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l. INTRODUCTION 
For a long time the nuclearp-decays had an 

isolated.position among nuclear processes. Although 

the ft-values were of great importance for assign­

ill8 spin and parities to nuclear levels, P-decays 

otherwise contributed rather little to the under­

standing of the general features of nuclear 

structure. The Alaga selection rules were one 

of a few examples of connections between p-decay 

and more general properties of nuclei. 

This poor situation started to change when the 

V-A interaction was established as the predominant 

component in weak interactions and, during the last 

years, further progress has been made in relating 

nuclear p-decays to the rest of nuclear physics. 

The study of isobaric analogue states and the dis­

covery that the isospin is a good quantum number 

even in heavy nuclei have initiated a better under­

standing of the Fermi decays. The old problem of 
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strong hindrance for Gamow-Teller decays in nuclei 

with a neutron excess has now been related, at 

least in a qualitative way, to more general com­

ponents in nuclear interactions. Also, the ge­

neral relationship between the vector part of the 

P-current and the electromagnetic current (C.V.C.) 

together with the isobaric symmetry will allow 

us to deduce more general properties for some of 

forbidden p-moments. 

2. ALU) ifED DECAYS 

The allowed decays have a large spread in ft­

values. The general trends can, however, be 

related to simple effects of nuclear structure. 

The most conspicuous feature of both the Fermi 

and the Gamow-Teller decays is the strong hin­

drance in nuclei with neutron excess. For the Fer­

mi transitions this is due to the fact that all 

decays in such nuclei (N > 2) are isospin for­

bidden. 

2a. Fermi decays 

1he Fermi transitions provide a direct test 

of the isobaric symmetry since the transition 

operator is given by 

T = T :!: iT .t x y = L
.-. 

t {k) + it (k) • x y {l) 

k 
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Thia structure of the operator is a dil'ect conse­

quence of the relationship between the vactor fJ-

0ur.rent and the electromagnetic current (the con­

served vector current hypothesis), and thus the 

calculation of Fermi matrix elements implias no 

specific assumptions regarding the internal nu­

clear properties. The matrix element vanishes ex­

cept for transitions between ·members of an isobaric 

multiplet for which we have 

11.F =<T,M.r±liT
1

!T MT>= ((T:!:lIT+l)(T:;: M.r))l/
2

• (2) 

The strong Fer­

mi decay must 
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Fig. l. Isospin multipletss a) with­
out and b) with Coulomb displacement. 
In b) isobaric analogue states are 
connected with dotted lines. The 
superallowed Fermi transiticns, con­
necting states of the same isospin, 
are only possible in nuclei with 
Z> N. 

then be found 

in that part 

of the periodic 

table where 

transitions 

between isobaric 

analogue states 

are energetical­

ly possible. The 

mutual position 

of isobaric 

analogue states 

in neighbouring 

nuclei (see Fig. 

1) is determin­

ed by the large 

Coulomb eLergies, 
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and this restricts the Fermi transitions to nuclei 

with Z ~ N, as shown in Fig. 1. 

The mixed Fermi and G.T. decays n+:p and g3.., g3 
e 

do not follow this rule because .the Coulomb energy 

vanishes or is smaller than the neutron-proton mass 

difference. 

The most precisely measured Fermi decaysl) 

the O+• o+ (Ti = Tf: 1) transitions for which 

matrix element is ~ = ¥2. It has been observed 

are 

the 

that 

the experimental ft-values for these decays are ex­

tremely constant and tJ:ms provide evidence for the 

isobaric purity of the corresponding states. The 

very small deviations ( ~ 1%) actually observed are 

not understood in detail, but must be due to 1) de­

viations from complete isobaric symmetry, 2) second 

forbidden corrections to the Fermi matrix element 

and the weak r~dial dependence of the Fermi operator, 

arising fron the radial variations of the electron 

wave functions inside a finite nucleus. Recent dis­

cussions of the two types of effects are given in 

refJrences 2 and J. 
The isospin forbid.den transitions (6T:l) are 

hindered by factors of the order of 104 or more as 

compared to the 6T=O transitions. In Table l we have 

collected the known o+~ o+ transitions between states 

of different isospin (6'.r=l). Matrix elements for such 

transitions have also been ex~racted from mixed Fer­

mi and G.T. decays8•9,lJ,l4 ) and are as small as the 

ones quoted in Table l; in fact, the largest isospin 

forbidden matrix elements are found in the decays of 
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TABLE l 

o+ .. o+ decays between states with different 

isospin 

Ti 

1 

1 

2 

15 

15 

14 

24 

24 

24 

Tf 

2 

2 

3 

14 

14 

15 

25 

25 

25 

ft( sec) 

4 10
6 

6 10
6 

8 107 

5.8 109 

1.5 10
10 

5 .7 io9 

1.8 10
8 

1.5 109 

1.4 109 

!Ml 
4 10-2 

3 10-2 

9 l0-3 

l.O 10-3 

0.64 lo-3 

l.l 10-3 

5.9 10-3 

2.0 lo-3 I 
2.1 lo-3 j 

The experimental values are taken from references 4, 
5,6 and 7. The matrix elements in the last column 
are obtained from the ft-value, using the relation 
IMI = ~6200/ft • Ii' higher order corrections to 
the Fermi matrix element are small, as they seem to 
be in most cases, the last column gives an approxi­
mate value for the Fe.rmi matrix element. 

Ga 64 and Ga 66 • 

The observed small transition strength for the 

AT=l decays arises from isobaric spin impurities 

and higher order corrections to the Fermi matrix 

element. In most cases the largest contribution 

seems to come from isobaric spin impurities. 

For illustration and discussion of isospin for-
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bidden transitions the best example is provided by 

the decay of ca 49 to sc49 (see Fig. 2). These nucle1 

have a single 

11 MeV 

3 MeV 

Fig. 2. Single-particle states in 
ca 49 and sc49. 

particle out-

side the double 

closed shells 
48 

of Ca and we 

therefore ex­

pect the ground 

states and some 

of the low 

lying states to 

be single­

particle states, 

This has also 

been conf'irmed by experiment. The ground state of ea49 

is a p
312 

state and the ground state of sc49 an t
712 

a·tate. 

The ca 48 core has the isoapin (T,~) = (4.4) and 

c;o. 49 then has (T ,MT) = (~, ~). The t 712 ground state 

L\Sc49 has (.r,11T) = (~,~),but the p
3129

st;te in 

Sc 9 can have both the iaospin {T,M,,,) = <2• 2) and 
7 7 lO,il) (T,MT) = (2, 2). From experiment two p312 states 

are known in sc49 , viz. a T = ~ state at 3 ll:!eV and a 

T = ~ state at 11 MeV. The high-lying T = ~ state is 

the isobaric analogue of the ca49 ground state. 

The possibility of having two p
312 

states with 

dif'ferent isospin is due to the conf'iguration arising 

from the charge exchange between the p
312 

proton and 
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one of the t 712 neutrons. The two components build­

:l.Xl8 the p312 states are shown in Figs. 3a and 3b. 

~e neutron hole and the proton in the state vi are 
+ coupled to the spin 0 and so the 7 neutrons and the 

proton in the t 712 orbit are supposed to have the 

same structure as the closed f 712 neutron shell in 

ca48 and to have the same total isoapin T=4· 

Fig. 3. 

z N 

(cl 

In Sc 49 there are two p coni'igura-
tions a) and b). Eigenaiti'~es of iso­
spin are combinations of a) and b). 

The two configurations 3a and 3b tskan separate= 

ly have no definite isospin. To obtain the eigen­

states of the isospin, we must take linear combina­

tions of the two configurations. These combinations 

are given by Clebach-Gordan coefficients in isospin 

and can in a shorthand notation ba written: 



Sc49 

n n 8 
ea49 = (~.~) > = P.l (fl )o+ 

2 2 

For the Fermi matrix elements we then have 

49 7 I ca 49, 9 
~= < Sc pl' T = 2 IT_ pl T = 2 > = 0 

2 2 

?~;:;: 
49 

< Sc pl' T "" ~ IT_ 49 I ca , Pl ·r = ~ > ::: 3 

2 2 

So we see that, if the isospin is strictly conserved, 

then the Fermi matrix element to the low-lying p
312 

state will vanish. 

However, the Coulomb force violates the isobaric 

symmetry and we expect the low-lying p
312 

state to 

contain a component with T = ~ • 

Thia component will be small and can be calculated 

in perturbation theory. Thus for the low-lying p
312 

state we write 

9 7 
< T = 2 I V Coul .I T = 2 > 

t (p)/2 ) = t (T= ~) - A E t (T = ~) 

where (4) 
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9 7 
A E = E ( T = 2) - E ( T :::: 2) :: 8 Me V o 

The Fermi matrix element is then given by 

9 7 
< T "" 2 I V Coul. I T "' 2 > 

~ = - 3 AE (5) 

From the wave functions given above we obtain for the 

Coulomb matrix element 

< T 9 7 """IV IT=">= .:: Coul. .:: ( 6) 

Using a Woods-Saxon potential and assuming the Coulomb 

potential to be of the form 

V Ze 
2 

( ~ _ ?; ( !: ) 2) 
Coul. = R 2 2 R (7) 

we can calculate the Coulomb energy for a proton in a 

p
312 

orbit and in an t
712 

orbit. We obtain 

This gives the Fermi matrix element 

I~ I= 1.2 10-
2 

( 8) 

The value of the Coulomb matrix element calculated 

above depends on the parameters chosen for the Woods­

Saxon potential. However, this number can also be 

taken from experiment. 'l!he study of isobaric analogue 
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states in the Ca-region gives Coulomb energies for a 

proton in a p
312 

and in an t 712 orbit. From the pos1 ... 

tion of isobaric analogue states in ca47 and sc47 one 

has found12 ) 

which :I.a close to the value used above for the A=49 

system. 

A calculation of higher order corrections to the 

Fermi matrix element shows that they are small in the 

present case. 

So far the measurements have given us the ft.;. 

value15) only, which :I.a determined by the G.T. matrix 

element alone since the Fermi matrix element ia small. 

To obtain ~' one must measure a P-circular polarized 

y -correlation whicll is also possible (the half'-lif'e 

of ca 49 ia 8 min. and the subsequent y-ray has an 

energy of 3 MeV). 

The Fermi matrix element calculated above is of 

the same order of magnitude as the Fermi matrix 

element found experimentally for Ga and Ge, but an 

order of magnitude larger than those for heavy nuclei. 

Thia is also to be expected. In Ga, Ge, and ca the 

neutron excess :I.a ·small so that neutrons and protons 

fill the same orbits and the Coulomb matrix element 

is determined by the difference between some si.ngle­

particle Coulomb energies. In heavy nuclei the neutron 

excess is large, neutrons and protons fill very dif­

ferent orbits, and the components in the wave functions 

which can contribute to the Coulomb matrix element are 
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small• For a further discussion of iaospin forbidden 

Fermi transitions, see references 16, l~ and 18. 

2b. Gamow-Taller decays 

We f irat consider the suparallowed Gamow-Teller 

transitions. The best examples for comparison of 

calculation and experiment are provided by mirror 

transitions between nuclei with a single particle or 

a single hole outside the closed shells with N=Z. The 

experimental evidence on these decays is collected in 

Table 2. The G.T. matrix elements in column 4 were 

calculated from the ft-value, assuming 1'1- = 1, as ax-

pected for transitions between 
l 

states with T = ~ • #e further 

isobaric analogue 
gA 

used ~ = -1.18 + 0.02 
gv g -

and took gV from the 014 decay. Using ...! = -1.23, 
gv 

as obtained from the new half-life of the neutron, 

the numbers in column 4 will be reduced by 8%. In 

column 5 we give 

for l 
j i = j f= j = t ± 2 

2 
The experimental ;alues of MGT are in qualitative 

(9) 

agreement with the single-particle values but are 

systematically smaller, except for A=3. The largest 

correction to the G.T. matrix element comes from the 

weak magnetism. The interference term between the G.T. 

matrix element and the matrix element of the weak 

magnetism term reduces the total matrix element ~ 
thus reducing the discrepancy between the experimental 
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and the calculated matrix elements in Table 2. Howeve~ 
t 

the corrections are too small to give any substantial 

change. The relative reductions are found to be 

-2% (015 ), -1% (F17), -4% (ea39 > and -1% {so41) and 

vanishing values for a3 and n. 

TABLE 2 

Comparison of calculated and experimental G.T. 
matrix elements for single-particcl.e states in 

mirror nuclei 

Nuclei j ft(sec) 
2 

MGTe.x::p ~T s.p. 

n .. p sl/2 J.212:!:, 40 3 

rr3 He3 -1 1060:!:,100 3.4 z.0.3 .... 8 1/2 
015 ... z?-5 -1 4470:!:, 30 0 .28:!:,0 .02 Pl/2 
F17 .. 017 

d_/2 2370:, 50 1.17!,0.l 
ca39 .. K39 ' 1 4330;t.l50 0.32;t0.05 d3/2-
s 41 ca41 c ... f7/2 2780±,100 0.90;t,O.l 

The experimental data are taken from: 

015 and F17 : Nuclear Data Sheets 

3 

3 

1/3 

7/5 

3/5 J 9/7 

ca39: W.L. Talbert, Phys. Rev. 119 (1960) 272 
sc41: D.H. Youngblood et al., Nucl.Phys. §2. 

(1965) 602. 

The ft-value for H3 is based on the discussion given 
by J.N. Bahcall, Nuclear Physics 12. (1966) 10. 

The largest discrepancies between experimental 

and calculated matrix elements are found for A=39 

and A=4l. This may indicate the presence of more 
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complicated components in nuclear states. Also, recent 

stripping and pick-up experiments19 ) show imported de­

viations from the closed shell structure for ca40. For 

the A = 15 and A = 17 systems the reduction of the 

9 xperimental matrix elements is somewhat smaller and 

might be explained by minor deviations from the single­

particle picture of the states. However, such devia­

tions should also affect the magnetic dipole moments. 

The G.T. moments are related to the isovector part 

of the spin contribution to the magnetic dipole moments 

by the isobaric symmetry 

T 1 
MT I r (7" z ( i) tz(i)jjm; T 

1 ,,.. 
< jm; 2' = 2 ;J,.;.T > 

w 
i 

1 l 
I I: (i) t (1)1 jm; lr'I 1 

MT= 
l 

< jm; T = 2'MT= 2 crz J. 2 -2 > 
+ 

i (10) 

l " l 

..L < 2 ~"T 101-M.r> 2 
-MT = - ..f2 1 ! 1 ll ! ! < - - > 2 2 2 2 

The deviations from isobaric symmetry for these 

nuclei are expected to be extremely small2) and of 

little importance to the present discussion. Let us 

take, for example, the A=l7 system. The observation 

that the ~T is reduced by 16% from the single-particle 

value would imply a reduction of 8% in the isovector 

spin contribution to the magnetic moments of these 

nuclei. This would shift the magnetic moments by 0.2 



164 

magnetons. Howeve:i:, the magnetic moments both of 017 

and of F17 are extremely close to the single-particle 
17 values. For 0 , µ b = -1.89, µ = -1.91, and for n o s sp 

¥'"" µ b = 4,72 and µ = 4,79. So the comparison 
o s sp 

with the magnetic moments points to the existence of 

interaction terms either in the Kl or in the G~T. 

moments. 

l!'or nuclei with N > Z we encounter dramatic 

hindrance effects for the G.T. transitions. Tha 

hindrance factors due to the neutron excess are of 

the order of 10-100. 

The only example of a G.T. transition of a single 

particle outside double-closed shells in a nucleus 
49( 49 \1ith N >Z is the decay Ga p

3
/ 2) ... Sc (p.3/2 , 3rlleV) 

(see Fig. 2) • We have already discussed the :r·ermi 

catrix element for this decay. From the ft-value 

(log ft = 5,1) the G.T. transition is seen to be 

.hindered by a factor of about 30 as compared to the 

single-particle value, As a further example of 

hindr~nce due to the neutron excess we may mention 

that the so-called unhindered G.T. decays in the de­

formed nuclei, when corrected for pairing, still are 

too slow by about an order of magnitude as compared 

to the values obtained from the Nilsson wave func­
tions20). 

The correlation effects which give rise to tha 

quenching of the G.T.-matrix elements have been21 ) 

compared with the correlation effects which remove 

the Fermi strength from the single-particle transi­

tions with Tf = Ti - 1. The Fermi strength is con-
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cent:rated on the isobaric analogue state of the parent. 

In a similar manner, the interactions tend to con­

centrate the G.T. strength on a high-lying collective 

state. For the Fermi strength the concentration on 

the isobaric analogue state is a direct consequence 

of the isospin invariance, but for the G.T. strength 

the correlations are not related to any simple sym­

metry and must be deduced from definite components 

in the nuclear force. The force relevant to G.T. de­

cays must be of the form 

V(l,2) = x ';
1 

• -;
2 

o\ .-;
2 

(11) 

Calculations with such a force were first done by 

Fujita and Ikeda21 ) and later by Halbleib and So­

rensen22). Let us consider a transition between 

spin-orbit partners, 
n 19-
d 3/2 ~ 

for example, 
p 

d_/" 
' <-

The force quoted above will then, in the final 

state, admix components of the form 

where the summation runs over all those orbits Iii 

which are occupied by neutrons but not by protons. 

These components give a contribution to the G,T. 

(12) 

matrix element and are ~sponsible for the quenching 

of the matrix element. We also note that these com­

ponents only contribute in second order to the magnetic 
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dipole moments. So the reduction of the G.T. 

moments are not followed by a similar reduction of 

the magnetic moments. 

3. FORBIDDEN DECAYS 

In forbidden p-decays we encounter difficulties 

of two kinds. Firstly, there are several matrix 

elements so that the relevant part of nuclear 

structure is not so uniquely determined as for the 

Fermi and G.T. transitions. Secondly, we do not 

know precisely if' the P-operators we use are cor­

rect or if there are major corrections from in­

duced interactions, exchange currents or other un­

known effects (see the contributions of Ema.n and 

Tadic to this conference). However, the vector part 

of beta interaction is better known than the axial 

vector part, if we assume the validity of the con­

served vector current hypothesis. This hypothesis 

~lso implies an intimate relations.hip between the 

oatrix elements of the p-vector current and the cor­

responding p-matrix elements. For example, the ob­

servation that the El transition strength is con­

centrated on the giant photoresonance allows the 

conclusion that the strength of the P-matrix element 

j ; is concentrated in a state which is the iso­

baric analogue state of the giant resonance of the 

parent, and that we must expect J ; to be am.all 

for transitions between low-lying states. 
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Many relations have been deduced between for­

bidden p-matrix elements. However, only one obtain­

ed from the c.v.c. hypothesis is reliable. It was 

first given by Fujita23 ) and also by Eichler24 ) and 

was written in the form 

<-;;>=-(W :+:2.5m o e 
ctZ ... 

+ 2. 4 2i ) < ir > ( 13) 

for first forbidden decays. 

We will consider this relation in more detail 

and first indicate how it can be deducedJO). The 

vector part of the fl-current corresponds to the 

electromagnetic current, in fact it is supposed to 

be the same current, except for the iaoapin struc­

ture. Thus we can connect the fJ- and the electro­

magnetic 4-vectors by the relation 

(14) 

The electromagnetic current fulfils the continuity 

equation or the Siegert theorem, which can be 

written 

(15) 

(16) 

We have inserted 
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and used 

[ Hal, P-el ] = 0 • 

In Eq. (16) we insert 

Hel = L (~ - tz(i) )e ~Coul. (;) (17) 

i 
and 

{ = &v L t_<1> 6' <r-r1> 

We then obtain 

1 a~ i~ ---+-c at n c 

i 

L t_(i) 8 ~Coul. 6'{;..;1) ' 

i 

(18) 

(19) 

For simplicity, we consider only the first forbidden 

matrix element of the vector current. This is usual­

ly denoted by j: or < : > • We use. the notation 

r ... 
M(~, IC = O, /.. = 1) .. j ~ • '$

0 
lµ. dr 

where ~ denotes the vector spherical harmonica 

(see Edmonds, p. 81). Using (19) we obtain 

--~ h c 

(20) 
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Vih.Elre AE > 0 ia the total transition energy. 

We can now proceed in two dif'ferent ways. 

l) We can insert the average value of the Coulomb 
Cl z 

potential 2.4 2"'"'R and obtain (13) the re la-

tion of Fujita or 

2) we can use an explicit expression for the 

Coulomb potential and evaluate the matrix 

element with suitable wave functions. 

Both methods are approximate. The first method cor­

responds to setting the nondiagonal matrix elements 

of the Coulomb potential equal to zero (see below). 

The second method depends on the reliability of the 

wave functions used. 

The relation between the matrix elements of 
.. fJ fJ 
jv and Af can also be deduced in a very convincing 

and illustrative manner by relating the .a-matrix 

elements to the corresponding matrix elements for an 

El y-decay (see Fig. 4). We consider a .B--decay 

between the states i and f, The initial state has 

isospin T
0 

and the final state then has isospin 

:r -1 in a nucleus with N > Z. The isobaric analogue 
0 

state of the initial state is denoted by i'. 

From Eq. (13) we see that the vector fJ -

operators ofi and the electromagnetic operators 

091 of the same apace and spin dependence are 

related by 

ofJ = - g,, [ T oel ] v e -• (21) 

We can then :rewri ta a fJ -matrix element 
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< :f(T -1,T -l}l<t li(T ,T ) > 
0 0 ' 0 0 

€f.v el ) = - - < f(T -1,T -1) I [T ,O ) I i(T
0

,T
0 

> 
e o o -

- ~ .f2T" < f(T -1,T -l) I 0°1 l i '(T ,T -1) > , -e o o o oo 

where we used 

T = l2T I i'(T ,T -l) > 
0 0 0 

and 

T I f ( T -1, T -1) > = 0 • 
+ 0 0 

i 
'.El 

l T 

dE 
J_ 

Fig. 4. The vector matrix ele­
ments for the first forbidden 
transition i .. f are' propor­
tional to the y-decay matrix 
element for the El transition 
i, .. f. 

(23} 

So a matrix 

element for the 

P-transi ti on 

shown in Fig. 4 

can be trans­

lated into a 

y-ma;;rix ele­

ment for the 

Ely-decay i'-of. 

Using (22) and 

the continuity 

equation (15) 

for the electro­

magnetic current, 

we then obtain 



... fl 1 I 1 «f jy olµ > 

< fli 4 r Y1µ I i 

... l ... 
< f I je ilio 1) 1' > 

= 
< t I i P 

al 

"" 

= -

l 
< f 

..f3 < f 

ll 
-f3 l'i c 

r y1µ I i, > 

-+ ... l 
( v j e ) r Y1µ I 

I i p 
el 

r Y1 µ I 
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i'> 

i'> 

( 24) 

wher1l EY = E1 , -Ef is i;he energy of the y-ray. 'I'he 

relation thus deduced is identical to the Fujita rela­

tion (13), since E = AEC 1 + AE. This relation is 
y OU • 25) 

often claimed to be accurate to better than lO'fo • 

However, larger deviations might be found especially 

when the fJ -matrix elements are sma1126127). The 

crucial point in the derivation is the assumption 

that the states i and i' are exact isobaric snalogue 

states. The deviations from formula (13) are connect­

ed with the nondiagonal effects of the Coulomb force 

in distorting the state i' as compared to i, 1'.he :nere 

fact that the state i' in many cases is particle un­

stable, whereas 1 is not, shows a deviation from 

the exact isobaric symmetr-J• 

The matrix element of the current can also be 

calculated directly without using c.v.c. Let us con­

sider a transition between single-particle states 

with wave functions calculated from a potential of 

the Woods-Saxon type. In such a potential we must use 

a different depth for neutrons and protons to re-
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produce the correct binding energies of the single­

particle states. Thia is usually done by including 

·the symmetry potential in the single-particle Ha­

mil touian 

• 4 

where t ie the isospin of the particle and T 

the isospin of the core. The necessity of the sym­

metry potential is well known also from the optical 

model calculations and it has especially been in­

vestigated in recent years since the discovery of 

isobaric analogue states in heavy nuclei and the 

more intensive study of the iaospin symmetry. 

To calculate < : > directly, we must calculate 

the matrix element of 

t_(i) .. .. ) 
(vi tolµ 

= t_(i) (;i v ri Ylµ ( 25) 

t_(i) d 
Y1) = rr (ri 

L 
d t_ (i) 

= dt (t_(i) ri Y1) - ri ylµ dt 

v 
• (t.; e 9\Coul. + / {\i.(i)T_ - Tz t_ l ) 

where we have evaluated the time derivative of t.:. (1) 
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d t.:.(i) 
with our single-particle Hamiltonian dt 

,,, ; ( H , t (i)] • The first two terms cor-
u s.p. -

respond directly to the expression obtained from the 

c.v.c. relation (19), whereas the last term arises 

from the symmetry potential and is new. Because of 

this last term the direct calculation gives a dif­

ferent result than the calculation based on c.v.c. 

.. I < ~ > 
<ex >c.v.c • .,. directly (26) 

we encomi.ter this difference in all nuclei with a 

neutron excess since a neutron and a proton interact 

in a different way with such nuclei, and we can 

therefore not allow the symmetry potential to break 

the continuity equation. So a more correct way to 

calculate<~> is to use the c.v.c. relation. The 

contribution from the symmetry potential in the 

direct calculation can. be as large as the contribu­

tion from the Coulomb potentia128 ), and the results 

of the two calculations can therefore differ by a 

factor of two. 

In the direct calculation we neglect the important 

exchange effects depending on the coordinates of the 

nucleons in the closed shells. In using a single­

particle model Hamiltonian we should therefore also 

use some P-operators which depend on the model and 

take the exchange currents into account. Such operators 

have not been constructed and are also not strictly 

necessary for the vector part of the P-interaction 
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since we have the c.v.c. relation to transform 

operators depending on the .B-current density into 

operators dependin.g on the .8-charge density .. We 

then assume, just for the electromagnetic moments, 

that exchange currents modify the current but leave 

the charge distribution practically unchanged, 

By utilizing the C.V.C. relation and comparing 

two different methods for calculating<;>, we have 

seen that ~xchange currents are important for the 

vector /3 -current. For the axial vector interaction 

we have less powerful tools to obtain information, 

but similar effects can of course be expected. 

In conclusion,! should like to point out that 

although we have little knowledge about the effective 

/3-operators, the calculations made so far definitely 

reproduce trends in the experimental data. For 

example, the calculated and the experimental ft­

values for first forbidden transitions between 

single-particle states differ by less than a factor 

of two28 ). At present, only three such transitions 

are known, but in the deformed nuclei we have also 

states which might be characterized as single­

particle states, although the cores are not closed 

shells, and for these nuclei the agreement is reason­
able 29). 

The author wishes to thauk Profs. A. Bohr and 

A. Winther for advice and helpful discussions on the 

subject of this paper. 
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