbidden at tree-level in the SM, and therefore experi-

ence loop suppression. Even at loop level, the unitarity of the CKM matrix can cause

a further suppression through the Glashow-Iliopoulos-Maiani (GIM) mechanism [89].

Consequently, FCNC processes in the SM are highly suppressed, and so they are useful

processes to search for signals of new physics.

In this work we use the weak effective Hamiltonian to discuss the decays K+ → π+νν

and KL → π0νν, which are mediated by the operator Qν =
∑

l=e,µ,τ

(sLγ
µdL)(νlLγµνlL).

We calculate the contribution to the corresponding Wilson coefficient at O(α2
s) arising

from box diagrams, requiring a matching calulcation at three loops in the full theory

(the SM). This calculation is presented in Chapter 6.
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Chapter 5

Majorana Neutrino Masses in
Renormalisation Group
Equations for Lepton Flavour
Violation

In the minimal SM, where neutrinos are massless and there are no sterile right-handed

neutrinos, the number of e, µ , and τ -type leptons is individually conserved in all in-

teractions. Any process in which these quantum numbers are not individually con-

served indicates LFV and Beyond the Standard Model (BSM) physics. The observa-

tion of neutrino oscillations implies LFV must occur, where we define LFV as flavour-

changing contact interactions of charged leptons (for a review, see e.g. [86]). Since

observation of LFV is a signal of BSM physics, it is the subject of many experimental

searches [32,90–99]. While it is known that neutrinos are not massless, it is not known

whether their masses are Dirac or Majorana (or some mixture of the two). A Majorana

mass term for neutrinos is Lepton Number Violating (LNV), and if neutrino masses

are indeed described by a Majorana mass, then they could mediate neutrinoless double

beta decay [100]. Below the weak scale, such masses appear as renormalisable terms in

the Lagrangian, but in the full SU(2) gauge-invariant Standard Model, they arise as a

non-renormalisable, dimension-five operator.

We assume that neutrino masses are Majorana, and that the scale Λ of New Physics

in the lepton sector is large. We focus on the theory at scales above MW but below

Λ, where it can be described in the framework of SMEFT (see Section 4.6). The

neutrino masses can be parameterised by operators of dimension five, and LFV is

parameterised by operators of dimension six. Our aim is to obtain the log-enhanced

loop contributions of two LNV operators to LFV processes. These can be calculated

via renormalisation group equations (RGEs), and in particular, we aim to calculate

the anomalous dimensions that mix two dimension-five operators into a dimension-six
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operator. The renormalisation group running of the dimension-five operators has been

extensively studied in the literature [101–103], and the mixing of the dimension-six

operators among themselves have been evaluated at one-loop [104] in the Warsaw basis

of SMEFT operators [8]. The mixing of two dimension-five operators into dimension-six

operators was calculated in [11], using the Buchmuller-Wyler basis [14] at dimension-

six. We perform this calculation in the Warsaw basis, and correct previous results

in the literature [11] by considering in detail the relation between the Warsaw and

Buchmuller-Wyler bases.

The mixing of neutrino masses into LFV amplitudes is O(mν/MW )2 ln(Λ/MW ), so neg-

ligibly small, but completes the anomalous dimensions required to perform a one-loop

renormalisation-group analysis of the SMEFT at dimension-six. In addition, we explore

an extension of SMEFT with two Higgs doublets [105], where the second Higgs doublet

lives at a scale m22 between MW and significantly below the lepton number/flavour-

changing scale Λ, and impose that LFV at the weak scale is still described by the

dimension-six operators of SMEFT. In this scenario, there are four LNV dimension-five

operators above m22, but only one combination of coefficients contributes to neutrino

masses. We calculate the mixing of these LNV operators into the LFV operators of

the SMEFT, and estimate the sensitivity of current LFV experiments to their coeffi-

cients.

5.1 Notation and Review

The SM Lagrangian for leptons can be written as

Llep = i`α γ
µDµ `α + ieαγ

µDµ eα −
(
`α[Γe]αβeβϕ+ H.c.

)
(5.1)

where Greek letters attached to leptons represent generation indices in the charged-

lepton mass eigenstate basis, [Γe] is the diagonal charged-lepton Yukawa matrix, ` is

a doublet of left-handed leptons, and e is a right-handed charged-lepton singlet. The

explicit form of the lepton and Higgs doublets is

` =

(
νL
eL

)
, ϕ =

(
ϕ+

ϕ0

)
, (5.2)

which have hypercharge Y` = −1/2 and Yϕ = 1/2 respectively. The covariant derivative

for a lepton doublet is

(Dµ`)
i
α =

(
δij∂µ + i

g2

2
τaijW

a
µ + iδijg1Y`Bµ

)
`jα, (5.3)

where τa are the Pauli matrices. This sign convention for the covariant derivative agrees

with [104].
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Heavy new physics can be parameterised by adding non-renormalisable operators to

the SM Lagrangian that respect the SM gauge symmetries [14]. There is only a single

operator at dimension-five in the SM, which is the Lepton Number Violating “Wein-

berg” operator [10], responsible for Majorana masses of left-handed neutrinos. The

resulting effective Lagrangian at dimension-five is

δL5 =
Cαβ5

2Λ
(`αεϕ

∗)(`cβεϕ
∗) +

Cαβ∗5

2Λ
(`cβεϕ)(`αεϕ) , (5.4)

where ε is the totally antisymmetric rank-2 Levi-Civita symbol with ε12 = +1, all

implicit SU(2) indices inside brackets are contracted, and the charge conjugation acts

on the SU(2) component `i of the lepton doublet as
(
`i
)c

= C`i
T

(see Chapter 2 for a

discussion of charge conjugation of fermions). The charge conjugation matrix C satisfies

the properties of the charge-conjugation matrix used in [33].1 The coefficient Cαβ5 is

symmetric under the interchange of the generation indices α, β, the New Physics scale

Λ is assumed�MW , and the second term is the Hermitian conjugate of the first.

In the broken theory, with ϕ0 = 1√
2
(v + h), v ≈ 246 GeV, the Weinberg operator gives

a Majorana neutrino mass matrix

δL = −1

2
[mν ]αβναν

c
β + H.c. , [mν ]αβ = − v

2

2Λ
Cαβ5 . (5.5)

In the charged lepton mass eigenstate basis, this mass matrix is diagonalised by the

PMNS matrix [mν ]αβ = UαimνiUβi.

At dimension-six, we are interested in SM-gauge invariant operators that violate lepton

flavour, and a complete list is given in Section 5.1.1. Following the conventions of [8,

104], they are added to the Lagrangian as

δL6 =
∑
X,ζ

CζX
Λ2
OζX + H.c. , (5.6)

where X is an operator label and ζ represents all required generation indices which

are summed over all generations. Of particular interest are the operators that can be

generated at one-loop with two insertions of dimension-five operators, as illustrated in

Figure 5.1. With SM particle content, these operators involve two Higgs doublets and

two lepton doublets, four lepton doublets, or three Higgs doublets and leptons of both

chiralities. In the Warsaw basis, the possibilities at dimension-six are

Oαβϕ`(1) =
i

2
(ϕ†

↔
Dµϕ)(`αγ

µ`β) Oαβϕ`(3) =
i

2
(ϕ†

↔
Da
µϕ)(`αγ

µτa`β)

Oαβeϕ =(ϕ†ϕ)`αϕeβ Oαβγδ`` =
1

2
(¯̀
αγµ`β)(¯̀

γγ
µ`δ) , (5.7)

where we normalise the “Hermitian” operators with a factor of 1/2 (see Section 5.1.1

for a discussion) in order to agree with [8, 104], and

1Note that this definition of the dimension-five operator is the Hermitian conjugate of the one used
in [8], where C = iγ2γ0 in the Dirac representation. In the Dirac representation, C−1 = −C.
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i(ϕ†
↔
Dµ ϕ) ≡ i(ϕ†Dµϕ)− i(Dµϕ)†ϕ

= ϕ†(i∂µϕ)− i(∂µϕ)†ϕ− g2ϕ
†τaW a

µϕ− 2Yϕg1ϕ
†Bµϕ ,

i(ϕ†
↔
Da
µϕ) ≡ i(ϕ†τaDµϕ)− i(Dµϕ)†τaϕ . (5.8)

The choice of operator basis implies a choice of operators that vanish by the Equations

of Motion (EoMs). For example, i /D`α − [Γe]
ασϕeσ = 0 implies that the following

operators

Oαβv(1) = (ϕ†ϕ)(`αi
↔
/D`β)− (ϕ†ϕ)(`αϕeσ[ΓTe ]σβ + [Γ∗e]ασeσϕ

†`β) ,

Oαβv(3) = (ϕ†τaϕ)(`αi
↔
/D
a
`β)− (ϕ†ϕ)(`αϕeσ[ΓTe ]σβ + [Γ∗e]ασeσϕ

†`β) , (5.9)

are EoM-vanishing operators. The role of these operators becomes clear by noting that

in intermediate steps of our off-shell calculations, additional structures appear that can

conveniently be matched onto combinations of EoM-vanishing operators and operators

of the Warsaw basis. For example the structures involving two Higgs fields and a

covariant derivative of a lepton doublet are expressed in terms of the above operators

as

SαβϕD`(1) = (ϕ†ϕ)(`αi
↔
/D `β) = Oαβv(1) +Oασeϕ [ΓTe ]σβ + [Γ∗e]ασO†σβeϕ ,

SαβϕD`(3) = (ϕ†τaϕ)(`αi
↔
/D
a
`β) = Oαβv(3) +Oασeϕ [ΓTe ]σβ + [Γ∗e]ασO†σβeϕ . (5.10)

In practice, if the coefficients CβαϕD`(1) and CβαϕD`(3) of these structures are present, they

are equivalent to Cβσeϕ = CβαϕD`(1)[Γe]
ασ + CβαϕD`(3)[Γe]

ασ (and the Hermitian conjugate

relation).

5.1.1 LFV Operators of SMEFT

At dimension-six, we are interested in SM-gauge invariant operators that violate lepton

flavour. The four-fermion operators involving β ↔ α lepton-flavour change and two

quarks are

O(1)αβnm
`q =

1

2
(`αγ

µ`β)(qnγµqm) , (5.11)

O(3)αβnm
`q =

1

2
(`αγ

µτa`β)(qnγµτ
aqm) , (5.12)

Oαβnmqe =
1

2
(eαγ

µeβ)(qnγµqm) , (5.13)

Oαβnm`u =
1

2
(`αγ

µ`β)(unγµum) , (5.14)

Oαβnm`d =
1

2
(`αγ

µ`β)(dnγµdm) , (5.15)
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Oαβnmeu =
1

2
(eαγ

µeβ)(unγµum) , (5.16)

Oαβnmed =
1

2
(eαγ

µeβ)(dnγµdm) , (5.17)

Oαβnm`equ = (`
A
αeβ)εAB(qBn um) , (5.18)

Oαβnm`edq = (`
A
αeβ)(dnq

A
m) , (5.19)

OαβnmT,`equ = (`
A
ασ

µνeβ)εAB(qBn σµνum) , (5.20)

where ` and q are left-handed doublets, e and u are right-handed singlets, n and m are

quark family indices, and A and B are SU(2) indices. Note that some of these operators

differ from [8] by factors of 1/2, due to Hermiticity reasons discussed below.

In the case of four-lepton operators, the flavour change can be by one or two units:

Oαβρσ`` =
1

2
(`αγ

µ`β)(`ργµ`σ) , (5.21)

Oαβρσ`e =
1

2
(`αγ

µ`β)(eργµeσ) , (5.22)

Oαβρσee =
1

2
(eαγ

µeβ)(eργµeσ) . (5.23)

Notice that in the case of Oee and O``, which are symmetric under interchange of the

two bilinears (for example, (eγµµ)(τγµτ) = (τγµτ)(eγµµ)), there will be two equal

coefficients that contribute to the Feynman rule.

There are also the operators allowing interactions with gauge bosons and Higgses. This

includes dipole operators, which are normalised with the muon Yukawa coupling so as

to match onto the normalisation of Kuno-Okada [86]:

Oαβeϕ = (ϕ†ϕ)(`αϕeβ) , (5.24)

OeW = Γβ(`βτ
aϕσµνeβ)W a

µν , (5.25)

OeB = Γβ(`βϕσ
µνeβ)Bµν , (5.26)

Oαβϕ`(1) =
i

2
(ϕ†

↔
Dµ ϕ)(`αγ

µ`β) , (5.27)

Oαβϕ`(3) =
i

2
(ϕ†

↔
Da
µ ϕ)(`αγ

µτa`β) , (5.28)

Oαβϕe =
i

2
(ϕ†

↔
Dµ ϕ)(eαγ

µeβ) , (5.29)

where Γβ denotes the Yukawa coupling of a charged lepton eβ in the mass basis, the

double derivatives are defined in Equation (5.8), and we include factors of 1/2 for

Hermitian operators as discussed now.

We use the convention that all physical operators (i.e. included in the Warsaw basis)

and their Hermitian conjugates are explicitly added to the Lagrangian

δL6 =
∑
X,ζ

CζX
Λ2
OζX + H.c. , (5.30)
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where the flavour indices are represented by ζ, and are all summed over all genera-

tions. In the conventions of [8] and [104], the Hermitian conjugate is not added for

“self-adjoint” operators, for which
∑

ζ C
ζ
XO

ζ
X = [

∑
ζ C

ζ
XO

ζ
X ]†. (For instance, Oαβρσ`` of

Equation (5.21) is “Hermitian”, although [(eγµµ)(τγµτ)]† = (µγµe)(τγµτ)). We there-

fore define such operators with a factor 1/2 to avoid this double-counting. However, it

should be noted that the unphysical EoM-vanishing operators of Equation (5.9) do not

enter the Lagrangian at tree-level, and therefore are not subject to this normalisation

condition.

5.1.2 The Two Higgs Doublet Model

In this section, the addition of a second Higgs doublet ϕ2 to the SM (of the same hy-

percharge as the SM Higgs, which is relabelled ϕ1) is considered. The LFV induced by

double-insertions of dimension-five operators could be more significant in this model,

because there are several dimension-five operators, and so neutrino masses cannot con-

strain them all. However, a complete analysis of LFV in the Two Higgs Doublet Model

(2HDM) would require extending the operator basis at dimension-six and calculating

the additional terms in the RGEs, which is beyond the scope of this work. For simplic-

ity, three restrictions are made:

1. Only the dimension-six LFV operators of SMEFT are considered. This is the

appropriate set of dimension-six operators just above MW , provided that ϕ2 has

a vanishing VEV, and that the mass m22 of the additional Higgses is sufficiently

high: M2
W � m2

22 � Λ2. In our phenomenological analysis we extend this range

to the scenario M2
W . m2

22 � Λ2, by considering a Higgs potential where the

additional Higgses are not directly observable at the LHC, and where the Yukawa

couplings of ϕ2 are vanishing. Such a scenario would for example be realised in

the inert two Higgs doublet model [106–109] and setting the scale m22 close to the

electroweak scale does not require the consideration of additional renormalisation

group effects in SMEFT.

2. It is supposed that at the high scale Λ, no dimension-six LFV operators are

generated. This is unrealistic, but allows us to focus on the LFV generated by

double-insertions of the dimension-five operators.

3. It is supposed there is no LFV in the renormalisable couplings of the 2HDM

(in particular, in the lepton Yukawas), so that when matching the 2HDM +

dimension-five operators onto SMEFT at the intermediate scale m22, no addi-

tional LFV operators are generated.

Consider first the renormalisable Lagrangian. The Yukawa couplings can be written
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as [110]

δL2HDM = −(ν, eL)[Γe]

(
ϕ+

1

ϕ0
1

)
e− e[Γe]†ϕ†1`− (ν, eL)[Γ(2)

e ]

(
ϕ+

2

ϕ0
2

)
e− e[Γ(2)

e ]†ϕ†2` ,

where the flavour indices are implicit, and the basis in (ϕ1, ϕ2) space is taken to be

the “Higgs basis” where 〈ϕ2〉 = 0. We suppose that [Γe] and [Γ
(2)
e ] are simultaneously

diagonalisable on their lepton flavour indices.

The second Yukawa coupling changes the equations of motion for the leptons, so the

2HDM version of the equation-of-motion vanishing operators (given in Equation (5.9)

for the single Higgs model) should be modified. As a result, the operators SϕD`(1)

and SϕD`(3) should not be replaced only by the SMEFT operator Oeϕ, as given in

Equation (5.10), but also by an operator with an external ϕ2 leg. However, since we

neglect dimension-six operators with external ϕ2, we use the relations (5.9) and (5.10)

also in the 2HDM case.

In this “Higgs” basis, the most general Higgs potential is

V = m2
11ϕ
†
1ϕ1 +m2

22ϕ
†
2ϕ2 − [m2

12ϕ
†
1ϕ2 + H.c.]

+
1

2
λ1(ϕ†1ϕ1)2 +

1

2
λ2(ϕ†2ϕ2)2 + λ3(ϕ†1ϕ1)(ϕ†2ϕ2) + λ4(ϕ†1ϕ2)(ϕ†2ϕ1)

+

{
1

2
λ5(ϕ†1ϕ2)2 +

[
λ6 (ϕ†1ϕ1) + λ7(ϕ†2ϕ2)

]
ϕ†1ϕ2 + H.c.

}
. (5.31)

In order to decouple the additional Higgses, we can setm2
12 = 0 and assumem2

22 �M2
W ,

or leave m2
22 free, and impose m2

12 = λ6 = λ7 = [Γ
(2)
e ] = 0.

At dimension-five in the 2HDM, there are four operators [101]:

δL = +
Cαβ5

2Λ
(`αεϕ

∗
1)(`cβεϕ

∗
1) +

Cαβ∗5

2Λ
(`cβεϕ1)(`αεϕ1)

+
Cαβ21

2Λ

(
(`αεϕ

∗
2)(`cβεϕ

∗
1) + (`βεϕ

∗
1)(`cαεϕ

∗
2)
)

+
Cαβ∗21

2Λ

(
(`cβεϕ2)(`αεϕ1) + (`cαεϕ1)(`βεϕ2)

)
+
Cαβ22

2Λ
(`αεϕ

∗
2)(`cβεϕ

∗
2) +

Cαβ∗22

2Λ
(`cβεϕ2)(`αεϕ2)

−
CαβA
2Λ

(`αε`
c
β)(ϕ†1εϕ

∗
2)−

Cαβ∗A

2Λ
(`cβε`α)(ϕ2εϕ1) , (5.32)

where {C5, C22, C21} are symmetric in their flavour indices (and so can contribute to

neutrino masses, since Majorana mass matrices are also symmetric in flavour space).

In the O21 operator, (`αεϕ
∗
2)(`cβεϕ

∗
1) = (`βεϕ

∗
1)(`cαεϕ

∗
2), but both terms are retained

here since they are convenient in our Feynman rule conventions.2

2The operator O21 can also be written as 2(`βεϕ
∗
1)(`cαεϕ

∗
2) +(`βε`

c
α)(ϕ∗1εϕ

∗
2) using the identity

(5.52), as done in the first reference of [101].
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ϕM

`nα

ϕJ

`iβ

ϕK

(`c)lρ

qi qf

pi pf

eα `nβ

ϕJ ϕK

ϕIϕM

`oα

(`c)lρ

`iσ

`jα

`kβ

`lρ

ϕM

ϕN

Fig. 5.1: Diagrams involving two insertions of dimension-five operators, which can
contribute to dimension-six lepton-flavour-violating operators. SU(2) indices run from
I, ..., O and i, ..., o, lepton flavour indices are α, β, ρ, σ.

ϕI

ϕJ

ϕK

ϕL

`iα

`jβ

Fig. 5.2: Two insertions of dimension-five operators can also contribute to dimension-
six operators involving four Higgses via this diagram.

Tree-level LFV is often avoided in the 2HDM by imposing a Z2 symmetry on the

renormalisable Lagrangian: if under the Z2 transformation, ϕ1 → ϕ1 and ϕ2 → −ϕ2,

then [Γ
(2)
e ], λ6 and λ7 are forbidden. This case is discussed later, but we do not impose

the Z2 symmetry initially, as it also forbids the C21 and CA coefficients at dimension-

five.

5.2 The EFT Calculation

5.2.1 Diagrams, Divergences and the RGEs

Diagrams with two insertions of dimension-five operators are illustrated in Figures 5.1

and 5.2. We focus on the lepton flavour violating diagrams of Figure 5.1, but the four-

Higgs diagram of Figure 5.2 is also briefly discussed in Section 5.6. The four-Higgs case

is less interesting to us since it is lepton flavour conserving, and such interactions arise

in the renormalisable SM.

The Feynman rules arising from the (tree-level) Lagrangian of Equation (5.4) are given

in Figure 5.3. We use them to evaluate, using dimensional regularisation in 4 − 2ε

dimensions in MS, the coefficient of the 1/ε divergence of each diagram of Figure 5.1.

These coefficients can be expressed as a sum of numerical factors multiplying the Feyn-

man rules for the dimension-six operators of Equations (5.7) and (5.10) (the Feynman

rules for dimension-six physical operators and EoM-vanishing operators are given in

Figures 5.4 and 5.5 respectively). Then the EoMs are used to transform the operators

of Equation (5.10) to Oeϕ and O†eϕ. The required counterterm ∆CO for each of the
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ϕI1

`iα

ϕJ1

(`c)jβ

i
C∗βα5

Λ
(εiIεjJ+εjIεiJ)PL

ϕI1

(`c)jβ

ϕJ1

`iα

i
Cαβ5

Λ
(εiIεjJ+εjIεiJ)PR

Fig. 5.3: Feynman rules for the Weinberg operator, the only dimension-five operator
of SMEFT, where ϕ1 denotes the SM Higgs.

dimension-six operators given in Equation (5.7) can be identified as (−1)× the numeri-

cal factor that multiplies its Feynman rule. This counterterm is added in the Lagrangian

to the operator coefficient CO, resulting in a “bare” coefficient CO,bare = µ2ε(CO+∆CO)

that should be independent of the MS renormalisation scale µ. The factor µ2ε is chosen

such that the bare Lagrangian remains d-dimensional.

We now discuss the renormalisation and RGEs of dimension-five and -six operators.

This discussion is based on Section 4.3.2, but is extended to also consider flavour

structures and conjugate Wilson coefficients, which is necessary for the consideration

of LFV operators. The bare Wilson coefficients of dimension-five operators can be

written as (noting that in preparation for a discussion of the 2HDM, multiple operators

are allowed for at dimension-five)

~CηX,bare = µ2ε ~CθY (µ)ZθηY X(µ), (5.33)

where X,Y and η, θ are operator and flavour labels respectively, ~CθY (µ) is the renor-

malised Wilson coefficient, ZθηY X(µ) is the dimension-five renormalisation matrix, and

µ is the renormalisation scale. The µ2ε introduces an additional term proportional to

ε into the d-dimensional renormalisation group equation,

µ
d

dµ
~CηX = −~CθY

(
µ
d

dµ
ZθζY Z

)[
Z−1

]ζη
ZX
− 2ε ~CηX . (5.34)

This reduces to the renormalisation group equation in d = 4 dimensions

(16π2)µ
d

dµ
~CηX

d=4
= ~CθY γ

θη
Y X , (5.35)

where the 4-dimensional anomalous dimension matrix

γθηY X = −(16π2)

(
µ
d

dµ
ZθζY Z

)[
Z−1

]ζη
ZX

(5.36)

is independent of the choice of the overall factor µ2ε. Therefore, the µ2ε term can be

neglected when only considering mixing amongst operators of equal dimensions. In

the case of mixing between operators of different dimensions, a more careful treatment
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Λ2
γµPLτ

a
inτ

a
JM

W a
µ

ϕM1

`nα

ϕJ1

`iβ

− i

2

g2

2
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KM

+ τaJKτ
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KM
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eα
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ϕJ1
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Cβαeϕ
Λ2

(δJKδIn + δIJδKn)PR

`iσ

`jα

`kβ

`lρ

2i
C∗βσρα``

Λ2
(γµPL ⊗ γµPL) δikδjl

Fig. 5.4: Feynman rules for dimension-six operators of the SMEFT using the Warsaw
basis. ϕ1 is the SM Higgs. Note that the Feynman rules for the operators Oϕ`(1) and
Oϕ`(3) come with a factor of 1/2, due to their normalisation condition arising from
including in the Lagrangian every operator plus its Hermitian conjugate.

is required. Note that we (unconventionally) factor the 16π2 out of the anomalous

dimension matrices.3

At loop level, operators of different dimensions can mix via multiple operator inser-

tions [75]. Consider the specific case of loop diagrams involving two dimension-five

operators mixing into diagrams with a single dimension-six operator insertion. We de-

note dimension-six Wilson coefficients by C̃, dimension-five Wilson coefficients by C,

the dimension-six ADM by Ẑ, and the ADT for mixing dimension-five into dimension-

six by Z̃. The bare dimension-six Wilson coefficient is

C̃ηX,bare = µ2εC̃θY (µ)ẐθηY X(µ) + µ2εCζA(µ)Z̃ζθ,ηAB,X(µ)
[
CθB
]†

(µ), (5.37)

where C̃bare is µ-independent. Therefore, the renormalisation group equation is

(16π2)µ
d

dµ
C̃ηX = C̃θY γ̂

θη
Y X + CζAγ̃

ζθ,η
AB,X

[
CθB
]†
, (5.38)

3The usual definition is µ d
dµ
C = Cγ [44], then γ is expanded in loops: γ = αs

4π
γ0 + .... However,

here we only work at one loop, and the one loop mixing of dimension-five-squared into dimension-six
is not induced by a renormalisable coupling, so we factor out the 16π2.
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Fig. 5.5: Feynman rules for dimension-six operators that are vanishing by the equa-
tions of motion in the single Higgs Model (SMEFT). ϕ1 is the SM Higgs.

where γ̂θηY X is defined analogously to Equation (5.34), and

γ̃ζθ,ηAB,X =(16π2)

(
2εZ̃ζθ,υAB,Y − µ

d

dµ
Z̃ζθ,υAB,Y

)[
Ẑ−1

]υη
Y X

− (16π2)
([
γθωBD

]†
δζχAC + γζχACδ

θω
BD

)
Z̃χω,υCD,Y

[
Ẑ−1

]υη
Y X

, (5.39)

where the explicit form in terms of generation indices is [γαβ γδAB ]† = [γβα δγAB ]∗ and

δαβ γδAB ≡ δABδαγδβδ. The terms in the second line of the above equation only con-

tribute beyond 1-loop. Furthermore, the contribution to the renormalisation tensor

Zζθ,υAB,Y is µ-independent at one-loop and only the term proportional to 2ε contributes

in our calculation. The factor in µ2ε in Equation (5.37) generates a term proportional

to −2ε, while the derivative of the dimension-five Wilson coefficients generates a con-

tribution proportional to 2× 2ε from Equation (5.34). Hence, the one-loop anomalous

dimension matrix reads

γ̃ζη,θAB,C = 2δZ̃ζη,θAB,C (5.40)

in terms of the 1-loop renormalisation constants defined in Equation (5.42). Corre-

spondingly, we find [γ̃] = 2(16π2)ε[Z̃]. Consequently, to find the leading order contri-
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bution to the ADT γ̃, it is sufficient to calculate the renormalisation tensor [Z̃], which

may be done through renormalising the diagrams in Figure 5.1 using dimension-six

operators.

5.3 Conventions of the Loop Calculations

5.3.1 Flavour Dependence

A key feature of the Warsaw basis is that the flavour dependence of operators is encoded

in flavour indices, which need to be treated carefully. We therefore present the general

structure of how the loop calculations are performed in order to deal with the flavour

structures in a systematic way. We allow for multiple operators at both dimension-

five and -six, and denote a particular Wilson coefficient by CζX , where X and ζ are

the operator and flavour labels respectively. Then the bare Wilson coefficients of the

dimension-six SMEFT Lagrangian can be written as

∑
ζ,X

C̃ζX,bareQ
ζ
X,bare = µ2ε

∑
θ,Y

∑
ζ,X

C̃ζX Ẑ
ζθ
XY +

∑
ζ,η

Cζ5
[
Cη5
]†
Z̃ζηθ

55̄,Y

QθY,bare , (5.41)

where ζ, η and θ represent generation indices of an operator, and the renormalisation

constants ẐζθXY encode the mixing of dimension-six Wilson coefficients amongst them-

selves, which can be extracted from the anomalous dimensions of [104]. In the SM,

the mixing of two dimension-five Wilson coefficients into a dimension-six coefficient is

given by Z̃ζηθ
55̄,Y

. They are induced by the double-insertion of dimension-five operators,

as shown in Figure 5.1. In the case of a 2HDM effective field theory, we extend the sum-

mation of the dimension-five flavour indices to a sum over all dimension-five operators

and their respective flavour components.

The renormalisation constants can be expanded in the number of loops and powers of

ε. At 1-loop in the MS scheme, the counterterms of the physical and EOM-vanishing

operators are pure 1/ε poles, and the renormalisation of evanescent operators does not

play a role. Hence, we can expand

Z̃ζηθ
55̄,j

=
1

16π2

1

ε
δZ̃ζηθ

55̄,j
(5.42)

and write the generation summation in the case of an operator involving four fermions

explicitly as

Cζ5C
η†
5 δZ̃ζηθ

55̄,X
QθX = Cαβ5 Cδγ∗5 δZ̃αβ γδ,ρστυ

55̄,X
QρστυX . (5.43)

The sum over generation indices reduces trivially for operators that involve fewer

fermions. The corresponding renormalisation equation ensures that the pole of the 1-

loop off-shell matrix element of an insertion of two dimension-five operators is cancelled
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by its counterterm. Factoring out the common overall factor Cαβ5 Cδγ∗5 , we write

〈f |Qαβ5 (Qγδ5 )†|i〉|(1)
1/ε + 〈f |

(
δZ̃αβ γδ,ρστυ

55̄,X
QρστυX + H.c.

)
|i〉 = 0 , (5.44)

where |(1)
1/ε denotes the 1/ε pole of a 1-loop diagram and 〈f | and |i〉 are arbitrary off-shell

final and initial states.

In calculations of the loop diagrams, the following generation structures arise:

∆γδηκ,βα
1 =

1

4
(δγβδδηδκα + δγβδδκδηα + δδβδγηδκα + δδβδγκδηα) ,

∆γδηκ,βα

1,AA
=

1

4
(δγβδδκδηα − δγκδδβδηα + δγηδδβδκα − δγβδδηδκα) ,

∆γδηκ,βα

1,AS
=

1

4
(δγβδδκδηα − δγκδδβδηα − δγηδδβδκα + δγβδδηδκα) ,

∆γδηκ,βα

1,SA
=

1

4
(δγβδδκδηα + δγκδδβδηα − δγηδδβδκα − δγβδδηδκα) ,

∆γδηκ,βα
2 =

1

4
(δγβδδη[Γe]κα + δγβδδκ[Γe]ηα + δδβδγη[Γe]κα + δδβδγκ[Γe]ηα) ,

∆γδηκ,βα
2,S =

1

4
(δγβδδκ[Γ(2)

e ]ηα + δγβδδη[Γ
(2)
e ]κα + δγκδδβ[Γ(2)

e ]ηα + δγηδδβ[Γ(2)
e ]κα) ,

∆γδηκ,βα
2,A =

1

4
(δγβδδκ[Γ(2)

e ]ηα + δγβδδη[Γ
(2)
e ]κα − δγκδδβ[Γ(2)

e ]ηα − δγηδδβ[Γ(2)
e ]κα) ,

∆γδηκ,ραβσ
3 =

1

4
(δσκδαη + δακδση)(δργδβδ + δβγδρδ) ,

∆γδηκ,ραβσ
3,A =

1

4
(δγαδδσ − δγσδδα)(δκβδηρ − δκρδηβ) ,

∆γδηκ
4 =

1

2
(δγηδδκ + δγκδδη).

(5.45)

These are matched onto the generation structures of the dimension-six operators (the

matching is more subtle for the four-lepton operator Oαβγδ`` , where the matching is done

via a Fierz-evanescent dimension-six operator Oαβγδeva ), and the generation structure is

therefore extracted from the renormalisation constants, which can then be written as

a generation structure multiplied by a numerical factor.

5.3.2 SU(2) Identities and Dimension-Four Feynman Rules

In computing the loop diagrams to be discussed below, it was necessary to know the

Feynman rules for dimension-four couplings that appear. The appearance of charge-

conjugate fermions due to dimension-five operators means that their Feynman rules

must be treated with some care, and so we use the Feynman rules of [33]. The Feynman

rule for the Weinberg operator of Equation (5.4) can be obtained reliably by using

Lehmann-Symanzik-Zimmermann (LSZ) reduction [111] or Wick’s theorem, which gives

the signs for fermion interchange. The fermion fields are expanded as [42]

ψ(x) =
∑
s

∫
d3k

(2π)3

1√
2E

(askus(k)e−ik·x + bs †k vs(k)e+ik·x) ,
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so the amplitude Mfi is

〈`jαϕI |i
Cσρ5

2Λ
(`nσεnNϕ

N∗)(`c,mρ εmMϕ
M∗)|`c,iβ ϕ

J∗〉

= (−i)iC
αβ
5

2Λ

(
ujαPRuβi + uiβPRu

j
α

)
(εiIεjJ + εiJεjI)

= (−i)iC
αβ
5 + Cβα5

2Λ
ujαPRu

i
β(εiIεjJ + εiJεjI)

= (−i)iC
αβ
5

Λ
ujαPRu

i
β(εiIεjJ + εiJεjI) , (5.46)

where the SU(2) lepton indices are lower case, Higgs indices are upper case, and `jα and

`c,jα represent a final state lepton and an initial state anti-lepton respectively. The factor

i is the usual factor for Feynman rules and the factor (−i) is due to the calculation of

Mfi. This expression agrees with the Feynman rule of [11].

A Feynman rule to attach a W -boson to the `c line also will be needed. With the

following identities [33]

`c = C`
T

, C = iγ0γ2 , C−1 = C† , C†γµTC = −γµ

`c = [CγT0 `
∗]†γ0 = `Tγ0C

†γ0 = `TC†Cγ0C
†γ0 = −`TC†γ0γ0 = −`TC−1 (5.47)

one obtains (where the (-1) is for interchanging fermions)[
`iτij /WPL`j

]T
= (−1)

[
− `cjCτ

a∗
ji P

T
LW

µaγTµC
−1`c

]
= `cτa∗WµaCγTµC

−1PR`
c

= −`cτa∗ /W a
PR`

c . (5.48)

Recall that τ = τ †, so τ∗ = τT .

The relevant Feynman rules for dimension-four interactions are given in Figure 5.6.

Note that the Feynman rules used in this calculation eliminate any dependence on the

momentum of the incoming lepton, since not all momenta are independent.

Due to the presence of ε in the Feynman rules for dimension-five operators, the following

SU(2) identities were useful:

εijεkl = δikδjl − δilδjk , (5.49)

2εiIεjJ = δijδIJ − τaijτa,IJ , (5.50)

εiJεkJ = δik , (5.51)

εabεcd + εbcεad + εacεbd = 0 , (5.52)

εijτ
a
jkεkl = τali , (5.53)

τaijτ
a
kl = 2δilδkj − δijδkl , (5.54)

δijτ
a
kl − δjlτaki + δklτ

a
ji − δikτajl = 0 , (5.55)
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2
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W a
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ϕI ϕJ

pin pout − ig2
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(
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)
ϕJ

eα `iβ

− i[Γe]βαδiJ

ϕJ

`iα eβ

− i[Γ†e]βαδiJ

Fig. 5.6: Feynman rules for dimension-four interactions.

where

ε =

[
0 1
−1 0

]
, ~τ =

([
0 1
1 0

]
,

[
0 −i
i 0

]
,

[
1 0
0 −1

])
and the SU(2) generators used in the Warsaw basis are Sa = τa/2. Note that while

some of these SU(2) relations are commonly known, some are non-trivial and were

found and manually checked for every combination of SU(2) indices.

5.4 Details of Loop Calculations in SMEFT

First, we discuss the calculation of the ADT within SMEFT, where there is only the

Weinberg operator at dimension five, and later discuss the extension of this calculation

to the 2HDM. All contributions to the ADT can be determined from the diagrams

listed in Figures 5.1 and 5.2. The first operator in Figure 5.1 is renormalised by the

dimension-six operators and structures Oϕ`(1),Oϕ`(3),SϕD`(1),SϕD`(3), which all involve

a derivative, and hence have momentum dependence. Since these operators (and struc-

tures) involve covariant derivatives, there are also additional diagrams that can be used

for the computation of those elements of the ADT, which involve the emission of an

external Bµ or W a
µ boson. These additional diagrams were also computed as a check of

the renormalisation constants computed for the case of no boson emission. Calculation

of the diagram in Figure 5.1 is performed first, and then followed by the additional

consistency calculations.
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Loop calculations were performed by hand, but also checked by automating the calcu-

lation using FeynArts [112] within Mathematica. This was done by writing a model

file containing the interactions of SMEFT at dimensions four and five. This model file

was then used to generate the diagrams and amplitudes of Figure 5.1, which were then

simplified using in-house code.

5.4.1 ϕ`→ ϕ`

Consider the process ϕM`Nα → ϕJ`iβ, which can be mediated through a double-insertion

of the Weinberg operator (the first diagram of Figure 5.1), and by a single insertion of

dimension-six operators. The renormalisation equation in MS is given by

0 =
Cγδ5

Λ

Cκη∗5

Λ
〈`iβϕJ | O

γδ
5 (Oηκ5 )† |`nαϕM 〉

∣∣(1)
1
ε

+ Z̃γδηκ,ρσ
55̄,ϕ`(1)

Cγδ5 Cκη∗5

Λ2
〈`iβϕJ | O

ρσ
ϕ`(1) |`

n
αϕ

M 〉(0)

+ Z̃γδηκ,ρσ
55̄,ϕ`(3)

Cγδ5 Cκη∗5

Λ2
〈`iβϕJ | O

ρσ
ϕ`(3) |`

n
αϕ

M 〉(0)
+ Z̃γδηκ,ρσ∗

55̄,ϕ`(1)

Cγδ∗5 Cκη5

Λ2
〈`iβϕJ | O

σρ
ϕ`(1) |`

n
αϕ

M 〉(0)

+ Z̃γδηκ,ρσ∗
55̄,ϕ`(3)

Cγδ∗5 Cκη5

Λ2
〈`iβϕJ | O

σρ
ϕ`(3) |`

n
αϕ

M 〉(0)
+ Z̃γδηκ,ρσ

55̄,v(1)

Cγδ5 Cκη∗5

Λ2
〈`iβϕJ | O

ρσ
v(1) |`

n
αϕ

M 〉(0)

+ Z̃γδηκ,ρσ
55̄,v(3)

Cγδ5 Cκη∗5

Λ2
〈`iβϕJ | O

ρσ
v(3) |`

n
αϕ

M 〉(0)
, (5.56)

where |(1)
1
ε

denotes the simple pole of a 1-loop expression, and the superscript (0) denotes

the amplitude evaluated at tree level. Note that the Warsaw operatorsOϕ`(1) andOϕ`(3)

appear with their Hermitian conjugates and consequent normalisation factors of 1/2,

while the EoM-vanishing operators only appear once, in accordance with Section 5.1.1.

Also note that we have used Oρσ†ϕ`(1) = Oσρϕ`(1), and a similar relation for Oϕ`(3).

This expression is simplified by using the Hermiticity conditions of the renormalisa-

tion constants. If operators were not included with their Hermitian conjugate in the

Lagrangian (as done in [11]), then the counterterms would arise as

Z̃γδηκ,ρσ
55̄,ϕ`(1)

Cγδ5 Cκη∗5

Λ2
〈`iβϕJ | Ô

ρσ
ϕ`(1) |`

n
αϕ

M 〉(0)
, (5.57)

where Oρσϕ`(1) = 1
2Ô

ρσ
ϕ`(1). To achieve consistency between this convention and the con-

vention we use (illustrated in Equation (5.56)), we have the Hermiticity requirement

that

Z̃γδηκ,ρσ
55̄,ϕ`(1)

Cγδ5 Cκη∗5 Oρσϕ`(1) = Z̃γδηκ,ρσ∗
55̄,ϕ`(1)

Cγδ∗5 Cκη5 O
σρ
ϕ`(1) . (5.58)

Relabelling the indices in the second term to extract a common factor of C5C
∗
5Qϕ`(1),

the Hermiticity condition becomes

Z̃γδηκ,ρσ
55̄,ϕ`(1)

= Z̃κηδγ,σρ∗
55̄,ϕ`(1)

. (5.59)
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Using this Hermiticity condition (plus the corresponding relation for Oϕ`(3)) in Equa-

tion (5.56), inserting the tree level Feynman rules for the dimension-six operators (see

Figures 5.4 and 5.5), and dropping the common factor of C5C
∗
5/Λ

2, this becomes

0 = 〈`iβϕJ | O
γδ
5 (Oηκ5 )† |`nαϕM 〉

∣∣(1)
1
ε

+ Z̃γδηκ,βα
55̄,ϕ`(1)

u`(β, i)(/qi + /qf )PLu`(α, n)δinδJM

+ Z̃γδηκ,βα
55̄,ϕ`(3)

u`(β, i)(/qi + /qf )PLu`(α, n)τainτ
a
JM

+ Z̃γδηκ,βα
55̄,v(1)

u`(β, i)(2/pf + /qf − /qi)PLu`(α, n)δinδJM

+ Z̃γδηκ,βα
55̄,v(3)

u`(β, i)(2/pf + /qf − /qi)PLu`(α, n)τainτ
a
JM . (5.60)

Only a single diagram needs to be evaluated to find the 1-loop contribution to the pro-

cess ϕ`→ ϕ` from a double-insertion of the Weinberg operator. It is found from

〈`iβϕJ | O
γδ
5 (Oηκ5 )† |`nαϕM 〉

(1)
=

ϕM

`nα

ϕJ

`iβ

ϕK

(`c)lρ

qi qf

pi pf

, (5.61)

of which only the 1/ε pole is needed to renormalise the diagram. Using the Feynman

rules of Figure 5.3 and simplifying factors of i and (−1), the amplitude is

〈`iβϕJ | O
γδ
5 (Oηκ5 )† |`nαϕM 〉 =

−i
16π2

∫
ddq

(2π)4

u`(β, i)/qPLu`(α, n)

(q2)((q − qf − pf )2)

× (εMlεnK + εMnεlK)(εJlεiK + εJiεlK) (5.62)

× 1

4
(δγβδδηδκα + δγβδδκδηα + δδβδγηδκα + δδβδγκδηα) .

Note that the flavour structure is fully symmetric under separate interchange of γ ↔
δ and η ↔ κ. Infrared rearrangement (see Section 3.7) is used to extract the UV

divergence from the integral, and since this diagram is matched onto operators involving

a derivative, the expansion is performed to first order in external momenta. Doing this,

simplifying the SU(2) algebra using the relations in Section 5.3.2, and extracting the

1/ε term gives

〈`iβϕJ | O
γδ
5 (Oηκ5 )† |`nαϕM 〉

∣∣(1)
1
ε

=
(5δJMδin − 4δiMδJn)

32π2ε
[u`(β, i)(/qf + /pf )PLu`(α, n)]

× 1

4
(δγβδδηδκα + δγβδδκδηα + δδβδγηδκα + δδβδγκδηα) .

(5.63)

Inserting this expression into Equation (5.60), and replacing the Pauli matrices from

the tree-level amplitudes using

τaijτ
a
kl = 2δilδkj − δijδkl ,
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the coefficients of the momenta and SU(2) structures δinδJM and δiMδJn can be used

to construct a set of simultaneous equations. These are

Z̃γδηκ,βα
55̄,ϕ`(1)

− Z̃γδηκ,βα
55̄,ϕ`(3)

− Z̃γδηκ,βα
55̄,v(1)

+ Z̃γδηκ,βα
55̄,v(3)

= 0 from /qiδinδJM , (5.64)

Z̃γδηκ,βα
55̄,ϕ`(3)

− Z̃γδηκ,βα
55̄,v(3)

= 0 from /qiδiMδJn , (5.65)

Z̃γδηκ,βα
55̄,ϕ`(1)

− Z̃γδηκ,βα
55̄,ϕ`(3)

+ Z̃γδηκ,βα
55̄,v(1)

− Z̃γδηκ,βα
55̄,v(3)

= −5∆γδηκ,βα
1

32π2ε
from /qfδinδJM , (5.66)

Z̃γδηκ,βα
55̄,ϕ`(3)

+ Z̃γδηκ,βα
55̄,v(3)

=
∆γδηκ,βα

1

16π2ε
from /qfδiMδJn , (5.67)

Z̃γδηκ,βα
55̄,v(1)

− Z̃γδηκ,βα
55̄,v(3)

= −5∆γδηκ,βα
1

64π2ε
from /pfδinδJM , (5.68)

Z̃γδηκ,βα
55̄,v(3)

=
∆γδηκ,βα

1

32π2ε
from /pfδiMδJn , (5.69)

where we use the shorthand

∆γδηκ,βα
1 =

1

4
(δγβδδηδκα + δγβδδκδηα + δδβδγηδκα + δδβδγκδηα) .

These simultaneous equations can be uniquely solved to yield the solutions

Z̃γδηκ,βα
55̄,ϕ`(1)

= −3

4

1

16π2

1

ε
∆γδηκ,βα

1 (5.70)

Z̃γδηκ,βα
55̄,ϕ`(3)

= +
1

2

1

16π2

1

ε
∆γδηκ,βα

1 (5.71)

Z̃γδηκ,βα
55̄,v(1)

= −3

4

1

16π2

1

ε
∆γδηκ,βα

1 (5.72)

Z̃γδηκ,βα
55̄,v(3)

= +
1

2

1

16π2

1

ε
∆γδηκ,βα

1 , (5.73)

which, using the conventions set out in Equation (5.42), implies

δZ̃γδηκ,βα
55̄,ϕ`(1)

= −3

4
∆γδηκ,βα

1 (5.74)

δZ̃γδηκ,βα
55̄,ϕ`(3)

= +
1

2
∆γδηκ,βα

1 (5.75)

δZ̃γδηκ,βα
55̄,v(1)

= −3

4
∆γδηκ,βα

1 (5.76)

δZ̃γδηκ,βα
55̄,v(3)

= +
1

2
∆γδηκ,βα

1 . (5.77)

These renormalisation constants may be verified by considering similar processes with

the associated emission of a Bµ or W a
µ boson. We now consider both of these processes

to show that they yield results that are consistent with those just presented.

5.4.2 ϕ`→ ϕ`B

We first consider the case of Bµ emission, since its trivial group structure makes it

considerably simpler than the case of W a
µ emission. Analogously to the ϕ`→ ϕ` case,
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we have the renormalisation equation

0 =
Cγδ5

Λ

Cκη∗5

Λ
〈`iβϕJBµ| O

γδ
5 (Oηκ5 )† |`nαϕM 〉

∣∣(1)
1
ε

+ Z̃γδηκ,ρσ
55̄,ϕ`(1)

Cγδ5 Cκη∗5

Λ2
〈`iβϕJBµ| O

ρσ
ϕ`(1) |`

n
αϕ

M 〉(0)

+ Z̃γδηκ,ρσ
55̄,ϕ`(3)

Cγδ5 Cκη∗5

Λ2
〈`iβϕJBµ| O

ρσ
ϕ`(3) |`

n
αϕ

M 〉(0)

+ Z̃γδηκ,ρσ∗
55̄,ϕ`(1)

Cγδ∗5 Cκη5

Λ2
〈`iβϕJBµ| O

σρ
ϕ`(1) |`

n
αϕ

M 〉(0)

+ Z̃γδηκ,ρσ∗
55̄,ϕ`(3)

Cγδ∗5 Cκη5

Λ2
〈`iβϕJBµ| O

σρ
ϕ`(3) |`

n
αϕ

M 〉(0)

+ Z̃γδηκ,ρσ
55̄,v(1)

Cγδ5 Cκη∗5

Λ2
〈`iβϕJBµ| O

ρσ
v(1) |`

n
αϕ

M 〉(0)

+ Z̃γδηκ,ρσ
55̄,v(3)

Cγδ5 Cκη∗5

Λ2
〈`iβϕJBµ| O

ρσ
v(3) |`

n
αϕ

M 〉(0)
. (5.78)

Upon using the Hermiticity conditions of the renormalisation constants and using the

Feynman rules to find the tree-level dimension-six amplitudes, this implies

0 = 〈`iβϕJBµ| O
γδ
5 (Oηκ5 )† |`nαϕM 〉

∣∣(1)
1
ε

+ Z̃γδηκ,βα
55̄,ϕ`(1)

u`(β, i)/ε
∗PLu`(α, n)δinδJM

+ Z̃γδηκ,βα
55̄,ϕ`(3)

u`(β, i)/ε
∗PLu`(α, n)τainτ

a
JM

+ Z̃γδηκ,βα
55̄,v(1)

u`(β, i)/ε
∗PLu`(α, n)δinδJM

+ Z̃γδηκ,βα
55̄,v(3)

u`(β, i)/ε
∗PLu`(α, n)τainτ

a
JM . (5.79)

In this equation, ε∗µ is the polarisation vector for the external final state Bµ boson. To

evaluate the amplitude from a double-insertion of the Weinberg operator, there are two

diagrams that need to be considered:

〈`iβϕJBµ| O
γδ
5 (Oηκ5 )† |`nαϕM 〉

(1)
=

ϕM

`nα

ϕJ

`iβ

ϕK

Bµ
Dγδηκ,βα1

(`c)lρ (`c)lρ

+

ϕM

`nα

ϕJ

`iβ(`c)lρ

Bµ

Dγδηκ,βα2

ϕK ϕK

.

The divergences of these diagrams are extracted using infrared rearrangement, but since

the external fields are of dimension-six, the expansion is performed to zeroth order in

external momenta. Consequently, all external momenta can be set to zero from the

outset. Extracting the divergences from each of these diagrams then yields

Dγδηκ,βα1

∣∣
1
ε

= − g1

64π2ε
(5δJMδin − 4δiMδJn)[u`(β, i)/ε

∗PLu`(α, n)]∆γδηκ,βα
1 , (5.80)
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Dγδηκ,βα2

∣∣
1
ε

= +
g1

64π2ε
(5δJMδin − 4δiMδJn)[u`(β, i)/ε

∗PLu`(α, n)]∆γδηκ,βα
1 , (5.81)

where the relative minus sign arises from the opposite hypercharge of the lepton doublet

and the Higgs doublet. These two diagrams trivially sum to give

〈`iβϕJBµ| O
γδ
5 (Oηκ5 )† |`nαϕM 〉

∣∣(1)
1
ε

= 0 . (5.82)

Inserting this result into Equation (5.79) and reducing all SU(2) structures to products

of Kronecker deltas, extraction of the coefficients of δinδJM and δiMδJn yields the two

simultaneous equations

−Z̃γδηκ,βα
55̄,ϕ`(1)

+ Z̃γδηκ,βα
55̄,ϕ`(3)

+ Z̃γδηκ,βα
55̄,v(1)

− Z̃γδηκ,βα
55̄,v(3)

= 0 from δinδJM , (5.83)

−Z̃γδηκ,βα
55̄,ϕ`(3)

+ Z̃γδηκ,βα
55̄,v(3)

= 0 from δiMδJn . (5.84)

These are only two equations to solve for four unknowns, and so by themselves are

insufficient to yield a unique set of solutions. It is possible to substitute in the values

of two renormalisation constants from the previous section to reduce the number of

unknowns, and then solve for the remaining two “unknown” renormalisation constants.

This has been done and verifies the solutions found above. However, it is sufficient

to note that Equation (5.83) and Equation (5.84) are identical to Equation (5.64) and

Equation (5.65) respectively. Consequently, the process with associated Bµ emission

is automatically renormalised by the renormalisation constants in Equations (5.74 -

5.77).

5.4.3 ϕ`→ ϕ`W

A further check can be performed in which there is the emission of a W a
µ boson. The

renormalisation equation is

0 =
Cγδ5

Λ

Cκη∗5

Λ
〈`iβϕJW a

µ | O
γδ
5 (Oηκ5 )† |`nαϕM 〉

∣∣(1)
1
ε

+ Z̃γδηκ,ρσ
55̄,ϕ`(1)

Cγδ5 Cκη∗5

Λ2
〈`iβϕJW a

µ | O
ρσ
ϕ`(1) |`

n
αϕ

M 〉(0)

+ Z̃γδηκ,ρσ
55̄,ϕ`(3)

Cγδ5 Cκη∗5

Λ2
〈`iβϕJW a

µ | O
ρσ
ϕ`(3) |`

n
αϕ

M 〉(0)

+ Z̃γδηκ,ρσ∗
55̄,ϕ`(1)

Cγδ∗5 Cκη5

Λ2
〈`iβϕJW a

µ | O
σρ
ϕ`(1) |`

n
αϕ

M 〉(0)

+ Z̃γδηκ,ρσ∗
55̄,ϕ`(3)

Cγδ∗5 Cκη5

Λ2
〈`iβϕJW a

µ | O
σρ
ϕ`(3) |`

n
αϕ

M 〉(0)

+ Z̃γδηκ,ρσ
55̄,v(1)

Cγδ5 Cκη∗5

Λ2
〈`iβϕJW a

µ | O
ρσ
v(1) |`

n
αϕ

M 〉(0)

+ Z̃γδηκ,ρσ
55̄,v(3)

Cγδ5 Cκη∗5

Λ2
〈`iβϕJW a

µ | O
ρσ
v(3) |`

n
αϕ

M 〉(0)
, (5.85)
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which upon using the Hermiticity conditions of the renormalisation constants and using

the Feynman rules to find the tree-level dimension-six amplitudes implies

0 = 〈`iβϕJW a
µ | O

γδ
5 (Oηκ5 )† |`nαϕM 〉

∣∣(1)
1
ε

+ Z̃γδηκ,βα
55,ϕ`(1)

(−g2) [u`(β, i)/ε
∗PLu`(α, n)] τaJMδin

+ Z̃γδηκ,βα
55,H`(3)

(
−g2

2

)
[u`(β, i)/ε

∗PLu`(α, n)]
(
τ bJLτ

a
LM + τaJLτ

b
LM

)
τ bin

+ Z̃γδηκ,βα
55,v(1)

(−g2) [u`(β, i)/ε
∗PLu`(α, n)] δJMτ

a
in

+ Z̃γδηκ,βα
55,v(3)

(
−g2

2

)
[u`(β, i)/ε

∗PLu`(α, n)]
(
τ bijτ

a
jn + τaijτ

b
jn

)
τ bJM . (5.86)

Again, there are two diagrams involving a double-insertion, and so

〈`iβϕJW a
µ | O

γδ
5 (Oηκ5 )† |`nαϕM 〉

(1)
=

ϕM

`nα

ϕJ

`iβ

ϕK

W a
µ

Dγδηκ,βα3

(`c)lρ (`c)jρ

+

ϕM

`nα

ϕJ

`iβ(`c)lρ

W a
µ

Dγδηκ,βα4

ϕL ϕK

.

Setting external momenta to zero and extracting the UV divergences using infrared

rearrangement, we find

Dγδηκ,βα3

∣∣
1
ε

=
1

ε

g2

32π2
[u`(β, i)/ε

∗PLu`(α, n)] ∆γδηκ,βα
1 S`, (5.87)

Dγδηκ,βα4

∣∣
1
ε

=
1

ε

g2

32π2
[u`(β, i)/ε

∗PLu`(α, n)] ∆γδηκ,βα
1 Sϕ, (5.88)

where

S` = (εnKεMl + εMnεlK) (εiKεJj + εJiεjK)
τalj
2
, (5.89)

Sϕ = (εnLεMl + εnMεL) (εiKεJl + εiJεKl)
τaLK

2
. (5.90)

Applying the SU(2) relations given in Section 5.3.2 to S` and Sϕ yields

S` =
1

2
(δiJτ

a
nM + δMJτ

a
ni − 2δMiτ

a
nJ − 2δiJτ

a
Mn − 2δnJτ

a
Mi + 4δniτ

a
MJ − 2δnMτ

a
iJ + δnMτ

a
Ji)

=
1

2
(2δJMτ

a
in − δJnτaiM − δiMτaJn − δinτaJM ) , (5.91)

Sϕ =
1

2
(δiJτ

a
nM + δMJτ

a
ni − 2δMiτ

a
nJ − 2δiJτ

a
Mn − 2δnJτ

a
Mi + 4δniτ

a
MJ − 2δnMτ

a
iJ + δnMτ

a
Ji)

=
1

2
(δiMτ

a
Jn + δJnτ

a
iM − 3δJMτ

a
in) , (5.92)

where the second equality in each of the above relations has been checked explicitly.

The total amplitude of a double-insertion of dimension-five operators is then
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〈`iβϕJW a
µ | O

γδ
5 (Oηκ5 )† |`nαϕM 〉

∣∣∣(1)

1
ε

=
1

ε

g2

64π2
[u`(β, i)/ε

∗PLu`(α, n)]

×∆γδηκ,βα
1 (−δJMτain − δinτaJM ) . (5.93)

Using the given SU(2) relations allows the tree-level amplitudes to be written as

Z̃γδηκ,βα
55,ϕ`(1)

(−g2) [u`(β, i)/ε
∗PLu`(α, n)] τaJMδin

+ Z̃γδηκ,βα
55,ϕ`(3)

(
−g2

2

)
[u`(β, i)/ε

∗PLu`(α, n)] (2 [δJnτ
a
iM − δinτaJM + δiMτ

a
Jn])

+ Z̃γδηκ,βα
55,v(1)

(−g2) [u`(β, i)/ε
∗PLu`(α, n)] δJMτ

a
in

+ Z̃γδηκ,βα
55,v(3)

(
−g2

2

)
[u`(β, i)/ε

∗PLu`(α, n)] (2 [δJnτ
a
iM − δJMτain + δiMτ

a
Jn]) . (5.94)

Comparing the SU(2) structures arising in the loop with the tree amplitudes, the tree

amplitudes seemingly contain extra SU(2) structures. However, these can be eliminated

using the relation

δijτ
a
km − δjmτaki + δkmτ

a
ji − δikτajm = 0, (5.95)

and the tree-level amplitudes become

Z̃γδηκ,βα
55̄,ϕ`(1)

(−g2) [ū`(β, i)/ε
∗PLu`(α, n)] τaJMδin

+ Z̃γδηκ,βα
55̄,ϕ`(3)

(−g2) [ū`(β, i)/ε
∗PLu`(α, n)] δJMτ

a
in

+ Z̃γδηκ,βα
55̄,v(1)

(−g2) [ū`(β, i)/ε
∗PLu`(α, n)] δJMτ

a
in

+ Z̃γδηκ,βα
55̄,v(3)

(−g2) [ū`(β, i)/ε
∗PLu`(α, n)] τaJMδin. (5.96)

In this form, it is simple to set up simultaneous equations for the renormalisation

condition by comparing the loop and tree amplitudes,

Z̃γδηκ,βα
55̄,ϕ`(1)

+ Z̃γδηκ,βα
55̄,v(3)

= −1

ε

1

64π2
∆γδηκ,βα

1 from δinτ
a
JM , (5.97)

Z̃γδηκ,βα
55̄,v(1)

+ Z̃γδηκ,βα
55̄,ϕ`(3)

= −1

ε

1

64π2
∆γδηκ,βα

1 from δJMτ
a
in. (5.98)

This set of equations may be constrained by substituting in solutions for Z̃γδηκ,βα
55̄,v(1)

and

Z̃γδηκ,βα
55̄,v(3)

from the momentum-dependent calculation, to verify the solutions

Z̃γδηκ,βα
55̄,ϕ`(1)

= −3

4

1

16π2

1

ε
∆γδηκ,βα

1 , Z̃γδηκ,βα
55̄,ϕ`(3)

= +
1

2

1

16π2

1

ε
∆γδηκ,βα

1 . (5.99)

Therefore, both the processes involving the emission of a Bµ boson or a W a
µ boson

verify the solutions found when considering the momentum-dependent diagram.

5.4.4 eϕϕ→ `ϕ

Next, we consider the renormalisation constant Z̃γδηκ,βα
55̄,eϕ

. This receives contributions

from Oeϕ and the EoM-vanishing operators Ov(1) and Ov(3), since they contain Yukawa

interactions.
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The renormalisation equation is

0 =
Cγδ5

Λ

Cκη∗5

Λ
〈`nβϕI | O

γδ
5 (Oηκ5 )†(`χ[Γe]χζeζϕ) |eαϕJϕK〉

∣∣(1)
1
ε

+ Z̃γδηκ,ρσ
55̄,eϕ

Cγδ5 Cκη∗5

Λ2
〈`nβϕI | Oρσeϕ |eαϕJϕK〉

(0)

+ Z̃γδηκ,ρσ
55̄,v(1)

Cγδ5 Cκη∗5

Λ2
〈`nβϕI | O

ρσ
v(1) |eαϕ

JϕK〉(0)

+ Z̃γδηκ,ρσ
55̄,v(3)

Cγδ5 Cκη∗5

Λ2
〈`nβϕI | O

ρσ
v(3) |eαϕ

JϕK〉(0)
, (5.100)

which implies (after inserting tree-level amplitudes of dimension-six operators)

0 = 〈`nβϕI | O
γδ
5 (Oηκ5 )†(`χ[Γe]χζeζϕ) |eαϕJϕK〉

∣∣(1)
1
ε

+ Z̃γδηκ,βα
55̄,eϕ

u`(β, n)PRue(α)(δIJδKn + δIKδJn)

− Z̃γδηκ,βσ
55̄,v(1)

[Γe]σαu`(β, n)PRue(α)(δIJδKn + δIKδJn)

− Z̃γδηκ,βσ
55̄,v(3)

[Γe]σαu`(β, n)PRue(α)(δIJδKn + δIKδJn) . (5.101)

Since Z̃γδηκ,βσ
55̄,v(1)

and Z̃γδηκ,βσ
55̄,v(3)

have been calculated previously, we find

Z̃γδηκ,βσ
55̄,v(1)

[Γe]σα = −3

4

1

16π2

1

ε
∆γδηκ,βσ

1 [Γe]σα

= −3

4

1

16π2

1

ε

1

4
(δγβδδηδκσ + δγβδδκδησ + δδβδγηδκσ + δδβδγκδησ) [Γe]σα

= −3

4

1

16π2

1

ε

1

4

(
δγβδδη[Γe]κα + δγβδδκ[Γe]ηα

+ δδβδγη[Γe]κα + δδβδγκ[Γe]ηα
)
, (5.102)

and similarly,

Z̃γδηκ,βσ
55̄,v(3)

[Γe]σα =
1

2

1

16π2

1

ε
∆γδηκ,βσ

1 [Γe]σα

=
1

2

1

16π2

1

ε

1

4

(
δγβδδη[Γe]κα + δγβδδκ[Γe]ηα

+ δδβδγη[Γe]κα + δδβδγκ[Γe]ηα
)
. (5.103)

Note that, as expected, these flavour structures are symmetric under γ ↔ δ and η ↔ κ

individually.

Now it is necessary to calculate the loop diagram, where

〈`nβϕI | O
γδ
5 (Oηκ5 )†(`χ[Γe]χζeζϕ) |eαϕJϕK〉

(1)
= eα `nβ

ϕJ ϕK

ϕIϕM

`oα

(`c)lρ

.

Using the relevant Feynman rules, the pole part of the amplitude is given by
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〈`nβϕI | O
γδ
5 (Oηκ5 )†(`χ[Γe]χζeζϕ) |eαϕJϕK〉

∣∣(1)
1
ε

=

− 1

16π2

1

ε
u`(β, n)PRue(α)(δIJδKn + δJnδIK)

× 1

4
(δγβδδη[Γe]κα + δγβδδκ[Γe]ηα + δδβδγη[Γe]κα + δδβδγκ[Γe]ηα) .

(5.104)

This is the same flavour structure that appears in the tree-level diagrams involving

Ov(1) and Ov(3), and we therefore define

∆γδηκ,βα
2 =

1

4
(δγβδδη[Γe]κα + δγβδδκ[Γe]ηα + δδβδγη[Γe]κα + δδβδγκ[Γe]ηα) . (5.105)

With this definition, and inserting the result of Equation (5.104) along with the above

expressions for Zγδηκ,βσ
55̄,v(1)

[Γe]σα and Zγδηκ,βσ
55̄,v(3)

[Γe]σα into Equation (5.101), we obtain

− 1

16π2

1

ε
∆γδηκ,βα

2 + Zγδηκ,βα
55̄,eϕ

+
3

4

1

16π2

1

ε
∆γδηκ,βα

2 − 1

2

1

16π2

1

ε
∆γδηκ,βα

2 = 0 , (5.106)

which is solved to give

Zγδηκ,βα
55̄,eϕ

= +
3

4

1

16π2

1

ε
∆γδηκ,βα

2 , (5.107)

or equivalently,

δZγδηκ,βα
55̄,eϕ

= +
3

4
∆γδηκ,βα

2 . (5.108)

5.4.5 ``→ ``

The final lepton-flavour violating process to consider is `α`σ → `β`ρ. The renormalisa-

tion equation for this process is

0 =
Cγδ5

Λ

Cκη∗5

Λ
〈`kβ`lρ| O

γδ
5 (Oηκ5 )† |`jα`iσ〉

∣∣(1)
1
ε

+ 2Zγδηκ,τυϕχ
55̄,``

Cγδ5 Cκη∗5

Λ2
〈`kβ`lρ| O

τυϕχ
`` |`jα`iσ〉

(0)
, (5.109)

and hence there is only a single dimension-six operator that is necessary to renormalise

the loop diagram. Note that ϕ here is used as a flavour index, as opposed to referring to

a Higgs doublet, and the factor of 2 in front of Z55̄,`` is due to including the Hermitian

conjugate of O``. For this process, it is helpful to evaluate the loop diagram before

considering the tree-level dimension-six amplitudes, as will be explained.

The loop amplitude is given by considering the diagram

〈`kβ`lρ| O
γδ
5 (Oηκ5 )† |`jα`iσ〉 =

`iσ

`jα

`kβ

`lρ

ϕM

ϕN

. (5.110)
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We find that this diagram is equal to

〈`kβ`lρ| O
γδ
5 (Oηκ5 )† |`jα`iσ〉

∣∣(1)
1
ε

=
(u`(σ, i)PLv`(α, j))(v`(β, k)PRu`(ρ, l))

64π2ε

× (δσκδαη + δακδση) (δργδβδ + δβγδρδ) (δilδjk + δikδjl) ,
(5.111)

which is completely symmetric under γ ↔ δ and η ↔ κ (due to the symmetry of the

Weinberg operator), and also under α ↔ σ and β ↔ ρ (from the symmetry of the

ingoing and outgoing states, respectively). We define this flavour structure as

∆γδηκ,ραβσ
3 =

1

4
(δσκδαη + δακδση)(δργδβδ + δβγδρδ) , (5.112)

and therefore,

〈`kβ`lρ| O
γδ
5 (Oηκ5 )† |`jα`iσ〉

∣∣(1)
1
ε

=
[u`(σ, i)PLv`(α, j)][v`(β, k)PRu`(ρ, l)]

16π2ε
∆γδηκ,ραβσ

3

× (δilδjk + δikδjl) . (5.113)

It can be seen from Equation (5.113) that the loop diagram generates the spinors

u`, v`, v` and u`, and has a left-right chirality structure. However, the amplitude

〈`kβ`lρ| O
τυϕχ
`` |`jα`iσ〉

(0)
only generates the spinors u` and u`, as can be seen from the

Feynman rules listed in [33], and only generates a left-left chirality structure. Conse-

quently, it is easier to find the renormalisation constant Z̃γδηκ,τυϕχ
55̄,``

by considering a

different, but related, operator.

We introduce the operator

Oτυϕχeva = δijδkl(`iτ `
c,k
ϕ )(`c,lχ `

j
υ)−Oτυϕχ`` , (5.114)

where the first (scalar) term has a left-right chirality structure and i, j, k, l are SU(2)

indices. This is an evanescent operator, since it vanishes in the limit d → 4 due to

Fierz relations and the properties of charge conjugation. Explicitly, using the symmetry

Oτυϕχ`` = Oϕχτυ`` and properties of charge conjugation,

Oτυϕχ`` = Oϕχτυ`` ≡ +
1

2
(`ϕγ

µ`χ)(`τγµ`υ)

= −1

2
([`cϕ]TC−1γµC`cχ

T
)(`τγµ`υ)

= +
1

2
([`cϕ]T (γµ)T `cχ

T
)(`τγµ`υ)

= −1

2
(`cχγ

µ`cϕ)(`τγµ`υ) , (5.115)

where the final minus sign comes from the anti-commutation of fermions when per-

forming the transpose. We now use the Fierz relation in d = 4 dimensions (where the

minus sign is for anticommuting fermions, see [113]),

(AγµPLB)(CγµPRD) = −2(APRD)(CPLB) , (5.116)
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to write

−1

2
(`c,iχ γ

µ`c,iϕ )(`kτγµ`
k
υ) = (`iτ `

c,k
ϕ )(`c,kχ `iυ), (5.117)

where spin indices are contracted within brackets, and SU(2) indices have been explic-

itly stated. Putting everything together, we have

Oτυϕχ`` = (`iτ `
c,k
ϕ )(`c,kχ `iυ) . (5.118)

Therefore, the operator

Oτυϕχeva = δijδkl(`iτ `
c,k
ϕ )(`c,lχ `

j
υ)−Oτυϕχ`` (5.119)

is vanishing in four dimensions, and is thus an evanescent operator. This operator is

useful since when it mediates the process `` → ``, it generates a tree-level amplitude

that has a left-right chirality structure, and so can be directly mapped onto the loop

amplitude generated by the double-insertion of the Weinberg operator. This means

the scalar part of Oeva can be used to renormalise the loop diagram, from which the

renormalisation constant Z55̄,`` can be extracted.

Following this strategy, we calculate

〈`kβ`lρ| O
τυϕχ
eva,scalar |`

j
α`
i
σ〉

(0)
= (u`(σ, i)PLv`(α, j))(v`(β, k)PRu`(ρ, l))

× [δikδjl(δαυδσχδρτδβϕ + δσυδαχδβτδρϕ)

+ δilδjk(δσυδαχδρτδβϕ + δαυδσχδβτδρϕ)] . (5.120)

Note that since Oeva is not a physical operator of the Warsaw basis, it is not required

to also consider its Hermitian conjugate, and so there is no factor of 1/2 in the normal-

isation. Consider the modified renormalisation equation:

0 =
Cγδ5

Λ

Cκη∗5

Λ
〈`kβ`lρ| O

γδ
5 (Oηκ5 )† |`jα`iσ〉

∣∣(1)
1
ε

+ Z̃γδηκ,τυϕχ
55̄,eva

Cγδ5 Cκη∗5

Λ2
〈`kβ`lρ| O

τυϕχ
eva,scalar |`

j
α`
i
σ〉

(0)

+ Z̃γδηκ,τυϕχ
55̄,eva

Cγδ5 Cκη∗5

Λ2
〈`kβ`lρ| O

τυϕχ
eva,(V−A)⊗(V−A) |`

j
α`
i
σ〉

(0)

+ 2Z̃γδηκ,τυϕχ
55̄,``

Cγδ5 Cκη∗5

Λ2
〈`kβ`lρ| O

τυϕχ
`` |`jα`iσ〉

(0)
. (5.121)

Considering only the first two terms of this expression (the terms which generate a

left-right chiral structure), and inserting the results from above yields
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0 =
1

16π2

1

ε
∆γδηκ,ραβσ

3 (δilδjk + δikδjl)

+ Z̃γδηκ,τυϕχ
55̄,eva

[δikδjl(δαυδσχδρτδβϕ + δσυδαχδβτδρϕ)+

δilδjk(δσυδαχδρτδβϕ + δαυδσχδβτδρϕ)]

=
1

16π2

1

ε
∆γδηκ,ραβσ

3 (δilδjk + δikδjl)

+ 2Z̃γδηκ,ραβσ
55̄,eva

δikδjl + 2Z̃γδηκ,ρσβα
55̄,eva

δilδjk . (5.122)

Here, we have used that Z̃γδηκ,ραβσ
55̄,eva

= Z̃γδηκ,βσρα
55̄,eva

. This is manifestly true for the vector-

vector part, and since the operator is evanescent, must also be true for the scalar-scalar

part. Considering the coefficient of δikδjl, we immediately obtain

Z̃γδηκ,ραβσ
55̄,eva

= −1

2

1

16π2

1

ε
∆γδηκ,ραβσ

3 . (5.123)

Since the loop-amplitude 〈`kβ`lρ| O
γδ
5 (Oηκ5 )† |`jα`iσ〉 has only a left-right structure, and no

(V −A)⊗(V −A) structure, then the (V −A)⊗(V −A) contributions in Equation (5.121)

must cancel. Moreover, since

Oτυϕχeva,(V−A)⊗(V−A) = −Oτυϕχ`` ,

then it follows that

Z̃γδηκ,τυϕχ
55̄,eva

= 2Z̃γδηκ,τυϕχ
55̄,``

. (5.124)

Therefore, we immediately obtain

Z̃γδηκ,τυϕχ
55̄,``

= −1

4

1

16π2

1

ε
∆γδηκ,τυϕχ

3 , (5.125)

or equivalently,

δZ̃γδηκ,τυϕχ
55̄,``

= −1

4
∆γδηκ,τυϕχ

3 . (5.126)

5.5 Loop Calculations in the 2HDM

We here briefly discuss the results obtained when considering the mixing between

dimension-five operators of the 2HDM into the dimension-six operators of SMEFT,

as discussed in Section 5.1.2. We do not present the calculations in detail as was done

for SMEFT, since the procedure is the same, and there are a larger number of calcula-

tions to perform. Instead, we present the results and highlight any special cases that

arise. Again, we consider each process in turn. Recall that the SM Higgs doublet is

denoted by ϕ1, and the additional (non-SM) Higgs doublet is denoted by ϕ2. Since we

only consider dimension-six SMEFT operators, we do not consider processes where ϕ2

is present as an asymptotic state. The Feynman rules of the additional dimension-5

operators that arise in the 2HDM are given in Figure 5.7.
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ϕI2

`iα

ϕJ2

(`c)jβ

i
C∗βα22

Λ
(εiIεjJ + εjIεiJ)PL

ϕI2

(`c)jβ

ϕJ2

`iα

i
Cαβ22

Λ
(εiIεjJ + εjIεiJ)PR

ϕI1

`iα

ϕJ2

(`c)jβ

i
C∗βα21

Λ
(εiIεjJ + εjIεiJ)PL

ϕI1

(`c)jβ

ϕJ2

`iα

i
Cαβ21

Λ
(εiIεjJ + εjIεiJ)PR

ϕI1

`iα

ϕJ2

(`c)jβ

− i
C∗βαA

Λ
εjiεJIPL

ϕI1

(`c)jβ

ϕJ2

`iα

i
CαβA
Λ

εijεIJPR

Fig. 5.7: Feynman rules we derived for additional dimension-5 operators arising in the
2HDM. ϕ1 denotes the SM Higgs doublet, and ϕ2 denotes the additional Higgs doublet,
which we assume does not appear as an asymptotic state at the energy scales we are
interested in.

5.5.1 ϕ1`→ ϕ1`

For the process ϕ1` → ϕ1`, there are an additional four loop processes that arise in

the 2HDM, from the amplitudes 〈`iβϕJ1 | O
γδ
21(Oηκ21 )† |`nαϕM1 〉, 〈`iβϕJ1 | O

γδ
A (OηκA )† |`nαϕM1 〉,

〈`iβϕJ1 | O
γδ
A (Oηκ21 )† |`nαϕM1 〉 and 〈`iβϕJ1 | O

γδ
21(OηκA )† |`nαϕM1 〉, shown in Figure 5.8. As before,

these loop diagrams will mix into the physical operators Oϕ`(1) and Oϕ`(3), but since the

calculation is performed off-shell, the EoM-vanishing operators Ov(1) and Ov(3) must

also be included.

Calculating the loops and extracting the divergences gives

〈`iβϕJ1 | O
γδ
21(Oηκ21 )† |`nαϕM1 〉

∣∣(1)
1
ε

=
(5δJMδin − 4δiMδJn)

32π2ε
[u`(β, i)(/qf + /pf )PLu`(α, n)]

×∆γδηκ,βα
1 , (5.127)

〈`iβϕJ1 | O
γδ
A (OηκA )† |`nαϕM1 〉

∣∣(1)
1
ε

= −δinδJM
32π2ε

[u`(β, i)(/qf + /pf )PLu`(α, n)]

×∆γδηκ,βα

1,AA
, (5.128)

〈`iβϕJ1 | O
γδ
A (Oηκ21 )† |`nαϕM1 〉

∣∣(1)
1
ε

= −2δJnδiM − δinδJM
32π2ε

[u`(β, i)(/qf + /pf )PLu`(α, n)]

×∆γδηκ,βα

1,AS
, (5.129)

〈`iβϕJ1 | O
γδ
21(OηκA )† |`nαϕM1 〉

∣∣(1)
1
ε

= +
2δJnδiM − δinδJM

32π2ε
[u`(β, i)(/qf + /pf )PLu`(α, n)]

×∆γδηκ,βα

1,SA
, (5.130)
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ϕM1

`nα

ϕJ1

`iβ

ϕK2

(`c)lρ

O†21
O21

qi qf

pi pf

ϕM1

`nα

ϕJ1

`iβ

ϕK2

(`c)lρ

O†A OA

qi qf

pi pf

ϕM1

`nα

ϕJ1

`iβ

ϕK2

(`c)lρ

O†21
OA

qi qf

pi pf

ϕM1

`nα

ϕJ1

`iβ

ϕK2

(`c)lρ

O†A O21

qi qf

pi pf

Fig. 5.8: Additional loop diagrams arising in the 2HDM that mix into the SMEFT
operators Oϕ`(1) and Oϕ`(3).

∆γδηκ,βα
1 ∆γδηκ,βα

1,AA
∆γδηκ,βα

1,AS
∆γδηκ,βα

1,SA

γ ↔ δ + − − +

η ↔ κ + − + −

Table 5.1: The symmetries of the flavour structures that arise in the process ϕ1` →
ϕ1`.

where we introduce the new flavour structures

∆γδηκ,βα

1,AA
=

1

4
(δγβδδκδηα − δγκδδβδηα + δγηδδβδκα − δγβδδηδκα) ,

∆γδηκ,βα

1,AS
=

1

4
(δγβδδκδηα − δγκδδβδηα − δγηδδβδκα + δγβδδηδκα) ,

∆γδηκ,βα

1,SA
=

1

4
(δγβδδκδηα + δγκδδβδηα − δγηδδβδκα − δγβδδηδκα) .

Each of the new flavour structures has specific symmetry properties, shown in Table 5.1

(where we include ∆1 for illustrative purposes).

Since we consider only the dimension-six operators of SMEFT, the tree-level amplitudes

are the same as given in the previous section. Considering the coefficients of specific

SU(2) structures and momenta, systems of simultaneous equations can be formed, and

solved to give

δZ̃γδηκ,βα
2121,ϕ`(1)

= −3

4
∆γδηκ,βα

1 , (5.131)

δZ̃γδηκ,βα
AA,ϕ`(1)

= −1

4
∆γδηκ,βα

1,AA , (5.132)

δZ̃γδηκ,βα
2121,ϕ`(3)

= +
1

2
∆γδηκ,βα

1 , (5.133)

δZ̃γδηκ,βα
A21,ϕ`(3)

= +
1

4
∆γδηκ,βα

1,AS , (5.134)
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eα `nβ

ϕJ1 ϕK1

ϕI1
ϕM2

O†5

O21

`oα

(`c)lρ

eα `nβ

ϕJ1 ϕK1

ϕI1
ϕM2

O†5

OA

`oα

(`c)lρ

Fig. 5.9: Additional loop diagrams arising in the 2HDM that mix into the SMEFT
operator Oeϕ.

δZ̃γδηκ,βα
21A,ϕ`(3)

= +
1

4
∆γδηκ,βα

1,SA , (5.135)

with all other possible counterterms being vanishing. Note that as for the SMEFT

calculation, these counterterms were checked by also considering the processes ϕ1` →
ϕ1`B and ϕ1`→ ϕ1`W .

We also list for completeness the renormalisation constants for EoM-vanishing opera-

tors, as they are needed when considering the mixing into Oeϕ:

δZ̃γδηκ,βα
2121,v(1)

= −3

4
∆γδηκ,βα

1 , (5.136)

δZ̃γδηκ,βα
AA,v(1)

= −1

4
∆γδηκ,βα

1,AA , (5.137)

δZ̃γδηκ,βα
2121,v(3)

= +
1

2
∆γδηκ,βα

1 , (5.138)

δZ̃γδηκ,βα
A21,v(3)

= +
1

4
∆γδηκ,βα

1,AS , (5.139)

δZ̃γδηκ,βα
21A,v(3)

= +
1

4
∆γδηκ,βα

1,SA . (5.140)

5.5.2 eϕ1ϕ1 → `ϕ1

For the process eϕ1ϕ1 → `ϕ1, two additional loop diagrams arise from the presence of

internal ϕ2 Higgses. Since the external Higgses must all be ϕ1, there must always be

an insertion of the Weinberg operator O†5. Consequently, new diagrams in which the

internal Higgs is a ϕ2 doublet can only have a single insertion of either O21 or OA,

hence only two new diagrams arise. These are shown in Figure 5.9.

Calculating the diagrams of Figure 5.9 and extracting their divergences gives

〈`nβϕI | O
γδ
21(Oηκ5 )†(`χ[Γ(2)

e ]χζeζϕ) |eαϕJϕK〉
∣∣(1)
1
ε

= − 1

16π2

1

ε
(u`(β, n)PRue(α))

× (δIJδKn + δIKδJn)∆γδηκ,βα
2,S , (5.141)
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〈`nβϕI | O
γδ
A (Oηκ5 )†(`χ[Γ(2)

e ]χζeζϕ) |eαϕJϕK〉
∣∣(1)
1
ε

= +
1

16π2

1

ε
(u`(β, n)PRue(α))

× (δIJδKn + δIKδJn)∆γδηκ,βα
2,A , (5.142)

where Γ
(2)
e denotes the leptonic Yukawa matrix for ϕ2. The new flavour structures

introduced are

∆γδηκ,βα
2,S =

1

4
(δγβδδκ[Γ(2)

e ]ηα + δγβδδη[Γ
(2)
e ]κα

+ δγκδδβ [Γ(2)
e ]ηα + δγηδδβ[Γ(2)

e ]κα) , (5.143)

∆γδηκ,βα
2,A =

1

4
(δγβδδκ[Γ(2)

e ]ηα + δγβδδη[Γ
(2)
e ]κα

− δγκδδβ [Γ(2)
e ]ηα − δγηδδβ[Γ(2)

e ]κα) . (5.144)

To renormalise these diagrams, we use dimension-six operators. In the equivalent

SMEFT calculation of Section 5.4.4, the operators required were Oeϕ, and the EoM-

vanishing operators Ov(1) and Ov(3). However, the corresponding renormalisation con-

stants Z̃215̄,v(1), Z̃215̄,v(3), Z̃A5̄,v(1) and Z̃A5̄,v(3) are all zero. This is because loop di-

agrams involving a single O5 operator and a single O21 or OA operator cannot give

rise to a dimension-6 operator with only external ϕ1 Higgses, as is the case for Ov(1)

and Ov(3). Therefore, only the physical operator Oeϕ is required to renormalise these

additional diagrams. Doing this gives the results

δZ̃γδηκ,βα
215̄,eϕ

= +∆γδηκ,βα
2,S , (5.145)

δZ̃γδηκ,βα
A5̄,eϕ

= −∆γδηκ,βα
2,A . (5.146)

There are additional contributions to Oeϕ in the 2HDM, arising from EoM-vanishing

operators. For example, consider the process eϕ1 → `ϕ1ϕ1 mediated by the double-

insertion of the operators O21. This has the renormalisation equation

0 =
Cγδ21

Λ

Cκη∗21

Λ
〈`nβϕI | O

γδ
21(Oηκ21 )†(`χ[Γe]χζeζϕ) |eαϕJϕK〉

∣∣(1)
1
ε

+ Z̃γδηκ,ρσ
2121,eϕ

Cγδ21C
κη∗
21

Λ2
〈`nβϕI | Oρσeϕ |eαϕJϕK〉

(0)

+ Z̃γδηκ,ρσ
2121,v(1)

Cγδ21C
κη∗
21

Λ2
〈`nβϕI | O

ρσ
v(1) |eαϕ

JϕK〉(0)

+ Z̃γδηκ,ρσ
2121,v(3)

Cγδ21C
κη∗
21

Λ2
〈`nβϕI | O

ρσ
v(3) |eαϕ

JϕK〉(0)
, (5.147)

where Z̃γδηκ,ρσ
2121,v(1)

and Z̃γδηκ,ρσ
2121,v(3)

are known from Section 5.5.1. The loop amplitude is

manifestly zero, since a double-insertion of O21 cannot result in exclusively external ϕ1

Higgses, and so we obtain the equation (after using the Feynman rules of the dimension-

6 operators),
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`lρ

ϕM1

ϕN2

O†A OA

`iσ

`jα

`kβ

`lρ

ϕM2

ϕN2

O†22
O22

Fig. 5.10: Additional loop diagrams arising in the 2HDM that mix into the SMEFT
operator O``.

0 = Z̃γδηκ,βα
2121,eϕ

− Z̃γδηκ,βσ
2121,v(1)

[Γe]σα − Z̃γδηκ,βσ2121,v(3)
[Γe]σα

= Z̃γδηκ,βα
2121,eϕ

+
3

4
∆γδηκ,βσ

1 [Γe]σα −
1

2
∆γδηκ,βσ

1 [Γe]σα . (5.148)

This is solved to give

δZ̃γδηκ,βα
2121,eϕ

= −1

4
∆γδηκ,βσ

1 [Γe]σα = −1

4
∆γδηκ,βα

2 . (5.149)

A similar procedure can be used to find δZ̃γδηκ,βα
AA,eϕ

, δZ̃γδηκ,βα
A21,eϕ

, and δZ̃γδηκ,βα
21A,eϕ

, yield-

ing

δZ̃γδηκ,βα
2121,eϕ

= −1

4
∆γδηκ,βα

2 , (5.150)

δZ̃γδηκ,βα
AA,eϕ

= +
1

4
∆γδηκ,βα

2 , (5.151)

δZ̃γδηκ,βα
21A,eϕ

= −1

4
∆γδηκ,βα

2 , (5.152)

δZ̃γδηκ,βα
A21,eϕ

= +
1

4
∆γδηκ,βα

2 . (5.153)

(5.154)

5.5.3 ``→ ``

For the process `` → ``, there are three new diagrams that need to be considered for

the 2HDM. These are listed in Figure 5.10.

In principle there could be an additional two diagrams included in Figure 5.10, involv-

ing the operator insertions O21O†A and OAO†21. However, both of these diagrams are

vanishing from their SU(2) structures, and so are not considered in any further detail

here. Calculating the diagrams of Figure 5.10 and extracting their divergences one

obtains

〈`kβ`lρ| O
γδ
21(Oηκ21 )† |`jα`iσ〉

∣∣(1)
1
ε

= +
2

16π2

1

ε
(u`(σ, i)PLv`(α, j))(v`(β, k)PRu`(ρ, l))

(δilδjk + δikδjl) ∆γδηκ,ραβσ
3 , (5.155)
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〈`kβ`lρ| O
γδ
A (OηκA )† |`jα`iσ〉

∣∣(1)
1
ε

= +
2

16π2

1

ε
(u`(σ, i)PLv`(α, j))(v`(β, k)PRu`(ρ, l))

(δilδjk − δikδjl) ∆γδηκ,ραβσ
3,A , (5.156)

〈`kβ`lρ| O
γδ
22(Oηκ22 )† |`jα`iσ〉

∣∣(1)
1
ε

= − 1

16π2

1

ε
(u`(σ, i)PLv`(α, j))(v`(β, k)PRu`(ρ, l))

(δilδjk + δikδjl) ∆γδηκ,ραβσ
3 , (5.157)

where the new flavour structure is

∆γδηκ,ραβσ
3,A =

1

4
(δγαδδσ − δγσδδα)(δκβδηρ − δκρδηβ) . (5.158)

These diagrams may all be renormalised using the Fierz-evanescent operator of Equa-

tion (5.114), as in the SMEFT case. Note that although the amplitude involving

OγδA (OηκA )† contains a relative minus sign in the SU(2) structure compared to the other

four-lepton amplitudes, the same evanescent operator is still able to renormalise the dia-

gram, since the antisymmetric flavour structure provides an additional sign that cancels

this. Therefore, these diagrams may be renormalised by the counterterms

δZ̃γδηκ,ραβσ
2121,``

= −1

2
∆γδηκ,ραβσ

3 , (5.159)

δZ̃γδηκ,ραβσ
AA,``

= +
1

2
∆γδηκ,ραβσ

3,A , (5.160)

δZ̃γδηκ,ραβσ
2222,``

= −1

4
∆γδηκ,ραβσ

3 . (5.161)

5.5.4 Summary of Counterterms

In the preceding sections, the renormalisation constants of the renormalisation tensor

for mixing between dimensions five and six have been calculated in terms of the full

flavour structures. We present here the renormalisation constants in a slightly dif-

ferent form, where they are contracted with the relevant Wilson coefficients to form

counterterms. In this form, we have:

∆(~C[Z̃]~C†)βαϕ`(1) = −3

4

1

16π2ε
[C5C

∗
5 ]βα , (5.162)

∆(~C[Z̃]~C†)βαϕ`(1) = −3

4

1

16π2ε
[C21C

∗
21]βα , (5.163)

∆(~C[Z̃]~C†)βαϕ`(1) = +
1

4

1

16π2ε
[CAC

∗
A]βα , (5.164)

∆(~C[Z̃]~C†)βαϕ`(3) = +
1

2

1

16π2ε
[C5C

∗
5 ]βα , (5.165)

∆(~C[Z̃]~C†)βαϕ`(3) = +
1

2

1

16π2ε
[C21C

∗
21]βα , (5.166)

∆(~C[Z̃]~C†)βαϕ`(3) = +
1

4

1

16π2ε
[CAC

∗
21 − C21C

∗
A]βα , (5.167)
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∆(~C[Z̃]~C†)βαeH = +
3

4

1

16π2ε
[C5C

∗
5Γe]

βα , (5.168)

∆(~C[Z̃]~C†)βαeH = +
1

4

1

16π2ε

(
4[(C21 − CA)C∗5Γ(2)

e ]βα ,

+ [(CAC
∗
A + CAC

∗
21 − C21C

∗
A − C21C

∗
21)Γe]

βα
)
, (5.169)

∆(~C[Z̃]~C†)ραβσ`` = −1

4

1

16π2ε
Cρβ5 C∗σα5 , (5.170)

∆(~C[Z̃]~C†)ρσβα`` = −1

4

1

16π2ε
Cρβ22C

∗ασ
22 − 1

2

1

16π2ε
Cρβ21C

∗ασ
21 +

1

2

1

16π2ε
CρβA C∗ασA , (5.171)

where each ∆(~C[Z̃]~C†) denotes a contribution to a counterterm. Note that in this

notation, ~C denotes a vector of dimension-five Wilson coefficients (of which there is

one in SMEFT and four in the 2HDM), and [Z̃] denotes the renormalisation tensor

(which is a vector in dimension-six space and a matrix in dimension-five space). This

is the complete list of counterterms for lepton-flavour violating dimension-six operators

of SMEFT.

5.6 Lepton Flavour Conserving Processes

For completeness, we also briefly consider processes which mix dimension-five and six

operators without violating lepton flavour. These involve external states solely com-

prised of the SM Higgs doublet ϕ1, and a lepton loop. Since all Higgses are external in

these processes, the additional operators of the 2HDM do not play a role. There may

be mixing into the dimension-six operators Oϕ�, OϕD, and Oϕ, where

Oϕ = (ϕ†ϕ)3 , (5.172)

Oϕ� = (ϕ†ϕ)�(ϕ†ϕ) , (5.173)

OϕD = (ϕ†Dµϕ)∗(ϕ†Dµϕ) . (5.174)

There are nine 1-loop diagrams that can be drawn with six external Higgses, but when

they are calculated and summed over, they cancel, and so do not require renormalisa-

tion.

There is a single diagram that needs to be renormalised, which involves four external

SM Higgses, as shown in Figure 5.11.

Calculating the diagram of Figure 5.11, extracting the UV divergence using infrared

rearrangement, and expanding in external momenta to quadratic order (since the

dimension-six operators are double-derivative operators), we obtain the result

〈ϕKϕL| Oγδ5 (Oηκ5 )† |ϕIϕJ〉
∣∣(1)
1
ε

=
1

16π2

1

ε
(p3 + p4)2(δILδJK + δIKδJL)∆γδηκ

4 , (5.175)
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ϕI

ϕJ

ϕK

ϕL

`iα

`jβ

Fig. 5.11: Lepton-flavour-conserving mixing between dimensions-five and -six is via a
diagram involving external Higgses.

where

∆γδηκ
4 =

1

2
(δγηδδκ + δγκδδη). (5.176)

Note that when this structure is contracted with the Wilson coefficients Cγδ5 Cκη∗5 , it

results in the trace of the Wilson coefficients, Tr[C5C
∗
5 ]. The operators that may

mediate this process at tree level are Oϕ� and OϕD. In addition, from the EoM of

the Higgs field, there arises the EoM-vanishing operator

Ovϕ = (ϕ†ϕ)(ϕ†D2ϕ)−m2(ϕ†ϕ)2 + λ(ϕ†ϕ)3

+ (ϕ†ϕ)(ϕ†eΓ†e`)− (ϕ†ϕ)(ϕ†εqΓuu) + (ϕ†ϕ)(ϕ†dΓ†dq) , (5.177)

which can also contribute. Note that this operator contains Oeϕ, Ouϕ, Odϕ and

Oϕ.

Performing the tree level calculations to renormalise the loop diagram results in the

counterterms

(~C[Z̃]~C†)βαeϕ = − 1

16π2ε
Tr[C5C

∗
5 ][Γe]βα , (5.178)

(~C[Z̃]~C†)βαuϕ = − 1

16π2ε
Tr[C5C

∗
5 ][Γu]βα , (5.179)

(~C[Z̃]~C†)βαdϕ = − 1

16π2ε
Tr[C5C

∗
5 ][Γd]βα , (5.180)

(~C[Z̃]~C†)ϕ = −2
1

16π2ε
Tr[C5C

∗
5 ]λ , (5.181)

(~C[Z̃]~C†)ϕD = −2
1

16π2ε
Tr[C5C

∗
5 ] , (5.182)

(~C[Z̃]~C†)ϕ� = − 1

16π2ε
Tr[C5C

∗
5 ] . (5.183)

5.7 Comparison with the Literature

The standard model calculation has been performed in [11] in a different operator basis.

We disagree with their final results even after transforming our results to their basis.

We specify our basis

Õ =
(
Oϕ`(1),Oϕ`(3),Oeϕ,O†eϕ,Ov(1),O

†
v(1),Ov(3),O

†
v(3)

)T
, (5.184)
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and the one used in [11]

Q̃ =
(
Q

(−)
ϕ` , Q

(+)
ϕ` , Qeϕ, Q

†
eϕ,Ov(1),O

†
v(1),Ov(3),O

†
v(3)

)T
, (5.185)

where the additional operators are defined as

Q
(−)
ϕ` =

1

2

[
(ϕ†Dµϕ)(¯̀γµ`)− (ϕ†Da

µϕ)(¯̀τaγµ`)
]
, (5.186)

Q
(+)
ϕ` =

1

2

[
(ϕ†Dµϕ)(¯̀γµ`) + (ϕ†Da

µϕ)(¯̀τaγµ`)
]
, (5.187)

Qeϕ = Oeϕ . (5.188)

Here we drop the generation indices and note that the operators Q
(−)
ϕ` and Q

(+)
ϕ` are

not Hermitian. For this reason, we treat the operator Oeϕ and the EoM-vanishing

operators as independent from their Hermitian conjugate in our basis transformation.

Writing the resulting linear transformation as

Õ = R̂Q̃ , (5.189)

only the first two rows of R̂ have entries that are not proportional to an identity transfor-

mation. These two rows are determined by the following linear transformation:4(
Oϕ`(1)

Oϕ`(3)

)
=

(
2 2 Γe −Γ†e 1 −1 0 0

−2 2 Γe −Γ†e 0 0 1 −1

)
Q̃ . (5.190)

The Wilson coefficients and renormalisation constants will consequently fulfil our Her-

miticity conditions in our basis, but not necessarily in the basis of [11]. The countert-

erms of the Wilson coefficients transform in the same way as the respective Wilson

coefficients under our change of basis, i.e. as

δc̃ = R̂T δC̃ , (5.191)

where δC̃ = (16π2)ε ~CZ̃ ~C† represent the counterterms multiplied with (16π2)ε, while

δc̃ correspond to the analogous expression in the Q̃ basis.

Using the counterterms presented in Equations (5.162), (5.165) and (5.168), we ob-

tain

δc̃ =

(
−5

2

[
C5C

∗
5

]
,−1

2

[
C5C

∗
5

]
,
1

2

[
C5C

∗
5Γe
]
,
[
Γ†eC

∗
5C5

])T
, (5.192)

which fulfil the Hermiticity condition of the overall Lagrangian, even though this is not

immediately apparent due to the choice of basis. These results are in disagreement with

the final results quoted in [11]. Yet using the results quoted in the individual diagrams

in Appendix B of [11] we find agreement with the expression of Equation (5.192), which

4To perform the change of basis we have to move covariant derivatives from one term to another.
This can be done by noting that the total derivatives Dµ

[(
ϕ†ϕ

)
(¯̀γµ`)

]
and Dµ

[(
ϕ†τaϕ

)
(¯̀τaγµ`)

]
are vanishing.
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suggests that a different projection was performed. Following the explanations of the

calculation, it appears that part (the δδ part) of the diagram evaluated in Appendix

B.1 of [11] is projected onto an operator basis where the operators Q
(±)
ϕ` are replaced

by Q
(±)′
ϕ` = Q

(±)
ϕ` + (Q

(±)
ϕ` )†, while another part (the εε part) is projected onto the basis

presented in Equation (5.185).

Transforming now to the primed basis, where the Hermitian conjugate is added to

the first two operators of Equation (5.185) we find that the non-trivial transformation

matrix involves only the first two elements of our basis and the primed basis. Explicitly

writing (
Oϕ`(1)

Oϕ`(3)

)
=

(
1 1
−1 1

)(
Q

(−)′
ϕ`

Q
(+)′
ϕ`

)
, (5.193)

we find

δc̃′ =

(
−5

4

[
C5C

∗
5

]
,−1

4

[
C5C

∗
5

]
,
3

4

[
C5C

∗
5Γe
]
,
3

4

[
Γ†eC

∗
5C5

])T
. (5.194)

Again, this result does not agree with [11]. Finally, note that projecting the results

quoted for the individual diagrams in Appendix B of [11], except the εε part, would

give

δc̃′not εε =

(
−1

4

[
C5C

∗
5

]
,−1

4

[
C5C

∗
5

]
,
3

4

[
C5C

∗
5Γe
]
,
3

4

[
Γ†eC

∗
5C5

])T
, (5.195)

while projecting only the εε part on the non-Hermitian basis yields

δc̃εε =
(
−2
[
C5C

∗
5

]
, 0, 0, 0

)T
. (5.196)

Summing these two terms would reproduce the results of [11].

5.8 The Renormalisation Group Equations

As discussed in Section 5.2.1, the leading order renormalisation constants and anoma-

lous dimension tensor are related in a simple way:

γ̃ζη,θAB,C = 2δZ̃ζη,θAB,C , (5.197)

where A,B,C are operator labels and ζ, η, θ represent collections of flavour indices.

Recall that the normalisation of γ̃ is such that a factor of (16π2) is extracted. This

means that we can immediately write down the anomalous dimensions from our previ-

ous calculations as
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(~C[γ̃]~C†)βαϕ`(1) = −Cβρ5

3δρσ
2
C∗σα5

− Cβρ21

3δρσ
2
C∗σα21 + CβρA

δρσ
2
C∗σαA , (5.198)

(~C[γ̃]~C†)βαϕ`(3) = Cβρ5 δρσC
∗σα
5

+ Cβρ21 δρσC
∗σα
21 + CβρA

δρσ
2
C∗σα21 − Cβρ21

δρσ
2
C∗σαA , (5.199)

(~C[γ̃]~C†)βαeϕ = Cβρ5

3[Γe]ηαδρσ
2

C∗ση5

+ 2[(C21 − CA)C∗5Γ(2)
e ]βα

+
1

2
[(CAC

∗
A + CAC

∗
21 − C21C

∗
A − C21C

∗
21)Γe]

βα , (5.200)

(~C[γ̃]~C†)ρσβα`` = −Cβρ5

1

2
C∗σα5

− Cβρ22

1

2
C∗σα22 − Cβρ21C

∗σα
21 + CβρA C∗σαA , (5.201)

where the operator label and flavour indices on the left-hand-side refer to the dimension-

six operator (the dimension-five indices are summed over). The single Higgs model can

be easily retrieved by setting C21 = CA = C22 = 0 in the equations above.

In the next section, we will need the RGEs for dimension-five operators. Recall that in

the single Higgs model, [γ] is in principle a 9×9 matrix (or 6×6, if one uses the symmetry

of Cαβ5 ), mixing the elements of C5 amongst themselves. However, in the basis where

the charged leptons are diagonal, [γ] is diagonal, and the anomalous dimension for the

coefficient Cαβ5 of the Weinberg operator is [101]

γ = −3

2
([Γe]

2
αα + [Γe]

2
ββ) + (λ− 3g2 + 2Tr(3[Γu]†[Γu] + 3[Γd]

†[Γd] + [Γe]
†[Γe])) , (5.202)

where the Higgs self-interaction in the SM Lagrangian is λ
4 (ϕ†ϕ)2, and [Γf ] are the

fermion Yukawa matrices.

5.9 Phenomenology

To solve the RGEs, it is convenient to define t = 1
16π2 ln µ

MW
, in which case the 1-loop

RGEs for dimension-five and -six operator coefficients can be written as

d

dt
C̃ = C̃ · γ̂ + ~C · [γ̃] · ~C† ,

d

dt
~C = ~C · [γ] . (5.203)

These differential equations have solutions of the form

~C(tf ) = ~C(0) exp{γtf} ' ~C(0)
[
1 + γ

1

16π2
ln

(
Λ

MW

)
+ ...

]
, (5.204)
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C̃(tf ) =
[ ∫ tf

0
dτ ~C(0)eγτ [γ̃][eγτ ]T ~C†(0)e−γ̂τ + C̃(0)

]
eγ̂tf , (5.205)

where 16π2tf = ln
(

Λ
MW

)
. In these solutions, the anomalous dimension matrices are

approximated as constant. This is not a good approximation, because the anomalous

dimensions depend on running coupling constants. In particular, the Yukawa couplings

can evolve significantly above MW .

A simple solution to Equation (5.205) can be obtained by expanding the exponentials

under the integral, as in Equation (5.204):

C̃(MW ) = C̃(Λ)− C̃(Λ)γ̂
1

16π2
ln

Λ

MW
− ~C(Λ)[γ̃]~C†(Λ)

1

16π2
ln

Λ

MW
+ . . . (5.206)

5.9.1 The Single Higgs Model

In the SM case, where there is only one Higgs doublet, there is only the Weinberg

operator at dimension-five: a symmetric 3 × 3 matrix, whose entries are determined

by neutrino masses and mixing angles (in the mass basis of charged leptons). We now

want to estimate the contribution of double-insertions of this dimension-five operator

to lepton-flavour violating processes.

We neglect the “Majorana phases” (which cannot be experimentally determined from

neutrino oscillations), suppose that the lightest neutrino mass is negligible, and neglect

the lepton Yukawas in the RGEs. Then, the RG running of Cαβ5 between MW and Λ

can be approximated as a rescaling, with γ ≈ λ− 3g2 + 6y2
t ≈ 3.5:

Cαβ5 (Λ) = Cαβ5 (MW )
[
1 + 3.5

1

16π2
ln

Λ

MW
+ ...

]
, (5.207)

where yt is the Yukawa eigenvalue of the top quark. For Λ ≤ 1016 GeV, ln Λ
MW

≤
33.

We can now estimate the contribution of the neutrino mass operator to lepton flavour

violating processes from Equation (5.206). We neglect C̃(Λ) and find that the contri-

bution is 1
16π2 ln Λ

MW
× (~C[γ̃]~C†), where the coefficients are given in Equations (5.198)

to (5.201). Therefore, the contribution is of order

C̃(MW ) ∼ C2
5

16π2
ln

Λ

MW
. (5.208)

As expected, this is negligibly small, since C2
5/Λ

2 ∼ m2
ν/v

4 .

5.9.2 The Two Higgs Doublet Model

Experimental neutrino data constrain the dimension-five operator in the one Higgs

doublet model, so the lepton flavour violating effects estimated in Equation (5.208)
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are suppressed by the smallness of the neutrino masses. The situation changes in an

extended Higgs sector, where more than one dimension-five operator is present. The

operator OA cannot contribute to neutrino masses as it is anti-symmetric in flavour

space and is hence unconstrained. In addition, the neutrino mass contribution of op-

erators O21 and O22 is suppressed if the VEV of the second Higgs doublet is small.

Renormalisation group effects [101–103] will in general mix all operators, which could

lift these suppression mechanisms at loop level. However, the mixing factorises in the

limit where λ6, λ7 and Γ
(2)
e (as defined in Equation (5.31)) tend to zero: then the op-

erators O21 and OA will not mix into O5 and O22 and are hence not constrained by

the observed neutrino masses. Furthermore, the mixing of O22 into O5 vanishes in the

limit where λ5 also tends to zero (see [114] for a symmetry argument).

In the following we will study the sensitivity of lepton flavour violating decays to these

additional operators. We assume that the Wilson coefficients of the dimension-five

operators are generated at Λ = 10 TeV, while all other dimension-six Wilson coefficients

are zero at this scale. To avoid constraints from the observed neutrino masses, we

consider the scenario where the second Higgs doublet has a negligible VEV and a mass

at the weak scale. The Higgs sector could be assumed to be close to that of an inert

two-Higgs doublet model [106–109] and the dangerous couplings λ6, λ7 and Γ
(2)
e are

not generated radiatively. Renormalisation group running will then generate non-zero

Wilson coefficients of several dimension-six operators at µ ∼ v. Only those dimension-

six operators that involve standard model particles are of interest to us, since the

vanishing VEV of the second Higgs doublet will suppress the contribution of the other

operators after spontaneous symmetry breaking. Applying the constraints of Table 5.3,

and neglecting the small log ln(m22/MW ), we find that the µ→ 3e decays provide the

greatest sensitivity to the additional dimension-five Wilson coefficients. In particular,

the left-handed contribution implies∣∣∣∣Cee21C
eµ∗
21 +0.5Cee22C

eµ∗
22 +0.1

∑
σ

(CeσA − Ceσ21 )
(
Cσµ∗A + Cσµ∗21

) ∣∣∣∣ < 1

5.2 ln (Λ/m22)

(
Λ

10 TeV

)2

,

(5.209)

where we neglected the mixing of the dimension-five operators amongst themselves, as

this would contribute at 2-loop order to the lepton flavour violating processes. For the

right-handed contribution, we find∣∣∣∣∑
σ

(CeσA − Ceσ21 )
(
Cσµ∗A + Cσµ∗21

) ∣∣∣∣ < 1.6

ln (Λ/m22)

(
Λ

10 TeV

)2

, (5.210)

which exhibits a weaker sensitivity. The contribution of the µ↔ e flavour changing Z

vertex to µ→ eγ is relatively suppressed by a loop factor, so is beyond current experi-

mental sensitivity. However, this Z vertex contributes at tree-level to µ→ e conversion,

in interference with vector and scalar 2-quark 2-lepton operators. Indeed, the current
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sensitivity of µ → e conversion in gold is
∣∣Ceµϕ`(1) + Ceµϕ`(3)

∣∣ ≈ 1.4 × 10−7(Λ/mt)
2. The

resulting constraints on the Wilson coefficients reads:∣∣∣∣∑
σ

(CeσA − Ceσ21 )(Cσµ∗A + Cσµ∗21 )

∣∣∣∣ < 1

6.5 ln(Λ/m22)

(
Λ

10 TeV

)2

. (5.211)

Taking the two most stringent bounds from above, and using the values Λ = 10 TeV,

m22 = MW = 80.4 GeV, we obtain the constraints∣∣∣∣Cee21C
eµ∗
21 + 0.5Cee22C

eµ∗
22 + 0.1

∑
σ

(CeσA − Ceσ21 )
(
Cσµ∗A + Cσµ∗21

) ∣∣∣∣ < 1

25
,∣∣∣∣∑

σ

(CeσA − Ceσ21 )(Cσµ∗A + Cσµ∗21 )

∣∣∣∣ < 1

30
. (5.212)

5.10 Experimental Bounds on Coefficients

The aim of this section is to obtain experimental constraints on the coefficients of the

LFV operators of Equation (5.7), evaluated at the weak scale MW . We are interested

in this subset of operators because they are generated at 1-loop by double-insertions

of dimension-five LNV operators. Such constraints will allow an estimation of the

sensitivity of LFV processes to the coefficients of LNV operators. We neglect the

constraints on 2-lepton-2-quark operators, which are beyond the scope of this work,

and focus on τ ↔ e and τ ↔ µ flavour changes, since µ ↔ e is discussed in [85, 115].

Nonetheless, some µ↔ e bounds are listed for completeness.

Three ways to relate low-energy experimental bounds to the coefficients of operators

at a higher scale are:

1. To calculate the sensitivity of an experimental process to a particular operator

coefficient.

2. To express an experimental rate as a function of high-scale coefficients. Each coef-

ficient that contributes at the experimental scale will become a linear combination

of high scale coefficients due the renormalisation group mixing.

3. To obtain constraints on coefficients at the high scale. A sufficient number of

experimental constraints must be combined in order to obtain a finite allowed

region in coefficient space (no “flat directions”). Then the allowed region must

be projected onto the various axes, in order to obtain constraints.

The third option is the most useful, but beyond the scope of this work. Instead, we

partially follow the second option, as a contribution to the third. We consider experi-

mental bounds on the dimension-six operators which are generated in RGE evolution

by double-insertions of dimension-five operators that change lepton number. We aim
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Process Br< Process Br<

Z → e±µ∓ 7.5× 10−7 [91] Z → τ±µ∓ 1.2× 10−5 [92]

Z → e±τ∓ 9.8× 10−6 [93] h→ e±µ∓ 3.5× 10−4 [94]

h→ τ±µ∓ 1.5× 10−2 [95] h→ e±τ∓ 6.9× 10−3 [94]

τ → eee 2.7× 10−8 [96] τ → eµµ 2.7× 10−8 [96]

τ → µee 1.8× 10−8 [96] τ → µµµ 2.1× 10−8 [96]

τ → eeµ 1.5× 10−8 [96] τ → µµe 1.7× 10−8 [96]

µ→ 3e 1× 10−12 [97] τ → eγ 3.3× 10−8 [98]

τ → µγ 4.4× 10−8 [98, 99] µ→ eγ 4.2× 10−13 [90]

Table 5.2: Experimentally measured bounds on branching ratios of lepton flavour
violating processes. These may be used to determine bounds on Wilson coefficients of
lepton flavour violating dimension-six operators (see Table 5.3).

to quote these bounds at MW . The processes in question are LFV Higgs and Z de-

cays (which occur at the weak scale), and flavour-changing lepton decays at low energy

(these bounds must be translated to the weak scale via the RGEs of QED and QCD).

Therefore we will not succeed in our aim of setting constraints on coefficients at MW ,

because the low-energy experimental bounds depend on many coefficients at the weak

scale, and we do not include enough experimental bounds.

5.10.1 Rates and Calculations

In Table 5.2 we present bounds on branching ratios of LFV processes that have been

experimentally studied. We then use these to determine the implied bounds on the

magnitudes of Wilson coefficients of LFV SMEFT operators, shown in Table 5.3. After

presenting these results, we discuss how they are obtained, including a discussion of

matching between SMEFT operators and low-energy effective operators.

Z → lαl̄β Decay

When the Higgs obtains a VEV, the “penguin” operators Oϕ`(1) and Oϕ`(3) generate

a vertex involving the Z and two charged leptons. If the flavour-changing Z-fermion

vertex is written in a SM-like form, −lαZµ g2
2 cos ΘW

γµ(gV − gAγ5)lβ, then

gV = gA = −(Cϕ`(1) + Cϕ`(3))
v2

2Λ2
. (5.213)

The branching ratio can be written as

Br(Z → lαlβ) =
MZ

2.5 GeV

g2
2

48π cos2 ΘW
(|gV |2 + |gA|2) (5.214)
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Process v2

2Λ2 |
∑
C| <

Z → e±µ∓ |Ceµϕ`(1) + Ceµϕ`(3)| < 1.2× 10−3

Z → τ±µ∓ |Cµτϕ`(1) + Cµτϕ`(3)| < 4.6× 10−3

Z → e±τ∓ |Ceτϕ`(1) + Ceτϕ`(3)| < 4.1× 10−3

h→ e±µ∓ |Cµeeϕ|, |Ceµeϕ| < 2.5× 10−4

h→ τ±µ∓ |Cµτeϕ |, |Cτµeϕ | < 1.6× 10−3

h→ e±τ∓ |Ceτeϕ|, |Cτeeϕ| < 1.1× 10−3

τ → eee |2Ceτee`` + geL[Ceτϕ`(1) + Ceτϕ`(3)]− δC
eτ
penguin| < 2.8× 10−4

|Ceτee`e + geR[Ceτϕ`(1) + Ceτϕ`(3)]− δC
eτ
penguin| < 4.0× 10−4

τ → eµµ |2Ceτµµ`` + 2Ceµµτ`` + geL[Ceτϕ`(1) + Ceτϕ`(3)]− δC
eτ
penguin| < 4.0× 10−4

|Ceτµµ`e + geR[Cµτϕ`(1) + Ceτϕ`(3)]− δC
eτ
penguin| < 4.0× 10−4

τ → µee |2Cµτee`` + 2Cµeeτ`` + geL[Cµτϕ`(1) + Cµτϕ`(3)]− δC
µτ
penguin| < 3.2× 10−4

|Cµτee`e + geR[Cµτϕ`(1) + Cµτϕ`(3)]− δC
µτ
penguin| < 3.2× 10−4

τ → µµµ |2Cµτµµ`` + geL[Cµτϕ`(1) + Cµτϕ`(3)]− δC
µτ
penguin| < 2.5× 10−4

|Cµτµµ`e + geR[Cµτϕ`(1) + Cµτϕ`(3)]− δC
µτ
penguin| < 3.5× 10−4

τ → eeµ |2Ceτeµ`` | < 3.2× 10−4

τ → µµe |2Cµτµe`` | < 3.2× 10−4

µ→ 3e |2Ceµee`` + geL[Ceµϕ`(1) + Ceµϕ`(3)]− δC
eµ
penguin| < 7.1× 10−7

|Ceµee`e + geR[Ceµϕ`(1) + Ceµϕ`(3)]− δC
eµ
penguin| < 1.0× 10−6

τ → eγ |Cτe∗eγ + eαeyt
8π3yµ

Cτe∗eϕ +
egeL
16π2C

eτ
ϕe| < 7.3× 10−6

|Ceτeγ + eαeyt
8π3yµ

Ceτeϕ +
egeR
16π2 [Ceτϕ`(1) + Ceτϕ`(3)]| < 7.3× 10−6

τ → µγ |Cτµ∗eγ + eαeyt
8π3yµ

Cτµ∗eϕ +
egeL
16π2C

µτ
ϕe | < 8.1× 10−6

|Cµτeγ + eαeyt
8π3yµ

Cµτeϕ +
egeR
16π2 [Cµτϕ`(1) + Cµτϕ`(3)]| < 8.1× 10−6

µ→ eγ |Cµe∗eγ + eαeyt
8π3yµ

Cµe∗eϕ +
egeL
16π2C

eµ
ϕe| < 1.05× 10−8

|Ceµeγ + eαeyt
8π3yµ

Ceµeϕ +
egeR
16π2 [Ceµϕ`(1) + Ceµϕ`(3)]| < 1.05× 10−8

Table 5.3: Bounds on operator coefficients of the SMEFT, evaluated at MW , from the
bounds listed in Table 5.2 on the processes listed in the first column. The bounds on
coefficients of Hermitian operators (Oϕ`(1), Oϕ`(3), O``,O`e) also apply to the conjugate
coefficient. All the bounds apply to running coefficients evaluated at MW , and are for
Λ ' mt ' v/

√
2. The combination of coefficients Cpenguin is defined in Equation (5.225)

and before Equation (5.236), δ is defined after Equation (5.236), and geR = 2s2
W , geL =

−1 + 2 sin2 ΘW .
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where 2.5 GeV is the Z width in the SM. Since Oϕ`(1) and Oϕ`(3) are Hermitian, the

conjugate process Z → lβlα necessarily occurs at the same rate, so the branching ratio

to the experimental final state is

Br(Z → l±α l
∓
β ) = Br(Z → lαlβ) +Br(Z → lβlα)

=
MZ

2.5 GeV

g2
2

12π cos2 ΘW
|Cαβϕ`(1) + Cαβϕ`(3)|

2 v4

4Λ4
(5.215)

and the bounds we obtain on the operator coefficients, evaluated at ∼ MW , are given

in Table 5.3.

h→ `+αe
−
β , e

+
α `

−
β Decays

The flavour-changing Higgs decays occur via the non-Hermitian operator Oeϕ. When

the Higgs has a VEV, it induces the Feynman rules for a flavour-changing Higgs vertex

with two fermions:

1

Λ2
CαβeϕOαβeϕ −→ i

3Cαβeϕ v2

2
√

2Λ2
PR ,

1

Λ2
Cβα∗eϕ Oβα∗eϕ −→ i

3Cβα∗eϕ v2

2
√

2Λ2
PL . (5.216)

We calculate the flavour-changing branching ratio by comparing to Br(h → bb̄) =

0.575± 0.32 (from the Appendix of the Higgs Working Group Report [116], for mh =

125.1 GeV), assuming the Feynman rule for hbb̄ is − i√
2
yb(mh)PL,R. We use a one-loop

approximation [44] for the running b mass

yb(mh)
v√
2

= mb(mb)

[
α(mh)

α(mb)

]γ(0)m /2β(0)

' 3.0 GeV (5.217)

where α(mh) ' 0.12, α(mb) ' 0.23, γ
(0)
m = 8, β(0) = 23/3 and mb(mb) = 4.2 GeV.

The operator Oeϕ is not Hermitian, but is always included in the Lagrangian +H.c..

So CeµeϕOeµeϕ + H.c. will induce both h→ eLµR and h→ µReL at the same rate:

Br(h→ eLµR)

Br(h→ bb̄)
=

9|Ceµeϕ|2v4

24y2
bΛ

4
, (5.218)

where in the denominator there is a factor of 3 for quark colour sums, and a factor of 2

from the chiral projectors in the lepton decay. The experimental search sums the eLµR

and µReL final states, so we obtain

3v4

4

|Cαβeϕ |2

Λ4
,

3v4

4

|Cβαeϕ |2

Λ4
≤ y2

b (mh)
Br(h→ l±α l

∓
β )

Br(h→ bb̄)
(5.219)

and the resulting constraints are given in Table 5.3.
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Low Energy Decays

The flavour-changing τ and µ decays listed in Table 5.3 occur at energies ∼ mµ,mτ , so

the decay rates are usually written in terms of the coefficients of dimension-six operators

from the QCD×QED invariant basis appropriate at low energies. These “low energy”

coefficients, which we denote by C, can be expressed in terms of SMEFT coefficients

at MW by running them up to MW , then matching the QCD×QED-invariant operator

basis onto the SMEFT. This was performed in [85] for µ→ eγ, so we use the results of

[85] for the radiative decays studied below. Reference [115] studied the renormalisation

group evolution, below the weak scale, of the coefficients which mediate µ → eēe (as

well those for as µ → eγ and µ→ e conversion). We use these results, combined with

the weak-scale matching conditions of [85], for the discussion of three body leptonic

decays of the τ and µ. The minor differences between µ and τ decays are also discussed

below.

In the EFT below MW , we use the basis of lepton flavour changing four-fermion oper-

ators introduced in [85, 86] for µ ↔ e flavour change.5 The operators and coefficients

have as subscripts their Lorentz structure (V, S, T ) and the chiral projection operators

of the two fermion bilinears, and the flavour indices of the four fermions as super-

scripts. We restrict to the dipole and vector operators and neglect the scalars and

tensors, which will turn out to be irrelevant for our study of LFV operators generated

by double-insertions of LNV operators. The four-fermion operator basis below MW

is

δL4f =
∑
αβ

∑
f

[
CαβffV,LL (eαγ

ωPLeβ)(fγωPLf) + CαβffV,LR (eαγ
ωPLeβ)(fγωPRf)

]
+ H.c.

+
∑
αβσρ

[
CαβσρV,LL (eαγ

ωPLeβ)(eσγωPLeρ)
]

+ H.c. , (5.220)

where αβ ∈ {eµ, µτ, eτ}, f ∈ {e, µ, τ, u, d, s, c, b}, and αβσρ ∈ {eτeµ, µτµe}. In addi-

tion, below MW , we consider the photon dipole operators

δLdipole =
mβ

Λ2

(
CαβD,LeαRσ

ρσeβLFρσ + CαβD,ReαLσ
ρσeβRFρσ

)
+ H.c. , (5.221)

because the SMEFT operators Oϕ`(1), Oϕ`(3) and Oeϕ match onto the dipole at MW .

The current bounds on µ → eγ, τ → eγ and τ → µγ will give the best sensitivity to

the coefficients Cϕ`(1), Cϕ`(3) and Ceϕ .

τ → 3l and µ→ 3e

The first step is to translate the experimental bounds into constraints on operator

coefficients at the experimental scale. For the three-body leptonic decays of the τ , it is

5In this basis, the flavour indices are written explicitly, so the normalisation of 1/2 is absent.
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convenient to define

B̃r(τ → 3l) ≡ Br(τ → 3l)

Br(τ → µν̄ν)
(5.222)

(where Br(τ → µν̄ν) = 0.174 [32]). Then, B̃r(τ → 3l) can be directly compared to the

branching ratio for µ→ 3e [86]:

Br(µ→ eēe)
4Λ4

v4
=
|CeµeeS,LL|2 + |CeµeeS,RR|2

8
+ 2|CeµeeV,RR + 4eCeµD,L|

2 + 2|CeµeeV,LL + 4eCeµD,R|
2

+ (64 ln
mµ

me
− 136)(|eCeµD,R|

2 + |eCeµD,L|
2) + |CeµeeV,RL + 4eCeµD,L|

2

+ |CeµeeV,LR + 4eCeµD,R|
2 , (5.223)

where
√

2GF = 1/v2, and the generalisation to τ decays is straightforward after ac-

counting for factors of two.

We use the same branching ratio as in Equation (5.223) for the decays τ → eee, τ →
µµµ, τ → eµµ, and τ → µee, but make allowances for factors of two due to whether

final states contain identical particles. Note that we calculate the decay rates in the

approximation that all final state fermions are massless. If there are two identically-

flavoured fermions in the final state (as in Equation (5.223)), and those fermions have

the same chirality, there is an enhancement in the branching ratio by a factor of two

compared to if they have opposite chiralities [78]. This can be seen in Equation (5.223),

where the coefficient CV,LL comes with a factor of 2 compared to CV,LR.

We set the dipole coefficients to zero, because they are better constrained by the ra-

diative decays discussed in the next subsection (see Table 5.3). Consequently, each

upper bound on a three-body leptonic decay of the τ or µ implies six independent

constraints on operator coefficients (evaluated at the experimental scale). This can be

seen from Equation (5.223), by setting CeµD,L = CeµD,R = 0, and then considering each of

the remaining coefficients in turn. Those of interest to us are given in Table 5.4.

The operator coefficients CX(mτ ) given in Table 5.4 can be expressed in terms of coef-

ficients at MW using the one-loop RGEs [85,115]:

µ
d

dµ
CI =

α

4π
CJ [γe]JI ⇒ CI(mτ ) = CJ(MW )

[
δJI −

α

4π
ln
MW

mτ
[γe]JI + ...

]
, (5.224)

where [γe] is the one-loop anomalous dimension matrix of QED, ln MW
mτ

= 3.85, ln MW
mµ

=

6.64 and the approximate solution neglects the running of α. The one-loop QED

corrections involve photon exchange between two legs of the operator, which does not

change the flavour or chiral indices, and also “penguin” diagrams, where two legs of

the operator are closed in a loop, and a photon is attached, which turns into two

external leg fermions. The “penguins” can change the chirality and flavour, and allow

2-lepton-2-quark operators to mix with the four-lepton operators. We therefore need a

prescription for dealing with the quark-sector thresholds mb, mc and ΛQCD. We make

117



Process B̃r < v2

2Λ2 |C| <

τ → eee 1.6× 10−7 C̃eτeeV,LL < 2.8× 10−4, C̃eτeeV,LR < 4× 10−4

τ → eµµ 1.6× 10−7 C̃eτµµV,LR, C̃
eτµµ
V,LL < 4× 10−4

τ → µee 1.0× 10−7 C̃µτeeV,LR, C̃
µτee
V,LL < 3.2× 10−4

τ → µµµ 1.2× 10−7 C̃eτµµV,LL < 2.5× 10−4, C̃eτµµV,LR < 3.5× 10−4

τ → eeµ 8.6× 10−8 C̃eτeµV,LL < 3.2× 10−4,

τ → µµe 1.0× 10−7 C̃µτµeV,LL < 3.2× 10−4

µ→ eee 1.0× 10−12 C̃eµeeV,LL < 7.1× 10−7, C̃eµeeV,LR < 10−6

Table 5.4: Bounds on some operator coefficients from three-body lepton decays,
evaluated at the experimental scale.

the simplest approximation, which is to have a single low-energy threshold at mτ , and

run from MW → mτ with five quark flavours, and use this low-energy scale also for the

decays of the µ. In this approximation, it is convenient to define the combination of

operator coefficients

Cαβpenguin = −4Nc

3

∑
q

Qq(CαβqqV,LL + CαβqqV,LR) +
4

3

∑
l

([1 + δαl + δβl]CαβllV,LL + CαβllV,LR) , (5.225)

where l ∈ {e, µ, τ}, q ∈ {u, d, s, c, b}, and Qq is the electric charge of the quark. Then

the coefficients constrained in table 5.4 can be written

CeµeeV,LR(mτ ) =

[
1 + 12

α

4π
ln
MW

mτ

]
CeµeeV,LR(MW )− α

4π
ln
MW

mτ
Ceµpenguin(MW ) , (5.226)

CeµeeV,LL(mτ ) =

[
1− 12

α

4π
ln
MW

mτ

]
CeµeeV,LL(MW )− α

4π
ln
MW

mτ
Ceµpenguin(MW ) , (5.227)

CeτllV,LR(mτ ) =

[
1 + 12

α

4π
ln
MW

mτ

]
CeτllV,LR(MW )− α

4π
ln
MW

mτ
Ceτpenguin(MW ) , (5.228)

CeτllV,LL(mτ ) =

[
1− 12

α

4π
ln
MW

mτ

]
CeτllV,LL(MW )− α

4π
ln
MW

mτ
Ceτpenguin(MW ) , (5.229)

CµτllV,LR(mτ ) =

[
1 + 12

α

4π
ln
MW

mτ

]
CµτllV,LR(MW )− α

4π
ln
MW

mτ
Cµτpenguin(MW ) , (5.230)

CµτllV,LL(mτ ) =

[
1− 12

α

4π
ln
MW

mτ

]
CµτllV,LL(MW )− α

4π
ln
MW

mτ
Cµτpenguin(MW ) , (5.231)

CµτµeV,LL(mτ ) =

[
1− 12

α

4π
ln
MW

mτ

]
CµτµeV,LL(MW ) , (5.232)

CeτeµV,LL(mτ ) =

[
1− 12

α

4π
ln
MW

mτ

]
CeτeµV,LL(MW ) . (5.233)

Finally, the combinations of coefficients that are constrained by data can be matched
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at MW onto coefficients of SMEFT operators [85]:6

CeτeµV,LL(MW ) = 2Ceτeµ`` (MW ) ,

CµτµeV,LL(MW ) = 2Cµτµe`` (MW ) ,

CµτeeV,LL(MW ) = 2Cµτee`` (MW ) + 2Cµeeτ`` (MW ) + geL[Cµτϕ`(1)(MW ) + Cµτϕ`(3)(MW )] ,

CµτµµV,LL (MW ) = 2Cµτµµ`` (MW ) + geL[Cµτϕ`(1)(MW ) + Cµτϕ`(3)(MW )] ,

CµτllV,LR(MW ) = Cµτll`e (MW ) + geR[Cµτϕ`(1)(MW ) + Cµτϕ`(3)(MW )] ,

CeτµµV,LL(MW ) = 2Ceτµµ`` (MW ) + 2Ceµµτ`` (MW ) + geL[Ceτϕ`(1)(MW ) + Ceτϕ`(3)(MW )] ,

CeτeeV,LL(MW ) = 2Ceτee`` (MW ) + geL[Ceτϕ`(1)(MW ) + Ceτϕ`(3)(MW )] ,

CeτllV,LR(MW ) = Ceτll`e (MW ) + geR[Ceτϕ`(1)(MW ) + Ceτϕ`(3)(MW )] ,

CeµeeV,LL(MW ) = 2Ceµee`` (MW ) + geL[Ceµϕ`(1)(MW ) + Ceµϕ`(3)(MW )] ,

CeµeeV,LR(MW ) = Ceµee`e (MW ) + geR[Ceµϕ`(1)(MW ) + Ceµϕ`(3)(MW )] , (5.234)

where l ∈ {e, µ} in the above equations, and geR = 2 sin2 ΘW , geL = −1 + 2 sin2 ΘW .

In order to match the “penguin” coefficient of Equation (5.225) onto coefficients of

the SMEFT, matching conditions for operators with a quark bilinear are also re-

quired:

CαβuuV,LL (MW ) = Cαβuu`q(1) (MW )− Cαβuu`q(3) (MW ) + guL[Cαβϕ`(1)(MW ) + Cαβϕ`(3)(MW )] ,

CαβddV,LL(MW ) = Cαβdd`q(1) (MW ) + Cαβdd`q(3) (MW ) + gdL[Cαβϕ`(1)(MW ) + Cαβϕ`(3)(MW )] ,

CαβuuV,LR (MW ) = Cαβuu`u (MW ) + guR[Cαβϕ`(1)(MW ) + Cαβϕ`(3)(MW )] ,

CαβddV,LR(MW ) = Cαβdd`d (MW ) + gdR[Cαβϕ`(1)(MW ) + Cαβϕ`(3)(MW )] , (5.235)

where αβ ∈ {µτ, eτ, eµ}, guL = 1 − 4
3 sin2 ΘW , guR = −4

3 sin2 ΘW , gdL = −1 + 2
3 sin2 ΘW

and, gdR = 2
3 sin2 ΘW . Combining the definition (5.225) with the matching condi-

tions of Equation (5.235) allows the definition of a combination of SMEFT coeffi-

cients Cαβpenguin(MW ). Then, the experimental constraint on, for instance CeτµµV,LL(mτ ),

gives∣∣∣[1− 12δ
][

2Ceτµµ`` + 2Ceµµτ`` + geL[Ceτϕ`(1) + Ceτϕ`(3)]
]
− δCeτpenguin

∣∣∣ < 4× 10−4 , (5.236)

where all the coefficients are evaluated at MW , and δ = α
4π log MW

mτ
∼ 1/400. This, and

other constraints from 3-body τ decays, are given in Table 5.3, where for compactness,

[1± 12δ] is approximated as 1.

6These equations differ from [85] due to different conventions for operator normalisation and signs,
and also due to some errors in [85]. The SMEFT basis used here is normalised according to [8], where
there are “redundant” flavour changing four-fermion operators, which are absent from the basis used
below MW in [85]. Then, the sign convention used here for the gfL,R and the Z-vertex Feynman rule
agrees with the PDG [32] but is opposite to that of [85]. Finally, in [85], there is an incorrect factor of
2 multiplying the penguin coefficients.
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lβ → lαγ

The radiative decays lβ → lαγ provide some of the most restrictive bounds on lepton

flavour violation. The branching ratio at mβ can be written

B̃r(lβ → lαγ) ≡
Br(lβ → lαγ)

Br(lβ → lαν̄ν)

= 384π2 v4

4Λ4
(|CαβD,L|

2 + |CαβD,R|
2) ≤


4.2× 10−13 µ→ eγ
2.0× 10−7 τ → eγ
2.5× 10−7 τ → µγ

, (5.237)

where the low energy dipole operators are added to the Lagrangian as in Equation (5.221).

The dipole coefficients evaluated at the experimental scale can be expressed in terms

of SMEFT coefficients at the weak scale as [85]

CαβD,L(mτ ) = Cβα∗eγ (MW ) +
eαyt

8π3yµ
Cβα∗eϕ (MW ) +

egeL
16π2

Cαβϕe (MW ) + ... , (5.238)

CαβD,R(mτ ) = Cαβeγ (MW ) +
eαyt

8π3yµ
Cαβeϕ (MW )

+
egeR
16π2

[Cαβϕ`(1)(MW ) + Cαβϕ`(3)(MW )] + ... , (5.239)

where the contributions of scalar and tensor four-fermion operators were neglected, geR

and geL are defined after Equation (5.234), and

Cαβeγ = cos ΘWC
αβ
eB − sin ΘWC

αβ
eW . (5.240)
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Chapter 6

Three-Loop QCD Corrections to
K → πνν

6.1 Introduction

Flavour-changing neutral currents (FCNC) are a sensitive probe of new physics. Such

processes are forbidden in the SM at tree-level, and therefore receive loop suppression.

In addition, when considering ∆S = 1 processes with an internal top quark, there is a

further suppression arising from CKM contributions: since the CKM matrix is nearly

diagonal, FCNC processes of hadrons receive a large suppression [89]. Consequently,

any SM contribution to such processes is very small, making it a promising channel

for the detection of new physics, since even a small new physics contribution stands a

chance of being distinguished from the SM background [117].

Two such processes are the semi-leptonic decay K+ → π+νν and the CP-violating

decay KL → π0νν. At the quark level, the processes are described by s → dνν, with

the additional quarks being spectators to the weak decay. These are shown at leading

order (which is an electroweak loop process) in Figure 6.1. These channels have been

measured experimentally to a high precision [118, 119], whilst the theoretical calcula-

tion is also very clean, due to the minimal contribution from long-range physics [44].

This suppression of long-range contributions stems from the dominant contribution of

internal top-quarks, which also introduce the CKM factors V ∗tsVtd, where [32]

|Vtd| = (8.2± 0.6)× 10−3, |Vts| = (40.0± 2.7)× 10−3, (6.1)

providing an overall suppression of O(10−4).

Measured branching ratios for rare Kaon decays are collected by the Particle Data

Group [87], with current experimental branching ratios being
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s d

ν ν

u, c, t

e, µ, τ

W W

s d

ν ν

u, c, t u, c, t

W

Z

Fig. 6.1: Example box and penguin diagrams that contribute to the decays K+ →
π+νν and KL → π0νν at leading order. Only box diagrams and Z-penguins contribute
to the decays, and we only consider the box diagrams in this work.

Br(K+ → π+νν) = (1.7± 1.1)× 10−10 [118] ,

Br(KL → π0νν) < 2.6× 10−8 [119] .

The KOTO experiment at JPARC is now online, and will be able to provide an update

to Br(KL → π0νν). It has already seen a signal above the expected background,

which gives a branching ratio of Br(KL → π0νν) < 5.1 × 10−8 [120], which is less

stringent than the bound measured by the E391a collaboration and used by the PDG.

We therefore use the limit from [87], and note that KOTO should be able to provide

updated experimental values in the future.

In the SM the amplitude for s → dνν̄ may be split into three parts depending on the

internal quark, u, c, t. At 1-loop level, this yields the structure [121]

Afull(s→ dνν̄) =
∑

q=u,c,t

V ∗qsVqdAq ∼


O
(
λ5 m2

t

M2
W

)
+ iO

(
λ5 m2

t

M2
W

)
(q = t)

O
(
λ m2

c

M2
W

ln MW
mc

)
+ iO

(
λ5 m2

c

M2
W

ln MW
mc

)
(q = c)

O
(
λ

Λ2
QCD

M2
W

)
(q = u)

where λ is the Cabbibo angle (λ = 0.22). Despite the CKM suppression, it can be seen

that the top contributions are dominant due to the large top mass. For the K+ → π+νν̄

decay, whose branching ratio contains both Re(λc) and λt, the charm sector provides a

subleading contribution which cannot be neglected. However, the CP violating decay

KL → π0νν̄ is sensitive to the imaginary parts only, and the imaginary part of the

charm sector receives the same CKM suppression as the top sector. Therefore, for

KL → π0νν̄, the top sector is completely dominant and up- and charm-contributions

may be safely neglected.

K decays are described in EFT via the formalism of the weak Hamiltonian. Specifically,

the 3-flavour weak Hamiltonian for these decays is given by [122,123]

Heff =
4GF√

2

α

2π sin2 ΘW

∑
l=e,µ,τ

(
λcX

l + λtXt

)
(sLγ

µdL) (νlLγµνlL) + H.c., (6.2)

122



where λi = V ∗isVid, α is the QED fine-structure constant, and ΘW is the Weinberg

angle. The functions X l and Xt are the contributions from the charm- and top-sectors

respectively, where X l � Xt. It is interesting to note that the top contribution does

not run after the top-quark is integrated out, whereas X l runs above the charm scale, as

semileptonic operators involving the charm-quark mix into X l. Note that the effective

Hamiltonian has no contribution proportional to λu, since it is eliminated using the GIM

mechanism, in which the up-quark contribution is encoded in X l and Xt. The disparity

between X l and Xt (which are separated by three orders of magnitude [44]) suggests

that the charm contribution can be safely neglected in favour of the top sector. As

discussed above, this is true for the decay KL → π0νν, but for the case K+ → π+νν the

top contribution receives a CKM suppression relative to the charm sector, which makes

the inclusion of the charm sector necessary. Consequently, the effective Hamiltonian of

Equation (6.2) is used for K+ decay, while for KL decay we use the Hamiltonian

Heff =
4GF√

2

α

2π sin2 ΘW

∑
l=e,µ,τ

λtXt (sLγ
µdL) (νlLγµνlL) + H.c. (6.3)

From the Hamiltonians above, it is possible to derive branching ratios for K decays

in the effective theory. Branching ratios require the evaluation of hadronic matrix

elements, typically performed on the lattice. However, it is possible to circumvent this

difficulty in rare K decays through the use of isospin relations, which allow Br(K+ →
π+νν̄) and Br(KL → π0νν̄) to be related to Br(K+ → π0e+ν), which is experimentally

well known [87].

First, consider the K+ decay. The effective Hamiltonian for K+ → π0e+ν is

Heff(K+ → π0e+ν) =
4GF√

2
V ∗us(sLγ

µuL)(νeLγµeL) (6.4)

and from isospin symmetry (assuming mu = md = 0), there is the relation

〈π+| (sLγµdL) |K+〉 =
√

2 〈π0| (sLγµuL) |K+〉 . (6.5)

This leads to the ratio

Br(K+ → π+νν̄)

Br(K+ → π0e+ν)
=

α2

|Vus|22π2 sin4 ΘW

∑
l=e,µ,τ

∣∣V ∗csVcdX l + V ∗tsVtdXt

∣∣2 , (6.6)

from which Br(K+ → π+νν̄) can be obtained. Including isospin breaking effects, it is

given by [122–125]

Br(K+ → π+νν̄(γ))

= κ+(1 + ∆EM)

[(
Imλt
λ5

Xt

)2

+

(
Reλc
λ

(Pc + δPc,u) +
Reλt
λ5

Xt

)2
]
, (6.7)
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where κ+ encodes the branching ratio of K+ → π0e+ν including isospin breaking

effects, calculated in [126]. The parameters Pc(X) and δPc,u (which are functions of

the charm function X l) describe the charm contributions, where P (X) includes the

short distance contributions, and δPc,u encodes long range contributions as well as

contributions from dimension-eight operators. These are given by

Pc(X) =
1

λ4

(
2

3
Xe +

1

3
Xτ

)
, (6.8)

which is given in [127], and

δPc,u = 0.04± 0.02 , (6.9)

given in [124,125,128].

Similarly, the process KL → π0νν̄ has the branching ratio [44,124]

Br(KL → π0νν̄) = κL

(
Imλt
λ5

Xt

)2

, (6.10)

where the simple form is because only the top sector contributes. The parameter κL

contains the hadronic matrix element (as κ+ did for the K+ decay), and is given in [129].

To include non-negligible contributions from channels that violate CP indirectly, we

multiply the branching ratio by the factor [130]

1−
√

2|εK |
1 + Pc(X)/(A2Xt)− ρ

η
, (6.11)

where εK describes indirect CP violation in the neutral Kaon system. A, λ, ρ and η are

CKM parameters from the Wolfenstein parameterisation of the CKM matrix, defined

as (see Section 2.6)

λ = |Vus| = 0.22 , A = Vcb/λ
2 , ρ =

s13

s12s23
cos δ , η =

s13

s12s23
sin δ . (6.12)

The theoretical branching ratios given above both depend on the function Xt.

The loop functions X l and Xt have been calculated previously, considering both QCD

and electroweak corrections. The function X l has been calculated to NNLO in QCD

[131–133] and NLO in the electroweak theory [127], the result of which is a 2.5% the-

oretical uncertainty. Since the charm contribution to the K+ → π+νν branching ratio

is only ≈ 30%, this represents only a small (sub-percent) uncertainty. The dominant

function Xt has been calculated to NLO in both QCD [123,134,135] and the electroweak

theory [124]. With these results the numerical value (to NLO in QCD and electroweak)

is [124]

Xt = 1.469± 0.017± 0.002 , (6.13)

where the first error is from QCD uncertainties and the second error is from electroweak

uncertainties. Note that Xt is scale-invariant, since it is the Wilson coefficient of an
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operator involving a conserved quark current. Therefore, it has a vanishing anomalous

dimension, and is µ-independent. As can be seen, whereas the electroweak uncertainty

is at the per mille level, the QCD uncertainty still stands at the percent level. We

here calculate the contribution of box diagrams to NNLO QCD corrections to Xt. The

penguin contribution is also currently being calculated and the results will be presented

in a future paper. Once these are brought together, an update to the value of Xt in

Equation (6.13) will be possible, reducing the QCD uncertainties.

6.2 The Matching Calculation

The NNLO QCD correction of Xt is performed via a matching equation between the

full SM and the 5-flavour effective theory to O(α2
s). The tree-level Hamiltonian for this

theory is conventionally defined as

Heff =
4GF√

2

α

2π sin2 ΘW
V ∗tsVtdCνQν + H.c. , (6.14)

where Cν can be identified with Xt, and Qν is

Qν =
∑

l=e,µ,τ

(sLγ
µdL)(νlLγµνlL) . (6.15)

For the purposes of our calculation, we use the equivalent Hamiltonian

Heff =
4GF√

2

α

2π sin2 ΘW

∑
i=u,c,t

V ∗isVidC
i
νQν + H.c. , (6.16)

which reproduces Equation (6.14) upon utilising the unitarity of the CKM matrix.

Explicitly,

λtCν = λuC
u
ν + λcC

c
ν + λtC

t
ν = ((λu + λc)C

u
ν + λtC

t
ν) = λt(C

t
ν − Cuν )

=⇒ Cν = Ctν − Cuν . (6.17)

The Wilson coefficients may be expanded in the strong coupling as

Ciν = Ci,(0)
ν +

αs
4π
Ci,(1)
ν +

(αs
4π

)2
Ci,(2)
ν +O(α3

s) , i ∈ {u, t} , (6.18)

where the NLO QCD coefficients C
i,(1)
ν have been calculated in [123, 134, 135]. Note

that the strong coupling αs ≡ α(5)
s (µ), which we also use in the full theory calculation.

Unless stated otherwise, αs is always evaluated at the scale µ. Since we use α
(5)
s in

the full theory, we have to include threshold corrections that relate α
(5)
s and α

(6)
s , as

outlined in [80]. This is also true for MS renormalisation constants, and is a result of

manually integrating out the top quark. Since the effective theory matches onto W -

boxes and Z-penguins from the full theory (as in Figure 6.1), the Wilson coefficients

may be written in terms of contributions from each of these sources,

C(n)
ν = CW,(n)

ν + CZ,(n)
ν . (6.19)
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We calculate here C
W,(n)
ν by matching box diagrams of the full theory onto the effective

theory up to n = 2. However, since we do not consider penguin diagrams, we use the

notation C
(n)
ν ≡ CW,(n)

ν .

The box diagrams that arise in the full theory have either an up, charm, or top quark

running inside the loop. Each of these sectors separately matches onto the Wilson coef-

ficients Cuν , C
c
ν , and Ctν respectively. However, as already discussed, it is only necessary

to calculate the up and top sectors, due to the unitarity of the CKM matrix.

The matching requirement is that both theories give the same amplitude for the process

K+ → π+νν at the matching scale µ (where we recall that µ ≡ µMS),

Afull(s→ dνν) = Aeff(s→ dνν). (6.20)

Therefore, there are two calculations that must be performed, in the full theory and

the effective theory.

6.2.1 The Effective Theory Calculation

In addition to the physical operatorQν , we also need to consider the evanescent operator

QE ,

QE =
∑

l=e,µ,τ

(sLγ
µγνγλdL)(νlLγµγνγλνlL)− (16 + aε)Qν . (6.21)

The evanescent operator QE is a relic of dimensional regularisation, and while it identi-

cally vanishes in d = 4 dimensions, its inclusion is necessary when matching at loop-level

in d-dimensions. This is because using massless quarks generates spurious IR diver-

gences in both the effective and full theories, which require the presence of evanescent

operators in intermediate steps [12]. The constant a is arbitrary, and amounts to a

scheme definition [75]. We include it in the calculation, keeping it fully general, and

see that it cancels in the final result. To renormalise the effective theory, it is necessary

to replace the combination
∑
i=u,t

λi(C
i
νQν + CiEQE) by the expression [12,135]

∑
i=u,t

λi(C
i
νQν + CiEQE)→ Zψ

∑
i=u,t

λi
(
CiνZννQν + CiνZνEQE

+ CiEZEνQν + CiEZEEQE
)
, (6.22)

which is the full operator renormalisation mixing in a two-operator system, where Zψ

is the MS quark wavefunction renormalisation. The renormalisation matrix elements

Zij may be expanded in the strong coupling,

Zij = δij +
(αs

4π

)
Z

(1)
ij +

(αs
4π

)2
Z

(2)
ij +O(α3

s), (6.23)
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where we can write the matrix as

Z =

(
Zνν ZνE
ZEν ZEE

)
. (6.24)

As a result of Equations (6.23) and (6.24), we can write the renormalisation constants

as

Zνν = 1 +
(αs

4π

)
Z(1)
νν +

(αs
4π

)2
Z(2)
νν +O(α3

s) ,

ZνE =
(αs

4π

)
Z

(1)
νE +

(αs
4π

)2
Z

(2)
νE +O(α3

s) ,

ZEν =
(αs

4π

)
Z

(1)
Eν +

(αs
4π

)2
Z

(2)
Eν +O(α3

s) ,

ZEE = 1 +
(αs

4π

)
Z

(1)
EE +

(αs
4π

)2
Z

(2)
EE +O(α3

s) , (6.25)

where it remains to calculate the loop contributions. However, there are immediately

simplifications that can be made. Since the physical operator Qν contains a quark cur-

rent that is conserved in the massless limit, the corresponding conserved charge must

be renormalisation independent. Therefore, this operator cannot receive renormalisa-

tion corrections, since if these are non-zero, the value of the conserved charge would

depend on the calculation order, which cannot be the case. Therefore, Zνν and ZνE ,

which both renormalise the Qν operator, must have the values 1 and 0 respectively at

all loop orders. We checked this explicitly up to O(α2
s), and write

Zνν = 1 ,

ZνE = 0 ,

ZEν =
(αs

4π

)
Z

(1)
Eν +

(αs
4π

)2
Z

(2)
Eν +O(α3

s) ,

ZEE = 1 +
(αs

4π

)
Z

(1)
EE +

(αs
4π

)2
Z

(2)
EE +O(α3

s) . (6.26)

Other quantities in Equation (6.22) may also be expanded in powers of αs:

Zψ = 1 +
(αs

4π

)
Z

(1)
ψ +

(αs
4π

)2
Z

(2)
ψ +O(α3

s) , (6.27)

CiE = C
i,(0)
E +

(αs
4π

)
C
i,(1)
E +

(αs
4π

)2
C
i,(2)
E +O(α3

s) , i ∈ {u, t} , (6.28)

and recall that Ciν may be expanded as in Equation (6.18). When performing the

matching we consider the matrix elements 〈Qν〉 and 〈QE〉, which can also be expanded

in loops. However, since the effective theory contains only massless particles, and

we work with vanishing external momenta, all such loop diagrams are vanishing in

dimensional regularisation. Consequently, only the tree-level amplitudes 〈Qν〉(0) and

〈QE〉(0) appear in the matching, and we do not need to consider higher-order matrix

elements such as 〈Qν〉(1) explicitly. Therefore, the quantities needed for the matching

that arise in the effective theory are

Z
(1)
ψ , Z

(2)
ψ , Z

(1)
Eν , Z

(2)
Eν , Z

(1)
EE , Z

(2)
EE , C

i,(0)
ν , Ci,(1)

ν , Ci,(2)
ν , C

i,(0)
E , C

i,(1)
E , C

i,(2)
E .
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s d

ν ν

Qν/E

s d

ν ν

Qν/E

Fig. 6.2: Loop diagrams that must be evaluated to renormalise the operators Qν and
QE .

The renormalisation matrix elements are obtained by renormalising diagrams involving

QCD loops and the operators Qν and QE (see Figure 6.2), where external momenta

must be included as a scale to ensure non-vanishing integrals. The Wilson coefficients

are obtained order-by-order in the matching calculation that we perform here, with

the ultimate aim being the calculation of C
(2)
ν , which has not been calculated previ-

ously.

We briefly discuss the calculation of the renormalisation matrix of effective operators.

We generate loop diagrams and amplitudes using FeynArts, which does not naturally

handle four-fermion operators. Therefore, we use a trick in which we do not actually

calculate the diagrams in Figure 6.2, but instead the corresponding diagrams in Fig-

ure 6.3. This is because the amplitudes are closely related, and the loop amplitudes of

the effective operator can be reconstructed from the amplitudes found from these (SM)

processes. This can be seen from the following. In the effective theory, the leptonic

line is a spectator in QCD, and so gluons do not couple to it. Therefore, there is a

two-to-one mapping between QCD loop diagrams in the effective theory and QCD dia-

grams involved in s→ uW . (The mapping is two-to-one since there is one physical and

one evanescent insertion for each SM diagram drawn). Additionally, both approaches

contain only massless quarks, and the W coupling forces the amplitudes of s→ uW to

have the same chirality structure as Qν and QE . The diagrams generated from sν → dν

have the same Dirac structure as the quark current of Qν , and so to reconstruct the

evanescent amplitude we insert additional Dirac matrices as required. The amplitudes

from s→ uW will have a different normalisation compared to the effective amplitudes.

However, since these will be common to all amplitudes in each case, they do not affect

the renormalisation constants computed.

It should be noted that this technique brings one more subtlety. The amplitudes ob-

tained correspond to an insertionQν and the “operator”
∑

l(sLγ
µγνγρdL)(νlLγµγνγρνlL),

which is part of the evanescent operator, but not equal to it. In fact, it is equal to

QE + (16 + aε)Qν (see Equation (6.21)), and as such this needs to be accounted for

when projecting the loop amplitudes onto the operators Qν and QE .
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s u

W

s u

W

Fig. 6.3: Loop diagrams that were actually evaluated to renormalise the effective
theory. The amplitudes from such processes can be simply related to those of Figure 6.2.

In performing this calculation, it was also necessary to include the renormalisation of

SM parameters, which are presented below to O(α2
s) in the Feynman gauge [63]:

Z(1,1)
g = −11

6
nc +

1

3
nf ,

Z
(1,1)
G =

5

3
nc −

2

3
nf ,

Z
(1,1)
ψ = −CF ,

Z
(2,1)
ψ =

3

4
C2
F −

17

4
CFnc +

1

2
CFnf ,

Z
(2,2)
ψ =

1

2
C2
F + CFnc , (6.29)

where nc = 3 denotes the number of colours, nf = 5 is the number of active quark

flavours, and the Casimir CF = 4
3 .

Renormalisation of the effective theory up to O(α2
s) gives the renormalisation con-

stants

Zνν = 1 +O(α3
s) ,

ZνE = 0 +O(α3
s) ,

ZEν =
αs
4π

(
−12(n2

c − 1)

nc

)
+
(αs

4π

)2
[

1

ε

n2
c − 1

n2
c

(22n2
c − 4ncnf )

+
n2
c − 1

3n2
c

(
−27 + (11a− 14)n2

c − 2(5 + a)ncnf
) ]

+O(α3
s) ,

ZEE = 1−
(αs

4π

)2
[

1

ε

(n2
c − 1)(11nc − 2nf )

3nc

]
+O(α3

s) , (6.30)

which completes the renormalisation of the effective theory up to the required or-

der.

6.2.2 The SM Calculation

Having completed the effective theory calculation, it remains to perform the full theory

calculation up to O(α2
s), which corresponds to three loops in total. Example 3-loop

diagrams that are evaluated are shown in Figure 6.4. We work in Feynman gauge, in

which diagrams with Goldstone exchanges should, in principle, be included. However,
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s d

ν ν

u, c, t

W W

s d

ν ν

u, c, t

W W

s d

ν ν

u, c, t

W W

Fig. 6.4: Example 3-loop diagrams that arise from the O(α2
s) calculation in the SM.

In total there are 248 diagrams that contribute to the process: 2 at O(α0
s), 14 at O(α1

s),
and 232 at O(α2

s). The relatively small number of diagrams is partly due the presence
of only a single quark line for gluons to couple to, restricting the number of topologies
available.

since the coupling of Goldstones to fermions is proportional to the mass of the fermion,

then Goldstones do not couple to the massless neutrinos, and so do not arise in the

calculation.

As discussed previously, when working with massless up and charm quarks, diagrams

that only differ by having an internal up or charm quark are equal up to CKM factors.

Therefore, it is only necessary to compute with either the up or charm quark, in addition

to the top quark. We choose to calculate the up and top sectors. Each of these sectors

were computed and renormalised separately. We generated diagrams and amplitudes

in FeynArts, using in-house code to perform manipulations to these inputs. We took

all particles to be massless except the top quark and the W boson, and so generate

3-loop integrals with two different mass scales. By expanding in external momenta,

these integrals were written in terms of vacuum integrals, with at most four massive

propagators. See Chapter 3 for details of Feynman integral manipulation.

It was necessary to perform a reduction of the integrals to a basis set of master integrals.

The first step in this was to identify all the different families of integrals that arose.

Families were identified according to the mass content of their propagators, with, for

example, an integral with two propagators with mass m and two propagators with mass

M being distinct from an integral with four propagators of mass m. Note that m and

M do not directly correspond to mt and MW , since in a single scale integral m can be

used to indicate either mt or MW . In addition, integrals with the same mass content

may belong to different families depending on which propagators the masses entered.

Two different families with the same mass content can exist, where vacuum integral

symmetries cannot be used to move between one family and the other. See Section 3.2

for a relevant discussion. We reproduce here the integral families that arose:

I(3)
vac(m

2, 0, 0, 0, 0, 0; ν1, ν2, ν3, ν4, ν5, ν6),

I(3)
vac(0, 0, 0, 0, 0,m

2; ν1, ν2, ν3, ν4, ν5, ν6),
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I(3)
vac(m

2,m2, 0, 0, 0, 0; ν1, ν2, ν3, ν4, ν5, ν6),

I(3)
vac(m

2, 0, 0, 0, 0,m2; ν1, ν2, ν3, ν4, ν5, ν6),

I(3)
vac(m

2,m2,m2, 0, 0, 0; ν1, ν2, ν3, ν4, ν5, ν6),

I(3)
vac(m

2,m2, 0, 0,m2, 0; ν1, ν2, ν3, ν4, ν5, ν6),

I(3)
vac(m

2,m2, 0, 0,m2,m2; ν1, ν2, ν3, ν4, ν5, ν6),

I(3)
vac(m

2,M2, 0, 0, 0, 0; ν1, ν2, ν3, ν4, ν5, ν6),

I(3)
vac(m

2, 0, 0, 0, 0,M2; ν1, ν2, ν3, ν4, ν5, ν6),

I(3)
vac(m

2,m2,M2, 0, 0, 0; ν1, ν2, ν3, ν4, ν5, ν6),

I(3)
vac(m

2,m2, 0, 0,M2, 0; ν1, ν2, ν3, ν4, ν5, ν6),

I(3)
vac(m

2,m2, 0, 0,m2,M2; ν1, ν2, ν3, ν4, ν5, ν6), (6.31)

where

I(3)
vac(m

2
1,m

2
2,m

2
3,m

2
4,m

2
5,m

2
6; ν1, ν2, ν3, ν4, ν5, ν6) =

∞∫
−∞

d4q1

(2π)4

∞∫
−∞

d4q2

(2π)4

∞∫
−∞

d4q3

(2π)4

1

(q2
1 −m2

1)ν1(q2
2 −m2

2)ν2(q2
3 −m2

3)ν3

× 1

((q1 − q2)2 −m2
4)ν4((q1 − q3)2 −m2

5)ν5((q2 − q3)2 −m2
6)ν6

. (6.32)

Once all 3-loop integrals had been sorted into families, and vacuum integral symme-

tries had been used to bring them into the chosen form (one of the integrals of Equa-

tion (6.31)), it remained to reduce the integrals to a set of master integrals. We did

this using the program FIRE5 [47] in Mathematica, since it provided a simple pre-built

module that performed the reduction in a good time, even without using the available

C++ back-end machinery. However, the master integrals of FIRE5 do not correspond to

the master integrals of Martin and Robertson [13], whose results we wished to use on

the final master integrals obtained. Therefore, we obtained linear relations connecting

the master integrals of FIRE5 and of [13], and used them to write our master integrals

in the form of [13].

To find the above linear relations, we took basis master integrals used in [13], and

reduced them in FIRE5 in terms of FIRE5 master integrals. From these reductions a

matrix could be formed to relate masters belonging to the two different bases, which

could be inverted to rewrite FIRE5 master integrals in terms of master integrals used

in [13]. For example, consider the case where we have two integrals (denoted by Fi) in

the basis of FIRE5 that do not coincide with the basis (denoted by Gi) of [13]. Then,

reducing the integrals Gi in FIRE5 gives(
G1

G2

)
=

(
a b
c d

)(
F1

F2

)
. (6.33)
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This approach can be easily generalised to n integrals. Given n master integrals of the

Martin and Robertson basis, arranged in a vector ~G, then upon reduction in FIRE5,

these will be rewritten as a linear combination of master integral of the FIRE5 basis,

which can be arranged in a vector ~F . Algebraically,

~G = M~F , (6.34)

where M specifies the linear relation. Since we wish to obtain ~F , we can simply invert

the above relation to find

~F = M−1 ~G . (6.35)

This was done for each integral family, so that all integral results were in the correct

basis to use the results of [13].

These integrals were evaluated using the results of [13], discussed in Section 3.5. These

had analytic solutions for a large number of cases, but also provided a facility for

numerical evaluation of integrals for which there are no known analytic solutions. Recall

that the reduction of integrals writes an initial integral in terms of a linear combination

of master integrals, with coefficients that are functions of the spacetime dimension

d. Since we worked in d = 4 − 2ε dimensions, the prefactors were expanded in the

small parameter ε up to O(ε3). This ensured that when the product of the prefactors

and the 3-loop vacuum integrals was performed, only residual terms proportional to

ε, ε2, . . . were vanishing when the physical limit d → 4 was taken, with no divergences

remaining.

As mentioned before, the full theory calculation was performed using the strong cou-

pling α
(5)
s , despite there being six active flavours in the full theory. To compensate for

this choice, it is necessary to include threshold corrections as outlined in Section 4.5.

Following [12], we incorporate these threshold corrections in a simple way, by modifying

renormalisation constants. We introduce the quantity

Nε =

(
µ2

m2
t

)ε
eγEΓ(1 + ε) , (6.36)

which makes the renormalised αs in the full SM equal to the MS-renormalised αs in the

five-flavour effective theory, to all orders in ε. To implement the threshold corrections,

in the full theory we use the renormalisation constants

Zg = 1 +
αs
4π

1

ε

(
−11

6
nc +

1

3
(nf +Nε)

)
+O(α2

s) , (6.37)

Zψ = 1 +
αs
4π

(−CF ) +
(αs

4π

)2
[

1

ε2

(
1

2
C2
F + CFnc

)

+
1

ε

(
3

4
C2
F −

17

4
CFnc +

1

2
CFnf +

(
n2
c − 1

4nc

)
N2
ε

)
− 5

6

(
n2
c − 1

4nc

)
N2
ε

]
+O(α3

s, ε) , (6.38)
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Zmt = 1 +
αs
4π

(
1

ε

−3(n2
c − 1)

2nc

)
+
(αs

4π

)2
(

1

ε2

[
70

3
+
n2
c − 1

2nc
− n2

c − 1

nc
Nε

]

+
1

ε

[
−253

9
+

5(n2
c − 1)

12nc

])
+O(α3

s) . (6.39)

These definitions of the renormalisation constants in the full theory are sufficient to

consistently use α
(5)
s in the full theory.

6.2.3 The Matching Calculation

The matching is performed order-by-order in the strong coupling αs, with a separate

matching performed in the up and top sectors. We first consider the up sector. The full

theory calculation produces very lengthy expressions, and so we schematically represent

the matching equations here. Loop calculations in the full theory produce amplitudes

containing the structures

Sγ = (udγ
µPLus)⊗(uνγµPLuν) , S3γ = (udγ

µγνγρPLus)⊗(uνγµγνγρPLuν) , (6.40)

with coefficients denoted by Aγfull and A3γ
full respectively. These coefficients may be

expanded as

Aγ,ufull = Aγ,u(0)
full +

αs
4π
Aγ,u(1)

full +
(αs

4π

)2
Aγ,u(2)

full +O(α3
s) ,

A3γ,u
full = A3γ,u(0)

full +
αs
4π
A3γ,u(1)

full +
(αs

4π

)2
A3γ,u(2)

full +O(α3
s) . (6.41)

The leading order matching equation is

Aγ,u(0)
full S

γ +A3γ,u(0)
full S3γ = Cu,(0)

ν 〈Qν〉(0) + C
u,(0)
E 〈QE〉(0) , (6.42)

where it is necessary to project A3γ,u(0)
full onto the physical and evanescent parts as in

Equation (6.21). The leading order matching gives

Cu,(0)
ν = −1− ε

(
24 + a

16
+ ln

(
µ2

M2
W

))
− ε2

96

(
168 + 8π2 + 9a+ (144 + 6a) ln

(
µ2

M2
W

)
+ 48 ln2

(
µ2

M2
W

))
+O(ε3) ,

C
u,(0)
E = − 1

16
− ε
(

3

32
+

1

16
ln

(
µ2

M2
W

))
− ε2

192

(
21 + π2 + 18 ln

(
µ2

M2
W

)
− 6 ln2

(
µ2

M2
W

))
+O(ε3) . (6.43)

We here keep terms up to O(ε2), since they are needed for the matching equation at

O(α2
s).
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The O(αs) matching equation is(
Aγ,u(1)

full S
γ +A3γ,u(1)

full S3γ
)

=
(
Cu,(1)
ν 〈Qν〉(0) + Z

(1)
ψ Cu,(0)

ν 〈Qν〉(0)

+ C
u,(1)
E 〈QE〉(0) + C

u,(0)
E Z

(1)
ψ 〈QE〉

(0) + C
u,(0)
E Z

(1)
EE 〈QE〉

(0)

+ C
u,(0)
E Z

(1)
Eν 〈QE〉

(0) ) . (6.44)

In principle, there could be more terms on the effective side, but due to the conservation

of the quark current in the massless limit, the additional renormalisation constants are

zero. All terms in this equation have been calculated in the preceding sections, apart

from C
u,(1)
ν and C

u,(1)
E . These are determined to be

Cu,(1)
ν =

3(n2
c − 1)

4nc
+ ε

(n2
c − 1)

(
280 + 14a+ 144 ln

(
µ2

M2
W

))
64nc

+O(ε2) , (6.45)

C
u,(1)
E =

7(n2
c − 1)

32nc
+ ε

(n2
c − 1)

(
39 + 28 ln

(
µ2

M2
W

))
64nc

+O(ε2) . (6.46)

Here only terms up to O(ε) are necessary to be kept for the O(α2
s) matching equa-

tion.

Finally, there is the O(α2
s) matching equation,

Aγ,u(2)
full S

γ +A3γ,u(2)
full S3γ = Cu,(2)

ν 〈Qν〉(0) + Cu,(1)
ν Z

(1)
ψ 〈Qν〉

(0) + Cu,(0)
ν Z

(2)
ψ 〈Qν〉

(0)

+ C
u,(2)
E 〈QE〉(0) + C

u,(1)
E Z

(1)
ψ 〈QE〉

(0) + C
u,(1)
E Z

(1)
Eν 〈Qν〉

(0)

+ C
u,(0)
E Z

(2)
ψ 〈QE〉

(0) + C
u,(0)
E Z

(2)
EE 〈QE〉

(0) + C
u,(0)
E Z

(2)
Eν 〈Qν〉

(0)

+ C
u,(0)
E Z

(1)
ψ Z

(1)
Eν 〈Qν〉

(0) . (6.47)

The only unknown quantities in the above are C
u,(2)
ν and C

u,(2)
E , and so we can solve

for these quantities. In the 3-loop case, things are considerably more complicated

than lower order matching calculations. Firstly, integrals arise for which there are not

analytic expressions for the finite pieces, and so these integrals can only be evaluated

numerically. Secondly, those integrals that can be represented analytically are functions

of dilogarithms. Additionally, the Wilson coefficients at O(α2
s) become functions of

the top mass mt, even in the up sector. This is because at 3-loop level, diagrams

with a top loop can arise (see the middle diagram of Figure 6.4), which generates a

mass dependence on the mass of the quark in the loop. Since mu = mc = 0, only a

dependence on the top mass is generated in this way, which we parameterise through

the variable x as

x ≡ m2
t

M2
W

. (6.48)

We present here the NNLO QCD Wilson coefficient C
u,(2)
ν for the up sector. We have

also calculated C
u,(2)
E , but since it is extremely lengthy, and only contributes to physical
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quantities at O(α3
s), we do not present it here. C

u,(2)
ν involves integrals for which

analytic solutions are not available, and we leave them explicitly unevaluated:

Cu,(3)
ν =

(
n2
c − 1

) (
12x2 + 10x+ 1

)
E
(
0,m2

t ,m
2
t ,M

2
W

)
15M4

Wncx

−
(
n2
c − 1

) (
6x2 − 7x+ 1

)
G
(
0, 0,m2

t ,m
2
t ,M

2
W

)
15M2

Wnc

−
(
n2
c − 1

)
(24x+ 1)G

(
0,m2

t ,m
2
t , 0,M

2
W

)
15M2

Wnc

+ nf

−
(
n2
c − 1

)
ln
(

µ2

M2
W

)
2nc

−
13
(
n2
c − 1

)
12nc


+ Li2

(
1− 1

x

)(
−

(
n2
c − 1

)
(6x− 1)(x− 1)2 ln

(
µ2

M2
W

)
15nc

−
(
n2
c − 1

)
(6x− 1)(x− 1)2

15nc
+

(
n2
c − 1

)
(6x− 1)(x− 1)2 ln(x)

15nc

)

−

(
n2
c − 1

) (
12x3 + 36x2 + 21x+ 2

)
ln3
(

µ2

M2
W

)
30nc

+ ln2(x)

(
−

(
n2
c − 1

) (
36x3 + 48x2 + 13x− 1

)
ln
(

µ2

M2
W

)
30nc

−
(
n2
c − 1

) (
72x3 + 114x2 − 30x− 1

)
30nc

)

+ ln(x)

((
n2
c − 1

) (
18x3 + 39x2 + 13x+ 1

)
ln2
(

µ2

M2
W

)
15nc

+

(
n2
c − 1

) (
72x3 + 180x2 + 55x+ 4

)
ln
(

µ2

M2
W

)
15nc

+

(
n2
c − 1

) (
2π2

(
6x3 − x2 + 24x+ 1

)
+ 3

(
300x3 + 970x2 + 707x− 10

))
180nc

)

+

(
n2
c − 1

) (
12x3 + 6x2 + 8x− 1

)
ln3(x)

30nc

−

(
n2
c − 1

) (
144x4 + 492x3 + 280x2 + 18x− 1

)
ln2
(

µ2

M2
W

)
60ncx

+

(
n2
c − 1

) (
990ncx− 24

(
75 + π2

)
x4 −

(
7764− 28π2

)
x3
)

360ncx

+

(
n2
c − 1

) (
−2
(
2121 + 50π2

)
x2 −

(
66 + 4π2

)
x+ 39

)
ln
(

µ2

M2
W

)
360ncx

−
(
n2
c − 1

) (
2184x4 + 4x3(960ζ(3) + 3683)− 4838x2

)
720ncx
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+

(
n2
c − 1

) (
π2
(
48x4 − 56x3 + 8x2 − 4

)
+ 394x− 133

)
720ncx

+
1

24

(
113n2

c −
36

n2
c

− 77

)
+O(ε) . (6.49)

The above result is presented at the generic scale µ. It is useful to check the µ-

independence of the Wilson coefficients, which is guaranteed by the conserved quark

current in the effective operator. For this purpose, it is useful to present C
u,(3)
ν in an

alternative form, where the integrals are evaluated at the scale µ = MW (which is

the natural scale for the up sector matching), thereby moving the µ-dependence of the

integrals into logarithms. This is done by using the differential equations [13]

µ2 ∂

∂µ2
E(u, v, y, z) = A(u)A(v) +A(u)A(y) +A(u)A(z)

+A(v)A(y) +A(v)A(z) +A(y)A(z)

+ (u/2− v − y − z)A(u) + (v/2− u− y − z)A(v)

+ (y/2− u− v − z)A(y) + (z/2− u− v − y)A(z)

+ uv + uy + uz + vy + vz + yz

− 9(u2 + v2 + y2 + z2)/8 ,

µ2 ∂

∂µ2
G(w, u, z, v, y) = I(w, u, z) + I(w, v, y) +A(u) +A(v) +A(y) +A(z)

− 2u− 2v − 2y − 2z + w , (6.50)

where

A(x) = x
[
ln(x)− 1

]
,

ln(x) = ln

(
x

µ2
MS

)
,

I(x) = I0(x, y, z)−Aε(x)−Aε(u)−Aε(z) , (6.51)

and I0(x, y, z) is given in Equation (3.67). Since the integrals A(x) and I(x, y, z) have

µ-depedence through their logarithms, the above differentials may simply be integrated

to relate the integrals evaluated at different values of the scale µ. Therefore, we can

write

Cu,(3)
ν

∣∣
µ=MW

= −

(
n2
c − 1

)
48
(
6x2 − 7x+ 1

)
G
(
0, 0,m2

t ,m
2
t ,M

2
W

) ∣∣
µ=MW

720M2
Wnc

+

(
n2
c − 1

)
48(24x+ 1)G

(
0,m2

t ,m
2
t , 0,M

2
W

) ∣∣
µ=MW

720M2
Wnc

+

(
n2
c − 1

) (
2184x3 + 4x2(960ζ(3) + 3683)− 4838x

)
720nc

+

(
n2
c − 1

) (
π2
(
48x4 − 56x3 + 8x2 − 4

)
+ 394x− 133

)
720ncx
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−

(
n2
c − 1

) (
48
(
12x2 + 10x+ 1

)
E
(
0,m2

t ,m
2
t ,M

2
W

) ∣∣
µ=MW

)
720M4

Wncx

+ nf

−
(
n2
c − 1

)
ln
(

µ2

M2
W

)
2nc

−
13
(
n2
c − 1

)
12nc


+ Li2

(
1− 1

x

)(
−

(
n2
c − 1

)
(6x− 1)(x− 1)2 ln

(
µ2

M2
W

)
15nc

−
(
n2
c − 1

)
(6x− 1)(x− 1)2

15nc
+

(
n2
c − 1

)
(6x− 1)(x− 1)2 ln(x)

15nc

)

−

(
n2
c − 1

)
(x− 1)2(6x− 1)Li2(1− x) ln

(
µ2

M2
W

)
15nc

+ ln2(x)

(
−
(
n2
c − 1

) (
72x3 + 114x2 − 30x− 1

)
30nc

−

(
n2
c − 1

)
(6x− 1)(x− 1)2 ln

(
µ2

M2
W

)
30nc

)

+

(
n2
c − 1

) (
12x3 + 6x2 + 8x− 1

)
ln3(x)

30nc

+

(
n2
c − 1

) (
2π2

(
6x3 − x2 + 24x+ 1

))
ln(x)

180nc

+

(
n2
c − 1

) (
3
(
300x3 + 970x2 + 707x− 10

))
ln(x)

180nc

+
11

4

(
n2
c − 1

)
ln

(
µ2

M2
W

)
+

1

24

(
113n2

c −
36

n2
c

− 77

)
+O(ε) . (6.52)

We now consider the µ-dependence of Cuν at leading order in ε, up to O(α2
s). Consider

the derivative

µ
d

dµ
Cuν = µ

d

dµ

(
Cu,(0)
ν +

αs
4π
Cu,(1)
ν +

(αs
4π

)2
Cu,(2)
ν (µ, x(µ))

)
, (6.53)

where we note from our above results that C
u,(0)
ν and C

u,(1)
ν are µ-independent. Then,

we have

µ
d

dµ
Cuν = −2β0

α2
s

4π
Cu,(1)
ν +

(αs
4π

)2
µ
∂

∂µ
Cu,(2)
ν (µ, x(µ)) , (6.54)

where β0 is the leading order QCD beta function,

β0 =
11nc − 2nf

3
=

23

3
, for nc = 3, nf = 5 . (6.55)

Note that since the mass anomalous dimension γmt has a leading order at O(αs), such

a term does not contribute at O(α2
s), since it is also multiplied by an α2

s from the

expansion of Cuν . Then, it is just necessary to calculate µ ∂
∂µC

u,(2)
ν = ∂

∂ lnµC
u,(2)
ν . Doing

this gives
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∂

∂ lnµ
Cu,(2)
ν =

(
n2
c − 1

) (
3960n2

cx− 720ncnfx− 96nc(x− 1)2(6x− 1)xLi2(1− x)
)

720n2
cx

+

(
n2
c − 1

) (
−96nc(x− 1)2(6x− 1)xLi2

(
x−1
x

)
− 288ncx

4 ln2(x)
)

720n2
cx

+

(
n2
c − 1

) (
624ncx

3 ln2(x)− 384ncx
2 ln2(x) + 48ncx ln2(x)

)
720n2

cx

=

(
n2
c − 1

)
(11nc − 2nf )

2nc
. (6.56)

Combining this result with Equations (6.54), (6.45) and (6.55), we obtain

µ
d

dµ
Cuν =

(αs
4π

)2
[
− 2

(
11nc − 2nf

3

)(
3(n2

c − 1)

4nc

)

+

(
n2
c − 1

)
(11nc − 2nf )

2nc

]
= 0 +O(α3

s, ε) , (6.57)

showing that the Wilson coefficient Cuν is µ-independent, as required.

So far we have only discussed the matching in the up sector. There is a similar matching

equation in the top sector, where the effective theory calculation is exactly the same

(but with λt instead of λu), and the full theory calculation has the same structure, but

is more involved due to the presence of the heavy top mass at all orders. The matching

equation in the top and the up sectors are exactly the same, with the replacement

A(3)γ,u
full → A(3)γ,t

full , Cuν → Ctν , CuE → CtE , (6.58)

and so we do not reproduce the matching equations for the top sector explicitly. It

should be noted that the renormalisation of the top sector requires the renormalisation

constant Zmt , which receives threshold corrections, as given in Equation (6.39). The

leading order matching calculation gives

Ct,(0)
ν = −

[
1

1− x
+

x lnx

(1− x)2

]
+O(ε) ,

C
t,(0)
E = − 1

16

[
1

1− x
+

x lnx

(1− x)2

]
+O(ε) , (6.59)

and the next-to-leading order gives
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Ct,(1)
ν =

(
n2
c − 1

) (
−12(x− 1)xLi2

(
1
x

)
+ 12x2 ln(x) ln

(
µ2

m2
t

)
− 24x2 ln

(
µ2

m2
t

))
4nc(x− 1)3

+

(
n2
c − 1

) (
2π2x2 − 35x2 + 7x2 ln(x) + 12x ln(x) ln

(
µ2

m2
t

)
+ 24x ln

(
µ2

m2
t

))
4nc(x− 1)3

+

(
n2
c − 1

) (
−2π2x+ 38x− 12(x− 1)x ln

(
1
x

)
ln
(
x−1
x

)
+ 25x ln(x)− 3

)
4nc(x− 1)3

+O(ε) ,

C
t,(1)
E =

(
n2
c − 1

) (
−6(x− 1)xLi2

(
1
x

)
+ 6x2 ln(x) ln

(
µ2

m2
t

)
− 12x2 ln

(
µ2

m2
t

)
+ π2x2

)
32nc(x− 1)3

+

(
n2
c − 1

) (
−23x2 + 9x2 ln(x) + 6x ln(x) ln

(
µ2

m2
t

)
+ 12x ln

(
µ2

m2
t

)
− π2x+ 30x

)
32nc(x− 1)3

+

(
n2
c − 1

) (
−6(x− 1)x ln

(
1
x

)
ln
(
x−1
x

)
+ 7x ln(x)− 7

)
32nc(x− 1)3

+O(ε) . (6.60)

We only give the parts of the Wilson coefficients proportional to ε0, since the higher

order terms in ε are too lengthy to present here. The Wilson coefficient C
t,(2)
ν , evaluated

at the matching scale mt, is given by

Ct,(2)
ν

∣∣
µ=mt

=
1

1620

[
−

368640Li4
(

1
2

)
x2

(x− 1)3
+

4320(x− 1)(11x+ 61)

(x− 1)4

+
2160((x− 96)x− 49) ln(x) ln2

(
µ2

m2
t

)
x

(x− 1)4
+ 19440Ls2

2x+ 20088
√

3Ls2x

+
720(x(x(81x− 461) + 837)− 361)Li3(1− x)x

(x− 1)3

+
720(x+ 1)(x(27x− 122) + 143)Li3

(
1
x

)
x

(x− 1)3

−
720(x(x(x(16x− 175) + 603)− 515)− 25)Li3

(
x−1
x

)
x

(x− 1)3

+
5760(x(27x− 122) + 143)Li3

(
1√
x

)
x

(x− 1)2

+
5760(x(27x− 122) + 143)Li3 (−

√
x)x

(x− 1)2

+
1440(x+ 1)((x− 4)x− 1)xH

(
m2
t ,m

2
t , 0, 0,M

2
W ,m

2
t

) ∣∣
µ=mt

(x− 1)3

+
1440(9(x− 2)x+ 16)xH

(
m2
t ,m

2
t ,M

2
W , 0, 0, 0

) ∣∣
µ=mt

(x− 1)2

+
240

(
x
(
x
(
48x2 − 885x+ 2629

)
− 3467

)
+ 1003

)
ζ(3)x

(x− 1)3

+
360 ln

(
µ2

m2
t

) (
(1− x)

(
x
(
193x+ 2π2(x+ 47)− 2566

)
+ 69

))
(x− 1)4
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+
360 ln

(
µ2

m2
t

) (
x
(
x(191x− 834)− 24(x− 1)(x+ 47) coth−1(1− 2x)− 1661

)
ln(x)

)
(x− 1)4

+
360 ln

(
µ2

m2
t

) (
12(x− 1)x(x+ 47)Li2

(
1
x

))
(x− 1)4

+
144(x(x(x(3x(6x(15x− 52) + 895)− 1004)− 4) + 12) + 1)F

(
m2
t ,m

2
t ,m

2
t ,M

2
W

) ∣∣
µ=mt

M2
W (x− 1)5(5x− 1)

−
144(x(x(x(x(5x− 238)− 191) + 327)− 26)− 5)G

(
0,m2

t ,m
2
t ,m

2
t ,M

2
W

) ∣∣
µ=mt

M2
W (x− 1)4(5x− 1)

+
4π4x2(5x− 1)(x(195(x− 3)x+ 133)− 447)(x− 1)2

(x− 1)5(5x− 1)x

−
24π2(5x− 1)

(
x
(
x
(
4x
(
10x(2x− 19) + 160 ln2(2)− 271

)
+ 3677

)
+ 8
)
− 1
)

(x− 1)2

(x− 1)5(5x− 1)x

+
−167265x8 + 1480842x7 + 3x6

(
25600 ln4(2)− 1533505

)
+ 3x5

(
3519146− 56320 ln4(2)

)
(x− 1)5(5x− 1)x

+
3x4

(
35840 ln4(2)− 5169499

)
+ 3x3

(
2987114− 5120 ln4(2)

)
− 1410153x2 + 28602x+ 798

(x− 1)5(5x− 1)x

+
x8
(
−81000 ln3(x) + 360(405 ln(x− 1)− 608) ln2(x) + 360

(
608 ln(x− 1) + 315π2

)
ln(x)

)
(x− 1)5(5x− 1)x

+
x7
(
642000 ln3(x)− 4896(235 ln(x− 1)− 156) ln2(x)

)
(x− 1)5(5x− 1)x

−
x7
(
144 (5304 ln(x− 1)) + 5995π2 − 1580

)
ln(x)

(x− 1)5(5x− 1)x

+
x6
(
−1979160 ln3(x) + 360(9823 ln(x− 1)− 7048) ln2(x)

)
(x− 1)5(5x− 1)x

+
x6
(
6
(
422880 ln(x− 1) + 426920π2 − 35883

)
ln(x)

)
(x− 1)5(5x− 1)x

+
x5
(
2872800 ln3(x) + (6904656− 5155200 ln(x− 1)) ln2(x)

)
(x− 1)5(5x− 1)x

+
x5
(
−12

(
575388 ln(x− 1) + 307640π2 − 164655

)
ln(x)

)
(x− 1)5(5x− 1)x

+
x4
(
−2040600 ln3(x) + 360(10291 ln(x− 1)− 24270) ln2(x)

)
(x− 1)5(5x− 1)x

+
x4
(
+72

(
121350 ln(x− 1) + 37275π2 − 99499

)
ln(x)

)
(x− 1)5(5x− 1)x

+
x3
(
655440 ln3(x)− 1440(841 ln(x− 1)− 3057) ln2(x)

)
(x− 1)5(5x− 1)x

+
x3
(
−48

(
91710 ln(x− 1) + 18805π2 − 136287

)
ln(x)

)
(x− 1)5(5x− 1)x

+
x2
(
−69480 ln3(x) + 72(1805 ln(x− 1)− 7988) ln2(x)

)
(x− 1)5(5x− 1)x
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+
x2
(
6
(
95856 ln(x− 1) + 16480π2 − 189207

)
ln(x)

)
(x− 1)5(5x− 1)x

+
x
(
36(60 ln(x− 1) + 491) ln(x)− 2160 ln2(x)

)
+ 144 ln2(x) + 6(78− 24 ln(x− 1)) ln(x)

(x− 1)5(5x− 1)x

+
144

(
5(x− 1)(34x− 109) ln(x)x2 +

(
x
(
4061− 4x

(
76x2 − 98x+ 559

))
+ 8
)
x− 1

)
Li2
(

1
x

)
(x− 1)3x

+
144(x(x(x(x(x(35x− 334) + 64)− 252)− 29) + 2) + 2)E

(
m2
t ,m

2
t ,m

2
t ,M

2
W

) ∣∣
µ=mt

M4
W (x− 1)5(5x− 1)x

]
.

(6.61)

This expression has also been checked to be µ-independent. Note that since the top

mass appears at leading order in Ctν , the anomalous mass dimension γmt also enters the

Callan-Symanzik equation for the top sector. In the expression for C
t,(2)
ν , the following

functions arise [13]:

Lin(z) =
∞∑
k=1

zk

kn
,

Li4(1/2) ≈ 0.517479 ,

Ls2 ≡ Ls2(2π/3) = −
∫ 2π/3

0
dx ln2[2 sin(x/2)] ≈ −2.144767 . (6.62)

The Wilson coefficient of Equation (6.14) can be found from our results by the relation

Cν = Ctν − Cuν , which yields Cν to O(α2
s).

6.3 Conclusions and Future Work

We have calculated for the first time the matching of box diagrams in the SM to the

effective theory below the weak scale for the process K → πνν, up to O(α2
s). In

calculating theoretical predictions of branching ratios, we are interested in the function

Xt, which receives contributions from both the box and penguin diagrams. At leading

order [44],

Xt
0(x) = C0(x)− 4B0(x) , (6.63)

where C0 and B0 are Inami-Lim functions [136], which are respectively found from

matching penguin and box diagrams. Explicitly,

B0(x) =
1

4

[
x

1− x
+

x lnx

(x− 1)2

]
, (6.64)

C0(x) =
x

8

[
x− 6

x− 1
+

3x+ 2

(x− 1)2
lnx

]
, (6.65)

where

C(0)
ν = −4B0(x). (6.66)
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Similarly, at 1-loop

Xt(x) = C(x)− 4B(x) , (6.67)

where C(x) and B(x) are given to O(αs) in [135]. To construct Xt(x) to O(α2
s), it is

therefore necessary to obtain the function C(x) to O(α2
s), which we have yet to do. A

similar calculation of the decay Bs → µ+µ− [12] has had to consider a similar set of

penguin diagrams, and in principle one can extract C(x) to O(α2
s) from their result.

This will be a useful check for our calculation. Once this has been done, an updated

value of Xt can be given, as well as updated theoretical predictions for the branching

ratios of K+ → π+νν and KL → π0νν.
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Chapter 7

Conclusions

In this work we have considered the dimension-five Weinberg operator of SMEFT, cal-

culating for the first time its mixing into the dimension-six lepton flavour violating

operators of the Warsaw basis. This process is responsible for the leading order contri-

butions to lepton flavour violating decays such as µ→ eee in SMEFT. This calculation

involved a new derivation of the renormalisation group equations for dimension-six op-

erators, including double-insertions of dimension-five operators, which does not involve

the redefinition of operators through the QCD coupling. We then compared this re-

sult to a previous calculation [11], where the mixing of the Weinberg operator into the

dimension-six operators of the Buchmuller-Wyler basis was calculated. We found that

translating our results into this basis did not replicate the findings of [11], and discov-

ered that the authors of that paper made a mistake in the projection of their results.

We then extended the calculation in a novel way, by including a second Higgs doublet,

which admitted additional dimension-five operators that mixed into the dimension-six

SMEFT operators. Following this, we determined bounds on the Wilson coefficients of

these new operators by translating experimental bounds on low-energy Wilson coeffi-

cients into bounds on SMEFT coefficients. This matching had been done previously

in [85], but we have corrected some mistakes from that work. We found that current

experimental data is already sufficient to place significant bounds on the additional

dimension-five Wilson coefficients arising from a second Higgs doublet.

We then moved on to discuss the O(α2
s) matching calculation for the rare decays K →

πνν. We calculated the corresponding box diagrams in the SM for the first time, and

also calculated the full renormalisation matrix of the effective theory up to O(α2
s) for

the first time, completing the results of [12]. Finally, we checked the µ-independence of

our results, which is required by the conservation of the massless quark current. This

result, when combined with the matching of O(α2
s) penguin diagrams of the full theory

onto the effective theory, may be used to provide theoretical updates on the branching

ratios for the decays K+ → π+νν and KL → π0νν.
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We also outlined work done on the decomposition of tensor integrals arising when using

the strategy of expansion by regions on 3-loop vacuum integrals. The decomposition

was reduced to a combinatorics problem, and an analytic expression for the decom-

position of the relevant class of tensor integrals was given. This new relation allowed

tensor integrals to be decomposed extremely quickly, which were too complex to be

decomposed in a brute force manner.

We intend to use the framework used in the matching calculation for K → πνν to

perform a matching calculation for the neutral meson mixing K0 −K0 and B0 − B0,

to O(α2
s). This is a more involved calculation, since it involves two quark lines that

may interact with gluons. This results in more diagrams to be evaluated, as well as

a greater number of operators in the effective theory. However, only a further two

integral families arise in the reduction, and so the additional complexity involved in

this calculation is tractable.
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Appendix A

Dimension-6 Operators of the
Warsaw Basis

We present here a list of the dimension-6 operators of SMEFT, in the Warsaw basis [8].

These may be categorised according to the field and derivative content of the operators,

into the categories
X3 ϕ6 and ϕ4D2 ψ2ϕ3

X2ϕ2 ψ2Xϕ ψ2ϕ2D ,

where X, ϕ, D and ψ are generic labels for field strength tensors, scalars, derivatives,

and fermions respectively. These operators (which have at most two fermions) are given

in Table A.1. There are additionally the four-fermion operators, which are categorised

according to their chirality structure. These are given in Table A.2. We only include

the operators that conserve baryon number, of which there are 59 in total (neglecting

flavour structures).

The matter content of SMEFT is given in Section 2.5, while the left-right derivatives

in the operator class ψ2ϕ2D are given in Section 4.6. In addition, the dual tensors are

defined by

X̃µν =
1

2
εµνρσX

ρσ, X ∈ {GA,W I , B} . (A.1)

The operators of the Warsaw basis are a minimal set, with redundant operators from

equations of motion eliminated. Here, flavour indices on the operators are suppressed,

and in this form (with no normalisation constants), any “non-Hermitian” operator must

be added to the Lagrangian + H.c., whereas Hermitian operators are added on their

own. Here, Hermitian is defined to mean the operator is unchanged under Hermitian

conjugation when neglecting flavour indices.
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X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAνµ GBρν GCµρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(`perϕ)

Q
G̃

fABCG̃Aνµ GBρν GCµρ Qϕ� (ϕ†ϕ)�(ϕ†ϕ) Quϕ (ϕ†ϕ)(qpurϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)∗(
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(qpdrϕ)

Q
W̃

εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGAµνG
Aµν QeW (`pσ

µνer)τ
IϕW I

µν Q
(1)
ϕ` (ϕ†i

↔
Dµ ϕ)(`pγ

µ`r)

Q
ϕG̃

ϕ†ϕG̃AµνG
Aµν QeB (`pσ

µνer)ϕBµν Q
(3)
ϕ` (ϕ†i

↔
DI
µϕ)(`pτ

Iγµ`r)

QϕW ϕ†ϕW I
µνW

Iµν QuG (qpσ
µνTAur)ϕ̃G

A
µν Qϕe (ϕ†i

↔
Dµ ϕ)(epγ

µer)

Q
ϕW̃

ϕ†ϕW̃ I
µνW

Iµν QuW (qpσ
µνur)ϕ̃W

I
µν Q

(1)
ϕq (ϕ†i

↔
Dµ ϕ)(qpγ

µqr)

QϕB ϕ†ϕBµνB
µν QuB (qpσ

µνur)ϕ̃Bµν Q
(3)
ϕq (ϕ†i

↔
DI
µϕ)(qpτ

Iγµqr)

Q
ϕB̃

ϕ†ϕB̃µνB
µν QdG (qpσ

µνTAdr)ϕ̃G
A
µν Qϕu (ϕ†i

↔
Dµ ϕ)(upγ

µur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (qpσ
µνdr)τ

IϕW I
µν Qϕd (ϕ†i

↔
Dµ ϕ)(dpγ

µdr)

Q
ϕW̃B

ϕ†τ IϕW̃ I
µνB

µν QdB (qpσ
µνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(upγ

µdr)

Table A.1: Dimension-6 operators of SMEFT which involve bosons, scalars and deriva-
tives.
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(LL)(LL) (RR)(RR)

Q`` (`pγµ`r)(`sγ
µ`t) Qee (epγµer)(esγ

µet)

Q
(1)
qq (qpγµqr)(qsγ

µqt) Quu (upγµur)(usγ
µut)

Q
(3)
qq (qpγµτ

Iqr)(qsγ
µτ Iqt) Qdd (dpγµdr)(dsγ

µdt)

Q
(1)
`q (`pγµ`r)(qsγ

µqt) Qeu (epγµer)(usγ
µut)

Q
(3)
`q (`pγµτ

I`r)(qsγ
µτ Iqt) Qed (epγµer)(dsγ

µdt)

Q
(1)
ud (upγµur)(dsγ

µdt)

Q
(8)
ud (upγµT

Aur)(dsγ
µTAdt)

(LL)(RR) (LR)(RL) and (LR)(LR)

Q`e (`pγµ`r)(esγ
µet) Q`edq (`jper)(dsq

j
t )

Q`u (`pγµ`r)(usγ
µut) Q

(1)
quqd (qjpur)εjk(qksdt)

Q`d (`pγµ`r)(dsγ
µdt) Q

(8)
quqd (qjpTAur)εjk(qksT

Adt)

Qqe (qpγµqr)(esγ
µet) Q

(1)
`equ (`jper)εjk(qksut)

Q
(1)
qu (qpγµqr)(usγ

µut) Q
(3)
`equ (`jpσµνer)εjk(qksσ

µνut)

Q
(8)
qu (qpγµT

Aqr)(usγ
µTAut)

Q
(1)
qd (qpγµqr)(dsγ

µdt)

Q
(8)
qd (qpγµT

Aqr)(dsγ
µTAdt)

Table A.2: Four-fermion dimension-6 operators of SMEFT.
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