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Axially symmetric McMillan map & Round beams

The most general map can be reduced to the form
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with two independent invariants
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Considering general axially symmetric lattice with thin nonlinear
kick δṘ, we can rewrite the map as
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r pr

,

p′θ = pθ,

where δṙ(r) = 2 r cos Φ+β δṘ(r) sin Φ. It has one exact, Kθ = pθ,
and one approximated invariant in McMillan form

Kr[pr, r] ≈ C.S.r −
c
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where the parameters a and c are defined as

a = 2 cos Φ + β sin Φ ∂rδṘ(0) and c = β sin Φ ∂rrrδṘ(0).
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The map and its inverse can be broken down into a composition
of two nonlinear reflections, denoted by R1,2

M±
r = R2 ◦ R1, (M±

r )
−1 = R1 ◦ R2,

where

R1 : r
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p2θ
r2
,

p′r = pr
r
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,

and
R2 : r

′ = r,

p′r = −pr + f (r).

Both transformations are anti-area preserving involutions

R1,2 = R−1
1,2, R2

1,2 = I2, detJR1,2
= −1,

each (and in composition) preserving the radial invariant:

Kr[pr, r]−Kr[R1,2(pr, r)] = 0.

Fixed points of R1,2 form continuous lines of equilibrium solu-
tions, the first and second symmetry lines, respectively:

l1 : p2r = r2 − p2θ
r2

l2 : pr =
f (r)

2
.

Fixed points & Regimes of motion

|a| < 2, |pθ| = 0 |a| < 2, |pθ| > 0 |a| > 2, |pθ| = 0 |a| > 2, |pθ| > 0
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• In the case [Γ+], map has only one positive root and motion
is stable for any value of a and almost all values of angular
momentum (except pθ = 0). Based on the absolute value of a
we distinguish two different regimes: |a| < 2 [I] and |a| > 2 [II].

• In the case [Γ−], the motion is stable only for |a| < 2 and
|pθ| < pcritθ [III]

pcritθ =
[
1− (|a|/2)2/3

]3/2
< 1.

In this scenario the map has three stationary solutions:

0 < rst
∗ < rsep

∗ < 1 < run
∗ ,

where rsep
∗ is unstable fixed point with a separatrix isolating

stable trajectories and run
∗ is the second unstable fixed point.

Action-angle variables Case studies

Motion invariants Kr and pθ, action variables Jt,θ and rotation
numbers νr,θ for each case study:

Cartesian frequencies

x-, y-planes have identical spectra with 2 families of overtones:
(νr − νθ) + n νr : νr − νθ, 2 νr − νθ, 3 νr − νθ, . . . ,

νθ + n νr : νθ, νθ + νr, νθ + 2 νr, . . . ,

Fundamental tunes νr − νθ and νθ play the role of the sum and
difference of the ”carrier” and ”modulating” frequencies:

νΣ = ν1 + ν2 ν∆ = ν1 − ν2

For configuration [Γ+], where 2 νθ < νr, we define:

νΣ = νr − νθ, ν1 =
νr
2
,

ν∆ = νθ, ν2 =
νr
2
− νθ.

While for configuration [Γ−], where 2 νθ > νr, we will use:

νΣ = νθ, ν1 =
νr
2
,

ν∆ = νr − νθ, ν2 = νθ −
νr
2
.

Case I

The presence of beats indicates that the sum and difference
modes have nearly the same frequencies:

νΣ ≈ ν∆ (or νr ≈ 2 νθ)

ν1 ≈ νΣ,∆ and ν2 ≈ 0

Case II

(d.) νθ,
νθ
νr

≈ 0 νΣ ≫ ν∆ ≈ 0 ν1 ≈ ν2 ≈ νΣ/2

(e.) 0 <
νθ
νr

<
1

2
νΣ > ν∆ ν1 > ν2 ≈ 0

(f.)
νθ
νr

≈ 1

2
νΣ ≈ ν∆ (ν1 ≈ νΣ,∆) ≫ (ν2 ≈ 0)

Case III

(g.)
νθ
νr

≈ 1

2
νΣ ≈ ν∆ (ν1 ≈ νΣ,∆) ≫ (ν2 ≈ 0)

(h.)
1

2
<

νθ
νr

< 1 νΣ > ν∆ ν1 > ν2 ≈ 0

(i.)
νθ
νr

≈ 1 νΣ ≫ ν∆ ≈ 0 ν1 ≈ ν2 ≈ 0
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