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NUCLEAR STRUCTURE AND RUCLEAR g-DECAY

‘ de Damggrd
e Niels Bohr Institute, University of Copenhagen,
Denmaxk

1. INTRODUCTION
For a long time the nuclear §~decays had an

jgolatsd position among nuclear processes, Although
the ft-values were of great importance for‘aasign—
ing apin and parities to nuclesr lsvels, f-decays
otherwise contributsed rather little to the undex-
gtanding of the general featurss of nuclear »
gtructure. The Alage selection rules were one
‘of a few examples of connsctions between g-decay
 and more general properties of nuclei.

This poor gsituation started to change when the
V-4 interaction was established as the predominant
component in weak interactions and, during the last
years, further progress has been made in relating
. nuclear g-decays to the rest of nuclear physics.
~ The study of isobaric analogue states and the dis-
covery that the isospin is a good guantum number
even in heavy nuclei have initiated a beiter under-
gtanding of the Fexrmi decays. The 0ld problem of
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strong hindrance for Gemow~Teller decays in nuclei
with 8 neutron excess has now been related, at
least in a gualitative way, to more genseral com=-
ponents in nuclear interactions. Also, the ge~
neral relationship between the vector part of the
g-current and the electromagnetic current (C.V.C.)
together with the iscbaric symmeiry will allow

us to deduce more general properties for some of

forbidden §~momenta.

2. ALIOWED DECAYS

The allowed deceyg have a large spread in f{-
values. The general trends cen, however, be
related to simple effects of nuclear siructure.
The most conspicuous feature of both the Fermi
and the Gamow-Teller decays is the strong hin-
drance in nuclei with neutron excess, For the Fer-
ni transitions this is due to the fact that all
decays in such nuclei (N> 2) are isospin for-
bidden.

2a. Fermi decays

The Fermi +transitions provide a direct teat
of the isobaric symmetry since the transition
operator is given by

T+ = Tx b iTy = L tx(k) ha ny(x) . (1)
k
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This #tructure of the operator is & direct conse-
quence of the relationship between the vector f-
ecurrent and the electrom&gnetic current (the con=
gerved vector current hypothesis), and thus the
calculation of Fermi matrix elementis implies no
gpecific agsumptions regarding the internal nu-
clear properties., The matrix element vanishes ex-
cept for transitions beiween members of an isobaric
pultiplet for which we have .

i :<T,MTil!T+ 7 My > = ((T.tzi,rﬂ)(fﬂ I MT))J'/Z. (2)

The girong Fer~

mi decay must

R e T A then be found
- - - - Te2 in that part
e Tel
s T-0 of the periodic

N 3 2 H 3 -1 -2 -3
table where

trangitions

=3 between isobaric
analogue statas
are energetical-

ly possiblae. The

mutual position
of isobaric
analogue states

- Fig, 1. Isoapin multipletss a) with- in neighbouring
out and b) with Coulomb displacemsnt.
In b) isobaric analogus states are

© connected with dotted lines. The 1) is determin-
- Superallowed Fermi transiticns, con-
necting states of the same isospin,
ars only possible in nuclei with Coulomb energiss,
Z> N,

nuclei (ges Fig.

ed by the large
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and this restricte the Fermi transitions to nuclej
with % 2 N, as shown in Fig, 1.

The mixed Fermi and G.T. decays n-+p and HO. g3
do not follow this rule because the Coulomb energy :
vanishes or is smsller than the neutron-proton maSa‘
differencs.

The most precisely measursd Fermi decaysl) ars
the 07 =07 (7, = T, = 1) trensitions for which the

matrix element is M V2. It has been observed that

L

the experimental ft-values for these decays are ex-
tremely constant and thus provide evidencse for the
isobaric purity of the corresponding states. The
very small deviations { £ 1%) actually observed are
not understood in detail, but must be due to 1) de-
viations from complete isobaric symmetry, 2) second
forbidden corrections to the Fermi matrix element
and the weak radial dependence of the Ferml operator,
arising from the radial variations of the slectron
wevs functions inside a finite nucleus. Recent dis-
cugsions of the two types of effects are given in
refarences 2 and 3.

The isospin forbidden transitions (AT=l) are
hindersd by factors of the order of lO4 or mors as
compared to the AT=0 transitions. In Table 1 we have
collected the known 0%» 07 transitions between states
of different isospin (AT=l). Matrix elements for such
transgitions have alsgo been extracted from mixed Fer-
mi and G.T, decay88'9’l3'l4) and are as small ag the
ones quoted in Table 1l; in fact, the largest iscspin
forbidden matrix elements are found in the decays of
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TABLE 1

o** o* decays between states with different

isospin
B m, 1, fu(sec) x|
cab » 25 1 2 4 10° 4 1072
¢e58 » 5a% 12 6 10° 3 1072
5% + % 2 3 8 107 g 1072
Eut?%. cats® 15 14 s5.810° 1.0 1073
0.4t (1.05) 15 14 1.5 10° o0.64 1073

w05 o 14 15 5.710°0 1.1 1073

p23t .yt 24 25 1.810° 5.9 1073
3p>24.uB% (0.81) 224 25 1.510° 2.0 1073
2% u®4 (1,04) 24 25 1.410° 2.1 1073
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The experimantsl values ara taken from references 4,
5,6 and 7. The matrix slesments in the last column
are obtained from thes ft-value, using the relation
M} = V6200/ft . If higher order corrsctions to
the Fermi matrix element are small, as ithey seem to
ve in most cases, the last column gives an approxi-
mate value for the Ferml mairix slement.

64 and Gess .

Ga
The observed small trangition strength for the
AT=1 decays arises from igobaric apin impurities
and higher order corrections to the Fermi matrix
element. In most cases the largest contribution
aeems %o come from isobaric spin impurities. -

For illustration and discussion of isospin for-

.
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bidden transitions the best example is provided by
the decay of ca49 to Sc49 (see Fig. 2}. These mucley

have a single
s particle out.

gide the doub}
np
of 0848 and we
6 Py, T-1 therefore ex-
3 MeV _..f..).'.’_lf

3
{
2
|
i AE.., - Am closed shells

pect the ground
gtates and some
T-7 of the low
lying states %o

Fig., 2. Single~particle atates in be single=
and Sct9 particle states,

This has also

been confirmed by experiment. The ground state of ca49f
49

’712

is a P30 gtate and the ground state of Sc

gtate.

The 0548 core has %he isospin (*'MT) = (4.4) and

ca”” then has (T,M ) = (2 2 . The f7/2 ground state

in Se¢ 43 hag (I,M ) = ( ), but the p3/2 stata in

”v49 can have both the iaospin (T,M,) = (2, 5) and

(T,4,) = (-, 5) From experimentlo’ 1 two P3/2 states
49, viz. a T = % gtate at 3 MeV and &
T = 3 state at 11 WeV. The high-lying T = g state is
49

O

are known in Sec
the isobaric analogue of the Ca ground state.

The possibililty of having two p3/? gtates with
different isospin is dus to the configuration arising
from the charge exchange between the p3/2 proton and
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one of the f7/2 neutrons. The two components build-
ing the p3/2 atates are shown in Figs. 3a and 3b.

The neutron hole and the proton in the gtate v, are

i
coupled to the spin 0" and so the T neutrons and the

proton in the f7/2 orbit are supposed to have the

1/2 neutron shell in

and to have the same total isospin T=4.

game structure as the closed f
48
ca

Py, x x Py,
(f%f ERSRE ERI-RE SR
i
Z N 2 N
(@) b

there are two p conligura-
tions a) and b). Eigens%é%es of iso=-
apin are combinetions of a) and b).

The two configurations 3a and 3b taken ssparate~
ly have no definite isospin. To obtain the eigen-
gtates of the isospin, we must take linear combina-
tions of the two configurations. These combinations
are given by Clebach-Gordan coefficients in isospin

and can in a shorthand notation be writiten:
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5 p nid n n g

717 8 AL

lp%; (Tymyr)= (E’E) >=\I; Pl<fl )0* J; pl@l fz
2 2 2 2 2

59
c
P n8 5 n n7
RN 5 (s
!p}_s(T,MT) =(5,3) > ‘\gpl<f1 >0++\I; P3\fy £
2 2 2 2 2 2
n n8
0849 lpy(T»MT) = (g:g‘) > = Pl<f1 )O+ o
2 2 2

For the Fermi matrix elements we then have

L'J'.F=<Sc49pl,T=—.ng_[0&49,pl’l‘:g>=0
2 2

%F,x < 8949 Pl' T = g | T_ 10849, pl I= g > = 3
2 2

S0 we ses that, if the lsospin is strietly conserved,
then the Fermi matrix element to the low~lying p3/2
state will vanish.

However, the Coulomb force violates the isobaric
symmetry and we expect the low—lying‘p3/2 atate to
contaln a component with T = g .

This component will be small and can be calculated
in perturbation theory. Thus for the low-lying p3/2
giate we write

7 <T=glvcoul.|1‘=;>
v(p3/2) =t(T=§) -

where (4)
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The Ferml matrix element is then given by

9 7
<T=51Vm,l*=3">

Up = -3 A E o (5)

From the wave functions given above wa obtain for the
Coulomb matriz element
7

Veoul, | T =3>= (6)

~

.ﬁ ] ‘ !
g [‘ P3/2 Woou1.!P3/2 > <172 Voou1 1 £7/27 |

Using a VWoods-Saxon poitential and assuming the Coulomb
potential to be of the form
2

Ze 3 1,1
Voour, = ® (5-3(§)) (7

we can calculate the Coulomb energy for a proton in &

P30 orbit and in an f7/2 orbit. We obtain

< 20/2 Vogu1.1T7/2 > = <2321 Ve0u1 Py/p > = 100 kev.

Thig gives the Fermi matrix element

ey | = 2.2 1072 . (3)

The value of the Coulomb mairix element calculated
above depends on the parameters chosen for ths Woods~
Saxon potential. However, this number can also be
taken from experiment. The study of isobaric analogue
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gtates in the Ca-reglon gives Coulomb ensrgles for g

proton in a P30 and in an f7/2 orbit. From the pogi.

tion of isobaric analogue statesa in 0347 and Se47 o

12)

g
has found

<L o Woga1 N E7/0 2= <Py 15 Vag01 1Py 1o 7= 108 kev

which is closse to the valus uszed abovse for thes A4=49
system,

A calculation of higher order corrections to the
Fermi matrix element shows that they 8re small in the
present case.

So far the messurements have given us the fi=
15) only, which is determined by the G.T. matrix
olement &lone since the Fermi matrix elemant is small,

value

To obtain MF’ one must measure & f-cireular polarized
y =correlation which is also possible (the half-life
of 0849 l
ensrgy of 3 MeV).

The Fsymi ma8trix element calculated above is of
the same order of magnltude as the Ferml matrix

is 8 min. and the subsequent y-ray has an

element found experimentally for Ga and Ge, but an
order of magnitude larger than those for heavy nuclei.
This is slgo to be expected. In Ga, Ge, and Ca the
neutron excess is small so that neutrons and protons
£111l the same orbits and the Coulomb matrix element

is determined by the difference between some single~
particle Coulomb snergles. In heavy nuclei the neutron
excess is large, neutrons and protons fill very dif-
ferent orbits, and the componsnts in the wave functions
which can contribute to the Coulomb matrix element are
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gmall. Por & further digcussion of isospin forbidden

Ferml transitions, see roferences 16, 17, and 18.

2b. Gamow-Teller deéaya

We first consider the superallowed Gamow-Teller
tranalitions. The best examples for comparison of
calculation and experiment are provided by mirror
trangitions beitween nuclei with a single particle or
a single hole ocutside the closed shells with N=Z. The
experimental evidence on these decays is collected in
Table 2, The G.T. matrix elements in column 4 wers
calculated from the ft-value, agsuming MF =1, as ex=-
pected for transitions beitween isobaric analogus
statea with T = % . e further used gé = -1.18 + 0,02

Ve
14 decay. Using gé = =1.23,

and took gy from the O .
as obtained from the new half-life of ths nsutron,
the numbers in column 4 will be reduczd by &%. In
column 5 we give

+1 A

2 (41, E
Mop gp, = (5 FoT dy= =3 =4 £3 - (9)

The experimental values of M2 are in qualitative

agreement with thé single—pargfcle valueg but are
systematically smaller, excapt for A=3, The largest
correction to the G.T. mairix element comea from the
weak magnetigm. The interference term between the G.T.
matrix element and the matrix element of the weak
magnetism term reduces the total maitrix element Mz

thus reducing the discrepancy between the experimental
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and the calculated matrix elements in Table 2. Howevey
the corrections are too small to give any subatantig]
change. The relative reductions are found to be

15 17 39 ra 41
-2% (077), <1% (F~'), -4% (Ca”’) and -1% (Sc¢' ) and

3

vanishing valuea for H” and n.

TABLE 2

Comparison of calculated and experimental G.T.
matrix elements for single-particle states in
mirror nuclei

Nueledi 3 ft(sec) MgTaxp &ém .Ds
n -+ p sl/2 1212+ 40 3 3
B - He 91/2-1 10604100 3.4 #0.3 3
ot’. §*? byt 44701 30 0.28:0.02  1/3
1 ol a,,, 2370150 1.17:0.1 /5
ca3? » 39 ay 570 43305150 0.32:0.05 3/
seft. catt £, 27805200 0.90;0.1  9/7

The experimental data are taken from:

15 17T .
C and F~': Nuclear Data Sheets

ce39: w.L. Talbert, Phys. Rev. 119 (1960) 272
Sc4l: D.H. Youngblood et al., Nucl.Phys. 65
(1965) 602.

The ft-valus for H3 is based on the discussion given
by J.N. Beheall, Nuclear Physics 75 (1966) 10.

The largest discrepancies between experimental
and calculated matrix elements are found for A=39
and A=4l. This may indicate the presence of more
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complicated components in nmuclear stateg. Also, recant

1
gtripping and pick-up experimenta 9)

show imported deo-
yviations from the closed shell siructure Iox cat0, For
the A = 15 and 4 = 17 gystems the reduction of the
experimental matrix elements is somewh&t smaller and
might be explained by minor deviations from the single-
particle picture of the gtates. However, such devia-
tions should also affect the magnetic dipole moments.
The G.T. moments are related to the isovector part

of the spin contributicn to the magnetic dipole momentg

by the isobarie symmetry

N

l N m l ar
<jm; T =5, Myl 24 o, (1) 5, () ]im; T =5 ¥, >
1

1 1 : o 1, 1
<jm; T = §’MT= 3 l ? o (i) t+(i)|jm; T = 5 LﬁTz -5 >
pa /lc)
l’f ‘];f
__l <§mTlO(2?> o
T2 1 _1 L
<3-3liz3»

The devistions from isobaric symmetry for these
2)

1little importance to the present discusaion. Let us

nuclei are expected to be extremely small ‘' and of
take, for example, the A=1T7 gystem. The observation
that the MéT is reducsd by 16% from the single-particle
value would imply a reduction of 8% in the isovector
gpin contribution to the magnetic moments of thesge
nuclei, This would shift the magnetic moments by 0.2
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magnetons, Howevsy, the magnetic moments both of o17
and of F17 are extremely close to the aingle-particle
va%uas. For 017, Hobs = -1.89, nap = =1,91, and for
Fl Hobg T 4,72 and usp = 4.79. S0 the comparisgn
with the magnetic moments points to the existence of
interaction terms either in the ¥l or in the G.T,
noments.

For nuclei with N >2 we encounter dramatic
hindrance effects for the G.T. trangitions. The
hindrance factors due to the neutron excess are of
the order of 10-100.

The only example of & G.T, transition of a single
particle outside double-closed shells in & nucleus
with N >Z2 1is the decay ca49(p3/2) @ Sc49(p3/2, 3MeV)
(see Fig. 2). We have already discussed the Fermi
matrix elemsnt for this dscay., From the fi-value
{log £t = 5.1) the G.T. transition is seesn %o be
hindered by a factor of about 30 as compared %o the
gingle-particle vsiue, Ag & further sxample of
hindrznce due %o the neutron excess we ma8y meniion
thav the so-celled unhindered G.T. decays in the de=~
Tormed nuclei, when corrected for pairing, still are
t00 slow by about an order of magnitude as compared
to the values obtained from the Nilsson wave func~
tionszo).

The correlation effects which give rise to the
gquenching of the G.T.-matrixz elements have beenel)
conpared with the correlation effects which remove

the Fe}'mi strength from the single-particle itransgi-

tions with Tf = Ti ~ 1. The PFermi strength is con-
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contrated on the isobaric analogue state of the parent.
Tn 8 similar manner, the interactions tend %o cone~
centrate the G.T. strength on & high-~lying collective
gtate. For ths Ferml strength the concentration on

the isobaric analogus state is a direct conseguence

of the isaspin invariance, but for the G.,7. strength
the correlations are not related %o any simple sym~
metry 8nd must ba deduced from definite components

in the nuclear force. The force relevant to G.T7. de~

cays must dbe of the form

v(1,2) = x?l- ‘;2 3’-1-;2 . (11)

Calculations with such & force were first done by

Fujita and IkedaZI) and later by Halbleib and So~
2

rensen 2). Let us consider a transition between

gpin-orbit partners, for example,

a g D
d - d. .
3/2 5/2
The force quoted above will then, in the final

gtate, admix components of ths form

0y (4, (v,(3) @™ L, )
(eg), S elvy) € (e) 2
whers the summation runs over all those orbits vy
which are occupied by neutrons but not by protons.
These components give & contribution to the G.T.
matrix element and are responsible for the quenching
of the matrix element. e also note that these com~

ponents only contribute in second order to the magnetic
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dipole moments. 3o the reduction of the G.I.
moments are not followed by @ similar reduction of

the maegnetic moments,

3, FORBIDDEN DECAYS

In forbidden ﬁ:decays we encounter difficulties
of two kinds. Firstly, thers are several matrix
elements 8o that the relevant part of muclear
structure is not so uniquely determined &s for the
Permi and G.T. transitions. Secondly, we do not
know precisely 1f the F-operators we use are cor-
rect or if there are major corrections from in-
duced interactlons, exchange currents or other un-
known effects (see the contributions of Eman and
Tedié to this conference). However, the vectoxr part
of beta interaction is better known than the axial
vector part, 1f we assume the validity of the con-
served vector current hypothesis. This hypothesis
also implies an intimate relationship between the

nmatrix elements of the g-vector current and the cor-
responding pg-mairix elements. For example, the ob=-
servation that the El transltion sirength is con-
centrated on the giant photoresonance allows the
conclusion that the strength of the A-matrix element
/ ; is concentrated in @ state which is the iso-
baric analogue state of the giant resonance of the
parent, and that we must expect ; %o be small
for transitions between low-lying states.
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Many relations have been deduced between for-
bidden g-matrix elements. However, only one obtain-
ed from the C.V.C. hypothesis is reliable. It was
first given by Fujita23) and also by Eichlar24) and

was written in the form
-+ o o + E_Z_ -
<g>= (w°+2.s m, = 2.4 23)<ir> (13)

for firgt forbidden dscays.

We will consider this relation in more detail
and first indicate how 1t can be deducedBo). The
vector part of the A-current corresponds to the
slectromagnetic current, in fact it is supposed to
be the same current, except for the isospin siruc-
ture. Thus we can connect the f- and the slectro-

magnetic 4-vsctors by the relation
1
(), = - =X, u*h) . (14)

The electromagnetic current fulfils the continuity
equation or the Siegert theorem, which can be
written

apel
el 2> el 1 -
3, I, = v 3 T =0 (15)
From (14) and (15) we obiain
A X
- e S 1
FATEL SR 06

¥e have inserted

3T
= i
sredEr )20 ]
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and unaed
[Hel’ ae]']-.:o .

In Eq. (16) we insert

el 1 . @
B ) G- e g5, () (17)
i
and
’: = & L t_(41) 6‘(r—ri) (18)
1
We then obtain
- ) ig'
=8 _ _ } e 4 a4 - >
Ee st gs ) R egy ¢GF) . (9)
1

For aimplicity, we consider only the first forbidden
matriz elsment of the vector current. Thig isg ugmal,-g
ly denoted by jz or <a> . We uase the notation

-

¢

£ .32
l(jv,x=0,?\=l)=j & éomdr

where ¢ denotss the vectior apherical harmonics
(see Edmonds, p. 81). Using (19) we obtain

(20)
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pere AE >0 1s the total tramsition energy.

fo can now proceed in twoe different ways.

‘ 1) We can insert the average value of the Coulomb
potential 2.4 '2-% and obtain (13) the rela-
tion of Pujita or

2) we can uge an explicit expresaion for the
Coulomb potentiel and evaluate the matrix
olement with suitable wave functions.

Both methods are approximate. The first method cor-

regponds to getting the nondiagonal matrix elemsnts

of the Coulomd potential equal to zerc (see below).

The second method depends om the rellability of the

wave functions used.

The relation between the matrix elements of

;i and a,? can algo be deduced in a very convincing

apd illustrative manner by relating the f-maitrix

glements to the corresponding matrix slements for an

21 y-decay (see Fig. 4). We consider & g -dacay

between the states i and f. The initial state has

igospin TO and the finsl gtate then has isospin

Io-l in a nucleus with N >Z. The iscbaric analogus

state of the initial state is denoted by 17,

Prom Eq. (13) we see that the vector g -

_ operators 0‘9 and the electromagnetic operators

Oel of the same space and gpin dependence are

related by

o8 =-§§- (2, 0%t | (21)

We can then rewrite & fS-matrix element
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£(7T

A

-1,T°-1)[o§|1(mo,mo)>

(-]

#
§

oldn

8
< £(T =1, 1) |[T_,0

]

where we usged
T_li(T,T,)> =

and
T+ lf(To-l,To-l) > =0 o

i .
AE, - am, /E
|
j_ i Ty
N Ng of
e 1! N
FOREL

Pig. 4, The vector matrix ele-
ments for the first forbidden
transition 1 +f are propor—
tional to the y~decay matrix
element for the El transition
1’ +f,

4

& ol . epn
- ver, < f(To-l,To-l)l 011 (LO,T°~1) >

féﬁ; I 1 (To,To-l) >

| i(TO,TO) >

(23)

So a matrix
element for the
8 =transition
gshown in Fig. 4
can be itrang-
lated into a
y-mairix ele-
nent for the
1l y-decay 1'-f,
Using (22) and
the continuity
equation (15)
for the electro~
magnetic current,
we then obtain
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PO S B S <f|:~;gl; } 2 »
<t 3v olu olyu

]
(it TY 11 < flis

(24)

where EY = Ei' -Ef is the energy of the y~-ray. The
relation thus deduced is identical %o the Fujita rela-
$ion (13), since E =AE, . +AE. This relatiogsis
often claimed to be accurats to better than 10% o
However, larger deviations might be found especially’

26,27) The

when the B -matrix elements ars small
erucial point in the derivation is the assumption
that the states i and 1 are exact isobaric snalogue
states, The deviations from formula (13) a2re connsct-
ed with the nondiagonal effscis of the Coulomb force
in distorting the state 1 as compared %o i, The mers
fact that the gtate 1’ in many cases is particle un-
gtable, whereas 1 18 not, shows a deviation from
the axact isobaric symmsiry.

The matrix element of the current can also be
calculated directly without using C.V.C, Let us con-
sider & transition bstween single-particlas states
with wave functions calculated from & potential of
the Woods-Saxon type. In such & potential we musat uge
a different depth for neutrons and protons to re-
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produce the correct binding energles of the singleg-
particle statea, This is usually dons by including
the gymmetiry potential in the gingle-pariicle Ha-
miltonian
1 vl b
Hs.p. =Bt Vot (5 = %,)e *cour, TR T
- -
whare t 18 the isospin of the pariticle and T
the isospin of the core. The necessity of the sym-
metry potential is well known also from the optical
model calculetions and it has especially bheen in-
vestigated in recent years since the discovery of
isobaric analogue states in heavy nuclei and the
more intensive astudy of the igoapin symmetry.
To celculate < @ > directly, we must calculate
the matrix element of

s_(1) (F,4,,))

=t (1) (F, 9 r, Y ) - (25)
i Ylu)

4 at_(1)
=ax LW m n ) -,

4 ' '
=33 (+_(1) r, Ylu) -1

i Ylu :
vl
(v 2o gy, v IH (DT -1, 5 1)

where we have evaluated the time derivative of t. 1)

»
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a t,(1)
gith our single~particle Hamiltonisn ——gp—— =

at
= -%—[ HB p.? $_(1)] . The first two terms cor-

regpond directly to the expression obtained from ths
¢.,V.C. relation (19), whereas the last term arises
from the symmetry potential and is new. Because of
this lasgt term the direct calculation gives a dif-
ferent result than the calculation based on C.V.C.

<a> £ < P

¢.v.C. “directly °

We encounter this difference in all nuclel with a
neutron excess since a8 neutron and a proton interact
in a different way with such nuclei, and we can
therafore not allow ths symmetry potentisml to break
the continuity equation. So & more correct way to
saleulate < 2> 18 %o use the C.V.0. relation. The
contribution from the symmeiry potential in the
direct calculation can be as large as ths contribu-
tion from the Coulomb potentialza), and the results
of the two calculations can therefore differ by a
factor of two.

In the direct calculation we neglect the important
exchange effects depending on the coordinates of the
micleons in the closed shells., In using a singls-
particle model Hamiltonian we should therefore alao
use gome S-operators which depend on the model and
take the exchange- currents into account. Such operators
have not been constructed and are also not strictly
necessary for ithe vector part of the g-interaction
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aince we have tha C.V.C. relatiom to transform
operators depending on the £ -cuzrent dengity intg
operators depending on the ﬂ~chaiga dengity. We
then agsume, just for the electromagnetic moments,
that exchange currents modify the current but legve
the charge distribution practically unchanged.

By utilizing the C.V.C. relation and comparing
two differsnt methods for calculating < ;>, we have
geen that exchange currents are important for the
vector S -currsnt. For the axial vector interaction
we have less powsrful tools to obtain information,
but gimilar effects can of course be expescted.

In conclusion,I should like to point out that
although we have little knowledge about the effective
g -operators, the calculations made so far definitely
reproduce trends in the experimental data, For
example, the calculated and thse expsrimental ft-
veluss for first forbidden transitions between
single-particle stateg diffexr by less than & factor

28)

of two . At present, only thrae such transitions
are known, but in the deformsd nuclel we have also
states which might be characterized as single-
particle states, although ths cores are not clossd
shells, and for these nuclei the agreement is reason-
ableZg).

The author wishes to thank Profs. A. Bohr and
A, ¥inther for advice and helpful discussions on the
subject of thils paper.
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