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Probing Undiscovered Particles with Theory and Data-Driven Tools

Abstract

The Standard Model has been precisely tested by a plethora of experiments and has proved extremely

successful at describing the fundamental interactions of subatomic particles. Despite this, there are numerous

exciting questions motivating the existence of additional physics beyond the Standard Model. In this disser-

tation, we study a variety of theoretical and data-driven tools for discovering this physics. For theoretical

tools, we explore various effective field theories, including those describing: axions mixing with other axions

or non-compact scalars, axion interactions with magnetic monopoles, axion strings interacting with massive

fermions, CP violating Higgs portal dark matter, scalar triplet and singlet-doublet models as solutions to the

CDF-II W mass anomaly, and modifications to Froggatt-Nielsen models for explaining the hierarchy between

different flavors of Standard Model Yukawa couplings. Additionally, we investigate machine learning based

data-driven tools for precision Top-quark mass measurement and for anomaly detection.
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1
Introduction and Literature Review

1.1 Introduction

The Standard Model is a remarkably successful description of the fundamental interactions of subatomic

particles. Since it was first theorized around 50 years ago, it has been precisely tested at a variety of

experiments. The largest and most general purpose experiments are colliders, including the Large Hadron

Collider (LHC), the Large Electron–Positron Collider (LEP), and the Tevatron. However, a variety of other

smaller scale experiments, including fixed-target experiments, beam dump experiments, cherenkov detectors,

time projection chambers, haloscopes, helioscopes, and many others, have also been used to precisely measure

Standard Model parameters, and to set limits on new physics beyond the Standard Model (BSM).

The Standard Model contains three generations each of leptons and quarks, as well as gauge bosons

(the photon, W and Z bosons, and gluons) and the Higgs boson, all transforming in representations of

the Standard Model gauge group1 G = SU(3)C × SU(2)W × U(1)Y. Out of these, the final piece of the

Standard Model to be discovered was the Higgs boson, which was discovered in 2012 at the LHC. While this

discovery was exciting, it was not surprising – a discovery was anticipated due to a “no-lose theorem,” where

longitudinal gauge boson scattering starts to violate perturbative unitary bounds at scales accessible to the

1Technically this is an oversimplification; there are actually four possible options for the Standard Model gauge
group. The other three are a quotient of G by Z2, Z3, or Z6, respectively [9].
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LHC [10]. Since this discovery, however, the roadmap to find additional particles is less clear. Prior to the

first operation of the LHC, there was a sociological predisposition in much of the particle physics community

to expect that the LHC would find BSM physics in the form of low-scale supersymmetry (SUSY) shortly

after it found the Higgs. However, these hopes have gone unfulfilled by the LHC.

Despite this, there is reason to be optimistic that physics beyond the Standard Model (BSM) is still

waiting to be discovered. Many exciting questions remain unanswered. Some, such as the fundamental nature

of dark matter and dark energy, the source of the baryon anti-baryon asymmetry in the early universe, and

the origin of neutrino masses, are tied to experimentally measured quantities that are inexplicable within the

Standard Model and are guaranteed to have a solution beyond it. Others, including several problems with

fine-tuning and explaining large hierarchies (for example, the hierarchy problem, the Strong CP problem,

the cosmological constant problem, and the hierarchy between the size of the masses of different fermion

generations), are more theoretical. While it is in principle possible that there is no fundamental answer to

these more theoretical questions and nature is just tuned by chance, this explanation is unsatisfying and does

not align with our current understanding of small numbers and symmetries. Still other questions are more

contested experimental discrepancies, such as the CDF-II W mass measurement [11], the value of RD [12–18],

and Hubble tension [19–23], which disagree with the Standard Model prediction but could be due to either

new BSM physics or mismodelled systematic errors. In addition to these questions which can motivate new

low scale physics, there are also questions which must be answered by physics at much higher scales, such as

the correct underlying characterization of quantum gravity or the detailed particle content of the underlying

mechanism (inflation [24–28] being the most compelling currently known possibility) which makes the Cosmic

Microwave Background (CMB) isotropic. Extended solitonic objects like topological defects also have the

potential to generate interesting effects and motivate further study of BSM physics. More details regarding

some of these questions and potential answers will be discussed in §1.2.

Without a clear theoretical prior about which of these questions will first yield a discovery, the most

sensible course of action is a simultaneous exploration of a wide variety of options. However, testing such a

wide variety of theories will be challenging. Making progress will require innovative approaches. In addition

to experimental progress, the development of a variety of theoretical and data-based tools will be necessary.

This includes effective field theory (EFT) based theoretical tools and machine learning (ML) based data-

driven ones.

ML tools in particular are necessary to sift through the enormous quantities of data produced by exper-

iments, to process data quickly, to find subtle patterns in sparse data, and to fully utilize and synthesize the

low level information that detectors collect. In the last decade in particular, the use of these tools in particle

physics has advanced tremendously from the previously state-of-the-art Boosted Decision Trees [29]. This

2



is partly driven by deploying similar advances from industry, and partly driven by customized architectures

adapted for particle physics tasks. Many different supervised and unsupervised architectures2 have been

utilized, including autoencoders, convolutional networks, deep sets, diffusion models, fully-connected dense

networks, generative adversarial networks, graph networks, normalizing flows, recurrent networks, recursive

networks, and transformers. It is outside of the scope of this dissertation to discuss the details of each of

these architectures, but references describing them can be found in [30].

These architectures have been applied to a variety of applications. Many of these tools were studied and

developed in simplified proof of concept scenarios. One example is the many different types of classifiers which

have been explored, including both a wide variety of jet taggers [31–97] and BSM signal versus background

classifiers [38, 48, 98–109]. Another is anomaly detection algorithms [8, 108–207], which attempt to design

searches which are less model dependent, and will be discussed more in §9. Further examples include tools for

reconstruction and calibration [208–237], decorrelation [36,173,238–250], more efficient simulations [251–313],

parameter estimation [7, 314–338] (an example of which is discussed in §8), pile-up mitigation [339–345],

uncertainty quantification and robustness [32,213,249,346–364], and unfolding [365–383].

On the experimental side, progress has been sufficient that essentially every state of the art experimental

analysis uses ML tools at some point in the data collection or analysis pipeline. In addition to analyses

which use ML for various smaller pieces (for example, in triggering, calibration, tagging, reconstruction,

and simulation), other analyses are starting to be completed that deploy ML as an indispensable part of

the underlying design of the analysis, such as unsupervised anomaly detection searches [384–387]. More

discussion of these tools can be found in the reviews [253, 388–400]. Despite these substantial advances,

there is still room for the development of additional ML tools and also deployment of additional existing

tools to experiment.

Even if we do not discover new particles in the near future, innovations in experimental, theoretical, and

data-based tools are also vital to precisely measuring Standard Model parameters. These precise measure-

ments are both interesting questions in their own right, and also have the potential to indirectly characterize

sources of BSM physics.

The rest of this dissertation is organized as follows. First, in the remainder of this introduction, we

provide more detailed motivation for the existence of BSM physics. Then in §2, §3, and §4, we discuss some

results about and following from the periodicity of axion fields, including consequences of axion interactions

with topological defects. Next, we discuss several BSM models which are motivated by recent experimental

results. In §5, we consider models of CP violating Higgs portal majorana dark matter and discuss the

consistency of these models with various experimental constraints, including the Galactic Center Excess

2Supervised approaches refer to cases where labels are available; in the unsupervised case labels are not used.
Weakly- and Semi-supervised approaches which use incomplete or imperfect labels also exist.
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(GCE) of gamma rays. In §6, we study the implications of the recent CDF-II measurement of the W-mass

by performing electroweak fits and exploring the viability of a scalar triplet model or the singlet-doublet

model for explaining the measurement. In §7, we show how BSM physics can be embeddded in nontrivial

ways in Froggatt Nielsen (FN) models (models which are a possible explanation of the flavor hierarchy

between SM couplings), and show how the recent Belle II BR(B → Kνν) measurement can be interpreted

in the context of these models. Finally, in §8 and §9, we investigate ML tools which can be used to precisely

measure the top mass and to perform anomaly detection searches for new physics, respectively. We conclude

in §10. More details about some calculations are also provided in appendices A through F.

1.2 Hints of BSM Physics

Many different questions motivate the search for BSM physics. These questions range from experimental

problems (e.g. dark matter, the origin of neutrino masses) where measured quantities cannot be explained

by the Standard Model, to theoretical ones (i.e. fine tuning problems, the nature of quantum gravity).

In this section, we review several different motivations for the existence of BSM physics in more detail.

Since this is an extremely broad subject, we cannot hope to do justice to all of these topics with thorough

explanations here. Instead, we will provide brief introductions to a subset of topics, primarily those which

will be relevant for later chapters in this dissertation. These topics include the hierarchy problem, weakly

interacting massive particle (WIMP) dark matter, axions and the strong CP problem, aesthetic concerns

within the Standard Model (including the flavor hierarchy), and current experimental anomalies. Some other

motivations for BSM physics, including models of inflation, the origin of neutrino masses, the cosmological

constant problem and the nature of dark energy, and the origin of baryon anti-baryon asymmetry can be

reviewed in [401–410].

1.2.1 The Hierarchy Problem

One of the most well studied motivations for BSM physics is the hierarchy problem. Here, we provide a

very brief introduction to the hierarchy problem and its solutions. A more thorough review can be found

in [409,411] and references therein.

At the heart of the hierarchy problem is the question “Why is the Standard Model Higgs so light?”

Two aspects of this question are worth emphasizing. First, the hierarchy problem applies to the Higgs in

particular because it is a scalar, and scalars get large loop corrections to their mass from heavy scales. This

is true regardless of regulator. For example, using a hard cutoff we will see the mass gets corrections that

depend quadratically on the cutoff, whereas using MS the scalar mass corrections depend quadratically on

the heavy matching scale. Even though we have not observed new BSM particles heavier than the Standard
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Model, we know that eventually the Standard Model has to break down as an EFT (either at the Planck

scale due to quantum gravity or below it if additional new physics is discovered), so corrections from these

high scales matter. In order to get a small Higgs mass despite these large corrections, these corrections must

be tuned to cancel very precisely. Second, since the Higgs mass is a dimensionful quantity, we need a scale

to compare it to: the important question is really why the Higgs mass is so much lighter than the Planck

mass.

The hierarchy problem can be made more precise through the idea of naturalness. In its simplest form,

naturalness is the idea dimensionless numbers should be approximately O(1), and we should not expect

very small or very large numbers without justification; accepted justifications are typically related to the

existence of symmetries. More rigorously, naturalness can be characterized in a couple of different ways. ’t

Hooft naturalness is the statement that it is natural for a parameter to be small if a symmetry would be

restored when it is set to zero. Technical naturalness requires that values we set to be small do not receive

large loop corrections, but does not explain the existence of small quantities in the first place. Another

valuable question about naturalness is how to quantify it precisely. While it is impossible to know exactly

how strictly satisfied these criteria should be by nature, several interesting measures have been proposed for

benchmarking different models [412–415].

The skeptical reader might ask why we expect a natural theory in the first place. The strongest reason

to expect naturalness in the case of the Higgs mass is that other small parameters in the Standard Model are

natural. For example, the proton mass scale arises naturally out of confinement and dimensional transmu-

tation. Other examples include: pion masses, which are small because pions are pseudo-Nambu-Goldstone

bosons for chiral symmetry breaking; fermion masses, which are protected by chiral symmetry; and the

Standard Model flavor hierarchy, which is ’t Hooft natural since the flavor symmetries are only violated by

the yukawas. Finally, mass differences such as those between the charged and neutral pion and between the

K0
L and K0

S are described by the expected quadratic sensitivity to heavy mass scales (the ρ meson and charm

quark, respectively).

Numerous solutions to the hierarchy problem have been proposed, many of which rely on the existence

of new particles at or near the weak scale. Historically one of the most popular solutions is supersymmetry

(SUSY) [416–419]. SUSY is an extension of the Lorentz algebra by fermionic generators Qα and Q†
α̇ called

supercharges. Because they are fermionic and therefore obey anticommutation relations, these supercharges

transform fermions into bosons and vice versa. Because of this, bosons and fermions always come in pairs

with the same quantum numbers in SUSY3, and they are organized together into supermultiplets.

3The exception to this is R-charge, under which fields in the same supermultiplet can have different charges. This
is allowed because the R-symmetry generator does not commute with the supercharges, but still leaves the SUSY
algebra invariant.
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Theories can also have more than one supersymmetry. In four dimensions, there can be up to N = 8
supercharges if gravity is included and up to N = 4 if it is not. However, supersymmetric extensions of

the Standard Model that are actively searched for at experiments only have N = 1 supersymmetry because

only SUSY with a single supercharge allows chiral matter like the Standard Model fermions. The simplest

example SUSY model that has been searched for is the Minimal Supersymmetric Standard Model (MSSM),

but there are many other possibilities.

The reason SUSY would solve the hierarchy problem is simple: in a theory with perfect SUSY, all

large bosonic corrections to the Higgs mass would come with fermionic corrections with equal magnitude

but opposite sign. However, we know that in the real world superpartners don’t exist at exactly the same

scale as their Standard Model counterparts, or we would have seen them. This means that SUSY must be

softly broken. We will not discuss the details of the physics responsible for soft SUSY breaking here, but

there are several different mechanisms that can be responsible. See [416,420,421] for reviews. Regardless of

the mechanism responsible for it, soft SUSY breaking prevents a perfect cancellation between bosonic and

fermionic mass corrections. Nonetheless, approximate cancellation with substantially less tuning than the

Standard Model is still retained.

SUSY is also useful for far more than solving the hierarchy problem. In fact, SUSY was not even

originally proposed in the context of the hierarchy problem; instead, early studies of SUSY were motivated

by understanding the maximum amount of symmetry a theory could have.4 If some form of SUSY were

discovered at accessible energies, there would also be a natural dark matter candidate in the form of the

lightest supersymmetric particle (also see §1.2.2). Additionally, unlike the Standard Model itself, unification

at GUT scales is still a possibility in supersymmetric theories. Even if the universe is not described by low-

scale SUSY, SUSY more generally is still a very useful theoretical tool: many quantities can be calculated

in SUSY theories that are too difficult to calculate otherwise, and the consistent quantum gravity theories

that we know of are supersymmetric string theories.

Another class of solutions to the hierarchy problem are composite Higgs models. These rely on using

strong dynamics to spontaneously break a symmetry, and are motivated in spirit by the light pions from

chiral symmetry breaking. These are similar to earlier Technicolor models [424,425], which introduced a new

strongly coupled gauge sector which was broken by a condensate of fermions. In the case of Technicolor,

the same dynamics that breaks the strongly coupled sector also breaks SU(2)W × U(1)Y and gives mass to

the W and Z bosons. However, the original form of technicolor theories were long ago ruled out – they

generically generate flavor changing neutral currents, do not obey electroweak precision constraints, do not

4Supersymmetry was proposed as an exception to the Coleman-Mandula theorem [422], which states that the
maximal amount of allowed symmetry in a QFT (with a valid S-matrix) is the direct product of Poincare symmetry
and an internal symmetry. It was Haag, Lopuszanski, and Sohnius who showed that the Poincare algebra could be
extended to the supersymmetry algebra by allowing fermionic generators [423].
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have a Higgs boson, and have many (unobserved) light resonances around the confinement scale. After

technicolor, composite Higgs models were developed [426] (also see [427,428]). In these models, the Higgs is

still generated from strong dynamics breaking a symmetry, but now that symmetry is global, so the Higgs

is a pseudo-Nambu-Goldstone (pNGB) boson. Specifically, these models separate the scale of confinement

and electroweak symmetry breaking, so that the pNGB is uneaten between the two. The original composite

Higgs proposal is now strongly constrained by Higgs coupling measurements to require substantial tuning,

but other variations allow more flexibility [429,430].

Models with extra dimensions can also lead to interesting solutions to the hierarchy problem. In these

models, the separation between the Planck scale and the electroweak scale is due to either a volume factor or

a warping factor, or a combination of both. In large extra dimension models [431,432], the higher dimensional

Planck scale is not too far above the TeV scale, and the four dimensional Planck scale is large because it

is the higher dimensional scale times the volume of compactified extra dimensions. In Randall-Sundrum

models [433,434], the Standard Model lives on a brane in five dimensional space. The five dimensional space

is warped, so that the four dimensional metric is multiplied by an exponentially suppressed function of the

fifth dimension, called the ‘warp factor’. In RS models, it is this exponential suppression from the warp

factor that generates the hierarchy between the electroweak and Planck scales. More recently, a third class

of extra dimensional models utilizing a linear dilaton geometry has also been proposed [435–437]. In these

models, the hierarchy is generated by the combination of an exponentially large separation between branes

and a linear dependence of the metric on the extra dimension. See [409, 411, 438] for additional review of

extra dimensional models.

A qualitatively different solution to the hierarchy problem comes in the form of anthropic arguments.

The central idea of anthropic arguments is that there exists a multiplicity of different vacua, but only some

of them are conducive to life forming. The fact that we are here to make predictions, therefore, selects

those vacua. If some parameters are required to be small in the vacua that are compatible with life, then

this argument requires those parameters should be small in our universe. Anthropic arguments were first

made precise in the context of the cosmological constant problem [439], but have since been applied to the

hierarchy problem through the Atomic principle [440]. The atomic principle states that in order for life to

form, neutrons cannot decay in bound systems of nuclei, which places a bound on the Standard Model Higgs

vacuum expectation value. However, this argument is not airtight; loopholes include the case where other

Standard Model parameters besides the Higgs vev are allowed to vary [441].

Aside from anthropic arguments, these solutions all predict many particles starting to appear around

the Higgs mass. The lack of observation of these extra particles at the LHC has started to call into question

many of these solutions. Because of this, there has been a renewed focus on developing qualitatively different
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solutions to the hierarchy problem. Often, these solutions can explain the hierarchy between the Higgs mass

and some intermediate scale Λ that is above LHC accessibility but far below the Planck scale, but require

one of the older solutions to take effect above this intermediate scale to explain the Hierarchy between Λ
and MPl. This is sometimes referred to as the “Little Hierarchy Problem.”

One type of solution to the “Little Hierarchy Problem” are neutral naturalness [442] approaches which

rely on discrete symmetries. In these models, there are additional mirror copies of the Standard Model

related to the Standard Model by a discrete symmetry. The additional Higgses have a potential with an

accidental symmetry that mixes them, and the Standard Model Higgs is a pseudo-NGB of that accidental

broken symmetry. By choosing the potential so that one loop corrections to the Higgs mass respect the

accidental symmetry, these models can postpone the scale at which the hierarchy problem needs to be

explained by one loop factor to ∼ O(10TeV). The simplest example of this type of models is the Twin Higgs

model [443]. Another approach is the relaxion [444]. These models involve adding an axion like particle

which couples to gluons through the usual ϕGG̃ coupling as well as to the Standard Model Higgs through

gϕ|H|2, where g is a dimensionful shift symmetry breaking coupling. In this model, as the universe evolves,

the Higgs rolls down its potential. Once QCD confines, the potential gets instanton contributions whose

amplitude is proportional to the Higgs vev, which stops the Higgs from rolling further and allows for a light

Higgs. Typically relaxion-inflaton couplings are engineered to take advantage of slow roll inflation, and to

get the right value of the CP violating phase θ. Since the relaxion solution was proposed, there have also

been a variety of other cosmological approaches to solving the hierarchy problem which we will not discuss

here [445–448]. A third solution is N-naturalness. Like anthropic solutions, N-naturalness [449] is another

probabilistic approach. The difference is that in this case, there are N copies of the Standard Model in the

same universe, and there is a dynamic mechanism (typically during reheating) that selects the sector that

looks like ours to have virtually all of the energy density of the universe. The potentially unappealing part

of this model is that it requires an exponentially large number of copies of the Standard Model since the

cutoff scales as
√

N; even extending up to 10 TeV requires 104 copies, and solving the full hierarchy problem

requires many more (and also lowers the scale where gravity becomes strongly coupled).

Finally, in addition to the recent solutions to the “Little Hierarchy Problem,” recent developments also

instill hope for qualitatively different hierarchy problem solutions which do not lead to new physics at the

weak scale. For example, there has been recent progress deriving constraints from quantum gravity by

utilizing Swampland conjectures like the Weak Gravity Conjecture [450–455].5 Another area where there is

5The Swampland program uses constraints from quantum gravity to impose constrains on low energy EFTs that
aren’t apparent from the EFT point of view. The weak gravity conjecture is an example of a Swampland Conjecture.
There are several different versions of it; the original (electric) weak gravity conjecture [450] says that in an abelian
gauge theory coupled to gravity, there must exist a state of charge q and mass m such that qg > m/MPl. See [456,457]
for reviews.
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hope for additional progress is finding generalized symmetries (symmetries where the charged operators are

not just particles, but can have other dimensions) [458] which might make the Higgs mass ’t Hooft natural.

1.2.2 Dark Matter

Astrophysical and cosmological evidence from a variety of scales necessitates the existence of dark matter.

The earliest hints of missing mass came almost a century ago from discrepancies between the potential

calculated from velocities due to Doppler shift and the potential calculated from the amount of luminous

matter directly observed in galaxies and clusters of galaxies [459, 460]. Since then, additional evidence at

galactic, cluster, and cosmological scales has been uncovered. In addition to the famous galactic rotation

curves first measured by Vera Rubin and collaborators [461], evidence at galactic scales includes the stability

of dwarf spheroidal galaxies against tidal forces [462], strong gravitational lensing (and its weak modulation)

by elliptical galaxies [463–465], weak gravitational lensing of galaxies by foreground structure6 [467], and

many other examples. At cluster scales, some of the strongest evidence comes from collisions of clusters

such as the Bullet cluster and MACS J0025.4-1222, where x-ray and gravitational lensing data were both

available to simultaneously and independently study luminous and total matter content, respectively [468–

470]. There is also more general strong lensing evidence from other clusters [471, 472]. Many of the most

precise measurements of dark matter now come from cosmology, such as the most recent fit of the CMB power

spectrum to Planck data (including temperature, polarization, and lensing), which requires DM to constitute

27% of the energy density of the universe [20], as well as the matter power spectrum [473]. See [474–476] for

more detailed discussions.

The fundamental nature of the dark matter generating these gravitational effects is unknown. Many dark

matter candidates have been proposed with a diverse set of different masses. These range from ultralight

dark matter models with masses of order 10−20 eV [477–480] to primordial black holes with masses of order

10M� [481–485]. Despite its unknown fundamental nature, dark matter is required to satisfy some general

constraints: it is required to be neutral with respect to the electromagnetic and strong forces,7 to be cold,

to have a lifetime greater than the age of the universe, and to interact at most very weakly with Standard

Model particles. There is somewhat more flexibility for dark matter interactions with itself or other particles

in secluded dark sectors, though even self-interactions can still be constrained. There are many excellent

6Gravitational lensing is the distortion of light by its gravitational interactions with matter. Strong lensing occurs
when the distortion is substantial enough to form multiple images or arcs. With weak lensing, the image is only
distorted (rather than forming multiple images or arcs) and distributions of lensed objects often must be studied to
draw conclusions. See [466] for a review.

7One proposed exception to this is millicharged dark matter, where dark matter has a very tiny electric charge.
While millicharged dark matter can arise in sensible models (for example, dark photon models) [486–489], its freeze-
out production is ruled out by structure formation and the CMB [490–494] and its freeze-in production is now also
strongly constrained [495].
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reviews on dark matter candidates and constraints, see, e.g. [474–476,488,496–502].

Historically, the most popular dark matter candidates were thermal relic WIMPs. These particles were

proposed to be at approximately the same scale as the W and Z bosons (O(100 GeV)), and to interact with

standard model particles either through the weak force or a new mediator at a similar scale, depending on

the exact model. As thermal relics, WIMPs followed the standard cosmological freeze-out story. Because

they were in equilibrium with the Standard Model plasma in the early universe, their population started

to decrease exponentially due to annihilation after becoming non-relativistic. Before the dark matter could

annihilate completely, the universe cooled enough such that WIMPs were no longer in equilibrium with the

Standard Model plasma, leaving a relic density of dark matter. Specifically, thermal WIMPs in the mass

range were motivated by the so-called “WIMP miracle,” which is the observation that the interaction strength

required to correctly set the dark matter thermal relic abundance with thermal freeze-out is the same size as

that of the Standard Model weak interactions. Another reason for the popularity of thermal relic WIMPs was

their prevalence in many BSM theories; notable examples include the lightest supersymmetry particle (LSP)

in R-parity preserving SUSY and the lightest Kaluza-Klein particle (LKP) in extra dimensional Kaluza-Klein

theories. Minimal WIMPs in singlet-doublet and doublet-triplet models will be discussed more in §5.

More recently, the parameter space for WIMP models has been extensively probed by a variety of

experiments which have substantially limited (but not eliminated) their feasibility. While there are still

some viable regions of parameter space in certain thermal WIMP models, increasingly stringent constraints

have motivated interest in a wide collection of other potential dark matter candidates. These other models

relax several of the implicit assumptions made for the simplest thermal WIMP models, including thermal

production through 2→ 2 annihilation, a weak scale mass, and the types and strengths of interactions with

Standard Model and other dark sector particles. These dark matter candidates are characterized by several

features, including mass, spin, type of portal to the Standard Model, production mechanism, and interactions

with other dark particles. While the dark matter candidates are too numerous to comprehensively list,

examples include:

• Ultralight dark matter candidates with masses below the keV scale, which behave as classical fields.

The lightest of these candidates are referred to as fuzzy dark matter and have masses around 10−21 −

10−22 eV [477,478], but they are now strongly constrained [479,480]. Axions, which will be discussed

more in §1.2.3, also fall into this range.

• Light dark matter models, where the dark matter mass is between keV and GeV scale. Some of

the simplest examples include warm dark matter models like sterile neutrinos [503], but these are

substantially constrained by structure formation. More complicated examples of light dark matter

can be either thermal or non-thermal depending on the details of a given model and can sometimes
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evade these constraints (see [488] and references therein for examples).

• The heaviest possible dark matter candidates: black holes which formed in the early universe, called

primordial black holes (PBHs) [481,482,504,505]. In order to be all of dark matter, masses of roughly

10−11M� to 10−16M� are required, but PBHs can be 5-10% of dark matter up to masses O(10)M�
[483–485].

• Dark matter candidates with masses between WIMPs and PBHs. At the lower end of this is particles

like Wimpzillas with masses between O(100) TeV and MPl, which must be produced non-thermally

[506–508]. Above MPl, dark matter candidates must be composite objects, such as the PBHs previously

discussed, quark nuggets [509], or Q-balls [510].

• Weakly interacting candidates with a different cosmological history, including: asymmetric DM, where

the abundance depends on the asymmetry between the dark matter and its antiparticle [511–515]; for-

bidden dark matter, where kinematically forbidden dark matter annihilations occur for dark matter

particles with momenta in the upper tail of the thermal momenta distribution [516, 517]; coannihi-

lations, where the abundance of dark matter changes because it annihilates against heavier states

[517, 518]; semi-annihilation, where two dark matter particles annihilate to one dark matter particle

and one unstable particle [519]; and co-scattering, where the dark matter relic abundance is determined

by inelastic scattering of the dark matter off another particle [520].

• Light and weak scale models which change the interaction strength. Examples are feebly interacting

dark matter (FIMPs) [521,522], where interactions are too weak to ever reach equilibrium and the dark

matter abundance freezes-in because the interaction strength increases with decreasing temperature,

and strongly interacting massive particles (SIMPs) [523], where dark matter is at or below the GeV

scale and the relic abundance is set by 3 → 2 annihilation from dark matter strong self-interactions.

Other similar models that rely on 2↔ n interactions in the dark sector include cannibal DM [524,525]

and elastically decoupling relics (ELDERs) [526,527].

• Many models with more complicated self-interactions and secluded dark sectors, some of which are

reviewed in [528]. Sometimes these dark sectors are realized in explicit models, but it is also common

to parameterize these in terms of their portal to the Standard Model. Example portals include kinetic

mixing of dark photons with ordinary photons, Higgs boson interactions with the dark sector, axion-

like particles (ALPs), and neutrinos.

See [488,529] for more details on many of these dark matter models.

This extensive collection of dark matter models has motivated a similarly extensive experimental pro-

gram. In addition to providing evidence for the existence of dark matter, many cosmological datasets can
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also constrain its properties. One example is the number of effective light degrees of freedom Neff from

the CMB and BBN, which can constrain warm dark matter models and other light dark sector particles.

Another is CMB data more generally: both anisotropies and spectral distortions can be used to constrain

dark matter interactions. A third example is the 21cm signal, which is sensitive to interactions which change

the temperature of baryons. Additionally, other constraints come from the matter power spectrum and

from gravitational lensing at an assortment of different scales. This is only a small fraction of the many

cosmological constraints on dark matter models; a more thorough list can be found in [476].

In addition to cosmological constraints, efforts to confirm the nature of dark matter include searches at

colliders, indirect detection experiments, and direct detection experiments. Collider searches try to observe

dark matter production, but are typically very model dependent and only sensitive to a small subset of dark

matter models. Indirect detection looks for annihilation or decay of dark matter from cosmic sources, usually

to photons, neutrinos, or charged particles. The brightest potential indirect detection signals often come from

the Milky Way, but searches using other dark matter sources can also be valuable because they tend to be less

contaminated. For example, whether the source of the galactic center excess (GCE) that has been observed

is from dark matter annihilation is an area of active debate (see §5 for more discussion of the GCE), but the

dark matter interpretation of this excess can be constrained by other indirect detection measurements such

as those from ultra-faint dwarfs. In addition, there are indirect detection signals from purely gravitational

interactions in some models, such as gravitational waves. See [494, 496] for more discussion of indirect

detection. Finally, direct detection [530] searches look for dark matter scattering off of Standard Model

particles. Traditionally, this has involved looking for nuclear recoils from scattering at experiments like

XENON1T [531–533], XENONnT [534], PICO [535, 536], and LZ [537]. More recently there has been

substantial progress in methods of looking for lighter WIMPs. Instead of nuclear recoils, these proposals

look for phonons, electrons and various different collective excitations [538–549]. See [488,497,500] for recent

reviews of direct detection, including of light dark matter.

1.2.3 Axions and the Strong CP Problem

The strong CP problem is another fine tuning problem. At its heart is the puzzle of why the neutron electric

dipole moment (EDM) is so small. Since CP is not a good symmetry of the Standard Model (it is violated

in the CKM matrix), there is nothing to forbid the Standard Model from possessing a θGG̃ term. This

term generates a neutron EDM of size 10−16 θ e cm.8 Since the neutron EDM is actually measured to be

|dn| ≤ 1.8 × 10−26 e cm [552], the very small value |θ| ≲ 10−10 is required, which violates our naturalness

8See [550] for a review of this calculation; θ = θ − argdet(YuYd) is the invariant combination of θ and the phases
of the quark Yukawa matrices. Also see [409,496,551] for reviews of the Strong CP problem more generally.
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expectations of O(1) numbers. It turns out that θ is technically natural in the Standard Model because the

running of θ first comes in at seven loops [553], but is not ’t Hooft natural because there is no symmetry

that is restored if we set θ = 0.

There are several classes of solutions to the strong CP problem. The simplest of these are massless up

quark solutions. The simplified form of this argument says that if we take one of the quarks to have zero mass

(the up-quark is usually chosen since it is known to have the smallest mass), then the phase of that quark can

be rotated freely, making θ unphysical. More precisely, only the CP odd part of the mass parameter, which

is the imaginary part of M = eiθdet(YuYd), needs to vanish for this solution to work. Since instantons can

generate purely real M, it is enough to have a quark whose mass is purely generated by instantons [554–557]

(also see [558] for a longer discussion). However, data, lattice, and large N calculations have ruled this

solution out by showing that QCD instantons are insufficient to achieve the correct quark mass [559–562].

There have been some recent efforts to revive this type of solution with additional instanton effects that

come from embedding within a larger gauge group (see [558, 563]), but as of now these solutions are either

not fully consistent with various constraints or not yet worked out for the full case of the Standard Model.

There have also been some efforts to choose a hidden sector quark be massless instead of the up-quark, see

e.g. [564].

Another type of solution makes generalized parity or CP a good symmetry in the UV, and then sponta-

neously breaks it. CP solutions are called Nelson-Barr [565, 566] models. For these solutions, spontaneous

breaking must be engineered so that θ is small but the CKM phase is large. The simplest example of these

models [567] has extra SU(2) singlet quarks with hypercharge ±1/3 which communicate the CP breaking

from additional scalars to the Standard Model quarks. In minimal parity solutions [568–570], the Standard

Model is extended by SU(2)R and an additional set of mirror particles charged under this group is intro-

duced. The parity operation is then supplemented with SU(2)L ↔ SU(2)R. Although this generalized parity

symmetry doesn’t explicitly forbid a CKM phase, the symmetry still needs to be broken for the model to be

phenomenologically viable. There are some challenges that must be overcome for the minimal realizations

of both of these types of models (for example, stabilizing a low P or CP breaking scale; see [571–573] for

more details), but model-building can overcome many of them [574–582].

Axions are the third (and most popular) type of solution to the Strong CP problem [583–586]. In what

follows, I will briefly describe the QCD axion solution to the Strong CP problem, as well as summarize

a few other applications of axions more generally and outline some experimental techniques to search for

them. More about axions will be discussed in §2 - §4, and can also be found in many reviews including

[496,550,551,587–591].

The QCD axion is a periodic scalar a(x) whose purpose is to generate a θ dependent potential which is
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minimized when dn = 0, so that the strong CP problem is solved dynamically when θ relaxes to its minimum.

The Lagrangian for the axion includes a kinetic term as well as a coupling to gluons

L ⊃ N
32π2fa

∫
a(x)Tr[GG̃]. (1.1)

where fa is the axion decay constant. N ∈ Z is an integer because a(x) is periodic; coupling quantization is

required in order for the path integral to be well defined [551]. In addition, derivative fermion couplings and

couplings to other gauge fields of the same form are also allowed;9 other couplings which do not respect a

continuous axion shift symmetry should not be present. The axion potential is generated nonperturbatively

from the gluon coupling. It can be computed by expanding the Chiral Lagrangian mass term,10 after using

an anomalous Chiral rotation to move the gluon coupling to the phase of that mass term. The result is

V(a) = −m2
πf2

π

√
1− 4mumd

(mu + md)2 sin2
(Na

2fa
+

θ
2
)
. (1.2)

This potential gives the axion an expectation value 〈a〉 = −θfa. Since dn ∼ θ + a/fa, this expectation value

sets dn = 0 at the minimum of the axion potential and therefore solves the Strong CP problem.

Since axions couple to gauge bosons through dimension five operators, axion models are only EFTs that

must be UV completed. There are several different types of possible UV completions, which can be divided

into four dimensional field theory UV completions and higher dimensional ones. In four dimensional UV

completions, the axion is typically a pseudo-NGB of a broken U(1) Pecci-Quinn symmetry. There are two

classes of four dimensional UV completions: KSVZ [592,593] and DFSZ models [594,595]. In KSVZ models,

new heavy fermions which have gauge charge are added, along with a scalar φ whose phase is the axion. The

scalar and some of the fermions are charged under the PQ symmetry so that the Yukawa couplings between

the new fermions and φ are respected by the symmetry, and the scalar has a PQ breaking potential. After

symmetry breaking and integrating out the fermions, the yukawa couplings generate aGG̃. An example

KSVZ like model will be discussed in §2. In DFSZ models, a second Higgs doublet and a heavy scalar

singlet are added, and all Higgs fields carry PQ charge. Again, the Higgs potential breaks U(1)PQ, leading

to an axion that is a combination of the three scalars. In DFSZ models, since the Higgses are all charged

under U(1)PQ, Standard Model fermions must also have U(1)PQ charges. This leads to tree-level Standard

Model fermion interactions with the axion which can be constrained. In extra dimensional UV completions,

9In addition to quantized photon couplings of the the same form as (1.1), the QCD axion also has an axion coupling
to photons from the mixing with the pion. As discussed in §2, the coefficient of this coupling violates quantization
by a factor proportional to the axion mass squared.

10This is the zero temperature potential. At finite temperature, there is also a contribution from thermal instantons
which is important for understanding axion cosmology.
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there is no PQ symmetry that is spontaneously broken. Instead, the axion is a zero mode of a higher

dimensional gauge field, and the higher dimensional gauge symmetry protects the approximately conserved

axion current. The axion kinetic term is inherited from the higher dimensional kinetic term (with decay

constant depending on the volume of the compactification), and the θGG̃ coupling is inherited from the

higher dimensional Chern-Simons term. Extra dimensional models of axions were first motivated by their

appearance in string theory constructions [596–598], but there are also field theory examples. More details

and references on extra dimensional axions can be found in the review [551].

An important challenge for the axion solution to the strong CP problem is the axion quality problem

[599–601]. In the four dimensional field theory UV completions described above, there is nothing to forbid

operators which explicitly break PQ from spoiling the solution. In fact, we expect these operators to appear

at the quantum gravity scale, since quantum gravity is expected to break all global symmetries [602–604]. In

order for the axion Strong CP solution to be preserved, Planck suppressed operators with dimension up to 14

must be forbidden. While it is possible to do this using discrete symmetries or compositeness [605,606], these

solutions are complicated and spoil much of the simplicity which makes axions especially appealing. However,

the quality problem is circumvented in higher dimensional UV completions because other contributions to

the axion potential are also exponentially suppressed, and therefore it is reasonable to expect them to be

subdominant to the potential from QCD. To see this, note that in extra dimensional theories contributions

to the axion potential only come from couplings that depend non-derivatively on the higher dimensional

gauge field. This means there are only two additional kinds of contributions to the axion potential. One

is from Chern-Simons couplings to additional gauge fields, which are non-perturbative for the same reason

as the gluon potential. The second is from the covariant derivative coupling of the gauge field to charged

particles. In this case, the contribution to the potential is also an instanton effect coming from the charged

field worldlines winding around the compactified dimensions, resulting in exponential suppression by the

volume of the extra dimensions. See [551] for a more extensive discussion.

In addition to the QCD axion, there are also a variety of more general axion models which do not

solve the strong CP problem. These non-QCD axions are also sometimes referred to as axion like particles

(ALPs). Although ALPs do not solve the Strong CP problem, they are motivated by factors including the

multiple cosmological roles axions can play, their prevalence in string theory, and by wanting to understand

the parameter space of models that are now being probed by ongoing experiments. In these models, the

axion is still a periodic scalar with a continuous shift symmetry violated primarily by gauge boson couplings

of the form aFF̃. However, unlike in the QCD axion case where this coupling is to gluons, in the more

general case F can be the field strength of any gauge field. Additionally, many of these models are more

complicated and have more than one axion. While a general discussion of axion models is beyond the scope
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of this dissertation, some simple examples are discussed in more detail in §2.

Next, we turn to a discussion of the many different uses of axions. As mentioned in §1.2.2, one of the most

important roles for axions is to be dark matter [607–609]. Axions serve this purpose through the misalignment

mechanism: they behave as coherent classical fields, which redshift like matter. More explicitly, the equation

of motion of the axion field looks like that of a harmonic oscillator. At early times, the axion behaves like

an overdamped oscillator due to a large damping term called Hubble friction which is proportional to the

Hubble constant. This fixes the value of the axion field to a constant θ0.11 As the universe cools, Hubble

friction stops dominating, and the axion starts oscillating in its potential. Solving for the axion field in

terms of temperature and utilizing it to compute the energy density then shows that the axion redshifts

like matter once the axion mass stops changing with temperature. In order to get the correct dark matter

relic abundance for the QCD axion, this typically requires an axion decay constant of fa = O(1012) GeV

and a mass O(μeV).12 In the ALP case, a larger section of parameter space is permitted. Additional

modifications [610–621] such as nonstandard cosmologies, kinetic misalignment, trapped misalignment, or

axiogenesis can further enlarge the allowed parameter space; see [591] for more discussion.

The details of axion dark matter formation depend strongly on whether there was a PQ symmetry which

was broken after inflation. If there was, then in addition to the the misalignment mechanism, there is another

contribution to axion dark matter which comes from axion strings. Axion strings (which are discussed more

in §4) are solitonic objects which form through the Kibble-Zurek mechanism [622,623]. In the Kibble-Zurek

mechanism, different regions of space take different degenerate values of the vaccuum expectation value after

symmetry breaking, which causes solitonic objects to form between these vacua. In the axion string case,

different patches of the universe will have different values of θ0 after post-inflationary PQ breaking. There

will be regions around which θ0 varies from 0 to 2π; at the core of these regions axion strings will form. The

network of strings that is formed in this way will persist and evolve as the universe expands (see [496, 591]

for details). As the string network evolves, it radiates axions which can be an important contribution to

axion dark matter. While this contribution can be estimated analytically, state-of-the-art estimations rely

on detailed numerical simulations like [624]. Once the continuous axion shift symmetry is broken by QCD,

domain walls can also form. If the domain wall number N = 1, then these domain walls will self-annihilate.

Otherwise, they will become stable, which is a problem cosmologically because we do not see them.

In addition to being dark matter, axions can also perform several other important functions in the early

universe. One example is that the axion can be the inflaton which drives the exponential expansion of the

11Depending on whether there is a PQ symmetry which broke after inflation, there might be multiple patches with
different fixed θ0, but locally θ0 remains fixed for large H.

12This assumes the initial θ0 is O(1). If PQ breaks after inflation, this is a necessary assumption, since different
patches are expected to have different values of θ0 and we should average them. Otherwise, a smaller dark matter
abundance can be obtained by tuning the initial θ0 to be less than O(1).
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universe during inflation. The axion is a natural candidate for the inflaton [625] because the shift symmetry

can protect the flatness of the potential which is necessary for the slow-roll conditions to be satisfied.

However, there are challenges associated with engineering a large enough field range for these models to

work; see [590] or §2 for more discussion. Also note that an axion that plays the role of the inflaton

cannot also be a dark matter candidate. Other potential applications of axions include producing large-scale

magnetic fields [626, 627], contributing to the matter/antimatter asymmetry in the Universe [621, 628–630],

and helping to generate neutrino masses [631, 632]. Finally, as previously mentioned, axions show up very

naturally in string theory as zero modes of higher dimensional gauge fields [596–598,633–637].

The axion’s abundant promise for solving multiple physics puzzles has motivated many different experi-

mental probes. Some of these probes rely on astrophysical and cosmological data, while others are dedicated

laboratory experiments. Many probe the axion-photon coupling, but others are sensitive to the axion nucleon

coupling or other axion fermion couplings. The validity of the experimental constraints also depends on the

axion mass, and on other assumptions such as the axion’s cosmological history and whether the axion is dark

matter. Since this is such an active area of research, we will only highlight a few examples; a more complete

set of constraints can be found at [638].

As mentioned above in the context of dark matter formation, the axion’s cosmology is strongly dependent

on whether there was a PQ symmetry which broke after inflation. In the case where such a symmetry

existed, constraints come from the previously discussed string-domain wall network. In the case where

PQ broke before inflation ended (or there was no PQ symmetry to begin with), the strongest constraints

come from limits on isocurvature perturbations, which exist for preinflationary axions because the quantum

fluctuations of axion fields would also be inflated and turn into isocurvature perturbations once the axion

attains mass. Additionally, whether PQ broke before or after inflation, cosmology also strongly constrains

thermally produced axions.

We conclude this subsection by listing a few example astrophysical and laboratory constraints on axions.

The most well-known laboratory constraints come from haloscopes like ADMX [639–644] which have probed

the QCD axion line. They use a resonant cavity with a magnetic field to try to convert dark matter

axions to an electromagnetic signal. Other terrestrial experiments searching for dark matter axions include

broadband experiments like ABRACADABRA [645–648] and DMRadio [649], which utilize the effective

current that is generated by an oscillating axion field in the presence of a magnetic field. Other laboratory

experiments which don’t assume the axion is dark matter include light shining through walls experiments like

ALPs [650,651] and OSQAR [652], which work by applying a magnetic field to convert an intense laser into

axions which could pass through a material, and then convert the axions back to photons on the other side.

There are also an increasing number of experiments which can directly probe the axion nucleon coupling,
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such as CASPER [653–655] and NASDUCK [656, 657]. In addition to terrestrial experiments, other limits

on dark matter axions (especially those with relatively high masses) come from indirect detection of axions

annihilating into photons at various wavelengths [658–667]. There are also other astrophysical bounds which

do not rely on axions being dark matter, such as those from stellar cooling [668], from superradiance [669–672],

from the x-rays emitted by the decay of the irreducible cosmological axion background [673], and from solar

or globular cluster axion emission [674–677]. Finally, we reiterate that this is only a subset of the many

experimental probes of axion parameter space, and that a more complete list of constraints can be found

at [638].

1.2.4 Aesthetic Concerns

In the sections above, we have described in detail two important fine tuning problems with the Standard

Model. In addition to these precisely defined naturalness questions, there are also a host of other aesthetic

questions we can ask about the Standard Model.

One example of these types of questions is why the CKM and PMNS matrices have the structure that

they do. The CKM matrix in particular leads to a hierarchy of six orders of magnitude between the masses

of different flavors of charged fermions. Although (as previously mentioned) this hierarchy is technically

natural, setting fermion masses so far apart by hand is hardly appealing. Technical naturalness allows us

to generate this hierarchy at high scales, but it would still be preferable to have a dynamical explanation at

those high scales. We discuss models for the flavor hierarchy in more detail in §7.

Other aesthetic questions have to do with why the Standard Model isn’t simpler. For example, why are

there three generations of fermions? Or, why does the gauge group take the structure that it does? Why

do we live in 3+1 dimensions? There are models which are (partially) motivated by these questions, such

as Grand Unified Theories (GUTs), which embed the Standard model gauge group into a simpler unified

gauge group at high energies [407, 678–682]. Another example is [558], which proposes a solution (in a toy

example) to the Strong CP problem utilizing Ncolors = Ngenerations.

1.2.5 Experimental Anomalies

The potential sources of BSM discussed in the previous several sections are due to fairly well established

experimental and theoretical concerns. However, there are many other experimental hints of physics beyond

the Standard Model. These are measurements that do not currently agree with Standard Model predictions,

but whose disagreement could be transient due to theoretical or experimental mismodeling, including not

yet understood systematics. In this section, we briefly discuss some of these current experimental hints (as

of Spring 2024) of new physics.
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There are several anomalies in flavor physics data. One example which has gotten substantial atten-

tion is the muon magnetic dipole moment. When the first results from the muon g - 2 experiment from

Fermilab were released in 2021 [683] and confirmed the results of the Brookhaven E821 experiment [684],

the experimental result disagreed with the concensus of the Standard Model theoretical value [685] by more

than 5σ. Since then, additional results from the Fermilab experiment have been released [686] which are

consistent with previous results, but the theoretical value from [685] has been questioned. The challenge

arises because the largest contribution to the uncertainty (the hadronic vacuum polarization) cannot be

computed from first principles. Instead, it must either be derived using a data-driven dispersion relation

approach (from the optical theorem) or using the lattice. More recently, updated lattice results [687] as

well as new data from the CMD3 experiment [688] seem to point to a much smaller discrepancy between

theory and experiment. Another flavor physics anomaly is the Cabibo angle anomaly. The expectation

from a combination of CKM unitarity and the comparatively small size of Vub is that |Vud| and |Vus| should

be determined from the Cabibbo angle by |Vud| ' cos θ12 and |Vus| ' sin θ12. However, values of |Vud|,

|Vus/Vud|, and |Vus| obtained from beta decay [689, 690], leptonic Kaon decays [691], and semi-leptonic

Kaon decays [692] disagree with this expectation at ∼ 3σ. There is a similar ∼ 4σ discrepancy between

the two values of |Vud| which can be extracted from the neutron lifetime [693–695] when it is measured

two different ways: one which counts the number of remaining neutrons after waiting for decays, and

the other which measures the number of protons which are decay products. An additional anomaly is

RD(∗) ≡ BR
(
B→ D(∗)τν

)
/BR

(
B→ D(∗)ℓν

)
, which disagrees with the Standard Model at ∼ 3σ [696]. This

is in contrast to R(K(∗)) ≡ Br(B→ K(∗)μ+μ−)/Br(B→ K(∗)e+e−), which was thought to be anomalous but

now agrees well with the Standard Model [697]. Other flavor physics anomalies include the recent (not yet

statistically significant) Belle-II BR(B → Kνν) [698] measurement (discussed more in §7) and the amount

of CP violation in B→ Kπ decays, which is referred to as the Kπ puzzle [699,700].

There are also a few other claims of anomalies from collider data. The most significant of these is the

CDF-II measurement of the W boson mass [11], which disagrees with the Standard Model at 7σ. Since

this anomaly is discussed extensively in §6, we defer additional discussion of it until then. There have also

been claims of hints of resonances with low global significance ≈ 1− 3σ at several energies [701, 702]. More

detailed discussion of these resonances and other collider anomalies can be found in [703,704].

Neutrino physics is another source of anomalies in data. These anomalies can be broadly divided into

two categories: electron (anti-)neutrino appearance anomalies in short baseline oscillation experiments, and

electron (anti-)neutrino disappearance anomalies in reactors and radioactive source experiments. The first

category comprises the LSND [705, 706] and MiniBooNE excesses [707]. Both the LSND and MiniBooNE

experiments used pion decay to produce muon (anti-)neutrinos, and searched for their oscillation into electron
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(anti-)neutrinos. LSND utilized pion decays at rest and could only run in anti-neutrino mode; MiniBooNE

used pions which decayed in-flight and could run in either neutrino or anti-neutrino mode. Both experiments

found excesses in electron (anti-)neutrino appearance. However, a simultaneous explanation of both excesses

is in tension with other constraints. Constraints also make explaining each of these excesses individually a

challenge. The simplest models which have been proposed are models with an extra sterile neutrino, however,

these are strongly constrained by both cosmology and recent experiments such as MicroBooNE [708]. The

second category includes electron neutrino disappearance experiments like SAGE [709], GALLEX [710],

and BEST [711, 712], which use Gallium detectors to probe electron anti-neutrinos emitted by radioactive

sources. In these experiments, oscillations are too rapid to resolve but aggregating them gives the appearance

of a deficit. However, it is also difficult to come up with models which explain this anomaly and are

consistent with other constraints, particularly from solar and reactor data [713]. In addition, this second

category contains reactor experiments, which were thought to have similar hints of electron anti-neutrino

disappearance, but dependence on nuclear physics makes the modeling of the anti-neutrino spectrum in these

experiments complicated; recently it has been argued these reactor anomalies can actually be explained by

source mismodeling. More recent reactor experiments have also ruled out much of the parameter space

favored by previous reactor space in sterile neutrino models. See [714,715] for more details, as well as a more

thorough discussion of the various neutrino anomalies, constraints, and models to explain them.

Finally, we conclude this subsection by describing several anomalies in astrophysical and cosmological

data which could have explanations stemming from new fundamental particles. An important example which

has driven substantial model building in the last several years is the Hubble tension, which is the discrepancy

between early universe measurements of the Hubble expansion rate from the CMB data and late universe

measurements of the same rate [19–23]. Many different solutions [19,716] which introduce BSM particles have

been proposed to reduce this tension, however they run into obstacles completely eliminating the tension.

A similar cosmological tension is the S8 tension. S8 characterizes the clustering of matter at scales of 8 h−1

Mpc; the S8 tension arises because the measurements of S8 from late universe data do not agree with those

inferred from the CMB. The S8 tension is reviewed in [716]. Additionally, there have been several claims of

excesses in astrophysical charged cosmic ray data, including in positrons [717, 718], anti-protons [719, 720],

and anti-helium nuclei [721–723]. While these have been suggested to be evidence of various WIMP dark

matter models, more recently it has been argued that the positron and anti-proton excesses can be explained

due to more conventional means. Specifically, positrons could be created and accelerated by pulsars [724],

and the anti-positron excess disappears when correlated systematic errors are taken into account [725,726].

In contrast, astrophysical explanations for the anti-helium excess are more difficult [727]. See [724] for more

details on cosmic ray excesses. Another anomaly is the very recent measurement of the dark energy equation
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of state using baryon acoustic oscillation data from DESI [728], which shows a preference for time-dependent

dark energy over a cosmological constant. However, it has been argued that we should be cautious in taking

this result at face value, both because the phenomenological model that was fit to data is hard to describe

with sensible particle physics models and because the results depend on the choice of prior for the parameters

in the equation of state [729]. The final anomaly we will discuss is the statistically significant excess of gamma

rays found at the galactic center called the galactic center excess (GCE). Various analyses have showed that

the GCE is well fit by either dark matter or millisecond pulsars, and that we are not currently able to

conclusively determine its source. The dark matter explanation of this galactic center excess (GCE) will be

discussed in more detail in §5.
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2
Axion Periodicity and Coupling Quantization in the Presence of

Mixing

2.1 Introduction

Axion fields are ubiquitous in theories of physics beyond the Standard Model. For this chapter, the defining

feature of an axion (as compared with a generic scalar field) is that it is a compact boson, whose target space

is a circle. That is, an axion field by definition is identified under a discrete shift symmetry:

a(x) ∼= a(x) + 2πnFa, n ∈ Z (2.1)

where 2πFa is the fundamental period of the field.

The periodicity (2.1) of an axion has significant consequences for the structure of axion effective field

theories. An immediate consequence is that axion potentials must be periodic functions. Less obviously,

for reasons that we will review below, couplings of the form aFμνF̃μν of axions to gauge fields must have

quantized coefficients, which are integer multiples of e2/(16π2Fa). This poses a significant challenge for many

phenomenological models that rely on axions. For example, in a cosmological model one might be interested

in an axion potential with a very large field range, but at the same time may want a large coupling of
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the axion to gauge fields (e.g., for reheating [730], magnetogenesis [626, 627], or for the structure of the

inflationary model itself [731,732]). Because the axion potential and the aFF̃ couplings both depend on Fa,

our options for building such models are very limited, unless the constraints imposed by periodicity (2.1)

can be relaxed.

In this chapter, our chief interest is in the robustness of the constraints associated with axion periodicity.

Can an effective field theory containing periodic axions flow in the infrared to a new effective field theory

in which some of the axion fields have become effectively non-compact, and hence have fewer constraints

on their couplings? By considering various examples, in which axions mix with other axions or with non-

compact scalar fields, we will argue that the options are very limited. In particular, we claim that whenever

some of the axions remain massless in the IR, they will continue to exactly respect periodicity constraints.

Deviations from these constraints are always proportional to powers of the axion mass. This is reminiscent

of the fact that quantum field theories with compact gauge groups in the UV flow to quantum field theories

with (possibly different) compact gauge groups in the IR. As we will discuss below, this is more than a

superficial similarity.

Before summarizing our results in more detail, let us briefly review the properties of axion effective field

theories enforced by the shift symmetry (2.1).

2.1.1 Review: quantized couplings in axion EFT

Readers who are thoroughly familiar with the reason why aFF̃ couplings are quantized, and how to precisely

formulate this condition in theories with fermions, can safely skip this subsection, though it may be useful

for establishing our conventions.

Because we will be studying scenarios in which axions may not have canonical kinetic terms, it is often

useful to consider dimensionless axion fields θ which are normalized to have period 2π,

θ(x) ∼= θ(x) + 2πn, n ∈ Z. (2.2)

These identifications on field space may be thought of as discrete gauge symmetries. In certain theories,

such gauge symmetries may be spontaneously broken, in which case an axion may appear to acquire a non-

periodic potential or other interactions that violate the symmetry. In such cases, there is a monodromy when

the axion traverses its fundamental circle, so that the full set of states of the theory actually respects the

underlying symmetry. We will refer to such fields as “monodromy axions.” Monodromy axions have played

a major role in inflationary model-building [733,734].

The periodicity (2.2) imposes important, well-known constraints on the effective field theory of an axion.

An obvious one is that (in the absence of monodromy) the potential is periodic, V(θ) = V(θ+ 2π). In many
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theories of axions, there are important couplings between axions and gauge fields of the form

LθFF̃ = k θ
16π2 FμνF̃μν, k ∈ Z, (2.3)

where the dual gauge field is defined as F̃μν := 1
2 εμνρσFρσ. The requirement that k is quantized follows from

the axion periodicity (2.2). Here we have assumed that the normalization of F is such that the kinetic term is

− 1
4e2 FμνFμν and that particles of gauge charge q ∈ Z couple to the gauge field through the action S = q ∫γ A,

where γ is the charged-particle worldline and A = Aμ dxμ is the 1-form gauge field. The reason that the

coupling k in (2.3) is quantized is that the interaction Lagrangian is not gauge invariant: its coefficient

changes value under the shift θ 7→ θ + 2πn. However, the path-integral measure is well-defined whenever

k ∈ Z, because exp
(
i
∫
d4xLθFF̃

)
is well-defined.

Our statement of the quantization of the coupling (2.3) applies when we consider this coupling in isolation.

In theories with fermions that couple to θ and transform under the gauge field, the correct statement

of coupling quantization refers to an invariant combination of couplings. For example, if we consider a

Lagrangian containing the terms

iΨ /DΨ + c∂(∂μθ)Ψγμγ5Ψ−
[
meicmθΨLΨR + h.c.

]
+ cF

θ
16π2 FμνF̃μν, (2.4)

where the Ψ transform in the fundamental representation of the gauge group, then the field redefinition

ΨL 7→ eiaθΨL, ΨR 7→ e−iaθΨR (2.5)

produces a different Lagrangian with replacements

c∂ 7→ c∂ − a, cm 7→ cm − 2a, cF 7→ cF + 2a, (2.6)

with the shift in cF arising due to the chiral anomaly (e.g., from the anomalous transformation of the fermion

measure in the path integral). As a result, it is clearly not correct to demand that cF ∈ Z in general. However,

if we first decouple the axion from the fermions by performing a field redefinition to set cm = 0, so that the

axion couples only through interactions like c∂ that preserve a continuous shift symmetry and through θFF̃
type terms, then the latter terms are quantized. In other words, the correct quantization condition in the

case of the Lagrangian (2.4) is

cm + cF ∈ Z. (2.7)

This suffices to ensure that the path integral is well-defined under the identification (2.2). Invariant combi-
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nations of couplings including the derivative term, such as c∂ − 1
2 cm, can take any real value.

The quantization rules (2.3) or (2.7) apply for axion couplings to U(1) gauge fields or to nonabelian

gauge fields, up to a change in the linear combination of coefficients appearing in (2.7) that depends on

the Dynkin index of the gauge representation of the fermions. In most of the equations in this chapter, a

factor of FμνF̃μν may be replaced by 1
2 Fa

μνF̃aμν for a nonabelian group without changing the validity of our

statements. The only necessarily abelian gauge fields that we discuss will be those in §2.3 that eat axions

to acquire a mass, and the higher-dimensional gauge field in §2.4 that is used to engineer a simple scenario

with monodromy. (In both cases one could consider nonabelian extensions, but this would complicate the

physics without obvious dividends.)

2.1.2 Summary: motivation and results

Axions, like more general scalar fields, can mix with other fields in a variety of ways. They may have mass or

kinetic mixing with other axions (e.g., [735–737]). Some linear combinations of the axions may be eaten by

massive spin-1 fields (via the Higgs mechanism or Stückelberg couplings, e.g., [738–742]). Axions may even

mix with other fields that are not periodic, whether these are ordinary scalar fields or monodromy axions

(e.g., [743]). When some of these fields acquire mass, we can integrate them out to obtain an effective field

theory involving only the light fields.

The central question of this chapter is: does the EFT of the light fields always inherit a periodicity

condition like (2.2) and the associated constraints? For example, can one begin with a theory of two axions,

one linear combination of which acquires a mass (either through a potential or through being eaten by a

massive spin-1 field) so that the remaining, light combination is no longer an axion (i.e., has no well-defined

period)? The answer to an analogous question in gauge theory is familiar: if we consider a theory with a

compact gauge group, which is reduced to a smaller gauge group in the infrared through Higgsing, then the

infrared gauge group will still be compact. For example, in the Standard Model, the photon couples to an

electromagnetic charge whose quantization is inherited from the quantization of SU(2)L and U(1)Y charges.

This follows from the fact that the Higgs field itself carries quantized charges. Similarly, even in theories

with kinetic mixing, there is a discrete charge lattice for the massless U(1) bosons, whether or not they mix

with massive spin-1 bosons [744,745]. Despite the existence of such analogous results, we emphasize that our

results for spin-0 bosons do not all precisely map to familiar results for spin-1 bosons. For example, we will

discuss cases in which spin-0 bosons are eaten by spin-1 bosons, quantization of aFF̃ couplings and the role

of massless chiral fermions in determining the invariant quantized couplings, and axion monodromy. These

additional ingredients require different arguments from those of [744,745].

Apart from its intrinsic interest as a question about the structure of quantum field theory, our motiva-
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tion for studying this question is that the constraints imposed by the periodicity (2.2) can provide serious

obstructions to building interesting phenomenological models. The literature on applications of axions in

phenomenology is vast, so we cannot provide a complete bibliography, but some of the main themes and

specific examples to which our work is relevant include:

• Hierarchies between couplings. One interesting goal is to have axion couplings to FF̃ terms

with very different sizes. In a theory where these couplings are quantized, this can only be achieved

by invoking a large integer, which one could then attempt to explain from within a UV completion

(e.g., [736, 746–748]). An obvious application is to the QCD axion, where one might like to separate

the coupling to gluons (which determines the axion mass) from the coupling to photons (which is

often invoked to provide experimental tests of the theory). Various models can alter the ratio of these

couplings [749,750].

• Achieving large field ranges. Especially in cosmological applications, it is often of great interest

to have a field that can evolve over a long distance in field space. For example, this is necessary to

produce large primordial gravitational wave signals from standard inflation models [751], or to allow

novel mechanisms like dynamical relaxation of the weak scale to operate [444]. In the context of string

theory, it is known to be difficult to find axions with fundamental period larger than the Planck scale

(e.g., [752–755]), which has motivated many efforts to build models where small field ranges in the UV

become large field ranges in the IR (which are too numerous to review here).

• Reconciling a large field range with a large coupling. In some cases, the challenge is a blend

of the two previous ideas. One might want a large axion field range f appearing in terms like cos(a/f),
but also a large coupling α

8π
a
f ′ FF̃, and hence a small scale f ′. Because f and f ′ are both related to the

axion period, again, it can be difficult to achieve a large separation of these scales. This issue arises in

chromonatural inflation [732], which in any single-axion model requires an enormous integer to appear

in the effective action [756, 757]. Similar issues arise when using axion couplings to gauge fields for

preheating [730], to suppress the axion dark matter abundance [758, 759], or to produce dark photon

dark matter [760–762].

Separate from these specific phenomenological or model-building goals, if an axion field is discovered ex-

perimentally in the future, precisely measuring its couplings and understanding whether they are quantized

could play a critical role in interpreting the signal. Clearly, it is important to understand our theoretical

expectations before any such discoveries are made.

We will see that in studying simple theories in which multiple axions mix, interesting subtleties arise in

examining the periodicity and couplings of a light axion. If one simply examines formulas that are present

in the literature, one might suspect that the IR theory in general does not inherit any periodicity constraint
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from the UV theory. We will encounter a case in which the light axion field appears to be non-compact,

and yet inherits periodic couplings just as a compact field would. We will also encounter a case in which

the light axion field at first sight appears to be compact, but periodicity-violating couplings appear in the

EFT. These results provide tantalizing hints for the construction of phenomenological models that can evade

various constraints, and in some cases claims of large effective field ranges in such models have been made in

the literature [740,741,763]. However, in every case that we study, a more careful examination reveals that

the periodicity of the axion field and quantization of (properly defined, invariant) couplings are properties

of the infrared theory whenever the light axions remain massless. In the particular cases referenced above

in [740,741,763], the authors overlook subtleties related to the absence of anomalies, which relates the various

parameters in the Lagrangian and enforces quantization. In particular, these relations prevent some of the

scenarios discussed in [740, 741, 763] from being able to generate large effective field ranges. Once a mass

is generated, the constraints are loosened. However, all such effects are proportional to powers of the light

axion mass.

In order to achieve hierarchies between an axion’s coupling to different gauge fields, or between an axion

field range and the scale suppressing its coupling to a gauge field, we find the following options:

• The axion couplings remain quantized due to periodicity, and the hierarchy arises from a large integer,

as in the clockwork scenario [736,746–748,764,765].

• The axion is massive, and its couplings deviate significantly from their expected quantization due to

mixing with other axions with masses generated at the same scale. This possibility is familiar from the

QCD axion’s coupling to the photon, which obtains a non-quantized contribution from mixing with

the π0 [766–768].

• Mixing between monodromy axions and ordinary axions can “realign” monodromy to a light axion

with a larger field range than the original monodromy axion, as in the “Dante’s Inferno” model [743].

This effectively extends the axion field range by allowing it to “unwind.”

Some aspects of our claims have been noted in other recent work, including [750] by one of us and [742]. We

extend earlier work by surveying a wider range of models, but also by situating the question in the broader

theoretical context of compactness of gauge groups. Some of our arguments in §2.2 resemble those made

in the past about mixing of spin-1 gauge fields [744, 745], though various details (e.g., our use of the Smith

normal form in §2.2.2, or the effects of turning on a mass for the light axion) are not directly analogous to

results in those references.

The outline of this chapter is as follows: in §2.2, we discuss scenarios in which some linear combinations

of axions obtain periodic potentials. We show that the remaining, light scalar fields are always periodic (their

field space is a torus) and their couplings are quantized as expected. In §2.3, we consider the possibility that
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a linear combination of axions decouples because it is eaten by a massive spin-1 field (either via the Higgs or

Stückelberg mechanisms). Again, we show that the uneaten combination is a periodic field with quantized

couplings. The results of this section were also obtained independently in [742], which appeared while this

work was being completed. In §2.4, we discuss the possible mixing of axions with other, non-compact

scalars. We show that a theory in which a monodromy axion mixes with a heavier ordinary axion can lead

to a “realignment” of monodromy to a linear combination of the original axions, so that the axion decay

constant is larger in the low-energy effective field theory. In §2.5, we discuss the relationship between our

studies of compactness in axion field spaces and the question of compactness of gauge groups. In particular,

we point out that in some cases these questions are related by Hodge (electric/magnetic) duality. We suggest

that our results fit into a larger picture in which theories with compact gauge groups in the UV always flow

to theories with compact gauge groups in the IR. Finally, we very briefly conclude this chapter in §2.6.

2.2 Mixing with a Heavier Axion with a Periodic Potential

2.2.1 Light axion remaining massless

The first scenario we will consider is when two axions mix and a periodic potential gives a mass to one linear

combination of them, leaving one massless axion in the IR. We will argue that there is a consistent EFT

description in which the light axion is periodic and has quantized couplings to gauge fields. Elements of our

discussion, involving the diagonalization of kinetic mixing in the case of a massive axion, have previously

appeared in [735, 769], and some of the conclusions about quantized couplings were previously emphasized

in [750]. Nonetheless, it is useful to highlight a confusing aspect of the calculation that has not previously

been emphasized, and then explain how this confusion is resolved. We will encounter a similarly confusing

intermediate result in §2.3, which our experience in this section will help to resolve correctly.

Setting up the problem in a convenient lattice basis

We will denote our two axion fields θ1 and θ2 and assume that they both have period 2π. A different way to

say this is that our field space is a torus, obtained by taking the quotient of the plane (θ1, θ2) by the lattice

(2πn1, 2πn2), ni ∈ Z. A linear transformation

θ′1
θ′2

 =

a b
c d

θ1

θ2

 (2.8)
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preserves this structure provided that a b
c d

 ∈ GL(2,Z). (2.9)

We will call any such basis for our field space a “lattice basis.” Other bases are, of course, possible, but they

require us to reparametrize the lattice of identifications of the plane.

We will consider an effective Lagrangian of the form

L = − 1
4e2 FμνFμν + Kij∂μθi∂μθj −V(j1θ1 + j2θ2) +

k1θ1 + k2θ2
16π2 FμνF̃μν, (2.10)

where ji, ki ∈ Z but Kij is an arbitrary symmetric real matrix of rank 2. For concreteness, one could imagine

the potential to take the form

V(j1θ1 + j2θ2) = Λ4 [1− cos(j1θ1 + j2θ2)] , (2.11)

which might be the leading approximation to the potential generated by a confining, pure glue sector via

the coupling
j1θ1 + j2θ2

32π2 Ga
μνG̃aμν. (2.12)

However, the only important assumption we will make is that V(x) has a minimum at x = 0, and a Taylor

expansion V(x) ≈ V0 + 1
2 μ4x2 + O(x3). Without loss of generality, we will assume that gcd(j1, j2) = 1, by

absorbing any common factor into the normalization of the function V.

In the subsequent discussion, we will often drop the − 1
4e2 FμνFμν term when writing our Lagrangian. It

is understood to be present whenever a coupling to FF̃ appears.

It is always possible to perform a GL(2,Z) transformation so that the massive axion is a basis vector,

θ′1 = j1θ1 + j2θ2. To see this, observe that there must exist integers ℓ1, ℓ2 such that j1ℓ2 − j2ℓ1 = 1, as a

consequence of our assumption that gcd(j1, j2) = 1. Thus, we can define a new lattice basis as θ′1 = j1θ1+ j2θ2

and θ′2 = ℓ1θ1 + ℓ2θ2. The Lagrangian (2.10), written in the new basis, has the same form, with

k′
1 = ℓ2k1 − ℓ1k2,

k′
2 = −j2k1 + j1k2,

K′ = (M−1)TKM−1 where M =

j1 j2
ℓ1 ℓ2

 . (2.13)

Here K denotes the kinetic matrix whose entries Kij appeared in (2.10). Notice that the GL(2,Z) transforma-

tion maintains the quantization of couplings, k′
i ∈ Z, as any lattice basis should. Without loss of generality,
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then, we can study the Lagrangian (2.10) in the special case that the potential depends only on θ′1. Let us

do so, dropping the ′ labels:

L = Kij∂μθi∂μθj −V(θ1) +
k1θ1 + k2θ2

16π2 FμνF̃μν. (2.14)

We could, equivalently, rewrite this in terms of two periodic, dimensionful axion fields ai with period 2πFi,

as in (2.1), with a dimensionless kinetic mixing parameter ε:

L =
1
2

2∑
i=1

∂μai∂μai + ε∂μa1∂μa2 −V(a1/F1) +
1

16π2

(
k1

a1
F1

+ k2
a2
F2

)
FμνF̃μν, (2.15)

where

Fi :=
√

2Kii and ε :=
K12√K11K22

. (2.16)

Diagonalizing the propagating states

The Lagrangian (2.14) clearly describes one massive propagating field, θ1, and another massless propagating

field. For general Kij, the massless field will be a general linear combination of θ1 and θ2, not necessarily

aligned with any lattice vector. This means that it is not a periodic scalar, but rather winds around the torus

in an irrational direction, never returning to its starting point. To identify this direction, we can diagonalize

both the mass and the kinetic terms by performing a shift of the light field, i.e. by defining

aL := a2 + εa1. (2.17)

This resembles the familiar diagonalization of massive dark photons kinetically mixing with the massless

ordinary photon [744], which was further discussed in [745]. To canonically normalize the independently

propagating fields, we can further introduce a rescaled heavy field

aH :=
√

1− ε2a1. (2.18)

In terms of aH and aL, the Lagrangian takes the diagonalized form

L =
1
2∂μaL∂μaL +

1
2∂μaH∂μaH −V(aH/fH) +

1
16π2

(
k2

aL
fL

+ (k1 − ρk2)
aH
fH

)
FμνF̃μν, (2.19)

where

fH :=
√

1− ε2F1, fL := F2, and ρ := εF1
F2

. (2.20)
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We have denoted the suppression scale in the couplings by lowercase f rather than capital F to signal that,

unlike in (2.1), they do not necessarily have an interpretation as the period of a compact boson. The quantity

ρ is essentially a measure of how misaligned the basis of propagating fields is with the lattice basis.

This form of the effective Lagrangian has been derived several times before, e.g., [735,750,769]. However,

there is an aspect of it that is, at first sight, puzzling and has not (to the best of our knowledge) been

commented on. Specifically: the field aH, being proportional to θ1, is a periodic scalar, yet its couplings

to gauge fields depend on the (generically) irrational number ρ and thus are not quantized. On the other

hand, the field aL is not a periodic scalar, but its couplings to gauge fields are quantized (proportional to

the integer k2).

Should this bother us? Our argument that periodic scalars have quantized couplings was based on

requiring that exp(iS) be gauge-invariant when the scalars are shifted. Because (2.19) is fully equivalent to

our manifestly gauge-invariant starting point (2.10), it must be the case that exp(iS) is well-defined despite

the non-quantized coupling of the periodic scalar aH. The reason is that a gauge transformation θ1 7→ θ1+2πn
does not only shift aH, but also shifts aL; our diagonalized Lagrangian (2.19) is, as it must be, invariant under

the gauge transformations

aH 7→ aH + 2πn1fH,

aL 7→ aL + 2π (n2 + ρn1) fL, ni ∈ Z, (2.21)

which simply reflect the coordinates of the lattice in our new, misaligned basis. The lack of quantization of the

aH coupling leads to a shift in the action under a gauge transformation of aH that is precisely compensated

by the corresponding, ρ-dependent shift of aL under the same gauge transformation. Everything is as it

should be. However, one might wonder whether the lack of periodicity of aL means that we can integrate

out aH and obtain a low-energy EFT of aL that lacks the constraints that usually come from periodicity.

Given that our Lagrangian has quantized couplings of aL to FF̃, it does not seem to be so easy to escape

the constraints of periodicity. In fact, the non-periodicity of aL is a red herring. Properly understood, the

low-energy effective theory is a theory of a compact field, as we will now explain.

Periodicity in the low-energy EFT

We have noted that the light axion field aL is not a simple periodic field, but it still has quantized couplings.

We can understand this better by examining the two-axion field space, as shown in Fig. 2.1. The field space

consists of periodic variables a1 and a2, whereas when we diagonalize the kinetic terms we find a light field

aL which is an irrational combination of the two, and which is constant on the blue diagonal lines in the
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Figure 2.1: The space of two axions ai with periods 2πFi. The red lines indicate two periodically identified
values of the two axions. The blue lines are contours of constant aL = a2 + εa1, with ε = − 1√

2 chosen as an
example. Notice that a 2π shift of the heavy field a1 shifts aL by an irrational amount, but a 2π shift of a2
at constant a1 simply shifts aL → aL + 2πfL. This is the gauge symmetry of the EFT along the flat valley
minimizing the potential V(a1).

plot.

The potential V(a1) is independent of a2, and hence constant along horizontal lines in this plot. This

means that there is a flat valley along the horizontal red line at a1 = 0, which is repeated at a1 = 2πF1

and other gauge equivalent locations. The effective field theory of the light axion should be defined along

this valley, since the field can move along it without incurring any potential energy cost. Notice that this

statement is independent of the kinetic term for the axions, and in particular of the direction along which

lines of constant aL are oriented. The gauge symmetry a1 7→ a1 + 2πF1 does not shift aL by a quantized

multiple of 2πfL. However, the only gauge symmetry that makes sense within the low-energy effective theory

defined in a valley of fixed a1, namely a2 7→ a2 + 2πF2, does shift aL by 2πfL: it is the horizontal translation

that takes, for instance, the diagonal at aL = 0 to that at aL = 2πfL. Furthermore, these facts are preserved

by any lattice basis in which the potential depends only on θ1; we could send θ2 7→ θ′2 := θ2 + nθ1, and in

the (θ1, θ′2) basis it is still true that V is a function only of θ1 and that the couplings of θ′2 are quantized.

The EFT with θ1 frozen at the minimum of its potential takes exactly the same form in the new basis.

From this point of view, there is very little mystery: the EFT is defined along the flat direction in

field space, which is periodic. The couplings of the massless periodic axion should be quantized, and we

have found that they are. A lesson to draw from this, which generalizes to other contexts, is that although

diagonalizing the propagating states is a good way to proceed if you plan to do Feynman diagram calculations

with multiple fields, it can be an unnecessarily confusing step in the process of understanding the correct

way to think about the low-energy EFT.
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A natural, straightforward approach to understanding the low-energy EFT is to obtain a theory of the

periodic field θ2 by directly integrating out θ1 using its equation of motion,

2K112θ1 + 2K122θ2 + μ4θ1 −
k1

16π2 FμνF̃μν + . . . = 0, (2.22)

where the omitted terms arise from higher orders in the Taylor expansion of V(θ1). Solving this equation

reveals that

θ1 = −2K122θ2
μ4 +

4K11K1222θ2
μ8 +

k1
16π2μ4 FμνF̃μν + . . .

=
1
F1

[
− ε

m2
1
2a2 +

ε
m4

1
22a2 +

k1
16π2m2

1F1
FμνF̃μν + . . .

]
, (2.23)

where in the second line we have rescaled to dimensionful fields and made the replacement μ4 = m2
1F2

1. This

makes it apparent that we could equally well obtain such an expansion by working with Feynman diagrams

defined in terms of the fields θ1,2 rather than the diagonalized fields. The kinetic mixing is then an insertion

proportional to ε2 that flips a θ2 propagator to a θ1 propagator or vice versa, and leads to the 2a2 terms

in the above equation.

In summary: the EFT of the light field is a theory of an axion θ2, with couplings to gauge fields quantized

as expected given its periodicity. All of the effects of kinetic mixing with the heavy field are encoded in

manifestly shift symmetry-preserving derivative interactions.

2.2.2 An N-axion generalization

Above, we saw that if we had two axions (θ1, θ2) and a potential depending on one linear combination of

the two, we could change to a new lattice basis in which the potential is independent of the periodic axion

θ′2. This allows us to integrate out the heavy field and obtain a theory of only the compact axion θ′2. It

is natural to generalize this to the case of N axions (θ1, . . . , θN) with period 2π as follows: suppose that

we have a potential that depends on k independent linear combinations of the N axions and respects their

periodicity,

V = V(ϑ1, . . . , ϑk) where ϑi =
N∑

j=1
Qijθj, Qij ∈ Z. (2.24)

Then we claim that there is a new lattice basis, θ′1, . . . , θ′N, in which the potential has the form V(θ′1, . . . , θ′k)
and is independent of θ′k+1, . . . , θ′N. Hence, we can integrate out the massive modes θ′1, . . . , θ′k to obtain an

effective field theory of the N− k massless, 2π-periodic axions θ′k+1, . . . , θ′N.

This fact follows from the existence of the Smith normal form [770] for matrices over a principal ideal

domain (such as the integers): given the k× n integer matrix Q with entries Qij, there exist integer matrices
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S ∈ GL(k,Z),T ∈ GL(n,Z) such that

R := SQT =



r1 0 · · · 0 0 · · · 0
0 r2 · · · 0 0 · · · 0

0 0 . . . 0 0 · · · 0
0 0 · · · rk 0 · · · 0


, ri ∈ Z. (2.25)

(The Smith decomposition also implies that we can arrange that ri divides ri+1, but we will not need this.)

The definition of GL(m,Z) means that S and T are invertible and their inverses have integer entries.

In our original basis, the span of the rows of Q defines the subspace of axions that obtain a potential.

We can change to a new lattice basis by defining

θ′i =
N∑

j=1
T−1

ij θj, (2.26)

where T−1
ij are the entries in T−1. In terms of this basis, the potential depends on the span of the rows

of the matrix QT = S−1R. We can read off immediately that the span of the rows of R contains only

linear combinations of the first k basis vectors in the θ′i basis. The form of R together with invertibility

of S−1 guarantees that the rows of S−1R span the same subspace. Hence the potential is independent of

(θ′k+1, . . . , θ′N).
This shows that our discussion of the 2-axion case can be fully generalized to N axions. When a potential

gives a mass to k < N axions, we can always find a lattice basis where it is manifest that N− k axions with

period 2π are flat directions. By the usual logic of effective field theory, then, we can integrate out all of the

heavy axions, and obtain a theory of the N − k light axions that respects all of the expected quantization

rules for axion couplings. Any kinetic mixing with heavy axions, upon integrating them out, will produce

only shift-symmetric terms involving 2 acting on light axions, as we saw above.

2.2.3 Light axion obtaining a mass

So far we have discussed only cases in which light axions remain exactly massless, and have found that they

are periodic fields with exactly quantized couplings. The quantization of axion couplings can be violated

once the axions obtain a mass. One straightforward way to see this is by noting that within the effective

field theory, we can use equations of motion to make the replacement

2aL 7→ −
∂V(aL)
∂aL

≈ −m2
LaL + . . . , (2.27)
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which exchanges a term that is manifestly invariant under continuous shift symmetries of θ2 with one that is

not. Although the linear term coupling aL to FF̃ is not necessarily quantized, if we keep higher-order terms

in aL this replacement does preserve the discrete shift symmetry (2.1) because V(aL) is a periodic function.

One could also see this effect from the Feynman diagram approach; an external, on-shell light axion of mass

mL that kinetically mixes with the off-shell propagator of a heavier axion of mass mH will obtain an insertion

proportional to εp2 = εm2
L followed by a propagator factor of 1/(m2

H − m2
L), which agrees with the EFT

result obtained by integrating out θ1 using (2.23) and expanding order-by-order in m2
L/m2

H � 1. Thus, the

couplings of a massive axion field are not quantized, but to the extent that the mass of the axion is much

smaller than all other mass scales in the problem, we expect the deviations from coupling quantization to

be small.

It is instructive to compare this to the familiar non-quantized shift of the axion coupling to photons via

its mixing with the neutral pion. As explained in [750], this does not violate the shift symmetry (2.1) of the

axion because it is part of a set of terms that resum to a periodic function, similar to (2.27). Furthermore,

the effect is suppressed by m2
a, and is large only because the axion mass arises from the same strong dynamics

as the pion mass, so that m2
aF2

a ∼ m2
πF2

π. In other words, in this case, the suppression factor m2
a/m2

π that

we have argued to exist on general EFT grounds is compensated by an enhancement factor of F2
a/F2

π. (One

could, in principle, perform a field redefinition to discuss this example in the language of kinetic mixing rather

than mass mixing, although because the kinetic mixing would then be nearly maximal, this is not a very

useful viewpoint to take.) This example shows that some caution is in order when asserting that effective

field theories of very light axions are expected to contain quantized couplings to gauge fields. On the other

hand, it also reveals that one needs rather special circumstances to obtain a very large violation of this

expectation, as arises when multiple periodic scalars obtain mass simultaneously from the same dynamics,

as in QCD confinement.

2.3 Mixing with a Heavier Axion Eaten by a Spin-1 Field

As our next example, we again consider a theory with two axions, but with a linear combination obtaining

a mass in a different way: by being eaten by a massive, spin-1 gauge field through the Higgs or Stückelberg

mechanism [738,739]. This type of theory has been considered in great detail in [740,741]. A version of it in

a Randall-Sundrum scenario was recently discussed in [763]. In this scenario, we will again see intermediate

results that seem to break the expected connection between periodic scalar fields and quantized couplings. In

this case, the pattern will be reversed from what we observed in §2.2.1: the heavy axion will be a non-periodic

field, but will have quantized couplings; on the other hand, the light axion will be a periodic field, but will

have non-quantized couplings. These non-quantized couplings have led to earlier claims that super-Planckian
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field ranges can be obtained in models of this type [740,741,763]. However, our results do not support such

claims. Once again, a careful assessment of the underlying gauge invariance of the theory will show that

the proper understanding of the low-energy EFT is that of a periodic field with quantized couplings, despite

initial appearances. Our conclusions are in accord with those of [742], which appeared while this work was

being completed.

2.3.1 Diagonalizing the propagating states

Let’s begin by looking at an effective theory with two axions, one combination of which is eaten to provide

a mass to a spin-1 field via the Stückelberg mechanism. (It is possible to obtain this effective theory as a

limiting case of a Higgs mechanism, so we expect our remarks to apply to both scenarios.) For the time

being, we will neglect kinetic mixing, as the points we wish to illustrate do not depend on it. We begin by

considering the action

2∑
i=1

1
2F2

i (∂μθi − qiAμ)2 − 1
4e2 FμνFμν − 1

4g2 GμνGμν +
k1θ1 + k2θ2

16π2 GμνG̃μν + Lcon, (2.28)

where Fμν = ∂μAν−∂νAμ is the field strength of the massive gauge field, whereas Gμν is the field strength of

a different, massless gauge field Gμ . We are interested in the quantization of the θGG̃ coupling for the light

axion. The term Lcon denotes additional couplings that, in some cases, may be necessary for consistency of

the theory. We will discuss these couplings in more detail below.

The subtleties in this case, compared to our previous case, arise because we now must ensure invariance

under three different gauge transformations that shift the axions. These are the two discrete shift symmetries

θi 7→ θi + 2π associated with the periodicities of the axions, together with a continuous shift symmetry

associated with the U(1) group gauged by Aμ :

Aμ 7→ Aμ + ∂μα, θ1 7→ θ1 + q1α, θ2 7→ θ2 + q2α. (2.29)

When studying the theory on a spacetime of nontrivial topology, eiα(x) ∈ U(1) must be well-defined (single-

valued) but α itself need not be. Because eiθi(x) must also be single-valued, we see that the gauge transfor-

mation (2.29) makes sense only if q1, q2 ∈ Z. This is consistent with our expectations if the axions θi arise as

phases of complex fields of charge qi that obtain a vacuum expectation value, in the case that (2.28) arises

as a limit of the Higgs mechanism.

Consistency of the theory under the axion shift symmetries imposes that k1, k2 ∈ Z in the absence of

additional interactions, just as in our earlier discussions. However, notice that in general the θGG̃ terms are
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not invariant under the U(1) gauge transformation (2.29), which shifts the Lagrangian by

δαLθGG̃ =
k1q1 + k2q2

16π2 αGμνG̃μν. (2.30)

Because α is a continuous quantity, the theory only respects the U(1) gauge symmetry if k1q1 + k2q2 = 0.

Otherwise, it is necessary to add additional terms, indicated by Lcon above, which are not gauge invariant

on their own but which serve to cancel the gauge variation (2.30). Such terms could arise from fermions

that carry G charge and transform anomalously under the U(1), or from generalized Chern-Simons terms

proportional to AμKμ where ∂μKμ = GμνG̃μν [739–741].

For the moment, let us leave Lcon unspecified and proceed to diagonalize the propagating states in (2.28).

We can change basis to diagonalize the kinetic terms,

L ⊃ 1
2m2

A(∂μaH −Aμ)(∂μaH −Aμ) +
1
2m2

A∂μaL∂μaL, (2.31)

where the “heavy axion,” the linear combination eaten by the U(1) gauge boson with mass mA, is

aH :=
1

m2
A

[
F2

1q1θ1 + F2
2q2θ2

]
, where m2

A := F2
1q2

1 + F2
2q2

2. (2.32)

The orthogonal light combination is

aL :=
F1F2
m2

A
(q2θ1 − q1θ2) . (2.33)

The proportionality of aL to an integer linear combination of our original axion fields is no accident; it

guarantees that aL is invariant under the U(1) gauge transformation (2.29). In this basis, the couplings of

the propagating axion eigenstates to the gauge field G are

L ⊃ 1
16π2

[(
k1q2

F2
F1
− k2q1

F1
F2

)
aL + (k1q1 + k2q2) aH

]
GμνG̃μν. (2.34)

These results have already been obtained in [740, 741], but let us discuss them from the point of view of

gauge invariance, periodicity, and quantized couplings. The fact that the coupling of aH is proportional

to k1q1 + k2q2 follows from (2.30): when the Lagrangian is gauge invariant without further contributions,

i.e., when Lcon = 0, U(1) gauge anomaly cancellation demands that the linear combination of axions that

transforms under U(1) decouples from the other gauge fields.

Recall that in §2.2.1, we faced a puzzle: after diagonalizing the mass and kinetic mixings, we found a

heavy propagating axion mass eigenstate that was a periodic scalar and yet had non-quantized couplings,
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and a massless light axion that was not a periodic scalar and yet had quantized couplings. Here we seem

to see exactly the opposite situation: the heavy linear combination aH is not a periodic scalar, and yet its

coupling to GG̃ is proportional to the integer k1q1 +k2q2.1 On the other hand, the light axion aL is periodic;

from (2.33) we can see that under a general shift of the underlying fields θi 7→ θi + 2πni, the shift of aL is

proportional to the integer q2n1−q1n2. Thus, aL is periodic, with minimal period given by the identification

aL ∼= aL + 2πF1F2
m2

A
gcd(q1, q2). (2.35)

The puzzle is that despite this periodicity, the couplings of aL do not seem to be quantized, as the GG̃
coupling depends not only on the integer charges ki, qi, but also on the ratio of decay constants F1/F2. In

particular, if we define a scalar field θL of period 2π by rescaling aL,

θL :=
1

gcd(q1, q2)
(q2θ1 − q1θ2), (2.36)

its coupling to GG̃ is given by

1
16π2

[
gcd(q1, q2)

(k1q2F2
2 − k2q1F2

1
q2

1F2
1 + q2

2F2
2

)]
θLGμνG̃μν, (2.37)

where the term in brackets is, in general, not an integer. This appears to contradict the basic quantization

(2.3) of a 2π-periodic axion.

We emphasize that the periodicity of θL is entirely determined by the original periodic lattice of identifi-

cations of (θ1, θ2) together with the charges qi, which specify which linear combination of the fields remains

uneaten. We can write the kinetic term of θL as

1
2F2

L∂μθL∂μθL, where FL =
F1F2 gcd(q1, q2)

mA
. (2.38)

The scale FL is the most natural definition of the “decay constant” of the light axion, and determines the

units in which the couplings of the canonically normalized axion to GG̃ are expected to be quantized as

well as the expected field range when an axion potential is generated. This should be contrasted with the

approach of [740, 741, 763], which defines an effective decay constant Feff which is inversely proportional to

the factor in brackets in (2.37). In those studies, a small value of the factor k1q2F2
2 − k2q1F2

1 is argued to

suppress the coupling and lead to a trans-Planckian Feff. While it is interesting that the coupling in (2.37)

allows for a very large Feff defined in this way, the fact that it is not related to the period 2πFL appearing

1This is a bit of an overstatement: in the presence of Lcon, as noted above, the ki need not be integers, whereas
in the absence of Lcon, this coupling is not just any integer, but zero.
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in (2.38) should give us pause. In fact, the axion decay constant as we have defined it can only be smaller

than the decay constants we started with:

FL < min(F1,F2). (2.39)

How do we reconcile this with claims of large Feff extracted from (2.37)?

We have already laid the groundwork for the resolution of this puzzle: because the Lagrangian (2.28) is

not, in general, gauge-invariant in the absence of additional terms Lcon, we should not be surprised that it

violates the expected periodicity properties. The physical coupling of an axion to gauge fields is quantized in

units that allow us to read off the maximum field range of the axion potential, but in theories with Lcon 6= 0,

Lagrangian couplings like that in (2.37) do not determine the full amplitude, and consequently we do not

expect that the scale Feff extracted from such a term is related to a physical field range. The discussion

in the introduction makes this clear: if we read off Feff ∝ 1/cF from (2.4), then because cF shifts as in

(2.6) under a field redefinition, we could obtain absolutely any value of Feff by parametrizing our fields in a

different way. The physical amplitude which is quantized, in the presence of anomalous fermions, depends on

a combination of terms like (2.7). Only by first redefining the fermions to set cm = 0 (which, in this context,

is the meaning of Lcon = 0) do we obtain quantized cF, at which point we can read off the axion periodicity

from this coupling. Hence, we cannot, in general, analyze the periodicity constraints on the effective action

of θL without specifying the terms Lcon, which we expect will always resolve the puzzle. The only case in

which we can directly resolve the puzzle is in the case when it is consistent to set Lcon = 0 because δαLθGG̃

in (2.30) is identically zero, i.e., the case k1q1 + k2q2 = 0. In this case, the bracketed factor in (2.37) reduces

to [
gcd(q1, q2)

(k1q2F2
2 − k2q1F2

1
q2

1F2
1 + q2

2F2
2

)]
7→ −k2

q1
gcd(q1, q2) ∈ Z. (2.40)

To justify the claim that this is an integer: given that k1q1 = −k2q2, it follows that q1|(k2q2). In order for

this to be true, q1/ gcd(q1, q2) must divide k2.

So far we have assumed the light axion to be exactly massless, and found that it has exactly quantized

couplings. We could also consider a theory which has a potential that provides a mass for the light axion

well below the mass of the heavy spin-1 field. Just as we discussed in §2.2.3, the effective field theory of the

light axion allows for terms proportional to 2θL which, upon making use of the equations of motion, can

appear as effectively non-quantized couplings proportional to the light axion mass squared.

Summing up: when we give one linear combination of the axions a mass through the Higgs or Stückelberg

mechanism, the massless light axion is a periodic field, with smaller field range than our initial axions. In

the case that the Lagrangian we have studied is gauge invariant in its own right, we have shown that the
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couplings of this periodic field are quantized, just as we expect them to be. This is as it must be; if we

integrate out the heavy fields, we obtain an effective field theory of a periodic axion, with all of the constraints

that this entails. Nonetheless, to illustrate the point more generally, let us look at at an example in which

Lcon 6= 0. Specifically, we will consider a theory in which light fermions cancel the gauge variation (2.30).

2.3.2 Analyzing a 4d UV completion

To clarify the physics, it is useful to consider an explicit, 4d UV completion of the effective Lagrangian

(2.28) in which the massive gauge field obtains a mass from the Higgs mechanism, and fermion fields supply

a non-vanishing contribution to Lcon. The goal of this model is simply to show a consistent example that

generates the effective theory we are interested in, in which we can explicitly calculate the interactions and

understand how the constraints of axion periodicity are respected. This model is not meant to be natural

or aesthetically appealing, just to illustrate some points about the physics of axions. For this reason, we

will freely assume hierarchies in the dimensionless couplings, and invoke global symmetries that are not

necessarily accidental, with no need for further explanation.

In this model, the axions θ1,2 arise from the phases of two complex scalars φ1,2 with U(1) gauge charges

q1,2. We also consider an SU(N) gauge group that will provide the GG̃ couplings we are interested in. Each

of the scalars will provide Dirac masses to some fermions Q, Q̃ which transform in non-trivial, conjugate

SU(N) representations, so that from the SU(N) point of view the theory is not chiral. However, these fields

will have chiral couplings to U(1): Q carries charge and Q̃ does not, or vice versa. To cancel the U(1)3

and mixed U(1)–gravitational anomalies, we also introduce fermions L, L̃ that have the opposite U(1) charge

assignments but do not interact with SU(N) gauge fields (though they come in the appropriate number of

copies to compensate for the anomalies of the Q, Q̃ fields). By construction, this theory has no SU(N)3, U(1)3,

or mixed gravitational anomaly, but the SU(N)2U(1) mixed anomaly still imposes a nontrivial constraint on

the representations and charged assignments, to which we will return shortly. The field content of this model

is summarized in Table 2.1.

The Lagrangian (2.28) can be obtained in a decoupling limit of this model. We begin with the complete

theory, including Yukawa couplings

LYuk =
∑

i

(
y1Qiφ†

1Q1iQ̃1i + y1Liφ1L1ikL̃1ik
)
+
∑

j

(
y2Qiφ†

2Q2jQ̃2j + y2Ljφ2L2ikL̃2ik
)
+ h.c., (2.41)

where sums over the copies k of the L fields are implicit. To generate an effective Lagrangian of the form

(2.28), we suppose that there is a hierarchy among the Yukawa couplings so that some are much larger

than others. Then below the symmetry breaking scale, we can integrate out the heavy fermions. In general,
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φ1 φ2 Q1i Q̃1i L1ik L̃1ik Q2j Q̃2j L2jk L̃2jk

U(1)gauge q1 q2 q1 0 −q1 0 0 q2 0 −q2

SU(N) 1 1 R1i R1i 1 1 R2j R2j 1 1
U(1)global 1 0 1 0 0 −1 0 0 0 0
Ncopies 1 1 1 dim(R1i) 1 dim(R2j)

Table 2.1: Matter field content in a potential UV completion of the two axion model. The integers
i ∈ {1, . . . ,N1} and j ∈ {1, . . . ,N2} label the set of fields, while the subscripts 1 and 2 signal which Yukawa
couplings provide mass to the fields, e.g., φ1Q1iQ̃1i. The full set of Yukawa couplings is displayed in (2.41).
The φ fields are scalars, whereas the Q, Q̃,L, L̃ fields are all left-handed Weyl fermions. The L, L̃ fields come
in multiple copies, k ∈ {1, . . . ,Ncopies}, to ensure anomaly cancellation. With these charge assignments, the
only anomaly cancellation condition that must be explicitly checked is the SU(N)2U(1) anomaly.

integrating out a term of the form m(φ)ΨΨ̃ + h.c. produces a term of the form

ΔL =
2μ(RΨ)

32π2 arg(m)Ga
μνG̃aμν, (2.42)

where μ(RΨ) is the Dynkin index of the representation of Ψ under the group G. For concreteness, let us

suppose that the fields with i = 1 and j = 1 are relatively heavy, whereas all of the others are much lighter

(i.e., have much smaller Yukawa couplings to φ1,φ2). We further assume that the U(1) gauge coupling e is

small enough that we can integrate out the heavy fermions without integrating out the massive gauge field,

i.e., eq1,2 � y1Q1, y1L1, y2Q1, y2L1. We further assume that the fields φ1,2 have a symmetry breaking potential

which does not mix them, e.g.,

VSSB =
λ1
4
(
|φ1|2 − v2

1
)2

+
λ2
4
(
|φ2|2 − v2

2
)2

. (2.43)

The structure of this potential ensures that, when we turn off the U(1) gauge interaction, we have two

distinct Nambu-Goldstone bosons θ1,2 which are the phases of φ1,2 respectively. An example of a U(1) global

symmetry charge assignment that can be responsible for protecting the uneaten Nambu-Goldstone boson

is given in the “U(1)global” row of Table 2.1. We further assume that the radial modes of the φ fields are

sufficiently heavy that we can integrate them out, i.e., eq1,2 �
√

λ1,2. The choice of which fields to integrate

out is not unique, but making this arbitrary choice suffices to illustrate our main points. We illustrate the

various interesting ranges of energies, and corresponding effective field theories, in this model in Fig. 2.2.

Integrating out the heavy SU(N)-charged fermions Q11, Q̃11,Q21, Q̃21 will generate couplings

LθGG̃ = − 1
16π2 [μ(R11)θ1 + μ(R21)θ2]Ga

μνG̃aμν. (2.44)
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Energy

MPQ

MU(1)

UV Complete Lagrangian:
Complex Scalars (φ1,φ2), Gauge Fields (Aµ,G

a
µ), Fermions (Q, Q̃, L, L̃)

Renormalizable Couplings

Intermediate Scale Lagrangian:
Axions (aH,aL), Gauge Fields (Aµ,G

a
µ), Light Fermions (Q, Q̃, L, L̃ with i, j 6= 1)

Non-renormalizable aFF̃ terms

IR Lagrangian:
Light Axion (aL), SU(N) Gauge Fields (Ga

µ), Light Fermions (Q, Q̃, L, L̃ with i, j 6= 1)
Non-renormalizable aFF̃ terms

Figure 2.2: Schematic of important energy scales and effective field theories obtained from our UV comple-
tion. After integrating out the radial modes of the scalars and the heavy fermions at the Peccei-Quinn scale
MPQ, we obtain an effective field theory of two axions, one eaten by a spin-1 field, as considered in §2.3.1.
Below the mass scale MU(1) of the spin-1 field, an effective field theory of a single light axion is obtained.
We show that this axion is a periodic field with quantized couplings.

We follow the standard convention in particle physics that the Dynkin index of the fundamental represen-

tation of SU(N) is μ(2) = 1/2, in which case the Dynkin index of any representation R satisfies 2μ(R) ∈ Z,

which shows that the couplings of θ1,2 are quantized in the way that we expect. Changing basis as described

in §2.3.1, this includes a coupling of the light axion θL of the form

−gcd(q1, q2)
16π2

1
m2

A

[
μ(R11)q2F2

2 − μ(R21)q1F2
1
]

θLGa
μνG̃aμν. (2.45)

While it appears that we can choose this to be as small as we like by carefully choosing representations

to impose relations among the ql and μ(Rmn), we have not yet taken into account gauge invariance. The

condition for SU(N)2U(1) anomaly cancellation, given the field content in Table 2.1, is

N1∑
i=1

μ(R1i)q1 +
N2∑
j=1

μ(R2j)q2 = 0. (2.46)

We can use this condition to eliminate μ(R11) from (2.45), obtaining a coupling

LθLGG̃ =− gcd(q1, q2)
16π2

1
m2

A

− N1∑
i=2

μ(R1i)q2F2
2 −

N2∑
j=1

μ(R2j)
q2

2
q1

F2
2 − μ(R21)q1F2

1

 θLGa
μνG̃aμν

=
gcd(q1, q2)

16π2

μ(R21)
q1

+

N1∑
i=2

μ(R1i)q2
F2

2
m2

A
+

N2∑
j=2

μ(R2j)
q2

2
q1

F2
2

m2
A

 θLGa
μνG̃aμν. (2.47)
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Notice that we have now written the coupling in terms of a single term that depends on one of the heavy

fields, together with a sum over only the light fields (i.e., the sums omit i = 1 and j = 1). The first term

in brackets in (2.47) is a rational number, while the others are, in general, irrational. However, recall that

this is not unexpected: there are additional light fermions in the theory, labeled by i ∈ {2, . . . ,N1} and

j ∈ {2, . . . ,N2}. The quantization condition applies only to a combination of coefficients like (2.7), which

depends on how the light fermions couple to the axion. By either performing an anomalous field redefinition

to eliminate the θLΨΨ̃ couplings, or computing the one-loop triangle diagram contribution to the θLGG̃
amplitude, we find that the light fermion contributions cancel the irrational pieces of the terms in (2.47)

that arise from the sum over i and j. To compute these contributions, we note that the masses of the Q1i

and Q2j fields are proportional to

φ†
1 ∼ exp(−iθ1) = exp

[
−i
(

q1aH +
q2 gcd(q1, q2)F2

2
m2

A
θL

)]
,

φ†
2 ∼ exp(−iθ2) = exp

[
−i
(

q2aH −
q1 gcd(q1, q2)F2

1
m2

A
θL

)]
, (2.48)

where we have changed to the basis of heavy and light fields. As a result, if we eliminate the θL couplings

to the light fermions, we produce new contributions to the θLGG̃ coupling,

ΔLθLGG̃ =− gcd(q1, q2)
16π2

1
m2

A

 N1∑
i=2

μ(R1i)q2F2
2 −

N2∑
j=2

μ(R2j)q1F2
1

 θLGa
μνG̃aμν. (2.49)

The first of the new terms cancels the middle term in brackets in (2.47), while the second term combines

with the last term in brackets in (2.47) and simplifies:

LθLGG̃ + ΔLθLGG̃ =
gcd(q1, q2)

16π2

μ(R21)
q1

+

N2∑
j=2

μ(R2j)
(q2

2
q1

F2
2

m2
A
+

q1F2
1

m2
A

) θLGa
μνG̃aμν

=
1

32π2

2 gcd(q1, q2)
q1

N2∑
j=1

μ(R2j)

 θLGa
μνG̃aμν. (2.50)

Now we have finally obtained a manifestly quantized coupling, as we expect for a periodic axion. We can

argue that the term in brackets is an integer in precisely the same way that we argued following (2.40), once

we make use of (2.46) and the aforementioned integer quantization of 2μ(R).

2.4 Mixing with a Heavier Non-compact Scalar

In this section, we will study examples in which an axion mixes with a non-compact scalar. As in our

previous examples, our purpose is to study the periodicity of the light axion after decoupling the heavy field.
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In our first example, we consider mixing of the light axion with a radial mode of the same complex field. In

the second example, we consider mixing of an ordinary axion with a monodromy axion. For concreteness, we

consider an extra-dimensional realization of monodromy in which the two axions are the Wilson loop phases

of two different five dimensional gauge fields obtained after compactification on R3,1 × S1. One has been

Higgsed (Hμ), the other remains massless (Aμ), and both couple to the same charged bulk scalar. While

there is extensive literature on both the one-loop potential (e.g., [771–777]) and axion monodromy (e.g.,

[733,734,743,778–781]), we highlight features of their interplay which have not previously been emphasized

in the literature and use them to show our broader conclusions still hold in a more general setting. In

both of the examples we consider, if the non-compact field is much heavier than the axion, we find that we

can integrate it out to obtain a typical EFT of the light axion. In the case of mixing with a monodromy

axion, we find that in the limit where the monodromy potential is subdominant to a periodic potential for a

linear combination of the ordinary and monodromy axions, the monodromy is effectively “realigned” to the

surviving light axion in the EFT, which has a larger decay constant than the original monodromy axion. In

every case, we find that deviations of θGG̃ couplings from their quantized values are, as before, proportional

to the mass squared of the axion field.

The case of mixing with a monodromy axion that we discuss is related to an earlier discussion in [765],

in which certain axions obtain masses via fluxes (which makes them monodromy axions) and other axions

remain light. That paper emphasized that the light axions can have enhanced field ranges, providing an

implementation of alignment [736] in which the heavy mode is decoupled by fluxes rather than a periodic

potential. Our claims are in accord with theirs, but we consider an extended range of possibilities including

the scenario when a periodic potential provides a larger mass term than a monodromy potential.

2.4.1 Mixing with a Radial Mode

As our first example of mixing with a non-compact scalar, we consider a simple KSVZ UV completion of a

single axion [592,593] and add at least one PQ-breaking term:

L = λ(|φ|2 − v2)2 +
(

yφQQ̃ + h.c.
)
+

( zφN

ΛN−4 + h.c.
)
. (2.51)

The presence of the PQ-breaking term allows, when perturbing around a generic point in field space, for

the radial and angular modes of φ to mix with each other. (The Yukawa term also allows this, after

confinement.) An example of this potential for a particular choice of parameters is shown in Fig. 2.3. Our

purpose in studying this theory is to understand whether it can produce a non-compact scalar field after

integrating out the radial mode. We find that the answer is no, because even before integrating out the

radial mode, we see that there is a nearly-flat, periodic valley at the minimum of the potential.
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Figure 2.3: An example potential from mixing an axion with a radial Higgs mode through a KSVZ-like
model, including additional PQ breaking terms. Lines of constant r (defined to be the radial mode of φ) are
shown in blue. Both the quark couplings and the PQ-breaking terms generate a potential along the θ (the
phase of φ) direction, but are unable to produce a non-compact valley at the minimum of the potential.

The potential, within the UV theory of two real scalar fields, has a periodic valley because of the form

of the radial dependence of each of the contributions to the potential. In order for the valley to unwind

into a non-compact flat direction, a cross section of the potential at fixed theta would have to oscillate as a

function of the radial mode. However, in each of the contributions to the potential in this example, the radial

dependence is polynomial. In general, models of this form will generate potentials that are a sum of periodic

functions of theta each multiplied by an envelope function that is a polynomial in the radial model. This

means that while PQ-breaking terms can generate complicated radial dependence for the precise location of

the minimum of the potential, they cannot make the valley unwind into a non-compact direction without

fine-tuning the coefficients of the radial polynomials to approximate a periodic function.

2.4.2 Mixing with a Monodromy Axion

The simple four-dimensional theory that we considered in the previous subsection is not sufficient to allow

the valley at the base of the potential to become a non-compact direction. Our discussion suggests that this

is more likely to occur in a potential that mixes the radial and angular modes inside a periodic function. To

generate this type of potential, we will consider the case where a monodromy axion mixes with an ordinary,

compact axion. In this model, the nearly-flat valley at the base of the potential is non-compact because of

mixing with the non-compact monodromy axion. On the other hand, there is still an underlying periodicity,

which is reflected in quantized aGG̃ couplings. The mixing between one monodromy axion and a second

compact axion can lead to a low energy EFT of a monodromy axion which is lighter and has a larger field

range than the original monodromy axion on its own. This type of potential and string theory completions

have been discussed previously in [743]. Instead of a string theory construction, we will instead illustrate

the core concepts using a simpler mechanism for generating the potential from dimensional reduction of a
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higher dimensional QFT.

We consider the simplest toy example that has this effect: a five dimensional theory of two U(1) gauge

fields, where one has been Higgsed (Hμ) and the other remains massless (Aμ). The use of massive U(1)

gauge fields in higher dimensions to produce monodromy axions in a compactified theory has been discussed

previously in [781–783]. After compactifying the fifth dimension on a circle of radius R, we obtain axions

as the Wilson loop phases θi :=
∮
dx5G5i of the fifth component of each gauge field around the compactified

dimension. We can see that the axion is normalized here to have period 2π because G5i and G5i + 1
R are

related by a large gauge transformation. The Higgsed field alone will generate a monodromy potential for

θH. To generate a periodic potential that mixes θH and θA, we couple both gauge fields to the same form

of matter. For simplicity, we take this matter to be a massless scalar and take the 5d spin-1 field to have a

simple Stückelberg mass term, but these choices do not qualitatively change our results. (In particular, our

qualitative conclusions should carry over to the other shapes of monodromy potentials that are known to

arise in string models, e.g., [733,779,784].) The action in this theory takes the form

S =

∫
d5x

(
− 1

4g2
5H

HMN(x)HMN(x)− m2

2g2
5H
HμHμ − 1

4g2
5A

AMN(x)AMN(x) + DMχ†(x)DMχ(x)
)

(2.52)

where the covariant derivative is

DMχ(x) := pMχ(x)− iqAAM(x)χ(x)− iqHHM(x)χ(x) (2.53)

and following [782] we have defined

HM(x) := HM(x)− ieiθ(x)pMe−iθ(x), (2.54)

where the Stückelberg field θ(x) is a periodic scalar. Since θ is an angular variable it can have nontriv-

ial winding around the extra dimension, wx5

R for integer w, which is responsible for the monodromy after

compactification.

The potential obtained after compactification contains two distinct contributions. At tree level, we only

see the monodromy potential of the Higgsed gauge field from the mass terms [782]

L4 ⊃ −Vmon(θH) := −
m2

2g2
4HR2

(θH
2π − w

)2
= −1

2m2F2
H (θH − 2πw)

2
, (2.55)

where we have defined the 4d gauge couplings g4i = g5i/
√

2πR as well as the decay constants of the 4d axion

fields, Fi = 1/(2πg4iR). Since the kinetic terms are 1
2 F2

i (∂θi)2, we see that m is the canonically normalized

mass of θH. As is typical with monodromy, for the Lagrangian to remain invariant under a shift by the axion

period, we must also shift w. On any given branch of fixed w, the potential is effectively not periodic, so
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θH behaves as a non-compact scalar. In addition to the tree level potential, both gauge fields get one-loop

potentials from their couplings to matter. Since they are coupled to the same form of matter, the one loop

potential will be a periodic potential that mixes the monodromy axion with the ordinary axion. In particular,

the potential generated by integrating out the mass terms for the tower of scalar Fourier modes

χ†(n) 1
R2

(
n− qA

θA
2π − qH

θH
2π

)2
χ(n) (2.56)

will simply be a sum of cosines in the case where χ is massless (e.g., [772]),

Vper(θA, θH) = −
3

64π6R4

∞∑
n=1

cos(nqAθA + nqHθH)
n5 . (2.57)

In the case where χ is massive the exact form the potential is more complicated [771,773,774], but will still

be periodic and produce qualitatively the same effect.

Although Vper is a one-loop effect and Vmon is a tree-level effect in this model, it need not be the case

that the monodromy potential dominates. This is because Vmon originates from spontaneous breaking of

the discrete shift symmetry, which is preserved by Vper, so it is of parametrically different (potentially much

smaller) size. It is interesting to consider two different limits, one in which ∂2
HVmon > |∂2

HVper| throughout

the field space, and one with the opposite inequality. (Here ∂H denotes ∂/∂θH.) These are depicted in the

left- and right-hand panels of Fig. 2.4, respectively. The left panel shows the case where the monodromy

potential dominates over the periodic potential. The periodic potential creates a small perturbation, but

there is no obstruction to any nonzero value of θH rolling down the potential toward θH = 0. The right panel

shows the more interesting case, in which |∂2
HVper| > ∂2

HVmon. This creates a series of ridges in the potential;

it is conceivable that the field could be localized (for instance, during inflation) in a valley between ridges

far up the potential, and will evolve toward the minimum by following the winding path down the valley

rather than moving directly in the θH direction.

The phenomenon exhibited in the case with a ridged potential might be thought of as “monodromy

realignment.” In the effective theory containing both θH and θA, it is θH that carries the monodromy. This

is because the Stückelberg field that produced the monodromy shifted only under shifts of Hμ . Nonetheless,

the low-energy effective theory is that of a monodromy axion that is a nontrivial linear combination of θH

and θA. One way to see this is by noting that we could first integrate out the linear combination of fields

that obtains a mass from Vper. As in §2.2.1, we could choose an alternative lattice basis (θ1, θ2) in which

this field is θ1. Specifically, we can find integers rA, rH such thatθ1

θ2

 =

pA pH

rA rH

θA

θH

 , (2.58)
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Figure 2.4: The two-axion potential in the case where a monodromy axion θH (horizontal axis) mixes with
a compact axion θA (vertical axis). The front and back edges of the surface correspond to θA = 0 and
θA = 2π and are identified. In the left plot, we have chosen parameters so that ∂2

HVmon > |∂2
HVper|. In

this case, the monodromy axion is heavy and can be integrated out; the light axion θA has a smaller cosine
potential along the periodic valley at the base of the monodromy axion’s potential. In the right plot, the
opposite limit |∂2

HVper| > ∂2
HVmon is taken. In this case, the cosine potential is large enough to produce a

series of ridges. The light axion mode is neither θA nor θH, but the mode that traverses the valley in between
ridges, along which θA = −qHθH/qA (mod 2π). The colored arrows show the path of the minimum down the
potential, where arrows of a particular color should be identified together.

where

pA :=
qA

gcd(qA, qH)
, pH :=

qH
gcd(qA, qH)

, and pArH − pHrA = 1. (2.59)

In this basis, the potential is (choosing the branch where w = 0)

V(θ1, θ2) = Vper(θ1) +
1
2m2F2

H (pAθ2 − rAθ1)
2
. (2.60)

The effective theory along the valley in the potential is obtained by taking θ1 = 0 (or a 2π shift thereof), so

that we can integrate it out to obtain an effective theory of the light field θ2,

1
2F2

2∂μθ2∂μθ2 −
1
2m2p2

AF2
Hθ2

2 + (terms proportional to 2θ2), (2.61)

where, using (2.13), the kinetic term of θ2 is proportional to

F2
2 = p2

AF2
H + p2

HF2
A. (2.62)

From this we can read off the canonically normalized mass of the light field,

m2
2 = m2 p2

AF2
H

p2
AF2

H + p2
HF2

A
. (2.63)
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The nonperiodic potential for θ2 indicates that, in the low-energy effective theory, it is a monodromy axion;

we say that the monodromy has realigned from θH to θ2 = rAθA + rHθH. Monodromy realignment has both

increased the effective decay constant and, correspondingly, decreased the mass of the monodromy axion.

Both of these features are intuitively apparent from the winding valley in Fig. 2.4.

We could also ask if couplings to external gauge fields are quantized the way that we expect them to be.

To study this we consider adding Chern-Simons terms to the theory,

LCS =
cA

16π2 εMNPQRAM Tr[GNPGQR] +
cH

16π2 εMNPQRHM Tr[GNPGQR], (2.64)

where G is an arbitrary gauge field (which could be one of the two already in the theory). Gauge invariance

requires that the coefficients ci be integers. After dimensionally reducing, these Chern-Simons terms will

contain θiGμG̃μ couplings of the axions to the four dimensional gauge fields with quantized couplings: gauge

invariance required us to start with ci quantized, and dimensionally reducing won’t change that. Just as in

earlier sections, the change of lattice basis from (θA, θH) to (θ1, θ2) does not change the quantization of the

θGG̃ couplings. However, even though we chose our (θA, θH) basis to have diagonal kinetic terms (which

need not be true, in general), the kinetic terms in the (θ1, θ2) basis are generally not diagonal. As in §2.2.1,

when we integrate out θ1, we will generally obtain terms ∝ (2θ2)GG̃ in the low-energy EFT. When we

consider the mass that θ2 obtains from Vmod, these will appear as effectively non-quantized couplings. Just

as in our earlier discussion, these contributions are all proportional to the mass parameter m2
2 of the light

axion.

2.5 Non-compact Symmetries Should Not Emerge in the IR

We can summarize our results by saying that if we start with a theory of several axions and, in one way or

another, decouple some linear combinations of them while leaving others massless, the massless fields will

still be axions, i.e., their field space will be compact and their couplings will be quantized accordingly. In

cases where we found non-quantized couplings of a light axion field, we found that the field also obtained a

mass, and the deviation of the axion’s couplings from their quantized values were proportional to the mass

squared of the axion. As we noted in the introduction, this has the same flavor as a well-known fact about

gauge theory: if we begin with a compact gauge group and then Higgs it, the surviving infrared gauge group

will be compact (and hence will have quantized charges). Such a result is known to hold in many different

contexts with compact gauge groups in the UV, in cases where we decouple gauge fields via confinement, via

Chern-Simons mass terms in (2+1)d gauge theory, or even when we alter the gauge group entirely in the

infrared, as in Seiberg duality. It is also known to be robust against kinetic mixing [744,745].
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Our observations about axions and the corresponding observations about gauge fields are linked in more

than a vague qualitative manner. In the case of (2+1)d theories, they are identical, because a massless axion

field θ in (2+1)d is Hodge dual to a gauge field Aμ defined by dA = 2πeFθ ⋆ dθ, where 2πFθ is the distance

in field space around the θ circle and e is the gauge field coupling. The scenario discussed in §2.3.1, where

θ is eaten to provide a Stückelberg mass to another gauge field B, maps to precisely the case where the

gauge field A dual to θ obtains a mass through a mixed Chern-Simons term B∧ dA. The low-energy theory

contains a massless gauge field for a compact gauge group with finite coupling, which is dual to a compact

axion field.

One reason to expect that a theory with a compact gauge group in the UV flows to a theory with a

compact gauge group in the IR is that any effective field theory that contains a non-compact gauge group,

such as R, is believed to be inconsistent when coupled to gravity. In such theories, one can generally construct

black holes of irrational charge [602], which violate entropy bounds that are believed to be true in all theories

of quantum gravity [785]. If it were possible to construct UV theories with compact gauge groups that flow

to IR theories with non-compact gauge groups, the UV theory would lie in the Swampland [786]. This would

be an interesting new Swampland constraint, but we are unaware of any examples that realize such RG

flows.

One possible reason why such RG flows do not exist in general is that they lead to IR theories with a

continuum of operators that did not exist in the UV. In theories with a compact gauge group that has an

associated p-form gauge field Ap, Wilson line or surface operators of the form exp
(
iq ∫Σ Ap

)
, where Σ is a

p-dimensional submanifold of spacetime, are defined for discrete choices of charge q ∈ Z. If the gauge group

is R, then there is a continuum of well-defined operators with arbitrary q. A similar statement holds for

axions: if θ is a 2π-periodic boson, then θ itself is not a well-defined operator, but exp(iqθ) for q ∈ Z is a

sensible local operator. On the other hand, in the non-compact limit, there is no obstruction to constructing

such operators for arbitrary q ∈ R. This suggests a possible general argument against the emergence of either

non-compact gauge groups or non-compact bosons from theories with compact gauge groups and axions in

the UV: this would be an RG flow from a UV theory with a discrete operator spectrum to an IR theory with

a continuous operator spectrum. It seems plausible that such RG flows are forbidden in sensible theories.

In this chapter, we will not go further in attempting to make these suggestions rigorous, but we believe

that they point toward a deeper understanding of why our results hold. The properties that arise in many

different effective field theories of axions are very closely akin to properties arising in gauge theories, and are

likely to be enforced by very general principles of quantum field theory.
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2.6 Discussion

Periodicity imposes strong constraints on the axion couplings and field ranges, even in cases where axions

mix with other axions or a non-compact scalar. Given our results, it appears the options for generating

significantly different axion couplings or field ranges than naively expected are: generating a large integer

in the effective theory of a single light axion, as in the clockwork scenario [736, 746–748, 764, 765]; building

an effective theory that intrinsically involves multiple axions (e.g., kinetically mixing the axion of interest

with an even lighter one); or relaxing these constraints through effects proportional to the mass of the

light axion (e.g., realignment of monodromy). While the clockwork scenario has been explored extensively,

further studying kinetic mixing with a lighter axion and realignment of monodromy could have potentially

interesting phenomenological prospects.
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3
Axion Mass from Magnetic Monopole Loops

3.1 Introduction

It is well known that instanton effects can generate a potential for an axion θ [585,586] when it is coupled to

a nonabelian gauge field via the topological coupling θ tr(F ∧ F). Even in the absence of axion interactions

with gauge fields, it is known that Euclidean branes can give rise to axion potentials [787–791]. Here, we

argue that axions coupled to abelian gauge fields through a θF ∧ F coupling acquire a potential through an

instanton effect whenever there are monopoles magnetically charged under F, due to the Witten effect [792].

Like nonabelian instantons, these effects are associated with 4d gauge theory dynamics. Like Euclidean

branes, they occur within a well-behaved semiclassical expansion free of infrared divergences. In fact, we

expect that our instantons are continuously connected to, or a limiting case of, known instanton effects in

specific UV completions [793]. The virtue of our approach is that, by working from the bottom up, we

deduce that such effects must exist [794] even when we do not know the UV theory.1

The Completeness Hypothesis postulates that any UV-complete theory of an interacting U(1) gauge

field (which has quantized charge) contains magnetic monopoles [796], which break a would-be 1-form global

symmetry [458]. This is, in particular, believed to be true of all theories of quantum gravity [602,604,753,797].

1The existence of the instantons we discuss here has been noted previously by Jake McNamara [795] and commu-
nicated to MR in the course of writing [793], although neither considered computing an axion potential from them
at the time.
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Assuming the validity of the Completeness Hypothesis, the instanton effect that we discuss will give rise to

an effective potential for any axion interacting with photons. This is of great phenomenological interest,

since the θF ∧ F interaction is the primary target of experimental searches for axions [588,798–800].

We consider an effective theory of a periodic axion field θ ∼= θ+2π coupled to a gauge field A normalized

such that the allowed Wilson lines P[exp
(
iq∮A

)
] have integer charge q ∈ Z:

S =

∫ [1
2f2dθ ∧ ⋆dθ − 1

2e2 F ∧ ⋆F +
kθ
8π2 F ∧ F

]
. (3.1)

The axion-gauge field coupling is of Chern-Simons type, with quantized coefficient k ∈ Z. Through the

Witten effect, a magnetic monopole in the presence of a nonzero background θ acquires an electric charge

−kθ/(2π). A consistent description of this effect requires that the effective theory on the magnetic monopole

worldvolume contains, in addition to the usual translational zero modes xμ , a collective coordinate interacting

with the field θ. This takes the form of a compact scalar boson σ ∼= σ + 2π, with an action that (expanding

around a monopole worldline extended in time) contains [801]:

S =

∫
γ

[1
2 lσdAσ ∧ ⋆dAσ +

θ
2πdAσ

]
, (3.2)

where the gauge-covariant derivative dAσ ≡ dσ + kA respects a shift of σ under A gauge transformations.

The mode σ behaves as a quantum particle on a circle (see, e.g., App. D.1 of [802]). Its energy eigenstates,

labeled by integers n ∈ Z, correspond to dyonic states of the monopole with electric charge k (n− θ/2π) and

energy

En =
1

2lσ

(
n− θ

2π

)2
. (3.3)

There is a monodromy n 7→ n + 1 when θ 7→ θ + 2π that ensures the spectrum of the theory is periodic.

We can estimate lσ by comparing (3.3) to the energy of the classical field configuration outside a monopole

in an axion background, following [803], from which we obtain:

lσ ∼
4π

e2k2 r∗ , r∗ = max(rc, r0), (3.4)

where rc = π/(e2mm) is the classical radius of the magnetic monopole (of mass mm) and r0 = ke/(8π2f) is

the length scale over which the axion field is screened near the monopole core. In the special case of critical

’t Hooft-Polyakov monopoles [804, 805], we begin with an SU(2) gauge theory with coupling g. Matching

to (3.1) gives e = g/2 and k = 2, while matching to (3.2) (when rc � r0) gives lσ = mm/m2
w where

mm = 4πv/g and mw = gv is the W boson mass. (We have chosen the order-one coefficient in (3.4) to be

accurate for this case, but it will differ in general theories.)
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Because the dyon energy spectrum (3.3) is θ-dependent, we can integrate out the dyons and obtain an

effective potential for θ. This can be understood either as a sum of Coleman-Weinberg-type potentials [806]

from each dyon mode n, or as a sum over loops with nontrivial winding of σ around the loop. These two

calculations are related by Poisson resummation, as we explain below. Although there is prior work on the

θ potential generated by a gas of (non-virtual) monopoles and antimonopoles (see [803,807–809] and follow-

ups) and similar ideas have been applied to Seiberg-Witten partition functions [810], the effect of monopole

loops on the vacuum θ potential is, as far as we know, absent from the prior literature.

3.2 Monopole Loops

We would like to compute the vacuum energy in the presence of “fundamental” magnetic monopoles.

Schematically, the vacuum energy should be derived by computing a Euclidean path integral of the form

Z(θ) =
∑

worldlines

∫
D(fields) e−Se[fields,worldlines,θ] , (3.5)

and taking the limit of infinite spacetime volume V,

Veff(θ) = − lim
V→∞

1
V
logZ(θ) . (3.6)

The worldline formalism has previously been applied to other physical processes involving monopoles, e.g.,

to pair production in magnetic fields [811].

In the limit where interactions between the configurations are small, we expect the partition function to

be dominated by disconnected vacuum paths characterized by the transition amplitude ZS1(θ), the Feynman-

weighted sum over all paths that are topologically a circle S1. These contributions exponentiate:

Z(θ) =
∞∑

n=0

1
n! (ZS1)

n
= exp

(
ZS1(θ)

)
. (3.7)

Hence Veff(θ) = − 1
V ZS1(θ); we work in the first-quantized picture to compute the amplitude ZS1(θ) [812]. We

sum over all trajectories that return to the same configuration. This includes an integral over the invariant

length (Schwinger proper time) τ, weighted with a 1/2τ to account for overcounting trajectories related by

translations and reflections. So,

ZS1 =

∫ ∞

0

dτ
2τ Z(τ, θ) , (3.8)

with Z(τ, θ) the sum over transition amplitudes at fixed θ of all trajectories with invariant length τ.

There are two ways we can compute ZS1 . For a free particle of mass m, the gauge fixed transition
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amplitude for a trajectory of length τ from point x to point x′ is

〈x′|x〉τ =
1

2(2πτ)2 exp
(
− 1

2τ (x − x′)2 −m2τ
)

(3.9)

After integrating over all trajectories that begin and end at the same point and canceling off a factor of the

spacetime volume from the measure with the factor in the definition of the effective potential, we obtain

Veff = −
∫ ∞

0

dτ
2τ

1
2(2πτ)2 exp

(
−m2τ

2

)
. (3.10)

We will sum over all dyon modes, labeled by n ∈ Z. To simplify the computation, we assume that the

dyon mass spectrum takes the form

m2
n = m2

m + m2
Δ

(
n− θ

2π

)2
, m2

Δ =
mm
lσ

. (3.11)

This agrees with (3.3) to order 1/lσ, and in certain cases is an exact consequence of a BPS condition. In

general, there may be power corrections in (mmlσ)−1. Summing over the tower of states, we obtain the

effective potential

−
∑
n∈Z

∫ ∞

0

dτ
4τ (2πτ)2 exp

(
−m2

mτ
2 − m2

Δτ
2

(
n− θ

2π

)2)
. (3.12)

Periodicity in θ, arising from the sum over n, is manifest after Poisson resummation:

∑
n∈Z

e−
1
2 m2

Δτ(n− θ
2π )

2
=
∑
ℓ∈Z

√
2π

m2
Δτ exp

(
−2π2ℓ2

m2
Δτ + iℓθ

)
. (3.13)

The effective potential then becomes

− π2

mΔ

∑
ℓ∈Z

∫ ∞

0

dτ eiℓθ

(2πτ)7/2 exp
(
−m2

mτ
2 − 2π2ℓ2

m2
Δτ

)
. (3.14)

After integrating, the result is

Veff(θ) = −
∞∑
ℓ=1

m2
Δm2

m
32π4ℓ3 e

−2πℓmm/mΔ cos(ℓθ)
(

1 +
3mΔ

2πℓmm
+

3m2
Δ

(2πℓmm)2

)
, (3.15)

where we have ignored the irrelevant constant from the divergent ℓ = 0 integral.

We can think of the integer ℓ as the number of times the coordinate σ winds around itself for a particular

configuration, and so we expect that we can interpret the effective potential (3.14) in terms of the monopole

wordline action. Indeed, if we consider the relativistic completion of (3.2) with the dyon collective coordinate
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σ treated as another (compact) spatial direction in which the monopole propagates, analogous to the DBI

action:

Sm = mm

∫
γ
dλ
√

dxμ
dλ

dxμ

dλ +
lσ

mm

(
dAσ
dλ

)2
+

∫
γ

θ
2πdAσ , (3.16)

then we can compute the transition amplitude for a trajectory of length τ from point (x,σ) to point (x′,σ′),

〈x′,σ′|x,σ〉τ =
1

2(2πτ)5/2 exp
(
− 1

2τ (x
′ − x)2 − lσ

2mmτ (σ
′ − σ)2 − m2

mτ
2 +

iθ
2π (σ′ − σ)

)
. (3.17)

Again, we integrate over all trajectories that begin and end at the same point, this time getting a

contribution from the sum over windings σ′−σ = 2πℓ, which nicely reproduces (3.15). These calculations are

identical to those of loop effects of Kaluza-Klein modes propagating in a circular dimension [773,775,813,814],

but the physical interpretation is not; here the extra dimension is an internal one, visible only to the

monopole.

We can understand the exponential factor in (3.15) via a saddle point approximation for each ℓ, corre-

sponding to a classical Euclidean instanton solution that winds ℓ times in the σ coordinate while remaining

at constant xμ . The saddle is at Schwinger proper time τ∗ = 2πℓ/(mmmΔ). The instanton action, which

controls the convergence of the Fourier expansion (3.15), is

S =
2πmm

mΔ
∼ 4π2

ke2

√
max(rc, r0)

rc
. (3.18)

Remarkably, for the critical ’t Hooft-Polyakov monopole, the instanton action is S = 8π2/g2, precisely that

of the classical BPST instanton in Yang-Mills theory [815,816]!

3.2.1 Light and Massless Fermions

As is familiar from standard instanton physics, the presence of light, charged fermions can dramatically alter

a theory’s θ-dependence. In particular, any dependence on θ should vanish as we take any charged fermion’s

mass to zero and thus restore a chiral symmetry.

While a full analysis of this effect—and the inclusion of multiple light fermions—is reserved for future

work, we can easily understand how it impacts the dyon mass spectrum on dimensional grounds. Since the

fermion dilutes the induced electric charge over a region roughly the size of its Compton wavelength, we

expect that r∗ ∼ m−1 in the estimate (3.4), and so the dyonic mass spacing becomes of order m2
Δ ∼ mmm.

Since this spacing vanishes as m→ 0, so does the θ-dependence of the dyon tower.
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3.2.2 Higher-Derivative Corrections and Validity

Our calculation assumed the dyon mass spectrum presented in (3.11), which we expect to receive corrections

in effective field theory when monopoles are not BPS. We should check that our result is robust against such

corrections. These corrections can arise from higher derivative operators in the bulk effective Lagrangian,

like (FμνFμν)2 or
(
FμνF̃μν)2, or higher powers of (∂μσ+kAμ) in the worldline Lagrangian. These are related:

the former add B4, (E · B)2,B2E2 and E4 terms to the energy density ρ. Integrating ρ outside the monopole

core, similarly to the logic that led us to (3.4), implies that these terms modify the dyon mass spectrum. A

series of terms of the form c2jE2j/Λ4(j−1) in ρ generates corrections to the mass spectrum in even powers of

(n− θ/2π):
m2

n = m2
m + m2

Δ

∞∑
j=1

λ2j

(
n− θ

2π

)2j
, (3.19)

where λ2j ∼ c2j
[
e2k2/

(
16π2(r∗Λ)4)]j−1 is small when j > 1 (and λ1 ≡ 1, by the definition of m2

Δ). Terms

involving powers of both B and E give subleading shifts to the definitions of m2
m,m2

Δ, and the λ j.

Repeating our earlier logic, we can sum the loop corrections (3.10) using the mass spectrum (3.19).

Poisson resummation and relabeling n− θ/2π→ n then gives

Veff(θ) = −
∑
ℓ∈Z

∫ ∞

0

dτ
4τ

1
(2πτ)2 e−

1
2 m2

mτ+iℓθZ(ℓ, τ),

Z(ℓ, τ) ≡
∫ ∞

−∞
dn e−2πinℓ− 1

2 m2
Δτ(n2+λ4n4+··· ) (3.20)

To evaluate the integral over n, we work in a saddle point approximation: defining Sℓ(n) to be the function

inside the exponent in (3.20), we ask that dSℓ(n∗)/dn = 0. Treating λ4 as a perturbation, we find that

n∗ = − 2πiℓ
m2

Δτ − 2iλ4

( 2πℓ
m2

Δτ

)3
+O(λ2

4, λ6). (3.21)

We require a small correction to the subsequent integral over τ, dominated by the saddle at τ∗ = 2πℓ/(mmmΔ).

In particular, m2
Δτ∗ � 1 (for small ℓ), which calls for caution: the semiclassical approximation requires suf-

ficiently small λ2j. In particular, (3.21) implies that a small correction to n∗ at the saddle τ∗ requires

|λ4| �
1
2

(m2
Δτ∗

2πℓ

)2
∼ 1

2

(mΔ
mm

)2
≲ e4k2

8π2
rc
r∗
, (3.22)

where the last inequality can be derived from (3.4) and the surrounding discussion. Along similar lines,

we require |λ2j| � (mΔ/mm)2(j−1). Focusing only on power counting in e, this requires that |c2j| ≲ e2(j−1).

This will always hold when the operator E2j is generated through loops of charged particles, as in the Euler-

Heisenberg Lagrangian, where |c2j| ∼ e2j/(16π2). In the case with r∗ = rc, this verifies that our semiclassical
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Figure 3.1: Pink regions: axion oscillates with the monopole loop-induced mass dominating over the
monopole background-induced mass before CMB formation at temperature Trec. Green solid line: the
sum of axion abundance (Ωah2) and monopole abundance (Ωmh2) today is Ωtoth2 = 0.12, above which the
abundance overcloses the Universe. Black dashed lines indicate the fraction of axion dark matter in the
total abundance of axion and monopole today. Below the solid blue line, the axion’s mass is so small that it
never oscillates, while it is greater than 10−13 eV to the right of the dashed blue line. When the axion is the
dominant component of dark matter today, its mass is around 10−13 eV, safely above bounds from structure
formation. Left panel: monopole yield saturates the Kibble bound. Right panel: monopole yield is from a
second order phase transition with a critical exponent ν = 0.5. We fix mmrc = π/e2, the critical temperature
to be Tc = 1/rc, and f = 1015 GeV.

calculation can be performed within the context of a sensible effective field theory in which higher derivative

operators produce controllably small corrections. The case r∗ = r0 requires somewhat more care regarding

the allowed range of the scale Λ, which we will not delve into here.

3.3 Phenomenological Applications

There could potentially be many interesting phenomenological implications of this new monopole contribution

to the axion potential, which calls for future work. Here we will only consider a hidden sector with a gauged

U(1)d symmetry and a gauge coupling e as a minimal example to show that this new contribution could play

an important role in the cosmological evolution of axion-like particles. In the hidden sector, there is also a

global U(1)pq symmetry which is broken spontaneously at the scale f and results in a Goldstone boson, the

axion a.

In the presence of monopoles carrying magnetic charge under the U(1)d, the axion obtains a mass

from both the temperature-independent monopole loop, which is the new finding of this chapter, and

the temperature-dependent contribution from a monopole background as discussed in [803, 807–809]. The
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monopole background could be generated via the Kibble-Zurek mechanism in a phase transition happening

at a critical temperature Tc in the early Universe [622, 623]. The monopole yield satisfies the Kibble lower

bound [622] and could be significantly above the bound if the phase transition is second order [623, 817].

In this model, both axions and monopoles could be components of dark matter. The relevant parameter

space is shown in Fig. 3.1, assuming that the visible and dark sectors share a common temperature at early

times. We see that when the gauge coupling e is large, e ≳ 0.5, the monopole loop-induced axion mass would

dominate over the contribution from the monopole background before the CMB formation. In addition, the

axion abundance is negligible when e ≲ 0.5, but it could take over that of the monopoles at larger values

e ≳ 0.5. In order not to overclose the Universe, the monopoles must not be very heavy [818, 819]. Fig. 3.1

establishes that the new effect we discuss can modify the cosmology of axions and monopoles; it would be

interesting to incorporate it in a wider range of models in the future.

3.4 Discussion

In this chapter, we have presented and computed a new contribution to the vacuum axion potential from

magnetic monopole loops, when the axion is coupled to an abelian gauge field. Much more remains to be

studied, both in developing the formalism and exploring the phenomenological and cosmological implications.

We briefly comment on some possible future directions: 1) We have assumed Veff(θ) is dominated by a single

monopole loop, but there are long-range Coulomb interactions between the monopoles. Their effect on the

semiclassical expansion should be explored. 2) We found that the action of the monopole-loop instanton

in the critical ’t Hooft-Polyakov case is that of a BPST instanton, 8π2/g2. This may be a harbinger of

a stronger statement: we expect that the monopole-loop instantons can be continuously deformed into

nonabelian instantons. If not, the theory would have an unbroken global (−1)-form U(1) symmetry in 4d,

and a (d− 5)-form symmetry in higher dimensions [793]. Similarly, in cases where U(1) gauge fields arise on

D(n+ 3)-branes wrapped on n-cycles in extra dimensions, one obtains axion potentials either from wrapped

Euclidean D(n−1)-branes or from magnetic monopoles, which are D(n + 1)-branes ending on the D(n + 3)-
branes. The winding of σ on the monopole worldline in 4d arises from a nonvanishing field strength on

the D(n + 3)-brane, which via the worldvolume Chern-Simons term, is equivalent to D(n−1)-brane charge.

Again, we expect that the monopole-loop instanton can be continuously deformed into a Euclidean brane

instanton in this context. These deformations between instantons should be constructed more explicitly. 3)

We demonstrated that this new contribution could be important in a hidden sector model with the axion

coupling to a dark U(1)d. Consider an axion coupling to the standard model photon instead. Does this

imply a minimum mass of the axion, even without nonabelian instantons? What are the effects of multiple

fermions, present in the standard model? Future work answering these questions will directly connect the

effect we have presented with ongoing experiments.
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4
Zero Modes of Massive Fermions Delocalize from Axion Strings

4.1 Introduction

In addition to the monopole potential discussed in Chapter 3, there are other interesting connections between

axions and topological defects. For example, axion strings can be important phenomenologically. One

example is in post-inflationary axion models, where the axion abundance is determined by radiation from a

network of cosmic axion strings [624, 820–835]. Other examples include recent work on potential signatures

of axion string networks [836,837].

Recently, there has been renewed interest in the fact that axion strings can be superconducting: they

support charged zero modes localized to the string core, which lead to a current on the string proportional

to an applied electric field. That axion strings are superconducting has been understood for many years,

as it is intimately related to the phenomenon of anomaly inflow elucidated by Callan and Harvey [838],

which we will review in this chapter. A great deal of the physics of anomaly inflow and axion strings was

worked out in subsequent years: see [839–847] for a collection of early and important works on the subject.

The contemporary interest in axion string superconductivity is in part due to the realization that these

strings could interact with a primordial magnetic field, leading to striking signatures due to the formation

of vortons [848,849] or bound states [850].

The existence of the charged zero modes is often explained in the context of simple models with a classical
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PQ symmetry. In these models, the fermions acquire mass from the vacuum expectation value of the radial

mode of the scalar field whose phase is the axion. In classical string configurations, the vacuum expectation

value goes to zero at the core of the string solution and intuition strongly suggests that massless modes will

exist in a region localized at the string core. An analogous argument successfully explains the existence of

zero modes on domain walls.

While this simple picture is intuitive, for axion strings, it is clearly incomplete. For one, it pays no heed

to the crucial fact that the zero modes on axion strings are chiral—a property which distinguishes them

from zero modes on e.g., Witten strings [851]. Moreover, in more complicated models (for instance, the

DFSZ axion [594, 595]), there can exist string configurations in which the vacuum expectation value of the

scalar does not vanish at the string core [852]. Despite this, there are arguments that these strings can be

superconducting as well.

This picture is also related to another puzzle. What happens to the zero mode when this classical PQ

symmetry is badly and explicitly broken? For instance, if the fermions have a very large mass m, we should

have no trouble completely integrating them out and the axion string should be blind to their existence. In

this case, there is no anomaly to inflow, and so these zero modes should not exist in the limit m → ∞. In

contrast, since they are chiral we still expect them to exist for small but non-zero m. So, there must be some

critical value of the mass m at which they cease to exist. What happens to the zero modes near this critical

mass?

The goal of this chapter is to shed some light on these puzzles. We will do so by studying a simple model

of axion electrodynamics in which the classical PQ symmetry is explicitly broken by a Dirac mass m for the

fermion. We demonstrate explicitly that there exist zero mode solutions to the equations of motion in the

axion string background, and numerically solve for their profile. We find that when the Dirac mass is roughly

equal in size to the mass μ induced by the scalar field which spontaneously breaks the PQ symmetry, the

profile functions change dramatically: the zero mode becomes completely delocalized from the string and

onto a semi-infinite wedge. We also revisit the anomaly inflow story in the presence of the bulk mass term,

clarifying the topological origin of the zero modes even in the absence of a “classical” PQ symmetry. Finally,

we derive the low-energy two-dimensional effective theory for the zero mode and calculate the leading higher-

derivative interactions with the bulk gauge field. As one would expect, we show that this effective theory

completely breaks down as m→ μ. While this simple model is not relevant phenomenologically, our hope is

that this work can be applied to more realistic models, with potential astrophysical or cosmological effects

that can be studied in future work.

It is worth emphasizing that these considerations are entirely distinct from situations in which the zero

modes localized on cosmic (non-axionic) strings can acquire mass from the pairing of left- and right-moving
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modes [853], which can be induced e.g., by finite temperature effects [854]. The mass term we introduce is

for the “full” theory of fermions propagating in four-dimensional spacetime. The zero modes localized to the

string remain massless on topological grounds, as in the original example [838]. The zero modes we discuss

are also distinct from those found in the background of “Z-strings” [855–859]. Those string configurations

are not topologically stable and there is no mechanism that protects the zero modes from pairing up and

acquiring a mass [860,861].

The rest of this chapter is structured as follows. In §4.2, we review the axion string solution in the

usual case, with a global PQ symmetry, and solve for the massless zero modes explicitly. In §4.3, we break

the PQ symmetry with a Dirac mass and demonstrate that the zero modes still exist. We discuss how this

can be understood by analogy to the existence of zero modes on domain walls in 2 + 1 dimensions, present

numerical results for the profile of these zero modes on the string, and discuss the behavior in the “critical”

mass case. In §4.4, we recap the original anomaly inflow story, with appropriate modifications to account for

the mass term. Finally, in §4.5, we derive the low-energy theory of the zero modes on the string, and discuss

how it is impacted by the Dirac mass term. We conclude in §4.6. Appendix A provides more detail on the

numerical techniques used to solve for the zero modes with Chebyshev interpolation, and on the derivation

of the low-energy effective action.

4.2 Axion Strings

In this section, we will review the original ultraviolet completion of an axion string studied by Callan and

Harvey [838], with Lagrangian

L = −1
4FμνFμν + ψ̄i /Dψ + |∂μΦ|2 + yψ̄

(
Φ1 + iγ5Φ2

)
ψ−V(Φ) . (4.1)

This theory lives in four-dimensional Minkowski space M4 and consists of an abelian gauge field Aμ with

field strength Fμν = ∂μAν−∂νAμ , an uncharged complex scalar field Φ ≡ Φ1 + iΦ2 ≡ f(x)eiθ(x) with potential

V(Φ) = λ
(
|Φ|2 − v2)2

, (4.2)

and a single charged Dirac fermion ψ, which chirally couples to Φ with strength y. We use Dμ = ∂μ − ieAμ

to denote the gauge covariant derivative, where /D ≡ γμDμ , and γμ are the standard Dirac gamma matrices

with {γμ , γν} = 2ημν and γ5 ≡ iγ0γ1γ2γ3. This theory enjoys a U(1)pq global symmetry, commonly called

the Peccei-Quinn symmetry, under which the complex scalar and fermion transforms as Φ → eiαΦ and

ψ→ e−iγ5α/2ψ, respectively.
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4.2.1 The Axion String

The potential (4.2) forces the scalar Φ to acquire a vacuum expectation value 〈Φ〉 = v. It also allows for the

existence of static axionic string configurations,

Φn(x) = f(r)einϕ , (4.3)

characterized by an integer topological charge n ∈ Z. We work in standard cylindrical coordinates (x, y, z) =
(r cosϕ, r sinϕ, z), with the string oriented along the z-axis. In these configurations, the phase of the complex

scalar field, i.e. the “axion” θ(x) ≡ argΦ(x), winds n times around its field space θ ∼ θ + 2π as we move

around the string. Said differently,

n ≡ 1
2π

∮
γ
dθ , (4.4)

where γ is a closed contour that encircles the string at r = 0. The “radial profile” of this string is determined

by the real function f(r). Far from the string, the potential (4.2) forces the scalar to sit in the minimum of

its potential and so f(r)→ v as r→∞. Likewise, regularity of the solution forces f(r) to vanish in the core

of the string: f(r)→ 0 as r→ 0. These solutions are also called “global vortices” in the literature, since they

are vortex solutions that are charged under the global U(1)pq symmetry, as opposed to a gauge symmetry.

The tension of an axion string with charge n is given by

Tn = 2π
∫ L

0
dr r

[(
df
dr

)2
+

n2

r2 f2 + λ(f2 − v2)2
]
. (4.5)

Since f(r)→ v as r→∞, the tension diverges logarithmically with the size of the system or IR cutoff L,

Tn ∼ 2πv2n2 log
( L

rcore

)
, L→∞ . (4.6)

Here, we have introduced the “size” of the string rcore, which is of order rcore =
(√

λv
)−1. This IR divergent

total energy is common for global strings and is typically regulated by either placing the theory in a box

or by positing that there is another string of opposite charge a distance L away, as is often the case in, e.g.

cosmological simulations of axion string networks.

Minimizing the tension yields the equation of motion

1
r
d
dr

(
r df
dr

)
−
[n2

r2 + 2λ(f2 − v2)
]

f = 0 . (4.7)

In general, this equation cannot be solved analytically but is amenable to numerics. We will restrict our
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Figure 4.1: The radial profile f(r) [blue], in units of v, for the axion string of charge ±1 and corresponding
(non-normalized) zero mode profile F(r) [orange] with y =

√
λ .

attention throughout to strings of charge n = +1. An asymptotic analysis of (4.7) shows that the radial

profile f(r) behaves as

f(r) ∼


vC1

(√
λvr
)
+ · · · r→ 0

v
(

1− 1
4λv2r2

)
+ · · · r→∞

, (4.8)

with C1 an overall constant that can be analytically determined by matching the two solutions in an inter-

mediate region, or by numerics. It is clear from the behavior as r → ∞ that the string solution varies over

length scales rcore =
(√

λv
)−1. We may then use the techniques outlined in Appendix A.1 to numerically

search for the solution which varies over scales set by rcore with the correct asymptotics (4.8). We show this

profile in Fig. 4.1.

4.2.2 Fermionic Zero Modes

We are interested in the low energy dynamics of (4.1) in the background of the axion string. Absent the

string, the fermion acquires a Dirac mass μ = yv—which we call the “Yukawa mass” since it arises from

the spontaneous breaking of the U(1)pq symmetry—and so the low-energy theory only contains the massless

axion and the abelian gauge field. One might think that the low-energy theory in the presence of the axionic

string is similar; far from the string, the fermions again get a mass μ and the low-energy theory should be

unchanged. However, as argued in [838] this reasoning is incomplete: there are instead massless chiral zero

modes which are localized to the string. In this section, we will review the direct construction of these zero

modes. A common intuitive explanation is that these massless modes exist because the radially-dependent
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“mass” of the bulk fermions yf(ρ) vanishes in the core of the string. However, we argue in §4.3 that this is

not a necessary condition, while in the §4.4 we discuss why these modes are necessary from the perspective

of anomaly inflow.

In the presence of the string of charge n = +1 and no background gauge field, the fermions obey the

equation of motion (
i/∂ + yf(r)eiγ5ϕ

)
ψ = 0 . (4.9)

For simplicity, we will restrict to solutions of the form

ψ(x) = ψ(r,ϕ) e−ip(t+z) , (4.10)

where ψ(r,ϕ) = ψα(r,ϕ) is a four-component spinor function with α = 0, . . . , 3. This ansatz describes

solutions that travel in the (−z)-direction at the speed of light. In the Weyl representation, (4.9) reduces to

the set of coupled equations

0 = 2pψ2 + e−iϕ (yf(r)ψ0 + i∂rψ3 + r−1∂ϕψ3
)

0 = yf(r)e−iϕ ψ1 + eiϕ (i∂rψ2 − r−1∂ϕψ2
)

0 = yf(r)eiϕ ψ2 − e−iϕ (i∂rψ1 + r−1∂ϕψ1
)

0 = 2pψ1 + eiϕ (yf(r)ψ3 − i∂rψ0 + r−1∂ϕψ0
)

. (4.11)

Such solutions should have definite helicity, and so we may set ψ1 = ψ2 = 0. We then see that ψ0 = ψ0(r)
and ψ3 = ψ3(r) are purely radial functions that satisfy the coupled system of equations

0 = yf(r)ψ0 + i∂rψ3

0 = yf(r)ψ3 − i∂rψ0

. (4.12)

These equations can be easily solved to find two solutions of the form

ψp(x) =
√p

2

( 1
0
0
∓i

)
e−ip(t+z)F(r) , (4.13)

where F′(r) = ±yf(r)F(r) or

F(r) = A exp
(
±y
∫ r

0
dr′ f(r′)

)
, (4.14)

with A an overall constant of integration. For this solution to be appropriately normalizable,

∫
R3
d3x ψ†

p(x)ψp′(x) = 2π|p|δ(p− p′) , (4.15)
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or specifically

2π
∫ ∞

0
dr rF2(r) = 1 , (4.16)

so we must select the negative sign in (4.14). We thus find that the axion string with charge +1 supports a

chiral fermionic zero mode that travels at the speed of light in the (−z)-direction, with form

ψ(x) = A
√p

2

( 1
0
0
−i

)
e−ip(t+z) exp

(
−y
∫ r

0
dr′ f(r′)

)
. (4.17)

If we were to repeat this analysis with the charge −1 axion string, then it would support a normalizable

chiral zero mode that instead travels at the speed of light in the (+z)-direction,

ψ(x) = A
√p

2

( 0
1
−i
0

)
e−ip(t−z) exp

(
−y
∫ r

0
dr′ f(r′)

)
. (4.18)

In Fig. 4.1, we show the radial profile F(r) for y =
√

λ . These zero modes are localized in a region about

the string of size rzm = rcore/y.

Before we move on, it will be useful to understand why the presence of the axion string permits these

normalizable modes to exist, solely from the perspective of the differential equations. We will see that,

contrary to naive expectation, it is not because the fermion is “massless” in the core of the string. With

(4.10), we can decouple the equations in (4.12) to find two copies of the second order equation

[
d2

dr2 −
f ′(r)
f(r)

d
dr − y2f2(r)

]
F(r) = 0 , (4.19)

with ψ0(r) = F(r) and ψ3(r) = −iF(r). As is clear from Fig. 4.1, the function f(r) is smooth and non-singular

for all r ∈ (0,∞). This implies that the solutions to (4.19) are regular everywhere, except possibly as r→ 0
and r → ∞, which are regular and irregular singular points, respectively. A normalizable solution must be

regular at both of these points and generally fails to exist because the solution that is regular about one

singularity is not regular about the other.

Using the asymptotics (4.8) of the background f(r), far from the string (4.19) reduces to

[
d2

dr2 − μ2 + · · ·
]
F(r) = 0 , (4.20)

which has solutions that behave as

F(r) = C−F−(r) + C+F+(r) ∼ C−e−μr + C+eμr , r→∞ , (4.21)

where we have defined two linearly-independent solutions F±(r) with definite scaling as r→∞. In this limit,
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the fermion zero modes do not “see” the string, but merely feel their acquired mass μ = yv. However, near

the core of the string, (4.19) instead reduces to

[
d2

dr2 −
1
r
d
dr + · · ·

]
F(r) = 0 . (4.22)

As we move towards the core of string r→ 0, there is a balance between the first and second terms in (4.19),

the latter of which only appears due to the existence of the string. The third term, due to the Yukawa

interaction, can be neglected. Solutions then behave as

F(r) = C1F1(r) + C2F2(r) ∼ C1 + C2r2 , r→ 0 , (4.23)

where we have again identified two solutions F1,2(r) which have definite scaling as r→ 0. Importantly, both

of these solutions are regular near the origin.

We can understand why the axion string allows a normalizable zero mode to exist as follows. Since (4.19)

is a second-order differential equation, it has only two linearly-independent solutions. Above, we found that

a general solution can either be expressed as a linear combination of F1,2(r) or F±(r). Since these two sets of

solutions are not linearly independent, there always exists a linear map between them. For a solution to be

normalizable, it must decay as r→∞ and so we must have that C+ = 0; therefore we must be able to write

this solution as F(r) = C−F− = C−,1F1(r) + C−,2F2(r). It is often the case that only one of the solutions

F1(r) or F2(r) is well-behaved at the origin r = 0 and, unless there is some special structure that ensures it,

the solution that is well-behaved as r → ∞ will not be well-behaved as r → 0. Fortunately, the presence

of the string ensures that both linearly-independent solutions are regular as r → 0. Since f(r) is a smooth

function, we are also guaranteed that the solutions are regular for positive r. Consequently, a normalizable

solution to (4.19) exists, regardless of its exact form.

An analogous situation occurs for the unbound states of the quantum mechanical hydrogen atom, whose

radial modes obey [
− 1

2r2
d
dr

(
r2 d
dr

)
+

ℓ(ℓ+ 1)
2r2 − α

r − E
]
ψ(r) = 0 . (4.24)

Due to the centrifugal barrier, solutions behave as ψ(r) ∼ C1rℓ +C2r−(ℓ+1) as r→ 0 and ψ(r) ∼ C−e−
√
−2Er +

C+e
√
−2Er as r→∞. Bound states, E < 0, have a discrete spectrum because it is impossible to simultaneously

impose that the wavefunction be both regular at the origin and exponentially decay at spatial infinity, except

at a discrete set of energy eigenvalues. For all other energies, solutions with C+ = 0 necessarily have C2 6= 0.

For unbound states, E > 0, there is no restriction on the behavior as r→∞, and so there exists a continuum

of regular solutions with C2 = 0, for all positive energies.

Having reviewed how axion strings, and their associated fermionic zero modes, arise in the Callan–Harvey

67



model (4.1), we are now in a position to understand how these zero modes behave as we deform (4.1). In

the next section, we will study what happens to these zero modes in the presence of a Dirac mass m for the

four-dimensional fermion. Even though the four-dimensional fermion is everywhere massive, these fermionic

zero modes still exist as long as |m| < μ. Furthermore, we argue that there is an interesting “phase structure”

in which the zero modes become increasingly unbound from the string as |m| → μ, eventually disappearing

for |m| > μ.

4.3 Adding a Mass

In the previous section, we reviewed how fermionic zero modes could arise along an axion string in the

context of a simple toy model. In that specific UV completion, the axion string is a solitonic object in which

the U(1)pq symmetry that is spontaneously broken far from the string is restored at the core. This causes

the four-dimensional fermion to see effectively zero mass near the core, and a popular refrain is that this why

we should expect to see massless fermionic zero modes localized on the string. The goal of this section is to

explain why this is not a necessary condition and see that fermionic zero modes can arise even in theories

where bulk four-dimensional fermions have a nowhere vanishing mass.

We will deform (4.1) by adding a mass m to the Dirac fermion ψ,

L = −1
4FμνFμν + ψ̄(i /D−m)ψ + |∂μΦ|2 + yψ̄

(
Φ1 + iγ5Φ2

)
ψ−V(Φ) , (4.25)

again with V(Φ) = λ(|Φ|2 − v2). We restrict to the case where the amplitude of ψ is small. This theory

permits the same axion string solution (4.3) as before. However, the fermion now obeys a modified equation,

(
i/∂ −M(r,ϕ)eiγ5α(r,ϕ)

)
ψ = 0 , (4.26)

where M(r,ϕ)eiγ5α(r,ϕ) = m− yf(r)eiγ5ϕ or, explicitly,

M(r,ϕ) =
√(

m− yf(r) cosϕ
)2

+ y2f2(r) sin2 ϕ

α(r,ϕ) = arg
(
m− yf(r)e−iϕ) = i log

(m− yf(r)e−iϕ

M(r,ϕ)

) . (4.27)

In this case, the fermion mass M(r,ϕ) no longer goes to zero at the core of the string even though f(r)→ 0,

but instead approaches the “core mass” M(r = 0,ϕ) = m. Even so, we will still find that this string supports

fermionic zero modes as long as this core mass is less than the Yukawa mass, |m| < μ.

To find these zero modes, we again restrict to axion strings with charge +1 and search for zero modes

of the form (4.10). The mass deformation mψ̄ψ explicitly breaks the chiral symmetry or, analogously, the
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Figure 4.2: The profile functions of the zero mode wavefunction |ψ0(r,ϕ)| in the presence of a Dirac core
mass m and normalized according to (4.15), for various values of m/μ and

√
λ = y =

√
0.1, with contours in

units of
√ωμ. The other component satisfies ψ3(r,ϕ) = −iψ0(r,−ϕ) and is thus identical in structure. The

white dot denotes the origin of the string, r = 0. As m→ μ, the zero mode profiles spread out and become
unbound from the string—note the difference in scales of the contours between the two rows. For m > μ,
these zero modes cease to exist. Qualitatively similar results apply when

√
λ 6= y.

continuous axion shift symmetry ϕ→ ϕ+α, and thus changes the form of the axion string solution. However,

classically this potential is controlled by fermion’s number density ψ̄γ0ψ, and in the limit of small amplitude—

or, quantum mechanically, small occupation numbers—this effect is subleading and can be ignored. Similarly,

we will not consider the electromagnetic field generated by the charged fermion, setting the vector potential

Aμ = 0, as this effect is also subleading in the limit of small amplitudes.

It is worth noting that integrating out the fermion generates a potential for the scalar that depends on

ϕ. The leading Coleman–Weinberg estimate ∝ M4(r,ϕ) log(M(r,ϕ)/μ) [806, 862] is minimized along ϕ = 0
and leads to a domain wall for the axion that emanates off the string and extends in this direction. In what

follows, we are explicitly assuming that this contribution is fine-tuned away, though we will see that there is

a remnant of the axion domain wall in the orientation of the zero mode profiles.
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By Lorentz symmetry, we can set ψ1(r,ϕ) = ψ2(r,ϕ) = 0 since the modes we are searching for propagate

in the (−z)-direction at the speed of light, and so in the Weyl representation (4.26) reduces to

0 = −mψ0 + e−iϕ(yf(r)ψ0 + i∂rψ3 + r−1∂ϕψ3
)

0 = −mψ3 + eiϕ(yf(r)ψ3 − i∂rψ0 + r−1∂ϕψ0
) . (4.28)

We can solve (4.28) numerically using Chebyshev interpolation, whose details we describe in Appendix A.1.

The resulting profile functions are shown in Fig. 4.2 for various values of m/μ. In the plot, we see the

normalized zero mode as a function of dimensionless x and y variables, with a white dot corresponding to

the location of the origin and hence the axion string. Surprisingly, we find that this zero mode becomes

less localized to the string the larger the core mass m is. For large m ≲ μ, it is no longer centered at the

core of the axion string and instead stretches out along the positive x-axis. This direction is determined by

the orientation of the string and specifically the axis along which ϕ = 0, corresponding to the minimum of

M(r,ϕ). As m→ μ, we find that there is a sort of phase transition in which case the zero mode completely

delocalizes onto a two-dimensional wedge. Finally, the mode completely disappears for m > μ.

To better understand the counterintuitive results shown in Fig. 4.2, in §4.3.1 we first solve (4.28) by

treating m as a small perturbation. As in §4.2.2, we will see that it is the presence of the axion string, and

not a vanishing mass at the core, which allows for this zero mode to exist. In §4.3.2, we describe a simple

analog of this mechanism for Dirac fermions in the three-dimensional half-space R2,1
+ . In §4.3.3, we analyze

the zero mode for the critical case m = μ.

4.3.1 The Small Mass Limit

In this section, we will argue that a normalizable zero mode solution to (4.28) exists in the small Dirac mass

limit by analyzing the structure of (4.28) when m� μ. Expanding each spinor into Fourier modes,

ψα(r,ϕ) =
∑
ℓ∈Z

ψα,ℓ(r)eiℓϕ , (4.29)

the zero mode equation (4.28) reduces to an infinite set of coupled equations

0 = −mψ0,ℓ−1 + yf(r)ψ0,ℓ + i∂rψ3,ℓ + iℓr−1ψ3,ℓ

0 = −mψ3,ℓ+1 + yf(r)ψ3,ℓ − i∂rψ0,ℓ + iℓr−1ψ0,ℓ .
(4.30)

When m = 0, the length scale over which the zero mode varies is set by the Yukawa mass μ = yv, which

dominates the system of equations (4.30) as r→∞. The mass m will also be relevant as r→∞, and so our

perturbative expansion will be in powers of m/μ.
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We will thus search for solutions of the form

ψ(x) =
√p

2

[( 1
0
0
−i

)
F(r) + δψ(r,ϕ)

]
e−ip(t+z) , (4.31)

and work to first order in δψ = O(m/μ). In this limit, (4.30) reduces to two identical sets of differential

equations, (
d
dr −

1
r

)
G(r) = yf(r)H(r)(

d
dr +

1
r

)
H(r) = yf(r)G(r)−mF(r)

, (4.32)

where (G,H) = (δψ0,1,−iδψ3,1) or (G,H) = (iδψ3,−1,−δψ0,−1). All other equations in (4.30) are trivially

satisfied by setting the other δψα,ℓ(r) = 0. The function G(r) satisfies the inhomogeneous equation

[
d2

dr2 −
f ′(r)
f(r)

d
dr +

f ′(r)
rf(r) − y2f2(r)

]
G(r) = −myf(r)F(r) , (4.33)

which can be solved using solutions to the homogeneous equation (with m = 0) via variation of parame-

ters [863]. These homogeneous solutions will determine how the inhomogeneous solution behaves, and so it

will be helpful to understand their asymptotic behavior.

Far from the string, at r→∞, the homogeneous equation reduces to[
d2

dr2 − μ2 + · · ·
]
G(r) = 0 , (4.34)

in which case the general solution behaves as

G(r) = C−G−(r) + C+G+(r) ∼ C−e−μr + C+eμr , r→∞ , (4.35)

where we have again introduced the two linearly-independent solutions G±(r) with definite scaling as r→∞.

We will choose their normalization such that the Wronskian is

W(r) = 2yf(r) . (4.36)

Likewise, as r→ 0, the homogeneous equation simplifies to[
d2

dr2 −
1
r
d
dr +

1
r2 + · · ·

]
G(r) = 0 . (4.37)

As before, the presence of the axion string introduces a regular singularity at r = 0, and solutions take the

form

G±(r) = C±,1
∞∑

k=0
a±k rk+1 + C±,2

∞∑
k=0

b±k rk+1 log r . (4.38)
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Crucially, both of the linearly-independent homogeneous solutions are regular as r → 0, regardless of the

overall coefficients C±,1 or C±,2. The most general solution to (4.33) that decays as r→∞ is

G(r) = 1
2mC−G−(r) +

1
2m G+(r)

∫ ∞

r
dr′ F(r′)G−(r′) +

1
2m G−(r)

∫ r

0
dr′ F(r′)G+(r′) , (4.39)

for arbitrary values of C−. Since F(r) and G−(r) both decay as e−μr, while G+(r′) grows as eμr, all three terms

in (4.39) decay as e−μr as r → ∞. Likewise, both F(r) and the homogeneous solutions G±(r) are regular as

r→ 0, and thus so is (4.39). This solution is thus normalizable.

Given a solution for G(r), we can solve for the other profile function H(r) via

H(r) = 1
yf(r)

(
d
dr −

1
r

)
G(r) . (4.40)

This equation should cause some alarm: since f(r) ∝
√

λvr diverges as r → 0, we might worry that H(r) is

not regular as r→ 0 even though G(r) is. However, the free coefficient C− in (4.39) can generally be chosen

to yield a normalizable H(r). Writing (4.40) as

H(r) = m
2yf(r)

[
C− r d

dr

(G−(r)
r

)
+ r d

dr

(G+(r)
r

)∫ ∞

0
dr′ F(r′)G−(r′)

− r d
dr

(G+(r)
r

)∫ r

0
dr′ F(r′)G−(r′) + r d

dr

(G−(r)
r

)∫ r

0
dr′ F(r′)G+(r′)

] , (4.41)

the combinations

r d
dr

(G±(r)
r

)
= C±,1

∞∑
k=0

a±
k krk + C±,2

∞∑
k=0

b±
k (1 + k log r)rk , (4.42)

are crucially regular as r → 0, approaching a constant b±
0 . Furthermore, since each of the integrals in the

second line of (4.41) decay as ∝ r2 log r as r → 0, each of those terms vanish as r → 0 and thus do not

generate a non-normalizable contribution to H(r).
In contrast, the terms in the first line are dangerous: they can contain a constant piece which, when

divided by f(r), would cause H(r) ∼ H0/r as r → 0 for some constant H0. Note, however, that we can

always1 choose C− so that the overall constant term in the square braces of (4.41) cancels. In this case,

H(r) ∼ H0 log r as r → 0, for some constant H0. But, this is still square-integrable, and so we conclude

that we can construct, at least perturbatively, a normalizable zero mode solution in the presence of a small,

non-zero Dirac mass m. As in the unperturbed case reviewed in §4.2, the axion string modifies the wave

1The only way this strategy could fail is if both G±(r) also have definite scaling behavior as r → 0, such that
either a+

k = b−
k = 0. In this case, we cannot tune C− to cancel the constant and the solution is non-normalizable.

While this behavior is extremely non-generic, we would need the connection formulae for (4.33) to prove it does not
happen. We take our numerical solutions to be proof that it does not.
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equation so that both linearly-independent solutions are regular as r → 0, allowing for a normalizable zero

mode.

The numerical solutions presented in Fig. 4.2 demonstrate that these solutions exist non-perturbatively

as well, as long as m < μ. As m → μ, these solutions become unbound from the string and occupy a two-

dimensional “wedge” in the plane orthogonal to the string. To better understand the critical case m = μ,

and why these solutions exist at all, it will be helpful to first study a simpler, albeit analogous, system in

which normalizable zero modes exist even in the presence of a nowhere vanishing gap.

4.3.2 Zero Modes on Domain Walls

That a massless field can emerge from one that is everywhere massive is counterintuitive, so it will be helpful

to consider a simpler system where it also occurs: the Dirac fermion on the half-plane R2,1
+ [838, 864–866].

Studying this system2 will also help us understand why these zero modes completely delocalize onto a

two-dimensional wedge when m = μ, which we will discuss in detail in §4.3.3.

Let us first consider a single Dirac fermion in the full space R2,1 with a spatially-varying mass, and

Lagrangian

L = ψ̄
(
i/∂ −m(x)

)
ψ . (4.43)

Here, (γ0, γ1, γ2) = (σ1, iσ3,−iσ2) are the three-dimensional γ-matrices and we use the Cartesian coordinates

(t, x, z). We take the mass term m(x) to only depend on the coordinate x. We can search for zero modes

that move at the speed of light in the (+z)-direction by assuming that there exists a solution of the form

ψ(x) = √p e−ip(t−z)

η(x)
χ(x)

 . (4.44)

with η(x) and χ(x) functions of x. With this ansatz, (4.43) reduces to

0 = η′ + m(x)η− 2pχ

0 = χ′ −m(x)χ
, (4.45)

where the ′ denotes differentiation with respect to x. This solution must have definite helicity, with χ(x) = 0,

so that solutions take the form

η(x) = A exp
(
−
∫ x

0
dx′ m(x′)

)
, (4.46)

where the coefficient A is determined by a normalization condition analogous to (4.15).

For (4.46) to yield a normalizable zero mode propagating in the (+z)-direction, the mass m(x) must be

2This system naturally appears, for instance, in the study of the quantum anomalous hall effect [867] along
interfaces between topological and regular insulators [866].
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positive as x → ∞ and negative as x → −∞, and thus vanish for some value of x. Likewise, if the mass is

instead negative as x → ∞ and positive as x → −∞, there is a normalizable zero mode propagating in the

(−z)-direction. Thus, if there exists a domain wall in which the fermion mass crosses through zero, there will

be chiral fermionic zero modes—often called chiral domain wall fermions—localized and propagating along

it.3 We see that in R2,1, the fermion cannot be everywhere gapped and still yield a normalizable zero mode.

This is one case in which vanishing mass and the existence of fermionic zero modes are inextricably linked.

However, the situation changes if we restrict to the half-space R2,1
+ , with x ≥ 0. In this case, constant

mass m(x) = μ does yield a normalizable zero mode which is exponentially localized to the boundary at

x = 0. For example, by decoupling (4.45) we find that η obeys

η′′ +
(
m′(x)−m2(x)

)
η = 0 . (4.47)

To match onto the analysis of §4.2.2 and §4.3.1, we note that, since m(x) approaches a constant μ at infinity,

then η(x) ∼ C−e−μx + C+eμx as x → ∞. Likewise, as long as m(x) is regular as x → 0, both linearly-

independent solutions will be regular, and so we will always be able to construct a normalizable solution

to (4.47). When m(x) = μ is constant everywhere on R2,1
+ , this solution is just η(x) = C−e−μx. In contrast,

this fails on the full-space R2,1 because the solution that exponentially decays as x→∞ never matches onto

the one which decays as x → −∞, unless the mass m(x) switches sign for some x. We note in passing that

the existence of this edge mode in the half-plane depends also on the choice of boundary conditions for the

fermion; see e.g., [869].

To connect this simple system to the one we are interested in (4.26), we can picture the polar radial

coordinate in R3,1 as the analog of the x coordinate on the half-space R2,1
+ , while the axion string itself

provides an effective “mass” m(r) which is regular as r → 0, as are the solutions to (4.26). The same

mechanism is at work for both cases: both linearly-independent solutions are regular at the core of the string

or wall, and thus the solution that decays at spatial infinity is necessarily normalizable. As we discuss in the

next section, this simple system is also useful for understanding the critical case in which core and Yukawa

masses are equal, m = μ, and the zero modes become completely delocalized from the string.

4.3.3 The Critical Mass Case

From the numerical results presented in Fig. 4.2, we found that there is a phase transition that occurs as we

tune the core mass to the Yukawa mass, m→ μ, wherein the fermionic zero mode seemingly delocalizes from

3This is a well-known fact which has been exploited [864] to simulate chiral fermions on the lattice. Many of the
phenomena we find in this chapter have analogs there. For instance, these chiral modes only exist for momenta p in
a particular region of the Brillouin zone [868], which we can denote as p ∈ C. For p /∈ C, the chiral modes cease to
exist. In analogy with Fig. 4.2, the chiral modes have wavefunctions that are well-localized to the domain wall for
momenta comfortably inside C, while they completely delocalize from the domain wall as p approaches the boundary
∂C, and are no longer normalizable for p /∈ C.
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the axion string. Beyond this critical mass, m > μ, the zero mode ceases to exist. Since this critical case

turns out to be very difficult to study numerically, it will instead be helpful to attack this case analytically

to understand exactly how these modes behave when m = μ.

First, however, it will be useful to qualitatively understand how solutions to (4.26) should behave in

the limit m → μ. In the previous section, we described how a fermionic zero mode can arise whenever a

fermion’s spatially-dependent mass crosses through zero. At criticality and far from the string, the mass

(4.27) approaches

lim
r→∞

M(r,ϕ) =
√
(m− μ cosϕ)2 + μ2 sin2 ϕ , (4.48)

which crosses through zero at ϕ = 0 when (and only when) m = μ. From the logic of the previous section,

we should then expect that the zero modes are no longer localized along the axion string, but are instead

allowed to propagate freely along—and are localized to—the plane defined by ϕ = 0. Thus, we expect that

these zero modes may have momentum along both the x- and z-directions, which we denote px and pz,

respectively, with frequency ω =
√

p2x + p2z .

We can exhibit these solutions in the critical case by searching for solutions to the equation of motion

(4.26) far from the string along the positive x-axis. In this limit, the equations of motion become approxi-

mately translationally invariant in both the x- and z-directions, and so we may search for solutions of the

form
ψ(x) = ψ(x, y)e−iωt+ipxx+ipzz , (4.49)

where ψ(x, y) varies slowly along the x-direction. Since these modes must have definite helicity, we will

assume an ansatz of the form

ψ(x, y) ≈
√ω

2


cosα
sinα
i sinα
−i cosα


F(x, y) (4.50)

with cos 2α = −pz/ω, and sin 2α = −px/ω. With this ansatz, when far from the string (4.26) reduces to

∂yF(x, y) ∼ −μ(y/x)F(x, y) , x� |y| , (4.51)

where we have dropped derivatives with respect to x and approximated eiϕ ≈ 1+ i(y/x). This can be solved

to find

F(x, y) ≈ A(x) exp
(
−
∫ |y|

0
dy′ M(x, y)

)
∼
( μ

πx
) 1

4
exp
(
−μy2

2x

)
, (4.52)

for x � |y|, where M(x, y) = μ
√
(1− cosϕ)2 + sin2 ϕ ≈ μ(y/x) is the mass (4.48) far from the string, where

μx� 1. The overall amplitude A(x) is determined by imposing the normalization condition,
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Figure 4.3: Plot of the approximate critical wavefunction |F(x, y)|, trustable for large positive x, with
contours displayed in units of √μ. When px = 0 and pz = −ω, |F(x, y)| = |ψ0(x, y)|, and so this figure can
be directly compared to the bottom left panel of Fig. 4.2.

∫
d3x ψ†

p(x)ψp′(x) = (2π)2ω δ(2)(p− p′) (4.53)

at any constant t, the direct analog of (4.15). For the ansatz (4.50), this translates into the requirement that∫
dy |F(x, y)|2 = 1.

We plot this approximate critical wavefunction (4.52) in Fig. 4.3 and find that it matches with the m→ μ
behavior we observe in the numerical results shown in Fig. 4.2. As our qualitative arguments suggested,

we find that the zero modes delocalize from the string once m = μ and instead are free to move along the

half-plane defined by ϕ = 0. They are relatively well-localized along y = ϕ = 0, but become more and more

spread out the further we get from the string, with an approximate width of Δy ∼ √x/μ.

To summarize, in this section we studied how fermionic zero modes along an axion string respond to the

addition of a non-zero Dirac mass m. Absent this core mass, the four-dimensional fermion sees effectively

zero mass at the core of the string, and so one might expect that this vanishing mass explains why the

axion string supports fermionic zero modes. However, we showed that these zero modes exist even when the

four-dimensional fermion has a core mass m and is thus everywhere massive, and we explained what it is

about the string that allows these modes to exist. Furthermore, we found that these zero modes completely

delocalize from the string as m → μ, and cease to exist for m > μ. In the next section, we explain this

phase structure from the perspective of anomaly inflow, in which these zero modes are necessary to render

the low-energy effective theory consistent.
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4.4 Zero Modes from Anomaly Inflow

The existence of these zero modes can also be inferred on topological grounds, based on the logic of anomaly

inflow [838]. Under an infinitesimal U(1) gauge transformation, the fields in (4.25) transform as

δΛψ = ieΛ(x)ψ , δΛAμ = ∂μΛ(x) , (4.54)

where Λ(x) is the U(1) gauge parameter. In a topologically trivial background, the action (4.25) is manifestly

invariant under such a transformation. In the presence of the axion string, however, gauge invariance is more

subtle. This symmetry is anomalous in the presence of the string, such that electric charge is not conserved

in a region localized to the string. The theory is then inconsistent unless there are some anomalous degrees

of freedom, i.e. charged chiral excitations, that are localized to the string and can cancel this anomaly and

carry away electric charge. These zero modes then allow electric charge and the anomaly to “flow” out of

the bulk spacetime and onto the string, ensuring that the full theory remains consistent.

The general strategy is as follows. We will attempt to construct a low-energy effective field theory of the

axion and abelian gauge field by integrating out both the fermion ψ(x) and radial mode f(x) of the complex

scalar. We do this by first ignoring the contribution from possible fermionic zero modes and by carefully

considering the effect of a gauge transformation on the effective theory. Our arguments are similar to the

original story, which can be found in [838,840,845], except that the U(1)pq breaking mass leads to a subtlety

in the identification of the phase which should be rotated away. Depending on the relative size of m and μ,

we find a gauge anomaly localized to the string. This inconsistency then forces us to include an additional

contribution from fermionic zero modes localized to the string which cancels this anomaly.

We are interested in the gauge invariance of the low-energy effective theory for the axion field after

integrating out the fermions. In the string background (4.3), the fermion sector of the theory can be written

L ⊃ ψ̄
(
i /D−m + yf(r)eiγ5θ(x))ψ, (4.55)

with θ(x) the axion field, and so we wish to compute

Zψ(θ) =
∫
Dψ̄Dψ exp

[
i
∫
d4x ψ̄

(
i /D−M(r, θ)eiγ5α(r,θ))ψ] , (4.56)

with M(r, θ) and α(r, θ) defined in (4.27). Performing the path integral by introducing a Pauli-Villars

regulator with mass M̃, we find

Zψ(θ) =
det
(

i /D−M(r, θ)eiγ5α(r,θ)
)

det
(

i /D− M̃
) . (4.57)
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Figure 4.4: The phase of fermion “mass” (4.59) far from the string. The phase is double-valued at
θ = 2π ∼ 0 for m ≤ μ [blue, orange, green]. The zero mode solutions vanish as m > μ [red] once the phase
becomes single-valued.

Now we perform a spatially-dependent chiral field redefinition, ψ→ e−iγ5α(r,θ)/2ψ to try and remove Zψ(θ)’s
dependence on α(r, θ). However, due to the chiral anomaly, this transformation introduces a Jacobian factor

and we thus have

Zψ(θ) =
det
(
i /D−M(r, θ)

)
det
(

i /D− M̃
) exp

[ i
8π2

∫
α(r, θ)F ∧ F

]
, (4.58)

which can be written in the form of an effective action for the axion θ interacting with the gauge field Aμ .

Note that in the m→ 0 limit, in which there is a classical U(1)pq symmetry, α(r, θ)→ θ and this Jacobian

factor reduces to the usual quantized coupling of the axion to the gauge field, ∝ θF ∧ F. Furthermore,

integrating out the fermions leads to a nontrivial effective potential for the axion via the θ-dependence in

M(r, θ).
It is this additional α(r, θ)F ∧ F term in the effective action that leads to a potential issue with gauge

invariance. Whether or not this term is gauge invariant is determined by whether the phase far from the

string,
α(θ) = lim

r→∞
α(r, θ) = arg(m− μe−iθ) , (4.59)

is single- or multi-valued as a function of θ, and this depends on the relative size of m and μ as illustrated

in Fig. 4.4. For instance, in the limit that m� μ, we find

α(θ) ≈ π− θ, (4.60)

which is clearly not single-valued at θ = 2π ∼ 0, and this applies more generally for all m < μ. In this case,
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we must integrate the effective action by parts to make it well-defined,

1
8π2

∫
α(θ)F ∧ F→ − 1

8π2

∫
dα(θ) ∧A ∧ F . (4.61)

However, under the gauge transformation (4.54), this transforms as

δΛ

[
− 1

8π2

∫
dα(θ) ∧A ∧ F

]
= − 1

8π2

∫
dα(θ) ∧ d(ΛF) = +

1
8π2

∫
d2α(θ) ∧ (ΛF) , (4.62)

where we have integrated by parts again in the last equality, neglecting any potential surface terms at the

string core. Since α(θ) is not single-valued, d2α(θ) 6= 0 but is instead localized along the string, and we find

an apparent gauge anomaly.

The reason for this apparent anomaly is that we have heretofore incorrectly assumed that there are no

zero modes at the core of the string. Their existence modifies the chiral transformation in (4.58) and, with

a careful treatment of the variation at the core,4 we find a violation of gauge invariance precisely equal and

opposite to the gauge anomaly due to a massless chiral fermion localized to the string worldsheet,

δΛ

[
− 1

8π2

∫
dα(θ) ∧A ∧ F

]
=

1
4πΛ F . (4.63)

On the other hand, it is precisely when m > μ that the phase α(θ) becomes single-valued since, near the end

points at θ = 0 and 2π, we have α(0) = α(2π) = arg(m − μ) = 0. In this case the interaction ∝ α(θ)F ∧ F
is both well-defined and single-valued, and gauge invariance is maintained without the need for additional

degrees of freedom along the string. This analysis breaks down as m → μ because it no longer makes sense

to define an effective field theory for the axion and gauge field “far” from the string since, as is evident from

our numerical results in Fig. 4.2 and is discussed in §4.3.3, the fermionic zero modes are no longer localized

at small r.
It is worth noting that, from the IR perspective, these anomaly inflow arguments do not entirely deter-

mine the theory on the string. While we have focussed throughout on a particular UV model, in which the

zero modes are unambiguously identified with chiral modes of the fermion, in general, the anomaly could

be cancelled by a different theory on the string worldsheet. For strings with an even winding number, for

instance, the anomaly can be cancelled by compact bosons living on the worldsheet. Anomaly inflow guar-

antees that the IR theory has a U(1) symmetry with a particular anomaly, while the precise theory on the

4Somewhat famously, arriving at the exact value of the gauge anomaly, which matches the contribution from
two-dimensional chiral fermions localized on the string worldsheet, requires some care. A proper treatment involves
introducing a “bump-form” which extends the validity of the effective theory in (4.58) to all of spacetime and properly
includes the zero modes on the string core so that all surface contributions vanish [845]. This bump form can be
computed explicitly in terms of the zero modes profiles, and the calculation of [845] is unchanged in the case m ̸= 0.
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Figure 4.5: Leading order diagram for the current 〈Jμ(z)〉 produced by a spatial variation of the axion
∂νθ(x0) in the presence of a background electromagnetic field Aλ , used by Goldstone and Wilczek to compute
the effective action.

string depends on the details of the model in the UV.

Finally, it is illuminating to compare our effective action to the effective action computed via the method

of Goldstone and Wilczek [870], as in [838, 840]. In that case, one computes the current at a point x0 far

from the string core, in response to a background electromagnetic field, in the long wavelength limit. We

choose θ(x0) = 0, so that the fermion-scalar interaction can be expanded as

yψ̄f(r)eiγ5θ(x)ψ ' iμ ∂λ θ(x0)(w− x0)λ ψ̄γ5ψ. (4.64)

The leading contribution comes from the diagram in Fig. 4.5. For the theory (4.25), this yields

〈Jμ(z)〉 = e2μ ∂λ θ(x0)
∫

d4p
(2π)4

d4q
(2π)4

d4k
(2π)4 d4y d4w (w− x0)λ Aν(y)e−i[p(z−y)+(p+q)(y−w)+(p+q+k)(w−z)]

× Tr
[ 1
/p−Mγν 1

/p + /q −Mγ5 1
/p + /q + /k−Mγμ +

1
/p−Mγ5 1

/p + /k−Mγν 1
/p + /k + /q −Mγμ

] (4.65)

and evaluates to

〈Jμ(z)〉 = e2

8π
μ

μ −mεμνκλ∂νθ(x0)Fκλ . (4.66)

Following [840], we can posit an effective action (valid far from the string),

Seff =
1

8π2
μ

μ −m

∫
dθ ∧A ∧ F , (4.67)

from which the current (4.66) can be computed. When m = 0, integrating (4.67) by parts yields the usual,

properly quantized, coupling of the axion to the gauge field. When m 6= 0, the μ/(μ −m) prefactor would

appear to violate the quantization condition for the axion–gauge field coupling. However, expanding for

small values of the axion field,

dα(θ) =
[ μ

μ −m +O(θ2)
]
dθ , (4.68)
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and we see that (4.67) is precisely the leading term of (4.61), which is properly quantized.

Let us note that there is an ambiguity in which field one calls the “axion,” θ or α(θ). Both are compact

fields, θ ∼ θ + 2π and α ∼ α + 2π. If one works in the “charge-quantized” basis in which the coefficient of

the topological coupling (4.61) is an integer, the axion α has a (possibly highly) non-trivial metric on its

field space given by

gαα = v2(θ′(α))2 = v2
[

1 +
m
μ

cosα√
1− (m/μ)2 sin2 α

]2

, (4.69)

and so around θ ≈ 0 or α ≈ π the decay constant is effectively reduced by a factor of (μ − m)/μ, which

is identical to the factor that appears in (4.67). If one instead works with θ, the (classical) metric on field

space is flat but the coefficient of the topological coupling (4.67) is not an integer. This story is similar in

spirit to the reason for the non-quantized coupling of the axion to photons, due to mixing with the neutral

pion.

To summarize, we have shown that—with a careful treatment of the axion’s periodicity—the arguments

for anomaly inflow, and the resulting necessity of chiral zero modes on the string, persist in the presence

of a field-independent mass, as long as this “bulk” mass is smaller than the mass generated by the chirally

coupled scalar field. This makes it clear that it is the topology of the axion string, and not the dynamics

of the scalar field which spontaneously breaks the classical U(1)pq symmetry, which is responsible for the

existence of the fermion zero modes.

4.5 Low-Energy Effective Theory

In the previous section, we found that the full four-dimensional effective theory was rendered consistent

when m < μ by including chiral fermionic zero mode localized to the axion string, while they disappeared

for m > μ. Our numerical results in Fig. 4.2 show that they disappear because the zero mode completely

delocalizes from the string as m → μ. It will be useful to understand how this process appears from the

zero mode’s two-dimensional effective theory on the string worldsheet. At leading order in μ−1, this action is

completely constrained by symmetry and does not depend on the ratio m/μ. However, we will show that the

Wilson coefficients of the higher derivative interactions between the zero mode and the gauge field depend

sensitively on m/μ and diverge as m→ μ, causing the two-dimensional effective theory to break down.

We again will specialize to an axion string with charge +1, and start by introducing the (quantized)

mode expansion for the fermion

ψ(x) =
∫ ∞

0

dp
2π

1√
2|p|

âp ψp(r,ϕ)e−ip(t+z) +
∫ 0

−∞

dp
2π

1√
2|p|

b̂†
−p ψp(r,ϕ)e−ip(t+z) + · · · (4.70)

where the · · · denote the non-zero modes of the massive four-dimensional fermion about the axion string.
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Here, ψp(r,ϕ) is the zero mode wavefunction (4.10) found in §4.3, subject to the normalization condition

(4.15). The creation and annihilation operators, b̂†
p, âp satisfy the canonical commutation relations appro-

priate for a two-dimensional fermion,

{âp, â†
p′} = 2π δ(p− p′), {b̂p, b̂†

p′} = 2π δ(p− p′). (4.71)

Since the only place the momentum p enters into ψp(r,ϕ) is in its overall normalization, we can define the

spinor F(r,ϕ) = ψp(r,ϕ)/
√p and write (4.70) as ψ(x) = χ−(t, z)F(r,ϕ) + · · · , where

χ−(t, z) =
∫ ∞

0

dp
2π
[
âp e−ip(t+z) + b̂†

p e
ip(t+z)

]
(4.72)

is a canonically normalized two-dimensional fermion field operator with negative chirality.

It will be convenient to repackage χ−(t, z) into a two-dimensional Dirac fermion χ(t, z) living on the

axion string worldsheet

χ(t, z) =
χ−(t, z)

χ
+
(t, z)

 , (4.73)

by grouping it with a positive chirality fermion χ
+
(t, z), which we later set to zero. We will use a,b, . . . = 0, 3

to denote worldsheet indices, and define our worldsheet γ-matrices as γa = (γ̃0, γ̃3) = (σ1, iσ2)5 with chiral

projectors γ± = 1
2 (1 ± γ̃0γ̃3) such that γ±χ = χ±. We will thus impose the constraint γ

+
χ = 0 to remove

χ
+

from the theory. The kinetic term for the two-dimensional fermion then takes the standard Dirac form,

Sχ =

∫
d2σ iχ̄γa∂aχ + · · · =

∫
d2z iχ†

−∂+χ− + · · · (4.74)

where we denote ∂± = ∂t ∓ ∂z and use d2σ = dt dz to denote the volume element on the string worldsheet,

while we will use d2r = r dr dϕ = dx dy to denote the volume element orthogonal to the string. The · · ·

denote terms in the effective action that encode how the chiral zero mode χ− interacts with the gauge field

Aμ , which we now derive.

The zero mode generates a four-dimensional current that points along the axion string

jμ = eψ̄γμψ =


e|F(r,ϕ)|2(χ̄γaχ)(t, z) μ = a = 0, 3

0 μ = 1, 2
, (4.75)

where |F(r,ϕ)|2 = (F†F)(r,ϕ), and so its interaction with the gauge field Aμ is determined by

5We use γ̃0 and γ̃3 to distinguish these two-dimensional γ-matrices from the four-dimensional γ0 and γ3, used for
the four-dimensional Dirac fermion ψ(x).
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Sem = −
∫
d4x jμAμ = −

∫
d4x e|F(r,ϕ)|2(χ̄γaχ)(t, z)Aμ(x) . (4.76)

Our goal is to encode the information contained in (4.76) into a series of effective interactions in the two-

dimensional effective theory between χ and (derivatives of) the gauge field pulled back onto the string

worldsheet. This will encode the zero mode wavefunction’s multipolar structure into a set of effective two-

dimensional interactions and will define a set of multipole moments for the current (4.75).

To derive these effective interactions, we perform a long-wavelength expansion of the gauge field about

the axion string x = (t, 0, 0, z) following a procedure similar to the one outlined in [871] and explained in more

detail in Appendix A.2. After using current conservation and integration by parts, (4.76) can be written as

Sem = −
∫
d2σ
[
e(χ̄γaχ)Aa

]
(t, z)

−
∞∑

n=1

1
n!

[∫
d2r xk1 · · · xkn |F(r,ϕ)|2

]∫
d2σ
[
e(χ̄γaχ)∂k2 · · · ∂knFk1a

]
(t, z),

(4.77)

where we use i, j, k1, · · · = 1, 2 indices to denote directions orthogonal to the string, i.e. xi = (x, y). It is more

illuminating to rewrite the higher order terms in this expansion in terms of irreducible SO(2) tensors. This

introduces terms ∝ ∂kFka, which can be rewritten using the equations of motion that follow from (4.58),

∂kFka = −∂bFba +
e2

16π2 ∂
μ(α(θ)F̃aμ) + ja , (4.78)

where F̃μν = 1
2 εμνρσFρσ is the dual field strength. To second order in the derivative expansion, we find that

the two-dimensional current ȷ̃a ≡ χ̄γaχ couples to

Sem ⊃
∫
d2σ
[
−ȷ̃aAa + Ii

1 ȷ̃
aFia +

1
4Iij

2 ȷ̃
a∂(iFj)a −

1
4Itr2 ȷ̃a∂bFba +

e2

64π2 Itr2 ȷ̃a∂ρ(θF̃aρ)
]

(4.79)

where

Ii
1 =

∫
d2r xi|F(r,ϕ)|2 (4.80)

is the zero mode current’s “dipole,” while

Iij
2 =

∫
d2r (xixj − 1

2 δijxkxk)|F(r,ϕ)|2, Itr2 =

∫
d2r r2|F(r,ϕ)|2 , (4.81)

are the current’s “quadrupole” and variance. Each of the operators in (4.79) are operators on the string

worldsheet, while the dimensionless coefficients ci
1 ≡ μIi

1, cij
2 ≡ μ2Iij

2 , ctr2 ≡ μ2Itr2 can be understood as Wilson

coefficients in the effective theory on the string worldsheet.6

6There are only three independent Wilson coefficients that appear at each order in this multipole expansion.
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Figure 4.6: Plots of the Wilson coefficients cx
1, cxx

2 , and ctr2 vs. m/μ. The coefficients cy
1 and cxy

2 = cyx
2

vanish due to the zero mode’s reflection symmetry about the x-axis, as evident in Fig. 4.2, while the other
coefficient cyy

2 is completely determined by cyy
2 = −cxx

2 .

We plot these Wilson coefficients in Fig. 4.6 as functions of m/μ. Two features are immediately obvious:

at m = 0, the dipole and quadrupole moments vanish due to the cylindrical symmetry of the zero mode

solution, as expected. The trace term ctr2 does not vanish but instead approaches a value ctr2 → 2.19 as m→ 0.

Such trace terms also appear in the generic multipole expansion of a point-like source [871] where, as here,

they multiply time derivatives of the field strength and thus do not appear in the static multipole expansion.

As m approaches the critical value, m = μ, all three Wilson coefficients quickly blow up, reflecting the

breakdown of the two-dimensional effective theory. This is also expected since, as seen in Fig. 4.2, the zero

modes delocalize from the string as m→ μ and must completely disappear for m > μ, and so the worldsheet

effective theory must fail. As is usual, the effective theory signals its own demise through Wilson coefficients

that become uncontrollably large.

So, far from a charge +1 axion string the theory (4.25) is well-described by the effective action

S =

∫
d4x

[
−1

4FμνFμν + v2(∂θ)2 +
α(θ)
16π2 FμνF̃μν + · · ·

]
+

∫
d2σ

[
χ̄i /Dχ +

ci
1

μ ȷ̃aFia +
cij

2
4μ2 ȷ̃

a∂(iFj)a −
ctr2
4μ2 ȷ̃

a∂bFba +
e2ctr2

64π2μ2 ȷ̃
a∂ρ(θF̃aρ) + · · ·

] . (4.82)

The first line describes the dynamics of the gauge field and axion, where the · · · denote interactions that

This can be most easily seen by remembering that the irreducible tensors of SO(2) with weight ℓ are in one-to-one
correspondence with the two Fourier modes e±iℓϕ and so, in general, correspond to two complex (or four real) degrees
of freedom, which we may denote as fℓ and f−ℓ. Since the distribution is purely real, these coefficients obey fℓ = f∗−ℓ,
and so the distribution is described by only two real degrees of freedom at each weight ℓ. To this, we must add the
pure trace term at each ℓ, e.g. Itr2 , which increases the number of moments at each order to three.
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are induced by, for instance, integrating out the scalar’s radial mode f and the non-zero mode fluctuations

of the fermions and include a potential for the axion θ. The second line describes the chiral zero mode

living on the string and its interactions with the gauge field and axion. Here, the · · · denote terms that are

either subleading in the derivative expansion or are nonlinear in the current ȷ̃a, the latter of which are also

generated by the long-wavelength expansion (described above and in Appendix A.2) and upon integrating

out the heavy scalar and fermionic modes.

4.6 Discussion

In this chapter, we revisited the superconductivity of string solutions in a simple model of axion electro-

dynamics in which the U(1)pq symmetry is explicitly broken by a mass term for the fermions. When the

PQ-breaking mass m is smaller than the asymptotic mass μ acquired from the radial mode of the scalar whose

phase is the axion, the fermionic zero modes responsible for superconductivity persist. We demonstrated

the existence of these zero modes both by studying the asymptotic behavior of the equations of motion and

by solving for their profiles numerically. We also demonstrated how their existence can be understood from

anomaly inflow, with some modifications to the original arguments by Callan and Harvey.

For m > μ, the zero modes cease to exist. As m approaches μ, however, the zero modes exhibit an

interesting critical behavior, in which they delocalize from the core of the string and propagate along a

two-dimensional wedge.7 We further studied the effective theory of the zero modes on the worldsheet and

their interactions with external gauge fields. As m approaches its critical value, we demonstrated explicitly

how this effective theory breaks down as a result of the zero modes delocalizing.

While we have focused on a simple “minimal” model of axion superconductivity here, there are several

aspects which may be phenomenologically relevant in more realistic theories that warrant further exploration.

First, as mentioned in the introduction, DFSZ axion models have multiple distinct, topologically stable

string configurations and at least one of these (the “Type-C strings” in [852]) has a scalar profile which does

not restore electroweak symmetry at the string core. It is possible that the nonzero vacuum expectation

value at the core in these configurations may play a similar role to the explicit PQ-breaking mass term we

have considered, which helps explain how these solutions may still be superconducting (as anomaly inflow

arguments suggest they must be). This should be studied in more detail.

It is also worth recalling that in a high-temperature background, fermions acquire a Debye mass ∼ gT
which has the same effect as the explicit mass m. In an expanding universe, if the initial temperature is large

7Amusingly, this behavior is very similar to how light fermions behave in the presence of a magnetic monopole [872],
but in reverse. There, the light fermionic modes become more and more delocalized from the monopole core as their
mass decreases, ultimately explaining why the θ-angle becomes a redundant parameter for dyon physics once m = 0.
Here, counterintuitively, the light fermionic modes delocalize as their mass increases.
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enough that the Debye mass is larger than the Yukawa mass, a phase transition to the superconducting case

may actually occur. It may thus be of interest to study if the delocalization of the zero modes found in the

simple model studied here can have consequences for the evolution of string networks in cosmology.

Finally, we should emphasize that our numerical results were derived under the assumption that the

fermion amplitude is small. It would be worthwhile to understand how the profiles of the zero modes change

beyond the limit of small fluctuations. In the same vein, it would be enlightening to understand the higher-

order source terms in the worldsheet effective action that we have dropped. We hope to return to some of

these topics in the future.
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5
A Closer Look at CP-Violating Higgs Portal Dark Matter

5.1 Introduction

Dark matter constitutes the majority of the mass in our universe, but its properties remain largely unknown.

Over the years, there have been tantalizing hints in various experiments; while many of these signals have

vanished due to increased statistics or a better understanding of systematic uncertainties, some signals, such

as the Galactic Center Excess (GCE), have persisted for over a decade.

In astrophysical settings, the Galactic Center is expected to have some of the largest dark matter den-

sities, and is therefore one of the most promising targets for indirect searches. The GCE is a statistically

significant excess of gamma rays at energies of ∼ 2 − 3 GeV observed in the Galactic Center by the Fermi

Gamma Ray Space Telescope [873]. As pointed out by [874–880], the GCE could be explained by a thermal

WIMP annihilating to Standard Model particles. To truly confirm such a hypothesis, it is crucial to observe a

signal in other indirect channels. In fact, it is possible that AMS-02 is observing an antiproton excess [881] at

a concordant energy range [882–885], though the existence of this excess is not as well established [725,726].

While promising, it has also been suggested that the GCE signal could be generated by millisecond pul-

sars [886, 887]. In recent years, the debate surrounding the origin of the GCE has intensified [888–903].

New measurements in the coming decade and a better theoretical understanding of Galactic diffuse emission

models will help settle this debate, but until then, the origin of the GCE remains unknown and dark matter
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annihilation remains a viable explanation.

As discussed in [879,880], the GCE can be well described by dark matter annihilations, particularly to bb̄.

This has fostered the development of many dark matter models with WIMP-like annihilation mechanisms,

which are too numerous to review here (see [502] for a review). Of these, models with pseudoscalar s-

channel mediators are particularly well-motivated because they are neutral and can evade direct detection

constraints. In particular, if the dark matter lives close to resonance, the annihilation cross section can be

boosted enough to explain the GCE [904–911]. While much of the previous work relies on the introduction of

a new pseudoscalar mediator, the authors of [912] proposed an interesting alternative. In their setup, the dark

sector is connected to the visible sector via a CP-violating coupling to the Higgs, which allows annihilation and

spin-independent scattering to be governed by different parameters. In principle, the CP-violating coupling

can generate a viable thermal relic candidate even away from the resonance, by suppressing the scattering

rather than enhancing the annihilation. However, in [912], the authors consider specific model realizations

within the context of supersymmetry where the benchmark best fit model still has the dark matter mass

very close to half the Higgs mass.

In this work, we extract the key ingredients of their model, namely a Majorana dark matter candidate

with CP-violating coupling to the Higgs, and explore the extent of freedom away from the mass resonance

that can be achieved with larger CP-violating couplings. We see that for large enough coupling in the dark

matter EFT, there is O(10) GeV flexibility for the dark matter mass when the phase is approximately π/2.

We also consider and explore the phenomenology of two different minimal UV realizations of this scenario:

singlet-doublet dark matter [913–923] and doublet-triplet dark matter [918, 920, 923, 924]. We study both

how these models translate to EFT parameters, and constraints governing these UV realizations, including

contributions to the electron electric dipole moment (EDM), the Peskin-Takeuchi parameters, as well as

possible collider signatures. We find that while the dark matter mass and CP-violating phase are independent

parameters in the EFT, their dependence in the UV completion is quite nonlinear since the Yukawa coupling

directly affects the dark matter mass. Specifically, it is difficult to achieve the phase tuning scenario without

also tuning the mass in the UV completion, because the large couplings that are required to generate the

annihilation cross section when away from resonance also change the dark matter mass. Additionally, we

find that the amount of CP-violation in the UV may not be reflective of that observed in the EFT. In the

singlet-doublet case, we find two different types of viable parameter space. When the UV couplings are

small, both the singlet mass in the UV and the dark matter mass must be very close to mh/2, but the phase

is flexible. When the UV couplings are larger, parameters must be chosen such that both the phase of the

dark matter-Higgs coupling and the dark matter mass must be somewhat tuned, but there is more flexibility

in the dark matter and singlet masses than in the small coupling case. In the doublet-triplet model, we find
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that EDM, spin-independent direct detection, and charged fermion collider search constraints are sufficient

to rule out any WIMP-scale annihilation signal.

The rest of this chapter is organized as follows. In §5.2, we discuss the effective field theory of Majo-

rana dark matter interacting with the Standard Model through a CP-violating Higgs coupling. The EFT

parameters dictate the annihilation and scattering cross sections which are broadly applicable independent of

specific UV completions. In §5.3, we UV complete the EFT by introducing a singlet Majorana fermion and a

doublet Dirac fermion. In §5.4, we consider another UV completion by introducing a doublet Dirac fermion

and a triplet Majorana fermion. We discuss the strong constraints placed on each of these models by a

variety of complementary experimental probes such as the electron EDM, precision electroweak parameters,

and collider searches. Finally, we offer some remarks in §5.5.

5.2 Model Independent Constraints in the Effective Theory

In this section we take an effective field theory approach and focus on the phenomenology of a single species of

Majorana dark matter which couples to the visible sector via a CP-violating Higgs portal. After spontaneous

symmetry breaking (SSB), the corresponding terms in the Lagrangian are given by

L 3
yhχ
2
√

2
hχ̄PLχ +

y∗
hχ

2
√

2
hχ̄PRχ +

gZχ
2 Zμ χ̄γμγ5χ (5.1)

where the CP-violation manifests in the complex nature of dark matter-Higgs coupling yhχ . Furthermore, we

have also allowed for a coupling gZχ to the Z boson.1

As in all WIMP-type solutions to the GCE, the burden of the model is to reconcile the O(1) pb anni-

hilation cross section necessary to achieve both the observed gamma-ray excess and the dark matter relic

density, with the O(10−10) pb bounds on spin-independent scattering with nucleons from direct detection

experiments. Traditionally, this is achieved for Higgs-portal dark matter by tuning the dark matter mass to

the s-channel resonance 2mχ ∼ mh, but an additional avenue is available in the case of our model.

In the non-relativistic limit, two Majorana fermions form a CP-odd state, so annihilation into the CP-

even Higgs through a CP-conserving coupling is p-wave suppressed. It then follows that if the coupling is

complex, the annihilation in this limit is dominantly set by the imaginary part of yhχ , which is reflected in

the result we obtain in (5.4). Conversely, the dark matter scattering off of the nucleon (or quark) does not

require any CP-violation since the initial and final states have the same CP properties, and thus we expect

the spin-independent scattering cross section to be proportional to the real part of yhχ . This is reflected

in the result we obtain in (5.13). Therefore, the phase of the Higgs coupling can also contribute to a large

1χ does not have a vector current coupling because χ̄γμ χ vanishes identically for Majorana fermions.
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hierarchy between the scattering and annihilation cross sections. With this intuition, we describe the details

and corresponding phenomenology of this theory in the remainder of this section.

5.2.1 Annihilation

Annihilation is mediated by both the Higgs and the Z boson through an s-channel diagram. The dark sector

couplings contributing to dark matter annihilation into SM fermions are given in (5.1), and the visible sector

couplings have the form

L 3
∑

f

yhf√
2

hf̄f + gZfZμ f̄γμ(vf − af γ5)f. (5.2)

The couplings are given by their SM values

yhf = −
√

2mf
v , gZf =

e
2 cos θw sin θw

, vf = I3 − 2Q sin2 θw, af = I3, (5.3)

where v is the Higgs vev, θw is the Weinberg angle, and mf , I3, and Q are the mass, weak isospin, and electric

charge of the fermion respectively. In the non-relativistic limit, the total spin-averaged amplitude squared

for annihilation can be written as

|M|2χχ→f f̄ = 4m2
χ

[
m2

f
m4

Z
g2

Zfg2
Zχa2

f + y2
hf Im[yhχ ]2

(m2
χ −m2

f )

(m2
h − 4m2χ)2 + m2

hΓ2
h

]
, (5.4)

where Γh denotes the width of the Higgs. The Higgs mediated piece depends only on the imaginary part of

the coupling as expected. The cross section is correspondingly given by

〈σv〉 =
∑

mf≤mχ

Nc
√

m2χ −m2
f

64πm3χ
|M|2χχ→f f̄ . (5.5)

If the dark matter is a thermal relic, then the present-day dark matter abundance, Ωχh2 = 0.11, sets

the annihilation cross section at the time of freeze-out, which is the well-known O(1) pb weak-scale cross

section [517,925–935]. Recent work [936,937] has shown that for models with a hierarchy between annihilation

and scattering strengths, early kinetic decoupling before freeze-out alters this number, requiring a larger cross

section to achieve the observed abundance. At most extreme, a ∼ 20 pb annihilation cross section may be

needed for a ∼ 57 GeV dark matter with purely imaginary couplings, though this is quite sensitive to the

details of the QCD phase transition. However, this effect is significantly weaker for masses ≳ mh/2, so we

do not take our annihilation cross section to be this large.
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At present, dark matter annihilation is expected to produce a distribution of gamma-rays whose flux is

given by
d2Φγ

dΩdEγ
=

1
2 〈σv〉

(∑
f

dNγ
dEγBrχχ→f f̄

)∫
los

ρ2
χ(r)dℓ
4πm2χ

, (5.6)

where Brχχ→f f̄ denotes the branching ratio to the f f̄ final state, and dNγ/dEγ its corresponding injection

spectrum. ρχ(r) denotes the dark matter halo profile and is integrated over the line-of-sight to the Galactic

Center. It has been shown that the Fermi GCE data is well-modeled by a Higgs portal dark matter with

a cross section 〈σv〉 ∼ 3 pb, assuming a modified NFW profile [875]. As the precise best fit depends on

many details, including the galactic profile and background modeling [938], in conjunction with the modeling

uncertainties of the thermal relic argument, we will consider here a range of cross sections 〈σv〉 from 1 to 10

pb to be in concordance with both the GCE and the relic abundance.

5.2.2 Direct Detection

In contrast with annihilation, processes relevant for direct detection occur below the weak scale and should

be considered in terms of effective interactions with target nuclei. Much of the subsequent discussion fol-

lows [488]. At momentum transfers t� m2
Z, the interactions in (5.1) and (5.2) are rewritten as the following

dimension-6 operators

L 3CS
m2

h
χ̄χf̄f + CPS

m2
h

χ̄γ5χf̄f + CV
m2

Z
χ̄γμγ5χf̄γμf + CPV

m2
Z

χ̄γμγ5χf̄γμγ5f (5.7)

with CS, CPS, CV, and CPV denoting the scalar, pseudo-scalar, vector, and pseudo-vector pieces of the quark-

gauge couplings respectively. The contributions governed by CPS and CV are velocity-suppressed and we

neglect them in the following. After matching to the UV theory, the coefficients are given by

CS =
1
2Re[yhχ ]yhf CPV = gZχgZfaf . (5.8)

In the zero momentum transfer limit, the nucleon-level operators are matched to the quark-level ones via

form factors

〈N(p)|̄fγμγ5f|N(p′)〉 = ūN(p)
[
Δf,N

1 (q2)γμγ5
]

uN(p′) (5.9)

〈N(p)|̄ff|N(p′)〉 = mN
mf

fN
f ūN(p)uN(p′) (5.10)

where N represents a nucleon (a proton or neutron), q = p′−p denotes the momentum transfer, and the form

factors are listed in Table 5.1. We have neglected higher order terms in q2. For the scalar term specifically,

the heavy quarks also contribute via a gluon loop. After integrating out heavy quarks, the relevant operator
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ΔN,u
1 ΔN,d

1 ΔN,s
1 fN

u fN
d fN

s fN
g

Protons 0.80 -0.46 -0.12 0.018 0.027 0.037 0.917
Neutrons -0.46 0.80 -0.12 0.013 0.040 0.037 0.910

Table 5.1: Here we show the light quark and gluon form factors for the proton and neutron. These values
come from [939–942] and are summarized in [488].

for each flavor appears as

−CS
m2

h

αs
12πmf

χ̄χGμνGμν. (5.11)

To match to the nucleon-level picture the following matrix element is taken into account

〈N(p)|GμνGμν|N(p′)〉 = − 8π
9αs

mNfN
g ūN(p)uN(p′). (5.12)

In terms of the quark-level couplings, the nucleon-level spin-independent cross section is given by

σSI =
m2

Nm2
χ

4π(mχ + mN)2

Re[yhχ ]
m2

h

 ∑
f∈u,d,s

yhf
mN
mf

fN
f +

∑
f∈c,b,t

yhf
2
27

mN
mf

fN
g

2

. (5.13)

As discussed earlier, the cross section only depends on the real part of the Higgs coupling. Furthermore,

the dependence on the coupling to the Z boson vanishes in the q → 0 limit. Likewise the spin-dependent

cross section is given by

σSD =
3m2

Nm2
χ

π(mχ + mN)2

 gZχ
4m2

Z

∑
f∈u,d,s

gZfafΔN,f
1

2

. (5.14)

5.2.3 EFT Results

In this subsection we examine the phenomenology of the effective theory, and discuss the regions of parameter

space where a high annihilation and low scattering cross section can be achieved – specifically we are interested

in an annihilation cross section between approximately 1 and 10 pb to fit the GCE and a scattering cross

section consistent with direct detection experiments. For spin-independent scattering, the strongest limits

come from XENON1T [531, 532], while for spin-dependent scattering, the strongest limits come from both

XENON1T [533] and PICO [535, 536]. LZ [943] and XENONnT [944] are projected to improve on current

limits within the parameter space of interest. The projected limits are comparable, so we show only one in our

figures for clarity. We omit limits from IceCube [945], LUX [946,947] and PandaX-II [948] because they are

slightly weaker than those we’ve shown for O(60) GeV dark matter. For the spin-independent constraints, we
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Figure 5.1: The ratio between annihilation and spin-independent direct detection cross sections on the
mχ − φhχ plane for different values of |yhχ |. The region allowed by direct detection is inside the solid
XENON1T [531,532] constraint line, while the region allowed by annihilation is between the solid 1 pb and
10 pb lines. We also show projected limits from LZ [943] as dashed lines. Note that the axis scales on the
two plots are different. The left plot shows the mass resonance with small yhχ . The right plot shows the
phase tuning, with a large coupling. Both plots include a small non-zero Z coupling; the limits are similar
for vanishing Z coupling.

consider only dark matter-proton scattering because in this case the difference between proton and neutron

cross sections is negligible.

First we review which masses and coupling magnitudes are in general concordance with scattering con-

straints and annihilation requirements. Typical couplings that can generate an annihilation cross section of

∼ 1 pb are shown in (5.15) for two different dark matter masses.

[
〈σv〉
1 pb

]
=
[ mχ

80 GeV

]2
[

4m2
χ −m2

h
104 GeV2

]−2 [yhχ sinφhχ
1.0

]2

=
[ mχ

62.5 GeV

]2
[

4m2
χ −m2

h
50 GeV2

]−2 [yhχ sinφhχ
0.007

]2
(5.15)

In (5.16), we show approximate couplings and masses that are consistent with direct detection constraints.

[ σSI
10−10 pb

]
=
[yhχ cosφhχ

0.02
]2

[ σSD
10−5 pb

]
=
[ gZχ

0.01
]2 (5.16)

We remind the reader that the free parameters of the theory are mχ , gZχ , and the complex coupling yhχ

with phase φhχ . While gZχ and Im[yhχ ] set the annihilation cross section, only Re[yhχ ] sets the magnitude

of scattering. In order to generate a large enough annihilation cross section while avoiding direct detection

constraints, Higgs portal dark matter models typically tune the dark matter mass close to half the Higgs
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Figure 5.2: Spin-dependent direct detection limits as a function of dark matter mass and dark matter-
Z coupling. Constraints are close to horizontal because the spin-dependent cross section depends on the
reduced mass. We show the strongest model independent constraints: XENON1T [533] for neutrons and
PICO [535,536] for protons. Additionally, we show projected limits from LZ [943].

mass [904–910, 912, 949]. While tuning the mass is one way to generate the correct ratio in this model, we

emphasize that in the EFT, the correct ratio can also be obtained for a wider mass range by increasing the

magnitude of the Higgs coupling while tuning the phase, φhχ , of the Higgs coupling close to π/2 to suppress

direct detection constraints. This is illustrated in Fig. 5.1, which plots annihilation and spin independent

direct detection constraints in the mχ −φhχ plane for different magnitudes of the Higgs couplings, assuming

mh = 125.2 GeV. We can see that near the mass resonance, mass must be tuned to within less than a

GeV of the pole. In this regime, a small Higgs coupling (∼ 0.02) is sufficient to generate the annihilation

cross section and the phase does not need to be near π/2 to avoid direct detection constraints. However,

away from resonance, the larger Higgs coupling required to generate the correct annihilation cross section is

allowed with phase tuning, because direct detection only constrains the real part of yhχ . This widens the

mass range considerably to O(10) GeV. Even for the mass resonance, the coupling cannot be purely real,

because the leading velocity dependent term is not large enough to generate the required annihilation cross

section given the finite Higgs width. See Appendix B for more details. Note that while in principle a large

pseudo-vector Z coupling could also generate a sufficient annihilation cross section, this is constrained by

spin-dependent direct detection constraints, as shown in Fig. 5.2. Within the range of Z couplings allowed

by direct detection, the effect on the allowed annihilation signal is negligible.

5.3 Singlet-Doublet Model

A well-motivated way to UV complete the dark matter EFT provided in §5.2 in a gauge invariant manner

is to introduce additional particles charged under GSM. In this section, we discuss a simple potential UV
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completion, where the only additional particles we introduce to the Standard Model are a singlet Majorana

fermion and a doublet Dirac fermion. This model has previously been discussed in other contexts in [913–923].

5.3.1 Model in the UV

We start by establishing notation and describing the model. The model contains a singlet Majorana fermion

ψ1 and an additional SU(2) doublet Dirac fermion with hypercharge 1/2. We describe the SU(2) doublet

with two left handed Weyl fermions ψ2 (with neutral component ψ0
2 and charged component ψ1

2) and ψ̃2 (with

neutral component ψ̃0
2 and charged component ψ̃−1

2 ). All new fermions are SU(3) singlets. The Lagrangian

for this model is

L = LSM + Lkinetic −m2ψ2 · ψ̃2 −
m1
2 ψ1ψ1 + Yψ1H†ψ2 − Ỹψ1H · ψ̃2 + h.c. (5.17)

As we introduce three new fields and four free parameters, there is one remaining physical phase. We make

the choice to fix each of the Yukawa terms to the same phase, which carries the CP-violation,

Y ≡ y eiδCP/2, Ỹ ≡ ỹ eiδCP/2. (5.18)

After SSB, the mass terms are written as

Lmass =−m2
(

ψ̃−1
2 ψ1

2 − ψ̃0
2ψ0

2
)
− m1

2 ψ1ψ1 +
v
2y eiδCP/2ψ1ψ0

2 +
v
2 ỹ eiδCP/2ψ1ψ̃0

2 + h.c. (5.19)

Let us define ψs
2 ≡ 1√

2 (ψ
0
2 + ψ̃0

2) and ψd
2 ≡ 1√

2 (ψ
0
2 − ψ̃0

2) to be the two Majorana fermions that constitute

the neutral Dirac fermion {ψ0
2, ψ̃

0
2}. The mass eigenstates thus result from the mixing of the doublet and

singlet Majorana fermions, ψi = (ψs
2, ψd

2 , ψ1)i. We will denote the mass eigenstates χi = (χ, χ1, χ2)i, the

lightest of which, χ, is the dark matter candidate. Then

Lmass = −m2ψ̃−1
2 ψ1

2 −
1
2 ψiMijψj, (5.20)

where M is the mass matrix. This basis change is governed by J, the matrix of eigenvectors that diagonalizes

both M†M and M, phase rotated such that JTMJ has real eigenvalues. After diagonalizing, the Higgs Yukawa

couplings are

LHiggs =
1
2hχi[JTUhJ]ijχj + h.c. (5.21)

where

Uh =


0 0 (Y+Ỹ)

2

0 0 (Y−Ỹ)
2

(Y+Ỹ)
2

(Y−Ỹ)
2 0

 . (5.22)
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Since one of the new fermions is an SU(2) doublet, the new fermions also couple to the electroweak gauge

bosons. The Z couplings are

LZ = χ†
i [J†UZJ]ijZσχj + gZ(cos2 θW − sin2 θW)(ψ1†

2 Zσψ1
2 − ψ̃−1†

2 Zσψ̃−1
2 ) (5.23)

while the W couplings are

LW = χ†
i [bJ∗]iW+σψ̃−1

2 + ψ1†
2 W+σ[aJ]jψj + h.c. (5.24)

where g is the SU(2) gauge coupling, g′ is the U(1) hypercharge gauge coupling, and gZ ≡
√

g2 + g′2/2.

Here, ai = (g/2, g/2, 0)i,bi = (g/2,−g/2, 0)i and

UZ =


0 −gZ 0
−gZ 0 0

0 0 0

 . (5.25)

The dark matter candidate χ obtains the couplings seen in the EFT via mixing between the singlet and

doublet. The strength of these couplings can be adjusted by altering the makeup of the lightest Majorana

fermion. The theory at this level is fully specified by five degrees of freedom: the singlet mass m1, the doublet

mass m2, the doublet Yukawa coupling magnitudes {y, ỹ} and the associated CP-violating phase δCP.

5.3.2 Translating to the EFT

Now we discuss how the EFT parameters gZχ ,mχ , and yhχ depend on the UV parameters y, ỹ,m1,m2, and

δCP. We focus mostly on the region where m2 is large, but also comment on the more general case.2 Since

the theory has a charged fermion with mass m2, parameter space with small m2 will generically be ruled

out by collider constraints [950, 951]. EDM and electroweak constraints are likewise more stringent in this

regime.

Fig. 5.3 shows the EFT mass and phase as a function of m1 and m2 for different values of the UV coupling

magnitudes and phase. On the left we show multiple values of yỹ for fixed δCP while on the right we show

multiple values of δCP for fixed yỹ. In both cases, we can see that only a narrow range in m1 translates

to dark matter with mass near the mass resonance. When m2 is large, the lightest fermion is mostly m1.

In this limit, mixing is small, so to have the dark matter mass near the mass resonance, m1 must be fairly

2We also omit the case where both m1 and m2 are large. In this case, extremely large couplings are required in
order to get dark matter with mass near mh/2. This means the δCP must be small to avoid EDM constraints, which
leaves us with φhχ mostly real and prevents us from simultaneously evading spin-independent constraints.
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Figure 5.3: EFT coupling phase and dark matter mass as a function of m1 and m2 for different values
of y, ỹ, and δCP. Left: δCP is fixed to 1.5 while yỹ is varied. Right: yỹ is fixed to −0.375 while δCP is
varied. The shaded regions give a sense of the width of the regions of interest: 60GeV ≤ mχ ≤ 65GeV and
1.55 ≤ φhχ ≤ 1.60.

ψ1 ψ0
2 ψ̃0

2 ψ1

〈h〉 〈h〉

y ỹ
→

m2

χ χ

yỹ v2

m2

Figure 5.4: Diagram generating dark matter mass in the limit where m2 is large.

close to half the Higgs mass. We can see that changing yỹ changes where φhχ = π/2 is located but only

has a minimal effect on which m1 value translates to the mass resonance. We can also see that for the same

m1, smaller yỹ requires a correspondingly smaller m2 to get dark matter with mχ ≈ mh/2. Changing δCP

also changes the location of φhχ = π/2 contour, but additionally affects the m1 required to get the mass

resonance and the width of the φhχ ≈ π/2 band.

Fig. 5.4 shows that the corrections to the mass scale as yỹv2/m2.3 This diagram also tells us that

φhχ = δCP in the large m2 limit, as long as mixing is small and the dark matter mass comes mostly from

m1 rather than the Higgs vev. This can also be seen in Fig. 5.5. When the dark matter mass gets a large

contribution from the Higgs vev the story is more complicated: when yỹ and m1 have opposite signs, the

Higgs contribution can cancel with m1 at yỹ = −m2m1/v2 to get a massless state. There is a mass resonance

contour for yỹ both larger and smaller than this value, which can be seen in Fig. 5.6. We might also ask

whether a small δCP in the UV can translate to φhχ ≈ π/2 in the IR and produce an annihilation signal

that evades both direct detection and EDM constraints. However, from the same figure, we can see that

3Although we need to phase rotate ψs
2, the phase rotations in the couplings and mass insertion cancel out.
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Figure 5.5: φhχ as a function of δCP for different values of m2. As m2 increases, the IR phase maps directly
to the UV phase and φhχ ∼ δCP.
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Figure 5.6: Dark matter mass, EFT phase, and dark matter-Higgs Yukawa coupling as a function of the
UV parameters yỹ and δCP for different values of m2. In each plot we see a similar mass structure: we see a
massless state when yỹ and m1 have opposite signs, and have a lightest fermion near 60 GeV for both larger
and smaller yỹ than this value. Note the different values on the yỹ axis in each of the plots.

although there is a point where small δCP translates to φhχ ≈ π/2, it corresponds precisely to the massless

state mentioned above and cannot generate our annihilation signal. This occurs because when mχ is zero,

we can freely rotate m1 to absorb any value of the unphysical phase in y, which is evidenced by all phase

contours converging at this massless point.
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Figure 5.7: Diagram that generates the dark matter-Higgs coupling in the limit where m2 is large.

ψ1

ψs2

ψd2

ψ1

Zµ

y+ỹ
2 v

y−ỹ
2 v

gZ
2 →

χ

χ

Zµ

gZ(y
2 − ỹ2) v2m2

2

Figure 5.8: Diagram that generates the dark matter-Z coupling in the limit where m2 is large.

In the small mixing and large m2 limit, there are two contributions to the Higgs coupling: one where ψ1

mixes into ψs
2 and one where it mixes into ψd

2 , as shown in Fig. 5.7. Each of these contributes (y± ỹ)2v/m2,

with a relative minus sign between the two contributions because we need to phase rotate ψs
2 to have positive

mass. This means the Higgs coupling scales as yỹv/m2, which determines the scaling of the annihilation

signal. This can also be seen from the pink lines in Fig. 5.6. Note that this scaling breaks down once the

Yukawa contributions become the dominant contribution to the mass.

In the same limit, the dominant contribution to the Z coupling comes from Fig. 5.8, which scales as

gZ(y2 − ỹ2)v2/m2
2. Even away from this limit, we still get a vanishing Z coupling for y = ỹ, because only

one of the doublet states mixes with the singlet when y = ỹ. For small m2, spin-dependent direct detection

constraints require y ≈ ỹ, but for m2 ≳ 500 GeV this constraint becomes irrelevant, since the Higgs coupling

(which determines the annihilation signal) scales as m−1
2 while the Z coupling scales as m−2

2 . This can be

seen in Fig. 5.9.

5.3.3 Constraints

In this section, we discuss the experimental constraints that apply to the singlet-doublet model. We focus

on constraints that apply directly to the parameters in the UV theory, including discussing their scaling in

the large m2 limit.
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Figure 5.9: Plot of gZχ as a function of y2 − ỹ2 for different values of m2. gZχ increases with increasing
y2 − ỹ2 and decreases with increasing m2, corroborating the scaling derived from the diagrams in Fig. 5.8.

Electric Dipole Moment

Any new source of CP-violation in a given model can lead to additional contributions to electric dipole

moments. Since our model contains new CP-violating couplings to the Higgs, we expect electron EDM

constraints to be relevant for our model. For small m2, the EDM limit will be one of the strongest on our

model, since the EDM is precisely constrained to be below 1.1× 10−29 e cm [952].

For the singlet-doublet model above, the only relevant diagram is the Barr-Zee diagram with W bosons

in the outer loop [953], displayed in Fig. 5.10. There are no other Barr-Zee diagrams with Higgs or Z legs;

since CP-violation is only in the neutral sector of this model and a charged particle is necessary to radiate a

photon, the inner loop must contain both a neutral and charged particle. Additionally, there are no other

non-Barr-Zee diagrams that contribute to the EDM at 2 or fewer loops. For any non-Barr-Zee diagrams to

contribute, there would have to be a CP-odd correction to a gauge boson or Higgs propagator. With only

a single external momentum, it is impossible to contract with an epsilon tensor and make a non-vanishing

CP-odd Lorentz invariant.

To compute the value of the relevant Barr-Zee diagram, we use a simplified version of equation 21 in [954],

where we have neglected the neutrino mass, approximated lepton couplings as flavor diagonal, and used the

fact that one of the fermions in the loop is neutral:

de
e = − g2

(4π)4
∑

i
Im([aJ]∗i [bJ∗]i)

(mcmn,ime
M4

W

)
G(xc, xi, 0). (5.26)

Here, xα = m2
α/M2

W and G(a,b, c) is defined as

G(a,b, c) = 1
1− c

∫ 1

0

dx
1− x

( c
z− c log

(c
z
)
+

1
1− z log

(1
z

))
(5.27)
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Figure 5.10: Leading non-zero Barr-Zee diagram contribution in the large m2 limit. In this limit, we can
work perturbatively in the gauge basis. The relevant W couplings are the coefficients of χ†

21
√g
2 W−χ20 and

χ̃†
20

√g
2 W+χ̃2−1.

with
z(x, a,b) = b

x +
a

1− x . (5.28)

Recall from §5.3.1 that couplings ai and bi parameterize the W boson couplings to the inner loop fermions

in the gauge basis, which are given in (5.24), and J is the change of basis matrix.

When m2 is large enough that we can integrate out the doublet and mixing is small, the dominant

contribution to the EDM comes from Fig. 5.10, since each helicity of charged fermion couples to a different

neutral doublet component and mixing with the singlet is necessary to generate CP-violation. This contri-

bution scales as yỹv2/m2
2. The m2 scaling follows from dimensional analysis: three factors of m2 from the

integral measure cancel with three of the five factors of m2 from the propagators.4

Electroweak parameters

Here we consider constraints from electroweak precision measurements, where deviations from the SM are

parametrized by oblique parameters S,T,U,W, and Y [955,956], defined as

S ≡ 4c2
Ws2

W
αe

[
Π′

ZZ(0)−
c2

W − s2
W

cs Π′
Zγ(0)− Π′

γγ(0)
]
, (5.29)

T ≡ 1
α

[ΠWW(0)
m2

W
− ΠZZ(0)

m2
Z

]
, (5.30)

U ≡ 4s2
W

α

[
Π′

WW(0)− cW
sW

Π′
Zγ(0)− Π′

γγ(0)
]
− S, (5.31)

W ≡ m2
Ws2

Wc2
W

8πα

[
Π′′

ZZ(0) +
2sW
cW

Π′′
Zγ(0) +

s2
W

c2
W

Π′′
γγ(0)

]
, (5.32)

Y =
m2

Ws2
W

8πα

[
c2

WΠ′′
γγ(0) + s2

WΠ′′
ZZ(0)− 2sWcWΠ′′

γZ(0)
]
. (5.33)

4The ψ1 propagator also scales as m−1
2 since p = m2 ≫ m1.
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Xµ Xν

= iΠXX(p2)gµν

Figure 5.11: New particles that couple to the Standard Model gauge bosons contribute to the vacuum
polarization at 1-loop through this diagram. The Xμ represents an electroweak gauge boson. We ignore the
pμpν terms since they aren’t relevant for (5.29) - (5.33).

The masses and couplings are evaluated at m2
Z and cW and sW are cos θW and sin θW respectively. ΠXX

represents the new particles’ contribution to the vacuum polarization of the gauge boson X at 1-loop,

computed in MS scheme under the convention shown in Fig. 5.11.

To lend intuition, we note that T parametrizes custodial SU(2) breaking inherent in the asymmetry

within the doublet terms; in our theory this manifests in the difference in Yukawa couplings y and ỹ. U is

the derivative of T, and thus is typically smaller. All these parameters fall off with increasing m2.

The most recent constraints, at 95% CL, from the LHC yield

S = −0.01± 0.10 T = 0.03± 0.12 U = −0.01± 0.10 (5.34)

with correlations +0.92 between S and T, -0.80 between S and U, and -0.93 between T and U [957]. The

singlet-doublet model predominately contributes to the S and T parameters; see Appendix C for more details.

W and Y are measured to be

W = (−2.7 ± 2.0)× 10−3 Y = (4.2± 4.9)× 10−3 (5.35)

with correlation −0.96 [958], though we find these to be subdominantly constraining for this theory.

Collider Experiments

Constraints from many collider searches (in particular SUSY searches) can be applied to this model. Specif-

ically, we consider those searches included in the database of the publicly available SModelS version 1.2.4

software [959–967]. To generate the necessary input, we use SARAH 4.14.3 [968–970] to create modified

versions of SPheno [971, 972] and Madgraph [973, 974] which include the singlet and doublet. Then we use

this version of SPheno at tree level to compute the spectrum and branching ratios for SModelS and the

run card for Madgraph, which was used to obtain the production cross sections that SModelS also needs as

input. These constraints are combined into a single exclusion limit labeled LHC when included in our plots.

In addition to this constraint, we also show the constraint from invisible Higgs decay. We do not include the
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constraint from invisible Z decay, since it is not kinematically allowed in the parameter space of interest.

5.3.4 Full Exclusion Limits and Discussion

Finally, combining all of these constraints, we examine the remaining parameter space for singlet-doublet

dark matter that has the desired amount of annihilation. Our results are shown in Figs. 5.12 and 5.13. We

find that in all cases, some tuning of the parameters is required, but that there is flexibility in which UV

parameters we need to tune.

As in the EFT, in order to achieve a pure mass resonance (and not have to tune the EFT phase) we need

small couplings. This can be seen in Figs. 5.12a and 5.12b. The spin-independent constraints are weak for

small couplings, regardless of δCP or the EFT phase. Other constraints are even less restrictive, except for

the EDM at very large δCP. Since the couplings are small, m1 must be tuned near mh/2 in order to achieve

a sufficient annihilation signal, but there is flexibility in the value of m2, as can be seen in Fig. 5.13a. This

is the region of parameter space that is relevant for the best fit in [912].

If instead we choose our parameters so that we allow the EFT phase to be tuned near π/2, there is other

viable parameter space with larger couplings. Here, we have slightly more flexibility in m1 (which still needs

to be roughly 60−70 GeV), but m2 must be large (m2 ≳ O(1) TeV) to avoid EDM, electroweak, and collider

constraints. This can be seen in Fig. 5.13b. Additionally, to achieve an EFT phase near π/2 and avoid

spin-independent constraints, generally δCP ≳ 1. Note that limits from spin-dependent scattering can be

avoided, since they vanish when y = ±ỹ. This part of parameter space generally requires proximity to both

the mass resonance and the phase π/2 line. However, there is still some flexibility in both values; masses

mχ > 65 GeV and phases φhχ < 1.5 are allowed in these intersections, albeit not simultaneously. Unlike in

the case of the EFT, it is very difficult to tune only the phase because we cannot make couplings arbitrarily

large without affecting the mass spectrum, as we saw in §5.3.2.

Figures 5.12b - 5.12d shows several examples of this. In Fig. 5.12b, we can see the case where we still

choose m1 to be near mh/2 but allow larger couplings. If instead we choose m1 further away from mh/2, the

only viable parameter space also requires large couplings in order to get the dark matter mass sufficiently

close to resonance. This is shown in Figs. 5.12c and 5.12d. Comparing these two plots, we can see that

there is more flexibility in δCP and larger required coupling values for higher m2, because higher m2 changes

the shape of the EFT phase π/2 contour. Specifically, there is more overlap between φhχ near π/2 and the

annihilation signal in the large m2 case because the condition φhχ = π/2 becomes less dependent on yỹ at

larger m2.5

5This is because the φhχ = π/2 contour always goes through the massless state that exists for negative yỹ, which
occurs at larger couplings for larger m2. All phase contours go through this point since the phase becomes unphysical.
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Figure 5.12: Full constraints on the singlet-doublet parameter space in the yỹ − δCP plane, for different
values of m1 and m2. In this and subsequent plots the shaded regions denote parameter space ruled out
by experimental bounds [531, 532, 952, 975]. For annihilation, we include both an upper and lower bound.
Constraints that are not relevant for these slices of parameter space are omitted. Dotted lines indicate
proximity to mass resonance and pure imaginary EFT coupling: the green dotted lines bound a region with
dark matter mass 60 GeV ≤ mχ ≤ 65 GeV, the yellow with EFT phase 1.55 ≤ φhχ ≤ 1.6. In figures (a)
and (b) we show that viable parameter space can be found at small couplings, corresponding to a pure mass
resonance with flexibility in φhχ . In this case, smaller values of m2 are allowed but m1 must be close to
mh/2. Figures (b) - (d) also show allowed parameter space for larger couplings: (b) shows m1 ≈ mh/2; (c)
and (d) show m1 further away from mh/2 for two different values of m2. In all of (b) - (d), viable parameter
space requires m1 ≈ 60− 70 GeV, δCP ≳ 1, and φhχ ≈ π/2.
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Figure 5.13: Similar to Fig. 5.12, in slices of the m1 −m2 plane and for different values of yỹ and δCP. We
show the same constraints as Fig. 5.12 and constraints from [533,535,536,957–967]. Dotted lines around the
critical mass and phase values give a guide towards the proximity of any viable space to mass resonance and
pure imaginary EFT coupling: the green dotted lines bound a region with dark matter mass 60 GeV ≤ mχ ≤
65 GeV, the yellow with EFT phase 1.55 ≤ φhχ ≤ 1.6. The left shows a mass resonance with small couplings,
where m2 down to ∼ 500 GeV is allowed. The right shows larger couplings, where we need m2 ≳ O(1) TeV.
We omit light charged fermion constraints since small m2 is already ruled out.

5.4 Doublet-Triplet Model

In this section, we describe another potential UV completion: doublet-triplet dark matter. This model

includes the addition of a doublet Dirac fermion and a triplet Majorana fermion to the Standard Model. It

has been previously discussed in other contexts in [918,920,923,924].

5.4.1 Model in the UV

We begin by describing our model and establishing the notation. This model contains a Dirac doublet of two

left handed Weyl fermions with hypercharge 1/2 (denoted by ψ2 and ψ̃2 as in the singlet-doublet case) and a

triplet of Majorana fermions (with components ψ−1
3 , ψ0

3, ψ1
3), all of which are SU(3) singlets. The Lagrangian

is given by

L = LSM + Lkinetic −
1
2m3ψ3ψ3 −m2ψ2 · ψ̃2 −YH†ψ3ψ2 − Ỹ(εH∗)†ψ3ψ̃2 + h.c. (5.36)

As in the singlet-doublet case, this theory also has a single physical phase, and we can choose the same

convention as the previous section to localize CP-violation to the Yukawa couplings, where
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Y ≡ y eiδCP/2, Ỹ ≡ ỹ eiδCP/2. (5.37)

Next we describe our notation after SSB. We denote the gauge basis neutral particles by ψn = {ψ0
3, ψs

2, ψ̃
d
2}

and the gauge basis charged particles by ψ+
c = {ψ+1

3 , ψ+1
2 } and ψ−

c = {ψ−1
3 , ψ̃−1

2 }. We label the neutral mass

eigenstates χn = {χ, χ1, χ2} and the charged mass eigenstates χ+
c = {χ+1

1 , χ+1
2 }, and χ−

c = {χ−1
1 , χ−1

2 }.

Each is ordered from least to most massive, and χ again denotes the dark matter. We call the basis change

matrices Jn and J±
c , which are defined by ψn = Jnχn, ψ±

c = J±
c χ±

c . The phases of the eigenvectors are chosen

such that the mass eigenvalues are real. Then the mass terms are given by

Lmass = −
1
2 χn[JT

n MnJn]χn − χ−
c [JT

−McJ+]χ+
c + h.c. (5.38)

with

Mn ≡


m3 (y− ỹ)v/2

√
2 (y + ỹ)v/2

√
2

(y− ỹ)v/2
√

2 −m2 0
(y + ỹ)v/2

√
2 0 m2

 , Mc ≡

 m3 −yv/
√

2
−ỹv/

√
2 m2

 . (5.39)

The Higgs Yukawa couplings are

LHiggs =
1
2hχn[JT

n YnJn]χn + hχ−
c [JT

−YcJ+]χ+
c + h.c. (5.40)

with

Yn ≡


0 −(y− ỹ)/2

√
2 −(y + ỹ)/2

√
2

−(y− ỹ)/2
√

2 0 0
−(y + ỹ)/2

√
2 0 0

 , Yc ≡

 0 y/
√

2
ỹ/
√

2 0

 . (5.41)

The Z couplings are

LZ =
1
2Zμ σ̄μχn[J†

nUnJn]χn + Zμχ+
c σ̄μ [J†

+U+J+]χ+
c + Zμχ−

c σ̄μ [J†
−U−J−]χ−

c , (5.42)

with

Un ≡


0 0 0
0 0 −

√
g2 + g′2

0 −
√

g2 + g′2 0

 ,

U+ ≡

 g2√
g2+g′2

0 (g2−g′2)
2
√

g2+g′2

 , U− ≡

− g2√
g2+g′2

0

0 − (g2−g′2)
2
√

g2+g′2

 ,

(5.43)
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while the W couplings are

LW = Wμ+χnσ̄μ [J†
nD−J−]χ−

c + Wμ−χnσ̄μ [J†
nD+J+]χ+

c + h.c. (5.44)

with

D− ≡


g 0
0 g/2
0 −g/2

 , D+ ≡


−g 0
0 g/2
0 g/2

 . (5.45)

The charged fermions also couple to the photon with charge ±1.

5.4.2 Constraints

We treat most of the constraints in the doublet-triplet model similarly to those in the singlet-doublet model.

There are two exceptions that we discuss in more detail: the EDM and collider constraints.

The EDM calculation differs from the singlet-doublet case because there are additional diagrams. Like

in the singlet-doublet case, the relevant contributing diagrams are all Barr-Zee diagrams [953]. The diagram

with charged W legs, shown in Fig. 5.10, that contributed in the singlet-doublet case is still relevant, but

for the doublet-triplet model there are two additional relevant Barr-Zee diagrams: Zh and γh, shown in Fig.

5.14. There is still no γZ contribution because in that case the same charged fermion runs through the entire

loop, leaving no place for CP-violation to enter since the diagonal Z coupling is real. We also neglect the hh
diagram since it is suppressed by two factors of the electron Yukawa. We use the general forms of the Zh
and γh contributions from [976],

dhV
e =

1
16π2m2

h

∫ 1

0
dx 1

x(1− x) j
(

m2
V

m2
h
,

Δ̃V

m2
h

)
gV

e cV
O

me
v , (5.46)

where gV
e is the electron coupling to Z or γ, and we define

j(r, s) = 1
r− s

(
rlogr
r− 1 −

slogs
s− 1

)
. (5.47)

cV
O and Δ̃V are determined by the inner fermion loop which only contains charged fermions for both γh and

γZ. They are given by

cZ
O = − e

2π2 Re
(

mi
cx2(1− x)(gS

ijgV∗
ji + igP

ij gA∗
ji ) + (1− x)3mj

c(gS
ijgV∗

ji − igP
ij gA∗

ji )
)
,

Δ̃Z
=

xmi
c + (1− x)mj

c
x(1− x) , cγ

O = −
e2gP

jj
2π2 (1− x)mj

c, Δ̃γ
=

(mj
c)2

x(1− x) ,
(5.48)
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Figure 5.14: Additional class of Barr-Zee diagrams contributing to the electron EDM. χc is the tuple of
charged fermions in the mass basis. For the γh diagram, i = j, whereas for the Zh diagram, we also have
contributions where i 6= j.

where

gS =
1
2 (J

T
−YcJ+ + J†

+Y†
c J∗

−), gP =
i
2 (J

T
−YcJ+ − J†

+Y†
c J∗

−),

gV = JT
−U+J∗

− + J†
+U+J+, gA = JT

−U+J∗
− − J†

+U+J+

(5.49)

are given in terms of the matrices defined in §5.4.1. By definition, χj is the fermion which radiates the

on-shell external photon, and g∗
ij = (gji)∗.

A key difference between the singlet-doublet and doublet-triplet cases is that in the latter the mass of

the lightest charged fermion is set by similar scales as those that set the mass of the dark matter, and thus

generically the lighest charged fermion mass is O(100) GeV for the doublet-triplet model. This allows us to

treat collider constraints differently here than in the singlet-doublet case; we apply generic LEP constraints

on charged fermions rather than running the full collider pipeline we considered previously. Specifically,

charged fermions lighter than 92.4 GeV are ruled out as long as the mass splitting between the lightest

neutral and lightest charged particle is ≥ 100 MeV [950,951].6

5.4.3 Full Exclusion Limits and Discussion

Unlike in the singlet-doublet case, there is no viable parameter space in this model. In order to show this,

we consider three different cases. First, we discuss the case where the magnitude of the couplings is small,

for any phase. Then we discuss the case of large coupling and large phase. Finally we discuss the case of

large coupling but very small phase.

6If the lightest charged state is more than 3 GeV heavier than the lightest neutral state, then there is a stronger
bound ruling out charged fermions up to mass 103.5 GeV [951]. We use the smaller of the two values for simplicity
since it is sufficient for our purposes.
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Figure 5.15: Example where the magnitude of couplings y and ỹ are small, for different values of m2 and
m3. The left plot shows the values of the EFT parameters: dark matter mass, dark matter-Higgs coupling
phase, dark matter-Higgs coupling magnitude, and lightest charged fermion mass. Regions around the mass
and phase points of interest are shaded: 55 GeV ≤ mχ ≤ 70 GeV and 1.3 ≤ φhχ ≤ 1.85. The right shows
the annihilation signal and a subset of relevant constraints including EDM [952], spin-independent direct
detection [531, 532], and charged fermion constraints from LEP [950, 951]. The annihilation signal appears
as a single brown line because a viable annihilation signal is only achievable in a tuned region of parameter
space.

In the first case, parameter space is entirely ruled out by charged fermion constraints, as we can see

from Fig. 5.15. On the left, this figure shows the values of several EFT parameters for fixed y, ỹ, and δCP

and various values of m2 and m3. On the right, we show the annihilation signal and a subset of constraints

that are sufficient to rule out this region of parameter space.7 From these plots, we can see that since the

couplings are small, in order to get a sufficient annihilation signal one of m2 or m3 must be ≳ mh/2, with

the other UV mass larger. Since the magnitude of the couplings is small while the UV masses are large,

in this region there will only be a very small splitting between charged and neutral fermions. Therefore,

the parameter space here will be entirely ruled out by charged fermion constraints from LEP. This occurs

regardless of phase, though EDM constraints are also strong enough to rule this out for larger phases.

In the second case of large coupling and large phase, EDM constraints are typically very strong. The

only exceptions are if both m2 and m3 are very large (which can’t generate the necessary annihilation signal)

or if one of m2 or m3 is very small. This is because in the limit where one of m2 or m3 is exactly zero, the

phase becomes unphysical since we can rotate it away. In the limit where m2 is small, the lightest state will

have mass even less than m2 and the DM mass won’t be in the right mass range to generate the necessary

annihilation signal. But in the limit where m3 is small, if the couplings are large enough we can potentially

7The other constraints from the singlet-doublet case still apply here, but we omit them from these plots for clarity.
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Figure 5.16: A case where the magnitudes of couplings y and ỹ are large and δCP is also large, for different
values of m2 and m3. The left plot shows the values of EFT parameters: dark matter mass, dark matter-
Higgs coupling phase, dark matter-Higgs coupling magnitude, and lightest charged fermion mass. Regions
around the mass and phase points of interest are shaded: 55 GeV ≤ mχ ≤ 70 GeV and 1.3 ≤ φhχ ≤ 1.85.
The right shows the annihilation signal and a subset of relevant constraints, and from here we can see that
the combination of EDM constraints and spin-independent constraints entirely rule out the parameter space
generating a viable annihilation signal.

generate the right annihilation signal. However, since the physical phase is small, the EFT phase will also

be small, and spin-independent direct detection constraints will always rule out any part of the annihilation

signal that isn’t constrained by the EDM. This can be seen in Fig. 5.16, which again shows various values

of EFT parameters for fixed y, ỹ, and δCP and different m2 and m3 values on the left, and the annihilation

signal and a subset of constraints on the right.

The third case of large magnitude coupling but very small phase is shown in Fig. 5.17. The top plots

show the case where y and ỹ are similar in magnitude, while the bottom plots show a large splitting between

y and ỹ. In both, the EFT coupling is mostly real since the phase is small. There are two different trends

depending on the magnitude of the coupling. In both plots, we see regions where the magnitude of the EFT

coupling is large, and the annihilation signal is ruled out by spin-independent constraints. In the case of

small splitting, we also see a region where the EFT coupling is small (because the lightest state doesn’t mix),

which is unable to generate the necessary annihilation signal.

5.5 Discussion

Given that the GCE is one of the most persistent signals of potential new physics, it is worth cataloging

and understanding what could generate it. While there is still substantial debate over the source of the
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Figure 5.17: Two examples where the magnitude of couplings y and ỹ are large and δCP is small, for
different values of m2 and m3. The top plots show the case where y and ỹ have similar magnitudes; the
bottom plots show the case where their magnitudes are very different. As in the other doublet-triplet plots,
the left plots show the values of various EFT parameters with shaded regions of interest and the right plots
show the annihilation signal and a subset of relevant constraints. The annihilation signal appears as two
brown lines on each plot, since the region of allowed masses is so narrow. In both cases, spin-independent
constraints rule out the signal. In the case where the couplings are nearly equal, there is also a region
where the lightest neutral state decouples, and the dark matter-Higgs coupling is insufficient to generate the
annihilation signal despite the dark matter mass being close to mh/2.
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GCE, one promising and well explored possibility is dark matter annihilating to bb. In this work, we revisit

the particular case where dark matter is a Majorana fermion with a CP-violating Higgs coupling, which

allows annihilation and spin-independent scattering to be governed by different parameters. Specifically, the

leading contribution to annihilation is determined by the imaginary part of the coupling to the Higgs, while

spin-independent scattering constraints depend primarily on the real part of the coupling to the Higgs. We

study the EFT of this dark matter model for the GCE in detail, and find that while tuning the dark matter

mass very close to half the Higgs mass is one potential way to obtain a large enough signal, tuning the phase

of the Higgs coupling to be near pure imaginary loosens this restriction in the context of the EFT.

We also explore two potential UV completions: singlet-doublet dark matter and doublet-triplet dark

matter. In both, the story is more complicated than the EFT because the UV phase and mass are not

independent parameters. Although more elaborate supersymmetric realizations of a CP-violating Higgs portal

have been discussed in [912], our goal throughout this chapter has been to gain a more detailed qualitative

understanding of the mechanism through simpler models. In particular, we have discussed the scaling of the

signal and various constraints with the different parameters in the simplified models, as well as quantified

how much tuning is necessary to explain the signal without running into constraints. The singlet-doublet

dark matter case is particularly interesting because it is a minimal working example of how Majorana dark

matter could explain the GCE through the Higgs portal.

We find that in the minimal singlet-doublet case, there is still viable parameter space when the doublet

mass is much larger than the singlet mass. There are two viable regions of parameter space for the singlet-

doublet model. In the case where the UV couplings are small, the tuning of the dark matter mass manifests

as a tuning of the singlet mass, but the restriction on both UV and EFT phase is loose. When the couplings

are larger, the doublet mass is required to be ≳ O(1) TeV. The EFT phase, and often the UV phase as

well, must be close to pure imaginary to avoid spin-independent constraints, and the dark matter and singlet

masses also must still be relatively close to mh/2 to generate a sufficient annihilation signal (though the

allowed region is comparatively much wider).

Upcoming direct detection and EDM experiments, such as LZ, XENONnT and ACME, will search

through significant portions of the remaining parameter space. These two types of probes combine to

explore both the limits of minimal and maximal CP-violation, and we expect to definitively rule out doublet

masses below the TeV scale in the small coupling case. In the more optimistic case of larger coupling, new

experiments will be able to probe doublet masses up to O(15) TeV or larger for some phases. In either case,

this type of model offers a range of complementary detection avenues that may combine to elucidate the

nature of annihilating dark matter.

In the doublet-triplet case, we do not find any viable parameter space. Spin-independent and EDM
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constraints restrict the size of the real and imaginary parts of the Higgs coupling, respectively. When the

coupling is small in overall magnitude, the annihilation signal requires a dark matter mass near the mh/2
resonance, and the small splitting between the lightest charged and neutral states results in a prohibitively

light charged fermion. Hence, the remaining parameter space is ruled out by LEP.

While this chapter is framed in the context of the GCE, models with a CP-violating Higgs portal coupling

the dark and visible sectors are also compelling for other reasons. These interactions could be the key to

other mysteries in particle physics, such as the particle nature of dark matter and problems that CP-violation

is necessary to solve, including the matter/antimatter asymmetry of the universe and the strong CP problem.

For example, for some models the addition of a CP phase around the weak scale could increase the viability of

electroweak baryogenesis. While new Higgs boson couplings have the potential to make the hierarchy problem

worse, the minimal models we studied can also be realized within the larger framework of SUSY [912] which

can ameliorate this issue. These connections could be potential avenues for further exploration, if it turns

out that dark matter communicates with the Standard Model through a CP-violating Higgs portal.
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6
Oblique Lessons from the W Mass Measurement at CDF II

6.1 Introduction

The Standard Model of particle physics (SM) has been remarkably successful in explaining various experimen-

tal results. The discovery of the Higgs boson [977,978] at the Large Hadron Collider (LHC) was imperative

to confirming the pattern of spontaneous symmetry breaking in the electroweak sector of the SM. However,

as we continue to collect data and improve analysis techniques, we have seen a proliferation of precision

measurements that deviate from SM predictions, such as the muon magnetic moment [683,684,979] and the

RK/R∗
K anomalies [980–982]. The most recent anomalous measurement reported is the mass of the W boson

MW [11]. A discrepant measurement of MW could be an indication of supersymmetry (SUSY), composite

Higgs, or other phenomena beyond the Standard Model (BSM) at potentially very high energy scales. It is

therefore essential that we explore the phenomenological implications of this new MW measurement.

In order to quantify the compatibility of the W mass measurement with the SM prediction with high

precision, we perform a global fit of the SM, known as the electroweak fit. This method involves fitting over

a set of well-measured SM observables, and minimizing the χ2 value over both the fitted (‘free’) observables

as well as derived observables, see Refs. [983–985]. The electroweak fit leverages the small uncertainties of

the fitted observables to produce precise predictions of the derived observables. Additionally, since this fit

is an exceptional probe of precision measurements, it is also highly sensitive to BSM effects.
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For scenarios where new physics contributions dominantly appear as corrections to the SM gauge boson

propagators, we can parameterize the effects of new physics phenomena on the electroweak sector using

oblique parameters S, T, and U [955,986], which were previous defined in (5.29) - (5.31) (see also Refs. [987–

989]). These parameters capture the effects of higher-dimension operators [990, 991] that can arise in a

variety of UV completions. In many models, S and T are the dominant corrections since they arise from

dimension-6 operators, whereas U is dimension-8 and therefore suppressed by a factor of v2/Λ2
UV.

The power of the electroweak fit is dependent on precision of experimental measurements of SM observ-

ables, and improves along with collider technology and luminosity. The leading measurements are made

at the Large Electron-Positron Collider (LEP), Stanford Linear Collider (SLC), Tevatron, and LHC. The

discovery of the Higgs greatly improved the electroweak fit as it provided the final measured value to span

the free parameters of the SM [992–994].

The most recent update to the SM values used in the fit comes from the CDF collaboration at the

Tevatron [11]. Their analysis was completed with a four-fold increase of data, reduced uncertainty in PDFs

and track reconstruction, and updated measurements compared to their previous result [995]. They report

MW,CDF II = 80.4335± 0.0094 GeV, (6.1)

which, without averaging with other experimental results, shows a 7σ deviation from the SM prediction. This

value is notably higher than the previous measurement averaged from the Tevatron and LEP experiments

(MW = 80.385± 0.015 GeV) [996], as well as ATLAS (MW = 80.370± 0.019 MeV) [997] and LHCb (MW =

80.354± 0.032 GeV) [998].

In this chapter we explore how new physics contributions, parameterized by the values of the oblique

parameters, can adjust the electroweak fit such that MW is consistent with the updated CDF measurement.

We first perform our fits scanning over values of S and T with U fixed to zero (since U is suppressed) and

identify the range of these variables that can resolve the observed anomaly in MW. We then study how the

fit changes if we allow U to float. Large values of U can easily accommodate the observed increase in MW;

however, it is difficult to construct models with the primary new physics contributions affecting only U while

leaving S and T unchanged.

Next we consider several well-motivated simple extensions of SM that can produce nonzero S and T
values. The models discussed in this chapter include a scalar singlet, a two Higgs doublet model (2HDM),

a neutral scalar SU(2)L triplet (referred to here as a swino), and various singlet-doublet fermion scenarios.

For each model we check if there is available parameter space that corresponds to the fitted values of T and

S. We find that extending the SM with a scalar singlet or doublet cannot explain the observed anomaly in

MW measurements, while a singlet-doublet fermion extension is strongly constrained by various experimental
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bounds. A O(TeV) swino, on the other hand, can explain the observed anomaly while evading current bounds

and provides a well-motivated target for future high energy colliders.

The remainder of the chapter is organized as follows. In §6.2, we define the parameters and methodology

of our electroweak fit. §6.3 discusses the results and the implications of the oblique parameters on fitting

the measured observables. In §6.4 we map the values of the fitted oblique parameters to the parameters of

various models, and comment on the viability of this space. We discuss in §6.5.

6.2 Electroweak Fit

To assess the impact of the new measurements of MW, and the implications for potential new physics,

we perform an electroweak fit to a representative set of observables, following the strategy of the GFitter

group [983–985, 999]1 with a modified version of the code used in Refs. [1001, 1002]. A set of five core

observables are free to vary in the fit: the Z boson mass MZ, the top mass Mt, the Higgs mass Mh, the Z-pole

value of the strong coupling constant αs(MZ), and the hadronic contribution to the running of α, denoted

Δα(5)
had(M2

Z).

These five values float between their experimental uncertainties. The other observables in the fit have

theoretical predictions formulated with the floating observables and are compared to their measured values

(see Table 6.1). In addition to measurements of these five parameters, the observables considered include

the W mass and a host of other electroweak precision measurements performed at SLC, LEP, the Tevatron,

and the LHC, which are listed with their measured values below the horizontal line in Table 6.1. These

other observables can be determined in the SM as functions of the five core observables, the Fermi constant

GF, and the fine structure constant α(q2 = 0). In the electroweak fit, GF = 1.1663787 × 10−5 GeV−2 and

α = 1/137.03599084 are treated as fixed values since they are determined with much higher precision than

the rest of the observables [992].

For the W mass, we will consider several different values to assess the impact of the recent CDF mea-

surement on the overall state of the global EW fit. These are,

MW = 80.4335± 0.0094 GeV (CDF II),

MW = 80.4112± 0.0076 GeV (LHC + LEP + Tevatron),

MW = 80.379± 0.012 GeV (PDG 2020),

(6.2)

where the uncertainties quoted above include the statistical, systematic and modeling uncertainties used in

each experiment. The second scenario is our estimate for the global average of different MW measurements,

1With respect to the GFitter results in Ref. [999], we consider an updated value of the Higgs and Top-quark
masses and the revised values of ΓZ and σ0

had from Ref. [1000].
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Observable Measured Value
MZ [GeV] 91.1876± 0.0021
Mh [GeV] 125.25± 0.17
Mt [GeV] 172.69± 0.58
αs(M2

Z) 0.1181± 0.0011
Δα(5)

had(M2
Z) 0.02766± 0.00007

ΓZ [GeV] 2.4955± 0.0023
ΓW [GeV] 2.085± 0.042
σ0

had [nb] 41.481± 0.0325
R0

ℓ 20.767 ± 0.0247
A0,ℓ

FB 0.0171± 0.0010
Aℓ 0.1499± 0.0018
sin2 θℓeff(QFB) 0.2324± 0.0012
sin2 θℓeff(Tevt.) 0.23148± 0.00033
Ab 0.923± 0.020
Ac 0.670± 0.027
A0,b

FB 0.0992± 0.0016
A0,c

FB 0.0707 ± 0.0035
R0,b 0.21629± 0.00066
R0,c 0.1721± 0.0030

Table 6.1: Summary of the observables included in the fit, and their experimental values. The five ob-
servables above the horizontal line are allowed to float in the fit, while the SM values of the remaining
observables are determined from these five values, as discussed in the main text. The values of MZ, Mt,
Mh, αs(M2

Z), Δα(5)
had(M2

Z), and ΓW are taken from the most recent PDG average [992]. Following [999], for
Mt we also include an additional theory error of 0.5 GeV in addition to the experimental error from [992].
For ΓZ and σ0

had we use the updated values computed in Ref. [1000]. The remaining Z-pole observables are
taken from the LEP and SLC measurements [1003]. For Aℓ we use the average of the LEP and SLC values,
following Ref. [999].

assuming zero correlations between experimental result to first approximation.2 In addition, to assess the

particular impact of the new, high precision measurement from CDF II, we will also perform the fit with

MW taken to be the CDF II value with the systematic uncertainty artificially inflated by a factor of two,

MW = 80.4335 ± 0.0157, to better understand the compatibility of the CDF measurement with the SM

prediction. This scenario is referred to as the CDF II (2× Syst.) throughout the chapter.

The SM values of the other observables are determined from the free parameters using the full two-loop

electroweak results available in the literature. The running of α is computed using the floating value of

Δα(5)
had as well as the leptonic piece, Δαlep = 0.031497686 [1004], which is kept fixed in the fit. The W

mass is determined using the parameterization in Ref. [1005], which also includes corrections up to O(αα3
s )

2While there are sources of uncertainty such as parton distribution functions that might introduce some correlation
between these results, when we repeated the world average MW scenario (Tevatron + LEP + LHC) with a few
different values for the correlations, we arrived at similar qualitative results. A comprehensive global averaging of
these experimental results considering all correlations is left for future work.
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for the radiative correction (referred to as Δr in the literature). The expression for the width of the W is

taken from the parameterization in Ref. [1006]. For the Z width ΓZ, hadronic peak cross section σ0
had, and

width ratios R0
ℓ , R0

b, R0
c , we use the parameterizations in Ref. [1007]. For the effective weak mixing angle,

sin2 θℓeff, we use the results in Ref. [1008]. The value of sin2 θℓeff is used as a proxy for the weak mixing angle

to determine the left- and right-handed couplings of the Z, allowing us to compute the asymmetries:

Af =
g2

Lf − g2
Rf

g2
Lf + g2

Rf
(6.3)

for f = ℓ, c,b. The value of sin2 θℓeff is also used to compute the forward-backward asymmetry A0,ℓ
FB. Finally,

for the other forward-backward asymmetries, we compute the effective weak mixing angles sin2 θb
eff and

sin2 θc
eff using the parameterizations in Refs. [1008, 1009], respectively. These are then translated to A0,b,c

FB

using the standard relations summarized e.g., in Ref. [1009]. See also Ref. [1010] for a recent review of the

status of relevant theoretical calculations.

We parameterize potential effects of BSM physics in the electroweak fit in terms of the oblique parameters,

S, T and U [955,986], as defined in (5.29) through (5.31). Note that S, T and U do not completely characterize

potential BSM effects in the electroweak precision data—a larger set of oblique parameters was developed in

Refs. [956, 958]. We will not consider their effects in this chapter, as they are typically smaller in universal

perturbative theories [1001, 1011].3 The new physics contributions to the electroweak observables can be

expressed as linear functions of S, T and U [955, 986, 1012–1014], which are summarized in Appendix A of

Ref. [993].

For a class of universal effective theories, both S and T are related to the Wilson coefficients [990,991,1015]

of dimension-6 operators4:

Lob ⊃
cWsW

v2

( i
2sW

EW(H†σa←→D μH)DνWa
μν +

i
2cW

EB(H†←→D μH)∂νBμν + EWBH†σaHWa
μνBμν

)
− ET

( 2
v2

)
|H†←→D μH|2

(6.4)

where
S =

4s2
W

α g2
(

EWB +
1
4EW +

1
4EB

)
T =

1
α ET.

(6.5)

3There are some models which contribute dominantly to these other observables; in order to study these models,
an electroweak fit including these additional parameters would have to be performed. One such model is the dark
photon, which contributes only to Y (defined in (5.33)) at tree-level when the expansion in p2 is done correctly. We
leave the study of these types of models for future work.

4This basis choice may look unfamiliar; see Ref. [1016] for a detailed discussion of the relationship between the
oblique parameters and effective theories.
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CDF-II CDF-II World Average PDG
(2× syst.)

SM χ2/(nd.o.f. = 15) 4.03 2.29 2.97 0.97

Best Fit (U = 0)
S 0.15± 0.08 0.13± 0.08 0.10± 0.08 0.03± 0.08
T 0.25± 0.06 0.22± 0.07 0.18± 0.06 0.07 ± 0.06

χ2/(nd.o.f = 13) 1.23 1.18 1.03 0.87

Best Fit (U floating) S 0.01± 0.10 0.01± 0.10 0.01± 0.10 0.01± 0.10
T 0.03± 0.12 0.03± 0.12 0.03± 0.12 0.03± 0.12
U 0.20± 0.09 0.20± 0.10 0.14± 0.09 0.04± 0.09

χ2/(nd.o.f = 12) 0.93 0.93 0.93 0.93

Table 6.2: Fit results including the oblique parameters and χ2 per degree of freedom. Different columns
correspond to different input MW measurement scenarios around Eq. (6.2). The first row shows the χ2

per degree of freedom for the SM in each MW scenario. Results of the fit including (S,T) and excluding
(including) U in the list of floating parameters are included in the middle (bottom) row. See Appendix D
for correlations.

The U parameter is often fixed to zero in electroweak fits, as it corresponds to a dimension-8 operator from

an effective field theory point of view, and its effects are therefore subleading compared to S and T. We will

frequently set U = 0 in our fits, but consider its effect in more details in §6.3.2. We will discuss new physics

interpretations of S and T following the results of the fit with U = 0 in §6.4.

With all of these inputs, we perform the electroweak fit by minimizing a χ2 function,

χ2 =
∑

i,j
(Mi −Oi)(V−1

cov)ij(Mj −Oj) (6.6)

where the sum runs over all the observables in Table 6.1, in addition to the W mass. Here, Mj is the

experimentally measured value of the observable, Oj is the predicted value in terms of the five free parameters

and S,T,U, and V−1
cov is the inverse-covariance matrix for the observables. For the Z lineshape and heavy

flavor observables measured at LEP, we use the experimental correlations from refs. [1000,1003] to compute

the covariance matrix. For other observables, we neglect any correlations so that the covariance matrix is

diagonal with (V−1
cov)jj = 1/σ2

j . We repeat this calculation for all the four scenarios for MW measurements

defined around Eq. (6.2).

6.3 Results of the Fit

6.3.1 Fitting S and T

We first consider the fit results where U is fixed to zero. The results of our electroweak fit with different

values of MW are summarized in Table 6.2. Correlations are shown in Appendix D.

The first row of Table 6.2 indicates the χ2 per degree of freedom (d.o.f.) for the SM for the fit with
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Figure 6.1: The 95% CL preferred regions in the S and T plane with U = 0 from the electroweak fit,
marginalizing over the five input parameters and for various experimental values of MW (see the discussion
around Eq. (6.2)). We do not include U in these fits. The blue curve is in good agreement with results of
GFitter group [983–985, 999]. Including the recent CDF II measurement of MW [11] (in the green, yellow,
and red curves) moves the best-fit region to larger positive values of S and T. The SM (with (S, T) = (0, 0))
is strongly disfavored when the new CDF II MW measurement is included in the fit.

each value of MW. We observe that, prior to the CDF measurement, the Standard Model provides a good

fit to the data using the PDG 2020 value of MW, with χ2/(nd.o.f. = 15) = 0.97 (p = 0.48). Taking instead

the recent CDF II measurement of MW, however, the p-value for the SM drops to 2.11× 10−7, exemplifying

the tension discussed in Ref. [11]. This is somewhat ameliorated when considering the smaller world average

value of MW (p = 9.01× 10−5), but notable tension remains.

In the middle row of Table 6.2 we summarize the results of the fit when we allow S and T to float in

addition to the five free observables. We report the best fit values and confidence intervals of S and T, and

then the χ2 per degree of freedom. We find a good fit to the data with the PDG average value of MW,

prior to the CDF measurement (p = 0.60), where the fit prefers small values of S and T at 0.03 and 0.07,

respectively. This is consistent with the electroweak fit presented in Ref. [992]. For all of the fits accounting

for the new measurement of MW from CDF II, the fit instead prefers much larger values of S and T. Despite

this, we still find a good fit to the data, with p values ranging from 0.24 when using the CDF measurement

alone to 0.42 using the combination of measurements at LHC, Tevatron, and LEP.

The last row of Table 6.2 shows the results of the fit done when U is allowed to float as well. We find

that when including the CDF-II measurement, the fit favors a large value of U and small S and T. Since

this result is unnatural from a model building perspective, we proceed with the results of the fit with U = 0.

The results of the fit for the oblique parameters S and T are illustrated in Fig. 6.1. Here we show

ellipses indicating the 95% CL contours around the best-fit values of S and T. These are computed by
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computing the χ2 at each point in the S − T plane, marginalizing over the free observables, and requiring

Δχ2 ≡ χ2(S,T) − χ2
min < 6.18, where χ2

min is the minimum value of the χ2 as a function of all the free

parameters as well as S and T.

The 95% CL contours of the fit with the PDG average value of MW (excluding the recent CDF II

measurement) are shown in blue and agree with the results of Ref. [999]. This fit slightly prefers T > 0,

though the correlation between S and T leaves some parameter space with S,T < 0 as well. Once the

new measurement of MW from CDF II is included, however, the preferred region in the S − T plane shifts

dramatically. The correlation between S and T remains, but values of T < 0 are no longer allowed, even

when the systematic error on the CDF measurement is artificially inflated. In all, we find a strong preference

for BSM contributions in the electroweak fit, particularly for positive, nonzero values of T.

For each fit, we also find the best fit value of each individual observable both for the SM (with S and T
fixed to zero) and for the best-fit value of S and T. The results are shown in Table 6.3. Each entry indicates

the best-fit value of the observable, along with the pull (calculated as the fit value minus the measured

value, divided by the experimental uncertainty) shown in parentheses. For all three values of MW including

the new CDF measurement, we see a significant pull (ranging from −4.6 to −7.0) on the fit value of MW

in the Standard Model. This is entirely ameliorated at the best fit values of S and T, at the cost of a

small tension in the value of ΓZ, which has a fit value larger than the experimental value when S and T are

allowed to float. All of the other observables have quite similar values at their best-fit point and at the SM,

regardless of the experimental value of MW used in the fit. Note also that the previously existing tension in

the forward-backward asymmetry, A0,b
FB, measured at LEP is unaffected by the floated values of S and T and

is roughly the same for any value of MW.

6.3.2 The U Parameter

In the fits described above, we have fixed U = 0. As discussed in §6.2, this is motivated by the fact that the

U-parameter is dimension 8, and is typically suppressed relative to S and T in concrete models.

Nevertheless, in light of the large value of MW measured at CDF II, it is worth examining the effects

of the U-parameter on the electroweak fits in more detail. This is because, of all the electroweak precision

observables we consider, the U parameter affects only two: the W mass and width [993,1012,1013]:5

MW = MW,SM

(
1− α(M2

Z)
4(c2

W − s2
W)

(
S− 2c2

WT
)
+

α(M2
Z)

8s2
W

U
)
,

ΓW = ΓW,SM

(
1− 3α(M2

Z)
4(c2

W − s2
W)

(
S− 2c2

WT
)
+

3α(M2
Z)

8s2
W

U
)
.

(6.7)

5We thank Ayres Freitas for emphasizing this point to us.
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Figure 6.2: Similar to Fig. 6.1, but now also including U in the global fit. We show the 95% CL preferred
region of all oblique parameters in the S − T plane (left), S − U plane (center), and T − U plane (right).
In each plot, we marginalize over the third parameter. We find that when we include U in the fit, S and T
remain nearly centered about 0, whereas U has a notable positive shift. Getting such large values of U are
quite challenging in perturbative models. Note that only one ellipse is visible in the S−T plane as the other
contours overlap completely.

The W decay width is not measured to nearly as high precision as MW, so the observed discrepancy in

the W mass at CDF II [11] can be accommodated in the SM electroweak fit by setting U ≈ 0.11, without

affecting any of the other observables as compared to the SM fit. These other unaffected observables include

S and T which take their SM values as well as the existing tension in the EW fit from the forward-backward

asymmetry.

To illustrate this in more detail, we perform the fit as described above but also allow the U parameter to

float, in addition to the S and T parameters and the free observables. We then plot 95% confidence intervals

for pairs of the electroweak precision parameters while marginalizing over the third parameter and the other

free parameters. The results are shown in Fig. 6.2.

We see that, when marginalizing over U, the 95% CL preferred range of S and T with the new CDF

measurement of MW is quite similar to the allowed region using the smaller value of MW. Instead, the U
parameter is inflated to account for the shift in mass.

The difficulty in this interpretation is that a large value of U is challenging to generate in perturbative

models, because, as mentioned in §6.2, U corresponds to a dimension-8 operator [1017], and a value of O(0.1)
indicates scales of order few 100 GeV for tree-level models, and� 100 GeV for particles contributing in loops.

As the U parameter violates custodial symmetry, it is difficult to imagine a model that generates a large,

nonzero value of U without also generating large values of T. We therefore do not attempt to construct

models generating large values of U. In the concrete BSM models we consider in the next section, we will

ignore the (subleading) U-dependence altogether.
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6.4 Implications for BSM Models

From the results of our electroweak fit shown in §6.3, we see that the value of MW can dramatically change

the preferred values of the oblique parameters. While the 95% CL region fitting with PDG measurements is

nearly centered around the predicted SM values of (S,T,U) = (0, 0, 0), the updated value of MW shifts this

region to positive O(0.1) values of oblique parameters (see Figs. 6.1, 6.2).

In this section we explore various tree-level and loop-level contributions to the oblique parameters from

simple models, and assess their viability. For clarity, we focus on the scenario of MW equal to the updated

world average from Tevatron, LEP, and LHC measurements (the second scenario in Eq. (6.2)).

It is first worthwhile to estimate the scale of new physics implied by O(0.1) values of S and T. Comparing

to the dimension-6 operators defined in (6.4), we see that for tree-level matching with perturbative couplings,

these operators can be generated by new physics at a scale Λ ∼ TeV. If the new physics arises in loops,

on the other hand, the loop factor suppression implies a scale closer to O(100 GeV). We will examine this

matching in both scenarios, first considering minimal extensions to the SM that can be integrated out at

tree-level, such as an additional scalar, then consider a one-loop example with new singlet-doublet fermion

pairs. Note that, as indicated in Fig. 6.1, it is important for these models to shift T to positive values to be

consistent with our electroweak fit.

6.4.1 Tree-Level Models

Here we consider models that lead to corrections to the oblique parameters at tree level. Given the results

of the fits shown in Fig. 6.1, we are particularly interested in models that can accommodate large positive

values of S and T.

The simplest examples of models leading to oblique parameter corrections are new scalars. An SU(2)L

singlet scalar leads only to an overall rescaling of the Higgs couplings that do not affect S and T or shifts in

the Higgs self-coupling. Models with extra SU(2)L doublet scalars, such as a 2HDM [1018], can affect the

Higgs couplings to the gauge bosons, but these deviations are proportional to cos2(β− α), the square of the

alignment parameter, which from an effective field theory perspective is dimension-8, and therefore cannot

affect the oblique parameters S and T, which are dimension-6.

An SU(2)L triplet scalar ϕa, however, leads to more interesting possibilities [1019].6 Such a triplet can

have interactions with the SM Higgs ∼ ϕaH†σaH. After electroweak symmetry breaking, this interaction

leads to a small vacuum expectation value for the scalar triplet, which shifts the mass of the W bosons

without changing the mass of the Z, therefore offering a possibility of resolving the tension between the CDF

6We thank Matthew Strassler for bringing this model to our attention.
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measurement of MW and the SM expectation.

For concreteness, we will consider a real scalar SU(2)L triplet ϕa with Y = 0 which we will refer to

as a swino; see Refs. [1020, 1021] for possible UV-completions and Ref. [1022] for a recent study of swino

phenomenology. The Lagrangian takes the form

L ⊃ 1
2DμϕaDμϕa − 1

2M2
Tϕaϕa + κϕaH†σaH− ηH†Hϕaϕa. (6.8)

The oblique parameters have been worked out in Ref. [1023, 1024], where they include the matching up to

one-loop order. At tree-level, the contribution to S from scalar triplets vanishes. The Y = 0 swino does, on

the other hand, lead to a contribution to the T parameter given by

T =
v2

α
κ2

M4
T

(6.9)

This contribution is positive for any value of κ and can naturally explain the observed discrepancy in MW mea-

surement.

One can also consider scalar triplets with Y = 1, but these lead to the wrong sign for T at tree level.

At one loop, both Y = 0 and Y = 1 triplets lead to additional corrections to both S and T, which can be

potentially large and positive, depending on the quartic couplings to the Higgs. We leave a more detailed

study of these possibilities to future works.

In Fig. 6.3, we show the band of values of κ and MT that are compatible with the electroweak fit with

the combined value of MW at 95% CL. As is clear from the scaling in (6.9), the necessary large value of T can

be achieved even for large triplet masses. Requiring κ/MT ≲ 1, the triplet mass can be up to O(few TeV),

evading any potential collider bounds.

6.4.2 Singlet-Doublet Model

We now shift our attention to another simple extension of the SM, the SU(2)L singlet-doublet fermion model.

Unlike the previous discussion, the contribution of this model to electroweak precision measurements first

occurs at loop level. The model includes Nf families of a singlet Majorana and doublet Dirac fermion charged

under the electroweak sector [4,913–923].7 This is a minimal, UV complete, anomaly-free construction which

can generate a Higgs portal coupling, with the added benefit that such a setup can be readily embedded

inside supersymmetric extensions of the SM. The SU(2)L doublet has hypercharge 1/2 and is composed of

two left-handed Weyl fermions ψ2 and ψ̃2. The Lagrangian is

L = LSM +
∑
Nf

Lkinetic −m2ψ2 · ψ̃2 −
m1
2 ψ1ψ1 + y eiδCP/2ψ1H†ψ2 − ỹ eiδCP/2ψ1H · ψ̃2 + h.c. (6.10)

7For simplicity, we consider the scenario where these fermions do not mix with each other, but in principle mixing
could lead to richer phenomenology.
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Figure 6.3: The 95% CL band using the results from an electroweak fit with the updated world average
MW measurement in the MT−κ plane of the triplet scalar model. We find viable parameter space for O(TeV)
swino masses that can potentially be probed with future high-energy colliders.

This Lagrangian has a physical CP-violating phase, as we have four new parameters and three new fields.

Since S and T are CP-even observables, we set δCP = 0 in this analysis for simplicity. However, this model

is also interesting with nonzero values of δCP as it can potentially explain the Galactic Center Excess (see §5

or [4] for details). Additionally, because of the Yukawa terms, there is mass mixing between the fermions and

the ψi fields are not the propagating degrees of freedom. We call attention to this point because the mass of

the lightest propagating fermion is relevant for Higgs (and Z) decay constraints, which require Mχ > Mh/2.

The singlet-doublet model contributes to the S and T parameters at loop-level with the new fermions running

in the loop. We provide a quick summary of this calculation in Appendix C.

The size of the contributions to S and T in this model scales linearly with the number of new fermion

generations, Nf . We can only get a nonzero T value when the custodial symmetry is broken, i.e. y 6= ỹ.

Because of this, the value of T depends on the difference y− ỹ, so a relatively large difference between y and

ỹ is required to generate a sufficiently large T. Furthermore, S and T both decrease as m2 or m1 increase,

making it difficult to reach values consistent with both the updated electroweak fit and existing experimental

constraints without including multiple generations of new fermions.

In Fig. 6.4 we plot 95% CL region from our electroweak fit using the updated world average as a function

of the new fermion mass parameters m1 and m2 to get a benchmark value of the couplings. Lower values of

m1 and m2 are strongly constrained by a host of different measurements (including LEP bounds on charged

fermions, Higgs and invisible Z decays, and direct searches for light fermions carrying electroweak charge).

In the left panel of the figure we consider the model with only one generation of new fermions. We find that

the contribution to S and T is only sufficiently large to fit MW with the updated CDF II measurement in a
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Figure 6.4: The regions of singlet-doublet parameter space that are inside the 95% CL region from the
electroweak fit including the S and T parameters for the updated world average MW value. The couplings
are set to benchmark values (y = 0.1, ỹ = 1, δCP = 0), and we consider Nf generations of new fermions,
where Nf = 1 (Nf = 4) on the left (right). We consider y 6= ỹ since nonzero T depends on the custodial
symmetry breaking y− ỹ. Relevant constraints on the model are briefly discussed in the text; in particular,
direct LHC searches can potentially rule out most of the blue band for Nf = 1 and probe much of the Nf = 4
allowed region.

small corner of the parameter space; direct searches at LHC strongly constrain this range of masses.

In the right panel of Fig. 6.4 we show the contribution of the model to the oblique parameters with

Nf = 4. We now find a larger range of masses that give rise to MW values within 95% confidence of the

global average measurement. Direct LHC searches can again rule out some of this parameter space, but

there is still viable parameter space in the range of masses shown in the figure, specifically in the limit of

degenerate masses or at high values of m2. A more thorough exploration of the viable parameter space

(including with other values of y and ỹ) is left for future work.

6.5 Discussion

In this chapter we studied the effect of the recent MW measurement at CDF II on global fits of electroweak

precision observables and the implications for physics beyond the SM. By performing a standard χ2 fit over

SM parameters as well as the oblique parameters S, T, and U, we explored the efficacy of a variety of models

for generating an upward shift in the MW mass. After combining all MW measurements at the Tevatron,

LEP, and the LHC, there exists a significant discrepancy with SM predictions.

The results of our fit suggest that new physics models that contribute to S and, more substantially, a

positive T are potential candidates to explain the anomaly. While we considered a global fit also including

U, the results did not have a natural model-building interpretation. Of the models we consider, we find
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that a singlet scalar extension of SM and a 2HDM model fail to yield S and T contributions consistent with

our fit. However, the swino model was markedly successful since it generated positive O(0.1) values of T in

unconstrained regions of parameter space. Viable triplet mass values were found to be near or above the

TeV scale, which can evade current experimental bounds while giving rise to interesting signatures in future

high energy colliders such as FCC-hh or muon colliders. We leave a detailed study of such signals for future

work. Additionally, we found some success with a singlet-doublet fermion model when considering multiple

generations.

As previously mentioned, there are other anomalies in the SM that could arise from discrepant elec-

troweak precision measurements, such as the anomalous magnetic moment of the muon g−2. It was pointed

out in Ref. [1025–1027] that the existing discrepancy between the theoretical and measured values of (g−2)μ

can be absorbed in a shift to the hadronic vacuum polarization contribution by changing Δα(5)
had, at the cost

of increasing the tension in the SM electroweak fit, particularly by decreasing the preferred value of MW. It is

of high importance to explore if the necessary change in the fit to ameliorate the (g−2)μ discrepancy can be

accommodated by the BSM effects of interest for the W mass measurement as studied in Refs. [1028,1029],

or if something much more exotic is required.

Finally, we would like to call attention to the fact that tension arising from the global SM electroweak fit

is not unique to the W boson mass. For example, significant deviations from the SM have been evident in the

forward-backward asymmetry observable at LEP for many years [1003], and there are numerous attempts

at explaining this with BSM physics (e.g. Refs. [1030], among others). This further motivates future study

of how potential new physics affects electroweak precision observables.

These results can be interpreted as new oblique signs of BSM appearing around the TeV scale. In light of

this new measurement, further experimental results, including improvement to measurement of MW at the

LHC or future colliders, are strongly motivated.

Note added: As the paper this chapter is based on was being finalized, Refs. [1028,1029,1031–1035] appeared,

which also consider the implications of the recent MW measurement. In particular, Refs. [1032,1034] similarly

consider an electroweak fit to evaluate possibility of new physics contributions to the W mass.
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7
Wrinkles in the Froggatt–Nielsen Mechanism

7.1 Introduction

Flavor physics has been a harbinger of physics beyond the Standard Model (BSM) at various points in

time, from predicting the existence of the charm quark [1036, 1037] to estimating the mass of the top

quark [1038–1041] long before its discovery at the Tevatron [1042,1043]. Precision experiments, in particular,

help establish or find violations of the Standard Model (SM) symmetry structures, and prove to be noteworthy

indirect probes of new physics whose mass scale lies beyond the reach of direct collider searches; see [1044,

1045] for reviews of many such experiments.

A primary goal of flavor physics is to understand the appearance of large hierarchies in the masses and

mixing angles of the SM fermions. The two most popular solutions to this puzzle are (i) the Froggatt–Nielsen

(FN) mechanism and its variations [1046–1050], and (ii) extra dimensional models where an O(1) difference

in the bulk masses of fermions gives rise to an exponential hierarchy between the observed masses in the

IR [1051–1056]. Other notable possibilities include generating the mass hierarchy via running to the IR in

extensions of the SM with scale invariant sectors in the UV [1057], or radiatively generating the Yukawas

with the hierarchy governed by powers of the loop expansion parameter [1058–1061]. A review of these and

other dynamical solutions to the flavor puzzle can be found in [1062–1064]. In what follows, we focus our

attention on the FN mechanism.
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In the FN mechanism, the hierarchies in the SM fermion sector arise as different powers of a small

expansion parameter. This expansion parameter is given by the ratio of the vacuum expectation value (vev)

of a scalar field, known as the flavon, over a heavy mass scale. The SM Yukawa couplings are generated by

non-renormalizable operators involving the chiral SM fermions, the Higgs, and the flavon. The dimensionality

of these operators—and the resulting power of the expansion parameter that appears—is dictated by the

charges of the SM fermions under a new Abelian horizontal symmetry, U(1)H, which is broken by the flavon.

As we will discuss, there is additional freedom in the assignment of these charges that was overlooked in

Ref. [1046]. In the original FN paper, it was supposed that these irrelevant operators are generated by

“chains” including heavy vector-like matter, also charged under U(1)H. A number of variations to this model

have been proposed, including “inverted” models [1065], where the flavon vev is larger than the heavy mass

scale.

One of the drawbacks of invoking the FN mechanism is that the new dynamics responsible for the SM

hierarchies can exist at scales far above the weak scale, beyond the reach of direct experimental probes.

Nevertheless, given the other shortcomings of the SM—the electroweak hierarchy problem in particular—

there is ample reason to expect new physics at or near the TeV scale. If the new physics is flavorful

(i.e., it involves non-universal couplings to SM matter fields), its flavor structure may also be dictated

by the FN dynamics. This argument can also be run in reverse: given the stringent constraints from

precision measurements of the SM, for new physics to exist at the TeV scale it must either be flavor-blind or

incorporate some symmetry arguments to suppress flavor-violation [1066, 1067]. This reasoning is familiar

in the supersymmetric context, where it is understood that squarks must either be degenerate or flavor-

aligned [1068].

In this light, it is clearly worthwhile to study the application of the FN mechanism to the couplings

of new BSM fields. This is particularly true when flavorful new physics is invoked to explain potential

discrepancies between experimental results and the SM expectations: should one of these discrepancies

become an unambiguous signal of new physics, we might glean information about the dynamics associated

with flavor in the UV. This approach was advocated in [1069–1071], and we will review it extensively in this

work. An immediate consequence of this framework is that many different experimental observables become

correlated. These correlations challenge some of the simplest solutions to various flavor anomalies, as the

couplings and masses required to explain the discrepancy violate bounds set by other observables such as

lepton flavor violating (LFV) processes or flavor changing neutral currents.

The goal of this work is to explore how these considerations can change if the FN setup is amended

with additional symmetries or structure in the UV. We do this by working in an effective field theory (EFT)

framework, including the SM and new BSM fields, with their couplings to fermions treated as spurions
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under the U(3)5 flavor symmetry of the SM. In this framework, we can introduce controlled deviations

from the size of these spurions dictated by the horizontal charges. We refer to these deviations as wrinkles,

since they appear in the UV as changes in the length of the chain diagrams responsible for the Yukawas

in the IR. Wrinkles can exist in SM or BSM spurions, and allow us to relax the correlations between

different observables, permitting sizable new physics contributions to some observables while satisfying other

experimental bounds.

Importantly, while wrinkles allow for much greater flexibility in the couplings of BSM fields to SM

fermions, this flexibility is not without bound. If the effective theory is to be faithfully embedded in the FN

mechanism, radiative corrections must not spoil the relationship between the couplings in the IR and the

non-renormalizable operators in the UV. This requirement has been previously formulated as a consistency

condition in the context of minimal flavor violation EFTs [1069] (see also Ref. [1070]). While these conditions

are trivially satisfied in ordinary FN models, we show that they put meaningful bounds on wrinkled FN

setups.

Since this wrinkled FN setup can be applied to any new physics, we will illustrate its application in an

example, where the SM is extended by a single leptoquark, denoted S1 in the nomenclature of Ref. [1072].

See [1071,1073–1075] for previous discussions of leptoquark models with horizontal symmetries. We will use

this leptoquark to enhance the branching ratio of B+ → K+ ν̄ν, which currently shows a small discrepancy

with SM predictions [698] and will be precisely measured at the Belle II experiment in the coming years.

Without wrinkles, the charges and masses required to generate a large B+ → K+ ν̄ν signal also imply the

existence of large signals in other correlated observables, such as LFV decays or leptonic meson decays. We

will show a simple example where a wrinkled FN setup evades these bounds while satisfying the consistency

conditions alluded to above. As we will see, the bound on the wrinkles implies other correlated signals are

generated near detection thresholds in this example, and could potentially be seen in the near future.

In the coming years, troves of new data from colliders and small-scale experiments searching for signs of

flavorful new physics will begin stress-testing the delicate flavor structure of the SM. Given the substantial

motivation for BSM physics, this structure could break and potentially start showing signs of deviations from

the SM expectation. In preparation for such deviations, it is timely to develop new model-building tools

which enable embedding their solutions in UV complete frameworks. Wrinkles in an FN ansatz are a flexible,

bottom-up tool that allow for a broader exploration of the complementarity of different flavor probes, while

reliably parameterizing more sophisticated UV models of flavor. As such, they present a natural setup to

search for a consistent IR picture of new physics with flavor, should any deviations from the SM come to

light.

This chapter is organised as follows: in §7.2, we review the FN mechanism, its solution to the flavor
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hierarchy problem in SM and how it furnishes suitable ansätze for couplings arising from new BSM physics.

Next, in §7.3, we introduce the concept of wrinkles for the FN mechanism, discuss constraints on them, and

provide examples for how they can arise from UV complete models. In §7.4, we provide a concrete example of

applying wrinkles to the S1 scalar leptoquark embedded in a FN model. We demonstrate that wrinkles allow

one to simultaneously explain bounds on BSM physics from current precision flavor observables, while also

retaining predictive power for potential future measurements. We conclude in §7.5. Appendix E.1 provides

details about bounds on wrinkles arising from consistency conditions. Appendix E.2 provides details on

flavor observable computations in the S1 leptoquark model.

7.2 Froggatt–Nielsen and BSM Physics

The lepton and quark Yukawas and mixing angles present a clear generational hierarchy, with the charged

particle masses ranging over five orders of magnitude. This hierarchy implores an explanation in the UV.

Searches for flavorful new physics are carried out in pursuit of such an explanation. Hence, if any anomaly

emerges in these experiments, it is well-motivated to embed its BSM solutions within UV models that explain

the flavor hierarchy as well.

The FN mechanism [1046] provides a four-dimensional, field-theoretic explanation for this hierarchy,

replacing the small dimensionless parameters with a power counting in powers of an inverse mass scale, fixed

by a symmetry. In this section, we review how this mechanism can explain the parameters in the SM matter

sector, with an emphasis on the EFT point of view. We will then discuss how this perspective can naturally

be extended to BSM physics.

7.2.1 Review of the Froggatt–Nielsen Mechanism

The basic idea of the FN mechanism is to introduce a horizontal symmetry, U(1)H, under which different

generations of the SM fermions have different charges. The horizontal symmetry is assumed to be sponta-

neously broken by the vacuum expectation value of a SM singlet scalar field, ϕ—the flavon. Assuming our

EFT is valid up to some cutoff scale M, we are led to a natural expansion parameter λ = 〈ϕ〉/M, which

appears in non-renormalizable operators involving the SM fermions. Later on, we will associate this scale M
with the mass of new heavy fermions. Without loss of generality, we take the SM Higgs to be neutral under

U(1)H and take the flavon charge to be −1.

At scales just below the cutoff, the lowest dimension operators involving the SM fermions and the Higgs

take the form

L ⊃ ru
ij

ϕ(†)mij

Mmij
QiHūj + rd

ij
ϕ(†)nij

Mnij
QiHcd̄j + re

ij
ϕ(†)lij

Mlij LiHcēj + h.c. (7.1)
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where (Qi, ūi, d̄i, Li, ēi) are different SM fermions, subscripts on fermion fields refer to different generations,

rij are O(1) couplings,

mij =
∣∣[Qi] + [ūj]

∣∣, nij =
∣∣[Qi] + [d̄j]

∣∣, lij =
∣∣[Li] + [ēj]

∣∣, (7.2)

and the square brackets indicate the U(1)H charge. The hermitian conjugate on ϕ appears if the sum of

charges inside the absolute value is negative. At energies below 〈ϕ〉, these operators appear as the Yukawa

couplings of the SM Higgs, with the coupling matrices given by

Yij
Qū = ru

ij
〈ϕ(†)〉mij

Mmij
∼ λmij , Yij

Qd̄ = rd
ij
〈ϕ(†)〉nij

Mnij
∼ λnij , Yij

Lē = re
ij
〈ϕ(†)〉lij

Mlij ∼ λ lij . (7.3)

This scaling implies that even modest differences in horizontal charges give rise to exponential hierarchies

in Yukawa couplings. To connect with the observed flavor structure of the SM, we identify λ with the

Cabbibo angle, ∼ 0.2, so that the CKM matrix hierarchies follow naturally from the Wolfenstein parame-

terization [1076]. We refer to this setup as vanilla FN.

At the O(1) level, the masses and mixing angles are

Vij ∼ λ |[Qi]− [Qj]|, Uij ∼ λ |[Li]− [Lj]|, (7.4)

mu
i ∼ λ |[Qi] + [ūi]|, md

i ∼ λ |[Qi] + [d̄i]|, ml
i ∼ λ |[Li] + [ēi]|, (7.5)

where V (U) is the CKM [1077,1078] (PMNS [1079,1080]) matrix.

The most general horizontal charge-assignment that gives rise to the observed structure of the CKM and

PMNS matrices and SM fermion masses is given in Table 7.1.1 We have the overall freedom to shift the

charges of all quarks (leptons) by the same amounts q0 (l0), respectively. Once these shifts are chosen, the

CKM and PMNS structure constrain the other LH quarks’ and leptons’ charges. As indicated in Eq. (7.4),

these mixing matrices only fix the absolute value of the difference between charges, hence the freedom in

choosing X,Y = ±1 in the table. The appearance of X,Y in multiple entries captures the correlation

between those charges. To find the RH fermion charges we use the measured values of masses in the SM.

As in the case of mixing, Eq. (7.5) only fixes the absolute value of the charge difference between LH and

RH fermions, leaving the sign undetermined. We choose the signs so that the eigenvector associated with

the heaviest (lightest) mass eigenstate has the biggest overlap with the third (first) generation for each type

of fermion. To check this, we generated 10000 mass matrices for each charge assignment, drawing new

random numbers ru,d,e
ij ∈ (0.2, 1) for each test. For every charge assignment, we confirmed that a substantial

1In general, shifts of ±1 in most of these charges can be tolerated when random O(1) Yukawa couplings in the
UV model are taken into account and the fact that the expansion parameter λ is not particularly small is considered.
The anarchic structure of the PMNS matrix, in particular, leaves room for such small changes in the charges;
see [1081,1082] for further exploration of these shifts.
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Gen. 1 Gen. 2 Gen. 3
Q −q0 − 3X −q0 − 2X −q0
ū q0 + 3X± 7 q0 −X q0
d̄ q0 + 3X± 6 q0 − 3X q0 − 2X
L l0 + Y l0 l0
ē −l0 −Y ± 8 −l0 + 5Y −l0 + 3Y

Table 7.1: The most general horizontal charge assignment that explains the SM masses and mixings in
FN with λ ∼ 0.2. q0 and l0 denote general shifts in quark and lepton charges, respectively, that leave the
IR masses and mixings unchanged. X,Y = ±1 denote the correlations between different charges that are
required by the CKM and PMNS matrices. For every value of (q0, l0), we have 25 choices for the charge
assignments. In supersymmetric theories, holomorphy sets X = −Y = −1 and picks the positive sign for
first generation RH fermions.

fraction of trials yield the correct mixing patterns and mass eigenvalues that are within a factor of two of

the experimentally-measured values.

In the original FN proposal, it was assumed that the charges of all five types of fermions (Q, ū, d̄, L, and

ē) are ordered monotonically between different generations. Table 7.1 indicates that, while some correlations

between LH and RH fermions of the second and third generation (captured by X,Y) are needed to generate

the correct mass eigenstates, the monotonicity condition can be removed for first generation RH fermions

without distorting the model’s prediction for SM masses. This manifests itself as a binary choice in the

charge of each first generation RH fermion (ū, d̄, ē).

It is also popular to consider supersymmetric variations of FN models. In the supersymmetric case,

holomorphy of the superpotential forbids terms with ϕ† instead of ϕ [1047, 1048]. This eliminates a great

deal of the freedom in charge assignments tabulated in Table 7.1. Specifically, it fixes X = −Y = −1 and

picks the positive sign for first generation RH fermions, leaving only the separate overall shifts in the quark

and lepton charges, q0 and l0. It also enforces the monotonicity of the horizontal charges across different

generations. However, since we do not explore the supersymmetric case in detail in the rest of this chapter,

we do not need to enforce these constraints.

The simplest UV completion of this effective theory (and the one imagined by Froggatt and Nielsen [1046])

is to introduce a set of vector-like fermions F with mass M that live in an SM representation permitting

Yukawa couplings between the Higgs and SM fermions. We assume the existence of heavy fermions with

all horizontal charges necessary to complete the SM Yukawas with Yukawa couplings to the flavon ∼ ϕFF̄′.

The flavon Yukawa couplings are assumed to be O(1), leading to the effective theory in Eq. (7.1) with O(1)
Wilson coefficients denoted by rij.

As an example, the up-type Yukawa couplings can be generated by “chain” diagrams such as those

shown in Fig. 7.1. The top Yukawa arises at the renormalizable level, but the suppressed couplings arise
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Figure 7.1: Example diagrams leading to the effective operators for the up-type Yukawa couplings with
vector-like heavy fermions U and Ū, where Ū has the same SM quantum numbers as ū. The subscripts on
the U fields refer to the horizontal charge of U, and we have taken charges from Table 7.1 with X = −1 and
q0 = 0.

by introducing the vector-like pair U and Ū, where Ū has the same quantum numbers under the SM gauge

groups as ū. The subscripts indicate the U(1)H charge of U. For instance, the chain shown on the right side

of Fig. 7.1 gives rise to a λ2 suppression in the coupling of Q2ū3. If there exist heavy fermions with SM

charges similar to Q and the correct horizontal charges, chain diagrams with the Higgs and flavon insertions

interchanged will contribute as well. Similar chains give rise to the Yukawa couplings for other SM fermions.

Models of FN constructions with additional symmetries, multiple expansion parameters, or expansion

parameters that are allowed to freely vary have also been developed in the literature, e.g. see [1047, 1048,

1081, 1083–1085]. For simplicity, however, in this work we focus on FN setups with only one expansion

parameter, which we identify with the Cabbibo angle, and develop a systematic way for small deviations

from them. We can straightforwardly generalize our discussions below to more baroque FN setups.

As a final note, in a UV complete model, quantum gravity considerations require that the horizontal sym-

metry be embedded in a gauge symmetry [602], which in turn demands the cancellation of all its anomalies.2

We have checked that the general charge assignment of Table 7.1 can not cancel all gauge anomalies in the

typical FN UV completion, see also Ref. [1091] for a similar conclusion. This conclusion is also corroborated

by [1092,1093], which deduce that the general charge assignments that can explain the SM Yukawa hierarchy

can not be anomaly-free by studying general extensions of the SM with a new anomaly-free U(1) gauge group.

As a result, in such a construction one should resort to either introducing new heavy chiral fermions (and

subsequently extending the scalar sector so as to generate a mass for these fermions) or the Green-Schwarz

mechanism to cancel anomalies [1094]. We leave further investigations of anomaly cancellation for future

work.
2The lack of evidence for the (pseudo-)Nambu–Goldstone boson associated with the spontaneous breaking of the

horizontal symmetry is also often used as motivation for gauging it. However, models with a potentially viable
Goldstone exist. See [1086–1091] for examples where the Goldstone is identified with the QCD axion.
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7.2.2 Froggatt–Nielsen and Flavorful New Physics

When introducing new physics, some assumptions must be made about the couplings of SM fields to new

particles. These couplings are generically non-universal unless governed by additional structure such as new

gauge symmetries. Given the hierarchies that exist in the SM fermion couplings, it is a priori unclear what a

“natural” size for such non-universal couplings should be. However, if one assumes a UV explanation of the

flavor hierarchy such as the FN mechanism, there is a natural ansatz for the new physics couplings as well.

The phenomenological significance of such an ansatz lies in the fact that it correlates predictions of a

BSM model for various flavorful observables in the IR. Thus, depending on the ansatz, a model built for

explaining a discrepancy in the data will give rise to correlated signals in other constraining observables. For

instance, any solutions of the (g − 2)μ anomaly with non-minimal flavor ansatz gives rise to unacceptably

large contributions to various LFV decays, especially τ→ μγ.

To better understand such ansätze, it is useful to organize our thinking in terms of the global flavor

symmetry of the SM:

Gflavor = SU(3)Q × SU(3)u × SU(3)d × SU(3)L × SU(3)e × U(1)5, (7.6)

where three of the U(1) factors can be identified with hypercharge, baryon number and lepton number.

This symmetry acts on the generation indices of the chiral matter in the SM, with the unbarred (barred)

fields transforming as triplets (anti-triplets), respectively. The symmetry is broken explicitly by the Yukawa

matrices, but formal invariance under Gflavor can be restored if we promote the Yukawas to transform as

spurions:
YQū ∼ (3̄Q, 3u), YQd̄ ∼ (3̄Q, 3d), YLē ∼ (3̄L, 3e). (7.7)

This formalism can be extended in a straightforward way to new physics with any new spurions of Gflavor

[1069–1071]. New fields are taken to be singlets of the SU(3)5 part of the SM flavor group, and their couplings

to SM fermions then have definite transformation properties under Gflavor.

As an example, consider the scalar leptoquark S1, a color anti-fundamental with hypercharge Y = 1/3.

This allows for the renormalizable couplings to SM fields,3

L ⊃ −Δij
QLεabS1QbiLaj −Δij

ūēS†
1ūiēj + h.c., (7.8)

where the spinor indices are implicit, a,b are SU(2)L fundamental indices, ε12 = +1, and (i, j) are flavor

3The SM gauge symmetries also permit the couplings S1ūd̄ and S1Q†Q†, which lead to proton decay. We can forbid
these couplings by enforcing conservation of baryon number and endowing the leptoquark with a baryon number of
−1/3, or by potentially gauging some discrete subgroup. Therefore, in the rest of this work, we ignore these couplings.
We note that the “wrinkles” introduced in §7.3 cannot entirely alleviate the proton decay constraint, necessitating a
symmetry-based explanation.
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indices. The ΔQL coupling also appears in R-parity violating supersymmetric models, where S1 is identified

with a down squark; these models have Δūē = 0 [1095]. The new Yukawa couplings ΔQL and Δūē transform

as
ΔQL ∼ (3̄Q, 3̄L), Δūē ∼ (3u, 3e). (7.9)

In the absence of any flavor ansatz, the matrices ΔQL and Δūē are arbitrary 3 × 3 complex matrices.

However, when embedded in a vanilla FN setup, and assuming the S1 leptoquark is neutral under U(1)H, we

find an ansatz for the hierarchies present in the spurions ΔQL and Δūē. In analogy with Eq. (7.3), we find:

Δij
QL ∼ λ |[Qi] + [Lj]|, Δij

ūē ∼ λ |[ēj] + [ūi]|. (7.10)

Put differently, the SM charges and flavor symmetries are enough to determine how the new S1 field

should be embedded in the effective theory below M. The power counting of the effective theory then

dictates that the expected FN scaling above holds, up to the O(1) Wilson coefficients of the effective theory

(analogous to the rij in Eq. (7.1)). This ansatz generalizes to arbitrary new spurions of Gflavor that can arise

in other leptoquark models. A complete list of these spurions is given in Ref. [1070].

Once the effective theory is known, we can make predictions for the contributions of new physics to various

observables. Because the same spurion contributes to multiple observables, these predictions are correlated

by a FN ansatz. These correlations can lead to inconsistencies with experimental results. Consequently,

it is useful to have a systematic way of deviating from this scaling while still maintaining the predictivity

of FN models. We discuss a systematic way of doing this in the next section. Specifically, we show how

modifications of the UV spectrum of a FN construction can allow a controlled deviation from correlations

between various observables in the IR, alleviating violations of experimental bounds.

7.3 Wrinkles in Froggatt–Nielsen

As described in the previous section, the FN mechanism provides a natural ansatz for the hierarchies of

new flavor spurions coupled to the SM quarks and leptons. However, given our lack of knowledge about

the dynamics underlying the flavor structure of the SM, it is worth exploring how this ansatz could change

within the general framework of horizontal symmetry explanations for the SM flavor pattern.

In this spirit, we introduce the notion of “wrinkles”, as a way of parametrically changing the FN ansatz

for the flavor spurions that is described above without introducing additional scales. In §7.3.1, we will

define them precisely, and argue that they allow for more flexibility in correlations between different flavor

observables. While this flexibility inherently makes our ansatz less predictive, the freedom to introduce

wrinkles is not absolute: there is a bound on the number of wrinkles imparted by radiative corrections,
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Figure 7.2: A cartoon illustrating a “wrinkle” in the Yukawa coupling Φψiχ̄j, which leads to a change in
the predicted scaling from the FN ansatz.

which we will discuss in §7.3.2. In §7.3.3, we give several explicit examples of realizations of wrinkles in UV

models.

7.3.1 Wrinkled Froggatt–Nielsen Chains

In §7.2.2, we described how the FN ansatz leads to a natural power counting for new flavor spurions in

powers of λ ≡ 〈ϕ〉/M, which we identify with the Cabbibo angle. Here, we generalize this power counting

by considering modifications to the power of λ that appears in the spurion.

Consider a flavor spurion Yψχ̄ , where ψ, χ̄ are given SM matter fields. We introduce what we call

“wrinkles” to modify the scaling of a given element of Yψχ̄ :

Yij
ψχ̄ ∼Wij

ψχ̄λ |[ψi]+[χ̄j]| ≡ λωij+|[ψi]+[χ̄j]|. (7.11)

Here we denote the power of λ that appears in Wij
ψχ̄ by ωij

ψχ̄ which, for simplicity, is assumed to be an integer.

This additional scaling is motivated by allowing for additional structure in the UV, such as symmetries

inducing obstructions in the heavy fermion chains which generate the non-renormalizable operators, and is

illustrated schematically in Fig. 7.2. In general, any modification of the UV theory that gives rise to deviations

from predictions of the vanilla FN setup without changing the number of power counting parameters can be

considered a wrinkle. Different UV completions can lead to different correlated patterns of matrix entries

ωij
ψχ̄ as we will discuss in §7.3.3, but from the IR perspective, these correlations are not apparent.

To be concrete, consider the example of the spurions ΔQL and Δūē for the S1 leptoquark, as in Eqs. (7.8)

and (7.9). With additional wrinkles, the couplings in Eq. (7.10) are modified to

Δij
QL ∼ λωij

QL+|[Qi]+[Lj]|, Δij
ūē ∼ λωij

ū̄e+|[ūi]|+[̄ej] (7.12)

where ωQL and ωūē are matrices of integers, whose elements ωij
QL and ωij

ūē can vary across generations inde-

pendently for both fermions. The idea of wrinkles can also be extended to models with additional scales by

allowing wrinkles for each power counting parameter. Here we will focus on the case with a single expansion
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parameter and not discuss the case of multiple parameters further.

Note that there are two distinct possibilities allowed by introducing wrinkles. The most straightforward

one is that the number of factors of λ in some couplings of a new flavor spurion are modified, suppressing

or enhancing their contributions to some flavor observables. For instance, wrinkles could suppress BSM

contributions to observables such as electric and magnetic dipole moments (EDMs and MDMs) or light

meson decays, which are generally strongly constrained, and allow for spurions with smaller mass scales

to contribute to other observables. We will discuss this possibility thoroughly, again in the case of the S1

leptoquark, in §7.4.

The second possibility is that wrinkles could exist in SM chains—i.e., YQū, YQd̄, or YLē could have fewer

or additional factors of λ . In the IR, the SM Yukawa matrices must still match the measured masses and

mixing angles of the quarks and leptons. Wrinkles in SM chains therefore necessitate different horizontal

charges than the ones shown in Table 7.1. This changes the expected scaling for BSM spurions, leading to

different couplings than expected in a naïve FN ansatz between the SM fermions and new particles. We will

not comment in detail on particular phenomenological applications of this scenario, but highlight that this

is an interesting direction for further exploration.

7.3.2 Bounds on Wrinkles from Radiative Corrections

Allowing for wrinkles would appear to entirely eliminate the predictivity of the FN ansatz. However, there

is a natural bound on the size of the wrinkles that arises from demanding that the observed flavor structure

in the IR arises predominantly from tree-level contributions to the effective operators below the scale M.

Requiring that the tree-level contribution (including wrinkles) to the Yukawa coupling is larger than any

subleading corrections from loops leads to a number of consistency conditions on the Yukawas, which in turn

set a bound on the wrinkles. Provided these conditions are satisfied, the flavor structure in the IR is still

determined by the FN mechanism in a predictive way, with departures from the minimal implementation

parameterized by the wrinkles.

To illustrate these constraints, consider the Yukawa coupling matrix between the right-handed up-type

quarks and the right-handed charged leptons for the S1 leptoquark model in Eq. (7.8), Δij
ūē. In a FN setup,

this coupling arises from a non-renormalizable operator with a minimal number of flavons. It can be UV

completed with a tree-level chain of heavy fermions and flavons with a single leptoquark vertex, as illustrated

on the left in Fig. 7.3. However, the same operator can also be generated at higher order by including SM

fermions in the FN chain ūi → Qk → Ll → ēj, as shown on the right in Fig. 7.3. The first and last connections

include additional Higgs insertions that are tied together to form a loop, and the Qk → Ll connection involves

a leptoquark interaction. Thus, the higher-order contribution to Δij
ūē is:
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Figure 7.3: Left: the tree level S†
1ūiēj coupling. Right: A loop contribution to the same spurion, leading

to the spurion contribution described by Eq. (7.13). In both diagrams the dots indicate a chain of flavon
and heavy fermion vertices, whose length is determined by the horizontal charges of the particles, which we
suppress for clarity.

Δij
ūē
∣∣∣
loop
∼ 1

16π2
(
YT

Qū ·Δ∗
QL ·YLē

)ij
. (7.13)

Demanding this contribution to be smaller than the tree-level contribution, and assuming the absence of

any artificial cancellations, leads to a lower bound on the Yukawa coupling Δij
ūē and an upper bound on the

entries of Δ∗
QL. This bound begets a set of consistency conditions on the wrinkles:

∣∣Δij
ūē
∣∣ ≳ 1

16π2

∣∣∣(YT
Qū ·Δ∗

QL ·YLē
)ij∣∣∣,

=⇒ λωij
ū̄e+|[ūi] + [ēj]| ≳ 1

16π2
∣∣YT

Qū
∣∣ikλωkl

QL+|[Qk] + [Ll]|∣∣YLē
∣∣lj , (7.14)

where there is an implicit summation over the indices k and l above. While the SM Yukawas on the right

hand side of this relation may also contain wrinkles, it is the IR value of the coupling that appears, which

is fit to the SM masses and mixing angles.

Similar consistency conditions were proposed in [1069–1071], neglecting the loop factor. Other similar

constraints (including the loop factor) have been considered as naturalness constraints on models of flavorful

new physics [1096]. We settle for the weaker constraint, including the loop factor, as a concrete, irreducible

bound.4 Note that there are also other higher order contributions to the spurions, such as those from higher-

dimensional operators with the Higgs replaced by its vacuum expectation value, but they will be smaller

than the one in Eq. (7.13), since v2/M2 < 1/16π2.

More generally, a complete set of consistency conditions can be derived by again considering the Yukawas

as spurions under Gflavor. In the absence of any additional symmetries, contributions similar to Eq. (7.13)

arise from any combination of Yukawa couplings that transform in the same representation of Gflavor. The

complete list of leading consistency conditions for all of the Yukawa couplings in the SM extended with the

4RG evolution of the leptoquark couplings also does not change the above set of bounds, as long as one imposes
the consistency conditions at the matching scale of order M. The structure of the one loop Yukawa RGEs involves
the same higher order operators as appearing in our consistency condition. Thus, imposing the consistency condition
at the matching scale ensures that running is a small effect and can be neglected. Consequently, RG evolution to
scales below the matching scale ensures that the consistency condition (inequality) holds at all such scales.
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S1 leptoquark are listed in Appendix E.1.

These inequalities must be satisfied for any wrinkled FN setup involving additional flavor spurions, and

they impose non-trivial constraints on the size of the wrinkles introduced in Eq. (7.11).5 The details of

these constraints depend on the particular charge assignment of the SM fermions, but once these are fixed,

a degree of predictiveness is returned to the FN ansatz, even in the presence of wrinkles. As pointed out

in [1069–1071], these consistency conditions are trivially satisfied in a vanilla FN setup without wrinkles, as

a result of the triangle inequality.

As an example of how this bound works with nonzero wrinkles, consider the charge assignment in

Table 7.1 with q0 = 0, l0 = −1, X = +1, Y = −1 and all other sign choices being positive. Assuming no

wrinkles in the SM Yukawas, the bound on ω33
ūē from Eq. (7.14) becomes

ω33
ūē ≲

∑
k,l

(∣∣[Qk] + [ū3]
∣∣+ ∣∣[Qk] + [Ll]

∣∣+ ωkl
QL +

∣∣[Ll] + [ē3]
∣∣)

+ logλ
1

16π2 −
∣∣[ē3] + [ū3]

∣∣
≲ 2 + ω33

QL + logλ
1

16π2 ,

(7.15)

where in the last line we have assumed that k = l = 3 is the largest entry in ωkl
QL, which is typically the case.

We see that, at least for this consistency condition, up to five wrinkles on Δ33
ūē are allowed, even without

extra wrinkles on Δ33
QL.

A similar argument for general couplings, again using the triangle inequality, makes it clear that if all

ωij
ψχ̄ ≥ 0, a sufficient condition on the wrinkles is that they are all greater than a loop factor:

(Wψχ̄)
ij ≳ 1

16π2 . (7.16)

Note that in this equation, we have assumed a mild separation of scales so that the logarithms in the loop

contribution can be neglected along with other O(1) factors in the loop calculation. In this work, we focus

on the bound in Eq. (7.16) and leave further studies of more accurate lower bounds on wrinkles for future

work. As shown in Eq. (7.15), this bound may be overly restrictive, but it provides a useful shortcut for

employing wrinkles in an EFT without having to manually check all the consistency conditions.

7.3.3 UV Completions

We now turn to UV completions of the wrinkles introduced in Eq. (7.11). Our goal is not to provide an

exhaustive or detailed list of examples, but demonstrate a proof of principle of potential ways these wrinkles

can arise from more complicated UV completions.

5The consistency conditions, as written, hold neglecting O(1) couplings; there may be small deviations from
including them.
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Ū
(2)
1

×
U

(2)
1

φ(2)

ū3

Figure 7.4: An explicit realization of a “wrinkled” FN chain, where the heavy quark with horizontal charge
+1 is replaced by two heavy quarks, along with additional flavons, transforming under additional symmetries.

Missing Heavy Fermions

As a first concrete realization of the idea sketched in Fig. 7.2, we consider a situation where one of the heavy

fermions with a particular horizontal charge does not exist in the spectrum. Instead, the chain leading to

the effective operator can only be completed by including additional fermions and scalars, causing additional

suppression.

To illustrate this mechanism, we consider the example in Fig. 7.1 and replace a single heavy vector-like

pair of fermions U1, Ū1 with two sets of vector-like pairs, which we will denote by U(1)
1 , Ū(1)

1 and U(2)
1 , Ū(2)

1 .

These are assumed to have the same SM and horizontal charges as U1, Ū1, but also transform as conjugate

pairs under new symmetry groups, G1 and G2, respectively. To be explicit, we will take G1 = SU(N1) and

G2 = SU(N2) to be two different continuous, non-Abelian groups, but the following construction works for

arbitrary (continuous or discrete) groups as well, with straightforward modifications. To complete the chain

diagram, we must also introduce new flavons, which we take to be in the representations,

ϕ(1) : (N1, 1)−1, ϕ(2) : (1,N2)−1, Φ(1,2) : (N1,N2)0, (7.17)

where the parentheses indicate the SU(N1)×SU(N2) representation, and the subscript is the horizontal charge.

These allow us to construct the diagram shown in Fig. 7.4, where both of the extra heavy fermion pairs are

traversed between Q2 and ū3. The charge assignments forbid the couplings ϕ(1)U2Ū(2)
1 and ϕ(2)U(1)

1 ū3, so

that this diagram is the leading effective operator containing HQ2ū3.

Assuming all the scalars acquire vevs ∼ 〈ϕ〉 and that the new fermions have vector-like masses ∼ M,

this replaces the λ2 suppression inferred from the horizontal charges with a λ3 suppression. In other words,

this leads to a “wrinkle”, W23
Qū ∼ λ .

This construction can be extended to include arbitrarily many wrinkles in place of a single heavy fermion.

For example, W23
Qū ∼ λ2 is obtained by introducing additional mirror quarks, U(3)

1 , Ū(3)
1 , replacing ϕ(2) with

a bi-fundamental Φ(2,3) transforming as (1,N2,N3)0, closing the chain with ϕ(3), which transforms as a
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(1, 1,N3)−1; further wrinkles are obtained for additional mirror quarks. In these types of examples, the

Higgs and chiral fermions of the SM are neutral under the new symmetries, so as to be compatible with the

general arguments in Ref. [1047].

Note that with this mechanism, we see an example of the correlation between wrinkles in different chains.

We constructed this wrinkle in the context of the Q2 and ū3 chain, but since we have removed U1, Ū1 from

the spectrum, the wrinkle necessarily appears in any chain involving them. For instance, assuming heavy

up-like quarks are responsible for all of the up-type Yukawa couplings, it would also appear in the Q1Hū3

operator.

Extra Abelian Symmetries

Another concrete example in which wrinkles can appear in an effective theory with the FN ansatz is realized

by considering additional Abelian symmetries in the UV, under which the SM fermions are charged. In

particular, we can consider gauging the non-anomalous combinations of baryon number, B, and the individual

lepton numbers, Le, Lμ , and Lτ, as is frequently done in model-building for various flavor anomalies [1097].

These symmetries are preserved by the SM Yukawa couplings, but generically violated by neutrino masses

and additional Yukawa couplings between SM fermions and new BSM fields, such as leptoquarks. For

concreteness, we again work with the S1 leptoquark and assume it is neutral under the new symmetry;

therefore the flavor spurion must absorb the remaining U(1) charge. This means that additional flavons

charged under the extra symmetries also must be included in order to complete the leptoquark Yukawa

couplings. The usual flavon, with U(1)H charge −1, is still present, since it is required to complete the SM

Yukawa couplings.6

In contrast to the UV completions discussed in §7.3.3, where the wrinkles are always additional suppres-

sion factors, the wrinkles that result from these extra symmetries can naturally either suppress or enhance

the size of the flavor spurions. Another distinction is that we have not removed any fermions of particular

charges from the UV spectrum in this case: we allow fermions with all required quantum numbers to exist.

Just like other UV models, additional symmetries and the flavons charged under them can generate a

correlated pattern of wrinkles for the different chains. The details of those correlations depend on whether

the new symmetries are flavor universal or flavor specific; we will discuss examples of both cases. In order to

maintain the predictivity of our example, we also assume additional symmetries are spontaneously broken

at similar scales to the U(1)H symmetry.

The flavor universal case is simpler, but also less flexible because of interdependence between different

chains. For example, assuming U(1)B−L is a symmetry of the theory, we can construct the leptoquark Yukawa

6In the presence of neutrino masses, the extra flavons may also be required to generate the PMNS matrix structure,
depending on the additional symmetries we impose.
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spurions by introducing an additional flavon, ϕ̃, which we take to have B − L charge 1/3. The new flavon

will not change any of the SM chains, since they respect the B−L symmetry, but the leptoquark chains can

be different from the usual FN scenario. For instance, if ϕ̃ has no U(1)H charge, all the leptoquark Yukawas

will become smaller by λ2, since the external fermions all have B−L charge difference ±2/3 without the new

flavon. If ϕ̃ also has U(1)H charge ≥ 1, then the pattern of leptoquark chains becomes more intricate. Since

each leptoquark chain must contain exactly two copies of the new B−L flavon and the remaining difference

in horizontal charge requires insertions of the original flavon, whether a given chain becomes shorter or longer

depends on the details of the assigned horizontal charges.

We have somewhat more freedom in the flavor specific case. As an example, consider introducing a new

U(1)B−3Le symmetry. Now both the PMNS matrix and chains for the leptoquark Yukawa couplings require

new flavons charged under both U(1)H and U(1)B−3Le . We introduce two additional flavons: ϕ2 is necessary

to generate PMNS matrix entries of the correct size, and ϕ3 is necessary to complete the leptoquark chains

while respecting the additional symmetries. These flavons have B− 3Le charges

[ϕ] = 0 [ϕ2] = 3 [ϕ3] = −1/3. (7.18)

Each also carries U(1)H charge −1. Including these extra symmetries and flavons charged under them creates

wrinkles by changing the required number of vev insertions for the leptoquark couplings compared to the

spurion size we would naively expect with only these U(1)H charges. For example, if we consider only the

couplings to the third generation leptons, we make the right-handed μ and τ couplings smaller while leaving

the right-handed e coupling and the left-handed couplings unaffected. This is shown in Fig. 7.5. Nonetheless,

despite the additional freedom in the flavor specific case, it is still challenging to obtain certain patterns of

wrinkles, such as those constrained by the triangle inequality.

Finally, we comment on a few modifications to the examples above. First, we note that it is possible to

modify this approach by charging the leptoquark under U(1)H instead of/in addition to additional flavon(s).

Similar to the B−L charged flavons, this is another mechanism to add wrinkles to the leptoquark couplings

without affecting the SM couplings. In principle, we can also charge the leptoquark under the additional

symmetries we discussed in this section, but note that we are not always guaranteed a charge assignment

which makes all of the couplings invariant. Second, we note that like the previous case, other modifications

such as using discrete Abelian symmetries also behave similarly. However, we can not replace these Abelian

symmetries with continuous non-Abelian ones [1047], because we are charging the SM fermions under the

new symmetry. This is in contrast to the previous case, where only internal fermions are charged under new

non-Abelian symmetries.

While we have provided two different ways in which wrinkles could be generated, we have not exhausted
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Figure 7.5: Chains before and after adding flavons charged under a U(1)B−3Le symmetry to generate
wrinkles. The horizontal charges correspond to Table 7.1 with q0 = 0, l0 = 2, and Y = 1. We observe that
the new U(1)B−3Le symmetry and its flavons modify the prediction of the model for some of the leptoquark
couplings in the IR.

the possibilities. These are only examples, and there are undoubtedly many more options for generating

wrinkles, which would be interesting for future work. Since the details of a particular model are not the

central point of this chapter, we now move to discussing a full example in the IR.

7.4 B→ Kν̄ν in a Wrinkled Setup

To demonstrate the ideas of the previous sections with a specific example, in this section we study the

phenomenology of the S1 leptoquark introduced in Eq. (7.8) with particular flavor ansätze in detail. Such

ansätze correlate the contribution of S1 to different observables. As mentioned in the previous section,

the inclusion of wrinkles in a FN ansatz can change the relative sizes of predictions for different flavor

observables. This could allow a model to accommodate a significant excess over the SM in one observable,

while suppressing other observables that would otherwise be too constraining.7

As an illustration, we will focus on constructing a model that can give rise to a large signal in the semi-

leptonic decay B+ → K+ ν̄ν. BR (B+ → K+ ν̄ν) is an interesting test case for several reasons. Assuming the

vanilla FN ansatz, the mass range preferred for new physics near the current experimental sensitivity is in

the few TeV range, and small hints of flavorful new physics may have already been detected [698]. Like all

flavor-changing neutral currents, the b→ sν̄ν transition is greatly suppressed in the SM. It is also relatively

clean theoretically, with the uncertainties in the hadronic form factors and from perturbative effects well

7Signals of leptoquarks in all flavor experiments can also be suppressed by choosing q0 and l0 (defined in Table 7.1)
such that the quarks’ and leptons’ charges are very far apart, but this requires an unnaturally large separation of
charges. This choice also does not permit the explanation of any discrepancies in flavor experiments because it
suppresses leptoquark contribution to all observables.
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Figure 7.6: Example Feynman diagrams leading to b → sν̄ν transitions in the SM extended with an S1
leptoquark. The left (center) diagram show the leading one loop SM contributions with the penguin (box)
topology, while the right diagram illustrates the tree-level leptoquark contribution. The Z in the left diagram
could also connect to the top line instead.

under control [1098–1106]. This situation, along with the prospect of observing the decay at the Belle II

experiment in the near future, make it an intriguing probe of BSM physics [1107–1109]. We use this specific

observable as a testbed of various ideas introduced in the previous section; similar studies can be carried out

for any other flavorful anomalies that may emerge in experimental data.

7.4.1 B→ Kν̄ν in the SM and Beyond

In order to understand how various FN ansätze contribute to BR (B+ → K+ ν̄ν), we first need to discuss

the SM and leptoquark contributions, as well as experimental bounds. Typically, BR (B+ → K+ ν̄ν) is pa-

rameterized in terms of the Wilson coefficients Cij
R and Cij

L, which are defined implicitly in the effective

Hamiltonian governing b→ sν̄ν transitions

Heff = −4GF√
2

VtbV∗
ts
(
Cij

LO
ij
L + Cij

RO
ij
R
)
+ h.c. (7.19)

where

Oij
L =

αem

2π
(
s†Lσ̄μbL

)(
ν†j σ̄μ νi

)
, Oij

R =
αem

2π
(
s†RσμbR

)(
ν†j σ̄μ νi

)
, (7.20)

and i, j = e, μ, τ are neutrino flavor indices.

In the SM (and in the S1 leptoquark model we consider below), only CL is non-zero. The leading

contribution to the SM value of the Wilson coefficient arises from diagrams such as those in Fig. 7.6. Also

including NLO QCD corrections [1098–1100] and two-loop electroweak contributions [1104], the SM Wilson

coefficient is
C ij, SM

L = (−6.353± 0.074) δij, (7.21)

where δij captures the fact that the SM contributions are lepton flavor conserving. This leads to a prediction

for the branching ratio [1108,1109],

BR
(
B+ → K+ ν̄ν

) ∣∣∣
SM

= (0.46± 0.05)× 10−5, (7.22)
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where we sum over neutrino flavors.

This process has been searched for at Belle and BaBar by tagging the second B meson in either a hadronic

or semileptonic decay [1110–1112]. Similar searches exist for BR(B → K∗ ν̄ν), e.g. see [1110, 1111]. Each

of these channels leads to the same qualitative conclusions; thus, for the rest of this work we will focus on

BR (B+ → K+ ν̄ν) measurements, for simplicity. A combination of these results yields a 90% C.L. upper limit

on the branching ratio of
BR
(
B+ → K+ ν̄ν

)
< 1.6× 10−5. (7.23)

Recently, Belle II has searched for the same decay using an inclusive tagging technique, which allows them

to partially compensate for their smaller dataset and larger backgrounds [698]. Though not yet statistically

significant, a combination of these results (assuming their uncertainties are uncorrelated) leads to a best fit

value of
BR
(
B+ → K+ ν̄ν

)
= (1.1± 0.4)× 10−5, (7.24)

which leaves room for a BSM contribution on top of the SM prediction in Eq. (7.22). The uncertainties in all

of these estimates—both the tagged and inclusive searches—are predominantly statistical, and are expected

to improve and become comparable to the theoretical uncertainty in Eq. (7.22) with the forthcoming full

Belle II dataset [1113]. Therefore, while it remains to be seen if any signals of new physics exist in this

channel, it provides an interesting application of our wrinkled FN setup.

The S1 leptoquark contributes to b → sν̄ν transitions via the tree-level diagram shown on the right in

Fig. 7.6. It generates a Wilson coefficient

Cij
L ∝

v2

m2
S1

Δ3i
QLΔ2j ∗

QL (7.25)

for the effective theory of Eq. (7.19). Since this is the same operator as generated in the SM, it is convenient

to capture these effects by considering the ratio:

Rνν
K ≡

BR (B+ → K+ ν̄ν)
BR (B+ → K+ ν̄ν)

∣∣
SM

. (7.26)

The contribution from S1 is given by [1114,1115] (see also [1072,1108])

Rνν
K = 1− yRe

[
(Δ3i

QLΔ2i ∗
QL )

VtbV∗
ts

]
+

3y2

4
(Δ3i

QLΔ3i ∗
QL )(Δ2j

QLΔ2j ∗
QL )∣∣VtbV∗

ts
∣∣2 , (7.27)

with a sum over repeated lepton indices in each term, and

y ≡ − 2πv2

6CSM
L αemm2

S1

'
(1.2TeV

mS1

)2
. (7.28)
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Observable S1 Yukawa Couplings Experimental Result Future Bounds

BR(B+ → K+ ν̄ν) Δ3i
QL × (Δ2j

QL)
∗ (1.1± 0.4)× 10−5 [698] -

electron EDM (V∗ΔQL)31 × (Δ31
ūē)

∗ < 4.1× 10−30 e cm [1116] < 10−31 e cm [1117,1118]

BR(μ → eγ)
(V∗ΔQL)32 ×Δ31

ūē

Δ32 ∗
ūē × (V∗ΔQL)31 ∗

< 4.2× 10−13 [1119] < 6× 10−14 [1120]

CR(μ → e)N (V∗ΔQL)11 ∗ × (V∗ΔQL)12 < 7.0× 10−13 [1121] < 2.5× 10−18 [1122,1123]

BR(τ→ μγ)
(V∗ΔQL)33 ×Δ32

ūē

Δ33 ∗
ūē × (V∗ΔQL)32 ∗

< 4.2× 10−8 [1124] < 6.9× 10−9 [1125,1126]

BR(K+ → π+ ν̄ν) Δ2k
QL × (Δ1k

QL)
∗ < 1.88× 10−10 [1127] (8.4± 0.4)× 10−11 [1128]

ΔmBs (ΔQL Δ†
QL)

32 ΔCBs ≤ 0.09 [1129] ΔCBs ≤ 0.026 [1129]

Table 7.2: Here we show the experimental results for BR (B+ → K+ ν̄ν) and a few other constraining
observables; we also show the predominant S1 Yukawa couplings contributing to each. Note that for B-
mixing, we use the experimental uncertainty on the quantity CBs as defined in Eq. (7.33). For K+ → π+νν̄,
the future bound corresponds to reaching a 5% experimental uncertainty on the SM branching ratio [1130].
The muon to electron conversion rate in nuclei, CR(μ → e)N, gets contributions from both dipole and four-
fermion operators; we show the Yukawas entering the four-fermion operator that is dominant in the FN
ansatz (associated with a left-handed vector current) here, while the complete set is given in Appendix E.2.
The current (future) bound listed for it is on the conversion rate in a gold (aluminum) nucleus.

In terms of Rνν
K , the 90% C.L. limit and 68% C.L. preferred values of the branching ratio in Eqs. (7.23)

and (7.24) translate to

Rνν
K < 3.4, Rνν

K ∈ [1.5, 3.3], (7.29)

respectively. The interpretation of these bounds in the context of the leptoquark depends on the assumptions

made about the hierarchies in Δij
QL, to which we now turn.

7.4.2 Constraints with Different Flavor Ansätze

In addition to b→ sν̄ν transitions discussed above, the S1 leptoquark can contribute to a number of flavor-

changing processes or precision observables that are constrained by experiments. These include electric and

magnetic dipole moments of SM particles, LFV decays, leptonic and semi-leptonic meson decays, flavor-

violating decays of gauge bosons, and neutral meson mixing. Some of the most powerful observables, and

their dependence on the leptoquark Yukawa couplings are summarized in Table 7.2.8 As is apparent from

the table, the observables depend on numerous different combinations of the leptoquark couplings. More

8For simplicity, we work with flavor basis neutrinos, so no dependence on the PMNS matrix appears.
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details about the observables, including the dependence on the leptoquark couplings and references to more

complete treatments in the literature, are given in Appendix E.2.

Because the contributions to various observables are correlated, we need to pick a particular ansatz and

study it in order to understand these constraints. In the rest of this section, we study these constraints in the

context of three different flavor ansätze: flavor anarchy, vanilla FN, and FN with wrinkles. In particular, we

explore how adding wrinkles can alleviate constraints while maintaining consistency with BR (B+ → K+ ν̄ν)
measurements.

Without any assumptions about the underlying structure, a minimal assumption is that all elements of

ΔQL and Δūē are O(1). This assumption is commonly referred to as “flavor anarchy”. Under this assumption,

the mass of the leptoquark consistent with the BR (B+ → K+ ν̄ν) measurements is mS1 ∈ (9, 18) TeV. On the

other hand, measurements of the electron EDM and other flavor-changing processes constrain the mass of the

leptoquark to be above ∼ 105 TeV. The resulting limits for some of the observables considered are shown as

yellow bars in Fig. 7.7. To calculate these ranges for observables that are already measured experimentally,

we demand the leptoquark contribution to be within one standard deviation of the measured value, while

for others we use the reported upper bounds from Ref. [1131].9 For the electron EDM, a CP-odd observable,

we assume a purely imaginary coupling to show the maximum reach of the experimental results.

It is clear that without any flavor texture on the leptoquark Yukawas, observables such as the elec-

tron EDM, LFV decays, or meson-mixing parameters rule out the leptoquark mass range relevant for

BR (B+ → K+ ν̄ν).10 We have also checked the contribution of our setup to many other similar observ-

ables (electron and tau MDM, τ → eγ, K → eν, various other D meson decays, Ds → eν, B → eν, π → ee,

π→ μe), but find that the constraints they place are not as competitive for our model.

Thus we are led to consider embedding the S1 leptoquark in a FN model of flavor. This has the benefit

of not only alleviating some of the experimental constraints discussed above, but also relating it to the SM

flavor puzzle.

As discussed in §7.2, aside from the general shifts in the lepton and quark horizontal charges, there

are only a handful of possible charge assignments that give rise to the correct pattern of SM masses and

mixing angles. For concreteness, we choose horizontal charges from Table 7.1 with q0 = 0, l0 = −1, and

X = −Y = −1. This yields

9The exceptions to this are RD and aμ , where we take the maximum leptoquark mass consistent to within 3σ
and 4σ, respectively, of the experimental measurement for the anarchic coupling case, and use the 2σ ellipse for the
preferred mass range in the wrinkled case.

10Our model can also contribute to aμ at one loop to explain the observed anomaly [683, 684], although recent
lattice calculations [687,1132–1137] and measurements [688] hint toward a smaller discrepancy with the experimental
data. However, other observables already rule out the leptoquark mass range that has a large enough contribution
to aμ . See [1072, 1084, 1114, 1138–1150] for other solutions to this anomaly, including attempts at embedding the
solution in a FN construction.
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Figure 7.7: The leptoquark mass range probed by various observables if the Yukawa couplings of the
leptoquark are either O(1) (yellow), follow the vanilla FN setup in Eq. (7.31) (green), or the same FN setup
plus the wrinkles from Eq. (7.32) (blue). The preferred range for explaining some existing anomalies are
shown in red, assuming the wrinkled setup. The undetermined O(1) factors in the Yukawas (folded in rij
in Eq. (7.1)) can further affect the leptoquark contribution and slightly change the mass range probed by
each observable. We see that in our wrinkled setup, the mass range that explains the current discrepancy
in BR (B+ → K+ ν̄ν) measurement (between the horizontal dashed lines) can also be probed by the LFV
processes μ → eγ and CR(μ → e), and the electron EDM in near future measurements.

([Q1], [Q2], [Q3]) = (3, 2, 0), ([ū1], [ū2], [ū3]) = (4, 1, 0), ([d̄1], [d̄2], [d̄3]) = (3, 3, 2),

([L1], [L2], [L3]) = (0,−1,−1), ([ē1], [ē2], [ē3]) = (8, 6, 4).
(7.30)

With these charge assignments, the FN ansatz for the leptoquark couplings is:

ΔQL ∼


λ3 λ2 λ2

λ2 λ λ
1 λ λ

 , Δūē ∼


λ12 λ10 λ8

λ9 λ7 λ5

λ8 λ6 λ4

 . (7.31)

The resulting bounds, neglecting O(1) Yukawa factors, are shown as the green bars in Fig. 7.7. Compared

to the anarchic ansatz, the bounds on the leptoquark mass are significantly relaxed.

Nevertheless, it is clear that the mass range consistent with the BR (B+ → K+ ν̄ν) measurements at

Belle II is still excluded by other observables under the FN ansatz. We have checked that—while the ex-

act bounds for different observables can change significantly—this conclusion remains unchanged for the

other possible charge assignments enumerated in Table 7.1. If any deviation from SM is observed in
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BR (B+ → K+ ν̄ν), the S1 leptoquark embedded in a vanilla FN model cannot explain the anomaly while

respecting bounds from other measurements.

Adding wrinkles to the FN ansatz as discussed in §7.3 can ameliorate the tension with these observables.

Using the scaling of the observables with the leptoquark Yukawas shown in Table 7.2 as a guide, we add the

following wrinkles (as defined in Eq. (7.11)) to the leptoquark Yukawa matrices:

Wij
ūē = λ3, WQL =


λ3 λ3 λ3

λ3 1 1
λ3 1 1

 . (7.32)

This is the largest number of wrinkles we can add to suppress the leptoquark contribution to the most

constraining observables (especially electron EDM, μ → eγ, τ→ μγ, and meson mixing observables), while

retaining consistency with the naïve constraint ω ≳ λ3 ∼ 1/16π2 from §7.3.2 and leaving the contribution

to BR (B+ → K+ ν̄ν) mostly intact. Further suppression with additional powers of λ may be possible, but

must be carefully checked with all of the consistency conditions in Appendix E.1.

It is worth emphasizing that it is not obvious how to get the pattern of wrinkles in Eq. (7.32) from the

example UV completions discussed in §7.3.3. Nevertheless, we can treat them consistently in an effective

field theory approach, and leave the model-building to future work. Note also that with the additional

suppression of the right-handed Yukawa couplings, the phenomenology of this model resembles that of the

RPV down squark as discussed in §7.2.2.

The contribution of this wrinkled FN setup to various observables is shown by blue bars in Fig. 7.7. We

find that the set of wrinkles from Eq. (7.32) sufficiently suppresses the contribution to other observables, so

that they are all compatible with the mass range of interest for BR (B+ → K+ ν̄ν). In particular, bounds

from meson mixing observables and leptonic meson decays are circumvented. Within this wrinkled setup,

the viable leptoquark mass range that can account for a signal in BR (B+ → K+ ν̄ν) is slightly above the

current direct search bounds at the LHC (see [1151, 1152]) and could be detected in future searches at the

LHC or future hadron [1153–1156] or lepton [1157–1162] colliders.

There are several observables which probe a similar mass range to BR (B+ → K+ ν̄ν) which will see

significant improvement in experimental measurements soon. In particular, these observables include μ → eγ,

CR(μ → e), and electron EDM, though the precise mass range depends on O(1) Yukawa couplings in the

UV completion. As a result, they could be the smoking gun signal of an FN-like S1 leptoquark solution

to any future excess observed in BR (B+ → K+ ν̄ν). Since the experimental precision on both of these (and

several other) observables is expected to improve significantly in the near future, we will dedicate the next

subsection to discussing potential discovery prospects for this wrinkled FN scenario.
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7.4.3 Predictions for Future Measurements

We have already seen that adding wrinkles to a FN ansatz allows for greater flexibility in simultaneously

accommodating experimental deviations from the SM while satisfying constraints from other observables

and explaining the observed pattern of SM masses and mixing angles. As we will now emphasize, despite

this added flexibility, these choices still make concrete predictions for other observables, which can be tested

in future experiments. The importance of these tests lies in being able to probe indirect information about

the underlying UV model which is hidden in the charge assignments and wrinkles in the IR.

Several upcoming experiments will provide concrete tests of our wrinkled ansatz. When assuming the

wrinkled FN ansatz from Eq. (7.32) for the leptoquark Yukawa couplings, several classes of observables—

including LFV processes, the electron EDM, meson-mixing measurements, and the decay K → μν—have a

present sensitivity to roughly the same mass scale as BR (B+ → K+ ν̄ν). Moreover, the mass reach of many

of these observables is expected to improve significantly with forthcoming experimental data. Since we have

suppressed our model contribution to these observables as far as possible while satisfying the bound from

the consistency condition in Eq. (7.16), these correlated signals allow for a definitive test of these types of

wrinkled models within the FN mechanism.

At the moment, the strongest bound on LFV processes involving muons is the 90% C.L. limit, BR(μ →
eγ) < 4.2 × 10−13 set by the MEG experiment [1119]. In the future, however, the most powerful probes of

this model will come from searches for μ → e conversion in atomic nuclei. As discussed in more detail in

Appendix E.2, the conversion rate depends not only on the dipole operator relevant for μ → eγ and μ → 3e
decays, but also on four-fermion operators including the first generation quarks generated by integrating out

the leptoquark. Future prospects for detecting μ → e conversion include the COMET experiment, which will

set a limit on the conversion rate of 7× 10−15 (2.6× 10−17) in Phase-I (Phase-II) [1163,1164], and at Mu2e,

which aims at a final sensitivity of 2.5× 10−18 [1122,1123]11, both in aluminum nuclei. For more discussion

on current and forthcoming searches for LFV, see [1045,1165–1169].

In the top left panel of Fig. 7.8, we show the predicted μ → e conversion rate in aluminum nuclei

as a function of the leptoquark mass, with the wrinkled FN ansatz taken for the Yukawa couplings. The

BR (B+ → K+ ν̄ν)-preferred region discussed in §7.4.2 is highlighted in red, while the dashed horizontal lines

show the future sensitivities for the conversion rate. We see that even Phase-I of the COMET experiment

will be sensitive to the mass range preferred by B+ → K+ ν̄ν measurements, while Mu2e will decisively test

all of the relevant parameter space predicted by this model of flavor.

For the electron EDM, the bounds from the ACME II and JILA experiments [1116,1170] are at the level

11This sensitivity might be achievable at Mu2e-II, a proposed upgrade of Mu2e using the PIP-II accelerator at
Fermilab, potentially with a target material other than aluminum [1165,1166].
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Figure 7.8: Predictions for the S1 leptoquark contributions to precision observables with the wrinkled (blue,
solid) and vanilla (green, dashed) FN ansätze described in §7.4.2. We show the μ → e conversion rate in an
aluminum nucleus (top left), the electron EDM (bottom left), the relative new physics contribution to ΔmBs
(top right), and BR(τ → μγ) (bottom right), using solid (dashed) lines for current (future) experimental
bounds or sensitivity. We do not show the best current bounds on μ → e conversion rate, < 7× 10−13, from
SINDRUM II [1121] since it was made with a different nucleus (gold). The red band indicates the mass
range of interest for BR (B+ → K+ ν̄ν), as in Fig. 7.7.

de < 1.1 × 10−29 and 4.1 × 10−30 e cm, respectively. For anarchic flavor couplings, this excludes masses up

to ∼ 105 TeV. A vanilla FN ansatz relaxes this constraint to ∼ 102 TeV, and with the additional wrinkles

invoked in Eq. (7.32), this bound weakens to mS1 ≳ 2.7 TeV. Random factors of O(1), neglected throughout

our calculations, can slightly affect the reach on mS1 . The fact that this is the same mass range as favored

by BR (B+ → K+ ν̄ν) measurements, and that the reach in mS1 scales faster with improvements to electron

EDM measurements compared to other observables, underscores the importance of future electron EDM

experiments in probing our model. In the coming years, experimental advances and new technologies promise

to increase the sensitivity of EDM experiments by an order of magnitude or more [1117, 1118, 1171]. In the

lower-left panel of Fig. 7.8, we show the predicted value of the electron EDM as a function of the leptoquark

mass, alongside current bounds and a projected constraint of 10−31 e cm, assuming an O(1) CP-violating

phase. As is clear from the figure, future EDM experiments will decisively test this model, up to scales

mS1 ∼ O(10)TeV.

For the meson mixing observables, we focus in particular on the neutral Bs meson mass difference, ΔmBs ,
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whose matrix element is directly related to the B+ → K+ ν̄ν process for the S1 leptoquark. To understand

the current sensitivity to new physics of Bs − B̄s mixing, we follow the UTFit analysis [1129,1172,1173] and

compute the quantity CBs , defined as

CBse2iφBs ≡
〈Bs|HSM+NP

mix |B̄s〉

〈Bs|HSM
mix|B̄s〉

, (7.33)

where Hmix includes the four-fermion operators responsible for ΔF = 2 transitions, as defined in Ap-

pendix E.2.6. The SM is defined as the point CBs = 1, φBs = 0, and the allowed size of the new physics

contribution is determined by a global fit to the flavor sector, with the range determined primarily by the

uncertainties on the input parameters, such as the CKM matrix elements. To be conservative, we consider

only the absolute value of the matrix elements above, and avoid making any assumptions about the relative

phase between the SM and leptoquark contributions, which is constrained by φBs .

The resulting current and future sensitivities (where we assume the current central value is at the

SM, for consistency with future projections) are shown on the top right in Fig. 7.8. The projected future

sensitivity of ΔCBs = 0.026 is taken from Ref. [1129], based on projections of HL-LHC results and Belle II

results with 50 ab−1 integrated luminosity. We see that the improved sensitivity will start to probe the

leptoquark mass range preferred by the BR (B+ → K+ ν̄ν) measurements. It is also worth emphasizing that

these projections do not account for potential improvements in lattice inputs, and thus could be quite

conservative. A statistically significant signal in any of the aforementioned channels would also warrant a

much more careful analysis of these Bs-mixing constraints and projections, including phase information that

depends in more detail on the flavor ansatz, which could improve sensitivity even further.

A number of additional flavor-changing or flavor-violating decays will be probed with increasing sensi-

tivity at Belle II. A notable example is the LFV decay τ→ μγ, for which the current bound set by Belle is

BR(τ→ μγ) < 4.2× 10−8 [1124]. Belle II is projected to improve this bound to 6.9× 10−9 [1125, 1126]. In

the lower-right panel of Fig. 7.8, we show the predicted branching ratio of τ→ μγ as a function of mass. We

see that, for the mass range preferred by the BR (B+ → K+ ν̄ν) measurements, the addition of wrinkles in

our flavor ansatz suppresses what would otherwise be a predicted signal from assuming the FN mechanism.

Finally, the K → πνν̄ decays, which would rule out the preferred mass range for B+ → K+ ν̄ν without

wrinkles, have a sensitivity ∼ 1TeV in the wrinkled FN ansatz. The K+ → π+νν̄ decay was only recently

measured (with a significance of 3.4σ) at the NA62 experiment [1127]. A 10 – 20% precision on this branching

ratio is necessary to start excluding mS1 ∼ 2 – 3 TeV, and the requirement for KL → π0νν̄ is similar. Both

of these may be achievable with future runs at NA62, or at future experiments planned at the NA62 hall at

CERN [1128, 1174] and at J-PARC [1175], and would be an interesting complementary probe of the same

physics considered here.
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The preceding discussion demonstrates that all of these powerful, forthcoming measurements could have

a similar sensitivity to new mass scales for an appropriate choice of wrinkles. Exactly which search channel

is ideal depends on the precise pattern of charges and wrinkles in the IR. However, the expectation that we

will probe these other correlated signals is relatively robust since the wrinkles in Eq. (7.32) were chosen to

saturate the bound in Eq. (7.16) without diminishing the B+ → K+ ν̄ν signal. While this enhancement to

B+ → K+ ν̄ν was only for illustration, and not a fit to a true, significant deviation from the SM, it reveals

that for some motivated UV models of flavor, upcoming experiments can simultaneously test explanations

for the SM flavor puzzle.

7.5 Discussion

When new physics is embedded in the FN mechanism, the FN ansatz determines the size of both the SM

and new physics couplings. In this chapter, we have put forward a systematic extension of this ansatz

which can change the expected scaling of the new physics and SM couplings. These changes, referred to

as wrinkles, deviate from the FN pattern that is dictated by the horizontal symmetry charges. Wrinkles

allow us to demand consistency with other experimental measurements and searches: modifying the relative

size of couplings restores some theories that would otherwise be unfeasible due to the correlations between

different observables from the FN ansatz. Therefore, they vastly increase the FN mechanism’s versatility

in accommodating solutions to flavor anomalies. However, owing to radiative corrections, we have also

argued that wrinkles can not give rise to arbitrarily large deviations from vanilla FN predictions. There are

consistency conditions which must be obeyed by the size of the new wrinkled Yukawas.

While the primary purpose of wrinkles is to give a consistent IR description for various flavor observables,

we have also explored how they can be UV completed by various different models. Specifically, in this chapter

we have given some simple schematic examples of possible UV realizations. In future work, it would also be

interesting to understand more about what patterns of wrinkles can be realistically realized in the UV and

the various models that can be used to realize them.

Throughout this chapter, we focused on the phenomenological example of the S1 leptoquark. We dis-

cussed the implementation in the IR when the leptoquark is embedded in a FN model. We also provided a

detailed example of how an enhancement of the leptoquark contribution to BR (B+ → K+ ν̄ν) can consistently

respect other experimental bounds, but only if wrinkles are invoked. This wrinkled setup also motivates

future measurements, since several signals would be on the verge of discovery in this model, even when the

number of wrinkles is enlarged to saturate the simplest consistency condition. In particular, we showed

predictions for the most sensitive upcoming probes, namely μ → e conversion and the electron EDM.

While we limited our exploration to a specific example with the S1 leptoquark in this work, it would be
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interesting to explore how wrinkles can be applied more broadly. For instance, in our example we fixed the

horizontal charges of the SM particles, but there are many other possible choices that reliably yield the SM

masses and mixing angles. One could explore how changing the charges affects the correlations and hence the

allowed wrinkled ansatz, and see which observables remain correlated to the same mass scale more generally.

It would also be intriguing to include other flavor spurions or to add wrinkles to the SM couplings in addition

to the new physics couplings. Moreover, it would be useful to do a broad methodical study on the effect of

O(1) numbers in different spurions to explore naturalness in these types of models; see [1081,1082,1085] for

previous studies of naturalness in such models.

Aside from the flexibility permitted by wrinkles, it is worthwhile to emphasize a separate point about

FN models in general: there is more than one charge assignment that can naturally generate the observed

SM masses and mixings, beyond just the overall shift in the quark and lepton charges. In particular, we find

that the charges of first generation fermions can be either larger than or smaller than other two generations.

This is in contrast to a criterion in Ref. [1046], where it was demanded that charges increase monotonically

between generations. However, this general FN charge assignment is still not anomaly free and requires some

cancellation mechanism, such as Green-Schwarz.

With a number of precision flavor experiments gathering data in the near future that could probe the

underlying mechanisms for the flavor structure of the SM, it is the right moment to think about sophisticated

UV flavor structures beyond the vanilla FN setup. Wrinkles—a systematic deviation from the vanilla FN

prediction for the relationship between different couplings—are one such example that significantly increase

the versatility of FN constructions in confronting potential signs of flavorful new physics. We encourage

their use in embedding solutions to anomalous signals in UV complete models of flavor.
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8
Parameter Inference from Event Ensembles and the Top-Quark

Mass

8.1 Introduction

The number one goal of collider physics experiments is to determine the existence and properties of particles

in nature. In some rare cases first-principles theoretical calculations can be compared directly to data. More

commonly, theory is used to construct sophisticated simulations with adjustable parameters that are then fit

to data. Some of these simulation parameters, like coupling constants or masses, have straightforward phys-

ical interpretations while other parameters, such as elements of Pythia’s string fragmentation model [1176],

are required to provide enough flexibility for the data to be described. Often the parameters are highly cor-

related: varying one can sometimes be entirely compensated by varying another. Typically the uncertainty

generated by profiling the unphysical parameters is smaller than other sources of uncertainty, however for

precision studies it can be important.

The example of parameter extraction studied in this chapter is the determination of the top-quark mass.

The top mass is one of the few parameters in the Standard Model for which a measurement with improved

precision is both extremely important and feasible at the LHC. For example, our current best estimate of

the lifetime of our metastable vacuum in the universe is limited by precision on top quark mass and the
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strong coupling constant [806,1177–1179]. Moreover, the lifetime is exponentially sensitive to the top quark

mass. Using mpole
t = 173.1 GeV, our universe is predicted to last 10167 years, but if the top mass were

0.6 GeV higher it would last only 10111 years, and if it were 0.6 GeV lower, the universe would last 10252

years [1179]. Another example, is searches for certain supersymmetry (SUSY) models, in which stop squarks

that are nearly degenerate with the top quark are difficult to constrain because the signal is so similar to

tt̄ background. This similarity allows the stops to contaminate precision measurements of the top quark, so

the consistency of top measurements can be used to search the SUSY parameter space [1180–1185].

It is possible to measure the top-quark mass by direct theory-data comparison, for example through

total cross section measurements [1186]. The cross-section approach has two main advantages: it allows for

a direct comparison between data and precision theory and the top mass extracted has a clean short-distance

definition (typically the MS mass). However, current mass determination by this method has an uncertainty

of 1-2 GeV [1182,1187–1191]. The method for extracting the top-quark mass from LHC data that currently

has the smallest uncertainty is fitting the invariant mass peak from the decay products of top quarks in

tt̄ events [1192–1196]. While such fits typically have errors at the sub-GeV level, there are systematic and

theoretical uncertainties associated with such a procedure that are not present in the cross section method.

The main complication is that one is more reliant on simulation. For example, there is an uncertainty about

how to translate the mass extracted this way, called the Monte Carlo mass, to a scheme like the MS mass

which is more theoretically sound.

It is important to separate the challenges in converting between a Monte Carlo mass parameter and a

short distance scheme like MS from the extraction of the Monte Carlo mass parameter itself. Typically,

the conversion to MS is done by equating the Monte Carlo mass with the pole mass. One could attempt

to systematically improve this mapping, for example by comparing precision theory and simulation directly

(without data) [1197–1203]. Regardless of how or whether this is done, one cannot hope to begin converting

from the Monte Carlo mass to another scheme if different Monte Carlo tunes lead to a different value of

the top mass when fit to the same data. Thus, a prerequisite for considering the conversion between Monte

Carlo and pole mass is to reduce the tune-dependence of the extracted mass. This reduction is the primary

target of this chapter.

The problem of reducing tune uncertainty of the top mass was examined in [1204]. There it was estimated

that using classical histogram fitting, the tune-uncertainty on the top Monte Carlo mass was around 500

MeV. This number results from a comparison among the masses extracted using a standard set of tunes

in Pythia. It was then shown that the uncertainty could be reduced to 200 MeV by calibrating to the

W mass (as is often done by the experiments), and further reduced to 140 MeV by applying soft-drop jet

grooming [1205] to the data before fitting. In this chapter, we reproduce the main results of [1204] and
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explore whether further reduction is possible using machine learning or with linear regression on ensembles

of events. Additionally, we also compare these methods to a profile likelihood fit that is similar to what is

currently done in the best experimental measurements.

Using machine learning (ML) to fit a parameter like the top Monte Carlo mass involves complementary

challenges to typical collider physics ML applications. Typical collider ML applications such as top-tagging

or pileup removal have essentially a right answer: which event was a top and which was background, or what

does an event look like with pileup removed? For top mass measurement, there is no right answer: a perfect

oracle would not be able to determine the mass from a single event. Instead, only after a collection of events

are observed can the top mass be extracted.

There are a number of approaches that have been suggested for learning from ensembles of events.

For example, the JUNIPR framework uses a jet-physics inspired architecture to construct the likelihood

distribution [42, 258]. This can be done as a function of the top mass, or other training parameters which

can then be regressed on data. This application for JUNIPR was suggested in [42] but has not yet been

implemented to our knowledge.

Another approach is the DCTR method proposed in [314]. DCTR works by learning the relative weights

of a distribution of events as a function of some reference tuning parameters. Then it can be used for

regression by minimizing the loss over the tuning parameters to find the best fit. DCTR takes as input events

processed through a Particle Flow Network [1206], which is an adaptation of the “Deep Sets” framework

developed in [1207] to particle physics. In [314], it was shown to be able to fit simultaneously three Monte

Carlo tuning parameters in e+e− → jet events with good results. Thus it is a natural candidate method to

test on top-mass extraction where there is a clear metric for what a “good” fit would be. Although the top

mass is physical, the top mass parameter in the Monte Carlo can be treated as a tuning parameter and fit

in the same way as other Monte Carlo parameters. A discussion of the DCTR method is given in §8.5.

While the DCTR method is promising, it is somewhat cumbersome to implement and train. Moreover,

learning the full likelihood ratio as a function of a very high-dimensional input (such as ParticleFlow) may

not be necessary if the goal is the regression of a single parameter, like the top mass. Thus we also consider

a simpler approach, where ordered sets of high-level observables are input to a dense neural network. We

discuss this approach in §8.4. The dense network is very effective, even if the activation functions connecting

the nodes are linear. Thus, the entire network is a linear function acting on a sorted ensemble of events. We

compare the linear network performance to an ordinary least squares regression, finding similar performance.

Moreover, the linear mapping can be examined to see how it depends on the tune and the various elements

of the input ensemble. This analysis is also included in §8.4. A summary of our main findings is given in

Fig. 8.1.
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Figure 8.1: Summary of main results. The bars show the estimate of the Monte-Carlo tuning uncertainty in
top-quark mass extraction from top events at the LHC. The errors on the uncertainties include uncertainties
from training and statistical variations. The top row is a histogram fit, using soft drop and normalizing to
the W-mass (following [1204]). The second row uses a 2D likelihood fit to profile over correlations between
the top and W masses. The third row uses the DCTR technique of [314]. The fourth row is an ordinary
least squares linear regression on an ensemble of 30,000 events. The fifth row shows the result of using a
linear network for regression, also on an ensemble of 30,000 events. Numbers here correspond to the total
envelope excluding PDF uncertainties, as in Fig. 8.14.

The chapter is organized as follows. Event generation and general elements of our fitting procedure are

discussed in §8.2. §8.3 describes our implementation of classical fitting methods that are similar to what is

often done in experimental work, including a histogram fit modeled after [1204] and a 2D profile likelihood

fit, to benchmark our samples and fits. §8.4 discusses the regression approach, using both a linear network

and an ordinary least squares regression. §8.5 discusses the DCTR approach of [314]. Our conclusions and

a discussion are given in §8.6.

8.2 Event Generation and Uncertainty Estimation

For this study, events with pairs of top quarks are produced using Pythia 8, including both qq̄ and gg
production channels in

√s = 13 TeV proton-proton collisions. We restrict to semi-leptonic events with

t → bℓ+νℓ and t̄ → b̄qq̄′, where ℓ stands for electrons or muons. The events are showered to final state

particles, which are then clustered into jets using the anti-kt [1208] algorithm in Fastjet [1209] with R=0.5.

For simplicity, we do not attempt to include any realistic detector effects or experimental efficiencies. Thus,

we mark any jet within ΔR < 0.4 of one of the b’s from the top decays as a b-jet and assume the lepton

is correctly tagged. A more realistic study would of course need to incorporate b-tagging, jet energy scale

resolution, pileup, backgrounds, and so on. Each of these effects will necessarily increase the top-quark mass
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uncertainty. However, since our goal is mainly to understand the relative performance of different ensemble

regression methods, we do not believe our simplifying assumptions will affect the qualitative conclusions.

The event selection is as follows. We require a final state ℓ with pℓ
T > 20 GeV and

∣∣η∣∣ < 2.4. We only

keep jets if they have pj
T > 30 GeV and

∣∣η∣∣ < 2.4 and demand that there are exactly 2 b-tagged jets and

at least 2 un-tagged jets. The invariant mass of pairs of un-tagged jets is scanned to find the pair with a

mass closest to mW = 80.3 GeV. If this two-jet invariant mass, m2j is not within (70 GeV, 90 GeV), the event

is discarded. Next, we find the three-jet invariant mass for the two jets of the W and b-tagged jet coming

from the b̄. This is overly simplified and ignores combinatoric background.1 However, we take a tight cut

on the three-jet invariant mass, and only accept events with 150 GeV < m3j < 200 GeV2, which reduces such

contamination. This still allows for a comparison of the different methods.

The uncertainty in the regression of the Monte Carlo top mass from each of the methods is computed

using the A14 Pythia 8 Tunes of the ATLAS 7 TeV data [1211]. The 14 tunes cover 4 different families of

variations: VarPDF, Var1, Var2, and Var3. VarPDF covers variations in the parton distribution functions

with tunepp:19-22 corresponding to the CTEQL1 [1212], MSTW2008LO [1213], NNPDF2.3LO [1214], and

HERAPDF1.5LO [1215] PDFs, respectively. Var1, Var2, and Var3 all use the NNPDF2.3LO [1214] PDF but

vary other parameters, with Var1 covering underlying event effects, Var2 accounting for jet substructure,

and Var3 covering different aspects of extra jet production. Var3 includes three separate variations (Var3a,

Var3b, and Var3c) since it could not be reduced to a single pair. The tuning parameters for all A14 variations

are shown in Table 8.1.

There are of course many more tunes one can consider. But again, since the main purpose of this study

is to compare the relative strengths of different approaches, not to produce a final numerical value of the

uncertainty, we believe this set should be sufficient.

We attempt as much as is possible to use the same fitting procedure to compare different methods. In

all cases, after a method is fit or trained, it provides a mapping from an ensemble of events to a regressed

mass. To assess the uncertainty of the regressed mass, we first assess its variation for fixed Monte Carlo mass

within each tune family. We denote the maximum, minimum and mean regressed mass within the family

for the fixed mass by mmax
fit , mmin

fit , and m̄fit, respectively. We compute the uncertainty for the given mMC
t and

tune family as

ΔmMC
t =

1
2
(
mmax

fit −mmin
fit
)mMC

t
m̄fit

t
. (8.1)

The factor of mMC
t /m̄fit

t reflects that the fit mass (especially in the histogram fit with soft drop) can be

1Ref. [1210] introduces a machine learning method to identify the correct combination of jets in t̄t without the
factorial scaling of scanning each combinatorial permutation.

2In the dense network section, we also generate events without this cut to see the effect of the m3j range on ΔmMC
t .
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Variation Tunes ColorRec αMPI
S pRef

T0
VarPDF 19-22 1.71 0.126 1.56
Var1 21, 23, 24 [1.69,1.73] [0.121,0.131] 1.56
Var2 21, 25, 26 1.71 0.126 [1.50,1.60]
Var3a 21, 27, 28 1.71 [0.125,0.127] [1.51,1.67]
Var3b 21, 29, 30 1.71 0.126 1.56
Var3c 21, 31, 32 1.71 0.126 1.56

Variation pdampFudge
T αFSR

S pmaxFudge
T αISR

S
VarPDF 1.05 0.127 0.91 0.127
Var1 1.05 0.127 0.91 0.127
Var2 [1.04,1.08] [0.124,0.136] 0.91 0.127
Var3a [0.93,1.36] [0.124,0.136] [0.88,0.98] 0.127
Var3b [1.04,1.07] [0.114,0.138] [0.83,1.00] [0.126,0.129]
Var3c 1.05 0.127 0.91 [0.115,0.140]

Table 8.1: Table shows the relevant parameters for the A14 tune variations. Var1 through Var3 tunes
are listed in order of central, +, then -. The relevant tuning parameters are the strength of the color
reconnection (ColourReconnection:range), the strong coupling constant for multiparticle interactions αMPI

S
(MultipartonInteractions:alphaSvalue), the initial state radiation (ISR) pT cutoff pRef

T0 (SpaceShower:pT0Ref),
the factorization/renormalization scale damping pdampFudge

T (SpaceShower:pTdampFudge), the strong cou-
pling constant for final state radiation (FSR) αFSR

S (TimeShower:alphaSvalue), the multiplicative factor
on the max ISR evolution scale pmaxFudge

T (SpaceShower:pTmaxFudge), and the ISR strong coupling αISR
S

(SpaceShower:alphaSvalue).

linearly offset from the true Monte Carlo mass.

An example of this procedure is shown Fig. 8.2 for the Var1 tunes. The blue, orange, and green data

points denote the fits from the central, +, and − variations, respectively. The x-axis shows the true Monte

Carlo mass of the sample and the y-axis gives the fit value. We compute ΔmMC
t for five different values

of the top mass: mMC
t =172.0, 172.5, 173.0, 173.5, and 174.0 GeV. The spread between the maximum and

minimum fit mass at each point is marked, and the average mass is reported along with ΔmMC
t for each

Monte Carlo mass. Note that the value of ΔmMC
t is different for each mMC

t .

In order to get a statistical estimation of the the uncertainty, we repeat the analysis on the same five

masses using four more independent data sets generated with new random seeds. The maximum and mean

uncertainties from the 25 samples (5 masses times 5 data sets) are presented in the following figures. To

visualize these uncertainties, we show box-and-whisker plots. These start by placing a box covering the

25th-75th percentiles of the ΔmMC
t values. The whiskers then extend as a line out to the maximum and

minimum, unless these are further away from the box than 1.5 box lengths, in which case the points are

considered to be outliers and denoted by open circles. The line in the box denotes the median. An example

of this statistical estimate is also shown in Fig. 8.2.
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Figure 8.2: How uncertainties on mMC
t are estimated. These particular numbers are from the uncorrected

histogram fitting method using the Var1 tune, but the same error estimation is used throughout. Left: we
show the fitted mass for different truth mMC

t values and + and − variations of the tune parameters. For each
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t , the uncertainty ΔmMC
t is computed using (8.1). We repeat the fits with 5 test sets. Right: the values

of ΔmMC
t for each test set and each mass are shown. The markers correspond to specific mMC

t samples. The
distribution of these uncertainties are shown in the box-and-whiskers plots (“summary” row of right panel).

8.3 Classical Fitting Methods

In order to benchmark the tune uncertainties for the top mass, we first implement two template fitting

procedures modeled roughly on what is often done for actual experimental data.

8.3.1 Histogram Fitting

We employ an iterated Gaussian histogram fit, similar to that used in [1204]. For each test set at each tune

and mass, we create a histogram of the three-jet invariant mass, m3j, using anti-kT R = 0.5 jets. We then fit

a Gaussian to the distribution along the full range 150 GeV < m3j < 200 GeV. The fit range is then adjusted

to include one standard deviation on either side of the mean of this Gaussian and a new Gaussian is fit to this

new range. We continue to iterate this fitting procedure until the mean and width of the Gaussian converge

to stable values. The mean is then used as the fitted top mass mfit
t and the width discarded. The left panel

of Fig. 8.3 depicts this procedure. We also tested iterated fits of different functions such as a crystal ball

function and a skewed gaussian, but do not display the results since they do not improve the top mass fit

compared to the Gaussian case.

The top mass mfit
t extracted from this method is very nearly linearly proportional to the top Monte

Carlo mass mMC
t . This linear fit is shown on the right panel of Fig. 8.3. We then use the fitted mass and

Monte Carlo mass to compute an uncertainty as described in the previous section.

We consider three variants of this method, again following [1204]. We first fit directly to the 3-jet mass
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Figure 8.3: Shows the iterative fitting procedure used to fit a top mass to the 3-jet mass distribution. The
left panel shows the distribution and several fits. In each iteration the fit range is adjusted to include one
standard deviation on either side of the mean of the previous fit. The right panel demonstrates the linear
relation between the fitted values of mfit

t from tune 21 data and the Monte Carlo mass mMC
t used to generate

the events. The fit ranges shown are 150− 200 GeV, then 159.4− 185.6 GeV and finally 162.3− 183.1 GeV.

histograms. Second, we calibrate to the W mass. To do this, we rescale the 3-jet mass so that the 2-jet

mass, m2j, is equal to the W mass:
mcalibrated = mW

m3j
m2j

. (8.2)

Finally, we apply the soft drop algorithm [1205] with parameters β = 0, 1, 2 on the jets before computing

the histogram.

A summary of the resulting uncertainties from the histogram-fitting approach is presented in Fig. 8.4.

We find that the best variant, including both W calibration and soft drop with β = 0, yields a mean

total envelope uncertainty of about 65 MeV and an uncertainty of about 100 MeV when the variations are

added in quadrature. This is roughly consistent with the values in [1204], and similar to values found by

ATLAS [1194].

8.3.2 Profile likelihood fitting

The histogram fitting method does not easily extend to more than one observable and does not include

information from every event. A second method which is used by the experiments is to perform a profile

likelihood fit. The idea behind this method is to find the mass which is most likely to have generated the

observed events. To do so, a likelihood function is used to model the distribution. The likelihood function

is able to incorporate more than one observable, allowing for more flexibility than the histogram fitting.

Here, we model the top and W resonances as Gaussian distributions. The mean value of the top

distribution will be fit, and the mean of the W distribution is set to 80.3 GeV. The standard deviations

of the distributions are determined from fitting the resonances across all tunes simultaneously and are
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which are further away from the box than 1.5 box lengths. The uncertainties are calculated with and without
W calibration and soft drop grooming methods. The bottom three rows show several ways of combining the
error for the different variations.

165



σt = 6.5 GeV and σW = 3.5 GeV. In addition, we include a nuisance parameter, c, in the model to help

account for fluctuations in the ratio of the reconstructed top and W masses coming from differences in the

tune parameters. Explicitly, the likelihood is given as

L
(
mfit

t , c
)
=

∏
i∈Events

(
G
(
m3j c |mfit

t ,σt
)
G (m2j c |mW,σW)G (c |1,σc)

)
, (8.3)

where G(x|μ,σ) is the probability density evaluated at x for Gaussian distribution with mean μ and standard

deviation σ, and σc is the standard deviation of the fitted value of the m2j peaks across a range of tunes.

We use σc = 0.13.

For a set of events with a fixed tune, the value of the top mass is extracted by maximizing the likelihood

function over both mfit
t and c. The value of mfit

t that maximizes the likelihood does not equal mMC
t , but is

linearly correlated. The linear relation between mMC
t and mfit

t is used for the inference of top mass.

Fig. 8.4 shows the results using this method as the brown bars denoted by “2D Likelihood Fit”. Overall,

this method does similar to the histogram fitting with grooming and calibration, even though these are not

done explicitly here. The likelihood fit improves the mean ΔmMC
t by around 10% when taking the envelope

of the tunes or adding the uncertainties in quadrature. This improvement comes as a result of using the

values of m2j and m3j from every event and including a nuisance parameter. In principle, it is possible to

implement a nuisance parameter for each of the tuning parameters, but this is challenging in practice, as

the effects of each tuning parameter may not be well modeled by a Gaussian. Instead, we advocate for the

method presented in the next section, which still includes the values of m2j and m3j from every event, but

allows for a flexible function–unlike the fixed form of Eq. (8.3)–which uses changes in the distributions to

account for tune variations.

8.4 Regression on Sorted Ensembles

In this section, we study whether doing regression on ensembles of events can improve on the traditional

template histogram fit. We consider both using a dense neural network (DNN) to do the regression with

machine learning, and alternatively an ordinary least squares (OLS) linear regression. The two methods give

comparable results. The DNN with linear activations is slightly better, but the OLS regression is simpler

and faster (but uses more memory).

8.4.1 Inputs

We take as inputs to the regression ensembles of observables computed from simulated events, sorted by one

of the observables. We use these sorted ensembles as inputs to regress out the top-quark Monte Carlo mass,

mMC
t .
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For training, we use events simulated with mMC
t ranging from 170 to 176 GeV in intervals of 0.2 GeV.

For each mass we generate 300,000 training events for each of the A14 tunes. We have also tested using

a larger total number of events in each sample and finer spacings between the masses, but this does not

improve our results. There is no apriori reason why a uniform prior necessarily gives the best performance,

but we find it to be sufficient for our purpose. To train the regression, we use a random ensemble of 30,000

events (with replacement) from the total set of 300,000 at a given tune and mMC
t . The number 30,000 is

chosen because taking a smaller number of events per ensemble gives a larger error, while taking a larger

number is prohibitively slow (at least in the DNN case) and does not lead to noticeable improvement. Both

the DNN and OLS regression see many different ensembles from each training sample, but the total number

of ensembles and which samples they are from differs between the two regression methods. For the DNN,

batches of 100 ensembles are seen in each training step, and each ensemble is from a randomly selected mass

and tune. In contrast, the best OLS regression uses 20 ensembles for each mass and tune.

The basic observables we consider are the 3-jet invariant mass (i.e. top), m3j, the 2-jet invariant mass

(i.e. the W boson mass), m2j, and their ratio R32 =
m3j
m2j

[1216, 1217]. The inputs to the regression are the

values of these observables, sorted by one (or more) of them. Sorting the ensemble is important because it

determines which parts of each observables’ distribution the different weights are applied to, and allows the

regression to exploit correlations in different observables across tunes. Example input distributions sorted by

m3j are shown in Fig. 8.5. We tested different orderings and several different observables as inputs (discussed

more in section 8.4.2), and find that sorting by increasing m3j tends to give the best results.

To extract the uncertainty from the regression, we generate five more statistically independent samples

of 400,000 events at each mass between 172.0 and 174.0 GeV (in intervals of 0.5 GeV) and for each of the A14

tunes. From each of these test samples (at fixed mass and tune), we take an ensemble of 30,000 events and

evaluate the network to get an output value. We repeat this 100 times for each sample and take the mean

of those values to get a final predicted value for a given trial, mass, and tune. We then use those predicted

values to compute the error as described in §8.2.

8.4.2 Dense Network

First, we discuss using a linear network. We use a two layer network implemented in keras [1218], with

one node in each layer and linear activation functions between nodes.3 This is shown in Fig. 8.5. While

more than one layer is not strictly necessary since our activation functions are linear, additional layers can

help with training and hyperparameter optimization. We also tested more complicated neural networks with

different filter configurations (including deeper networks), removing various node connections, and nonlinear

3The exceptions to this are the R32 only networks, which train better when we use a third layer.
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Figure 8.5: Example DNN and its inputs. Example inputs are m3j, m2j, and R32 for 30,000 events, sorted
according to increasing m3j.

activation functions, none of which seemed to improve performance. Networks were trained with the Adam

algorithm [1219] for 600 epochs of 750 steps each, with an early stopping patience of 60 and a batch size

of 100. The initial learning rate was 0.0005, with a learning rate decay of 0.7 after 8 epochs without

improvement. We did not exhaustively optimize these hyperparameters, so it is possible that there would be

further performance gains with a more systematic hyperparameter search. We also normalize all inputs by

subtracting a constant so that the mean of each sorted ensemble is small compared to its spread, which helps

ensure consistent results when the network is trained multiple times. This amounts to subtracting 173 GeV

from m3j, 80 GeV from m2j, and 2 from R32. We also tested other normalization methods, but found they

do not improve performance noticeably. We tested several loss functions and determined that the network

is mostly insensitive to which loss function was used and performs equivalently for loss functions such as

logcosh and mean squared error. The results presented use the logcosh loss.

We tested multiple different sets of observables as inputs. We considered including combinations of m3j,

m2j, R32, and mℓb (the invariant mass of the lepton and b-quark on the leptonically decaying top quark side

of the event). For each of these inputs, we considered sorting the ensembles in different ways before putting

them into the network. Sometimes, we sorted the events the same way for all the observables, and sometimes

we sorted the events differently for different observables. In either case, the orderings were determined by

making sure the sorted variables were strictly increasing, and then applying one of these orderings to each of

the other, unsorted variables. We find sorting is necessary to train the network, and that the results depend
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Figure 8.6: Uncertainties on the top mass linear network fits within each group of variations in the A14
set of tunes, with different observables as inputs. The Total Envelope section contains the envelope of all
tunes. For every network displayed (except that trained only on the means of the distributions and the soft
drop example), the distributions are sorted by increasing m3j. For the soft drop example, the distributions
are sorted by m3j with β = 0 rather than the original m3j. We have restricted m3j to between 150-200, except
for those networks labeled “No m3j cut”.
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on how the inputs were sorted. Generically, we find that sorting by m3j works best.

Additionally, we recomputed these observables for subjets determined in different ways and tested com-

bining these subjet observable ensembles with those for the original jets. We used subjets obtained by

applying soft drop [1205] with z = 0.1 and β = 0, 1, 2 to the initial jet, as well as telescoping subjets at

different radii [1220–1222]. We found that our results are not sensitive to the value of z used in soft drop

as long as it is small enough. Changing β has a small effect which is not noticeable in the best case of m3j

& m2j inputs. For single observable networks, β = 0 often does best. For both types of subjets, our results

depend on the specific network inputs, but none of these networks perform noticeably better than the best

network without subjet observables.

A subset of our results for various different inputs is shown in Fig. 8.6. As previously mentioned, a

combination of m3j and m2j, both sorted by increasing m3j, is sufficient to give our best results. This is

shown in blue. From the figure, we can see that most of the contributions from the different variations are a

similar order of magnitude, in contrast to the histogram fitting case. The largest contributions to the error

are from Var1 and VarPDF.

For completeness, Fig. 8.6 contains several other results, considering both different input variables and

different m3j ranges. We find many networks with additional variables perform similarly to the m3j & m2j

combination (which can be seen by comparing the blue errors to the orange and green ones), while networks

that do not include both m3j and m2j tend to perform worse. Like in the case of the histogram fit, using mass

alone (shown in yellow) gives the worst results, while R32 alone (shown in pink and brown) improves upon

the mass, though both do better than the histogram fit when the same inputs are used.4 Examples including

soft drop variables and subjets at different radaii are shown in red and purple respectively. Including soft

drop variables or subjets at smaller radii can help when compared to networks trained on single variables,

but there is no further improvement on the m3j & m2j combination. For reference, we also include two other

networks that do not use the full distributions for every tune as input. In gray, we show the case of taking

the average of the ensemble before inputting to the network. In turquoise, we show a network trained on

tune 21 only (but still tested on all the A14 tunes). Unsurprisingly, we find that in both of these cases the

networks perform worse than the full sorted ensembles marginalized across tunes.

Next, we would like to understand why these networks are able to perform better than the histogram

fit. In the histogram fit, the mass is given by the center of a Gaussian which is similar to our average-only

network. Therefore, we look for improvements over the average-only network as a proxy for understanding

why the dense network does better than the histogram fit. In order to understand how different parts of the

4The improvement between R32 and using multiple observables is dependent on the range of m3j used; for m3j
between 150-200 the difference is larger than when the full m3j distribution is used. This can be seen in the difference
between the pink and brown errors.
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Figure 8.7: Graphical representations of the contribution to the predicted mass as a function of entry
number in the ensemble using the m3j & m2j network. In (a), we show a rolling average of the product of
the (normalized) m3j input multiplied by the network weight for each event number. Each color denotes a
different mass and tune. Only a subset of masses and tunes have been shown for clarity. In (b)-(d), each
point is the cumulative sum up to that event number of the (normalized) input value multiplied by the
network weight. (b) includes only the m3j contribution, with colors denoting masses and each mass including
1 sample from each of the A14 tunes. (c) includes only the m2j contribution, with colors denoting tunes. One
sample at each mass is included for each tune. (d) sums over both m3j and m2j with colors again denoting
masses. The bias is included in the zeroth entry.

171



0 5000 10000 15000 20000 25000 30000
Event Number

171

172

173

174

175

176

177

178
C

u
m

u
la

ti
v
e 

S
u
m

 o
f 
C

o
n
tr

ib
u
ti
on

 t
o 

P
re

d
ic

te
d
 M

as
s

174

173.5

173

172.5

172

(a)

150 160 170 180 190

mMC
t

0

100

200

300

400

500

E
v
en

ts
 p

er
 B

in

5k
 E

ve
nt

s

15
k 

Ev
en

ts

25
k 

Ev
en

ts Tune 23 Mass 173

Tune 24 Mass 173

Tune 21 Mass 173

Tune 23 Mass 172

Tune 24 Mass 172

Tune 21 Mass 172

(b)

Figure 8.8: (a): Graphical representation of the contribution to the predicted mass as a function of entry
number in the sorted ensemble using the network that depends only on the average of the ensemble. The
zeroth entry includes the bias. Each point is the cumulative sum up to that entry of the (normalized) input
values multiplied by the network weight and divided by the total number of samples. Color denotes the
mass. There are fourteen different lines for each color; one example for each tune. (b): Histogram showing
an example distribution. The solid lines drawn show 5k, 15k, and 25k events for several masses and VAR1
tunes.

ensembles contribute, we examined the weights of the networks.

We use these weights to construct Figs. 8.7 and 8.8a. Since these weights are shared by all masses and

tunes, we multiply the weights by example input ensembles to construct the plots. Specifically, we plot a

rolling average of the input times the weights (as in Fig. 8.7a) or a cumulative sum of the inputs times the

weights (as in Figs. 8.7b-8.7d and 8.8a) as a function of event number. For Figs. 8.7d and 8.8a, which include

all input observables, we have also added the constant bias learned by the network and accounted for the

normalization of the labels by adding 173 to the predicted outputs. In these two plots, we can read off the

predicted mMC
t value from event number 30,000. We include Fig. 8.8b for reference, to see which parts of

the top mass distribution are contributing the most in each network.

In general, we want to design a procedure that is sensitive to the Monte Carlo mass but not the tuning

parameters. The difficulty with this is that most variables that are strongly affected by mMC
t (such as m3j)

are also strongly affected by the tuning parameters, which we can see from Fig. 8.7b. This can be partially

corrected by including other variables (such as m2j, seen in Fig. 8.7c) which are more sensitive to the tune

than the MC mass. When we just fit the mean of each distribution, there is not much more that we can

do, aside from trying to clean up the distributions themselves. However, in the case of directly inputting

a sorted ensemble into the regression, the network can look for other combinations that are less sensitive
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to the tune than the mean. The network can learn to use a particular part of an observables’ distribution

to differentiate the masses, and a different part to partially correct for the difference in tunes. This can be

seen in Fig. 8.7a, where the middle of the ensemble distinguishes the mass, whereas the upper tail is more

strongly correlated with the tune. We can also see this from comparing the average only network in Fig. 8.8a

with the full m3j&m2j network in Fig. 8.7d. In 8.8a, most of the difference in masses comes from events

between 5,000-15,000, where the original distributions differ most, and the width of each mass band in the

upper half of the ensemble remains mostly constant. In contrast, in 8.7d, most of the difference in regressed

mass comes from event numbers greater than 15,000, and the difference in tunes shrinks substantially at the

top tail of the m3j ensemble.

For completeness, we also tried generating new samples uniformly spaced in the other tuning parameters

and regressing out these tuning parameters in addition to the mass. For this test we restricted to the VAR1

tunes, but an equivalent test could be conducted across all variations. We might think this type of network

would improve our results since the loss function explicitly depends on tuning parameters in addition to

mMC
t . However, we found that in the case of a linear regression, a multidimensional output did not help

improve the predicted top mass (in contrast to what we found with the DCTR method, discussed in §8.5).

In particular, we find that sorting the inputs encodes enough information about the other tuning parameters

that additional outputs are unnecessary. This can be seen from the solid lines in Fig. 8.8b. While the value

of the 15,000th event near the peak depends primarily on the Monte Carlo mass, the value of the 25,000th

event is also strongly dependent on the tune.

8.4.3 Ordinary Least Squares Regression

Since non-linearities and a deep network structure do not seem to improve results, it is natural to ask if we

can reproduce the same results with something simpler. Therefore, we test the case of using a projection

matrix to do the ordinary least squares linear regression exactly (rather than using the Adam algorithm to

do the minimization). We implement this regression using scikit-learn [1223], and consider three separate

cases: using the full ensembles of 30,000 events, using the means across the ensemble only, and using the

ensemble means and their standard deviations. For the full ensembles we use 20 random samples from the

300,000 event training sets with each mass and tune; for the other cases we resample 200 times from each

mass and tune. We find that with full ensembles the results are worse when fewer samples are used, but

including more than 20 samples decreases performance. We suspect this is due to overparameterization, but

that it could be improved through regularization or dimensionality reduction techniques. Additionally, the

matrix operations in the OLS regression become memory intensive (using over 32 GB) with many samples.

The other regression methods are mostly insensitive to the number of samples, as long as there enough for
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Figure 8.9: Uncertainties on the top mass fit within each group of variations in the A14 set of tunes for
the OLS regressions, compared to the best linear network.

fitting. Results from the OLS approach are shown in Fig. 8.9. We find roughly similar, but slightly inferior,

performance to the linear network for comparable inputs. Though the linear network does slightly better, it

takes longer to train than OLS regression and is not deterministic.

8.5 DCTR with ParticleFlow

An alternative machine learning method developed to fit parameters is DCTR [314]. This method is based

upon parameterized neural networks [1224] and exploits a relationship between the loss function and the

likelihood ratio [118,333–338,375,1225–1227].

The DCTR method works as follows. Suppose we have some parameters θ and some observables x. The

probability distribution p(x|θ) of the observables depends on the values chosen for θ. An ambitious goal

is to learn a function f(x, θ) which gives the full likelihood distribution of the observables x for any θ (as

in JUNIPR [42, 258]). In practice, DCTR learns this distribution relative to the distribution over x for a

fixed reference value θ0. To do so, we give it observables xθ0
drawn from the distribution at fixed θ = θ0

(the reference sample) as well as observables xθS
drawn from the distribution using many values of θ ∈ θS
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(the scanned sample). We do not tell the network the value of θ0, however. Instead, we pretend that θ0 is

equal to θ and the network will learn that this is inconsistent. In practice, we train the network over pairs of

events {xi, x0
i } ∈ {xθS , xθ0} chosen over a distribution of θ values and compute the binary cross-entropy loss

f = argmin
f′

(
−
∑

θ

∑
{xi,x0

i }∈{xθS ,xθ0},

[
log
(
f ′(xi, θ)

)
+ log

(
1− f ′(x0

i , θ)
)])

(8.4)

It is important that f ′ in the second term takes θ and not θ0, otherwise the classification would be trivial.

Using such a loss function, the DCTR process for inferring model parameters from an ensemble of events

involves two steps.

1. Train a parameterized classifier f(x, θ). In the application to top mass extraction, the reference sample

has θ0 corresponding to a fixed mass and tune. The scanned sample has θ which varies among values

of mMC
t and many values for the tune parameters.

2. Use the function f(x, θ) for regression. To do so, we re-minimize the loss for an unknown sample

compared with an independent sample drawn using the same parameters as the reference sample.

Now the network is fixed, but the parameters θ are varied to minimize the loss. The values which

minimize the loss are the prediction.

To give a better sense of how DCTR works, we include a toy example with a one-dimensional Gaussian

in Appendix F.1. For more details on DCTR, see [314] or [332].

8.5.1 Network architecture

In order to use DCTR to infer the top-quark mass, we need a parameterized neural network, f(x, θ) which is

flexible enough to learn the likelihood ratio. The parameter(s) θ must include mMC
t , but can also include the

other tune parameters, depending on whether we try to regress those tune parameters or marginalize over

them and only extract mMC
t . We find the most effective network takes as input both low-level and high-level

observables. The architecture of the network is sketched in Fig. 8.10.

For the high-level variables we take m3j (the “top mass”) and m2j (the “W mass”), as in previous sections.

We consider optionally applying soft-drop jet grooming to the jets before constructing the invariant masses.

These are indicated by the blue portion of the figure.

For low-level observables, following DCTR [314] we use four-vectors of the constituent particles of the

jets represented with a ParticleFlow Network [1206]. This is shown in the green region of the figure. For

the inputs to ParticleFlow, we include up to 75 particles, with a maximum of 25 from each of the three

jets. Each particle contains eight input variables: four variables are the four vector in (px,py,pz,E), three

variables are the momenta in a transformed coordinate system (pT, η,φ), and a discrete tag for which jet the
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Figure 8.10: Architecture used to infer the top-quark mass with DCTR. The green portion shows the
low-level information from the constituents of the jets. These are combined with a ParticleFlow Network,
denoted by Φ acting on each constituent, with the resulting output being summed across the particles. The
Φ network is shown in the breakout box. Next are the high-level inputs of the three-jet and two-jet invariant
masses, shown in the blue portion. The last elements are the Monte Carlo parameters to be inferred, shown
in yellow. All of these are combined in the latent space, which is then connected to the final output with a
dense neural network shown in red.
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constituent came from (0 for the b-tagged jet, 1 for the hardest un-tagged jet, and 2 for the softer un-tagged

jet). A function Φ is applied to each of the particles in the event, mapping from an eight-dimensional input

to a k-dimensional output. To ensure that the ordering of the particles is unimportant, each k-dimensional

output is symmetrized (summed) over the particles. These are marked by the λk nodes in the figure. For

Φ we use a neural network with two hidden layers. Each hidden layer contains 32 nodes with the ELU

activation function and use a dropout rate of 10% during training. The final layer of Φ contains eight nodes,

also using the ELU activation.5 Many applications of ParticleFlow find that a larger latent space is needed,

however, we found our results to be much more stable with 8, rather than 16 nodes. We also tried not

including the ParticleFlow part of the network, but found better performance when it is included. As an

additional input, we sum the four-vectors of each of the constituent particles and pass the sum top-quark

4-vector directly to the latent space.

The combined information from the Monte Carlo parameters, the high-level inputs, and the low-level

inputs are concatenated together. From this space, another neural network is applied to generate the final

event level classification, shown in the red region of the figure. We use three hidden layers with 32, 32,

and 8 nodes, respectively. We again use the ELU activation function and apply a 10% dropout rate during

training. The output is a single node activated with the sigmoid function. This results in networks that

have between approximately 1400 and 3600 weights, depending on the number of Monte Carlo parameters

included in the parameterization.

8.5.2 DCTR on a single tune

First we test DCTR’s ability to regress mMC
t for a fixed tune (A14 tune 21). For the fixed reference sample

θ0, we chose the top-quark mass to be 175 GeV.6 In the scanned sample θ, we randomly choose mMC
t for

each event from a uniform distribution between 170-176 GeV. We use 1 million events each for the fixed and

reference samples. The data set is split with 25% for validation and 75% for training.

As part of the study, we want to see if more information than just the three jet invariant mass can help

the network extract the top mass better. To do so, we allow the network to use only m3j; to use m3j and

m2j; or to use m3j, m2j and the low-level inputs (as described above). In addition to these observables, the

network is also given a value for θ = mMC
t . For the scanned sample, this is simply the value chosen in the

random draw for the event. In the fixed reference sample, where θ0 = 175 GeV, the value of θ input is

masked to a random value, chosen from the same range as in the scanned sample.

The networks are trained using the Adam optimizer to minimize the binary cross entropy loss function.

5The weights of Φ are trained along with the rest of the network, but could be pre-trained from a similar application.
6We found empirically that the DCTR procedure works better in practice if the Monte Carlo mass of the reference

sample is larger than the values to be inferred.
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Figure 8.11: Errors on the mass of the top quark returned by the DCTR methods when trained and tested
only on the central tune, for different soft drop parameters. Adding extra information (such as the mass of
the W jet) does not seem to increase the accuracy. The uncertainty for the method is on the order of 50
MeV.

We set the initial learning rate to 10−3 and use the default β values for Adam. When the loss on the validation

set has not improved for 10 epochs, the learning rate is decreased by a factor of
√

10, with a minimum rate

of 10−6. We also implement early stopping; if the validation loss has not improved for 25 epochs, training is

halted. Training typically takes around 80 epochs.

After training the networks, the mass is extracted by computing the loss of the classifier between a test

set and an independent reference set. We repeat this with the same five masses and five iterations of the

test sets as in the regression methods presented earlier, with 4 × 105 events in each data set. The loss is

minimized for the combined (test and reference) data as a function of mMC
t .

In Fig. 8.11 we summarize the results for different soft-drop grooming parameter, and with and without

the low-level inputs. Numbers shown are the absolute difference between the true and extracted Monte Carlo

mass. The median error for nearly all of the methods here is ≲ 50 MeV, while the maximum error is around

100-150 MeV. For this exercise, where the tune is fixed and only mMC
t varies, there does not seem to be an

advantage to using extra information (such as the mass of the jets from the W) or performing jet grooming.

This conclusion will change when we include tune variations.

8.5.3 DCTR on Var 1 tunes

We saw that with no tune uncertainties, the DCTR method can regress mMC
t with an uncertainty of order 50

MeV. When other parameters related to tunes are varied, such as in the showering or hadronization models,
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DCTR offers multiple ways to proceed. We could train only on a single tune, trying to learn mMC
t ; we could

train on multiple different tunes, again trying to learn only mMC
t ; or we could train over different tuning

parameters and try to learn those as well as as mMC
t .

To asses which of these options works the best, we train networks on data using the Var1 tunes. We

again use 106 samples for the reference set and 106 sample for the scanned set with 75% of these samples for

training and 25% for validation. For the reference set, we use samples drawn from the central tune (tune

21). The scanned set uses a uniform distribution for the mass (mMC
t ), the color re-connection range, and the

strong coupling constant for multiple parton interactions (αMPI
S ). To remove edge effects, the sampling space

is larger than the tune variations we eventually test against. Explicitly, the ranges are given by

mMC
t ∈[170 GeV, 176 GeV],

Color re-connection range ∈[1.67, 1.75], and

αMPI
S ∈[0.116, 0.136],

(8.5)

and there is no correlation in the random samples. The training procedure is the same as above.

After training the network, we use DCTR to infer the mass (and possibly the color re-connection range

and strong coupling) on three different tunes: 21, 23, and 24. These are the central, up, and down tunes of

Var1. For reference the color re-connection range and the strong coupling constant for the tunes are (1.71,

0.126), (1.73, 0.131), and (1.69, 0.121) for 21, 23, and 24, respectively. For each test mass, we evaluate the

spread in the inferred mass from the different tunes. This process is repeated for five separate test sets, each

with 4× 105 events for the reference and test set.

The results of the spreads are summarized in Fig. 8.12 with box-and-whisker plots. The results for the

ungroomed jets are in the upper left panel, using soft drop with β = 0 in the upper right panel, using soft

drop with β = 1 in the bottom left, and using soft drop with β = 2 are in the bottom right panel. In the top

row of each panel, the only observable given to the classifier is the three jet invariant mass. The networks

of the middle row have access to the two-jet invariant mass in addition, and the bottom row also includes a

ParticleFlow network for the constituents of the three jets.

There are many noteworthy trends in these results. First, we examine how the different grooming

methods affect the reconstruction. We saw before that the using soft drop for the histogram fitting methods

greatly reduced the uncertainty. A similar pattern is observed here, especially when looking at the first two

rows (not using ParticleFlow). For instance, all of the color bars for both the β = 0 and β = 1 panels have

significantly lower mean and maximum ΔmMC
t than the corresponding colors for not using soft drop. The

option of soft drop with β = 2 still does better than no soft drop, but not as good as the others.

The next noteworthy trend is that adding more information to the network helps to reduce the uncer-
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Figure 8.12: Results testing the input data for DCTR to use as well as the method of inference on VAR1.
Including both m3j and m2j along with the low-level information captured by ParticleFlow results in the
lowest uncertainty. DCTR works best when inferring all of the tune parameters (orange) as opposed to
marginalizing over them (blue).

tainty. In each panel, the uncertainty is largest when only using m3j and improves when adding in m2j. The

uncertainty is further reduced when including the ParticleFlow information in most panels. However, these

networks are more challenging to train and often do not work for the full mass range. This is why the mean

(and median) values drop, while sometimes still having large maximum uncertainties.

The last important observation is that the networks with ParticleFlow do better when they are also

fitting to the tune parameters. The white data is for networks trained on the central tune alone, and thus

only capable of inferring the mass. The blue data sees the scan across the tune parameters, but only tries

to infer the mass, while the orange data also infers the tune parameters. For the m3j alone or m3j and

m2j rows, marginalizing over or fitting the tune parameters actually tends to make the uncertainties worse.

With such a small amount of information (either one or two observables), the network does not learn how

to correlate the changes in the tune parameters to changes in the observables. However, when the network

also includes ParticleFlow, it can learn these correlations, and thus the uncertainty is reduced when fitting

the tune parameters.

To summarize these results, DCTR works better with more input observables. Using the information

contained in the four vectors of the constituents of the jets coming from the top quark decay allows DCTR
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to correct for differences in the distributions caused by changing the tune parameters. Therefore, for the full

set of tuning parameters in the next section, we restrict to the case of including ParticleFlow in the inputs

and fitting each of the Monte Carlo parameters.

8.5.4 DCTR on full set of A14 tunes

We now apply the DCTR methodology to the A14 variations. The PDF variations are not included in the

training, although we do evaluate on them. The reason for this is that PDF selection is a discrete choice, and

DCTR is designed to work on continuous parameters. That is, there are not specific Monte Carlo parameters

for DCTR to infer from the different PDFs. One can nevertheless assume that PDF variations are within

the range of other tune variations and test how well DCTR works on samples generated with different PDF

sets.

When considering multiple tunes, we must also decide which tune to use as the reference sample θ0. Using

the central tune would be the most obvious choice. However, since we found that the DCTR algorithm works

better when we use higher reference masses, we allow for the possibility that it will work better using non-

central tunes. We therefore test taking as the reference sample both the central tune as well as each of the

“+” tunes for each of the variations.

For the scanned sample, the Monte Carlo parameters are randomly sampled for each event. The mass is

drawn from a uniform distribution with a range of 170 GeV to 176 GeV. The tune parameters are sampled

from (min z − 0.5Δz,max z + 0.5Δz), where z represents the value of an individual tune parameter, min z is

the minimum value across the variations, max z is the maximum value across the variations, and Δz is the

difference between the maximum and the minimum. The sampling space is larger than the values we will be

testing at to remove possible edge effects.

The results are summarized in Fig. 8.13. The left panel shows the total envelope of ΔmMC
t caused by

changing the Pythia tune parameters across the 11 variations. The right panel additionally includes the 3

remaining PDF variations. The different rows show different amounts of grooming, with no grooming on top

and the three different soft drop options in the remaining rows. Each color denotes a different tune used as

the reference set.

Overall, there is not an obvious best choice for the reference tune. In some choices of grooming, one tune

will do better, but then it will not do as well on the different grooming choice. Similarly, some reference

tunes that do well without the PDF variations do not generalize as well to including the variations from the

PDF. However, we do note that using soft drop with β = 0 seems to consistently lead to worse results.

With an unclear best option, we chose to use no soft drop trained on the central tune to compare with

the other regression models. This option generalizes well from training without the PDFs to including the

PDF variations, only increasing the uncertainty by around 10 MeV.
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Figure 8.13: Total correlated uncertainty on the DCTR extraction of mMC
t coming from only the Pythia

tunes (left) and additionally including the PDF variation (right). The different rows show various grooming
options and the colors denote different tunes used as the reference sample (θ0) for the DCTR training. The
no soft drop option trained using the central tune is chosen to compare with the other regression methods.

8.6 Discussion

In this chapter we have investigated an example of how machine-learning methods could help with mea-

surement tasks at particle colliders. In particular, we explored a situation in which regression is assisted

by learning simultaneously on an ensemble of events rather than on individual events. Despite the fact the

individual events are totally uncorrelated, we find the best performance when variables constructed from the

events are concatenated into an array, sorted, then input to the regression algorithm.

The case we explored is when the measurement is done by curve-fitting to simulated data to regress a

single simulation parameter marginalizing over other parameters. In particular, we looked at the top-quark

mass measurement. The traditional method is to extract the top-quark Monte Carlo mass mMC
t by fitting

to histograms, and then to estimate an uncertainty ΔmMC
t on this extracted value due to Monte-Carlo

tuning uncertainty. This tuning uncertainty might be of order 500 MeV, which is comparable to statistical

uncertainties, experimental systematic uncertainties, and theoretical uncertainties (such as converting the
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top mMC
t mass to a short-distance mass). In this chapter we focus only on reducing the tuning uncertainty.

We explored 4 classes of methodology to regress mMC
t . First, we looked at histogram curve fitting.

Uncertainties from this method are around 500 MeV but reduce to around 100 MeV if jet substructure

techniques are used to clean the data before fitting (as shown in [1204]). Second, we used a 2D likelihood

fit using the raw m2j and m3j observables incorporating a nuisance parameter to account for Monte Carlo

tune differences. Third, we looked at linear regression techniques, both using a dense but shallow linear

network and using ordinary least squares regression. Fourth, we used a machine-learning method called

DCTR. DCTR is a two-step method: first the weights of a distribution are learned as a function of tuning

parameters relative to a fiducial sample, and second the tuning parameters are optimized for a given test

data sample.

The results of our study are summarized in detail in Fig. 8.14, with more details of each method in

the appropriate section, and fewer details in the concise summary plot shown in Fig. 8.1. Fig. 8.14 shows

the box-and-whisker plots for the different families of variations, while the final three rows show different

methods of combining the variations. Probably the most realistic estimate of error is the “envelope including

PDFs”, which means we take the maximum and minimum values for the fit top mass across the A14 tunes.

Such an approach assumes that the tunes are correlated and that actual data will lie somewhere within the

complete range of variation. For completeness, we also include a more conservative estimate where each

variation is assumed to probe completely different physics and is uncorrelated with other tune variations. In

this case we add the errors in quadrature. The PDF variations are special because they are discrete: there

is no way to interpolate between different A14 PDF sets as we could for other parameters such as αs.7 It is

unclear how to train DCTR for PDF variations because of this complication. We thus include also numbers

for the total envelope not including PDFs. Note that for most tune parameters there is no “right” answer:

approximations such as the parton shower are made so the data can never be described perfectly. Thus in

the context of a particular Monte Carlo simulation there is an irreducible uncertainty on how well the data

could ever be described. In contrast, there is, in principle, a right answer for the PDFs, although in practice

they are always used and fit in conjunction with calculations at a fixed perturbative order. In any case, our

purpose is not advocating any particular choice of how to combine errors for an experimental analysis. We

are simply providing various metrics by which the different methodologies can be compared.

The main take-home lesson from the summary in Fig. 8.14 is that in practice regression on sorted event

ensembles does better than the classical histogram fitting approach or the profile likelihood fit. Using such

methods reduce the Monte-Carlo-based uncertainty on current extractions on the top-quark mass from LHC

data, perhaps even by a factor of 2. This is on top of the reduction gained from using jet grooming as

7There are other ways to study continuous variations of the PDF sets, but they are beyond the scope of this study.
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Figure 8.14: Summary comparison of the different methods. Upper six boxes show top quark tuning
uncertainty among six different families of variations. The bottom boxes combine the separate uncertainties
either by taking the envelope over the variations or by adding the uncertainties in quadrature. Here, DCTR
uses ParticleFlow to simultaneously extract the mass and the tune parameters, and both the ordinary least
squares regression and linear network are trained on ensembles of re-sampled events. The various methods
are discussed more in the text.
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advocated in [1204]. We found that DCTR works fine for the families of variations for which it was trained

(not the PDFs), and has similar uncertainties to the histogram method. It has the potential benefit of being

able to fit other tuning parameters well, but if one is only interested in a specific measurement, such as the

top mass, then DCTR may be over-kill. Indeed, DCTR is somewhat challenging to implement and train,

sensitive to how the inputs are refined, and requires some hyperparameter adjustment to get reasonable

results at all. Its killer application may be more along the lines of [332] than direct parameter estimation.

Having established that a regression on sorted event ensembles is more effective than curve fitting a

histogram, we also looked into what features of the ensemble the regression uses. In contrast to the histogram

fitting approach, which focuses on the center of each observable’s distribution, ensemble learning methods

can weigh various parts of each observable’s distribution differently. In §8.4, we showed how the ensemble

methods can use the center of the m3j distribution to learn the difference in masses, while using the upper

tail of m3j and the other observables to correct for the difference in tunes.

It is worth emphasizing that the point of this study is not a total numerical estimate for the uncertainty.

Values throughout this chapter do not include any estimate of experimental systematic effects on the Monte

Carlo tuning uncertainties, such as smearing due to jet energy resolution or detector effects. Thus one

should not take the absolute size of the numbers as indicative that the tuning uncertainty could be reduced

to the 30 MeV level. We do, however, conclude that linear regression, either through a linear network

or an ordinary least squared regression on an ensemble of events, is a promising technique that has the

potential to significantly reduce the dependence of the measured top-quark mass on Monte Carlo tuning

parameters beyond the methodology already being employed. Although the uncertainty from marginalizing

over unphysical parameters in simulation is smaller than other sources, it can be important for precision

studies such as SUSY searches or vacuum stability, as discussed in the introduction.

In conclusion, we have shown that machine learning regression methods can work most effectively when

trained on a sorted ensemble of uncorrelated events. We found these methods can improve upon a traditional

histogram-fitting procedure for determining the top-quark Monte Carlo mass. In particular, performing linear

regression using a shallow but dense network trained on sorted ensembles of events (30,000 at a time in our

study) seems to combine excellent performance with simplicity.
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9
Challenges for Unsupervised Anomaly Detection

9.1 Introduction

While many searches for physics beyond the Standard Model have been carried out at the Large Hadron

Collider, new physics remains elusive. This may be due to a lack of new physics in the data, but it could also

be due to us looking in the wrong place. Trying to design searches that are more robust to unexpected new

physics has inspired a lot of work on anomaly detection using unsupervised methods including community

wide challenges such as the LHC Olympics [123] and the Dark Machines Anomaly Score Challenge [150]. The

goal of anomaly detection is to search for events which are “different” than what is expected. When used for

anomaly detection, unsupervised methods attempt to characterize the space of background events in some

way, independent of signal. The hope is then that signal events will stand out as being uncharacteristic.

Anomaly detection techniques can be broadly split into two categories. For some signals, the signal

events look similar to typical background events and one must exploit information about the expected

probability distribution of the background to find the signal. Many anomaly detection techniques have been

developed to find signals of this type [109–128,384,1228,1229]. Alternatively, some signals are qualitatively

different from prototypical background and then methods that try to characterize an individual event as

anomalous can be used [100, 108, 129–157]. Here, we restrict to the latter type of anomaly detection, where

an anomaly score for individual events can be determined from the background ensemble and used for
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discrimination, without needing to characterize the full probability distribution of the signal ensemble. With

an effective method, events with a small score are likely to be a part of the background, while events

with a larger score are not. There are many different ways of defining an anomaly score. Some rely

on traditional high-level observables, like mass or N-subjettiness [1230], (see e.g. [109, 131, 384] which use

traditional variables in anomaly detection). Others attempt to directly learn how likely a given event or

object is using low-level information, like individual particle momenta (see e.g., [152]). Some methods that

search for outliers rely on abstract representations to try to characterize the event space, such as the latent

space of an autoencoder [125, 148]. Others give the event space itself a geometric interpretation in terms of

distances [40,1231,1232]. Given the complexity and high-dimensionality of data at the LHC, many anomaly

detection techniques employ machine learning.

In this chapter, we begin by exploring the use of autoencoders for anomaly detection on individual fat

jets within events. Autoencoders were initially introduced for dimensionality reduction, similar to principal

component analysis, to learn the important information in data while ignoring insignificant information

and noise [1233]. Autoencoders contain an encoder, which reduces the dimensionality of the input to give

some latent representation, and a decoder, which transforms the latent space back to the original space.

In particle physics, autoencoders were first used for anomaly detection in [130, 132, 133], where they are

meant to reconstruct certain types of data (background) but not others (signals). In order to work as an

anomaly detector, an autoencoder should have a small reconstruction error for background events and a large

reconstruction error for signal events. To do so, the autoencoder must establish a delicate balance in achieving

a reconstruction fidelity which is accurate, but not too accurate. There are several cases where training a

network with adequate discriminating power is especially difficult, such as when the signal looks very similar

to the background, when the dataset has certain topological properties [124], or when innate characteristics

of the samples make the signal sample simpler than the background sample to reconstruct [148,154].

A generalization of autoencoders called variational autoencoders (VAEs) were introduced in [1234]. Un-

like an ordinary autoencoder, where each input is mapped to an arbitrary point in the latent space, in a

VAE, the latent space is a probability distribution which is sampled and mapped back to the original space

by the decoder. In addition to the usual reconstruction error, the VAE loss also includes a Kullback-Leibler

(KL) divergence component that pushes the latent space towards a Gaussian prior and regularizes network

training. The latent space of the VAE encodes the probability distribution of the background training sam-

ple, which can be used in the anomaly score. VAEs were first used in anomaly detection in computer science

in [1235], and first used for particle physics anomaly detection in [130,131]. They have been widely studied

since then [125,142–148,265,1236].

The task of an autoencoder, variational or not, for unsupervised anomaly detection is to provide a
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strong universal signal/background discriminant for a variety of signals having access only to background

for training. In principle, this approach is advantageous because it opens the possibility to bypass Monte

Carlo simulations and work directly with experimental data, which is almost completely background.1 The

autoencoder paradigm is based on the vision that there is trade-off between efficacy and generality: the

ideal discriminant for a given signal and given background would be ineffective for a different signal and

different background while a general discriminant, like the autoencoder, would work decently on a broad

class of signals and backgrounds. The ideal assumes, first, that such a general discriminant exists with an

appropriate use case, and second that it can be found by training purely on one or more background samples

without any direct information about the signal. However, one has reason to be suspicious: machine learning

methods work great at optimizing a given loss, which is meant to correlate strongly with the problem one

is trying to solve. For autoencoder anomaly detection, the optimization (background only) is not aligned

with the ultimate problem of interest (signal discovery over background), so it should not be surprising if

the autoencoder does poorly. In §9.4, we explore the challenges induced by trying to optimize a VAE in a

model agnostic way.

In order to understand what a VAE is learning, we study its latent space. In particular, we look at the

distance between events in VAE latent space (see [148,1237] for other studies of VAE latent spaces in particle

physics). Since we can think of the VAE anomaly score as a “distance” encoding how far any given event

is from the background distribution, it is also natural to ask about the distances between individual events.

We find there is a significant correlation between the Euclidean distance between events represented in the

VAE latent space and the Wasserstein optimal transport distance between events represented as images. We

study Wasserstein distances in particular because they were physically motivated in [40,1231,1232].

The correlation we observe between distances in the VAE latent space and between the event images

motivates us to explore using optimal transport distances between events to define an anomaly score in

§9.5. One method for using distances directly is to identify representative events in the background sample,

and use an event-to-event distance between a given event and the representative event as the score. The

advantages of this method we propose are that it does not require training a neural network and that it is

easily adaptable to different background samples.

This chapter is organized as follows. In §9.2, we provide information about the dataset used in our

study. In §9.3, we provide relevant background information on the metrics used (§9.3.1), and the details

of the VAE architecture (§9.3.2). In §9.4, we explore the effectiveness of an image based convolutional

autoencoder for anomaly detection, including its sensitivity to hyperparameters. We also explore correlations

1Of course, in the realistic situation where the training is performed on data, there could be signal events contam-
inating the background sample. Nevertheless, a number of studies have demonstrated that this has little effect on
the autoencoder performance (e.g., [132,133]). We will ignore this complication when we refer to “background only”
samples in what follows.
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between Euclidean distances in the autoencoder’s latent space and optimal-transport distances among the

event images in §9.4.2. This motivates the development of methods that directly use the optimal transport

distances among events as an alternative to VAEs in §9.5. We conclude in §9.6.

9.2 Anomaly Detection Datasets

We begin by describing the datasets we use for our analysis. For concreteness, we focus on anomaly detection

in simulated jet events at the LHC. We will consider QCD dijet events as the background, and consider both

top and W jets as representatives of anomalous signal events. Although in practice anomaly detection

techniques would not be used for top and W jets since there are dedicated experimental searches for these

objects, these jets provide a simple benchmark for studying unsupervised methods. The authors of [146]

have provided a suite of jets for Standard Model and beyond the Standard Model particle resonances which

are available on Zenodo [1238]. A sample of QCD dijet background events are also provided on Zenodo

using the same selection criteria, showering, and detector simulation parameters [1239]. The datasets were

generated with MadGraph [973] and Pythia8 [1176] and used Delphes [1240] for fast detector simulation.

Jets were clustered using FastJet [1209,1241] using the anti-kT algorithm [1208] with a cone size of R = 1.0.

The event selection requires two hard jets, with leading jet having pT > 450 GeV and the sub-leading jet

having pT > 200 GeV. The QCD jets are created using the pp→ jj process in MadGraph, while the top and

W jets we examine are produced through a Z′ which decays to tt̄ or a W′ which decays to a W and invisibly

decaying Z. Samples are available in [1238] for a variety of top and W masses, but we use only those with

the SM values. There are around 600,000 QCD dijet events and 100,000 events for the “anomalous” top

and W events. We reserve 100,000 QCD events for testing and use 50,000 QCD events for validation when

training the VAE.

The leading jet in each event is used for the analysis. We pre-process the raw four-vectors into an image

following the procedure presented in [72]. Using the EnergyFlow package [1242], we boost and rotate the

jet along the beam direction so that the pT weighted centroid is located at (η,φ) = (0, 0). Next, the jet

is rotated about the centroid such that the pT weighted major principal axis is vertical. After this, the jet

is flipped along both the horizontal and vertical axes so that the maximum intensity is in the upper right

quadrant. Only after the centering, rotations, and flipping do we pixelate the data [72]. We use 40×40 pixel

images covering a range of Δη = Δφ = 3.2. The final step of the pre-processing is to divide by the total

pT in the image. Note that we do not standardize each pixel by, e.g., subtracting the mean and dividing

by the standard deviation for the entire training dataset, because optimal transport requires positive values

in every pixel. It is important to note that the individual images are very sparse and do not resemble the

average of the dataset. For instance, out of the 1600 pixels, only 10.4± 5.3, 13.5± 4.3, and 10.1± 3.3 pixels

account for more than 1% of the total pT of the image for the QCD, top, and W jets, respectively.

189



9.3 Defining the Anomaly Score

Anomaly detection, in general, requires an anomaly score: we want to determine if an event is anomalous by

measuring how far away it is from a typical background event. This anomaly score can also be thought of

as the “distance” between an event and an ensemble. In order to define an event-to-ensemble distance it is

helpful first to explore event-to-event distance measures. For instance, given an event-to-event metric, one

could compute the distance from an event to some fiducial background event, and use this as a proxy for

the event-to-ensemble distance. To understand both types of distances, we need to review the metrics used

to define the distance, which we will do in §9.3.1. We can also use an autoencoder to generate an implicit

construction of an approximate event-to-ensemble distance, in the form of an anomaly score. We will provide

background and discuss the architecture of our autoencoder in §9.3.2.

9.3.1 Metrics

First, we define the metrics that can be used to compute event-to-event distances. One of the simplest event

representations is to treat an event as an image, with pixel intensities representing the particles’ transverse

momentum [1243].2 A simple event-to-event metric, the “mean power error” (MPE), can then be written

as:
d(α)
MPE(I1, I2) =

1
Npixels

∑
i∈pixels

|I1,i − I2,i|α . (9.1)

where I1(2),i is the pixel intensity (transverse momentum) in pixel i of the image 1(2), and α is a parameter

that governs the relative importance of pixels with high/low intensity differences. This type of metric is

often used for doing regression. Frequently, the choice α = 2 is made, inspired by the χ2 statistic, in which

case d(2)
MPE is known as the mean-square error (MSE). The mean-absolute error (MAE) is another well-known

choice, corresponding to α = 1.

While d(α)
MPE makes sense in regression, using it on images does not make much sense from a physics point

of view.3 For instance, let I1 be the image of a particle with energy E in a single pixel and I2 be the image

of a particle with same energy E in the neighboring pixel. These events are nearly identical physically, but

will have a very large MSE distance. Moreover, we will still get the same MSE distance if we move one of

the two pixels much further way. Physically similar events do not necessarily result in small MSE distances.

2In principle, it would be interesting to consider the complete set of four-vectors of the particles in an event as a
representation, rather than the pixelated image, and define a metric on these. The p-Wasserstein distances described
later in this section are well-suited for such a representation, but building an autoencoder architecture on the full set
of four-vectors is more challenging. It is also important to comment that our image representation is dependent on
its preprocessing. Although recent studies have shown that the processing done to events before anomaly detection
is inherently model dependent [154], we work with the images as described.

3In contrast, if one designs a neural network with higher-level variables as the input data representation, using
MPE as the metric is a sensible choice.
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A completely different way to assign distance between two events is to compute the minimum “effort”

needed to transform one image into the other, known as the optimal transport distance. There are many

possible optimal transport algorithms (see [1244] for a broad review). Finding the minimum effort is an

optimization problem: given a cost function cij, where i and j label elements (e.g. pixel labels) of the two

events, we optimize over the transport plan, fij. The cost can be thought of as how much work it takes to

transport a single unit of intensity a given distance, and the plan describes how much intensity to transport

and where to transport it to. In terms of the cost and plan, the total optimal transport cost dOT is then

defined as
dOT = min

f

∑
i,j

fij cij . (9.2)

In some cases, the cost function cij is itself a positive definite distance, in which case dOT is also a distance.
One example is the set of p-Wasserstein distances:

d(p)
Wass =

(
min

f

∑
i,j

fij (cij)
p
)1/p

, (9.3)

Depending on the problem, the set of fij may have to satisfy additional constraints.

We define the underlying cost cij as the Euclidean distance in the (η,φ) plane between pixel i in image

I1 and pixel j in image I2. The transport plan fij is defined by the amount of pT that is moved from pixel

i in image I1 to pixel j in image I2. The transport plan is constrained such that the amount of pT moved

from a pixel cannot be more than what was there,
∑

j fij ≤ pT,i. Similarly the amount of pT moved into

a pixel cannot exceed the amount in that pixel in I2:
∑

i fij ≤ p′
T,j. Here, we consider normalized images,

preprocessed such that the total intensity summed over all pixels is equal to unity, so that there is no

extra cost of creating or destroying pT. In mathematical language, we are considering “balanced optimal

transport”.

In particle physics applications, unbalanced optimal transport with the choice p = 1 is commonly referred

to as the Energy Movers Distance (EMD) [1231, 1232], as it has the interpretation of work required to

rearrange an energy pattern. This interpretation makes the EMD a natural choice for a metric on collider

events. This has prompted further work on using the EMD to define event shape observables characterizing

the event isotropy [1245], which can be useful in searching for signals that are very non-QCD-like [1246,1247].

Sometimes, p > 1 has been considered [1232], while the case of 0 < p < 1 has been less explored. Intuitively,

p < 1 gives more importance to smaller distances. While the EMD includes an additional term to account

for energy differences between jets, in our results, we will restrict to balanced optimal transport, since we

normalize the images.

The p-Wasserstein optimal transport metrics are more aligned with what one expects for physical events

than MPE. For example, two single-particle events where the particles are nearby will have a much smaller
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Figure 9.1: The pairwise (event-to-event) distances between event images for different metrics. The mean
squared error (d(2)

MPE) is displayed along the x-axis and the 1-Wasserstein distance (d(1)
Wass) is along the y-axis.

p-Wasserstein distance than when they are far from each other, in contrast to their MSE distance. We find

that the 1-Wasserstein distance and MSE have mild correlations, as shown in Fig. 9.1.

We reiterate that both d(α)
MPE and d(p)

Wass are used to compare the distance between two images (or events).

However, for anomaly detection, we want to know how far an event is from the expected distribution. One

way to do this is with an autoencoder, which we describe next.

9.3.2 Autoencoders

A popular method for detecting anomalous data is with a neural-network autoencoder (AE). An autoencoder

works by first encoding the data in a lower-dimensional latent space, and then decoding it back to the original

higher-dimensional representation. The idea is that data similar to the training sample will be reconstructed

well, whereas data that is not similar to the training sample may be reconstructed poorly. The reconstruction

fidelity can then be used as an anomaly score. Often the data are represented as images, and the autoencoder

uses the MSE metric (eq. (9.1) with α = 2) to compare the input image to the reconstructed image.

In Fig. 9.2, we show an example of an autoencoder architecture that we will use, which we implement

in pytorch [1248]. The encoder is made up of some number of downsampling blocks (there are two in the

figure, each marked by a dashed blue line). Each block contains two sets of 3× 3 convolutional layers with a

depth of five filters. The stride and padding are set to keep the image size the same and the ELU activation

function [1249] is applied after each layer. After the convolutional layers, the data is downsampled through

a 2 × 2 average pooling layer. After the final downsampling block, the data is flattened and then followed

by a dense layer with 100 nodes and an ELU activation. Finally the network is mapped to the latent space

through another dense layer. We experiment with one, two, and three downsampling blocks, and use a fixed
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Figure 9.2: Example architecture of an autoencoder, as used for this study. The autoencoder is made of
two networks, the encoder and the decoder, each with one, two, or three down(up)-sampling blocks.

latent size of 64 dimensions. Our latent space is substantially larger than what is often used, for example [132]

uses a six dimensional latent representation and [133] finds the optimal size to be around 20-34 for their

top-tagging data. We chose the latent space size by preforming a small scan over latent dimension sizes [2,

4, 8, 16, 32, 64] on the “The Machine Learning Landscape of Top Taggers” data [39] and found that the

larger latent space yielded better top tagging. We then changed to the current data set, as there are more

signals to consider (i.e. the W). The new data uses different transverse momentum cuts, so re-optimizing

would in general be required. However, part of the point of this chapter is to point out that one cannot
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optimize without a signal model in mind.4

The second part of the AE is the decoder, which maps the latent space back to the space of the input

data. In our setup, the decoder is a mirror of the encoder. The first step is a dense layer with 100 nodes and

ELU activation. From here, another dense layer is used, where the number of nodes is set to the number

of pixels in the final downsampling block. The ELU activation function is used again, and then the data is

reshaped into a square array. From here, the same number of upsampling blocks is applied as the number of

downsampling blocks. In each upsampling block, the first operation is a 2D transposed convolution which

doubles the shape of the image and contains a depth of five filters, followed by the ELU activation. After

this, two 3×3 convolutional layers are used with the ELU activation with the stride and padding set to keep

the image size the same. The final convolution operation reduces the depth to one channel.

During training and inference, the input image is compared with the reconstructed image via some

choice of event-to-event metric. A common method is to use the MSE as the loss function, with the aim of

reproducing the exact image. However, it is possible to use other metrics for the comparison. Furthermore,

the metric used for training does not need to be the same as the metric used for the anomaly score (see

for instance [146]). We will refer to the difference between the input and reconstructed image as the image

distance, also known as the reconstruction error.

A variational autoencoder enhances the basic autoencoder by adding stochasticity to the latent embed-

ding. In a regular autoencoder, which is a deterministic function, very dissimilar events can be placed near

each other in the latent space. Distances in the latent space of an ordinary AE therefore do not have a precise

meaning. In a VAE, the stochastic element makes the network return a distribution in the latent space for

each input event. Since the same input data can be mapped to several nearby points in a VAE, dissimilar

events cannot be placed nearby. Returning a distribution in the latent space is therefore essential for making

distances in the latent space meaningful. The stochasticity also connects the loss to the statistics method

of variational inference [1234, 1250], as we summarize in appendix F.3 (see also [1250, 1251] for reviews).

Specifically, we show that the autoencoder estimates a lower bound on the likelihood for any given event

given the assumption that the event comes from the background distribution that the network is trained on.

To implement the stochasticity of a VAE, our networks are trained using the standard reparameterization

trick [1234, 1252]. A single element of the input data now yields a distribution, and these distributions are

treated as a set of D independent Gaussian distributions, where D is the dimension of the latent space.

The output of the encoder is then doubled: instead of returning a single point in the latent space, it now

outputs both the means μ and the variances σ2 of the distribution in latent space. The loss function for the

4On the other hand, as discusssed below, we can view the KL-divergence (and β) as regularizing the network.
There will be a strong correlation with the optimal value of β with the size of the latent space. So making a different
selection for the latent dimension would lead to a different value of β, but would not change the story.
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network also has to be modified: we want the background sample to be well modeled by a set of Gaussian

distributions in latent space. This is done by introducing a Kullback-Leibler divergence (KLD) term (see

appendix F.3 for details), which is estimated as:5

KLD = −1
2
(
1 + logσ2 − μ2 − σ2). (9.4)

This KLD term acts to regularize the autoencoder by pushing the means in the latent space to zero and

the variances to one. Depending on the metric used to determine the distance between the original and

reconstructed data, more or less regularization may be needed. To account for this, we introduce another

hyperparameter β, and define the loss function as

L =
(
1− β

)
× Image distance + β× KLD . (9.5)

We scan over β ∈
{

0, 10−9, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3}, typically finding the best results for small but

nonzero β.

To minimize the loss given in eq. (9.5), we use the Adam optimizer [1255] with the default parameters

and an initial learning rate of 10−3. The training data consists of around 550,000 QCD dijet events, and

we reserve 50,000 QCD events for an independent validation set. After each epoch of training, the loss is

evaluated on the validation set. When the loss has not improved on the validation set for five epochs, the

learning rate is decreased by a factor of 10, with a minimum learning rate of 10−5. Training concludes when

the validation loss has not improved for 12 epochs. We then restore the weights of the network from the

epoch with the best validation loss.

9.4 Autoencoder Results

Here we present the results of our studies of variational autoencoders. We start by studying the metric

dependence of VAE performance as anomaly detectors. Then we study the latent space to understand what

the VAE is learning.

9.4.1 Autoencoder performance

Now we study the performance of variational autoencoders as anomaly detectors using different metrics.

Anomaly detection with an autoencoder requires two metric choices. First, one must choose a training

metric, used for computing the image distance during training. Next, one must choose an anomaly metric

5This estimation assumes Standard Normal priors for the likelihood of the latent data, as described in appendix F.3.
There is a great deal of ongoing research into methods to improve the likelihood estimate by changing the latent
space priors or improving the posterior approximations of the encoder [148,150,1253,1254].

195



to compute an anomaly score which determines how similar an event is to the training sample. The training

metric and anomaly metric can be the same, but do not have to be.

For the training metric, we consider MSE-type metrics d(2)
MPE and d(1)

MPE and p-Wasserstein metrics d(1)
Wass

and d(2)
Wass. Using a p-Wasserstein metric in the loss function to train an autoencoder is not standard, and

requires a little bit of extra engineering.6 The challenge is that the optimal-transport metrics are not well-

suited for the back-propagation part of the training procedure of a neural network. To get around this, we

used the Sinkhorn approximation within the GeomLoss package [1256]. Even with this, training was slow

and sometimes timed out after three days of training on GPU. In contrast, the MSE and MAE networks

typically completed training in around 12 hours on the same platform.

For the anomaly metric, we consider either using the full loss (including both the training metric contri-

bution and the KL-divergence part in the variational autoencoder), just the MSE error between the input

and output images
(
d(2)

MPE
)
, the MAE

(
d(1)

MPE
)
, or the p-Wasserstein distances

(
d(p)

Wass
)

with p = 0.5, 1.0, and

2.0. The value of each of these is computed for the test samples for the QCD dijet events, the top-jet events,

and the W-jet events.

To evaluate performance in anomaly detection, we train the autoencoder on a QCD background using

the training metric. Then we evaluate the anomaly score using the anomaly metric for a boosted top jet

signal sample and a boosted W-jet signal sample. For a figure of merit of performance we use the Area Under

the receiver operating characteristic Curve (AUC). We also include the signal efficiency at a cut which allows

only 10% of the QCD events to pass, which is denoted εS(εB = 0.1).
Results are shown in Table 9.1 for the training metric choices d(2)

MPE and d(1)
Wass and for different numbers

of downsampling blocks in the network. For each number of down samplings, we trained the network with

different values of the VAE parameter β, and in the table present the results for the value of β which achieved

the smallest loss on the validation data. For the d(2)
MPE trained networks, the values of β which minimized

the loss were 10−7, 10−7, and 10−8, for the one, two, and three down sample block networks, respectively.

The d(1)
Wass trained results are in the lower part of the table and had optimal values of β of 10−5, 10−8, and

10−7 for one, two, and three down sampling blocks, respectively. The entries highlighted in blue indicate the

configuration with the best AUC and εS(εB = 0.1) for top jets and W jets across all of our considered VAE

architectures, training methods, and anomaly score methods. The top row in the table shows the results (in

red) from a supervised approach, for comparison (see appendix F.4 for details of the supervised algorithm).

In general, we find the networks trained with d(2)
MPE as the training metric and using the full loss as the

anomaly metric has the best AUC. The exception is when only a single down sample layer is used, in which

case using d(1)
Wass as the anomaly metric does slightly better for the top-jet signal than using the full loss as

6 [1237] also implements a VAE trained with a p-Wasserstein metric.

196



Signal Top jet W jet
Training Down Anomaly AUC εS(εB = 0.1) AUC εS(εB = 0.1)Metric Samplings Metric

Supervised - - 0.94 0.81 0.96 0.91

MSE

1 (β = 10−7)

Loss 0.82 0.45 0.61 0.10
MSE 0.82 0.45 0.60 0.10
MAE 0.79 0.34 0.48 0.03

Wass(0.5) 0.82 0.42 0.45 0.04
Wass(1) 0.83 0.47 0.41 0.05
Wass(2) 0.81 0.45 0.39 0.08

2 (β = 10−7)

Loss 0.83 0.48 0.65 0.14
MSE 0.83 0.48 0.65 0.14
MAE 0.80 0.37 0.53 0.04

Wass(0.5) 0.82 0.43 0.51 0.04
Wass(1) 0.82 0.44 0.51 0.04
Wass(2) 0.81 0.44 0.54 0.06

3 (β = 10−8)

Loss 0.84 0.49 0.65 0.12
MSE 0.84 0.48 0.65 0.12
MAE 0.81 0.39 0.53 0.04

Wass(0.5) 0.83 0.46 0.52 0.04
Wass(1) 0.84 0.51 0.52 0.05
Wass(2) 0.82 0.51 0.54 0.08

Wass(1)

1 (β = 10−5)

Loss 0.78 0.35 0.44 0.04
MSE 0.71 0.23 0.57 0.12
MAE 0.72 0.20 0.49 0.03

Wass(0.5) 0.75 0.26 0.47 0.03
Wass(1) 0.78 0.35 0.44 0.04
Wass(2) 0.76 0.37 0.39 0.05

2 (β = 10−8)

Loss 0.79 0.37 0.46 0.04
MSE 0.76 0.33 0.61 0.15
MAE 0.75 0.26 0.52 0.04

Wass(0.5) 0.77 0.31 0.49 0.03
Wass(1) 0.79 0.37 0.46 0.04
Wass(2) 0.77 0.38 0.40 0.06

3 (β = 10−7)

Loss 0.79 0.36 0.41 0.03
MSE 0.79 0.38 0.60 0.13
MAE 0.77 0.31 0.51 0.03

Wass(0.5) 0.79 0.33 0.47 0.03
Wass(1) 0.79 0.36 0.41 0.03
Wass(2) 0.7 0.32 0.36 0.06

Table 9.1: Results showing the ability of a VAE trained on QCD only samples to distinguish top and W
jets from QCD jets. The Training Metric column shows which distance metric is used in the loss function for
training, and the Anomaly Metric column shows the distance metric used at inference time. The bold blue
entries mark the highest AUCs and signal efficiencies overall. We indicate the p-Wasserstein distance metric
as Wass(p), and the MPE with power α = 1, 2 by MAE and MSE, respectively. The number in parenthesis
in the Down Sampling column denotes the value of β which yields the lowest total loss on the validation set
for the given number of down samplings.
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Figure 9.3: Results from scanning over β. The value of β which minimizes the validation loss does not
yield the highest AUCs or signal acceptence for fixed background rejection for either the top or W samples.
If one were to use one of the signal samples to chose the value of β, it can lead to worse results on the other
signal.

the anomaly metric. When d(1)
Wass is used as the training metric, the best performance is with d(2)

MPE as the

anomaly metric.

We can see at this stage the proliferation of choices one has to make when deciding what architecture,

training metric, and anomaly metric to use. Making these choices is especially hard to do if one wants to

remain model agnostic. For instance, Fig. 9.3 shows the results of the network trained with d(2)
MPE as the

reconstruction loss. The left panel contains the loss on the QCD validation events. Using the idea that

minimizing the loss is getting a better estimate of the probability of an event, one would expect that the

network configuration (number of down samplings and value of β) which minimizes the loss will have learned

the QCD distribution the best. However, the remaining panels show the ability of the networks to distinguish

top and W jets from the QCD background in the upper and lower panels, respectively. The middle panels

display the AUC and the right panels show the signal acceptance at a cut that allows only 10% of the QCD

background events to pass. In particular, we see that the value of β which minimizes any of the loss curves

does not yield the best signal separation. We also point out that the network with a single down sample block

has the lowest loss, but is consistently the worst anomaly detector. This figure also highlights the danger
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of using the metrics of a particular signal to chose the hyperparameters of a universal anomaly detector.

Examining only performance on the top jets, it would be tempting to pick the three down sample networks

with a value of β = 10−9, as this gives the best AUC and signal acceptance for the fixed background rejection

for the tops. However, these particular networks have poor score for the W jets. This is the challenge of

signal independent searches; without a signal model in mind, optimizing analysis strategies is hard to do in

a principled manner.

The network trained with d(2)
MPE with a small KL divergence term yields the best anomaly detection

performance. Therefore, we expect that it is learning a good representation of the underlying background

distribution. We next explore this hypothesis by examining event-to-event distances among different metrics.

9.4.2 What has the VAE learned?

In order for a variational autoencoder to be able to judge the likelihood of an event given the assumption

that it came from the set of training data, it must have a representation of the probability distribution of

events in the training sample. Moreover, since it first maps events to a lower-dimensional latent space, the

information about the relative likelihood should be encoded in the latent space in some way. It would make

sense if the network places similar events nearby in the latent space, and dissimilar events far apart. In this

section we attempt to quantify if this is indeed true by comparing to the more physical Wasserstein distance.

Since each input is mapped to a (Gaussian) distribution in the latent space, we use the Euclidean distance

between the means of these distributions, which is a simple measure of the distance in the latent space.7 In

Fig. 9.4, we show the correlations between the Euclidean latent space distance and the 1-Wasserstein event

distance among all the ∼ 106 pairings of 1000 events in the QCD test set for various values of the VAE

parameter β. For this study, the events are passed through the encoder part of a VAE with three down sam-

pling layers, down to a 64 dimensional latent space where the Euclidean distance is computed. As the value

of β is increased, the network goes from having little regularization to being forced to approach a Gaussian.

Correspondingly, the correlation initially grows as the structure is forced upon the latent representation,

and then decreases as β becomes so large that the regularization dominates and the distribution becomes

nearly Gaussian. We observe similar results for the networks with one and two downsampling layers that

are trained with d(2)
MPE in the loss function. In this figure, the value of β which gives the minimum loss

corresponds to the β with maximum correlation, but we do not find this trend to hold in general. It seems

that the VAE with an intermediate value of β that balances the d(2)
MPE and KLD terms in the loss function

creates a latent space where distances between events are correlated with the d(1)
Wass distance in the image

space.

7One could also try to take into account the variance of the distributions, by e.g., taking the KL divergence
between the two distributions.
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Figure 9.4: Each panel shows correlations between pair-wise distances of events in the QCD test set. The
y-axis always denotes the d(1)

Wassdistance. The x-axis denotes the Euclidean distance in the latent space. The
representation learned by the network is more correlated with the d(1)

Wassdistances than the MSE distances
(see Fig. 9.1). The latent space distances were computed from networks trained with an MSE loss function,
with two downsampling steps.
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Figure 9.5: Correlations of the pair-wise event distance in the image space with the interior activations of
the network after different numbers of downsampling blocks.

The downsampling operations are critical to the production of the latent space. As they combine infor-

mation from neighboring pixels, they introduce an element of scale which MPE would not exhibit. To verify

the importance of downsampling, we show in Fig. 9.5 the pair-wise event distance correlations for the same

network at different depths into the encoder. In the first panel, distances on the x-axis are computed in the

first downsampling block, where the events are represented as 20× 20× 5 tensors and the d(2)
MPE goes across

all 2000 “pixels” (see Fig. 9.2). The correlation between the distance in this first downsampling layer and the

Wasserstein distance of the events is much larger than the MSE distance between the original events. The

correlation further increases from the first down sample block to the second. The correlation then decreases

after a third downsampling. Then, when the information is further reduced to the latent space, we get

smaller correlations than seen in the early stages of the network.

Although the EMD metric is a p-Wasserstein metric with p = 1, there is no clear reason why p = 1
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Figure 9.6: Correlations of the pair-wise event distance in the image space with the interior activations of
the network after different numbers of down sample blocks. This is the same network as in Fig. 9.5, but now
the image distances use a different power of p. The correlation is higher with p = 0.5 than p = 1.

should be preferred to other values. So, next we consider p = 0.5. In Fig. 9.6, we show the correlations

for the same network with three down sampling layers but now using d(0.5)
Wass distances along the y-axis. The

distances between events at different layers in the network are ∼ 5% more correlated with d(0.5)
Wass than d(1)

Wass.

In this section, we have explored the representation of the QCD event distribution that variational

autoencoders learn. Our conclusion from this study is that the Euclidean distances between QCD events

in the latent space are highly correlated with the p-Wasserstein distances between the events themselves.

This is particularly compelling because the VAE is trained with the MSE metric for its loss function and

has no direct access to any p-Wasserstein metric. A related question is how the correlations would look if

a p-Wasserstein metric were used for training. In that case, we find that the Euclidean distances between

events in the latent space of the Wasserstein trained networks are even more correlated with the Wasserstein

distances in the image space. Thus, it could be argued that the Wasserstein trained networks learn an even

better representation of the QCD distribution than the MSE trained networks. However, the VAE with MSE

training worked better for finding the top- and W-jet signals than those trained with a Wasserstein loss.

The fact that the method with the “best” latent representation does not yield the best signal separation

highlights the challenges of model agnostic anomaly detection.

9.5 Event-to-Ensemble Distance

In the previous section we showed that VAEs tend to work better when MSE loss is used for training

than when Wasserstein metrics are used for training and that the Euclidean distance in the latent space

correlates strongly with the Wasserstein metric on the data, regardless of the metric used for training. If

the power of the VAE for anomaly detection in physical problems stems from it implicitly learning aspects

of the p-Wasserstein metrics, we can then ask if there may be a way to use these metrics more directly for

anomaly detection, sidestepping the VAE entirely. One way to do this is to use the metric to compute an
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event-to-ensemble distance, as we explore in this section.

We would like to use the p-Wasserstein distance, or another metric, to characterize the distance of an

event to the background ensemble. There are already several options for using Wasserstein distances to

characterize different types of events in the literature, such as k nearest neighbor (kNN) classifiers [1231],

“linearized” optimal transport [40], where all the events are compared to a single reference event and this is

used to define a new distance, and event isotropy, which compares a given event to an isotropic configura-

tion [1245]. Our goal, using a method like these, is to extract from the background ensemble one or more

representative images and to compute the distance of a given signal or background event to those images.

This direct event-to-ensemble distance measure can then be compared to the VAE anomaly score, which is

also effectively an event-to-ensemble distance.

To compute the direct event-to-ensemble distance we need an algorithm to select or construct fiducial

events from the ensemble and a metric with which to compute the distance. As with the VAE architecture,

there may be no choice that is optimal for all signals. In choosing the fiducial events, we must decide which

sample to choose events from, how to select those events, how many events to use, how to represent the

fiducial events (e.g. as images), and how to combine the distances to the different events. To make a fair

comparison to the VAE approach, we would like our algorithm for generating fiducial events to depend only

on the background sample, independent of what anomalous signal we might search for. Thus we choose the

QCD jet event ensemble as our reference sample. To select events from the sample, the simplest possibility

is to arbitrarily select some number of random images. However, despite occasionally giving a large AUC for

classification, results with random images are very sensitive to fluctuations between the random images. A

second possibility that may seem sensible is to take the average of all events in the sample. A third option,

which we find to be the most natural, is to use k medoids as we now explain.

With a given metric, which we call the medoid metric, we can compute the pairwise distance d(xi, xj)

between any two events in the ensemble. Then for each event x we can sum over all the distances to all other

events d(x) =
∑

j d(x, xj). The medoid of the ensemble is the event x that minimizes d(x). k medoids

generalizes this to finding the k events for which the sum of the distances of each event to the closest of the

k medoids is minimized. Thus the event fragments into a set of clusters, with each cluster closest to one

of the k medoids. k-medoids clustering is similar to k-means clustering when the medoid metric is chosen

to be the Euclidean metric, except that k-medoid clustering actually requires the medoid to be one of the

events in the set. Medoids have previously been explored in other contexts in [1231, 1232, 1257, 1258]. To

use k medoids, we need to choose a value for k and a medoid metric. Then it is natural to take for the

event-to-ensemble distance the distance of an event to its closest medoid. Although one could in principle

use a different metric to compute the event-to-ensemble distance, it is also most natural to use the same
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Figure 9.7: Example of the elbow method. Left shows histograms of the 1-Wasserstein distance to the
closest medoid, with colors corresponding to the number of medoids. Right plots the peak of each of these
histograms, as a function of the number of medoids.

medoid metric that determines the medoids.

Choosing the number of medoids k is challenging to do in a signal independent way. One approach is

the elbow method, a common heuristic for determining how many clusters are in a dataset. In our case, to

use the elbow method we scan over the number k of medoids, and for each k compute the distances of all

the events in our sample to the nearest medoid and histogram the results. There will be a small number of

events very close to a medoid and a small number very far from all medoids, so the histograms will have a

peak at some finite value of the distance. Moreover, the distance to the peak will decrease monotonically

as the number of medoids increases. In many applications the decrease is rapid for small k, but at some k
this behavior abruptly slows down. Thus the peak distance as a function of k often has an elbow shape.

To determine the elbow location algorithmically we perform a linear regression to an elbow function (two

straight lines), and take the first integer value after the elbow as the suggested value of k. The result can be

seen in Fig. 9.7. The idea behind the elbow method is that increasing k past the location of the elbow should

not give much improvement. Moreover, in the case of anomaly detection, if we have too many medoids, we

can get one medoid that looks “signal-like” rather than “background-like”. We find that typically k ∼ 2− 4
medoids is selected according to this elbow method.

The main advantage of the elbow method is that it can be automated and used independent of the

sample or the use case. However, there often is not a clear elbow. In Fig. 9.7, the elbow is only apparent

because we have fit to a piecewise linear function. The data seems to follow more of a power law behavior.

In addition, the location of the elbow can be affected by the maximum number of medoids we include in

the fit. Additionally, the elbow can only be computed once we’ve already made the arbitrary choice of the
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medoid metric, and of the metric being used for the comparison between the full sample and the reference

sample. Finally, there is no reason to expect that the elbow choice of k, which is determined only by the

background sample, would be optimal for anomaly detection tasks. Thus, we also consider values of k not

determined by the elbow method for this study.

The top of Table 9.2 shows results for top-jet vs. QCD-jet discrimination and W-jet vs. QCD-jet

discrimination when QCD jets are used for the reference sample. We show results for different values of k
with medoids, using different medoid metrics. We also show the result from using the distance to a single

composite average event determined by averaging each pixel intensity over all events in the reference sample.

For each case, we include both the AUC and the signal efficiency at a cut which allows only 10% of the QCD

events to pass. When we study the elbow for the most common 1-Wasserstein metric, we see reasonable

performance for both QCD and top jets, though it is best for neither of them. This is in line with what

we expect for unsupervised anomaly detection. For simplicity, we report results where the metric used to

select the medoids is the same one used to compute our observable. We could have chosen two different

metrics for the medoid metric and that used to compute the event-to-ensemble distance, but restricting to

the case where they are the same does not qualitatively change our results. Table 9.2 shows that the number

of medoids and the choice of metric matters substantially.

We find that the QCD medoids typically perform better than the average QCD jet. This is not surprising,

since the average QCD jet is much more concentrated in the center of the image than any real QCD jet,

as can be seen in Fig. 9.8. In this figure, the color shows the fraction of the total pT in each pixel on a

logarithmic scale. We also find better performance for anomaly detection with 5-6 medoids, rather than the

2-4 medoids suggested by the elbow method. When detecting top jets with QCD reference images, we get

the best results when the p-Wasserstein metric with p = 1 is used to compare images, though we also find

reasonable performance for the p-Wasserstein metric with p = 0.5 or p = 2 (not shown in the table) and when

the MAE metric is used. Although MAE is not a physically motivated metric, the performance in this case

is not surprising because MAE between events is highly correlated with p-Wasserstein distances between

events for QCD jets (the Pearson correlation coefficient between MAE and the 1-Wasserstein distance is

0.87).

That our results depend on the exponent p is suggestive. For the p-Wasserstein metric with larger p
we get substantially decreased performance when comparing to QCD reference jets. This suggests that the

ideal value of p is related to the relevant scales in the problem: a smaller value of p places comparatively

larger emphasis on pixels with smaller differences. This is consistent with results such as [154], which finds

better AE performance when pixel intensities are rescaled to emphasize dim pixels. When we choose a better

(smaller) value of p, the results are also slightly less sensitive to exactly which QCD reference images are
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Top jet W jet
Reference
Sample Metric

Number
of

medoids
Method AUC εS(εB = 0.1) AUC εS(εB = 0.1)

Supervised - - - 0.94 0.81 0.96 0.91

QCD
Reference

Wass(1)

- Avg 0.81 0.33 0.62 0.02
1 Medoid 0.83 0.28 0.63 0.02
3 (e) Medoids (min) 0.85 0.43 0.67 0.04
5 Medoids (min) 0.87 0.54 0.60 0.05
7 Medoids (min) 0.87 0.54 0.61 0.05

Wass(5)

- Avg 0.53 0.10 0.60 0.03
1 Medoid 0.62 0.21 0.36 0.03
3 Medoids (min) 0.66 0.19 0.41 0.05
4 (e) Medoids (min) 0.67 0.22 0.41 0.04
5 Medoids (min) 0.71 0.24 0.43 0.04

MAE

- Avg 0.83 0.47 0.71 0.08
1 Medoid 0.82 0.40 0.71 0.07
3 (e) Medoids (min) 0.82 0.49 0.61 0.08
5 Medoids (min) 0.83 0.48 0.67 0.08
7 Medoids (min) 0.83 0.48 0.65 0.08

Top
Reference

Wass(1)

- Avg 0.69 0.17 0.69 0.04
1 Medoid 0.58 0.20 0.79 0.31
3 (e) Medoids (min) 0.32 0.07 0.79 0.53
5 Medoids (min) 0.45 0.12 0.84 0.62
7 Medoids (min) 0.49 0.13 0.83 0.60

Wass(5)

- Avg 0.72 0.18 0.40 0.01
1 Medoid 0.53 0.12 0.52 0.05
2 (e) Medoids (min) 0.72 0.32 0.70 0.06
3 Medoids (min) 0.66 0.20 0.61 0.04
5 Medoids (min) 0.61 0.16 0.54 0.03

Wass(5)
3 (e) Medoids (sum) 0.66 0.27 0.66 0.06
5 Medoids (sum) 0.73 0.30 0.58 0.02
7 Medoids (sum) 0.75 0.31 0.60 0.02

MAE
- Avg 0.48 0.05 0.57 0.05
1 Medoid 0.29 0.04 0.64 0.23
3 (e) Medoids (min) 0.25 0.03 0.36 0.03
5 Medoids (min) 0.31 0.10 0.58 0.31

Table 9.2: Results for QCD vs. signal classification, with signal labeled in the top row. Top rows use a QCD
reference sample, and bottom rows use a top reference sample (assuming W events are more “top-like” than
QCD events). When there are multiple medoids, distances are combined either by taking the minimum or the
sum of the distances to the k different medoids, as denoted in the table. Medoids are selected with the same
metric as the one used to compare images. For each metric, we note which number of medoids corresponds
to the elbow by (e). The best AUC and εS(εB = 0.1) values for each reference sample are denoted in blue.
We indicate the p-Wasserstein distance metric as Wass(p), and the MPE with power α = 1, 2 by MAE and
MSE, respectively.
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Figure 9.8: Images of example QCD and top events. The top row shows QCD events; the bottom row
shows top events. The left column shows the average image in each case, and the other two columns show two
medoids computed with the 1-Wasserstein metric. Note medoids are more sparse and varied than average
images, and that one of the top medoids appears “QCD-like” when we include multiple medoids.

chosen than when a larger value is chosen.

While autoencoders are often trained on a QCD background, several studies have explored trying to train

an AE on alternative samples. One example is [154], which showed that AEs perform poorly when tagging

QCD jets if trained on a top jet sample. This can be attributed to top jets being more complex than QCD

jets, so that an AE trained on top jets can also reconstruct QCD jets despite them being out of distribution

samples. While modifications can be made so that an AE trained on top jets can tag QCD jets [148, 154],

requiring sample dependent optimization defeats the point of unsupervised anomaly detection.

Unlike in the case of an AE, event-to-ensemble distances can be directly applied to other reference

samples, assuming an applicable metric is selected. We include in the bottom half of Table 9.2 results

using a top-jet reference sample for concreteness and brevity, but the method can be easily applied to other

reference samples. We find that for top reference samples, the best metric is not the same as for QCD

reference samples. In contrast to the case of the QCD reference sample, we find the p-Wasserstein metric

with higher p does better for QCD vs. top classification than that with p = 1. We suspect that top reference
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samples usually prefer a large value of the exponent p because a larger power prioritizes larger differences

in pT over smaller ones, and effective classification using top reference samples should deprioritize small

pT differences, since the top reference samples are spread out with substantial pixel-to-pixel variation. In

contrast, the QCD reference sample case has fewer populated pixels with less variation, so a smaller value

of the exponent p is needed. However, this result is signal dependent, in addition to being dependent on

the background sample: when trying to use the top reference sample to distinguish QCD vs. W-jet events,

we find using the p-Wasserstein metric with p = 1 is better than higher p. We also find that whether the

average event or minimum distance to the medoids does better depends on the signal sample — for QCD

versus top classification with a top reference sample the average event does better than medoids (unlike the

QCD reference sample case), but the opposite is true for QCD vs. W classification. Furthermore, we find the

somewhat counter intuitive result that the sum of the distance to the medoids does better than the minimum

for top vs. QCD classification with top reference jets, which is surprising because only the distance to the

closest event is actually used when determining the medoids. For QCD vs. top classification, using a QCD

reference sample still outperforms the top reference sample, but the opposite is true when doing QCD vs.

W classification.

Our best results using the event-to-ensemble distance approach are comparable to and even slightly

exceed the performance of the VAE in the previous section, which can be seen from comparing Table 9.2

to Table 9.1. This suggests that if we choose a smart, physically motivated metric like the p-Wasserstein

distance then we can use the medoid method, which is much faster and simpler than the VAE, and avoids

optimizing all the hyperparameters in the VAE network architecture. The trade-off is that we need to put

effort into optimizing the metric and choice of k for the medoid approach. This is not surprising, since

as we saw in the previous section, distances in the VAE latent space between two separate encoded latent

representations are fairly correlated with the p-Wasserstein distance between the original images. This

equivalence is further supported by our study of the number of downsampling layers in the previous section.

Like in the case of the p-Wasserstein metrics, locality is incorporated in the convolutional VAE on scales

other than the arbitrary pixel size due to the convolutions and down samplings.

The ease and speed of using the event-to-ensemble approach is a distinct advantage when compared to

AEs, where the architecture, normalization, and parameters all need to be optimized. However, since the

ideal metric and fiducial sample selection depend on both the background and signal samples, the signal

dependence of the event-to-ensemble approach further suggests that there may be advantages of weakly/semi-

supervised learning as compared to unsupervised learning, and that weakly/semi-supervised methods should

be explored further. The potential advantages of semi-supervised learning can be further seen from the fact

that the best QCD vs. W AUC values come from top reference samples, rather than QCD reference samples.
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9.6 Discussion

Using an autoencoder for anomaly detection is particularly challenging, since it must be trained well enough

to reconstruct the background, but not so well that it also reconstructs the signal. There are many details

about the network configuration that need to be optimized, such as the network size, metric used to compare

input and output images, the definition of the anomaly score, and hyperparameters. Many of the results

currently in the literature do not sufficiently emphasize these difficulties, so we have attempted in this chapter

to characterize and resolve them. To be concrete, we considered detecting boosted hadronic top and W jets

over a QCD-jet background. We considered using different metrics for training the VAE; we found that

using the more physically-motivated optimal transport-based metrics did not outperform the simpler mean-

squared-error metrics, and actually performed slightly worse. We found that the optimal values of various

hyperparameters depend on the signal that we are trying to detect and that the optimal hyperparameters

for describing the QCD sample are not necessarily those that detect anomalies the best.

In order to understand what the autoencoder has learned, we also studied the autoencoder latent space.

The latent space provides a representation of any particular event which can be used to study the background

distribution. In order to characterize this latent space, we computed the distance between distinct events.

One way to do this is by using the Euclidean distance between quantities in the latent space. Alternatively,

if we rely on a more physical, optimal transport based metric, we can compute the distances between images

directly. When we compared the two, we found that the event-to-event optimal transport based distances

between the background events are highly correlated with the Euclidean distances between events in the

latent space of the autoencoder. This suggests that the autoencoder is learning some aspects of optimal

transport, despite being trained with only a mean-squared-error based loss function.

This motivated us to develop methods that use optimal transport more directly. By choosing a repre-

sentation of the QCD background distribution, such as the average QCD image or several medoids of the set

of QCD jets, we can directly compute the optimal transport distance to this fiducial sample and use it as an

anomaly score. We found that this method is at least as effective as the autoencoder, with the added benefits

of being easier and faster to optimize, and generalizing more easily than the autoencoder to more complicated

background distributions. We also found that the best choice of optimal transport metric depends on both

the new physics signal and the qualities of the expected background distribution. Before using this medoid

method in practice, we suggest additional studies of this method, including exploring background sculpting,

testing the effects of signal contamination when selecting a background reference sample, and studying the

correlation of this anomaly score with known observables.

Although we have shown that the performance of variational autoencoders can be reproduced, and

improved upon, by the relatively simpler medoid method, neither approach is very close to optimal for signal
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detection. To be quantitative, when trained on a QCD sample, the best autoencoder performance we found

gave an AUC of 0.65 for W detection (see Table 9.1). The best performance using medoids with a QCD

background gave a slightly better AUC of 0.71 (see Table 9.2). These are both worse than the performance

of a fully supervised network which gave a nearly perfect AUC of 0.96. Somewhat surprisingly, we found

that when the medoids method was used on a top-jet background sample, it found W jets over QCD better

(AUC of 0.84) than when trained on a QCD background. This is comparable to what a supervised network

trained to find tops over QCD gives when tested on W vs. QCD (AUC of 0.86). These observations suggest

that a path forward might be to use a semi-supervised approach [99, 142, 1259, 1260], where a network is

trained with an example signal in mind, and then used for anomaly detection more broadly.
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10
Conclusion

The existence of new physics beyond the Standard Model is motivated by an assortment of open questions.

A combination of theoretical and data-driven tools will be essential to effectively probing the myriad of BSM

models that have been proposed to answer these questions. In this dissertation, we have explored several of

these tools.

We have explored many different EFTs, including typical Lorentz-invariant ones, as well as more sophis-

ticated ones where those assumptions break down, such as those with topological defects. First, we discussed

several different theories of axion interactions, consisting of EFTs for axions interacting with other axions or

non-periodic scalars, EFTs for axions interacting with magnetic monopoles, and EFTs for massive fermions

in an axion string background. We found that, even in the presence of mixing, in consistent EFTs axion

couplings to gauge fields are always quantized up to violations proportional to the axion mass; that in the

presence of abelian gauge fields axion interactions with virtual magnetic monopoles generate a new contribu-

tion to the axion potential; and that fermion zero modes delocalize from axion strings when the bulk fermions

have a Dirac mass term. Next, we studied several different models which can explain recent experimental

deviations from theoretical expectations, including CP violating Higgs portal dark matter, a scalar triplet

model, and modified Froggatt-Nielsen models. We considered the viability of CP violating Higgs portal

WIMP dark matter models for explaining the galactic center excess of gamma rays and determined their

consistency with other experimental constraints. We also performed updated electroweak fits including the
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CDF-II W mass measurement and proposed scalar triplet and multiple generation singlet doublet models as

explanations of the CDF-II W mass anomaly. Additionally, we defined wrinkles in Froggatt-Nielsen models

and demonstrated that, when BSM physics is included in these models, wrinkles generate flexibility in the

size of new physics Yukawa couplings.

Finally, we utilized machine learning for precision Top-quark mass measurement and anomaly detection.

For Top-quark mass measurement, we showed that complicated ML methods such as DCTR do not improve

the precision more than traditional approaches like jet grooming do, but that simultaneously fitting to

ensembles of events can lead to additional precision. For anomaly detection, we identify Wasserstein distances

to multiple different reference samples as a useful tool and identify challenges with some autoencoder based

methods.

There are still many exciting open questions regarding these and other tools to look for BSM physics.

Some of these questions have been the subject of additional work since the papers contained in this disserta-

tion were originally published. For examples, see [862,1261,1262] on axion coupling quantization, [1263,1264]

on Higgs portal explanations of the gamma ray excess, and [1265] on axion string zero modes. However, our

understanding is far from complete, and there are still many opportunities for future work.
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A
Additional Information about Axion String Calculations

A.1 Numerical Techniques

We rely on Chebyshev interpolation to numerically solve the zero mode equations of motion (4.28). This

method is one of several numerical approaches used for collocation: the discretization of partial differential

equations (PDEs) to transform them into matrix equations. Here we give a brief introduction; more details

can be found in [1266,1267].

Chebyshev interpolation provides a method of approximating a smooth function f(ζ) on the interval

ζ ∈ [−1, 1] using its values at a finite and discrete set of points. That is, given the function f(ζ) evaluated at

the set of Cheybshev points,

ζk = cos
(π(2k + 1)

2(N + 1)

)
, k = 0, . . . ,N, (A.1)

we may approximate it at any point in ζ ∈ [−1, 1] via the interpolant

fN(ζ) =
N∑

k=0
f(ζk)pk(ζ) (A.2)

where the functions pk(ζ), defined such that pk(ζn) = δkn, are the degree-N Lagrange polynomials associ-

ated to the points (A.1). Importantly, the Lagrange polynomials can be reliably evaluated away from the

interpolation points using the second barycentric form [1267,1268],
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pk(ζ) =
wk

ζ − ζk

/ N∑
n=0

wn
ζ − ζn

, (A.3)

where we introduce the Chebyshev weights

wk = sin
(2πk(N + 2) + π

2(N + 1)

)
, k = 0, . . . ,N . (A.4)

The interpolant (A.2) then provides a degree-N polynomial approximation that exactly agrees with f(ζ) at

the points ζk and has an error which decays exponentially in N for all other points on the interval.

The interpolant (A.2) allows us to represent the function f(ζ) as a (N+1)-component vector f⃗ = {f(ζk)}.

We can similarly represent derivatives of this function working with the derivative matrices p′
k(ζn) and

p′′
k (ζn), defined by [1267,1269]

p′
k(ζn) =


wk/wn
ζn − ζk

n 6= k

−
∑
k ̸=n

p′
k(ζn) n = k

,

p′′
k (ζn) =


2p′

k(ζn)p′
n(ζn)−

2p′
k(ζn)

ζn − ζk
n 6= k

−
∑
k ̸=n

p′′
k (ζn) n = k

.

(A.5)

Any differential equation for f(ζ) on the interval ζ ∈ [−1, 1] can then be approximated by a matrix equation

for the function values {f(ζk)} by substituting (A.2) for f(ζ), evaluating the equation at each Chebshev point

ζk, and using (A.5) to convert differentiation into matrix multiplication. This matrix equation can then be

solved by any number of standard numerical techniques.

For example, the equation [
d2

dζ2 + g(ζ)
]
f(ζ) = 0 , (A.6)

for any regular function g(ζ) on ζ ∈ [−1, 1] can be approximated by the matrix equation

N∑
k=0

(D2 + G)nk f(ζk) = 0 , (A.7)

where (G)nk = g(ζk)δnk, (D2)nk = p′′
k (ζn), which is defined in (A.5), and the number of nodes is chosen to be

N+ 1. The solutions to (A.6) are then well-approximated by the interpolant (A.2) constructed from the null

space of the matrix (D2 + G). As long as N is large enough, this interpolant then provides an approximate

solution to (A.6) whose pointwise error decays exponentially in N.

When the equation we aim to solve is defined on the semi-infinite line r ∈ [0,∞), we must first map

it to the interval ζ ∈ [−1, 1] to apply Chebyshev interpolation. We find that the simplest map, the linear
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fractional transformation

ζ(r) = r− L
r + L , (A.8)

works well, where L is a tuneable parameter that broadly controls which r values are sampled by the

corresponding Chebyshev nodes (A.1). In practice, we take L to be an O(1) number times the scale over

which the solution varies naturally (set by μ−1 for the equations we are interested in) though we ensure that

our solutions do not depend on the precise choice of L.

For two-dimensional equations of motion like (4.28), we have a choice in how to apply Chebyshev in-

terpolation. The simplest approach is to expand in Fourier modes, as in §4.3.1, to reduce the problem to

a system of coupled ordinary differential equations. That is, we expand each spinor component into their

lowest 2J + 1 Fourier modes

ψα(r,ϕ) =
∑
|ℓ|≤J

ψα,ℓ(r) eiℓϕ , (A.9)

such that (4.28) reduces to a finite set of coupled equations (4.30) involving 2× (2J+1) mode functions. We

can then interpolate each radial function ψα,ℓ(r) with N+1 nodes to convert (4.30) into a 2×(2J+1)×(N+1)-
dimensional linear equation. The profiles displayed in Fig. 4.2 were generated with J = 41 and N = 61,

though our results are robust to changing both J and N.

Another approach is to interpolate the spinor components ψα(x, y) using a two-dimensional Cartesian

grid. This requires first mapping both x and y from (−∞,∞) to [−1, 1]. We do so via two different maps

ζ(xi) =


arctan(xi/Li) 0 ≤ m/μ ≤ 0.8

tanh(xi/Li) 0.4 ≤ m/μ ≤ 0.95
, (A.10)

depending on the value of m/μ, where xi = {x, y}. Here, the parameters Li = {Lx,Ly} determine the

relevant scales in the original x or y coordinate. These maps efficiently sample small (x, y) values while

avoiding numerical artifacts at large x and y. Since the solutions elongate in the x-direction as m → μ,

we used Lx ' O(1) × 1/(μ − m) and Ly ' O(1) × μ−1. We find that with these ranges of Lx and Ly, our

Cartesian results agree with each other for overlapping m/μ and that our solutions are independent of our

specific choice. For large numbers of nodes, Nx,Ny ≥ 90, our results obtained with a Cartesian grid agree

with those obtained using a Fourier mode expansion, but formulating the problem in the Fourier basis is

significantly faster.

Finally, to compute the moments of our solutions and properly normalize them, we must numerically

evaluate integrals involving these profiles. We do so via quadrature, in which the integral is approximated

by a weighted sum of the function’s values on the Chebyshev grid. Explicitly, an arbitrary integral of the

density |ψ(r,ϕ)|2 = |ψ0(r,ϕ)|2 + |ψ3(r,ϕ)|2 can be expressed as
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∫
d2r a(r,ϕ) |ψ(r,ϕ)|2 =

∑
α,n,ℓ,ℓ′

∫ 1

−1
dζ
∫ 2π

0
dϕ r′(ζ)an(ζ)einϕei(ℓ−ℓ′)ϕ ψα,ℓ(ζ)ψ∗

α,ℓ′(ζ)

= 2π
∑

α,k,ℓ,n
qk r′(ζk)an(ζk)ψα,ℓ(ζk)ψ∗

α,ℓ+n(ζk)

(A.11)

where

qk =

∫ 1

−1
dζ pk(ζ) (A.12)

is the quadrature weight, which can be efficiently numerically evaluated, and

a(r,ϕ) =
∑

|n|≤J,k
an(ζk)pk(ζ)einϕ (A.13)

is an arbitrary weight function, whose n’th Fourier mode has value an(ζk) at r(ζk). For instance, to normalize

the profile functions in Fig. 4.2, we evaluate (A.11) with a(r,ϕ) = 1, while to compute the dipole (4.80) we

choose a(r,ϕ) ∝ r cosϕ and a(r,ϕ) ∝ r sinϕ.

A.2 Multipole Moments

In this Appendix we provide more details on the derivation of the worldsheet effective action given in (4.77).

We follow the method in [871], adapted to the case of a string. Our starting point is the term in the action

that couples the gauge field to the four-dimensional current from (4.75), which is pointing along the axion

string,

Sem = −
∫
d4x jμAμ . (A.14)

As in the main text, we take μ = 0, 1, 2, 3, a = 0, 3, and i, j, ki = 1, 2.

Our goal is an effective action describing these interactions which is valid when the wavelength of the

gauge field is much larger than the characteristic size of the source. In this regime, we can Taylor expand

the gauge field about the string source at the origin,

Aμ(t, x⃗) = −
∞∑

n=0

1
n! xk1 · · · xkn

[
∂k1 · · · ∂knAμ

]
x=(t,0,0,z). (A.15)

Since our source of interest points along the string (see 4.75), we can drop the terms with μ = 1, 2. We are

left with the action

Sem = −
∞∑

n=0

∫
d2σ
∫
d2r 1

n!x
k1 · · · xkn ja(t, x⃗)

[
∂k1 · · · ∂knAa

]
(t, z). (A.16)

It is useful to rewrite the action in terms of gauge invariant quantities. We first consider the A0 term, and

note that Eki = F0ki = Ȧki + ∂kiA0. This allows us to exchange radial derivatives of A0 for time-derivatives
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of Aki and terms involving the electric field, E. We find,

SA0 =−
∫

d2σ
∫
d2r j0

[
A0](t, z)− ∞∑

n=1

1
n!

∫
d2σ

∫
d2r j0xk1 · · · xkn

[
∂k1 · · · ∂kn−1Ekn

]
(t, z)

+

∞∑
n=1

1
n!

∫
d2σ

∫
d2r j0xk1 · · · xkn

[
∂k1 · · · ∂kn−1Ȧkn

]
(t, z)

(A.17)

The last term in this expression can be combined with the A3 term of (A.16) to get a gauge invariant term

involving the magnetic field. To see this, we integrate by parts within the d2σ integral, and use current

conservation: ∂0j0 = −∂3j3. This allows us to rewrite,

[∫
d2r j0xk1 · · · xkn

]
∂k1 · · · ∂kn−1Ȧkn =

[∫
d2r (∂3j3) xk1 · · · xkn

]
∂k1 · · · ∂kn−1Akn

= −
[∫

d2r j3xk1 · · · xkn

]
∂k1 · · · ∂kn−1∂3Akn ,

(A.18)

where in the last equality we have integrated by parts again. With this replacement, the sum of the last

term of (A.17) and the A3 term from (A.16) is

SB =−
∫

d2σ
∫
d2r j3A3 −

∞∑
n=1

1
n!

∫
d2σ

∫
d2r j3xk1 · · · xkn∂k1 · · · ∂kn−1

(
∂3Akn

)
−

∞∑
n=1

1
n!

∫
d2σ

∫
d2r j3xk1 · · · xkn∂k1 · · · ∂kn−1

(
∂knA3

)
=−

∫
d2σ

∫
d2r j3A3 −

∞∑
n=1

1
n!

∫
d2σ

∫
d2r j3xk1 · · · xkn∂k1 · · · ∂kn−1 ε3knjBj,

(A.19)

where we have used ∂iA3 − ∂3Ai = Fi3 = ε3ijBj. Adding back the remaining terms in SA0 and relabeling

indices, we obtain the full action

Sem =−
∫
d2σ

∫
d2r (j0A0 + j3A3)−

∞∑
n=1

1
n!

∫
d2σ

[∫
d2rj0xk1 · · · xkn

]
∂k2 · · · ∂knEk1

−
∞∑

n=1

1
n!

∫
d2σ

[∫
d2r j3xk1 · · · xkn

]
∂k2 · · · ∂kn ε3k1jBj,

(A.20)

which can be written in terms of the field strength as

Sem =−
∫
d2σ

∫
d2r (j0A0 + j3A3)−

∞∑
n=1

1
n!

∫
d2σ

[∫
d2rjaxk1 · · · xkn

]
∂k2 · · · ∂knFk1a. (A.21)

This action reduces to (4.77) using the current (4.75) and the normalization condition for |F(r,ϕ)|2.
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B
Next-Order Velocity Expansion of the Dark Matter Annihilation

Cross Section

As established, to leading order in dark matter velocity, the annihilation signal is set by the pseudoscalar

coupling Im[yhχ ] (and subdominantly by gZχ), while spin-independent scattering is set by the scalar coupling

Re[yhχ ]. However, we would also like to understand whether we can generate the annihilation signal at all

in the limit that yhχ is real. In this limit, the leading velocity independent term vanishes, and we need to

consider terms of higher order in the halo velocity v.

For this argument we will neglect the contribution of the Z portal; a gZχ consistent with spin-dependent

constraints cannot generate a thermal relic annihilation cross section, as it does not have a mass resonance.1

Thus, for hypothetically viable parameter space it is safe to assume that the Z-mediated annihilation is

subdominant.

When yhχ has vanishing imaginary part, the leading contribution to the spin averaged annihilation

amplitude squared is

|M|2χχ→f f̄ =
4y2

hfy2
hχm2

χ(m2
χ −m2

f )v2

(m2
h − 4m2χ)2 + m2

hΓ2
h

+O(v4). (B.1)

1In fact, the O(v2) Z-coupling term does have a mediator resonance, but enhancement is limited by the significantly
larger width of the Z boson.
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This term is suppressed by the non-relativistic speeds of dark matter, for typical values v2 ∼ 10−6, and

the magnitude of the purely real coupling is stringently constrained by direct detection. Thus, any allowed

parameter space would require precise fine-tuning of the dark matter mass. However, the enhancement

obtained from the mχ → mh/2 resonance is limited by the finite width of the Higgs, which is ∼ 4 MeV in

the SM [975]. Since the branching ratio of h → χχ near the resonance is vanishingly small due to phase

space suppression, we may take 4 MeV as a conservative bound for the Higgs width. Thus, the comparative

ratio between annihilation and scattering cross sections, given in (5.5) and (5.13), can be bounded by

〈σv〉ann
σSI

∣∣∣∣∣
Im[yhχ ]=0

∼
6× 104 GeV2 m2

χ
(m2

h − 4m2χ)2 + m2
hΓ2

h
<

105 GeV2 m2
χ

m2
hΓ2

h
≈ 109. (B.2)

As the current direct detection limits bound the spin-independent scattering rate at ≤ 10−10 pb, a model

without CP-violation may exhibit an annihilation cross section of at most O(0.1) pb. We emphasize here

that these statements are specifically valid for Majorana fermion dark matter, and dark matter models with

a different CP-structure could certainly achieve the required hierarchy between annihilation and scattering

with sufficient tuning on this resonance.
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C
Oblique Parameters in the Singlet-Doublet Model

As mentioned in §5 and §6, the singlet-doublet model primarily contributes to the S and T parameters at

loop-level with the new fermions running in the loop. Here, we provide a quick summary of this calculation.

We write a generic coupling between a gauge boson X and fermions i, j as iγμ(CX
Vij −CX

Aijγ5) where CX
Vij and

CX
Aij are the vector and axial vector couplings respectively. In MS, we find

iΠXY(p2)gμν =
−igμν

4π2

∫ 1

0
dx
((

CX
VijCY∗

Vij + CX
AijCY∗

Aij
)

p2x(1− x)

+
(
CX

VijCY∗
Vij − CX

AijCY∗
Aij
)

mimj −
(
CX

VijCY∗
Vij + CX

AijCY∗
Aij
)

Δ
)
log

μ2

Δ ,

(C.1)

where Δ = m2
i + x(m2

j −m2
i )− x(1− x)p2. The other relevant expression is Π′(p2), which is given by

iΠ′
XY(p2)gμν =

−igμν

4π2

∫ 1

0
dx
{

2
(
CX

VijCY∗
Vij + CX

AijCY∗
Aij
)

x(1− x) log μ2

Δ

+
[(

CX
VijCY∗

Vij + CX
AijCY∗

Aij
)
p2x(1− x) +

(
CX

VijCY∗
Vij − CX

AijCY∗
Aij
)

mimj

−
(
CX

VijCY∗
Vij + CX

AijCY∗
Aij
)

Δ
]x(1− x)

Δ

}
.

(C.2)

These expressions hold generically for any external electroweak gauge boson. To compute the oblique

parameters, as defined in (5.29) - (5.31), we sum over all fermions which contribute to the specific vacuum
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polarization and substitute in the relevant masses and couplings. The nonzero Yukawa couplings y and ỹ
mix the neutral eigenstates in the low energy effective theory, so S, T, and U are nontrivial functions of the

couplings y and ỹ and the masses m1 and m2.
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D
Correlations in the Electroweak Fit

Our electroweak fit results with different values of MW were reported in Table 6.2 and in Figs. 6.1 -6.2. For

completeness, correlations between different oblique parameters in the fit are reported in Table D.1.

CDF-II CDF-II World Average PDG 2020
(2× syst.)

Best Fit (U = 0)
(S,T) Correlation 0.925 0.905 0.934 0.914

(S,T)

Covariance Matrix

(
0.0060 0.0043
0.0043 0.0037

) (
0.0065 0.0052
0.0052 0.0050

) (
0.0058 0.0041
0.0041 0.0033

) (
0.0062 0.0047
0.0047 0.0042

)

Best Fit (U floating)

(S,T) Correlation 0.908 0.908 0.908 0.909
(S,U) Correlation -0.629 -0.586 -0.639 -0.613
(T,U) Correlation -0.859 -0.801 -0.873 -0.836

(S,T,U)

Covariance Matrix

 0.0100 0.0108 −0.0058
0.0108 0.0141 −0.0094
−0.0058 −0.0094 0.0084


 0.0100 0.0107 −0.0058

0.0107 0.0141 −0.0093
−0.0058 −0.0093 0.0097


 0.0100, 0.0108 −0.0058

0.0108 0.0141 −0.0094
−0.0058 −0.0094 0.0082


 0.0100 0.0108 −0.0058

0.0108 0.0142 −0.0094
−0.0058 −0.0094 0.0090



Table D.1: Correlation matrices and coefficients from the fits of the oblique parameters described in Section
6.3.1 and Section 6.3.2. Different columns correspond to different input MW measurement scenarios around
Eq. (6.2). Results of the fit including (S,T) and excluding (including) U in the list of floating parameters
are included in the top (bottom) row.
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E
Further Discussion of Flavorful Physics

E.1 Full Set of Consistency Conditions

Here we list the full set of consistency conditions that arise for the Yukawa couplings of the S1 leptoquark

model embedded in an FN setup.∣∣∣Δij
ūē
∣∣∣ ≥ 1

16π2

∣∣∣(Δūē ·Δ†
ūē ·Δūē

)ij∣∣∣,∣∣∣Δij
ūē
∣∣∣ ≥ 1

16π2

∣∣∣(Δūē ·Y†
Lē ·YLē

)ij∣∣∣,∣∣∣Δij
ūē
∣∣∣ ≥ 1

16π2

∣∣∣(YT
Qū ·Y∗

Qū ·Δūē
)ij∣∣∣,∣∣∣Δij

ūē
∣∣∣ ≥ 1

16π2

∣∣∣(YT
Qū ·Δ∗

QL ·YLē
)ij∣∣∣,

∣∣∣Yij
Qd̄

∣∣∣ ≥ 1
16π2

∣∣∣(YQd̄ ·Y†
Qd̄ ·YQd̄

)ij∣∣∣,∣∣∣Yij
Qd̄

∣∣∣ ≥ 1
16π2

∣∣∣(YQū ·Y†
Qū ·YQd̄

)ij∣∣∣,∣∣∣Yij
Qd̄

∣∣∣ ≥ 1
16π2

∣∣∣(ΔQL ·Δ†
QL ·YQd̄

)ij∣∣∣.
∣∣∣Yij

Lē

∣∣∣ ≥ 1
16π2

∣∣∣(YLē ·Y†
Lē ·YLē

)ij∣∣∣,∣∣∣Yij
Lē

∣∣∣ ≥ 1
16π2

∣∣∣(ΔT
QL ·Δ∗

QL ·YLē
)ij∣∣∣,∣∣∣Yij

Lē

∣∣∣ ≥ 1
16π2

∣∣∣(YLē ·Δ†
ūē ·Δūē

)ij∣∣∣,∣∣∣Yij
Lē

∣∣∣ ≥ 1
16π2

∣∣∣(ΔT
QL ·Y∗

Qū ·Δūē
)ij∣∣∣,

∣∣∣Δij
QL

∣∣∣ ≥ 1
16π2

∣∣∣(ΔQL ·Δ†
QL ·ΔQL

)ij∣∣∣,∣∣∣Δij
QL

∣∣∣ ≥ 1
16π2

∣∣∣(YQd̄ ·Y†
Qd̄ ·ΔQL

)ij∣∣∣,∣∣∣Δij
QL

∣∣∣ ≥ 1
16π2

∣∣∣(YQū ·Y†
Qū ·ΔQL

)ij∣∣∣,∣∣∣Δij
QL

∣∣∣ ≥ 1
16π2

∣∣∣(ΔQL ·Y∗
Lē ·YT

Lē
)ij∣∣∣,∣∣∣Δij

QL

∣∣∣ ≥ 1
16π2

∣∣∣(YQū ·Δ∗
ūē ·YT

Lē
)ij∣∣∣,

∣∣∣Yij
Qū

∣∣∣ ≥ 1
16π2

∣∣∣(YQū ·Y†
Qū ·YQū

)ij∣∣∣,∣∣∣Yij
Qū

∣∣∣ ≥ 1
16π2

∣∣∣(ΔQL ·Δ†
QL ·YQū

)ij∣∣∣,∣∣∣Yij
Qū

∣∣∣ ≥ 1
16π2

∣∣∣(YQū ·Δ∗
ūē ·ΔT

ūē
)ij∣∣∣,∣∣∣Yij

Qū

∣∣∣ ≥ 1
16π2

∣∣∣(YQd̄ ·Y†
Qd̄ ·YQū

)ij∣∣∣,∣∣∣Yij
Qū

∣∣∣ ≥ 1
16π2

∣∣∣(ΔQL ·Y∗
Lē ·ΔT

ūē
)ij∣∣∣,

(E.1)

222



They arise from considering the representation of the Yukawas under the SM flavor symmetry group, Gflavor

(see (7.6)), and constructing the other combinations of Yukawas that transform in the same way. Each

combination produces a one-loop contribution via a diagram analogous to Fig. 7.3. The representations

of YQū, YQd̄, YLē, ΔQL, and Δūē are listed in Eqs. (7.7) and (7.9). We could also consider additional

consistency conditions with more Yukawa couplings on the right-hand side, but those will be sub-dominant

to those listed above. The consistency conditions listed above are specific to the spurions we have considered,

but this procedure generalizes to arbitrary new spurions under Gflavor.

E.2 Calculation of Other Observables

In this appendix we review the contributions of the S1 leptoquark to various flavor observables. The emphasis

is on the dependence on the flavor spurions, ΔQL and Δūē, with many details left to the references. In what

follows, V is the CKM matrix and v is the SM Higgs vev. We use the CKM parameters as determined

in [1173] while the remainder of our inputs are taken from the PDG [1131]. Furthermore, we work with a set

of operators where the neutrinos are left in the flavor basis as the processes we consider have either a final

state neutrino of a specific flavor, or a sum over all possible final state neutrinos, which can be done in any

basis. Therefore, we do not include explicit factors of the PMNS matrix in the expressions for the Wilson

coefficients. We assume the leptoquark Yukawas are given in the IR and neglect the running effects. These

calculations are used in §7.4 to identify the most relevant constraints and the wrinkles which are useful for

evading them. We also employ mostly four-component spinor notation in this appendix for consistency with

the majority of the references.

E.2.1 Dipole Moments

First we calculate the contribution of S1 to the electric and magnetic dipole moments of SM particles. After

integrating out the leptoquark, the one loop diagrams of Fig. E.1 can give rise to the effective operators

L ⊃ cR
ij f̄iσμνPRfjFμν + h.c., (E.2)

where fi,j are SM fermions, Fμν is the electromagnetic field strength, and cR
ij is the corresponding Wilson

coefficient. By matching the diagrams in Fig. E.1 to this operator, we can calculate cR
ij values in our setup.

See [976,1081,1167,1270–1273] for details of the calculation. Following the notation of [1081], we have

cR
ij =

∑
q̄

e
64π2m2

S1

[
mq̄(V∗ΔQL)q̄i ∗Δq̄j ∗

ūē
(

QS1A(r)−Qq̄B(r)
)

+
(

miΔq̄i
ūēΔq̄j ∗

ūē + mj(V∗ΔQL)q̄i ∗(V∗ΔQL)q̄j
)(

QS1Ā(r)−Qq̄B̄(r)
)]

,

(E.3)

where the sum is over all possible up-type anti-quarks q̄ that can go in the loop, Q is the electric charge,
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fR

S1

tR
×

tL

γ

fL

Figure E.1: Feynman diagram (in two-component notation) for the S1 leptoquark contribution to the
dipole operators of charged fermions, including (g− 2)μ . The largest contribution arises from the top quark
in the loop. The photon can attach to either internal line in the loop.

mi,j are the masses of the external leptons, r = m2
q̄/m2

S1 , and the loop functions are defined in the appendix

of [1081].

In terms of these Wilson coefficients, the electric and magnetic dipole moments can be written as

df = 2 Im cR
ff af =

4mf
e Re cR

ff . (E.4)

Note that because the two fermions in the operator (E.2) have opposite chirality, all the contributions in

(E.3) are proportional to the external fermion or internal quark mass. As a result, unless the Yukawas are

very suppressed, the S1 contribution to EDMs and MDMs are dominated by diagrams with the top quark

in the loop, which are proportional to mt.

E.2.2 Lepton Flavor Violating Observables

The Lagrangian from (E.2) also contributes to LFV decays as [1081,1167,1270]

BR (ℓ→ ℓ′γ) = 48π2

G2
Fm2

ℓ

(
|cR

ℓℓ′ |2 + |cR
ℓ′ℓ|2

)
. (E.5)

Similar to the previous section, dominant contributions to cR
ℓ′ℓ come from diagrams with the heaviest quarks

in the loop. More concretely, we find that in the limit mℓ,mℓ′ � mS1

cR
ℓℓ′ ≈

emq
16π2m2

S1

[
ln

(
m2

S1

m2q

)
− 7

4

]
(V∗ΔQL)qℓ ∗Δqℓ′ ∗

ūē . (E.6)

These dipole operators also contribute to the well-constrained LFV processes μ → 3e and μ → e conversion

in nuclei. In our leptoquark model, the dipole operator is the only contribution to μ → 3e, so these branching

ratios are directly correlated:

BR(μ → 3e) = α
3π
(
log

m2
μ

m2e
− 11

4
)

BR(μ → eγ) ' 1
162BR(μ → eγ). (E.7)

The μ − e conversion process in nuclei, however, also receives contributions from four-fermion operators
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coupling the muon and electron to quarks. The effective Hamiltonian for this process can be written [1274,

1275]:
H ⊃ GF√

2
∑

q=u,d,s

[(
c(q)LS ēPRμ + c(q)RS ēPLμ

)
q̄q +

(
c(q)LP ēPRμ + c(q)RPēPLμ

)
q̄γ5q

+
(
c(q)LV ēγμPLμ + c(q)RVēγμPRμ

)
q̄γμq +

(
c(q)LA ēγμPLμ + c(q)RAēγμPRμ

)
q̄γμγ5q

+
1
2
(
c(q)LT ēσμνPRμ + c(q)RTēσμνPLμ

)
q̄σμνq + h.c.

] (E.8)

where for the S1 leptoquark,

c(u)LS = +c(u)LP = −c(u)LT = −1
2

v2

m2
S1

(V∗ΔQL)11 ∗ Δ12 ∗
ūē

c(u)RS = −c(u)RP = −c(u)RT = −1
2

v2

m2
S1

(V∗ΔQL)12 Δ11
ūē

c(u)LV = −c(u)LA = −1
2

v2

m2
S1

(V∗ΔQL)12 (V∗ΔQL)11 ∗

c(u)RV = c(u)RA = −1
2

v2

m2
S1

Δ11
ūē Δ12 ∗

ūē

(E.9)

The conversion rate is then computed by evaluating the overlap integrals of the fermion wave-function and

nucleon densities. This has been performed in [1276], assuming the coherent conversion process (where the

initial and final state nucleus are the same) dominates. We use the average values of their overlap integrals

for the different nuclei (Al and Au).

E.2.3 Leptonic Meson Decays

P→ ℓν

The EFT for a generic meson decaying to a neutrino and a charged lepton is [1071,1114,1277]

Heff =
4GFVud√

2
[
CV

L,udℓν (ūLγμdL)
(
ℓ̄Lγμ νL

)
+ CV

R,udℓν (ūRγμdR)
(
ℓ̄Lγμ νL

)
+ CS

L,udℓν (ūRdL)
(
ℓ̄RνL

)
+ CS

R,udℓν (ūLdR)
(
ℓ̄RνL

)]
+ h.c.,

(E.10)

where u (d) labels the involved up-type (down-type) quark. In the SM, these decays are mediated by a W
exchange and the overall normalization is chosen such that CV

L = 1, with other Wilson coefficients set to

zero.

For the S1 leptoquark, we can show that at the leptoquark mass scale

CV
L,udℓν =

Δdν
QL(V∗ΔQL)uℓ ∗

Vud

v2

4m2
S1

,

CS
L,udℓν =

Δdν
QLΔuℓ

ūē
Vud

v2

4m2
S1

,
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In our model there are no couplings to RH down-type quarks, so CS
R,udℓν = CV

R,udℓν = 0.

The meson branching ratio to ℓν is given by

BR
(
P−

ud → ℓν
)
= τP

mPf2
PG2

F|Vud|2

8π m2
ℓ

(
1− m2

ℓ

m2
P

)2

×
∣∣∣(CV

L,udℓν − CV
R,udℓν) +

m2
P

mℓ(mu + md)
(CS

R,udℓν − CS
L,udℓν)

∣∣∣2, (E.11)

where τP is the meson lifetime, mP is the meson mass, fP is the meson decay constant, mℓ is the final

state lepton’s mass, and mu (md) is the mass of the up-type (down-type) valence quark of the meson. This

equation has been used to calculate the contribution of our model to various leptonic meson decays in the

main text.

P→ ℓℓ′ and P→ νν′

The Hamiltonian describing a meson P decaying to charged leptons l and l′ is [1072,1278]

Heff ⊃
4GF√

2
λCKM

 ∑
X=S,P,9,10

Cqq′;ℓℓ′

X Oqq′;ℓℓ′

X + Cqq′;ℓℓ′

X′ Oqq′;ℓℓ′

X′ + h.c.

 . (E.12)

Here, λCKM is a combination of two CKM entries involving the valence quarks of the meson, CX are Wilson

coefficients, and their associated operators are

Oqq′;ℓℓ′

S =
αem

4π (q̄PRq′)(ℓ̄ℓ′) Oqq′;ℓℓ′

P =
αem

4π (q̄PRq′)(ℓ̄γ5ℓ′)

Oqq′;ℓℓ′

9 =
αem

4π (q̄γμPLq′)(ℓ̄γμℓ
′) Oqq′;ℓℓ′

10 =
αem

4π (q̄γμPLq′)(ℓ̄γμγ5ℓ′),

The operators with a prime on the subscript are obtained by the replacement PL/R → PR/L.

At tree level, our leptoquark only gives rise to decays of D and π via t-channel diagrams, while decays

of K, B, and Bs take place at one-loop level and are suppressed. For the tree-level decays, the Wilson

coefficients above can be calculated as a function of the leptoquark Yukawa couplings [1072]

Cqq′;ℓℓ′

9 = −Cqq′;ℓℓ′

10 = − v2π
2αemλCKMm2

S1

(V∗ΔQL)q′ℓ′(VΔQL)∗qℓ

Cqq′;ℓℓ′

9′ = Cqq′;ℓℓ′

10′ = − v2π
2αemλCKMm2

S1

(Δūē)∗q′ℓ′(Δūē)qℓ

Cqq′;ℓℓ′

S = Cqq′;ℓℓ′

P = − v2π
2αemλCKMm2

S1

(Δūē)∗q′ℓ′(V∗ΔQL)∗qℓ

Cqq′;ℓℓ′

S′ = −Cqq′;ℓℓ′

P′ = − v2π
2αemλCKMm2

S1

(V∗ΔQL)q′ℓ′(Δūē)qℓ.

(E.13)

For D and π mesons decays we set λCKM = V∗
q′bVqb with q, q′ referring to the valence quarks of the meson.
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In terms of the Wilson coefficients above, the BR of the meson to ℓ− and ℓ′+ is given by [1072,1278]

BR(P→ ℓ−ℓ′+) = τPf2
Pm3

P
α2
emG2

F
64π3 λ2

CKM

√(
1− (m1 −m2)2

m2
P

)(
1− (m1 + m2)2

m2
P

)
×
[(

1− (m1 + m2)2

m2
P

) ∣∣∣(C9 − C9′)
m1 −m2

mP
+

mP
mq′ + mq

(CS − CS′)
∣∣∣2

+

(
1− (m1 −m2)2

m2
P

) ∣∣∣(C10 − C10′)
m1 + m2

mP
+

mP
mq′ + mq

(CP − CP′)
∣∣∣2] ,

(E.14)

where τP is the meson lifetime, mP is the meson mass, and m1 (m2) is the mass of the ℓ (ℓ′) lepton.

We can use (E.14) to calculate meson decay to a pair of neutrinos too. For that, we should set m1 =

m2 = 0 and only keep couplings to LH fermions in the SM. Doing that, we find zero contribution for the S1

leptoquark.

E.2.4 Semi-leptonic Meson Decays

Next we compute the leptoquark contribution to semi-leptonic meson decays. We ignore constraints from

B → K(∗)ℓℓ, since the S1 leptoquark only contributes at loop-level, which is subdominant for leptoquark

masses above a few TeV [1108]. Instead, we study the more sensitive observables B→ D(∗)lν and K→ πνν̄,

which receive contributions at tree-level.

RD(∗)

B→ D(∗)lν proceeds at tree-level via the exchange of the W and the leptoquark [1072,1114,1277,1279–1281].

This and other leptoquark models have generated significant interest in the context of B → D(∗)lν because

some evidence of a lepton flavor non-universal BSM contribution in this channel, captured by the ratio

RD(∗) ≡
BR
(
B→ D(∗)τν

)
BR
(
B→ D(∗)ℓν

) , (E.15)

has been detected in various experiments [12–18] (ℓ = e, μ).

When computing the decay rate, integrating the heavy mediators out allows us to work with a set of

dimension-6 operators given by

Heff =
4GFVcb√

2

(
OV

LL +
∑

X=S,V,T
M=L,R

CX
MLOX

ML

)
(E.16)

where

OS
ML ≡ (c̄PMb)(τ̄PLν) OV

ML ≡ (c̄γμPMb)(τ̄γμPLν) OT
ML ≡ (c̄σμνPMb)(τ̄σμνPLν) (E.17)

Note that we have split apart the contributions to the vector operator such that the Wilson coefficients only
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capture leptoquark contributions.

For the process of interest, the helicity amplitude we wish to compute is

−iM = 〈ℓ(pℓ, λℓ), ν̄ℓ(pν),D(∗)(pμ , ε(λM))|Heff |B(pB)〉. (E.18)

Each of these operators can be split apart into the constituent quark and lepton bilinears, which allows

us to split apart the total amplitude into a product of hadronic and leptonic amplitudes. Details of the

calculation can be found in [1282,1283]. The leptonic amplitudes, which are generically functions of various

angles, are identical for both D and D∗, while the hadronic amplitudes, which are functions of q2, vary and

are determined by the specific helicity of the D(∗) meson. The leptonic amplitudes can be found in multiple

references, including [1282]; the expressions for the relevant hadronic functions are taken from [1279,1284].1

To compute the differential decay rate, we use

dΓ
dq2 d cos θ =

1
2mB

∑
ℓ

∣∣∣M(q2, cos θ)
∣∣∣2√(mB + mD)2 − q2

√
(mB −mD)2 − q2

256π3m2
B

(
1− m2

τ
q2

)
(E.19)

where we sum over neutrinos in the final state. Performing the angular integral over the leptonic functions

first, we recover Eqs. (B.6) and (B.8) in [1283] for the differential decay rates of B → Dτν and B → D∗τν
respectively. This is the result for a τ in the final state, but making the replacement mτ → mℓ gives us

the expression for decays involving any of the SM leptons. The total decay rate can then be obtained by

performing the q2 integral over the interval [m2
ℓ, (mB −mD)2].

The expressions from (B.6) and (B.8) in [1283] are given in terms of the Wilson coefficients defined in

(E.16), therefore, the last ingredient required to complete this computation is the set of pertinent Wilson

coefficients for the leptoquark model. They are given by

CS
LL = − v2

4m2
LQ

Δ3j
QL Δ23

ūē
Vcb

CV
LL =

v2

4m2
LQ

Δ3j
QL(V∗ΔQL)23 ∗

Vcb

CT
LL =

v2

16m2
LQ

Δ3j
QL Δ23

ūē
Vcb

(E.20)

K→ πνν̄

The decays K+ → π+νν̄ and KL → π0νν̄ can be described with an effective Hamiltonian very similar to

(7.19) [1107,1285]:

Heff = −4GF√
2

[
H(c)

eff + V∗
tdVts(CKν

L OKν
L + CKν

R OKν
R ) + h.c.

]
(E.21)

1The correct sign of hT3(w) is in [1279].
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where

OKν
L(R) =

αem

4π (d̄γμPL(R)s)(ν̄γμ(1− γ5)ν), (E.22)

and H(c)
eff includes operators that encode physics below the weak scale. The branching ratios for K+ → π+νν̄

and KL → π0νν̄ are then written as

BR(K+ → π+νν̄) = κ+

[( Im(λ tXKν)

λ5

)2
+
(
− P(u,c) +

Re(λ tXKν)

λ5

)2]

BR(KL → π0νν̄) = κL
( Im(λ tXK)

λ5

)2
(E.23)

where XKν = − sin2 θW(CKν
L + CKν

R ), λ t = V∗
tdVts and λ = 0.2255 is the Wolfenstein parameter of the

CKM matrix. The κ-factors encode input from hadronic matrix elements. Following [1107], we take κ+ =

(5.27±0.03)×10−11 and κL = (2.27±0.01)×10−10. The quantity P(u,c) = 0.41±0.05 encodes contributions

from charm and light-quark loops. These two decays are related via the Grossman-Nir bound [1286].

The SM Wilson coefficient CKν SM
L is the same as (7.21), while the leptoquark contribution is

CKν
L =

v2

m2
S1

π
2αem

Δ2k
QLΔ1k ∗

QL
λ t

(E.24)

We set a constraint on the leptoquark mass by demanding that the total predicted branching ratio

(including the SM contribution) be less than the 2σ upper limit of the measured branching ratio in [1127]:

BR(K+ → π+νν̄) < 1.88 × 10−10. The analogous limit for KL decays set by the KOTO experiment,

BR(KL → π0νν̄) < 4.9× 10−9 [1287] is not yet competitive in the context of this model.

E.2.5 Z→ ℓℓ′

Virtual corrections involving SM fermions and the S1 leptoquark can also contribute to lepton flavor uni-

versality violating decays of the SM gauge bosons. The strongest bound on the leptoquark comes from

measurements of the Z→ ℓℓ′ decays, which are constrained by ATLAS [1288]. Constraints on Z decays can

be cast as bounds on anomalous couplings of the Z boson, δg, where

L ⊃ g
cos θW

∑
f,i,j

f̄iγμ
[
(δijgfL

SM + δgfL
ij )PL + (δijgfR

SM + δgfR
ij )PR

]
fjZμ , (E.25)

with gfL
SM = Tf

3−Qf sin2 θW and gfR
SM = −Qf sin2 θW being the left- and right-handed fermion couplings to the

Z boson in the SM.

The S1 leptoquark contributions to these anomalous couplings have been worked out in [1289, 1290].

In particular [1290] includes additional finite terms that are numerically important. The S1 leptoquark

contributions to the charged lepton couplings of the Z is
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δgℓ L(R)
ij =

Nc
16π2 wtj

L(R)(wti
L(R))

∗
[(

guL(R)

SM − guR(L)
SM

)xt(xt − 1− log xt)
(xt − 1)2 +

xZ
12FL(R)(xt)

]
+

Nc
48π2 xZ

∑
k=u,c

wkj
L(R)(wki

L(R))
∗
[
guL(R)

SM
(
log xZ − iπ− 1

6
)
+

1
6gℓL(R)

SM

] (E.26)

where xZ = m2
Z/m2

S1 , xt = m2
t/m2

S1 , wij
L = (V∗ΔQL)ij, wij

R = Δij
ūē, and FL(R)(x) are loop functions, which can

be found in [1290].

[1291] sets bounds on combinations of these anomalous couplings with a variety of flavor ansätze, by

combining the LFV decay bounds with LEP data at the Z-pole [1003]. To extract a constraint on the S1

leptoquark, we simply demand that the anomalous couplings computed above satisfy their bounds assuming

generic LFV coupling, which limits

√
|δgℓL

12|2 + |δgℓR
12 |2 < 1.2× 10−3,

√
|δgℓL

23|2 + |δgℓR
23 |2 < 4.8× 10−3. (E.27)

The eμ bound is most constraining for the anarchic and vanilla FN flavor ansätze, while the μτ bound is

strongest with the additional wrinkles from (7.32).

E.2.6 Meson Mixing

The leptoquark S1 also contributes at the one-loop level to operators in the SM that are responsible for

meson mixing. In particular for the down type quarks, the important operator for meson mixing is the

dimension-six, four-quark bilinear

Hmix ⊃ Cij
mix (d̄i

Lγμdj
L) (d̄i

Lγμdj
L). (E.28)

The associated Wilson coefficient for this operator generated by the S1 leptoquark is [1281]

Cij
mix =

1
128π2m2

S1

3∑
k=1

[
(Δik ∗

QL )Δjk
QL

]2
, (E.29)

where the sum above is over all neutrino flavors. Several experimental quantities of interest can then be

derived from this; for instance (in the limit of negligible CP violating phases) the mass difference Δm between

the mass eigenstates of the oscillating meson is given by

Δm =

〈
P
∣∣Hmix

∣∣P̄〉
mP

=
Cij

mix
mP

〈
P
∣∣(d̄i

Lγμdj
L) (d̄i

Lγμdj
L)
∣∣P̄〉 . (E.30)

Here, P denotes the meson whose constituent down-type quarks are in the i, j generation. The non-

perturbative hadronic matrix element above is

〈P| (d̄i
Lγμdj

L) (d̄i
Lγμdj

L)
∣∣P̄〉 = 2

3f2
Pm2

PBP, (E.31)
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where fP is the meson decay constant and BP is the meson bag factor, which can be extracted from lattice

computations [1292–1294].

In order to reduce uncertainties from the hadronic matrix elements, we find it advantageous to compare

ratios of the matrix elements of the mixing operator (as given in (7.33)). We define

CBq e2iφBq =

〈
Bq
∣∣HSM+NP

mix
∣∣B̄q
〉〈

Bq
∣∣HSM

mix
∣∣B̄q
〉 , (E.32)

where q = d, s and by definition in the SM, CBq = 1 and φBq = 0. By definition, the CBq are free from

the non-perturbative matrix elements and depend only on perturbative, short-distance Wilson coefficients.

The aforementioned ratio is experimentally determined by the UTFit collaboration [1129, 1172, 1173], and

can be understood as a short-distance proxy for the mass difference Δm. In principle, there can be intricate

interplay between the phases of leptoquark couplings, leading to interference with the SM contributions

in this ratio. In this work, we avoid making any assumptions on the underlying complex phases of the

leptoquark couplings in CBq , and simply compute the absolute value of CBq .

Additional CP violation from BSM physics is also strongly constrained by other meson mixing measure-

ments, especially in the Kaon system. The quantity of interest is εK, which, following standard assumptions

(see e.g. [1295]), is given by

εK =
1
4

〈
K0
∣∣Hmix

∣∣K̄0
〉〈

K̄0
∣∣Hmix

∣∣K0
〉 − 1

4 . (E.33)

To account for εK, which is much more constraining than the Kaon mass difference, we define

CεK =
Im〈K0|HSM+NP

mix |K̄0〉

Im〈K0|HSM
mix |K̄0〉

, (E.34)

where again CεK = 1 in the SM.

For all of these quantities, we compute the leptoquark contributions using (E.29). We compare to the SM

matrix elements, which are computed following [1295–1297], including the scale-independent, short-distance

QCD corrections. Then we set constraints using the latest results from UTFit [1173].

We do not consider effects of the S1 leptoquark on mixing in mesons with up-type quarks such as the

D0, primarily due large hadronic undertainties [1298, 1299] in current SM predictions that make it difficult

to glean any information from new physics contributions.
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F
More Machine Learning Details

F.1 DCTR on a toy model

The overall idea of the DCTR method to extract the top mass is inspired by finding the value of the Monte

Carlo mass (and other tune parameters) which are most likely to have produced the data. In order to

assess this, one needs the likelihood function covering the range of data and parameters. However, this is

extremely difficult to obtain. Instead, DCTR uses the fact that, given two data sets, the likelihood ratio

between the data sets is given by an ideal classifier. While we cannot access the likelihood function itself,

it is still possible to find the parameters which maximize the likelihood using the ratio. We gain access to

an approximation of the likelihood ratio using a well-trained, flexible, neural network, which is close to an

ideal classifier. In this appendix, we review the two of the main components necessary for DCTR to work,

(a) training a parameterized neural network to find the likelihood ratio and (b) using the likelihood ratio to

maximize the likelihood and infer the most probable Monte Carlo parameter.

In a parameterized neural network, unobserved properties are included as input to the network. This can

be useful when needing to scan over a property. For instance, when looking for BSM physics, the mass of a

new resonance is unknown, and a classifier trained at one mass will be sub-optimal if the mass is substantially

different. Rather than training many classifiers for different masses, one can train a single classifier where

the mass is included as an input. This helps the classifier to interpolate between masses and reduces the
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Figure F.1: DCTR works by using a classifier to approximate the likelihood ratio. In this example, we
use Gaussian distributions to show the procedure using exact likelihood ratios. The left panel shows the
probability density for a sample of data in which the mean of the Gaussian can take any value between 0
and 5; this is referred to as the scanned sample. The middle panel shows the probability density for the
fixed sample, where the mean is always set to 3 and μ has no meaning. The right panel shows what the
probability is for a point in the μ, x parameter space to come from the scanned sample as opposed to the
fixed sample, which is the result of an ideal classifier.

amount of training data needed, because features are shared across the feature space.

The first step is to use a parameterized neural network as a classifier to derive an estimate for the

likelihood ratio between samples. In our full set up, we include the Monte Carlo mass of the top quark as

an input parameter. For this appendix, we will start by considering a simpler example. Consider the case

of Gaussian distributions with different values for the mean μ. Draw samples x from this Gaussian, where

the mean μ is changed for each draw. This produces a two dimensional array S = (μ, x). We can train a

network f(μ, x) to distinguish between S and a uniform 2D distribution, U. This network will yield the ratio

of their probability densities at any given point,

f(μ, x) = S(μ, x)
S(μ, x) + U(μ, x) . (F.1)

The probability density for the data distribution can easily be solved for in terms of the output of the

network,
S(μ, x) = f(μ, x)

1− f(μ, x) U(μ, x) . (F.2)

From this, we can use f to obtain the probability density of S for any μ and x within the range of the training

data. This is possible because we know the probability density of the uniform distribution which we were

using as a reference. In fact, we did not need to use a uniform distribution at all; the processes generalizes

to choosing a different fixed reference sample. For the rest of this simple example, we will use a Gaussian

with fixed mean μ = 3 as the reference sample. In the main text, we use a sample of events with a fixed

Monte Carlo top-quark mass and fixed tune as a reference, since a uniform distribution does not make sense

in the context of jets with differing numbers of particles.

This is shown in Fig. F.1. Specifically, we show this initial setup and the idealized network output. The
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Figure F.2: If the full probability density is known (shown in the left panel), the parameter of an unknown
sample (second panel) can be obtained by maximizing the likelihood. The third panel shows the probability
of observing each element in the unknown set, T. The final panel shown the total probability, obtained by
taking the product of the individual probabilities, and is maximized at the true underlying parameter.

first panel shows the probability density for our scanned sample P(S), where the x-axis denotes the Monte

Carlo parameter and the y axis denotes the observed value. The middle panel displays the same probability

density for the fixed reference sample, P(F). We can see that P(F) is uniform for all values along the x-axis

(the fake input parameters) but has a non-uniform y-axis, since the sample is drawn with a specific fixed

parameter. The final panel shows the ratio of these probability densities,

R(μ, x) = P
(
S(μ, x)

)
P
(
S(μ, x)

)
+ P

(
F(x)

) , (F.3)

which would be the output of an ideal network trained to classify events as coming from the scanned or

reference sets.

The next step is to use the classifier to infer the most probable Monte Carlo parameter for a new dataset.

In this example, we use μ = 1.5 as the new dataset, and denote this set by T(x). If we had access to the

full likelihood S(μ, x), we could infer the value of μ by multiplying the probabilities from each event in T to

maximize the likelihood,

μ̂ = argmax
μ

∏
xi∈T

S(μ, xi) = argmax
μ

∏
x

S(μ, x)T(x). (F.4)

In going from the first expression to the second expression, we transition from discrete to continuous dis-

tributions. An example of this is shown in Fig. F.2. The first panel again shows the true probability

density S(μ, x) and the second panel shows the distribution of x for the unknown set. The third panel shows

S(μ, x)T(x) which is the probability of observing each element in T given S. In the final panel, we take the

product of the probabilities to obtain the total probability of obtaining the data T as a function of μ. The

true value is the most probable one.

When using DCTR, we do not actually have access to S(μ, x) but only the ratio R(μ, x). However,

a similar procedure still works. We want to maximize the probability, but now we must also include the
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reference set. This is done by maximizing the likelihood that the new set will be classified as part of the

scanned set while the reference set will be classified as the reference set. We define the total probability of

events from T(x) to get classified as coming from the scanned sample as

PT(μ) =
∏

x
R(μ, x)T(x). (F.5)

Similarly, let PF(μ) define the probability of events from the fixed sample F(x) getting classified correctly,

PF(μ) =
∏

x

(
1− R(μ, x)

)F(x)
. (F.6)

Combining these two expressions yields total probability of classification,

C(μ) =
∏

x
R(μ, x)T(x)(1− R(μ, x)

)F(x)
. (F.7)

The value of μ which maximizes C(μ) then corresponds to the most probable value to have produced the

test dataset, T.

We make this more explicit in Fig. F.3. The panels on the left show the output of the ideal classifier

(the ratio of probability densities from the scanned and fixed sample) for the scanned (top) and reference

(bottom) datasets. The second column shows the new test PDF which we are trying to infer (top) and the

reference PDF (bottom). The third column displays the classifier output (R or 1-R) convolved with the

probability distributions. The top panel in the last column displays the product of these. In the bottom

right panel, we show the total probabilities. The new set PT(μ) is shown in blue, the fixed reference set

PF(μ) is shown in orange, and C(μ) is the green line. Note that the blue and orange lines have quite

different shapes, however, when they are combined to make the green line, it is maximized at μ = 1.5,

which is the value of the test set. The works for all values of μ; a video showing a scan can be found at

https://bostdiek.github.io/Videos/DCTR_Gaussian_Example.mp4.

While DCTR is overly complicated for a single dimension, it can prove useful when the datasets have

many dimensions. We now generalize the method by taking the single observable x to be set of observations,

xi → Xi, where the subscript represents a given event. Similarly, the underlying parameter μ is generalized

to many model parameters μ → θ. In many dimension, an explicit likelihood ratio can be challenging to

obtain, thus a neural network will be used as an approximation. The network is trained to classify events

from a scanned set xi ∈ xθS from events in a fixed reference set xi ∈ xθ0 . We now represent the network

output by f(x, θ) and train it to maximize the probability of correctly assigning the training events. Namely,

f(x, θ) = argmax
f′

( ∏
xi∈xθS

f ′(xi, θ)×
∏

xi∈xθ0

(
1− f ′(xi, θ)

))

= argmin
f′

(
−
∑

xi∈xθS

log f ′(xi, θ)−
∑

xi∈xθ0

log
(
1− f ′(xi, θ)

))
.

(F.8)
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Figure F.3: The classifier is now applied to a new unknown sample and the reference sample. The upper
left panel shows the classifier output R, which is the probability for a point in the space to belong to the
scanned sample. Similarly, (1 − R) is the probability to have come from the fixed sample, and is shown in
the lower left panel. The probability density for the new set and the reference set are displayed in the second
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The blue, orange, and green lines denote the probabilities for the new sample, the reference sample, and
the combination, respectively. The green line is maximized at the value of the unknown parameter used to
generate the new PDF.

The second line is just the usual binary cross-entropy loss function which is used to train binary classification

neural networks.

Once the network is trained, we can infer the parameters of a new data, xi ∈ xθT set by minimizing the

loss of classifying the new data versus the reference set. Thus,

θ̂ = argmin
θ′

(
−
∑

xi∈xθT

log f ′(xi, θ′)−
∑

xi∈xθ0

log
(
1− f(xi, θ′)

))
. (F.9)

This is equivalent to maximizing the probability as we did in the Gaussian example.

F.2 Top Mass Training Curves

For completeness, we show training loss curves for DCTR and the linear network. As can be seen, training

is stable and early stopping only becomes relevant once a plateau has been reached.
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Figure F.4: (a): Training loss curve for the linear network. (b): Training loss curve for the DCTR classifier.

F.3 Variational Inference for Autoencoders

The idea behind variational inference for anomaly detection is to estimate the true probability distribution

of the background, p(x). Assuming we have an underlying latent space of elements z, we can write p(x) as

p (x) = Ep(z)
[
p (x|z)

]
≡
∫

p (x|z) p(z)dz, (F.10)

where E denotes the expectation value, p (x|z) is the probability of x given z, and p(z) is the prior likelihood

of the latent data. We can take the latent space prior to be a set of independent Gaussians with zero mean

and unit standard deviation, zi ∼ N (0, 1), where i runs over the dimension of the latent space. At this point

p(x|z) is an unknown and intractable distribution.

To make progress, we introduce a new tractable distribution qφ(z|x), where φ are some parameters to

be optimized over. In an autoencoder architecture, this is the encoder. We can then write (F.10) in a more

useful form:
p(x) =

∫
qφ(z|x)

p(x|z)
qφ(z|x)

p(z)dz = Eqφ(z|x)

[p(x|z)p(z)
qφ(z|x)

]
. (F.11)

The log likelihood, log p(x), is then given as

log p(x) = logEqφ(z|x)

[p(x|z)p(z)
qφ(z|x)

]
≥ Eqφ(z|x)

[
log
(p(x|z)p(z)

qφ(z|x)

)]
= Eqφ(z|x)

[
log p(x|z)− log

(qφ(z|x)
p(z)

)]
,

(F.12)

where we have used Jensen’s inequality in the second line above. Let’s first consider the first term in the last

line of (F.12). It is the expectation value of x given z when z is sampled from qφ(z|x) (which is a distribution
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in z given x). This term can be interpreted as a (negative) reconstruction error term. If we approximate

p(x|z) by a decoder part of the architecture pθ(x|z) (where θ is to be optimized over), Eqφ(z|x)(pθ(x|z)) is the

usual (negative) reconstruction error term in the loss function for an autoencoder with decoder pθ(x|z) and

encoder qφ(z|x).
The second term is by definition the Kullback-Leibler divergence (KLD) between the distributions qφ(z|x)

and p(z). Recall that p(z) ∼ N (0, 1). We take qφ(z|x) to also be a Gaussian distribution, but with a unknown

mean and standard deviation (to be fixed by the optimization), i.e. qφ(z|x) = N (μ(x),σ2(x)). The KLD

between these two distributions is then given exactly by (9.4). Using the reparameterization trick [1234,1252],

we can write qφ(z|x) in terms of a standard normal:

z ∼ qφ(z|x), z = μ(x) + σ(x)ε , ε ∼ N (0, 1) . (F.13)

Using the reparameterization trick allows for more efficient training of the network, as the back propagation

of the gradients extends to the parameters of the distribution (μ and θ) even though a random draw from

the distribution is passed to the decoder.

It’s now clear that the last line in (F.12) is the negative loss for a VAE architecture. By training the

VAE, we are minimizing the loss. By the inequality in (F.12), the last line is also a lower limit for the log

likelihood. The optimized VAE therefore gives a maximized lower bound to the log likelihood, the so called

Evidence LOwer Bound (ELBO). Notice that in this discussion it is imperative to use the full VAE loss in

order for it to have the variational inference interpretation.

F.4 Comparing Anomaly Detection to a Supervised Method

It is well known that anomaly detection is sub-optimal for looking for any particular model; if the signal

is known before-hand, supervised classification will yield the best results. We use a similar setup for our

supervised classification as we did for the VAEs. The network consists of 1, 2, or 3 convolution blocks. Each

block is made of two successive convolutional layers with 5 filters with a kernel size of 3 pixels, followed by

an ELU activation function. After the convolutions, the data is down sampled with a 2 × 2 average pool

operation. Following the convolution blocks, the data is flattened to a vector and a fully connected layer

reduces the output to a single number with a sigmoid activation.

The networks are trained using 50000 events from the QCD sample and 50000 events from either the

top or W samples. Similarly, 5000 events from each dataset are used for validation and to stop the network

training when the validation loss has stopped improving. The training minimizes the binary cross entropy.

After training, the network is applied to the test data of 5000 events in each class. We find that the network

with three down sample layers achieves the best AUCs, with a score of 0.94 for top tagging and 0.96 for W
tagging.

238



References
[1] K. Fraser and M. Reece, Axion Periodicity and Coupling Quantization in the Presence of Mixing,

JHEP 05 (2020) 066, [arXiv:1910.11349].
[2] J. Fan, K. Fraser, M. Reece, and J. Stout, Axion Mass from Magnetic Monopole Loops, Phys. Rev.

Lett. 127 (2021), no. 13 131602, [arXiv:2105.09950].
[3] H. Bagherian, K. Fraser, S. Homiller, and J. Stout, Zero Modes of Massive Fermions Delocalize from

Axion Strings, arXiv:2310.01476.
[4] K. Fraser, A. Parikh, and W. L. Xu, A Closer Look at CP-Violating Higgs Portal Dark Matter as a

Candidate for the GCE, JHEP 03 (2021) 123, [arXiv:2010.15129].
[5] P. Asadi, C. Cesarotti, K. Fraser, S. Homiller, and A. Parikh, Oblique lessons from the W-mass

measurement at CDF II, Phys. Rev. D 108 (2023), no. 5 055026, [arXiv:2204.05283].
[6] P. Asadi, A. Bhattacharya, K. Fraser, S. Homiller, and A. Parikh, Wrinkles in the Froggatt-Nielsen

mechanism and flavorful new physics, JHEP 10 (2023) 069, [arXiv:2308.01340].
[7] F. Flesher, K. Fraser, C. Hutchison, B. Ostdiek, and M. D. Schwartz, Parameter inference from event

ensembles and the top-quark mass, JHEP 09 (2021) 058, [arXiv:2011.04666].
[8] K. Fraser, S. Homiller, R. K. Mishra, B. Ostdiek, and M. D. Schwartz, Challenges for unsupervised

anomaly detection in particle physics, JHEP 03 (2022) 066, [arXiv:2110.06948].
[9] D. Tong, Line Operators in the Standard Model, JHEP 07 (2017) 104, [arXiv:1705.01853].

[10] B. W. Lee, C. Quigg, and H. B. Thacker, Weak Interactions at Very High-Energies: The Role of the
Higgs Boson Mass, Phys. Rev. D 16 (1977) 1519.

[11] CDF Collaboration, T. Aaltonen et al., High-precision measurement of the W boson mass with the
CDF II detector, Science 376 (2022), no. 6589 170–176.

[12] BaBar Collaboration, B. Aubert et al., Observation of the semileptonic decays B→ D∗τ− ν̄( τ) and
evidence for B→ Dτ− ν̄( τ), Phys. Rev. Lett. 100 (2008) 021801, [arXiv:0709.1698].

[13] Belle Collaboration, A. Bozek et al., Observation of B+ → D̄∗0τ+ντ and Evidence for B+ → D̄0τ+ντ
at Belle, Phys. Rev. D 82 (2010) 072005, [arXiv:1005.2302].

[14] BaBar Collaboration, J. P. Lees et al., Evidence for an excess of B̄→ D(∗)τ− ν̄τ decays, Phys. Rev.
Lett. 109 (2012) 101802, [arXiv:1205.5442].

[15] BaBar Collaboration, J. P. Lees et al., Measurement of an Excess of B̄→ D(∗)τ− ν̄τ Decays and
Implications for Charged Higgs Bosons, Phys. Rev. D 88 (2013), no. 7 072012, [arXiv:1303.0571].

[16] LHCb Collaboration, R. Aaij et al., Measurement of the ratio of branching fractions
B(B̄0 → D∗+τ− ν̄τ)/B(B̄0 → D∗+μ− ν̄μ), Phys. Rev. Lett. 115 (2015), no. 11 111803,
[arXiv:1506.08614]. [Erratum: Phys.Rev.Lett. 115, 159901 (2015)].

[17] Belle Collaboration, M. Huschle et al., Measurement of the branching ratio of B̄→ D(∗)τ− ν̄τ relative
to B̄→ D(∗)ℓ− ν̄ℓ decays with hadronic tagging at Belle, Phys. Rev. D 92 (2015), no. 7 072014,
[arXiv:1507.03233].

[18] A. Abdesselam et al., Measurement of the τ lepton polarization in the decay B̄→ D∗τ− ν̄τ,
arXiv:1608.06391.

[19] E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D. F. Mota, A. G. Riess, and
J. Silk, In the realm of the Hubble tension—a review of solutions, Class. Quant. Grav. 38 (2021),
no. 15 153001, [arXiv:2103.01183].

239

http://arxiv.org/abs/1910.11349
http://arxiv.org/abs/2105.09950
http://arxiv.org/abs/2310.01476
http://arxiv.org/abs/2010.15129
http://arxiv.org/abs/2204.05283
http://arxiv.org/abs/2308.01340
http://arxiv.org/abs/2011.04666
http://arxiv.org/abs/2110.06948
http://arxiv.org/abs/1705.01853
http://arxiv.org/abs/0709.1698
http://arxiv.org/abs/1005.2302
http://arxiv.org/abs/1205.5442
http://arxiv.org/abs/1303.0571
http://arxiv.org/abs/1506.08614
http://arxiv.org/abs/1507.03233
http://arxiv.org/abs/1608.06391
http://arxiv.org/abs/2103.01183


[20] Planck Collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, Astron.
Astrophys. 641 (2020) A6, [arXiv:1807.06209]. [Erratum: Astron.Astrophys. 652, C4 (2021)].

[21] A. G. Riess et al., A Comprehensive Measurement of the Local Value of the Hubble Constant with 1
km s1 Mpc1 Uncertainty from the Hubble Space Telescope and the SH0ES Team, Astrophys. J. Lett.
934 (2022), no. 1 L7, [arXiv:2112.04510].

[22] A. G. Riess, S. Casertano, W. Yuan, J. B. Bowers, L. Macri, J. C. Zinn, and D. Scolnic, Cosmic
Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope
Photometry of 75 Milky Way Cepheids Confirm Tension with ΛCDM, Astrophys. J. Lett. 908 (2021),
no. 1 L6, [arXiv:2012.08534].

[23] A. G. Riess, The Expansion of the Universe is Faster than Expected, Nature Rev. Phys. 2 (2019),
no. 1 10–12, [arXiv:2001.03624].

[24] A. H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems,
Phys. Rev. D 23 (1981) 347–356.

[25] A. A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe,
JETP Lett. 30 (1979) 682–685.

[26] A. A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B
91 (1980) 99–102.

[27] A. D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness,
Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108 (1982) 389–393.

[28] A. Albrecht and P. J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced
Symmetry Breaking, Phys. Rev. Lett. 48 (1982) 1220–1223.

[29] TMVA Collaboration, A. Hocker et al., TMVA - Toolkit for Multivariate Data Analysis,
physics/0703039.

[30] “Hep ml living review.” https://iml-wg.github.io/HEPML-LivingReview/.

[31] L. de Oliveira, M. Kagan, L. Mackey, B. Nachman, and A. Schwartzman, Jet-images — deep learning
edition, JHEP 07 (2016) 069, [arXiv:1511.05190].

[32] J. Barnard, E. N. Dawe, M. J. Dolan, and N. Rajcic, Parton Shower Uncertainties in Jet Substructure
Analyses with Deep Neural Networks, Phys. Rev. D 95 (2017), no. 1 014018, [arXiv:1609.00607].

[33] D. Guest, J. Collado, P. Baldi, S.-C. Hsu, G. Urban, and D. Whiteson, Jet Flavor Classification in
High-Energy Physics with Deep Neural Networks, Phys. Rev. D 94 (2016), no. 11 112002,
[arXiv:1607.08633].

[34] P. T. Komiske, E. M. Metodiev, and M. D. Schwartz, Deep learning in color: towards automated
quark/gluon jet discrimination, JHEP 01 (2017) 110, [arXiv:1612.01551].

[35] G. Louppe, K. Cho, C. Becot, and K. Cranmer, QCD-Aware Recursive Neural Networks for Jet
Physics, JHEP 01 (2019) 057, [arXiv:1702.00748].

[36] C. Shimmin, P. Sadowski, P. Baldi, E. Weik, D. Whiteson, E. Goul, and A. Søgaard, Decorrelated Jet
Substructure Tagging using Adversarial Neural Networks, Phys. Rev. D 96 (2017), no. 7 074034,
[arXiv:1703.03507].

[37] K. Fraser and M. D. Schwartz, Jet Charge and Machine Learning, JHEP 10 (2018) 093,
[arXiv:1803.08066].

[38] CMS Collaboration, A. M. Sirunyan et al., A deep neural network to search for new long-lived
particles decaying to jets, Mach. Learn. Sci. Tech. 1 (2020) 035012, [arXiv:1912.12238].

[39] A. Butter et al., The Machine Learning landscape of top taggers, SciPost Phys. 7 (2019) 014,
[arXiv:1902.09914].

240

http://arxiv.org/abs/1807.06209
http://arxiv.org/abs/2112.04510
http://arxiv.org/abs/2012.08534
http://arxiv.org/abs/2001.03624
http://arxiv.org/abs/physics/0703039
https://iml-wg.github.io/HEPML-LivingReview/
http://arxiv.org/abs/1511.05190
http://arxiv.org/abs/1609.00607
http://arxiv.org/abs/1607.08633
http://arxiv.org/abs/1612.01551
http://arxiv.org/abs/1702.00748
http://arxiv.org/abs/1703.03507
http://arxiv.org/abs/1803.08066
http://arxiv.org/abs/1912.12238
http://arxiv.org/abs/1902.09914


[40] T. Cai, J. Cheng, N. Craig, and K. Craig, Linearized optimal transport for collider events, Phys. Rev.
D 102 (2020), no. 11 116019, [arXiv:2008.08604].

[41] CMS Collaboration, A. M. Sirunyan et al., Identification of heavy, energetic, hadronically decaying
particles using machine-learning techniques, JINST 15 (2020), no. 06 P06005, [arXiv:2004.08262].

[42] A. Andreassen, I. Feige, C. Frye, and M. D. Schwartz, Binary JUNIPR: an interpretable probabilistic
model for discrimination, Phys. Rev. Lett. 123 (2019), no. 18 182001, [arXiv:1906.10137].

[43] S. Gong, Q. Meng, J. Zhang, H. Qu, C. Li, S. Qian, W. Du, Z.-M. Ma, and T.-Y. Liu, An efficient
Lorentz equivariant graph neural network for jet tagging, JHEP 07 (2022) 030, [arXiv:2201.08187].

[44] C. Li, H. Qu, S. Qian, Q. Meng, S. Gong, J. Zhang, T.-Y. Liu, and Q. Li, Does Lorentz-symmetric
design boost network performance in jet physics?, Phys. Rev. D 109 (2024), no. 5 056003,
[arXiv:2208.07814].

[45] H. Qu, C. Li, and S. Qian, Particle Transformer for Jet Tagging, arXiv:2202.03772.

[46] A. Bogatskiy, T. Hoffman, and J. T. Offermann, 19 Parameters Is All You Need: Tiny Neural
Networks for Particle Physics, in 37th Conference on Neural Information Processing Systems, 10,
2023. arXiv:2310.16121.

[47] A. Bogatskiy, T. Hoffman, D. W. Miller, J. T. Offermann, and X. Liu, Explainable equivariant neural
networks for particle physics: PELICAN, JHEP 03 (2024) 113, [arXiv:2307.16506].

[48] P. Baldi, P. Sadowski, and D. Whiteson, Searching for Exotic Particles in High-Energy Physics with
Deep Learning, Nature Commun. 5 (2014) 4308, [arXiv:1402.4735].

[49] Y.-C. J. Chen, C.-W. Chiang, G. Cottin, and D. Shih, Boosted W and Z tagging with jet charge and
deep learning, Phys. Rev. D 101 (2020), no. 5 053001, [arXiv:1908.08256].

[50] X. Ju and B. Nachman, Supervised Jet Clustering with Graph Neural Networks for Lorentz Boosted
Bosons, Phys. Rev. D 102 (2020), no. 7 075014, [arXiv:2008.06064].

[51] F. A. Dreyer and H. Qu, Jet tagging in the Lund plane with graph networks, JHEP 03 (2021) 052,
[arXiv:2012.08526].

[52] T. Kim and A. Martin, A W± polarization analyzer from Deep Neural Networks, arXiv:2102.05124.

[53] J. A. Aguilar-Saavedra, E. Arganda, F. R. Joaquim, R. M. Sandá Seoane, and J. F. Seabra, Gradient
Boosting MUST taggers for highly-boosted jets, arXiv:2305.04957.

[54] D. Athanasakos, A. J. Larkoski, J. Mulligan,
M. Pℓosko, andF. Ringer, Isinfrared− collinearsafeinformationallyouneedforjetclassification?, arXiv : 2305.08979.

[55] K. Datta, A. Larkoski, and B. Nachman, Automating the Construction of Jet Observables with
Machine Learning, Phys. Rev. D 100 (2019), no. 9 095016, [arXiv:1902.07180].

[56] E. A. Moreno, T. Q. Nguyen, J.-R. Vlimant, O. Cerri, H. B. Newman, A. Periwal, M. Spiropulu,
J. M. Duarte, and M. Pierini, Interaction networks for the identification of boosted H→ bb decays,
Phys. Rev. D 102 (2020), no. 1 012010, [arXiv:1909.12285].

[57] A. Chakraborty, S. H. Lim, and M. M. Nojiri, Interpretable deep learning for two-prong jet
classification with jet spectra, JHEP 07 (2019) 135, [arXiv:1904.02092].

[58] J. Guo, J. Li, T. Li, and R. Zhang, Boosted Higgs boson jet reconstruction via a graph neural
network, Phys. Rev. D 103 (2021), no. 11 116025, [arXiv:2010.05464].

[59] C. K. Khosa and S. Marzani, Higgs boson tagging with the Lund jet plane, Phys. Rev. D 104 (2021),
no. 5 055043, [arXiv:2105.03989].

[60] ATLAS Collaboration, Quark versus Gluon Jet Tagging Using Jet Images with the ATLAS Detector,
tech. rep., CERN, Geneva, 2017. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-017.

241

http://arxiv.org/abs/2008.08604
http://arxiv.org/abs/2004.08262
http://arxiv.org/abs/1906.10137
http://arxiv.org/abs/2201.08187
http://arxiv.org/abs/2208.07814
http://arxiv.org/abs/2202.03772
http://arxiv.org/abs/2310.16121
http://arxiv.org/abs/2307.16506
http://arxiv.org/abs/1402.4735
http://arxiv.org/abs/1908.08256
http://arxiv.org/abs/2008.06064
http://arxiv.org/abs/2012.08526
http://arxiv.org/abs/2102.05124
http://arxiv.org/abs/2305.04957
http://arxiv.org/abs/2305.08979
http://arxiv.org/abs/1902.07180
http://arxiv.org/abs/1909.12285
http://arxiv.org/abs/1904.02092
http://arxiv.org/abs/2010.05464
http://arxiv.org/abs/2105.03989


[61] T. Cheng, Recursive Neural Networks in Quark/Gluon Tagging, Comput. Softw. Big Sci. 2 (2018),
no. 1 3, [arXiv:1711.02633].

[62] E. A. Moreno, O. Cerri, J. M. Duarte, H. B. Newman, T. Q. Nguyen, A. Periwal, M. Pierini,
A. Serikova, M. Spiropulu, and J.-R. Vlimant, JEDI-net: a jet identification algorithm based on
interaction networks, Eur. Phys. J. C 80 (2020), no. 1 58, [arXiv:1908.05318].

[63] G. Kasieczka, N. Kiefer, T. Plehn, and J. M. Thompson, Quark-Gluon Tagging: Machine Learning vs
Detector, SciPost Phys. 6 (2019), no. 6 069, [arXiv:1812.09223].

[64] G. Kasieczka, S. Marzani, G. Soyez, and G. Stagnitto, Towards Machine Learning Analytics for Jet
Substructure, JHEP 09 (2020) 195, [arXiv:2007.04319].

[65] J. S. H. Lee, S. M. Lee, Y. Lee, I. Park, I. J. Watson, and S. Yang, Quark Gluon Jet Discrimination
with Weakly Supervised Learning, J. Korean Phys. Soc. 75 (2019), no. 9 652–659, [arXiv:2012.02540].

[66] A. Romero, D. Whiteson, M. Fenton, J. Collado, and P. Baldi, Safety of Quark/Gluon Jet
Classification, arXiv:2103.09103.

[67] F. A. Dreyer, G. Soyez, and A. Takacs, Quarks and gluons in the Lund plane, JHEP 08 (2022) 177,
[arXiv:2112.09140].

[68] S. Bright-Thonney, I. Moult, B. Nachman, and S. Prestel, Systematic quark/gluon identification with
ratios of likelihoods, JHEP 12 (2022) 021, [arXiv:2207.12411].

[69] S. Diefenbacher, H. Frost, G. Kasieczka, T. Plehn, and J. M. Thompson, CapsNets Continuing the
Convolutional Quest, SciPost Phys. 8 (2020) 023, [arXiv:1906.11265].

[70] G. Kasieczka, T. Plehn, M. Russell, and T. Schell, Deep-learning Top Taggers or The End of QCD?,
JHEP 05 (2017) 006, [arXiv:1701.08784].

[71] A. Butter, G. Kasieczka, T. Plehn, and M. Russell, Deep-learned Top Tagging with a Lorentz Layer,
SciPost Phys. 5 (2018), no. 3 028, [arXiv:1707.08966].

[72] S. Macaluso and D. Shih, Pulling Out All the Tops with Computer Vision and Deep Learning, JHEP
10 (2018) 121, [arXiv:1803.00107].

[73] S. Bhattacharya, M. Guchait, and A. H. Vijay, Boosted top quark tagging and polarization
measurement using machine learning, Phys. Rev. D 105 (2022), no. 4 042005, [arXiv:2010.11778].

[74] S. H. Lim and M. M. Nojiri, Morphology for jet classification, Phys. Rev. D 105 (2022), no. 1 014004,
[arXiv:2010.13469].

[75] J. A. Aguilar-Saavedra, Pulling the Higgs and top needles from the jet stack with feature extended
supervised tagging, Eur. Phys. J. C 81 (2021), no. 8 734, [arXiv:2102.01667].

[76] M. Andrews et al., End-to-end jet classification of boosted top quarks with the CMS open data, EPJ
Web Conf. 251 (2021) 04030, [arXiv:2104.14659].

[77] S. K. Choi, J. Li, C. Zhang, and R. Zhang, Automatic detection of boosted Higgs boson and top quark
jets in an event image, Phys. Rev. D 108 (2023), no. 11 116002, [arXiv:2302.13460].

[78] M. He and D. Wang, Quark/gluon discrimination and top tagging with dual attention transformer,
Eur. Phys. J. C 83 (2023), no. 12 1116, [arXiv:2307.04723].

[79] B. Bhattacherjee, C. Bose, A. Chakraborty, and R. Sengupta, Boosted top tagging and its
interpretation using Shapley values, arXiv:2212.11606.

[80] J. M. Munoz, I. Batatia, and C. Ortner, Boost invariant polynomials for efficient jet tagging, Mach.
Learn. Sci. Tech. 3 (2022), no. 4 04LT05, [arXiv:2207.08272].

[81] I. Ahmed, A. Zada, M. Waqas, and M. U. Ashraf, Application of deep learning in top pair and single
top quark production at the LHC, Eur. Phys. J. Plus 138 (2023), no. 9 795, [arXiv:2203.12871].

242

http://arxiv.org/abs/1711.02633
http://arxiv.org/abs/1908.05318
http://arxiv.org/abs/1812.09223
http://arxiv.org/abs/2007.04319
http://arxiv.org/abs/2012.02540
http://arxiv.org/abs/2103.09103
http://arxiv.org/abs/2112.09140
http://arxiv.org/abs/2207.12411
http://arxiv.org/abs/1906.11265
http://arxiv.org/abs/1701.08784
http://arxiv.org/abs/1707.08966
http://arxiv.org/abs/1803.00107
http://arxiv.org/abs/2010.11778
http://arxiv.org/abs/2010.13469
http://arxiv.org/abs/2102.01667
http://arxiv.org/abs/2104.14659
http://arxiv.org/abs/2302.13460
http://arxiv.org/abs/2307.04723
http://arxiv.org/abs/2212.11606
http://arxiv.org/abs/2207.08272
http://arxiv.org/abs/2203.12871


[82] W. Shen, D. Wang, and J. M. Yang, Hierarchical high-point Energy Flow Network for jet tagging,
JHEP 09 (2023) 135, [arXiv:2308.08300].

[83] L. G. Almeida, M. Backović, M. Cliche, S. J. Lee, and M. Perelstein, Playing Tag with ANN: Boosted
Top Identification with Pattern Recognition, JHEP 07 (2015) 086, [arXiv:1501.05968].

[84] A. Chakraborty, S. H. Lim, M. M. Nojiri, and M. Takeuchi, Neural Network-based Top Tagger with
Two-Point Energy Correlations and Geometry of Soft Emissions, JHEP 07 (2020) 111,
[arXiv:2003.11787].

[85] F. A. Dreyer, R. Grabarczyk, and P. F. Monni, Leveraging universality of jet taggers through transfer
learning, Eur. Phys. J. C 82 (2022), no. 6 564, [arXiv:2203.06210].

[86] R. Sahu and K. Ghosh, ML-Based Top Taggers: Performance, Uncertainty and Impact of Tower &
Tracker Data Integration, arXiv:2309.01568.

[87] Y. Nakai, D. Shih, and S. Thomas, Strange Jet Tagging, arXiv:2003.09517.

[88] J. Erdmann, A tagger for strange jets based on tracking information using long short-term memory,
JINST 15 (2020), no. 01 P01021, [arXiv:1907.07505].

[89] ATLAS Collaboration, Identification of Jets Containing b-Hadrons with Recurrent Neural Networks
at the ATLAS Experiment, tech. rep., CERN, Geneva, 2017. All figures including auxiliary figures
are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-003.

[90] ATLAS Collaboration, Deep Sets based Neural Networks for Impact Parameter Flavour Tagging in
ATLAS, tech. rep., CERN, Geneva, 2020. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-014.

[91] H. Qu and L. Gouskos, ParticleNet: Jet Tagging via Particle Clouds, Phys. Rev. D 101 (2020), no. 5
056019, [arXiv:1902.08570].

[92] ATLAS Collaboration, G. Aad et al., Fast b-tagging at the high-level trigger of the ATLAS
experiment in LHC Run 3, JINST 18 (2023), no. 11 P11006, [arXiv:2306.09738].

[93] E. Bols, J. Kieseler, M. Verzetti, M. Stoye, and A. Stakia, Jet Flavour Classification Using DeepJet,
JINST 15 (2020), no. 12 P12012, [arXiv:2008.10519].

[94] CMS Collaboration, A. M. Sirunyan et al., Identification of heavy-flavour jets with the CMS detector
in pp collisions at 13 TeV, JINST 13 (2018), no. 05 P05011, [arXiv:1712.07158].

[95] J. Erdmann, O. Nackenhorst, and S. V. Zeißner, Maximum performance of strange-jet tagging at
hadron colliders, JINST 16 (2021), no. 08 P08039, [arXiv:2011.10736].

[96] A. Furuichi, S. H. Lim, and M. M. Nojiri, Jet Classification Using High-Level Features from Anatomy
of Top Jets, arXiv:2312.11760.

[97] R. Liu, A. Gandrakota, J. Ngadiuba, M. Spiropulu, and J.-R. Vlimant, Efficient and Robust Jet
Tagging at the LHC with Knowledge Distillation, in 37th Conference on Neural Information
Processing Systems, 11, 2023. arXiv:2311.14160.

[98] E. M. Metodiev, B. Nachman, and J. Thaler, Classification without labels: Learning from mixed
samples in high energy physics, JHEP 10 (2017) 174, [arXiv:1708.02949].

[99] P. T. Komiske, E. M. Metodiev, B. Nachman, and M. D. Schwartz, Learning to classify from impure
samples with high-dimensional data, Phys. Rev. D 98 (2018), no. 1 011502, [arXiv:1801.10158].

[100] J. A. Aguilar-Saavedra, F. R. Joaquim, and J. F. Seabra, Mass Unspecific Supervised Tagging
(MUST) for boosted jets, JHEP 03 (2021) 012, [arXiv:2008.12792]. [Erratum: JHEP 04, 133 (2021)].

[101] J. M. Clavijo, P. Glaysher, J. Jitsev, and J. M. Katzy, Adversarial domain adaptation to reduce
sample bias of a high energy physics event classifier ∗, Mach. Learn. Sci. Tech. 3 (2022), no. 1
015014, [arXiv:2005.00568].

243

http://arxiv.org/abs/2308.08300
http://arxiv.org/abs/1501.05968
http://arxiv.org/abs/2003.11787
http://arxiv.org/abs/2203.06210
http://arxiv.org/abs/2309.01568
http://arxiv.org/abs/2003.09517
http://arxiv.org/abs/1907.07505
http://arxiv.org/abs/1902.08570
http://arxiv.org/abs/2306.09738
http://arxiv.org/abs/2008.10519
http://arxiv.org/abs/1712.07158
http://arxiv.org/abs/2011.10736
http://arxiv.org/abs/2312.11760
http://arxiv.org/abs/2311.14160
http://arxiv.org/abs/1708.02949
http://arxiv.org/abs/1801.10158
http://arxiv.org/abs/2008.12792
http://arxiv.org/abs/2005.00568


[102] M. Abbas, A. Khan, A. S. Qureshi, and M. W. Khan, Extracting Signals of Higgs Boson From
Background Noise Using Deep Neural Networks, arXiv:2010.08201.

[103] V. S. Ngairangbam and M. Spannowsky, Interpretable deep learning models for the inference and
classification of LHC data, arXiv:2312.12330.

[104] E. Bernreuther, T. Finke, F. Kahlhoefer, M. Krämer, and A. Mück, Casting a graph net to catch dark
showers, SciPost Phys. 10 (2021), no. 2 046, [arXiv:2006.08639].

[105] E. Arganda, A. D. Medina, A. D. Perez, and A. Szynkman, Towards a method to anticipate dark
matter signals with deep learning at the LHC, SciPost Phys. 12 (2022), no. 2 063, [arXiv:2105.12018].

[106] X. C. Vidal, L. D. Maroñas, and A. D. Suárez, How to Use Machine Learning to Improve the
Discrimination between Signal and Background at Particle Colliders, Appl. Sciences 11 (2021),
no. 22 11076, [arXiv:2110.15099].

[107] B. Bhattacherjee, P. Konar, V. S. Ngairangbam, and P. Solanki, LLPNet: Graph Autoencoder for
Triggering Light Long-Lived Particles at HL-LHC, arXiv:2308.13611.

[108] O. Amram and C. M. Suarez, Tag N’ Train: a technique to train improved classifiers on unlabeled
data, JHEP 01 (2021) 153, [arXiv:2002.12376].

[109] J. H. Collins, K. Howe, and B. Nachman, Extending the search for new resonances with machine
learning, Phys. Rev. D 99 (2019), no. 1 014038, [arXiv:1902.02634].

[110] J. H. Collins, K. Howe, and B. Nachman, Anomaly Detection for Resonant New Physics with
Machine Learning, Phys. Rev. Lett. 121 (2018), no. 24 241803, [arXiv:1805.02664].

[111] R. T. D’Agnolo and A. Wulzer, Learning New Physics from a Machine, Phys. Rev. D 99 (2019),
no. 1 015014, [arXiv:1806.02350].

[112] A. De Simone and T. Jacques, Guiding New Physics Searches with Unsupervised Learning, Eur.
Phys. J. C 79 (2019), no. 4 289, [arXiv:1807.06038].

[113] A. Casa and G. Menardi, Nonparametric semisupervised classification for signal detection in high
energy physics, arXiv:1809.02977.

[114] B. M. Dillon, D. A. Faroughy, and J. F. Kamenik, Uncovering latent jet substructure, Phys. Rev. D
100 (2019), no. 5 056002, [arXiv:1904.04200].

[115] A. Mullin, S. Nicholls, H. Pacey, M. Parker, M. White, and S. Williams, Does SUSY have friends? A
new approach for LHC event analysis, JHEP 02 (2021) 160, [arXiv:1912.10625].

[116] R. T. D’Agnolo, G. Grosso, M. Pierini, A. Wulzer, and M. Zanetti, Learning multivariate new
physics, Eur. Phys. J. C 81 (2021), no. 1 89, [arXiv:1912.12155].

[117] B. Nachman and D. Shih, Anomaly Detection with Density Estimation, Phys. Rev. D 101 (2020)
075042, [arXiv:2001.04990].

[118] A. Andreassen, B. Nachman, and D. Shih, Simulation Assisted Likelihood-free Anomaly Detection,
Phys. Rev. D 101 (2020), no. 9 095004, [arXiv:2001.05001].

[119] B. M. Dillon, D. A. Faroughy, J. F. Kamenik, and M. Szewc, Learning the latent structure of collider
events, JHEP 10 (2020) 206, [arXiv:2005.12319].

[120] K. Benkendorfer, L. L. Pottier, and B. Nachman, Simulation-assisted decorrelation for resonant
anomaly detection, Phys. Rev. D 104 (2021), no. 3 035003, [arXiv:2009.02205].

[121] V. Mikuni and F. Canelli, Unsupervised clustering for collider physics, Phys. Rev. D 103 (2021),
no. 9 092007, [arXiv:2010.07106].

[122] G. Stein, U. Seljak, and B. Dai, Unsupervised in-distribution anomaly detection of new physics
through conditional density estimation, in 34th Conference on Neural Information Processing
Systems, 12, 2020. arXiv:2012.11638.

244

http://arxiv.org/abs/2010.08201
http://arxiv.org/abs/2312.12330
http://arxiv.org/abs/2006.08639
http://arxiv.org/abs/2105.12018
http://arxiv.org/abs/2110.15099
http://arxiv.org/abs/2308.13611
http://arxiv.org/abs/2002.12376
http://arxiv.org/abs/1902.02634
http://arxiv.org/abs/1805.02664
http://arxiv.org/abs/1806.02350
http://arxiv.org/abs/1807.06038
http://arxiv.org/abs/1809.02977
http://arxiv.org/abs/1904.04200
http://arxiv.org/abs/1912.10625
http://arxiv.org/abs/1912.12155
http://arxiv.org/abs/2001.04990
http://arxiv.org/abs/2001.05001
http://arxiv.org/abs/2005.12319
http://arxiv.org/abs/2009.02205
http://arxiv.org/abs/2010.07106
http://arxiv.org/abs/2012.11638


[123] G. Kasieczka et al., The LHC Olympics 2020: A Community Challenge for Anomaly Detection in
High Energy Physics, arXiv:2101.08320.

[124] J. Batson, C. G. Haaf, Y. Kahn, and D. A. Roberts, Topological Obstructions to Autoencoding, JHEP
04 (2021) 280, [arXiv:2102.08380].

[125] B. Bortolato, B. M. Dillon, J. F. Kamenik, and A. Smolkovivc, Bump Hunting in Latent Space,
arXiv:2103.06595.

[126] J. H. Collins, P. Martín-Ramiro, B. Nachman, and D. Shih, Comparing weak- and unsupervised
methods for resonant anomaly detection, Eur. Phys. J. C 81 (2021), no. 7 617, [arXiv:2104.02092].

[127] S. Volkovich, F. De Vito Halevy, and S. Bressler, The Data-Directed Paradigm for BSM searches,
arXiv:2107.11573.

[128] A. Hallin, J. Isaacson, G. Kasieczka, C. Krause, B. Nachman, T. Quadfasel, M. Schlaffer, D. Shih,
and M. Sommerhalder, Classifying Anomalies THrough Outer Density Estimation (CATHODE),
arXiv:2109.00546.

[129] J. A. Aguilar-Saavedra, J. H. Collins, and R. K. Mishra, A generic anti-QCD jet tagger, JHEP 11
(2017) 163, [arXiv:1709.01087].

[130] J. Hajer, Y.-Y. Li, T. Liu, and H. Wang, Novelty Detection Meets Collider Physics, Phys. Rev. D
101 (2020), no. 7 076015, [arXiv:1807.10261].

[131] O. Cerri, T. Q. Nguyen, M. Pierini, M. Spiropulu, and J.-R. Vlimant, Variational Autoencoders for
New Physics Mining at the Large Hadron Collider, JHEP 05 (2019) 036, [arXiv:1811.10276].

[132] M. Farina, Y. Nakai, and D. Shih, Searching for New Physics with Deep Autoencoders, Phys. Rev. D
101 (2020), no. 7 075021, [arXiv:1808.08992].

[133] T. Heimel, G. Kasieczka, T. Plehn, and J. M. Thompson, QCD or What?, SciPost Phys. 6 (2019),
no. 3 030, [arXiv:1808.08979].

[134] A. Blance, M. Spannowsky, and P. Waite, Adversarially-trained autoencoders for robust unsupervised
new physics searches, JHEP 10 (2019) 047, [arXiv:1905.10384].

[135] M. Romão Crispim, N. F. Castro, R. Pedro, and T. Vale, Transferability of Deep Learning Models in
Searches for New Physics at Colliders, Phys. Rev. D 101 (2020), no. 3 035042, [arXiv:1912.04220].

[136] T. S. Roy and A. H. Vijay, A robust anomaly finder based on autoencoders, arXiv:1903.02032.
[137] M. Crispim Romão, N. F. Castro, J. G. Milhano, R. Pedro, and T. Vale, Use of a generalized energy

Mover’s distance in the search for rare phenomena at colliders, Eur. Phys. J. C 81 (2021), no. 2 192,
[arXiv:2004.09360].

[138] M. Crispim Romão, N. F. Castro, and R. Pedro, Finding New Physics without learning about it:
Anomaly Detection as a tool for Searches at Colliders, Eur. Phys. J. C 81 (2021), no. 1 27,
[arXiv:2006.05432].

[139] D. A. Faroughy, Uncovering hidden new physics patterns in collider events using Bayesian
probabilistic models, PoS ICHEP2020 (2021) 238, [arXiv:2012.08579].

[140] C. K. Khosa and V. Sanz, Anomaly Awareness, arXiv:2007.14462.
[141] O. Knapp, O. Cerri, G. Dissertori, T. Q. Nguyen, M. Pierini, and J.-R. Vlimant, Adversarially

Learned Anomaly Detection on CMS Open Data: re-discovering the top quark, Eur. Phys. J. Plus
136 (2021), no. 2 236, [arXiv:2005.01598].

[142] S. E. Park, D. Rankin, S.-M. Udrescu, M. Yunus, and P. Harris, Quasi Anomalous Knowledge:
Searching for new physics with embedded knowledge, JHEP 21 (2020) 030, [arXiv:2011.03550].

[143] A. A. Pol, V. Berger, G. Cerminara, C. Germain, and M. Pierini, Anomaly Detection With
Conditional Variational Autoencoders, in Eighteenth International Conference on Machine Learning
and Applications, 10, 2020. arXiv:2010.05531.

245

http://arxiv.org/abs/2101.08320
http://arxiv.org/abs/2102.08380
http://arxiv.org/abs/2103.06595
http://arxiv.org/abs/2104.02092
http://arxiv.org/abs/2107.11573
http://arxiv.org/abs/2109.00546
http://arxiv.org/abs/1709.01087
http://arxiv.org/abs/1807.10261
http://arxiv.org/abs/1811.10276
http://arxiv.org/abs/1808.08992
http://arxiv.org/abs/1808.08979
http://arxiv.org/abs/1905.10384
http://arxiv.org/abs/1912.04220
http://arxiv.org/abs/1903.02032
http://arxiv.org/abs/2004.09360
http://arxiv.org/abs/2006.05432
http://arxiv.org/abs/2012.08579
http://arxiv.org/abs/2007.14462
http://arxiv.org/abs/2005.01598
http://arxiv.org/abs/2011.03550
http://arxiv.org/abs/2010.05531


[144] M. van Beekveld, S. Caron, L. Hendriks, P. Jackson, A. Leinweber, S. Otten, R. Patrick, R. Ruiz
De Austri, M. Santoni, and M. White, Combining outlier analysis algorithms to identify new physics
at the LHC, JHEP 09 (2021) 024, [arXiv:2010.07940].

[145] E. Govorkova et al., Autoencoders on FPGAs for real-time, unsupervised new physics detection at 40
MHz at the Large Hadron Collider, arXiv:2108.03986.

[146] T. Cheng, J.-F. Arguin, J. Leissner-Martin, J. Pilette, and T. Golling, Variational Autoencoders for
Anomalous Jet Tagging, arXiv:2007.01850.

[147] B. Ostdiek, Deep Set Auto Encoders for Anomaly Detection in Particle Physics, arXiv:2109.01695.

[148] B. M. Dillon, T. Plehn, C. Sauer, and P. Sorrenson, Better Latent Spaces for Better Autoencoders,
arXiv:2104.08291.

[149] P. Thaprasop, K. Zhou, J. Steinheimer, and C. Herold, Unsupervised Outlier Detection in Heavy-Ion
Collisions, Phys. Scripta 96 (2021), no. 6 064003, [arXiv:2007.15830].

[150] T. Aarrestad et al., The Dark Machines Anomaly Score Challenge: Benchmark Data and Model
Independent Event Classification for the Large Hadron Collider, arXiv:2105.14027.

[151] O. Atkinson, A. Bhardwaj, C. Englert, V. S. Ngairangbam, and M. Spannowsky, Anomaly detection
with Convolutional Graph Neural Networks, arXiv:2105.07988.

[152] S. Caron, L. Hendriks, and R. Verheyen, Rare and Different: Anomaly Scores from a combination of
likelihood and out-of-distribution models to detect new physics at the LHC, arXiv:2106.10164.

[153] P. Chakravarti, M. Kuusela, J. Lei, and L. Wasserman, Model-Independent Detection of New Physics
Signals Using Interpretable Semi-Supervised Classifier Tests, arXiv:2102.07679.

[154] T. Finke, M. Krämer, A. Morandini, A. Mück, and I. Oleksiyuk, Autoencoders for unsupervised
anomaly detection in high energy physics, JHEP 06 (2021) 161, [arXiv:2104.09051].

[155] J. Gonski, J. Lai, B. Nachman, and I. Ochoa, High-dimensional Anomaly Detection with Radiative
Return in e+e− Collisions, arXiv:2108.13451.

[156] E. Govorkova, E. Puljak, T. Aarrestad, M. Pierini, K. A. Woźniak, and J. Ngadiuba, LHC physics
dataset for unsupervised New Physics detection at 40 MHz, Sci. Data 9 (2022) 118, [arXiv:2107.02157].

[157] A. Kahn, J. Gonski, I. Ochoa, D. Williams, and G. Brooijmans, Anomalous jet identification via
sequence modeling, JINST 16 (2021), no. 08 P08012, [arXiv:2105.09274].

[158] M. Birman, B. Nachman, R. Sebbah, G. Sela, O. Turetz, and S. Bressler, Data-directed search for
new physics based on symmetries of the SM, Eur. Phys. J. C 82 (2022), no. 6 508, [arXiv:2203.07529].

[159] T. Buss, B. M. Dillon, T. Finke, M. Krämer, A. Morandini, A. Mück, I. Oleksiyuk, and T. Plehn,
What’s anomalous in LHC jets?, SciPost Phys. 15 (2023), no. 4 168, [arXiv:2202.00686].

[160] L. Bradshaw, S. Chang, and B. Ostdiek, Creating simple, interpretable anomaly detectors for new
physics in jet substructure, Phys. Rev. D 106 (2022), no. 3 035014, [arXiv:2203.01343].

[161] S. Caron, R. R. de Austri, and Z. Zhang, Mixture-of-Theories training: can we find new physics and
anomalies better by mixing physical theories?, JHEP 03 (2023) 004, [arXiv:2207.07631].

[162] B. M. Dillon, L. Favaro, T. Plehn, P. Sorrenson, and M. Krämer, A normalized autoencoder for LHC
triggers, SciPost Phys. Core 6 (2023) 074, [arXiv:2206.14225].

[163] B. M. Dillon, R. Mastandrea, and B. Nachman, Self-supervised anomaly detection for new physics,
Phys. Rev. D 106 (2022), no. 5 056005, [arXiv:2205.10380].

[164] C. Fanelli, J. Giroux, and Z. Papandreou, ‘Flux+Mutability’: a conditional generative approach to
one-class classification and anomaly detection, Mach. Learn. Sci. Tech. 3 (2022), no. 4 045012,
[arXiv:2204.08609].

246

http://arxiv.org/abs/2010.07940
http://arxiv.org/abs/2108.03986
http://arxiv.org/abs/2007.01850
http://arxiv.org/abs/2109.01695
http://arxiv.org/abs/2104.08291
http://arxiv.org/abs/2007.15830
http://arxiv.org/abs/2105.14027
http://arxiv.org/abs/2105.07988
http://arxiv.org/abs/2106.10164
http://arxiv.org/abs/2102.07679
http://arxiv.org/abs/2104.09051
http://arxiv.org/abs/2108.13451
http://arxiv.org/abs/2107.02157
http://arxiv.org/abs/2105.09274
http://arxiv.org/abs/2203.07529
http://arxiv.org/abs/2202.00686
http://arxiv.org/abs/2203.01343
http://arxiv.org/abs/2207.07631
http://arxiv.org/abs/2206.14225
http://arxiv.org/abs/2205.10380
http://arxiv.org/abs/2204.08609


[165] T. Finke, M. Krämer, M. Lipp, and A. Mück, Boosting mono-jet searches with model-agnostic
machine learning, JHEP 08 (2022) 015, [arXiv:2204.11889].

[166] T. Golling, S. Klein, R. Mastandrea, and B. Nachman, Flow-enhanced transportation for anomaly
detection, Phys. Rev. D 107 (2023), no. 9 096025, [arXiv:2212.11285].

[167] A. Hallin, G. Kasieczka, T. Quadfasel, D. Shih, and M. Sommerhalder, Resonant anomaly detection
without background sculpting, Phys. Rev. D 107 (2023), no. 11 114012, [arXiv:2210.14924].

[168] J. A. Aguilar-Saavedra, Anomaly detection from mass unspecific jet tagging, Eur. Phys. J. C 82
(2022), no. 2 130, [arXiv:2111.02647].

[169] F. Canelli, A. de Cosa, L. L. Pottier, J. Niedziela, K. Pedro, and M. Pierini, Autoencoders for
semivisible jet detection, JHEP 02 (2022) 074, [arXiv:2112.02864].

[170] J. Herrero-Garcia, R. Patrick, and A. Scaffidi, A semi-supervised approach to dark matter searches in
direct detection data with machine learning, JCAP 02 (2022), no. 02 039, [arXiv:2110.12248].

[171] B. Nachman, Anomaly Detection for Physics Analysis and Less than Supervised Learning,
arXiv:2010.14554.

[172] G. Kasieczka, B. Nachman, and D. Shih, New Methods and Datasets for Group Anomaly Detection
From Fundamental Physics, in Conference on Knowledge Discovery and Data Mining, 7, 2021.
arXiv:2107.02821.

[173] V. Mikuni, B. Nachman, and D. Shih, Online-compatible unsupervised nonresonant anomaly
detection, Phys. Rev. D 105 (2022), no. 5 055006, [arXiv:2111.06417].

[174] S. Chekanov and W. Hopkins, Event-Based Anomaly Detection for Searches for New Physics,
Universe 8 (2022), no. 10 494, [arXiv:2111.12119].

[175] R. T. d’Agnolo, G. Grosso, M. Pierini, A. Wulzer, and M. Zanetti, Learning new physics from an
imperfect machine, Eur. Phys. J. C 82 (2022), no. 3 275, [arXiv:2111.13633].

[176] J. F. Kamenik and M. Szewc, Null hypothesis test for anomaly detection, Phys. Lett. B 840 (2023)
137836, [arXiv:2210.02226].

[177] G. Kasieczka, R. Mastandrea, V. Mikuni, B. Nachman, M. Pettee, and D. Shih, Anomaly detection
under coordinate transformations, Phys. Rev. D 107 (2023), no. 1 015009, [arXiv:2209.06225].

[178] M. Letizia, G. Losapio, M. Rando, G. Grosso, A. Wulzer, M. Pierini, M. Zanetti, and L. Rosasco,
Learning new physics efficiently with nonparametric methods, Eur. Phys. J. C 82 (2022), no. 10 879,
[arXiv:2204.02317].

[179] S. E. Park, P. Harris, and B. Ostdiek, Neural embedding: learning the embedding of the manifold of
physics data, JHEP 07 (2023) 108, [arXiv:2208.05484].

[180] P. Jawahar, T. Aarrestad, N. Chernyavskaya, M. Pierini, K. A. Wozniak, J. Ngadiuba, J. Duarte,
and S. Tsan, Improving Variational Autoencoders for New Physics Detection at the LHC With
Normalizing Flows, Front. Big Data 5 (2022) 803685, [arXiv:2110.08508].

[181] J. A. Aguilar-Saavedra, Taming modeling uncertainties with mass unspecific supervised tagging, Eur.
Phys. J. C 82 (2022), no. 3 270, [arXiv:2201.11143].

[182] J. A. Raine, S. Klein, D. Sengupta, and T. Golling, CURTAINs for your sliding window:
Constructing unobserved regions by transforming adjacent intervals, Front. Big Data 6 (2023) 899345,
[arXiv:2203.09470].

[183] R. Verheyen, Event Generation and Density Estimation with Surjective Normalizing Flows, SciPost
Phys. 13 (2022), no. 3 047, [arXiv:2205.01697].

[184] K. Bai, R. Mastandrea, and B. Nachman, Non-resonant anomaly detection with background
extrapolation, JHEP 04 (2024) 059, [arXiv:2311.12924].

247

http://arxiv.org/abs/2204.11889
http://arxiv.org/abs/2212.11285
http://arxiv.org/abs/2210.14924
http://arxiv.org/abs/2111.02647
http://arxiv.org/abs/2112.02864
http://arxiv.org/abs/2110.12248
http://arxiv.org/abs/2010.14554
http://arxiv.org/abs/2107.02821
http://arxiv.org/abs/2111.06417
http://arxiv.org/abs/2111.12119
http://arxiv.org/abs/2111.13633
http://arxiv.org/abs/2210.02226
http://arxiv.org/abs/2209.06225
http://arxiv.org/abs/2204.02317
http://arxiv.org/abs/2208.05484
http://arxiv.org/abs/2110.08508
http://arxiv.org/abs/2201.11143
http://arxiv.org/abs/2203.09470
http://arxiv.org/abs/2205.01697
http://arxiv.org/abs/2311.12924


[185] V. Belis, P. Odagiu, and T. K. Aarrestad, Machine learning for anomaly detection in particle physics,
Rev. Phys. 12 (2024) 100091, [arXiv:2312.14190].

[186] G. Bickendorf, M. Drees, G. Kasieczka, C. Krause, and D. Shih, Combining Resonant and Tail-based
Anomaly Detection, arXiv:2309.12918.

[187] E. Buhmann, C. Ewen, G. Kasieczka, V. Mikuni, B. Nachman, and D. Shih, Full phase space
resonant anomaly detection, Phys. Rev. D 109 (2024), no. 5 055015, [arXiv:2310.06897].

[188] S. V. Chekanov and R. Zhang, Enhancing the hunt for new phenomena in dijet final states using
anomaly detection filters at the high-luminosity large Hadron Collider, Eur. Phys. J. Plus 139 (2024),
no. 3 237, [arXiv:2308.02671].

[189] R. Das, G. Kasieczka, and D. Shih, Residual ANODE, arXiv:2312.11629.

[190] B. M. Dillon, L. Favaro, F. Feiden, T. Modak, and T. Plehn, Anomalies, Representations, and
Self-Supervision, arXiv:2301.04660.

[191] T. Finke, M. Hein, G. Kasieczka, M. Krämer, A. Mück, P. Prangchaikul, T. Quadfasel, D. Shih, and
M. Sommerhalder, Tree-based algorithms for weakly supervised anomaly detection, Phys. Rev. D 109
(2024), no. 3 034033, [arXiv:2309.13111].

[192] M. Freytsis, M. Perelstein, and Y. C. San, Anomaly detection in the presence of irrelevant features,
JHEP 02 (2024) 220, [arXiv:2310.13057].

[193] T. Golling et al., The Mass-ive Issue: Anomaly Detection in Jet Physics, in 34th Conference on
Neural Information Processing Systems, 3, 2023. arXiv:2303.14134.

[194] T. Golling, G. Kasieczka, C. Krause, R. Mastandrea, B. Nachman, J. A. Raine, D. Sengupta,
D. Shih, and M. Sommerhalder, The interplay of machine learning-based resonant anomaly detection
methods, Eur. Phys. J. C 84 (2024), no. 3 241, [arXiv:2307.11157].

[195] G. Grosso, N. Lai, M. Migliorini, J. Pazzini, A. Triossi, M. Zanetti, and A. Zucchetta, Triggerless
data acquisition pipeline for Machine Learning based statistical anomaly detection, arXiv:2311.02038.

[196] C. Krause, B. Nachman, I. Pang, D. Shih, and Y. Zhu, Anomaly detection with flow-based fast
calorimeter simulators, arXiv:2312.11618.

[197] R. Liu, A. Gandrakota, J. Ngadiuba, M. Spiropulu, and J.-R. Vlimant, Fast Particle-based Anomaly
Detection Algorithm with Variational Autoencoder, in 37th Conference on Neural Information
Processing Systems, 11, 2023. arXiv:2311.17162.

[198] E. M. Metodiev, J. Thaler, and R. Wynne, Anomaly Detection in Collider Physics via Factorized
Observables, arXiv:2312.00119.

[199] V. Mikuni and B. Nachman, High-dimensional and Permutation Invariant Anomaly Detection,
SciPost Phys. 16 (2024) 062, [arXiv:2306.03933].

[200] S. Roche, Q. Bayer, B. Carlson, W. Ouligian, P. Serhiayenka, J. Stelzer, and T. M. Hong,
Nanosecond anomaly detection with decision trees and real-time application to exotic Higgs decays,
arXiv:2304.03836.

[201] D. Sengupta, M. Leigh, J. A. Raine, S. Klein, and T. Golling, Improving new physics searches with
diffusion models for event observables and jet constituents, JHEP 04 (2024) 109, [arXiv:2312.10130].

[202] D. Sengupta, S. Klein, J. A. Raine, and T. Golling, CURTAINs Flows For Flows: Constructing
Unobserved Regions with Maximum Likelihood Estimation, arXiv:2305.04646.

[203] L. Vaslin, V. Barra, and J. Donini, GAN-AE: an anomaly detection algorithm for New Physics search
in LHC data, Eur. Phys. J. C 83 (2023), no. 11 1008, [arXiv:2305.15179].

[204] N. Craig, J. N. Howard, and H. Li, Exploring Optimal Transport for Event-Level Anomaly Detection
at the Large Hadron Collider, arXiv:2401.15542.

248

http://arxiv.org/abs/2312.14190
http://arxiv.org/abs/2309.12918
http://arxiv.org/abs/2310.06897
http://arxiv.org/abs/2308.02671
http://arxiv.org/abs/2312.11629
http://arxiv.org/abs/2301.04660
http://arxiv.org/abs/2309.13111
http://arxiv.org/abs/2310.13057
http://arxiv.org/abs/2303.14134
http://arxiv.org/abs/2307.11157
http://arxiv.org/abs/2311.02038
http://arxiv.org/abs/2312.11618
http://arxiv.org/abs/2311.17162
http://arxiv.org/abs/2312.00119
http://arxiv.org/abs/2306.03933
http://arxiv.org/abs/2304.03836
http://arxiv.org/abs/2312.10130
http://arxiv.org/abs/2305.04646
http://arxiv.org/abs/2305.15179
http://arxiv.org/abs/2401.15542


[205] I. Oleksiyuk, J. A. Raine, M. Krämer, S. Voloshynovskiy, and T. Golling, Cluster Scanning: a novel
approach to resonance searches, arXiv:2402.17714.

[206] CMS ECAL Collaboration, D. Abadjiev et al., Autoencoder-based Anomaly Detection System for
Online Data Quality Monitoring of the CMS Electromagnetic Calorimeter, arXiv:2309.10157.

[207] CMS Collaboration, N. Zipper, Testing a Neural Network for Anomaly Detection in the CMS Global
Trigger Test Crate during Run 3, JINST 19 (2024), no. 03 C03029, [arXiv:2312.10009].

[208] ATLAS Collaboration, Simultaneous Jet Energy and Mass Calibrations with Neural Networks, tech.
rep., CERN, Geneva, 2020. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-001.

[209] ATLAS Collaboration, Generalized Numerical Inversion: A Neural Network Approach to Jet
Calibration, tech. rep., CERN, Geneva, 2018. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2018-013.

[210] S. Cheong, A. Cukierman, B. Nachman, M. Safdari, and A. Schwartzman, Parametrizing the
Detector Response with Neural Networks, JINST 15 (2020), no. 01 P01030, [arXiv:1910.03773].

[211] CMS Collaboration, A. M. Sirunyan et al., A Deep Neural Network for Simultaneous Estimation of b
Jet Energy and Resolution, Comput. Softw. Big Sci. 4 (2020), no. 1 10, [arXiv:1912.06046].

[212] Y.-L. Du, D. Pablos, and K. Tywoniuk, Deep learning jet modifications in heavy-ion collisions, JHEP
21 (2020) 206, [arXiv:2012.07797].

[213] G. Kasieczka, M. Luchmann, F. Otterpohl, and T. Plehn, Per-Object Systematics using
Deep-Learned Calibration, SciPost Phys. 9 (2020) 089, [arXiv:2003.11099].

[214] N. Akchurin, C. Cowden, J. Damgov, A. Hussain, and S. Kunori, On the use of neural networks for
energy reconstruction in high-granularity calorimeters, JINST 16 (2021), no. 12 P12036,
[arXiv:2107.10207].

[215] N. Akchurin, C. Cowden, J. Damgov, A. Hussain, and S. Kunori, Perspectives on the Calibration of
CNN Energy Reconstruction in Highly Granular Calorimeters, arXiv:2108.10963.

[216] C. Pollard and P. Windischhofer, Transport away your problems: Calibrating stochastic simulations
with optimal transport, Nucl. Instrum. Meth. A 1027 (2022) 166119, [arXiv:2107.08648].

[217] P. Ge, X. Huang, M. Saur, and L. Sun, Improvement of q2 Resolution in Semileptonic Decays Based
on Machine Learning, Adv. High Energy Phys. 2023 (2023) 8127604, [arXiv:2208.02145].

[218] CMS Collaboration, V. Guglielmi, Machine learning approaches for parameter reweighting for MC
samples of top quark production in CMS, PoS ICHEP2022 (11, 2022) 1045, [arXiv:2211.07355].

[219] R. Mastandrea and B. Nachman, Efficiently Moving Instead of Reweighting Collider Events with
Machine Learning, in 36th Conference on Neural Information Processing Systems: Workshop on
Machine Learning and the Physical Sciences, 12, 2022. arXiv:2212.06155.

[220] CMS Collaboration, D. Valsecchi, Deep learning techniques for energy clustering in the CMS ECAL,
J. Phys. Conf. Ser. 2438 (2023), no. 1 012077, [arXiv:2204.10277].

[221] G. Aad, T. Calvet, N. Chiedde, R. Faure, E. M. Fortin, L. Laatu, E. Monnier, and N. Sur, Firmware
implementation of a recurrent neural network for the computation of the energy deposited in the liquid
argon calorimeter of the ATLAS experiment, JINST 18 (2023), no. 05 P05017, [arXiv:2302.07555].

[222] IceCube Collaboration, J. Micallef, Using convolutional neural networks to reconstruct energy of
GeV scale IceCube neutrinos, JINST 16 (2021), no. 09 C09019, [arXiv:2109.08152].

[223] M. Leigh, J. A. Raine, K. Zoch, and T. Golling, ν-flows: Conditional neutrino regression, SciPost
Phys. 14 (2023), no. 6 159, [arXiv:2207.00664].

[224] M. Arratia, D. Britzger, O. Long, and B. Nachman, Reconstructing the kinematics of deep inelastic
scattering with deep learning, Nucl. Instrum. Meth. A 1025 (2022) 166164, [arXiv:2110.05505].

249

http://arxiv.org/abs/2402.17714
http://arxiv.org/abs/2309.10157
http://arxiv.org/abs/2312.10009
http://arxiv.org/abs/1910.03773
http://arxiv.org/abs/1912.06046
http://arxiv.org/abs/2012.07797
http://arxiv.org/abs/2003.11099
http://arxiv.org/abs/2107.10207
http://arxiv.org/abs/2108.10963
http://arxiv.org/abs/2107.08648
http://arxiv.org/abs/2208.02145
http://arxiv.org/abs/2211.07355
http://arxiv.org/abs/2212.06155
http://arxiv.org/abs/2204.10277
http://arxiv.org/abs/2302.07555
http://arxiv.org/abs/2109.08152
http://arxiv.org/abs/2207.00664
http://arxiv.org/abs/2110.05505


[225] B. Kronheim, M. P. Kuchera, H. B. Prosper, and R. Ramanujan, Implicit Quantile Neural Networks
for Jet Simulation and Correction, arXiv:2111.11415.

[226] D. F. Rentería-Estrada, R. J. Hernández-Pinto, G. F. R. Sborlini, and P. Zurita, Reconstructing
partonic kinematics at colliders with machine learning, SciPost Phys. Core 5 (2022) 049,
[arXiv:2112.05043].

[227] CMS Collaboration, J. Pata, J. Duarte, F. Mokhtar, E. Wulff, J. Yoo, J.-R. Vlimant, M. Pierini,
and M. Girone, Machine Learning for Particle Flow Reconstruction at CMS, J. Phys. Conf. Ser.
2438 (2023), no. 1 012100, [arXiv:2203.00330].

[228] M. Chadeeva and S. Korpachev, Machine-learning-based prediction of parameters of secondaries in
hadronic showers using calorimetric observables, JINST 17 (2022), no. 10 P10031, [arXiv:2205.12534].

[229] R. Gambhir, B. Nachman, and J. Thaler, Learning Uncertainties the Frequentist Way: Calibration
and Correlation in High Energy Physics, Phys. Rev. Lett. 129 (2022), no. 8 082001,
[arXiv:2205.03413].

[230] A. Alves and C. H. Yamaguchi, Reconstruction of missing resonances combining nearest neighbors
regressors and neural network classifiers, Eur. Phys. J. C 82 (2022), no. 8 746, [arXiv:2203.03662].

[231] T. Dorigo, S. Guglielmini, J. Kieseler, L. Layer, and G. C. Strong, Deep Regression of Muon Energy
with a K-Nearest Neighbor Algorithm, arXiv:2203.02841.

[232] G. Grosso, N. Lai, M. Letizia, J. Pazzini, M. Rando, L. Rosasco, A. Wulzer, and M. Zanetti, Fast
kernel methods for data quality monitoring as a goodness-of-fit test, Mach. Learn. Sci. Tech. 4 (2023),
no. 3 035029, [arXiv:2303.05413].

[233] R. Gambhir, B. Nachman, and J. Thaler, Bias and priors in machine learning calibrations for high
energy physics, Phys. Rev. D 106 (2022), no. 3 036011, [arXiv:2205.05084].

[234] M. Kocot, K. Misan, V. Avati, E. Bossini, L. Grzanka, and N. Minafra, Using deep neural networks
to improve the precision of fast-sampled particle timing detectors, arXiv:2312.05883.

[235] D. Holmberg, D. Golubovic, and H. Kirschenmann, Jet Energy Calibration with Deep Learning as a
Kubeflow Pipeline, Comput. Softw. Big Sci. 7 (2023), no. 1 9, [arXiv:2308.12724].

[236] ATLAS Collaboration, G. Aad et al., New techniques for jet calibration with the ATLAS detector,
Eur. Phys. J. C 83 (2023), no. 8 761, [arXiv:2303.17312].

[237] J. A. Raine, M. Leigh, K. Zoch, and T. Golling, Fast and improved neutrino reconstruction in
multineutrino final states with conditional normalizing flows, Phys. Rev. D 109 (2024), no. 1 012005,
[arXiv:2307.02405].

[238] J. Dolen, P. Harris, S. Marzani, S. Rappoccio, and N. Tran, Thinking outside the ROCs: Designing
Decorrelated Taggers (DDT) for jet substructure, JHEP 05 (2016) 156, [arXiv:1603.00027].

[239] A. Rogozhnikov, A. Bukva, V. V. Gligorov, A. Ustyuzhanin, and M. Williams, New approaches for
boosting to uniformity, JINST 10 (2015), no. 03 T03002, [arXiv:1410.4140].

[240] S. Klein and T. Golling, Decorrelation with conditional normalizing flows, arXiv:2211.02486.
[241] M. Algren, J. A. Raine, and T. Golling, Decorrelation using Optimal Transport, arXiv:2307.05187.
[242] G. Kasieczka, B. Nachman, M. D. Schwartz, and D. Shih, Automating the ABCD method with

machine learning, Phys. Rev. D 103 (2021), no. 3 035021, [arXiv:2007.14400].
[243] O. Kitouni, B. Nachman, C. Weisser, and M. Williams, Enhancing searches for resonances with

machine learning and moment decomposition, JHEP 21 (2020) 070, [arXiv:2010.09745].
[244] A. Ghosh and B. Nachman, A cautionary tale of decorrelating theory uncertainties, Eur. Phys. J. C

82 (2022), no. 1 46, [arXiv:2109.08159].
[245] J. Stevens and M. Williams, uBoost: A boosting method for producing uniform selection efficiencies

from multivariate classifiers, JINST 8 (2013) P12013, [arXiv:1305.7248].

250

http://arxiv.org/abs/2111.11415
http://arxiv.org/abs/2112.05043
http://arxiv.org/abs/2203.00330
http://arxiv.org/abs/2205.12534
http://arxiv.org/abs/2205.03413
http://arxiv.org/abs/2203.03662
http://arxiv.org/abs/2203.02841
http://arxiv.org/abs/2303.05413
http://arxiv.org/abs/2205.05084
http://arxiv.org/abs/2312.05883
http://arxiv.org/abs/2308.12724
http://arxiv.org/abs/2303.17312
http://arxiv.org/abs/2307.02405
http://arxiv.org/abs/1603.00027
http://arxiv.org/abs/1410.4140
http://arxiv.org/abs/2211.02486
http://arxiv.org/abs/2307.05187
http://arxiv.org/abs/2007.14400
http://arxiv.org/abs/2010.09745
http://arxiv.org/abs/2109.08159
http://arxiv.org/abs/1305.7248


[246] L. Bradshaw, R. K. Mishra, A. Mitridate, and B. Ostdiek, Mass Agnostic Jet Taggers, SciPost Phys.
8 (2020), no. 1 011, [arXiv:1908.08959].

[247] ATLAS Collaboration, Performance of mass-decorrelated jet substructure observables for hadronic
two-body decay tagging in ATLAS, tech. rep., CERN, Geneva, 2018. All figures including auxiliary
figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2018-014.

[248] G. Kasieczka and D. Shih, Robust Jet Classifiers through Distance Correlation, Phys. Rev. Lett. 125
(2020), no. 12 122001, [arXiv:2001.05310].

[249] C. Englert, P. Galler, P. Harris, and M. Spannowsky, Machine Learning Uncertainties with
Adversarial Neural Networks, Eur. Phys. J. C 79 (2019), no. 1 4, [arXiv:1807.08763].

[250] M. J. Dolan and A. Ore, Metalearning and data augmentation for mass-generalized jet taggers, Phys.
Rev. D 105 (2022), no. 9 094030, [arXiv:2111.06047].

[251] A. Butter and T. Plehn, Generative Networks for LHC events, arXiv:2008.08558.

[252] Y. Alanazi, N. Sato, P. Ambrozewicz, A. N. H. Blin, W. Melnitchouk, M. Battaglieri, T. Liu, and
Y. Li, A survey of machine learning-based physics event generation, arXiv:2106.00643.

[253] S. Badger et al., Machine learning and LHC event generation, SciPost Phys. 14 (2023), no. 4 079,
[arXiv:2203.07460].

[254] A. Adelmann et al., New directions for surrogate models and differentiable programming for High
Energy Physics detector simulation, in Snowmass 2021, 3, 2022. arXiv:2203.08806.

[255] D. Darulis, R. Tyson, D. G. Ireland, D. I. Glazier, B. McKinnon, and P. Pauli, Machine Learned
Particle Detector Simulations, arXiv:2207.11254.

[256] CMS Collaboration, S. Bein, P. Connor, K. Pedro, P. Schleper, and M. Wolf, Refining fast
simulation using machine learning, in 26th International Conference on Computing in High Energy &
Nuclear Physics, 9, 2023. arXiv:2309.12919.

[257] B. Hashemi and C. Krause, Deep Generative Models for Detector Signature Simulation: An
Analytical Taxonomy, arXiv:2312.09597.

[258] A. Andreassen, I. Feige, C. Frye, and M. D. Schwartz, JUNIPR: a Framework for Unsupervised
Machine Learning in Particle Physics, Eur. Phys. J. C 79 (2019), no. 2 102, [arXiv:1804.09720].

[259] L. de Oliveira, M. Paganini, and B. Nachman, Learning Particle Physics by Example:
Location-Aware Generative Adversarial Networks for Physics Synthesis, Comput. Softw. Big Sci. 1
(2017), no. 1 4, [arXiv:1701.05927].

[260] M. Paganini, L. de Oliveira, and B. Nachman, Accelerating Science with Generative Adversarial
Networks: An Application to 3D Particle Showers in Multilayer Calorimeters, Phys. Rev. Lett. 120
(2018), no. 4 042003, [arXiv:1705.02355].

[261] M. Paganini, L. de Oliveira, and B. Nachman, CaloGAN : Simulating 3D high energy particle
showers in multilayer electromagnetic calorimeters with generative adversarial networks, Phys. Rev.
D 97 (2018), no. 1 014021, [arXiv:1712.10321].

[262] S. Alonso-Monsalve and L. H. Whitehead, Image-based model parameter optimization using
Model-Assisted Generative Adversarial Networks, IEEE Trans. Neural Networks Learning Syst. 31
(2020), no. 12 5645–5650, [arXiv:1812.00879].

[263] J. Arjona Martínez, T. Q. Nguyen, M. Pierini, M. Spiropulu, and J.-R. Vlimant, Particle Generative
Adversarial Networks for full-event simulation at the LHC and their application to pileup description,
J. Phys. Conf. Ser. 1525 (2020), no. 1 012081, [arXiv:1912.02748].

[264] SHiP Collaboration, C. Ahdida et al., Fast simulation of muons produced at the SHiP experiment
using Generative Adversarial Networks, JINST 14 (2019) P11028, [arXiv:1909.04451].

251

http://arxiv.org/abs/1908.08959
http://arxiv.org/abs/2001.05310
http://arxiv.org/abs/1807.08763
http://arxiv.org/abs/2111.06047
http://arxiv.org/abs/2008.08558
http://arxiv.org/abs/2106.00643
http://arxiv.org/abs/2203.07460
http://arxiv.org/abs/2203.08806
http://arxiv.org/abs/2207.11254
http://arxiv.org/abs/2309.12919
http://arxiv.org/abs/2312.09597
http://arxiv.org/abs/1804.09720
http://arxiv.org/abs/1701.05927
http://arxiv.org/abs/1705.02355
http://arxiv.org/abs/1712.10321
http://arxiv.org/abs/1812.00879
http://arxiv.org/abs/1912.02748
http://arxiv.org/abs/1909.04451


[265] S. Carrazza and F. A. Dreyer, Lund jet images from generative and cycle-consistent adversarial
networks, Eur. Phys. J. C 79 (2019), no. 11 979, [arXiv:1909.01359].

[266] A. Butter, T. Plehn, and R. Winterhalder, How to GAN LHC Events, SciPost Phys. 7 (2019), no. 6
075, [arXiv:1907.03764].

[267] E. Buhmann, C. Ewen, D. A. Faroughy, T. Golling, G. Kasieczka, M. Leigh, G. Quétant, J. A.
Raine, D. Sengupta, and D. Shih, EPiC-ly Fast Particle Cloud Generation with Flow-Matching and
Diffusion, arXiv:2310.00049.

[268] E. Buhmann, F. Gaede, G. Kasieczka, A. Korol, W. Korcari, K. Krüger, and P. McKeown,
CaloClouds II: ultra-fast geometry-independent highly-granular calorimeter simulation, JINST 19
(2024), no. 04 P04020, [arXiv:2309.05704].

[269] V. Mikuni and B. Nachman, CaloScore v2: single-shot calorimeter shower simulation with diffusion
models, JINST 19 (2024), no. 02 P02001, [arXiv:2308.03847].

[270] S. Diefenbacher, V. Mikuni, and B. Nachman, Refining Fast Calorimeter Simulations with a
Schrödinger Bridge, arXiv:2308.12339.

[271] O. Amram and K. Pedro, Denoising diffusion models with geometry adaptation for high fidelity
calorimeter simulation, Phys. Rev. D 108 (2023), no. 7 072014, [arXiv:2308.03876].

[272] Z. Imani, T. Wongjirad, and S. Aeron, Score-based diffusion models for generating liquid argon time
projection chamber images, Phys. Rev. D 109 (2024), no. 7 072011, [arXiv:2307.13687].

[273] M. Leigh, D. Sengupta, J. A. Raine, G. Quétant, and T. Golling, Faster diffusion model with improved
quality for particle cloud generation, Phys. Rev. D 109 (2024), no. 1 012010, [arXiv:2307.06836].

[274] F. T. Acosta, V. Mikuni, B. Nachman, M. Arratia, B. Karki, R. Milton, P. Karande, and
A. Angerami, Comparison of point cloud and image-based models for calorimeter fast simulation,
JINST 19 (2024), no. 05 P05003, [arXiv:2307.04780].

[275] A. Butter, N. Huetsch, S. Palacios Schweitzer, T. Plehn, P. Sorrenson, and J. Spinner, Jet Diffusion
versus JetGPT – Modern Networks for the LHC, arXiv:2305.10475.

[276] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol, W. Korcari, K. Krüger,
and P. McKeown, CaloClouds: fast geometry-independent highly-granular calorimeter simulation,
JINST 18 (2023), no. 11 P11025, [arXiv:2305.04847].

[277] M. Leigh, D. Sengupta, G. Quétant, J. A. Raine, K. Zoch, and T. Golling, PC-JeDi: Diffusion for
particle cloud generation in high energy physics, SciPost Phys. 16 (2024), no. 1 018,
[arXiv:2303.05376].

[278] V. Mikuni and B. Nachman, Score-based generative models for calorimeter shower simulation, Phys.
Rev. D 106 (2022), no. 9 092009, [arXiv:2206.11898].

[279] A. Li, V. Krishnamohan, R. Kansal, R. Sen, S. Tsan, Z. Zhang, and J. Duarte, Induced Generative
Adversarial Particle Transformers, in 37th Conference on Neural Information Processing Systems,
12, 2023. arXiv:2312.04757.

[280] I. Pang, J. A. Raine, and D. Shih, SuperCalo: Calorimeter shower super-resolution, arXiv:2308.11700.

[281] M. R. Buckley, C. Krause, I. Pang, and D. Shih, Inductive simulation of calorimeter showers with
normalizing flows, Phys. Rev. D 109 (2024), no. 3 033006, [arXiv:2305.11934].

[282] A. Xu, S. Han, X. Ju, and H. Wang, Generative machine learning for detector response modeling with
a conditional normalizing flow, JINST 19 (2024), no. 02 P02003, [arXiv:2303.10148].

[283] B. Käch, D. Krücker, and I. Melzer-Pellmann, Point Cloud Generation using Transformer Encoders
and Normalising Flows, arXiv:2211.13623.

[284] B. Käch, D. Krücker, I. Melzer-Pellmann, M. Scham, S. Schnake, and A. Verney-Provatas, JetFlow:
Generating Jets with Conditioned and Mass Constrained Normalising Flows, arXiv:2211.13630.

252

http://arxiv.org/abs/1909.01359
http://arxiv.org/abs/1907.03764
http://arxiv.org/abs/2310.00049
http://arxiv.org/abs/2309.05704
http://arxiv.org/abs/2308.03847
http://arxiv.org/abs/2308.12339
http://arxiv.org/abs/2308.03876
http://arxiv.org/abs/2307.13687
http://arxiv.org/abs/2307.06836
http://arxiv.org/abs/2307.04780
http://arxiv.org/abs/2305.10475
http://arxiv.org/abs/2305.04847
http://arxiv.org/abs/2303.05376
http://arxiv.org/abs/2206.11898
http://arxiv.org/abs/2312.04757
http://arxiv.org/abs/2308.11700
http://arxiv.org/abs/2305.11934
http://arxiv.org/abs/2303.10148
http://arxiv.org/abs/2211.13623
http://arxiv.org/abs/2211.13630


[285] J. C. Cresswell, B. L. Ross, G. Loaiza-Ganem, H. Reyes-Gonzalez, M. Letizia, and A. L. Caterini,
CaloMan: Fast generation of calorimeter showers with density estimation on learned manifolds, in
36th Conference on Neural Information Processing Systems: Workshop on Machine Learning and the
Physical Sciences, 11, 2022. arXiv:2211.15380.

[286] C. Krause, I. Pang, and D. Shih, CaloFlow for CaloChallenge Dataset 1, arXiv:2210.14245.

[287] C. Krause and D. Shih, Accelerating accurate simulations of calorimeter showers with normalizing
flows and probability density distillation, Phys. Rev. D 107 (2023), no. 11 113004, [arXiv:2110.11377].

[288] C. Krause and D. Shih, Fast and accurate simulations of calorimeter showers with normalizing flows,
Phys. Rev. D 107 (2023), no. 11 113003, [arXiv:2106.05285].

[289] Y. Lu, J. Collado, D. Whiteson, and P. Baldi, Sparse autoregressive models for scalable generation of
sparse images in particle physics, Phys. Rev. D 103 (2021), no. 3 036012, [arXiv:2009.14017].

[290] A. Abhishek, E. Drechsler, W. Fedorko, and B. Stelzer, CaloDVAE : Discrete Variational
Autoencoders for Fast Calorimeter Shower Simulation, 10, 2022. arXiv:2210.07430.

[291] M. Touranakou, N. Chernyavskaya, J. Duarte, D. Gunopulos, R. Kansal, B. Orzari, M. Pierini,
T. Tomei, and J.-R. Vlimant, Particle-based fast jet simulation at the LHC with variational
autoencoders, Mach. Learn. Sci. Tech. 3 (2022), no. 3 035003, [arXiv:2203.00520].

[292] A. Hariri, D. Dyachkova, and S. Gleyzer, Graph Generative Models for Fast Detector Simulations in
High Energy Physics, arXiv:2104.01725.

[293] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol, and K. Krüger, Decoding
Photons: Physics in the Latent Space of a BIB-AE Generative Network, EPJ Web Conf. 251 (2021)
03003, [arXiv:2102.12491].

[294] ATLAS Collaboration, Deep generative models for fast shower simulation in ATLAS, tech. rep.,
CERN, Geneva, 2018. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-SOFT-PUB-2018-001.

[295] F. Rehm, S. Vallecorsa, K. Borras, and D. Krücker, Physics Validation of Novel Convolutional 2D
Architectures for Speeding Up High Energy Physics Simulations, EPJ Web Conf. 251 (2021) 03042,
[arXiv:2105.08960].

[296] F. Rehm, S. Vallecorsa, K. Borras, and D. Krücker, Validation of Deep Convolutional Generative
Adversarial Networks for High Energy Physics Calorimeter Simulations, 3, 2021. arXiv:2103.13698.

[297] J. Chan, X. Ju, A. Kania, B. Nachman, V. Sangli, and A. Siodmok, Fitting a deep generative
hadronization model, JHEP 09 (2023) 084, [arXiv:2305.17169].

[298] M. A. W. Scham, D. Krücker, and K. Borras, DeepTreeGANv2: Iterative Pooling of Point Clouds,
arXiv:2312.00042.

[299] M. A. W. Scham, D. Krücker, B. Käch, and K. Borras, DeepTreeGAN: Fast Generation of High
Dimensional Point Clouds, arXiv:2311.12616.

[300] E. Buhmann, G. Kasieczka, and J. Thaler, EPiC-GAN: Equivariant point cloud generation for
particle jets, SciPost Phys. 15 (2023), no. 4 130, [arXiv:2301.08128].

[301] R. Kansal, J. Duarte, H. Su, B. Orzari, T. Tomei, M. Pierini, M. Touranakou, J.-R. Vlimant, and
D. Gunopulos, Particle Cloud Generation with Message Passing Generative Adversarial Networks, in
35th Conference on Neural Information Processing Systems, 6, 2021. arXiv:2106.11535.

[302] S. Choi and J. H. Lim, A Data-driven Event Generator for Hadron Colliders using Wasserstein
Generative Adversarial Network, J. Korean Phys. Soc. 78 (2021), no. 6 482–489, [arXiv:2102.11524].

[303] M. Faucci Giannelli and R. Zhang, CaloShowerGAN, a Generative Adversarial Networks model for
fast calorimeter shower simulation, arXiv:2309.06515.

253

http://arxiv.org/abs/2211.15380
http://arxiv.org/abs/2210.14245
http://arxiv.org/abs/2110.11377
http://arxiv.org/abs/2106.05285
http://arxiv.org/abs/2009.14017
http://arxiv.org/abs/2210.07430
http://arxiv.org/abs/2203.00520
http://arxiv.org/abs/2104.01725
http://arxiv.org/abs/2102.12491
http://arxiv.org/abs/2105.08960
http://arxiv.org/abs/2103.13698
http://arxiv.org/abs/2305.17169
http://arxiv.org/abs/2312.00042
http://arxiv.org/abs/2311.12616
http://arxiv.org/abs/2301.08128
http://arxiv.org/abs/2106.11535
http://arxiv.org/abs/2102.11524
http://arxiv.org/abs/2309.06515


[304] R. Kansal, J. Duarte, B. Orzari, T. Tomei, M. Pierini, M. Touranakou, J.-R. Vlimant, and
D. Gunopulos, Graph Generative Adversarial Networks for Sparse Data Generation in High Energy
Physics, in 34th Conference on Neural Information Processing Systems, 11, 2020. arXiv:2012.00173.

[305] Y. Alanazi et al., Machine learning-based event generator for electron-proton scattering, Phys. Rev. D
106 (2022), no. 9 096002, [arXiv:2008.03151].

[306] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol, and K. Krüger, Getting
High: High Fidelity Simulation of High Granularity Calorimeters with High Speed, Comput. Softw.
Big Sci. 5 (2021), no. 1 13, [arXiv:2005.05334].

[307] L. de Oliveira, M. Paganini, and B. Nachman, Controlling Physical Attributes in GAN-Accelerated
Simulation of Electromagnetic Calorimeters, J. Phys. Conf. Ser. 1085 (2018), no. 4 042017,
[arXiv:1711.08813].

[308] M. Erdmann, L. Geiger, J. Glombitza, and D. Schmidt, Generating and refining particle detector
simulations using the Wasserstein distance in adversarial networks, Comput. Softw. Big Sci. 2
(2018), no. 1 4, [arXiv:1802.03325].

[309] P. Musella and F. Pandolfi, Fast and Accurate Simulation of Particle Detectors Using Generative
Adversarial Networks, Comput. Softw. Big Sci. 2 (2018), no. 1 8, [arXiv:1805.00850].

[310] V. Chekalina, E. Orlova, F. Ratnikov, D. Ulyanov, A. Ustyuzhanin, and E. Zakharov, Generative
Models for Fast Calorimeter Simulation: the LHCb case, EPJ Web Conf. 214 (2019) 02034,
[arXiv:1812.01319].

[311] B. Hashemi, N. Amin, K. Datta, D. Olivito, and M. Pierini, LHC analysis-specific datasets with
Generative Adversarial Networks, arXiv:1901.05282.

[312] R. Di Sipio, M. Faucci Giannelli, S. Ketabchi Haghighat, and S. Palazzo, DijetGAN: A
Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC,
JHEP 08 (2019) 110, [arXiv:1903.02433].

[313] M. Erdmann, J. Glombitza, and T. Quast, Precise simulation of electromagnetic calorimeter showers
using a Wasserstein Generative Adversarial Network, Comput. Softw. Big Sci. 3 (2019), no. 1 4,
[arXiv:1807.01954].

[314] A. Andreassen and B. Nachman, Neural Networks for Full Phase-space Reweighting and Parameter
Tuning, Phys. Rev. D 101 (2020), no. 9 091901, [arXiv:1907.08209].

[315] L. Heinrich, S. Mishra-Sharma, C. Pollard, and P. Windischhofer, Hierarchical Neural
Simulation-Based Inference Over Event Ensembles, arXiv:2306.12584.

[316] A. Morandini, T. Ferber, and F. Kahlhoefer, Reconstructing axion-like particles from beam dumps
with simulation-based inference, Eur. Phys. J. C 84 (2024), no. 2 200, [arXiv:2308.01353].

[317] R. Barrué, P. Conde-Muíño, V. Dao, and R. Santos, Simulation-based inference in the search for CP
violation in leptonic WH production, JHEP 04 (2024) 014, [arXiv:2308.02882].

[318] T. Heimel, N. Huetsch, R. Winterhalder, T. Plehn, and A. Butter, Precision-Machine Learning for
the Matrix Element Method, arXiv:2310.07752.

[319] S. Chai, J. Gu, and L. Li, From Optimal Observables to Machine Learning: an Effective-Field-Theory
Analysis of e+e− →W+W− at Future Lepton Colliders, arXiv:2401.02474.

[320] S. Chen, A. Glioti, G. Panico, and A. Wulzer, Parametrized classifiers for optimal EFT sensitivity,
JHEP 05 (2021) 247, [arXiv:2007.10356].

[321] Y.-K. Lei, C. Liu, and Z. Chen, Numerical analysis of neutrino physics within a high scale
supersymmetry model via machine learning, Mod. Phys. Lett. A 35 (2020), no. 26 2050218,
[arXiv:2006.01495].

[322] M. Lazzarin, S. Alioli, and S. Carrazza, MCNNTUNES: Tuning Shower Monte Carlo generators with
machine learning, Comput. Phys. Commun. 263 (2021) 107908, [arXiv:2010.02213].

254

http://arxiv.org/abs/2012.00173
http://arxiv.org/abs/2008.03151
http://arxiv.org/abs/2005.05334
http://arxiv.org/abs/1711.08813
http://arxiv.org/abs/1802.03325
http://arxiv.org/abs/1805.00850
http://arxiv.org/abs/1812.01319
http://arxiv.org/abs/1901.05282
http://arxiv.org/abs/1903.02433
http://arxiv.org/abs/1807.01954
http://arxiv.org/abs/1907.08209
http://arxiv.org/abs/2306.12584
http://arxiv.org/abs/2308.01353
http://arxiv.org/abs/2308.02882
http://arxiv.org/abs/2310.07752
http://arxiv.org/abs/2401.02474
http://arxiv.org/abs/2007.10356
http://arxiv.org/abs/2006.01495
http://arxiv.org/abs/2010.02213


[323] J. Alda, J. Guasch, and S. Penaranda, Using Machine Learning techniques in phenomenological
studies on flavour physics, JHEP 07 (2022) 115, [arXiv:2109.07405].

[324] S. Qiu, S. Han, X. Ju, B. Nachman, and H. Wang, Parton labeling without matching: unveiling
emergent labelling capabilities in regression models, Eur. Phys. J. C 83 (2023), no. 7 622,
[arXiv:2304.09208].

[325] O. Al Hammal, M. Martini, J. Frontera-Pons, T. H. Nguyen, and R. Pérez-Ramos, Neural network
predictions of inclusive electron-nucleus cross sections, Phys. Rev. C 107 (2023), no. 6 065501,
[arXiv:2305.08217].

[326] K. Kong, K. T. Matchev, S. Mrenna, and P. Shyamsundar, New Machine Learning Techniques for
Simulation-Based Inference: InferoStatic Nets, Kernel Score Estimation, and Kernel Likelihood Ratio
Estimation, arXiv:2210.01680.

[327] H. Bahl and S. Brass, Constraining CP-violation in the Higgs-top-quark interaction using
machine-learning-based inference, JHEP 03 (2022) 017, [arXiv:2110.10177].

[328] R. K. Barman, D. Gonçalves, and F. Kling, Machine learning the Higgs boson-top quark CP phase,
Phys. Rev. D 105 (2022), no. 3 035023, [arXiv:2110.07635].

[329] S. Chatterjee, N. Frohner, L. Lechner, R. Schöfbeck, and D. Schwarz, Tree boosting for learning EFT
parameters, Comput. Phys. Commun. 277 (2022) 108385, [arXiv:2107.10859].

[330] B. Nachman and J. Thaler, Learning from many collider events at once, Phys. Rev. D 103 (2021),
no. 11 116013, [arXiv:2101.07263].

[331] S. Bieringer, A. Butter, T. Heimel, S. Höche, U. Köthe, T. Plehn, and S. T. Radev, Measuring QCD
Splittings with Invertible Networks, SciPost Phys. 10 (2021), no. 6 126, [arXiv:2012.09873].

[332] A. Andreassen, S.-C. Hsu, B. Nachman, N. Suaysom, and A. Suresh, Parameter estimation using
neural networks in the presence of detector effects, Phys. Rev. D 103 (2021), no. 3 036001,
[arXiv:2010.03569].

[333] K. Cranmer, J. Pavez, and G. Louppe, Approximating Likelihood Ratios with Calibrated
Discriminative Classifiers, arXiv:1506.02169.

[334] J. Brehmer, G. Louppe, J. Pavez, and K. Cranmer, Mining gold from implicit models to improve
likelihood-free inference, Proc. Nat. Acad. Sci. 117 (2020), no. 10 5242–5249, [arXiv:1805.12244].

[335] J. Brehmer, K. Cranmer, G. Louppe, and J. Pavez, A Guide to Constraining Effective Field Theories
with Machine Learning, Phys. Rev. D 98 (2018), no. 5 052004, [arXiv:1805.00020].

[336] J. Brehmer, K. Cranmer, G. Louppe, and J. Pavez, Constraining Effective Field Theories with
Machine Learning, Phys. Rev. Lett. 121 (2018), no. 11 111801, [arXiv:1805.00013].

[337] J. Hollingsworth and D. Whiteson, Resonance Searches with Machine Learned Likelihood Ratios,
arXiv:2002.04699.

[338] M. Stoye, J. Brehmer, G. Louppe, J. Pavez, and K. Cranmer, Likelihood-free inference with an
improved cross-entropy estimator, arXiv:1808.00973.

[339] P. T. Komiske, E. M. Metodiev, B. Nachman, and M. D. Schwartz, Pileup Mitigation with Machine
Learning (PUMML), JHEP 12 (2017) 051, [arXiv:1707.08600].

[340] ATLAS Collaboration, Convolutional Neural Networks with Event Images for Pileup Mitigation with
the ATLAS Detector, tech. rep., CERN, Geneva, 2019. All figures including auxiliary figures are
available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2019-028.

[341] J. Arjona Martínez, O. Cerri, M. Pierini, M. Spiropulu, and J.-R. Vlimant, Pileup mitigation at the
Large Hadron Collider with graph neural networks, Eur. Phys. J. Plus 134 (2019), no. 7 333,
[arXiv:1810.07988].

255

http://arxiv.org/abs/2109.07405
http://arxiv.org/abs/2304.09208
http://arxiv.org/abs/2305.08217
http://arxiv.org/abs/2210.01680
http://arxiv.org/abs/2110.10177
http://arxiv.org/abs/2110.07635
http://arxiv.org/abs/2107.10859
http://arxiv.org/abs/2101.07263
http://arxiv.org/abs/2012.09873
http://arxiv.org/abs/2010.03569
http://arxiv.org/abs/1506.02169
http://arxiv.org/abs/1805.12244
http://arxiv.org/abs/1805.00020
http://arxiv.org/abs/1805.00013
http://arxiv.org/abs/2002.04699
http://arxiv.org/abs/1808.00973
http://arxiv.org/abs/1707.08600
http://arxiv.org/abs/1810.07988


[342] B. Maier, S. M. Narayanan, G. de Castro, M. Goncharov, C. Paus, and M. Schott, Pile-up mitigation
using attention, Mach. Learn. Sci. Tech. 3 (2022), no. 2 025012, [arXiv:2107.02779].

[343] T. Li, S. Liu, Y. Feng, G. Paspalaki, N. V. Tran, M. Liu, and P. Li, Semi-supervised graph neural
networks for pileup noise removal, Eur. Phys. J. C 83 (2023), no. 1 99, [arXiv:2203.15823].

[344] CRESST Collaboration, G. Angloher et al., Towards an automated data cleaning with deep learning
in CRESST, Eur. Phys. J. Plus 138 (2023), no. 1 100, [arXiv:2211.00564].

[345] K. Lieret, G. DeZoort, D. Chatterjee, J. Park, S. Miao, and P. Li, High Pileup Particle Tracking with
Object Condensation, 12, 2023. arXiv:2312.03823.

[346] G. Louppe, M. Kagan, and K. Cranmer, Learning to Pivot with Adversarial Networks,
arXiv:1611.01046.

[347] L.-G. Xia, QBDT, a new boosting decision tree method with systematical uncertainties into training
for High Energy Physics, Nucl. Instrum. Meth. A 930 (2019) 15–26, [arXiv:1810.08387].

[348] S. Bollweg, M. Haußmann, G. Kasieczka, M. Luchmann, T. Plehn, and J. Thompson, Deep-Learning
Jets with Uncertainties and More, SciPost Phys. 8 (2020), no. 1 006, [arXiv:1904.10004].

[349] B. Nachman, A guide for deploying Deep Learning in LHC searches: How to achieve optimality and
account for uncertainty, SciPost Phys. 8 (2020) 090, [arXiv:1909.03081].

[350] B. Nachman and C. Shimmin, AI Safety for High Energy Physics, arXiv:1910.08606.

[351] S. Wunsch, S. Jörger, R. Wolf, and G. Quast, Reducing the dependence of the neural network
function to systematic uncertainties in the input space, Comput. Softw. Big Sci. 4 (2020), no. 1 5,
[arXiv:1907.11674].

[352] M. Bellagente, M. Haussmann, M. Luchmann, and T. Plehn, Understanding Event-Generation
Networks via Uncertainties, SciPost Phys. 13 (2022), no. 1 003, [arXiv:2104.04543].

[353] T. Y. Chen, B. Dey, A. Ghosh, M. Kagan, B. Nord, and N. Ramachandra, Interpretable Uncertainty
Quantification in AI for HEP, in Snowmass 2021, 8, 2022. arXiv:2208.03284.

[354] K. Cheung, Y.-L. Chung, S.-C. Hsu, and B. Nachman, Exploring the universality of hadronic jet
classification, Eur. Phys. J. C 82 (2022), no. 12 1162, [arXiv:2204.03812].

[355] B. Viren, J. Huang, Y. Huang, M. Lin, Y. Ren, K. Terao, D. Torbunov, and H. Yu, Solving
Simulation Systematics in and with AI/ML, in Snowmass 2021, 3, 2022. arXiv:2203.06112.

[356] A. Golutvin, A. Iniukhin, A. Mauri, P. Owen, N. Serra, and A. Ustyuzhanin, The DL Advocate:
playing the devil’s advocate with hidden systematic uncertainties, Eur. Phys. J. C 83 (2023), no. 9
779, [arXiv:2303.15956].

[357] A. Ghosh, B. Nachman, and D. Whiteson, Uncertainty-aware machine learning for high energy
physics, Phys. Rev. D 104 (2021), no. 5 056026, [arXiv:2105.08742].

[358] D. Koh, A. Mishra, and K. Terao, Deep neural network uncertainty quantification for LArTPC
reconstruction, JINST 18 (2023), no. 12 P12013, [arXiv:2302.03787].

[359] L. Layer, T. Dorigo, and G. Strong, Application of Inferno to a Top Pair Cross Section Measurement
with CMS Open Data, arXiv:2301.10358.

[360] N. Simpson and L. Heinrich, neos: End-to-End-Optimised Summary Statistics for High Energy
Physics, J. Phys. Conf. Ser. 2438 (2023), no. 1 012105, [arXiv:2203.05570].

[361] S. Wunsch, S. Jörger, R. Wolf, and G. Quast, Optimal Statistical Inference in the Presence of
Systematic Uncertainties Using Neural Network Optimization Based on Binned Poisson Likelihoods
with Nuisance Parameters, Comput. Softw. Big Sci. 5 (2021), no. 1 4, [arXiv:2003.07186].

[362] P. De Castro and T. Dorigo, INFERNO: Inference-Aware Neural Optimisation, Comput. Phys.
Commun. 244 (2019) 170–179, [arXiv:1806.04743].

256

http://arxiv.org/abs/2107.02779
http://arxiv.org/abs/2203.15823
http://arxiv.org/abs/2211.00564
http://arxiv.org/abs/2312.03823
http://arxiv.org/abs/1611.01046
http://arxiv.org/abs/1810.08387
http://arxiv.org/abs/1904.10004
http://arxiv.org/abs/1909.03081
http://arxiv.org/abs/1910.08606
http://arxiv.org/abs/1907.11674
http://arxiv.org/abs/2104.04543
http://arxiv.org/abs/2208.03284
http://arxiv.org/abs/2204.03812
http://arxiv.org/abs/2203.06112
http://arxiv.org/abs/2303.15956
http://arxiv.org/abs/2105.08742
http://arxiv.org/abs/2302.03787
http://arxiv.org/abs/2301.10358
http://arxiv.org/abs/2203.05570
http://arxiv.org/abs/2003.07186
http://arxiv.org/abs/1806.04743


[363] A. Stein, X. Coubez, S. Mondal, A. Novak, and A. Schmidt, Improving Robustness of Jet Tagging
Algorithms with Adversarial Training, Comput. Softw. Big Sci. 6 (2022), no. 1 15, [arXiv:2203.13890].

[364] J. Y. Araz and M. Spannowsky, Combine and Conquer: Event Reconstruction with Bayesian
Ensemble Neural Networks, JHEP 04 (2021) 296, [arXiv:2102.01078].

[365] M.-L. Wong, A. Edmonds, and C. Wu, Feed-forward neural network unfolding, arXiv:2112.08180.

[366] M. Arratia, D. Britzger, O. Long, and B. Nachman, Optimizing observables with machine learning for
better unfolding, JINST 17 (2022), no. 07 P07009, [arXiv:2203.16722].

[367] M. Backes, A. Butter, M. Dunford, and B. Malaescu, An unfolding method based on conditional
invertible neural networks (cINN) using iterative training, SciPost Phys. Core 7 (2024), no. 1 007,
[arXiv:2212.08674].

[368] J. Chan and B. Nachman, Unbinned profiled unfolding, Phys. Rev. D 108 (2023), no. 1 016002,
[arXiv:2302.05390].

[369] A. Shmakov, K. Greif, M. Fenton, A. Ghosh, P. Baldi, and D. Whiteson, End-To-End Latent
Variational Diffusion Models for Inverse Problems in High Energy Physics, arXiv:2305.10399.

[370] P. Baron, Comparison of Machine Learning Approach to Other Commonly Used Unfolding Methods,
Acta Phys. Polon. B 52 (2021), no. 8 863, [arXiv:2104.03036].

[371] A. Andreassen, P. T. Komiske, E. M. Metodiev, B. Nachman, A. Suresh, and J. Thaler, Scaffolding
Simulations with Deep Learning for High-dimensional Deconvolution, in 9th International Conference
on Learning Representations, 5, 2021. arXiv:2105.04448.

[372] P. Komiske, W. P. McCormack, and B. Nachman, Preserving new physics while simultaneously
unfolding all observables, Phys. Rev. D 104 (2021), no. 7 076027, [arXiv:2105.09923].

[373] H1 Collaboration, V. Andreev et al., Measurement of Lepton-Jet Correlation in Deep-Inelastic
Scattering with the H1 Detector Using Machine Learning for Unfolding, Phys. Rev. Lett. 128 (2022),
no. 13 132002, [arXiv:2108.12376].

[374] M. Mieskolainen, DeepEfficiency - optimal efficiency inversion in higher dimensions at the LHC,
arXiv:1809.06101.

[375] A. Andreassen, P. T. Komiske, E. M. Metodiev, B. Nachman, and J. Thaler, OmniFold: A Method to
Simultaneously Unfold All Observables, Phys. Rev. Lett. 124 (2020), no. 18 182001,
[arXiv:1911.09107].

[376] K. Datta, D. Kar, and D. Roy, Unfolding with Generative Adversarial Networks, arXiv:1806.00433.

[377] M. Bellagente, A. Butter, G. Kasieczka, T. Plehn, and R. Winterhalder, How to GAN away Detector
Effects, SciPost Phys. 8 (2020), no. 4 070, [arXiv:1912.00477].

[378] N. D. Gagunashvili, Machine learning approach to inverse problem and unfolding procedure,
arXiv:1004.2006.

[379] A. Glazov, Machine learning as an instrument for data unfolding, arXiv:1712.01814.

[380] M. Arratia et al., Publishing unbinned differential cross section results, JINST 17 (2022), no. 01
P01024, [arXiv:2109.13243].

[381] J. N. Howard, S. Mandt, D. Whiteson, and Y. Yang, Learning to simulate high energy particle
collisions from unlabeled data, Sci. Rep. 12 (2022) 7567, [arXiv:2101.08944].

[382] M. Vandegar, M. Kagan, A. Wehenkel, and G. Louppe, Neural Empirical Bayes: Source Distribution
Estimation and its Applications to Simulation-Based Inference, arXiv:2011.05836.

[383] M. Bellagente, A. Butter, G. Kasieczka, T. Plehn, A. Rousselot, R. Winterhalder, L. Ardizzone, and
U. Köthe, Invertible Networks or Partons to Detector and Back Again, SciPost Phys. 9 (2020) 074,
[arXiv:2006.06685].

257

http://arxiv.org/abs/2203.13890
http://arxiv.org/abs/2102.01078
http://arxiv.org/abs/2112.08180
http://arxiv.org/abs/2203.16722
http://arxiv.org/abs/2212.08674
http://arxiv.org/abs/2302.05390
http://arxiv.org/abs/2305.10399
http://arxiv.org/abs/2104.03036
http://arxiv.org/abs/2105.04448
http://arxiv.org/abs/2105.09923
http://arxiv.org/abs/2108.12376
http://arxiv.org/abs/1809.06101
http://arxiv.org/abs/1911.09107
http://arxiv.org/abs/1806.00433
http://arxiv.org/abs/1912.00477
http://arxiv.org/abs/1004.2006
http://arxiv.org/abs/1712.01814
http://arxiv.org/abs/2109.13243
http://arxiv.org/abs/2101.08944
http://arxiv.org/abs/2011.05836
http://arxiv.org/abs/2006.06685


[384] ATLAS Collaboration, G. Aad et al., Dijet resonance search with weak supervision using
√s = 13

TeV pp collisions in the ATLAS detector, Phys. Rev. Lett. 125 (2020), no. 13 131801,
[arXiv:2005.02983].

[385] ATLAS Collaboration, G. Aad et al., Anomaly detection search for new resonances decaying into a
Higgs boson and a generic new particle X in hadronic final states using

√s = 13 TeV pp collisions
with the ATLAS detector, Phys. Rev. D 108 (2023) 052009, [arXiv:2306.03637].

[386] CMS Collaboration, Model-agnostic search for dijet resonances with anomalous jet substructure in
proton-proton collisions at

√s = 13 TeV, tech. rep., CERN, Geneva, 2024.

[387] ATLAS Collaboration, Search for new phenomena in two-body invariant mass distributions using
unsupervised machine learning for anomaly detection at

√s = 13 TeV with the ATLAS detector, tech.
rep., CERN, Geneva, 2023. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-022.

[388] K. Albertsson et al., Machine Learning in High Energy Physics Community White Paper, J. Phys.
Conf. Ser. 1085 (2018), no. 2 022008, [arXiv:1807.02876].

[389] D. Guest, K. Cranmer, and D. Whiteson, Deep Learning and its Application to LHC Physics, Ann.
Rev. Nucl. Part. Sci. 68 (2018) 161–181, [arXiv:1806.11484].

[390] A. Radovic, M. Williams, D. Rousseau, M. Kagan, D. Bonacorsi, A. Himmel, A. Aurisano, K. Terao,
and T. Wongjirad, Machine learning at the energy and intensity frontiers of particle physics, Nature
560 (2018), no. 7716 41–48.

[391] J. Brehmer and K. Cranmer, Simulation-based inference methods for particle physics,
arXiv:2010.06439.

[392] T. Dorigo and P. De Castro Manzano, Dealing with Nuisance Parameters using Machine Learning in
High Energy Physics: a Review, arXiv:2007.09121.

[393] F. Psihas, M. Groh, C. Tunnell, and K. Warburton, A Review on Machine Learning for Neutrino
Experiments, Int. J. Mod. Phys. A 35 (2020), no. 33 2043005, [arXiv:2008.01242].

[394] J. Shlomi, P. Battaglia, and J.-R. Vlimant, Graph Neural Networks in Particle Physics,
arXiv:2007.13681.

[395] G. Karagiorgi, G. Kasieczka, S. Kravitz, B. Nachman, and D. Shih, Machine Learning in the Search
for New Fundamental Physics, arXiv:2112.03769.

[396] A. Bogatskiy et al., Symmetry Group Equivariant Architectures for Physics, in Snowmass 2021, 3,
2022. arXiv:2203.06153.

[397] P. Shanahan et al., Snowmass 2021 Computational Frontier CompF03 Topical Group Report:
Machine Learning, arXiv:2209.07559.

[398] S. Thais, P. Calafiura, G. Chachamis, G. DeZoort, J. Duarte, S. Ganguly, M. Kagan, D. Murnane,
M. S. Neubauer, and K. Terao, Graph Neural Networks in Particle Physics: Implementations,
Innovations, and Challenges, in Snowmass 2021, 3, 2022. arXiv:2203.12852.

[399] G. DeZoort, P. W. Battaglia, C. Biscarat, and J.-R. Vlimant, Graph neural networks at the Large
Hadron Collider, Nature Rev. Phys. 5 (2023), no. 5 281–303.

[400] T. Plehn, A. Butter, B. Dillon, T. Heimel, C. Krause, and R. Winterhalder, Modern Machine
Learning for LHC Physicists, arXiv:2211.01421.

[401] D. Baumann, Inflation, in Theoretical Advanced Study Institute in Elementary Particle Physics:
Physics of the Large and the Small, pp. 523–686, 2011. arXiv:0907.5424.

[402] V. Mukhanov, Physical Foundations of Cosmology. Cambridge University Press, Oxford, 2005.

[403] D. Green, Cosmic Signals of Fundamental Physics, PoS TASI2022 (2024) 005, [arXiv:2212.08685].

258

http://arxiv.org/abs/2005.02983
http://arxiv.org/abs/2306.03637
http://arxiv.org/abs/1807.02876
http://arxiv.org/abs/1806.11484
http://arxiv.org/abs/2010.06439
http://arxiv.org/abs/2007.09121
http://arxiv.org/abs/2008.01242
http://arxiv.org/abs/2007.13681
http://arxiv.org/abs/2112.03769
http://arxiv.org/abs/2203.06153
http://arxiv.org/abs/2209.07559
http://arxiv.org/abs/2203.12852
http://arxiv.org/abs/2211.01421
http://arxiv.org/abs/0907.5424
http://arxiv.org/abs/2212.08685


[404] S. F. King, Neutrino mass models, Rept. Prog. Phys. 67 (2004) 107–158, [hep-ph/0310204].

[405] A. Riotto, Theories of baryogenesis, in ICTP Summer School in High-Energy Physics and Cosmology,
pp. 326–436, 7, 1998. hep-ph/9807454.

[406] J. M. Cline, Baryogenesis, in Les Houches Summer School - Session 86: Particle Physics and
Cosmology: The Fabric of Spacetime, 9, 2006. hep-ph/0609145.

[407] Particle Data Group Collaboration, M. Tanabashi et al., Review of Particle Physics, Phys. Rev. D
98 (2018), no. 3 030001.

[408] R. Bousso, TASI Lectures on the Cosmological Constant, Gen. Rel. Grav. 40 (2008) 607–637,
[arXiv:0708.4231].

[409] N. Craig, Naturalness: past, present, and future, Eur. Phys. J. C 83 (2023), no. 9 825,
[arXiv:2205.05708].

[410] J. Frieman, M. Turner, and D. Huterer, Dark Energy and the Accelerating Universe, Ann. Rev.
Astron. Astrophys. 46 (2008) 385–432, [arXiv:0803.0982].

[411] S. Koren, New Approaches to the Hierarchy Problem and their Signatures from Microscopic to
Cosmic Scales. PhD thesis, UC, Santa Barbara (main), 2020. arXiv:2009.11870.

[412] R. Barbieri and G. F. Giudice, Upper Bounds on Supersymmetric Particle Masses, Nucl. Phys. B
306 (1988) 63–76.

[413] G. W. Anderson and D. J. Castano, Measures of fine tuning, Phys. Lett. B 347 (1995) 300–308,
[hep-ph/9409419].

[414] S. Fichet, Quantified naturalness from Bayesian statistics, Phys. Rev. D 86 (2012) 125029,
[arXiv:1204.4940].

[415] P. Athron and D. J. Miller, A New Measure of Fine Tuning, Phys. Rev. D 76 (2007) 075010,
[arXiv:0705.2241].

[416] S. P. Martin, A Supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 18 (1998) 1–98,
[hep-ph/9709356].

[417] F. Quevedo, S. Krippendorf, and O. Schlotterer, Cambridge Lectures on Supersymmetry and Extra
Dimensions, arXiv:1011.1491.

[418] J. Terning, Modern supersymmetry: Dynamics and duality. 2006.

[419] D. Bertolini, J. Thaler, and Z. Thomas, Super-Tricks for Superspace, in Theoretical Advanced Study
Institute in Elementary Particle Physics: Searching for New Physics at Small and Large Scales,
pp. 421–496, 2013. arXiv:1302.6229.

[420] K. A. Intriligator and N. Seiberg, Lectures on Supersymmetry Breaking, Class. Quant. Grav. 24
(2007) S741–S772, [hep-ph/0702069].

[421] M. A. Luty, 2004 TASI lectures on supersymmetry breaking, in Theoretical Advanced Study Institute
in Elementary Particle Physics: Physics in D ≧ 4, pp. 495–582, 9, 2005. hep-th/0509029.

[422] S. R. Coleman and J. Mandula, All Possible Symmetries of the S Matrix, Phys. Rev. 159 (1967)
1251–1256.

[423] R. Haag, J. T. Lopuszanski, and M. Sohnius, All Possible Generators of Supersymmetries of the s
Matrix, Nucl. Phys. B 88 (1975) 257.

[424] L. Susskind, Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory, Phys.
Rev. D 20 (1979) 2619–2625.

[425] E. Eichten, IMPLICATIONS OF DYNAMICAL BREAKING OF WEAK INTERACTION
SYMMETRIES, in Topical Workshop on Production of New Particles in Super High Energy
Collisions, 12, 1979.

259

http://arxiv.org/abs/hep-ph/0310204
http://arxiv.org/abs/hep-ph/9807454
http://arxiv.org/abs/hep-ph/0609145
http://arxiv.org/abs/0708.4231
http://arxiv.org/abs/2205.05708
http://arxiv.org/abs/0803.0982
http://arxiv.org/abs/2009.11870
http://arxiv.org/abs/hep-ph/9409419
http://arxiv.org/abs/1204.4940
http://arxiv.org/abs/0705.2241
http://arxiv.org/abs/hep-ph/9709356
http://arxiv.org/abs/1011.1491
http://arxiv.org/abs/1302.6229
http://arxiv.org/abs/hep-ph/0702069
http://arxiv.org/abs/hep-th/0509029


[426] D. B. Kaplan and H. Georgi, SU(2) x U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136
(1984) 183–186.

[427] G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, vol. 913. Springer, 2016.

[428] M. Luty, “Composite higgs: Myth and reality.”

[429] C. Csaki, T. Ma, and J. Shu, Maximally Symmetric Composite Higgs Models, Phys. Rev. Lett. 119
(2017), no. 13 131803, [arXiv:1702.00405].

[430] G. Durieux, M. McCullough, and E. Salvioni, Gegenbauer Goldstones, JHEP 01 (2022) 076,
[arXiv:2110.06941].

[431] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, The Hierarchy problem and new dimensions at a
millimeter, Phys. Lett. B 429 (1998) 263–272, [hep-ph/9803315].

[432] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, New dimensions at a millimeter to
a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257–263, [hep-ph/9804398].

[433] L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett.
83 (1999) 3370–3373, [hep-ph/9905221].

[434] L. Randall and R. Sundrum, An Alternative to compactification, Phys. Rev. Lett. 83 (1999)
4690–4693, [hep-th/9906064].

[435] M. Baryakhtar, Graviton Phenomenology of Linear Dilaton Geometries, Phys. Rev. D 85 (2012)
125019, [arXiv:1202.6674].

[436] G. F. Giudice and M. McCullough, A Clockwork Theory, JHEP 02 (2017) 036, [arXiv:1610.07962].

[437] G. F. Giudice, Y. Kats, M. McCullough, R. Torre, and A. Urbano, Clockwork/linear dilaton:
structure and phenomenology, JHEP 06 (2018) 009, [arXiv:1711.08437].

[438] P. Agrawal, C. Cesarotti, A. Karch, R. K. Mishra, L. Randall, and R. Sundrum, Warped
Compactifications in Particle Physics, Cosmology and Quantum Gravity, in Snowmass 2021, 3, 2022.
arXiv:2203.07533.

[439] S. Weinberg, The Cosmological Constant Problem, Rev. Mod. Phys. 61 (1989) 1–23.

[440] V. Agrawal, S. M. Barr, J. F. Donoghue, and D. Seckel, Viable range of the mass scale of the
standard model, Phys. Rev. D 57 (1998) 5480–5492, [hep-ph/9707380].

[441] R. Harnik, G. D. Kribs, and G. Perez, A Universe without weak interactions, Phys. Rev. D 74 (2006)
035006, [hep-ph/0604027].

[442] N. Craig, S. Knapen, and P. Longhi, Neutral Naturalness from Orbifold Higgs Models, Phys. Rev.
Lett. 114 (2015), no. 6 061803, [arXiv:1410.6808].

[443] Z. Chacko, H.-S. Goh, and R. Harnik, The Twin Higgs: Natural electroweak breaking from mirror
symmetry, Phys. Rev. Lett. 96 (2006) 231802, [hep-ph/0506256].

[444] P. W. Graham, D. E. Kaplan, and S. Rajendran, Cosmological Relaxation of the Electroweak Scale,
Phys. Rev. Lett. 115 (2015), no. 22 221801, [arXiv:1504.07551].

[445] M. Geller, Y. Hochberg, and E. Kuflik, Inflating to the Weak Scale, Phys. Rev. Lett. 122 (2019),
no. 19 191802, [arXiv:1809.07338].

[446] C. Cheung and P. Saraswat, Mass Hierarchy and Vacuum Energy, arXiv:1811.12390.

[447] R. Tito D’Agnolo and D. Teresi, Sliding Naturalness: New Solution to the Strong-CP and
Electroweak-Hierarchy Problems, Phys. Rev. Lett. 128 (2022), no. 2 021803, [arXiv:2106.04591].

[448] C. Csáki, R. T. D’Agnolo, M. Geller, and A. Ismail, Crunching Dilaton, Hidden Naturalness, Phys.
Rev. Lett. 126 (2021) 091801, [arXiv:2007.14396].

260

http://arxiv.org/abs/1702.00405
http://arxiv.org/abs/2110.06941
http://arxiv.org/abs/hep-ph/9803315
http://arxiv.org/abs/hep-ph/9804398
http://arxiv.org/abs/hep-ph/9905221
http://arxiv.org/abs/hep-th/9906064
http://arxiv.org/abs/1202.6674
http://arxiv.org/abs/1610.07962
http://arxiv.org/abs/1711.08437
http://arxiv.org/abs/2203.07533
http://arxiv.org/abs/hep-ph/9707380
http://arxiv.org/abs/hep-ph/0604027
http://arxiv.org/abs/1410.6808
http://arxiv.org/abs/hep-ph/0506256
http://arxiv.org/abs/1504.07551
http://arxiv.org/abs/1809.07338
http://arxiv.org/abs/1811.12390
http://arxiv.org/abs/2106.04591
http://arxiv.org/abs/2007.14396


[449] N. Arkani-Hamed, T. Cohen, R. T. D’Agnolo, A. Hook, H. D. Kim, and D. Pinner, Solving the
Hierarchy Problem at Reheating with a Large Number of Degrees of Freedom, Phys. Rev. Lett. 117
(2016), no. 25 251801, [arXiv:1607.06821].

[450] N. Arkani-Hamed, L. Motl, A. Nicolis, and C. Vafa, The String landscape, black holes and gravity as
the weakest force, JHEP 06 (2007) 060, [hep-th/0601001].

[451] C. Cheung and G. N. Remmen, Naturalness and the Weak Gravity Conjecture, Phys. Rev. Lett. 113
(2014) 051601, [arXiv:1402.2287].

[452] N. Craig, I. Garcia Garcia, and S. Koren, The Weak Scale from Weak Gravity, JHEP 09 (2019) 081,
[arXiv:1904.08426].

[453] L. E. Ibanez, V. Martin-Lozano, and I. Valenzuela, Constraining the EW Hierarchy from the Weak
Gravity Conjecture, arXiv:1707.05811.

[454] J. March-Russell and R. Petrossian-Byrne, QCD, Flavor, and the de Sitter Swampland,
arXiv:2006.01144.

[455] M. Montero, T. Van Riet, and G. Venken, Festina Lente: EFT Constraints from Charged Black Hole
Evaporation in de Sitter, JHEP 01 (2020) 039, [arXiv:1910.01648].

[456] E. Palti, The Swampland: Introduction and Review, Fortsch. Phys. 67 (2019), no. 6 1900037,
[arXiv:1903.06239].

[457] D. Harlow, B. Heidenreich, M. Reece, and T. Rudelius, Weak gravity conjecture, Rev. Mod. Phys. 95
(2023), no. 3 035003, [arXiv:2201.08380].

[458] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, Generalized Global Symmetries, JHEP 02
(2015) 172, [arXiv:1412.5148].

[459] J. H. Oort, The force exerted by the stellar system in the direction perpendicular to the galactic plane
and some related problems, 6 (Aug., 1932) 249.

[460] F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln, Helv. Phys. Acta 6 (1933) 110–127.

[461] V. C. Rubin, Dark matter in spiral galaxies, Scientific American 248 (1983), no. 6 96–109.

[462] S. J. Penny, C. J. Conselice, S. De Rijcke, and E. V. Held, Hubble Space Telescope survey of the
Perseus Cluster – I. The structure and dark matter content of cluster dwarf spheroidals, Monthly
Notices of the Royal Astronomical Society 393 (02, 2009) 1054–1062,
[https://academic.oup.com/mnras/article-pdf/393/3/1054/2907743/mnras0393-1054.pdf].

[463] L. V. E. Koopmans and T. Treu, The structure and dynamics of luminous and dark matter in the
early-type lens galaxy of 0047-281 at z=0.485, Astrophys. J. 583 (2003) 606–615, [astro-ph/0205281].

[464] R. B. Metcalf, L. A. Moustakas, A. J. Bunker, and I. R. Parry, Spectroscopic gravitational lensing
and limits on the dark matter substructure in Q2237+0305, Astrophys. J. 607 (2004) 43–59,
[astro-ph/0309738].

[465] L. A. Moustakas and R. B. Metcalf, Detecting dark matter substructure spectroscopically in strong
gravitational lenses, Mon. Not. Roy. Astron. Soc. 339 (2003) 607, [astro-ph/0206176].

[466] M. Bartelmann, Gravitational Lensing, Class. Quant. Grav. 27 (2010) 233001, [arXiv:1010.3829].

[467] H. Hoekstra, H. Yee, and M. Gladders, Current status of weak gravitational lensing, New Astron.
Rev. 46 (2002) 767–781, [astro-ph/0205205].

[468] M. Bradavc, S. W. Allen, T. Treu, H. Ebeling, R. Massey, R. G. Morris, A. von der Linden, and
D. Applegate, Revealing the Properties of Dark Matter in the Merging Cluster MACS J0025.4-1222,
687 (Nov., 2008) 959–967, [arXiv:0806.2320].

[469] M. J. Jee et al., Discovery of a Ringlike Dark Matter Structure in the Core of the Galaxy Cluster Cl
0024+17, Astrophys. J. 661 (2007) 728–749, [arXiv:0705.2171].

261

http://arxiv.org/abs/1607.06821
http://arxiv.org/abs/hep-th/0601001
http://arxiv.org/abs/1402.2287
http://arxiv.org/abs/1904.08426
http://arxiv.org/abs/1707.05811
http://arxiv.org/abs/2006.01144
http://arxiv.org/abs/1910.01648
http://arxiv.org/abs/1903.06239
http://arxiv.org/abs/2201.08380
http://arxiv.org/abs/1412.5148
http://arxiv.org/abs/https://academic.oup.com/mnras/article-pdf/393/3/1054/2907743/mnras0393-1054.pdf
http://arxiv.org/abs/astro-ph/0205281
http://arxiv.org/abs/astro-ph/0309738
http://arxiv.org/abs/astro-ph/0206176
http://arxiv.org/abs/1010.3829
http://arxiv.org/abs/astro-ph/0205205
http://arxiv.org/abs/0806.2320
http://arxiv.org/abs/0705.2171


[470]

[471] A. G. Bergmann, V. Petrosian, and R. Lynds, Gravitational Lens Models of Arcs in Clusters, 350
(Feb., 1990) 23.

[472] J. A. Tyson, G. P. Kochanski, and I. P. Dell’Antonio, Detailed mass map of cl 0024+1654 from
strong lensing, The Astrophysical Journal 498 (apr, 1998) L107.

[473] S. Chabanier, M. Millea, and N. Palanque-Delabrouille, Matter power spectrum: from Lyα forest to
CMB scales, Mon. Not. Roy. Astron. Soc. 489 (2019), no. 2 2247–2253, [arXiv:1905.08103].

[474] K. Garrett and G. Duda, Dark Matter: A Primer, Adv. Astron. 2011 (2011) 968283,
[arXiv:1006.2483].

[475] G. Bertone, D. Hooper, and J. Silk, Particle dark matter: Evidence, candidates and constraints,
Phys. Rept. 405 (2005) 279–390, [hep-ph/0404175].

[476] K. K. Boddy et al., Snowmass2021 theory frontier white paper: Astrophysical and cosmological probes
of dark matter, JHEAp 35 (2022) 112–138, [arXiv:2203.06380].

[477] W. Hu, R. Barkana, and A. Gruzinov, Cold and fuzzy dark matter, Phys. Rev. Lett. 85 (2000)
1158–1161, [astro-ph/0003365].

[478] L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, Ultralight scalars as cosmological dark matter,
Phys. Rev. D 95 (2017), no. 4 043541, [arXiv:1610.08297].

[479] N. Dalal and A. Kravtsov, Excluding fuzzy dark matter with sizes and stellar kinematics of ultrafaint
dwarf galaxies, Phys. Rev. D 106 (2022), no. 6 063517, [arXiv:2203.05750].

[480] K. K. Rogers and H. V. Peiris, Strong Bound on Canonical Ultralight Axion Dark Matter from the
Lyman-Alpha Forest, Phys. Rev. Lett. 126 (2021), no. 7 071302, [arXiv:2007.12705].

[481] P. Meszaros, Primeval black holes and galaxy formation, Astron. Astrophys. 38 (1975) 5–13.

[482] Y. B. Zel’dovich and I. D. Novikov, The Hypothesis of Cores Retarded during Expansion and the Hot
Cosmological Model, Sov. Astron. 10 (1967) 602.

[483] P. Villanueva-Domingo, O. Mena, and S. Palomares-Ruiz, A brief review on primordial black holes as
dark matter, Front. Astron. Space Sci. 8 (2021) 87, [arXiv:2103.12087].

[484] A. Escrivà, F. Kuhnel, and Y. Tada, Primordial Black Holes, arXiv:2211.05767.

[485] A. M. Green and B. J. Kavanagh, Primordial Black Holes as a dark matter candidate, J. Phys. G 48
(2021), no. 4 043001, [arXiv:2007.10722].

[486] H. Vogel and J. Redondo, Dark Radiation constraints on minicharged particles in models with a
hidden photon, JCAP 02 (2014) 029, [arXiv:1311.2600].

[487] C. Dvorkin, T. Lin, and K. Schutz, Making dark matter out of light: freeze-in from plasma effects,
Phys. Rev. D 99 (2019), no. 11 115009, [arXiv:1902.08623]. [Erratum: Phys.Rev.D 105, 119901
(2022)].

[488] T. Lin, Dark matter models and direct detection, PoS 333 (2019) 009, [arXiv:1904.07915].

[489] S. L. Dubovsky, D. S. Gorbunov, and G. I. Rubtsov, Narrowing the window for millicharged particles
by CMB anisotropy, JETP Lett. 79 (2004) 1–5, [hep-ph/0311189].

[490] S. D. McDermott, H.-B. Yu, and K. M. Zurek, Turning off the Lights: How Dark is Dark Matter?,
Phys. Rev. D 83 (2011) 063509, [arXiv:1011.2907].

[491] C. Dvorkin, K. Blum, and M. Kamionkowski, Constraining Dark Matter-Baryon Scattering with
Linear Cosmology, Phys. Rev. D 89 (2014), no. 2 023519, [arXiv:1311.2937].

[492] W. L. Xu, C. Dvorkin, and A. Chael, Probing sub-GeV Dark Matter-Baryon Scattering with
Cosmological Observables, Phys. Rev. D 97 (2018), no. 10 103530, [arXiv:1802.06788].

262

http://arxiv.org/abs/1905.08103
http://arxiv.org/abs/1006.2483
http://arxiv.org/abs/hep-ph/0404175
http://arxiv.org/abs/2203.06380
http://arxiv.org/abs/astro-ph/0003365
http://arxiv.org/abs/1610.08297
http://arxiv.org/abs/2203.05750
http://arxiv.org/abs/2007.12705
http://arxiv.org/abs/2103.12087
http://arxiv.org/abs/2211.05767
http://arxiv.org/abs/2007.10722
http://arxiv.org/abs/1311.2600
http://arxiv.org/abs/1902.08623
http://arxiv.org/abs/1904.07915
http://arxiv.org/abs/hep-ph/0311189
http://arxiv.org/abs/1011.2907
http://arxiv.org/abs/1311.2937
http://arxiv.org/abs/1802.06788


[493] T. R. Slatyer and C.-L. Wu, Early-Universe constraints on dark matter-baryon scattering and their
implications for a global 21 cm signal, Phys. Rev. D 98 (2018), no. 2 023013, [arXiv:1803.09734].

[494] K. K. Boddy, V. Gluscevic, V. Poulin, E. D. Kovetz, M. Kamionkowski, and R. Barkana, Critical
assessment of CMB limits on dark matter-baryon scattering: New treatment of the relative bulk
velocity, Phys. Rev. D 98 (2018), no. 12 123506, [arXiv:1808.00001].

[495] A. Fung, S. Heeba, Q. Liu, V. Muralidharan, K. Schutz, and A. C. Vincent, New bounds on light
millicharged particles from the tip of the red-giant branch, Phys. Rev. D 109 (2024), no. 8 083011,
[arXiv:2309.06465].

[496] B. R. Safdi, TASI Lectures on the Particle Physics and Astrophysics of Dark Matter, PoS TASI2022
(2024) 009, [arXiv:2303.02169].

[497] K. M. Zurek, Dark Matter Candidates of a Very Low Mass, arXiv:2401.03025.

[498] J. Silk et al., Particle Dark Matter: Observations, Models and Searches. Cambridge Univ. Press,
Cambridge, 2010.

[499] M. Bauer and T. Plehn, Yet Another Introduction to Dark Matter: The Particle Physics Approach,
vol. 959 of Lecture Notes in Physics. Springer, 2019.

[500] T. Marrodán Undagoitia and L. Rauch, Dark matter direct-detection experiments, J. Phys. G 43
(2016), no. 1 013001, [arXiv:1509.08767].

[501] M. Lisanti, Lectures on Dark Matter Physics, in Theoretical Advanced Study Institute in Elementary
Particle Physics: New Frontiers in Fields and Strings, pp. 399–446, 2017. arXiv:1603.03797.

[502] G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, M. Pierre, S. Profumo, and F. S. Queiroz,
The waning of the WIMP? A review of models, searches, and constraints, Eur. Phys. J. C 78 (2018),
no. 3 203, [arXiv:1703.07364].

[503] A. Merle, keV sterile neutrino Dark Matter, PoS NOW2016 (2017) 082, [arXiv:1702.08430].

[504] S. Hawking, Gravitationally collapsed objects of very low mass, 152 (Jan., 1971) 75.

[505] G. F. Chapline, Cosmological effects of primordial black holes, Nature 253 (1975), no. 5489 251–252.

[506] E. W. Kolb, D. J. H. Chung, and A. Riotto, WIMPzillas!, AIP Conf. Proc. 484 (1999), no. 1 91–105,
[hep-ph/9810361].

[507] K. Griest and M. Kamionkowski, Unitarity Limits on the Mass and Radius of Dark Matter Particles,
Phys. Rev. Lett. 64 (1990) 615.

[508] D. J. H. Chung, P. Crotty, E. W. Kolb, and A. Riotto, On the Gravitational Production of
Superheavy Dark Matter, Phys. Rev. D 64 (2001) 043503, [hep-ph/0104100].

[509] Y. Bai, A. J. Long, and S. Lu, Dark Quark Nuggets, Phys. Rev. D 99 (2019), no. 5 055047,
[arXiv:1810.04360].

[510] A. Kusenko and M. E. Shaposhnikov, Supersymmetric Q balls as dark matter, Phys. Lett. B 418
(1998) 46–54, [hep-ph/9709492].

[511] K. Petraki and R. R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys. A 28 (2013)
1330028, [arXiv:1305.4939].

[512] D. E. Kaplan, M. A. Luty, and K. M. Zurek, Asymmetric Dark Matter, Phys. Rev. D 79 (2009)
115016, [arXiv:0901.4117].

[513] K. M. Zurek, Asymmetric Dark Matter: Theories, Signatures, and Constraints, Phys. Rept. 537
(2014) 91–121, [arXiv:1308.0338].

[514] M. L. Graesser, I. M. Shoemaker, and L. Vecchi, Asymmetric WIMP dark matter, JHEP 10 (2011)
110, [arXiv:1103.2771].

263

http://arxiv.org/abs/1803.09734
http://arxiv.org/abs/1808.00001
http://arxiv.org/abs/2309.06465
http://arxiv.org/abs/2303.02169
http://arxiv.org/abs/2401.03025
http://arxiv.org/abs/1509.08767
http://arxiv.org/abs/1603.03797
http://arxiv.org/abs/1703.07364
http://arxiv.org/abs/1702.08430
http://arxiv.org/abs/hep-ph/9810361
http://arxiv.org/abs/hep-ph/0104100
http://arxiv.org/abs/1810.04360
http://arxiv.org/abs/hep-ph/9709492
http://arxiv.org/abs/1305.4939
http://arxiv.org/abs/0901.4117
http://arxiv.org/abs/1308.0338
http://arxiv.org/abs/1103.2771


[515] T. Lin, H.-B. Yu, and K. M. Zurek, On Symmetric and Asymmetric Light Dark Matter, Phys. Rev. D
85 (2012) 063503, [arXiv:1111.0293].

[516] R. T. D’Agnolo and J. T. Ruderman, Light Dark Matter from Forbidden Channels, Phys. Rev. Lett.
115 (2015), no. 6 061301, [arXiv:1505.07107].

[517] K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43
(1991) 3191–3203.

[518] R. T. D’Agnolo, D. Pappadopulo, J. T. Ruderman, and P.-J. Wang, Thermal Relic Targets with
Exponentially Small Couplings, Phys. Rev. Lett. 124 (2020), no. 15 151801, [arXiv:1906.09269].

[519] F. D’Eramo and J. Thaler, Semi-annihilation of Dark Matter, JHEP 06 (2010) 109, [arXiv:1003.5912].

[520] R. T. D’Agnolo, D. Pappadopulo, and J. T. Ruderman, Fourth Exception in the Calculation of Relic
Abundances, Phys. Rev. Lett. 119 (2017), no. 6 061102, [arXiv:1705.08450].

[521] L. J. Hall, K. Jedamzik, J. March-Russell, and S. M. West, Freeze-In Production of FIMP Dark
Matter, JHEP 03 (2010) 080, [arXiv:0911.1120].

[522] N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen, and V. Vaskonen, The Dawn of FIMP Dark
Matter: A Review of Models and Constraints, Int. J. Mod. Phys. A 32 (2017), no. 27 1730023,
[arXiv:1706.07442].

[523] Y. Hochberg, E. Kuflik, T. Volansky, and J. G. Wacker, Mechanism for Thermal Relic Dark Matter
of Strongly Interacting Massive Particles, Phys. Rev. Lett. 113 (2014) 171301, [arXiv:1402.5143].

[524] E. D. Carlson, M. E. Machacek, and L. J. Hall, Self-interacting dark matter, Astrophys. J. 398
(1992) 43–52.

[525] M. Farina, D. Pappadopulo, J. T. Ruderman, and G. Trevisan, Phases of Cannibal Dark Matter,
JHEP 12 (2016) 039, [arXiv:1607.03108].

[526] E. Kuflik, M. Perelstein, N. R.-L. Lorier, and Y.-D. Tsai, Elastically Decoupling Dark Matter, Phys.
Rev. Lett. 116 (2016), no. 22 221302, [arXiv:1512.04545].

[527] E. Kuflik, M. Perelstein, N. R.-L. Lorier, and Y.-D. Tsai, Phenomenology of ELDER Dark Matter,
JHEP 08 (2017) 078, [arXiv:1706.05381].

[528] J. Alexander et al., Dark Sectors 2016 Workshop: Community Report, 8, 2016. arXiv:1608.08632.

[529] Y. Hochberg, “Tasi 2022 lectures on dark matter: Particle physics models.”
https://www.youtube.com/watch?v=Sq7JGnLcqWY, 2022.

[530] M. W. Goodman and E. Witten, Detectability of Certain Dark Matter Candidates, Phys. Rev. D 31
(1985) 3059.

[531] XENON Collaboration, E. Aprile et al., First Dark Matter Search Results from the XENON1T
Experiment, Phys. Rev. Lett. 119 (2017), no. 18 181301, [arXiv:1705.06655].

[532] XENON Collaboration, E. Aprile et al., Dark Matter Search Results from a One Ton-Year Exposure
of XENON1T, Phys. Rev. Lett. 121 (2018), no. 11 111302, [arXiv:1805.12562].

[533] XENON Collaboration, E. Aprile et al., Constraining the spin-dependent WIMP-nucleon cross
sections with XENON1T, Phys. Rev. Lett. 122 (2019), no. 14 141301, [arXiv:1902.03234].

[534] XENON Collaboration, E. Aprile et al., First Dark Matter Search with Nuclear Recoils from the
XENONnT Experiment, Phys. Rev. Lett. 131 (2023), no. 4 041003, [arXiv:2303.14729].

[535] PICO Collaboration Collaboration, C. Amole et al., Dark matter search results from the
PICO−60 c3f8 bubble chamber, Phys. Rev. Lett. 118 (Jun, 2017) 251301.

[536] PICO Collaboration Collaboration, C. Amole et al., Dark matter search results from the complete
exposure of the pico-60 c3f8 bubble chamber, Phys. Rev. D 100 (Jul, 2019) 022001.

264

http://arxiv.org/abs/1111.0293
http://arxiv.org/abs/1505.07107
http://arxiv.org/abs/1906.09269
http://arxiv.org/abs/1003.5912
http://arxiv.org/abs/1705.08450
http://arxiv.org/abs/0911.1120
http://arxiv.org/abs/1706.07442
http://arxiv.org/abs/1402.5143
http://arxiv.org/abs/1607.03108
http://arxiv.org/abs/1512.04545
http://arxiv.org/abs/1706.05381
http://arxiv.org/abs/1608.08632
https://www.youtube.com/watch?v=Sq7JGnLcqWY
http://arxiv.org/abs/1705.06655
http://arxiv.org/abs/1805.12562
http://arxiv.org/abs/1902.03234
http://arxiv.org/abs/2303.14729


[537] LZ Collaboration, J. Aalbers et al., First Dark Matter Search Results from the LUX-ZEPLIN (LZ)
Experiment, Phys. Rev. Lett. 131 (2023), no. 4 041002, [arXiv:2207.03764].

[538] Y. Hochberg, M. Pyle, Y. Zhao, and K. M. Zurek, Detecting Superlight Dark Matter with
Fermi-Degenerate Materials, JHEP 08 (2016) 057, [arXiv:1512.04533].

[539] R. Essig, J. Mardon, and T. Volansky, Direct Detection of Sub-GeV Dark Matter, Phys. Rev. D 85
(2012) 076007, [arXiv:1108.5383].

[540] P. W. Graham, D. E. Kaplan, S. Rajendran, and M. T. Walters, Semiconductor Probes of Light Dark
Matter, Phys. Dark Univ. 1 (2012) 32–49, [arXiv:1203.2531].

[541] R. Essig, M. Fernandez-Serra, J. Mardon, A. Soto, T. Volansky, and T.-T. Yu, Direct Detection of
sub-GeV Dark Matter with Semiconductor Targets, JHEP 05 (2016) 046, [arXiv:1509.01598].

[542] Y. Hochberg, Y. Kahn, M. Lisanti, K. M. Zurek, A. G. Grushin, R. Ilan, S. M. Griffin, Z.-F. Liu,
S. F. Weber, and J. B. Neaton, Detection of sub-MeV Dark Matter with Three-Dimensional Dirac
Materials, Phys. Rev. D 97 (2018), no. 1 015004, [arXiv:1708.08929].

[543] R. Essig, J. Mardon, O. Slone, and T. Volansky, Detection of sub-GeV Dark Matter and Solar
Neutrinos via Chemical-Bond Breaking, Phys. Rev. D 95 (2017), no. 5 056011, [arXiv:1608.02940].

[544] S. M. Griffin, K. Inzani, T. Trickle, Z. Zhang, and K. M. Zurek, Multichannel direct detection of light
dark matter: Target comparison, Phys. Rev. D 101 (2020), no. 5 055004, [arXiv:1910.10716].

[545] T. Trickle, Z. Zhang, and K. M. Zurek, Detecting Light Dark Matter with Magnons, Phys. Rev. Lett.
124 (2020), no. 20 201801, [arXiv:1905.13744].

[546] C. Blanco, J. I. Collar, Y. Kahn, and B. Lillard, Dark Matter-Electron Scattering from Aromatic
Organic Targets, Phys. Rev. D 101 (2020), no. 5 056001, [arXiv:1912.02822].

[547] Y. Hochberg, Y. Zhao, and K. M. Zurek, Superconducting Detectors for Superlight Dark Matter,
Phys. Rev. Lett. 116 (2016), no. 1 011301, [arXiv:1504.07237].

[548] H.-Y. Chen, A. Mitridate, T. Trickle, Z. Zhang, M. Bernardi, and K. M. Zurek, Dark matter direct
detection in materials with spin-orbit coupling, Phys. Rev. D 106 (2022), no. 1 015024,
[arXiv:2202.11716].

[549] P. Du, D. Egaña Ugrinovic, R. Essig, and M. Sholapurkar, Doped semiconductor devices for sub-MeV
dark matter detection, Phys. Rev. D 109 (2024), no. 5 055009, [arXiv:2212.04504].

[550] A. Hook, TASI Lectures on the Strong CP Problem and Axions, PoS TASI2018 (2019) 004,
[arXiv:1812.02669].

[551] M. Reece, TASI Lectures: (No) Global Symmetries to Axion Physics, PoS TASI2022 (2024) 008,
[arXiv:2304.08512].

[552] C. Abel et al., Measurement of the Permanent Electric Dipole Moment of the Neutron, Phys. Rev.
Lett. 124 (2020), no. 8 081803, [arXiv:2001.11966].

[553] J. R. Ellis and M. K. Gaillard, Strong and Weak CP Violation, Nucl. Phys. B 150 (1979) 141–162.

[554] K. Choi, C. W. Kim, and W. K. Sze, Mass Renormalization by Instantons and the Strong CP
Problem, Phys. Rev. Lett. 61 (1988) 794.

[555] H. Georgi and I. N. McArthur, INSTANTONS AND THE mu QUARK MASS, .

[556] M. Srednicki, Comment on ”Ambiguities in the up-quark mass”, Phys. Rev. Lett. 95 (2005) 059101,
[hep-ph/0503051].

[557] T. Banks, Y. Nir, and N. Seiberg, Missing (up) mass, accidental anomalous symmetries, and the
strong CP problem, in 2nd IFT Workshop on Yukawa Couplings and the Origins of Mass, pp. 26–41,
2, 1994. hep-ph/9403203.

265

http://arxiv.org/abs/2207.03764
http://arxiv.org/abs/1512.04533
http://arxiv.org/abs/1108.5383
http://arxiv.org/abs/1203.2531
http://arxiv.org/abs/1509.01598
http://arxiv.org/abs/1708.08929
http://arxiv.org/abs/1608.02940
http://arxiv.org/abs/1910.10716
http://arxiv.org/abs/1905.13744
http://arxiv.org/abs/1912.02822
http://arxiv.org/abs/1504.07237
http://arxiv.org/abs/2202.11716
http://arxiv.org/abs/2212.04504
http://arxiv.org/abs/1812.02669
http://arxiv.org/abs/2304.08512
http://arxiv.org/abs/2001.11966
http://arxiv.org/abs/hep-ph/0503051
http://arxiv.org/abs/hep-ph/9403203


[558] C. Cordova, S. Hong, and S. Koren, Non-Invertible Peccei-Quinn Symmetry and the Massless Quark
Solution to the Strong CP Problem, arXiv:2402.12453.

[559] D. B. Kaplan and A. V. Manohar, Current Mass Ratios of the Light Quarks, Phys. Rev. Lett. 56
(1986) 2004.

[560] Flavour Lattice Averaging Group (FLAG) Collaboration, Y. Aoki et al., FLAG Review 2021,
Eur. Phys. J. C 82 (2022), no. 10 869, [arXiv:2111.09849].

[561] C. Alexandrou, J. Finkenrath, L. Funcke, K. Jansen, B. Kostrzewa, F. Pittler, and C. Urbach, Ruling
Out the Massless Up-Quark Solution to the Strong CPCPCP Problem by Computing the Topological Mass
Contribution with Lattice QCD, Phys. Rev. Lett. 125 (2020), no. 23 232001, [arXiv:2002.07802].

[562] D. Davies, M. Dine, and B. V. Lehmann, Light Quarks at Large N, arXiv:2201.05719.

[563] P. Agrawal and K. Howe, A Flavorful Factoring of the Strong CP Problem, JHEP 12 (2018) 035,
[arXiv:1712.05803].

[564] A. Hook, Anomalous solutions to the strong CP problem, Phys. Rev. Lett. 114 (2015), no. 14 141801,
[arXiv:1411.3325].

[565] A. E. Nelson, Naturally Weak CP Violation, Phys. Lett. B 136 (1984) 387–391.

[566] S. M. Barr, Solving the Strong CP Problem Without the Peccei-Quinn Symmetry, Phys. Rev. Lett. 53
(1984) 329.

[567] L. Bento, G. C. Branco, and P. A. Parada, A Minimal model with natural suppression of strong CP
violation, Phys. Lett. B 267 (1991) 95–99.

[568] K. S. Babu and R. N. Mohapatra, CP Violation in Seesaw Models of Quark Masses, Phys. Rev. Lett.
62 (1989) 1079.

[569] K. S. Babu and R. N. Mohapatra, A Solution to the Strong CP Problem Without an Axion, Phys.
Rev. D 41 (1990) 1286.

[570] S. M. Barr, D. Chang, and G. Senjanovic, Strong CP problem and parity, Phys. Rev. Lett. 67 (1991)
2765–2768.

[571] M. Dine and P. Draper, Challenges for the Nelson-Barr Mechanism, JHEP 08 (2015) 132,
[arXiv:1506.05433].

[572] A. Albaid, M. Dine, and P. Draper, Strong CP and SUZ2, JHEP 12 (2015) 046, [arXiv:1510.03392].

[573] J. de Vries, P. Draper, and H. H. Patel, Do Minimal Parity Solutions to the Strong CP Problem
Work?, arXiv:2109.01630.

[574] R. N. Mohapatra and A. Rasin, Simple supersymmetric solution to the strong CP problem, Phys.
Rev. Lett. 76 (1996) 3490–3493, [hep-ph/9511391].

[575] R. Kuchimanchi, Solution to the strong CP problem: Supersymmetry with parity, Phys. Rev. Lett. 76
(1996) 3486–3489, [hep-ph/9511376].

[576] N. Craig, I. Garcia Garcia, G. Koszegi, and A. McCune, P not PQ, JHEP 09 (2021) 130,
[arXiv:2012.13416].

[577] G. Hiller and M. Schmaltz, Solving the Strong CP Problem with Supersymmetry, Phys. Lett. B 514
(2001) 263–268, [hep-ph/0105254].

[578] L. Vecchi, Spontaneous CP violation and the strong CP problem, JHEP 04 (2017) 149,
[arXiv:1412.3805].

[579] D. Dunsky, L. J. Hall, and K. Harigaya, Higgs Parity, Strong CP, and Dark Matter, JHEP 07 (2019)
016, [arXiv:1902.07726].

[580] A. Valenti and L. Vecchi, Super-soft CP violation, JHEP 07 (2021), no. 152 152, [arXiv:2106.09108].

266

http://arxiv.org/abs/2402.12453
http://arxiv.org/abs/2111.09849
http://arxiv.org/abs/2002.07802
http://arxiv.org/abs/2201.05719
http://arxiv.org/abs/1712.05803
http://arxiv.org/abs/1411.3325
http://arxiv.org/abs/1506.05433
http://arxiv.org/abs/1510.03392
http://arxiv.org/abs/2109.01630
http://arxiv.org/abs/hep-ph/9511391
http://arxiv.org/abs/hep-ph/9511376
http://arxiv.org/abs/2012.13416
http://arxiv.org/abs/hep-ph/0105254
http://arxiv.org/abs/1412.3805
http://arxiv.org/abs/1902.07726
http://arxiv.org/abs/2106.09108


[581] R. N. Mohapatra and A. Rasin, A Supersymmetric solution to CP problems, Phys. Rev. D 54 (1996)
5835–5844, [hep-ph/9604445].

[582] A. Valenti and L. Vecchi, The CKM phase and θ in Nelson-Barr models, JHEP 07 (2021), no. 203
203, [arXiv:2105.09122].

[583] R. D. Peccei and H. R. Quinn, Constraints Imposed by CP Conservation in the Presence of
Instantons, Phys. Rev. D16 (1977) 1791–1797.

[584] R. D. Peccei and H. R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38
(1977) 1440–1443.

[585] S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223–226.

[586] F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40
(1978) 279–282.

[587] J. E. Kim and G. Carosi, Axions and the Strong CP Problem, Rev. Mod. Phys. 82 (2010) 557–602,
[arXiv:0807.3125].

[588] P. W. Graham, I. G. Irastorza, S. K. Lamoreaux, A. Lindner, and K. A. van Bibber, Experimental
Searches for the Axion and Axion-Like Particles, Ann. Rev. Nucl. Part. Sci. 65 (2015) 485–514,
[arXiv:1602.00039].

[589] P. Agrawal, K. V. Berghaus, J. Fan, A. Hook, G. Marques-Tavares, and T. Rudelius, Some open
questions in axion theory, in Snowmass 2021, 3, 2022. arXiv:2203.08026.

[590] D. J. E. Marsh, Axion Cosmology, Phys. Rept. 643 (2016) 1–79, [arXiv:1510.07633].

[591] C. A. J. O’Hare, Cosmology of axion dark matter, PoS COSMICWISPers (2024) 040,
[arXiv:2403.17697].

[592] J. E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103.

[593] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Can Confinement Ensure Natural CP
Invariance of Strong Interactions?, Nucl. Phys. B166 (1980) 493–506.

[594] A. R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions. (In Russian), Sov. J.
Nucl. Phys. 31 (1980) 260. [Yad. Fiz.31,497(1980)].

[595] M. Dine, W. Fischler, and M. Srednicki, A Simple Solution to the Strong CP Problem with a
Harmless Axion, Phys. Lett. 104B (1981) 199–202.

[596] E. Witten, Some Properties of O(32) Superstrings, Phys. Lett. B 149 (1984) 351–356.

[597] K. Choi and J. E. Kim, Harmful Axions in Superstring Models, Phys. Lett. B 154 (1985) 393.
[Erratum: Phys.Lett.B 156, 452 (1985)].

[598] S. M. Barr, Harmless Axions in Superstring Theories, Phys. Lett. B 158 (1985) 397–400.

[599] S. M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D 46 (1992) 539–549.

[600] M. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn mechanism,
Phys. Lett. B 282 (1992) 137–141, [hep-th/9202003].

[601] R. Holman, S. D. H. Hsu, T. W. Kephart, E. W. Kolb, R. Watkins, and L. M. Widrow, Solutions to
the strong CP problem in a world with gravity, Phys. Lett. B 282 (1992) 132–136, [hep-ph/9203206].

[602] T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83
(2011) 084019, [arXiv:1011.5120].

[603] D. Harlow and H. Ooguri, Constraints on Symmetries from Holography, Phys. Rev. Lett. 122 (2019),
no. 19 191601, [arXiv:1810.05337].

[604] D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum gravity, Commun. Math.
Phys. 383 (2021), no. 3 1669–1804, [arXiv:1810.05338].

267

http://arxiv.org/abs/hep-ph/9604445
http://arxiv.org/abs/2105.09122
http://arxiv.org/abs/0807.3125
http://arxiv.org/abs/1602.00039
http://arxiv.org/abs/2203.08026
http://arxiv.org/abs/1510.07633
http://arxiv.org/abs/2403.17697
http://arxiv.org/abs/hep-th/9202003
http://arxiv.org/abs/hep-ph/9203206
http://arxiv.org/abs/1011.5120
http://arxiv.org/abs/1810.05337
http://arxiv.org/abs/1810.05338


[605] L. Randall, Composite axion models and Planck scale physics, Phys. Lett. B 284 (1992) 77–80.

[606] K. S. Babu, I. Gogoladze, and K. Wang, Stabilizing the axion by discrete gauge symmetries, Phys.
Lett. B 560 (2003) 214–222, [hep-ph/0212339].

[607] J. Preskill, M. B. Wise, and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. 120B (1983)
127–132.

[608] M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. 120B (1983) 137–141.

[609] L. F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. 120B (1983)
133–136.

[610] R. T. Co, L. J. Hall, and K. Harigaya, Axion Kinetic Misalignment Mechanism, Phys. Rev. Lett. 124
(2020), no. 25 251802, [arXiv:1910.14152].

[611] C.-F. Chang and Y. Cui, New Perspectives on Axion Misalignment Mechanism, Phys. Rev. D 102
(2020), no. 1 015003, [arXiv:1911.11885].

[612] J. Lee, K. Murai, F. Takahashi, and W. Yin, Bubble Misalignment Mechanism for Axions,
arXiv:2402.09501.

[613] L. Di Luzio, B. Gavela, P. Quilez, and A. Ringwald, Dark matter from an even lighter QCD axion:
trapped misalignment, JCAP 10 (2021) 001, [arXiv:2102.01082].

[614] S. Nakagawa, F. Takahashi, and M. Yamada, Trapping Effect for QCD Axion Dark Matter, JCAP 05
(2021) 062, [arXiv:2012.13592].

[615] K. S. Jeong, K. Matsukawa, S. Nakagawa, and F. Takahashi, Cosmological effects of Peccei-Quinn
symmetry breaking on QCD axion dark matter, JCAP 03 (2022), no. 03 026, [arXiv:2201.00681].

[616] H.-J. Li, Y.-Q. Peng, W. Chao, and Y.-F. Zhou, Light QCD axion dark matter from double level
crossings, Phys. Lett. B 849 (2024) 138444, [arXiv:2310.02126].

[617] N. Blinov, M. J. Dolan, P. Draper, and J. Kozaczuk, Dark matter targets for axionlike particle
searches, Phys. Rev. D 100 (2019), no. 1 015049, [arXiv:1905.06952].

[618] A. Papageorgiou, P. Quílez, and K. Schmitz, Axion dark matter from frictional misalignment, JHEP
01 (2023) 169, [arXiv:2206.01129].

[619] R. T. Co, L. J. Hall, and K. Harigaya, QCD Axion Dark Matter with a Small Decay Constant, Phys.
Rev. Lett. 120 (2018), no. 21 211602, [arXiv:1711.10486].

[620] L. D. McLerran, E. Mottola, and M. E. Shaposhnikov, Sphalerons and Axion Dynamics in High
Temperature QCD, Phys. Rev. D 43 (1991) 2027–2035.

[621] R. T. Co and K. Harigaya, Axiogenesis, Phys. Rev. Lett. 124 (2020), no. 11 111602,
[arXiv:1910.02080].

[622] T. W. B. Kibble, Topology of Cosmic Domains and Strings, J. Phys. A 9 (1976) 1387–1398.

[623] W. H. Zurek, Cosmological Experiments in Superfluid Helium?, Nature 317 (1985) 505–508.

[624] M. Buschmann, J. W. Foster, A. Hook, A. Peterson, D. E. Willcox, W. Zhang, and B. R. Safdi, Dark
matter from axion strings with adaptive mesh refinement, Nature Commun. 13 (2022), no. 1 1049,
[arXiv:2108.05368].

[625] K. Freese, J. A. Frieman, and A. V. Olinto, Natural inflation with pseudo - Nambu-Goldstone bosons,
Phys. Rev. Lett. 65 (1990) 3233–3236.

[626] M. S. Turner and L. M. Widrow, Inflation Produced, Large Scale Magnetic Fields, Phys. Rev. D37
(1988) 2743.

[627] W. D. Garretson, G. B. Field, and S. M. Carroll, Primordial magnetic fields from pseudoGoldstone
bosons, Phys. Rev. D46 (1992) 5346–5351, [hep-ph/9209238].

268

http://arxiv.org/abs/hep-ph/0212339
http://arxiv.org/abs/1910.14152
http://arxiv.org/abs/1911.11885
http://arxiv.org/abs/2402.09501
http://arxiv.org/abs/2102.01082
http://arxiv.org/abs/2012.13592
http://arxiv.org/abs/2201.00681
http://arxiv.org/abs/2310.02126
http://arxiv.org/abs/1905.06952
http://arxiv.org/abs/2206.01129
http://arxiv.org/abs/1711.10486
http://arxiv.org/abs/1910.02080
http://arxiv.org/abs/2108.05368
http://arxiv.org/abs/hep-ph/9209238


[628] S. H.-S. Alexander, M. E. Peskin, and M. M. Sheikh-Jabbari, Leptogenesis from gravity waves in
models of inflation, Phys. Rev. Lett. 96 (2006) 081301, [hep-th/0403069].

[629] R. T. Co, N. Fernandez, A. Ghalsasi, L. J. Hall, and K. Harigaya, Lepto-Axiogenesis, JHEP 03
(2021) 017, [arXiv:2006.05687].

[630] P. Barnes, R. T. Co, K. Harigaya, and A. Pierce, Lepto-axiogenesis with light right-handed neutrinos,
arXiv:2402.10263.

[631] G. Ballesteros, J. Redondo, A. Ringwald, and C. Tamarit, Unifying inflation with the axion, dark
matter, baryogenesis and the seesaw mechanism, Phys. Rev. Lett. 118 (2017), no. 7 071802,
[arXiv:1608.05414].

[632] A. H. Sopov and R. R. Volkas, VISHν: solving five Standard Model shortcomings with a
Poincaré-protected electroweak scale, Phys. Dark Univ. 42 (2023) 101381, [arXiv:2206.11598].

[633] M. Dine and N. Seiberg, String Theory and the Strong CP Problem, Nucl. Phys. B273 (1986)
109–124.

[634] P. Svrcek and E. Witten, Axions In String Theory, JHEP 06 (2006) 051, [hep-th/0605206].

[635] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, and J. March-Russell, String Axiverse,
Phys. Rev. D81 (2010) 123530, [arXiv:0905.4720].

[636] M. Demirtas, C. Long, L. McAllister, and M. Stillman, The Kreuzer-Skarke Axiverse, JHEP 04
(2020) 138, [arXiv:1808.01282].

[637] M. Demirtas, N. Gendler, C. Long, L. McAllister, and J. Moritz, PQ axiverse, JHEP 06 (2023) 092,
[arXiv:2112.04503].

[638] C. O’Hare, “cajohare/axionlimits: Axionlimits.” https://cajohare.github.io/AxionLimits/, July, 2020.

[639] ADMX Collaboration, C. Bartram et al., Dark matter axion search using a Josephson Traveling
wave parametric amplifier, Rev. Sci. Instrum. 94 (2023), no. 4 044703, [arXiv:2110.10262].

[640] ADMX Collaboration, C. Boutan et al., Piezoelectrically Tuned Multimode Cavity Search for Axion
Dark Matter, Phys. Rev. Lett. 121 (2018), no. 26 261302, [arXiv:1901.00920].

[641] S. J. Asztalos, G. Carosi, C. Hagmann, D. Kinion, K. van Bibber, M. Hotz, L. J. Rosenberg,
G. Rybka, J. Hoskins, J. Hwang, P. Sikivie, D. B. Tanner, R. Bradley, J. Clarke, and ADMX
Collaboration, SQUID-Based Microwave Cavity Search for Dark-Matter Axions, 104 (Jan., 2010)
041301, [arXiv:0910.5914].

[642] ADMX Collaboration, N. Du et al., A Search for Invisible Axion Dark Matter with the Axion Dark
Matter Experiment, Phys. Rev. Lett. 120 (2018), no. 15 151301, [arXiv:1804.05750].

[643] ADMX Collaboration, T. Braine et al., Extended Search for the Invisible Axion with the Axion Dark
Matter Experiment, Phys. Rev. Lett. 124 (2020), no. 10 101303, [arXiv:1910.08638].

[644] ADMX Collaboration, C. Bartram et al., Search for Invisible Axion Dark Matter in the 3.3–4.2 μeV
Mass Range, Phys. Rev. Lett. 127 (2021), no. 26 261803, [arXiv:2110.06096].

[645] Y. Kahn, B. R. Safdi, and J. Thaler, Broadband and Resonant Approaches to Axion Dark Matter
Detection, Phys. Rev. Lett. 117 (2016), no. 14 141801, [arXiv:1602.01086].

[646] J. L. Ouellet et al., Design and implementation of the ABRACADABRA-10 cm axion dark matter
search, Phys. Rev. D 99 (2019), no. 5 052012, [arXiv:1901.10652].

[647] J. L. Ouellet et al., First Results from ABRACADABRA-10 cm: A Search for Sub-μeV Axion Dark
Matter, Phys. Rev. Lett. 122 (2019), no. 12 121802, [arXiv:1810.12257].

[648] J. W. Foster, N. L. Rodd, and B. R. Safdi, Revealing the Dark Matter Halo with Axion Direct
Detection, Phys. Rev. D 97 (2018), no. 12 123006, [arXiv:1711.10489].

269

http://arxiv.org/abs/hep-th/0403069
http://arxiv.org/abs/2006.05687
http://arxiv.org/abs/2402.10263
http://arxiv.org/abs/1608.05414
http://arxiv.org/abs/2206.11598
http://arxiv.org/abs/hep-th/0605206
http://arxiv.org/abs/0905.4720
http://arxiv.org/abs/1808.01282
http://arxiv.org/abs/2112.04503
https://cajohare.github.io/AxionLimits/
http://arxiv.org/abs/2110.10262
http://arxiv.org/abs/1901.00920
http://arxiv.org/abs/0910.5914
http://arxiv.org/abs/1804.05750
http://arxiv.org/abs/1910.08638
http://arxiv.org/abs/2110.06096
http://arxiv.org/abs/1602.01086
http://arxiv.org/abs/1901.10652
http://arxiv.org/abs/1810.12257
http://arxiv.org/abs/1711.10489


[649] DMRadio Collaboration, L. Brouwer et al., Projected sensitivity of DMRadio-m3: A search for the
QCD axion below 1 μeV, Phys. Rev. D 106 (2022), no. 10 103008, [arXiv:2204.13781].

[650] K. Ehret et al., New ALPS Results on Hidden-Sector Lightweights, Phys. Lett. B 689 (2010)
149–155, [arXiv:1004.1313].

[651] M. D. Ortiz et al., Design of the ALPS II optical system, Phys. Dark Univ. 35 (2022) 100968,
[arXiv:2009.14294].

[652] OSQAR Collaboration, R. Ballou et al., New exclusion limits on scalar and pseudoscalar axionlike
particles from light shining through a wall, Phys. Rev. D 92 (2015), no. 9 092002, [arXiv:1506.08082].

[653] A. Garcon et al., Constraints on bosonic dark matter from ultralow-field nuclear magnetic resonance,
Sci. Adv. 5 (2019), no. 10 eaax4539, [arXiv:1902.04644].

[654] T. Wu et al., Search for Axionlike Dark Matter with a Liquid-State Nuclear Spin Comagnetometer,
Phys. Rev. Lett. 122 (2019), no. 19 191302, [arXiv:1901.10843].

[655] D. F. Jackson Kimball et al., Overview of the Cosmic Axion Spin Precession Experiment (CASPEr),
Springer Proc. Phys. 245 (2020) 105–121, [arXiv:1711.08999].

[656] NASDUCK Collaboration, I. M. Bloch, R. Shaham, Y. Hochberg, E. Kuflik, T. Volansky, and
O. Katz, Constraints on axion-like dark matter from a SERF comagnetometer, Nature Commun. 14
(2023), no. 1 5784, [arXiv:2209.13588].

[657] NASDUCK Collaboration, I. M. Bloch, G. Ronen, R. Shaham, O. Katz, T. Volansky, and O. Katz,
New constraints on axion-like dark matter using a Floquet quantum detector, Sci. Adv. 8 (2022),
no. 5 abl8919, [arXiv:2105.04603].

[658] R. Janish and E. Pinetti, Hunting Dark Matter Lines in the Infrared Background with the James
Webb Space Telescope, arXiv:2310.15395.

[659] W. Yin et al., First Result for Dark Matter Search by WINERED, arXiv:2402.07976.

[660] E. Todarello, M. Regis, J. Reynoso-Cordova, M. Taoso, D. Vaz, J. Brinchmann, M. Steinmetz, and
S. L. Zoutendijke, Robust bounds on ALP dark matter from dwarf spheroidal galaxies in the optical
MUSE-Faint survey, arXiv:2307.07403.

[661] D. Grin, G. Covone, J.-P. Kneib, M. Kamionkowski, A. Blain, and E. Jullo, A Telescope Search for
Decaying Relic Axions, Phys. Rev. D 75 (2007) 105018, [astro-ph/0611502].

[662] K. Nakayama and W. Yin, Anisotropic cosmic optical background bound for decaying dark matter in
light of the LORRI anomaly, Phys. Rev. D 106 (2022), no. 10 103505, [arXiv:2205.01079].

[663] P. Carenza, G. Lucente, and E. Vitagliano, Probing the blue axion with cosmic optical background
anisotropies, Phys. Rev. D 107 (2023), no. 8 083032, [arXiv:2301.06560].

[664] J. W. Foster, M. Kongsore, C. Dessert, Y. Park, N. L. Rodd, K. Cranmer, and B. R. Safdi, Deep
Search for Decaying Dark Matter with XMM-Newton Blank-Sky Observations, Phys. Rev. Lett. 127
(2021), no. 5 051101, [arXiv:2102.02207].

[665] F. Capozzi, R. Z. Ferreira, L. Lopez-Honorez, and O. Mena, CMB and Lyman-α constraints on dark
matter decays to photons, JCAP 06 (2023) 060, [arXiv:2303.07426].

[666] C. Fong, K. C. Y. Ng, and Q. Liu, Searching for Particle Dark Matter with eROSITA Early Data,
arXiv:2401.16747.

[667] J. L. Bernal, A. Caputo, G. Sato-Polito, J. Mirocha, and M. Kamionkowski, Seeking dark matter with
γ-ray attenuation, Phys. Rev. D 107 (2023), no. 10 103046, [arXiv:2208.13794].

[668] M. Buschmann, C. Dessert, J. W. Foster, A. J. Long, and B. R. Safdi, Upper Limit on the QCD
Axion Mass from Isolated Neutron Star Cooling, Phys. Rev. Lett. 128 (2022), no. 9 091102,
[arXiv:2111.09892].

270

http://arxiv.org/abs/2204.13781
http://arxiv.org/abs/1004.1313
http://arxiv.org/abs/2009.14294
http://arxiv.org/abs/1506.08082
http://arxiv.org/abs/1902.04644
http://arxiv.org/abs/1901.10843
http://arxiv.org/abs/1711.08999
http://arxiv.org/abs/2209.13588
http://arxiv.org/abs/2105.04603
http://arxiv.org/abs/2310.15395
http://arxiv.org/abs/2402.07976
http://arxiv.org/abs/2307.07403
http://arxiv.org/abs/astro-ph/0611502
http://arxiv.org/abs/2205.01079
http://arxiv.org/abs/2301.06560
http://arxiv.org/abs/2102.02207
http://arxiv.org/abs/2303.07426
http://arxiv.org/abs/2401.16747
http://arxiv.org/abs/2208.13794
http://arxiv.org/abs/2111.09892


[669] M. Baryakhtar, M. Galanis, R. Lasenby, and O. Simon, Black hole superradiance of self-interacting
scalar fields, Phys. Rev. D 103 (2021), no. 9 095019, [arXiv:2011.11646].

[670] V. M. Mehta, M. Demirtas, C. Long, D. J. E. Marsh, L. McAllister, and M. J. Stott, Superradiance
in string theory, JCAP 07 (2021) 033, [arXiv:2103.06812].

[671] M. Baryakhtar et al., Dark Matter In Extreme Astrophysical Environments, in Snowmass 2021, 3,
2022. arXiv:2203.07984.

[672] M. J. Stott, Ultralight Bosonic Field Mass Bounds from Astrophysical Black Hole Spin,
arXiv:2009.07206.

[673] K. Langhoff, N. J. Outmezguine, and N. L. Rodd, Irreducible Axion Background, Phys. Rev. Lett.
129 (2022), no. 24 241101, [arXiv:2209.06216].

[674] CAST Collaboration, S. Andriamonje et al., An Improved limit on the axion-photon coupling from
the CAST experiment, JCAP 04 (2007) 010, [hep-ex/0702006].

[675] CAST Collaboration, V. Anastassopoulos et al., New CAST Limit on the Axion-Photon Interaction,
Nature Phys. 13 (2017) 584–590, [arXiv:1705.02290].

[676] M. J. Dolan, F. J. Hiskens, and R. R. Volkas, Advancing globular cluster constraints on the
axion-photon coupling, JCAP 10 (2022) 096, [arXiv:2207.03102].

[677] A. Ayala, I. Domínguez, M. Giannotti, A. Mirizzi, and O. Straniero, Revisiting the bound on
axion-photon coupling from Globular Clusters, Phys. Rev. Lett. 113 (2014), no. 19 191302,
[arXiv:1406.6053].

[678] H. Georgi and S. L. Glashow, Unity of All Elementary Particle Forces, Phys. Rev. Lett. 32 (1974)
438–441.

[679] H. Georgi, The State of the Art—Gauge Theories, AIP Conf. Proc. 23 (1975) 575–582.

[680] H. Fritzsch and P. Minkowski, Unified Interactions of Leptons and Hadrons, Annals Phys. 93 (1975)
193–266.

[681] G. G. Ross, GRAND UNIFIED THEORIES. 1985.

[682] S. Raby, Supersymmetric Grand Unified Theories: From Quarks to Strings via SUSY GUTs, vol. 939.
Springer, 2017.

[683] Muon g-2 Collaboration, B. Abi et al., Measurement of the Positive Muon Anomalous Magnetic
Moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021), no. 14 141801, [arXiv:2104.03281].

[684] Muon g-2 Collaboration, G. W. Bennett et al., Final Report of the Muon E821 Anomalous
Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003, [hep-ex/0602035].

[685] T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model, Phys. Rept.
887 (2020) 1–166, [arXiv:2006.04822].

[686] Muon g-2 Collaboration, D. P. Aguillard et al., Measurement of the Positive Muon Anomalous
Magnetic Moment to 0.20 ppm, Phys. Rev. Lett. 131 (2023), no. 16 161802, [arXiv:2308.06230].

[687] S. Borsanyi et al., Leading hadronic contribution to the muon magnetic moment from lattice QCD,
Nature 593 (2021), no. 7857 51–55, [arXiv:2002.12347].

[688] CMD-3 Collaboration, F. V. Ignatov et al., Measurement of the e+e− → π+π− cross section from
threshold to 1.2 GeV with the CMD-3 detector, arXiv:2302.08834.

[689] A. Czarnecki, W. J. Marciano, and A. Sirlin, Neutron Lifetime and Axial Coupling Connection, Phys.
Rev. Lett. 120 (2018), no. 20 202002, [arXiv:1802.01804].

[690] J. C. Hardy and I. S. Towner, Superallowed 0+ → 0+ nuclear β decays: 2020 critical survey, with
implications for Vud and CKM unitarity, Phys. Rev. C 102 (2020), no. 4 045501.

271

http://arxiv.org/abs/2011.11646
http://arxiv.org/abs/2103.06812
http://arxiv.org/abs/2203.07984
http://arxiv.org/abs/2009.07206
http://arxiv.org/abs/2209.06216
http://arxiv.org/abs/hep-ex/0702006
http://arxiv.org/abs/1705.02290
http://arxiv.org/abs/2207.03102
http://arxiv.org/abs/1406.6053
http://arxiv.org/abs/2104.03281
http://arxiv.org/abs/hep-ex/0602035
http://arxiv.org/abs/2006.04822
http://arxiv.org/abs/2308.06230
http://arxiv.org/abs/2002.12347
http://arxiv.org/abs/2302.08834
http://arxiv.org/abs/1802.01804


[691] KLOE Collaboration, F. Ambrosino et al., Measurement of the absolute branching ratio for the
K+ → μ+ν(γ) decay with the KLOE detector, Phys. Lett. B 632 (2006) 76–80, [hep-ex/0509045].

[692] KLOE Collaboration, F. Ambrosino et al., Measurement of the charged kaon lifetime with the KLOE
detector, JHEP 01 (2008) 073, [arXiv:0712.1112].

[693] J. Byrne and P. G. Dawber, A Revised Value for the Neutron Lifetime Measured Using a Penning
Trap, EPL 33 (1996) 187.

[694] A. T. Yue, M. S. Dewey, D. M. Gilliam, G. L. Greene, A. B. Laptev, J. S. Nico, W. M. Snow, and
F. E. Wietfeldt, Improved Determination of the Neutron Lifetime, Phys. Rev. Lett. 111 (2013),
no. 22 222501, [arXiv:1309.2623].

[695] UCNτ Collaboration, F. M. Gonzalez et al., Improved neutron lifetime measurement with UCNτ,
Phys. Rev. Lett. 127 (2021), no. 16 162501, [arXiv:2106.10375].

[696] HFLAV Collaboration, Y. S. Amhis et al., Averages of b-hadron, c-hadron, and τ-lepton properties
as of 2021, Phys. Rev. D 107 (2023), no. 5 052008, [arXiv:2206.07501].

[697] LHCb Collaboration, R. Aaij et al., Test of lepton universality in b→ sℓ+ℓ− decays, Phys. Rev.
Lett. 131 (2023), no. 5 051803, [arXiv:2212.09152].

[698] Belle-II Collaboration, F. Abudinén et al., Search for B+ → K+νν̄ Decays Using an Inclusive
Tagging Method at Belle II, Phys. Rev. Lett. 127 (2021), no. 18 181802, [arXiv:2104.12624].

[699] LHCb Collaboration, R. Aaij et al., Measurement of CP Violation in the Decay B+ → K+π0, Phys.
Rev. Lett. 126 (2021), no. 9 091802, [arXiv:2012.12789].

[700] A. J. Buras, R. Fleischer, S. Recksiegel, and F. Schwab, B —> pi pi, new physics in B —> pi K and
implications for rare K and B decays, Phys. Rev. Lett. 92 (2004) 101804, [hep-ph/0312259].

[701] CMS Collaboration, A. M. Sirunyan et al., Search for resonances in the mass spectrum of muon
pairs produced in association with b quark jets in proton-proton collisions at

√s = 8 and 13 TeV,
JHEP 11 (2018) 161, [arXiv:1808.01890].

[702] CMS Collaboration, A. M. Sirunyan et al., Search for a standard model-like Higgs boson in the mass
range between 70 and 110 GeV in the diphoton final state in proton-proton collisions at

√s = 8 and
13 TeV, Phys. Lett. B 793 (2019) 320–347, [arXiv:1811.08459].

[703] O. Fischer et al., Unveiling hidden physics at the LHC, Eur. Phys. J. C 82 (2022), no. 8 665,
[arXiv:2109.06065].

[704] T. Bose and S. P. Griso, “Existing anomalies in the atlas and cms physics program.”

[705] LSND Collaboration, C. Athanassopoulos et al., Evidence for anti-muon-neutrino —>
anti-electron-neutrino oscillations from the LSND experiment at LAMPF, Phys. Rev. Lett. 77 (1996)
3082–3085, [nucl-ex/9605003].

[706] LSND Collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the
observation of ν̄e appearance in a ν̄μ beam, Phys. Rev. D 64 (2001) 112007, [hep-ex/0104049].

[707] MiniBooNE Collaboration, A. A. Aguilar-Arevalo et al., Updated MiniBooNE neutrino oscillation
results with increased data and new background studies, Phys. Rev. D 103 (2021), no. 5 052002,
[arXiv:2006.16883].

[708] MicroBooNE Collaboration, P. Abratenko et al., First Constraints on Light Sterile Neutrino
Oscillations from Combined Appearance and Disappearance Searches with the MicroBooNE Detector,
Phys. Rev. Lett. 130 (2023), no. 1 011801, [arXiv:2210.10216].

[709] SAGE Collaboration, J. N. Abdurashitov et al., Measurement of the response of the
Russian-American gallium experiment to neutrinos from a Cr-51 source, Phys. Rev. C 59 (1999)
2246–2263, [hep-ph/9803418].

272

http://arxiv.org/abs/hep-ex/0509045
http://arxiv.org/abs/0712.1112
http://arxiv.org/abs/1309.2623
http://arxiv.org/abs/2106.10375
http://arxiv.org/abs/2206.07501
http://arxiv.org/abs/2212.09152
http://arxiv.org/abs/2104.12624
http://arxiv.org/abs/2012.12789
http://arxiv.org/abs/hep-ph/0312259
http://arxiv.org/abs/1808.01890
http://arxiv.org/abs/1811.08459
http://arxiv.org/abs/2109.06065
http://arxiv.org/abs/nucl-ex/9605003
http://arxiv.org/abs/hep-ex/0104049
http://arxiv.org/abs/2006.16883
http://arxiv.org/abs/2210.10216
http://arxiv.org/abs/hep-ph/9803418


[710] GALLEX Collaboration, W. Hampel et al., Final results of the Cr-51 neutrino source experiments
in GALLEX, Phys. Lett. B 420 (1998) 114–126.

[711] V. V. Barinov et al., Results from the Baksan Experiment on Sterile Transitions (BEST), Phys. Rev.
Lett. 128 (2022), no. 23 232501, [arXiv:2109.11482].

[712] V. V. Barinov et al., Search for electron-neutrino transitions to sterile states in the BEST
experiment, Phys. Rev. C 105 (2022), no. 6 065502, [arXiv:2201.07364].

[713] J. M. Berryman, P. Coloma, P. Huber, T. Schwetz, and A. Zhou, Statistical significance of the
sterile-neutrino hypothesis in the context of reactor and gallium data, JHEP 02 (2022) 055,
[arXiv:2111.12530].

[714] NF02 Topical Group Collaboration, G. Karagiorgi, B. R. Littlejohn, P. Machado, and A. Sousa,
Snowmass Neutrino Frontier: NF02 Topical Group Report on Understanding Experimental Neutrino
Anomalies, in Snowmass 2021, 9, 2022. arXiv:2209.05352.

[715] M. A. Acero et al., White Paper on Light Sterile Neutrino Searches and Related Phenomenology,
arXiv:2203.07323.

[716] E. Abdalla et al., Cosmology intertwined: A review of the particle physics, astrophysics, and
cosmology associated with the cosmological tensions and anomalies, JHEAp 34 (2022) 49–211,
[arXiv:2203.06142].

[717] AMS Collaboration, M. Aguilar et al., Towards Understanding the Origin of Cosmic-Ray Positrons,
Phys. Rev. Lett. 122 (2019), no. 4 041102.

[718] PAMELA Collaboration, O. Adriani et al., Cosmic-Ray Positron Energy Spectrum Measured by
PAMELA, Phys. Rev. Lett. 111 (2013) 081102, [arXiv:1308.0133].

[719] AMS Collaboration, M. Aguilar et al., Antiproton Flux, Antiproton-to-Proton Flux Ratio, and
Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic
Spectrometer on the International Space Station, Phys. Rev. Lett. 117 (2016), no. 9 091103.

[720] O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Boezio, E. A. Bogomolov,
L. Bonechi, M. Bongi, V. Bonvicini, S. Borisov, S. Bottai, A. Bruno, F. Cafagna, D. Campana,
R. Carbone, P. Carlson, M. Casolino, G. Castellini, L. Consiglio, M. P. De Pascale, C. De Santis,
N. De Simone, V. Di Felice, A. M. Galper, W. Gillard, L. Grishantseva, G. Jerse, A. V. Karelin,
S. V. Koldashov, S. Y. Krutkov, A. N. Kvashnin, A. Leonov, V. Malakhov, V. Malvezzi, L. Marcelli,
A. G. Mayorov, W. Menn, V. V. Mikhailov, E. Mocchiutti, A. Monaco, N. Mori, N. Nikonov,
G. Osteria, F. Palma, P. Papini, M. Pearce, P. Picozza, C. Pizzolotto, M. Ricci, S. B. Ricciarini,
L. Rossetto, R. Sarkar, M. Simon, R. Sparvoli, P. Spillantini, Y. I. Stozhkov, A. Vacchi,
E. Vannuccini, G. Vasilyev, S. A. Voronov, Y. T. Yurkin, J. Wu, G. Zampa, N. Zampa, and V. G.
Zverev, PAMELA Measurements of Cosmic-Ray Proton and Helium Spectra, Science 332 (Apr.,
2011) 69, [arXiv:1103.4055].

[721] S. Ting, The First Five Years of the Alpha Magnetic Spectrometer on the International Space
Station, Press Conference at CERN, December 8 (2016).

[722] S. Ting, Latest Results from the AMS Experiment on the International Space Station, Colloquium at
CERN, May 24 (2018).

[723] A. Kounine, AMS Experiment on the International Space Station, Next Generation of AstroParticle
Experiments in Space (NextGAPES-2019)
http://www.sinp.msu.ru/contrib/NextGAPES/files/AMS_AK.pdf, June 21 (2019).

[724] R. K. Leane et al., Snowmass2021 Cosmic Frontier White Paper: Puzzling Excesses in Dark Matter
Searches and How to Resolve Them, arXiv:2203.06859.

[725] J. Heisig, M. Korsmeier, and M. W. Winkler, Dark matter or correlated errors: Systematics of the
AMS-02 antiproton excess, Phys. Rev. Res. 2 (2020), no. 4 043017, [arXiv:2005.04237].

273

http://arxiv.org/abs/2109.11482
http://arxiv.org/abs/2201.07364
http://arxiv.org/abs/2111.12530
http://arxiv.org/abs/2209.05352
http://arxiv.org/abs/2203.07323
http://arxiv.org/abs/2203.06142
http://arxiv.org/abs/1308.0133
http://arxiv.org/abs/1103.4055
http://www.sinp.msu.ru/contrib/NextGAPES/files/AMS_AK.pdf
http://arxiv.org/abs/2203.06859
http://arxiv.org/abs/2005.04237


[726] M. Boudaud, Y. Génolini, L. Derome, J. Lavalle, D. Maurin, P. Salati, and P. D. Serpico, AMS-02
antiprotons’ consistency with a secondary astrophysical origin, Phys. Rev. Res. 2 (2020), no. 2
023022, [arXiv:1906.07119].

[727] P. De La Torre Luque, M. W. Winkler, and T. Linden, Cosmic-Ray Propagation Models Elucidate
the Prospects for Antinuclei Detection, arXiv:2404.13114.

[728] DESI Collaboration, A. G. Adame et al., DESI 2024 VI: Cosmological Constraints from the
Measurements of Baryon Acoustic Oscillations, arXiv:2404.03002.

[729] M. Cortês and A. R. Liddle, Interpreting DESI’s evidence for evolving dark energy, arXiv:2404.08056.

[730] P. Adshead, J. T. Giblin, T. R. Scully, and E. I. Sfakianakis, Gauge-preheating and the end of axion
inflation, JCAP 1512 (2015), no. 12 034, [arXiv:1502.06506].

[731] M. M. Anber and L. Sorbo, Naturally inflating on steep potentials through electromagnetic
dissipation, Phys. Rev. D81 (2010) 043534, [arXiv:0908.4089].

[732] P. Adshead and M. Wyman, Chromo-Natural Inflation: Natural inflation on a steep potential with
classical non-Abelian gauge fields, Phys. Rev. Lett. 108 (2012) 261302, [arXiv:1202.2366].

[733] E. Silverstein and A. Westphal, Monodromy in the CMB: Gravity Waves and String Inflation, Phys.
Rev. D78 (2008) 106003, [arXiv:0803.3085].

[734] L. McAllister, E. Silverstein, and A. Westphal, Gravity Waves and Linear Inflation from Axion
Monodromy, Phys.Rev. D82 (2010) 046003, [arXiv:0808.0706].

[735] K. S. Babu, S. M. Barr, and D. Seckel, Axion dissipation through the mixing of Goldstone bosons,
Phys. Lett. B336 (1994) 213–220, [hep-ph/9406308].

[736] J. E. Kim, H. P. Nilles, and M. Peloso, Completing natural inflation, JCAP 0501 (2005) 005,
[hep-ph/0409138].

[737] T. C. Bachlechner, M. Dias, J. Frazer, and L. McAllister, Chaotic inflation with kinetic alignment of
axion fields, Phys. Rev. D91 (2015), no. 2 023520, [arXiv:1404.7496].

[738] H.-C. Cheng and D. E. Kaplan, Axions and a gauged Peccei-Quinn symmetry, hep-ph/0103346.

[739] P. Anastasopoulos, M. Bianchi, E. Dudas, and E. Kiritsis, Anomalies, anomalous U(1)’s and
generalized Chern-Simons terms, JHEP 11 (2006) 057, [hep-th/0605225].

[740] G. Shiu, W. Staessens, and F. Ye, Widening the Axion Window via Kinetic and Stückelberg Mixings,
Phys. Rev. Lett. 115 (2015) 181601, [arXiv:1503.01015].

[741] G. Shiu, W. Staessens, and F. Ye, Large Field Inflation from Axion Mixing, JHEP 06 (2015) 026,
[arXiv:1503.02965].

[742] K. Choi, C. S. Shin, and S. Yun, Axion scales and couplings with Stückelberg mixing, JHEP 12 (2019)
033, [arXiv:1909.11685].

[743] M. Berg, E. Pajer, and S. Sjors, Dante’s Inferno, Phys. Rev. D81 (2010) 103535, [arXiv:0912.1341].

[744] B. Holdom, Two U(1)’s and Epsilon Charge Shifts, Phys. Lett. 166B (1986) 196–198.

[745] G. Shiu, P. Soler, and F. Ye, Milli-Charged Dark Matter in Quantum Gravity and String Theory,
Phys. Rev. Lett. 110 (2013), no. 24 241304, [arXiv:1302.5471].

[746] K. Choi, H. Kim, and S. Yun, Natural inflation with multiple sub-Planckian axions, Phys. Rev. D90
(2014) 023545, [arXiv:1404.6209].

[747] K. Choi and S. H. Im, Realizing the relaxion from multiple axions and its UV completion with high
scale supersymmetry, JHEP 01 (2016) 149, [arXiv:1511.00132].

[748] D. E. Kaplan and R. Rattazzi, Large field excursions and approximate discrete symmetries from a
clockwork axion, Phys. Rev. D93 (2016), no. 8 085007, [arXiv:1511.01827].

274

http://arxiv.org/abs/1906.07119
http://arxiv.org/abs/2404.13114
http://arxiv.org/abs/2404.03002
http://arxiv.org/abs/2404.08056
http://arxiv.org/abs/1502.06506
http://arxiv.org/abs/0908.4089
http://arxiv.org/abs/1202.2366
http://arxiv.org/abs/0803.3085
http://arxiv.org/abs/0808.0706
http://arxiv.org/abs/hep-ph/9406308
http://arxiv.org/abs/hep-ph/0409138
http://arxiv.org/abs/1404.7496
http://arxiv.org/abs/hep-ph/0103346
http://arxiv.org/abs/hep-th/0605225
http://arxiv.org/abs/1503.01015
http://arxiv.org/abs/1503.02965
http://arxiv.org/abs/1909.11685
http://arxiv.org/abs/0912.1341
http://arxiv.org/abs/1302.5471
http://arxiv.org/abs/1404.6209
http://arxiv.org/abs/1511.00132
http://arxiv.org/abs/1511.01827


[749] M. Farina, D. Pappadopulo, F. Rompineve, and A. Tesi, The photo-philic QCD axion, JHEP 01
(2017) 095, [arXiv:1611.09855].

[750] P. Agrawal, J. Fan, M. Reece, and L.-T. Wang, Experimental Targets for Photon Couplings of the
QCD Axion, JHEP 02 (2018) 006, [arXiv:1709.06085].

[751] D. H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic microwave
background anisotropy?, Phys. Rev. Lett. 78 (1997) 1861–1863, [hep-ph/9606387].

[752] T. Banks, M. Dine, P. J. Fox, and E. Gorbatov, On the possibility of large axion decay constants,
JCAP 0306 (2003) 001, [hep-th/0303252].

[753] N. Arkani-Hamed, L. Motl, A. Nicolis, and C. Vafa, The String landscape, black holes and gravity as
the weakest force, JHEP 06 (2007) 060, [hep-th/0601001].

[754] H. Ooguri and C. Vafa, On the Geometry of the String Landscape and the Swampland, Nucl. Phys.
B766 (2007) 21–33, [hep-th/0605264].

[755] T. Rudelius, On the Possibility of Large Axion Moduli Spaces, JCAP 1504 (2015), no. 04 049,
[arXiv:1409.5793].

[756] B. Heidenreich, M. Reece, and T. Rudelius, The Weak Gravity Conjecture and Emergence from an
Ultraviolet Cutoff, Eur. Phys. J. C78 (2018), no. 4 337, [arXiv:1712.01868].

[757] P. Agrawal, J. Fan, and M. Reece, Clockwork Axions in Cosmology: Is Chromonatural Inflation
Chrononatural?, JHEP 10 (2018) 193, [arXiv:1806.09621].

[758] P. Agrawal, G. Marques-Tavares, and W. Xue, Opening up the QCD axion window, JHEP 03 (2018)
049, [arXiv:1708.05008].

[759] N. Kitajima, T. Sekiguchi, and F. Takahashi, Cosmological abundance of the QCD axion coupled to
hidden photons, Phys. Lett. B781 (2018) 684–687, [arXiv:1711.06590].

[760] P. Agrawal, N. Kitajima, M. Reece, T. Sekiguchi, and F. Takahashi, Relic Abundance of Dark Photon
Dark Matter, Phys. Lett. B801 (2020) 135136, [arXiv:1810.07188].

[761] R. T. Co, A. Pierce, Z. Zhang, and Y. Zhao, Dark Photon Dark Matter Produced by Axion
Oscillations, Phys. Rev. D99 (2019), no. 7 075002, [arXiv:1810.07196].

[762] M. Bastero-Gil, J. Santiago, L. Ubaldi, and R. Vega-Morales, Vector dark matter production at the
end of inflation, JCAP 1904 (2019), no. 04 015, [arXiv:1810.07208].

[763] N. Fonseca, B. von Harling, L. de Lima, and C. S. Machado, Super-Planckian axions from
near-conformality, Phys. Rev. D100 (2019), no. 10 105019, [arXiv:1906.10193].

[764] G. Dvali, Black Holes and Large N Species Solution to the Hierarchy Problem, Fortsch. Phys. 58
(2010) 528–536, [arXiv:0706.2050].

[765] A. Hebecker, P. Mangat, F. Rompineve, and L. T. Witkowski, Winding out of the Swamp: Evading
the Weak Gravity Conjecture with F-term Winding Inflation?, Phys. Lett. B748 (2015) 455–462,
[arXiv:1503.07912].

[766] D. B. Kaplan, Opening the Axion Window, Nucl. Phys. B260 (1985) 215–226.

[767] M. Srednicki, Axion Couplings to Matter. 1. CP Conserving Parts, Nucl. Phys. B260 (1985) 689–700.

[768] H. Georgi, D. B. Kaplan, and L. Randall, Manifesting the Invisible Axion at Low-energies, Phys.
Lett. 169B (1986) 73–78.

[769] T. Higaki, N. Kitajima, and F. Takahashi, Hidden axion dark matter decaying through mixing with
QCD axion and the 3.5 keV X-ray line, JCAP 1412 (2014), no. 12 004, [arXiv:1408.3936].

[770] H. J. S. Smith, On systems of linear indeterminate equations and congruences, Proceedings of the
Royal Society of London (1862), no. 11 86–89.

275

http://arxiv.org/abs/1611.09855
http://arxiv.org/abs/1709.06085
http://arxiv.org/abs/hep-ph/9606387
http://arxiv.org/abs/hep-th/0303252
http://arxiv.org/abs/hep-th/0601001
http://arxiv.org/abs/hep-th/0605264
http://arxiv.org/abs/1409.5793
http://arxiv.org/abs/1712.01868
http://arxiv.org/abs/1806.09621
http://arxiv.org/abs/1708.05008
http://arxiv.org/abs/1711.06590
http://arxiv.org/abs/1810.07188
http://arxiv.org/abs/1810.07196
http://arxiv.org/abs/1810.07208
http://arxiv.org/abs/1906.10193
http://arxiv.org/abs/0706.2050
http://arxiv.org/abs/1503.07912
http://arxiv.org/abs/1408.3936


[771] Y. Hosotani, Dynamical Gauge Symmetry Breaking as the Casimir Effect, Phys. Lett. 129B (1983)
193–197.

[772] N. Arkani-Hamed, H.-C. Cheng, P. Creminelli, and L. Randall, Extra natural inflation,
Phys.Rev.Lett. 90 (2003) 221302, [hep-th/0301218].

[773] B. Feng, M.-z. Li, R.-J. Zhang, and X.-m. Zhang, An inflation model with large variations in spectral
index, Phys. Rev. D68 (2003) 103511, [astro-ph/0302479].

[774] A. Delgado, A. Pomarol, and M. Quiros, Supersymmetry and electroweak breaking from extra
dimensions at the TeV scale, Phys. Rev. D60 (1999) 095008, [hep-ph/9812489].

[775] H.-C. Cheng, K. T. Matchev, and M. Schmaltz, Radiative corrections to Kaluza-Klein masses, Phys.
Rev. D66 (2002) 036005, [hep-ph/0204342].

[776] H. Hatanaka, T. Inami, and C. S. Lim, The Gauge hierarchy problem and higher dimensional gauge
theories, Mod. Phys. Lett. A13 (1998) 2601–2612, [hep-th/9805067].

[777] I. Antoniadis, K. Benakli, and M. Quiros, Finite Higgs mass without supersymmetry, New J. Phys. 3
(2001) 20, [hep-th/0108005].

[778] N. Kaloper and L. Sorbo, A Natural Framework for Chaotic Inflation, Phys. Rev. Lett. 102 (2009)
121301, [arXiv:0811.1989].

[779] X. Dong, B. Horn, E. Silverstein, and A. Westphal, Simple exercises to flatten your potential, Phys.
Rev. D84 (2011) 026011, [arXiv:1011.4521].

[780] N. Kaloper, A. Lawrence, and L. Sorbo, An Ignoble Approach to Large Field Inflation, JCAP 1103
(2011) 023, [arXiv:1101.0026].

[781] F. Marchesano, G. Shiu, and A. M. Uranga, F-term Axion Monodromy Inflation, JHEP 09 (2014)
184, [arXiv:1404.3040].

[782] K. Furuuchi, Excursions through KK modes, JCAP 1607 (2016), no. 07 008, [arXiv:1512.04684].

[783] M. J. Dolan, P. Draper, J. Kozaczuk, and H. Patel, Transplanckian Censorship and Global Cosmic
Strings, JHEP 04 (2017) 133, [arXiv:1701.05572].

[784] L. McAllister, E. Silverstein, A. Westphal, and T. Wrase, The Powers of Monodromy, JHEP 09
(2014) 123, [arXiv:1405.3652].

[785] R. Bousso, A Covariant entropy conjecture, JHEP 07 (1999) 004, [hep-th/9905177].

[786] C. Vafa, The String landscape and the swampland, hep-th/0509212.

[787] M. Dine, N. Seiberg, X. G. Wen, and E. Witten, Nonperturbative Effects on the String World Sheet,
Nucl. Phys. B 278 (1986) 769–789.

[788] M. Dine, N. Seiberg, X. G. Wen, and E. Witten, Nonperturbative Effects on the String World Sheet.
2., Nucl. Phys. B 289 (1987) 319–363.

[789] K. Becker, M. Becker, and A. Strominger, Five-branes, membranes and nonperturbative string theory,
Nucl. Phys. B 456 (1995) 130–152, [hep-th/9507158].

[790] E. Witten, Nonperturbative superpotentials in string theory, Nucl. Phys. B 474 (1996) 343–360,
[hep-th/9604030].

[791] H. Ooguri and C. Vafa, Summing up D instantons, Phys. Rev. Lett. 77 (1996) 3296–3298,
[hep-th/9608079].

[792] E. Witten, Dyons of Charge e theta/2 pi, Phys. Lett. 86B (1979) 283–287.

[793] B. Heidenreich, J. McNamara, M. Montero, M. Reece, T. Rudelius, and I. Valenzuela, Chern-Weil
Global Symmetries and How Quantum Gravity Avoids Them, arXiv:2012.00009.

[794] J. Stout, Instanton Expansions and Phase Transitions, arXiv:2012.11605.

276

http://arxiv.org/abs/hep-th/0301218
http://arxiv.org/abs/astro-ph/0302479
http://arxiv.org/abs/hep-ph/9812489
http://arxiv.org/abs/hep-ph/0204342
http://arxiv.org/abs/hep-th/9805067
http://arxiv.org/abs/hep-th/0108005
http://arxiv.org/abs/0811.1989
http://arxiv.org/abs/1011.4521
http://arxiv.org/abs/1101.0026
http://arxiv.org/abs/1404.3040
http://arxiv.org/abs/1512.04684
http://arxiv.org/abs/1701.05572
http://arxiv.org/abs/1405.3652
http://arxiv.org/abs/hep-th/9905177
http://arxiv.org/abs/hep-th/0509212
http://arxiv.org/abs/hep-th/9507158
http://arxiv.org/abs/hep-th/9604030
http://arxiv.org/abs/hep-th/9608079
http://arxiv.org/abs/2012.00009
http://arxiv.org/abs/2012.11605


[795] J. McNamara, The Charge Lattice of Maxwell Theory with an Axion, . Unpublished notes, May 2020.

[796] J. Polchinski, Monopoles, duality, and string theory, Int.J.Mod.Phys. A19S1 (2004) 145–156,
[hep-th/0304042].

[797] A. de la Fuente, P. Saraswat, and R. Sundrum, Natural Inflation and Quantum Gravity, Phys. Rev.
Lett. 114 (2015), no. 15 151303, [arXiv:1412.3457].

[798] P. Sikivie, Experimental Tests of the Invisible Axion, Phys. Rev. Lett. 51 (1983) 1415–1417.
[Erratum: Phys.Rev.Lett. 52, 695 (1984)].

[799] P. Sikivie, Detection Rates for ‘Invisible’ Axion Searches, Phys. Rev. D 32 (1985) 2988. [Erratum:
Phys.Rev.D 36, 974 (1987)].

[800] ADMX Collaboration, S. J. Asztalos et al., A SQUID-based microwave cavity search for dark-matter
axions, Phys. Rev. Lett. 104 (2010) 041301, [arXiv:0910.5914].

[801] R. Jackiw, Charge and Mass Spectrum of Quantum Solitons, in Gauge Theories and Modern Field
Theory (R. Arnowitt and P. Nath, eds.), p. 377, Jan., 1976.

[802] D. Gaiotto, A. Kapustin, Z. Komargodski, and N. Seiberg, Theta, Time Reversal, and Temperature,
JHEP 05 (2017) 091, [arXiv:1703.00501].

[803] W. Fischler and J. Preskill, Dyon–Axion Dynamics, Phys. Lett. B 125 (1983) 165–170.

[804] G. ’t Hooft, Magnetic Monopoles in Unified Gauge Theories, Nucl.Phys. B79 (1974) 276–284.

[805] A. M. Polyakov, Particle Spectrum in the Quantum Field Theory, JETP Lett. 20 (1974) 194–195.

[806] S. R. Coleman and E. J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry
Breaking, Phys. Rev. D 7 (1973) 1888–1910.

[807] M. Kawasaki, F. Takahashi, and M. Yamada, Suppressing the QCD Axion Abundance by Hidden
Monopoles, Phys. Lett. B 753 (2016) 677–681, [arXiv:1511.05030].

[808] Y. Nomura, S. Rajendran, and F. Sanches, Axion Isocurvature and Magnetic Monopoles, Phys. Rev.
Lett. 116 (2016), no. 14 141803, [arXiv:1511.06347].

[809] M. Kawasaki, F. Takahashi, and M. Yamada, Adiabatic suppression of the axion abundance and
isocurvature due to coupling to hidden monopoles, JHEP 01 (2018) 053, [arXiv:1708.06047].

[810] E. Poppitz and M. Unsal, Seiberg-Witten and ’Polyakov-like’ magnetic bion confinements are
continuously connected, JHEP 07 (2011) 082, [arXiv:1105.3969].

[811] I. K. Affleck and N. S. Manton, Monopole Pair Production in a Magnetic Field, Nucl. Phys. B 194
(1982) 38–64.

[812] J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string. Cambridge Monographs on
Mathematical Physics. Cambridge University Press, 12, 2007.

[813] Y. Hosotani, Dynamical Mass Generation by Compact Extra Dimensions, Phys. Lett. B 126 (1983)
309–313.

[814] N. Arkani-Hamed, H.-C. Cheng, P. Creminelli, and L. Randall, Extra natural inflation, Phys. Rev.
Lett. 90 (2003) 221302, [hep-th/0301218].

[815] A. A. Belavin, A. M. Polyakov, A. S. Schwartz, and Y. S. Tyupkin, Pseudoparticle Solutions of the
Yang-Mills Equations, Phys. Lett. B 59 (1975) 85–87.

[816] G. ’t Hooft, Computation of the Quantum Effects Due to a Four-Dimensional Pseudoparticle, Phys.
Rev. D 14 (1976) 3432–3450. [Erratum: Phys.Rev.D 18, 2199 (1978)].

[817] H. Murayama and J. Shu, Topological Dark Matter, Phys. Lett. B 686 (2010) 162–165,
[arXiv:0905.1720].

277

http://arxiv.org/abs/hep-th/0304042
http://arxiv.org/abs/1412.3457
http://arxiv.org/abs/0910.5914
http://arxiv.org/abs/1703.00501
http://arxiv.org/abs/1511.05030
http://arxiv.org/abs/1511.06347
http://arxiv.org/abs/1708.06047
http://arxiv.org/abs/1105.3969
http://arxiv.org/abs/hep-th/0301218
http://arxiv.org/abs/0905.1720


[818] Y. B. Zeldovich and M. Y. Khlopov, On the Concentration of Relic Magnetic Monopoles in the
Universe, Phys. Lett. B 79 (1978) 239–241.

[819] J. Preskill, Cosmological Production of Superheavy Magnetic Monopoles, Phys. Rev. Lett. 43 (1979)
1365.

[820] A. Vilenkin and A. E. Everett, Cosmic Strings and Domain Walls in Models with Goldstone and
PseudoGoldstone Bosons, Phys. Rev. Lett. 48 (1982) 1867–1870.

[821] P. Sikivie, Of Axions, Domain Walls and the Early Universe, Phys. Rev. Lett. 48 (1982) 1156–1159.

[822] R. L. Davis, Cosmic Axions from Cosmic Strings, Phys. Lett. B 180 (1986) 225–230.

[823] D. Harari and P. Sikivie, On the Evolution of Global Strings in the Early Universe, Phys. Lett. B 195
(1987) 361–365.

[824] E. P. S. Shellard, Cosmic String Interactions, Nucl. Phys. B 283 (1987) 624–656.

[825] R. L. Davis and E. P. S. Shellard, Do Axions Need Inflation?, Nucl. Phys. B 324 (1989) 167–186.

[826] C. Hagmann and P. Sikivie, Computer simulations of the motion and decay of global strings, Nucl.
Phys. B 363 (1991) 247–280.

[827] R. A. Battye and E. P. S. Shellard, Global string radiation, Nucl. Phys. B 423 (1994) 260–304,
[astro-ph/9311017].

[828] R. A. Battye and E. P. S. Shellard, Axion string constraints, Phys. Rev. Lett. 73 (1994) 2954–2957,
[astro-ph/9403018]. [Erratum: Phys.Rev.Lett. 76, 2203–2204 (1996)].

[829] M. Yamaguchi, M. Kawasaki, and J. Yokoyama, Evolution of axionic strings and spectrum of axions
radiated from them, Phys. Rev. Lett. 82 (1999) 4578–4581, [hep-ph/9811311].

[830] V. B. . Klaer and G. D. Moore, The dark-matter axion mass, JCAP 11 (2017) 049, [arXiv:1708.07521].

[831] M. Gorghetto, E. Hardy, and G. Villadoro, Axions from Strings: the Attractive Solution, JHEP 07
(2018) 151, [arXiv:1806.04677].

[832] A. Vaquero, J. Redondo, and J. Stadler, Early seeds of axion miniclusters, JCAP 04 (2019) 012,
[arXiv:1809.09241].

[833] M. Buschmann, J. W. Foster, and B. R. Safdi, Early-Universe Simulations of the Cosmological
Axion, Phys. Rev. Lett. 124 (2020), no. 16 161103, [arXiv:1906.00967].

[834] M. Gorghetto, E. Hardy, and G. Villadoro, More axions from strings, SciPost Phys. 10 (2021), no. 2
050, [arXiv:2007.04990].

[835] M. Dine, N. Fernandez, A. Ghalsasi, and H. H. Patel, Comments on axions, domain walls, and
cosmic strings, JCAP 11 (2021) 041, [arXiv:2012.13065].

[836] P. Agrawal, A. Hook, and J. Huang, A CMB Millikan experiment with cosmic axiverse strings, JHEP
07 (2020) 138, [arXiv:1912.02823].

[837] J. N. Benabou, M. Buschmann, S. Kumar, Y. Park, and B. R. Safdi, Signatures of Primordial Energy
Injection from Axion Strings, arXiv:2308.01334.

[838] C. G. Callan, Jr. and J. A. Harvey, Anomalies and Fermion Zero Modes on Strings and Domain
Walls, Nucl. Phys. B 250 (1985) 427–436.

[839] D. B. Kaplan and A. Manohar, Anomalous Vortices and Electromagnetism, Nucl. Phys. B 302 (1988)
280–290.

[840] S. G. Naculich, Axionic Strings: Covariant Anomalies and Bosonization of Chiral Zero Modes, Nucl.
Phys. B 296 (1988) 837–867.

[841] A. Manohar, Anomalous Vortices and Electromagnetism. 2., Phys. Lett. B 206 (1988) 276. [Erratum:
Phys.Lett. 209, 543 (1988)].

278

http://arxiv.org/abs/astro-ph/9311017
http://arxiv.org/abs/astro-ph/9403018
http://arxiv.org/abs/hep-ph/9811311
http://arxiv.org/abs/1708.07521
http://arxiv.org/abs/1806.04677
http://arxiv.org/abs/1809.09241
http://arxiv.org/abs/1906.00967
http://arxiv.org/abs/2007.04990
http://arxiv.org/abs/2012.13065
http://arxiv.org/abs/1912.02823
http://arxiv.org/abs/2308.01334


[842] J. A. Harvey and S. G. Naculich, Cosmic Strings From Pseudoanomalous U(1)s, Phys. Lett. B 217
(1989) 231–237.

[843] D. Harari and P. Sikivie, Effects of a Nambu-Goldstone boson on the polarization of radio galaxies
and the cosmic microwave background, Phys. Lett. B 289 (1992) 67–72.

[844] J. D. Blum and J. A. Harvey, Anomaly inflow for gauge defects, Nucl. Phys. B 416 (1994) 119–136,
[hep-th/9310035].

[845] J. A. Harvey and O. Ruchayskiy, The Local structure of anomaly inflow, JHEP 06 (2001) 044,
[hep-th/0007037].

[846] B. Heidenreich, M. Reece, and T. Rudelius, The Weak Gravity Conjecture and axion strings, JHEP
11 (2021) 004, [arXiv:2108.11383].

[847] H. Fukuda and K. Yonekura, Witten effect, anomaly inflow, and charge teleportation, JHEP 01
(2021) 119, [arXiv:2010.02221].

[848] H. Fukuda, A. V. Manohar, H. Murayama, and O. Telem, Axion strings are superconducting, JHEP
06 (2021) 052, [arXiv:2010.02763].

[849] M. Ibe, S. Kobayashi, Y. Nakayama, and S. Shirai, On Stability of Fermionic Superconducting
Current in Cosmic String, JHEP 05 (2021) 217, [arXiv:2102.05412].

[850] P. Agrawal, A. Hook, J. Huang, and G. Marques-Tavares, Axion string signatures: a cosmological
plasma collider, JHEP 01 (2022) 103, [arXiv:2010.15848].

[851] E. Witten, Superconducting Strings, Nucl. Phys. B 249 (1985) 557–592.

[852] Y. Abe, Y. Hamada, and K. Yoshioka, Electroweak axion string and superconductivity, JHEP 06
(2021) 172, [arXiv:2010.02834].

[853] C. T. Hill and L. M. Widrow, Superconducting Cosmic Strings with Massive Fermions, Phys. Lett. B
189 (1987) 17–22.

[854] H. A. Weldon, Effective Fermion Masses of Order gT in High Temperature Gauge Theories with
Exact Chiral Invariance, Phys. Rev. D 26 (1982) 2789.

[855] A. Achucarro and T. Vachaspati, Semilocal and electroweak strings, Phys. Rept. 327 (2000) 347–426,
[hep-ph/9904229].

[856] R. Jackiw and P. Rossi, Zero Modes of the Vortex - Fermion System, Nucl. Phys. B 190 (1981)
681–691.

[857] G. D. Starkman, D. Stojkovic, and T. Vachaspati, Neutrino zero modes on electroweak strings, Phys.
Rev. D 63 (2001) 085011, [hep-ph/0007071].

[858] D. Stojkovic, Neutrino zero modes and stability of electroweak strings, Int. J. Mod. Phys. A 16S1C
(2001) 1034–1036, [hep-th/0103216].

[859] G. Starkman, D. Stojkovic, and T. Vachaspati, Zero modes of fermions with a general mass matrix,
Phys. Rev. D 65 (2002) 065003, [hep-th/0103039].

[860] S. G. Naculich, Fermions destabilize electroweak strings, Phys. Rev. Lett. 75 (1995) 998–1001,
[hep-ph/9501388].

[861] H. Liu and T. Vachaspati, Perturbed electroweak strings and fermion zero modes, Nucl. Phys. B 470
(1996) 176–194, [hep-ph/9511216].

[862] P. Agrawal and A. Platschorre, The monodromic axion-photon coupling, JHEP 01 (2024) 169,
[arXiv:2309.03934].

[863] C. Bender and S. Orszag, Advanced Mathematical Methods for Scientists and Engineers I:
Asymptotic Methods and Perturbation Theory. Springer, 1999.

279

http://arxiv.org/abs/hep-th/9310035
http://arxiv.org/abs/hep-th/0007037
http://arxiv.org/abs/2108.11383
http://arxiv.org/abs/2010.02221
http://arxiv.org/abs/2010.02763
http://arxiv.org/abs/2102.05412
http://arxiv.org/abs/2010.15848
http://arxiv.org/abs/2010.02834
http://arxiv.org/abs/hep-ph/9904229
http://arxiv.org/abs/hep-ph/0007071
http://arxiv.org/abs/hep-th/0103216
http://arxiv.org/abs/hep-th/0103039
http://arxiv.org/abs/hep-ph/9501388
http://arxiv.org/abs/hep-ph/9511216
http://arxiv.org/abs/2309.03934


[864] D. B. Kaplan, Chiral fermions on the lattice, Nucl. Phys. B Proc. Suppl. 30 (1993) 597–600.

[865] K. Aitken, A. Baumgartner, A. Karch, and B. Robinson, 3d Abelian Dualities with Boundaries,
JHEP 03 (2018) 053, [arXiv:1712.02801].

[866] E. H. Fradkin, Field Theories of Condensed Matter Physics, vol. 82. Cambridge Univ. Press,
Cambridge, UK, 2, 2013.

[867] F. D. M. Haldane, Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter
Realization of the ’Parity Anomaly’, Phys. Rev. Lett. 61 (1988) 2015–2018.

[868] K. Jansen and M. Schmaltz, Critical momenta of lattice chiral fermions, Phys. Lett. B 296 (1992)
374–378, [hep-lat/9209002].

[869] E. Witten and K. Yonekura, Anomaly Inflow and the η-Invariant, in The Shoucheng Zhang Memorial
Workshop, 9, 2019. arXiv:1909.08775.

[870] J. Goldstone and F. Wilczek, Fractional Quantum Numbers on Solitons, Phys. Rev. Lett. 47 (1981)
986–989.

[871] A. Ross, Multipole expansion at the level of the action, Phys. Rev. D 85 (2012) 125033,
[arXiv:1202.4750].

[872] C. G. Callan, Jr., Disappearing Dyons, Phys. Rev. D 25 (1982) 2141.

[873] Fermi-LAT Collaboration, M. Ajello et al., Fermi-LAT Observations of High-Energy γ-Ray
Emission Toward the Galactic Center, Astrophys. J. 819 (2016), no. 1 44, [arXiv:1511.02938].

[874] L. Goodenough and D. Hooper, Possible Evidence For Dark Matter Annihilation In The Inner Milky
Way From The Fermi Gamma Ray Space Telescope, arXiv:0910.2998.

[875] D. Hooper and L. Goodenough, Dark Matter Annihilation in The Galactic Center As Seen by the
Fermi Gamma Ray Space Telescope, Phys. Lett. B697 (2011) 412–428, [arXiv:1010.2752].

[876] D. Hooper and T. Linden, On The Origin Of The Gamma Rays From The Galactic Center, Phys.
Rev. D 84 (2011) 123005, [arXiv:1110.0006].

[877] C. Gordon and O. Macias, Dark Matter and Pulsar Model Constraints from Galactic Center
Fermi-LAT Gamma Ray Observations, Phys. Rev. D 88 (2013), no. 8 083521, [arXiv:1306.5725].
[Erratum: Phys.Rev.D 89, 049901 (2014)].

[878] K. N. Abazajian, N. Canac, S. Horiuchi, and M. Kaplinghat, Astrophysical and Dark Matter
Interpretations of Extended Gamma-Ray Emission from the Galactic Center, Phys. Rev. D 90
(2014), no. 2 023526, [arXiv:1402.4090].

[879] T. Daylan, D. P. Finkbeiner, D. Hooper, T. Linden, S. K. N. Portillo, N. L. Rodd, and T. R. Slatyer,
The characterization of the gamma-ray signal from the central Milky Way: A case for annihilating
dark matter, Phys. Dark Univ. 12 (2016) 1–23, [arXiv:1402.6703].

[880] F. Calore, I. Cholis, and C. Weniger, Background Model Systematics for the Fermi GeV Excess,
JCAP 03 (2015) 038, [arXiv:1409.0042].

[881] AMS Collaboration, M. Aguilar et al., Antiproton Flux, Antiproton-to-Proton Flux Ratio, and
Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic
Spectrometer on the International Space Station, Phys. Rev. Lett. 117 (2016), no. 9 091103.

[882] A. Cuoco, J. Heisig, M. Korsmeier, and M. Krämer, Probing dark matter annihilation in the Galaxy
with antiprotons and gamma rays, JCAP 10 (2017) 053, [arXiv:1704.08258].

[883] A. Cuoco, J. Heisig, L. Klamt, M. Korsmeier, and M. Krämer, Scrutinizing the evidence for dark
matter in cosmic-ray antiprotons, Phys. Rev. D 99 (2019), no. 10 103014, [arXiv:1903.01472].

[884] I. Cholis, T. Linden, and D. Hooper, A Robust Excess in the Cosmic-Ray Antiproton Spectrum:
Implications for Annihilating Dark Matter, Phys. Rev. D 99 (2019), no. 10 103026, [arXiv:1903.02549].

280

http://arxiv.org/abs/1712.02801
http://arxiv.org/abs/hep-lat/9209002
http://arxiv.org/abs/1909.08775
http://arxiv.org/abs/1202.4750
http://arxiv.org/abs/1511.02938
http://arxiv.org/abs/0910.2998
http://arxiv.org/abs/1010.2752
http://arxiv.org/abs/1110.0006
http://arxiv.org/abs/1306.5725
http://arxiv.org/abs/1402.4090
http://arxiv.org/abs/1402.6703
http://arxiv.org/abs/1409.0042
http://arxiv.org/abs/1704.08258
http://arxiv.org/abs/1903.01472
http://arxiv.org/abs/1903.02549


[885] D. Hooper, R. K. Leane, Y.-D. Tsai, S. Wegsman, and S. J. Witte, A Systematic Study of Hidden
Sector Dark Matter: Application to the Gamma-Ray and Antiproton Excesses, arXiv:1912.08821.

[886] I. Cholis, D. Hooper, and T. Linden, A New Determination of the Spectra and Luminosity Function
of Gamma-Ray Millisecond Pulsars, arXiv:1407.5583.

[887] I. Cholis, D. Hooper, and T. Linden, Challenges in Explaining the Galactic Center Gamma-Ray
Excess with Millisecond Pulsars, JCAP 06 (2015) 043, [arXiv:1407.5625].

[888] S. K. Lee, M. Lisanti, and B. R. Safdi, Distinguishing Dark Matter from Unresolved Point Sources in
the Inner Galaxy with Photon Statistics, JCAP 05 (2015) 056, [arXiv:1412.6099].

[889] R. Bartels, S. Krishnamurthy, and C. Weniger, Strong support for the millisecond pulsar origin of the
Galactic center GeV excess, Phys. Rev. Lett. 116 (2016), no. 5 051102, [arXiv:1506.05104].

[890] S. K. Lee, M. Lisanti, B. R. Safdi, T. R. Slatyer, and W. Xue, Evidence for Unresolved γ-Ray Point
Sources in the Inner Galaxy, Phys. Rev. Lett. 116 (2016), no. 5 051103, [arXiv:1506.05124].

[891] O. Macias, C. Gordon, R. M. Crocker, B. Coleman, D. Paterson, S. Horiuchi, and M. Pohl, Galactic
bulge preferred over dark matter for the Galactic centre gamma-ray excess, Nature Astron. 2 (2018),
no. 5 387–392, [arXiv:1611.06644].

[892] D. Haggard, C. Heinke, D. Hooper, and T. Linden, Low Mass X-Ray Binaries in the Inner Galaxy:
Implications for Millisecond Pulsars and the GeV Excess, JCAP 05 (2017) 056, [arXiv:1701.02726].

[893] R. Bartels, E. Storm, C. Weniger, and F. Calore, The Fermi-LAT GeV excess as a tracer of stellar
mass in the Galactic bulge, Nature Astron. 2 (2018), no. 10 819–828, [arXiv:1711.04778].

[894] O. Macias, S. Horiuchi, M. Kaplinghat, C. Gordon, R. M. Crocker, and D. M. Nataf, Strong Evidence
that the Galactic Bulge is Shining in Gamma Rays, JCAP 09 (2019) 042, [arXiv:1901.03822].

[895] R. K. Leane and T. R. Slatyer, Revival of the Dark Matter Hypothesis for the Galactic Center
Gamma-Ray Excess, Phys. Rev. Lett. 123 (2019), no. 24 241101, [arXiv:1904.08430].

[896] Y.-M. Zhong, S. D. McDermott, I. Cholis, and P. J. Fox, A New Mask for An Old Suspect: Testing
the Sensitivity of the Galactic Center Excess to the Point Source Mask, Phys. Rev. Lett. 124 (2020),
no. 23 231103, [arXiv:1911.12369].

[897] R. K. Leane and T. R. Slatyer, Spurious Point Source Signals in the Galactic Center Excess,
arXiv:2002.12370.

[898] R. K. Leane and T. R. Slatyer, The Enigmatic Galactic Center Excess: Spurious Point Sources and
Signal Mismodeling, arXiv:2002.12371.

[899] M. Buschmann, N. L. Rodd, B. R. Safdi, L. J. Chang, S. Mishra-Sharma, M. Lisanti, and O. Macias,
Foreground Mismodeling and the Point Source Explanation of the Fermi Galactic Center Excess,
arXiv:2002.12373.

[900] K. N. Abazajian, S. Horiuchi, M. Kaplinghat, R. E. Keeley, and O. Macias, Strong constraints on
thermal relic dark matter from Fermi-LAT observations of the Galactic Center, arXiv:2003.10416.

[901] F. List, N. L. Rodd, G. F. Lewis, and I. Bhat, The GCE in a New Light: Disentangling the γ-ray Sky
with Bayesian Graph Convolutional Neural Networks, arXiv:2006.12504.

[902] S. Mishra-Sharma and K. Cranmer, Semi-parametric γ-ray modeling with Gaussian processes and
variational inference, arXiv:2010.10450.

[903] C. Karwin, S. Murgia, T. M. P. Tait, T. A. Porter, and P. Tanedo, Dark Matter Interpretation of the
Fermi-LAT Observation Toward the Galactic Center, Phys. Rev. D 95 (2017), no. 10 103005,
[arXiv:1612.05687].

[904] W.-C. Huang, A. Urbano, and W. Xue, Fermi Bubbles under Dark Matter Scrutiny Part II: Particle
Physics Analysis, JCAP 04 (2014) 020, [arXiv:1310.7609].

281

http://arxiv.org/abs/1912.08821
http://arxiv.org/abs/1407.5583
http://arxiv.org/abs/1407.5625
http://arxiv.org/abs/1412.6099
http://arxiv.org/abs/1506.05104
http://arxiv.org/abs/1506.05124
http://arxiv.org/abs/1611.06644
http://arxiv.org/abs/1701.02726
http://arxiv.org/abs/1711.04778
http://arxiv.org/abs/1901.03822
http://arxiv.org/abs/1904.08430
http://arxiv.org/abs/1911.12369
http://arxiv.org/abs/2002.12370
http://arxiv.org/abs/2002.12371
http://arxiv.org/abs/2002.12373
http://arxiv.org/abs/2003.10416
http://arxiv.org/abs/2006.12504
http://arxiv.org/abs/2010.10450
http://arxiv.org/abs/1612.05687
http://arxiv.org/abs/1310.7609


[905] C. Boehm, M. J. Dolan, C. McCabe, M. Spannowsky, and C. J. Wallace, Extended gamma-ray
emission from Coy Dark Matter, JCAP 05 (2014) 009, [arXiv:1401.6458].

[906] C. Cheung, M. Papucci, D. Sanford, N. R. Shah, and K. M. Zurek, NMSSM Interpretation of the
Galactic Center Excess, Phys. Rev. D90 (2014), no. 7 075011, [arXiv:1406.6372].

[907] J. Guo, J. Li, T. Li, and A. G. Williams, NMSSM explanations of the Galactic center gamma ray
excess and promising LHC searches, Phys. Rev. D 91 (2015), no. 9 095003, [arXiv:1409.7864].

[908] J. Cao, L. Shang, P. Wu, J. M. Yang, and Y. Zhang, Supersymmetry explanation of the Fermi
Galactic Center excess and its test at LHC run II, Phys. Rev. D 91 (2015), no. 5 055005,
[arXiv:1410.3239].

[909] A. Berlin, S. Gori, T. Lin, and L.-T. Wang, Pseudoscalar Portal Dark Matter, Phys. Rev. D 92
(2015) 015005, [arXiv:1502.06000].

[910] T. Gherghetta, B. von Harling, A. D. Medina, M. A. Schmidt, and T. Trott, SUSY implications from
WIMP annihilation into scalars at the Galactic Center, Phys. Rev. D91 (2015) 105004,
[arXiv:1502.07173].

[911] M. Duerr, P. Fileviez Pérez, and J. Smirnov, Gamma-Ray Excess and the Minimal Dark Matter
Model, JHEP 06 (2016) 008, [arXiv:1510.07562].

[912] M. Carena, J. Osborne, N. R. Shah, and C. E. M. Wagner, Return of the WIMP: Missing energy
signals and the Galactic Center excess, Phys. Rev. D100 (2019), no. 5 055002, [arXiv:1905.03768].

[913] R. Mahbubani and L. Senatore, The Minimal model for dark matter and unification, Phys. Rev. D 73
(2006) 043510, [hep-ph/0510064].

[914] F. D’Eramo, Dark matter and Higgs boson physics, Phys. Rev. D 76 (2007) 083522, [arXiv:0705.4493].

[915] R. Enberg, P. Fox, L. Hall, A. Papaioannou, and M. Papucci, Lhc and dark matter signals of
improved naturalness, Journal of High Energy Physics 2007 (Nov, 2007) 014–014.

[916] T. Cohen, J. Kearney, A. Pierce, and D. Tucker-Smith, Singlet-Doublet Dark Matter, Phys. Rev. D
85 (2012) 075003, [arXiv:1109.2604].

[917] C. Cheung and D. Sanford, Simplified Models of Mixed Dark Matter, JCAP 02 (2014) 011,
[arXiv:1311.5896].

[918] T. Abe, R. Kitano, and R. Sato, Discrimination of dark matter models in future experiments, Phys.
Rev. D 91 (2015), no. 9 095004, [arXiv:1411.1335]. [Erratum: Phys.Rev.D 96, 019902 (2017)].

[919] L. Calibbi, A. Mariotti, and P. Tziveloglou, Singlet-Doublet Model: Dark matter searches and LHC
constraints, JHEP 10 (2015) 116, [arXiv:1505.03867].

[920] A. Freitas, S. Westhoff, and J. Zupan, Integrating in the Higgs Portal to Fermion Dark Matter, JHEP
09 (2015) 015, [arXiv:1506.04149].

[921] S. Banerjee, S. Matsumoto, K. Mukaida, and Y.-L. S. Tsai, WIMP Dark Matter in a Well-Tempered
Regime: A case study on Singlet-Doublets Fermionic WIMP, JHEP 11 (2016) 070, [arXiv:1603.07387].

[922] C. Cai, Z.-H. Yu, and H.-H. Zhang, Cepc precision of electroweak oblique parameters and weakly
interacting dark matter: The fermionic case, Nuclear Physics B 921 (Aug, 2017) 181–210.

[923] L. Lopez Honorez, M. H. G. Tytgat, P. Tziveloglou, and B. Zaldivar, On Minimal Dark Matter
coupled to the Higgs, JHEP 04 (2018) 011, [arXiv:1711.08619].

[924] A. Dedes and D. Karamitros, Doublet-Triplet Fermionic Dark Matter, Phys. Rev. D 89 (2014), no. 11
115002, [arXiv:1403.7744].

[925] Y. Zeldovich, Survey of Modern Cosmology, vol. 3, pp. 241–379. 1965.

[926] H.-Y. Chiu, Symmetry between particle and anti-particle populations in the universe, Phys. Rev. Lett.
17 (1966) 712.

282

http://arxiv.org/abs/1401.6458
http://arxiv.org/abs/1406.6372
http://arxiv.org/abs/1409.7864
http://arxiv.org/abs/1410.3239
http://arxiv.org/abs/1502.06000
http://arxiv.org/abs/1502.07173
http://arxiv.org/abs/1510.07562
http://arxiv.org/abs/1905.03768
http://arxiv.org/abs/hep-ph/0510064
http://arxiv.org/abs/0705.4493
http://arxiv.org/abs/1109.2604
http://arxiv.org/abs/1311.5896
http://arxiv.org/abs/1411.1335
http://arxiv.org/abs/1505.03867
http://arxiv.org/abs/1506.04149
http://arxiv.org/abs/1603.07387
http://arxiv.org/abs/1711.08619
http://arxiv.org/abs/1403.7744


[927] B. W. Lee and S. Weinberg, Cosmological Lower Bound on Heavy Neutrino Masses, Phys. Rev. Lett.
39 (1977) 165–168.

[928] P. Hut, Limits on Masses and Number of Neutral Weakly Interacting Particles, Phys. Lett. B 69
(1977) 85.

[929] S. Wolfram, Abundances of Stable Particles Produced in the Early Universe, Phys. Lett. B 82 (1979)
65–68.

[930] G. Steigman, Cosmology Confronts Particle Physics, Ann. Rev. Nucl. Part. Sci. 29 (1979) 313–338.

[931] R. J. Scherrer and M. S. Turner, On the Relic, Cosmic Abundance of Stable Weakly Interacting
Massive Particles, Phys. Rev. D 33 (1986) 1585. [Erratum: Phys.Rev.D 34, 3263 (1986)].

[932] J. Bernstein, L. S. Brown, and G. Feinberg, Cosmological heavy-neutrino problem, Phys. Rev. D 32
(Dec, 1985) 3261–3267.

[933] M. Srednicki, R. Watkins, and K. A. Olive, Calculations of Relic Densities in the Early Universe,
Nucl. Phys. B 310 (1988) 693.

[934] P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B
360 (1991) 145–179.

[935] G. Steigman, B. Dasgupta, and J. F. Beacom, Precise Relic WIMP Abundance and its Impact on
Searches for Dark Matter Annihilation, Phys. Rev. D 86 (2012) 023506, [arXiv:1204.3622].

[936] T. Binder, T. Bringmann, M. Gustafsson, and A. Hryczuk, Early kinetic decoupling of dark matter:
when the standard way of calculating the thermal relic density fails, Phys. Rev. D 96 (2017), no. 11
115010, [arXiv:1706.07433]. [Erratum: Phys.Rev.D 101, 099901 (2020)].

[937] T. Abe, The effect of the early kinetic decoupling in a fermionic dark matter model, arXiv:2004.10041.

[938] M. Di Mauro, The characteristics of the Galactic center excess measured with 11 years of Fermi-LAT
data, arXiv:2101.04694.

[939] M. Cirelli, E. Del Nobile, and P. Panci, Tools for model-independent bounds in direct dark matter
searches, JCAP 10 (2013) 019, [arXiv:1307.5955].

[940] R. J. Hill and M. P. Solon, Standard Model anatomy of WIMP dark matter direct detection II: QCD
analysis and hadronic matrix elements, Phys. Rev. D 91 (2015) 043505, [arXiv:1409.8290].

[941] F. Bishara, J. Brod, B. Grinstein, and J. Zupan, From quarks to nucleons in dark matter direct
detection, JHEP 11 (2017) 059, [arXiv:1707.06998].

[942] J. Ellis, N. Nagata, and K. A. Olive, Uncertainties in WIMP Dark Matter Scattering Revisited, Eur.
Phys. J. C 78 (2018), no. 7 569, [arXiv:1805.09795].

[943] LUX-ZEPLIN Collaboration, D. Akerib et al., Projected WIMP sensitivity of the LUX-ZEPLIN
dark matter experiment, Phys. Rev. D 101 (2020), no. 5 052002, [arXiv:1802.06039].

[944] XENON Collaboration, E. Aprile et al., Projected WIMP Sensitivity of the XENONnT Dark Matter
Experiment, arXiv:2007.08796.

[945] IceCube Collaboration, M. Aartsen et al., Search for annihilating dark matter in the Sun with 3
years of IceCube data, Eur. Phys. J. C 77 (2017), no. 3 146, [arXiv:1612.05949]. [Erratum:
Eur.Phys.J.C 79, 214 (2019)].

[946] LUX Collaboration, D. Akerib et al., Results on the Spin-Dependent Scattering of Weakly Interacting
Massive Particles on Nucleons from the Run 3 Data of the LUX Experiment, Phys. Rev. Lett. 116
(2016), no. 16 161302, [arXiv:1602.03489].

[947] LUX Collaboration, D. Akerib et al., Results from a search for dark matter in the complete LUX
exposure, Phys. Rev. Lett. 118 (2017), no. 2 021303, [arXiv:1608.07648].

283

http://arxiv.org/abs/1204.3622
http://arxiv.org/abs/1706.07433
http://arxiv.org/abs/2004.10041
http://arxiv.org/abs/2101.04694
http://arxiv.org/abs/1307.5955
http://arxiv.org/abs/1409.8290
http://arxiv.org/abs/1707.06998
http://arxiv.org/abs/1805.09795
http://arxiv.org/abs/1802.06039
http://arxiv.org/abs/2007.08796
http://arxiv.org/abs/1612.05949
http://arxiv.org/abs/1602.03489
http://arxiv.org/abs/1608.07648


[948] PandaX-II Collaboration, X. Cui et al., Dark Matter Results From 54-Ton-Day Exposure of
PandaX-II Experiment, Phys. Rev. Lett. 119 (2017), no. 18 181302, [arXiv:1708.06917].

[949] M. Carena, J. Osborne, N. R. Shah, and C. E. M. Wagner, Supersymmetry and LHC Missing Energy
Signals, Phys. Rev. D98 (2018), no. 11 115010, [arXiv:1809.11082].

[950] LEPSUSYWG, ALEPH, DELPHI, L3 and OPAL Collaboration, LEPSUSYWG/02-04.1,
Combined lep chargino results, up to 208 gev for large m0,
http://lepsusy.web.cern.ch/lepsusy/www/inos_moriond01/charginos_pub.html.

[951] LEPSUSYWG, ALEPH, DELPHI, L3 and OPAL Collaboration, LEPSUSYWG/01-03.1,
Combined lep chargino results, up to 208 gev for low dm,
https://lepsusy.web.cern.ch/lepsusy/www/inoslowdmsummer02/charginolowdm_pub.html.

[952] ACME Collaboration, V. Andreev et al., Improved limit on the electric dipole moment of the
electron, Nature 562 (2018), no. 7727 355–360.

[953] S. M. Barr and A. Zee, Electric Dipole Moment of the Electron and of the Neutron, Phys. Rev. Lett.
65 (1990) 21–24. [Erratum: Phys. Rev. Lett.65,2920(1990)].

[954] D. Atwood, C. P. Burgess, C. Hamazaou, B. Irwin, and J. A. Robinson, One loop P and T odd W+-
electromagnetic moments, Phys. Rev. D42 (1990) 3770–3777.

[955] M. E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992)
381–409.

[956] G. Cacciapaglia, C. Csaki, G. Marandella, and A. Strumia, The Minimal Set of Electroweak Precision
Parameters, Phys. Rev. D 74 (2006) 033011, [hep-ph/0604111].

[957] Particle Data Group Collaboration, P. Zyla et al., Review of Particle Physics, Progress of
Theoretical and Experimental Physics 2020 (08, 2020)
[https://academic.oup.com/ptep/article-pdf/2020/8/083C01/33653179/ptaa104.pdf]. 083C01.

[958] R. Barbieri, A. Pomarol, R. Rattazzi, and A. Strumia, Electroweak symmetry breaking after LEP-1
and LEP-2, Nucl. Phys. B 703 (2004) 127–146, [hep-ph/0405040].

[959] C. K. Khosa, S. Kraml, A. Lessa, P. Neuhuber, and W. Waltenberger, SModelS database update
v1.2.3, to appear in LHEP. (2020) [arXiv:2005.00555].

[960] F. Ambrogi et al., SModelS v1.2: long-lived particles, combination of signal regions, and other
novelties, arXiv:1811.10624.

[961] J. Dutta, S. Kraml, A. Lessa, and W. Waltenberger, SModelS extension with the CMS
supersymmetry search results from Run 2, LHEP 1 (2018), no. 1 5–12, [arXiv:1803.02204].

[962] F. Ambrogi, S. Kraml, S. Kulkarni, U. Laa, A. Lessa, V. Magerl, J. Sonneveld, M. Traub, and
W. Waltenberger, SModelS v1.1 user manual, arXiv:1701.06586.

[963] S. Kraml, S. Kulkarni, U. Laa, A. Lessa, W. Magerl, D. Proschofsky, and W. Waltenberger, SModelS:
a tool for interpreting simplified-model results from the LHC and its application to supersymmetry,
Eur.Phys.J. C74 (2014) 2868, [arXiv:1312.4175].

[964] ATLAS Collaboration, Reproducing searches for new physics with the ATLAS experiment through
publication of full statistical likelihoods, Tech. Rep. ATL-PHYS-PUB-2019-029, CERN, Geneva, Aug,
2019. https://cds.cern.ch/record/2684863.

[965] P. Z. Skands, B. Allanach, H. Baer, C. Balazs, G. Belanger, et al., SUSY Les Houches accord:
Interfacing SUSY spectrum calculators, decay packages, and event generators, JHEP 0407 (2004)
036, [hep-ph/0311123].

[966] J. Alwall, A. Ballestrero, P. Bartalini, S. Belov, E. Boos, et al., A Standard format for Les Houches
event files, Comput.Phys.Commun. 176 (2007) 300–304, [hep-ph/0609017].

[967] A. Buckley, PySLHA: a Pythonic interface to SUSY Les Houches Accord data, arXiv:1305.4194.

284

http://arxiv.org/abs/1708.06917
http://arxiv.org/abs/1809.11082
http://arxiv.org/abs/http://lepsusy.web.cern.ch/lepsusy/www/inos_moriond01/charginos_pub.html
http://arxiv.org/abs/https://lepsusy.web.cern.ch/lepsusy/www/inoslowdmsummer02/charginolowdm_pub.html
http://arxiv.org/abs/hep-ph/0604111
http://arxiv.org/abs/https://academic.oup.com/ptep/article-pdf/2020/8/083C01/33653179/ptaa104.pdf
http://arxiv.org/abs/hep-ph/0405040
http://arxiv.org/abs/2005.00555
http://arxiv.org/abs/1811.10624
http://arxiv.org/abs/1803.02204
http://arxiv.org/abs/1701.06586
http://arxiv.org/abs/1312.4175
https://cds.cern.ch/record/2684863
http://arxiv.org/abs/hep-ph/0311123
http://arxiv.org/abs/hep-ph/0609017
http://arxiv.org/abs/1305.4194


[968] F. Staub, SARAH, arXiv:0806.0538.
[969] F. Staub, SARAH 4 : A tool for (not only SUSY) model builders, Comput. Phys. Commun. 185

(2014) 1773–1790, [arXiv:1309.7223].
[970] F. Staub, Exploring new models in all detail with SARAH, Adv. High Energy Phys. 2015 (2015)

840780, [arXiv:1503.04200].
[971] W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and

SUSY particle production at e+ e- colliders, Comput. Phys. Commun. 153 (2003) 275–315,
[hep-ph/0301101].

[972] W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models beyond the
MSSM, Comput. Phys. Commun. 183 (2012) 2458–2469, [arXiv:1104.1573].

[973] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer,
P. Torrielli, and M. Zaro, The automated computation of tree-level and next-to-leading order
differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079,
[arXiv:1405.0301].

[974] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer, MadGraph 5 : Going Beyond, JHEP
06 (2011) 128, [arXiv:1106.0522].

[975] CMS Collaboration, A. M. Sirunyan et al., Measurements of the Higgs boson width and anomalous
HVV couplings from on-shell and off-shell production in the four-lepton final state, Phys. Rev. D 99
(2019), no. 11 112003, [arXiv:1901.00174].

[976] Y. Nakai and M. Reece, Electric Dipole Moments in Natural Supersymmetry, JHEP 08 (2017) 031,
[arXiv:1612.08090].

[977] ATLAS Collaboration, G. Aad et al., Observation of a new particle in the search for the Standard
Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1–29,
[arXiv:1207.7214].

[978] CMS Collaboration, S. Chatrchyan et al., Observation of a New Boson at a Mass of 125 GeV with
the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30–61, [arXiv:1207.7235].

[979] Muon g-2 Collaboration, T. Albahri et al., Measurement of the anomalous precession frequency of
the muon in the Fermilab Muon g-2 Experiment, Phys. Rev. D 103 (2021), no. 7 072002,
[arXiv:2104.03247].

[980] LHCb Collaboration, R. Aaij et al., Test of lepton universality with B0 → K∗0ℓ+ℓ− decays, JHEP 08
(2017) 055, [arXiv:1705.05802].

[981] LHCb Collaboration, R. Aaij et al., Search for lepton-universality violation in B+ → K+ℓ+ℓ−

decays, Phys. Rev. Lett. 122 (2019), no. 19 191801, [arXiv:1903.09252].
[982] LHCb Collaboration, R. Aaij et al., Test of lepton universality in beauty-quark decays, Nature Phys.

18 (2022), no. 3 277–282, [arXiv:2103.11769].
[983] H. Flacher, M. Goebel, J. Haller, A. Hocker, K. Monig, and J. Stelzer, Revisiting the Global

Electroweak Fit of the Standard Model and Beyond with Gfitter, Eur. Phys. J. C 60 (2009) 543–583,
[arXiv:0811.0009]. [Erratum: Eur.Phys.J.C 71, 1718 (2011)].

[984] M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Ludwig, K. Moenig, M. Schott, and J. Stelzer,
Updated Status of the Global Electroweak Fit and Constraints on New Physics, Eur. Phys. J. C 72
(2012) 2003, [arXiv:1107.0975].

[985] Gfitter Group Collaboration, M. Baak, J. Cúth, J. Haller, A. Hoecker, R. Kogler, K. Mönig,
M. Schott, and J. Stelzer, The global electroweak fit at NNLO and prospects for the LHC and ILC,
Eur. Phys. J. C 74 (2014) 3046, [arXiv:1407.3792].

[986] M. E. Peskin and T. Takeuchi, A New constraint on a strongly interacting Higgs sector, Phys. Rev.
Lett. 65 (1990) 964–967.

285

http://arxiv.org/abs/0806.0538
http://arxiv.org/abs/1309.7223
http://arxiv.org/abs/1503.04200
http://arxiv.org/abs/hep-ph/0301101
http://arxiv.org/abs/1104.1573
http://arxiv.org/abs/1405.0301
http://arxiv.org/abs/1106.0522
http://arxiv.org/abs/1901.00174
http://arxiv.org/abs/1612.08090
http://arxiv.org/abs/1207.7214
http://arxiv.org/abs/1207.7235
http://arxiv.org/abs/2104.03247
http://arxiv.org/abs/1705.05802
http://arxiv.org/abs/1903.09252
http://arxiv.org/abs/2103.11769
http://arxiv.org/abs/0811.0009
http://arxiv.org/abs/1107.0975
http://arxiv.org/abs/1407.3792


[987] D. C. Kennedy and B. W. Lynn, Electroweak Radiative Corrections with an Effective Lagrangian:
Four Fermion Processes, Nucl. Phys. B 322 (1989) 1–54.

[988] B. Holdom and J. Terning, Large corrections to electroweak parameters in technicolor theories, Phys.
Lett. B 247 (1990) 88–92.

[989] M. Golden and L. Randall, Radiative Corrections to Electroweak Parameters in Technicolor Theories,
Nucl. Phys. B 361 (1991) 3–23.

[990] Z. Han and W. Skiba, Effective theory analysis of precision electroweak data, Phys. Rev. D 71 (2005)
075009, [hep-ph/0412166].

[991] Z. Han, Effective Theories and Electroweak Precision Constraints, Int. J. Mod. Phys. A 23 (2008)
2653–2685, [arXiv:0807.0490].

[992] Particle Data Group Collaboration, R. L. Workman and Others, Review of Particle Physics,
PTEP 2022 (2022) 083C01.

[993] M. Ciuchini, E. Franco, S. Mishima, and L. Silvestrini, Electroweak Precision Observables, New
Physics and the Nature of a 126 GeV Higgs Boson, JHEP 08 (2013) 106, [arXiv:1306.4644].

[994] J. de Blas, M. Ciuchini, E. Franco, S. Mishima, M. Pierini, L. Reina, and L. Silvestrini, Electroweak
precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present
and future, JHEP 12 (2016) 135, [arXiv:1608.01509].

[995] CDF Collaboration, T. A. Aaltonen et al., Precise Measurement of the W -Boson Mass with the
Collider Detector at Fermilab, Phys. Rev. D 89 (2014), no. 7 072003, [arXiv:1311.0894].

[996] CDF, D0 Collaboration, T. A. Aaltonen et al., Combination of CDF and D0 W-Boson Mass
Measurements, Phys. Rev. D 88 (2013), no. 5 052018, [arXiv:1307.7627].

[997] ATLAS Collaboration, M. Aaboud et al., Measurement of the W-boson mass in pp collisions at√s = 7 TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018), no. 2 110, [arXiv:1701.07240].
[Erratum: Eur.Phys.J.C 78, 898 (2018)].

[998] LHCb Collaboration, R. Aaij et al., Measurement of the W boson mass, JHEP 01 (2022) 036,
[arXiv:2109.01113].

[999] J. Haller, A. Hoecker, R. Kogler, K. Mönig, T. Peiffer, and J. Stelzer, Update of the global electroweak
fit and constraints on two-Higgs-doublet models, Eur. Phys. J. C 78 (2018), no. 8 675,
[arXiv:1803.01853].

[1000] P. Janot and S. Jadach, Improved Bhabha cross section at LEP and the number of light neutrino
species, Phys. Lett. B 803 (2020) 135319, [arXiv:1912.02067].

[1001] J. Fan, M. Reece, and L.-T. Wang, Possible Futures of Electroweak Precision: ILC, FCC-ee, and
CEPC, JHEP 09 (2015) 196, [arXiv:1411.1054].

[1002] J. Fan, M. Reece, and L.-T. Wang, Precision Natural SUSY at CEPC, FCC-ee, and ILC, JHEP 08
(2015) 152, [arXiv:1412.3107].

[1003] ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD
Electroweak Group, SLD Heavy Flavour Group Collaboration, S. Schael et al., Precision
electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257–454, [hep-ex/0509008].

[1004] M. Steinhauser, Leptonic contribution to the effective electromagnetic coupling constant up to three
loops, Phys. Lett. B 429 (1998) 158–161, [hep-ph/9803313].

[1005] M. Awramik, M. Czakon, A. Freitas, and G. Weiglein, Precise prediction for the W boson mass in
the standard model, Phys. Rev. D 69 (2004) 053006, [hep-ph/0311148].

[1006] G.-C. Cho, K. Hagiwara, Y. Matsumoto, and D. Nomura, The MSSM confronts the precision
electroweak data and the muon g-2, JHEP 11 (2011) 068, [arXiv:1104.1769].

286

http://arxiv.org/abs/hep-ph/0412166
http://arxiv.org/abs/0807.0490
http://arxiv.org/abs/1306.4644
http://arxiv.org/abs/1608.01509
http://arxiv.org/abs/1311.0894
http://arxiv.org/abs/1307.7627
http://arxiv.org/abs/1701.07240
http://arxiv.org/abs/2109.01113
http://arxiv.org/abs/1803.01853
http://arxiv.org/abs/1912.02067
http://arxiv.org/abs/1411.1054
http://arxiv.org/abs/1412.3107
http://arxiv.org/abs/hep-ex/0509008
http://arxiv.org/abs/hep-ph/9803313
http://arxiv.org/abs/hep-ph/0311148
http://arxiv.org/abs/1104.1769


[1007] I. Dubovyk, A. Freitas, J. Gluza, T. Riemann, and J. Usovitsch, Complete electroweak two-loop
corrections to Z boson production and decay, Phys. Lett. B 783 (2018) 86–94, [arXiv:1804.10236].

[1008] M. Awramik, M. Czakon, and A. Freitas, Electroweak two-loop corrections to the effective weak
mixing angle, JHEP 11 (2006) 048, [hep-ph/0608099].

[1009] I. Dubovyk, A. Freitas, J. Gluza, T. Riemann, and J. Usovitsch, The two-loop electroweak bosonic
corrections to sin2 θb

eff, Phys. Lett. B 762 (2016) 184–189, [arXiv:1607.08375].

[1010] J. Erler and M. Schott, Electroweak Precision Tests of the Standard Model after the Discovery of the
Higgs Boson, Prog. Part. Nucl. Phys. 106 (2019) 68–119, [arXiv:1902.05142].

[1011] P. L. Cho and E. H. Simmons, Searching for G3 in tt̄ production, Phys. Rev. D 51 (1995)
2360–2370, [hep-ph/9408206].

[1012] I. Maksymyk, C. P. Burgess, and D. London, Beyond S, T and U, Phys. Rev. D 50 (1994) 529–535,
[hep-ph/9306267].

[1013] C. P. Burgess, S. Godfrey, H. Konig, D. London, and I. Maksymyk, A Global fit to extended oblique
parameters, Phys. Lett. B 326 (1994) 276–281, [hep-ph/9307337].

[1014] C. P. Burgess, S. Godfrey, H. Konig, D. London, and I. Maksymyk, Model independent global
constraints on new physics, Phys. Rev. D 49 (1994) 6115–6147, [hep-ph/9312291].

[1015] B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek, Dimension-Six Terms in the Standard
Model Lagrangian, JHEP 10 (2010) 085, [arXiv:1008.4884].

[1016] J. D. Wells and Z. Zhang, Effective theories of universal theories, JHEP 01 (2016) 123,
[arXiv:1510.08462].

[1017] B. Grinstein and M. B. Wise, Operator analysis for precision electroweak physics, Phys. Lett. B 265
(1991) 326–334.

[1018] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher, and J. P. Silva, Theory and
phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1–102, [arXiv:1106.0034].

[1019] T. Blank and W. Hollik, Precision observables in SU(2) x U(1) models with an additional Higgs
triplet, Nucl. Phys. B 514 (1998) 113–134, [hep-ph/9703392].

[1020] P. J. Fox, A. E. Nelson, and N. Weiner, Dirac gaugino masses and supersoft supersymmetry
breaking, JHEP 08 (2002) 035, [hep-ph/0206096].

[1021] G. D. Kribs, E. Poppitz, and N. Weiner, Flavor in supersymmetry with an extended R-symmetry,
Phys. Rev. D 78 (2008) 055010, [arXiv:0712.2039].

[1022] P. Bandyopadhyay and A. Costantini, Obscure Higgs boson at Colliders, Phys. Rev. D 103 (2021),
no. 1 015025, [arXiv:2010.02597].

[1023] Z. U. Khandker, D. Li, and W. Skiba, Electroweak Corrections from Triplet Scalars, Phys. Rev. D
86 (2012) 015006, [arXiv:1201.4383].

[1024] B. Henning, X. Lu, and H. Murayama, How to use the Standard Model effective field theory, JHEP
01 (2016) 023, [arXiv:1412.1837].

[1025] M. Passera, W. J. Marciano, and A. Sirlin, The Muon g-2 and the bounds on the Higgs boson mass,
Phys. Rev. D 78 (2008) 013009, [arXiv:0804.1142].

[1026] A. Keshavarzi, W. J. Marciano, M. Passera, and A. Sirlin, Muon g − 2 and Δα connection, Phys.
Rev. D 102 (2020), no. 3 033002, [arXiv:2006.12666].

[1027] A. Crivellin, M. Hoferichter, C. A. Manzari, and M. Montull, Hadronic Vacuum Polarization:
(g− 2)μ versus Global Electroweak Fits, Phys. Rev. Lett. 125 (2020), no. 9 091801, [arXiv:2003.04886].

[1028] P. Athron, A. Fowlie, C.-T. Lu, L. Wu, Y. Wu, and B. Zhu, The W boson Mass and Muon g − 2:
Hadronic Uncertainties or New Physics?, arXiv:2204.03996.

287

http://arxiv.org/abs/1804.10236
http://arxiv.org/abs/hep-ph/0608099
http://arxiv.org/abs/1607.08375
http://arxiv.org/abs/1902.05142
http://arxiv.org/abs/hep-ph/9408206
http://arxiv.org/abs/hep-ph/9306267
http://arxiv.org/abs/hep-ph/9307337
http://arxiv.org/abs/hep-ph/9312291
http://arxiv.org/abs/1008.4884
http://arxiv.org/abs/1510.08462
http://arxiv.org/abs/1106.0034
http://arxiv.org/abs/hep-ph/9703392
http://arxiv.org/abs/hep-ph/0206096
http://arxiv.org/abs/0712.2039
http://arxiv.org/abs/2010.02597
http://arxiv.org/abs/1201.4383
http://arxiv.org/abs/1412.1837
http://arxiv.org/abs/0804.1142
http://arxiv.org/abs/2006.12666
http://arxiv.org/abs/2003.04886
http://arxiv.org/abs/2204.03996


[1029] J. M. Yang and Y. Zhang, Low energy SUSY confronted with new measurements of W-boson mass
and muon g-2, arXiv:2204.04202.

[1030] D. Choudhury, T. M. P. Tait, and C. E. M. Wagner, Beautiful mirrors and precision electroweak
data, Phys. Rev. D 65 (2002) 053002, [hep-ph/0109097].

[1031] Y.-Z. Fan, T.-P. Tang, Y.-L. S. Tsai, and L. Wu, Inert Higgs Dark Matter for New CDF W-boson
Mass and Detection Prospects, arXiv:2204.03693.

[1032] C.-T. Lu, L. Wu, Y. Wu, and B. Zhu, Electroweak Precision Fit and New Physics in light of W
Boson Mass, arXiv:2204.03796.

[1033] G.-W. Yuan, L. Zu, L. Feng, and Y.-F. Cai, W-boson mass anomaly: probing the models of
axion-like particle, dark photon and Chameleon dark energy, arXiv:2204.04183.

[1034] J. de Blas, M. Pierini, L. Reina, and L. Silvestrini, Impact of the recent measurements of the
top-quark and W-boson masses on electroweak precision fits, arXiv:2204.04204.

[1035] C.-R. Zhu, M.-Y. Cui, Z.-Q. Xia, Z.-H. Yu, X. Huang, Q. Yuan, and Y. Z. Fan, GeV
antiproton/gamma-ray excesses and the W-boson mass anomaly: three faces of ∼ 60− 70 GeV dark
matter particle?, arXiv:2204.03767.

[1036] J. D. Bjorken and S. L. Glashow, Elementary Particles and SU(4), Phys. Lett. 11 (1964) 255–257.

[1037] S. L. Glashow, J. Iliopoulos, and L. Maiani, Weak Interactions with Lepton-Hadron Symmetry,
Phys. Rev. D 2 (1970) 1285–1292.

[1038] B. A. Campbell and P. J. O’Donnell, Mass of the Top Quark and Induced Decay and Neutral Mixing
of B Mesons, Phys. Rev. D 25 (1982) 1989.

[1039] M. A. Shifman, Theoretical Status of Weak Decays, Nucl. Phys. B Proc. Suppl. 3 (1988) 289.

[1040] J. R. Ellis, J. S. Hagelin, S. Rudaz, and D. D. Wu, Implications of recent measurements of B meson
mixing and ε′/εK, Nucl. Phys. B 304 (1988) 205–235.

[1041] A. D. Martin, Top and Bottom Physics: The K-M Matrix and CP Violation, J. Phys. G 15 (1989)
1073.

[1042] CDF Collaboration, F. Abe et al., Observation of top quark production in p̄p collisions, Phys. Rev.
Lett. 74 (1995) 2626–2631, [hep-ex/9503002].

[1043] D0 Collaboration, S. Abachi et al., Observation of the top quark, Phys. Rev. Lett. 74 (1995)
2632–2637, [hep-ex/9503003].

[1044] R. K. Ellis et al., Physics Briefing Book: Input for the European Strategy for Particle Physics
Update 2020, arXiv:1910.11775.

[1045] M. Artuso et al., Report of the Frontier For Rare Processes and Precision Measurements,
arXiv:2210.04765.

[1046] C. D. Froggatt and H. B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP Violation,
Nucl. Phys. B 147 (1979) 277–298.

[1047] M. Leurer, Y. Nir, and N. Seiberg, Mass matrix models, Nucl. Phys. B 398 (1993) 319–342,
[hep-ph/9212278].

[1048] M. Leurer, Y. Nir, and N. Seiberg, Mass matrix models: The Sequel, Nucl. Phys. B 420 (1994)
468–504, [hep-ph/9310320].

[1049] P. Pouliot and N. Seiberg, (S)quark masses and nonAbelian horizontal symmetries, Phys. Lett. B
318 (1993) 169–173, [hep-ph/9308363].

[1050] V. Jain and R. Shrock, Models of fermion mass matrices based on a flavor dependent and generation
dependent U(1) gauge symmetry, Phys. Lett. B 352 (1995) 83–91, [hep-ph/9412367].

288

http://arxiv.org/abs/2204.04202
http://arxiv.org/abs/hep-ph/0109097
http://arxiv.org/abs/2204.03693
http://arxiv.org/abs/2204.03796
http://arxiv.org/abs/2204.04183
http://arxiv.org/abs/2204.04204
http://arxiv.org/abs/2204.03767
http://arxiv.org/abs/hep-ex/9503002
http://arxiv.org/abs/hep-ex/9503003
http://arxiv.org/abs/1910.11775
http://arxiv.org/abs/2210.04765
http://arxiv.org/abs/hep-ph/9212278
http://arxiv.org/abs/hep-ph/9310320
http://arxiv.org/abs/hep-ph/9308363
http://arxiv.org/abs/hep-ph/9412367


[1051] N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys.
Rev. D 61 (2000) 033005, [hep-ph/9903417].

[1052] T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586
(2000) 141–162, [hep-ph/0003129].

[1053] S. J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model,
Phys. Lett. B 498 (2001) 256–262, [hep-ph/0010195].

[1054] D. E. Kaplan and T. M. P. Tait, New tools for fermion masses from extra dimensions, JHEP 11
(2001) 051, [hep-ph/0110126].

[1055] A. Ahmed, A. Carmona, J. Castellano Ruiz, Y. Chung, and M. Neubert, Dynamical origin of
fermion bulk masses in a warped extra dimension, JHEP 08 (2019) 045, [arXiv:1905.09833].

[1056] S. Girmohanta, R. N. Mohapatra, and R. Shrock, Neutrino Masses and Mixing in Models with Large
Extra Dimensions and Localized Fermions, Phys. Rev. D 103 (2021), no. 1 015021, [arXiv:2011.01237].

[1057] A. E. Nelson and M. J. Strassler, Suppressing flavor anarchy, JHEP 09 (2000) 030, [hep-ph/0006251].

[1058] S. Weinberg, Electromagnetic and weak masses, Phys. Rev. Lett. 29 (1972) 388–392.

[1059] H. Georgi and S. L. Glashow, Attempts to calculate the electron mass, Phys. Rev. D 7 (1973)
2457–2463.

[1060] S. M. Barr and A. Zee, A New Approach to the electron-Muon Mass Ratio, Phys. Rev. D 15 (1977)
2652.

[1061] B. S. Balakrishna, A. L. Kagan, and R. N. Mohapatra, Quark Mixings and Mass Hierarchy From
Radiative Corrections, Phys. Lett. B 205 (1988) 345–352.

[1062] K. S. Babu, TASI Lectures on Flavor Physics, in Theoretical Advanced Study Institute in
Elementary Particle Physics: The Dawn of the LHC Era, pp. 49–123, 2010. arXiv:0910.2948.

[1063] F. Feruglio, Pieces of the Flavour Puzzle, Eur. Phys. J. C 75 (2015), no. 8 373, [arXiv:1503.04071].

[1064] F. Feruglio and A. Romanino, Lepton flavor symmetries, Rev. Mod. Phys. 93 (2021), no. 1 015007,
[arXiv:1912.06028].

[1065] A. Smolkovivc, M. Tammaro, and J. Zupan, Anomaly free Froggatt-Nielsen models of flavor, JHEP
10 (2019) 188, [arXiv:1907.10063]. [Erratum: JHEP 02, 033 (2022)].

[1066] G. D’Ambrosio, G. F. Giudice, G. Isidori, and A. Strumia, Minimal flavor violation: An Effective
field theory approach, Nucl. Phys. B 645 (2002) 155–187, [hep-ph/0207036].

[1067] D. Egana-Ugrinovic, S. Homiller, and P. Meade, Aligned and Spontaneous Flavor Violation, Phys.
Rev. Lett. 123 (2019), no. 3 031802, [arXiv:1811.00017].

[1068] Y. Nir and N. Seiberg, Should squarks be degenerate?, Phys. Lett. B 309 (1993) 337–343,
[hep-ph/9304307].

[1069] T. Feldmann and T. Mannel, Minimal Flavour Violation and Beyond, JHEP 02 (2007) 067,
[hep-ph/0611095].

[1070] M. Bordone, O. Catà, and T. Feldmann, Effective Theory Approach to New Physics with Flavour:
General Framework and a Leptoquark Example, JHEP 01 (2020) 067, [arXiv:1910.02641].

[1071] M. Bordone, O. Catà, T. Feldmann, and R. Mandal, Constraining flavour patterns of scalar
leptoquarks in the effective field theory, JHEP 03 (2021) 122, [arXiv:2010.03297].

[1072] I. Dorvsner, S. Fajfer, A. Greljo, J. F. Kamenik, and N. Kovsnik, Physics of leptoquarks in precision
experiments and at particle colliders, Phys. Rept. 641 (2016) 1–68, [arXiv:1603.04993].

[1073] E. Baver and M. Leurer, Naturally light leptoquarks, Phys. Rev. D 51 (1995) 260–264,
[hep-ph/9407324].

289

http://arxiv.org/abs/hep-ph/9903417
http://arxiv.org/abs/hep-ph/0003129
http://arxiv.org/abs/hep-ph/0010195
http://arxiv.org/abs/hep-ph/0110126
http://arxiv.org/abs/1905.09833
http://arxiv.org/abs/2011.01237
http://arxiv.org/abs/hep-ph/0006251
http://arxiv.org/abs/0910.2948
http://arxiv.org/abs/1503.04071
http://arxiv.org/abs/1912.06028
http://arxiv.org/abs/1907.10063
http://arxiv.org/abs/hep-ph/0207036
http://arxiv.org/abs/1811.00017
http://arxiv.org/abs/hep-ph/9304307
http://arxiv.org/abs/hep-ph/0611095
http://arxiv.org/abs/1910.02641
http://arxiv.org/abs/2010.03297
http://arxiv.org/abs/1603.04993
http://arxiv.org/abs/hep-ph/9407324


[1074] I. de Medeiros Varzielas and G. Hiller, Clues for flavor from rare lepton and quark decays, JHEP 06
(2015) 072, [arXiv:1503.01084].

[1075] G. Hiller, D. Loose, and K. Schönwald, Leptoquark Flavor Patterns & B Decay Anomalies, JHEP 12
(2016) 027, [arXiv:1609.08895].

[1076] L. Wolfenstein, Parametrization of the Kobayashi-Maskawa Matrix, Phys. Rev. Lett. 51 (1983) 1945.

[1077] N. Cabibbo, Unitary Symmetry and Leptonic Decays, Phys. Rev. Lett. 10 (1963) 531–533.

[1078] M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak Interaction,
Prog. Theor. Phys. 49 (1973) 652–657.

[1079] B. Pontecorvo, Inverse beta processes and nonconservation of lepton charge, Zh. Eksp. Teor. Fiz. 34
(1957) 247.

[1080] Z. Maki, M. Nakagawa, and S. Sakata, Remarks on the unified model of elementary particles, Prog.
Theor. Phys. 28 (1962) 870–880.

[1081] D. Aloni, P. Asadi, Y. Nakai, M. Reece, and M. Suzuki, Spontaneous CP violation and horizontal
symmetry in the MSSM: toward lepton flavor naturalness, JHEP 09 (2021) 031, [arXiv:2104.02679].

[1082] C. Cornella, D. Curtin, E. T. Neil, and J. O. Thompson, Mapping and Probing Froggatt-Nielsen
Solutions to the Quark Flavor Puzzle, arXiv:2306.08026.

[1083] Y. Nir and R. Rattazzi, Solving the supersymmetric CP problem with Abelian horizontal symmetries,
Phys. Lett. B 382 (1996) 363–368, [hep-ph/9603233].

[1084] Y. Nakai, M. Reece, and M. Suzuki, Supersymmetric alignment models for (g - 2)μ , JHEP 10 (2021)
068, [arXiv:2107.10268].

[1085] M. Fedele, A. Mastroddi, and M. Valli, Minimal Froggatt-Nielsen textures, JHEP 03 (2021) 135,
[arXiv:2009.05587].

[1086] A. Davidson and K. C. Wali, MINIMAL FLAVOR UNIFICATION VIA MULTIGENERATIONAL
PECCEI-QUINN SYMMETRY, Phys. Rev. Lett. 48 (1982) 11.

[1087] A. Davidson, V. P. Nair, and K. C. Wali, Peccei-Quinn Symmetry as Flavor Symmetry and Grand
Unification, Phys. Rev. D 29 (1984) 1504.

[1088] F. Wilczek, Axions and Family Symmetry Breaking, Phys. Rev. Lett. 49 (1982) 1549–1552.

[1089] Y. Ema, K. Hamaguchi, T. Moroi, and K. Nakayama, Flaxion: a minimal extension to solve puzzles
in the standard model, JHEP 01 (2017) 096, [arXiv:1612.05492].

[1090] L. Calibbi, F. Goertz, D. Redigolo, R. Ziegler, and J. Zupan, Minimal axion model from flavor,
Phys. Rev. D 95 (2017), no. 9 095009, [arXiv:1612.08040].

[1091] Q. Bonnefoy, E. Dudas, and S. Pokorski, Chiral Froggatt-Nielsen models, gauge anomalies and
flavourful axions, JHEP 01 (2020) 191, [arXiv:1909.05336].

[1092] B. C. Allanach, J. Davighi, and S. Melville, An Anomaly-free Atlas: charting the space of
flavour-dependent gauged U(1) extensions of the Standard Model, JHEP 02 (2019) 082,
[arXiv:1812.04602]. [Erratum: JHEP 08, 064 (2019)].

[1093] D. B. Costa, B. A. Dobrescu, and P. J. Fox, General Solution to the U(1) Anomaly Equations, Phys.
Rev. Lett. 123 (2019), no. 15 151601, [arXiv:1905.13729].

[1094] M. B. Green and J. H. Schwarz, Anomaly Cancellation in Supersymmetric D=10 Gauge Theory and
Superstring Theory, Phys. Lett. B 149 (1984) 117–122.

[1095] R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1–202, [hep-ph/0406039].

[1096] J. M. Arnold, B. Fornal, and M. B. Wise, Phenomenology of scalar leptoquarks, Phys. Rev. D 88
(2013) 035009, [arXiv:1304.6119].

290

http://arxiv.org/abs/1503.01084
http://arxiv.org/abs/1609.08895
http://arxiv.org/abs/2104.02679
http://arxiv.org/abs/2306.08026
http://arxiv.org/abs/hep-ph/9603233
http://arxiv.org/abs/2107.10268
http://arxiv.org/abs/2009.05587
http://arxiv.org/abs/1612.05492
http://arxiv.org/abs/1612.08040
http://arxiv.org/abs/1909.05336
http://arxiv.org/abs/1812.04602
http://arxiv.org/abs/1905.13729
http://arxiv.org/abs/hep-ph/0406039
http://arxiv.org/abs/1304.6119


[1097] W. Altmannshofer, J. Davighi, and M. Nardecchia, Gauging the accidental symmetries of the
standard model, and implications for the flavor anomalies, Phys. Rev. D 101 (2020), no. 1 015004,
[arXiv:1909.02021].

[1098] G. Buchalla and A. J. Buras, The rare decays K+ → π+νν̄ and KL → μ+μ− beyond leading
logarithms, Nucl. Phys. B 412 (1994) 106–142, [hep-ph/9308272].

[1099] M. Misiak and J. Urban, QCD corrections to FCNC decays mediated by Z penguins and W boxes,
Phys. Lett. B 451 (1999) 161–169, [hep-ph/9901278].

[1100] G. Buchalla and A. J. Buras, The rare decays K→ πνν̄, B→ Xνν̄ and B→ l+l−: An Update, Nucl.
Phys. B 548 (1999) 309–327, [hep-ph/9901288].

[1101] P. Ball and R. Zwicky, New results on B→ π,K, η decay formfactors from light-cone sum rules,
Phys. Rev. D 71 (2005) 014015, [hep-ph/0406232].

[1102] P. Ball and R. Zwicky, Bd,s → ρ,ω,K∗,φ decay form-factors from light-cone sum rules revisited,
Phys. Rev. D 71 (2005) 014029, [hep-ph/0412079].

[1103] A. Khodjamirian, T. Mannel, A. A. Pivovarov, and Y. M. Wang, Charm-loop effect in
B→ K(∗)ℓ+ℓ− and B→ K∗γ, JHEP 09 (2010) 089, [arXiv:1006.4945].

[1104] J. Brod, M. Gorbahn, and E. Stamou, Two-Loop Electroweak Corrections for the K→ πνν̄ Decays,
Phys. Rev. D 83 (2011) 034030, [arXiv:1009.0947].

[1105] HPQCD Collaboration, C. Bouchard, G. P. Lepage, C. Monahan, H. Na, and J. Shigemitsu, Rare
decay B→ Kℓ+ℓ− form factors from lattice QCD, Phys. Rev. D 88 (2013), no. 5 054509,
[arXiv:1306.2384]. [Erratum: Phys.Rev.D 88, 079901 (2013)].

[1106] R. R. Horgan, Z. Liu, S. Meinel, and M. Wingate, Lattice QCD calculation of form factors
describing the rare decays B→ K∗ℓ+ℓ− and Bs → φℓ+ℓ−, Phys. Rev. D 89 (2014), no. 9 094501,
[arXiv:1310.3722].

[1107] W. Altmannshofer, A. J. Buras, D. M. Straub, and M. Wick, New strategies for New Physics search
in B→ K∗νν̄, B→ Kνν̄ and B→ Xsνν̄ decays, JHEP 04 (2009) 022, [arXiv:0902.0160].

[1108] A. J. Buras, J. Girrbach-Noe, C. Niehoff, and D. M. Straub, B→ K(∗)νν decays in the Standard
Model and beyond, JHEP 02 (2015) 184, [arXiv:1409.4557].

[1109] T. Blake, G. Lanfranchi, and D. M. Straub, Rare B Decays as Tests of the Standard Model, Prog.
Part. Nucl. Phys. 92 (2017) 50–91, [arXiv:1606.00916].

[1110] Belle Collaboration, O. Lutz et al., Search for B→ h(∗)νν̄ with the full Belle Υ(4S) data sample,
Phys. Rev. D 87 (2013), no. 11 111103, [arXiv:1303.3719].

[1111] BaBar Collaboration, J. P. Lees et al., Search for B→ K(∗)νν and invisible quarkonium decays,
Phys. Rev. D 87 (2013), no. 11 112005, [arXiv:1303.7465].

[1112] Belle Collaboration, J. Grygier et al., Search for B → hνν̄ decays with semileptonic tagging at
Belle, Phys. Rev. D 96 (2017), no. 9 091101, [arXiv:1702.03224]. [Addendum: Phys.Rev.D 97, 099902
(2018)].

[1113] Belle-II Collaboration, W. Altmannshofer et al., The Belle II Physics Book, PTEP 2019 (2019),
no. 12 123C01, [arXiv:1808.10567]. [Erratum: PTEP 2020, 029201 (2020)].

[1114] M. Bauer and M. Neubert, Minimal Leptoquark Explanation for the RD(∗) , RK , and (g − 2)μ
Anomalies, Phys. Rev. Lett. 116 (2016), no. 14 141802, [arXiv:1511.01900].

[1115] D. Bevcirević, N. Kovsnik, O. Sumensari, and R. Zukanovich Funchal, Palatable Leptoquark
Scenarios for Lepton Flavor Violation in Exclusive b→ sℓ1ℓ2 modes, JHEP 11 (2016) 035,
[arXiv:1608.07583].

[1116] T. S. Roussy et al., A new bound on the electron’s electric dipole moment, Science 381 (2023) 46,
[arXiv:2212.11841].

291

http://arxiv.org/abs/1909.02021
http://arxiv.org/abs/hep-ph/9308272
http://arxiv.org/abs/hep-ph/9901278
http://arxiv.org/abs/hep-ph/9901288
http://arxiv.org/abs/hep-ph/0406232
http://arxiv.org/abs/hep-ph/0412079
http://arxiv.org/abs/1006.4945
http://arxiv.org/abs/1009.0947
http://arxiv.org/abs/1306.2384
http://arxiv.org/abs/1310.3722
http://arxiv.org/abs/0902.0160
http://arxiv.org/abs/1409.4557
http://arxiv.org/abs/1606.00916
http://arxiv.org/abs/1303.3719
http://arxiv.org/abs/1303.7465
http://arxiv.org/abs/1702.03224
http://arxiv.org/abs/1808.10567
http://arxiv.org/abs/1511.01900
http://arxiv.org/abs/1608.07583
http://arxiv.org/abs/2212.11841


[1117] C. J. Ho, J. A. Devlin, I. M. Rabey, P. Yzombard, J. Lim, S. C. Wright, N. J. Fitch, E. A. Hinds,
M. R. Tarbutt, and B. E. Sauer, New techniques for a measurement of the electron’s electric dipole
moment, New J. Phys. 22 (2020), no. 5 053031, [arXiv:2002.02332].

[1118] N. J. Fitch, J. Lim, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Methods for measuring the
electron’s electric dipole moment using ultracold YbF molecules, Quantum Sci. Technol. 6 (2021),
no. 1 014006, [arXiv:2009.00346].

[1119] MEG Collaboration, A. M. Baldini et al., Search for the lepton flavour violating decay μ+ → e+γ
with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016), no. 8 434, [arXiv:1605.05081].

[1120] MEG II Collaboration, A. Baldini et al., The design of the MEG II experiment, Eur. Phys. J. C
78 (2018), no. 5 380, [arXiv:1801.04688].

[1121] SINDRUM II Collaboration, W. H. Bertl et al., A Search for muon to electron conversion in
muonic gold, Eur. Phys. J. C 47 (2006) 337–346.

[1122] Mu2e Collaboration, L. Bartoszek et al., Mu2e Technical Design Report, arXiv:1501.05241.
[1123] Mu2e Collaboration, F. Abusalma et al., Expression of Interest for Evolution of the Mu2e

Experiment, arXiv:1802.02599.
[1124] Belle Collaboration, A. Abdesselam et al., Search for lepton-flavor-violating tau-lepton decays to ℓγ

at Belle, JHEP 10 (2021) 19, [arXiv:2103.12994].
[1125] Belle-II Collaboration, L. Aggarwal et al., Snowmass White Paper: Belle II physics reach and

plans for the next decade and beyond, arXiv:2207.06307.
[1126] S. Banerjee, Searches for Lepton Flavor Violation in Tau Decays at Belle II, Universe 8 (2022),

no. 9 480, [arXiv:2209.11639].
[1127] NA62 Collaboration, E. Cortina Gil et al., Measurement of the very rare K+→π+νν decay, JHEP

06 (2021) 093, [arXiv:2103.15389].
[1128] NA62, KLEVER Collaboration, Rare decays at the CERN high-intensity kaon beam facility,

arXiv:2009.10941.
[1129] A. Cerri et al., Report from Working Group 4: Opportunities in Flavour Physics at the HL-LHC and

HE-LHC, CERN Yellow Rep. Monogr. 7 (2019) 867–1158, [arXiv:1812.07638].
[1130] A. J. Buras, D. Buttazzo, J. Girrbach-Noe, and R. Knegjens, K+ → π+νν and KL → π0νν in the

Standard Model: status and perspectives, JHEP 11 (2015) 033, [arXiv:1503.02693].
[1131] Particle Data Group Collaboration, R. L. Workman et al., Review of Particle Physics, PTEP

2022 (2022) 083C01.
[1132] chiQCD Collaboration, G. Wang, T. Draper, K.-F. Liu, and Y.-B. Yang, Muon g-2 with overlap

valence fermions, arXiv:2204.01280.
[1133] M. Cè et al., Window observable for the hadronic vacuum polarization contribution to the muon g-2

from lattice QCD, Phys. Rev. D 106 (2022), no. 11 114502, [arXiv:2206.06582].
[1134] Extended Twisted Mass Collaboration, C. Alexandrou et al., Lattice calculation of the short and

intermediate time-distance hadronic vacuum polarization contributions to the muon magnetic
moment using twisted-mass fermions, Phys. Rev. D 107 (2023), no. 7 074506, [arXiv:2206.15084].

[1135] Fermilab Lattice, MILC, HPQCD Collaboration, C. T. H. Davies et al., Windows on the
hadronic vacuum polarization contribution to the muon anomalous magnetic moment, Phys. Rev. D
106 (2022), no. 7 074509, [arXiv:2207.04765].

[1136] A. Bazavov et al., Light-quark connected intermediate-window contributions to the muon g − 2
hadronic vacuum polarization from lattice QCD, arXiv:2301.08274.

[1137] T. Blum et al., An update of Euclidean windows of the hadronic vacuum polarization,
arXiv:2301.08696.

292

http://arxiv.org/abs/2002.02332
http://arxiv.org/abs/2009.00346
http://arxiv.org/abs/1605.05081
http://arxiv.org/abs/1801.04688
http://arxiv.org/abs/1501.05241
http://arxiv.org/abs/1802.02599
http://arxiv.org/abs/2103.12994
http://arxiv.org/abs/2207.06307
http://arxiv.org/abs/2209.11639
http://arxiv.org/abs/2103.15389
http://arxiv.org/abs/2009.10941
http://arxiv.org/abs/1812.07638
http://arxiv.org/abs/1503.02693
http://arxiv.org/abs/2204.01280
http://arxiv.org/abs/2206.06582
http://arxiv.org/abs/2206.15084
http://arxiv.org/abs/2207.04765
http://arxiv.org/abs/2301.08274
http://arxiv.org/abs/2301.08696


[1138] D. Stockinger, The Muon Magnetic Moment and Supersymmetry, J. Phys. G 34 (2007) R45–R92,
[hep-ph/0609168].

[1139] M. Blanke, A. J. Buras, B. Duling, A. Poschenrieder, and C. Tarantino, Charged Lepton Flavour
Violation and (g-2)(mu) in the Littlest Higgs Model with T-Parity: A Clear Distinction from
Supersymmetry, JHEP 05 (2007) 013, [hep-ph/0702136].

[1140] M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002, [arXiv:0811.1030].

[1141] F. Feruglio, C. Hagedorn, Y. Lin, and L. Merlo, Lepton Flavour Violation in Models with A(4)
Flavour Symmetry, Nucl. Phys. B 809 (2009) 218–243, [arXiv:0807.3160].

[1142] R. Dermisek and A. Raval, Explanation of the Muon g-2 Anomaly with Vectorlike Leptons and its
Implications for Higgs Decays, Phys. Rev. D 88 (2013) 013017, [arXiv:1305.3522].

[1143] P. Agrawal, Z. Chacko, and C. B. Verhaaren, Leptophilic Dark Matter and the Anomalous Magnetic
Moment of the Muon, JHEP 08 (2014) 147, [arXiv:1402.7369].

[1144] L. Calibbi, P. Paradisi, and R. Ziegler, Lepton Flavor Violation in Flavored Gauge Mediation, Eur.
Phys. J. C 74 (2014), no. 12 3211, [arXiv:1408.0754].

[1145] L. Calibbi, R. Ziegler, and J. Zupan, Minimal models for dark matter and the muon g-2 anomaly,
JHEP 07 (2018) 046, [arXiv:1804.00009].

[1146] S. Saad, Combined explanations of (g − 2)μ, RD(∗) , RK(∗) anomalies in a two-loop radiative neutrino
mass model, Phys. Rev. D 102 (2020), no. 1 015019, [arXiv:2005.04352].

[1147] L. Calibbi, M. L. López-Ibáñez, A. Melis, and O. Vives, Muon and electron g − 2 and lepton masses
in flavor models, JHEP 06 (2020) 087, [arXiv:2003.06633].

[1148] L. Calibbi, M. L. López-Ibáñez, A. Melis, and O. Vives, Implications of the Muon g-2 result on the
flavour structure of the lepton mass matrix, Eur. Phys. J. C 81 (2021), no. 10 929, [arXiv:2104.03296].

[1149] P. Fileviez Perez, C. Murgui, and A. D. Plascencia, Leptoquarks and matter unification: Flavor
anomalies and the muon g-2, Phys. Rev. D 104 (2021), no. 3 035041, [arXiv:2104.11229].

[1150] M. L. López-Ibáñez, A. Melis, M. J. Pérez, M. H. Rahat, and O. Vives, Constraining low-scale
flavor models with (g-2)μ and lepton flavor violation, Phys. Rev. D 105 (2022), no. 3 035021,
[arXiv:2112.11455].

[1151] B. Diaz, M. Schmaltz, and Y.-M. Zhong, The leptoquark Hunter’s guide: Pair production, JHEP 10
(2017) 097, [arXiv:1706.05033].

[1152] M. Schmaltz and Y.-M. Zhong, The leptoquark Hunter’s guide: large coupling, JHEP 01 (2019) 132,
[arXiv:1810.10017].

[1153] B. C. Allanach, B. Gripaios, and T. You, The case for future hadron colliders from B→ K(∗)μ+μ−

decays, JHEP 03 (2018) 021, [arXiv:1710.06363].

[1154] B. C. Allanach, T. Corbett, and M. Madigan, Sensitivity of Future Hadron Colliders to Leptoquark
Pair Production in the Di-Muon Di-Jets Channel, Eur. Phys. J. C 80 (2020), no. 2 170,
[arXiv:1911.04455].

[1155] P. Bandyopadhyay, S. Dutta, M. Jakkapu, and A. Karan, Distinguishing Leptoquarks at the
LHC/FCC, Nucl. Phys. B 971 (2021) 115524, [arXiv:2007.12997].

[1156] G. Hiller, D. Loose, and I. Nivsandvzić, Flavorful leptoquarks at the LHC and beyond: spin 1, JHEP
06 (2021) 080, [arXiv:2103.12724].

[1157] G.-y. Huang, S. Jana, F. S. Queiroz, and W. Rodejohann, Probing the RK(*) anomaly at a muon
collider, Phys. Rev. D 105 (2022), no. 1 015013, [arXiv:2103.01617].

[1158] P. Asadi, R. Capdevilla, C. Cesarotti, and S. Homiller, Searching for leptoquarks at future muon
colliders, JHEP 10 (2021) 182, [arXiv:2104.05720].

293

http://arxiv.org/abs/hep-ph/0609168
http://arxiv.org/abs/hep-ph/0702136
http://arxiv.org/abs/0811.1030
http://arxiv.org/abs/0807.3160
http://arxiv.org/abs/1305.3522
http://arxiv.org/abs/1402.7369
http://arxiv.org/abs/1408.0754
http://arxiv.org/abs/1804.00009
http://arxiv.org/abs/2005.04352
http://arxiv.org/abs/2003.06633
http://arxiv.org/abs/2104.03296
http://arxiv.org/abs/2104.11229
http://arxiv.org/abs/2112.11455
http://arxiv.org/abs/1706.05033
http://arxiv.org/abs/1810.10017
http://arxiv.org/abs/1710.06363
http://arxiv.org/abs/1911.04455
http://arxiv.org/abs/2007.12997
http://arxiv.org/abs/2103.12724
http://arxiv.org/abs/2103.01617
http://arxiv.org/abs/2104.05720


[1159] P. Bandyopadhyay, A. Karan, R. Mandal, and S. Parashar, Distinguishing signatures of scalar
leptoquarks at hadron and muon colliders, Eur. Phys. J. C 82 (2022), no. 10 916, [arXiv:2108.06506].

[1160] S. Qian, C. Li, Q. Li, F. Meng, J. Xiao, T. Yang, M. Lu, and Z. You, Searching for heavy
leptoquarks at a muon collider, JHEP 12 (2021) 047, [arXiv:2109.01265].

[1161] S. Parashar, A. Karan, Avnish, P. Bandyopadhyay, and K. Ghosh, Phenomenology of scalar
leptoquarks at the LHC in explaining the radiative neutrino masses, muon g-2, and lepton flavor
violating observables, Phys. Rev. D 106 (2022), no. 9 095040, [arXiv:2209.05890].

[1162] Muon Collider Collaboration, J. de Blas et al., The physics case of a 3 TeV muon collider stage,
arXiv:2203.07261.

[1163] COMET Collaboration, R. Abramishvili et al., COMET Phase-I Technical Design Report, PTEP
2020 (2020), no. 3 033C01, [arXiv:1812.09018].

[1164] COMET Collaboration, J. Angélique et al., COMET - A submission to the 2020 update of the
European Strategy for Particle Physics on behalf of the COMET collaboration, arXiv:1812.07824.

[1165] Mu2e-II Collaboration, K. Byrum et al., Mu2e-II: Muon to electron conversion with PIP-II, in
Snowmass 2021, 3, 2022. arXiv:2203.07569.

[1166] C. Group Collaboration, M. Aoki et al., A New Charged Lepton Flavor Violation Program at
Fermilab, in Snowmass 2021, 3, 2022. arXiv:2203.08278.

[1167] S. A. R. Ellis and A. Pierce, Impact of Future Lepton Flavor Violation Measurements in the
Minimal Supersymmetric Standard Model, Phys. Rev. D 94 (2016), no. 1 015014, [arXiv:1604.01419].

[1168] S. Homiller, Q. Lu, and M. Reece, Complementary signals of lepton flavor violation at a high-energy
muon collider, JHEP 07 (2022) 036, [arXiv:2203.08825].

[1169] A. Baldini et al., A submission to the 2020 update of the European Strategy for Particle Physics on
behalf of the COMET, MEG, Mu2e and Mu3e collaborations, arXiv:1812.06540.

[1170] ACME Collaboration, V. Andreev et al., Improved limit on the electric dipole moment of the
electron, Nature 562 (2018), no. 7727 355–360.

[1171] R. Alarcon et al., Electric dipole moments and the search for new physics, in Snowmass 2021, 3,
2022. arXiv:2203.08103.

[1172] UTfit Collaboration, M. Bona et al., Model-independent constraints on ΔF = 2 operators and the
scale of new physics, JHEP 03 (2008) 049, [arXiv:0707.0636].

[1173] UTfit Collaboration, F. Ferrari, Updates in the Unitarity Triangle fits with UTfit, PoS CKM2021
(2023) 078.

[1174] E. Goudzovski et al., New physics searches at kaon and hyperon factories, Rept. Prog. Phys. 86
(2023), no. 1 016201, [arXiv:2201.07805].

[1175] K. Aoki et al., Extension of the J-PARC Hadron Experimental Facility: Third White Paper,
arXiv:2110.04462.

[1176] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O.
Rasmussen, and P. Z. Skands, An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015)
159–177, [arXiv:1410.3012].

[1177] G. Isidori, G. Ridolfi, and A. Strumia, On the metastability of the standard model vacuum,
Nucl.Phys. B609 (2001) 387–409, [hep-ph/0104016].

[1178] G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, et al., Higgs mass and vacuum
stability in the Standard Model at NNLO, JHEP 1208 (2012) 098, [arXiv:1205.6497].

[1179] A. Andreassen, W. Frost, and M. D. Schwartz, Scale Invariant Instantons and the Complete
Lifetime of the Standard Model, Phys. Rev. D 97 (2018), no. 5 056006, [arXiv:1707.08124].

294

http://arxiv.org/abs/2108.06506
http://arxiv.org/abs/2109.01265
http://arxiv.org/abs/2209.05890
http://arxiv.org/abs/2203.07261
http://arxiv.org/abs/1812.09018
http://arxiv.org/abs/1812.07824
http://arxiv.org/abs/2203.07569
http://arxiv.org/abs/2203.08278
http://arxiv.org/abs/1604.01419
http://arxiv.org/abs/2203.08825
http://arxiv.org/abs/1812.06540
http://arxiv.org/abs/2203.08103
http://arxiv.org/abs/0707.0636
http://arxiv.org/abs/2201.07805
http://arxiv.org/abs/2110.04462
http://arxiv.org/abs/1410.3012
http://arxiv.org/abs/hep-ph/0104016
http://arxiv.org/abs/1205.6497
http://arxiv.org/abs/1707.08124


[1180] M. Czakon, A. Mitov, M. Papucci, J. T. Ruderman, and A. Weiler, Closing the stop gap, Phys. Rev.
Lett. 113 (2014), no. 20 201803, [arXiv:1407.1043].

[1181] T. Eifert and B. Nachman, Sneaky light stop, Phys. Lett. B 743 (2015) 218–223, [arXiv:1410.7025].

[1182] ATLAS Collaboration, G. Aad et al., Measurement of the tt̄ production cross-section using eμ
events with b-tagged jets in pp collisions at

√s = 7 and 8 TeV with the ATLAS detector, Eur. Phys.
J. C 74 (2014), no. 10 3109, [arXiv:1406.5375]. [Addendum: Eur.Phys.J.C 76, 642 (2016)].

[1183] T. Cohen, W. Hopkins, S. Majewski, and B. Ostdiek, Magnifying the ATLAS Stealth Stop Splinter:
Impact of Spin Correlations and Finite Widths, JHEP 07 (2018) 142, [arXiv:1804.00111].

[1184] T. Cohen, S. Majewski, B. Ostdiek, and P. Zheng, On the ATLAS Top Mass Measurements and the
Potential for Stealth Stop Contamination, JHEP 06 (2020) 019, [arXiv:1909.09670].

[1185] ATLAS Collaboration, M. Aaboud et al., Measurements of top-quark pair spin correlations in the
eμ channel at

√s = 13 TeV using pp collisions in the ATLAS detector, Eur. Phys. J. C 80 (2020),
no. 8 754, [arXiv:1903.07570].

[1186] C. collaboration et al., Measurement of the tt production cross section, the top quark mass, and the
strong coupling constant using dilepton events in pp collisions at sqrt s = 13 tev, .

[1187] CMS Collaboration, V. Khachatryan et al., Measurement of the t-tbar production cross section in
the e-mu channel in proton-proton collisions at sqrt(s) = 7 and 8 TeV, JHEP 08 (2016) 029,
[arXiv:1603.02303].

[1188] CMS Collaboration, A. M. Sirunyan et al., Measurement of the tt production cross section, the top
quark mass, and the strong coupling constant using dilepton events in pp collisions at

√s = 13 TeV,
Eur. Phys. J. C 79 (2019), no. 5 368, [arXiv:1812.10505].

[1189] ATLAS Collaboration, Measurement of the tt̄ production cross-section and lepton differential
distributions in eμ dilepton events from pp collisions at

√s = 13 TeV with the ATLAS detector, .

[1190] ATLAS Collaboration, M. Aaboud et al., Measurement of lepton differential distributions and the
top quark mass in tt̄ production in pp collisions at

√s = 8 TeV with the ATLAS detector, Eur. Phys.
J. C 77 (2017), no. 11 804, [arXiv:1709.09407].

[1191] CMS Collaboration, A. M. Sirunyan et al., Measurement of t�t normalised multi-differential cross
sections in pp collisions at

√s = 13 TeV, and simultaneous determination of the strong coupling
strength, top quark pole mass, and parton distribution functions, Eur. Phys. J. C 80 (2020), no. 7
658, [arXiv:1904.05237].

[1192] ATLAS Collaboration, M. Aaboud et al., Measurement of the top quark mass in the tt̄→ dilepton
channel from

√s = 8 TeV ATLAS data, Phys. Lett. B 761 (2016) 350–371, [arXiv:1606.02179].

[1193] ATLAS Collaboration, M. Aaboud et al., Top-quark mass measurement in the all-hadronic tt decay
channel at

√s = 8 TeV with the ATLAS detector, JHEP 09 (2017) 118, [arXiv:1702.07546].

[1194] ATLAS Collaboration, M. Aaboud et al., Measurement of the top quark mass in the tt̄→
lepton+jets channel from

√s = 8 TeV ATLAS data and combination with previous results, Eur. Phys.
J. C 79 (2019), no. 4 290, [arXiv:1810.01772].

[1195] CMS Collaboration, A. M. Sirunyan et al., Measurement of the top quark mass with lepton+jets
final states using p p collisions at

√s = 13TeV, Eur. Phys. J. C 78 (2018), no. 11 891,
[arXiv:1805.01428].

[1196] CMS Collaboration, A. M. Sirunyan et al., Measurement of the top quark mass in the all-jets final
state at

√s = 13 TeV and combination with the lepton+jets channel, Eur. Phys. J. C 79 (2019), no. 4
313, [arXiv:1812.10534].

[1197] A. H. Hoang, S. Plätzer, and D. Samitz, On the Cutoff Dependence of the Quark Mass Parameter in
Angular Ordered Parton Showers, JHEP 10 (2018) 200, [arXiv:1807.06617].

295

http://arxiv.org/abs/1407.1043
http://arxiv.org/abs/1410.7025
http://arxiv.org/abs/1406.5375
http://arxiv.org/abs/1804.00111
http://arxiv.org/abs/1909.09670
http://arxiv.org/abs/1903.07570
http://arxiv.org/abs/1603.02303
http://arxiv.org/abs/1812.10505
http://arxiv.org/abs/1709.09407
http://arxiv.org/abs/1904.05237
http://arxiv.org/abs/1606.02179
http://arxiv.org/abs/1702.07546
http://arxiv.org/abs/1810.01772
http://arxiv.org/abs/1805.01428
http://arxiv.org/abs/1812.10534
http://arxiv.org/abs/1807.06617


[1198] S. Fleming, A. H. Hoang, S. Mantry, and I. W. Stewart, Jets from massive unstable particles:
Top-mass determination, Phys. Rev. D 77 (2008) 074010, [hep-ph/0703207].

[1199] A. H. Hoang and I. W. Stewart, Top Mass Measurements from Jets and the Tevatron Top-Quark
Mass, Nucl. Phys. B Proc. Suppl. 185 (2008) 220–226, [arXiv:0808.0222].

[1200] M. Butenschoen, B. Dehnadi, A. H. Hoang, V. Mateu, M. Preisser, and I. W. Stewart, Top Quark
Mass Calibration for Monte Carlo Event Generators, Phys. Rev. Lett. 117 (2016), no. 23 232001,
[arXiv:1608.01318].

[1201] A. H. Hoang, S. Mantry, A. Pathak, and I. W. Stewart, Extracting a Short Distance Top Mass with
Light Grooming, Phys. Rev. D 100 (2019), no. 7 074021, [arXiv:1708.02586].

[1202] A. H. Hoang, What is the Top Quark Mass?, arXiv:2004.12915.
[1203] J. Kieseler, K. Lipka, and S.-O. Moch, Calibration of the top-quark monte carlo mass, Phys. Rev.

Lett. 116 (Apr, 2016) 162001.
[1204] A. Andreassen and M. D. Schwartz, Reducing the Top Quark Mass Uncertainty with Jet Grooming,

JHEP 10 (2017) 151, [arXiv:1705.07135].
[1205] A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler, Soft Drop, JHEP 05 (2014) 146,

[arXiv:1402.2657].
[1206] P. T. Komiske, E. M. Metodiev, and J. Thaler, Energy Flow Networks: Deep Sets for Particle Jets,

JHEP 01 (2019) 121, [arXiv:1810.05165].
[1207] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola, Deep sets,

in Advances in Neural Information Processing Systems (I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.

[1208] M. Cacciari, G. P. Salam, and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063,
[arXiv:0802.1189].

[1209] M. Cacciari, G. P. Salam, and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896,
[arXiv:1111.6097].

[1210] M. J. Fenton, A. Shmakov, T.-W. Ho, S.-C. Hsu, D. Whiteson, and P. Baldi, Permutationless
Many-Jet Event Reconstruction with Symmetry Preserving Attention Networks, arXiv:2010.09206.

[1211] ATLAS Pythia 8 tunes to 7 TeV datas, .
[1212] J. Pumplin, D. Stump, J. Huston, H. Lai, P. M. Nadolsky, and W. Tung, New generation of parton

distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012, [hep-ph/0201195].
[1213] G. Watt and R. Thorne, Study of Monte Carlo approach to experimental uncertainty propagation

with MSTW 2008 PDFs, JHEP 08 (2012) 052, [arXiv:1205.4024].
[1214] S. Carrazza, S. Forte, and J. Rojo, Parton Distributions and Event Generators, in 43rd

International Symposium on Multiparticle Dynamics, pp. 89–96, 2013. arXiv:1311.5887.
[1215] A. M. Cooper-Sarkar, HERAPDF1.5LO PDF Set with Experimental Uncertainties, PoS DIS2014

(2014) 032.
[1216] S. Argyropoulos and T. Sjöstrand, Effects of color reconnection on tt̄ final states at the LHC, JHEP

11 (2014) 043, [arXiv:1407.6653].
[1217] P. Z. Skands and D. Wicke, Non-perturbative QCD effects and the top mass at the Tevatron, Eur.

Phys. J. C 52 (2007) 133–140, [hep-ph/0703081].
[1218] F. Chollet et al., “Keras.” https://keras.io, 2015.
[1219] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv:1412.6980.
[1220] S. D. Ellis, A. Hornig, T. S. Roy, D. Krohn, and M. D. Schwartz, Qjets: A Non-Deterministic

Approach to Tree-Based Jet Substructure, Phys. Rev. Lett. 108 (2012) 182003, [arXiv:1201.1914].

296

http://arxiv.org/abs/hep-ph/0703207
http://arxiv.org/abs/0808.0222
http://arxiv.org/abs/1608.01318
http://arxiv.org/abs/1708.02586
http://arxiv.org/abs/2004.12915
http://arxiv.org/abs/1705.07135
http://arxiv.org/abs/1402.2657
http://arxiv.org/abs/1810.05165
http://arxiv.org/abs/0802.1189
http://arxiv.org/abs/1111.6097
http://arxiv.org/abs/2010.09206
http://arxiv.org/abs/hep-ph/0201195
http://arxiv.org/abs/1205.4024
http://arxiv.org/abs/1311.5887
http://arxiv.org/abs/1407.6653
http://arxiv.org/abs/hep-ph/0703081
https://keras.io
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1201.1914


[1221] Y.-T. Chien, Telescoping jets: Probing hadronic event structure with multiple R ’s, Phys. Rev. D 90
(2014), no. 5 054008, [arXiv:1304.5240].

[1222] Y.-T. Chien, D. Farhi, D. Krohn, A. Marantan, D. Lopez Mateos, and M. Schwartz, Quantifying the
power of multiple event interpretations, JHEP 12 (2014) 140, [arXiv:1407.2892].

[1223] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, Scikit-learn: Machine learning in Python, Journal of Machine
Learning Research 12 (2011) 2825–2830.

[1224] P. Baldi, K. Cranmer, T. Faucett, P. Sadowski, and D. Whiteson, Parameterized neural networks
for high-energy physics, Eur. Phys. J. C 76 (2016), no. 5 235, [arXiv:1601.07913].

[1225] J. Brehmer, F. Kling, I. Espejo, and K. Cranmer, MadMiner: Machine learning-based inference for
particle physics, Comput. Softw. Big Sci. 4 (2020), no. 1 3, [arXiv:1907.10621].

[1226] M. Erdmann, B. Fischer, D. Noll, Y. Alexander Rath, M. Rieger, and D. Josef Schmidt, Adversarial
Neural Network-based data-simulation corrections for jet-tagging at CMS, J. Phys. Conf. Ser. 1525
(2020), no. 1 012094.

[1227] C. Badiali, F. Di Bello, G. Frattari, E. Gross, V. Ippolito, M. Kado, and J. Shlomi, Efficiency
Parameterization with Neural Networks, arXiv:2004.02665.

[1228] A. Blance and M. Spannowsky, Unsupervised Event Classification with Graphs on Classical and
Photonic Quantum Computers, arXiv:2103.03897.

[1229] T. Dorigo, M. Fumanelli, C. Maccani, M. Mojsovska, G. C. Strong, and B. Scarpa, RanBox:
Anomaly Detection in the Copula Space, arXiv:2106.05747.

[1230] J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness, JHEP 03 (2011) 015,
[arXiv:1011.2268].

[1231] P. T. Komiske, E. M. Metodiev, and J. Thaler, Metric Space of Collider Events, Phys. Rev. Lett.
123 (2019), no. 4 041801, [arXiv:1902.02346].

[1232] P. T. Komiske, E. M. Metodiev, and J. Thaler, The Hidden Geometry of Particle Collisions, JHEP
07 (2020) 006, [arXiv:2004.04159].

[1233] M. A. Kramer, Nonlinear principal component analysis using autoassociative neural networks,
AIChE Journal 37 (1991), no. 2 233–243,
[https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690370209].

[1234] D. P. Kingma and M. Welling, Auto-Encoding Variational Bayes, arXiv:1312.6114.

[1235] J. An and S. Cho, Variational autoencoder based anomaly detection using reconstruction probability,
Special Lecture on IE 2 (2015) 1.

[1236] K. Dohi, Variational Autoencoders for Jet Simulation, arXiv:2009.04842.

[1237] J. H. Collins, An Exploration of Learnt Representations of W Jets, arXiv:2109.10919.

[1238] T. Cheng, Test sets for jet anomaly detection at the lhc, Mar., 2021.

[1239] J. Leissner-Martin, T. Cheng, and J.-F. Arguin, Qcd jet samples with particle flow constituents,
July, 2020.

[1240] DELPHES 3 Collaboration, J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître,
A. Mertens, and M. Selvaggi, DELPHES 3, A modular framework for fast simulation of a generic
collider experiment, JHEP 02 (2014) 057, [arXiv:1307.6346].

[1241] M. Cacciari and G. P. Salam, Dispelling the N3 myth for the kt jet-finder, Phys. Lett. B 641 (2006)
57–61, [hep-ph/0512210].

[1242]

297

http://arxiv.org/abs/1304.5240
http://arxiv.org/abs/1407.2892
http://arxiv.org/abs/1601.07913
http://arxiv.org/abs/1907.10621
http://arxiv.org/abs/2004.02665
http://arxiv.org/abs/2103.03897
http://arxiv.org/abs/2106.05747
http://arxiv.org/abs/1011.2268
http://arxiv.org/abs/1902.02346
http://arxiv.org/abs/2004.04159
http://arxiv.org/abs/https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690370209
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/2009.04842
http://arxiv.org/abs/2109.10919
http://arxiv.org/abs/1307.6346
http://arxiv.org/abs/hep-ph/0512210


[1243] J. Cogan, M. Kagan, E. Strauss, and A. Schwarztman, Jet-Images: Computer Vision Inspired
Techniques for Jet Tagging, JHEP 02 (2015) 118, [arXiv:1407.5675].

[1244] C. Villani, Optimal Transport, Old and New. Springer, 2009.
[1245] C. Cesarotti and J. Thaler, A Robust Measure of Event Isotropy at Colliders, JHEP 08 (2020) 084,

[arXiv:2004.06125].
[1246] C. Cesarotti, M. Reece, and M. J. Strassler, Spheres To Jets: Tuning Event Shapes with 5d

Simplified Models, arXiv:2009.08981.
[1247] C. Cesarotti, M. Reece, and M. J. Strassler, The Efficacy of Event Isotropy as an Event Shape

Observable, arXiv:2011.06599.
[1248] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, Pytorch: An imperative style, high-performance deep
learning library, in Advances in Neural Information Processing Systems 32 (H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), pp. 8024–8035. Curran
Associates, Inc., 2019.

[1249] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, Fast and accurate deep network learning by
exponential linear units (elus), arXiv:1511.07289.

[1250] D. P. Kingma and M. Welling, An Introduction to Variational Autoencoders, arXiv:1906.02691.
[1251] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, Variational inference: A review for statisticians,

Journal of the American Statistical Association 112 (4, 2017) 859–877.
[1252] D. Jimenez Rezende and S. Mohamed, Variational Inference with Normalizing Flows,

arXiv:1505.05770.
[1253] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling, Improving

Variational Inference with Inverse Autoregressive Flow, arXiv:1606.04934.
[1254] R. van den Berg, L. Hasenclever, J. M. Tomczak, and M. Welling, Sylvester Normalizing Flows for

Variational Inference, arXiv:1803.05649.
[1255] D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, arXiv:1412.6980.
[1256] J. Feydy, T. Séjourné, F.-X. Vialard, S.-i. Amari, A. Trouve, and G. Peyré, Interpolating between

optimal transport and mmd using sinkhorn divergences, in The 22nd International Conference on
Artificial Intelligence and Statistics, pp. 2681–2690, 2019.

[1257] P. T. Komiske, R. Mastandrea, E. M. Metodiev, P. Naik, and J. Thaler, Exploring the Space of Jets
with CMS Open Data, Phys. Rev. D 101 (2020), no. 3 034009, [arXiv:1908.08542].

[1258] M. Crispim Romão, N. F. Castro, J. G. Milhano, R. Pedro, and T. Vale, Use of a generalized energy
Mover’s distance in the search for rare phenomena at colliders, Eur. Phys. J. C 81 (2021), no. 2 192,
[arXiv:2004.09360].

[1259] L. M. Dery, B. Nachman, F. Rubbo, and A. Schwartzman, Weakly Supervised Classification in High
Energy Physics, JHEP 05 (2017) 145, [arXiv:1702.00414].

[1260] T. Cohen, M. Freytsis, and B. Ostdiek, (Machine) Learning to Do More with Less, JHEP 02 (2018)
034, [arXiv:1706.09451].

[1261] M. Reece, Axion-gauge coupling quantization with a twist, JHEP 10 (2023) 116, [arXiv:2309.03939].
[1262] Y. Choi, M. Forslund, H. T. Lam, and S.-H. Shao, Quantization of Axion-Gauge Couplings and

Noninvertible Higher Symmetries, Phys. Rev. Lett. 132 (2024), no. 12 121601, [arXiv:2309.03937].
[1263] J. W. Foster, Y. Park, B. R. Safdi, Y. Soreq, and W. L. Xu, Search for dark matter lines at the

Galactic Center with 14 years of Fermi data, Phys. Rev. D 107 (2023), no. 10 103047,
[arXiv:2212.07435].

298

http://arxiv.org/abs/1407.5675
http://arxiv.org/abs/2004.06125
http://arxiv.org/abs/2009.08981
http://arxiv.org/abs/2011.06599
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1906.02691
http://arxiv.org/abs/1505.05770
http://arxiv.org/abs/1606.04934
http://arxiv.org/abs/1803.05649
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1908.08542
http://arxiv.org/abs/2004.09360
http://arxiv.org/abs/1702.00414
http://arxiv.org/abs/1706.09451
http://arxiv.org/abs/2309.03939
http://arxiv.org/abs/2309.03937
http://arxiv.org/abs/2212.07435


[1264] P. De La Torre Luque, J. Smirnov, and T. Linden, Gamma-ray lines in 15 years of Fermi-LAT
data: New constraints on Higgs portal dark matter, Phys. Rev. D 109 (2024), no. 4 L041301,
[arXiv:2309.03281].

[1265] M. Eto, Y. Hamada, R. Jinno, M. Nitta, and M. Yamada, Neutrino zeromodes on electroweak
strings in light of topological insulators, arXiv:2402.19417.

[1266] L. Trefethen, Approximation Theory and Approximation Practice, vol. 128. Siam, 2013.

[1267] J.-P. Berrut and L. Trefethen, Barycentric Lagrange Interpolation, SIAM review 46 (2004) 501–517.

[1268] N. Higham, The Numerical Stability of Barycentric Lagrange Interpolation, IMA Journal of
Numerical Analysis 24 (2004) 547–556.

[1269] R. Baltensperger, Improving the Accuracy of the Matrix Differentiation Method for Arbitrary
Collocation Points, Applied Numerical Mathematics 33 (2000) 143–149.

[1270] J. Hisano, T. Moroi, K. Tobe, and M. Yamaguchi, Lepton flavor violation via right-handed neutrino
Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442–2459,
[hep-ph/9510309].

[1271] J. R. Ellis, J. S. Lee, and A. Pilaftsis, Electric Dipole Moments in the MSSM Reloaded, JHEP 10
(2008) 049, [arXiv:0808.1819].

[1272] A. Crivellin, M. Hoferichter, and P. Schmidt-Wellenburg, Combined explanations of (g − 2)μ,e and
implications for a large muon EDM, Phys. Rev. D 98 (2018), no. 11 113002, [arXiv:1807.11484].

[1273] C. Cesarotti, Q. Lu, Y. Nakai, A. Parikh, and M. Reece, Interpreting the Electron EDM Constraint,
JHEP 05 (2019) 059, [arXiv:1810.07736].

[1274] Y. Okada, K.-i. Okumura, and Y. Shimizu, Mu –> e gamma and mu –> 3 e processes with polarized
muons and supersymmetric grand unified theories, Phys. Rev. D 61 (2000) 094001, [hep-ph/9906446].

[1275] Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys. 73
(2001) 151–202, [hep-ph/9909265].

[1276] R. Kitano, M. Koike, and Y. Okada, Detailed calculation of lepton flavor violating muon electron
conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002, [hep-ph/0203110]. [Erratum:
Phys.Rev.D 76, 059902 (2007)].

[1277] S. Fajfer, J. F. Kamenik, I. Nisandzic, and J. Zupan, Implications of Lepton Flavor Universality
Violations in B Decays, Phys. Rev. Lett. 109 (2012) 161801, [arXiv:1206.1872].

[1278] D. Bevcirević, O. Sumensari, and R. Zukanovich Funchal, Lepton flavor violation in exclusive b→ s
decays, Eur. Phys. J. C 76 (2016), no. 3 134, [arXiv:1602.00881].

[1279] Y. Sakaki, M. Tanaka, A. Tayduganov, and R. Watanabe, Testing leptoquark models in B̄→ D(∗)τν̄,
Phys. Rev. D 88 (2013), no. 9 094012, [arXiv:1309.0301].

[1280] M. Freytsis, Z. Ligeti, and J. T. Ruderman, Flavor models for B̄→ D(∗)τν̄, Phys. Rev. D 92 (2015),
no. 5 054018, [arXiv:1506.08896].

[1281] Y. Cai, J. Gargalionis, M. A. Schmidt, and R. R. Volkas, Reconsidering the One Leptoquark
solution: flavor anomalies and neutrino mass, JHEP 10 (2017) 047, [arXiv:1704.05849].

[1282] M. Tanaka and R. Watanabe, New physics in the weak interaction of B̄→ D(∗)τν̄, Phys. Rev. D 87
(2013), no. 3 034028, [arXiv:1212.1878].

[1283] P. Asadi, M. R. Buckley, and D. Shih, Asymmetry Observables and the Origin of RD(∗) Anomalies,
Phys. Rev. D 99 (2019), no. 3 035015, [arXiv:1810.06597].

[1284] D. Bardhan, P. Byakti, and D. Ghosh, A closer look at the RD and RD∗ anomalies, JHEP 01 (2017)
125, [arXiv:1610.03038].

299

http://arxiv.org/abs/2309.03281
http://arxiv.org/abs/2402.19417
http://arxiv.org/abs/hep-ph/9510309
http://arxiv.org/abs/0808.1819
http://arxiv.org/abs/1807.11484
http://arxiv.org/abs/1810.07736
http://arxiv.org/abs/hep-ph/9906446
http://arxiv.org/abs/hep-ph/9909265
http://arxiv.org/abs/hep-ph/0203110
http://arxiv.org/abs/1206.1872
http://arxiv.org/abs/1602.00881
http://arxiv.org/abs/1309.0301
http://arxiv.org/abs/1506.08896
http://arxiv.org/abs/1704.05849
http://arxiv.org/abs/1212.1878
http://arxiv.org/abs/1810.06597
http://arxiv.org/abs/1610.03038


[1285] A. J. Buras, F. Schwab, and S. Uhlig, Waiting for precise measurements of K+ → π+νν̄ and
KL → π0νν̄, Rev. Mod. Phys. 80 (2008) 965–1007, [hep-ph/0405132].

[1286] Y. Grossman and Y. Nir, KL → π0νν̄ beyond the standard model, Phys. Lett. B 398 (1997) 163–168,
[hep-ph/9701313].

[1287] KOTO Collaboration, J. K. Ahn et al., Study of the KL → π0νν̄ Decay at the J-PARC KOTO
Experiment, Phys. Rev. Lett. 126 (2021), no. 12 121801, [arXiv:2012.07571].

[1288] ATLAS Collaboration, G. Aad et al., Search for the lepton flavor violating decay Z→eμ in pp
collisions at

√s TeV with the ATLAS detector, Phys. Rev. D 90 (2014), no. 7 072010,
[arXiv:1408.5774].

[1289] D. Bevcirević and O. Sumensari, A leptoquark model to accommodate Rexp
K < RSM

K and Rexp
K∗ < RSM

K∗ ,
JHEP 08 (2017) 104, [arXiv:1704.05835].

[1290] P. Arnan, D. Becirevic, F. Mescia, and O. Sumensari, Probing low energy scalar leptoquarks by the
leptonic W and Z couplings, JHEP 02 (2019) 109, [arXiv:1901.06315].

[1291] A. Efrati, A. Falkowski, and Y. Soreq, Electroweak constraints on flavorful effective theories, JHEP
07 (2015) 018, [arXiv:1503.07872].

[1292] A. Juttner, Progress in kaon physics on the lattice, PoS LATTICE2007 (2007) 014,
[arXiv:0711.1239].

[1293] R. J. Dowdall, C. T. H. Davies, R. R. Horgan, G. P. Lepage, C. J. Monahan, J. Shigemitsu, and
M. Wingate, Neutral B-meson mixing from full lattice QCD at the physical point, Phys. Rev. D 100
(2019), no. 9 094508, [arXiv:1907.01025].

[1294] B. Grinstein, TASI-2013 Lectures on Flavor Physics, in Theoretical Advanced Study Institute in
Elementary Particle Physics: Particle Physics: The Higgs Boson and Beyond, 1, 2015.
arXiv:1501.05283.

[1295] A. Lenz, U. Nierste, J. Charles, S. Descotes-Genon, A. Jantsch, C. Kaufhold, H. Lacker, S. Monteil,
V. Niess, and S. T’Jampens, Anatomy of New Physics in B− B̄ mixing, Phys. Rev. D 83 (2011)
036004, [arXiv:1008.1593].

[1296] G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Weak decays beyond leading logarithms, Rev.
Mod. Phys. 68 (1996) 1125–1144, [hep-ph/9512380].

[1297] A. J. Buras, Flavor physics and CP violation, in 2004 European School of High-Energy Physics,
pp. 95–168, 5, 2005. hep-ph/0505175.

[1298] E. Golowich, J. Hewett, S. Pakvasa, and A. A. Petrov, Implications of D0 - D̄0 Mixing for New
Physics, Phys. Rev. D 76 (2007) 095009, [arXiv:0705.3650].

[1299] A. Bazavov et al., Short-distance matrix elements for D0-meson mixing for Nf = 2 + 1 lattice QCD,
Phys. Rev. D 97 (2018), no. 3 034513, [arXiv:1706.04622].

300

http://arxiv.org/abs/hep-ph/0405132
http://arxiv.org/abs/hep-ph/9701313
http://arxiv.org/abs/2012.07571
http://arxiv.org/abs/1408.5774
http://arxiv.org/abs/1704.05835
http://arxiv.org/abs/1901.06315
http://arxiv.org/abs/1503.07872
http://arxiv.org/abs/0711.1239
http://arxiv.org/abs/1907.01025
http://arxiv.org/abs/1501.05283
http://arxiv.org/abs/1008.1593
http://arxiv.org/abs/hep-ph/9512380
http://arxiv.org/abs/hep-ph/0505175
http://arxiv.org/abs/0705.3650
http://arxiv.org/abs/1706.04622

	 Title Page
	 Copyright Page
	 Abstract
	 Table of Contents
	 Previously Published Components
	 Dedication Page
	 Acknowledgements
	Introduction and Literature Review
	Introduction
	Hints of BSM Physics 

	Axion Periodicity and Coupling Quantization in the Presence of Mixing 
	Introduction
	Mixing with a Heavier Axion with a Periodic Potential
	Mixing with a Heavier Axion Eaten by a Spin-1 Field
	Mixing with a Heavier Non-compact Scalar
	Non-compact Symmetries Should Not Emerge in the IR
	Discussion

	Axion Mass from Magnetic Monopole Loops 
	Introduction
	Monopole Loops
	Phenomenological Applications
	Discussion

	Zero Modes of Massive Fermions Delocalize from Axion Strings 
	Introduction
	Axion Strings
	Adding a Mass
	Zero Modes from Anomaly Inflow
	Low-Energy Effective Theory
	Discussion

	A Closer Look at CP-Violating Higgs Portal Dark Matter 
	Introduction
	Model Independent Constraints in the Effective Theory
	Singlet-Doublet Model
	Doublet-Triplet Model 
	Discussion

	Oblique Lessons from the W Mass Measurement at CDF II 
	Introduction
	Electroweak Fit
	Results of the Fit
	Implications for BSM Models
	Discussion

	Wrinkles in the Froggatt–Nielsen Mechanism 
	Introduction
	Froggatt–Nielsen and BSM Physics
	Wrinkles in Froggatt–Nielsen
	B to K nu nu in a Wrinkled Setup
	Discussion

	Parameter Inference from Event Ensembles and the Top-Quark Mass 
	Introduction
	Event Generation and Uncertainty Estimation
	Classical Fitting Methods
	Regression on Sorted Ensembles 
	DCTR with ParticleFlow
	Discussion

	Challenges for Unsupervised Anomaly Detection 
	Introduction
	Anomaly Detection Datasets
	Defining the Anomaly Score
	Autoencoder Results
	Event-to-Ensemble Distance
	Discussion

	Conclusion 
	Appendix Additional Information about Axion String Calculations 
	Numerical Techniques
	Multipole Moments

	Appendix Next-Order Velocity Expansion of the Dark Matter Annihilation Cross Section 
	Appendix Oblique Parameters in the Singlet-Doublet Model 
	Appendix Correlations in the Electroweak Fit 
	Appendix Further Discussion of Flavorful Physics 
	Full Set of Consistency Conditions
	Calculation of Other Observables

	Appendix More Machine Learning Details 
	DCTR on a toy model
	Top Mass Training Curves
	Variational Inference for Autoencoders
	Comparing Anomaly Detection to a Supervised Method

	References

