2= Fermilab

L;} Brookhaven

National Laboratory

AXIALLY SYMMETRIC E-LENS BASED ON MCMILLAN MAP

(FERMILAB-POSTER-24-0043-CSAID)

Tim Zolkin', Brandon Cathey’, Sergei Nagaitsev?-=,

"Fermi National Accelerator Laboratory, Batavia, lllinois 60510, USA
°Brookhaven National Laboratory, Upton, New York 11973, USA

Axially symmetric McMillan map & Round beams

The most general map can be reduced to the form
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with two independent invariants
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Considering general axially symmetric lattice with thin nonlinear
kick 0 R, we can rewrite the map as

0’ = 0 + arctan ﬁ,
r

p’@ — Do,
where 67(r) = 21 cos D+ B JR(r) sin ®. It has one exact, Iy = py,
and one approximated invariant in McMillan form
i
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where the parameters a and c are defined as
a=2cosd+ 3 sind @53(0) ¢c= (3 sind 8TTT5R(O).
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The map and its inverse can be broken down into a composition
of two nonlinear reflections, denoted by R »

Mf = RQ O R1, (M?)_l = Rl O RQ,
where
2
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Both transformations are anti-area preserving involutions
Ri> =Ry, Ri, =1, det Jp,, = —1,
each (and in composition) preserving the radial invariant:

KT[pT7 T] — ]CT[RL2<pT’7 T)] = 0.

Fixed points of R;, form continuous lines of equilibrium solu-
tions, the first and second symmetry lines, respectively:
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Fixed points & Regimes of motion

lal > 2, |pgl =0

lal > 2, |pgl >0
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e In the case |I',|, map has only one positive root and motion
Is stable for any value of ¢« and almost all values of angular
momentum (except py = 0). Based on the absolute value of a
we distinguish two different regimes: |a| < 2 [l] and |a| > 2 [ll].

e In the case [I'_], the motion is stable only for |a| < 2 and
po < p™ [I11]

crit

3/2
Pt = 1= (lal/2”°] " < 1.
In this scenario the map has three stationary solutions:
0 <rSt< %P < 1 < pin,

where r:°" is unstable fixed point with a separatrix isolating
stable trajectories and r." is the second unstable fixed point.

Action-angle variables Case studies Cartesian frequencies
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Motion invariants K, and py, action variables J;y and rotation
numbers v,y for each case study:
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a=3/2, ps =—0.1 a=28,ps=0.1 a=1, po = 0.5p§t =0.1125

(a.) (b.) (c.) (d-) (e.) (f) () (h.) (i.)

Jr 0.04 0.25 1 0.5 1.3695 2 0.01 0.033692 0.0344042
K- 0.28228 1.17187 5.54626 -5.54758 0 4.2368 0.217948 0.2746  0.275683
Uy 0.310521 0.375294 0.440763 0.310913 0.244355 0.310346 0.269487 0.166497 0.0785715

Vg 0.148603 0.184318 0.219254 0.007675 0.062641 0.146941 0.144787 0.102572 0.0680104

x-, y-planes have identical spectra with 2 families of overtones:

(v, —vg)+nv. . v —1vy, 20—V, BUp—1ly, ...,

Vg +nu,: vy, vy + Uy, vp+2v0., ...,

Fundamental tunes v, — vy and 1y play the role of the sum and

difference of the "carrier” and "modulating” frequencies:
Vs, = V1 + 1 UN = V1 — 19

For configuration [I'. |, where 21y < v,, we define:

Vy
Us, = Uy — Uy, V1:§7
Vy
UN = Uy, V2:§—V§.
While for configuration [I"_], where 2 vy > v,, we will use:
V?“
Uy, = Uy, Vi = 57
V?”
UN = Vyp — Uy, VQZV_E
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The presence of beats indicates that the sum and difference

modes have nearly the same frequencies:
Us R VA (or v, = 2vp)

UV = Vs A and Vy = 0
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