
c .

SLAC-PUB-1839 (Revised)
November 19 76
Revised April 1977
(T/E)

A NEW ALGORITHM FOR ADAPTIVE MULTIDIMENSIONAL INTEGRATION*

G. Peter Lepage
Stanford Linear Accelerator Center

Stanford University, Stanford, California 94305

ABSTRACT

A new general purpose algorithm for multidimensional integration

is described. It is an iterative and adaptive Monte Carlo scheme. The

new algorithm is compared with several others currently in use, and

shown to be considerably more efficient than all of these for a number

of sample integrals of high dimension (nL4).
.‘_

r....:. *

.1..*,,
a.

._ -., .
*x-+

..y;
;yf ,,.- ;

.$...

(Submitted tfE’i[‘Comput. Phys.)

*Work supported by the Energy Research and Development Administration.

-l-

I. INTRODUCTION

One of the most important computational problems facing physicists today

is the evaluation of multidimensional integrals with complicated and sometimes

very poorly behaved integrands. To cite but a single example drawn from

elementary particle theory, integrals over four or more variables are routinely

encountered in the computation of scattering amplitudes using Feynman pertur-

bation theory [l]. In this note a new algorithm for multidimensional integration

is described. It employs an iterative and adaptive Monte Carlo scheme.

Among the characteristics of this algorithm are:

a. A reliable error estimate for the integral is readily

computed.

b. The integrand need not be continuous for the algorithm to

function and, in particular, step functions pose no problem.

Thus integration over hypervolumes of irregular shape is

straightforward.

C. The convergence rate is independent of the dimension of

the integral.

d. The algorithm is adaptive. It automatically concentrates

evaluations of the integrand in those regions where the

integrand is largest in magnitude.

Characteristics (a) - (c) are common to all Monte Carlo methods [2-41. Char-

acteristic (d) is the single most important feature of this algorithm. The major

problem in multidimensional integration is the exponential growth with increas-

ing dimension of the integration volume over which the integrand must be

sampled. For example, applying any 5-point integration rule (e.g. , Gauss-

Legendre integration) along each coordinate axis of a 9-dimensional integral

-2-

requires 5 9 - 2 x lo6 evaluations of the integrand-a formidable number for all

but the simplest integrands. Thus any general purpose integration algorithm

for use in high dimensions should be adaptive.

In Section II we briefly review the general features of Monte Carlo integra-

tion [2-43 and previous work using this approach. In Section III we describe the

new algorithm for integration over a single variable. The method is generalized

for use in n dimensions in Section IV. Finally in Section V, we compare the

performance of this algorithm with a number of others currently in use. It is

shown to be considerably more efficient for several sample integrals of high

dimension (n ~4). In the Appendix we discuss some simple modifications of the

basic approach which may improve it in particular applications.

II. MONTE CARLO INTEGRATION

Consider the integral of a function of n variables < = (x1, . . . , xn) over a

volume 9:

I= J d”; f(r;i
D

If M points (2) are randomly selected from a distribution of points in s1 with

density p(z), it is easily shown that the integral is approximated by

p = ;2 ,Cg-
2 P(X)

(1)
--I as M-m

where the probability density function is normalized to unity:

J &p(Z) = 1
L?

-3-

The quantity S (1) is expected to fluctuate about the true value of the integral as

different sets of M random points are chosen. ,The variance of this fluctuation

is given by

czJ +- J cm(zj 2

g2 = sl P()[1 a
M

For M large, this quantity is approximated by

o2= d2) - (sq2
M-l (2)

where

The standard deviation a indicates the accuracy of S (1) as an estimate of I. Note

that reliable estimates of the variance are possible only if the integral

J&Z32
CJ P(f;j

is finite, though even if it is not, S (1) may still approximate I on the average.

There are a number of techniques used to reduce the variance (r2 for fixed

M. Two of the more popular methods used in multidimensional integration are:

a. Importance Sampling: Here the density p(z) is varied to reduce

As is well known, the optimal variance is obtained when

P(3 = If63 I

J cz If(s;l G?
Thus when using importance sampling function evaluations are

(3)

concentrated where the integrand is largest in magnitude (whether

or not it is flat there).

,

-4-

b. Stratified Sampling: To reduce the variance, the integration

volume can be subdivided into N smaller volumes of varying

sizes. Then a Monte Carlo integration is performed in each

subvolume using M/N random points. The variance is varied

by changing the relative sizes and locations of the subvolumes

and is minimized when the contributions to o2 from each sub-

volume are identical (=a2/N). Thus when using stratified

sampling function evaluations are concentrated where the

potential error is largest-i. e. , where the integral is both

large and rapidly changing.

These and other methods of variance reduction appear to be inappropriate

for general purpose integration algorithms as they require detailed knowledge

of the integrand’s behavior prior to implementation. However Sheppey [5] has

devised an iterative algorithm which uses information generated about the inte-

grand during a Monte Carlo integration to reduce the variance in subsequent

integrations. He employs stratified sampling. Initially the algorithm divides

the n dimensional integration volume (a hypercube) into N” identical hypercubes

using a uniform rectangular grid. A 2-point Monte Carlo integration is per-

formed in each hypercube generating a contribution to the total integral and to

the variance. The variances from the hypercubes are then used to define new

grid spacings along each axis for use in the next iteration, keeping the total

number of hypercubes constant. Thus over a number of iterations hypercubes

can be gradually concentrated where the variance was initially largest, and the

variance reduced.

This algorithm has enjoyed widespread usage in theoretical physics (see [l]

for example) and is quite successful for many applications in two or more

-5 -

dimensions. The procedure’s greatest strength lies in its ability to adapt to

the integrand being considered. However the extent to which it can adapt is

determined by the number of grid increments along each axis (N), and N in turn

is limited by the total number of integrand evaluations (M) allowed per iteration

(n = dimensionality):

M=2Nn

This limitation proves to be a serious handicap in high dimensions (e.g. ,

M < lo6 for n=9 -N < 4)) as will be illustrated in Section V.

A number of other techniques similar to Monte Carlo methods have also

been suggested for multidimensional integration [2,3,6,7J . These quasi-Monte

Carlo techniques generally converge faster than l/M m for analytic integrands.

However they are not adaptive and so may require prohibitively large numbers

of function evaluations in high dimensions when the integrand has sharp peaks,

Furthermore it is not clear that they are able to integrate functions which are

neither analytic nor even continuous. Also no simple estimate of the error is

available in most cases.

III. THE ALGORITHM IN ONE DIMENSION

The restrictive relation between the numbers of increments and of function

calls in Sheppey’s method can be avoided using importance sampling rather than

stratified sampling to reduce the variance. Intuitively importance sampling

seems the inferior of the two methods [3]. However in practice the ability to

adapt is the overriding consideration for high dimensions.

Like Sheppey’s, the algorithm described here is iterative. To illustrate

consider a one-dimensional integration:

J
1

I= dx f(x)
0

-6-

Initially an M-point Monte Carlo integration is performed with a uniform proba-

bility density @(x)=1). Besides providing estimates of the integral and the

possible error (Eqs. (1) and (2)), the M integrand evaluations can also be used

to define an improved probability density for use in the next (M-point) Monte

Carlo integration. In this fashion an empirical variance reduction can be

gradually introduced over several iterations.

There exist standard numerical techniques for generating lists of evenly

distributed ‘pseudo-random’ numbers. It is more difficult, however, to gen-

erate numbers from an arbitrary distribution with density p(x). For present

purposes it is natural that p(x) be a step function with N steps. The probability

of a random number being chosen from any given step is defined to be a constant,

equal to l/N for all steps:

1
Ptx) = Nki

where

xi-Axip= xi

i=l I-**, N

lE
i=l

aXi=

The probability distribution is tailored to particular integrands simply by

adjusting the increment sizes Axi. In practice N is limited by the computer

storage space available and must be held constant from iteration to iteration

@I=50 to 100 typically).

Given M integrand evaluations, the probability distribution or, equivalently,

the increment density is refined by subdividing each increment Axi into mi+l

subintervals where

f Ax.
mi=K F’lLcj (4

-7-

and

fi = 3 If(x) I
x E xi-Ax. 1

X.
1 l Cc- Ax J dx If(x)1

i xi-&.
1

Thus each interval is subdivided into as many as K+l subintervals (K is fixed

at 1000 typically), and its contribution to the weight function increased in pro-

portion to its contribution to the integral of If(x) I, as required by (3). As it is

desirable to restore the number of increments to its original value (=N), groups

of the new intervals must be amalgamated into larger intervals, the number of

subintervals in each group being constant (to preserve the increment density).

The net effect is to alter the increment sizes, while keeping the total number

constant, so that the smallest increments occur where If(x)1 is largest. The

new grid is used and further refined in subsequent iterations until the optimal

grid has been obtained (i. e. , mi=m.
3

i, j = 1, . . . , N).

In practice it is best to damp the subdivision algorithm thereby avoiding

rapid, destabilizing changes in the grid from iteration to iteration. For

example, this can be done by using [5]

in place of (4). The parameter o determines the rate of convergence and is

typically set between 0.2 and 2.

The values fi must be discarded after each iteration because of storage

limitations. However a cumulative estimate of the integral and its error can

-8-

be made which uses every evaluation of the integrand:

I c$ -lJ2 C-Z [1 i o.
1

(5)

Here Ii and o: are the integral and standard deviation estimated in iteration i

using Eqs. (1) and (2). When the integrand has high, narrow peaks, Ii and oi

are sometimes badly underestimated in the earliest iterations (before the

algorithm has adapted). To partially correct for this effect, it may be better

to replace Eqs. (5) by

I2
C’i jj

f= 0 i .

12l
c+
i o.

1

I2 [1
-l/2

“f=f x+
i (7.

1

In any event the x2

QimTJ2
x2? c-

i a2 i

or c!!!j
i i

(7)

should not greatly exceed the number of iterations (minus one). The algorithm

cannot be trusted when it does.

The number of iterations and the number of integrand evaluations per itera-

tion needed clearly depend upon the complexity of the integrand and the accuracy

being sought. In general it is best to use as few integrand evaluations per

-9-

iteration as are required by the algorithm to converge smoothly to the optimal

grid, at least until it has converged. Once the optimal grid has been found

(approximately), the uncertainty (7) in the integral becomes roughly propor-

tional to l/M l/2 , M being the number of integrand evaluations.

IV. THE ALGORITHM IN n DIMENSIONS

The algorithm described above is easily generalized to handle integrals of

arbitrary dimensionality. To illustrate the modifications consider

I=(J 1
dx dy fk Y)

0

A separable probability density function is adopted to limit data storage require-

ments:

P@, Y) = P,(X) Py(Y)

In this case the optimal densities are easily shown to be

P,(X) =

with a similar result for py(y). Thus the one dimensional algorithm can be

applied along each axis but with 5 (in Eq. (4)) defined by

X.
(F.)2 = 2 c fp

x EXi-~i Y P,(Y)

X.
1 i Cc- / dx (9 PyW

y] f2(x,
Ax i xi-Ax.

1

for the x axis and with an analogous definition for the y axis. The generalization

to arbitrary dimension is obvious.

- 10 -

V. NUMERICAL EXAMPLES

We have encoded this algorithm in a Fortran IV program called VEGAS

and compared its performance with a number of other multidimensional inte-

gration methods. A sampling of these results is presented in Tables I -V.

The test integral for Tables I and II has a spherically symmetric Gaussian

placed in the center of the integration region:

In=~---$r[dnxexp[~(xi~~‘) (8)

where a=O. 1 and n=4,9. Partial results from several iterations of VEGAS are

shown, illustrating the convergence of the algorithm (cr=2.0, 1.0 for n=4,9).

For comparison estimates of In using crude Monte Carlo @(x)=1) and using

Gauss-Legendre formulae along each axis are also exhibited. Of course VEGAS

is far superior to crude Monte Carlo. VEGAS is also considerably more effi-

cient than Gauss-Legendre integration (especially when n=9), even though the

integrand and all of its derivatives are analytic and bounded throughout the inte-

gration region. These examples illustrate the importance of using adaptive

algorithms for integration in high dimension.

In Table III VEGAS is compared with a code (SHEP) written by Sheppey

employing the algorithm described in Section II. Here the test integral has

and

tW0

spherically symmetric Gaussians equally spaced along the diagonal of the inte-

gration volume:

The integration was done for n=2,4,7,9 with a=O. 1. The Qptimal Standard

Deviation’ quoted in this table is the standard deviation computed on any

- 11 -

iteration after the optimal grid has been achieved. Results averaged over

15 iterations (Eqs. (6)) are also presented.

For high dimensions (nz4), VEGAS converges with far fewer function

evaluations than SHEP. The number of function evaluations is independent of

the number of increments per axis in VEGAS, and so it is better able to adapt

to the integrand in high dimension than is SHEP. Note that when the algorithms

are equally adaptive (n < 4)) SHEP performs as well as or better than VEGAS-as

expected.

In Table IV we compare VEGAS with the quasi-Monte Carlo methods sug-

gested by Tsuda [71 and by Haselgrove [61. The test integral is the most

difficult considered by Tsuda [7]:

“1 -1
I= / 0

dyl . . . I 0
dys Xv, . - - y8)

where c is chosen such that f(0. . . 0) = 104. Neither of the quasi-Monte Carlo

methods allows a simple error estimate and so this must be inferred from the

convergence of the estimates of I. VEGAS is the superior algorithm though

Tsuda’s method is almost as efficient when many function evaluations are

employed.

Fin& we present the results of a seventh order calculation (in Feynman

perturbation theory) of part of the decay rate of orthopositronium into three

photons. The contribution presented here is from the ladder kernel (I” in
g’

Ref. [S]). No analytic result is known; the best numerical estimate is

(-5.90 i 0.07) cvro/7r. Note that the integral contains a step function

0(1-x1-x2) and is therefore zero throughout half the integration volume.

- 12 -

VI. CONCLUSIONS

It is clear that any general purpose multidimensional integration method

should be adaptive. We have demonstrated that adaptive Monte Carlo methods

are quite effective, especially in high dimensions or with nonanalytic integrands

where simple generalizations of the well known one dimensional methods are

not so generally applicable. Of course if the integrand is analytic and smooth,

techniques such as Gauss-Legendre or quasi-Monte Carlo integration may

frequently be superior to adaptive Monte Carlo integration, though for such

integrands the latter is more than sufficient to obtain the three or four significant

digits usually required in scientific applications.

The author is indebted to.Dr. S. J. Brodsky for his comments and suggestions.

He also thanks Drs. K. J. F. Gaemers, W. E. Caswell and J. Friedman for many

discussions.

- 13 -

APPENDIX

The use of importance sampling as described in Section III is formally

equivalent to making the variable transformation x=g(y)

1 1
I= / dx f(x) = J dy WY)) g’(y) (11)

0 0

with g’(y) = p(g(y))-I and performing a Monte Carlo integration with uniformly

distributed points{ yi}. The algorithm presented in Section III adjusts g’(y) such

that gW = If(W)) 1-l thereby improving the Monte Carlo estimate of the inte-

gral. For some integrands it is possible to further reduce the variance through

use of other well known methods (stratified sampling, antithetic variates,

quasi-random numbers,. . . [2]) applied to the smoothed integrand f(g(y)) g’(y) in

(11). For example, rather than choosing M random points uniformly distributed

on 0 < y < 1, the sampling can be stratified by selecting two points in each of - -

M/2 subintervals of [0, l] ,

The optimal definition of g’(y) may differ from that in Section III when addi-

tional variance reduction is used. Thus for stratified sampling, g’(y) should

perhaps be chosen such that the variation (rather than the value itself) of

g’(y) f(g(y)) in each subinterval is uniform over all subintervals.

Trial runs of a modified VEGAS, incorporating stratified sampling, suggest

considerable gains in efficiency in low dimensions (where the modified algorithm

is very similar to Sheppey’s) but very little improvement in higher dimensions.

Work is still in progress on this and similar modifications of VEGAS.

- 14 -

REFERENCES

1. J. Aldins et al. , Phys. Rev. D 1 (1970), 2378;

P. Pascual and E. de Rafael, Nuovo Cimento Lett. 4 (1970), 1144;

G. Grammar, Jr. and T. Kinoshita, Nucl. Phys. B80 (1974), 461.

2. J. M. Hammersley and D. C. Handscomb, “Monte Carlo Methods, I’

Chapters 3,5, Methuen, London, 1964.

3. A. H. Stroud, “Approximate Calculation of Multiple Integrals, ” Chapter 6,

Prentice-Hall, Englewood Cliffs, New Jersey, 1971.

4. J. H. Halton, SIAM Review 12 (1970), 1.

5. A computer program using Sheppey’s method is described in A. Dufner,

Proceedings of the Colloquium on Computational Physics, Marseille, 1970,

p I-46 (unpublished) ;

B. Lautrup, Proceedings of the Colloquium on Computational Physics,

Marseille, 1971, p I-57 (unpublished).

6. C. B. Haselgrove, Math. Comp. 15 (1961), 323.

7. T. Tsuda, Numer. Math. 20 (1973), 377.

8. W. E. Caswell et al., Phys. Rev. Lett. 38 (1977), 488.

- 15 -

Table 1. Integration of a single Gaussian in 4 dimensions.

The exact result is 1.

VEGAS

Iteration Per Iteration

Ii u.
1

Cumulative

i
"I

No. of Integrand

Evaluations

1 0.790 0.313 0.790 0.313 1000

3 0.970 0.063 0.977 0.059 3000

5 0.952 0.023 0.975 0.018 5000

10 1.008 0.016 0.994 0.007 10 000

Crude Monte Carlo 0.890 0.149 10 000

GAUSS-LEGENDRE Integration

No. of Points/Axis Integral

5 6.664

6 0.164

No. of Integrand Evaluations

625

1296

10 0.892 10 000

13 * 1.008 28 561

- 16 -

Table II. Integration of a single Gaussian in 9 dimensions.

The exact result is 1.

VEGAS

Integration Per Iteration

Ii u.
1

Cumulative No. of Integrand
T

7
Evaluations

1 0.007 0.005 0.007 0.005 lo4

3 0.643 0.070 0.612 0.064 3x lo4

5 1.009 0.041 0.963 0.034 5x104

10 1.003 0.008 1.001 0.005 lo5

Crude Monte Carlo 0.843 0.360 lo5

GAUSS-LEGENDRE Integration

No. of Points/Axis Integral No. of Integrand Evaluations

5 71.364 2.0x106

6 0.017 1.0x lo7

10 0.774 log

15 1.002 3.8~10~’

**
**

(4 **

9

09Z 906 E

PO’ F

06'0

z;Z'O

9

000 OLT

fj=U L=U

*
*

(E? O’I
P

89L ZE

)+.I

d3HS

800' F
PO0 'I

EO'O

01

000 oz

p&I z=u

PO' F
96'0

90 '0

OS

000 001

63

LOO’ F

166'0

zo '0

OS;

000 091

L=U

5x0' F
STO'T

SO'0

09

000 ZE

L=U

SV33A

900’ *
EOO ‘I

zo ‘0

ZOO’ 5
666'0

LOO ‘0

09

000 oz

pa

OS

000 oz

z=u

I
z 1

- 18 -

Table TV. Integrand (10) using VEGAS, Tsuda’s algorithm [71, and

Haselgrove’s algorithm IS]. The exact result is 1. The

numbers for Tsuda’s method are from Table I in Ref. [71.

No. of Integrand

Evaluations
VEGAS TSUDA (n=40) HASELGROVE (s2)

1000 1.083
f .085 1.248 11.019

5000 1.003
f .004 0.982 2.946

10 000

20 000

1.000
f .002

1.000
I .OOl

1.006 1.974

1.002 1.484

- 19 -

Table V. Contribution of ladder graph to decay rate of

orthopositronium (in units of (~l?~/?r).

No. Function Evaluations/Iteration

No. Increments/Axis

Optimal Standard Deviation

Cumulative Result After 15 Iterations

VEGAS
n=5

33 000

50

0.73

-5.82
f .22

SHEP
n=5

33 000

7

1.21

-6.34
f .35

