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Abstract We compute the dominant two-loop corrections
to the Higgs trilinear coupling λhhh and to the Higgs quar-
tic coupling λhhhh in models with extended Higgs sectors,
using the effective-potential approximation. We provide in
this paper all necessary details about our calculations, and
present general MS expressions for derivatives of the inte-
grals appearing in the effective potential at two loops. We
also consider three particular Beyond-the-Standard-Model
(BSM) scenarios – namely a typical scenario of an Inert Dou-
blet Model (IDM), and scenarios of a Two-Higgs-Doublet
Model (2HDM) and of a Higgs Singlet Model (HSM) without
scalar mixing – and we include all the necessary finite coun-
terterms to obtain (in addition to MS results) on-shell scheme
expressions for the corrections to the Higgs self-couplings.
With these analytic results, we investigate the possible mag-
nitude of two-loop BSM contributions to the Higgs self-
couplings and the fate of the non-decoupling effects that are
known to appear at one loop. We find that, at least as long as
pertubative unitarity conditions are fulfilled, the size of two-
loop corrections remains well below that of one-loop correc-
tions. Typically, two-loop contributions to λhhh amount to
approximately 20% of those at one loop, implying that the
non-decoupling effects observed at one loop are not signifi-
cantly modified, but also meaning that higher-order correc-
tions need to be taken into account for the future perspective
of precise measurements of the Higgs trilinear coupling.

1 Introduction

The discovery of a 125-GeV Higgs boson at the CERN
LHC [1,2] in 2012 was an astonishing success for particle
physics, establishing the mechanism of Electroweak Symme-
try Breaking (EWSB) and completing the particle content of
the Standard Model (SM). Nevertheless, there is no doubt
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that new physics is needed to address deficiencies of the SM,
both because of theoretical considerations and of a number
of experimental results. At the same time, there has so far
been no clear evidence of what this new physics would be,
and instead the many ongoing experiments are only setting
increasingly stringent constraints on the parameter space of
possible Beyond-the-Standard-Model (BSM) theories, leav-
ing us without any guidance about how to address the short-
comings of the SM. One of the most pressing and timely
questions in this respect is to understand the structure of the
Higgs sector. Indeed, many – if not most – of the best moti-
vated extensions of the SM come with enlarged Higgs sectors
– for example supersymmetric models, models with addi-
tional gauge symmetries, or bottom-up models to realise e.g.
baryogenesis, scalar dark matter, etc. – and the Higgs sector is
thus expected to play a special, central role in BSM searches.
However, to this point, all measured Higgs-boson properties
are in agreement with SM predictions within experimental
and theoretical uncertainties (see for example Ref. [3]). This
seems to suggest that the BSM scalar states are somehow
made difficult to find, being either heavy and beyond the
reach of current experiments (and possibly even decoupled
if very heavy), or hidden by some symmetry or mechanism.

One example of the latter is alignment [4], which occurs
in extended scalar sectors with multiple Higgs doublets when
one of the CP-even Higgs mass eigenstates is collinear in field
space with the total electroweak vacuum expectation value
(VEV). The state aligned with the VEV then obtains SM-like
couplings at tree level, while the other scalars are difficult to
detect – in particular their couplings to weak gauge bosons
vanish in this limit. The alignment can in principle happen in
two distinct cases: (i) as a consequence of the decoupling of
the additional scalars, or (ii) without decoupling. This second
case can happen, for example, because of some symmetry –
e.g. in the Maximally Symmetric Two-Higgs-Doublet Model
(2HDM) [5] or in inert scalar models with an unbroken Z2

symmetry [6–8] – or of possible dynamics in the ultra-violet
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(UV); for an example of how an aligned 2HDM can appear
as a low-energy limit of a supersymmetric theory with Dirac
gauginos see for instance Refs. [9,10].

However, even in aligned BSM scenarios, properties of
the 125-GeV Higgs boson can deviate from their SM pre-
dictions in various observables, because of radiative correc-
tions involving the new BSM states. For the Higgs-boson
couplings, as found first in Refs. [11,12], these loop correc-
tions can actually become very significant in some regions
of the parameter space of the BSM theories, because of non-
decoupling effects. Among the Higgs properties, those that
can exhibit the largest such non-decoupling effects are its
self-couplings, i.e. its trilinear coupling λhhh and its quartic
coupling λhhhh .1

Indeed, both couplings are directly related to the shape
of the Higgs potential, of which currently only very little is
known with the exception of the existence of the electroweak
(EW) minimum and the curvature of the potential around
this minimum (determined by the Higgs mass of 125 GeV).
While the EW minimum and Higgs mass are common for all
BSM models, the Higgs self-couplings provide information
about the differences between models beyond the SM. Addi-
tionally, the Higgs self-couplings determine the strength of
the electroweak phase transition (EWPT). In particular, suc-
cessful scenarios of electroweak baryogenesis (EWBG) [14–
16] require the EWPT to be of strong first order, and it has
been shown in Refs. [17,18] that for this to be the case,
λhhh must deviate from its SM value by at least 20 − 30%.
λhhhh is also important when considering the behaviour of
the Higgs potential at large field values because it relates to
the Lagrangian scalar quartic couplings, whose running to
high scales controls the stability of the Higgs potential – this
has been studied at loop level in the SM in Refs. [19–21],
and in BSM extensions in e.g. Refs. [21–35].

Contrary to most of the couplings of the 125-GeV Higgs
boson that are now known to a precision of at least a few
percent, the Higgs self-couplings are currently not well con-
strained experimentally and deviations of several hundred
percent from their SM values are still allowed at the LHC. For
λhhh , some limits are already available: using single Higgs
production data from LHC Run 2, the ATLAS collaboration
set a limit on the ratio

κλ ≡ λ
exp.
hhh

λSM
hhh

(1.1)

as −3.2 < κλ < 11.9 at 95% confidence level (CL) [36],
while with double Higgs production, the best intervals
obtained at 95% CL are respectively −5.0 < κλ < 12.1

1 In the 2HDM, such a scenario can also be searched for by look-
ing at tree-level processes such as pp → H±H±X via vector boson
fusion [13].

from ATLAS [37] (see also Ref. [38]) and −11 < κλ < 17
from CMS [39] (see also Ref. [40]). These measurements
are expected to be significantly improved at future collid-
ers. State-of-the-art values for the expected accuracies for
the ratio κλ at almost all envisioned future colliders can be
found in Ref. [41]. We only recall here some of the main
results, considering moreover sensitivities obtained through
exclusive analyses (that are typically weakened when con-
sidering more complete global fits). First of all, the high-
luminosity upgrade of the LHC (the HL-LHC) could reach
0.5 < κλ < 1.6 (at 68% CL) with an integrated luminosity of
3 ab−1 [42] (see also Ref. [43]). A possible high-energy ver-
sion of the LHC (the HE-LHC), with centre-of-mass energy
of

√
s = 27 TeV, was found in Ref. [44] to be able to attain

0.54 < λhhh/λ
SM
hhh < 1.46 (at 68% CL) using 15 ab−1 of

data.2 Turning next to the case of possible future lepton col-
liders, the initial stage of the International Linear Collider
(ILC) running at

√
s = 250 GeV cannot access λhhh directly

via double-Higgs production [46], but could obtain a mea-
surement to 49% accuracy, at 68% CL, in a single-Higgs
production analysis using 2 ab−1 of data [41]. With the data
from further ILC extensions to 500 GeV (4 ab−1) or even
1 TeV (8 ab−1), it could be possible to reach a precision
of 27% or 10% respectively [47] (once again at 68% CL).
The CLIC project could, using the combination of 1 ab−1

of data at 380 GeV, 2.5 ab−1 at 1.5 TeV, and 5 ab−1 at 3
TeV, obtain a final accuracy of 0.93 < κλ < 1.11 at 68%
confidence level [48] (see also Refs. [49,50]). Further in the
future, a 100-TeV FCC-hh hadron collider with 30 ab−1 of
data could allow reaching a 5% accuracy (at 68% CL) on
the measurement of the Higgs trilinear coupling [42,45] (see
also Ref. [51]). Finally, it will most probably not be possi-
ble to probe the Higgs quartic coupling experimentally in a
foreseeable future, the involved cross sections being far too
small – for instance, with 30 ab−1 of data, the FCC-hh would
only be able to constrain the ratio λ

exp.
hhhh/λ

SM
hhhh to be approx-

imately between −4 and 16 [52] (at 95% confidence level).
On the theoretical side, the first one-loop calculations of

λhhh were performed in the SM and the minimal super-
symmetric SM (MSSM) in Refs. [53–55]. One-loop correc-
tions to the Higgs trilinear coupling have also been stud-
ied in several non-supersymmetric extensions of the SM,
with singlets [56–59], additional doublets [11,12,59–62], or
triplets [63]. Expressions for λhhh , as well as loop calcu-
lations of all other Higgs couplings and of Higgs decays,
are implemented in the public program H-COUP [64,65]

2 Note that a different analysis was performed in Ref. [45], includ-
ing fewer sources of background, and found a possible accuracy of
15% on the Higgs trilinear coupling, still at 68% CL. Both analyses, in
Refs. [44] and [45], derive limits using double-Higgs production and the
bb̄γ γ channel, however expected improvements for the other available
channels – bb̄bb̄, bb̄ττ and bb̄V V – should better the accuracy reached
for λhhh down to 10 − 20% [42,44].
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for the (CP-conserving) 2HDM, the Inert Doublet Model
(IDM) and the singlet extension of the SM. Various other
public tools also include, or allow obtaining, results for loop
corrections to Higgs couplings and decays in these three
BSM models: namely 2HDMC [66], PROPHECY4F [67],
and 2HDECAY [68] for the 2HDM; sHDECAY [69] and
PROPHECY4F (since version3.0 [70]) for the singlet exten-
sion; and finally SPheno [71,72] together with SARAH [73–
78] which implement expressions for generic BSM theo-
ries [79] that can be applied automatically to a desired model.
Since the early works [11,12] in the context of the 2HDM, it
has been known that the radiative corrections involving addi-
tional BSM scalars can, in the non-decoupling regime, cause
a significant enhancement of λhhh – with deviations from its
SM prediction of several tens of percent or even a (few) hun-
dred percent. One should emphasise that there is in principle
no problem in finding one-loop corrections larger than the
tree-level result, as the loop corrections here do not stem from
a perturbation of the tree-level formula, but instead arise from
new parameters that enter the calculation only at the one-loop
level. Furthermore, the large effects found in Refs. [11,12]
were obtained for parameter points satisfying the criterion
of tree-level perturbative unitarity [80] (expressed for the
2HDM in Refs. [81,82]). Nevertheless, one is quite naturally
led to ask what would happen once corrections beyond the
one-loop level are included, and in particular whether new
huge effects can appear at two loops or not.

Two-loop corrections to λhhh have so far only been consid-
ered in a limited number of works in the literature, with differ-
ent motivations. The earliest calculations were performed in
the context of supersymmetric models, namely in the MSSM
[83] and Next-to-MSSM (NMSSM) [84], in which Higgs
boson masses can be and are calculated to high precision,
making it necessary to compute also λhhh to a similar level of
accuracy.3 In Refs. [83,84], the leading O(αsαt ) corrections
to λhhh at two loops, computed using the effective-potential
approximation, were found to be approximately 5 − 10% of
the size of the one-loop corrections, and allowed a signifi-
cant reduction of the scale dependence of the total results.
In addition to this, a third reference, Ref. [85], studied (part
of) the leading corrections from the additional scalars in the
Inert Doublet Model and how these affect the strength of the
EWPT. This calculation found an enhancement of λhhh by a
few percent at two loops even if effects of 30–40% appear
at one loop; in turn these two-loop contributions slightly
weaken the strength of the first-order EWPT.

In Ref. [86], we also computed two-loop corrections to
λhhh in an aligned 2HDM and in the IDM, but in that respect,
we took a slightly different point of view compared to pre-
vious works. Indeed, what we wanted to investigate was the
maximal possible size of the two-loop corrections and how

3 See for instance the discussion in the introduction of Ref. [84].

non-decoupling effects can be affected by them. We found
that two-loop corrections amount typically to 10–20% of the
one-loop corrections, and hence while they do not alter dra-
matically the non-decoupling effect that might appear, they
are not entirely negligible.

In the present paper, we therefore build on our previous
work, and we provide all needed details about our calcula-
tions and the involved technical aspects. We moreover extend
both our computations, by including also the case of a singlet
extension of the SM – which we will refer to as Higgs Singlet
Model (HSM) – and our numerical investigations. In addition
to λhhh , we also give new formulae for the two-loop correc-
tions to λhhhh in these models. Once again, our main interest
is to determine the maximal possible size of the BSM devi-
ations, so we consider scenarios without mixing throughout
this work.

This paper is organised as follows: we start by defining
our notations for the models that we study in Sect. 2, before
describing the set-up of our calculations in Sect. 3. In Sect. 4,
we give general results for derivatives of the effective poten-
tial, expressed in the MS scheme. Then we present our ana-
lytical results for the SM and three BSM scenarios, in both
MS and on-shell schemes, in Sect. 5 and consider numer-
ical examples in Sect. 6. Finally, we discuss implications
of our calculations in Sect. 7, before concluding in Sect. 8.
Additional details are presented in appendices, with our con-
ventions and definitions of loop functions in Appendix A,
full expressions for 2HDMs in Appendix B, and definitions
of the intermediate functions used in Sect. 4 in Appendix C.

2 Models

We here recall our conventions for the 2HDM, the IDM,
and the HSM, and describe the scenarios that we will be
considering. For more complete reviews of these models,
see for example Refs. [87–90] for the 2HDM, Refs. [6,8,91]
for the IDM, and Ref. [92] for the HSM.

2.1 Two-Higgs-Doublet-Models

We consider first a CP-conserving Two-Higgs-Doublet Model
[93], in which the Higgs sector is composed of two SU (2)L–
doublets of hypercharge Y = 1/2. This type of model is in
principle plagued by possible large Higgs-mediated flavour-
changing neutral currents (FCNCs) at tree level, which would
be incompatible with experimental results. Such tree-level
FCNCs can however be avoided by requiring that each type
of fermion only couples to one of the two Higgs doublets
[94,95], and this can be achieved by imposing a Z2 symme-
try under which the scalar doublets transform respectively
as Φ1 → Φ1 and Φ2 → −Φ2, and the different families of
fermions have charges ±1. Several charge assignments are
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possible for the fermion families, corresponding to distinct
types of 2HDM [96–98] – but as we only consider effects
from top quarks in the following we do not need to specify a
type here.4 TheZ2 symmetry can be broken softly – i.e. with-
out reintroducing dangerous FCNCs – via an off-diagonal
mass term m2

3

(
Φ

†
2Φ1 + h.c.

)
. We follow the conventions of

Ref. [12] and write the tree-level scalar potential as

V (0)
2HDM = m2

1|Φ1|2 + m2
2|Φ2|2 − m2

3

(
Φ

†
2Φ1 + h.c.

)

+ λ1

2
|Φ1|4 + λ2

2
|Φ2|4 + λ3|Φ1|2|Φ2|2

+ λ4|Φ†
2Φ1|2 + λ5

2

(
(Φ

†
2Φ1)

2 + h.c.
)

. (2.1)

Our assumption that CP is conserved in the Higgs sector has
also allowed us to take all parameters in the above equation –
as well as the VEVs of both doublets – to be real. Requiring
that this potential is bounded from below implies the follow-
ing conditions [6,22,23,100,101]

λ1 > 0 , λ2 > 0 ,
√

λ1λ2 + λ3 + min{0, λ4 ± λ5} > 0 .

(2.2)

We expand each of the scalar doublets as [12]

Φi =
(

w+
i

1√
2
(vi + hi + i zi )

)

, for i = 1, 2. (2.3)

Here v1 and v2 denote the VEVs of the neutral components
of the scalar doublets, and satisfy the relation v2

1 + v2
2 =

v2 ≈ (246 GeV)2. We will further assume that the values of
the parameters in the potential ensure that both v1 �= 0 and
v2 �= 0 – see case (D) in Ref. [6] for the precise conditions.
When this is the case, we can eliminate two parameters from
the potential – typically m2

1 and m2
2 – using the minimisation

conditions of the potential (i.e. the tadpole equations), which
read at tree level

1

v1

∂V (0)

∂h1

∣∣∣∣
min.

= 0 = m2
1 − m2

3 tan β + 1

2

(
λ1c

2
β + λ345s

2
β

)
v2 ,

(2.4)

1

v2

∂V (0)

∂h2

∣∣∣∣
min.

= 0 = m2
2 − m2

3 cot β + 1

2

(
λ2s

2
β + λ345c

2
β

)
v2 .

(2.5)

4 Note, however, that for the numerical discussion in Sect. 6, we will
consider that we work in a 2HDM of type I, as it is less severely con-
strained by flavour observables than types II or Y for instance – see e.g.
Ref. [99].

The angle β in the above two equations is defined from the
ratio of VEVs v2/v1 ≡ tan β, and we make use of the follow-
ing shorthand notations λ345 ≡ λ3+λ4+λ5, cx ≡ cos x , and
sx ≡ sin x . Once the tadpole equations have been applied, six
free parameters remain in the 2HDM Higgs sector, namely

m2
3, λi (i = 2, · · · , 5), tan β , (2.6)

where we note that one of the quartic couplings – here we
choose λ1 – cannot be free as it must be tuned to ensure that
one of the CP-even mass eigenstates has a mass of 125 GeV.
We will also follow the common choice of trading the off-
diagonal mass parameter m3 for a soft Z2-breaking scale M
defined as M2 ≡ 2m2

3/s2β . Moreover, while the angle β is
by definition the angle that rotates away the VEV of one of
the two doublets, it is also the angle that diagonalises the CP-
odd and charged Higgs mass matrices at tree level. Indeed,
applying the rotation matrix Rβ , with

Rx ≡
(

cos x − sin x
sin x cos x

)
, (2.7)

to the component fields of the two doublets by the angle β,
we obtain new states as

(
h1

h2

)
=Rβ

(
φ1

φ2

)
,

(
z1

z2

)
= Rβ

(
z
A

)
,

(
w+

1
w+

2

)
=Rβ

(
w+
H+

)
. (2.8)

In this new basis – often refered to as the Higgs basis – only
φ1 carries a VEV, i.e. 〈φ1〉 = v and 〈φ2〉 = 0. The fields z,
A, w+, and H+ are tree-level mass eigenstates: z and w+
are respectively the neutral and charged would-be Goldstone
bosons, while A and H+ are pseudoscalar (i.e. CP-odd) and
charged Higgs bosons, with masses (at tree level)

m2
A = M2 − λ5v

2 ,

m2
H± = M2 − 1

2
(λ4 + λ5)v

2 . (2.9)

φ1 and φ2 are, however, not mass eigenstates in this basis,
and their mass matrix reads

(
m2

φ1φ1
m2

φ1φ2

m2
φ1φ2

m2
φ2φ2

)

≡
(

[λ1c4
β + λ2s4

β + 1
2λ345s2

2β ]v2 − 1
2 [λ1c2

β − λ2s2
β − λ345c2β ]s2βv2

− 1
2 [λ1c2

β − λ2s2
β − λ345c2β ]s2βv2 M2 + 1

4 [λ1 + λ2 − 2λ345]s2
2βv2

)

. (2.10)

An additional rotation of angle (α−β) is necessary to obtain
tree-level CP-even mass eigenstates, which will be denoted
h and H
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(
φ1
φ2

)
= Rα−β

(
H
h

)
, or equivalently

(
h1
h2

)
= Rα

(
H
h

)
.

(2.11)

The latter of the two relations shows that α is defined as
the CP-even Higgs mixing angle. In turn the tree-level mass
eigenvalues for h and H can be found as

m2
H = c2

α−βm
2
φ1φ1

+ s2(α−β)m
2
φ1φ2

+ s2
α−βm

2
φ2φ2

,

m2
h = s2

α−βm
2
φ1φ1

− s2(α−β)m
2
φ1φ2

+ c2
α−βm

2
φ2φ2

. (2.12)

Throughout this paper we will assume that the lightest of
the two eigenstates, h, corresponds to the discovered 125-
GeV Higgs boson. A limit of particular interest is when the
second rotation is not needed to diagonalise the CP-even mass
matrix: this is the so-called alignment limit [4], in which the
Higgs VEV is aligned in field space with one of the two
CP-even mass eigenstates. In terms of mixing angles, two
choices are possible to realise this limit, either sβ−α = 1 or
cβ−α = 1 depending on whether h or H is assumed to be the
125-GeV Higgs boson. As we identify the discovered Higgs
particle with h, we must require the former condition.

In this limit, the heavy CP-even Higgs mass simplifies to

m2
H = M2 + 1

4
[λ1 + λ2 − 2λ345]s2

2βv2 , (2.13)

and therefore we find that all the masses of the additional
Higgs bosons Φ = H, A, H± take the form

m2
Φ = M2 + λ̃v2 , (2.14)

where λ̃ denotes some simple function of Lagrangian quartic
couplings (and tan β) – as given in Eqs. (2.9) and (2.13).
Moreover, in the alignment limit we can obtain the h-field
dependent masses of the additional scalars with the simple
replacement v → v + h, as h is aligned in field space with
the VEV v. Similarly, in this limit, the field-dependent mass
of the top quark also takes the simple form

mt (h) = yt√
2
sβ(v + h) . (2.15)

Finally, we should mention that we follow the common
choice of trading the five quartic couplings for the four mass
eigenvalues mh , mH , mA, and mH± , and the CP-even mixing
angle α (fixed in our case because we work in the alignment
limit). General expressions for this translation are given at
tree level for example in Ref. [12], and we only reproduce
them here in the limiting case α = β − π/2

λ1 = 1

v2

(
m2

h + (m2
H − M2) tan2 β

)
,

λ2 = 1

v2

(
m2

h + (m2
H − M2) cot2 β

)
,

λ3 = 1

v2

(
m2

h + 2m2
H± − m2

H − M2) ,

λ4 = − 1

v2

(
2m2

H± − m2
A − M2) ,

λ5 = − 1

v2

(
m2

A − M2) . (2.16)

We should emphasise here that as these are tree-level rela-
tions, they can only be used if the masses mΦ are tree-
level MS mass parameters (the relation between Lagrangian
parameters and scalar masses computed at the loop level has
been investigated for instance in Refs. [35,59,60,102–106]).
Anticipating slightly on the next section’s discussion of our
effective-potential calculation, we note that we employ the
above relations to express the one- and two-loop contribu-
tions to the effective potential in terms of (tree-level) MS
scalar masses, and once we have taken derivatives of the
potential, we add the necessary finite counterterms in order
to express our results in terms of physical (i.e. pole) masses.

2.2 The Inert-Doublet Model

The next model we turn to is the Inert-Doublet Model [6,8]
that corresponds to a simple limit of the above 2HDM in
which the Z2 symmetry acts only on one of the two Higgs
doublet – say Φ2 to fix the notation – and remains unbroken
after EWSB. This condition forbids the presence of a mass
term (Φ

†
2Φ1 + h.c.), as well as the appearance of a non-zero

VEV for the neutral component of Φ2. In this case, the Z2-
odd doublet Φ2 cannot mix with the SM-like doublet Φ1, nor
can it couple to the fermion sector.

We follow the conventions of Ref. [107] and we expand
the two scalar doublets as

Φ1 =
(

G+
1√
2
(v + h + iG)

)

, and Φ2 =
(

H+
1√
2
(H + i A)

)

,

(2.17)

where the notations for the component fields are common
with the 2HDM. Because they do not couple to fermions, the
components of Φ2 – i.e. H , A, H± – are referred to as inert
scalars. The lightest of the two neutral of theseZ2-odd states,
which we will assume to be H in the following, constitutes
a candidate for dark matter (DM) [8,91].

With the requirements of gauge invariance, the Z2 sym-
metry, and assuming once again that there is no new source of
CP violation in the Higgs sector, the tree-level scalar potential
of the IDM can be written as

V (0)
IDM = μ2

1|Φ1|2 + μ2
2|Φ2|2 + λ1

2
|Φ2

1 |4 + λ2

2
|Φ2

2 |4

+ λ3|Φ1|2|Φ2|2 + λ4|Φ†
1Φ2|2
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+ λ5

2

(
(Φ

†
1Φ2)

2 + h.c.
)

, (2.18)

where all parameters are real. As only one of the two Higgs
doublets acquires a VEV, we have a single tadpole equation

1

v

∂V (0)

∂h

∣∣∣
∣
min.

= 0 = μ2
1 + 1

2
λ1v

2 , (2.19)

which we use to eliminate the mass parameter μ1. We are then
left with five free parameters in the Higgs sector, namely

μ2, λi (i = 2, · · · , 5) , (2.20)

while v is related to the Fermi constant and λ1 is constrained
by mh = 125 GeV. We note that for the Z2 symmetry to
remain exact after EWSB and the minimum of the potential
to correspond to the correct EW minimum, the Lagrangian
parameters are constrained, as shown e.g. in case (C) in
Ref. [6]. Concurrently, the condition of the potential being
bounded from below also gives conditions on the parameters,
which are the same as those for the 2HDM given in Eq. (2.2).

We can obtain the tree-level, field-dependent, masses of
the inert scalars as

m2
H (h) = μ2

2 + λH (v + h)2 ,

m2
A(h) = μ2

2 + λA(v + h)2 ,

m2
H±(h) = μ2

2 + λ3(v + h)2 , (2.21)

where λH,A ≡ λ3 + λ4 ± λ5. It is interesting to note that
λ2 – the quartic self-coupling of the inert doublet – does not
appear in any of these tree-level masses.

As mentioned already, the lightest inert scalar of the IDM –
which we assume to be H – is a natural DM candidate, and in
our calculations in Sect. 5, we will be considering a particular
DM-inspired scenario. One can indeed distinguish [8,91] two
types of scenarios with H as a DM particle: (i) the case where
mH > mh , i.e. all the inert scalars are heavy; or (ii) the case
where mH 	 mh/2, i.e. the lightest inert scalar is light,
while the other two (A and H±) can be heavy – this second
type of scenario has been discussed in Ref. [62]. On the one
hand, for the first case the most natural way to drive the inert
scalar masses to high values is to take the mass parameter
μ2 large, but – as we will discuss in detail in the following –
this prevents the appearance of large BSM deviations in the
Higgs self-couplings. On the other hand, the second type of
scenario requires μ2 to be small to allow mH 	 mh/2, and is
therefore more interesting from the point of view of obtaining
large deviations in the Higgs trilinear and quartic couplings.
For this reason, we will in Sect. 5 consider an IDM scenario
where μ2 = 0 so that mH 	 mh/2 while the masses of A
and H± can be taken large by increasing the values of the
quartic couplings.

2.3 The Higgs-Singlet Model

The third type of model that we consider is an extension of
the SM with a real SU (2)L -singlet scalar ϕS , which we will
refer to as “Higgs-Singlet Model” (HSM). Although simple
in apparence, the addition of a new singlet scalar can stabilise
the Higgs potential [24,25,27], and furthermore allows the
possibility of a strong first-order EWPT [92]. We expand the
SM-like doublet Φ and the real singlet ϕS as

Φ =
(

G+
1√
2
(v + h + iG)

)

, and ϕS = vS + S. (2.22)

Given the requirement of gauge invariance and assuming
that there is no source of CP violation in the HSM scalar
sector, the potential of the HSM reads in terms of Φ and ϕS :

V (0)
HSM = μ2|Φ|2+1

2
μ2
Sϕ

2
S + κ1ϕS|Φ|2+κ2ϕ

3
S + 1

2
λH |Φ|4

+1

2
λHS|Φ|2ϕ2

S + 1

2
λSϕ

4
S , (2.23)

where we have used the freedom to redefine the singlet by a
constant shift in order to eliminate the singlet tadpole term
that would in principle have been present [92]. The singlet
in this model can also become a stable dark matter candidate
if we add a Z2 symmetry under which S changes sign [7]. In
this case, the potential reduces to

V (0)
HSM = μ2|Φ|2 + 1

2
μ2
S S

2 + 1

2
λH |Φ|4

+1

2
λHS|Φ|2S2 + 1

2
λS S

4 . (2.24)

Note however that if the sum μ2
S + 1/2λHSv

2 were to be
negative, the Z2 symmetry would be spontaneously broken
by a singlet VEV, which also generates again the trilinear
couplings κ1 and κ2 in Eq. (2.23). We will choose to consider
such aZ2-symmetric HSM, ensuring that μ2

S > −1/2λHSv
2,

with the additional motivation5 of avoiding mixing between
the CP-even component of the Higgs doublet and the singlet.

For λHS ≥ 0, the HSM tree-level potential is manifestly
bounded from below provided that also λH and λS are pos-
itive. If however λHS < 0, then one must impose the con-
dition λHλS > 1/4λ2

HS to avoid the appearance of unstable
directions in the potential. Turning next to the counting of
parameters in the Z2-symmetric HSM, one is left with three
free parameters, namely

μ2
S, λHS, λS . (2.25)

5 We also remark that if the (global) Z2 symmetry were to be sponta-
neously broken, the theory would suffer from cosmological problems
due to the precense of domain walls. Additionally, if the Z2 symmetry
is spontaneously broken, we would have to impose the true vacuum
conditions – to ensure that the EW vacuum is the true minimum of the
potential – as have been discussed in Refs. [57,92,108].
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p1

p2

p3

≡ Γhhh(p2
1, p

2
2, p

2
3)

Fig. 1 Diagrammatic illustration of the Higgs three-point function

hhh

Indeed, μ2 and λH can be eliminated respectively with the
minimisation condition of the potential and the 125-GeV
Higgs mass constraint, while the Higgs VEV v is related to
the Fermi constant GF . Moreover, it is also common to trade
the quartic coupling λHS for the (tree-level) singlet massm2

S ,
using the relation

m2
S = μ2

S + 1

2
λHSv

2 . (2.26)

Finally, as in the 2HDM and the IDM, the Higgs-field-
dependent singlet mass is obtained with the replacement
v → v + h in the above equation.

3 Set-up of the effective potential calculation

3.1 Computation in the MS scheme

We investigate in this article the dominant two-loop correc-
tions to the Higgs trilinear and quartic couplings. In princi-
ple, the objects that we should compute would then be the
three- and four-point functions 
hhh and 
hhhh – the former is
shown in Fig. 1. However, these quantities depend on external
momenta, making them difficult to compute beyond one loop.
Indeed, while closed-form expressions can be obtained for
one-loop Passarino-Veltmann functions [109], at two loops
one would have to perform numerical integrations (e.g. with
SecDec [110]), or derive and solve systems of differen-
tial equations between the loop functions – as was done for
two-point functions in Ref. [111] (and later implemented in
TSIL [112]). This would go well beyond the scope of the
present paper in which we limit ourselves to leading two-loop
corrections. We therefore choose to neglect the dependence
on external momenta and to work in the effective-potential
approximation, thereby greatly simplifying the computation.
In doing so, we will be missing potential threshold effects, as
were found in the complete one-loop calculation in Ref. [12].

However, we can expect the neglected two-loop momen-
tum effects to be subleading, in the light of existing results
for scalar mass calculations at two loops – see for instance
Refs. [104,113–118], and therefore this setting is sufficient
for investigating the possible maximal size of two-loop cor-
rections.

A further approximation that we will make is to neglect
contributions from the light scalars, i.e. the 125-GeV Higgs
boson and the would-be Goldstone bosons, both at one- and
two-loop orders in our calculation. In other words, we will
always assume a mass hierarchy of the form

mh, mG, mG± � mt , mΦ, (3.1)

with Φ denoting generically the additional heavy BSM
scalars of the 2HDM, IDM, or HSM. We expect that this
approximation will not affect our conclusions on the possi-
ble size of two-loop contributions from BSM states. Indeed,
we know that these contributions grow with increasing BSM-
scalar masses, and the large mass limit in which we are inter-
ested therefore corresponds precisely to when it is most jus-
tified to neglect subleading contributions from light scalars.
Moreover, the two-loop diagrams that only involve h, G,
or G± are common with the SM, as we consider here only
aligned scenarios, and hence these terms will cancel out
from the deviation ratios we will consider in the follow-
ing. Finally, we should mention that if we choose to include
Goldstone contributions, we would encounter infra-red diver-
gences when their running masses become zero or negative
– this is the so-called Goldstone Boson Catastrophe [119].
From experience in the case of self-energy calculations [120],
we can expect to have to include partial momentum depen-
dence at two loops to solve this technical issue, and we leave
this for future work.

We expand the effective potential Veff to successive orders
in perturbation theory, up to two loops, as

Veff ≡ V (0) + ΔVeff = V (0) + κV (1) + κ2V (2) , (3.2)

where κ is the loop factor, defined in Eq. (A.1). In terms
of Veff, we can define effective Higgs trilinear and quartic
couplings, and their respective loop expansions, as

λhhh ≡ ∂3Veff

∂h3

∣
∣∣∣
min

≡ λ
(0)
hhh + κδ(1)λhhh + κ2δ(2)λhhh ,

λhhhh ≡ ∂4Veff

∂h4

∣∣∣∣
min

≡ λ
(0)
hhhh + κδ(1)λhhhh + κ2δ(2)λhhhh .

(3.3)

Note that these definitions correspond to the following
choices of normalisation

L ⊃ −1

6
λhhhh

3 − 1

24
λhhhhh

4 . (3.4)
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Because we are considering scenarios without mixing, we
can write the tree-level contributions to λhhh and λhhhh in
terms of only the tree-level Higgs mass mh and Higgs VEV
v. It is then convenient to reexpress these in terms of the
effective-potential, or curvature, mass of the Higgs, defined
as

[M2
h ]Veff ≡ D2Veff

∣∣∣
min

= m2
h + D2ΔVeff

∣∣∣
min

, where

D2 ≡ −1

v

∂

∂h
+ ∂2

∂h2 . (3.5)

We can then rewrite λhhh as

λhhh = 3m2
h

v
+ ∂3ΔVeff

∂h3

∣∣
∣∣
min

= 3[M2
h ]Veff

v
+ D3ΔVeff

∣∣
∣
min

,

(3.6)

where for the second equality we used Eq. (3.5) and we define

D3 ≡ ∂3

∂h3 − 3

v

[
−1

v

∂

∂h
+ ∂2

∂h2

]
. (3.7)

Similarly, we can write

λhhhh = 3[M2
h ]Veff

v2 + D4ΔVeff

∣∣∣
min

, with

D4 ≡ ∂4

∂h4 − 3

v2

[
−1

v

∂

∂h
+ ∂2

∂h2

]
. (3.8)

The first derivative term in the definitions of the above dif-
ferential operators ensures that tadpoles are properly taken
into account, by imposing the minimisation condition of the
loop corrected potential.

At this point, we should also discuss how renormalisa-
tion is performed in this calculation. There are indeed two
possible options between which to choose:

(i) take derivatives of the unrenormalised effective potential,
and then perform the renormalisation of the result;

(ii) renormalise the effective potential first, and take deriva-
tives afterwards.

The two options are of course formally equivalent, but we
will prefer here the second one as it conveniently allows us
to make use of existing results for two-loop contributions
to the effective potential – see e.g. Ref. [121]. These results
employ the modified minimal subtraction (MS) scheme and
are expressed in terms of field-dependent tree-level masses.
In turn, this implies that the expressions we derive for the
Higgs self-couplings using Eq. (3.3) are written in terms of
MS-renormalised parameters.

Before discussing two-loop corrections, we should also
review known results for the effective-potential calculation
of one-loop corrections to Higgs self-couplings. Using the
well-known supertrace formula [122], the dominant one-loop
contributions to Veff can be found to be, for the 2HDM, IDM,
and HSM

V (1) = −3m4
t (h)

(
logm2

t (h) − 3

2

)

+
∑

Φ

nΦm4
Φ(h)

4

(
logm2

Φ(h) − 3

2

)
, (3.9)

where the sum on heavy scalars Φ includes Φ = H, A, H±
for the 2HDM, Φ = A, H± for the IDM, and Φ = S for
the HSM. m2

t (h) and m2
Φ(h) are the field-dependent masses

of the top quark and of the BSM scalars, respectively, and
nΦ = 1 for H and A, and nΦ = 2 for H±. The notation log x
is defined in Eq. (A.3). As mentioned above, we have here
neglected subleading terms coming from the 125-GeV Higgs
and would-be Goldstone bosons. Applying the operators D3

and D4, we obtain straightforwardly the leading one-loop
corrections to the Higgs trilinear coupling as

δ(1)λhhh = D3 V
(1)

∣∣∣
min

= −48m4
t

v3 +
∑

Φ

4nΦm4
Φ

v3

×
(

1 − M 2

m2
Φ

)3

, (3.10)

and for the Higgs quartic coupling,

δ(1)λhhhh = D4V
(1)

∣∣∣∣
min

= −192m4
t

v4 +
∑

Φ

8nΦm4
Φ

v4

×
(

1 − M 2

m2
Φ

)3(
2 + M 2

m2
Φ

)
.

(3.11)

For both equations, we define the shorthand notation M to
denote

M =
⎧
⎨

⎩

M for the 2HDM,
μ2 for the IDM,
μS for the HSM.

(3.12)

Beyond one-loop order, corrections to the effective poten-
tial are found not by the supertrace formula, but by comput-
ing one-particule-irreducible (1PI) vacuum bubble diagrams
[122]. The contributions that we will need in order to investi-
gate the leading BSM effects come from diagrams with only
scalars or with scalars and fermions – as shown in Fig. 2. We
therefore expand the two-loop potential as

V (2) = V (2)
SSS + V (2)

SS + V (2)
FFS , (3.13)

where each index S or F indicates a scalar or a Dirac-fermion
propagator. Analytic expressions for these, in the MS scheme
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V
(2)
SSV

(2)
SSS V

(2)
FFS

Fig. 2 Topologies of diagrams contributing to dominant two-loop
BSM corrections to the effective potential

and Landau gauge, can be taken from Ref. [121] (results in
a general gauge fixing can be found in Ref. [123]) – note
however that as we consider here Dirac instead of Weyl
fermions, our definition of V (2)

FFS corresponds to the sum
of VFFS and VF̄ F̄ S in Ref. [121]. These expressions only
involve the one-loop function A and the two-loop sunrise
integral I , and we provide expressions for both in Appendix
A. Finally, it should be noted that because we only consider
BSM corrections from scalars (neglecting Goldstone bosons)
and fermions there is no issue of gauge dependence in our
calculations.

3.2 Conversion from MS to on-shell renormalisation

Although it makes calculations simple, the MS scheme
may suffer from a loss of accuracy due to potentially
large logarithmic contributions coming from the explicit
renormalisation-scale dependence, and hence we choose to
convert our calculation to the on-shell (OS) scheme instead.
This means that we reexpress our results in terms of physical
parameters, namely physical6 (or pole) masses and the phys-
ical Higgs VEV vphys = (

√
2GF )−1/2, and that we moreover

must include the effects of finite wave-function renormalisa-
tion (WFR). We then obtain OS-renormalised results for the
Higgs trilinear and quartic effective couplings, which relate
closely to the three- and four-point functions evaluated at
vanishing external momenta, as

λ̂hhh ≡
(
ZOS
h

ZMS
h

)3/2

λhhh = −
hhh(0, 0, 0) ,

λ̂hhhh ≡
(
ZOS
h

ZMS
h

)2

λhhhh = −
hhhh(0, 0, 0, 0) . (3.14)

6 Note that the pole mass of the top quark cannot be obtained directly
from experiments (e.g. as the location of the peak of a Breit-Wigner
distribution), as is the case for the Higgs and gauge bosons, but it can
be extracted from the measurement of physical observables such as
cross-sections of processes involving the top quark.

In these two equations, ZOS
h and ZMS

h are respectively the OS-
and MS-scheme Higgs WFR constants, and their ratio can
straightforwardly be computed in terms of the corresponding
WFR counterterms – δZOS

h and δZMS
h – as

ZOS
h

ZMS
h

= 1 + δZOS
h − δZMS

h = 1 + d

dp2 Πhh(p
2)

∣∣∣∣
p2=m2

h

,

(3.15)

where Πhh(p2) is the finite part of the Higgs self-energy,
evaluated at external momentum p.

For the masses of the additional scalars and of the top
quark, the scheme translation – from MS values mΦ (Φ =
H, A, H± or S) and mt to physical values MΦ and Mt – also
involves the finite part of the corresponding self-energy, i.e.

M2
Φ = m2

Φ + ΠΦΦ(p2 = M2
Φ) and

M2
t = m2

t + Πt t (p
2 = M2

t ) . (3.16)

In the case of the 125-GeV Higgs boson, we have already
replaced its tree-level mass by its curvature mass, and the
latter relates to the physical mass as

M2
h = [M2

h ]Veff + Πhh(p
2 = M2

h ) − Πhh(p
2 = 0) . (3.17)

Finally, the MS- and OS-renormalised versions of the Higgs
VEV satisfy the equation

v2
phys = v2 + κδ(1)v2 + κ2δ(2)v2 . (3.18)

This general prescription for the scheme conversion is sig-
nificantly simplified in our case, in particular given that we
neglect mh, mG, and mG± in all loop corrections. First of
all, the top quark and BSM scalars only enter the calculation
at one loop, and thus we only require one-loop translations
for these – the effect of including two-loop corrections to the
corresponding self-energies (see Eq. (3.16)) is of three-loop
order. Furthermore, as we neglect the 125-GeV-Higgs mass
at loop level, we see from Eq. (3.17) that there is then no
difference between M2

h and [M2
h ]Veff . Finally, the inclusion

of WFR and VEV renormalisation is also simplified: both
the multiplication of λ

(0)
hhh by the finite WFR counterterm, as

well as the shift to the Higgs VEV in λ
(0)
hhh give loop contri-

butions proportional to M2
h and can therefore be consistently

neglected. It is therefore again sufficient to include only one-
loop WFR and VEV counterterms here. On the one hand, in
the scenarios without mixing that we consider, we find no
one-loop correction to the VEV from the BSM scalars, so
we only have [19]

δ(1)v2 = −3M2
t

(
2 log M2

t − 1
)
. (3.19)
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On the other hand, for the WFR, the additional scalars do
give new, model-dependent, contributions – to which we will
return in Sect. 5.

4 General MS expressions

One may notice from the discussion of models in Sect. 2
that in the scenarios without mixing that we consider, the
field-dependent masses always take the form

m2
i (h) = μ2

i + 1

2
λ̂i (v + h)2 , (4.1)

where μ2
i and λ̂i have respectively mass-dimensions 2 and

0 – λ̂i is either a combination of quartic scalar couplings or
a squared Yukawa coupling. This motivates deriving some
general expressions for the derivatives of the two-loop inte-
grals contributing to the effective potential, applicable in all
scenarios without mixing in the scalar sector. As the poten-
tial is renormalised using the MS scheme, the results that we
derive here are in the same scheme, and a conversion to the
OS scheme remains to be done in a model-specific way.

4.1 Eight-shaped diagrams

We consider first the case of the V (2)
SS diagrams (see Fig. 2),

which involve two scalar propagtors and which we will refer
to as eight-shaped diagrams here. They are expressed as
[121]

V (2)
SS (m2

1,m
2
2) = λ1122

8
A(m2

1)A(m2
2) , (4.2)

where λ1122 is a generic quartic coupling between the
two scalars labelled 1 and 2, and A(m2) is the usual
Passarino-Veltmann function [109] (its definition is recalled
in Appendix A). Using the differential operators defined in
Sect. 3, we obtain in terms of the masses m2

i and couplings
λ̂i :

D2
[
A(m2

1(h))A(m2
2(h))

]
∣∣∣∣
min

= λ̂1λ̂2v
2 +

(
2λ̂1

m2
1

+ λ̂2

m2
2

)
λ̂2v

2A(m2
1)

+ λ̂1λ̂2

m2
1m

2
2

v2A(m2
1)A(m2

2) + (1 ↔ 2) ,

D3
[
A(m2

1(h))A(m2
2(h))

]
∣∣∣
∣
min

= 3λ̂2
1λ̂2

m2
1

v3 +
(

3λ̂1

m2
1

− λ̂2

m2
2

)
λ̂2

2

m2
2

v3A(m2
1) + (1 ↔ 2) ,

D4
[
A(m2

1(h))A(m2
2(h))

]
∣
∣∣∣
min

= 18λ̂2
1λ̂2

m2
1

v2 − 4λ̂3
1λ̂2

m4
1

v4 + 3λ̂2
1λ̂

2
2

m2
1m

2
2

v4

+
[

6λ̂2
2v

2
(

3λ̂1

m2
1

− λ̂2

m2
2

)
− 2λ̂3

2v
4

m2
2

(
2λ̂1

m2
1

− λ̂2

m2
2

)]

× A(m2
1)

m2
2

+ (1 ↔ 2) , (4.3)

where the notation (1 ↔ 2) indicates the permutation of
indices 1 and 2.

4.2 Sunrise diagrams

Next, we turn to the sunrise diagrams, corresponding to V (2)
SSS

and V (2)
FFS in Fig. 2. As can be seen for instance in Ref. [121],

both types of diagrams are expressed in terms of the sun-
rise integral I – defined in Eq. (A.9) – as well as prod-
ucts of A functions for V (2)

FFS . Furthermore, almost all I
functions come multiplied by (v + h)2 in models without
mixing (because of field-dependent couplings or masses),
so we provide here results7 for derivatives of the product
(v + h)2 I (m2

1(h),m2
2(h),m2

3(h)).
First, for the second derivative we obtain

D2
[
(v + h)2 I (m2

1(h),m2
2(h),m2

3(h))
]
∣∣∣∣
h=0

= 1

3
E1(m

2
1,m

2
2,m

2
3)I (m

2
1,m

2
2,m

2
3)

+ 1

3
t123E1(m

2
1,m

2
2,m

2
3) − E2(m

2
1,m

2
2,m

2
3)

A(m2
1)

m2
1

− E3(m
2
1,m

2
2,m

2
3)

A(m2
1)A(m2

2)

m2
1m

2
2

+ (123) , (4.4)

where (123) denotes the sum on cyclical permutations of the
indices {1, 2, 3} and

E1(m
2
1,m

2
2,m

2
3)

≡ 4λ̂1v
2r123

Δ123
− 4J1(m2

1,m
2
2,m

2
3)v

4

Δ2
123

+ (123) ,

E2(m
2
1,m

2
2,m

2
3)

≡ 4m2
1v

2(λ̂1r123 + (123))

Δ123
+ H1(m2

1,m
2
2,m

2
3)v

4

Δ2
123

,

E3(m
2
1,m

2
2,m

2
3)

≡ 4v2

Δ123

[
λ̂1m

2
2r231 + λ̂2m

2
1r123 + 2λ̂3m

2
1m

2
2

]

7 Expressions for derivatives of I (m2
1(h),m2

2(h),m2
3(h)) alone can then

be obtained straightforwardly.
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− 2r312v
4

Δ2
123

[
J1(m

2
1,m

2
2,m

2
3) + (123)

]
,

H1(m
2
1,m

2
2,m

2
3)

≡ χ123

[
m2

1

(
λ̂2

1

m2
1

+ λ̂2
2

m2
2

+ λ̂2
3

m2
3

)
− 2λ̂1

(
λ̂2 + λ̂3

)
]

+ 4ζ123
[
λ̂1λ̂2m

2
3 + λ̂1λ̂3m

2
2 − λ̂2λ̂3m

2
1

]
,

J1(m
2
1,m

2
2,m

2
3)

≡ λ̂2
1m

2
2m

2
3 + λ̂1λ̂2m

2
3r312 . (4.5)

Expressions for all the intermediate functions used in these
expressions, as well as those in the following, are given
in Appendix C.

For the third derivative, we find

D3
[
(v + h)2 I (m2

1(h),m2
2(h),m2

3(h))
]
∣∣
∣∣
h=0

= −4F1(m
2
1,m

2
2,m

2
3)I (m

2
1,m

2
2,m

2
3)

+6r312F1(m
2
1,m

2
2,m

2
3)

A(m2
1)A(m2

2)

m2
1m

2
2

−
[

6H1(m2
1,m

2
2,m

2
3)v

3

Δ2
123

− H2(m2
1,m

2
2,m

2
3)v

5

Δ3
123

]
A(m2

1)

m2
1

−
[

24t123 J1(m2
1,m

2
2,m

2
3)v

3

Δ2
123

+ J2(m2
1,m

2
2,m

2
3)v

5

Δ3
123

]

+(123) , (4.6)

where

F1(m
2
1,m

2
2,m

2
3)

≡ 2J1(m2
1,m

2
2,m

2
3)v

3

Δ2
123

− L1(m2
1,m

2
2,m

2
3)v

5

Δ3
123

+ (123) ,

H2(m
2
1,m

2
2,m

2
3)

≡ m2
1

[
Θ123

λ̂3
1

m2
1

+ θ123
λ̂3

2

m4
2

+ θ132
λ̂3

3

m4
3

]
+ 12ρ123λ̂1λ̂2λ̂3

− 3m2
1

[
μ123λ̂2

(
λ̂2

1

m2
1

+ λ̂2
3

m2
3

)
+ μ132λ̂3

(
λ̂2

1

m2
1

+ λ̂2
2

m2
2

)

− ν123λ̂1

(
λ̂2

2

m2
2

+ λ̂2
3

m2
3

)]
,

J2(m
2
1,m

2
2,m

2
3)

≡ λ̂3
1

m2
1

τ123r123 − 16φ123λ̂1λ̂2λ̂3

− 3
[
Φ123λ̂

2
1λ̂2 + Φ213λ̂

2
2λ̂1

]
,

L1(m
2
1,m

2
2,m

2
3)

≡ λ̂3
1m

2
2m

2
3r123 − λ̂1λ̂2m

2
3(λ̂1ω123 + λ̂2ω213)

+ 1

3
Ξ123λ̂1λ̂2λ̂3 . (4.7)

For the fourth derivative we have

D4
[
(v + h)2 I (m2

1(h),m2
2(h),m2

3(h))
]
∣∣∣∣
h=0

= −2

3
G1(m

2
1,m

2
2,m

2
3)I (m

2
1,m

2
2,m

2
3)

+ r312G1(m
2
1,m

2
2,m

2
3)

A(m2
1)A(m2

2)

m2
1m

2
2

−
[

36H1(m2
1,m

2
2,m

2
3)v

2

Δ2
123

− 14H2(m2
1,m

2
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2
3)v

4

Δ3
123

+ 2H3(m2
1,m

2
2,m

2
3)v

6

Δ4
123

]
A(m2

1)

m2
1

−
[

144t123 J1(m2
1,m

2
2,m

2
3)v

2

Δ2
123

+ 14J2(m2
1,m

2
2,m

2
3)v

4

Δ3
123

+ J3(m2
1,m

2
2,m

2
3)v

6

Δ4
123

]
+ (123) , (4.8)

where

G1(m
2
1,m

2
2,m

2
3)

≡ 72v2

Δ2
123

J1(m
2
1,m

2
2,m

2
3) − 84v4

Δ3
123

L1(m
2
1,m

2
2,m

2
3)

+ 24v6

Δ4
123

[
λ̂4

1m
2
2m

2
3(ω123 − 3m2

2r123 − m2
2m

2
3)

− λ̂1λ̂2m
2
3(λ̂

2
1ξ123 + λ̂2

2ξ213)

+ 3λ̂2
1λ̂

2
2m

2
3(Ξ123 − 2m2

1m
2
2m

2
3)+λ̂2

1λ̂2λ̂3a123

]
+(123) ,

H3(m
2
1,m

2
2,m

2
3)

≡ m2
1

[
n123λ̂

4
1 + p123λ̂

4
2 + p132λ̂

4
3

]

+ 6m4
1w123

[
λ̂2

1λ̂
2
2

m2
1m

2
2

+ λ̂2
1λ̂

2
3

m2
1m

2
3

+ λ̂2
2λ̂

2
3

m2
2m

2
3

]

− 2m2
1

[
2λ̂3

1(λ̂2q123 + λ̂3q132) + λ̂1(λ̂
3
2u123 + λ̂3

3u132)

+ λ̂2λ̂3(λ̂
2
2v123 + λ̂2

3v132)
]

+ 6m2
1λ̂1λ̂2λ̂3(6λ̂1A123 − λ̂2B123 − λ̂3B132) ,

J3(m
2
1,m

2
2,m

2
3)

≡ λ̂4
1e123 + 4λ̂1λ̂2(λ̂

2
1 f123 + λ̂2

2 f213) − 6λ̂2
1λ̂

2
2

m2
1m

2
2

g123

− 24λ̂2
1λ̂2λ̂3h123 . (4.9)

5 Analytic results for the leading two-loop corrections

In this section, we describe the details of the calculations
of leading two-loop corrections to λ̂hhh and λ̂hhhh in the
different models we consider. Analytic expressions for the
one-loop effects have been given already in Sect. 3.
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5.1 Standard model

We begin with a detailed presentation of the calculation of the
dominant SM contributions at two loops – these have been
shown already in Refs. [85,86]. The two dominant contri-
butions to the two-loop SM effective potential can be taken
from e.g. Ref. [124], and read

V (2)
SM(h) = V (2)

t tg (h) + V (2)
t tφ (h) + · · · ,

V (2)
t tg (h) = − 4g2

3m
2
t (h)

[
4A(m2

t (h)) − 8m2
t (h) − 6A(m2

t (h))2

m2
t (h)

]
,

V (2)
t tφ (h) = 3y2

t

[
(2m2

t (h) − m2
h(h))I (m2

t (h),m2
t (h),m2

h(h))

− 1

2
m2

G(h)I (m2
t (h),m2

t (h),m2
G(h))

+ (m2
t (h) − m2

G(h))I (m2
t (h),m2

G(h), 0)

+ A(m2
t (h))2 − A(m2

t (h))A(m2
h(h))

− 2A(m2
t (h))A(m2

G(h))

]

→
mh ,mG�mt

3y2
t

[
2m2

t (h)I (m2
t (h),m2

t (h), 0)

+ m2
t (h)I (m2

t (h), 0, 0) + A(m2
t (h))2

]
. (5.1)

where g3 denotes the SU (3)C gauge coupling. The dominant
contributions to the Higgs trilinear couplings, expressed in
terms of MS parameters, are then given by

δ(2)λhhh = D3

[
V (2)
t tg (h) + V (2)

t tφ (h)

]∣∣∣∣
min

= 3m2
h

v

[
128g2

3m
4
t (1 + 6 logm2

t )

3m2
hv

2

− 8m4
t y

2
t (−7 + 6 logm2

t )

m2
hv

2

]
, (5.2)

which corresponds to Eq. (11) in Ref. [85]. For the quartic
coupling we find

δ(2)λhhhh = D4

[
V (2)
t tg (h) + V (2)

t tφ (h)

]∣∣∣
∣
min

= 3m2
h

v2

[
1024g2

3m
4
t (2 + 3 logm2

t )

3m2
hv

2

− 64y2
t m

4
t (−2 + 3 logm2

t )

m2
hv

2

]
. (5.3)

These results can be reexpressed straightforwardly in
terms of on-shell scheme quantities – Mt and vphys. This
conversion only requires (i) the shift to the Higgs VEV given
in Eq. (3.19); (ii) the one-loop top quark self-energy in the
SM

Fig. 3 Comparison of the dependence on the renormalisation scale
Q of our Standard-Model results in the MS and OS schemes, at
both one- and two-loop orders. Here the quantity ΔλSM

hhh is defined

as λSM
hhh − (λ

(0)
hhh)

SM. The numerical inputs used for SM parameters
in this paper are as follows: for g3 and vphys we use values from the

PDG [125], respectively αMS
S (Q = MZ ) = g2

3/4π = 0.1181 and
GF = 1/

√
2v2

phys = 1.1663787 · 10−5 GeV−2, while for the top quark
pole mass we take Mt = 173.5 GeV

Π
(1)
t t (p2 = M2

t ) 	 M2
t

[
4

3
g2

3(8 − 6 log M2
t )

+ M2
t

v2
phys

(−8 + 3 log M2
t )

]
, (5.4)

where we have taken the limit Mh � Mt ; and (iii) the deriva-
tive with respect to the momentum of the one-loop Higgs
self-energy, namely

d

dp2 Π
(1)
hh (p2)

∣∣
∣∣
p2=M2

h

= 6M2
t

v2
phys

(
log M2

t + 2

3

)
, (5.5)

where we have taken the same limit as for Π
(1)
t t . Note also

that as the gauge coupling g3 only appears in the corrections
to the Higgs self-couplings at two loops, we do not need to
specify its renormalisation scheme here. We obtain finally

δ(2)λ̂hhh = 72M4
t

v3
phys

(
16g2

3 − 13M2
t

v2
phys

)
,

δ(2)λ̂hhhh = 384M4
t

v4
phys

(
16g2

3 − 13M2
t

v2
phys

)
. (5.6)

In Fig. 3, we compare the different results that we obtain
for the Higgs trilinear coupling, both in the MS-scheme
(dashed curves) and the OS-scheme (solid curves) at one
loop (blue lines) and at two loops (red lines). For the MS
results, we include in this figure only the explicit Q depen-
dence coming from logarithmic terms, and not the running
of renormalisation group equations. We can observe, satis-
factorily, that this explicit renormalisation scale dependence
is reduced when going from one- to two-loop order. Further-
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more, if we compare the two-loop MS and OS results for
Q = mt – which is the most natural choice of renormalisa-
tion scale for the MS expression – we find that the two values
are extremely close. This provides an important cross-check
of our calculation and scheme conversion, while the differ-
ence between the results in the two schemes for varying Q
provides a rough estimate8 of the missing higher-order strong
corrections.

5.2 Aligned scenario of a Two-Higgs-Doublet model

The first BSM model that we consider is an aligned scenario
of a 2HDM. As discussed in Sect. 2.1, requiring alignment
– in other words fixing α = β − π/2 – allows to evade
experimental constraints more easily, and on the technical
side means we can avoid the complications due to the mixing
of the CP-evenh and H . In principle, this alignment condition
is a tree-level relation and it receives radiative corrections that
should be taken into account. However these corrections were
studied e.g. in Ref. [104] and were found to be typically very
small, so that we will neglect them throughout this work.
It should be noted, moreover, that in the presence of four
different mass scales – MH , MA, MH± , and M̃ – for the
BSM scalars, plus the top quark mass Mt , the expressions
of the radiative corrections at two loops become quite long
and cumbersome. We therefore choose to provide complete
results in Appendix B.2, and for the main text of this paper
we will restrict ourselves to taking the masses of H , A, and
H± to be equal. This reduces the number of mass scales and
thus allows more compact expressions, without missing any
important physical behaviour.

After taking equal the three additional scalar masses, the
BSM contributions to the two-loop effective potential of the
2HDM read

V (2)
SSS(h) = − 4(M2 − m2

Φ)2(v + h)2

v4 I (0,m2
Φ(h),m2

Φ(h))

− 6(M2 − m2
Φ)2 cot2 2β(v + h)2

v4

× I (m2
Φ(h),m2

Φ(h),m2
Φ(h)) ,

V (2)
SS (h) = − 12(M2 − m2

Φ) cot2 2β

v2 A(m2
Φ(h))2 ,

V (2)
FFS(h) = 3y2

t c
2
β

[
A(m2

t (h))2 − 3A(m2
Φ(h))A(m2

t (h))

+ (m2
t (h) − m2

Φ(h))I (0,m2
Φ(h),m2

t (h))

+ (2m2
t (h) − m2

Φ(h))I (m2
Φ(h),m2

t (h),m2
t (h))

]
.

(5.7)

Note that in these expressions we have indicated explicitly
which masses should be understood as field-dependent and

8 In Sect. 6.4, we will also provide an estimate of the theoretical uncer-
tainty for the case of the IDM.

which should not. The corresponding Feynman diagrams are
shown in Fig. 4.
MS expressions – Applying then the operators D3 and D4,
we obtain MS expressions for the leading two-loop correc-
tions to the Higgs trilinear and quartic couplings

δ(2)λhhh = 16m4
Φ

v5

(
4 + 9 cot2 2β

)(

1 − M2

m2
Φ

)4

×
[
−2M2 − m2

Φ + (M2 + 2m2
Φ) logm2

Φ

]

+ 192m6
Φ cot2 2β

v5

(

1 − M2

m2
Φ

)4 [
1 + 2 logm2

Φ

]

+ 96m4
Φm

2
t cot2 β

v5

(

1 − M2

m2
Φ

)3

× [ − 1 + 2 logm2
Φ

] + O

(
m2

Φm
4
t

v5

)

, (5.8)

δ(2)λhhhh = 32m2
Φ

v6

(
4 + 9 cot2 2β

)
(

1 − M2

m2
Φ

)4

× [ − 5M4 − 4M2m2
Φ

+ (2M4 + 3M2m2
Φ + 4m4

Φ) logm2
Φ

]

+ 384m6
Φ cot2 2β

v6

(

1 − M2

m2
Φ

)4

× [ − M2 + 4m2
Φ + 2(M2 + 2m2

Φ) logm2
Φ

]

+ 192m2
t m

2
Φ cot2 β

v6

(

1 − M2

m2
Φ

)3

× [ − 3M2 + 2(M2 + 2m2
Φ) logm2

Φ

]

+ O

(
m2

Φm
4
t

v6

)

. (5.9)

The full expressions for the derivatives of the V (2)
FFS diagrams

are quite long, so we here give only the leading results – in
the third lines of Eqs. (5.8) and (5.9) – and we provide the
complete results in Appendix B. The first and second terms
of these two equations come respectively from derivatives
of sunrise and eight-shaped scalar diagrams in the effective
potential – see Fig. 4.

There are several checks that can be performed on these
results to verify their validity. First, we have verified that the
dependence of the expressions on the renormalisation scale
(appearing as log Q2) is correctly cancelled when includ-
ing the running of all parameters at one loop – we will
return to this when discussing the scheme conversion. Fur-
thermore, the BSM corrections should decouple when taking
the mass of the additional scalars to large values, because of
the decoupling theorem [126]. More precisely, the expres-
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Fig. 4 Dominant two-loop
diagrams contributing to the
2HDM effective potential, in the
limit of degenerate BSM scalar
masses h H H, A H±

H, A, H±

H, A, H± H, A, H±
H, A, H±

H, A, H±
H, A, H± t t

t b

sions in Eqs. (5.8) and (5.9) should tend to zero in the limit
mΦ → ∞. Given that the scalar masses all satisfy a relation
of the form m2

Φ = M2 + λ̃v2, one could in principle achieve
the previously-mentioned limit by taking either M2 or λ̃v2 to
infinity. However, the latter option would cause a breakdown
of perturbativity, and hence the decoupling limit can only
be taken properly with the limit M → ∞, while keeping λ̃

fixed. It is then straightforward to see that the above results
for the corrections to λhhh and λhhhh decouple properly as
all the terms involved are of the form, with m < n

(m2
Φ)m

(

1 − M2

m2
Φ

)n

= (λ̃v2)n

(M2 + λ̃v2)n−m

m<n−−−−−→
M→∞ 0 .

(5.10)

Conversion to the on-shell scheme – As explained in Sect. 3,
we prefer to express our results in terms of pole masses and
of the physical Higgs VEV, and hence we convert the expres-
sions in Eqs. (5.8) and (5.9) from the MS to the OS scheme.
Because we neglect loop corrections proportional to the light-
est Higgs mass, it suffices here to translate the parameters
that appear in the one-loop corrections – c. f. Eqs. (3.10)
and (3.11) – namely the BSM scalar masses mΦ , the top-
quark massmt , the Higgs VEV v, and the soft-breaking scale
of the 2HDM Z2 symmetry M . We will return to the discus-
sion of M and its conversion in detail in the following, while
for the Higgs VEV, the SM result in Eq. (3.19) is enough
as we work in an aligned 2HDM scenario. Furthermore, we
must also include finite WFR for the Higgs bosons on the
external legs, following Eq. (3.14). The parameter tan β only
appears at two loops in our calculation – once again because
we work in an aligned scenario – and therefore we will not
need a scheme conversion for it here.

The first intermediate results we require for the scheme
conversion are the one-loop self-energies of the additional
2HDM scalars, up to leading order in powers of mt . These
read

ΠHH (p2) = − 2(M2 − m2
H )

v2 cot2 2β

×
[
3A(m2

H ) + A(m2
A) + 2A(m2

H±)
]

− 4(M2 − m2
H )2

v2 B0(p
2, 0,m2

H )

− 18(M2 − m2
H )2

v2 cot2 2βB0(p
2,m2

H ,m2
H )

− (m2
H − m2

A)2

v2 B0(p
2, 0,m2

A)

− 2(m2
H − m2

H±)2

v2 B0(p
2, 0,m2

H±)

− 2(M2 − m2
H )2

v2 cot2 2β
[
B0(p

2,m2
A,m2

A)

+ 2B0(p
2,m2

H± ,m2
H±)

]

− 12m2
t cot2 β

v2

×
[
A(m2

t ) −
(

2m2
t − p2

2

)
B0(p

2,m2
t ,m

2
t )

]
,

ΠAA(p2) = − 2(M2 − m2
H )

v2 cot2 2β

×
[
A(m2

H ) + 3A(m2
A) + 2A(m2

H±)
]

− 4(M2 − m2
A)2

v2 B0(p
2, 0,m2

A)

− 4(M2 − m2
H )2

v2 cot2 2βB0(p
2,m2

A,m2
H )

− (m2
A − m2

H )2

v2 B0(p
2, 0,m2

H )

− 2(m2
A − m2

H±)2

v2 B0(p
2, 0,m2

H±)

− 12m2
t cot2 β

v2

[
A(m2

t ) + p2

2
B0(p

2,m2
t ,m

2
t )

]
,

ΠH+H−(p2) = − 2(M2 − m2
H )

v2 cot2 2β

×
[
A(m2

H ) + A(m2
A) + 4A(m2

H±)
]

− 4(M2 − m2
H±)2

v2 B0(p
2, 0,m2

H±)

− 4(M2 − m2
H )2

v2 cot2 2βB0(p
2,m2

H± ,m2
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v2 B0(p
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− (m2
H± − m2

A)2

v2 B0(p
2, 0,m2

A)

− 6m2
t cot2 β

v2

[
A(m2

t ) + (p2 − m2
t )

× B0(p
2, 0,m2

t )
]
. (5.11)

It is important to remember when converting the BSM scalar
masses that the parameter points giving either equal tree-level
(MS) masses or equal pole (OS) masses are distinct. Indeed
as can be seen from the equations above, the self-energy of
H is different from those of A and H±, even in the limit of
equal masses. Keeping this in mind, we choose nevertheless
to show our results in the OS renormalisation scheme also in
the limit of equal pole masses.

Turning next to the top quark, although it is required in
principle, we do not need the one-loop top-quark self-energy
here as we restrict ourselves to terms of order M2

t only. This
is because the dominant BSM corrections to the top-quark
self-energy involve the top-quark Yukawa coupling, and are
thus proportional to M2

t , and in turn shifting the top-quark
mass yields terms of order M4

t . For completeness, we provide
the expression of the top-quark self-energy in Eq. (B.3).

At this point, the case of the soft Z2-symmetry break-
ing scale M deserves closer attention. This parameter M is
not directly related to any physical observable (unlike the
scalar and top-quark masses, or the Higgs VEV), and there
is thus no clear way to define an on-shell prescription for it.
For this reason, one may at first think that there is no use to
convert M , and that one may simply continue using its MS
value. However, the question of the proper decoupling of
BSM corrections enters again here, and provides motivation
to devise a new “on-shell” prescription for M . Indeed, no mat-
ter the renormalisation scheme in which they are expressed,
the BSM contributions must vanish in the limit of large BSM
scalar masses. In the previous section we found that this is
the case for the results written in terms of MS parameters,
with m2

Φ = M2 + λ̃v2, when we take the limit M → ∞.
If instead the corrections to the Higgs self-couplings are
expressed in terms of pole (i.e. OS-renormalised) masses
MΦ and of the soft-breaking scale M still in the MS scheme,
we must use a one-loop relation between MΦ and M to verify
the decoupling behaviour – otherwise, part of the two-loop
effects that ensure the decoupling are missed. In practice,
this corresponds to having expressions with the additional
scalar masses renormalised in the MS scheme, but the top-
quark mass and Higgs VEV in the OS scheme, and one can
straightforwardly find that decoupling is satisfied in this case.

While the need to use a one-loop relation between M2
Φ

and M2 poses no problem, it constitutes a good motivation
to define an “on-shell” prescription for M – note that we use
here inverted commas for “on-shell” as we are not actually
relating M to a physical observable in our prescription. The

new quantity that we obtain in this manner, and which we
will denote M̃ , should be interpreted as the OS-renormalised
version of the soft breaking scale of the Z2 symmetry in the
2HDM. It is, by construction, the parameter that controls the
possibility of decoupling of the additional BSM scalars in
the 2HDM, when working with all other parameters in the
OS scheme. We relate the new M̃ to its MS counterpart M
with a finite counterterm denoted δOSM2 as

M̃2 = M2 + δOSM2 , (5.12)

and we define this finite counterterm from the requirement
that the decoupling behaviour of the BSM corrections to the
Higgs trilinear coupling should be apparent when using a
relation of the form M2

Φ = M̃2 + λ̃v2. With this prescription,
we obtain up to one-loop order

δOSM2 = 3κM2

v2

[
4 cot2 2β

(

1 − M2

m2
Φ

)

A(m2
Φ)

− m2
t cot2 β

[
B0(m

2
Φ,m2

t ,m
2
t ) + B0(m

2
Φ, 0,m2

t )
]]

.

(5.13)

Finally, to include the 125-GeV Higgs WFR, we further
need the derivative with respect to momentum of the one-loop
Higgs self-energy. In the 2HDM, we find for it

d

dp2 Π
(1)
hh

∣∣∣
p2=0

= 6M2
t

v2
phys

(
log M2

t + 2

3

)

−
∑

Φ=H,A,H±

nΦM2
Φ

2v2
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(

1 − M̃2

M2
Φ

)2

.

(5.14)

Combining all these intermediate results, we obtain
expressions for the two-loop corrections to the Higgs tri-
linear and quartic couplings in terms of physical quantities
as

δ(2)λ̂hhh = 48M6
Φ

v5
phys

(

1 − M̃2

M2
Φ

)4

×
{
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3
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Φ
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)]}
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Φ cot2 2β

v5
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(
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M2
Φ

)4
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t cot2 β

v5
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(
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Φ

)3

− 48M6
Φ

v5
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(
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t
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, (5.15)

and,

δ(2)λ̂hhhh = 128M6
Φ

v6
phys

(

1 − M̃2

M2
Φ

)4 [
8 + 2M̃2
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. (5.16)

In each of the two previous equations, the last two terms
come from WF and VEV renormalisation. One can observe
that all the terms in these expressions have the same form
as Eq. (5.10) and therefore decouple for M2

Φ = M̃2 + λ̃v2

and M̃ → ∞, as desired. Importantly, we should point out
that, while we define our “on-shell” prescription for M̃ in
terms of the calculation of the Higgs trilinear coupling, it
also ensures the proper decoupling of BSM corrections to the
Higgs quartic coupling, which provides a further validation
of our results.

5.3 DM-inspired scenario of Inert-Doublet-model

We now turn to the dark-matter-inspired scenario of the IDM
– discussed in Sect. 2.2 – where the CP-even inert state H
constitutes a light DM candidate with mass MH 	 Mh/2 �
MA, MH± , and where μ2 = 0. The dominant two-loop cor-
rections to the Higgs self-couplings then come from the pseu-
doscalar and charged Higgs bosons, which because of their
inert nature do not couple to fermions. The relevant diagrams
in the two-loop effective potential are shown in Fig. 5, and
their expressions read

V (2)
SSS(h) = − (v + h)2

8

[
2λ2

A I (m
2
A,m2

A, 0)

+ 4λ2
3 I (m

2
H± ,m2

H± , 0)

+ 2(λ3 − λA)2 I (m2
A,m2

H± , 0)

+ λ2
A I (m

2
A, 0, 0) + 2λ2

3 I (m
2
H± , 0, 0)

]
,

V (2)
SS (h) = 1

8
λ2

[
3A(m2

A)2 + 4A(m2
A)A(m2

H±) + 8A(m2
H±)2

]
,

(5.17)

where all masses are understood to be field-dependent
masses.

MS expressions – Applying the operators D3 and D4, we
can present here for the first time complete MS expressions
for the leading O(m6

Φ/v5) and O(λ2m4
Φ/v3) corrections –

with mΦ being either mA or mH± – to the Higgs trilinear and
quartic couplings:

δ(2)λhhh = 20m6
A(−1 + 2 logm2

A)

v5

+ 40m6
H±(−1 + 2 logm2

H±)

v5

+ 8(m2
A − m2

H±)2

v5

[ − m2
A − m2

H±

+ 2m2
A logm2

A + 2m2
H± logm2

H±
]

+ 6λ2m4
A(1 + 2 logm2

A)

v3

+ 8λ2m2
Am

2
H±(1 + logm2

A + logm2
H±)

v3

+ 16λ2m4
H±(1 + 2 logm2

H±)

v3 , (5.18)

and

δ(2)λhhhh = 160m6
A logm2

A

v6 + 320m6
H± logm2

H±
v6

+ 64(m2
A − m2

H±)2

v6

[
m2

A logm2
A + m2

H± logm2
H±

]

+ 48λ2m4
A(1 + logm2

A)

v4

+ 32λ2m2
Am

2
H±(2 + logm2

A + logm2
H±)

v4

+ 128λ2m4
H±(1 + logm2

H±)

v4 . (5.19)

The results in both Eqs. (5.18) and (5.19) can be understood
in terms of their correspondance to the effective-potential
diagrams in Fig. 5. The first and second terms come from the
derivatives of the leftmost two types of diagrams in Fig. 5
with respectively the pseudoscalar A or the charged H± run-
ning in the loops. The third term originates from the third
sunrise diagram in Fig. 5, while the last three terms – pro-
portional to λ2 – arise from the eight-shaped diagrams.
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A, H±

A, H±

A, H±
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H±

G±

A, H±

H

G, G±

Fig. 5 Diagrams contributing at leading two-loop order to the IDM
effective potential

MS to OS scheme conversion – For the translation of these
expressions to the OS scheme, we require the one-loop self-
energies of A and H± in the IDM

Π
(1)
AA(p2) = 3

2
λ2A(m2

A) + λ2A(m2
H±)

− 4m4
A

v2 B0(p
2, 0,m2

A) − m4
A

v2 B0(p
2, 0, 0)

− 2(m2
A − m2

H±)2

v2 B0(p
2, 0,m2

H±) ,

Π
(1)

H+H−(p2) = 1

2
λ2A(m2

A) + 2λ2A(m2
H±)

− 4m4
H±

v2 B0(p
2, 0,m2

H±)

− m4
H±
v2 B0(p

2, 0, 0)

− (m2
A − m2

H±)2

v2 B0(p
2, 0,m2

A) , (5.20)

as well as the momentum-derivative of the one-loop self-
energy of the 125-GeV Higgs boson

d

dp2 Π
(1)
hh (p2)

∣∣∣∣
p2=0

= 6M2
t

v2
phys

(
log M2

t + 2

3

)

− M2
A

3v2
phys

− 2M2
H±

3v2
phys

. (5.21)

The conversion of the Higgs VEV is the same as in the SM,
as given in Eq. (3.19). Moreover, as the coupling λ2 only
appears at two loops, we do not need any translation for it.
Finally, had we not set μ2 to zero, it would have appeared
in the one-loop correction to the Higgs self-couplings – c. f.
Eqs. (3.10) and (3.11). However, for the conversion of M2 in
the 2HDM we found a shift proportional to M2, and similarly
here the tree-level (MS) relation μ2 = 0 will still hold after
conversion to the OS scheme.

We then find in terms of on-shell scheme parameters the
following expressions for the Higgs trilinear coupling

δ(2)λ̂hhh = 6λ2

v3
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(
3M4

A + 4M2
AM

2
H± + 8M4

H±
)

+ 60(M6
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+ 24(M2
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+ 24M4
t (M2
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+ 42M2
t (M4

A + 2M4
H±)

v5
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− 2(M4
A + 2M4

H±)(M2
A + 2M2

H±)

v5
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, (5.22)

and for the Higgs quartic coupling

δ(2)λ̂hhhh = 16

3

δ(2)λ̂hhh

vphys
. (5.23)

It is interesting to note that because of WF and VEV renor-
malisation – which give the last two lines of Eq. (5.22) –
we can find terms involving both the inert-scalar and top-
quark masses, even if these do not couple in the IDM. More
specifically, these come from the interplay of the fermionic
contributions to the Higgs WF and VEV renormalisation with
the one-loop scalar contributions to the Higgs self-couplings,
as well as of the scalar contributions to Higgs WFR with the
one-loop top-quark corrections to the self-couplings.

5.4 A Higgs-Singlet model with Z2 symmetry

Finally, we turn to the Z2-symmetric HSM, introduced in
Sect. 2.3 and in which we study the effects of the heavy
additional real singlet S. This model is quite simple, and only
two diagrams contribute to the two-loop effective potential at
leading order, as shown in Fig. 6. The potential then is given
by

V (2)(h) = −1

4
λ2
HS(v + h)2 I (m2

S(h),m2
S(h), 0)

+3

2
λS A(m2

S(h))2 . (5.24)

MS calculation – Following the same procedure as for the
2HDM and the IDM, we find in terms of MS parameters

δ(2)λhhh = 16m4
S

v5

(

1 − μ2
S

m2
S

)4

× [ − m2
S − 2μ2

S + (2m2
S + μ2

S) logm2
S

]

+ 24m4
S

v3

(

1 − μ2
S

m2
S

)3

λS
[
1 + 2 logm2

S

]
,

(5.25)
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Fig. 6 Dominant two-loop diagrams contributing to the HSM effective
potential

for the corrections to the Higgs trilinear coupling, and

δ(2)λhhhh = 32m2
S
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S
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S(4m
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S + 5μ2
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2
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]
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(
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S
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λS
[
4m2
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S

+ 2(2m2
S + μ2

S) logm2
S

]
, (5.26)

for those to the Higgs quartic coupling. In both equations,
the first and second terms correspond respectively to the left
and right effective-potential diagrams in Fig. 6. As a (par-
tial) cross-check of our calculation, we have confirmed that
if we take the fourth derivative ∂4/∂h4 of V (2) (instead of
applying D4), we reproduce the same result as in Eq. (29) of
Ref. [35] for the two-loop corrections to the Higgs quartic
coupling (after taking the limit of mh → 0 in said equation)
– note that the results in Ref. [35] were obtained in a dia-
grammatic computation (at zero external momentum), using
results generated by the Mathematica package SARAH
[73–78].

Conversion to the OS scheme – To convert the above expres-
sions to the on-shell scheme, we need here first the one-loop
self-energy of S, which reads

Π
(1)
SS (p2) = 6λS A(m2

S) − 4(m2
S − μ2

S)
2

v2 B0(p
2, 0,m2

S) ,

(5.27)

after neglecting the light scalar masses.
Moreover, as in the 2HDM, the mass parameterμS appears

in the one-loop corrections to the Higgs couplings. Therefore,
we also need a finite “OS” counterterm – that we denote
δOSμ2

S – for it, which we define as

μ̃2
S = μ2

S + δOSμ2
S , (5.28)

where μ̃S and μS are the OS- and MS-renormalised versions
of the mass parameter. As in the 2HDM, we determine δOSμ2

S
by requiring that it ensures the proper decoupling of the two-
loop corrections to the Higgs trilinear when using a relation
of the form M2

S = μ̃2
S+ 1

2λSv
2 and taking the limit μ̃S → ∞

while keeping λS fixed. We find eventually

δOSμ2
S = 6κλSμ̃

2
S(log M2

S − 1) . (5.29)

We use the corrections to the Higgs trilinear coupling to deter-
mine the finite counterterm δOSμ2

S , but verifying that it also
fulfills the above requirement for the quartic coupling pro-
vides an important cross-check of our result.

Finally, we require the derivative of the one-loop 125-GeV
Higgs-boson self-energy

d
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(1)
hh (p2)
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. (5.30)

Using all the above results, we obtain finally the following
OS-renormalised expressions for the two-loop corrections to
the Higgs self-couplings
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. (5.31)

As we had observed already in the IDM, even if the additional
scalar S does not couple directly to the top quark, the finite
Higgs WF and VEV renormalisations introduce terms that
involve both MS and Mt .
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Fig. 7 Illustrations of the decoupling of the deviations of λ̂hhh calcu-
lated in the 2HDM with respect to its SM prediction. (Left side): BSM
deviations δR1� and δR2� – defined in Eq. (6.2) – respectively at one
loop (solid blue curve) and at two loops (dot-dashed red curve) as a
function of M̃ . Results are shown for tan β = 1.5 and for several values
of the difference M2

Φ − M̃2 = λ̃v2, namely (200 GeV)2, (300 GeV)2,
and (400 GeV)2, where MΦ is the degenerate mass of the heavy 2HDM

scalars. (Right side): Behaviour of the two-loop BSM contributions to
λ̂hhh in the 2HDM, shown here with δR2� − δR1�, as a function of M̃
and for several values of tan β, up to the higher value allowed under the
criterion of tree-level perturbative unitarity. For this figure, the masses
of the additional BSM scalar are once again taken to be degenerate, and
M2

Φ − M̃2 = (400 GeV)2

6 Numerical examples

We now turn to the discussion of the numerical behaviour
of the BSM corrections computed in Sect. 5. Before looking
at concrete examples, a comment should be made about the
theoretical and experimental constraints that we include in
our analysis. On the theory side, in addition of the poten-
tial being bounded from below (as discussed in Sect. 2), we
require that unitarity should not be violated. For this, we
choose to take as our criterion9 that tree-level perturbative
unitarity [80] should hold, and we employ for the 2HDM and
the IDM the results of Refs. [81,82] and for the HSM those
of Ref. [35,127]. On the experimental side, we here use the
public program HiggsBounds-5.3.2beta [128–131]
to take into account constraints from searches at LEP, the
Tevatron, and the LHC on the allowed parameter spaces of
the BSM scenarios we investigate. To obtain the input files
for HiggsBounds in the different models that we study,
specific spectrum generators based on SPheno [71,72] are
created using SARAH.

6.1 Decoupling limit

A natural first point to study numerically is the decoupling
behaviour of the two-loop BSM corrections. In Sect. 5, we
9 Note that one could in principle argue that (one-)loop level perturba-
tive unitarity conditions should be considered as we work at two loops.
However, this would open a long discussion, which we prefer to leave
for separate work.

had discussed the decoupling of BSM effects in terms of
analytical expressions, finding that the corrections10 to Higgs
self-couplings in the MS scheme have the form

(m2
Φ)m

(

1 − M 2

m2
Φ

)n

, with m < n , (6.1)

where M is defined in Eq. (3.12), thereby ensuring that the
radiative corrections indeed vanish when decoupling addi-
tional states in the extended Higgs sectors. We have also
devised schemes for the BSM mass parameters M – i.e.
M in the 2HDM and μS in the HSM – so that OS-scheme
expressions also have a similar form in terms of the OS-
renormalised parameters MΦ and either M̃ or μ̃S . As the
expressions for the 2HDM and the HSM are very similar, we
will for concreteness consider the case of the 2HDM in the
following.

The left part of Fig. 7 illustrates the decoupling of the one-
and two-loop corrections to the Higgs trilinear coupling λ̂hhh
in the 2HDM, when expressed in terms of OS parameters.
More precisely, the plot shows, as a function of M̃ , the BSM
deviations δR, defined – in the alignment limit – at one and
two loops respectively as

δR1� = (λ̂2HDM
hhh )(1)

(λ̂SM
hhh)

(1)
− 1 = κ(δ(1)λ̂2HDM

hhh − δ(1)λ̂SM
hhh)

λ̂tree
hhh + κδ(1)λ̂SM

hhh

,

10 Note that for the DM-inspired scenario of the IDM that we studied,
we took μ2 = 0, so we cannot expect to decouple the inert scalars in
this case. In this section, we concentrate on the 2HDM and the HSM.
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δR2� = (λ̂2HDM
hhh )(2)

(λ̂SM
hhh)

(2)
− 1

= κ(δ(1)λ̂2HDM
hhh − δ(1)λ̂SM

hhh) + κ2(δ(2)λ̂2HDM
hhh − δ(2)λ̂SM

hhh)

λ̂tree
hhh + κδ(1)λ̂SM

hhh + κ2δ(2)λ̂SM
hhh

,

(6.2)

for an example point with degenerate BSM scalar masses
and tan β = 1.5. For each of the values of the difference
M2

Φ − M̃2 = λ̃v2 that we consider – namely (200 GeV)2,
(300 GeV)2, and (400 GeV)2 – we can indeed observe that
the BSM effects decouple rapidly for increasing M̃ , both at
the one-loop level (blue solid curves) and at the two-loop
level (red dot-dashed curves).

Another interesting point that we can study is the new tan β

dependance at two loops and its impact on the decoupling of
BSM corrections. Indeed, as can be seen from Eqs. (5.15)
and (5.16), the two-loop contributions to the Higgs self-
couplings involve cot2 β and cot2 2β, even in the alignment
limit, because these appear in tree-level scalar couplings.
While cot2 β obviously vanishes very quickly with increas-
ing tan β, cot2 2β grows very fast – like tan2 β for large tan β.
This implies possible enhancements of the two-loop correc-
tions for large values of tan β, only limited by the upper bound
that the constraint of perturbative unitarity puts on tan β. We
show on the right side of Fig. 7 the magnitude of the two-loop
deviations – obtained as δR2� − δR1� – as a function of M̃ .
We present results for four values of tan β, tan β = 1.75
being close to the maximal value allowed under the cri-
terion of tree-level perturbative unitarity [81] for M̃ = 0
and MΦ = 400 GeV. As expected, while δR1� does not
depend on tan β, we can observe significant enhancements
of δR2� when increasing tan β, especially for small values of
M̃ . When M̃ grows, the effect of the terms in δ(2)λ̂hhh pro-
portional to cot2 2β diminishes because these have higher
powers of the suppression factor than some of the other, non-
tan β-enhanced terms. All in all, even at the limit of the region
of parameter space allowed by unitarity, the decoupling of
the BSM corrections from additional scalars occurs rapidly
– not significantly slower than for smaller tan β.

6.2 Non-decoupling effects

After having verified the proper decoupling behaviour of our
results, we can now turn to the more important question of
the non-decoupling effects and of the maximal possible size
they can reach. Due to the presence of the reduction factors,
as shown in Eq. (6.1), in the corrections to the Higgs self-
couplings, the largest BSM effects will be found for smaller
values of M – i.e. when the BSM scalars obtain their masses
mostly from the Higgs VEV and quartic couplings, and can
therefore not be decoupled.

Figure 8 illustrates our results for the BSM deviations
δR of the Higgs trilinear coupling λ̂hhh in this limit. In the
upper left plot, we compare the magnitude of the devia-
tions obtained in the three different models considered in
this paper, at one loop (blue curves) and at two loops (red
curves), for scenarios where the additional scalar are degen-
erate in mass (and with the remaining parameters fixed as
indicated in the caption of Fig. 8). As could be expected
from the analytical expressions found in Sect. 5, the one-
and two-loop corrections have very similar behaviours in the
three models – the two-loop effects giving additional positive
contributions to the BSM deviation. However, one can imme-
diately notice the numerical discrepancies between theories,
arising mainly from the different number of BSM degrees of
freedom: one for the HSM, three for the IDM, and four for the
2HDM (we recall that the charged Higgs in the 2HDM and
IDM is associated with two degrees of freedom). In all cases,
we can observe that the two-loop corrections grow faster than
the one-loop one, due to the M6

Φ dependence of part of the
two-loop terms – see Eqs. (5.15), (5.22), and (5.31) – but
importantly they remain well below the size of the one-loop
effects for the entire mass range considered, for which we
have verified that perturbative unitarity is not violated.

In the other three subplots of Fig. 8 (upper right and lower
ones), we show the behaviour of the BSM corrections as
a function of the BSM scalar mass separetely for the three
models. In each case, the one-loop results are presented in
blue, while the possible range of two-loop values is given
between the red curves. Each model includes an additional
parameter – tan β for the 2HDM, λ2 for the IDM, and λS

for the HSM – that enters the expressions for the Higgs self-
couplings only at two loops. We choose here to vary these
parameters from the smallest possible value they can take,
for which the eight-shaped diagrams in the effective potential
vanish, respectively tan β = 1, λ2 = 0, and λS = 0, up to the
maximal value for which the condition of tree-level unitarity
is verified all the way to MΦ = 500 GeV – this gives the
maximal values tan β = 1.4, λ2 = 6.0, and λS = 3.7. Turn-
ing first to the 2HDM, we observe that varying tan β in the
allowed range does not produce any significant enhancement
of the two-loop corrections; in other words the eight-shaped
diagrams in Veff only have a limited impact in the 2HDM.
Indeed requiring that tree-level unitarity is preserved up to
MΦ = 500 GeV and for M̃ = 0 strongly constrains the max-
imal possible value of tan β – we will return to this point in
the next section. In contrast to the 2HDM, in the IDM and
the HSM the parameters λ2 and λS – the quartic couplings
of the inert doublet and of the inert singlet respectively – are
less severely constrained by unitarity. For this reason, they
can cause large two-loop contributions, as can be seen from
the orange-shaded areas in the lower subplots of Fig. 8.

Regarding the numerical impact of the two-loop correc-
tions, if for example we consider the same parameter choices
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Fig. 8 Illustration of the non-decoupling behaviour of the BSM cor-
rections to the Higgs trilinear coupling λ̂hhh , at one and two loop(s).
(Upper left): Comparison of the results for δR in the 2HDM (solid), the
IDM (dot-dashed), and the HSM (dashed) at both one-loop (blue) and
two-loop (red) orders, as a function of the degenerate mass MΦ of all
BSM scalars. We also choose: tan β = 1.1 for the 2HDM; λ2 = 0.5 for
the IDM; and λS = 0.5 for the HSM. (Upper right): Non-decoupling
behaviour of the BSM effects in the 2HDM as a function of MΦ , at
one loop (blue) and two loops (red). At two-loop order, the two curves
correspond to tan β = 1 (dashed) and tan β = 1.4 (dot-dashed), the

latter being the maximal value of tan β allowed under the criterion of
tree-level unitarity [80,81] for MΦ = 500 GeV. (Lower left): Similar
plot as upper right one, for the case of the IDM. For the two-loop curves,
λ2 = 0 (dashed) and λ2 = 6 (dot-dashed) correspond to the extreme
values of λ2 allowed respectively from stability of the potential and
tree-level unitarity. (Lower right): Similar plot as upper right one, for
the case of the HSM – as there is only one scalar S, we denote its mass
MS instead of MΦ here. Again, λS = 3.7 is the largest possible value to
fulfill the criterion of tree-level unitarity [35,80] until MS = 500 GeV

as for Fig. 8, we can note first that the two-loop corrections are
minute for small masses, say MΦ � v; however this is also
where the approximations made in our calculation are least
justified. Considering next the points for MΦ = 400 GeV
– i.e. well within the region where perturbative unitarity
conditions are fulfilled – we find that the two-loop correc-
tions can at most become as large as 25%, 52%, and 62%
of the one-loop corrections (respectively for the 2HDM, the

IDM, and the HSM). If we turn off the eight-shaped dia-
grams and consider only the effect of the sunrise diagrams in
Veff, these shifts are reduced to 22%, 24%, and 21% respec-
tively. Even if we push our computation to the limit of the
parameter region allowed by perturbative unitary – here at
MΦ = 500 GeV for the maximal values of tan β = 1.4,
λ2 = 6, and λS = 3.7 – the two-loop corrections remain
smaller than the one-loop ones, with respectively 38%, 64%,
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and 73% of the one-loop results. In conclusion, on the one
hand, in the non-decoupling limit the two-loop corrections
are not always negligible before the one-loop corrections and
in the case of the IDM and HSM new enhancements from the
quartic couplings λ2 and λS can appear. On the other hand,
however, as long as perturbative unitarity is not violated, the
two-loop corrections to λ̂hhh are smaller than their one-loop
counterparts, and the validity of the perturbation expansion
is not in doubt.

As a final remark, we can comment also about the exper-
imental limits on the parameter regions considered in Fig. 8.
First, for the 2HDM, comprehensive studies of experimental
constraints can be found e.g. in Refs. [99,132]. In addition to
searches of charged and neutral scalars at the LHC (which are
included in HiggsBounds), results from flavour Physics –
in particular decays like b → sγ – can also limit severely
the allowed values of MH± and tan β, and for this reason we
choose to work in a 2HDM of type I (as mentioned already in
Sect. 2) where these constraints are weakest. Indeed in type
I, the lower limit on MH± decreases from approximately
440 GeV for tan β = 1 to below 200 GeV for tan β = 1.5
[99]. Additionally, with HiggsBounds-5.3.2beta, we
have verified that for M̃ = 0 and tan β ∈ [1, 1.4], BSM
scalar masses above 355 GeV are still allowed. For the IDM,
as we consider a scenario where H is a DM candidate of
mass MH 	 Mh/2, collider and DM searches do not con-
strain the mass range MΦ = MA = MH± between 200 and
500 GeV [133]. Finally, for the HSM, we have considered
a scenario with an additional Z2 symmetry under which S
is charged, and is thus inert. This considerably weakens the
existing constraints (that can become strong if h and S are
able to mix), and the range of masses MS between 200 and
500 GeV is also not constrained here [134].

6.3 Maximal possible size of the BSM corrections

Another question that we can consider is by how much the
two-loop result for the Higgs trilinear in an extended sector
λ̂BSM
hhh can deviate from its SM prediction λ̂SM

hhh , given the con-
straint of perturbative unitarity, in particular if we consider a
broader range of BSM masses and parameters. For concrete-
ness, we concentrate here on the case of the aligned scenario
of the 2HDM with mass-degenerate additional scalars. Fig-
ure 9 shows the maximal possible size of the BSM deviation
at two loops δR2� in the plane of MΦ and tan β, considering
now significantly larger ranges than in the previous section.
Once these two parameters are fixed, the value of M̃ alone
determines how large the corrections can be: the criterion
of tree-level perturbative unitarity essentially yields upper
bounds on the Lagrangian scalar quartic coupling, which via
the relations of the form M2

Φ = M̃2 + λ̃v2 translate into a
lower bound on M̃ . For MΦ sufficiently small, as considered

Fig. 9 Contour plot of the maximal possible BSM deviation of λ̂hhh
evaluated at two loops in the 2HDM from the SM result when requiring
tree-level perturbative unitarity to hold, in the plane of MΦ and tan β.
Here again, MΦ is the common mass of the heavy BSM scalars in the
2HDM, and the figure is made in the alignment limit (i.e. sβ−α = 1)

in Fig. 8 for instance, M̃ can be taken to zero without vio-
lating the unitarity conditions. However, if we now increase
MΦ we reach a point when the lower bound on M̃ is non-
vanishing, and then the reduction factors shown in Eq. (6.1)
enter into play and diminish the size of the BSM effects.
Additionally, the value of MΦ until which M̃ can remain
zero diminishes with larger tan β as the unitarity relations
then become increasingly stringent. In turn, this limits the
maximal size the BSM corrections can reach for larger tan β.

This is indeed what we can observe if we consider a hor-
izontal (i.e. constant tan β) section of Fig. 9: first when MΦ

increases, δR2� grows rapidly and deviations of more than
400% from the SM prediction are possible for small val-
ues of tan β. Then the point where M̃ cannot remain van-
ishing is reached and the BSM corrections decrease in size
for even larger MΦ . Therefore, large deviations in the Higgs
trilinear coupling are only possible in a relatively limited
area of parameter space, for low values of tan β and inter-
mediate BSM scalar masses. Given the levels of precision
envisioned for the measurement of the Higgs trilinear cou-
pling at future colliders (as discussed in the introduction),
the blue-shaded region in Fig. 9 corresponds (roughly) to the
part of parameter space that could be probed at the HL-LHC,
while the green-shaded one illustrates the potential reach of
high-energy lepton colliders, such as the 1-TeV ILC, or the
3-TeV CLIC. This discussion also shows that investigating
the Higgs trilinear coupling can allow probing the low tan β

and intermediate MΦ region of the 2HDM parameter space,
in complementarity to H± → tb searches at high-energy
colliders.
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Fig. 10 Comparison of the BSM corrections ΔλIDM
hhh ≡ λIDM

hhh − λSM
hhh

calculated at one- and two-loop orders (blue and red curves respectively)
in the MS scheme (dashed curves) and in the OS scheme (solid curves).
To obtain the MS results, we convert the OS-renormalised input param-
eters (MA, MH± , Mt , vphys) to MS, using the expressions presented in

Secs. 3 and 5. (Left side): ΔλIDM
hhh as a function of the pole mass MΦ ,

for parameters points where MA = MH± = MΦ and for λ2 = 0.5.
For the MS results, we fix Q = MΦ here. (Right side): ΔλIDM

hhh as a
function of the renormalisation scale Q, for the parameter point defined
by MA = MH± = MΦ = 400 GeV and λ2 = 0.5

6.4 An estimate of the theoretical uncertainty

Having discussed the possible size of the dominant two-loop
BSM corrections to λ̂hhh and λ̂hhhh , it is natural to conclude
by a discussion of the theoretical uncertainty associated with
our results. First of all, we need to clarify the type of effects
that we want to estimate here, and for concreteness, we con-
sider the case of the IDM, studied in Sect. 5.3. The types of
corrections that we have included in our calculations are the
O(M4

Φ/v3
phys) effects at one loop, and the O(M6

Φ/v5
phys) and

O(λ2M4
Φ/v3

phys) ones at two loops – where by MΦ we mean
here either MA or MH± , or some combination of both. There-
fore, we choose to gauge the size of the leading three-loop
corrections – of the form O(M8

Φ/v7
phys), O(λ2M6

Φ/v5
phys),

and O(λ2
2M

4
Φ/v3

phys) – by comparing the results obtained in

the MS and OS schemes for the BSM corrections to the Higgs
trilinear coupling.

For this comparison, we take the OS-renormalised param-
eters MA, MH± , Mt , vphys as our inputs: we use them
directly for the OS scheme results, and convert them into MS-
renormalised parameters – using Eqs. (3.19), (5.4), and (5.20)
– for use in our MS expressions. Figure 10 illustrates the
results we obtain for the BSM corrections ΔλIDM

hhh calculated
either in the OS scheme, i.e. λ̂IDM

hhh − λ̂SM
hhh , or in the MS

scheme, i.e. λIDM
hhh − λSM

hhh , at both one and two loop(s). The
left-hand plot shows the comparison of these different results
as a function of the degenerate mass MΦ of the heavy inert
scalars A and H±. While the difference between the one-loop
curves (in blue), which measures the typical size of two-loop

corrections, is very large – up to 75% for MΦ = 500 GeV,
the two-loop results (red curves) are much closer, and dif-
fer by at most 13% (again for MΦ = 500 GeV). If we
consider for example the situation for MΦ = 400 GeV,
we find mA(Q = MΦ) = mH±(Q = MΦ) = 434 GeV,
mt (Q = MΦ) = 157 GeV, and v(Q = MΦ) = 241 GeV. In
turn, with these values, we obtain for ΔλIDM

hhh at one loop 192
GeV (MS) and 130 GeV (OS) respectively, and at two loops
180 GeV (MS) and 168 GeV (OS). This indicates a signifi-
cant decrease in the theoretical uncertainty on the prediction
of λ̂hhh . It should be noted that the apparant small size of the
two-loop corrections in the MS scheme comes in part from a
cancellation between the terms involving λ2 and those inde-
pendent of it, which come with opposite signs (for Q = mΦ ).

The right-hand plot of Fig. 10 shows also the renormal-
isation scale dependence of the MS results for ΔλIDM

hhh at
one- and two-loop orders, compared to the OS values. A first
positive point to notice is the reduced renormalisation scale
dependence of the two-loop result (where we do not truncate
the scale dependence arising at one loop) compared to the
one-loop one. Furthermore, for most of the range of scales
shown in the figure, the agreement between schemes is signif-
icantly better at two loops than at one loop – note , however,
that for large values of Q the MS calculation breaks down
because of unphysically large logarithmic terms of the form
logm2

Φ/Q2. Varying the renormalisation scale in the MS cal-
culation by factors of 1/2 and 2 around the natural value
Q = 400 GeV yields changes of up to 4.6%, which gauge
the size of three-loop (subleading) logarithmic terms of the
form O(M8

Φ/v7
phys), O(λ2M6

Φ/v5
phys), and O(λ2

2M
4
Φ/v3

phys).
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In conclusion, we keep as our estimate of the theoretical
uncertainty on our two-loop result the value of approximately
5% (of the total result).

7 Discussion

Beyond their inherent calculational aspects, our new results
for the radiative corrections to Higgs self-couplings, and in
particular the Higgs trilinear coupling, have important con-
sequences for the physics of the considered BSM scenarios.
First and foremost, we should emphasize that these are impor-
tant examples of scenarios where some new physics does
exist close to the electroweak scale, but is hidden from obser-
vation either by alignment or by some globalZ2 symmetry. It
is then only via the precise study of Higgs boson properties
– and possible non-decoupling effects – that these scenar-
ios can be distinguished from situations where new states are
heavy and thus decoupled. Our results demonstrate that these
non-decoupling effects – found first at one-loop order – are
by no means calculational artefacts caused by a breakdown
of perturbation theory, but true physical effects derived in
a properly converging perturbative expansion. Furthermore,
we have shown that the new corrections at two loops, while
always well below the size of one-loop effects and typically
mild, give positive enhancements of the Higgs self-coupling.
It should be noted however that, given the prospects for the
measurement of λhhh at future colliders these two-loop con-
tributions could potentially be distinguishable experimen-
tally in the future. For instance, supposing a deviation of
O(100%) in the Higgs trilinear coupling (from its SM predic-
tion) were to be found at the HL-LHC, the accuracy obtained
at lepton colliders – down to 10%, c. f. the discussion in
the introduction – would require theoretical predictions at
two loops to properly interpret the measurements in terms of
the parameter space of BSM models. One may expect that
this observation would hold also for other Higgs couplings
(e.g. to gauge bosons or fermions) because, even if the non-
decoupling effects these couplings exhibit are smaller, the
predicted accuracy of their future measurements is signifi-
cantly better than for λhhh – in turn, this should also moti-
vate us to study higher-order BSM corrections to these other
couplings of the Higgs boson.

Returning to the case of the Higgs trilinear coupling, a
natural avenue for further work would be to continue the
calculation of new two-loop corrections, with both effective-
potential and diagrammatic methods. In particular, this would
imply investigating the impact of non-zero external momenta
at two loops – with extensive work necessary in this direction
– as well as the size of subleading two-loop effects. However,
for the latter, we may expect that when we include Gold-
stone bosons in the MS calculations, we will encounter IR
divergences in the limit mG,G± → 0 even if we include the

dependence on external momenta (this is the so-called “Gold-
stone Boson Catastrophe” [119]), and it will be unavoidable
to employ an OS renormalisation scheme for the Goldstone
boson masses as was done in Ref. [120] (for other solutions
see also [118,135–139]).

The precise calculation of the Higgs trilinear coupling is
also of great importance to relate the properties of theories
with extended Higgs sectors to BSM phenomena in these
models, such as for example the possibility of a strong first-
order electroweak phase transition. In particular, our findings
in this work motivate considering the calculation of two-loop
contributions to λhhh at finite temperature in models with
extended sectors, in order to study their effect on the strength
of the EWPT. This was considered already for the case of the
IDM in Ref. [85], and a mild weakening of the EWPT was
found. Moreover, the complementarity and synergy between
the measurement of λhhh at future colliders and the future
measurement of gravitational waves from a strong first-order
EWPT at LISA and DECIGO will explore the shape of the
Higgs potential, and further clarify the physics behind EWSB
– see for instance Refs. [140–143].

Turning finally to the IDM and the HSM (with an exact
Z2 symmetry), these are two examples of models with inert
sectors that can host a candidate of DM particle while evad-
ing current experimental searches. In both models, the inert
scalars have a quartic self-coupling – respectively λ2 for
the IDM and λS for the HSM – that is difficult to probe
experimentally but plays an important role for the physics of
the inert sector. Interestingly, these couplings appear in the
radiative corrections to Higgs self-couplings, starting from
the two-loop order. Moreover, they will also appear in other
couplings of the Higgs boson, such as the hγ γ coupling,
which is already measured to a high accuracy and can be
accessed to percent level at future lepton colliders such as
the ILC (see e.g. Ref. [46]). Calculating higher-order correc-
tions to Higgs couplings therefore offers a new way to probe
the hidden dynamics of theories with inert sectors.

8 Conclusion

In this paper, we have investigated two-loop corrections to
the Higgs self-couplings, building on our work in Ref. [86]
and giving details about our methods and calculations.

We have presented new general results, in terms of MS-
renormalised parameters, for the derivatives of integrals
appearing in the effective potential, which can be applied
to further models (in the absence of scalar mixing) and
also served for important cross-checks of our model-specific
computations. Indeed, we have also calculated the domi-
nant two-loop corrections to the Higgs trilinear and quar-
tic couplings in three particular BSM theories, namely a
Two-Higgs-Doublet Model in the alignment limit, the Inert-
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Doublet Model, and the Higgs Singlet Model (with an exact
Z2 symmetry). We have provided expressions for these cor-
rections both in the MS scheme and in the on-shell scheme.
In particular, we have explained our modified “on-shell” pre-
scription (originally presented in Ref. [86]) for the renormal-
isation of the soft-breaking scale M̃ of the Z2 symmetry in
the 2HDM, ensuring the explicit decoupling of the BSM cor-
rections, expressed in terms of OS-renormalised parameters,
when taking the limit M̃ → ∞ and using a relation of the
form M2

Φ = M̃2 + λ̃v2. We have also extended this result to
the case of μS in the HSM, and interestingly we found (for
both the 2HDM and the HSM) that while our prescription
is defined in terms of the corrections to the Higgs trilinear
coupling, it directly works for the corrections to the Higgs
quartic coupling.

Furthermore, we have performed an extended numerical
analysis of our results for the Higgs trilinear coupling, con-
firming that our prescription to renormalise the additional
mass scale (M̃ or μ̃S) works properly, and examining the
behaviour of the two-loop corrections. We have shown that
the leading two-loop corrections, when expressed in terms
of OS-renormalised parameters, give a positive enhancement
of the one-loop results. We have moreover investigated the
maximal size that these corrections can reach, as well as the
possibility of large new effects at two loops. Indeed, in all
three studied models, a new parameter appears in the radia-
tive corrections at two loops and this raises the question of
whether new large corrections are possible. We find that,
with the requirement of tree-level unitarity, there is no large
effect in the 2HDM, while in the IDM and HSM the cor-
rections originating from the eight-shaped diagrams in the
effective potential can become the leading two-loop contri-
butions. However, in all three cases, the two-loop corrections
do remain smaller than their one-loop counterparts, at least
as long as unitarity is preserved. All in all, while the rela-
tive size of the corrections at two loops with respect to one
loop depends greatly on the choices of parameters, we can
take as a typical estimate of the relative size of the two-loop
contributions to be O(∼ 20%) of the one-loop ones – not-
ing the caveat for the IDM and the HSM that large values of
the scalar quartic couplings λ2 or λS respectively can result
in numerically important additional contributions. For the
2HDM, we have also found that the largest possible devia-
tions of the Higgs trilinear coupling with respect to its SM
prediction occur for low tan β and intermediate masses – i.e.
MΦ between 500 and 900 GeV. Finally, we have carried out a
preliminary estimate of the theoretical uncertainty associated
with our two-loop computation of λ̂hhh , taking this time the
example of the IDM, and we found a conservative estimate
of about 5% (of the total result).
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Appendix A Notations and loop functions

This appendix summarises the notations and definitions of
loop functions employed throughout this paper.

First of all, the loop factor is defined as

κ = 1

16π2 . (A.1)

We will make use of a number of loop integrals, which we
define ind = 4−2ε dimensions, with the shorthand notations

α̂ ≡ 16π2 μ2ε

i(2π)d
and

∫

q
= α̂

∫
ddq , (A.2)

with μ denoting the regularisation scale. We also use the
definition

log x ≡ log
x

Q2 , (A.3)

where Q is the renormalisation scale, defined as Q2 =
4πe−γEμ2. At one-loop order, we encounter the two inte-
grals

A(x) ≡ −
∫

k

1

k2 − x
,

B(p2, x, y) ≡
∫

k

1

(k2 − x)((p − k)2 − y)
, (A.4)

and from their finite (and ε-independent) part, we obtain the
usual Passarino-Veltmann functions [109] as

A(x) ≡ lim
ε→0

[
A(x) + x

ε

]
= x(log x − 1) ,

B(p2, x, y) ≡ lim
ε→0

[
B(p2, x, y) − 1

ε

]
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= − log p2 − fB(x+) − fB(x−), (A.5)

where

fB(x) = log(1 − x) − x log

(
1 − 1

x

)
− 1 ,

x± = p2 + x + y ± √
(p2 + x + y)2 − 4p2x

2p2 . (A.6)

The following limits are also useful

B(0, x, y) = − A(x) − A(y)

x − y
,

B(x, 0, 0) = 2 − log x ,

B(0, x, x) = − log x ,

B(x, 0, x) = 2 − log x ,

B(x, x, x) = 2 − π√
3

− log x ,

B(x, 0, y) = 2 − log y +
( y
x

− 1
)

log

(
1 − x

y

)
. (A.7)

For loop diagrams involving fermions, we also use the func-
tion B1 given by

B1(p2, x, y) = 1

2p2

[
A(x) − A(y) + (p2 + x − y)B0(p2, x, y)

]
.

(A.8)

Because we neglect all external momenta, we only need one
master integral at two loops, namely the sunrise integral (see
e.g. [124])

I(x, y, z) ≡ −
∫

k1

∫

k2

1

(k2
1 − x)(k2

2 − y)((k1 + k2)2 − z)
.

(A.9)

Its finite, ε-independent, part is obtained as [111]

I (x, y, z) ≡ lim
ε→0

[
I(x, y, z) − 1

ε
[A(x) + A(y) + A(z)]

− 1

2

(
1

ε2 − 1

ε

)
[x + y + z]

]
. (A.10)

Several expressions for I – only differing by dilogarithm
identities – can be found in numerous references in the liter-
ature, see e.g. Refs. [111,121,144]. Furthermore, a number of
useful limits can be found in Refs. [111,120], among which

I (0, 0, x) ≡ − 1

2
x log

2
x + 2x log x − 5

2
x − π2

6
x ,

I (0, x, x) ≡ − x log
2
x + 4x log x − 5x ,

I (x, x, x) ≡ 3

2
x(− log

2
x + 4 log x − 5 + cxxx ) , (A.11)

where cxxx is a numerical constant defined as

cxxx ≡ − i√
3

[
π2

9
− 4Li2

(
1

2
− i

√
3

2

)]

≈ 2.3439 ,

(A.12)

Li2 being the dilogarithm function.

Appendix B Complete expressions for the 2HDM

We give in this appendix some expressions for the 2HDM
that we have deemed too long for the discussion in the main
text.

Appendix B.1 Derivatives of V (2)
FFS for degenerate BSM

scalar masses

The complete expressions for the derivatives (with the oper-
ators D3 and D4) of the 2HDM effective potential diagrams
involving both the top quark and BSM scalars are:

D3V
(2)
FFS = 48m2

t cot2 β

v5

{
− 2(m2

Φ − m2
t )(m

2
Φ − M2)3

m2
Φ(m2

Φ − 4m2
t )

+ (28M6 − 72M4m2
Φ + 72M2m4

Φ − 31m6
Φ)m4

t + 28m4
Φm6

t

m4
Φ(m2

Φ − 4m2
t )

+
[

12M4 − 6M2(2m2
Φ − 3m2

t ) + 4m2
Φ(m2

Φ − 3m2
t )

+ 2M6(−2m8
Φ + 15m6

Φm2
t − 24m4

Φm4
t − 10m2

Φm6
t + 12m8

t ))

m4
Φ(m2

Φ − m2
t )(m

2
Φ − 4m2

t )
2

]
logm2

Φ

+ 6m4
t

[
− 1 + M6(m4

Φ − 10m2
Φm2

t + 12m4
t )

m4
Φ(m2

Φ − m2
t )(m

2
Φ − 4m2

t )
2

]
logm2

t

− 24M6m8
t

m5
Φ(m2

Φ − 4m2
t )

5/2

[
π2

3
− log2 m2

t

m2
Φ

+ 2 log2

(
1

2
− 1

2

√

1 − 4m2
t

m2
Φ

)

− 4Li2

(
1

2
− 1

2

√

1 − 4m2
t

m2
Φ

)]}
, (B.1)

and,
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D4V
(2)
FFS = 192m2

t cot2 β

v6

{
− 4m2

t (3m
2
Φ − m2

t ) − 3M2(m2
Φ − 9m2

t ) + 9M4

m2
Φ

(m2
Φ − m2

t )

− M6(9m4
Φ − 21m2

Φm
2
t − 62m4

t )

m4
Φ(m2

Φ − 4m2
t )

− M8(−3m8
Φ + 18m6

Φm
2
t + 12m4

Φm
4
t − 160m2

Φm
6
t + 124m8

t )
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When working beyond O(M4
t ), the scheme translation also

requires new BSM contributions to the one-loop top-quark
self-energy. Indeed, with respect to its SM expression – given
in equation (5.4) – it receives the following new one-loop
terms

Π
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t t (p2)

∣∣∣
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2,m2
t ,m

2
A)

+ B1(p
2, 0,m2

H±)
]
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B0(p

2,m2
t ,m
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t ,m

2
A)
]}

. (B.3)

Appendix B.2 Results for arbitrary BSM scalar masses

We give in this section results for the 2HDM, when not
assuming the masses of the BSM scalars to be degenerate
as in the main text.

First, the dominant BSM contributions to the 2HDM effec-
tive potential at two loops read
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(B.4)
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Then, applying the operators D3 and D4 to these effec-
tive potential contributions, we obtain the leading two-loop
corrections to λhhh and λhhhh , in terms of MS-renormalised
parameters, as
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and,
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(B.8)

Although somewhat tedious, the conversion of these
results into the OS scheme poses no conceptual prob-
lem, and can be performed using the expressions in equa-
tions (3.19), (5.11), (B.3), as well as

κ−1 δOSM2
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H
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(B.9)

Appendix C Intermediate functions for the general
expressions

Appendix C.1 Non-degenerate mass case

While expressions for derivatives of the effective potential
simplify greatly when some masses are degenerate, in the
general case, they are more involved and we have defined the
following functions to reduce the length of our results.
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φxyz ≡m2
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Appendix C.2 Limits for degenarate masses

We find when all mass arguments are equal

Δmmm = −3m4, ωmmm = 0, Ξmmm = 3m6,

χmmm = −m6, Θmmm = −15m8, θmmm = 12m10,

μmmm = −9m8, νmmm = −18m8, ρmmm = −3m8,

τmmm = −27m8, Φmmm = 9m8, φmmm = 0,

ζmmm = 2m4, rmmm = −m2, tmmm = 3m2

ξmmm = m6, ammm = −3m8, emmm = 135m10,

fmmm = −27m10, gmmm = 27m14, hmmm = 0,

nmmm = 33m8, pmmm = −48m8, qmmm = −6m8,

ummm = −93m8, vmmm = 69m8, wmmm = −12m10,

Ammm = −7m8, Bmmm = −39m8. (C.2)

When there are two different masses, we have
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