

Axially symmetric McMillan map & Round beams

The most general map can be reduced to the form

$$r' = \sqrt{p_r^2 + \frac{p_\theta^2}{r^2}}, \quad \theta' = \theta + \arctan \frac{p_\theta}{p_r r},$$

$$p'_r = -p_r \frac{r}{r'} + \frac{a r'}{1 + \text{sgn}[\Gamma] r'^2}, \quad p'_\theta = p_\theta,$$

with two independent invariants

$$\mathcal{K}_r[p_r, r] = \underbrace{p_r^2 - a p_r r + r^2}_{\text{Courant-Snyder}} + \underbrace{\text{sgn}(\Gamma) p_r^2 r^2}_{\text{nonlinearity}} + \underbrace{\frac{p_\theta^2}{r^2}}_{\text{rotation}}, \quad \mathcal{K}_\theta[p_\theta, \theta] = p_\theta,$$

and one intrinsic parameter equal to unperturbed betatron tune

$$\nu_0 = \frac{\Phi}{2\pi} = \frac{1}{2\pi} \arccos \frac{a}{2}.$$

Considering general axially symmetric lattice with thin nonlinear kick δR , we can rewrite the map as

$$r' = \sqrt{p_r^2 + \frac{p_\theta^2}{r^2}}, \quad \theta' = \theta + \arctan \frac{p_\theta}{r p_r},$$

$$p'_r = -p_r \frac{r}{r'} + \delta \dot{r}(r'), \quad p'_\theta = p_\theta,$$

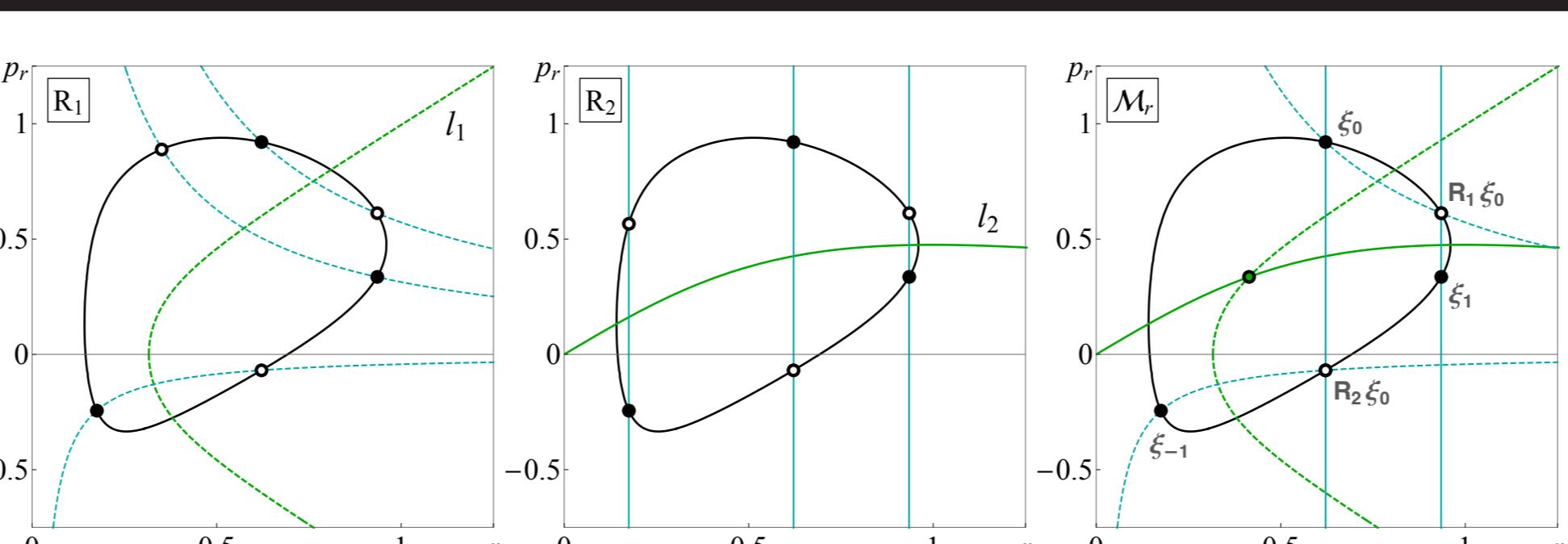
where $\delta \dot{r}(r) = 2r \cos \Phi + \beta \delta \dot{R}(r) \sin \Phi$. It has one exact, $\mathcal{K}_\theta = p_\theta$, and one approximated invariant in McMillan form

$$\mathcal{K}_r[p_r, r] \approx \text{C.S.}_r - \frac{c}{3!} \frac{p_r^2 r^2}{a} + \frac{p_\theta^2}{r^2},$$

where the parameters a and c are defined as

$$a = 2 \cos \Phi + \beta \sin \Phi \partial_r \delta \dot{R}(0) \quad \text{and} \quad c = \beta \sin \Phi \partial_{rrr} \delta \dot{R}(0).$$

Symmetry lines



The map and its inverse can be broken down into a composition of two nonlinear reflections, denoted by $R_{1,2}$

$$\mathcal{M}_r^\pm = R_2 \circ R_1, \quad (\mathcal{M}_r^\pm)^{-1} = R_1 \circ R_2,$$

where

$$R_1 : r' = \sqrt{p_r^2 + \frac{p_\theta^2}{r^2}}, \quad \text{and} \quad R_2 : r' = r, \\ p'_r = -p_r \frac{r}{r'}, \quad p'_\theta = p_\theta.$$

Both transformations are anti-area preserving involutions

$$R_{1,2} = R_{1,2}^{-1}, \quad R_{1,2}^2 = I_2, \quad \det \mathbf{J}_{R_{1,2}} = -1,$$

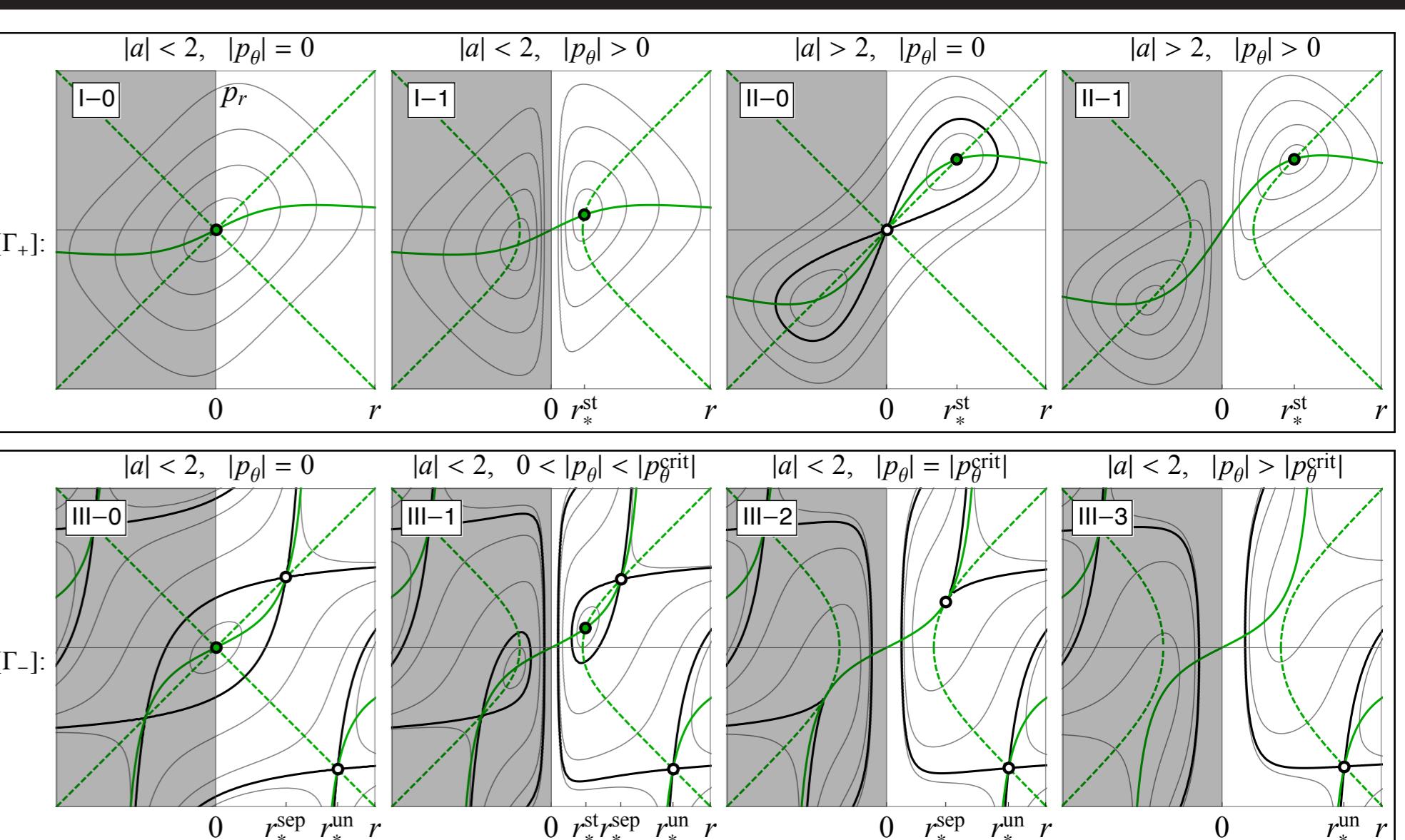
each (and in composition) preserving the radial invariant:

$$\mathcal{K}_r[p_r, r] - \mathcal{K}_r[R_{1,2}(p_r, r)] = 0.$$

Fixed points of $R_{1,2}$ form continuous lines of equilibrium solutions, the *first* and *second symmetry lines*, respectively:

$$l_1 : p_r^2 = r^2 - \frac{p_\theta^2}{r^2} \quad l_2 : p_r = \frac{f(r)}{2}.$$

Fixed points & Regimes of motion



- In the case $[\Gamma_+]$, map has only one positive root and motion is stable for any value of a and almost all values of angular momentum (except $p_\theta = 0$). Based on the absolute value of a we distinguish two different regimes: $|a| < 2$ [I] and $|a| > 2$ [II].
- In the case $[\Gamma_-]$, the motion is stable only for $|a| < 2$ and $|p_\theta| < p_\theta^{\text{crit}}$ [III]

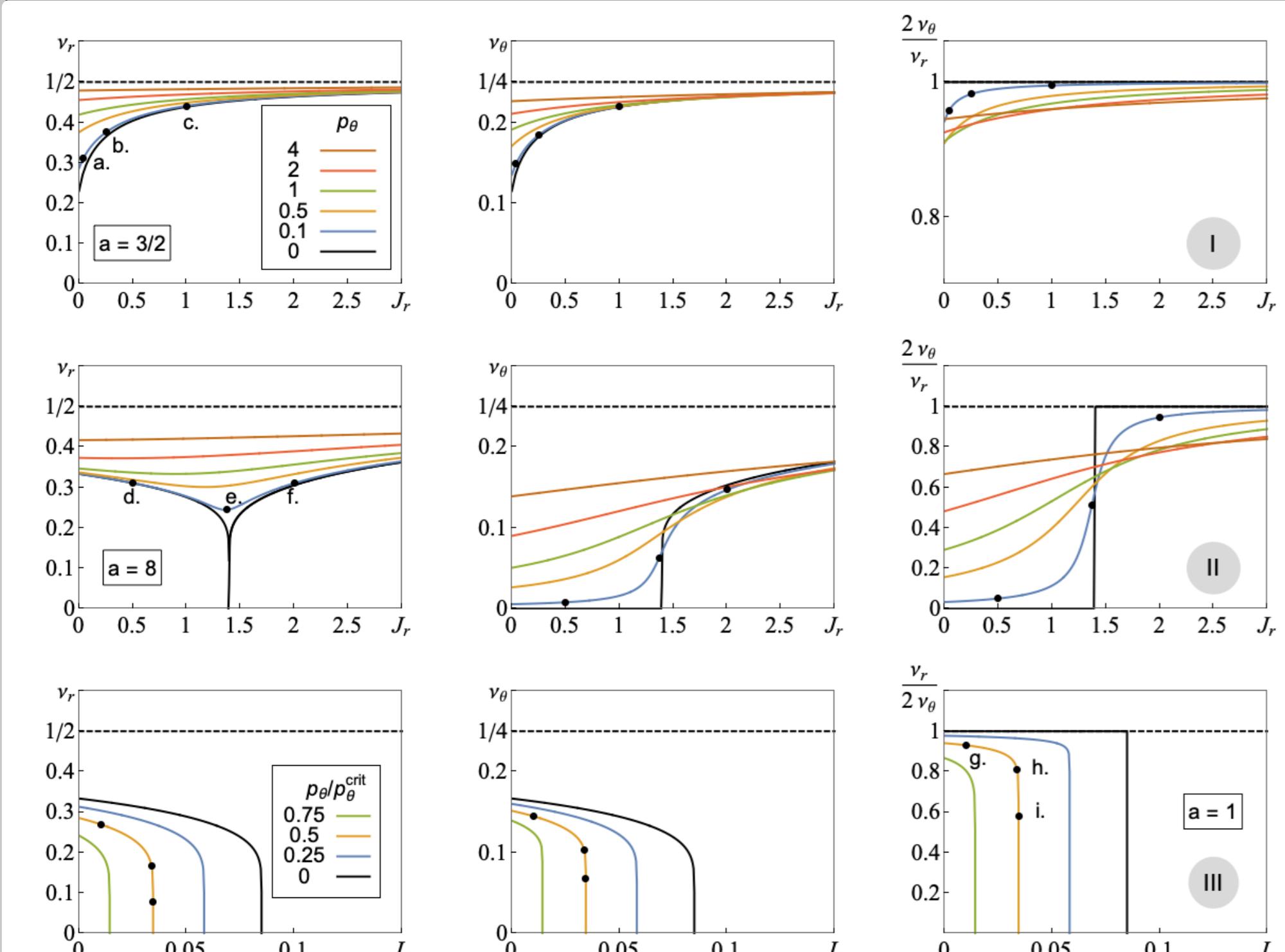
$$p_\theta^{\text{crit}} = \left[1 - (|a|/2)^{2/3} \right]^{3/2} < 1.$$

In this scenario the map has three stationary solutions:

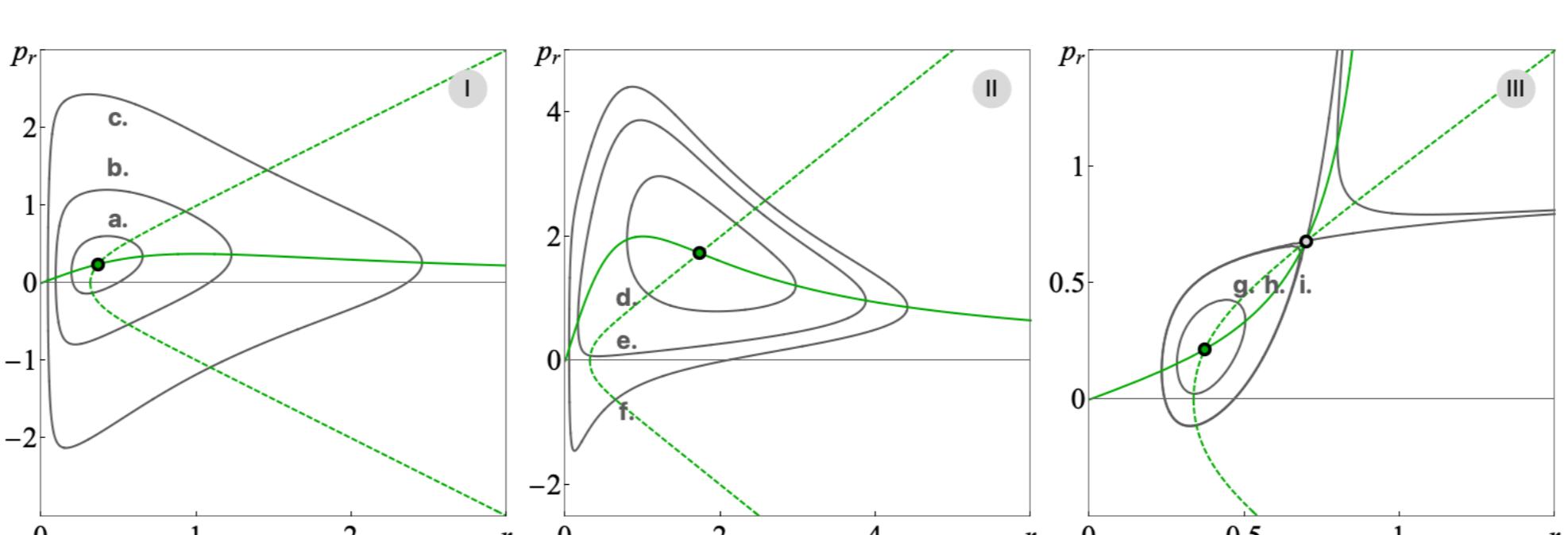
$$0 < r_*^{\text{st}} < r_*^{\text{sep}} < 1 < r_*^{\text{un}},$$

where r_*^{sep} is unstable fixed point with a separatrix isolating stable trajectories and r_*^{un} is the second unstable fixed point.

Action-angle variables



Case studies



Motion invariants \mathcal{K}_r and p_θ , action variables $J_{r,\theta}$ and rotation numbers $\nu_{r,\theta}$ for each case study:

	[Gamma_+]			[Gamma_-]		
	I	II	III	I	II	III
a	$a = 3/2, p_\theta = -0.1$	$a = 8, p_\theta = 0.1$	$a = 1, p_\theta = 0.5 p_\theta^{\text{crit}} = 0.1125$			
(a)	(a.)	(b.)	(c.)	(d.)	(e.)	(f.)
J_r	0.04	0.25	1	0.5	1.3695	2
\mathcal{K}_r	0.28228	1.17187	5.54626	-5.54758	0	4.2368
ν_r	0.310521	0.375294	0.440763	0.310913	0.244355	0.310346
ν_θ	0.148603	0.184318	0.219254	0.007675	0.062641	0.146941

Cartesian frequencies

x -, y -planes have identical spectra with 2 families of overtones:

$$(\nu_r - \nu_\theta) + n \nu_r : \nu_r - \nu_\theta, 2 \nu_r - \nu_\theta, 3 \nu_r - \nu_\theta, \dots,$$

$$\nu_\theta + n \nu_r : \nu_\theta, \nu_\theta + \nu_r, \nu_\theta + 2 \nu_r, \dots,$$

Fundamental tunes $\nu_r - \nu_\theta$ and ν_θ play the role of the sum and difference of the "carrier" and "modulating" frequencies:

$$\nu_\Sigma = \nu_1 + \nu_2$$

$$\nu_\Delta = \nu_1 - \nu_2$$

For configuration $[\Gamma_+]$, where $2 \nu_\theta < \nu_r$, we define:

$$\nu_\Sigma = \nu_r - \nu_\theta,$$

$$\nu_1 = \frac{\nu_r}{2},$$

$$\nu_2 = \nu_\theta,$$

$$\nu_r = \frac{\nu_r}{2} - \nu_\theta.$$

While for configuration $[\Gamma_-]$, where $2 \nu_\theta > \nu_r$, we will use:

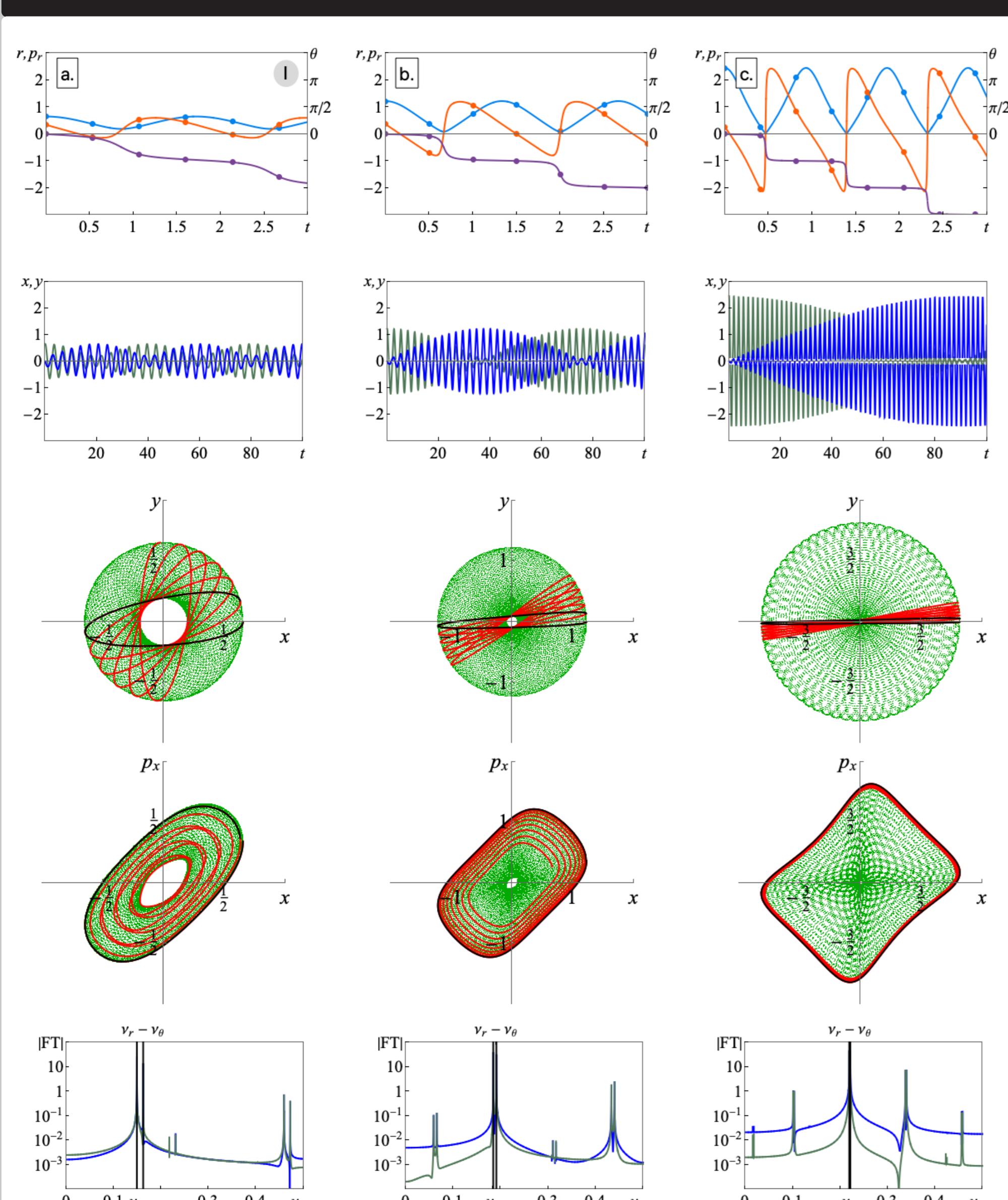
$$\nu_\Sigma = \nu_\theta,$$

$$\nu_1 = \frac{\nu_r}{2},$$

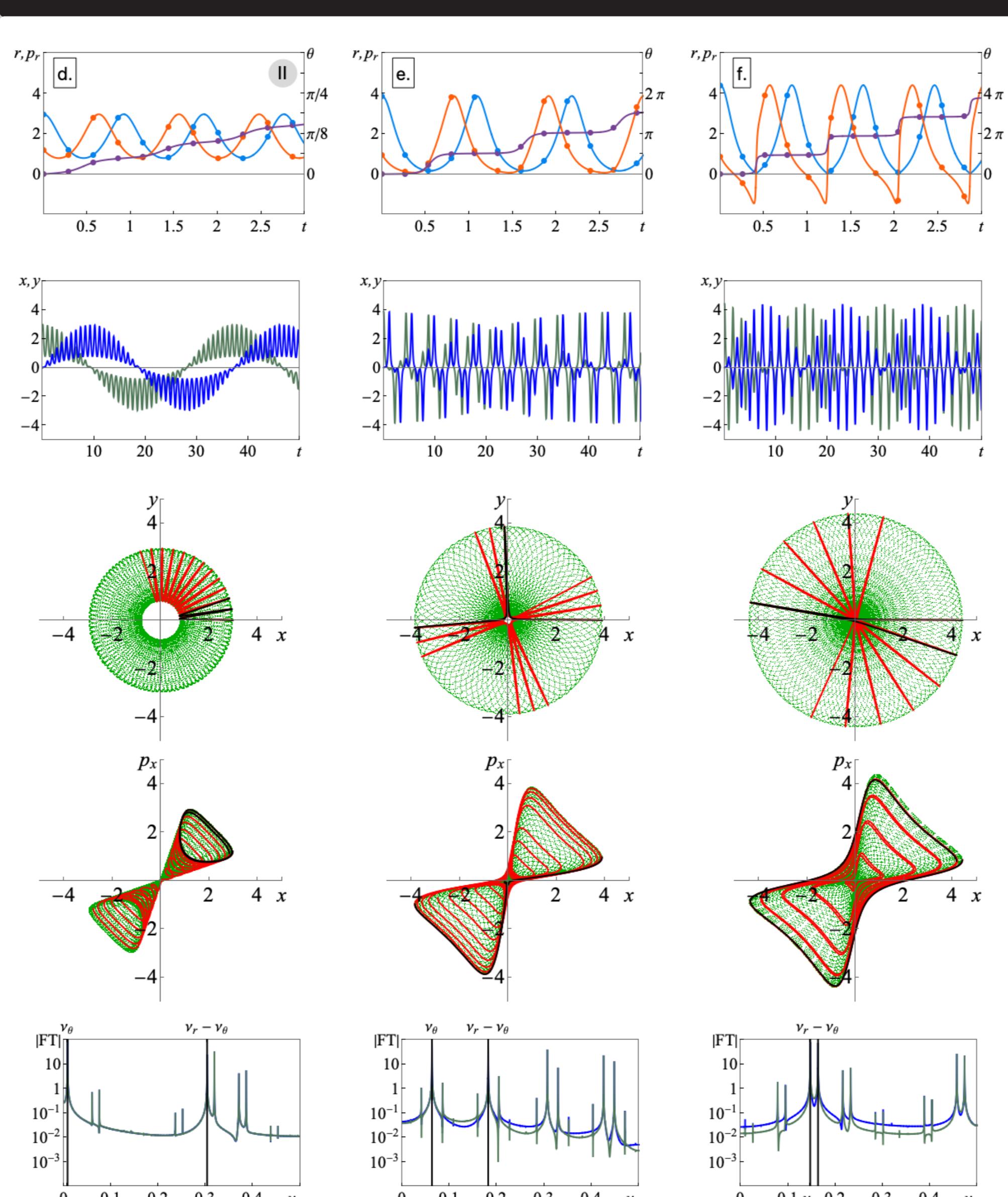
$$\nu_\Delta = \nu_r - \nu_\theta,$$

$$\nu_2 = \nu_\theta - \frac{\nu_r}{2}.$$

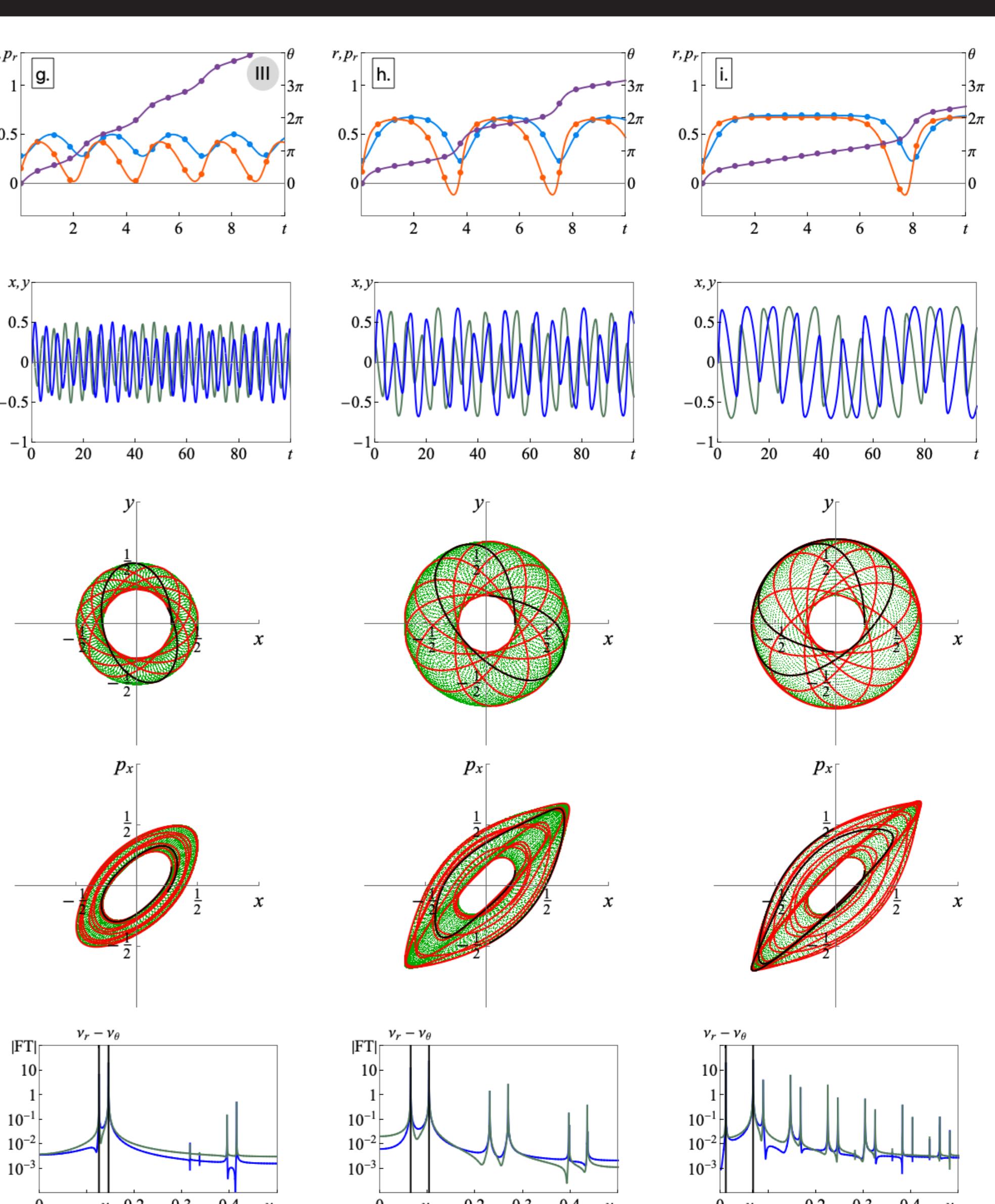
Case I



Case II



Case III



The presence of beats indicates that the sum and difference modes have nearly the same frequencies:

$$\nu_\Sigma \approx \nu_\Delta \quad (\text{or } \nu_r \approx 2 \nu_\theta)$$

$$\nu_1 \approx \nu_{\Sigma, \Delta} \quad \text{and} \quad \nu_2 \approx 0$$

(d.) $\nu_\theta, \frac{\nu_\theta}{\nu_r} \approx 0$ $\nu_\Sigma \gg \nu_\Delta \approx 0$ $\nu_1 \approx \nu_2 \approx \nu_\Sigma/2$
 (e.) $0 < \frac{\nu_\theta}{\nu_r} < \frac{1}{2}$ $\nu_\Sigma > \nu_\Delta$ $\nu_1 > \nu_2 \approx 0$
 (f.) $\frac{\nu_\theta}{\nu_r} \approx \frac{1}{2}$ $\nu_\Sigma \approx \nu_\Delta$ $(\nu_1 \approx \nu_{\Sigma, \Delta}) \gg (\nu_2 \approx 0)$

(g.) $\frac{\nu_\theta}{\nu_r} \approx \frac{1}{2}$ $\nu_\Sigma \approx \nu_\Delta$ $(\nu_1 \approx \nu_{\Sigma, \Delta}) \gg (\nu_2 \approx 0)$
 (h.) $\frac{1}{2} < \frac{\nu_\theta}{\nu_r} < 1$ $\nu_\Sigma > \nu_\Delta$ $\nu_1 > \nu_2 \approx 0$
 (i.) $\frac{\nu_\theta}{\nu_r} \approx 1$ $\nu_\Sigma \gg \nu_\Delta \approx 0$ $\nu_1 \approx \nu_2 \approx 0$