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Abstract

The present state of the theoretical predictions for the hadronic heavy hadron produc-
tion is not quite satisfactory. The full next-to-leading order (NLO) O(α3

s) corrections to
the hadroproduction of heavy quarks have raised the leading order (LO) O(α2

s) estimates
but the NLO predictions are still slightly below the experimental numbers. Moreover, the
theoretical NLO predictions suffer from the usual large uncertainty resulting from the free-
dom in the choice of renormalization and factorization scales of perturbative QCD. In this
light there are hopes that a next-to-next-to-leading order (NNLO) O(α4

s) calculation will
bring theoretical predictions even closer to the experimental data. Also, the dependence
on the factorization and renormalization scales of the physical process is expected to be
greatly reduced at NNLO. This would reduce the theoretical uncertainty and therefore
make the comparison between theory and experiment much more significant.

In this thesis I have concentrated on that part of NNLO corrections for hadronic
heavy quark production where one-loop integrals contribute in the form of a loop-by-loop
product. In the first part of the thesis I use dimensional regularization to calculate the
O(ε2) expansion of scalar one-loop one-, two-, three- and four-point integrals. The Laurent
series of the scalar integrals is needed as an input for the calculation of the one-loop
matrix elements for the loop-by-loop contributions. Since each factor of the loop-by-loop
product has negative powers of the dimensional regularization parameter ε up to O(ε−2),
the Laurent series of the scalar integrals has to be calculated up to O(ε2). The negative
powers of ε are a consequence of ultraviolet and infrared/collinear (or mass ) divergences.
Among the scalar integrals the four-point integrals are the most complicated. The O(ε2)
expansion of the three- and four-point integrals contains in general classical polylogarithms
up to Li4 and L-functions related to multiple polylogarithms of maximal weight and depth
four. All results for the scalar integrals are also available in electronic form.

In the second part of the thesis I discuss the properties of the classical polylogarithms.
I present the algorithms which allow one to reduce the number of the polylogarithms in
an expression. I derive identities for the L-functions which have been intensively used
in order to reduce the length of the final results for the scalar integrals. I also discuss
the properties of multiple polylogarithms. I derive identities to express the L-functions in
terms of multiple polylogarithms.

In the third part I investigate the numerical efficiency of the results for the scalar
integrals. The dependence of the evaluation time on the relative error is discussed.

In the forth part of the thesis I present the larger part of the O(ε2) results on one-loop
matrix elements in heavy flavor hadroproduction containing the full spin information. The
O(ε2) terms arise as a combination of the O(ε2) results for the scalar integrals, the spin
algebra and the Passarino-Veltman decomposition. The one-loop matrix elements will be
needed as input in the determination of the loop-by-loop part of NNLO for the hadronic
heavy flavor production.
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Chapter 1

Introduction

At the leading order (LO) Born term level, heavy quark production mechanisms have been
studied some time ago [1, 2, 3, 4, 5, 6]. The next-to-leading order (NLO) corrections to
unpolarized heavy quark hadroproduction were first presented in [7, 8, 9, 10], and in [11,
12] for photoproduction. Corresponding results with initial particles being longitudinally
polarized were calculated in [13] and [14, 15, 16, 17]. The calculation of NLO corrections
to top-quark hadroproduction with spin correlations of the final quarks was performed
in [18]. Analytical results for the so called “virtual plus soft” terms were presented in
[9, 10, 12, 15] for the photoproduction and unpolarized hadroproduction of heavy quarks.
Complete analytic results for the polarized and unpolarized photoproduction of heavy
quarks, including real bremsstrahlung, can be found in [17].

The full next-to-leading order (NLO) corrections to the hadroproduction of heavy
quarks have raised the leading order (LO) estimates but several initial analysis’ showed
a serious disagreement with experimental results [19, 20, 21]. Recently the situation has
considerably improved in that a more refined NLO analysis (due to considerably more
precise experimental input for the b-quark fragmentation function as well as other QCD
parameters) now shows signs of rapprochement between theory and the new experimental
data (see [22] and references therein for the new CDF measurements as well as [23, 24, 25]).
However, the NLO predictions are still slightly below the experimental numbers. Moreover,
the theoretical NLO predictions suffer from the usual large uncertainty resulting from the
freedom in the choice of renormalization and factorization scales of perturbative QCD.
In this light there are hopes that a next-to-next-to-leading order (NNLO) calculation will
bring theoretical predictions even closer to the experimental data. Also, the dependence
on the factorization and renormalization scales of the physical process is expected to be
greatly reduced at NNLO. This would reduce the theoretical uncertainty and therefore
make the comparison between theory and experiment much more significant. In Fig. 1.1
I show one generic diagram each for the four classes of gluon-induced contributions that
need to be calculated for the NNLO corrections to hadroproduction of heavy flavors. They
involve the two-loop contribution (Fig. 1.1a), the loop-by-loop contribution (Fig. 1.1b),
the one-loop gluon emission contribution (Fig. 1.1c) and, finally, the two gluon emission
contribution (Fig. 1.1d). A similar classification holds for the quark-induced contributions.

1



2 Chapter 1. Introduction

c )

a ) b )

d )

Figure 1.1: Exemplary gluon fusion diagrams for the NNLO calculation of heavy hadron
production.

In this thesis I concentrate on the loop-by-loop contribution Fig. 1.1b. Specifically,
working in the framework of the dimensional regularization scheme [26, 27, 28] with n =
4− 2ε dimensions, I will present O(ε2) results on all scalar one-loop one-, two-, three- and
four-point integrals that are needed in the calculation of hadronic heavy flavour production.
Based on these results I present also the matrix elements for quark-induced and part of
the contributions to gluon-induced heavy flavour production up to O(ε2). The coefficients
of the Laurent series expansion up to O(ε0) were already presented in [29]. In this thesis
I present analytical results for the ε- and ε2-coefficients of the ε-expansion including also
their imaginary parts. Since the one-loop integrals exhibit ultraviolet (UV) and infrared
(IR)/collinear (or mass (M)) singularities up to O(ε−2) one needs to know the one-loop
integrals up to O(ε2) because the one-loop contributions appear in product form in the
loop-by-loop contributions1 (Fig. 1.1b). It is clear that not only the calculation of the scalar
integrals has to be performed up to O(ε2) but also the spin algebra and the Passarino-
Veltman decomposition of tensor integrals (required for the calculation of matrix elements
for heavy flavour production) in the one-loop contributions also have to be done up to
O(ε2).

Let me briefly describe the procedure for the calculation of scalar one-loop one-, two-,
three- and four-point integrals. One introduces Feynman parameter representations for
each of the two-, three- and four-point integrals. The one-point integral does not need
Feynman parameterization. Then one performs a Wick rotation and integrates over the
whole Euclidean momentum space. For the one-point integral the result is ready. For
the two-, three- and four-point integrals one is left with one-, two- and three-dimensional
integration over Feynman parameters, respectively. The general idea is to integrate an
integrand over Feynman parameters keeping the full ε-dependence of the result as long as

1In a more general setting the Laurent-series expansion of the scalar integrals is needed if the integration-
by-parts technique [30, 31] is employed. The reason is that the solution of the recursion relations induced
by the integration-by-parts technique can bring in negative powers of ε.
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possible. When one faces the impossibility for further analytical integration, one expands
the respective integrand in ε up to O(ε2) and then analytically integrates the expanded
integrand term by term.

The general case of massive scalar one-loop integrals was studied some time ago [32, 33],
where a general one-loop N -point integral was expressed in terms of hypergeometric func-
tions of several variables. Recently, there have been a number of papers where the authors
took a more general attitude to calculate the ε-expansion of massive one-loop integrals.
They write down general representations of the ε-expansion of one-loop integrals for gen-
eral kinematic configurations. In [34] an attempt was made to compare the results of [34]
with the results of the more general approaches whenever possible. In papers [35, 36] the
all-order ε-expansion of one-loop two-point and of certain three-point functions was done
explicitly by expanding the relevant hypergeometric functions. One-fold integral represen-
tations for general three- and four-point functions, as well as ways to get expansion terms
of order ε for 3-point functions, were worked out in a recent paper [37]. The publications
[32, 33, 36, 37] also contain a comprehensive list of references on the subject.

However, in general, the required ε-expansion (including ε2-terms) is not readily avail-
able for all the integrals needed in the hadronic heavy flavour production process. Also,
the analytic continuation of the above mentioned hypergeometric functions in [32, 33, 37]
to the appropriate kinematical regions of validity is not always possible. This mainly con-
cerns the four-point functions. In addition, it is more convenient to present results for
the ε-expansion in terms of simpler special functions, in the form convenient for numerical
evaluation. And finally, collecting together all the necessary scalar integrals needed for the
derivation of tensor integrals entering the loop-by-loop contribution constitutes a first step
in the difficult task of obtaining the NNLO corrections to heavy flavor hadroproduction
cross section.

The notation of this thesis will remain very close to the notation introduced and used in
[9, 10, 29]. For the calculation of the NNLO virtual corrections to hadroproduction of heavy
flavors one needs the same set of scalar master integrals as given in the Appendix A of [9, 10]
(the relevant set of master integrals is listed in Table 1.1). However, as explained above,
knowledge of their singular and finite terms is not sufficient for the calculation of NNLO
loop-by-loop corrections. For that purpose one needs to know the one-loop integrals up to
O(ε2) including also their imaginary parts which equally well contribute to the modulus
squared of the one-loop amplitudes. The imaginary parts of the one-loop integrals are really
needed only up to O(ε) since the highest singularity of the imaginary parts is only O(ε−1)
compared to O(ε−2) for the real parts. Nevertheless it was decided to include O(ε2) results
also for the imaginary parts which may be of interest in other applications. Consequently, in
this thesis I present the relevant expressions for all scalar integrals needed in the calculation
of the NNLO loop-by-loop corrections to hadroproduction of heavy flavors. For reasons of
comprehensiveness I decided to include also the singular and finite (i.e. O(ε0)) parts of the
scalar integrals in this presentation. They agree with the results of the real contributions
presented in [9, 10].

A comment on the length of the formula expressions for the scalar one-loop integrals is
appropriate. The untreated computer output of the integrations is generally quite lengthy.
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Table 1.1: List of one-, two-, three- and four-point massive one-loop functions calculated
up to O(ε2).

Nomenclature of [9, 10] This nomenclature Novelty Comments
1-point A(m) A – Re
2-point B(p4 − p2, 0,m) B1 – Re

B(p3 + p4,m,m) B2 – Re, Im
B(p4, 0,m) B3 – Re
B(p2,m,m) B4 – Re
B(p3 + p4, 0, 0) B5 – Re, Im

3-point C(p4, p3, 0,m, 0) C1 new Re, Im
C(p4,−p2, 0,m,m) C2 new Re
C(−p2, p4, 0, 0,m) C3 – Re
C(−p2,−p1, 0, 0, 0) C4 – Re, Im
C(−p2,−p1,m,m,m) C5 – Re, Im
C(p3, p4,m, 0,m) C6 – Re, Im

4-point D(p4,−p2,−p1, 0,m,m,m) D1 new Re, Im
D(−p2, p4, p3, 0, 0,m, 0) D2 new Re, Im
D(−p2, p4,−p1, 0, 0,m,m) D3 new Re

The hard work is to simplify these expressions. I have written semi–automatic computer
codes that achieve the simplifications using known identities among polylogarithms and
using a number of identities for the L–functions introduced in this thesis.

As was already mentioned above one obtains the O(ε2) results of the corresponding
matrix elements for the hadronic heavy flavour production based on the results for the
massive scalar one-loop integrals. Let me emphasize the importance of knowing one-
loop matrix elements which contain the full spin information of the relevant subprocess.
When the one-loop contributions are folded with the Born term contributions and spin is
summed, as in a NLO rate calculation, the information on the spin content of the one-
loop contribution is lost and cannot be reconstructed from the rate expressions. On the
other hand, having expressions for matrix elements allows one to easily derive the one-
loop contributions to partonic cross section including any polarization of the incoming or
outgoing particles. Also, it allows one to obtain any of the crossed processes, including
the ones with a heavy incoming particle. This thesis presents almost complete results on
a NNLO calculation of partonic matrix elements for the set of one-loop Feynman graphs
present in hadroproduction of heavy flavors, separately for every Feynman diagram in order
to facilitate the use of the results for the photon-induced processes γ + g → Q + Q and
γ + γ → Q+Q that differ by color factors.

The hadroproduction of heavy flavors proceeds through the following two partonic
channels:

g + g → Q+Q, (1.1)
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where g denotes a gluon and Q(Q) denotes a heavy quark (antiquark), and

q + q̄ → Q+Q, (1.2)

where q(q̄) is a light massless quark (antiquark).
As mentioned above the Abelian part of the NLO result for (1.1) provides the NLO

corrections to heavy flavor production by the collision of two on-shell photons

γ + γ → Q+Q, (1.3)

with the appropriate color factor substitutions. The results for (1.1) can be also used to
determine corresponding amplitudes for heavy flavor photoproduction

γ + g → Q+Q. (1.4)

One should mention that the partonic processes (1.1) and (1.2) are needed for the calcula-
tion of the contributions of single- and double-resolved photons in the photonic processes
(1.3) and (1.4).

NLO cross sections for the process (1.3) have already been determined in [38, 39, 40] for
unpolarized and in [40, 41] for polarized initial photons. Note that the authors of [41] used a
nondimensional regularization scheme to regularize the poles of divergent integrals. In the
papers [38, 41] analytic results were presented for “virtual plus soft” contributions alone.
It should be noted that complete analytical results including hard gluon contributions
can be found only in [40]. The reaction (1.3) will be investigated at future e+- e−– linear
colliders. NLO corrections for the heavy quark production cross section (1.3) are of interest
in themselves as they represent an background to the intermediate Higgs boson searches
for Higgs masses in the range of 90 to 160 GeV.

The thesis is organized as follows. In Chap. 2 I present the results for all scalar one-loop
one-, two-, three- and four-point integrals that are needed in the calculation of hadronic
heavy flavour production. Some calculational details can also be found there. In Chap. 3
I discuss identities involving classical polylogarithms. I develop algorithms based on these
identities which allow one to reduce the number of the polylogarithms in the expressions
containing polylogarithms. The scalar master integrals contain a large number of different
polylogarithms after integration. Therefore the algorithms are very useful for the simplifi-
cation of the results. The algorithms are written in the internal programming language of
the computer algebra system Mathematica [42]. They are presented in Appendix B.1, B.2
and C. In Chap. 4 I discuss properties and identities involving the single- and triple-index
L−functions introduced in Chap. 2. A judicious use of these identities has allowed me to
considerably reduce the length of the final analytical results for the three– and four–point
functions. In addition in Chap. 4 I discuss the multiple polylogarithms introduced by Gon-
charov [43] and discuss how they are related to the classical polylogarithms [44], Nielsen’s
generalized polylogarithms, the harmonic polylogarithms of Remiddi and Vermaseren [45]
and the two-dimensional harmonic polylogarithms [46]. It is also explicitly shown how the
L−functions can be expressed in terms of multiple polylogarithms. In Chap. 5 I discuss
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the numerical efficiency of the results for the massive one-loop scalar integrals obtained in
Chap. 2. In Chap. 6 I present the one-loop matrix elements for quark-induced and larger
part of the contributions to gluon-induced heavy flavour production up to O(ε2) basing on
the results of Chap. 2. Finally, in Chap. 7 I give a summary and an outlook.



Chapter 2

Calculation of the scalar master
integrals

2.1 One- and two-point functions

I start with the one-loop one-point function which is defined by

A(m) = µ2ε
∫ dnq

(2π)n
1

q2 −m2
. (2.1)

Before giving the results for the integral (2.1) we first consider a generalization of the
integral (2.1), which is needed in the calculation of the other N-point functions (N=2,...,4):

µ2ε
∫ dnq

(2π)n
1

(q2 −K)N
. (2.2)

The parameter function K appears due to the Feynman parametrization of the two-, three-
and four-point functions. It is a function of the external momenta and the internal masses
of the corresponding Feynman graphs (see later Eqs. (2.19), (2.40) and (2.63)). Working in
n = 4− 2ε dimensions, one performs a so-called Wick rotation of the energy component of
the n-momentum q (see e.g. [47]). In the integral (2.2) the integration for all components
qi(i = 0, ..., n− 1) of the momentum runs from −∞ to +∞. Consider the integration over
the q0 component. In Fig. 2.1 one can see how the integration from −∞ to +∞ can be
changed to the integration from −i∞ to +i∞. In the parameter K one always assumes
an infinitely small imaginary shift −iδ ( it corresponds to the “causal” infinitely small
positive imaginary shift +iδ in the propagators). The points in Fig. 2.1 show the poles for
the variable q0 on the complex plane for the case of positive K (K > 0). The pole in the
second quadrant of the complex plane is located at

−
√
q2

1 + ...+ q2
n−1 +K +

iδ

2
√
q2

1 + ...+ q2
n−1 +K

+O(δ2) (2.3)

7
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Re (q0)

Im (q0)
C

r

Figure 2.1: Singularities and integration contour for the integral (2.2) in the q0 plane.

and the pole in the fourth quadrant is located at

+
√
q2

1 + ...+ q2
n−1 +K − iδ

2
√
q2

1 + ...+ q2
n−1 +K

+O(δ2). (2.4)

In the case of negative K there are no poles. Let us consider the contour C in Fig. 2.1.
Inside of this contour there are no poles for any K. Therefore the integral over the closed
contour C vanishes due to Cauchy’s theorem. Then one takes the limiting case r → +∞.
For n < 2N the integrand for the variable q0 vanishes fast enough for large |q0| so that the
contributions of the integration on the arcs drops out for |q0| = r → +∞. Therefore the
integral over q0 from −∞ to +∞ plus the integral over q0 from +i∞ to −i∞ are equal to
zero. Thus one can replace the integral over the real axis from −∞ to +∞ by one over
the imaginary axes −i∞ to +i∞. After change of the integration variables

q0 → ix1, q1,2,...,n−1 → x2,3,...,n . (2.5)

the integral (2.2) transforms into

µ2ε
∫ idnx

(2π)n
1

((ix1)2 − x2
2 − ...− x2

n −K)
N =

µ2εi(−1)N
∫ dnx

(2π)n
1

(x2
1 + x2

2 + ...+ x2
n +K)

N , (2.6)

where the integration runs over the whole n-dimensional Euclidean space: −∞ < xi < +∞.
One introduces n-dimensional spherical coordinates

xi ≡ r
n−1∏
k=i

sin θk cos θk−1 , i = 2, ..., n− 1

x1 ≡ r
n−1∏
k=1

sin θk , xn ≡ r cos θn−1 (2.7)
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with the integration ranges

r ∈ [0,+∞), θ1 ∈ [0, 2π], θ2,...,n ∈ [0, π] . (2.8)

From the Jacobian one obtains the integration measure dxn = rn−1drdΩn−1 with

dΩn−1 ≡
n−1∏
k=1

sink−1 θkdθk . (2.9)

Using Eqs. (2.7) and (2.9) one writes the integral (2.6) in the form

µ2εi(−1)N
+∞∫
0

rn−1dr

(r2 +K)N

∫ dΩn−1

(2π)n
. (2.10)

Using

π∫
0

dθ sinm(θ) =

√
π Γ

(
m+1

2

)
Γ
(
m+2

2

) (2.11)

one integrates the angular part of (2.10):

∫ dΩn−1

(2π)n
=

1

(2π)n

2π∫
0

dθ1

n−1∏
k=2

π∫
0

sink−1 θkdθk =

2π

(2π)n

n−1∏
k=2

√
π Γ

(
k−1+1

2

)
Γ
(
k−1+2

2

) =
(
√
π)n−2

(2π)n−1

n−1∏
k=2

√
π Γ

(
k
2

)
Γ
(
k+1

2

) =

π−
n
2 2−n+1

Γ
(

2
2

)
Γ
(

3
2

) × Γ
(

3
2

)
Γ
(

4
2

) × ...× Γ
(
n−1

2

)
Γ
(
n
2

)
 =

π−
n
2 2−n+1

Γ
(
n
2

) . (2.12)

The integral for the variable r can be expressed through the beta function

+∞∫
0

rn−1dr

(r2 +K)N
=
K

n
2
−NB

(
N − n

2
, n

2

)
2

=
K

n
2
−NΓ

(
N − n

2

)
Γ
(
n
2

)
2Γ(N)

. (2.13)

Using Eqs. (2.12) and (2.13) one arrives at the following result for the integral (2.10) which
is equal to the integral (2.2):

µ2ε
∫ dnq

(2π)n
1

(q2 −K)N
= µ2εi(−1)N ×

K
n
2
−NΓ

(
N − n

2

)
Γ
(
n
2

)
2Γ(N)

× π−
n
2 2−n+1

Γ
(
n
2

) =

µ2εi(−1)Nπ−
n
2 2−nK

n
2
−NΓ

(
N − n

2

)
Γ(N)

=
iµ2ε(−1)N(4π)−2+εK2−N−εΓ(−2 +N + ε)

Γ(N)
, (2.14)
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where in the last step one uses n = 4−2ε. Conventionally, one also extracts the coefficient
Cε(m

2) defined as

Cε(m
2) ≡ Γ(1 + ε)

(4π)2

(
4πµ2

m2

)ε
. (2.15)

Combining Eqs. (2.14) and (2.15) one writes the final result for the integral (2.2) as

µ2ε
∫ dnq

(2π)n
1

(q2 −K)N
= iCε(m

2)
(−1)NΓ(−2 +N + ε)

Γ(N)Γ(1 + ε)
m2εK2−N−ε =

iCε(m
2)

(−1)NΓ(−2 +N + ε)

Γ(N)Γ(1 + ε)
(m2)2−NK̃2−N−ε , (2.16)

where the dimensionless parameter K̃ ≡ K/m2 was introduced. Note that the result
Eq. (2.16) does not depend on m2. If one counts all powers of m2 also from Cε(m

2) and K̃
one obtains that the resulting power is equal to zero. This statement is in the full agreement
with the expression for the initial integral (2.2). Looking at Eq. (2.2) one realizes that this
integral does not depend on m2. The formula (2.16) will be used for the calculation of all
the N -point functions needed in this thesis.

Let us now return to the calculation of the one-point function Eq. (2.1). In this case
one can directly use Eq. (2.16) with N = 1 and K̃ = m2/m2 = 1. One immediately arrives
at the result for the one-point function

A(m) = iCε(m
2)

m2

ε(1− ε)
, (2.17)

where m is the internal loop mass. The ε-expansion for this one-point function Eq. (2.17)
can be written in the general form:

A(m) = iCε(m
2)

m2

ε(1− ε)
= iCε(m

2)m2
{

1

ε
+ 1 + ε+ ε2 +O(ε3)

}
. (2.18)

The one-loop two-point functions are defined by [9, 10]

B(q1,m1,m2) = µ2ε
∫ dnq

(2π)n
1

(q2 −m2
1)[(q + q1)2 −m2

2]
, (2.19)

where the mi (i = 1, 2) can be either m or 0. In the denominators of the relevant functions
I always imply the “causal” +iδ prescription to deal with the singularities in Minkowski
space. One applies Feynman parametrization (see e.g. [47]):

1

D1D2 × ...×DN

= (N − 1)!

1∫
0

{dx}N
[x1D1 + ...+ xNDN ]N

,

{dx}N ≡ dx1dx2...dxNδ(1− x1 − x2 − ...− xN). (2.20)
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After that the two-point function will be written as

B(q1,m1,m2) = µ2ε
∫ dnq

(2π)n

1∫
0

1∫
0

dx1dx2δ(1− x1 − x2)

(x1(q2 −m2
1) + x2[(q + q1)2 −m2

2])
2 =

µ2ε
∫ dnq

(2π)n

1∫
0

dx

(a(q2 −m2
1) + b [(q + q1)2 −m2

2])
2 , (2.21)

where the set of parameters {a, b} corresponds to an arbitrary choice from the permutations
of the set {x, 1−x}. The fact that the choice is arbitrary is a consequence of the symmetry
of the l.h.s. of Eq. (2.20) under the permutations of Di. Shifting the integration variable
q → q − bq1 one obtains

a(q2 −m2
1) + b

[
(q + q1)2 −m2

2

]
q→q−bq1−→ q2 −

(
−abq2

1 + am1 + bm2

)
(2.22)

for the denominator of Eq. (2.21), where one has used the fact that a + b = 1. Using
Eq. (2.22) one obtains

B(q1,m1,m2) = µ2ε
∫ dnq

(2π)n

1∫
0

dx

(q2 −KB)2 =

1∫
0

dxµ2ε
∫ dnq

(2π)n
1

(q2 −KB)2 (2.23)

with

KB ≡ −abq2
1 + am1 + bm2 − iδ . (2.24)

Finally applying formula (2.16), one is left with a one-fold parametric integral for the
two-point functions:

B(q1,m1,m2) =
iCε(m

2)

ε

1∫
0

dx K̃−εB , (2.25)

with the kernel K̃B given by

m2K̃B = −abq2
1 + am2

1 + bm2
2 − iδ . (2.26)

For each particular two-point function one should make a judicious choice of the set {a, b}
from the permutations of the set {x, 1− x} in order to get the most convenient kernel for
the integration.

In what follows, I will always present the results for the scalar functions separately for
the real and imaginary contributions. I introduce the Mandelstam-type variables

s ≡ (p1 +p2)2, t ≡ T −m2 ≡ (p1−p3)2−m2, u ≡ U−m2 ≡ (p2−p3)2−m2, (2.27)

with the kinematical condition on external momenta being p1+p2 = p3+p4 (i.e. s+t+u = 0)
and the on-shell conditions are p2

1 = p2
2 = 0, p2

3 = p2
4 = m2 (see also Chap. 5 for the physical
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p
4

p
2− p

4
p

2− p
3 4

p+ p
3 4

p+

B2

p
3 4

p+ p
3 4

p+

B5

B4

p
4

B1

m m

m

p p
22

m

m

B

m

p
4

3

Figure 2.2: Two-point functions. Thick and thin internal lines correspond to massive and
massless propagators, respectively. Thick legs represent massive momenta on-shell. Thin
legs represent massless momenta on-shell. Dashed external lines correspond to off-shell
momenta.

restrictions of the s and t variables). Momenta p1 and p2 correspond to the two incoming
massless particles. Momenta p3 and p4 correspond to the two outgoing particles (see for
example Fig. 2.4). Note that the variables t and u defined in (2.27) are not the usual
Mandelstam variables.

There are altogether five different two-point scalar functions Bi (i = 1, 2, ..., 5) (see
Fig. 2.2) needed for hadronic heavy flavor production [9, 10]. Again I choose to extract
a common factor iCε(m

2), where Cε(m
2) is defined in (2.15). The coefficients of the ε-

expansion are denoted by B
(j)
i , i.e. one writes

Bi = i Cε(m
2)
{

1

ε
B

(−1)
i +B

(0)
i + εB

(1)
i + ε2B

(2)
i +O(ε3)

}
. (2.28)

The ε-expansion of the two-point functions starts at ε−1. It turns out that B
(−1)
i = 1 for

all i. The first two-point function

B1 ≡ B(p4 − p2, 0,m) (2.29)

is real for the kinematics of the reaction which can be seen by drawing the appropriate
Feynman diagram for B1 and applying the Landau-Cutkosky rules. The same statement
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holds true for the two-point functions B3 and B4 to be discussed later on. One has

ReB
(−1)
1 = 1, (2.30)

ReB
(0)
1 = 2− t

T
ln
−t
m2

,

ReB
(1)
1 = 2ReB

(0)
1 +

t

T
ln2 −t

m2
+
t

T
Li2(

T

m2
),

ReB
(2)
1 = 2ReB

(1)
1 −

t

T

[
1

3
ln3 −t

m2
+ 2Li3(

T

t
) + Li3(

T

m2
)
]

;

ImB
(j)
1 = 0. (2.31)

The second scalar two-point function

B2 ≡ B(p3 + p4,m,m) (2.32)

has both real and imaginary parts. Defining β = (1− 4m2/s)1/2 and x = (1− β)/(1 + β)
we obtain

ReB
(−1)
2 = 1, (2.33)

ReB
(0)
2 = 2 + β lnx,

ReB
(1)
2 = β

[
4

β
− 2 ln(

sβ2

m2
) +

1

2
ln2(

sβ2

m2
) + 4 ln(1− x)− 2 ln2(1− x)− 4ζ(2)− 2Li2(x)

]
,

ReB
(2)
2 = 2ReB

(1)
2 + β

[
4ζ(2) ln(

sβ2

m2
)− 1

6
ln3(

sβ2

m2
) + 4ζ(2) ln(1− x)− 2 ln x ln2(1− x)

+
4

3
ln3(1− x) + 2ζ(3)− 4Li3(1− x)− 2Li3(x)

]
;

ImB
(0)
2 = πβ, ImB

(1)
2 = πβ

[
2− ln(

sβ2

m2
)

]
, (2.34)

ImB
(2)
2 = 2ImB

(1)
2 + πβ

[
1

2
ln2(

sβ2

m2
)− 2ζ(2)

]
.

The remaining three two-point functions have a simple structure:

B3 ≡ B(p4, 0,m) = iCε(m
2)

1

ε(1− 2ε)

= iCε(m
2)
{

1

ε
+ 2 + 4ε+ 8ε2 +O(ε3)

}
; (2.35)

B4 ≡ B(p2,m,m) = iCε(m
2)

1

ε
; (2.36)

B5 ≡ B(p3 + p4, 0, 0) = iCε(m
2)

Γ2(1− ε)
Γ(2− 2ε)

(
−s+ iδ

m2

)−ε
1

ε
. (2.37)

The results for B3 and B4 in (2.35), (2.36) are not separately listed in the standard format

B
(j)
i which can of course be read off from the relevant expressions (2.35), (2.36). The
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two-point function B5 (2.37) has both real and imaginary parts:

ReB
(−1)
5 = 1, (2.38)

ReB
(0)
5 = 2− ln

s

m2
,

ReB
(1)
5 = 2ReB

(0)
5 − 4ζ(2) +

1

2
ln2 s

m2
,

ReB
(2)
5 = 2ReB

(1)
5 + 4ζ(2) ln

s

m2
− 1

6
ln3 s

m2
− 2ζ(3);

ImB
(0)
5 = π, ImB

(1)
5 = π

[
2− ln

s

m2

]
, (2.39)

ImB
(2)
5 = 2ImB

(1)
5 + π

[
1

2
ln2 s

m2
− 2ζ(2)

]
.

I have done various checks on the above results. First of all, they were double-checked,
i.e. the results were obtained by two independent calculations. Secondly, they were checked
numerically by verifying that the original integrals (after Feynman parametrization and
integrating out the loop momentum, and for B1 and B2 also expanding in ε) are equal
numerically to the final integrals. I have also verified these results by extracting the relevant
expressions from general formulae given in [32, 33, 35]. In particular, the coefficients (2.30)
may be obtained from Eq. (10) of [32] and then using Eq. (2.14) of [35]. The results
(2.33), (2.34) can be obtained from Eqs. (2.10) and (2.14) of [35]. Finally, the expressions
(2.35)− (2.37) can also be obtained from Eqs. (10), (17) and (8), respectively, of [32].

There is one more special case of the two-point integral which is needed for the cal-
culation of the self-energy insertion into external massive fermion lines. This integral is
used for the definition of the fermion mass and wave function renormalization constants in
the on-shell renormalization scheme. This specific two-point function is given in App. A
of this thesis.

2.2 Three-point functions

The one-loop three-point functions are defined by [9, 10]

C(q1, q2,m1,m2,m3) = µ2ε
∫ dnq

(2π)n
1

(q2 −m2
1)[(q + q1)2 −m2

2][(q + q1 + q2)2 −m2
3]
.

(2.40)
The three masses m1,m2 and m3 come in various combinations of zero and nonzero masses
where all nonzero masses are equal to m as before. After applying Feynman parametriza-
tion Eq. (2.20) one obtains

C(q1, q2,m1,m2,m3) =

2µ2ε
∫ dnq

(2π)n

1∫
0

1∫
0

1∫
0

dx1dx2dx3δ(1− x1 − x2 − x3)

(x1D1 + x2D2 + x3D3)3 =
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2µ2ε
∫ dnq

(2π)n

1∫
0

dx1

1−x1∫
0

dx2
1

(x1D1 + x2D2 + (1− x1 − x2)D3)3

x2→(1−x1)x2
=

2µ2ε
∫ dnq

(2π)n

1∫
0

dx1

1∫
0

dx2(1− x1)×

× 1

(x1D1 + x2(1− x1)D2 + (1− x1 − x2(1− x1))D3)3

x1→(1−x1)
=

2µ2ε
∫ dnq

(2π)n

1∫
0

dx1dx2x1

((1− x1)D1 + x2x1D2 + x1(1− x2)D3)3 , (2.41)

where Di corresponds to the arbitrary choice between the propagators in the denominator
of Eq. (2.40). Substituting Di one obtains

C(q1, q2,m1,m2,m3) =

2µ2ε
∫ dnq

(2π)n

1∫
0

dx1dx2x1

(a(q2 −m2
1) + b [(q + q1)2 −m2

2] + c[(q + q1 + q2)2 −m2
3])

3 (2.42)

for the three-point function, where the set of parameters {a, b, c} above corresponds to an
arbitrary choice from the permutations of the set {x1x2, x1(1 − x2), 1 − x1}. One shifts
the integration variable q → q − bq1 − c(q1 + q2). Then one makes use of the fact that
a + b + c = 1. Finally applying the formula (2.16) one is left with a two-fold parametric
integral for the three-point functions:

C(q1, q2,m1,m2,m3) = −iCε(m2)(m2)−1

1∫
0

dx1dx2 x1K̃
−1−ε
C , (2.43)

with the kernel K̃C given by

m2K̃C = −abq2
1 − ac(q1 + q2)2 − bcq2

2

+am2
1 + bm2

2 + cm2
3 − iδ. (2.44)

For each particular three-point function one should make a judicious choice of the set
{a, b, c} from the set {x1x2, x1(1− x2), 1− x1} in order to get the most convenient kernel
for the subsequent integrations.

There are six different types of three-point functions Ci (i = 1, 2, ..., 6) (see Fig. 2.3)
needed for the calculation purposes [9, 10]. They have both real and imaginary parts
except for C2 and C3 which are real. This can also be seen from the Feynman diagrams
representing C2 and C3 and applying the Landau-Cutkosky rules. Their ε-expansion is
again written in the following universal format

Ci = i Cε(m
2)
{

1

ε2
C

(−2)
i +

1

ε
C

(−1)
i + C

(0)
i + εC

(1)
i + ε2C

(2)
i +O(ε3)

}
, (2.45)
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Figure 2.3: Three-point functions. Thick and thin internal lines correspond to massive and
massless propagators, respectively. Thick legs represent massive momenta on-shell. Thin
legs represent massless momenta on-shell. Dashed external lines correspond to off-shell
momenta.

where the ε-expansion now starts at ε(−2). Note that the coefficients C
(−2)
i are purely real.

It turns out that the O(ε2) results for the three-point functions can no longer be
presented in terms of classical polylogarithms but require a new class of functions given by
the one-fold integral representations defined below. To write down the results in a short
and convenient form, I introduce the following functions:

Lσ1σ2σ3(α1, α2, α3, α4) =
∫ 1

0
dy

ln(α1 + σ1y) ln(α2 + σ2y) ln(α3 + σ3y)

α4 + y
, (2.46)

and

Lσ1(α1, α2, α3, α4) =
∫ 1

0
dy

ln(α1 + σ1y)Li2(α2 + α3y)

α4 + y
. (2.47)

Here the σi (i = 1, 2, 3) take values ±1 and the αj’s are either integers {1, 0,−1} or else
kinematical variables. The above L-functions arise naturally in the calculational frame-
work1. They can all be expressed in terms of so-called multiple polylogarithms of maxi-
mum weight four [43, 48] (see Sec. 4.3 for details). However, I choose to write the results

1According to A. Davydychev the functions analogous to the triple-index functions Lσ1σ2σ3 also arise
in the approach of [35] when one analytically continues their Eq. (3.2) for the O(ε2) terms.
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in terms of the above single- and triple-index L-functions for several reasons. The results
look simpler, e.g. they can be expressed as one-fold integrals of products of logarithms and
dilogarithms, and are shorter. I have also found that the L-functions are much easier to
evaluate numerically than the corresponding multiple polylogarithms (see[49] for relevant
details).

There exist simple algebraic relations between these L-functions based on either sym-
metry relations regarding permutations of indices and change of integration variables or
on relations based on integration-by-parts techniques. I describe them in Secs. 4.1 and 4.2.
In particular this means that the results on the three- and four-point functions can all be
written in terms of the L−++ and L+++ variants of the triple–index Lσ1σ2σ3 functions in
Eq. (2.46), and of the L+ variant of the single–index Lσ1 function of Eq. (2.47).

I start with the three-point function C1 defined by

C1 ≡ C(p4, p3, 0,m, 0).

One obtains

ReC
(−2)
1 = ReC

(−1)
1 = 0, (2.48)

ReC
(0)
1 =

1

2sβ
[ln2 x+ 4Li2(−x) + 2ζ(2)],

ReC
(1)
1 = − 1

sβ

[
1

6
ln3 s

m2
+ 2 ln

s

m2
ln(1− x) ln x+ ln(1− x) ln2 x− 4ζ(2) ln

s

m2

+ 2 ln
s

m2
Li2(x) + 5ζ(3)− 4Li3(1− x) + 2Li3(x) + 2Li3(1− x2)

− 8Li3(
1

1 + x
)
]
,

ReC
(2)
1 =

1

sβ

[
7

48
ln4 s

m2
− 11

24
ln3 s

m2
lnx− 1

4
ln2 s

m2

(
ln2(1− x) + 6 ln(1− x) ln x

+ 5 ln2 x
)

+ ln
s

m2

(
1

3
ln3(1− x)− 7

2
ln2(1− x) ln x+

11

24
ln3 x

)
− 1

3
ln3(1− x) ln x− 1

4
ln2(1− x) ln2 x+

5

2
ln(1− x) ln3 x+

55

48
ln4 x

− 7

8

(
3 ln2 s

m2
+ 10 ln

s

m2
lnx+ 16 ln(1− x) ln x+ 3 ln2 x

)
ζ(2)

+
1

2

(
ln

s

m2
− 11 lnx

)
ζ(3) +

5

2
ζ(4)− 2Li22(−x) + Li2(x)

(
− ln2 s

m2

+ 2 ln(1− x) ln x+ 7 ln2 x− 2 ln
s

m2
(ln(1− x)− lnx)− 10 ζ(2)

)
+ Li2(−x)

(
−13

4
ln2 s

m2
− 2 ln

s

m2
(ln(1− x)− lnx) + 2 ln(1− x) ln x

+
31

4
ln2 x− 6 ζ(2)

)
+ 4Li3(1− x)

(
ln

s

m2
+ 2 ln(1− x)− lnx

)
− Li3(−x)

(
21

2
ln

s

m2
+ 20 ln(1− x) +

29

2
lnx

)
− 4Li3(x)

(
ln

s

m2
+ 2 ln(1− x)
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+
5

2
ln(x)

)
− Li3

(
1

1 + x

)(
3 ln

s

m2
+ 4 ln(1− x)− 2 ln x

)
− 2Li3

(
1− x2

)
×(

ln
s

m2
+ 2 ln(1− x)− lnx

)
− 4 Li4(1− x)− 4 Li4

( −x
1− x

)
+ 12 Li4(−x)

+ 28Li4(x) + 17Li4

(
1

1 + x

)
− 17Li4

(
x

1 + x

)
+ 4Li4

(
1− x2

)
+ 4Li4

(
−x2

1− x2

)
− L−++

(
1, x−1, x−1, 0

)
+ L−++

(
1, x−1, x−1, x

)
+ 2L−++

(
1, x, x−1, 0

)
− 2L−++

(
1, x, x−1, x−1

)
− 2L−++

(
1, x, x−1, x

)
+ L−++(1, x, x, 0)

− L−++

(
1, x, x, x−1

)
+ 2L−++

(
1 + x−1, 0, 0,−1

)
− 2L−++(1 + x, 0, 0,−1)

− 2L−++

(
1 + x−1, 0, 0,−1− x

)
+ 2L−++

(
1 + x, 0, 0,−1− x−1

)
+ 2L+

(
0, 0,−x−1, x

)
− 2L+

(
0, 0,−x, x−1

)
− 4L+(0, 0,−x, x)

− 4L+

(
0,−x−1, x−1,−1

)
+ 4L+

(
0,−x−1, x−1,−1− x

)
+ 4L+(0,−x, x,−1)

+ 4L+

(
0,−x−1, x−1,−1− x−1

)
− 4L+(0,−x, x,−1− x)

− 4L+

(
0,−x, x,−1− x−1

)
− 4L+

(
0,
−x

1− x
,

x

1− x2
,−1

)
+ 4L+

(
0,
−x

1− x
,

x

1− x2
,−1− x

)
+ 4L+

(
0,
−x

1− x
,

x

1− x2
,−1− x−1

)
+ 2L+

(
x−1, 0,−x−1, x

)
+ 2L+

(
x−1, 0,−x, x

)
− 3L+++

(
0, 0, x−1, x

)
− L+++

(
0, 0, x, x−1

)
+

3

2
L+++

(
0, x−1, x−1, x

)
+ 3L+++(0, x−1, x, x)

+ L+++

(
0, x, x−1, x−1

)
+

1

2
L+++

(
0, x, x, x−1

)
− 2L+++

(
x−1, x, x−1, x

)]
;

ImC
(−1)
1 = 0, ImC

(0)
1 =

π

sβ
lnx, (2.49)

ImC
(1)
1 = − π

2sβ

[
2 ln

s

m2
lnx− 4 ln(1− x) ln x+ ln2 x+ 4ζ(2)− 4Li2(x)

]
,

ImC
(2)
1 =

π

6sβ

[
3 ln2 s

m2
lnx− 12 ln

s

m2
ln(1− x) ln x+ 3 ln

s

m2
ln2 x− 6 ln(1− x) ln2 x

+ ln3 x− 12 ln
s

m2
Li2(x)− 24Li3(1− x)− 12Li3(x) + 12ζ(2) ln

s

m2
+ 12ζ(3)

]
.

I have not been able to derive the corresponding result from the known general hyperge-
ometric function that represents the above integral in [32, 33]. On the other hand, for a
general three-point function, an expression for the order ε-terms was obtained in [50] in
terms of simple polylogarithms up to Li3. However, I believe that the result Eq. (5.21) in
[50] is not applicable to the case of the function C1 as one faces singularities resulting from
vanishing denominators in the arguments of the relevant logarithms and polylogarithms. I
have checked the final result numerically against the original two-fold and one-fold Feyn-
man parameter integrals (after ε-expanding the corresponding integrand). This was done
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term by term for coefficients at the corresponding orders in ε. Although the result for
the ε2-coefficient looks lengthy, the final analytic results (2.48), (2.49) for the three-point
function C1 integrate numerically very fast (in fraction of a second on a desktop computer
for a chosen numerical point) and without any problems. In comparison, the numerical in-
tegration of the one-fold integral by the computer algebra system Mathematica [42] took
eight times longer, and that of the two-fold integral even 200 times longer to evaluate. In
addition, because of various branch cuts, the one- and two-fold integrals would only allow
integrations in the complex plane of kinematical variables, while for the physical region
they have severe problems.

The integral C2 is real and finite:

C2 ≡ C(p4,−p2, 0,m,m);

ReC
(−2)
2 = ReC

(−1)
2 = 0, (2.50)

ReC
(0)
2 =

1

t

[
ζ(2)− Li2(

T

m2
)
]
,

ReC
(1)
2 =

1

3t

[
ln3 −t

m2
+ 6 ln

−t
m2

Li2(
T

m2
) + 9ζ(3)− 6Li3(

T

t
)− 9Li3(

T

m2
)
]
,

ReC
(2)
2 =

1

24t

[
−5 ln4 −t

m2
+ 12ζ(2) ln2 −t

m2
+ 12ζ(2) ln2 −T

m2
− 12 ln2 −t

m2
Li2(

T

m2
)

−24 ln
−t
m2

ln
−T
m2

Li2(
T

m2
)− 24ζ(3) ln

−t
m2

+ 24ζ(3) ln
−T
m2

+24 ln
−t
m2

Li3(
T

t
) + 24 ln

−T
m2

Li3(
T

t
) + 24 ln

−t
m2

Li3(
T

m2
)

+48 ln
−T
m2

Li3(
T

m2
) + 192ζ(4)− 24Li4(

m2

−t
)

+12L−++(1,−m
2

T
,−m

2

T
, 0)− 12L−++(

t

T
, 0, 0,−1)

]
;

ImC
(j)
2 = 0. (2.51)

This result was checked numerically against the original double parametric representation
(obtained after doing Feynman parametrization) of this integral expanded in powers of ε.
I could not obtain similar expressions from known general results for this integral, as the
ε-expansion of the relevant hypergeometric function is problematic. In addition, it turns
out that the general result for the order ε-terms for the massive three-point function of
[50] does not allow for a straightforward extraction of the corresponding expression for
this particular case. More exactly, the equation Q3(y) = 0 originating from the table in
[50] (on page 608), does not have solutions for the relevant kinematics. In this sense, the
expressions for the coefficients of the ε- and ε2-terms for C2 represent a new result.

The integration of the function C3 defined by

C3 ≡ C(−p2, p4, 0, 0,m)
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requires the construction of a subtraction term since an ε-expansion of the relevant inte-
grand does not straightforwardly lead to the desired ε-expansion of the integral. This is
best illustrated in a simple example which nevertheless captures the essential idea of the
subtraction method. Consider the integral∫ 1

0
dx x−1+εf(x, ε) (2.52)

where f(x, ε) is an integrable function in the interval [0, 1] and has derivatives in ε. For the
sake of the argument take f(x, ε) to have a Laurent series expansion starting at the zeroth
order in ε, i.e. f(x, ε) = f (0)(x) + εf (1)(x) + . . .. It is clear that expanding the integrand

x−1+εf(x, ε) =
1

x
f (0)(x) + ε

(
lnx

x
f (0)(x) +

1

x
f (1)(x)

)
+ . . .

does not in general render the integral integrable. However, if one writes∫ 1

0
dxx−1+εf(x, ε) =

∫ 1

0
dx
(
x−1+ε

)
+
f(x, ε) + f(0, ε)

∫ 1

0
dxx−1+ε (2.53)

the terms on the r.h.s. of (2.53) are now integrable. In (2.53) I have introduced a “plus”
prescription ∫ 1

0
dx
(
x−1+ε

)
+
f(x, ε) =

∫ 1

0
dxx−1+ε(f(x, ε)− f(0, ε))

not unlike the “plus” prescription usually introduced when discussing parton splitting
functions. The ε-expansion of the integral (2.52) can now be obtained since the first
integrand on the r.h.s. of (2.53) can be expanded in ε and then be integrated term by
term whereas the second integral can be computed in closed form. The task is then to find
the appropriate subtraction terms for the integrals encountered in the calculation. This is
required for the three-point function C3 and the three four-point functions to be discussed
in the next section.

As exemplified above I derive the subtraction terms by substituting the value of the
integration variable (usually the lower or upper limit of integration) at which the given
integrand diverges into the nonsingular part of the singular integrand. Adding and sub-
tracting the subtraction term does all the job: e.g. the subtraction term contains all the
poles in a given Feynman parameter but can be easily integrated due to its simpler analytic
structure, while the rest of the integrand is now finite with respect to the same parameter
and can therefore be integrated as well. When dealing with such a finite but complicated
integration one often makes use of the integration-by-parts method to evaluate and simplify
the expressions.

Applying the subtraction method to the evaluation of the three-point function C3 one
obtains:

ReC
(−2)
3 =

1

2t
, ReC

(−1)
3 = −1

t
ln
−t
m2

, ReC
(0)
3 =

1

t

[
ln2 −t

m2
+ Li2(

T

m2
)
]
,
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ReC
(1)
3 = −1

t

[
1

3
ln3 −t

m2
+ 2Li3(

T

t
) + Li3(

T

m2
)
]
, (2.54)

ReC
(2)
3 =

1

3t

[
ln4 −t

m2
− ln3 −t

m2
ln
−T
m2
− 3ζ(2) ln2 −t

m2
+ 6ζ(3) ln

−t
m2
− 6ζ(4)

−3Li4(
T

m2
) + 6Li4(

m2

−t
)− 6Li4(

T

t
)]

]
;

ImC
(j)
3 = 0. (2.55)

Note that one can obtain corresponding expressions in terms of generalized Nielsen poly-
logarithms from Eq. (27) of [32, 33]. The corresponding hypergeometric function of three
variables Φ1 can be reduced to a hypergeometric function 2F1 of one variable and one can
then use Eq. (2.14) of [35] to get the relevant ε-expansion. I have verified agreement with
[32, 33] analytically up to O(ε). The agreement for the ε2-terms was verified numerically.

The three-point function C4 has a closed form solution:

C4 ≡ C(−p2,−p1, 0, 0, 0) =
iCε(m

2)

s

Γ2(−ε)
Γ(1− 2ε)

(
−s+ iδ

m2

)−ε
(2.56)

which is straightforward to obtain. For the ε-expansion of the real and imaginary parts of
(2.56) one gets:

ReC
(−2)
4 =

1

s
, ReC

(−1)
4 = −1

s
ln

s

m2
, ReC

(0)
4 =

1

2s

[
ln2 s

m2
− 8ζ(2)

]
,

ReC
(1)
4 =

1

s

[
4ζ(2) ln

s

m2
− 1

6
ln3 s

m2
− 2ζ(3)

]
, (2.57)

ReC
(2)
4 =

1

s

[
1

24
ln4 s

m2
− 2ζ(2) ln2 s

m2
+ 2ζ(3) ln

s

m2
+ 9ζ(4)

]
;

ImC
(−1)
4 =

π

s
, ImC

(0)
4 = −π

s
ln

s

m2
, (2.58)

ImC
(1)
4 =

π

2s

[
ln2 s

m2
− 4ζ(2)

]
,

ImC
(2)
4 =

π

s

[
2ζ(2) ln

s

m2
− 1

6
ln3 s

m2
− 2ζ(3)

]
.

For the fifth three-point integral C5 defined by

C5 ≡ C(−p2,−p1,m,m,m)

I first obtain a one-fold integral representation similar to Eq. (3.13) of [35]. As before, the
main difficulty is the derivation of the coefficient for the ε2-term. The corresponding coeffi-
cient has a complicated singularity structure as well as two branch points on its integration
path. Therefore, in order to analytically separate the real and imaginary parts for the final
result, I have divided the integration regions for the relevant terms into three parts. After
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analytical integration these terms are free of numerical instabilities and converge very fast.
One obtains

ReC
(−2)
5 = ReC

(−1)
5 = 0, (2.59)

ReC
(0)
5 =

1

2s

[
ln2 x− 6ζ(2)

]
,

ReC
(1)
5 =

1

2s

[
1

3
ln3 x− 8ζ(2) lnx+ 4 lnxLi2(x)− 6ζ(3)− 8Li3(x)

]
,

ReC
(2)
5 =

1

2s

[
4 ln x ln3(1− x)− 9

2
ln2 x ln2(1− x)− 1

3
ln3 x ln(1− x) +

1

12
ln4 x

−ζ(2)
(
3 ln2 x− 10 lnx ln(1− x) + 6 ln2(1− x)

)
− ln2 xLi2(−x)

+2
(
ln2 x− 6 ln x ln(1− x) + 3 ln2(1− x)− 6ζ(2)

)
Li2(x) + 10ζ(3) lnx

−6ζ(3) ln(1− x) + 2 (lnx+ 3 ln(1− x)) Li3(x) + 2 lnxLi3(−x)

−12 (lnx− ln(1− x)) Li3(1− x) +
45

2
ζ(4)− L−++

(
1, 0, 0,

1

−1 + x

)
+L−++

(
1, 0, 0,

x

1− x

)
− L+++

(
0, 0,

1− x
x

,−1
)

+ L+++

(
0, 0,

1− x
x

,
1

x

)
−L+++

(
0,

1− x
x

,
1− x
x

,−1
)

+ L+++

(
0,

1− x
x

,
1− x
x

,
1

x

)]
;

ImC
(−1)
5 = 0, ImC

(0)
5 =

π

s
lnx, (2.60)

ImC
(1)
5 =

π

2s

[
ln2 x− 4ζ(2) + 4Li2(x)

]
,

ImC
(2)
5 =

π

6s

[
−12 lnx ln2(1− x) + ln3 x− 12(lnx− 2 ln(1− x))(ζ(2)− Li2(x))

+12ζ(3)− 12Li3(x)− 24Li3(1− x)] .

Explicit result for this integral was given very recently in Eq. (4.4) of [36]. I have checked
agreement with [36] analytically up to O(ε). The agreement for the ε2-terms was verified
numerically.

Finally, I write down real and imaginary parts for the last required three-point function
C6 defined by

C6 ≡ C(p3, p4,m, 0,m).

One has

ReC
(−2)
6 = 0, ReC

(−1)
6 =

1

sβ
lnx, (2.61)

ReC
(0)
6 =

1

2sβ

[
−4 ln x ln(1− x) + ln2 x− 8ζ(2)− 4Li2(x)

]
,

ReC
(1)
6 =

1

6sβ

[
−6 ln2 x ln(1− x) + ln3 x− 24ζ(2) lnx+ 72ζ(2) ln(1− x) + 12ζ(3)

−12Li3(x)− 24Li3(1− x)] ,
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ReC
(2)
6 =

1

24sβ

[
−16 lnx ln3(1− x) + 24 ln2 x ln2(1− x)− 8 ln3 x ln(1− x) + ln4 x

+4 ln4(1− x) + 192ζ(2) lnx ln(1− x)− 48ζ(2) ln2 x− 240ζ(2) ln2(1− x)

−48ζ(3) lnx+ 120ζ(4) + 48Li4(x) + 96Li4(
−x

1− x
) + 96Li4(1− x)

]
;

ImC
(−1)
6 =

π

sβ
, ImC

(0)
6 =

π

sβ
[lnx− 2 ln(1− x)] , (2.62)

ImC
(1)
6 =

π

6sβ

[
−12 lnx ln(1− x) + 3 ln2 x+ 12 ln2(1− x)− 12ζ(2)

]
,

ImC
(2)
6 =

π

6sβ

[
12 lnx ln2(1− x)− 6 ln2 x ln(1− x) + ln3 x− 8 ln3(1− x)− 12ζ(2) lnx

+24ζ(2) ln(1− x)− 12ζ(3)] .

Corresponding results for C6 may be obtained from Eqs. (3.5), (3.7), (2.10) and (2.14) of
[35]. I have done an order by order numerical comparisons for the coefficients of the ε-
and ε2-terms, while other terms can be easily compared analytically. I have obtained exact
agreement.

I mention that I have checked all analytical results for the three–point functions against
numerical results provided by M.M. Weber [51] (see also [52]). I found agreement.

2.3 Four-point functions

The scalar four-point one-loop integrals with one, two or three heavy quarks running in
the loop are the most difficult to evaluate. The one-loop four-point functions are defined
by [9, 10]

D(q1, q2, q3,m1,m2,m3,m4) = (2.63)

µ2ε
∫ dnq

(2π)n
1

(q2 −m2
1)[(q + q1)2 −m2

2][(q + q1 + q2)2 −m2
3][(q + q1 + q2 + q3)2 −m2

4]
.

As before, the +iδ terms in the denominators have not been written out. Again, there is
only one internal mass scale m for the calculation purposes.

For heavy flavor production one needs three different types of four-point functions
Di (i = 1, 2, 3) which are expanded as

Di = i Cε(m
2)
{

1

ε2
D

(−2)
i +

1

ε
D

(−1)
i +D

(0)
i + εD

(1)
i + ε2D

(2)
i +O(ε3)

}
. (2.64)

Again the coefficient of the most singular part of the four-point functions is purely real,
i.e. ImD

(−2)
i = 0.

Before giving the results for the four-point functions it is necessary to discuss some
general technical features. After applying Feynman parametrization Eq. (2.20) one obtains
for the four-point function

D(q1, q2, q3,m1,m2,m3,m4) =
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6µ2ε
∫ dnq

(2π)n
× (2.65)

×
1∫

0

dx1dx2dx3x
2
1x2

(a(q2 −m2
1) + b [(q + q1)2 −m2

2] + c[(q + q1 + q2)2 −m2
3] + d[(q + q1 + q2 + q3)2 −m2

4])
4 ,

where the set of parameters {a, b, c, d} above corresponds to an arbitrary choice from the
permutations of the set {x1x2x3, x1x2(1−x3), x1(1−x2), 1−x1}. Shifting the integration
variable q → q− bq1− c(q1 + q2)− d(q1 + q2 + q3) and using the fact, that a+ b+ c+ d = 1,
one obtains

D(q1, q2, q3,m1,m2,m3,m4) = 6

1∫
0

dx1dx2dx3x
2
1x2

∫ dnq

(2π)n
1

(q2 −KD)4
, (2.66)

with

KD = abq2
1 − ac(q1 + q2)2 − ad(q1 + q2 + q3)2 − bcq2

2

−bd(q2 + q3)2 − cdq2
3 + am2

1 + bm2
2 + cm2

3 + dm2
4 − iδ . (2.67)

Finally applying the formula (2.16) one is left with a three-fold parametric integral for the
four-point functions:

D(q1, q2, q3,m1,m2,m3,m4) = iCε(m
2)(1 + ε)(m2)−2

1∫
0

dx1dx2dx3 x
2
1x2K̃

−2−ε
D , (2.68)

with the kernel K̃D given by

m2K̃D = −abq2
1 − ac(q1 + q2)2 − ad(q1 + q2 + q3)2 − bcq2

2

−bd(q2 + q3)2 − cdq2
3 + am2

1 + bm2
2 + cm2

3 + dm2
4 − iδ. (2.69)

For each particular four-point function one should make a judicious choice of the set
{a, b, c, d} from the set {x1x2x3, x1x2(1− x3), x1(1− x2), 1− x1} in order to get the most
convenient kernel for the subsequent integrations. Below I present calculational details and
results for all three four-point functions needed.

2.3.1 Four-point function with three massive propagators

First I consider the four-point function D1 with three massive propagators shown in Fig. 2.4
which is defined by

D1 ≡ D(p4,−p2,−p1, 0,m,m,m).

Substitution of the corresponding values of momenta and masses for D1 into the expression
for the kernel (2.69) gives

K̃D = act̃− bds̃+ (1− a)2 − iδ, (2.70)
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Figure 2.4: Massive box D1 with three massive propagators. Thick and thin internal lines
correspond to massive and massless propagators, respectively. Thick legs represent massive
momenta on-shell. Thin legs represent massless momenta on-shell.

where I have introduced positive valued dimensionless variables

s̃ ≡ s

m2
, t̃ ≡ − t

m2
. (2.71)

The kinematical conditions s̃ ≥ 4, t̃ ≥ 1, s̃ ≥ t̃ constrain the allowable region of phase space
for the present physical 2 → 2 process (see also Sec. 5.1). The choice for the parameters
{a, b, c, d} is {1 − x1, x1x2x3, x1x2(1 − x3), x1(1 − x2)}. For D1, the integration of the
corresponding integrand over x3 results in two terms:

ID1
x1x2

= −
x−ε1

[
x1 + t̃(1− x1)x2)

]−1−ε

(1 + ε)[s̃x1(1− x2) + t̃(1− x1)]
, (2.72)

IID1
x1x2

=
x−1−2ε

1 [1− s̃x2(1− x2)− iδ]−1−ε

(1 + ε)[s̃x1(1− x2) + t̃(1− x1)]
, (2.73)

which then have to be integrated over the remaining parameters x1 and x2. Eqs. (2.72) and
(2.73) correspond to the indefinite integral (or primitive) evaluated at the upper and lower
limit of x3, respectively. The term ID1

x1x2
in (2.72) does not change sign on the integration

path, e.g. does not have a branch cut in the interval [0, 1] for both variables x1 and x2.
Consequently, it does not give an imaginary contribution and it is thus safe to drop the
iδ shift in ID1

x1x2
. Furthermore, since ID1

x1x2
does not have poles in ε, one expands it up to

ε2 and straightforwardly integrates over the second variable x2 to obtain ID1
x1

. Concerning
the second term IID1

x1x2
in (2.73), one can see that there is a branch cut for the variable x2

in its numerator as well as a divergence due to the factor x−1−2ε
1 at the lower limit of the

integration x1 = 0 (I have dropped the iδ shift in the denominator as it does not affect
the further calculation). At this point one introduces a subtraction term for IID1

x1x2
in the

simplest possible way: I set x1 = 0 in IID1
x1x2

everywhere except for the divergent term
x−1−2ε

1 . This results in the following subtraction term:

IID1,s
x1x2

=
x−1−2ε

1 [1− s̃x2(1− x2)− iδ]−1−ε

(1 + ε)t̃
, (2.74)
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which, in the framework of the dimensional regularization scheme, integrates over x1 to

IID1,s
x2

= − [1− s̃x2(1− x2)− iδ]−1−ε

2ε(1 + ε)t̃
. (2.75)

Then I expand the above expression up to ε2 and reexpress the argument of subsequent
logarithms as

1− s̃x2(1− x2)− iδ =
(x2 − x(0)

2 )(x2 − 1 + x
(0)
2 )

x
(0)
2 (1− x(0)

2 )
(2.76)

with

x
(0)
2 =

1 +
√

1− 4/s̃

2
+ iδ =

1 + β

2
+ iδ . (2.77)

A final integration of the subsequent series can be done analytically in the complex plane
and its result is expressed in terms of logarithms and classical polylogarithms up to Li4.
Analytic continuation of the result for δ → 0 is then straightforward.

Lastly, I calculate the finite difference

∆IID1
x1x2

= IID1
x1x2
− IID1,s

x1x2
=
x−1−2ε

1

(
t̃− s̃(1− x2)

)
[1− s̃x2(1− x2)− iδ]−1−ε

(1 + ε) t̃ [s̃x1(1− x2) + t̃(1− x1)]

by again expanding the difference up to ε2 and using (2.76) for the arguments of the
logarithms. Then I first integrate over the variable x2, leading to a reduction of the
integrand to simple fractions w.r.t. x2. In this way one avoids spurious poles in the
remaining integral which would otherwise arise in case of integration over x1 first.

To complete the derivation of the first four-point (box) integral, I combine the two
terms

ID1
x1

+ ∆IID1
x1

and perform the last integration over the variable x1.
At this point I would like to comment on some technical details of the calculation

which are used throughout this work. For instance, the integrand for the last integration
contains expressions such as

f(x1) · Li2,3

(
a1x

2
1 + a2x1 + a3

a4x2
1 + a5x1 + a6

)
, (2.78)

where f(x1) is a rational function or a product of a rational function and a logarithm.
Using recursively the method of integration-by-parts as much as necessary I render their
arguments to be linear functions of x1. In addition, in the case of Li3, I can reduce the
weight of Li3 by one. At the same time, the sources of imaginary contributions are trans-
ferred into logarithms (or remain in Li2’s and Li3’s with arguments that are independent
of the integration variable). Finally, performing the last integration and adding up all the
relevant contributions we arrive at the result for the box integral with three massive lines,
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containing polylogs up to Li4 and the single- and triple-index L-functions introduced in
Eqs. (2.46) and (2.47). As mentioned before Eq. (2.48) the results are written in terms of
the L-functions L−++, L+++ and L+ only using the identities derived in Secs. 4.1 and 4.2.

In order to keep the results at reasonable length I introduce the abbreviations

z3 ≡ (s+ 2t+ sβ)/2, z4 ≡ (s+ 2t− sβ)/2,

z5 ≡ (2m2 + t+ tβ)/2, z6 ≡ (2m2 + t− tβ)/2, (2.79)

ls ≡ ln
s

m2
, lt ≡ ln

−t
m2

, lT ≡ ln
−T
m2

, lx ≡ lnx,

lβ ≡ ln β, lz3 ≡ ln
z3

m2
, lz4 ≡ ln

−z4

m2

and obtain:

ReD
(−2)
1 = 0, ReD

(−1)
1 = ln x/(stβ),

(2.80)
ReD

(0)
1 = −

[
2 ln x ln(−tβ/m2) + 2Li2(x)− 2Li2(−x) + 3ζ(2)

]
/(stβ),

ReD
(1)
1 =

1

stβ

[
l3s
12
− l2s lx

2
− 5 l3x

6
− l2x lz3 + l2x lz4 − lx l2z4 −

l3t
3

+ l2t (3 lx + lz4)−

lt
(
l2T + l2x − l2z3 + 2lT (lx + lz3 − lz4) + l2z4 + lx (2 lz3 − 4 lβ)

)
+ lx l

2
β − l3β +

ls
(
lt lx + l2x/4 + lx (lz3 + lz4)− l2β

)
+ (−ls + 10lt − lx + 6lβ) ζ(2)−

5ζ(3) + 4Li2(x) lt − 2Li2

(
m2 x

−T

)
lt + 2Li2

(
T

z3

)
lt − 2Li2

(
m2

z5

)
lx −

2Li2

(
−t (1− β)

2m2

)
lx − 2Li3(−x)− 2Li3

(
−x2

1− x2

)
− 2Li3

(
z3

t

)
+

2Li3

(
z4

t

)
+ 4Li3

(
1− β

2

)
+ 2Li3

(
m2 (1− β)

2 z5

)
− 2Li3

(
−t (1− β)

2 z5

)
+

8Li3

(
−1 + β

2 β

)
− 2Li3

(
2 z6

m2(1 + β

)
+ 2Li3

(
2 z6

−t(1 + β)

)]
,

ReD
(2)
1 =

1

stβ

[
−5 l4s

64
− 43

24
l3s lt −

7

4
l2s l

2
t +

2

3
ls l

3
t +

5 l4t
12
− 11

24
l3s lT −

3

2
l2s lt lT−

5

2
ls l

2
t lT −

4

3
l3t lT −

5

16
l2s l

2
T +

1

4
ls lt l

2
T −

1

2
ls l

3
T + lt l

3
T +

5

8
l3s lx −

3

8
l2s lt lx −

4 ls l
2
t lx − l3t lx −

7

8
l2s lT lx +

3

2
ls lt lT lx −

3

2
l2t lT lx +

3

8
ls l

2
T lx +

13

4
lt l

2
T lx −

1

2
l3T lx −

13

32
l2s l

2
x +

1

8
ls lt l

2
x −

1

4
l2t l

2
x +

17

8
ls lT l

2
x +

1

2
lt lT l

2
x +

7

16
l2T l

2
x +

1

2
ls l

3
x +

3

8
lt l

3
x +

17

24
lT l

3
x +

7 l4x
64

+
29

48
l3s lz3 + 3l2s lt lz3 +

5

2
ls l

2
t lz3 −

3

2
l3t lz3 −

3

4
l2s lT lz3 +

17

2
ls lt lT lz3 +

5

2
l2t lT lz3 + 2 lt l

2
T lz3 −

19

16
l2s lx lz3 + ls lt lx lz3 +

5

2
l2t lx lz3 +
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9

2
ls lT lx lz3 −

1

2
lt lT lx lz3 −

1

2
l2T lx lz3 +

13

16
ls l

2
x lz3 + lt l

2
x lz3 −

3

4
lT l

2
x lz3 −

11

48
l3x lz3 −

1

8
l2s l

2
z3 − 4 ls lt l

2
z3 +

1

2
l2t l

2
z3 + ls lT lz3

2 − 5 lt lT l
2
z3 −

3

4
ls lx l

2
z3 +

lt lx l
2
z3 − 2 lT lx l

2
z3 −

1

8
l2x l

2
z3 + lt l

3
z3 +

61

48
l3s lz4 +

27

4
l2s lt lz4 +

1

2
ls l

2
t lz4 −

13

6
l3t lz4 +

9

4
l2s lT lz4 −

1

2
ls lt lT lz4 +

5

2
l2t lT lz4 + ls l

2
T lz4 −

5

2
lt l

2
T lz4 +

9

16
l2s lx lz4 +

11

2
ls lt lx lz4 +

3

2
l2t lx lz4 −

3

2
ls lT lx lz4 −

5

2
lt lT lx lz4 +

1

2
l2T lx lz4 −

11

16
ls l

2
x lz4 −

1

4
lt l

2
x lz4 −

9

4
lT l

2
x lz4 −

5

16
l3x lz4 − 2 l2s lz3 lz4 − 6 ls lt lz3 lz4 −

l2t lz3 lz4 − 3ls lT lz3 lz4 − 6lt lT lz3 lz4 − 4lt lx lz3 lz4 − 3lT lx lz3 lz4 −
1

2
l2x lz3 lz4 +

ls l
2
z3 lz4 +

5

2
lt l

2
z3 lz4 + lx l

2
z3 lz4 −

77

16
l2s l

2
z4 −

13

2
ls lt l

2
z4 + 3 l2t l

2
z4 −

5

4
ls lT l

2
z4 +

2 lt lT l
2
z4 +

1

4
l2T l

2
z4 −

33

8
ls lx l

2
z4 −

5

2
lt lx l

2
z4 +

7

4
lT lx l

2
z4 +

15

16
l2x l

2
z4 + 3 ls lz3 l

2
z4 +

7

2
lt lz3 l

2
z4 + 3 lT lz3 l

2
z4 + 2 lx lz3 l

2
z4 − l2z3 l2z4 +

71

12
ls l

3
z4 +

2

3
lt l

3
z4 −

5

6
lT l

3
z4 +

31

12
lx l

3
z4 − 2lz3 l

3
z4 −

49

24
l4z4 −

13

24
l3s lβ −

7

2
l2s lt lβ − 2 ls l

2
t lβ −

5

3
l3t lβ −

9

4
l2s lT lβ −

3 ls lt lT lβ − 4 l2t lT lβ +
13

8
l2s lx lβ − 2 ls lt lx lβ − 5 l2t lx lβ −

1

2
ls lT lx lβ −

3 lt lT lx lβ + l2T lx lβ −
9

8
ls l

2
x lβ +

1

2
lt l

2
x lβ +

7

4
lT l

2
x lβ +

17

24
l3x lβ +

9

4
l2s lz3 lβ +

4 ls lt lz3 lβ + 4 l2t lz3 lβ + 2 ls lT lz3 lβ + 6 lt lT lz3 lβ −
5

2
ls lx lz3 lβ + 4 lt lx lz3 lβ +

4lT lx lz3 lβ +
5

4
l2x lz3 lβ − ls l2z3 lβ − 3lt l

2
z3 lβ − lx l2z3 lβ +

11

4
l2s lz4 lβ + 7ls lt lz4 lβ +

l2t lz4 lβ + 3 ls lT lz4 lβ + 2 lt lT lz4 lβ +
1

2
ls lx lz4 lβ + 3 lt lx lz4 lβ − lT lx lz4 lβ −

1

4
l2x lz4 lβ − 3 ls lz3 lz4 lβ − 6 lt lz3 lz4 lβ − 4 lT lz3 lz4 lβ + lx lz3 lz4 lβ + 2 l2z3 lz4 lβ −

5 ls l
2
z4 lβ − lt l2z4 lβ − 2 lx l

2
z4 lβ + lz3 l

2
z4 lβ +

7

3
l3z4 lβ −

7

8
l2s l

2
β −

5

2
ls lt l

2
β − 2 l2t l

2
β −

5

2
ls lT l

2
β − 3 lt lT l

2
β +

3

4
ls lx l

2
β −

5

2
lt lx l

2
β −

1

2
lT lx l

2
β −

3

8
l2x l

2
β +

5

2
ls lz3 l

2
β +

3 lt lz3 l
2
β + 2 lT lz3 l

2
β −

1

2
lx lz3 l

2
β − l2z3 l2β +

5

2
ls lz4 l

2
β + 3 lt lz4 l

2
β + 2 lT lz4 l

2
β +

1

2
lx lz4 l

2
β − 2 lz3 lz4 l

2
β −

3

2
l2z4 l

2
β −

1

3
ls l

3
β −

2

3
lt l

3
β − lT l3β −

1

3
lx l

3
β + lz3 l

3
β +

lz4l
3
β +

l4β
6

+

(
19

8
l2x −

l2s
8
− 9l2t + 5lT lx + lT lz3 +

11

2
lxlz3 − l2z3 − 6lT lz4 + 2lxlz4−



2.3. Four-point functions 29

3 lz3 lz4 − 7 l2z4 + 2 lt (3 lT + 7 lz3 + 5 lz4 − 12 lβ) + 6 lT lβ − 10 lx lβ − 2 lz3 lβ +

14 lz4 lβ − 13 l2β −
1

4
ls (64 lt − 8 lT + 35 lx + 18 lz3 − 44 lz4 + 32 lβ)

)
ζ(2) +

(−2 ls − 4 lt − lT + lx + 7 lz3 + lz4) ζ(3)− 35

4
ζ(4)− 2 Li22

(
m2

z5

)
+

2 Li22

(
−t(1− β)

2m2

)
+ Li2(x)

(
2 Li2

(
m2

z5

)
+ 2 Li2

(
−t(1− β)

2m2

)
+
l2s
4
−

2 l2t + l2T + lT lx +
l2x
4

+ 2 lT lz3 + 3 lx lz3 + lt (−4 lT − 3 lx + 2 lz3) +

ls

(
lt − lT −

9

2
lx − lz3 − lz4

)
+ 5 lx lz4 + l2z4 − 4 lx lβ − 6 ζ(2)

)
+ Li2

(
z3

z4

)
×(

−2Li2

(
m2

z5

)
− l2s

4
+ 4l2t + lT lx +

3

4
l2x −

ls
2

(6lt + 2lT + 3lx − 4lz3 − 4lz4) +

2 lx lz4 − l2z4 − lt (lx − 2 lT + 2 lz3 + 2 lz4)− 2 lx lβ − 6 ζ(2)
)

+

Li2

(
−t(1− β)

2m2

) (
−2Li2

(
z3

z4

)
+

1

4

(
l2s − 12l2t − 2l2T − 6lT lx + l2x − 12lT lz3+

8 lx lz3 − 4 lx lz4 − 4 l2z4 + ls (−4 lt + 6 lT + 2 lx − 8 lz3 + 4 lz4 − 4 lβ) +

4 lt (lx + 4 lz3 + 2 lz4 − 2 lβ) + 12 lx lβ + 8 lz4 lβ − 4 l2β
)

+ 12 ζ(2)
)

+

1

8
Li2

(
m2x

−T

)(
−l2s + 16ltlT − lx (4lT + lx − 4lz4)− 2ls (2lT + lx − 2lz4)

)
+

1

4
×

Li2(
m2

z5

)
(
3l2s + 4l2t + 2l2T + 2lT lx + 7l2x + 8lT lz3 − 2ls(8lt + 3lT − lx + 4lz3 − 6lz4)

+4lT lz4 + 4lxlz4 − 12l2z4 + 8lt(lz3 + lz4 − lβ) + 8lxlβ − 8lz3lβ + 8lz4lβ − 4l2β
)

+

1

8
Li2

(
T

z3

) (
9 l2s − 16 l2t + lx (−4 lT + lx + 12 lz3 + 8 lz4 − 8 lβ)−

2ls(4lt − 2lT + 5lx + 6lz3 + 4lz4 − 4lβ)− 8lt(2lT + lx − 2lz3 − 2lz4 + 2lβ)) +

1

2
Li2(

T

m2
)
(
2l2s − 2lT lx − 2lT lz3 + 3lxlz3 + 5l2z3 − 2lt(lx + 2lz3) + 2lT lz4 + 3lxlz4+

4lz3lz4 − l2z4 − 2lxlβ − 4lz3lβ + ls(2lt − 3lx − 7lz3 − lz4 + 2lβ)
)

+
1

4
Li2(−x)×(

5l2s − 16l2t + l2x − 4lT lz3 + 6lxlz3 − 6l2z3 − 4lT lz4 + 2lxlz4 − 8lz3lz4 + 2l2z4 − 4lx lβ+

8lz3lβ + 2ls(−6lt + 2lT − 2lx + lz3 − 3lz4 + 2lβ)− 4lt(lx − 6lz3 − 4lz4 + 4lβ)) +

Li3

(
z4

T

)
(−lT + lz4) + 2

(
Li3

(
z3

sβ

)
+ Li3

(
z5

tβ

))
(2 lt + 2 lT − lz3 − lz4) +

2Li3

(
−1 + β

2β

)
(2 ls − 2 lt − 2 lT − lz3 − lz4) +
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Li3

(
m2

z5

) (
−17

2
ls − 8 lt + 4 lT −

lx
2

+ 8 lz3 + 9 lz4 − 8 lβ

)
+

1

2
Li3

(
T

z6

)
(−5 ls − 4 lt − 2 lT + lx + 6 lz3 + 4 lz4 − 4 lβ) +

2 Li3

(
z3

z4

)
(−ls + lt + lT + lx − lβ) + Li3

(
z3

t

)
(−ls − 2 lT − 3 lx + 2 lz3) +

1

2
Li3

(
z6

m2

)
(ls + 8lt − 8lT − lx − 6lz3 − 4lz4) + Li3

(
z4

t

)
(ls + 4lt + 2lT − 3lx −

2lz3 − 4lz4) +
1

2
Li3

(
z5

T

)
(ls + 2lT + lx − 2lz4) + 2

(
Li3

(
−x2

1− x2

)
−

2Li3

(
1− β

2

)
− Li3

(
m2(1− β)

2 z5

)
+ Li3

(
−t(1− β)

2 z5

)
− 2Li3

(
T

m2

))
lT +

2

(
2Li3

(
T

m2

)
+ Li3

(
2 z6

m2(1 + β)

)
− Li3

(
−2 z6

t(1 + β)

)
+ Li3

(
z6

z5

))
(ls + lt +

lT − lz3 − lz4 + lβ)− 2Li3

(
z6

z5

)
lx − Li3

(
T

z3

)
lz3 +

(
Li3

(
T

z3

)
+ 2 Li3(−x)

)
×

(2ls + 2lt + lT − 2lz3 − 2lz4 + 2lβ) + 2Li3(x) (4ls + 3lt + lT + lx − 2lz3 − 6lz4 +

3lβ) + 2Li4(x)− Li4

(
T

z3

)
− 4Li4

(
z3

t

)
+ 4Li4

(
z4

t

)
− Li4

(
z4

T

)
+ Li4

(
z5

T

)
+

2Li4

(
s(1− β)

−2t

)
+ 3Li4

(
s(1− β)

2 z4

)
+ 4Li4

(
−1 + β

2 β

)
+ 2Li4

(
−2t

s(1 + β)

)
+

4Li4

(
2 β

1 + β

)
+ Li4

(
sT (1 + β)

2m2 z3

)
+ 3Li4

(
2 z3

s(1 + β)

)
+

1

2
L−++

(
1,
m2

−T
,
m2

−T
,
s(1− β)

−2z4

)
− 1

2
L−++

(
1,
m2

−T
,
m2

−T
,
s(1 + β)

−2z3

)
+

2L−++

(
1,
m2

−T
,
s(1− β)

−2z4

, 0

)
+ L−++

(
1,− t

z3

,− t

z3

,− t

T

)
−

L−++

(
1,
s(1− β)

−2z4

,
m2

−T
,
s(1− β)

−2z4

)
− L−++

(
1,
s(1− β)

−2z4

,
m2

−T
,
s(1 + β)

−2z3

)
+

L−++

(
1,
s(1− β)

−2z4

,
s(1− β)

−2z4

, 0

)
− 1

2
L−++

(
1,
s(1− β)

−2z4

,
s(1− β)

−2z4

,
s(1 + β)

−2z3

)
+

1

2
L−++

(
t

T
, 0, 0,− t

z3

)
− 1

2
L−++

(
t

T
, 0, 0,− t

z4

)
+ 2L−++

(
t

T
, 0,− t

z3

,−1
)
−

L−++

(
t

T
, 0,− t

z3

,− t

z3

)
− L−++

(
t

T
, 0,− t

z3

,− t

z4

)
− L−++

(
t

T
,− t

z3

,− t

z3

,− t

z4

)
+

3L−++(
t

z4

, 0, 0,−1)− 3

2
L−++

(
t

z4

, 0, 0,− t

z3

)
− 2L−++

(
t

z4

, 0,− t

z3

,−1
)

+

L−++

(
t

z4

, 0,− t

z3

,− t

z3

)
+ 3L−++

(
t

z4

, 0,− t

z3

,− t

z4

)
+
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1

2
L−++

(
t

z4

,− t

z3

,− t

z3

,− t

T

)
+ 2L−++

(
s(1 + β)

2 z3

,
m2

−T
, 0,

m2

−T

)
−

2L−++

(
s(1 + β)

2 z3

,
m2

−T
, 0,

s(1− β)

−2z4

)
− 2L−++

(
s(1 + β)

2 z3

,
m2

−T
, 0,

s(1 + β)

−2z3

)
+

1

2
L−++

(
s(1 + β)

2 z3

,
m2

−T
,
m2

−T
,
s(1− β)

−2z4

)
+ 2L−++

(
s(1 + β)

2 z3

,
s(1− β)

−2z4

, 0,
m2

−T

)
−

1

2
L−++

(
s(1 + β)

2 z3

,
s(1− β)

−2z4

,
s(1− β)

−2z4

,
m2

−T

)
− 4L+

(
0,
z3

sβ
,−z3z4

stβ
,−1

)
+

4L+

(
0,
z3(1− β)

−2tβ
,
z3z4

stβ
,
m2

−T

)
+ 2L+

(
m2

−T
,
z3(1− β)

−2tβ
,
z3z4

stβ
,
s(1− β)

−2z4

)
+

2L+

(
− t

z3

, 0,
z4

t
,− t

z4

)
+ 2L+

(
− t

z3

, 0,
z3

t
,− t

z4

)
+ 2L+

(
− t

z3

,
z3

sβ
,−z3z4

stβ
,− t

T

)
+

3

2
L+++

(
0, 0,− t

z3

,− t

z4

)
− 2L+++

(
0,
m2

−T
,
s(1− β)

−2z4

,
m2

−T

)
+

2L+++

(
0,
m2

−T
,
s(1− β)

−2z4

,
s(1− β)

−2z4

)
+ 2L+++

(
0,
m2

−T
,
s(1− β)

−2z4

,
s(1 + β)

−2z3

)
+

L+++

(
0,− t

z3

,− t

z3

,−1
)
− L+++

(
m2

−T
,
m2

−T
, 0,

s(1− β)

−2z4

)
+

L+++

(
m2

−T
,
m2

−T
, 0,

s(1 + β)

−2z3

)
− 1

2
L+++

(
m2

−T
,
m2

−T
,
s(1− β)

−2z4

,
s(1 + β)

−2z3

)
−

3L+++

(
− t

z3

, 0, 0,−1
)

+
3

2
L+++

(
− t

z3

,− t

z3

, 0,− t

z4

)
+

L+++

(
s(1− β)

−2z4

,
s(1− β)

−2z4

, 0,
m2

−T

)]
;

ImD
(−1)
1 = π/(stβ), ImD

(0)
1 = −2π ln(−tβ/m2)/(stβ), (2.81)

ImD
(1)
1 =

π

stβ

[
−3

4
l2s + 2 l2t −

3

4
l2x − lxlz3 + lxlz4 − l2z4 + ls (lt + lx/2 + lz3 + lz4)−

lt (lx + 2 lz3 − 4 lβ) + 2 l2β − 2ζ(2)− 2Li2

(
m2

z5

)
− 2Li2

(
t(−1 + β)

2m2

)]
,

ImD
(2)
1 =

π

stβ

[
1

12

(
7 l3s − l3x − 3 l2s (3 lx + 4 lz3 + 4 lz4 − 6 lβ) + 6 l2x (−2 lz3 + 3 lβ) +

12 lx
(
l2z4 − 2 (−lz3 + lz4) lβ + 2 lt (−lz3 + lβ)

)
−

8 lβ
(
6 l2t − 3 l2z4 + 2 l2β + 6 lt (−lz3 + lβ)

)
− 3 ls

(
8 l2t − 5 l2x − 4 l2z4−

8 lt (lx + lz3 − lβ) + 8 lz3 lβ + 8 lz4 lβ + 4 lx (−2 lz3 + 2 lz4 + lβ))) +

4 (lt + lx + lβ) ζ(2) + 2 Li2(x) lx + 2 Li2

(
z3

z4

)
lx +
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p

p p

p

1

2

3

4

m

Figure 2.5: Massive box D2 with one massive propagator. Thick and thin internal lines
correspond to massive and massless propagators, respectively. Thick legs represent massive
momenta on-shell. Thin legs represent massless momenta on-shell.

2 Li2

(
t(−1 + β)

2m2

)
(ls − lx + 2 lβ) + 2 Li2

(
m2

z5

)
(ls + lx + 2 lβ)−

2 Li3(x)− 4 Li3

(
z3

t

)
+ 2 Li3

(
z3

z4

)
− 4 Li3

(
z4

t

)
− 2 Li3

(
z6

z5

)]
.

Even though the result for the four-point function D1 appears to be rather lengthy I
have to emphasize that it has already been considerably simplified by a factor of ∼ 30 with
the help of the algorithms described in Chap. 3 and the identities discussed in Sec. 4.1
and Sec. 4.2 compared to the untreated output of the original integration. The same holds
true for the four-point functions D2 and D3 discussed below as well as for the results of
the three-point functions in Sec. 2.2.

2.3.2 Four-point function with one massive propagator

Next I turn to the second four-point function D2 with one massive propagator shown in
Fig. 2.5 which is defined by

D2 ≡ D(−p2, p4, p3, 0, 0,m, 0).

I substitute the appropriate values of momenta and masses for the D2 integral into the
general kernel expression (2.69) and obtain

K̃D = act̃− bds̃+ c2 − iδ. (2.82)

In order to simplify the first integration over the Feynman parameter x3 I choose {a, b, c, d}
as {x1x2(1−x3), x1x2x3, x1(1−x2), 1−x1}. After x3-integration I write the result for the
integrand as a sum of two parts ID2

x1x2
+ IID2

x1x2
:

ID2
x1x2

= −
x1

[
x2

1(1− x2)(1 + (t̃− 1)x2)− iδ
]−1−ε

(1 + ε)[s̃(1− x1) + t̃x1(1− x2)]
, (2.83)

IID2
x1x2

=
x1 [−s̃x1x2 + x2

1(1 + (s̃− 2)x2 + x2
2)− iδ]−1−ε

(1 + ε)[s̃(1− x1) + t̃x1(1− x2)]
, (2.84)
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where again the two terms derive from the indefinite integral (or primitive) evaluated at
the upper and lower boundary of x3, respectively. The indices x1 and x2 in ID2

x1x2
and IID2

x1x2

indicate that one remains with a two-dimensional integration over x1 and x2. First consider
the integration of ID2

x1x2
. One notes that its numerator is not negative on the integration

path since t̃ > 1, which implies there is no imaginary contribution coming from ID2
x1x2

.
Therefore, one omits the iδ term for the remaining integration. After integration over x1

one arrives at

ID2
x2

=

[
(1− x2)

(
1 + (t̃− 1)x2

)]−1−ε
2F1(1,−2ε, 1− 2ε, 1− A)

2s̃ (1 + ε) ε
, (2.85)

where I have defined A ≡ t̃ (1 − x2)/s̃ and 2F1 is a hypergeometric function. The above
expression is singular at the upper integration limit x2 = 1. In order to regularize this
singularity one has to find a suitable subtraction term.

First note that the ε-expansion of the hypergeometric function reads

F1(1,−2ε, 1− 2ε, 1− A) = 1 + 2ε lnA− 4ε2 Li2(1− A)− 8ε3 Li3(1− A)

−16ε4 Li4(1− A) +O(ε5). (2.86)

To obtain a suitable subtraction term one substitutes (2.86) into (2.85) and replace x2 by
1 everywhere in ID2

x2
except for terms that diverge. Therefore, the subtraction term can be

defined as

ID2,s
x2

=
(1− x2)−1−ε t̃−1−ε [1 + 2ε lnA− 4ε2ζ(2)− 8ε3 ζ(3)− 16ε4ζ(4)]

2s̃ (1 + ε) ε
. (2.87)

The subtraction term is simple enough to be integrated analytically over x2 giving the
result

ID2,s =
t̃−1−ε

(
−3− 2ε ln t̃

s̃
+ 4ε2 ζ(2) + 8ε3 ζ(3) + 16ε4 ζ(4)

)
2 (1 + ε) ε2 s̃

(2.88)

which can readily be expanded in ε.
Next I turn to the remaining finite integral ID2

x2
− ID2,s

x2
. I expand ID2

x2
− ID2,s

x2
up to

second order in ε and integrate over x2 after the expansion.
Next consider the second integrand IID2

x1x2
(2.84). The term in the numerator in square

brackets raised to the power (−1 − ε) changes sign on the integration path. It means
that the corresponding integral has an imaginary contribution. One can rewrite IID2

x1x2
as

follows:

IID2
x1x2

=
x−ε1 (s̃x2)−1−ε

(
−1− iδ + x1( (1−x2)2

s̃x2
+ 1)

)−1−ε

(1 + ε)s̃
(
1− x1(1− t̃

s̃
(1− x2))

) , (2.89)

The integration of IID2
x1x2

over x1 is more difficult because of the additional term x−ε1 . I

proceed by expanding x−ε1 as (1− ε lnx1 + ε2

2
ln2 x1 + ...). One can see that only the first
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term of this expansion gives rise to a divergence in the subsequent integration. As one
needs to find a subtraction term for this term I will treat it separately. For the remaining
terms I do an overall ε-expansion of (2.89) and then perform the remaining integrations. I
therefore substitute x−ε1 by 1. The integral looks simpler (I denote it by II0

x1x2
). Integration

over x1 yields

II0
x2

=
(s̃x2)−1−εx2(−1− iδ)−ε 2F1(1,−ε, 1− ε,− x2(s̃+t̃(−1+x2))

(1−x2)(1+(t̃−1)x2)
)

ε(1 + ε)(1− x2)(1 + (t̃− 1)x2)

−
(s̃x2)−1−εx2 (1− x2)−2ε

2F1(1,−ε, 1− ε, (1−x2)(s̃+t̃(−1+x2))

s̃(1+(−1+t̃)x2)
)

ε(1 + ε)(1− x2)(1 + (t̃− 1)x2)(s̃x2)−ε
. (2.90)

Note that I have omitted the imaginary shifts iδ in the arguments of the hypergeometric
functions 2F1, as the branch cuts of 2F1 are never crossed in the physical region. If one
would directly integrate the above expression one would have a divergence at x2 → 1. One
must therefore define a subtraction term. If one uses II0

x2
in the present form the definition

is rather difficult: as x2 → 1 the argument of the first function 2F1 goes to infinity. To
circumvent this problem one can use one of the relations between hypergeometric functions
to transform the argument of the function. As a result one pulls out the divergent term as
an overall factor multiplying the hypergeometric function with a transformed argument.
The whole expression can be rewritten as

II0
x2

= −
(1− x2)−1−2ε

2F1(1,−ε, 1− ε, (s̃+t̃ (−1+x2)) (1−x2)

s̃ (1+(−1+t̃)x2)
)

s̃
(
1 +

(
−1 + t̃

)
x2

)
(1 + ε) ε

+ (2.91)

(s̃(1− x2))−1−ε x−ε2

(
1 +

(
−1 + t̃

)
x2

)−1−ε
(−1− i δ)−ε 2F1(−ε,−ε, 1− ε, (s̃−t̃ (1−x2))x2

(1−x2)2+s̃ x2
)(

(1− x2)2 + s̃ x2

)−ε
(1 + ε) ε

.

Now all the poles arise from the factors (1− x2)−1−2ε and (1− x2)−1−ε, and one can derive
the necessary subtraction term following the above procedure. I briefly mention that when
x2 = 1 the first hypergeometric function (in the first line of Eq. (2.91)) takes the value

2F1 = 1. The second hypergeometric function takes the value −επ/ sin(−επ) which, in
turn, can be expanded to order ε4 as 1 + ε2ζ(2) + 7ε4ζ(4)/4. Thus, the subtraction term
reads

II0,s
x2

= −(1− x2)−1−2ε

(1 + ε)εs̃t̃
+

(
1 + ε2ζ(2) + 7ε4ζ(4)

4

)
t̃−1−ε (1− x2)−1−ε (−1− iδ)−ε

(1 + ε) ε s̃
. (2.92)

Integrating this subtraction term I arrive at

II0,s =
1

2(1 + ε)ε2s̃t̃
−

(
1 + ε2ζ(2) + 7ε4ζ(4)

4

)
t̃−1−ε (−1− iδ)−ε

(1 + ε)ε2s̃
, (2.93)

which can finally be expanded up to ε2.
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Now that I have found a suitable subtraction term I can proceed with the remaining
terms. I subtract from II0

x2
(Eq. (2.91)) the subtraction term II0,s

x2
(Eq. (2.92)). Since

the result is convergent with regard to the integration over x2, one can expand the result
in terms of ε before integration which greatly simplifies the problem. One then does the
last integration. The difference II0

x2
− II0,s

x2
must be expanded up to third order in ε. The

reason for this is that one has already one pole ∼ 1/ε after the x1-integration. Therefore, in
order to get results up to second order the hypergeometric functions have to be expanded
to third order. The expansion for one of the hypergeometric functions is done using (2.86).
For the ε-expansion of the second hypergeometric function one gets

2F1(−ε,−ε, 1− ε, z) = 1 + ε2 Li2(z) (2.94)

−ε3
(

1

2
ln2(1− z) ln z + ln(1− z)Li2(1− z)− Li3(1− z)− Li3(z) + ζ(3)

)
.

Using these results for the ε-expansions I expand II0
x2
− II0,s

x2
up to ε2 and integrate the

resulting expression. Finally, carefully collecting all the relevant pieces, one arrives at the
final result for the second four-point function. In order to reduce the length of the final
result for D2 I introduce four more abbreviations. I write

D ≡ m2s− tu, lD ≡ ln
−D
m4

, lu ≡ ln
−u
m2

, lU ≡ ln
−U
m2

(2.95)

The result for the four-point box diagram D2 reads:

ReD
(−2)
2 = 2/(st), ReD

(−1)
2 = −[ls + 2lt]/(st),

(2.96)

ReD
(0)
2 = [2 ls lt − 5 ζ(2)]/(st),

ReD
(1)
2 =

1

s t

[
1

2
l3s + 3 l3t +

l3x
12
− l2t (4 lT + 3 lx + 4 lz3 − lz4) +

1

2
l2x lz4 − lx l2z4 +

2

3
l3z4−

1

4
l2s (6lt + 3lx + 4lz3 + 2lz4)− ls

(
2l2t −

1

2
l2x − lxlz3 − 2lt (lx + 2lz3 + lz4)

)
−

lt

(
l2T +

1

2
l2x + 2lxlz3 − 2lxlz4 − 2lT (lx + lz3 + lz4) + l2z3 + 3l2z4

)
− (ls − 2lt+

lx − 4lz4) ζ(2) + ζ(3) + 2

(
Li2

(
m2

z5

)
+ Li2

(
−t(1− β)

2m2

))
(ls − 2 lt)−

4Li2

(
T

m2

)
lt − 2Li2

(
m2x

−T

)
lt − 2Li2

(
T

z3

)
lt − 4Li3

(
m2

−t

)
+ 2Li3(−x)−

2Li3

(
z3

t

)
− 2Li3

(
z4

t

)
− 4Li3

(
m2

z5

)
− 4Li3

(
z6

m2

)
+ 2Li3

(
m2(1− β)

2 z5

)
−

2Li3

(
−t(1− β)

2 z5

)
+ 2Li3

(
2 z6

m2(1 + β)

)
− 2Li3

(
2 z6

−t(1 + β)

)]
,

ReD
(2)
2 =

1

s t

[
− l

4
s

48
− 17

24
l3s lt −

9

2
l2s l

2
t − 3lsl

3
t +

13

6
l3s lT +

5

2
l2s ltlT +

3

2
l3t lT −

1

2
l2s l

2
T −

7

2
l2t l

2
T
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−3ltl
3
T −

25

24
l4t −

3

4
l3s lu −

13

4
l2s ltlu + 7lsl

2
t lu − 3l3t lu −

5

4
l2s lT lu + 2lsltlT lu −

2l2t lT lu +
1

2
l2s l

2
u −

3

2
lsltl

2
u + l2t l

2
u −

1

2
lslT l

2
u + ltlT l

2
u +

1

3
lsl

3
u −

1

3
ltl

3
u −

1

4
l3s lx −

23

8
l2s ltlx + 3lsl

2
t lx −

7

3
l3t lx −

7

4
l2s lT lx − 3lsltlT lx − 3l2t lT lx + 3ltl

2
T lx −

1

2
l2s lulx +

1

2
lsltlulx +

5

2
lslT lulx +

1

2
lsl

2
ulx −

1

2
ltl

2
ulx −

1

2
lT l

2
ulx +

1

4
l2s l

2
x +

19

8
lsltl

2
x +

3

2
l2t l

2
x −

4lslT l
2
x −

9

2
ltlT l

2
x −

1

2
l2T l

2
x −

3

4
lslul

2
x +

3

4
ltlul

2
x −

1

4
lT lul

2
x +

5

6
lsl

3
x +

53

24
ltl

3
x −

37

12
lT l

3
x −

13

16
l4x −

29

24
l3s lz3 +

19

4
l2s ltlz3 + 11lsl

2
t lz3 +

10

3
l3t lz3 −

13

4
l2s lT lz3 −

10lsltlT lz3 − 9l2t lT lz3 + 7ltl
2
T lz3 + 2l2s lulz3 − 2lsltlulz3 +

5

8
l2s lxlz3 +

11

2
lsltlxlz3 +

l2t lxlz3 −
5

2
lslT lxlz3 − 10ltlT lxlz3 +

19

8
lsl

2
xlz3 +

7

4
ltl

2
xlz3 −

5

4
lT l

2
xlz3 −

19

24
l3xlz3 −

5

2
lsltl

2
z3 −

5

2
l2t l

2
z3 +

7

2
lslT l

2
z3 + ltlT l

2
z3 − lslul2z3 + ltlul

2
z3 −

1

2
lslxl

2
z3 +

7

2
ltlxl

2
z3 +

3

2
lT lxl

2
z3 −

1

2
l2xl

2
z3 +

1

3
lsl

3
z3 + ltl

3
z3 − lT l3z3 −

2

3
lxl

3
z3 − l3s lz4 + 5l2s ltlz4 + 7lsl

2
t lz4 +

16

3
l3t lz4 −

5

2
l2s lT lz4 − 4lsltlT lz4 − 2l2t lT lz4 + 8ltl

2
T lz4 + 3l2s lulz4 − 3lsltlulz4 −

lslT lulz4 + lsl
2
ulz4 − ltl2ulz4 − lT l2ulz4 + 4l2s lxlz4 − 3lsltlxlz4 + 5l2t lxlz4 + 4ltlT lxlz4

−lslulxlz4 + ltlulxlz4 − 3lT lulxlz4 +
3

2
lsl

2
xlz4 + ltl

2
xlz4 +

5

2
lT l

2
xlz4 +

1

6
l3xlz4 +

2l2s lz3lz4 − 14lsltlz3lz4 − 4l2t lz3lz4 + 6lslT lz3lz4 + 6ltlT lz3lz4 − 2lslulz3lz4 +

2ltlulz3lz4 − 2lslxlz3lz4 − 2ltlxlz3lz4 + 2lT lxlz3lz4 − 4l2xlz3lz4 + 3ltl
2
z3lz4 −

2lT l
2
z3lz4 − l2s l2z4 − 2lsltl

2
z4 −

9

2
l2t l

2
z4 + 2lslT l

2
z4 − 3ltlT l

2
z4 − 2lslul

2
z4 + 2ltlul

2
z4 +

lT lul
2
z4 − lslxl2z4 − 2ltlxl

2
z4 + lT lxl

2
z4 − l2xl2z4 + lslz3l

2
z4 + 2ltlz3l

2
z4 − 2lT lz3l

2
z4 +

lxlz3l
2
z4 +

1

3
lsl

3
z4 +

5

3
ltl

3
z4 −

2

3
lT l

3
z4 −

1

3
lxl

3
z4 − 2l3s lβ − l2s ltlβ − lsl2t lβ − l2s lT lβ −

3

2
l2s lxlβ − l2t lxlβ − 2lslT lxlβ + lsl

2
xlβ + ltl

2
xlβ − lT l2xlβ −

1

2
l3xlβ + 2l2s lz3lβ +

2lsltlz3lβ + 2lslxlz3lβ + 2ltlxlz3lβ + 2l2s lz4lβ + 2lslxlz4lβ − 2lslz3lz4lβ −
2lxlz3lz4lβ − 2l2s l

2
β − lsltl2β − 2lslxl

2
β − ltlxl2β + lslz3l

2
β + lxlz3l

2
β + lslz4l

2
β +

lxlz4l
2
β −

2

3
lsl

3
β +

2

3
lT l

3
β −

5

3
lxl

3
β −

2

3
lz3l

3
β +

(
l2s −

19

2
l2t −

3

2
l2T + 4lT lu − 4lT lx+

5l2x − 6lT lz3 − 2lxlz3 − 6l2z3 − 2lT lz4 + 2lxlz4 − 12lz3lz4 − 7l2z4 + lt(9lT + 21lx +

16lz3 + 6lz4) + 4lT lβ − 4lxlβ − 4lz3lβ + ls(−11lt − 4lT − 4lx + 2lz3 + 10lz4 +

2lβ)
)
ζ(2) + (7ls − 8lt + 4lT − 3lx + 2lz3 + 4lz4)ζ(3)− 41

2
ζ(4) + 4Li2

(−u
z4

)
×
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lT lx − 2Li2(x)
(
l2s − lxlt + lxlz3 − lslt + 2lslT − lslz3

)
+ 2Li22(−x) +

Li2

(
z3

z4

) (
−l2s + 2ls(lt − lx) + 2lxlt + l2x

)
+ Li2

(
m2

z5

)(
−2l2s − 4ltlT − 2lxlT+

l2x + 2ls (2lt − lT − lx)
)

+ Li2

(
T

m2

)(
−2Li2

(
− t
s

)
− 2Li2(−x)− 11

2
l2t − 2lT lu

−2l2x − l2z3 − 2lz3lz4 − l2z4 − ltlT + 6lt(lz3 + lz4)− 14ζ(2)
)

+ Li2

(
m2s

D

)(
3l2s−

l2t − 2ls(3lt − lT + lu) + 2lt(3lT + lu) + 2(lT − lx)lx − 8ζ(2)
)

+

Li2

(
− t
s

) (
3l2s − 2ls(3lt − 2lT + lu)− 2

(
l2t + 2l2T − lt(4lT + lu) + l2x

)
− 8ζ(2)

)
+Li2

(
− D

m2t

)(
−2Li2

(
T

m2

)
− 4lslt − 2l2t + 6ltlT − l2x − 4ζ(2)

)
−

Li2

(
T

z3

) (
2Li2(−x) + l2s − 4lslt + 2lt(lt + 3lT − 2lx − lz3 − 2lz4) + 2ζ(2)

)
+

Li2

(
m2x

−T

)(
−l2x + 2lt(−lt − 3lT − 3lx + lz3 + 2lz4)− 2ζ(2)

)
+

Li2

(
−t(1− β)

2m2

)(
−2Li2(−x)− 2l2s − 4ltlT − 2lxlT + l2x + 2ls(2lt − lT + lx)+

8ζ(2)) + Li2(−x)
(
−9

4
l2s − 8lxlT +

7

4
l2x − 2lxlz3 + 9ltlx − 2ltlz3 + 5lslt − 6lslT+

7

2
lslx + 2lslz3 + 12ζ(2)

)
+ Li3

(
m2

−t

)
(−6ls − lt + lT + 2lx − 4lz4) +

Li3

(
T

m2

)
(−4ls + 8lt + 3lT + 2lx − 6lz3 − 10lz4) + 2Li3

(
z3

t

)
(lt + lT − 4lx −

lz3 − 2lz4) + 2

(
Li3

(
m2(1− β)

2 z5

)
− Li3

(
−t(1− β)

2 z5

))
(lt + 3lT + 3lx − lz3 −

2lz4) + 2Li3

(
z4

t

)
(lt + lT + 5lx − lz3 − 2lz4) + 2Li3

(
−u
t

)
(3ls − 3lt − 2lT ) +

2

(
Li3

(
−m

2t

D

)
− Li3

(
t2

D

))
(2ls + lt − 3lT ) + 2

(
Li3

(
−m

2u

sz5

)
− 2Li3

(
z3

−u

)

+Li3

(
− sz6

m2u

)
− 2Li3

(−u
z4

))
(ls − lt − lT )− 2Li3

(
−D
tu

)
lT − 2

(
Li3

(
m2

z5

)

+Li3

(
z6

m2

))
(ls − lt + lT )− 2Li3

(
− t
s

)
(lt − lT )− 2Li3

(
m2s

D

)
(lt − 2lT ) +

2Li3(x)(3ls − lx) + 2Li3

(
sxz5

m2 t

)
(ls − lx)− 2Li3

(
z4(1− β)

−2m2

)
(2ls − lt − lT +

lx) + 2Li3

(
z3

z4

)
lx + 2Li3

(
z6

z5

)
ls + 2

(
Li3

(
t(1− β)

2 z3

)
+ Li3

(
z3

sβ

)
+ Li3

(
z5

tβ

))
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×(ls + lx) + 2Li3

(
s(1− β)

−2 z3

)
(−2ls + lt + lT + lx)− 2Li3

(
1− β
−2β

)
(ls + 4lT −

5lx − 4lz3) + 2Li3

(
−x2

1− x2

)
(ls + 2lT − 2lx − 2lz3) + 6Li3

(
1− β

2

)
(lT − lx −

lz3)− 2Li3

(
2 z6

m2(1 + β)

)
(2ls − lt − 3lT + 2lx + lz3 + 2lz4) + 2Li3

(
−2 z6

t(1 + β)

)
×(2ls − lt − 3lT + 2lx + lz3 + 2lz4) + 2Li3(−x)(8ls + 4lt − 3lT − 7lx − 2lz3 +

4lz4)− 3Li4

(
m2

−t

)
− 6Li4

(
− t
s

)
+ 3Li4

(
T

m2

)
+ 16Li4

(
T

t

)
− 12Li4

(
1− β

2

)

−12Li4

(
1 + β

2

)
+ L−++

(
1, 0, 0,

m2

−T

)
+

9

2
L−++

(
1, 0, 0,− t

T

)
−

L−++

(
1, 0, 0,

−2

1− β

)
− L−++

(
1, 0, 0,

−2

1 + β

)
− 5L−++

(
1, 0,

m2

−T
,−1

)
−

2L−++

(
1, 0,

m2

−T
,

1

x

)
− 2L−++

(
1, 0,

m2

−T
, x

)
− 3

2
L−++

(
1,
m2

−T
,
m2

−T
, 0

)
−

4L−++

(
1,
m2

−T
,
m2

−T
,
u

t

)
+ 2L−++

(
1,
m2

−T
,
m2

−T
,

1

x

)
+ 2L−++

(
1,
m2

−T
,
m2

−T
, x

)

−3L−++

(
t

T
, 0, 0,

s

t

)
+ 2L+

(
0, 0,

T

m2
,

1

x

)
+ 2L+

(
0, 0,

T

m2
, x
)
−

2L+

(
0, 0,

T

t
,
s

t

)
+ 2L+

(
0, 1,−1,

1

x

)
+ 2L+(0, 1,−1, x) + 4L+(0, 1,

t

s
,
−2

1− β
)

+4L+

(
0, 1,

t

s
,
−2

1 + β

)
+ 8L+

(
0, 1,

1 + β

−2
,− t

T

)
+ 8L+

(
0, 1,

1− β
−2

,− t

T

)
+

2L+

(
0,
m2

−t
,
T

t
,
m2

−T

)
− 2L+

(
0,
m2 t

−D
,
tT

D
,
m2

−T

)
+ 2L+

(
0,
m2 t

−D
,
tT

D
,

1

x

)
+

2L+

(
0,
m2 t

−D
,
t T

D
, x

)
+ 2L+

(
0,− t

s
,
t

s
,
m2

−T

)
− 2L+

(
0,
t2

D
,
t T

−D
,−1

)
−

4L+

(
0,

T

m2
,
−T
m2

,−1) + 4L+

(
0,

T

m2
,
−T
m2

,
−2

1− β

)
+ 4L+(0,

T

m2
,
−T
m2

,
−2

1 + β

)

−6L+

(
0,
T

t
,−T

t
,−1

)
+ 4L+

(
0,
T

t
,−T

t
,

1

x

)
+ 4L+

(
0,
T

t
,−T

t
, x
)
−

2L+

(
0,−u

s
,− t

s
,−1

)
+ 2L+

(
0,−u

s
,− t

s
,

1

x

)
+ 2L+

(
0,−u

s
,− t

s
, x
)
−

4L+

(
0,
T

z6

,
T (1 + β)

−2 z6

,
−2

1− β

)
− 4L+

(
0,
T

z6

,
T (1 + β)

−2 z6

,
−2

1 + β

)
+

2L+

(
0,

1− β
2

,
1 + β

2
,

1

x

)
+ 2L+

(
0,

1− β
2

,
1 + β

2
, x

)
+
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2L+

(
0,
m2(1− β)

2 z5

,
T (1− β)

−2 z5

,
1

x

)
+ 2L+

(
0,
m2(1− β)

2 z5

,
T (1− β)

−2 z5

, x

)
+

4L+

(
0,
T (1− β)

2 z6

,
T (1 + β)

2 z6

,−1

)
− 2L+

(
0,
T (1− β)

2 z6

,
T (1 + β)

2 z6

, x

)
+

2L+

(
0,

1 + β

2
,
1− β

2
,

1

x

)
+ 2L+

(
0,

1 + β

2
,
1− β

2
, x

)
− 2L+

(
m2

−T
, 0,−x, x

)

−4L+

(
m2

−T
, 1,−1,

1

x

)
− 2L+

(
m2

−T
,
T

t
,−T

t
,−1

)
− 2L+

(
m2

−T
,
T

t
,−T

t
,
u

t

)
−

4L+

(
m2

−T
,
1− β

2
,
1 + β

2
,
u

t

)
− 4L+

(
m2

−T
,
1− β

2
,
1 + β

2
,

1

x

)
−

4L+

(
m2

−T
,
1 + β

2
,
1− β

2
,
u

t

)
− 4L+

(
m2

−T
,
1 + β

2
,
1− β

2
,

1

x

)
−

4L+

(
1

x
,
1− β

2
,
1− β
−2

,−1

)
− 4L+

(
x,

1 + β

2
,
1 + β

−2
,−1

)
−

L+++

(
0, 0,

m2

−T
,−1

)
+ 2L+++

(
0, 0,

m2

−T
,

1

x

)
+ 2L+++

(
0, 0,

m2

−T
, x

)
−

2L+++

(
0,
m2

−T
,
u

t
,−1

)
− 2L+++

(
0,
m2

−T
,
u

t
,
m2

−T

)
+ 2L+++

(
0,
m2

−T
,
u

t
,

1

x

)
+

2L+++

(
0,
m2

−T
,
u

t
, x

)
+ 2L+++

(
0,
m2

−T
,

1

x
,

1

x

)
+ L+++

(
0,

1

x
,

1

x
,
m2

−T

)
−

L+++

(
m2

−T
,
m2

−T
, 0,

1

x

)
− L+++

(
m2

−T
,
m2

−T
, 0, x

)
− L+++

(
1

x
,

1

x
, 0,

m2

−T

)]
;

ImD
(−1)
2 = π/(st), ImD

(0)
2 = −2πlt/(st), (2.97)

ImD
(1)
2 =

π

st

[
−3

4
l2s + 2l2t −

3

4
l2x − lxlz3 − ltlx − 2ltlz3 + lxlz4 − l2z4+

ls(lt +
lx
2

+ lz3 + lz4)− 2ζ(2)− 2Li2

(
m2

z5

)
− 2Li2

(
t(1− β)

−2m2

)]
,

ImD
(2)
2 =

π

st

[
7

12
l3s −

l3x
12
− 2lxltlz3 − l2xlz3 + l2z4 − ls

(
2l2t −

5

4
l2x − 2lt(lx + lz3)−

2lx(lz3 − lz4)− l2z4
)
− l2s

(
3

4
lx + lz3 + lz4

)
+ 4(lt + lx)ζ(2) + 2Li2(x) lx +

2Li2

(
t(1− β)

−2m2

)
(ls − lx) + 2Li2

(
z3

z4

)
lx + 2Li2

(
m2

z5

)
(ls + lx)− 2Li3(x)−

4Li3

(
z3

t

)
+ 2Li3

(
z3

z4

)
− 4Li3

(
z4

t

)
− 2Li3

(
z6

z5

)]
.
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Figure 2.6: Massive box D3 with two massive propagators. Thick and thin internal lines
correspond to massive and massless propagators, respectively. Thick legs represent massive
momenta on-shell. Thin legs represent massless momenta on-shell.

2.3.3 Four-point function with two massive propagators

The diagram corresponding to the third four-point function D3 with two massive propa-
gators is shown in Fig. 2.6 where I write

D3 ≡ D(−p2, p4,−p1, 0, 0,m,m) . (2.98)

The kernel (2.69) for D3 can be written as

K̃D = act̃+ bdũ+ (c+ d)2, (2.99)

where I have introduced the positive-valued dimensionless variable

ũ ≡ − u

m2
, ũ ≥ 1, s̃ ≥ ũ. (2.100)

For the Feynman parameterization I choose {a, b, c, d} as {x1(1 − x2), 1 − x1, x1x2(1 −
x3), x1x2x3}, which gives the following integrand:

x2
1x2

[
x2

1x
2
2 + t̃x2

1x2(1− x2)(1− x3) + ũx1(1− x1)x2x3

]−2−ε
.

The above expression never becomes negative. Therefore, the entire result for the box D3

does not have an imaginary part. One can set δ = 0 in the kernel from the very beginning.
That the box D3 posesses no imaginary part can be seen in a less technical way by

appealing to the Landau-Cutkosky cutting rules. The diagram corresponding to the box
D3 shown in Fig. 2.6 does not admit of any cuts such that the cut lines of the diagram are
on their mass shell simultaneously.

As before I obtain two terms after the first integration over x3. They are

ID3
x1x2

=
x−1−2ε

1 x−1−ε
2

[
x2 + t̃(1− x2))

]−1−ε

(1 + ε)[ũ(1− x1)− t̃x1(1− x2)]
, (2.101)

IID3
x1x2

= −x
−ε
1 x−1−ε

2 [x1x2 + ũ(1− x1)]−1−ε

(1 + ε)[ũ(1− x1)− t̃x1(1− x2)]
. (2.102)
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Note that the denominators of ID3
x1x2

and IID3
x1x2

change sign on the integration path, while
the numerators stay positive (i.e. the relevant integrals have branch cuts). This can
easily be seen by considering the numerators and denominators of the above integrands
at two particular values of the variable x1, for instance at x1 = 0 and x1 = 1. This
means that although the whole D3 box integral does not have an imaginary part, the
two terms in (2.101) and (2.102) separately give rise to unphysical, spurious imaginary
contributions. Of course, these are artefacts of having split the result into two terms. On
the one hand, this somehow complicates things. On the other hand, the cancellation of
imaginary contributions in the sum of the two terms (2.101) and (2.102) will serve as a
good check for the final result. To control the imaginary contributions I do the following
replacement in the denominators in (2.101) and (2.102):

ũ(1− x1)− t̃x1(1− x2)→ ũ(1− x1)− τx1(1− x2), τ ≡ t̃− iδ.

I start with the x2-integration of the term ID3
x1x2

Eq. (2.101):

ID3
x2

= −

[
x2

(
x2 + t̃ (1− x2)

)]−1−ε
2F1(1,−2ε, 1− 2ε, ũ+τ−x2τ

ũ
)

2ũ (1 + ε) ε
. (2.103)

The above expression is singular at the lower integration limit x2 = 0 due to the term x−1−ε
2 .

To find a subtraction term, one follows exactly the procedures defined after Eq. (2.85). The
subtraction term reads

ID3,s
x2

=
x−1−ε

2 t̃−1−ε [−1− 2ε ln
(
− τ
ũ

)
+ 4ε2Li2

(
ũ+τ
ũ

)
+ 8ε3 Li3

(
ũ+τ
ũ

)
+ 16ε4Li4

(
ũ+τ
ũ

)
]

2ũ (1 + ε) ε
.

(2.104)
The above subtraction term can easily be integrated over x2 to obtain

ID3,s =
t̃−1−ε

[
1 + 2ε ln

(
− τ
ũ

)
− 4ε2Li2

(
ũ+τ
ũ

)
− 8ε3 Li3

(
ũ+τ
ũ

)
− 16ε4Li4

(
ũ+τ
ũ

)]
2 (1 + ε) ε2 ũ

(2.105)

which can readily be expanded in ε. As the difference ID3
x2
− ID3,s

x2
does not contain any

poles, one can expand the difference in a series in ε and perform the analytical integration
over the last variable x2.

To integrate the term (2.102), I split IID3
x1x2

into two contributions, i.e.

IID3
x1x2

= − x−1−ε
2 [x1x2 + ũ(1− x1)]−1−ε

(1 + ε)[ũ(1− x1)− τx1(1− x2)]

−(x−ε1 − 1)x−1−ε
2 [x1x2 + ũ(1− x1)]−1−ε

(1 + ε)[ũ(1− x1)− τx1(1− x2)]
. (2.106)

Then I integrate the first term in (2.106) over x1 to obtain two hypergeometric functions
which are expanded up to ε4. As was done previously, I then introduce a subtraction
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term similar to (2.104) which is integrated analytically. The finite difference of the original
integral and the subtraction term is then ready to be integrated over the last integration
variable.

For the second term in (2.106) I introduce a subtraction term before the last two
integrations:

IID3,s
x1x2

= −(x−ε1 − 1)x−1−ε
2 [ũ(1− x1)]−1−ε

(1 + ε)[ũ(1− x1)− τx1]
, (2.107)

which is obtained from the second term in (2.106) by the substitution x2 = 0 in all terms
except for x−1−ε

2 . One first trivially integrates out x2 in (2.107) and expands the resulting
expression in a series of ε. Because of the factor (x−ε1 − 1) this expansion starts at the
order ε0. Thus, the subtraction term is finite and ready for the last integration.

As the difference of the second term in (2.106) and its subtraction term (2.107) does
not contain any poles, I expand it up to ε2 and integrate over x1. Finally, collecting all
the relevant pieces, one performs the last integration. The result for the four-point box
diagram D3 reads:

ReD
(−2)
3 = 1/(tu), ReD

(−1)
3 = −[lt + lu]/(tu),

(2.108)
ReD

(0)
3 = 2 [ltlu − 2 ζ(2)] /(tu),

ReD
(1)
3 =

1

t u

[
l3D
3
− l2Dlt −

l3t
3

+ 2l2t lu − 2ltlT lu − 4ltl
2
u + l3u + ls

(
l2u − l2t

)
+ lD

(
l2t + l2u

)
−

2 l2ulU + l2s(lt − lu) + 2(lD − 3ls + lt + 3lu)ζ(2)− 4ζ(3) + 2Li2

(
− t
s

)
(lt − lu) +

2Li2

(
m4

D

)
lu − 2Li2

(
T

m2

)
lu − 2Li2

(
U

m2

)
lu + 2Li2

(
− D

m2t

)
(lu − lt) +

2Li3

(
m4

D

)
− 2Li3

(
m2

−t

)
− 2Li3

(
−m

2t

D

)
− 2Li3

(
m2

−u

)
− 2Li3

(
−m

2u

D

)
+

2Li3

(
−u
t

)]
,

ReD
(2)
3 =

1

t u

[
l4D
3
− l2Dl2s −

5

6
l4s −

4

3
l3Dlt + 4lDl

2
s lt +

1

6
l3s lt + 4l2Dl

2
t − 5lDlsl

2
t −

3

4
l2s l

2
t−

11

3
lDl

3
t +

3

2
lsl

3
t +

17

6
l4t +

1

3
l3DlT − 2lDl

2
s lT + l3s lT + l2DltlT + 4lDlsltlT −

2l2s ltlT − 4lDl
2
t lT + 3lsl

2
t lT + l2s l

2
T − 2lsltl

2
T −

4

3
l3Dlu + 2l2Dlslu − lDl2s lu +

5

2
l3s lu − l2Dltlu − 2lDlsltlu − 2l2s ltlu + 3lDl

2
t lu + lsl

2
t lu −

13

6
l3t lu − l2DlT lu +

2lDlslT lu − 2lsltlT lu + l2t lT lu − lsl2T lu −
1

2
l2Dl

2
u + lDlsl

2
u −

9

4
l2s l

2
u + 2lDltl

2
u +

2lsltl
2
u −

7

4
l2t l

2
u − lDlT l2u − lslT l2u + 5ltlT l

2
u +

1

2
l2T l

2
u −

4

3
lDl

3
u +

1

6
lsl

3
u +

3

2
ltl

3
u −

19

12
l4u + 2l2DlulU − 2lDlslulU + 2l2s lulU − 2lDltlulU + 2l2t lulU +
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2lDlT lulU − 4ltlT lulU − 2lsl
2
ulU + 2ltl

2
ulU + lT l

2
ulU +

13

3
l3ulU + lDlul

2
U +

lslul
2
U − 2ltlul

2
U − lT lul2U − 2l2ul

2
U −

2

3
lul

3
U +

(
7l2D − 2lD(3ls + 4lt − lT + 2lu)−

17

2
l2s −

3

2
l2t + 3ls(7lt + 6lu)− 2lt(2lT + 7lu) + l2T − 2lT lu − 7l2u − 2lulU

)
ζ(2) +

(−3ls + 21 lt − 2lT − 8lu + 4lU) ζ(3)− 57

4
ζ(4) + Li2

(
U

m2

) (
l2D + 2l2s − 2lDlt+

3l2t − 2ltlT + l2T + 2ltlu + 2lT lu + 3l2u − 2ls(lt + lu)− 2lulU − 2ζ(2)
)
−

Li2

(
m4

D

)
l2u + Li2

(
− t
s

)(
2Li2

(
T

m2

)
+ 2Li2

(
U

m2

)
− 5l2s −

3

2
l2t + 2ltlT−

6ltlu +
5

2
l2u + 5ls(lt + lu) + 4ζ(2)

)
+ Li2

(
− D

m2t

)(
2Li2

(
T

m2

)
+ 2Li2

(
U

m2

)
−

2l2s − 2lDlt + 3l2t + 2ltlT − 2ltlu − 4l2u + 2ls(lt + lu) + 4lulU + 4ζ(2)
)

+

Li2

(
m2s

D

)(
2Li2

(
T

m2

)
+ l2t − l2u + 2lulU + 6ζ(2)

)
+ Li2

(
T

m2

)(
Li2

(
T

m2

)
+

4Li2

(
U

m2

)
+ 2l2D + l2s + 3l2t − 2lD(ls + 2lt) + 2lslT + l2u + 2lulU + 6ζ(2)

)
+

2Li3

(
m4

D

)
(lD − lt + lu) + 2

(
Li3

(
−m

2t

Tu

)
− Li3

(
m2s

D

))
(ls − lt − lu)−

2Li3

(
−m

2t

D

)
(lD − ls + lT + lu)− 2Li3

(
U

m2

)
(lT − lu)− Li3

(
− t
s

)
(6ls + lt −

7lu) + 2Li3

(
m2

−u

)
(lD + ls + 2lt − 7lT + 2lu − 2lU)− 2Li3

(
−m

2u

D

)
(lD − ls +

lT )− 2

(
Li3

(
t2

D

)
+ Li3

(
D

u2

))
(ls − lt − lT )− Li3

(
−u
t

)
(3ls + lt + 2lT + 2lu)

−2Li3

(
D

sU

)
lu + 4Li3

(
−D
tU

)
lu + 2Li3

(
m4

TU

)
lu − 2Li3

(
− t2

sT

)
(ls − lt) +

2Li3

(
T

m2

)
(2lD + ls − 3lt − 2lT ) + 2

(
Li3

(
m2

−t

)
+ Li3

(−D
tu

))
(ls − lt − 2lT )

+2Li4

(
m2

−t

)
+ Li4

(
− t
s

)
− 2Li4

(
T

m2

)
+ 10 Li4

(
T

t

)
− 8Li4

(
m2

−u

)
+

7Li4

(
−u
s

)
− 4Li4

(
U

m2

)
− 4Li4

(
U

u

)
+ L−++

(
1,
m2

−T
,
m2

−T
,
−U
m2

)
−

2L−++

(
1,
m2

−T
,
u

t
, 0

)
+ 2L−++

(
1,
m2

−T
,
u

t
,
m2

−T

)
− 1

2
L−++

(
1,
t

u
,
t

u
, 0
)
−

2L−++

(
1,
m2

−T
,
u

t
,
−U
m2

)
+

1

2
L−++

(
1,
u

t
,
u

t
, 0
)
− 5
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ImD
(j)
3 = 0. (2.109)

The non-planar topological structure of the four-point function D3 implies that D3 has to
be (t↔ u)–symmetric (see Fig. 2.6). This can best be seen by exchanging the momenta
p3 ↔ p4 in Fig. 2.6 followed by a twist of the r.h.s. of Fig. 2.6 2. The (t↔u)–symmetry

provides for a check on the results for D3. The symmetry is obviously satisfied for ReD
(−2)
3 ,

ReD
(−1)
3 and ReD

(0)
3 but is not manifest for ReD

(1)
3 and ReD

(2)
3 in (2.108). However, it is

quite straightforward to verify numerically that the (t↔u)–symmetry indeed holds for all
coefficient functions in (2.108).

Apart from the internal checks mentioned earlier the most important check on the four-
point function results has been a comparison with numerical results provided by M.M. We-
ber [51] for several phase space points. Within numerical errors complete agreement was
found with the results of M.M. Weber for each of the three four-point functions. It is
important to emphasize that the approach of M.M. Weber to numerically evaluate the
four-point functions is completely different from the approach used in this thesis [52].

2The (t↔ u)–symmetry is not so easy to see when exchanging p1 ↔ p2 in Fig. 2.6. In this case the
(t↔u)–symmetry becomes apparent only after Feynman parametrization.



Chapter 3

Simplification of expressions
involving Li2,Li3 and Li4

Unfortunately none of the presently existing computer algebra systems can simplify ex-
pressions involving classical polylogarithms. This is unfortunate since after integration
of the scalar master integrals (see Chap. 2) a large number of different polylogarithms
Lin (n = 2, 3, 4) appears. These functions obey relations which allow one to greatly reduce
the number of different classical polylogarithms1. In the case that the simplified expression
is short, and if one has only a few of these functions, one can perform simplifications “by
hand”. However in the case of the O(ε2) expressions treated in this thesis this task is
rather difficult, because the average number of the classical polylogarithms is of the order
of hundred. In this chapter I describe algorithms which were implemented with the help of
the internal programming language of the computer algebra system Mathematica [42]. I
have used these algorithms in intermediate steps in the calculation as well as for the final
simplification of the results on the massive scalar master integrals presented in Chap. 2.
The algorithms help to reduce the number of classical polylogarithms by a factor from
eight to ten.

3.1 Definition and some properties of the classical

polylogarithms

Classical polylogarithms are defined as a power series [44]

Lin(z) =
∞∑
k=1

zk

kn
, z ∈ C, |z| < 1. (3.1)

The number n is called the weight or the order of the classical polylogarithm. The power
series (3.1) is convergent for |z| < 1 and can be analytically continued via the integral

1The properties of and the relations for classical polylogarithms presented in this chapter and their
detailed derivations can be found in [44].

45
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representation:

Lin(z) ≡
z∫

0

Lin−1(ξ)

ξ
dξ, n ≥ 2; Li1(z) ≡ − ln(1− z). (3.2)

There are special values of classical polylogarithms:

Lin(1) = ζ(n), (3.3)

where ζ(n) is the Riemann zeta-function defined by

ζ(n) =
∞∑
k=1

k−n . (3.4)

The classical polylogarithms have a branch cut discontinuity in the complex plane for z
running from 1 to ∞. The classical polylogarithm with a real argument can be presented
as

Lin(x± iε) = Re (Lin(x))± iπθ(x− 1)× lnn−1(x)

(n− 1)!
, x ∈ R, (3.5)

where ε is an infinitely small positive value. The sign “+” or “-” of the imaginary shift iε
defines the upper or lower edge of the branch cut for the Lin(x± iε) function, respectively.
There are three sources for the imaginary shift. One can get this imaginary shift directly
from the “causal” +iδ that one always assumes in the propagators (see for example remarks
after Eq. (2.19)). One can introduce this imaginary shift by itself to control the imaginary
part of an expression. For example if one integrates a real function without any poles
on the integration interval some spurious imaginary parts may occur after integration.
Naturally the imaginary parts have to disappear analytically after simplification. In order
to perform this procedure properly one can use the trick with the introduction of the
artificial imaginary shift into an integrand. Finally one can use the standard definition of
the classical polylogarithms on the branch cut. In this case one should take the sign “-” for
the imaginary shift. This choice corresponds to the standard definition of the imaginary
part of the logarithm function for negative values of the argument: Im (ln(x)) = +iπ, x < 0.

Eq. (3.5) appears to be very useful. Normally the arguments of the classical polylog-
arithms for the calculations are real. It means that these can also be on the branch cut
discontinuity. To control the imaginary parts one can use Eq. (3.5) to extract the imagi-
nary parts from an expression and to handle them separately. But this procedure should
be performed only after the last integration.The imaginary shift should be kept whenever
it makes sense for the subsequent calculations.
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3.2 Algorithms for the functions Li2

3.2.1 Algorithm based on identities with one variable

First I consider the function Li2(z) or dilogarithm. In order to simplify dilogarithms with
different arguments one can make use of the relations

Li2(z) = ζ(2)− ln(z) ln(1− z)− Li2(1− z), z ∈ C, z /∈ (−∞, 0] ∪ [1,+∞) ,

Li2(z) = −ζ(2)− 1/2 ln2(−z)− Li2(1/z), z ∈ C, z /∈ [0,+∞) . (3.6)

These relations as well as their derivation are given in [44]. As one can see these relations
are not valid for arguments on the branch cuts of the above functions (both logarithms and
dilogarithms in the identities). However, in the calculations of the scalar master integrals
the arguments of the dilogarithms occur on the branch cut. To make use of Eqs. (3.6)
for these cases one can either use the trick with the imaginary shift (either “causal” or
“artificial”) or separate imaginary and real parts via Eq. (3.5) before simplification. When
one simplifies the results after the last integration it does not make sense to keep the
imaginary shift. It is more convenient to handle the imaginary and real parts separately.
One can show that for the real parts the identities (3.6) hold true for the whole complex
plane

Re (Li2(z)) = Re (ζ(2)− ln(z) ln(1− z)− Li2(1− z)) , z ∈ C,
Re (Li2(z)) = Re

(
−ζ(2)− 1/2 ln2(−z)− Li2(1/z)

)
, z ∈ C. (3.7)

The relations do not depend on the sign of the imaginary shift. So one can separate real
and imaginary parts, use Eqs. (3.7) for the real parts of the dilogarithms and one can forget
about the imaginary parts. Below I describe an algorithm based on the identities (3.6) but
exactly the same algorithms can also be worked out using identities (3.7).

Now I give a sketch for the algorithms which helps me to reduce the number of the
dilogarithms in the final result. Using Eqs. (3.6) and combinations of these one can find
relations between the elements of the following set of the dilogarithms:

{Li2(z),Li2(1− z),Li2

(
1

z

)
,Li2

(
1

1− z

)
,Li2

(
z − 1

z

)
,Li2

(
z

z − 1

)
} . (3.8)

All dilogarithms from the set (3.8) can be expressed via only one chosen function Li2. This
property is used for the reduction of the number of the dilogarithms. Let

DilogSet = {Li2 (f1(~x)) ,Li2 (f2(~x)) , ...,Li2 (fn(~x))} (3.9)

be a set of all dilogarithms from an expression to be simplified. ~x is a set of independent
variables. In the reaction for two initial and two final particles there are only two indepen-
dent kinematic variables. In my case I have chosen to use s̃ and t̃ defined in Eqs. (2.71).
i.e. ~x = {s̃, t̃ }. fi(~x) are functions of these independent variables. The main idea is as
follows: the program takes the argument of the first element of the set (3.9) f1(~x) and
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looks for the function fk(~x) (taking first k = 2, then k = 3 and so on ...) which satisfies
one of the conditions

f1(~x)− Fj (fk(~x)) ≡ 0 , j = 1, .., 6. (3.10)

where the functions Fj(z) are defined as

F1(z) ≡ z, F2(z) ≡ 1− z, F3(z) ≡ 1

z
,

F4(z) ≡ 1

1− z
, F5(z) ≡ z − 1

z
, F6(z) ≡ z

z − 1
. (3.11)

It is clear, that the functions Fi(z) correspond to the arguments of the dilogarithms pre-
sented in the set (3.8). I have included the function F1(z) ≡ z into the search procedure
because it can happen that two functions fi1(~x) and fi2(~x) are equal to each other but
this equality is not obvious. Of course when one checks the condition (3.10) with some
algebra system one has to force this system to perform all possible simplifications with the
difference f1(~x)− Fj (fk(~x)) (for example in the computer algebra system Mathematica
[42] the command “FullSimplify” is suitable for these purposes). Now suppose that one
has found the function fk1(~x) which satisfies one of the conditions (3.10). It means that
Li2 (f1(~x)) can be expressed via Li2 (fk1(~x)) and vice versa using Eqs. (3.6) or combina-
tions of these. But at this step it is too early to do such transformations. There can exist
other functions fk(~x) satisfying one of the conditions (3.10). In the first step we should
find all these functions. Then we compose the set

DilogSmallSet = {Li2 (f1(~x)) ,Li2 (fk1(~x)) , ...,Li2 (fkm(~x))} , (3.12)

where m is the number of the functions satisfying one of the conditions (3.10). At this step
one should perform the transformations. The algebra system should ask which dilogarithms
has to be chosen from the set (3.12) as a basis dilogarithm. The basis dilogarithm should
obey two criteria: it should be as “simple” as possible and its argument should be away
from the branch cut to avoid uncertainties with imaginary parts (if there is no dilogarithm
from the set (3.12) with the argument not lying on the branch cut one can get it using
one of Eqs. (3.6)). Then the system expresses the remaining dilogarithms from the set
(3.12) via the basis dilogarithm using identities (3.6) and combinations of these. It means
that from the initial m+ 1 functions Li2 only one survives at the end. Of course it is not
necessary that these functions fk(~x) exist. It can happen that there is no function fk(~x)
obeying one of the conditions (3.10). Then m = 0 and there is no possible relation between
Li2 (f1(~x)) and any other dilogarithm from the set (3.9).

After expressing all dilogarithms from the set (3.12) by a given one one eliminates all
elements of the “DilogSmallSet” (3.12) from “DilogSet” (3.9) because all possible simpli-
fications for the functions from the set (3.12) have been done and these functions should
not be considered further (after checking the conditions (3.10) for all k running from 2 to
n it is guaranteed that there are no more relations between the functions of the set (3.12)
and the remaining dilogarithms from the set (3.9) ).
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Now one has a new “DilogSet” (3.9) which is shorter than the initial one (exactly by
m + 1 elements). One has to again take the first element of this new set “DilogSet” and
repeat the steps with the composition of “DilogSmallSet” (3.12). One then expands the
dilogarithms from “DilogSmallSet” via a given one and eliminates the elements of the set
“DilogSmallSet” from the set “DilogSet”. This procedure continues until the length of the
set “DilogSet” will be equal to 0. One then concludes that all possible simplifications via
the identities (3.6) and combinations of these have been performed.

Very often one would like to obtain results expressed in terms of dilogarithms which
occur in other expressions. For this task we can slightly change our algorithm. At the
beginning of the program one gives to the system the set of desired dilogarithms. After
the program has composed the set “DilogSmallSet” (3.12) it has to check whether the
dilogarithms from the set “DilogSmallSet” (3.12) relate to the one of the desired diloga-
rithms. If this is true then the system expresses the function from the set “DilogSmallSet”
(3.12) in terms of the desired dilogarithm or else the system should ask to choose the basis
dilogarithm.

In Appendix B.1 I present the program written in the internal language of the computer
algebra system Mathematica [42]. This program realizes the algorithm described above
based on Eqs. (3.7), i.e. the program reduces the number of Re[Li2(z)].

3.2.2 Algorithm based on the identity with two variables

In addition to the identities with one variable an identity with two variables introduced by
Hill (see [44] for details) is very useful:

Li2(x) + Li2(y) = Li2(xy) + Li2

(
x(1− y)

1− xy

)
+ Li2

(
y(1− x)

1− xy

)

+ ln

(
1− x
1− xy

)
ln

(
1− y

1− xy

)
, x, y ∈ C. (3.13)

All arguments of the functions occurring in (3.13) are assumed to be away from the branch
cuts. To use the identity Eq. (3.13) on the branch cuts one either uses the trick with the
imaginary shift or uses the identity Eq.(3.13) only for the real parts. This identity connects
five different dilogarithms. Because of its rather subtle form it is not as powerful as the
identities with one variable but the identity can still provide us with some simplifications.

Let me describe the algorithm to search for dilogarithms related by Eq. (3.13). One
takes any pair of n dilogarithms of the input expression. Suppose it is Li2 (fα(~x)) and
Li2 (fβ(~x)). Then one uses fα(~x) and fβ(~x) as x and y, respectively. Hill’s formula produces
three new polylogarithms. This transformation makes sense if and only if these three new
dilogarithms are either identical to already existing dilogarithms in the input expression or
they are related to existing dilogarithms by the identities (3.6) or combinations of these.
The system should then check whether this statement is true or not. If the test is positive
than one uses Hill’s identity in combination with (3.6) to express the five dilogarithms via
four (exactly five dilogarithms are related by the Hill’s formula). But there is also a very
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subtle remark. One could transform first the initial pair of the dilogarithms Li2 (fα(~x)) and
Li2 (fβ(~x)) via (3.6) or combinations of these, obtaining new dilogarithms, and only after
that use the arguments of these as x and y. One would also obtain three new dilogarithms
from the r.h.s. of (3.13) but these would not be related via (3.6) or combinations of these to
the three dilogarithms obtained without transformation of initial pair of the dilogarithms
Li2 (fα(~x)) and Li2 (fβ(~x)). Therefore one has also to take into account the possibility of
transformation of the initial pair of the dilogarithms and include this possibility into the
algorithm.

Let me evaluate how many comparisons should be done for only one pair of functions
Li2 in order to find a suitable relation via Hill’s identity in combination with the identities
with one variable. For each initial pair of the dilogarithms from the input expression one
has

6× 6× 1

2
= 18

transformations of this pair due to Eqs (3.6) and combinations of these. The number 6
corresponds to the number of possible transformations. The factor 1

2
occurs here because

of the fact that if one uses the Hill’s identity (3.13) with 1
x

and 1
y

instead of x and y then

one obtains the dilogarithms on the r.h.s of (3.13) related by the transformation F3(z) ≡ 1
z

to dilogarithms obtained with x and y. For each of the 36 possible transformations of the
initial pair there is a partner obtained by use of the transformation F3(z) ≡ 1

z
. This partner

is among the 36 possible transformations. Therefore from the 36 possible transformations
one should check only 18 transformations of the initial pair.

The r.h.s. of (3.13) gives three new dilogarithms. It means that one has to perform

3× (n− 2)× 6

analytical comparisons (n is the number of dilogarithms in the input expression). The
number “(n − 2)” corresponds to the remaining dilogarithms and “6” is the number of
possible transformations of the dilogarithms from the r.h.s. of (3.13). Finally in “the
worst case” for only one pair one has to do

18× 3× (n− 2)× 6 = 324× (n− 2) (3.14)

analytical comparisons! One should stop the search if one finds the combination of the
transformations of the dilogarithms on the r.h.s. of (3.13), for which these dilogarithms
are related to already existing dilogarithms from the input expression. It means, that
one has found a relation due to Hill’s identity in combination with the identities with one
variable. In this case the number of the comparisons is shorter than in Eq. (3.14). But
none can guarantee that the relation for exactly this initial pair exists. Therefore “the
worst case” can really occur. For the systematic search the pairs are checked one after
another until the relation has been found . After expressing five dilogarithms via only four
one arrives at the new input expression with the number of the dilogarithms decreased
by one. Then one again looks for a pair giving a positive result for the test (the positive
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result here means that the relation for the initial pair is found). One again expresses five
dilogarithms via four and again arrives at the new input expression. The procedure goes on
until all possible pairs have been checked and the test is negative for all of them. In order
to be sure that there are no more simplifications due to Hill’s identity with two variables
one has to check

n(n− 1)/2

pairs. With already a few dilogarithms in the input expression it is clear that it is rather
difficult to perform all manipulations by hand. Therefore I have implemented the search
algorithm based on Hill’s identity in the internal language of the computer algebra system
Mathematica [42]. Even if one uses some computer algebra system it is very difficult
task for the computer to perform all manipulations analytically because the number of an-
alytical comparisons is very large and intermediate simplifications include operations with
square roots and power functions. Therefore I have decided to perform the transformations
numerically. For the check of the condition

a− b = 0 (3.15)

I have chosen to check numerically

|a− b|
|a+ b|

< 10−m , (3.16)

where the choice of m is up to the user (it can be 2, 3, ... but should not exceed the
precision of the computer algebra system). After the relation is found numerically one
proofs this also analytically. The trick with the numerical check of the condition (3.15) of
the equivalence increases the speed of search procedure by a few orders of magnitude. The
corresponding program is presented in Appendix B.2.

There is also one special case of the Hill’s identity in the case x = y. In this case the
identity (3.13) transforms into (see [44])

Li2(z) + Li2(−z) =
1

2
Li2(z2), z ∈ C, z /∈ (−∞,−1] ∪ [1,+∞). (3.17)

To obtain the algorithm for the identity (3.17) one takes the algorithm for Hill’s identity
and makes some changes. Instead of the initial pair one uses only one the initial dilog-
arithm Li2(z). One takes also into account the transformations of it via Eqs. (3.6) and
combinations of these as it was with the initial pair in the case of Hill’s identity. Then
the system checks whether Li2(−z) and Li2(z2) are equal or related via identities (3.6) or
combinations of these to already existing dilogarithms from the input expression. If it is
true then one has found a relation which allows one to express three dilogarithms from the
input expression via only two. All other steps remain the same as it was in the case with
Hill’s identity.
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3.3 Algorithm for the function Li3

In this section I would like to describe the algorithms for the simplification of the functions
Li3. In the case of the functions Li3 one has only the identities with one variable (see [44]):

Li3(z) = −ζ(2) ln(−z)− 1/6 ln3(−z) + Li3(1/z), z ∈ C, z /∈ [0,+∞) , (3.18)

Li3(z) = ζ(3) + ζ(2) ln(1− z)− Li3(1− z)− Li3

(
z

z − 1

)
, z ∈ C, z /∈ (−∞, 0] ∪ [1,+∞).

As one can see these relations are not valid for arguments on the branch cuts of the above
functions (both logarithms and dilogarithms in the identities). To make use of Eqs. (3.18)
on the real axis one can either use the trick with the imaginary shift (either “causal” or
“artificial”) or separate imaginary and real parts via Eq. (3.5) before simplification. One
can show that for the real parts the identities (3.18) hold true for the whole complex plane

Re (Li3(z)) = Re
(
−ζ(2) ln(−z)− 1/6 ln3(−z) + Li3(1/z)

)
, z ∈ C , (3.19)

Re (Li3(z)) = Re
(
ζ(3) + ζ(2) ln(1− z)− Li3(1− z)− Li3

(
z

z − 1

))
, z ∈ C.

The identities (3.18) (and (3.19)) are analogs of the identities (3.6) (and (3.7)) for
the dilogarithms. The most important difference is that the second identity of Eq. (3.18)
connects three different polylogarithms instead of two as it was in the case of Eqs. (3.6).

One sees that the second identity of Eqs. (3.18) connects Li3(z), Li3(1− z) and Li3
(

z
z−1

)
.

Combining the second identity (3.18)with the first identity (3.18) one concludes that there
are relations between the functions Li3 of the following set

{Li3(z),Li3(1− z),Li3

(
1

z

)
,Li3

(
1

1− z

)
,Li3

(
z − 1

z

)
,Li3

(
z

z − 1

)
}. (3.20)

Due to the fact that the second identity of Eq. (3.18) connects three different polylogarithms
one can express all functions of the set (3.20) via two basis polylogarithms chosen from this
set. The algorithm for the reduction of the number of the functions Li3 is very similar to the
corresponding algorithm for the dilogarithms (see Sec. 3.2.1). The only difference is that
after composition of the set “Li3SmallSet” of the functions Li3 which is the direct analogue
of the “DilogSmallSet” (3.12) for the dilogarithms the system expresses all functions of the
set “Li3SmallSet” via two basis Li3 instead of one basis functions as it was in the case of
dilogarithms. These two basis polylogarithms should be chosen from the set of the desired
functions Li3 (like it was in the case with the dilogarithms) or they should be chosen from
the set “Li3SmallSet” by the user. All other steps of the algorithm are identical to the
algorithm for the dilogarithms (see Sec. 3.2.1).

In Appendix C I present the program written in the internal language of the computer
algebra system Mathematica [42]. This program realizes the algorithm to reduce the
number of the functions Li3 based on Eqs. (3.19), i.e. the program reduces the number of
Re[Li3(z)]. Despite the fact that there is only the small difference between the algorithms
for the functions Li2 and Li3 this difference makes the realization of the algorithm for the
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Li3 function much more complicated. This one can already see if one compares the length
of the programs for the functions Li2 and Li3, respectively.

There is also one additional identity for the functions Li3 [44]

Li3(z) + Li3(−z) =
1

4
Li3(z2), z ∈ C, z /∈ (−∞,−1] ∪ [1,+∞). (3.21)

This identity is an analogue of the identity (3.17) for the dilogarithm. One can write a
separate program for the search of the relations due to Eq. (3.21). To take into account
all possibilities one has to combine the identity (3.21) with the Eqs. (3.18).

3.4 Algorithms for the function Li4

One notes that with the increase of the weight of the classical polylogarithms the possibility
to use some relations to reduce the number of polilogarithms decreases. In the case of the
dilogarithm one uses the identities with one variable as well as identity with two variables.
In the case of the functions Li3 one can uses only the identities with one variable and these
identities are more complicated. This fact leaves fewer possibilities to reduce the number
of the functions Li3 than in the case of the dilogarithms. In the case of the functions Li4
one has only two helpful identities [44]

Li4(z) = −7

4
ζ(4)− 1

24
ln4(−z)− 1

2
ζ(2) ln4(−z)− Li4

(
1

z

)
, z ∈ C, z /∈ [0,+∞) (3.22)

and

Li4(z) + Li4(−z) =
1

8
Li4(z2), z ∈ C, z /∈ (−∞,−1] ∪ [1,+∞). (3.23)

The identity (3.22) is an analogue of the second identity of (3.6) for the dilogarithm and
an analogue of the first identity of (3.18) for the function Li3. The identity (3.23) is an
analogue of identities (3.17) and (3.21) for the functions Li2 and Li3, respectively. Using
Eqs. (3.22) one can find relation between the functions Li4 of the following set:

{Li4(z),Li4

(
1

z

)
}. (3.24)

The set (3.24) for the functions Li4 is an reduced analogue version of the set (3.8) for the
dilogarithms. Therefore in order to reduce the number of the functions Li4 due to the
identity (3.22) one can use the same algorithm as for the dilogarithms (see Sec. 3.2.1) with
small changes. When checking the conditions (3.10) one has to test these only with the
functions F1(z) and F3(z) from (3.11). These functions correspond to the arguments of
the polylogarithms in the set (3.24). All other steps of the algorithm for the function Li4
remain the same as it was in the case of the dilogarithm.

To find possible relations due to identity (3.23) one can use the same algorithm as for
the dilogarithm (see remarks after Eq. (3.17)).



Chapter 4

Properties of the L-functions

In this chapter I discuss properties and identities involving the single- and triple-index L-
functions defined in (2.46) and (2.47). There are two different categories of identities which
I discuss in turn. In Sec. 4.1 I consider the simplest identities originating from symmetries
related to permutations in the indices and arguments. Then in Sec. 4.2 I present further
identities based on integration-by-parts techniques. All the identities of this section have
been used to reduce the size of the expressions in the main part Chap. 2. Finally in Sec. 4.3
it is shown how the L-functions are related to multiple polylogarithms as they are defined
in [43].

4.1 Symmetry properties

I start with the single-index function Lσ1(α1, α2, α3, α4) Eq. (2.46). One notices that a
change of the integration variable y → 1− y results in the identity

Lσ1(α1, α2, α3, α4) = −L−σ1(α1 + σ1, α2 + α3,−α3,−α4 − 1) (4.1)

which implies that L− can always be related to L+, and vice versa. Thus the results for
the three-point (Sec. 2.2) and four-point functions (Sec. 2.3) is written only in terms of the
L+-functions.

Next I turn to the triple-index L-function Eq. (2.47). Note that Lσ1σ2σ3(α1, α2, α3, α4)
is symmetric under permutations of any two pairs of indices and arguments {σi, αi} and
{σj, αj} for (i 6= j). The same change of variables as above y → 1− y results in

Lσ1σ2σ3(α1, α2, α3, α4) = −L−σ1−σ2−σ3(α1 + σ1, α2 + σ2, α3 + σ3,−α4 − 1). (4.2)

Therefore, from the eight functions L−−−, L−−+, L−+−, L+−−, L−++, L+−+, L++− and
L+++ only two are independent. For the results presented in Sec. 2.2 and Sec. 2.3 I consider
the two independent functions L−++ and L+++.

54
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4.2 Integration-by-parts identities

The triple- and single-index L-functions L+++, L−++ and L+ defined in Eqs. (2.46) and
(2.47) have been devised such that they have neither branch cuts nor poles on the inte-
gration path y ∈ [0, 1]. This also implies that the L+++, L−++ and L+ functions are real.
Remember that the branch cuts for the ln and Li2 functions are (−∞, 0] and (1,+∞),
respectively. The domains of the functions L+++, L−++ and L+ are

L+++(α1, α2, α3, α4) : α1 > 0, α2 > 0, α3 > 0, α4 < −1 or α4 > 0;
L−++(α1, α2, α3, α4) : α1 > 1, α2 > 0, α3 > 0, α4 < −1 or α4 > 0;
L+(α1, α2, α3, α4) : α1 > 0, α2 ≤ 1, α2 + α3 ≤ 1, α3 6= 0, α4 < −1 or α4 > 0.

(4.3)

Looking at the definition of the triple-index L–function in (2.46) one concludes that the
boundary points α1 = 0 and/or α2 = 0 and/or α3 = 0 can be included in the domain of
definition for L+++. The same holds true for α1 = 1 and/or α2 = 0 and/or α3 = 0 for
L−++. Also, from the definition of the single-index function L+ in (2.47) one concludes
that the boundary point α1 = 0 can be added to its domain of definition.

The points α4 = {−1, 0} can also be included in the domain if the values taken by
other parameters αi guarantee the convergence of the integral. In what follows I assume
everywhere in this chapter that the conditions (4.3) are satisfied. Nevertheless, it is always
possible to analytically continue the parameters to the complex plane.

In order to obtain integration-by-parts identities one makes use of the standard integration-
by-parts formula

1∫
0

UV ′dy = UV
∣∣∣1
0
−

1∫
0

V U ′dy . (4.4)

4.2.1 Identities for the L−++- and L+++-functions

I start with the triple-index functions L−++ and L+++ defined in Eq. (2.46). Setting U in
Eq. (4.4) equal to the numerator [ln(α1 + σ1y) ln(α2 + σ2y) ln(α3 + σ3y)] and V ′ equal to
the remainder (α4 + y)−1 I then arrive at

L+++(α1, α2, α3, α4) =



α4 > 0 : ln(α1 + y) ln(α2 + y) ln(α3 + y) ln(α4 + y)
∣∣∣1
0

−L+++(α4, α2, α3, α1)− L+++(α1, α4, α3, α2)
−L+++(α1, α2, α4, α3);

α4 < −1 : ln(α1 + y) ln(α2 + y) ln(α3 + y) ln(−α4 − y)
∣∣∣1
0

−L−++(−α4, α2, α3, α1)− L−++(−α4, α1, α3, α2)
−L−++(−α4, α1, α2, α3);

(4.5)
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and

L−++(α1, α2, α3, α4) =



α4 > 0 : ln(α1 − y) ln(α2 + y) ln(α3 + y) ln(α4 + y)
∣∣∣1
0

−L+++(α4, α2, α3,−α1)− L−++(α1, α4, α3, α2)
−L−++(α1, α2, α4, α3);

α4 < −1 : ln(α1 − y) ln(α2 + y) ln(α3 + y) ln(−α4 − y)
∣∣∣1
0

−L−++(−α4, α2, α3,−α1)
+L−++(α3 + 1, α1 − 1,−α4 − 1,−α2 − 1)
+L−++(α2 + 1, α1 − 1,−α4 − 1,−α3 − 1).

.(4.6)

For the second part of Eq.(4.6) I have made use of relation (4.2).
There are some special cases when some of the αi take values on the boundary of the

domain of definition where one can still make use of the identities (4.5) and (4.6) even if the
conditions (4.3) are not met. For example, for the case {α1 = 0, α4 = −1} the identitity
(4.6) is still valid. There are similar special cases for further identities to be derived below.

4.2.2 Identities for the L+-function

The integration-by-parts identities for the single-index L+- function are more involved. I
first write down the derivative of the function Li2 in the integrand of (2.47). One has

dLi2(α2 + α3y)

dy
= − ln(1− α2 − α3y)

α2

α3
+ y

. (4.7)

In the case of the single-index function it will prove important to consider two different
choices for U in Eq. (4.4). One starts by setting the whole numerator [ln(α1 + σ1y)Li2(α2 + α3y)]
in the integrand of Eq. (2.47) to U . For V ′ one then has (α4 + y)−1. One obtains

L+(α1, α2, α3, α4) =
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

α4 > 0, α3 > 0 : ln(α1 + y)Li2(α2 + α3y) ln(α4 + y)
∣∣∣1
0

−L+(α4, α2, α3, α1)

+L−++(1−α2

α3
, α1, α4,

α2

α3
) + ln(α3)

1∫
0

ln(α1+y) ln(α4+y)
α2
α3

+y
dy;

α4 > 0, α3 < 0 : ln(α1 + y)Li2(α2 + α3y) ln(α4 + y)
∣∣∣1
0

−L+(α4, α2, α3, α1)

+L+++(α2−1
α3

, α1, α4,
α2

α3
) + ln(−α3)

1∫
0

ln(α1+y) ln(α4+y)
α2
α3

+y
dy;

α4 < −1, α3 > 0 : ln(α1 + y)Li2(α2 + α3y) ln(−α4 − y)
∣∣∣1
0

+L+(−α4 − 1, α2 + α3,−α3,−α1 − 1)
−L−++(α1 + 1, 1−α2−α3

α3
,−α4 − 1,−α2+α3

α3
)

+ ln(α3)
1∫
0

ln(α1+y) ln(−α4−y)
α2
α3

+y
dy;

α4 < −1, α3 < 0 : ln(α1 + y)Li2(α2 + α3y) ln(−α4 − y)
∣∣∣1
0

+L+(−α4 − 1, α2 + α3,−α3,−α1 − 1)

+L−++(−α4, α1,
α2−1
α3

, α2

α3
) + ln(−α3)

1∫
0

ln(α1+y) ln(−α4−y)
α2
α3

+y
dy.

(4.8)

An additional condition for (4.8) has to be explicated because it does not follow automat-
ically from (4.3), namely the parameters α2 and α3 are restricted by

α2

α3

< −1 or
α2

α3

> 0. (4.9)

The integrals in (4.8) are simple enough to be evaluated in terms of classical polylogarithms
up to Li3. I do not provide explicit results for these integrations since they are rather
lengthy and, in addition, depend on relations between the parameters.

A second choice for U in (4.4) provides further identities for L+. In this case one sets
Li2(α2 + α3y) to U and ln(α1 + y)/(α4 + y) to V ′. To calculate V one has to differentiate
between three cases for the set of parameters α1 and α4. One has

V =
∫ ln(α1 + y)

α4 + y
dy =


α1 < α4 : ln(α1 + y) ln( α4+y

α4−α1
) + Li2( α1+y

α1−α4
);

α1 > α4 > 0 : ln(α1 − α4) ln(α4 + y)− Li2( α4+y
α4−α1

);

α4 < −1 : ln(α1 − α4) ln(−α4 − y)− Li2( α4+y
α4−α1

).
(4.10)

Using Eq. (4.10) one then obtains

L+(α1, α2, α3, α4) =
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

α1 < α4, α3 > 0 : Li2(α2 + α3y)
(
ln(α1 + y) ln( α4+y

α4−α1
) + Li2( α1+y

α1−α4
)
) ∣∣∣1

0

+L−++(1−α2

α3
, α1, α4,

α2

α3
)

−L+(1−α2−α3

α3
, α1+1
α1−α4

, 1
α4−α1

,−α2+α3

α3
) +

1∫
0

ln(α3)

[
Li2(

α1+y

α1−α4
)+ln(α1+y) ln(

α4+y

α4−α1
)

]
−ln(α4−α1) ln(α1+y) ln(

1−α2
α3
−y)

α2
α3

+y
dy;

α1 < α4, α3 < 0 : Li2(α2 + α3y)
(
ln(α1 + y) ln( α4+y

α4−α1
) + Li2( α1+y

α1−α4
)
) ∣∣∣1

0

+L+++(α2−1
α3

, α1, α4,
α2

α3
)

+L+(α2−1
α3

, α1

α1−α4
, 1
α1−α4

, α2

α3
) +

1∫
0

ln(−α3)

[
Li2(

α1+y

α1−α4
)+ln(α1+y) ln(

α4+y

α4−α1
)

]
−ln(α4−α1) ln(α1+y) ln(

α2−1

α3
+y)

α2
α3

+y
dy;

α1 > α4 > 0, α3 > 0 : Li2(α2 + α3y)
(
ln(α1 − α4) ln(α4 + y)− Li2( α4+y

α4−α1
)
) ∣∣∣1

0

+L+(1−α2−α3

α3
, α4+1
α4−α1

, 1
α1−α4

,−α2+α3

α3
) +

1∫
0

− ln(α3)Li2(
α4+y

α4−α1
)+ln(α1−α4) ln(α4+y) ln(1−α2−α3y)

α2
α3

+y
dy;

α4 < −1, α3 > 0 : Li2(α2 + α3y)
(
ln(α1 − α4) ln(−α4 − y)− Li2( α4+y

α4−α1
)
) ∣∣∣1

0

+L+(1−α2−α3

α3
, α4+1
α4−α1

, 1
α1−α4

,−α2+α3

α3
)

+
1∫
0

− ln(α3)Li2(
α4+y

α4−α1
)+ln(α1−α4) ln(−α4−y) ln(1−α2−α3y)

α2
α3

+y
dy;

α1 > α4 > 0, α3 < 0 : Li2(α2 + α3y)
(
ln(α1 − α4) ln(α4 + y)− Li2( α4+y

α4−α1
)
) ∣∣∣1

0

−L+(α2−1
α3

, α4

α4−α1
, 1
α4−α1

, α2

α3
) +

1∫
0

− ln(−α3)Li2(
α4+y

α4−α1
)+ln(α1−α4) ln(α4+y) ln(1−α2−α3y)

α2
α3

+y
dy;

α4 < −1, α3 < 0 : Li2(α2 + α3y)
(
ln(α1 − α4) ln(−α4 − y)− Li2( α4+y

α4−α1
)
) ∣∣∣1

0

−L+(α2−1
α3

, α4

α4−α1
, 1
α4−α1

, α2

α3
) +

1∫
0

− ln(−α3)Li2(
α4+y

α4−α1
)+ln(α1−α4) ln(−α4−y) ln(1−α2−α3y)

α2
α3

+y
dy.

(4.11)

In deriving (4.11) it is important to take into account condition (4.9). As was the case in
Eq. (4.8) the integrals in (4.11) can be evaluated in terms of classical polylogarithms up
to Li3.

There is also one special case of the last identity (4.11) when the first and fourth
arguments of the single-index L+ function are equal, e.g. α1 = α4. In this case L+ can be
expressed only in terms of the functions L−++ or L+++ as follows:

L+(α1, α2, α3, α1) =
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

α3 > 0 : 1
2

ln2(α1 + y)Li2(α2 + α3y)
∣∣∣1
0

+ 1
2
L−++(1−α2

α3
, α1, α1,

α2

α3
)

+ ln(α3)
2

1∫
0

ln2(α1+y)
α2
α3

+y
dy,

α3 < 0 : 1
2

ln2(α1 + y)Li2(α2 + α3y)
∣∣∣1
0

+ 1
2
L+++(α2−1

α3
, α1, α1,

α2

α3
)+

+ ln(−α3)
2

1∫
0

ln2(α1+y)
α2
α3

+y
dy .

(4.12)

The third and last identity for the function L+ is obtained from the definition (2.47)
without making direct use of the integration-by-parts identity Eq. (4.4). Nevertheless it
can still be called an integration-by-parts identity because it makes use of the well-known
identity [44]

Li2(z) = ζ(2)− ln(z) ln(1− z)− Li2(1− z), z ∈ C, z /∈ (−∞, 0] ∪ [1,+∞) , (4.13)

which in turn is derived from the definition of the function Li2 (3.2) with the help of the
integration-by-parts identity (4.4). After transforming Li2(α2 + α3y) according to (4.13)
one gets

L+(α1, α2, α3, α4) =

α3 > 0
0 ≤ α2 ≤ 1, α2 + α3 ≤ 1

: −L+(α1, 1− α2,−α2, α4)− L−++(1−α2

α3
, α1,

α2

α3
, α4)+

1∫
0

ln(α1+y)
α4+y

(
ζ(2)− ln(α3)[ln(α2 + α3y) + ln(1−α2

c
− y)]

)
dy;

α3 < 0
0 ≤ α2 ≤ 1, 0 ≤ α2 + α3

: −L+(α1, 1− α2,−α2, α4)− L−++(−α2

α3
, α1,

α2−1
α3

, α4)+

1∫
0

ln(α1+y)
α4+y

(
ζ(2)− ln(−α3)[ln(α2 + α3y) + ln(α2−1

c
+ y)]

)
dy.

(4.14)

A few final comments are appropiate. In spite of the rather complicated appearance of the
identities (4.5), (4.6), (4.8), (4.11), (4.14) these turn out to be very useful to reduce the
length of the results presented in Chap. 2. The first step in the chain of reductions is to
write everything in terms of the functions L+, L−++ and L+++. In a second step one uses
the identities written down in this chapter to find the set of arguments of L-functions for
which the number of the functions L+, L−++ and L+++ is minimal. I have devised several
programs for the computer algebra system Mathematica [42] which help to find minimal
sets of the single- and triple-index L-functions. With the help of these programs I have
been able to greatly reduce the number of L-functions appearing in the results and I have
thereby greatly reduced their length.

4.3 From the L-functions to multiple polylogarithms

It is interesting to express the L-functions by the standard set of multiple polylogarithm
functions [43]. A computer code for numerical evaluation of the multiple polylogarithms
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based on the GiNaC library [53] has been written down by J. Vollinga and S. Weinzierl
[49]. I was able to define the multiple polylogarithms in the computer algebra system
Mathematica [42] using this external computer code.

4.3.1 Definition of the multiple polylogarithms. Special cases of
the multiple polylogarithms.

In this section I shall demonstrate how the L-functions introduced in Eqs. (2.46) and (2.47)
are related to multiple polylogarithms as defined in [43]. Multiple polylogarithms are
defined as limits of Z-sums, e.g.

Limk,...,m1(xk, ..., x1) = lim
n1→∞

∑
n1>n2...>nk>0

xn1
1 x

n2
2 ...x

nk
k

nm1
1 nm2

2 ...nmkk
. (4.15)

The number w = m1 + ...+mk is called the weight and k is called the depth of the multiple
polylogarithm. The power series (4.15) is convergent for |xi| < 1, and can be analytically
continued via the iterated integral representation:

Limk,...,m1(xk, ..., x1) =

x1x2...xk∫
0

(
dt

t
◦
)m1−1

dt

x2x3...xk − t
◦

(
dt

t
◦
)m2−1

dt

x3...xk − t
◦ ... ◦

(
dt

t
◦
)mk−1

dt

1− t
, (4.16)

where the following notation is used for the iterated integrals:

λ∫
0

dt

an − t
◦ ... ◦ dt

a1 − t
=

λ∫
0

dtn
an − tn

tn∫
0

dtn−1

an−1 − tn−1

× ...×
t2∫

0

dt1
a1 − t1

. (4.17)

The multiple polylogarithms contain a variety of other functions as subsets (see also [48]).
The classical polylogarithms, defined as

Lin(z) ≡
z∫

0

Lin−1(ξ)

ξ
dξ, n ≥ 2; Li1(z) ≡ − ln(1− z) , (4.18)

are a subset of multiple polylogarithms with weight and depth of 1. Nielsen’s generalized
polylogarithms, defined by

Sn,p(x) =
(−1)n−1+p

(n− 1)!p!

1∫
0

dt
lnn−1(t) lnp(1− tx)

t
, (4.19)

are related to the multiple polylogarithms by

Sn,p(x) = Li1, ..., 1︸ ︷︷ ︸
p−1

,n+1(1, ..., 1︸ ︷︷ ︸
p−1

, x) . (4.20)
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The harmonic polylogarithms of Remiddi and Vermaseren [45] are defined recursively via

H0(x) = ln(x), H1(x) = − ln(1− x), H−1(x) = ln(1 + x) , (4.21)

and

Hm1+1,m2,...,mk =

x∫
0

dtf0(t)Hm1,m2,...,mk(t),

H±1,m2,...,mk =

x∫
0

dtf±1(t)Hm2,...,mk(t), (4.22)

where the fractions f0(x), f1(x) and f−1(x) are given by

f0(x) =
1

x
, f1(x) =

1

1− x
, f−1(x) =

1

1 + x
. (4.23)

The harmonic polylogarithms are also a subset of the multiple polylogarithms. For example
for positive indices the harmonic polylogarithms are related to the multiple polylogarithms
by

Hm1,...,mk(x) = Limk,...,m1(1, ..., 1︸ ︷︷ ︸
k−1

, x). (4.24)

The two-dimensional harmonic polylogarithms (2dHPL) [46] are defined as an extension
of the harmonic polylogarithms Eqs. (4.21),(4.22) and (4.23) by introduction of the new
fractions:

f(z, x) =
1

z + x
, f(1− z, x) =

1

1− z − x
. (4.25)

From the integral representation Eq. (4.16) it is clear that the 2dHPL are a subset of
Goncharov’s multiple polylogarithms:

x∫
0

dtf(z, t)Limk,...,m1

(
xk, ..., x2,

t

x2...xk

)
= −Limk,...,m1,1

(
xk, ..., x2,−

z

x2...xk
,−x

z

)
,

x∫
0

dtf(1− z, t)Limk,...,m1

(
xk, ..., x2,

t

x2...xk

)
= Limk,...,m1,1

(
xk, ..., x2,

1− z
x2...xk

,
x

1− z

)
.

(4.26)

In this section I show that all L−functions which occur in the results of the Sec. 2 can also
be expressed in terms of the multiple polylogarithms.
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4.3.2 General formula for the L−++-function

I begin first with the L−++-function Eq. (2.46)

L−++(α1, α2, α3, α4) =

1∫
0

dy
ln(α1 − y) ln(α2 + y) ln(α3 + y)

α4 + y
. (4.27)

After changing the integration variable y = α1t one gets

1/α1∫
0

dt
ln(α1 − α1t) ln(α2 + α1t) ln(α3 + α1t)

α4

α1
+ t

=

1/α1∫
0

dt
lnα1 ln(α2 + α1t) ln(α3 + α1t)

α4

α1
+ t

+

1/α1∫
0

dt
ln(1− t)[lnα1 + ln(α2

α1
+ t)][lnα1 + ln(α3

α1
+ t)]

α4

α1
+ t

=

lnα1

1∫
0

dy
ln(α2 + y) ln(α3 + y)

α4 + y
+ ln2 α1

1/α1∫
0

dt
ln(1− t)
α4

α1
+ t

+ lnα1

1/α1∫
0

dt
ln(1− t) ln(α2

α1
+ t)

α4

α1
+ t

+ lnα1

1/α1∫
0

dt
ln(1− t) ln(α3

α1
+ t)

α4

α1
+ t

(4.28)

+

1/α1∫
0

dt
ln(1− t) ln(α2

α1
+ t) ln(α3

α1
+ t)

α4

α1
+ t

.

With the help of (4.16) the integral in the second term from the last expression can be
written as

1/α1∫
0

dt
ln(1− t)
α4

α1
+ t

=

1/α1∫
0

dt1
−α4

α1
− t1

t1∫
0

dt2
1− t2

= Li1,1(−α4

α1

,− 1

α4

). (4.29)

The third and fourth terms contain integrals of the form

tm∫
0

dt
ln(1− t) ln(β1 + t)

β2 + t
. (4.30)

To express such integral in terms of multiple polylogarithms one proceeds as follows:

−Li1,1,1
(
−β2,

β1

β2

,
−tm
β1

)
=

tm∫
0

dt2
β1 + t2

t2∫
0

dt1
ln(1− t1)

β2 + t1
=

tm∫
0

dt1
ln(1− t1)

β2 + t1

tm∫
t1

dt2
β1 + t2

=

ln(β1 + tm)

tm∫
0

dt1
ln(1− t1)

β2 + t1
−

tm∫
0

dt1
ln(1− t1) ln(β1 + t1)

β2 + t1
= (4.31)

ln(β1 + tm)Li1,1

(
−β2,

−tm
β2

)
−

tm∫
0

dt1
ln(1− t1) ln(β1 + t1)

β2 + t1
,
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where in the first line I have changed the order of integration in the two-dimensional
integral. I shall use this trick often in forthcoming transformations. From Eq. (4.31) one
immediately concludes that

tm∫
0

dt
ln(1− t) ln(β1 + t)

β2 + t
= Li1,1,1

(
−β2,

β1

β2

,
−tm
β1

)
+ ln (β1 + tm)Li1,1

(
−β2,

−tm
β2

)
.

(4.32)
Let us now turn to the more involved integral (first term of Eq. (4.28)):

1∫
0

dy
ln(α2 + y) ln(α3 + y)

α4 + y

y→−α2t= −
−1/α2∫

0

dt
[lnα2 + ln(1− t)] ln(α3 − α2t)

α4

α2
− t

=

− lnα2

−1/α2∫
0

dt
ln(α3 − α2t)

α4

α2
− t

−
−1/α2∫

0

dt
ln(1− t)[lnα2 + ln(α3

α2
− t)]

α4

α2
− t

= (4.33)

+ lnα2

1∫
0

dy
ln(α3 + y)

α4 + y
− lnα2

−1/α2∫
0

dt
ln(1− t)
α4

α2
− t

−
−1/α2∫

0

dt
ln(1− t) ln(α3

α2
− t)

α4

α2
− t

.

The integral in the first term can be expressed as

1∫
0

dy
ln(α3 + y)

α4 + y

y→−α3t= −
−1/α3∫

0

dt
[lnα3 + ln(1− t)]

α4

α3
− t

=

lnα3 ln
(
α4 + 1

α4

)
+ Li1,1

(
α4

α3

,− 1

α3

)
. (4.34)

The integral in the second term can be written as

−1/α2∫
0

dt
ln(1− t)
α4

α2
− t

= −Li1,1
(
α4

α2

,− 1

α2

)
. (4.35)

The third term from the last line of Eq. (4.33) has a form which is an analogue of the
integral (4.30) and can be calculated in a similar way:

tm∫
0

dt
ln(1− t) ln(β1 − t)

β2 − t
= Li1,1,1

(
β2,

β1

β2

,
tm
β1

)
+ ln (β1 − tm)Li1,1

(
β2,

tm
β2

)
. (4.36)

Combining the Eqs. (4.34), (4.35) and (4.36) we arrive at the result for Eq. (4.33)

1∫
0

dy
ln(α2 + y) ln(α3 + y)

α4 + y
= Li1,1,1

(
α4

α2

,
α3

α4

,− 1

α3

)
+ lnα2Li1,1

(
α4

α3

,− 1

α4

)

+ ln(1 + α3)Li1,1

(
α4

α2

,− 1

α4

)
+ lnα2 lnα3 ln

(
α4 + 1

α4

)
. (4.37)
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Because the initial integrand is symmetric under the exchange of the parameters α2 and
α3, the r.h.s. of (4.37) can be rewritten in a symmetric form if desired.

I am now left with fifth term of (4.28). It is an integral of the type

tm∫
0

dt
ln(1− t) ln(γ1 + t) ln(γ2 + t)

γ3 + t
. (4.38)

In order to express such integrals in terms of polylogarithms one can perform the following
chain of transformations with a polylogarithm of weight four:

−Li1,1,1,1
(
−γ3,

γ2

γ3

,
γ1

γ2

,
−tm
γ1

)
=

tm∫
0

dt4
γ1 + t4

t4∫
0

dt3
γ2 + t3

t3∫
0

dt2
γ3 + t2

t2∫
0

dt1
1− t1

= (4.39)

−
tm∫
0

dt4
γ1 + t4

t4∫
0

dt3
γ2 + t3

t3∫
0

dt2
ln(1− t2)

γ3 + t2
= −

tm∫
0

dt4
γ1 + t4

t4∫
0

dt2
ln(1− t2)

γ3 + t2

t4∫
t2

dt3
γ2 + t3

=

−
tm∫
0

dt4
ln(γ2 + t4)

γ1 + t4

t4∫
0

dt2
ln(1− t2)

γ3 + t2
+

tm∫
0

dt4
γ1 + t4

t4∫
0

dt2
ln(1− t2) ln(γ2 + t2)

γ3 + t2
=

−I ′(tm) +

tm∫
0

dt2
ln(1− t2) ln(γ2 + t2)

γ3 + t2

tm∫
t2

dt4
γ1 + t4

=

−I ′(tm) + I ′′(tm)−
tm∫
0

dt2
ln(γ1 + t2) ln(γ2 + t2) ln(1− t2)

γ3 + t2
,

where I have introduced the notation

I ′(tm) =

tm∫
0

dt4
ln(γ2 + t4)

γ1 + t4

t4∫
0

dt2
ln(1− t2)

γ3 + t2
, (4.40)

I ′′(tm) = ln(γ1 + tm)

tm∫
0

dt2
ln(1− t2) ln(γ2 + t2)

γ3 + t2
.

The third term on the last line of (4.39) is exactly the integral of the required type
Eq. (4.38).

The integral in I ′′(tm) has the form of (4.32). For the integral I ′(tm) I write

I ′(tm) =

tm∫
0

dt4
ln(γ2 + t4)

γ1 + t4

t4∫
0

dt2
ln(1− t2)

γ3 + t2
=

tm∫
0

dt4
ln(γ2 + t4)

γ1 + t4
Li1,1

(
−γ3,

−t4
γ3

)
. (4.41)

On the other hand one has

Li1,1,1,1

(
−γ3,

γ1

γ3

,
γ2

γ1

,
−tm
γ2

)
=

tm∫
0

dt2
γ2 + t2

t2∫
0

dt1
γ1 + t1

Li1,1

(
−γ3,

−t1
γ3

)
= (4.42)
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tm∫
0

dt1
γ1 + t1

Li1,1

(
−γ3,

−t1
γ3

) tm∫
t1

dt2
γ2 + t2

=

ln(γ2 + tm)

tm∫
0

dt1
γ1 + t1

Li1,1

(
−γ3,

−t1
γ3

)
−

tm∫
0

dt1
ln(γ2 + t1)

γ1 + t1
Li1,1

(
−γ3,

−t1
γ3

)
=

− ln(γ2 + tm)Li1,1,1

(
−γ3,

γ1

γ3

,
−tm
γ1

)
− I ′(tm).

One then concludes that

I ′(tm) = −Li1,1,1,1
(
−γ3,

γ1

γ3

,
γ2

γ1

,
−tm
γ2

)
− ln(γ2 + tm)Li1,1,1

(
−γ3,

γ1

γ3

,
−tm
γ1

)
. (4.43)

Finally, substituting I ′(tm) and I ′′(tm) into Eq. (4.39) we write down the result for the
integral of the required type Eq. (4.38):

tm∫
0

dt
ln(1− t) ln(γ1 + t) ln(γ2 + t)

γ3 + t
= ln(γ1 + tm) ln(γ2 + tm)Li1,1

(
−γ3,

−tm
γ3

)
+

ln(γ2 + tm)Li1,1,1

(
−γ3,

γ1

γ3

,
−tm
γ1

)
+ ln(γ1 + tm)Li1,1,1

(
−γ3,

γ2

γ3

,
−tm
γ2

)
(4.44)

+Li1,1,1,1

(
−γ3,

γ2

γ3

,
γ1

γ2

,
−tm
γ1

)
+ Li1,1,1,1

(
−γ3,

γ1

γ3

,
γ2

γ1

,
−tm
γ2

)
.

I am now in the position to collect all required contributions to express the L−++-
function in terms of multiple polylogarithms. Taking into account Eqs. (4.29), (4.32),
(4.37) and (4.44) I obtain

L−++(α1, α2, α3, α4) = Li1,1,1,1

(
−α4

α1

,
α2

α4

,
α3

α2

,− 1

α3

)
+Li1,1,1,1

(
−α4

α1

,
α3

α4

,
α2

α3

,− 1

α2

)
+ lnα1Li1,1,1

(
α4

α2

,
α3

α4

,− 1

α3

)
+ ln(1 + α2)Li1,1,1

(
−α4

α1

,
α3

α4

,− 1

α3

)
+ ln(1 + α3)Li1,1,1

(
−α4

α1

,
α2

α4

,− 1

α2

)
+ lnα1 lnα2Li1,1

(
α4

α3

,− 1

α4

)
+ lnα1 ln(1 + α3)Li1,1

(
α4

α2

,− 1

α4

)
(4.45)

+ ln(1 + α2) ln(1 + α3)Li1,1

(
−α4

α1

,− 1

α4

)
+ lnα1 lnα2 lnα3 ln

(
α4 + 1

α4

)
.

Some remarks are necessary here. The final formula (4.45) contains multiple polylogarithm
up to weight four. All multiple polylogarithms up to weight three can be expressed in terms
of the classical polylogarithms. This option will be used later when I will reexpress the
results for the massive scalar integrals in terms of multiple polylogarithms. For the variables
αi the conditions (4.3) are assumed. But in the results for the massive scalar integrals
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there are also cases where α1 = 1 and/or α2 = 0 and/or α3 = 0 and/or α4 = {−1, 0}. In
such cases the general formula (4.45) is no longer valid and these cases must be studied
separately.

4.3.3 Special cases for the L−++-function

In the Laurent series expansion of the massive scalar one-loop integrals the following com-
binations of special values of the αi appear:

4.3.3.1 α1 = 1, α4 = 0

In such case one can make use of Eq. (4.44). One should find the limit of the expression
on the right side for tm = 1, γ3 → 0. One obtains

1∫
0

dt
ln(1− t) ln(γ1 + t) ln(γ2 + t)

t
=

lim
γ3→0

{
ln(γ1 + 1) ln(γ2 + 1)

1∫
0

dt2
−γ3 − t2

t2∫
0

dt1
1− t1

+ ln(γ2 + 1)

1∫
0

dt3
−γ1 − t3

t3∫
0

dt2
−γ3 − t2

t2∫
0

dt1
1− t1

+ ln(γ1 + 1)

1∫
0

dt3
−γ2 − t3

t3∫
0

dt2
−γ3 − t2

t2∫
0

dt1
1− t1

+

1∫
0

dt4
−γ1 − t3

t4∫
0

dt3
−γ2 − t3

t3∫
0

dt2
−γ3 − t2

t2∫
0

dt1
1− t1

+

1∫
0

dt4
−γ2 − t3

t4∫
0

dt3
−γ1 − t3

t3∫
0

dt2
−γ3 − t2

t2∫
0

dt1
1− t1

}
= − ln(γ1 + 1) ln(γ2 + 1)

1∫
0

dt2
t2

t2∫
0

dt1
1− t1

− ln(γ2 + 1)

1∫
0

dt3
−γ1 − t3

t3∫
0

dt2
t2

t2∫
0

dt1
1− t1

− ln(γ1 + 1)

1∫
0

dt3
−γ2 − t3

t3∫
0

dt2
t2

t2∫
0

dt1
1− t1

−
1∫

0

dt4
−γ1 − t3

t4∫
0

dt3
−γ2 − t3

t3∫
0

dt2
t2

t2∫
0

dt1
1− t1

−
1∫

0

dt4
−γ2 − t3

t4∫
0

dt3
−γ1 − t3

t3∫
0

dt2
t2

t2∫
0

dt1
1− t1

.

(4.46)

To get the expression under the sign of the limit in Eq. (4.46) I have applied the definition
(4.16) for the multiple polylogarithms in Eq. (4.44). Using the same definition for the final
multidimensional integrals in (4.46) and making the change γ1 → α2, γ2 → α3 one finally
arrives at the result for the case α1 = 1 and α4 = 0:

L−++ (1, α2, α3, 0) = − ln(α2 + 1) ln(α3 + 1)ζ(2)

− ln(α3 + 1)Li2,1

(
−α2,−

1

α2

)
− ln(α2 + 1)Li2,1

(
−α3,−

1

α3

)
−Li2,1,1

(
−α3,

α2

α3

,− 1

α2

)
− Li2,1,1

(
−α2,

α3

α2

,− 1

α3

)
. (4.47)
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4.3.3.2 α1 = 1 and α2 = α3 = 0

For these values of the parameters αi one has an integral of the very simple form

L−++(1, 0, 0, α4) =

1∫
0

dy
ln(1− y) ln2 y

α4 + y
.

After a change of variable y → 1− t one gets

1∫
0

dt
ln t ln2(1− t)
α4 + 1− t

= −
1∫

0

dt1
ln2(1− t1)

α4 + 1− t1

1∫
t1

dt2
t2

=

−
1∫

0

dt2
t2

t2∫
0

dt1
ln2(1− t1)

α4 + 1− t1
= −2

1∫
0

dt2
t2

t2∫
0

dt1
α4 + 1− t1

t1∫
0

dt3
1− t3

t3∫
0

dt4
1− t4

. (4.48)

Applying the definition (4.16) one obtains

L−++(1, 0, 0, α4) = −2Li1,1,2

(
1, α4 + 1,

1

α4 + 1

)
. (4.49)

4.3.3.3 α1 = 1 and α2 = 0 (and α4 = −1)

I should find again the limit of the r.h.s. of (4.44) for tm = 1 and γ1 → 0. The first and the
third terms are equal to 0 because of the limγ1→0 ln(γ1 +1) = 0. The other terms transform
into

lim
γ1→0

Li1,1,1

(
−γ3,

γ1

γ3

,
−1

γ1

)
= −Li1,2

(
−γ3,−

1

γ3

)
,

lim
γ1→0

Li1,1,1,1

(
−γ3,

γ2

γ3

,
γ1

γ2

,
−tm
γ1

)
= −Li1,1,2

(
−γ3,

γ2

γ3

,
−1

γ2

)
,

lim
γ1→0

Li1,1,1,1

(
−γ3,

γ1

γ3

,
γ2

γ1

,
−tm
γ2

)
= −Li1,2,1

(
−γ3,

γ2

γ3

,
−1

γ2

)
.

Finally I write

L−++ (1, 0, α3, α4) = −Li1,1,2
(
−α4,

α3

α4

,
−1

α3

)
− Li1,2,1

(
−α4,

α3

α4

,
−1

α3

)
− ln(α3 + 1)Li1,2

(
−α4,−

1

α4

)
. (4.50)

For the special case with α4 = −1 one gets

L−++ (1, 0, α3,−1) = −Li1,1,2
(

1,−α3,
−1

α3

)
− Li1,2,1

(
1,−α3,

−1

α3

)
− ln(α3 + 1) ζ(3). (4.51)
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4.3.3.4 α2 = α3 = 0 (and α4 = −1)

In this case one proceeds along the following lines:

L−++(α1, 0, 0, α4) =

1∫
0

dy
ln(α1 − y) ln2 y

α4 + y

y→1−t
=

1∫
0

dt
ln(α1 − 1 + t) ln2(1− t)

α4 + 1− t
=

−
1∫

0

dt1
ln2(1− t1)

−α4 − 1 + t1

t1∫
−α1+2

dt2
α1 − 1 + t2

= −
1∫

0

dt1
ln2(1− t1)

−α4 − 1 + t1


t1∫

1

+

1∫
−α1+2

 dt2
α1 − 1 + t2

=

1∫
0

dt2
α1 − 1 + t2

t2∫
0

dt1
ln2(1− t1)

−α4 − 1 + t1
− lnα1

1∫
0

dt1
ln2(1− t1)

−α4 − 1 + t1
=

2

1∫
0

dt2
α1 − 1 + t2

t2∫
0

dt1
−α4 − 1 + t1

t1∫
0

dt3
1− t3

t3∫
0

dt4
1− t4

− 2 lnα1Li3

(
− 1

α4

)
.

(4.52)

Using the definition (4.16) we arrive at the result

L−++(α1, 0, 0, α4) = 2Li1,1,1,1

(
1, α4 + 1,

1− α1

α4 + 1
,

1

1− α1

)
− 2 lnα1Li3

(
− 1

α4

)
. (4.53)

For the case with α4 = −1 one obtains

L−++(α1, 0, 0,−1) = −2Li1,2,1

(
1, 1− α1,

1

1− α1

)
− 2 lnα1 ζ(3) . (4.54)

4.3.3.5 α2 = 0

For this integral I change the integration variable y → 1− t:
1∫

0

dy
ln(α1 − y) ln y ln(α3 + y)

α4 + y
=

1∫
0

dt
ln(1− t) ln(α1 − 1 + t) ln(α3 + 1− t)

α4 + 1− t
=

1∫
0

dt
ln(1− t) ln(γ1 + t) ln(γ2 − t)

γ3 − t
. (4.55)

One notes that the last integral is an analogue of the integral in Eq. (4.44). The calculation
proceeds in a similar way:

−Li1,1,1,1
(
γ3,

γ2

γ3

,−γ1

γ2

,− 1

γ1

)
=

1∫
0

dt4
γ1 + t4

t4∫
0

dt3
γ2 − t3

t3∫
0

dt2
γ3 − t2

t2∫
0

dt1
1− t1

=

−
tm∫
0

dt4
γ1 + t4

t4∫
0

dt3
γ2 − t3

t3∫
0

dt2
ln(1− t2)

γ3 − t2
= −

tm∫
0

dt4
γ1 + t4

t4∫
0

dt2
ln(1− t2)

γ3 − t2

t4∫
t2

dt3
γ2 − t3

=
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1∫
0

dt4
ln(γ2 − t4)

γ1 + t4

t4∫
0

dt2
ln(1− t2)

γ3 − t2
−

1∫
0

dt4
γ1 + t4

t4∫
0

dt2
ln(1− t2) ln(γ2 − t2)

γ3 − t2
=

Y ′(1)−
1∫

0

dt2
ln(1− t2) ln(γ2 − t2)

γ3 − t2

1∫
t2

dt4
γ1 + t4

=

Y ′(1)− ln(γ1 + 1)

1∫
0

dt2
ln(1− t2) ln(γ2 − t2)

γ3 − t2
+

1∫
0

dt2
ln(1− t2) ln(γ1 + t2) ln(γ2 − t2)

γ3 − t2
=

Y ′(1)− Y ′′(1) +

1∫
0

dt2
ln(1− t2) ln(γ1 + t2) ln(γ2 − t2)

γ3 − t2
,

(4.56)

where I have introduced the notation

Y ′(tm) =

tm∫
0

dt4
ln(γ2 − t4)

γ1 + t4

t4∫
0

dt2
ln(1− t2)

γ3 − t2
,

Y ′′(tm) = ln(γ1 + tm)

tm∫
0

dt2
ln(1− t2) ln(γ2 − t2)

γ3 − t2
. (4.57)

The last term in (4.56) is the required integral. The expansion of the integral Y ′(tm) in
terms of multiple polylogarithms is similar to the evaluation of I ′(tm) in Eq. (4.40). The
result of the calculation is

Y ′(tm) = Li1,1,1,1

(
γ3,−

γ1

γ3

,−γ2

γ1

,
tm
γ2

)
+ ln(γ2 − tm)Li1,1,1

(
γ3,−

γ1

γ3

,−tm
γ1

)
. (4.58)

For the calculation of Y ′′(tm) one can make use of (4.36). Finally using Eqs. (4.56) and
(4.58) one arrives at the result

1∫
0

dt
ln(1− t) ln(γ1 + t) ln(γ2 − t)

γ3 − t
= −Li1,1,1,1

(
γ3,−

γ1

γ3

,−γ2

γ1

,
1

γ2

)

−Li1,1,1,1
(
γ3,

γ2

γ3

,−γ1

γ2

,− 1

γ1

)
− ln(γ1 + 1)Li1,1,1

(
γ3,

γ2

γ3

,
1

γ2

)
(4.59)

− ln(γ2 − 1)Li1,1,1

(
γ3,−

γ1

γ3

,− 1

γ1

)
− ln(γ1 + 1) ln(γ2 − 1)Li1,1

(
γ3,

1

γ3

)
.

To obtain the formula for the L-function with α2 = 0 I must only change γ1, γ2 and γ3 to
α1 − 1 , α3 + 1 and α4 + 1 according to Eq. (4.55):

L−++(α1, 0, α3, α4) =

1∫
0

dy
ln(α1 − y) ln y ln(α3 + y)

α4 + y
=
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−Li1,1,1,1
(

1 + α4,
1− α1

1 + α4

,
1 + α3

1− α1

,
1

1 + α3

)
− Li1,1,1,1

(
1 + α4,

1 + α3

1 + α4

,
1− α1

1 + α3

,
1

1− α1

)
− lnα1Li1,1,1

(
1 + α4,

1 + α3

1 + α4

,
1

1 + α3

)
− lnα3Li1,1,1

(
1 + α4,

1− α1

1 + α4

,
1

1− α1

)
− lnα1 lnα3Li1,1

(
1 + α4,

1

1 + α4

)
. (4.60)

For the case with α4 = −1 I calculate the limit of the r.h.s of (4.60) for α4 → 0 and obtain

L−++(α1, 0, α3,−1) = Li2,1,1

(
1− α1,

1 + α3

1− α1

,
1

1 + α3

)
+Li2,1,1

(
1 + α3,

1− α1

1 + α3

,
1

1− α1

)
+ lnα1Li2,1

(
1 + α3,

1

1 + α3

)
+ lnα3Li2,1

(
1− α1,

1

1− α1

)
+ lnα1 lnα3 ζ(2) . (4.61)

4.3.4 General formula for the L+++-function

I proceed now with the evaluation of the L+++-function

L+++(α1, α2, α3, α4) =

1∫
0

dy
ln(α1 + y) ln(α2 + y) ln(α3 + y)

α4 + y
. (4.62)

After changing the integration variable y = −α1t we obtain:

−
−1/α1∫

0

dt
ln(α1 − α1t) ln(α2 − α1t) ln(α3 − α1t)

α4

α1
− t

= −
−1/α1∫

0

dt
lnα1 ln(α2 − α1t) ln(α3 + α1t)

α4

α1
− t

−
−1/α1∫

0

dt
ln(1− t)[lnα1 + ln(α2

α1
− t)][lnα1 + ln(α3

α1
− t)]

α4

α1
− t

=

lnα1

1∫
0

dy
ln(α2 + y) ln(α3 + y)

α4 + y
− ln2 α1

−1/α1∫
0

dt
ln(1− t)
α4

α1
− t

− lnα1

−1/α1∫
0

dt
ln(1− t) ln(α2

α1
− t)

α4

α1
− t

− lnα1

−1/α1∫
0

dt
ln(1− t) ln(α3

α1
− t)

α4

α1
− t

−
−1/α1∫

0

dt
ln(1− t) ln(α2

α1
− t) ln(α3

α1
− t)

α4

α1
− t

. (4.63)

The first integral on the r.h.s of (4.63) has been calculated in Eq. (4.37). For the second
integral one makes use of the formula (4.35) (the only change is α2 → α1). For the
evaluation of the third and fourth integrals one uses Eq. (4.36). We are left with the most
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complicated fifth integral. Let us consider an integral of the type

tm∫
0

dt
ln(1− t) ln(γ1 − t) ln(γ2 − t)

γ3 − t
. (4.64)

This integral is an analogue of the integral in Eq. (4.44). The calculation proceeds in a
similar way. One obtains the result

tm∫
0

dt
ln(1− t) ln(γ1 − t) ln(γ2 − t)

γ3 − t
= − ln(γ1 − tm) ln(γ2 − tm)Li1,1

(
γ3,

tm
γ3

)

− ln(γ2 − tm)Li1,1,1

(
γ3,

γ1

γ3

,
tm
γ1

)
− ln(γ1 − tm)Li1,1,1

(
γ3,

γ2

γ3

,
tm
γ2

)
(4.65)

−Li1,1,1,1
(
γ3,

γ2

γ3

,
γ1

γ2

,
tm
γ1

)
− Li1,1,1,1

(
γ3,

γ1

γ3

,
γ2

γ1

,
tm
γ2

)
.

Taking into account everything mentioned above for Eq. (4.63) we arrive at the final result
for the L+++ -function:

L+++(α1, α2, α3, α4) = Li1,1,1,1

(
α4

α1

,
α2

α4

,
α3

α2

,− 1

α3

)
+Li1,1,1,1

(
α4

α1

,
α3

α4

,
α2

α3

,− 1

α2

)
+ lnα1Li1,1,1

(
α4

α2

,
α3

α4

,− 1

α3

)
+ ln(1 + α2)Li1,1,1

(
α4

α1

,
α3

α4

,− 1

α3

)
+ ln(1 + α3)Li1,1,1

(
α4

α1

,
α2

α4

,− 1

α2

)
+ lnα1 lnα2Li1,1

(
α4

α3

,− 1

α4

)
+ lnα1 ln(1 + α3)Li1,1

(
α4

α2

,− 1

α4

)
(4.66)

+ ln(1 + α2) ln(1 + α3)Li1,1

(
α4

α1

,− 1

α4

)
+ lnα1 lnα2 lnα3 ln

(
α4 + 1

α4

)
.

For this equation the conditions (4.3) are assumed. I emphasize that in the results for the
massive scalar integrals there is no general case for the L+++-function . Despite that I
present this result because it can be useful for other applications. In the results for the
massive scalar integral one has only the special cases where α1 = α2 or α1 = α3 as well
as the cases with α1 = 0 and/or α2 = 0 and/or α3 = 0 and/or α4 = {−1, 0}. If some α’s
coincide with each other Eq. (4.66) becomes simpler. For the cases with α1 = 0 and/or
α2 = 0 and/or α3 = 0 and/or α4 = {−1, 0} the general formula (4.66) is no longer valid
and these cases must be studied separately.

4.3.5 Special cases for the L+++-function

In the Laurent series expansion of the massive scalar one-loop integrals the following special
cases for the αi appear:
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4.3.5.1 α1 = α2 or α1 = α3

In Sec. 4.1 it was shown that the L+++-function is symmetric under the permutations αi
and αj (i, j = {1, 3}, i 6= j). Therefore it suffices to consider the case α1 = α2. I have the
integral

L+++(α1, α1, α3, α4) =

1∫
0

dy
ln2(α1 + y) ln(α3 + y)

α4 + y
. (4.67)

This integral can be expressed in different ways. First of all one can directly use Eq. (4.66)
replacing α2 by α1 . The second possibility is to use symmetry properties. One takes
into account the r.h.s. of Eq. (4.66) and notes that the part with multiple polylogarithms
of weight four is symmetric under the exchange α2 ↔ α3. It allows one to reduce the
number of the multiple polylogarithms from two to one. First I apply Eq. (4.66) for the
case α2 = α3 replacing α3 by α2. Second I change α1 → α3 and α2 → α1. After these
transformations one obtains the result:

L+++(α1, α1, α3, α4) =

1∫
0

dy
ln2(α1 + y) ln(α3 + y)

α4 + y
=

+2Li1,1,1,1

(
α4

α3

,
α1

α4

, 1,− 1

α1

)
+ lnα3 Li1,1,1

(
α4

α1

,
α1

α4

,− 1

α1

)
+2 ln(1 + α1)Li1,1,1

(
α4

α3

,
α1

α4

,− 1

α1

)
+ lnα3 [ln(α1 + 1) + lnα1]Li1,1

(
α4

α1

,− 1

α4

)
(4.68)

+ ln2(1 + α1)Li1,1

(
α4

α3

,− 1

α4

)
+ ln2 α1 lnα3 ln

(
α4 + 1

α4

)
.

There is also a third possibility to express L+++(α1, α1, α3, α4) in terms of multiple poly-
logarithms:

1∫
0

dy
ln2(α1 + y) ln(α3 + y)

α4 + y

y→−α1t= −
−1/α1∫

0

dt
ln2(α1 − α1t) ln(α3 − α1t)

α4

α1
− t

=

−
−1/α1∫

0

dt

[
ln2 α1 + 2 lnα1 ln(1− t) + ln2(1− t)

] [
lnα1 + ln(α3

α1
− t)

]
α4

α1
− t

=

+ ln3 α1

1∫
0

dy

α4 + y
+ ln2 α1

1∫
0

dy
ln(α3 + y)

α4 + y
− 2 ln2 α1

−1/α1∫
0

dt
ln(1− t)
α4

α1
− t

− lnα1

−1/α1∫
0

dt
ln2(1− t)
α4

α1
− t

− 2 lnα1

−1/α1∫
0

dt
ln(1− t) ln(α3

α1
− t)

α4

α1
− t

−
−1/α1∫

0

dt
ln2(1− t) ln(α3

α1
− t)

α4

α1
− t

. (4.69)
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The first term can be integrated immediately. For the second and third term one uses
Eq. (4.34) and Eq. (4.35), respectively. The integral of the fourth term can be rewritten
as

−1/α1∫
0

dt
ln2(1− t)
α4

α1
− t

= 2

−1/α1∫
0

dt1
α4

α1
− t1

t1∫
0

dt2
1− t2

t2∫
0

dt3
1− t3

= 2Li1,1,1

(
1,
α4

α1

,
−1

α4

)
. (4.70)

The fifth term is calculable with Eq. (4.32). To integrate the last term one first evaluates
the following integral:

tm∫
0

dt
ln2(1− t) ln(β1 − t)

β2 − t
= −

tm∫
0

dt1
ln2(1− t1)

β2 − t1


t1∫

tm

+

tm∫
β1−1

 dt2
β1 − t2

tm∫
0

dt2
β1 − t2

t2∫
0

dt1
ln2(1− t1)

β2 − t1
+ ln(β1 − tm)

tm∫
0

dt
ln2(1− t)
β2 − t

= (4.71)

2Li1,1,1,1

(
1, β2,

β1

β2

,
tm
β1

)
+ 2 ln(β1 − tm)Li1,1,1

(
1, β2,

tm
β2

)
.

Then to calculate the last term of Eq. (4.69) one only has to change β1, β2 and tm by the cor-
responding combinations of αi. Finally we arrive at the result for the L+++(α1, α1, α3, α4)-
function:

L+++(α1, α1, α3, α4) = −2Li1,1,1,1

(
1,
α4

α1

,
α3

α4

,− 1

α3

)
− 2 ln(α3 + 1)Li1,1,1

(
1,
α4

α1

,− 1

α4

)
+2 lnα1Li1,1,1

(
α4

α1

,
α3

α4

,− 1

α3

)
+ 2 lnα1 ln(α3 + 1)Li1,1

(
α4

α1

,− 1

α4

)
+ ln2 α1Li1,1

(
α4

α3

,− 1

α4

)
+ ln2 α1 lnα3 ln

(
α4 + 1

α4

)
. (4.72)

This is the third possibility to express L+++(α1, α1, α3, α4)-function in terms of multiple
polylogaritms. Each of the Eqs. (4.68) and (4.72) contains only one multiple polylogarithm
of weight four and they are both equally good from this point of view. One has a free
choice to apply any of these equations for the required L-functions. The situation with
the L+++(α1, α1, α3, α4)-function is an example of the statement that the expansion of the
L-functions in terms of multiple polylogarithms is not unique.

4.3.5.2 α1 = 0 (or α2 = 0 or α3 = 0)

For this integral I change the integration variable y → 1− t:

L+++(0, α2, α3, α4) =

1∫
0

dy
ln y ln(α2 + y) ln(α3 + y)

α4 + y
=

1∫
0

dt
ln(1− t) ln(α2 + 1− t) ln(α3 + 1− t)

α4 + 1− t
(4.73)
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and using Eq. (4.66) we arrive at the result

L+++(0, α2, α3, α4) = −Li1,1,1,1
(

1 + α4,
1 + α2

1 + α4

,
1 + α3

1 + α2

,
1

1 + α3

)
−Li1,1,1,1

(
1 + α4,

1 + α3

1 + α4

,
1 + α2

1 + α3

,
1

1 + α2

)
− lnα2Li1,1,1

(
1 + α4,

1 + α3

1 + α4

,
1

1 + α3

)
− lnα3Li1,1,1

(
1 + α4,

1 + α2

1 + α4

,
1

1 + α2

)
− lnα2 lnα3Li1,1

(
1 + α4,

1

1 + α4

)
. (4.74)

4.3.5.3 α1 = α2 = 0

To calculate this integral I again change the integration variable y → 1− t:

L+++(0, 0, α3, α4) =

1∫
0

dy
ln2 y ln(α3 + y)

α4 + y
=

1∫
0

dt
ln2(1− t) ln(α3 + 1− t)

α4 + 1− t
. (4.75)

For the last integral I use Eq. (4.71). An additional simplification can be done if one notes
that

Li1,1,1

(
1, α4 + 1,

1

α4 + 1

)
= −Li3

(
− 1

α4

)
. (4.76)

Finally one has

L+++(0, 0, α3, α4) = 2Li1,1,1,1

(
1, α4 + 1,

α3 + 1

α4 + 1
,

1

α3 + 1

)
− 2 lnα3Li3

(
− 1

α4

)
. (4.77)

4.3.5.4 α1 = α2 = 0 and α = −1 (or α2 = α3 = 0 and α4 = −1)

In this case one should calculate the limit of the r.h.s. of (4.77) for tm = 1 and α4 → −1.
After this procedure one obtains

L+++(0, 0, α3,−1) = −2Li1,2,1

(
1, α3 + 1,

1

α3 + 1

)
− 2 lnα3ζ(3). (4.78)

For the case α2 = α3 = 0 and α4 = −1 one can use the same formula. The only change is
α3 → α1.

4.3.5.5 α1 = 0 and α4 = −1

To obtain the solution for these values of the αi I have to find the limit of the r.h.s. of
(4.74) for α4 → −1. After taking the limit one arrives at the result

L+++(0, α2, α3,−1) = +Li2,1,1

(
1 + α2,

1 + α3

1 + α2

,
1

1 + α3

)
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+Li2,1,1

(
1 + α3,

1 + α2

1 + α3

,
1

1 + α2

)
+ lnα2Li2,1

(
1 + α3,

1

1 + α3

)
+ lnα3Li2,1

(
1 + α2,

1

1 + α2

)
+ lnα2 lnα3ζ(2). (4.79)

4.3.6 General formula for the L+-function

I start to derive the general formula for the single-index L+-function Eq. (2.47):

L+(α1, α2, α3, α4) =

1∫
0

dy
ln(α1 + y)

α4 + y
Li2(α2 + α3y). (4.80)

After changing the integration variable y → (t− α2)/α3 one gets

L+ =

α2+α3∫
α2

dt

α3

ln(α1 + t−α2

α3
)

α4 + t−α2

α3

Li2(t) =

α2+α3∫
α2

dt
− lnα3 + ln(α1α3 − α2 + t)

α3α4 − α2 + t
Li2(t). (4.81)

The integration interval can be split into two pieces, [α2, 0] and [0, α2 + α3]. One can then
write L+ as a sum of four terms:

L+ = − lnα3


α2+α3∫

0

−
α2∫
0

 dt

γ + t
Li2(t) +


α2+α3∫

0

−
α2∫
0

 dt ln(α + t)

γ + t
Li2(t), (4.82)

where I have introduced the notation

α = α1α3 − α2, γ = α3α4 − α2. (4.83)

Looking at Eq. (4.82) it is clear that there are only two different types of integrals to be
dealt with:

tm∫
0

dt

γ + t
Li2(t) and

tm∫
0

dt
ln(α + t)

γ + t
Li2(t). (4.84)

with upper limits tm = α2 +α3 or tm = α2. The first integral can be evaluated analytically
in terms of standard logarithms and classical polylogarithms up to Li3. However, the
same integral can also be expressed in terms of multiple polylogarithms via the integral
representation (4.16), e.g.

tm∫
0

dt

γ + t
Li2(t) =

tm∫
0

dt1
γ + t1

t1∫
0

dt2
t2

t2∫
0

dt3
1− t3

= −Li2,1
(
−γ, −tm

γ

)
. (4.85)

We now deal with the second integral in (4.84). Consider the following multiple polyloga-
rithm of weight four:

Li2,1,1

(
−γ, α

γ
,
tm
−α

)
=

tm∫
0

dt2
−α− t2

t2∫
0

dt1
−γ − t1

Li2(t1) =

tm∫
0

dt1
γ + t1

Li2(t1)

tm∫
t1

dt2
α + t2

=

tm∫
0

dt1
γ + t1

Li2(t1) ln(α + tm)−
tm∫
0

dt1
γ + t1

Li2(t1) ln(α + t1). (4.86)
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In the first step I have used the usual trick to change the order of integration. As already
noted before (see Eq. (4.85)) the first term on the second line can be expressed through a
multiple polylogarithm of weight three. Thus one has

tm∫
0

dt
ln(α + t)

γ + t
Li2(t) = −Li2,1,1

(
−γ, α

γ
,
tm
−α

)
− Li2,1

(
−γ, −tm

γ

)
ln(α + tm). (4.87)

Finally, substituting Eqs. (4.85) and (4.87) into Eq. (4.82) we arrive at the desired relation

L+(α1, α2, α3, α4) = Li2,1,1

(
α2 − α3α4,

α2 − α1α3

α2 − α3α4

,
α2

α2 − α1α3

)
−Li2,1,1

(
α2 − α3α4,

α2 − α1α3

α2 − α3α4

,
α2 + α3

α2 − α1α3

)
+ lnα1Li2,1

(
α2 − α3α4,

α2

α2 − α3α4

)
(4.88)

− ln(α1 + 1)Li2,1

(
α2 − α3α4,

α2 + α3

α2 − α3α4

)
.

I should note that, similar to Eq. (4.45), the conditions (4.3) are assumed for the variables
αi. Also, one cannot directly use Eq. (4.88) if α2 − α3α4 = 0 and α2 − α1α3. However, in
the results for the massive scalar integrals these special cases appear as well as the cases
where α1 = 0 and/or α2 = 0 and/or α3 = 0 and/or α4 = {−1, 0}. In such cases the general
formula (4.88) is no longer valid and these cases must be studied separately.

4.3.7 Special cases for the L+-function

In the Laurent series expansion of the massive scalar one-loop integrals the following special
cases for the arguments of the L+-functions appear:

4.3.7.1 α2 − α3α4 = 0

In this case one has to find the limit of the r.h.s. of Eq. (4.88) for α2 → α3α4. First I rewrite
the r.h.s of the Eq. (4.88) in terms of multidimensional integrals via the definition (4.16)
and then I replace α2 by α3α4 and finally I use again the definition (4.16) to obtain the
result:

L+(α1, α3α4, α3, α4) = −Li3,1
(
α2 − α1α3,

α2

α2 − α1α3

)
+Li3,1

(
α2 − α1α3,

α2 + α3

α2 − α1α3

)
− lnα1Li3(α2) + ln(α1 + 1)Li3(α2 + α3) . (4.89)

4.3.7.2 α1 = 0

Unfortunately in this case one cannot use Eq. (4.88) for α1 = 0 because one is immediately
faced with the problem of a logarithmic infinity. One has to find another algorithm to
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express the L+(0, α2, α3, α4)-function in terms of multiple polylogarithms. After changing
the integration variable y → 1− t one gets

1∫
0

dy
ln y

α4 + y
Li2(α2 + α3y) =

1∫
0

dt
ln(1− t)
α4 + 1− t

Li2(α2 + α3 − α3t) =

1∫
0

dt1
ln(1− t1)

α4 + 1− t1

t1∫
α2/α3+1

dt2
ln(1− α2 − α3 + α3t2)

α2

α3
+ 1− t2

=

1∫
0

dt1
ln(1− t1)

α4 + 1− t1


t1∫

1

+

1∫
α2/α3+1

 dt2 ln(1− α2 − α3 + α3t2)
α2

α3
+ 1− t2

= (4.90)

−
1∫

0

dt2
ln(1− α2 − α3 + α3t2)

α2

α3
+ 1− t2

t2∫
0

dt1
ln(1− t1)

α4 + 1− t1
− Li2(α2)Li1,1

(
α4 + 1,

1

α4 + 1

)
.

The last integral is an analogue of I ′(tm) in Eq. (4.40). First one notes that

t2∫
0

dt1
ln(1− t1)

α4 + 1− t1
= −Li1,1

(
α4 + 1,

t1
α4 + 1

)
. (4.91)

Then one considers the following chain of transformations:

1∫
0

dt2
1− α2 − α3 + α3t2

t2∫
0

dt1
α2

α3
+ 1− t1

Li1,1

(
α4 + 1,

t1
α4 + 1

)
=

1∫
0

dt1
α2

α3
+ 1− t1

Li1,1

(
α4 + 1,

t1
α4 + 1

) 1∫
t1

dt2
1− α2 − α3 + α3t2

=

1

α3

ln(1− α2)

1∫
0

dt1
α2

α3
+ 1− t1

Li1,1

(
α4 + 1,

t1
α4 + 1

)
(4.92)

− 1

α3

1∫
0

dt1
ln(1− α2 − α3 + α3t1)

α2

α3
+ 1− t1

Li1,1

(
α4 + 1,

t1
α4 + 1

)

Using Eq. (4.91) we see that the last integral is exactly the integral required in Eq. (4.90).
The initial integral of Eq. (4.92) and the first integral of the r.h.s. of Eq. (4.92) can be
expressed in terms of multiple polylogarithms due to the definition (4.16). Finally for the
L+(0, α2, α3, α4)-function we obtain

L+(0, α2, α3, α4) = Li1,1,1,1

(
α4 + 1,

α2 + α3

α3(α4 + 1)
,
α2 + α3 − 1

α2 + α3

,
α3

α2 + α3 − 1

)
(4.93)

+ ln(1− α2)Li1,1,1

(
α4 + 1,

α2 + α3

α3(α4 + 1)
,

α3

α2 + α3

)
− Li2(α2)Li1,1

(
α4 + 1,

1

α4 + 1

)
.
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4.3.7.3 α1 = 0 and α4 = −1

For these values of the αi one uses Eq. (4.93) to calculate the limit of the r.h.s. for α4 → −1.
One arrives at the result

L+(0, α2, α3,−1) = −Li2,1,1
(
α2 + α3

α3

,
α2 + α3 − 1

α2 + α3

,
α3

α2 + α3 − 1

)
(4.94)

− ln(1− α2)Li2,1

(
α2 + α3

α3

,
α3

α2 + α3

)
+ Li2(α2)ζ(2).

4.3.7.4 α1 = 0 and α2 + α3 = 1 (and α4 = −1)

If one looks at Eq. (4.93) one realizes, that there is a problem if α2 +α4 = 1. To express the
L+-function for this configuration of the αi the limit of the r.h.s. of (4.93) for α2 → 1−α3

must be found. The result is

L+(0, 1− α3, α3, α4) = −Li1,1,2
(
α4 + 1,

1

α3(α4 + 1)
, α3

)
(4.95)

+ lnα3Li1,1,1

(
α4 + 1,

1

α3(α4 + 1)
, α3

)
− Li2(1− α3)Li1,1

(
α4 + 1,

1

α4 + 1

)
.

For the case α1 = 0, α2 + α3 = 1 and α4 = −1 one has to find in addition the limit for
α4 → −1. One arrives at the result

L+(0, 1− α3, α3,−1) = Li2,2

(
1

α3

, α3

)
− lnα3Li2,1

(
1

α3

, α3

)
+ ζ(2)Li2(1− α3). (4.96)

4.3.7.5 α1 = 0 and α2 = −α3

To obtain the result for this case one has to calculate the limit of the r.h.s of (4.93) for
α3 → −α2. After taking the limit one has

L+(0, α2,−α2, α4) = −Li1,1,2
(

α2

α2 − 1
,−α4,−

1

α4

)
+ ln(1− α2)Li1,2

(
−α4,−

1

α4

)
+ Li2(α2)Li2

(
− 1

α4

)
. (4.97)

4.3.7.6 α1 = 0 and α2 = 0

For this case one can directly use Eq. (4.93):

L+(0, 0, α3, α4) = Li1,1,1,1

(
α4 + 1,

1

α4 + 1
,
α3 − 1

α3

,
α3

α3 − 1

)
. (4.98)

But there is also another very simple possibility. I change first the integration variable
y → t/α3:

1∫
0

dy
ln y

α4 + y
Li2(α3y) =

α3∫
0

dt
ln(t/α3)

α3α4 + t
Li2(t) =

α3∫
0

dt1
α3α4 + t1

Li2(t1)

t1∫
α3

dt2
t2

=
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−
α3∫
0

dt2
t2

t2∫
0

dt1
α3α4 + t1

Li2(t1) =

α3∫
0

dt2
t2

t2∫
0

dt1
−α3α4 + t1

t1∫
0

dt3
t3

t3∫
0

dt4
1− t4

. (4.99)

Now using the definition (4.16) I obtain the result

L+(0, 0, α3, α4) = Li2,2

(
−α3α4,

−1

α4

)
. (4.100)

The reader has a free choice to use either formula (4.98) or (4.100). Both equations
contain multiple polylogarithm of weight four. The depth of the multiple polylogarithm
in Eq. (4.100) is two against four in Eq. (4.98). For α4 = −1 Eq. (4.100) can be directly
used. However, in the case of Eq. (4.98) one has to first calculate the limit for α4 → −1.

4.3.7.7 α1 = 0 and α2 = 1

Unfortunately in this case one cannot use Eq. (4.93) because of the term ln(1 − α2). To
express this L+ function in terms of multiple polylogarithms I first make use of Eq. (4.13)
for the function Li2 under the sign of the integral:

1∫
0

dy
ln y

α4 + y
Li2(1 + α3y) =

1∫
0

dy
ln y

α4 + y
[ζ(2)− ln(−α3y) ln(1 + α3y)− Li2(−α3y)] =

ζ(2)

1∫
0

dy
ln y

α4 + y
−

1∫
0

dy
ln y

α4 + y
Li2(−α3y)−

1∫
0

dy
ln y[ln(−α3) + ln y] ln(1 + α3y)

α4 + y
=

ζ(2)Li2

(
− 1

α4

)
− Li1,1,1,1

(
α4 + 1,

1

α4 + 1
,
α3 + 1

α3

,
α3

α3 + 1

)
(4.101)

− ln(−α3)

1∫
0

dy
ln y ln(1 + α3y)

α4 + y
−

1∫
0

dy
ln2 y ln(1 + α3y)

α4 + y
,

where the Li1,1,1,1-function was obtained with the help of Eq. (4.98). To obtain the last
integral in Eq. (4.101) one proceeds as follows:

1∫
0

dy
ln2 y ln(1 + α3y)

α4 + y

y→1−t
=

1∫
0

dt
ln2(1− t) ln(1 + α3 − α3t)

α4 + 1− t
=

1∫
0

dt1
ln2(1− t1)

α4 + 1− t1

t1∫
1

−α3dt2
1 + α3 − α3t2

=

1∫
0

dt2
1
α3

+ 1− t2

t2∫
0

dt1
ln2(1− t1)

α4 + 1− t1
=

2

1∫
0

dt2
1
α3

+ 1− t2

t2∫
0

dt1
α4 + 1− t1

t1∫
0

dt3
1− t3

t3∫
0

dt4
1− t4

= (4.102)

2Li1,1,1,1

(
1, α4 + 1,

α3 + 1

α3(α4 + 1)
,

α3

α3 + 1

)
.
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Similarly one can evaluate the remaining integral
1∫

0

dy
ln y ln(1 + α3y)

α4 + y
= −Li1,1,1

(
α4 + 1,

α3 + 1

α3(α4 + 1)
,

α3

α3 + 1

)
. (4.103)

Now combining Eqs. (4.101), (4.102) and (4.103) one arrives at the result

L+(0, 1, α3, α4) = −2Li1,1,1,1

(
1, α4 + 1,

α3 + 1

α3(α4 + 1)
,

α3

α3 + 1

)

−Li1,1,1,1
(
α4 + 1,

1

α4 + 1
,
α3 + 1

α3

,
α3

α3 + 1

)
(4.104)

+ ln(−α3)Li1,1,1

(
α4 + 1,

α3 + 1

α3(α4 + 1)
,

α3

α3 + 1

)
+ ζ(2)Li2

(
− 1

α4

)
.

4.3.7.8 α1 = 0 and α2 = −α3 = 1

For these values of the αi I have to find the limit of the r.h.s of Eq. (4.104) for α3 → −1.
After taking the limit I obtain

L+(0, 1,−1, α4) = Li1,1,2

(
α4 + 1,

1

α4 + 1
, 1
)

+2Li1,1,2

(
1, α4 + 1,

1

α4 + 1

)
+ ζ(2)Li2

(
− 1

α4

)
. (4.105)

4.3.8 Conclusion

In this section I have derived numerous relations between the L-functions defined in
Eqs. (2.46), (2.47) and the class of multiple polylogarithms. All the relations calculated in
this section are needed if one wishes to present the results for the Laurent series expansion
of massive scalar one-loop integrals to O(ε2) in terms of multiple polylogarithms instead of
the L-functions. However, despite the fact that these relations have been derived for this
special task they can be used in other applications. In fact any definite integral such as

B∫
A

ln(a1 + b1x) ln(a2 + b2x) ln(a3 + b3x)dx

a4 + b4x
or

B∫
A

ln(a1 + b1x)Li2(a2 + b2x)dx

a3 + b3x

can be written in terms of multiple polylogarithms with the help of the relations presented
in this section. It is worthwhile to mention that all equations presented in this section have
been numerically checked.

The fact that the expansion of the L-functions in terms of multiple polylogarithms is
not unique (the reader can find corresponding examples in 4.3.5.1 and 4.3.7.6) should not
surprise us. It is well known that even for classical polylogarithms (4.18) various identities
exist (see [44] and Eqs. (3.6), (3.13), (3.17), (3.18), (3.21), (3.22) and (3.23)). In the
examples given in this section the analogues of these identities for multiple polylogarithms
are implicit. More information about identities between multiple polylogarithms can be
found in [49].



Chapter 5

Investigation of the numerical
efficiency of the results for the
massive one-loop scalar integrals

5.1 Allowed kinematic region

The results for the massive one-loop scalar integrals calculated in Chap. 2 were obtained in
the physical region for the reaction g+g → Q+Q̄ (or for any other reaction with two initial
massless particles and two final massive particles with a mass m ). The two-dimensional
physical region is defined by

s ≥ 4m2,

tmin(s) ≤ t ≤ tmax(s), (5.1)

where

tmax(s) = −s
2

1−
√

1− 4m2

s

 ,
tmin(s) = −s

2

1 +

√
1− 4m2

s

 . (5.2)

tmax(s) and tmin(s) correspond to forward and backward scattering, respectively. The lower
limit for s is given by the threshold of the reaction. The range of the variable t can be found
by expressing t in terms of s and the angle between the momenta ~p1 and ~p3 in the centre
of mass system of the incoming (initial) particles. Using Eq. (5.2) one obtains tmax(s) and
tmin(s) at threshold s = 4m2

tmax(4m
2)

m2
=
tmin(4m2)

m2
= −2. (5.3)
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Figure 5.1: Allowed kinematic region.

For s→ +∞ one has for forward scattering :

lim
s/m2→+∞

tmax(s)

s
= lim

s/m2→+∞
−m

2

s
= 0 (5.4)

and for backward scattering:

lim
s/m2→+∞

tmin(s)

s
= −1. (5.5)

Graphically the functions tmax(s) and tmin(s) are presented in Fig. 5.1. In this chapter I
investigate the numerical efficiency inside the allowed kinematic region Eq. (5.1). I pay
special attention to the points close to the kinematic boundaries.

5.2 Hardware and software tools for the numerical

evaluation

All numerical evaluations were performed on a PC Pentium 4 with a 2.6 GHz processor
frequency and 512 MB of memory. As software I have chosen the Mathematica program
version 5.0 [42]. All numerical results were calculated with the help of this program.
Nevertheless the expressions calculated in Chap. 2 can be evaluated by any other Computer
Algebra System or by any programming language. Note that use of other software may
increase or decrease the efficiency of the numerical evaluation.
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5.3 Results obtained in terms of logarithms and poly-

logarithms

The most difficult results obtained in Chap. 2 contain the new class of functions such as
L−++, L+++ and L+. These functions are given by the one-fold integral representations
Eqs. (2.46) and (2.47). They appear in the real parts of the second order coefficients1 of
the C1, C2, C5 and D1, D2, D3 scalar integrals.

Up to the first order in ε the real parts of the C1, C2, C5 and D1, D2, D3 scalar integrals
can be presented in terms of logarithms and classical polylogaritms. The same holds true up
toO(ε2) for the real parts of the remaining scalar integrals, i.e. A,B1, B2, B3, B4, B5, C3, C4, C6

functions and for the imaginary parts of the all scalar integrals. The numerical results of
these can be obtained without any numerical integration. Therefore the evaluating effi-
ciency of these expressions are significantly higher compared to the results with the one
remaining parametric integration.

I have evaluated the time and the relative error for the first order coefficient of the D2

function as the most complicated example. For the choice2 s = 5m2 and t = −2m2 (this
point is well inside the allowed kinematic region) one obtains a result with a numerical
relative error δ ' 3.8 · 10−16 and a evaluation time of τ ' 0.01 second. As an example
of a kinematical point close to the kinematic boundaries I have chosen s = 5m2 and
t = −1.382m2. As a measure of how close one is to the kinematic boundary, one introduces
the measure

ηmax(min) =
| tmax(min)(s)− t(s)|
tmax(s)− tmin(s)

, (5.6)

which describes the closeness of the variable t to the limiting value tmax(s) or tmin(s),
respectively. For the above choice of variables one has ηmax ' 1.5 · 10−5. The relative error
and the evaluation time are δ ' 8.6 · 10−10 and τ ' 0.015 second, respectively.

One can see that the closer one gets to the kinematic boundary the worse the accuracy
of the result is with approximately the same evaluation time. However, the precision is
still sufficiently high and the evaluation time is still relatively small. One can also calculate
numerically the value for t = tmax(s) or t = tmin(s) as a numerical limit of the result with
t → tmax(s) or t → tmin(s). There is also no problem to increase the accuracy of these
calculations to any arbitrary order. The price is an increase in the evaluation time, but
the situation is not so dramatic. For example if one would like to achieve a relative error
of order ∼ 10−16 for the choice s = 5m2 and t = −1.382m2 it would cost one only ' 0.13
second evaluation time.

I have tested in some detail the efficiency of the numerical routine close to the kine-
matic boundary at tmax(s) because one can expect large cancellation within our analytical
expressions which may lead to a deterioration of the numerical results.

1When referring to the second order coefficients one understands the coefficients of the second order of
the Laurent series expansion in ε, where ε is the dimension regularization parameter.

2For the numerical evaluation only the ratios s/m2 and t/m2 are of relevance.
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Figure 5.2: The dependence of the evaluation time on the relative error.

5.4 Results containing the L-functions.

The most difficult results for Laurent series expansion of the massive scalar one-loop in-
tegrals contain the functions L−++, L+++ and L+ Eqs. (2.46) and (2.47). As described in
Sec. 2.2 these functions are defined by one-fold integral representations. Since all functions
L−++, L+++ and L+ are well integrable one can calculate these integrals with very high
accuracy. However, the need of a numerical integration and the fact that the length of
the expressions containing the L-functions is larger then those without the L-functions
increases the evaluation time.

For the numerical test I have chosen the real part of the second order coefficient of the
D1 function. The length of this expression and the number of L-functions in it is a fair
representation of the effort needed for the numerical evaluation of similar expressions.

In Fig. 5.2 I have plotted the dependence of the evaluation time on the relative error.
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The first plot in Fig. 5.2 correspond to s = 5m2 and t = −2m2. The shortest evaluation
time τ ' 0.3 second corresponds to the relative error δ ' 3.9 · 10−10. Improvement of the
accuracy of the numerical evaluation causes a increase in time. While the precision of the
calculation is increased by five orders of magnitude the evaluation time is increased only
by 30 percent.

The second test point is the point close to the kinematic boundary. For the variables
s = 5m2 and t = −1.3819661m2 the coefficient ηmax is equal to 8.9 · 10−8. Comparing to
the previous plot one can see that the precision of the numerical evaluation degrades by
a few orders of magnitude with approximately the same evaluation time. This fact is a
consequence of the closeness of the chosen point to the kinematic boundary tmax(s). The
reason is the following. The testing expression is divided into two parts: with numerical
integration (containing the L-functions) and without numerical integration. Close to the
kinematic boundary tmax(s) both parts are approximately equal by magnitude but they
have opposite signs. Even if the precision of the numerical results obtained separately for
both of these parts is high the final relative error is worse by a few orders of magnitude
due to the cancellation of large numbers. However, the situation with the accuracy is
still satisfying. One is able to achieve any arbitrary accuracy of the calculations for any
arbitrary small numbers ηmax or ηmin.

The third plot corresponds to a point close to the threshold of the reaction. The
variables s and t are equal to 4.01m2 and −1.98m2, respectively. Despite the closeness
of the variable s to the threshold value smin = 4m2 the accuracy is quite satisfactory.
Improving the accuracy by approximately five orders of magnitude the evaluation time
increases only by a factor two. It also is worth noting that the numerical evaluation close
to the threshold of the reaction does not reflect any special problems w.r.t. the precision
of calculations.

Finally, the fourth plot correspond to the case of large colliding energy. I have chosen
this kinematical point since it appears that the numerical method of M.M. Weber [51, 52]
encounters difficulties when s becomes large. The variables s and t are equal to 1000m2

and −300m2, respectively. Also in this case the dependence of the evaluation time on
the desirable relative error is quite satisfactory. While the precision of the calculation
increases by approximately five orders of magnitude the evaluation time increases less
than by a factor two.

One concludes that despite the necessity of the additional one-dimensional numerical
integration of the L-functions the results containing the L-functions can be calculated with
very high accuracy. There also is no problem to increase the accuracy of the calculations
to any desired order.

In recent years a number of new methods were developed for semi-numerical evaluation
of general Feynman diagrams (see e.g. [52, 54, 55, 56]). First numerical tests [51] have
shown that the efficiency of the results presented in Chap. 2 is better by orders of magnitude
than the present implementation of the flexible approach of M.M. Weber described in [52].
The method of M.M. Weber is an all-purpose method to calculate very general one-loop
amplitudes. This must be seen in comparison to my evaluation which is specific to a limited
number of one-loop diagrams with special mass configurations. Further comparisons of the
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numerical efficiency of the two methods have to be done in the near future.
I mention that the numerical evaluation of the imaginary parts is also very fast since

they are given in terms of logarithms and polylogarithms up to Li3. First trials of the
method of M.M. Weber have shown that the performance of the algorithms described in
[51, 52] is not very good for the imaginary parts of the one-loop amplitudes in contrast to
our representation of the imaginary parts which numerically evaluate very well.



Chapter 6

One-loop matrix elements for the
hadronic heavy hadron production
up to O(ε2)

In this chapter I present one-loop matrix elements relevant for the hadroproduction of
heavy quarks contributing to that part of the NNLO corrections where the one-loop in-
tegrals appear in the loop-by-loop product (Fig. 1.1b). All results of the perturbative
calculation are given in the dimensional regularization scheme up to O(ε2). In dimensional
regularization there are three different sources that can contribute positive ε–powers to
the Laurent series of the one–loop amplitudes for the hadronic heavy hadron production.
These are

• Laurent series expansion of scalar one-loop integrals

• evaluation of the spin algebra of the loop amplitudes bringing in the n–dimensional
metric contraction gµνg

µν = n = 4− 2ε

• Passarino–Veltman decomposition of tensor integrals involving again the metric con-
traction gµνg

µν = n = 4− 2ε .

Concerning the first item the O(ε2) calculation of the necessary one-, two-, three- and
four-point one-loop integrals for the loop-by-loop part of NNLO QCD calculation has been
presented in Chap. 2. In order to obtain the Laurent series expansion of the full one-
loop amplitude for the hadronic heavy hadron production one has to combine the Laurent
series expansion of the scalar one-loop integrals with the ε-expansion from the spin algebra
calculation and the Passarino-Veltman decomposition. The results of this combination for
the one-loop matrix elements will be presented in this chapter.
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p1 µ

b

p2 ν

a

p3

p4

Q

Q

p1

p2

p1

p2

Figure 6.1: The t-, u- and s-shannel leading order (Born) graphs contributing to the gluon
(curly lines) fusion amplitude. The thick solid lines correspond to heavy quarks.

6.1 Contributions of the two- and three-point func-

tions to gluon fusion

I start with the gluon-initiated heavy quark-antiquark pair production. The Born and the
one-loop contributions to the gluon fusion partonic reaction

g(p1) + g(p2)→ Q(p3) +Q(p4)

are shown in Figs. 6.1–6.3. In this section I discuss the calculation of the self-energy and
vertex graphs that contribute to the above subprocess. With the momenta pi (i = 1, ..., 4)
as indicated in the Fig. 6.1 and with m the heavy quark mass one repeats the definition
of the Mandelstam-variables (2.27):

s ≡ (p1 + p2)2, t ≡ T −m2 ≡ (p1 − p3)2 −m2,

u ≡ U −m2 ≡ (p2 − p3)2 −m2. (6.1)

To isolate the ultraviolet (UV) and infrared/collinear (IR/M) divergences I carry out all
calculations in both conventional regularization schemes, namely the standard dimensional
regularization scheme (DREG) [26, 27, 28] and the dimensional reduction scheme (DRED)
[57] with the dimension of space-time being formally n = 4−2ε. In what follows, I present
results for the DREG, as well as the difference ∆=DRED-DREG. A brief characterization
of the two regularization schemes is the following: In DREG both tensorial structures (e.g.
gamma matrices, metric tensors, etc...) and momenta are continued to n 6= 4, while in
DRED only momenta are continued to n 6= 4 whereas the tensorial structures are those of
n = 4.

First of all I note that in general the matrix elements for all the Feynman diagrams in
the gluon fusion subprocess are written in the form

M = εµ(p1)εν(p2)ū(p3)Mµνv(p4), (6.2)

However, for the purposes of brevity, results will be presented in terms of the truncated
amplitudes Mµν omitting the polarization vectors and Dirac spinors. Of course, their
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a1 a2 a3

a4 b c1

c2 c3 c4

d1 d2 d3

e1 e2

Figure 6.2: The t-channel one-loop graphs contributing to the gluon fusion amplitude.
Loops with dotted lines represent gluon, ghost, light and heavy quarks.
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f1 f2 g1

g2 h i1

i2 j1 j2

Figure 6.3: The s-channel one-loop graphs contributing to the gluon fusion amplitude.
Loops with dotted lines represent gluon, ghost, light and heavy quarks.
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presence is implicitly understood throughout this chapter in that the mass shell conditions
pµ1εµ(p1) = 0 and 6p3u(p3) = mu(p3) etc. are being used to simplify Mµν 1. Furthermore,
Mµν for all the one-loop graphs considered in this chapter contains the common factor
(2.15) due to the one-loop integration

Cε(m
2) ≡ Γ(1 + ε)

(4π)2

(
4πµ2

m2

)ε
. (6.3)

I will omit from all of the one-loop Mµν amplitudes the common factor

C = g4Cε(m
2), (6.4)

where g is the renormalized coupling constant.
For an analysis of matrix elements it is important to describe various crossed heavy

flavor production channels. One should make it clear from the outset that an additional
u-channel set of graphs, that topologically differ from the t-channel ones, are obtained by
interchange of bosonic lines (not momenta). In particular, for calculational purposes, I will
always be relating t- and u-channel Feynman diagrams by the following procedure:

Mt ↔Mu ≡ {a↔ b, p1 ↔ p2, µ↔ ν}, (6.5)

with a, b color indices of bosons and where all three interchanges are performed s imultaneously.
Note that the second interchange in (6.5) implies also the interchange t↔ u, but not vice
versa. One case, involving two vertex diagrams, when the above transformation (6.5) does
not correspond to “true” u-channel topologies, is discussed below. In general, when speak-
ing about t-u symmetry of given amplitudes, I will imply invariance of those amplitudes
under the transformations (6.5).

I start by writing down matrix elements for the leading order Born terms. For the
t-channel gluon fusion subprocess (first graph in Fig. 6.1) one has:

Bµν
t = −iT bT aγµ(6 p3 −6 p1 +m)γν/t,

where T b and T a are the generators of the colour group SU(3) (T a = λa/2, a = 1, ..., 8 where
the λa are the usual Gell-Mann matrices). These define the fundamental representation of
the Lie algebra of the colour group SU(3). Analogously, for the u- and s-channels one has,
respectively,

Bµν
u = −iT aT bγν(6 p3 −6 p2 +m)γµ/u,

Bµν
s = i(T aT b − T bT a)Cµνσ

3 γσ/s,

where the tensor Cµνσ
3 is defined according to the Feynman rules for the three-gluon cou-

pling. I have omitted a common factor g2 in the Born amplitudes. Acting with Dirac

1According to the discussion in [58] this implies that, when further processing the LO and one-loop
results in cross section calculations by folding in the appropriate amplitudes, one may use the Feynman
gauge for the spin sums of polarization vectors. At the same time ghost contributions associated with
external gluons have to be omitted.
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spinors on the above Born matrix elements from the left and the right and using the effec-
tive relations pµ1 = pν2 = 0, as remarked on before, we arrive at the following expressions
for the leading order matrix elements:

Bµν
t = iT bT a(γµ6 p1γ

ν − 2pµ3γ
ν)/t;

Bµν
u = iT aT b(2pµ4γ

ν − γν6 p1γ
µ)/u

= iT aT b(γν6 p2γ
µ − 2pν3γ

µ)/u; (6.6)

Bµν
s = 2i(T aT b − T bT a)(gµν6 p1 + pµ2γ

ν − pν1γµ)/s.

Next I proceed with the description of the two-point contributions to the matrix el-
ement of the subprocess (1.1). But before I turn to the two-point functions one should
mention that the choice of renormalization scheme will be a fixed flavor scheme throughout
this chapter. This implies that one has a total number of flavors nf = nlf + 1, where nlf
is the number of light (e.g. massless) flavors plus one produced heavy flavor, with only nlf
light flavors involved/active in the β function for the running a QCD coupling αs and in the
splitting functions that determine the evolution of the structure functions. When having
massless particles in the loops I am using the standard MS scheme, while the contribution
of a heavy quark loop in the gluon self-energy with on-shell external legs is subtracted out
entirely.

Consider first the two t-channel self-energy graphs (2d2) and (2d3) with external legs
on-shell (note that in the graph numeration the first number identifies the number of
the figure in the current chapter which the given diagram refers to). These graphs are
very important as they determine the renormalization parameters in the quark sector.
Throughout this chapter I use the so called on-shell prescription for the renormalization
of heavy quarks. I describe the essential ingredients of this prescription in the following.
When dealing with massive quarks one has to choose a parameter to which one renormalizes
the heavy quark mass. It is natural to choose a quark pole mass for such a parameter -
the only “stable” mass parameter in QCD. The condition on the renormalized heavy quark
self-energy Σr(6 p) is

Σr(6 p)|6p=m = 0, (6.7)

which removes the singular internal propagator in these self-energy diagrams. The above
condition determines the mass renormalization constant Zm. For the wave function renor-
malization I have used the usual condition (see e.g. Ref. [11])

∂

∂6 p
Σr(6 p)|6p=m = 0, (6.8)

which fully determines the wave function renormalization constant Z2. Since the condition
(6.8) is not mandatory in general, there is a freedom in determining the constant Z2.
Therefore, I will list the relevant expressions for these constants. In the DREG scheme I
arrive at the all-order result

Zm = 1− g2CFCε(m
2)

3− 2ε

ε(1− 2ε)
(6.9)
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= 1− g2CFCε(m
2)
(

3

ε
+ 4 + 8ε+ 16ε2 +O(ε3)

)
,

Z2 = Zm.

And in the DRED scheme I obtain

Zm = 1− g2CFCε(m
2)

3− 4ε

ε(1− 2ε)(1− ε)
(6.10)

= 1− g2CFCε(m
2)
(

3

ε
+ 5 + 9ε+ 17ε2 +O(ε3)

)
,

Z2 = Zm,

where CF=4/3 and I do not make a distinction which poles are of ultraviolet or IR/M origin
as was done in the case of NLO contributions. After the mass renormalization procedure
is applied I obtain an all-order final results for the two self-energy graphs:
for the DREG scheme

Mµν
(2d2) = Mµν

(2d3) = −CFBµν
t

3− 2ε

ε(1− 2ε)
(6.11)

= −CFBµν
t

(
3

ε
+ 4 + 8ε+ 16ε2 +O(ε3)

)
and for the DRED scheme

Mµν
(2d2) = Mµν

(2d3) = −CFBµν
t

3− 4ε

ε(1− 2ε)(1− ε)
(6.12)

= −CFBµν
t

(
3

ε
+ 5 + 9ε+ 17ε2 +O(ε3)

)
.

The difference between the two regularization schemes is order by order

∆(2d2) = ∆(2d3) = −CFBµν
t

1

1− ε
(6.13)

= −CFBµν
t

(
1 + ε+ ε2 + . . .

)
.

One notices that the effect of the wave function renormalization consists of a complete
removal of the quark self-energy diagrams with external legs on-shell, as is required by the
second condition (6.8). One can also write the contribution of the quark self-energy with
external legs off-shell, graph (2d1), after addition of the mass renormalization counterterm.
Here I write down only the coefficients for the ε- and ε2-terms:

Mµν
(2d1) = CFB

µν
t

2∑
k=1

εk
(
−B(k)

1 t/T + 4B
(k)
1 m2/t+B

(k−1)
1 t/T − k16m2/t

)

− iCFT
bT amγµγν

2∑
k=1

εk
(
B

(k)
1 /T + 2B

(k)
1 /t−B(k−1)

1 /T − k8/t
)
.
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The difference between the DRED and DREG results is

∆(2d1) = (6.14)

−CFBµν
t

[
ε
(
m2 +B

(0)
1 t

)
+ ε2

(
m2 +B

(1)
1 t

)]
/T

+iCFT
bT amγµγν

[
ε
(
1−B(0)

1

)
+ ε2

(
1−B(1)

1

)]
/T.

The remaining quark self-energy diagrams (3i1) and (3i2) with external on-shell legs
are derived in analogy to the ones considered above:

Mµν
(3i1) = Mµν

(3i2) = −CFBµν
s

(
8ε+ 16ε2

)
, (6.15)

∆(3i1) = ∆(3i2) = −CFBµν
s

(
ε+ ε2

)
. (6.16)

Concerning the gluon self-energy graphs (2e1) and (2e2) with external legs on-shell, the
only nonvanishing contribution they receive are from the loop with internal heavy quarks.
It is given by

Mµν
(2e1) = Mµν

(2e2) = −Bµν
t

1

ε

2

3
. (6.17)

However, these contributions are explicitly subtracted (together with the logarithmic term
ln(µ2/m2) coming from the common factor Cε(m

2), see Eqs. (6.3) and (6.4), in the on-
shell renormalization prescription, in order to avoid the appearance of the large mass
logarithms from the gluon self-energy diagrams with off-shell external legs in the low energy
limit. Therefore, due to the UV counterterm that subtracts that very same loop with
heavy quarks, there are no finite contributions to the matrix element from these diagrams.
However, at the same time this counterterm introduces pole terms from the light quark
loop sector that are needed to cancel soft and collinear poles from the other parts of the
amplitude, e.g. from the real bremsstrahlung part. This indicates that in practice it is
very hard to completely disentangle UV and IR/M poles in heavy flavor production and
in most cases one obtains a mixture of both instead.

For the reasons specified above it is convenient to present a gauge field renormalization
constant Z3, used for the gluon self-energy subtraction:

Z3 = 1 +
g2

ε

{
(
5

3
NC −

2

3
nlf )Cε(µ

2)− 2

3
Cε(m

2)
}

= 1 +
g2

ε

{
(β0 − 2NC)Cε(µ

2)− 2

3
Cε(m

2)
}
, (6.18)

with the QCD beta function β0 = (11NC − 2nlf )/3 containing only light quarks. NC = 3
is the number of colors. Accordingly, for the coupling contant renormalization one obtains

Zg = 1− g2

ε

{
β0

2
Cε(µ

2)− 1

3
Cε(m

2)

}
. (6.19)

Similarly to the diagrams (2e1) and (2e2), diagrams (3j1) and (3j2) also vanish due
to the explicit decoupling of the heavy quarks in this subtraction prescription. However,
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instead of doing the renormalization separately for each Feynman diagram, one can chose
to employ the renormalization group invariance of the cross section and do only a mass and
coupling constant renormalization. In that case, knowing the results for gluon self-energies
turns out to be useful in checking the complete cancellation of UV poles by just rescaling
the coupling constant in the LO terms gbare → Zgg:

Mµν
(3j1) = Mµν

(3j2) = −Bµν
s

1

ε

2

3
. (6.20)

Finally I arrive at the gluon-self energy graph (3h), which contains the off-shell gluon
self-energy loop that is used for the derivation of the renormalization constant Z3. I have
evaluated the internal loop in the Feynman gauge. Since it is explicitly gauge invariant,
one should arrive at the same result in any other gauge. In the relevant result I show
separately the gauge invariant pieces for gluon plus ghost, light quarks and a heavy quark
flow inside the loop:

Mµν
(3h) = Bµν

s

{
B5

iCε(m2)

[
−NC

n−14+8ε
2(3−2ε)

− nlf 2(1−ε)
3−2ε

]
Cε(−s)
Cε(m2)

(6.21)

− 2
ε(3−2ε)

[
B2

iCε(m2)
ε
(
1− ε+ ε2m2

s

)
− 2m2

s

]}
,

with n = 4 − 2ε in the DREG scheme and n = 4 in the DRED scheme, B2 and B5 are
two-point integrals which can be found in Chap. 2. Expanding (6.21) for the case of DREG
in powers of ε I arrive at

Mµν
(3h) = Bµν

s

{[
NC

(
1

ε

5

3
+

31

9
+ ε

(
188

27
− 5

3
ζ(2)

)
+ε2

(
1132

81
− 31

9
ζ(2)− 10

3
ζ(3)

))
−nlf

(
1

ε

2

3
+

10

9
+ ε

(
56

27
− 2

3
ζ(2)

)
+ε2

(
328

81
− 10

9
ζ(2)− 4

3
ζ(3)

))](−s
m2

)−ε
−1

ε

2

3
I
}
,

with

I = 1 + ε

[
−1

3
+B

(0)
2

3− β2

2

]
+ (6.22)

+ε2

[
−2

9
− 1

3
B

(0)
2 β2 +B

(1)
2

3− β2

2

]

+ε3

[
− 4

27
− 2

9
B

(0)
2 β2 − 1

3
B

(1)
2 β2 +B

(2)
2

3− β2

2

]
.

In (6.22) one uses the definition from Chap. 2

β ≡
√

1− 4m2/s. (6.23)
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One has to emphasize that in the last term of (6.22) the Z3 counterterm together with
the UV pole will remove also the ln(µ2/m2) contribution, while ln(−µ2/s) from the first
two terms in (6.22) will be left unsubtracted.

One notes that there is a minor problem with preserving gauge invariance when calcu-
lating the graph (3h) in DRED. It is associated with an ε-dimensional part of one of the
n-dimensional metric tensors gnµν that arises in every partonic loop and hampers collecting
together similar terms. However, this problem appears to be an artificial one, as in this
particular case it makes no difference whether one uses 4- or n-dimensional metric tensor
for the evaluation of this gluon self-energy graph. For this reason in practice one would
set this gnµν metric tensor to be the 4-dimensional one. Or, more exactly, if one intro-
duces a proper counterterm so that to restore gauge invariance of the gluon self-energy,
then the expression in DRED would be exactly the same as in (6.22), except for the term
proportional to NC , yelding for the difference

∆(3h) = −Bµν
s

B5

iCε(m2)
NC

ε

3− 2ε

(−s
m2

)−ε
. (6.24)

Concluding the discussion on the 2-point functions I remark that the matrix elements
for the additional u-channel 2-point functions can be obtained from eqs. (6.11), (6.14) and
(6.17) by the transformation (6.5).

I start by considering the t- and u-channel vertex diagrams. In this thesis I write down
only ε and ε2 terms of the relevant expansions, while the terms proportional to ε−2, ε−1

and ε0 can be found in [29]. I begin with the purely nonabelian graph (2b), which contains
a four-point gluon vertex. The matrix element takes the following form

Mµν
(2b) = iNC(T bT a

2∑
k=1

εk{(2pν3γµ + pν4γ
µ − pµ3γν − 2pµ4γ

ν)(B
(k)
5 + 2C

(k)
1 m2 − 4k)

−mgµν(2B(k)
5 + 2B

(k−1)
5 + 4C

(k)
1 m2 + C

(k−1)
1 s− 12k)

+3mγµγν(2B
(k)
5 + C

(k)
1 s− 8k)/2}/(sβ2) + (a↔ b, µ↔ ν))

+ iδab
2∑

k=1

εk{(pν3γµ − pν4γµ + pµ3γ
ν − pµ4γν)(B

(k)
5 + 2C

(k)
1 m2 − 4k)/2

+mgµν(B
(k)
5 − 2B

(k−1)
5 − 4C

(k)
1 m2 + 3C

(k)
1 s/2− C(k−1)

1 s)}/(sβ2). (6.25)

It is easily seen from Eq. (6.25) that the matrix element for the graph (2b) is explicitly
t-u symmetric, as it follows from the geometric topology of this graph. At this order of
expansion there is a difference between DREG and DRED results for this graph, e.g.

∆(2b) = i(NCT
bT a +NCT

aT b + δab)mgµν
2∑

k=1

εk ×

{2B(k−1)
5 + C

(k−1)
1 s− 4k}. (6.26)

Next I turn to graphs (2c1) and (2c2). Diagrams of this topology do not only occur in
hadroproduction, but also in other processes such as photoproduction and γγ production
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of heavy flavors. For this reason I also present the corresponding t-channel color factors
for these graphs. Then it is straightforward to separate the Dirac structure from the
color coefficients and one can easily deduce results for other processes where these graphs
contribute, though with different color weights. The color factor for both (2c1) and (2c2)
diagrams is the same:

T
(2c1)
col = T

(2c2)
col = (CF −

NC

2
)T bT a = −1

6
T bT a. (6.27)

The complete matrix elements are:

Mµν
(2c1) = Bµν

t

2∑
k=1

εk{B(k)
1 (6m2/t+ 1) + 2B

(k−1)
1 zt/t+ 2C

(k)
2 m2 + 4C

(k−1)
2 m2

−k8(4m2/t+ 1)}/6

+ iT bT a(pµ3γ
ν

2∑
k=1

εk{B(k)
1 (zt/t+ t/T ) +B

(k−1)
1 (2zt/t− t/T )

+2(C
(k)
2 + 2C

(k−1)
2 )m2 − k8zt/t}

+ mpµ3 6 p1γ
ν

2∑
k=1

εk{B(k)
1 /T −B(k−1)

1 (2/t+ 1/T )− 2C
(k−1)
2 + k4/t}

− mγµγν
2∑

k=1

εk{B(k)
1 +B

(k−1)
1 + C

(k−1)
2 t− 6k})/(3t), (6.28)

where one has denoted zt ≡ 2m2 + t. The difference between the corresponding results
in the two n-dimensional schemes has a length comparable to the original expressions.
This holds true for the majority of the vertex and all the box diagrams considered in this
chapter. Therefore, in the following these differences for vertex and box diagrams will not
be presented. However, the results in DRED for all the diagrams considered in this chapter
can be obtained upon request.

For the graph (2c2) one obtains:

Mµν
(2c2) = Bµν

t

2∑
k=1

εk{B(k)
1 (6m2/t+ 1) + 2B

(k−1)
1 zt/t+ 2C

(k)
2 m2 + 4C

(k−1)
2 m2

−k8(4m2/t+ 1)}/6

+ iT bT a(pν4γ
µ

2∑
k=1

εk{B(k)
1 (−2m2/t− 3 + t/T )−B(k−1)

1 t/T − 2C
(k)
2 m2 + k8T/t}

+ mpν4(2pµ3 − γµ6 p1)
2∑

k=1

εk{B(k)
1 /T −B(k−1)

1 (2/t+ 1/T )− 2C
(k−1)
2 + k4/t}

− mγµγν
2∑

k=1

εk{B(k)
1 +B

(k−1)
1 + C

(k−1)
2 t− 6k})/(3t). (6.29)
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Next I write down the results for graphs (2c3) and (2c4). The color factors for both
diagrams are the same:

T
(2c3)
col = T

(2c4)
col = −NC

2
T bT a = −3

2
T bT a. (6.30)

One has

Mµν
(2c3) = 3Bµν

t

2∑
k=1

εk{−3B
(k)
1 m2/t− C(k)

3 t+ k4(3m2/t+ 1)}

+ 3iT bT a(pµ3γ
ν

2∑
k=1

εk{B(k)
1 m2(1/T − 2/t) +B

(k−1)
1 t/T − C(k)

3 t+ k4zt/t}

+ 3mγµγν
2∑

k=1

εk{B(k)
1 /2− 2k}

+ mpµ3 6 p1γ
ν

2∑
k=1

εk{B(k)
1 (2/t− 1/T ) +B

(k−1)
1 /T − k8/t})/t (6.31)

and

Mµν
(2c4) = 3Bµν

t

2∑
k=1

εk{−3B
(k)
1 m2/t− C(k)

3 t+ k4(3m2/t+ 1)}

+ 3iT bT a(pν4γ
µ

2∑
k=1

εk{B(k)
1 m2(1/T − 2/t) +B

(k−1)
1 (t/T − 2) + C

(k)
3 t+ k4(2m2/t− 1)}

+ 3mγµγν
2∑

k=1

εk{B(k)
1 /2− 2k}

+ mpν4(2pµ3 − γµ6 p1)
2∑

k=1

εk{B(k)
1 (2/t− 1/T ) +B

(k−1)
1 /T − k8/t})/t. (6.32)

The results for the matrix elements of the additional u-channel vertex graphs are obtained
from Eqs. (6.28), (6.29), (6.31) and (6.32) by the transformation (6.5). However, there
is a subtle point involved here: for the graphs (2c3) and (2c4) the transformation (6.5)
transforms the t-channel result of the graph (2c3) to the u-channel result for the graph
(2c4), while the t-channel result of (2c4) goes to the u-channel result for (2c3). This is
important to keep in mind when dealing with reactions which involve asymmetric set of
graphs as e.g. photoproduction of heavy flavors.

Next I turn to the remaining s-channel graphs shown in Fig. 6.3. For all the gluon
propagators I work in Feynman gauge. Although this set of graphs is purely nonabelian for
QCD type one-loop corrections, there could be also abelian (e.g. QED) virtual corrections
to graph (3f1). For this reason I also give the color factor for it separately:

T
(3f1)
col = (CF −

NC

2
)(T aT b − T bT a) = −1

6
(T aT b − T bT a). (6.33)
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The matrix element is

Mµν
(3f1) = Bµν

s

2∑
k=1

εk{3B(k)
2 + 2B

(k−1)
2 + C

(k)
6 s(1 + β2)− 16k}/6

+ 2i(T aT b − T bT a)m[−gµν(s+ 2t)− 4pµ3p
ν
4 + 4pµ4p

ν
3]× (6.34)

×
2∑

k=1

εk{B(k)
2 + 2B

(k−1)
2 − 8k}/(6s2β2).

Graph (3f2) contributes as:

Mµν
(3f2) = NCB

µν
s

2∑
k=1

εk{B(k)
5 (8m2 − s) + 2C

(k)
1 m2s− k16(5m2 − s)}/(2sβ2)

+ 2iNC(T aT b − T bT a)m[−gµν(s+ 2t)− 4pµ3p
ν
4 + 4pµ4p

ν
3]× (6.35)

×
2∑

k=1

εk{B(k)
5 (8m2 + s)− 2B

(k−1)
5 s+ 6C

(k)
1 m2s− C(k−1)

1 s2 − k4(12m2 − s)}/2s3β4.

I conclude the discussion of the vertex diagrams for gluon fusion with the triangle
graph contribution (tri)≡(3g1)+(3g2), e.g. one sums the two graphs (3g1) and (3g2). For
the case when one has gluons and ghosts inside the triangle loop one obtains:

Mµν
(tri)(g) = −3NC(Bµν

s

2∑
k=1

εk{207B
(k)
5 + 12B

(k−1)
5 + 54C

(k)
4 s+ 8k + (k − 1)8B(0)

5 }

+ 6i(T aT b − T bT a)6 p1

2∑
k=1

εk{gµν [9B(k)
5 − 12B

(k−1)
5 + 9C

(k)
4 s− 8k − (k − 1)8B(0)

5 ]/s

+8pµ2p
ν
1[3B

(k−1)
5 + 2k + (k − 1)2B(0)

5 ]/s2})/324, (6.36)

where B(0)
5 = B

(0)
5 − 4/3. For the two more cases when one has light and heavy quarks

inside the loop one gets

Mµν
(tri)(q) = 6nlf (B

µν
s

2∑
k=1

εk{9B(k)
5 − 3B

(k−1)
5 − 2k − (k − 1)2B(0)

5 }

− 3i(T aT b − T bT a)6 p1[gµν/s− 2pµ2p
ν
1/s

2]×

×
2∑

k=1

εk{3B(k−1)
5 + 5k + (k − 1)(5B(0)

5 + 3)})/81 (6.37)

with nlf number of light flavors in the triangle loop, while for the heavy flavor case one has

Mµν
(tri)(Q) = 6(Bµν

s

2∑
k=1

εk{6(3B
(k)
2 + 2B

(k−1)
2 + (k − 1)4B

(0)
2 /3)m2/s+ 9B

(k)
2

−3B
(k−1)
2 − 2k − 2(k − 1)(B

(0)
2 − 4/3)}
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p1
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p2

p3

p4

q

q

Q

Q

Figure 6.4: The lowest order Feynman diagram contributing to the subprocess qq̄ → QQ.
The thick lines correspond to heavy quarks.

− i(T aT b − T bT a)6 p1[gµν/s− 2pµ2p
ν
1/s

2]×

×
2∑

k=1

εk{12(3B
(k)
2 + 2B

(k−1)
2 + (k − 1)4B

(0)
2 /3)m2/s

+18(C
(k)
5 + C

(k−1)
5 + (k − 1)C

(0)
5 )m2 + 3B

(k−1)
2

+5k + (k − 1)(5(B
(0)
2 − 4/3) + 3)})/81. (6.38)

The complete matrix element for the triangle is the sum of the above three expressions
(6.36), (6.37) and (6.38):

Mµν
(tri) = Mµν

(tri)(g) +Mµν
(tri)(q) +Mµν

(tri)(Q). (6.39)

The difference between dimensional reduction and regularization arises solely due to
gluons in the loop:

∆(tri) = 3(Bµν
s

2∑
k=1

εk{3B(k−1)
5 + 2k + (k − 1)2B(0)

5 } (6.40)

+ 6i(T aT b − T bT a)6 p1[gµν/s− 2pµ2p
ν
1/s

2]
2∑

k=1

εk{k + (k − 1)(B(0)
5 + 1)})/9.

Concerning the technically most complicated four box graphs (2a1)–(2a4) calculation
of the O(ε2) results is still in progress. I hope that complete results on this part of the
NNLO calculation will be presented in the near future [59].

6.2 Annihilation of the quark-antiquark pair

Next I turn to the calculation of the quark-initiated heavy quark-antiquark pair production
The graphs contributing to this subprocess are shown in Fig. 6.4 for the leading order term
and in Fig. 6.5 for the one-loop corrections. The leading order contribution proceeds only
through the s-channel graph. One has:

Bqq̄ = iT aT av̄(p2)γµu(p1)ū(p3)γµv(p4)/s. (6.41)
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a b c

d e f

g h i

j k

Figure 6.5: The one-loop Feynman diagrams contributing to the subprocess qq̄ → QQ.
The loop with dotted line represents gluon, ghost, light and heavy quarks.
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Here the color matrices T a belong to different fermion lines that are connected by the gluon
having color index a. I have again left out the factor g2 in the above equation. In the
Passarino-Veltman reduction for tensor integrals I use the same scalar integrals as those
appearing in the gluon fusion subprocess, with relevant shifts and interchanges of momenta
as needed.

Starting again with the 2-point functions, I notice that the result for graph (5g) can
be obtained from the one of (6.22) for graph (2h) in the gluon fusion subprocess by the
simple replacement

M(5g) = Mµν
(2h) (Bµν

s → Bqq̄), (6.42)

and all the statements after (6.22) are equally applicable to M(5g).
The massless quark self-energy graphs (5j) and (5k) with external legs on-shell vanish

identically:
M(5j) = M(5k) = 0. (6.43)

The massive quark self-energy graphs (5h) and (5i) with external legs on-shell are
derived analogously to the ones considered in the previous section:

M(5h) = M(5i) = −CFBqq̄
3− 2ε

ε(1− 2ε)
, (6.44)

and the difference between the two regularizations schemes is

∆(5h) = ∆(5i) = −CFBqq̄
1

1− ε
. (6.45)

Results for the vertex diagrams are relatively short. Starting with graphs (5c) and (5d)
one finds that they are proportional to the LO Born term:

M(5c) = Bqq̄

2∑
k=1

εk{3B(k)
5 + 2B

(k−1)
5 + 2C

(k)
4 s}/6 (6.46)

and

M(5d) = −3Bqq̄

2∑
k=1

εkB
(k)
5 /2. (6.47)

For the other two vertex diagrams one also obtains simple expressions:

M(5e) = (Bqq̄

2∑
k=1

εk{3B(k)
2 + 2B

(k−1)
2 + C

(k)
6 s(1 + β2)− 16k} (6.48)

+ 4iT aT amv̄(p2)6 p3u(p1)ū(p3)v(p4)
2∑

k=1

εk{B(k)
2 + 2B

(k−1)
2 − 8k}/(s2β2))/6

and

M(5f) = 3(Bqq̄

2∑
k=1

εk{B(k)
5 (8m2/s− 1) + 2C

(k)
1 m2 − k16(5m2/s− 1)}
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+ 4iT aT amv̄(p2)6 p3u(p1)ū(p3)v(p4)× (6.49)

×
2∑

k=1

εk{B(k)
5 (8m2/s+ 1)− 2B

(k−1)
5 + 6C

(k)
1 m2

−C(k−1)
1 s− k4(12m2/s− 1)}/(s2β2))/(2β2).

Turning to the two box diagrams one notes that an extensive Dirac algebra manipula-
tions lead to rather compact expressions for the matrix elements. Since for the qq̄ → QQ
subprocess one has two spinor “sandwiches” one cannot have momenta with Lorentz in-
dices, and consequently there is no expansion of matrix elements in terms of Lorentz ob-
jects. One expands the box diagrams in terms of the seven independent Dirac structures,
the same set for each of the two box graphs. Then every Dirac structure is multiplied by
the sums of products of a small set of analytic functions and coefficient functions. Thus,
one has the following compact expansion for both box diagrams:

M = iTcol

2∑
k=1

εk
{
v̄(p2)γµu(p1)ū(p3)γµv(p4)

∑
f

(k)
i h

(0)
i

+ v̄(p2)6 p3u(p1)ū(p3)6 p1v(p4)
∑

f
(k)
i h

(1)
i

+ v̄(p2)γν6 p3γ
µu(p1)ū(p3)γµ 6 p1γνv(p4)

∑
f

(k)
i h

(2)
i

+ v̄(p2)γνγαγµu(p1)ū(p3)γµγαγνv(p4)
∑

f
(k)
i h

(3)
i

+ mv̄(p2)6 p3u(p1)ū(p3)v(p4)
∑

f
(k)
i h

(4)
i

+ mv̄(p2)γµu(p1)ū(p3)γµ 6 p1v(p4)
∑

f
(k)
i h

(5)
i

+ mv̄(p2)γν6 p3γ
µu(p1)ū(p3)γµγνv(p4)

∑
f

(k)
i h

(6)
i

}
.

(6.50)

Note that the number of independent covariants in n 6= 4 exceeds the number of indepen-
dent covariants in n = 4 where one has four independent covariants.

The sums over i in (6.50) run from 1 to 15 unless otherwise stated explicitly. Below I
list the color factors and analytic functions for the two 4-point functions of (6.50). For the
graph (5a) one gets:

Tcol = (T aT b)(T bT a), (6.51)

where the first parentheses in (6.51) corresponds to the summation over color indices of
the massless fermion line and

f
(k)
1 = B

(k)
1 , f

(k)
2 = B

(k)
5 , (6.52)

f
(k)
3 = C

(k−1)
1 , f

(k)
4 = C

(k)
1 , f

(k)
5 = C

(k−1)
3 ,

f
(k)
6 = C

(k)
3 , f

(k)
7 = C

(k−1)
4 , f

(k)
8 = C

(k)
4 ,

f
(k)
9 = D

(k−1)
2 , f

(k)
10 = D

(k)
2 , f

(k)
11 = k,

f
(k)
12 = (k − 1)C

(k−2)
1 , f

(k)
13 = (k − 1)C

(k−2)
3 ,

f
(k)
14 = (k − 1)C

(k−2)
4 , f

(k)
15 = (k − 1)D

(k−2)
2 .
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There exist a number of universal relations among the various coefficient functions h
(j)
i

valid for any value of j:

h
(j)
3 = zth

(j)
7 /t, h

(j)
5 = 2th

(j)
7 /s, h

(j)
9 = −th(j)

7 ,

h
(j)
10 = −th(j)

8 , h
(j)
12 = 2zth

(j)
7 /t, h

(j)
13 = 4th

(j)
7 /s,

h
(j)
14 = 2h

(j)
7 , h

(j)
15 = −2th

(j)
7 . (6.53)

For the coefficients h
(j)
i in Eq. (6.50) for the box diagram (5a) one has:

h
(0)
1 = −2T (2/st− 1/D),

h
(0)
2 = 2(1 + tzt/β

2D)/s,

h
(0)
4 = (tzt − sTz1/D + tzt/β

2)/D,

h
(0)
6 = −2tT (1 + st/D)/D,

h
(0)
7 = −t(s2T/D − 2t)/D,

h
(0)
8 = (m2s+ 2t2 + st3/D)/D,

h
(0)
11 = 16m2(T/t− 2tzt/s

2β2)/D;

h
(1)
1 = −8T/sD, h

(1)
2 = 8(t+m2z2/sβ

2)/sD,

h
(1)
4 = −4zt(t

2/D − (1 + 1/β2)/2)/D,

h
(1)
6 = 8t2T/D2, h

(1)
7 = 4t(2− t2/D)/D,

h
(1)
8 = 4stT/D2, h

(1)
11 = −64m2zt/s

2β2D;

h
(2)
1 = zt/tD, h

(2)
2 = −1/D,

h
(2)
4 = s(1− stβ2/D)/2D,

h
(2)
6 = −tz1/D

2, h
(2)
7 = stz2/2D

2,

h
(2)
8 = −sz1/2D

2, h
(2)
11 = −8m2/tD;

(6.54)

h
(3)
1 = 0, h

(3)
2 = 0,

h
(3)
4 = szt/4D, h

(3)
6 = t2/2D,

h
(3)
7 = st/2D, h

(3)
8 = st/4D, h

(3)
11 = 0;

h
(4)
1 = 4T/tD, h

(4)
2 = 4zt/sβ

2D,

h
(4)
4 = 2(stzt/D + 2m2z2/sβ

2)/D,

h
(4)
6 = h

(4)
5 , h

(4)
7 = 2st2/D2,

h
(4)
8 = h

(4)
7 , h

(4)
11 = −16(m2/t− zu/sβ2)/D;
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h
(5)
1 = −2/D, h

(5)
2 = −2z2/sβ

2D,

h
(5)
4 = s(z1/D − z2/sβ

2)/D,

h
(5)
6 = h

(5)
5 , h

(5)
7 = s2t/D2,

h
(5)
8 = h

(5)
7 h

(5)
11 = −16zu/sβ

2D;

h
(6)
i = h

(5)
i /2.

The values for the other coefficient functions h
(j)
i with i = 3, 5, 9, 10, 12− 14 and arbitrary

j, not written above, can be straightforwardly inferred from the relations presented in the
Eq. (6.53). Next I turn to the second box graph (5b). The color factor for the graph (5b)
is

Tcol = (T aT b)(T aT b), (6.55)

and all the functions are obtained from the ones in (6.52) by the simple interchange t→ u.
Two additional functions (with subscripts 16 and 17) appear, e.g.:

f
(k)
1 = B

(k)
1 (t→ u), f

(k)
2 = B

(k)
5 , (6.56)

f
(k)
3 = C

(k−1)
1 , f

(k)
4 = C

(k)
1 ,

f
(k)
5 = C

(k−1)
3 (t→ u), f

(k)
6 = C

(k)
3 (t→ u),

f
(k)
7 = C

(k−1)
4 , f

(k)
8 = C

(k)
4 ,

f
(k)
9 = D

(k−1)
2 (t→ u), f

(k)
10 = D

(k)
2 (t→ u),

f
(k)
11 = k,

f
(k)
12 = (k − 1)C

(k−2)
1 , f

(k)
13 = (k − 1)C

(k−2)
3 (t→ u),

f
(k)
14 = (k − 1)C

(k−2)
4 , f

(k)
15 = (k − 1)D

(k−2)
2 (t→ u),

f
(k)
16 = B

(k−1)
1 (t→ u), f

(k)
17 = B

(k−1)
5 .

The last two functions appear in the expansion (6.50) only in two sums for which the

superscript of the coefficients h
(j)
i is j = 1 and j = 4 and, correspondingly, these sums run

from 1 to 17.
Furthermore, relations for the various coefficient functions h

(j)
i similar to Eq. (6.53) are

valid also in this case for any value of j except for j = 1 and j = 4.

h
(j)
3 = zuh

(j)
7 /u, h

(j)
5 = 2uh

(j)
7 /s, h

(j)
9 = −uh(j)

7 ,

h
(j)
10 = −uh(j)

8 , h
(j)
12 = 2zuh

(j)
7 /u, h

(j)
13 = 4uh

(j)
7 /s,

h
(j)
14 = 2h

(j)
7 , h

(j)
15 = −2uh

(j)
7 (6.57)

These can be obtained from Eq. (6.53) by applying the t→ u operation. In case of j = 1
and j = 4 one has

h
(j)
5 = 2uh

(j)
7 /s, h

(j)
9 = −uh(j)

7 , h
(j)
10 = −uh(j)

8 ,

h
(j)
12 = zuh

(j)
14 /u, h

(j)
13 = 2uh

(j)
14 /s,

h
(j)
15 = −uh(j)

14 . (6.58)
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There exists also a partial symmetry for the box diagrams (5a) and (5b), which allows one
to express most coefficients for the box graph (5b) through the ones of the box graph (5a).

In particular, starting from the coefficients h
(j)
i with superscript j ≥ 2, I find the following

general relations for most of these coefficients:

h
(j)
i [(5b)] = −h(j)

i [(5a)](t↔ u), j = 2; (6.59)

h
(j)
i [(5b)] = h

(j)
i [(5a)](t↔ u), j = 3, 5, 6.

Consequently, for the graph (5b) only the coefficients h
(0)
i , h

(1)
i and h

(4)
i are presented here:

h
(0)
1 = 2(T/D + 2(s+ U)/su),

h
(0)
2 = −2(s/D + 1/s+ (2− uzu/D)/sβ2),

h
(0)
4 = 1− (8m2s+ 2m2u− s2)/D + ut2(t− u)/D2

−(2− uzu/D)/β2, (6.60)

h
(0)
6 = 2u(m2st/D +m2 − 2u)/D,

h
(0)
7 = −u(4s+ 2u− st2/D)/D,

h
(0)
8 = −2 + s(m2 − 2u)/D +m2s2t/D2,

h
(0)
11 = −16m2(s+ U + 2tuzu/s

2β2)/uD;

The values for the other coefficient functions h
(0)
i with i = 3, 5, 9, 10, 12 − 15, not written

above, can be straightforwardly inferred from the relations Eq. (6.57).
Next I write

h
(1)
1 = 4(2m2t/u− z2u)/sD,

h
(1)
2 = 2z2u(1 + 1/β2)/sD,

h
(1)
3 = −2(2m2s2β2 + 2utzu + sD)/D2,

h
(1)
4 = 2(z1u(2m

2 − s)/D + 2m2z2u/sβ
2)/D,

h
(1)
6 = 4u(m2s+ uzu)/D

2,

h
(1)
7 = 2(−2ut2/D + s+ 4u)/D,

h
(1)
8 = 2s(m2s+ uzu)/D

2,

h
(1)
11 = 16m2(3/u− 4zu/s

2β2)/D,

h
(1)
14 = 2u(2uz2u − s2(1 + 2β2))/D2,

h
(1)
16 = −4zu/uD, h

(1)
17 = 4/D.

(6.61)

h
(4)
1 = −4U/uD, h

(4)
2 = −4zu/sβ

2D,

h
(4)
3 = −2z2u(m

2s/D − 1/β2)/D,

h
(4)
4 = −2(suzu/D + 2m2z2u/sβ

2)/D,
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h
(4)
6 = −4u3/D2, h

(4)
7 = 2sut/D2,

h
(4)
8 = −2su2/D2, h

(4)
11 = 16m2/uD,

h
(4)
14 = −2suz2u/D

2,

h
(4)
16 = 4/D, h

(4)
17 = 4z2u/sβ

2D.

The other coefficient functions h
(j)
i , j = 1, 4 with i = 5, 9, 10, 12, 13, 15, not written above,

can be straightforwardly inferred from the relations Eq. (6.58). One should also mention
that all the one-loop matrix elements of this chapter must be multiplied by the common
factor (6.4).



Chapter 7

Summary and conclusion

The most important results presented in this thesis are

• analytical results up to O(ε2) for all massive scalar one-loop integrals that arise in
the calculation of one-loop matrix elements in heavy flavor hadroproduction

and

• almost complete results on one-loop matrix elements in heavy flavor hadroproduction
containing full spin information.

In Chap. 2 I have presented analytical results up to O(ε2) for all massive scalar one-
loop integrals that arise in the calculation of one-loop matrix elements in heavy flavor
hadroproduction. Some of these results are new (see Table 1.1). The one-loop scalar
integrals are needed for that part of the NNLO hadroproduction of heavy flavours which is
obtained from the product of one-loop contributions called loop-by-loop contribution. In
Chap. 6 I have presented the one-loop amplitudes for hadronic heavy hadron production
themselves. Positive powers of ε (up to O(ε2)) results arise not only from the scalar one-
loop integrals but also from the Passarino–Veltman decomposition and the spin algebra.
The full one-loop amplitudes up to order ε0 were given in [29]. The missing results for the
ε- and ε2-coefficients of the one-loop amplitudes for quark initiated reactions can be found
in this thesis. The results for gluon initiated heavy hadron production are also given except
for the most complicated box diagrams. This task remains to be done in the near future.
The calculation of the loop-by-loop contributions in Fig. 1.1b is a necessary starting point
in the evaluation of the NNLO contributions to heavy quark pair production in hadronic
interactions. It is very likely that the calculation of the other three classes of diagrams
in Fig. 1.1 will proof to be very difficult. This holds true in particular for the massive
two-loop box contributions.

In the Laurent series expansion of the scalar one-loop integrals Chap. 2 the successive
coefficient functions increase in length and complexity with each order of ε. The reason is
that the ε-expansion of the integrand before the last parametric integration itself generates
coefficient functions with increasing complexity with each order of ε. The most complex
expressions arise from the box contributions where one encounters multiple polylogarithms
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up to weight and depth four at O(ε2) (see Chap. 2 and Chap. 4). The algorithms to reduce
the number of the classical polylogarithms described in Chap. 3 and the identities for the
L-functions derived in Chap. 4 were extensively used in order to simplify the final results
for the scalar one-loop integrals presented in Chap. 2.

In a numerical NNLO evaluation of heavy hadron production the various contributing
pieces will have to be evaluated at many values of the kinematical variables. This requires
efficiency in the numerical codes for each of the contributing pieces. I believe that I have
provided for such numerical efficiency in the loop-by-loop portion of the NNLO calculation
by presenting results in analytical form which are fast to evaluate numerically (see Chap. 5).
All the results of Chap. 2 are available in convenient electronic form [60]. When using the
formulae of Sec. 4.3 one can write all the results in terms of multiple polylogarithms. In
recent years a number of new methods were developed for semi-numerical evaluation of
general Feynman diagrams (see e.g. [52, 54, 55, 56]). First numerical tests [51] have shown
that the efficiency of the results presented in Chap. 2 is better by orders of magnitude than
the present implementation of the flexible all-purpose approach described in [52]. This is
in particular true for the imaginary parts. Further comparisons of the numerical efficiency
of the two methods have to be done in the near future.

The analytical results presented in this paper cover the whole kinematical domain
with a single expression. They evaluate numerically very fast and efficiently. Further
advantages of having the results in analytical form are that they allow one to investigate
various limiting cases as well as their analyticity properties. Also, when analytical results
are available the mathematical structure of the results becomes manifest which would not
be visible in a purely numerical approach.

The full calculation of the NNLO corrections to heavy hadron production at hadron
colliders will be a very difficult task to complete. It involves the calculation of very many
Feynman diagrams of many different topologies. The problem is further complicated by
the fact that heavy hadron production is a multi-scale problem with three mass scales
provided by the kinematic variables s and t in the loop expressions, and the mass of the
heavy quark. It is clear that an undertaking of this dimension will have to involve many
theorists and cannot be done by a single group alone. In this sense the present calculation
is a first step (or second step [61, 62, 63]) in the direction of obtaining NNLO results
on heavy hadron production at hadron colliders. The present calculation allows one to
obtain a first glimpse of the mathematical and computational complexity that is waiting
for physicists in the full NNLO calculation. This complexity does in fact already reveal
itself in terms of a very rich polylogarithmic and multiple polylogarithmic structure of the
Laurent series expansion of the scalar one-loop integrals as shown in this thesis.

I hope that the tools for simplifying classical polylogarithms described in this thesis will
be useful for other practitioners in this field. It can be expected that the detailed discussion
of the properties of the L-functions and their connection to the multiple polylogarithms
of Goncharov presented in this thesis will become useful also for other NNLO calculations
where multiple polylogarithms can also be expected to appear.



Appendix A

Special two-point function needed for
the renormalization constants

In this Appendix I evaluate a special two-point integral which is needed for the calculation
of the one-loop fermion self-energy diagram insertion into the massive external fermion
line. This integral is also needed for the definitions of the fermion mass and wave function
renormalization constants in the on-shell renormalization scheme. In particular, one needs
to evaluate the integral

I1 ≡ B(p, 0,m) = µ2ε
∫ dnq

(2π)n
1

q2[(q + p)2 −m2]
(A.1)

up to O(p2 −m2). One therefore Taylor expands I1 around p2 = m2:

I1 = I1

∣∣∣∣
p2=m2

+
dI1

dp2

∣∣∣∣
p2=m2

(p2 −m2) + . . .

≡ E0 + E1(p2 −m2) + . . . (A.2)

Note that the expansion coefficients Ei in (A.2) are functions of ε. The first coefficient E0

is nothing but B3 obtained in Sec. 2.1. The second coefficient E1 is proportional to the
sum of a scalar and a vector integral obtained by differentiating I1 w.r.t. pµ. One obtains

E1 =
1

2pµ

dI1

dpµ
= −I2 −

pµI2µ

m2
, (A.3)

where

I{2,2µ} = µ2ε
∫ dnq

(2π)n
{1, qµ}

q2[(q + p)2 −m2]2
= iCε(m

2)
1

m2

{
1

2ε
,

pµ
1− 2ε

}
. (A.4)

One finally has

I1 = iCε(m
2)

1

ε(1− 2ε)

(
1− p2 −m2

2m2

)
+O[(p2 −m2)2]. (A.5)

The result for the integral I1 in the form (A.5) was used in [40] to evaluate external
heavy quark self-energy diagrams and obtain heavy quark wave function renormalization
constants in the NLO calculation.
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Appendix B

Programs for the simplification of the
functions Li2

All the programs presented in App. B and App. C can be copied via “cut and paste”
methods from the tex-source-file of this thesis and placed directly into Mathematica-
files.

B.1 Program based on the identities with one variable

This program reduces the number of dilogarithms present in the input expression. The al-
gorithm is described in Sec. 3.2.1. The user should run the program under Mathematica
[42] using Li2Simplify[InputExpression, SetOfDesiredArguments].
InputExpression is the expression to be simplified. It contains various Re[PolyLog[2, z]]
terms. SetOfDesiredArguments is the set of the arguments of the dilogarithms which
have to be chosen automatically for the expansion of the dilogarithms from the expression
InputExpression in the case that there are relations between the dilogarithms of these
arguments and dilogarithms from InputExpression. One collects this set from previous
results to obtain new results in terms of already present dilogarithms. If one would like
to ignore this option one chooses the empty set {} as the SetOfDesiredArguments. The
output of the program is an expression with the reduced number of dilogarithms.
Here I present the text of the program:

Li2Simplify[expression_, basis_] := Module[{Li2Set, Li2SetArg, Li2SetResult,
Li2SetClue, FurtherKey, family, Finv, Fone, Finvone, Foneinv, Foneinvone,
Li2SetNew, Li2SetArgNew, expression1},

Finv[x__] = -PolyLog[2, 1/x] - Pi^2/6 - (1/2)*Log[-x]^2;
Fone[x__] = -PolyLog[2, 1 - x] + Pi^2/6 - Log[x]*Log[1 - x];
Finvone[x__] = Simplify[-(Pi^2/6) - (1/2)*Log[-x]^2
- (Pi^2/6 - Log[1 - 1/x]*Log[1/x] - PolyLog[2, 1 - 1/x])];
Foneinv[x__] = Simplify[Pi^2/6 - Log[1 - x]*Log[x]
-(-(Pi^2/6) - (1/2)*Log[-1 + x]^2 - PolyLog[2, 1/(1 - x)])];
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Foneinvone[x__] = Simplify[Pi^2/3 + (1/2)*Log[-1 + x]^2 - Log[1 - x]*Log[x]
+ (1/6)*(Pi^2 - 6*Log[1/(1 - x)]*Log[x/(-1 + x)] - 6*PolyLog[2, x/(-1 + x)])];

Li2Set = Variables[Cases[expression, Re[PolyLog[2, a_]], Infinity]];
Li2SetArg = Simplify[Li2Set /. Re[PolyLog[2, a_]] -> a];
Li2SetClue = Table[True, {i, Length[Li2Set]}];
Li2SetResult = Li2Set;

Do[Print["i=", i];
Do[

If[Simplify[basis[[k]] - Li2SetArg[[i]]] == 0, Li2SetClue[[i]] = False;
Li2SetResult[[i]] = Re[PolyLog[2, basis[[k]]]]];

If[Li2SetClue[[i]], If[Simplify[basis[[k]] - 1/Li2SetArg[[i]]] == 0,
Li2SetClue[[i]] = False; Li2SetResult[[i]] = Re[Simplify[Finv[Li2SetArg[[i]]]]]]];

If[Li2SetClue[[i]], If[Simplify[basis[[k]] - (1 - Li2SetArg[[i]])] == 0,
Li2SetClue[[i]] = False; Li2SetResult[[i]] = Re[Simplify[Fone[Li2SetArg[[i]]]]]]];

If[Li2SetClue[[i]], If[Simplify[basis[[k]] - (1 - 1/Li2SetArg[[i]])] == 0,
Li2SetClue[[i]] = False; Li2SetResult[[i]] = Re[Simplify[Finvone[Li2SetArg[[i]]]]]]];

If[Li2SetClue[[i]], If[Simplify[basis[[k]] - 1/(1 - Li2SetArg[[i]])] == 0,
Li2SetClue[[i]] = False; Li2SetResult[[i]] = Re[Simplify[Foneinv[Li2SetArg[[i]]]]]]];

If[Li2SetClue[[i]],
If[Simplify[basis[[k]] - Li2SetArg[[i]]/(Li2SetArg[[i]] - 1)] == 0,

Li2SetClue[[i]] = False; Li2SetResult[[i]] =Re[Simplify[Foneinvone[Li2SetArg[[i]]]]]]],
{k, Length[basis]}],

{i, Length[Li2Set]}];

FurtherKey = False;
Do[FurtherKey = FurtherKey || Li2SetClue[[j]], {j, Length[Li2Set]}];

If[FurtherKey,
Print["I begin the simplification of the function Li2 that can not be
expressed in terms of Li2 from BASIS."]];
Do[If[Li2SetClue[[i]], family = {};
Do[If[Li2SetClue[[j]], If[Simplify[Li2SetArg[[i]] - Li2SetArg[[j]]] == 0,

Li2SetClue[[j]] = False; family = Append[family, j]]], {j, Length[Li2Set]}];
Do[If[Li2SetClue[[j]], If[Simplify[Li2SetArg[[i]] - 1/Li2SetArg[[j]]] == 0,

Li2SetClue[[j]] = False; family = Append[family, j]]], {j, Length[Li2Set]}];
Do[If[Li2SetClue[[j]], If[Simplify[Li2SetArg[[i]] - (1 - Li2SetArg[[j]])] == 0,

Li2SetClue[[j]] = False; family = Append[family, j]]], {j, Length[Li2Set]}];
Do[If[Li2SetClue[[j]], If[Simplify[Li2SetArg[[i]] - (1 - 1/Li2SetArg[[j]])] == 0,

Li2SetClue[[j]] = False; family = Append[family, j]]], {j, Length[Li2Set]}];
Do[If[Li2SetClue[[j]], If[Simplify[Li2SetArg[[i]] - 1/(1 - Li2SetArg[[j]])] == 0,

Li2SetClue[[j]] = False; family = Append[family, j]; ]], {j, Length[Li2Set]}];
Do[If[Li2SetClue[[j]],

If[Simplify[Li2SetArg[[i]] - Li2SetArg[[j]]/(Li2SetArg[[j]] - 1)] == 0,
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Li2SetClue[[j]] = False; family = Append[family, j]; ]], {j, Length[Li2Set]}];

Print["I have found DilogSmallSet ."];
Print["Below you see the elements of the DilogSmallSet with the corresponding
probing values from the physical region."];

Do[Print[l, " -> ", PolyLog[2, Li2SetArg[[family[[l]]]]], " -> ",
N[PolyLog[2, Li2SetArg[[family[[l]]]]]

/. t -> (-s/2)*(1 - Sqrt[1 - 4*(m^2/s)]*Cos[\[Kappa]])
/. s -> 8.1*m^2 /. \[Kappa] -> 0.2*Pi ]],

{l, Length[family]}];
choice = 0;
While[choice < 1 || (choice > Length[family] || !IntegerQ[choice]),
Print["You should choose one of theses Li2 as the basis function.

All others will be expressed via it."];
choice = Input["Type the number of chosen Li2"]];
Do[If[Simplify[Li2SetArg[[family[[choice]]]] - Li2SetArg[[family[[i]]]]] == 0,
Li2SetResult[[family[[i]]]] = Re[PolyLog[2, Li2SetArg[[family[[choice]]]]]]];

If[Simplify[Li2SetArg[[family[[choice]]]] - 1/Li2SetArg[[family[[i]]]]] == 0,
Li2SetResult[[family[[i]]]] = Re[Simplify[Finv[Li2SetArg[[family[[i]]]]]]]];

If[Simplify[Li2SetArg[[family[[choice]]]] - (1 - Li2SetArg[[family[[i]]]])] == 0,
Li2SetResult[[family[[i]]]] = Re[Simplify[Fone[Li2SetArg[[family[[i]]]]]]]];

If[Simplify[Li2SetArg[[family[[choice]]]] - (1 - 1/Li2SetArg[[family[[i]]]])] == 0,
Li2SetResult[[family[[i]]]] = Re[Simplify[Finvone[Li2SetArg[[family[[i]]]]]]]];

If[Simplify[Li2SetArg[[family[[choice]]]] - 1/(1 - Li2SetArg[[family[[i]]]])] == 0,
Li2SetResult[[family[[i]]]] = Re[Simplify[Foneinv[Li2SetArg[[family[[i]]]]]]]];

If[Simplify[Li2SetArg[[family[[choice]]]] - Li2SetArg[[family[[i]]]]
/(Li2SetArg[[family[[i]]]] - 1)] == 0,

Li2SetResult[[family[[i]]]] = Re[Simplify[Foneinvone[Li2SetArg[[family[[i]]]]]]]],
{i, Length[family]}]],

{i, Length[Li2Set]}];

Li2SetResult = Li2SetResult //. Re[(g_) + (h_)] -> Re[g] + Re[h]
//. Re[Log[a_]^2] -> logAbs[a]^2 - Pi^2*\[Theta][-a]
//. Re[Log[a_]*Log[b_]] -> logAbs[a]*logAbs[b];
expression1 = expression;
Do[expression1 = expression1 //. Li2Set[[i]] -> Li2SetResult[[i]], {i, Length[Li2Set]}];
Li2SetNew = Variables[Cases[expression1, Re[PolyLog[2, a_]], Infinity]];
SetArgNew = Factor[Li2SetNew /. Re[PolyLog[2, a_]] -> a];
Do[expression1 = expression1 //. Li2SetNew[[i]] -> Re[PolyLog[2, SetArgNew[[i]]]],

{i, Length[Li2SetNew]}];
expression1]
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B.2 Program based on the identitiy with two vari-

ables

This program realizes the algorithms for the search of the dilogarithms from the input ex-
pression related by Hill’s identity (3.13) in combination with the identities with one variable
(3.6) and combinations of these (see Sec. 3.2.2). The user should run the program under
Mathematica [42] using HillSearch[SetOfArgumentsOfLi2]. SetOfArgumentsOfLi2 is
the set of the arguments of the dilogarithms of the input expression. After one starts the
program it prints some helpful information . The most important information is at the
end. If the line such as
“ for a pair some expression and some expression connection has been found”

occurs then the relation is found. Otherwise there is no relation. From the last line one
gets the arguments of the dilogarithms (exactly some expressions) for the initial pair (see
Sec. 3.2.2). The last values of n and p correspond to the transformation of the initial pair
to be done. The numbers of transformations coincide with the numbers of Fj(z) functions
in (3.11). Then one finds the information how each dilogarithm from the r.h.s. of (3.13)
is related to already existing dilogarithms. The positions of related dilogarithms on the
r.h.s. of Hill’s identity (3.13) (first, second or third) are given together with the numbers
of the transformations which have to be performed with existing dilogarithms in order to
obtain the dilogarithms from the r.h.s. of (3.13). Therefore in the output of the program
all necessary information for the use of Hill’s identity are presented. An exemplary end of
the output is:

n, p 1 1
the 2’th dilogs from the r.h.s. of Hill’s identity is connected by
transformation 1 to dilogs of 6’th argument.
the 3’th dilogs from the r.h.s. of Hill’s identity is connected by
transformation 1 to dilogs of 8’th argument.
the 1’th dilogs from the r.h.s. of Hill’s identity is connected by
transformation 1 to dilogs of 15’th argument.
for a pair -t/s and (2*m^2)/(2*m^2 - (s + t)*(1 + \[Beta])) connection
has been found

It means that Li2
(
−t
s

)
and Li2

(
2m2

2m2−(s+t)(1+β

)
are the dilogarithms for the initial pair. No

transformation with the initial pair should be performed because n and p are 1 and 1,
respectively. The second dilogarithm from the r.h.s. of (3.13) is related to the dilogarithm
with the argument which is equal to the sixth element of the set SetOfArgumentsOfLi2.
One has to perform the transformation number “1” with this dilogarithm to obtain the
second dilogarithm from the r.h.s. of (3.13). The same information can be found for the
remaining two dilogarithms from the r.h.s. of (3.13).
Here I present the text of the program:

HillSearch[set_] := Module[{probe, x, y, logic, Key, Poss},

Poss[arg1_, arg2_] := Abs[2*((arg1 - arg2)/(arg1 + arg2))
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/. \[Beta] -> Sqrt[1 - 4*(m^2/s)]
/. t -> (-s/2)*(1 - Sqrt[1 - 4*(m^2/s)]*Cos[\[Tau]])
/. u -> (-s/2)*(1 + Sqrt[1 - 4*(m^2/s)]*Cos[\[Tau]])
/. s -> 8.5*m^2 /.\[Tau]-> 0.4*Pi] < 0.01;

Key = True;
Do[If[Key, Print[ i, " ", j];

x = Simplify[set[[i]] /. a_ -> {a,1 - a, 1/a,1/(1 - a),1 - 1/a, a/(a - 1)}];
Print["x", x];
y = Simplify[set[[j]] /. a_ -> {a,1 - a, 1/a,1/(1 - a),1 - 1/a, a/(a - 1)}];
Print["y", y];

Do[If[Key,
Print["n, p ", n, " ", p]; logic = {False, False, False};
probe = Simplify[{x[[n]]*y[[p]], (x[[n]]*(-1 + y[[p]]))/(-1 + x[[n]]*y[[p]]),

((-1 + x[[n]])*y[[p]])/(-1 + x[[n]]*y[[p]])}];
Do[If[ !logic[[k]], If[Poss[probe[[k]], set[[l]]], logic[[k]] = True;

Print["the ", k,"’th dilogs from the r.h.s. of Hill’s identity is
connected by transformation 1 to dilogs of ", l,"’th argument."]]];

If[ !logic[[k]], If[Poss[probe[[k]], 1/set[[l]]] == 0, logic[[k]] = True;
Print["the ", k ,"’th dilogs from the r.h.s. of Hill’s identity is

connected by transformation 1 to dilogs of ", l, "’th argument."]]];
If[ !logic[[k]], If[Poss[probe[[k]], 1 - set[[l]]] == 0, logic[[k]] = True;

Print["the ", k, "’th dilogs from the r.h.s. of Hill’s identity is
connected by transformation 3 to dilogs of ", l, "’th argument."]]];

If[ !logic[[k]], If[Poss[probe[[k]], 1/(1 - set[[l]])] == 0, logic[[k]] = True;
Print["the ", k,"’th dilogs from the r.h.s. of Hill’s identity is

connected by transformation 4 to dilogs of ", l, "’th argument."]]];
If[ !logic[[k]], If[Poss[probe[[k]], 1 - 1/set[[l]]] == 0, logic[[k]] = True;

Print["the ", k,"’th dilogs from the r.h.s. of Hill’s identity is
connected by transformation 5 to dilogs of ", l, "’th argument." ]]];

If[ !logic[[k]], If[Poss[probe[[k]] - set[[l]]/(set[[l]] - 1)] == 0,
logic[[k]] = True;
Print["the ", k, " ’th dilogs from the r.h.s. of Hill’s identity is

connected by transformation 6 to dilogs of ", l, "’th argument. "]]],
{l, Length[set]}, {k, Length[logic]}];

If[logic[[1]] && logic[[2]] && logic[[3]],
Key = False; Print["for a pair ", set[[i]], " and ", set[[j]],
"connection has been found"]]],

{n, 6}, {p, 6}]],
{i, Length[set]},{j, i + 1, Length[set]}]]
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Program for the simplification of the
functions Li3

This program reduces the number of functions Li3 present in the input expression. The
algorithm is described in Sec. 3.3. The user should run the program under Mathematica
[42] using Li3Simplify[InputExpression, SetOfDesiredArguments].
InputExpression is the expression to be simplified. It contains various Re[PolyLog[3, z]]
terms. SetOfDesiredArguments is the set of the arguments of the dilogarithms which
have to be chosen automatically for the expansion of the dilogarithms from the expression
InputExpression in the case that there are relations between the dilogarithms of these
arguments and dilogarithms from InputExpression. One collects this set from previous
results to obtain new results in terms of already present dilogarithms. If one would like
to ignore this option one chooses the empty set {} as the SetOfDesiredArguments. The
output of the program is an expression with the reduced number of function Li3.
Here I present the text of the program:

Li3Simplify[expression_, basis_] :=
Module[{Li3Set, Li3SetArg, Li3SetResult, Li3SetClue, FurtherKey, family,

forfamily, choice1, choice},
Li3Set = Variables[Cases[expression, Re[PolyLog[3, a_]], Infinity]];
Li3SetArg = Simplify[Li3Set /. Re[PolyLog[3, a_]] -> a];
Li3SetClue = Table[True, {i, Length[Li3Set]}];
Li3SetResult = Li3Set;

Finv3[x__] = PolyLog[3, 1/x] - (Pi^2/6)*Log[-x] - (1/6)*Log[-x]^3;
Fbig3a[x__] = Simplify[-PolyLog[3, 1 - x] - PolyLog[3, -x/(1 - x)] + PolyLog[3, 1]
+ (Pi^2/6)*Log[1 - x] - (1/2)*Log[x]*Log[1 - x]^2 + (1/6)*Log[1 - x]^3];
Fbig3b[x__] = Simplify[-PolyLog[3, 1 - x] - (1/6)*((-Pi^2)*Log[x/(1 - x)]
- Log[x/(1 - x)]^3 + 6*PolyLog[3, (-1 + x)/x]) + PolyLog[3, 1]
+(Pi^2/6)*Log[1 - x] - (1/2)*Log[x]*Log[1 - x]^2 + (1/6)*Log[1 - x]^3];
Fbig3c[x__] = Simplify[(-(1/6))*((-Pi^2)*Log[-1 + x] - Log[-1 + x]^3
+ 6*PolyLog[3, 1/(1 - x)]) - PolyLog[3, -x/(1 - x)] + PolyLog[3, 1]
+ (Pi^2/6)*Log[1 - x] - (1/2)*Log[x]*Log[1 - x]^2 + (1/6)*Log[1 - x]^3];
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Fbig3d[x__] = Simplify[(-(1/6))*((-Pi^2)*Log[-1 + x] - Log[-1 + x]^3
+ 6*PolyLog[3, 1/(1 - x)]) - (1/6)*((-Pi^2)*Log[x/(1 - x)] - Log[x/(1 - x)]^3
+ 6*PolyLog[3, (-1 + x)/x]) + PolyLog[3, 1] + (Pi^2/6)*Log[1 - x]
- (1/2)*Log[x]*Log[1 - x]^2 + (1/6)*Log[1 - x]^3];

Do[If[Li3SetClue[[i]],
family = {}; forfamily = {};
Do[If[Li3SetClue[[j]], If[Simplify[Li3SetArg[[i]] - Li3SetArg[[j]]] == 0,

Li3SetClue[[j]] = False; family = Append[family, j]]], {j, Length[Li3Set]}];
Do[If[Li3SetClue[[j]], If[Simplify[Li3SetArg[[i]] - 1/Li3SetArg[[j]]] == 0,

Li3SetClue[[j]] = False; family = Append[family, j]]], {j, Length[Li3Set]}];
Do[If[Li3SetClue[[j]], If[Simplify[Li3SetArg[[i]] - (1 - Li3SetArg[[j]])] == 0,

Li3SetClue[[j]] = False; family = Append[family, j]]], {j, Length[Li3Set]}];
Do[If[Li3SetClue[[j]], If[Simplify[Li3SetArg[[i]] - (1 - 1/Li3SetArg[[j]])] == 0,

Li3SetClue[[j]] = False; family = Append[family, j]]], {j, Length[Li3Set]}];
Do[If[Li3SetClue[[j]], If[Simplify[Li3SetArg[[i]] - 1/(1 - Li3SetArg[[j]])] == 0,

Li3SetClue[[j]] = False; family = Append[family, j]]], {j, Length[Li3Set]}];
Do[If[Li3SetClue[[j]],

If[Simplify[Li3SetArg[[i]] - Li3SetArg[[j]]/(Li3SetArg[[j]] - 1)] == 0,
Li3SetClue[[j]] = False; family = Append[family, j]]], {j, Length[Li3Set]}];

Print["ThreelogSmallSet is composed"];
Print["Below you can see the elements of ThreelogSmallSet with the corresponding

probe values from the physical region."];

Do[Print[l, " -> ", PolyLog[3, Li3SetArg[[family[[l]]]]], " -> ",
N[PolyLog[3, Li3SetArg[[family[[l]]]]] /. \[Beta] -> Sqrt[1 - 4*(m^2/s)] /.
t -> (-s/2)*(1 - Sqrt[1 - 4*(m^2/s)]*Cos[\[Kappa]]) /. s -> 8.1*m^2
/. \[Kappa] -> 0.2*Pi]], {l, Length[family]}];

Do[If[Simplify[Li3SetArg[[family[[1]]]] - basis[[i]]] == 0,
forfamily = Append[forfamily, basis[[i]]]], {i, Length[basis]}];

Do[If[Simplify[1/Li3SetArg[[family[[1]]]] - basis[[i]]] == 0,
forfamily = Append[forfamily, basis[[i]]]], {i, Length[basis]}];

Do[If[Simplify[(1 - Li3SetArg[[family[[1]]]]) - basis[[i]]] == 0,
forfamily = Append[forfamily, basis[[i]]]], {i, Length[basis]}];

Do[If[Simplify[(1 - 1/Li3SetArg[[family[[1]]]]) - basis[[i]]] == 0,
forfamily = Append[forfamily, basis[[i]]]], {i, Length[basis]}];

Do[If[Simplify[1/(1 - Li3SetArg[[family[[1]]]]) - basis[[i]]] == 0,
forfamily = Append[forfamily, basis[[i]]]], {i, Length[basis]}];

Do[If[Simplify[Li3SetArg[[family[[1]]]]/(Li3SetArg[[family[[1]]]] - 1)
- basis[[i]]] == 0,

forfamily = Append[forfamily, basis[[i]]]], {i, Length[basis]}];

familyClue = Table[True, {i, Length[family]}];



118 Chapter C. Program for the simplification of the functions Li3

If[Length[family] == 1,

If[Length[forfamily] == 0, familyClue[[1]] = False;
Print["Please choose the option:"];
Print[" 1 - leave the Li3 without transformation."];
Print[" 2 - Transform Li3 using inversion of argument."]; choice = 0;
While[choice < 1 || (choice > 2 || !IntegerQ[choice]),

choice = Input["Type option for transformation"]];
If[choice == 2, Li3SetResult[[family[[1]]]] =

Re[Simplify[Finv3[Li3SetArg[[family[[1]]]]]]]]];

If[Length[forfamily] == 1,

If[Simplify[Li3SetArg[[family[[1]]]] - forfamily[[1]]] == 0,
familyClue[[1]] = False; Li3SetResult[[family[[1]]]] =
Re[PolyLog[3, forfamily[[1]]]]];

If[familyClue[[1]],
If[Simplify[Li3SetArg[[family[[1]]]] - 1/forfamily[[1]]] == 0,
familyClue[[1]] = False;

Li3SetResult[[family[[1]]]] = Re[Simplify[Finv3[Li3SetArg[[family[[1]]]]]]]]];

If[familyClue[[1]], familyClue[[1]] = False; Print["Please choose the option:"];
Print[" 1 - leave the Li3 without transformation."];
Print[" 2 - Transform Li3 using inversion of argument."];
choice = 0;
While[choice < 1 || (choice > 2 || !IntegerQ[choice]),

choice = Input["Type option for transformation"]];
If[choice == 2,

Li3SetResult[[family[[1]]]] = Re[Simplify[Finv3[Li3SetArg[[family[[1]]]]]]]]]];

If[Length[forfamily] == 2,

If[Simplify[Li3SetArg[[family[[1]]]] - forfamily[[1]]] == 0, familyClue[[1]] = False;
Li3SetResult[[family[[1]]]] = Re[PolyLog[3, forfamily[[1]]]]];

If[familyClue[[1]], If[Simplify[Li3SetArg[[family[[1]]]] - forfamily[[2]]] == 0,
familyClue[[1]] = False;
Li3SetResult[[family[[1]]]] = Re[PolyLog[3, forfamily[[2]]]]]];

If[familyClue[[1]], If[Simplify[Li3SetArg[[family[[1]]]] - 1/forfamily[[1]]] == 0,
familyClue[[1]] = False;
Li3SetResult[[family[[1]]]] = Re[Simplify[Finv3[Li3SetArg[[family[[1]]]]]]]]];

If[familyClue[[1]], If[Simplify[Li3SetArg[[family[[1]]]] - 1/forfamily[[2]]] == 0,
familyClue[[1]] = False;
Li3SetResult[[family[[1]]]] = Re[Simplify[Finv3[Li3SetArg[[family[[1]]]]]]]]];
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If[familyClue[[1]], familyClue[[1]] = False;
Print["Please choose the option:"];
Print[" 1 - leave the Li3 without transformation."];
Print[" 2 - Transform Li3 using inversion of argument."]; choice = 0;
While[choice < 1 || (choice > 2 || !IntegerQ[choice]),

choice = Input["Type option for transformation"]];
If[choice == 2,
Li3SetResult[[family[[1]]]] = Re[Simplify[Finv3[Li3SetArg[[family[[1]]]]]]]]]]];

If[Length[family] != 1,
If[Length[forfamily] == 2,
Print["I express the elements of the ThreelogSmallSet in terms of ",

PolyLog[3, forfamily[[1]]], " and ", PolyLog[3, forfamily[[2]]],
" from the set of the desired functions Li3"]];

If[Length[forfamily] == 1,
Print["I have found only one polylog ", PolyLog[3, forfamily[[1]]],

"from the set of the desired functions Li3"];
Print["For the functions Li3 I need two Li3 to express all others elements

from the ThreelogSmallSet"];
Print["Please choose the second Li3 from ThreelogSmallSet"];
choice = 0;
While[choice < 1 || (choice > Length[family] || !IntegerQ[choice]),

choice = Input["Type the number of chosen Li3"];
If[choice >= 1 && (choice <= Length[family] && IntegerQ[choice]),
If[Simplify[Li3SetArg[[family[[choice]]]] - forfamily[[1]]] == 0,
choice = 0]]];

forfamily = Append[forfamily, Li3SetArg[[family[[choice]]]]]];

If[Length[forfamily] == 0,
Print["There are NO Li3 from the set of the desired functions Li3 for

this ThreelogSmallSet"];
Print["For the functions Li3 I need two Li3 to express all others

elements from the ThreelogSmallSet"];
Print["Please choose two Li3 from the hreelogSmallSet"];
choice = 0;
While[choice < 1 || (choice > Length[family] || !IntegerQ[choice]),

choice = Input["Type the number of the first chosen Li3"]];
forfamily = Append[forfamily, Li3SetArg[[family[[choice]]]]];
choice1 = 0;
While[choice1 < 1 || (choice1 > Length[family] || !IntegerQ[choice1])
|| choice1 == choice,

choice1 = Input["Type the number of the second chosen Li3"]];
forfamily = Append[forfamily, Li3SetArg[[family[[choice1]]]]]]];
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Print["forfamily -> ", forfamily, "family", family];

Do[If[familyClue[[i]] == True,
If[Simplify[Li3SetArg[[family[[i]]]] - forfamily[[1]]] == 0,
Li3SetResult[[family[[i]]]] = Re[PolyLog[3, forfamily[[1]]]];
familyClue[[i]] = False]];

If[familyClue[[i]] == True,
If[Simplify[Li3SetArg[[family[[i]]]] - forfamily[[2]]] == 0,
Li3SetResult[[family[[i]]]] = Re[PolyLog[3, forfamily[[2]]]];
familyClue[[i]] = False]];

If[familyClue[[i]] == True,
If[Simplify[Li3SetArg[[family[[i]]]] - 1/forfamily[[1]]] == 0,
Li3SetResult[[family[[i]]]] = Re[Simplify[Finv3[Li3SetArg[[family[[i]]]]]]];
familyClue[[i]] = False]];

If[familyClue[[i]] == True,
If[Simplify[Li3SetArg[[family[[i]]]] - 1/forfamily[[2]]] == 0,
Li3SetResult[[family[[i]]]] = Re[Simplify[Finv3[Li3SetArg[[family[[i]]]]]]];
familyClue[[i]] = False]];

If[familyClue[[i]] == True,
If[Simplify[forfamily[[1]] - (1 - Li3SetArg[[family[[i]]]])] == 0,
familyClue[[i]] = False;
If[Simplify[forfamily[[2]] - Li3SetArg[[family[[i]]]]

/(Li3SetArg[[family[[i]]]] - 1)] == 0,
Print["First"];
Li3SetResult[[family[[i]]]] = Re[Simplify[Fbig3a[Li3SetArg[[family[[i]]]]]]]];

If[Simplify[forfamily[[2]] - (1 - 1/Li3SetArg[[family[[i]]]])] == 0,
Print["Second"];
Li3SetResult[[family[[i]]]] = Re[Simplify[Fbig3b[Li3SetArg[[family[[i]]]]]]]]]];

If[familyClue[[i]] == True,
If[Simplify[forfamily[[2]] - (1 - Li3SetArg[[family[[i]]]])] == 0,
familyClue[[i]] = False;
If[Simplify[forfamily[[1]] - Li3SetArg[[family[[i]]]]

/(Li3SetArg[[family[[i]]]] - 1)] == 0,
Print["First"];
Li3SetResult[[family[[i]]]] = Re[Simplify[Fbig3a[Li3SetArg[[family[[i]]]]]]]];

If[Simplify[forfamily[[1]] - (1 - 1/Li3SetArg[[family[[i]]]])] == 0,
Print["Second"];

Li3SetResult[[family[[i]]]] = Re[Simplify[Fbig3b[Li3SetArg[[family[[i]]]]]]]]]];

If[familyClue[[i]] == True,
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If[Simplify[forfamily[[1]] - 1/(1 - Li3SetArg[[family[[i]]]])] == 0,
familyClue[[i]] = False;
If[Simplify[forfamily[[2]] - Li3SetArg[[family[[i]]]]

/(Li3SetArg[[family[[i]]]] - 1)] == 0,
Print["Third"];
Li3SetResult[[family[[i]]]] = Re[Simplify[Fbig3c[Li3SetArg[[family[[i]]]]]]]];

If[Simplify[forfamily[[2]] - (1 - 1/Li3SetArg[[family[[i]]]])] == 0,
Print["Forth"];
Li3SetResult[[family[[i]]]] = Re[Simplify[Fbig3d[Li3SetArg[[family[[i]]]]]]]]]];

If[familyClue[[i]] == True,
If[Simplify[forfamily[[2]] - 1/(1 - Li3SetArg[[family[[i]]]])] == 0,
familyClue[[i]] = False;
If[Simplify[forfamily[[1]] - Li3SetArg[[family[[i]]]]

/(Li3SetArg[[family[[i]]]] - 1)] == 0,
Print["Third"];
Li3SetResult[[family[[i]]]] = Re[Simplify[Fbig3c[Li3SetArg[[family[[i]]]]]]]];

If[Simplify[forfamily[[1]] - (1 - 1/Li3SetArg[[family[[i]]]])] == 0,
Print["Forth"];
Li3SetResult[[family[[i]]]] = Re[Simplify[Fbig3d[Li3SetArg[[family[[i]]]]]]]]]];

Print["It was -> ", Li3SetArg[[family[[i]]]]];
Print["Result -> ", Li3SetResult[[family[[i]]]]];
Print["--------------------------------------------------"],

{i, Length[family]}]],

{i, Length[Li3Set]}];

Li3SetResult = Simplify[Li3SetResult //. Re[(g_) + (h_)] -> Re[g] + Re[h]
//. Re[Log[\[Xi]__]^3] -> logAbs[\[Xi]]^3 - 1*3*Pi^2*logAbs[\[Xi]]*\[Theta][-\[Xi]]^2
//.Re[Log[\[Alpha]__]*Log[\[Beta]__]^2] ->
logAbs[\[Alpha]]*logAbs[\[Beta]]^2 - 1*Pi^2*logAbs[\[Alpha]]*\[Theta][-\[Beta]]^2
//. Re[Log[\[Zeta]__]] -> logAbs[\[Zeta]]];

expression1 = expression;
Do[expression1 = expression1 //. Li3Set[[i]] -> Li3SetResult[[i]], {i, Length[Li3Set]}];

Li3SetNew = Variables[Cases[expression1, Re[PolyLog[3, a_]], Infinity]];
SetArgNew = Factor[Li3SetNew /. Re[PolyLog[3, a_]] -> a];
Do[expression1 = expression1
//. Li3SetNew[[i]] -> Re[PolyLog[3, SetArgNew[[i]]]], {i, Length[Li3SetNew]}];

expression1 ]
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